




Numerical Methods

Numerical methods play an important role in solving complex engineering and science problems. 
This textbook provides essential information on a wide range of numerical techniques, and it is 
suitable for undergraduate and postgraduate/research students from various engineering and 
science streams. It covers numerical methods and their analysis to solve nonlinear equations, linear 
and nonlinear systems of equations, eigenvalue problems, interpolation and curve-fitting problems, 
splines, numerical differentiation and integration, ordinary and partial differential equations with 
initial and boundary conditions. C-programs for various numerical methods are presented to 
enrich problem-solving capabilities. The concepts of error and divergence of numerical methods are 
described by using unique examples. The introductions to all chapters carry graphical representations 
of the problems so that readers can visualize and interpret the numerical approximations. 

C-Programs are available at www.cambridge.org/9781108716000

Rajesh Kumar Gupta is an associate professor of mathematics at Central University of Haryana and 
Central University of Punjab (on lien), India. He has more than 13 years of teaching and research 
experience. He has published 65 research papers in reputed international journals on the applications 
of Lie symmetry analysis to nonlinear partial differential equations governing important physical 
phenomena and related fields.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306
https://www.cambridge.org/core


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306
https://www.cambridge.org/core


Numerical Methods
Fundamentals and Applications

Rajesh Kumar Gupta

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306
https://www.cambridge.org/core


To My Parents

Sh. Murari Lal and Smt. Santosh Devi

To My Teacher

Professor Karanjeet Singh

To My Wife and Children

Dr Usha Rani Gupta and Aaradhya and Reyansh

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, vic 3207, Australia

314 to 321, 3rd Floor, Plot No.3, Splendor Forum, Jasola District Centre, New Delhi 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108716000 

© Cambridge University Press 2019

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2019

Printed in India

A catalogue record for this publication is available from the British Library

ISBN 978-1-108-71600-0 Paperback

Additional resources for this publication at www.cambridge.org/9781108716000 

Cambridge University Press has no responsibility for the persistence or accuracy 
of URLs for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306
https://www.cambridge.org/core


To My Parents

Sh. Murari Lal and Smt. Santosh Devi

To My Teacher

Professor Karanjeet Singh

To My Wife and Children

Dr Usha Rani Gupta and Aaradhya and Reyansh

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306
https://www.cambridge.org/core


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306
https://www.cambridge.org/core


Preface xvii
Acknowledgments xxix

Chapter 1 Number Systems 1
1.1 Introduction  1
 Table 1.1 Binary, Octal, Decimal and Hexadecimal Numbers 2
1.2 Representation of Integers  2
 1.2.1 Conversion from Any Number System to the Decimal Number System  3
 1.2.2 Conversion between Binary, Octal and Hexadecimal Number Systems  4
 1.2.3 Conversion from Decimal Number System to Any Other Number System 4
 1.2.4 Conversion from One Number System to Any Other Number System  6
1.3 Representation of Fractions  8
 Exercise 1 11

Chapter 2 Error Analysis 13
2.1 Absolute, Relative and Percentage Errors  13
2.2 Errors in Modeling of Real World Problems  16
 2.2.1 Modeling Error  16
 2.2.2 Error in Original Data (Inherent Error)  16
 2.2.3 Blunder  16
2.3 Errors in Implementation of Numerical Methods  17
 2.3.1 Round-off Error  17
 2.3.2 Overflow and Underflow  22
 2.3.3 Floating Point Arithmetic and Error Propagation 23
  2.3.3.1 Propagated Error in Arithmetic Operations  24
  2.3.3.2 Error Propagation in Function of Single Variable  27
  2.3.3.3 Error Propagation in Function of More than One Variable 28
 2.3.4 Truncation Error  30
 2.3.5 Machine eps (Epsilon) 33
 2.3.6 Epilogue  34
 2.3.7 Loss of Significance: Condition and Stability  34
2.4 Some Interesting Facts about Error  41
 Exercise 2  42

Contents

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306
https://www.cambridge.org/core


viii Contents

Chapter 3 Nonlinear Equations 47
3.1 Introduction  47
 3.1.1 Polynomial Equations  48
 3.1.2 Transcendental Equations  48
3.2 Methods for Solutions of the Equation f(x) = 0  48
 3.2.1 Direct Analytical Methods  49
 3.2.2 Graphical Methods  49
 3.2.3 Trial and Error Methods  51
 3.2.4 Iterative Methods  52
3.3 Bisection (or) Bolzano (or) Interval-Halving Method  54
3.4  Fixed-Point Method (or) Direct-Iteration Method (or) Method of Successive-

Approximations (or) Iterative Method (or) One-Point-Iteration Method 59
3.5 Newton–Raphson (NR) Method  65
3.6 Regula Falsi Method (or) Method of False Position  68
3.7 Secant Method  71
3.8 Convergence Criteria  74
 3.8.1 Convergence of Bisection Method 75
 3.8.2 Convergence of Fixed-Point Method  76
 3.8.3 Convergence of Newton–Raphson Method  81
 3.8.4 Convergence of Regula Falsi Method  85
 3.8.5 Convergence of Secant Method  85
3.9 Order of Convergence  86
 3.9.1 Order of Convergence for Bisection Method  87
 3.9.2 Order of Convergence for Fixed-Point Method  88
 3.9.3 Order of Convergence for Newton–Raphson Method  90
 3.9.4 Order of Convergence for Secant Method  97
 3.9.5 Order of Convergence for Regula Falsi Method  99
3.10 Muller Method  101
3.11 Chebyshev Method  106
3.12 Aitken Δ2 Process: Acceleration of Convergence of Fixed-Point Method 110
 Table 3.3 Formulation of Methods 115
 Table 3.4 Properties and Convergence of Methods  116
3.13 Summary and Observations 117
 Exercise 3  118

Chapter 4 Nonlinear Systems and Polynomial Equations 124
4.1 Fixed-Point Method 125
4.2 Seidel Iteration Method  131
4.3 Newton–Raphson (NR) Method  135
4.4 Complex Roots  144
4.5 Polynomial Equations 147
 4.5.1 Descartes Rule of Signs  147
 4.5.2 Strum Sequence  148

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306
https://www.cambridge.org/core


Contents ix

4.6 Birge–Vieta (or) Horner Method  152
4.7 Lin–Bairstow Method  156
4.8 Graeffe Root Squaring Method  161
 Table 4.2 Methods for Solutions of the Systems of Nonlinear Equations 169
 Table 4.3 Methods for the Solutions of the Polynomial Equations 170
 Exercise 4  171

Chapter 5  Systems of Linear Equations 173
5.1 Introduction  173
5.2 Cramer Rule  176
5.3 Matrix Inversion Method  178
5.4  LU Decomposition (or) Factorization (or) Triangularization Method  182
 5.4.1 Doolittle Method  183
 5.4.2 Crout Method  183
 5.4.3 Cholesky Method  190
5.5 Gauss Elimination Method  192
 5.5.1 Operational Counts for Gauss Elimination Method  197
 5.5.2 Thomas Algorithm (Tridiagonal Matrix Algorithm) 199
5.6 Gauss–Jordan Method  203
5.7 Comparison of Direct Methods  206
5.8 Pivoting Strategies for Gauss Elimination Method  207
5.9 Iterative Methods  217
5.10 Jacobi Method (or) Method of Simultaneous Displacement  218
5.11  Gauss–Seidel Method (or) Method of Successive Displacement (or)  

Liebmann Method  222
5.12 Relaxation Method  227
5.13 Convergence Criteria for Iterative Methods  237
5.14 Matrix Forms and Convergence of Iterative Methods  245
 Table 5.2 Formulae for Iterative Methods 255
5.15 Discussion  256
5.16 Applications  258
 Exercise 5 261

Chapter 6  Eigenvalues and Eigenvectors 268
6.1 Introduction 268
6.2 Eigenvalues and Eigenvectors 270
 6.2.1 Real Eigenvalues 271
 6.2.2 Complex Eigenvalues 273
 6.2.3 Matrix with Real and Distinct Eigenvalues 274
 6.2.4 Matrix with Real and Repeated Eigenvalues  275
  6.2.4.1 Linearly Independent Eigenvectors 275
  6.2.4.2 Linearly Dependent Eigenvectors 276
6.3 Bounds on Eigenvalues 277
 6.3.1 Gerschgorin Theorem 277
 6.3.2 Brauer Theorem 279

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306
https://www.cambridge.org/core


x Contents

6.4 Rayleigh Power Method 281
 6.4.1 Inverse Power Method  285
 6.4.2 Shifted Power Method 288
6.5 Rutishauser (or) LU Decomposition Method 291
 Exercise 6 295

Chapter 7 Eigenvalues and Eigenvectors of Real Symmetric Matrices 299
7.1 Introduction  299
 7.1.1 Similarity Transformations  304
 7.1.2 Orthogonal Transformations  306
7.2 Jacobi Method  307
7.3 Strum Sequence for Real Symmetric Tridiagonal Matrix  311
7.4 Givens Method  312
7.5 Householder Method  319
 Exercise 7 326

Chapter 8 Interpolation 331
8.1 Introduction 331
8.2 Polynomial Forms 333
 8.2.1 Power Form 333
 8.2.2 Shifted Power Form 333
 8.2.3 Newton Form 334
 8.2.4 Nested Newton Form 334
 8.2.5 Recursive Algorithm for the Nested Newton Form 335
 8.2.6 Change of Center in Newton Form 336
8.3 Lagrange Method 340
8.4 Newton Divided Difference (NDD) Method 343
 8.4.1 Proof for Higher Order Divided Differences 346
 8.4.2 Advantages of NDD Interpolation over Lagrange Interpolation 347
 8.4.3 Properties of Divided Differences 348
8.5 Error in Interpolating Polynomial 350
8.6 Discussion 353
8.7 Hermite Interpolation 354
8.8 Piecewise Interpolation 357
8.9 Weierstrass Approximation Theorem 359
 Exercise 8 359

Chapter 9 Finite Operators 364
9.1 Introduction 364
9.2 Finite Difference Operators 365
 9.2.1 Forward Difference Operator (Δ) 365
 9.2.2 Backward Difference Operator ∇( ) 366
 9.2.3 Central Difference Operator (δ) 366

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306
https://www.cambridge.org/core


Contents xi

9.3 Average, Shift and Differential Operators 367
 9.3.1 Mean or Average Operator (μ) 367
 9.3.2 Shift Operator (E) 367
 9.3.3 Differential Operator (D) 368
 Table 9.1 Finite Differences and Other Operators 368
9.4 Properties and Interrelations of Finite Operators 369
 9.4.1 Linearity and Commutative Properties 369
 9.4.2 Interrelations of Finite Operators 370
 Table 9.2 Relations between the Operators 373
9.5 Operators on Some Functions 374
9.6 Newton Divided Differences and Other Finite Differences 377
9.7 Finite Difference Tables and Error Propagation 379
 Table 9.3 Forward Differences 380
 Table 9.4 Backward Differences 380
 Table 9.5 Central Differences 381
 Exercise 9  386

Chapter 10 Interpolation for Equal Intervals and Bivariate Interpolation 389
10.1 Gregory–Newton Forward Difference Formula  390
 10.1.1 Error in Newton Forward Difference Formula  393
10.2 Gregory–Newton Backward Difference Formula  395
 10.2.1 Error in Newton Backward Difference Formula  397
10.3 Central Difference Formulas  398
10.4 Gauss Forward Central Difference Formula  399
10.5 Gauss Backward Central Difference Formula  402
10.6 Stirling Formula  404
10.7 Bessel Formula  406
10.8 Everett Formula  408
10.9 Steffensen Formula  410
 Table 10.1 Finite Differences Formulas  412
10.10 Bivariate Interpolation  431
 10.10.1 Lagrange Bivariate Interpolation  431
 10.10.2 Newton Bivariate Interpolation for Equi-spaced Points  435
 Exercise 10  442

Chapter 11 Splines, Curve Fitting, and Other Approximating Curves 445
11.1 Introduction  445
11.2 Spline Interpolation  446
 11.2.1 Cubic Spline Interpolation  448
 11.2.2 Cubic Spline for Equi-spaced Points  451
11.3 Bězier Curve  456
11.4 B-Spline Curve  462
11.5 Least Squares Curve  467
 11.5.1 Linear Curve (or) Straight Line Fitting 468
 11.5.2 Nonlinear Curve Fitting by Linearization of Data  470

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306
https://www.cambridge.org/core


xii Contents

 Table 11.1 Linearization of Nonlinear Curves 471
 11.5.3 Quadratic Curve Fitting  474
11.6 Chebyshev Polynomials Approximation  478
11.7 Approximation by Rational Function of Polynomials (Padé Approximation)  484
 Table 11.2 Summary and Comparison 488
 Exercise 11  489

Chapter 12 Numerical Differentiation  495
12.1 Introduction  495
12.2 Numerical Differentiation Formulas  497
 Table 12.1 Summary Table for Numerical Differentiation Formulas  498
 Exercise 12  507

Chapter 13 Numerical Integration 509
13.1 Newton–Cotes Quadrature Formulas (Using Lagrange Method) 510
 13.1.1 Trapezoidal Rule (n = 1)  512
 13.1.2 Simpson 1/3 Rule (n = 2)  513
 13.1.3 Simpson 3/8 Rule (n = 3)  514
 13.1.4 Boole Rule (n = 4) 514
 13.1.5 Weddle Rule (n = 6)  515
13.2 Composite Newton–Cotes Quadrature Rules  517
 13.2.1 Composite Trapezoidal Rule  517
 13.2.2 Composite Simpson 1/3 Rule  518
 13.2.3 Composite Simpson 3/8 Rule  519
 13.2.4 Composite Boole Rule  519
13.3 Errors in Newton–Cotes Quadrature Formulas  528
 13.3.1 Error in Trapezoidal Rule (n = 1)  529
 13.3.2 Error in Simpson 1/3 Rule (n = 2)  529
 13.3.3 Error in Simpson 3/8 Rule (n = 3)  530
 13.3.4 Error in Boole Rule (n = 4)  531
 13.3.5 Error in Weddle Rule (n = 6)  531
 Table 13.1 Newton–Cotes Quadrature Formulas  534
13.4 Gauss Quadrature Formulas  535
 13.4.1 Gauss–Legendre Formula  535
 13.4.2 Gauss–Chebyshev Formula 546
 13.4.3 Gauss–Laguerre Formula  549
 13.4.4 Gauss–Hermite Formula  551
13.5 Euler–Maclaurin Formula  553
13.6 Richardson Extrapolation  558
13.7 Romberg Integration  560
 Table 13.2 Numerical Techniques for Integration 565
13.8 Double Integrals  567
 13.8.1 Trapezoidal Rule  567
 13.8.2 Simpson 1/3 Rule  569
 Exercise 13 571

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306
https://www.cambridge.org/core


Contents xiii

Chapter 14 First Order Ordinary Differential Equations: Initial Value Problems  576
14.1 Some Important Classifications and Terms  577
 14.1.1 Ordinary and Partial Differential Equations  577
 14.1.2 Order and Degree of Differential Equations  578
 14.1.3 Homogeneous and Non-homogeneous Differential Equations  578
 14.1.4 Constant and Variable Coefficient Differential Equations  579
 14.1.5 Linear and Nonlinear Differential Equations  579
 14.1.6 General, Particular and Singular Solutions  580
 14.1.7 Initial Value Problem (IVP) and Boundary Value Problem (BVP)  580
 14.1.8 Existence and Uniqueness of Solutions  581
 14.1.9 Comparison of Analytical and Numerical Methods  582
14.2 Picard Method of Successive Approximations  582
14.3 Taylor Series Method  585
14.4 Euler Method  589
14.5 Modified (or) Improved Euler Method (or) Heun Method  592
14.6 Runge–Kutta (RK) Methods  597
14.7 Milne Method (Milne Simpson Method)  608
14.8  Adams Method (Adams–Bashforth Predictor and Adams–Moulton  

Corrector Formulas)  616
14.9 Errors in Numerical Methods  623
14.10 Order and Stability of Numerical Methods  624
14.11 Stability Analysis of IVP ′ = =y Ay y y, ( )0 0 626
14.12 Backward Euler Method  628
 Table 14.1 Numerical Schemes for IVP 634
 Exercise 14  636

Chapter 15  Systems of First Order ODEs and Higher Order ODEs:  
Initial and Boundary Value Problems 642

15.1 Picard Method  644
15.2 Taylor Series Method  647
15.3 Euler Method  648
15.4 Runge–Kutta Fourth Order Method  652
 Table 15.1 Formulations for Solutions of IVPs 658
15.5 Boundary Value Problem: Shooting Method  658
15.6 Finite Difference Approximations for Derivatives  661
 15.6.1 First Order Derivatives  662
 15.6.2 Second Order Derivatives  663
15.7 Boundary Value Problem: Finite Difference Method  664
15.8 Finite Difference Approximations for Unequal Intervals  668
15.9 Discussion 671
 Exercise 15  672

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306
https://www.cambridge.org/core


xiv Contents

Chapter 16 Partial Differential Equations: Finite Difference Methods 679
16.1 Classification of Second-Order Quasi-Linear PDEs  680
16.2 Initial and Boundary Conditions  682
16.3 Finite Difference Approximations for Partial Derivatives  683
16.4 Parabolic Equation (1-dimensional Heat Conduction Equation) 688
 16.4.1 Bender–Schmidt Explicit Scheme  689
 16.4.2 Crank–Nicolson (CN) Scheme  690
 16.4.3 General Implicit Scheme  691
 16.4.4 Richardson Scheme  692
 16.4.5 Du-Fort and Frankel Scheme  692
16.5  Consistency, Convergence and Stability of Explicit and  

Crank–Nicolson Schemes  701
 16.5.1 Consistency  702
 16.5.2 Consistency of Explicit Scheme  703
 16.5.3 Convergence and Order  704
 16.5.4 Stability  705
 16.5.5 Matrix Method for Stability of Explicit Scheme  705
 16.5.6 Matrix Method for Stability of CN Scheme  707
 16.5.7 Neumann Method for Stability of Explicit Scheme  708
 16.5.8 Neumann Method for Stability of CN Scheme  709
 Table 16.1  Summary Table of Finite Difference Methods for 1-Dimensional  

Heat Conduction Equation 710
16.6 2-Dimensional Heat Conduction Equation 711
 16.6.1 Explicit Scheme  711
 16.6.2 Crank–Nicolson (CN) Scheme  712
 16.6.3 Alternating Direction Implicit (ADI) Scheme  714
 Table 16.2  Summary Table of Finite Difference Methods for 2-Dimensional  

Heat Conduction Equation 717
16.7 Elliptic Equations (Laplace and Poisson Equations)  725
 16.7.1 Laplace Equation  726
 16.7.2 Poisson Equation  740
16.8 Hyperbolic Equation (Wave Equation)  750
 16.8.1 Explicit Scheme  751
 16.8.2 Implicit Scheme  751
16.9 Creating Own Scheme for a Problem  759
 Exercise 16.1  Parabolic Equation (Heat Conduction (or)  

Diffusion Equation) 761
 Exercise 16.2 Elliptic Equation (Laplace and Poisson Equations) 770
 Exercise 16.3 Hyperbolic Equation (Wave Equation) 773

Appendix A Comparison of Analytical and Numerical Techniques 779

Appendix B Numerical Techniques and Computer 781

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306
https://www.cambridge.org/core


Contents xv

Appendix C Taylor Series 783
 Taylor Series for the Functions of More than One Variable 785
 Lagrange Mean Value (LMV) Theorem 785
 Rolle Theorem 785

Appendix D Linear and Nonlinear 786

Appendix E Graphs of Standard Functions 788
 Algebraic Functions 788
 Transcendental Functions 789

Appendix F Greek Letters 790

Index 791

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306
https://www.cambridge.org/core


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306
https://www.cambridge.org/core


The rapid growth of science and technology during the last few decades has made a tremendous 
change to the nature of various mathematical problems. It is not easy to solve these new problems 
for analytical solutions by conventional methods. In fact, the study of these mathematical 
problems for analytical solutions is not only regarded as a difficult endeavor, rather it is almost 
impossible to get analytical solutions in many cases. The tools for analysis and for obtaining 
the analytical solutions of complex and nonlinear mathematical systems are limited to very 
few special categories. Due to this reason, when confronted with such complex problems we 
usually simplify them by invoking certain restrictions on the problem and then solve it. But 
these solutions, however, fail to render much needed information about the system. These 
shortcomings of analytical solutions lead us to seek alternates, and various numerical techniques 
developed for different types of mathematical problems seem to be excellent options. During 
the last century, the numerical techniques have witnessed a veritable explosion in research, both 
in their application to complex mathematical systems and in the very development of these 
techniques. At many places in this book, we will compare numerical techniques with analytical 
techniques, and point out various problems which can not be solved through analytical 
techniques, and to which numerical techniques provide quite good approximate solutions.

Many researchers are using numerical techniques to investigate research problems. 
Numerical techniques are now widely used in a lot of engineering and science fields. Almost 
all universities now offer courses on introductory and advanced computer-oriented numerical 
methods to their engineering and science students, keeping in mind the utilization merits of 
these techniques. In addition, computer-oriented problems are part of various other courses of 
engineering/technology. 

Preface

There is no branch of mathematics, however abstract, which may not some day be 
applied to phenomena of the real world. 

Nikolai Ivanovich Lobachevsky 
(December 1, 1792–February 24, 1856)

His work is mainly on hyperbolic geometry, also known as Lobachevskian geometry.
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xviii Preface

It gives me immense pleasure in presenting the book to our esteemed readers. This book is 
written keeping several goals in mind. It provides essential information on various numerical 
techniques to the students from various engineering and science streams. The aim of the book 
is to make the subject easy to understand, and to provide in-depth knowledge about various 
numerical tools in a simple and concise manner. 

Students learn best when the course is problem-solution oriented, especially when studying 
mathematics and computing. This book contains many examples for almost all numerical 
techniques designed from a problem-solving perspective. In fact, theoretical and practical 
introductions to numerical techniques and worked examples make this book student-friendly. 

While the main emphasis is on problem-solving, sufficient theory and examples are also 
included in this book to help students understand the basic concepts. The book includes 
theories related to errors and convergence, limitations of various methods, comparison of 
various methods for solving a specific type of problem and scope for further improvements, etc. 

The practical knowledge of any subject is thought to be an essential part of the curriculum 
for an engineering student. Numerical methods require tedious and repetitive arithmetic 
operations, wherein for large-scale problems it is almost impossible to do such cumbersome 
arithmetic operations manually. Fortunately most numerical techniques are algorithmic in 
nature, so it is easy to implement them with the aid of a computer. To enrich problem-solving 
capabilities, we have presented the basic C-programs for a wide range of methods to solve 
algebraic and transcendental equations, linear and nonlinear systems of equations, eigenvalue 
problems, interpolation problems, curve fitting and splines, numerical integration, initial and 
boundary value problems, etc. 

The section below provides an overview of the contents of the book. Each chapter contains 
a brief introduction and it also emphasis the need for numerical techniques for solving specific 
problems. We have provided exercises in all chapters with the aim of helping students check 
their capabilities and understanding, and also illustrate how various numerical methods are the 
better problem solvers. 

Chapter-by-chapter Introduction to the Book
The book comprises sixteen chapters.

Chapter 1: Number Systems explains integral and fractional numbers in the binary, octal, decimal 
and hexadecimal number systems. It also includes the conversion from one number system to 
another number system. 

Chapter 2: Error Analysis primarily presents various types of errors, and some standard remedies 
to trace and reduce these errors. 

Except Chapters 1 and 2, all other chapters of this book have been devoted to numerical 
techniques which are used to solve some specific type of problems. In each chapter, various 
numerical methods will be introduced to solve these problems. 

Chapter 3: Nonlinear Equations consists of various techniques to solve nonlinear equations in 
single variable. Primary aim is to determine the value of variable or parameter x, called root of 
the equation that satisfies the equation 

f x( ) = 0
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Preface xix

Roots of simple equations like quadratic equation x x2 3 2 0− + =  can be obtained easily. But 
in the case of higher order polynomial equations like 3 3 2 3 9 05 4 3 2x x x x x+ + − − + =  and 
transcendental equations viz. 2 0e x xx cos ,− =  we do not have any general method to compute 
the roots of these equations. Numerical techniques will be helpful for computing roots of such 
equations. 

Root
x

y = f(x)

f(x)

Fig. 1 Root of f x( ) = 0

1

1 32

2

3

4

5

y

y = x2 − 3x + 2

x

Fig. 2 Roots of x2 – 3x + 2 = 0

These problems are especially valuable in engineering design contexts where due to the 
complexity of the design equations it is often impossible to solve these equations with analytical 
methods. 

Chapter 4: Nonlinear Systems and Polynomial Equations deals with the numerical techniques to 

solve the systems of nonlinear equations, say, the system of two equations 
f x y
g x y

( , )
( , )

=
=

0
0

.

Root
x

f(x, y)

y

g(x, y)

Fig. 3 Solution of 
f x y

g x y

( , )

( , )

=
=

0

0

5

10

15

20

25

–4 –2 0 2 4x

Fig. 4 Roots of 
y x

x x y

− =

+ − − =

sin( ) 0

2 02
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xx Preface

The aim is to find coordinate (x, y), which satisfies these two equations simultaneously. Since 
there is no general analytical method for the solution of such systems of nonlinear equations, 
therefore we will apply numerical methods to solve such kind of problems. This chapter also 
includes some numerical methods for the roots of polynomial equations. 

Chapter 5: Systems of Linear Equations is devoted to obtain solution of the system of linear 
algebraic equations

a x a x a x b
a x a x a x b

a x a

n n

n n

n n

11 1 12 2 1 1

21 1 22 2 2 2

1 1

+ + + =
+ + + =

+

...
...





22 2x a x bnn n n+ + =...

  e.g.,  
x x x

x x x
x x x

1 2 3

1 2 3

1 2 3

2 3 15
2 3 15

3 9

− + =
− + =
+ − = −

 with n = 3.

In case of system of two algebraic equations, we have two lines, and their point of intersection 
is the solution. 

1

1

2

3

2

(1, 2)

x

y

y

3–1

–1

–2

–3

x+2*y = 5
3*x–y = 1

0

Fig. 5 Linear system in two variables (x, y)

Such equations have many important applications in science and engineering, specifically in the 
mathematical modeling of large systems of interconnected elements such as electrical circuits, 
structures, lattice and fluid networks, etc. In this chapter, we will discuss various direct and 
iterative methods to solve these systems of linear equations. Also, we will discuss problems that 
arise in applying these methods on the computer and some remedies for these problems.

Chapter 6: Eigenvalues and Eigenvectors is to deduce eigenvalues and eigenvectors for a square 
matrix A. A column vector X is an eigenvector corresponding to eigenvalue λ of a square matrix 
A, if 

AX X= λ .   (or) A X−( ) =λI 0

The nontrivial solutions of this homogeneous system exist, only if 

p A( ) detλ λ= −( ) =I 0
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Preface xxi

These types of problems arise in different streams of science and engineering especially in the 
case of oscillatory systems like elasticity, vibrations, etc.

Chapter 7: Eigenvalues and Eigenvectors of Real Symmetric Matrices deals with the eigenvalues 
and eigenvectors of real symmetric matrices. Some methods are applicable only to real 
symmetric matrices. Since these methods are easy to implement and provide all the eigenvalues 
and eigenvectors at a time, hence need more exploration. 

Chapter 8: Interpolation is most important part of numerical methods, as it deals with the 
approximation of the data sets with the polynomials. This chapter deals with the task of 
constructing a polynomial function P(x) of minimum degree, which passes through a given 
set of discrete data points ( , ), , , ...,x y i ni i = 0 1 . This polynomial is known as interpolating 
polynomial. It estimates the value of the dependent variable y for any intermediate value of the 
independent variable, x.

p(λ) is the polynomial of degree n for a square matrix of order n. There are only n eigenvalues of 
matrix A, including repetitions (eigenvalues may be complex). The polynomial p(λ) is known as 
characteristic polynomial, and the equation p(λ) = 0 is called characteristic equation. 

For example, the characteristic equation for the matrix A =










1 2
3 2

 is given by

p A( )λ λ
λ

λ
λ λ= − =

−
−

= −( ) +( ) =I
1 2
3 2

4 1 0

The roots of the characteristic equation give eigenvalues – 1 and 4.

X

Y

Y

λY

λX

AX = λX

X

X

Fig. 6 Eigenvalue λ and eigenvector X of matrix A
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For example: consider the data set (0, –1), (1, 1), (2, 9), (3, 29), (5, 129). The aim is to construct a 
polynomial of minimum degree which passes through all these points. We will discuss methods 
to construct such polynomial. The polynomial P x x x( ) = + −3 1 is the required polynomial and 
it passes through all these points.

x

P(x)

f(x)

Fig. 7 Interpolation

1−1 2 3 4 5

160 y = x3 + x − 1
y

x

140

120

100

80

60

40

20

−20

Fig. 8 Interpolating polynomial for data set  
(0, –1), (1, 1), (2, 9), (3, 29), (5, 129)

A data set is either the table of values of well-defined functions or the table of data points 
from observations during an experiment. These types of problems are most common in 
various experiments where only inputs and corresponding outputs are known. In most of the 
experimental cases, we have data points, i.e., inputs (x) and correspondingly outputs (y). Also, 
many practical problems involve data points instead of the mathematical model for the problem. 
For example, Indian government carries out national census after a gap of 10 years to speculate 
about the development in population of country. Hence, we have populations in these years as 
follows:

Years Population (in crores)
1961 43.9235
1971 54.8160
1981 68.33229
1991 84.6421
2001 102.8737
2011 121.0193

This population data is exact up to four decimal digits. But, in intermediate years such as 1977, 
2010, etc., we do not have exact population. The numerical techniques can be used to compute 
approximate populations in these years.
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Except for data points, sometimes, we also require approximating different functions with 
polynomials due to the simple structure of the polynomials. The polynomials are also easy for 
analysis like differentiation and integration etc. 

This chapter is devoted to various techniques for the polynomial approximations of functions 
and data points. The chapter also includes the piecewise interpolation. 

Chapter 9: Finite Operators introduces various finite operators including finite difference 
operators (forward, backward and central difference operators) and other operators like average 
or mean operator, shift operator, and differential operator. The chapter contains the relations 
between these operators. This chapter also presents construction of finite difference tables and 
the error propagation in these tables. 

These finite difference operators are helpful in constructing solutions of difference equations 
and also used to construct interpolating polynomials for equally spaced points, as discussed in 
Chapter 10.

Chapter 10: Interpolation for Equal Intervals and Bivariate Interpolation contains some 
interpolation methods for equally spaced points. The methods discussed in Chapter 8 
are applicable for both unequally as well as equally spaced points. Rather, the interpolating 
polynomial obtained from any formula is unique, but for equally spaced points, the calculations 
for interpolation become simpler and hence need more exploration. 

We will also discuss the extension of interpolation from one independent variable to two 
independent variables known as bivariate interpolation. 

Chapter 11: Splines, Curve Fitting, and Other Approximating Curves discusses approximations of 
data set other than interpolation. In interpolation, we fit a polynomial of the degree ≤n to (n + 1) 
data points. But if the data set is large, say 50 data points, then it is impractical to fit a polynomial 
of degree 49 to the data set. In this case, other approximation techniques like least squares curve 
fitting, spline fitting, etc., can be used. In this chapter, we will discuss different approximation 
techniques which have certain advantages over interpolation in some real time problems. 

Curve fitting is to construct an approximate function f(x) (like exponential, polynomial, 
logistic curve, etc.) for a table of data points. 

x

f(x)

Fig. 9 Straight line fitting

10

5

0

–5

0.5 1 1.5 2.52
x

Fig. 10 Cubic spline curve
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Interpolating polynomials have global effect, i.e., if we change a point in the data set, then 
complete polynomial will change. Also if we change the order of data points, the interpolating 
polynomial remain same, which is not recommended for certain applications like computer 
graphics and designing, etc. In these cases, we can apply Bězier and B-Spline curves. 
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Fig. 11 Bězier curves

In approximations of any polynomial by lower order polynomial, the maximum absolute error 
can be minimized by Chebyshev polynomials. We can deduce best lower order approximation 
to a given polynomial by using Chebyshev polynomials.

The polynomial approximations are best approximations for smooth functions and 
experiments (data set). But if function/experiment behaves in chaos or singular manner (i.e. 
tends to infinity at some points), then we have to approximate with some other function. One 
of the functions is a rational function of polynomials, and the approximation is known as Padé 
approximation.

Chapter 12: Numerical Differentiation is devoted to obtaining numerical differentiation from 
discrete data points. This chapter elaborates some numerical differentiation techniques based 
on interpolation.
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a c b
x

f(x)

f(x)

dy
dx x=c

Fig. 12 Differentiation

Chapter 13: Numerical Integration deals with approximating the finite integral of the functions, 
which are complicated enough to integrate analytically. For example, we don’t have exact closed 

form solutions of integrations like 1 2

0

+∫ cos ,x dx
π

 
sin ,x

x
dx

1

2

∫  e dxx−∫
2

0

2

 etc. In these cases, we 

can simply apply numerical methods for the approximate solutions. Sometimes we have to 
find the integration from a set of discrete data points ( , ), , , ...,x y i ni i ={ }0 1 . It is not possible 

to integrate data points analytically, so it is imperative to approximate these integrations by 

numerical methods. For example, the value of integral y x dx( )
0

5

∫  for the given data set (0, –1),  

(1, 1), (2, 9), (3, 29), (5, 129) can be obtained only through numerical methods.

a b
x

f(x)

f(x)

a
f(x)dx

b
∫

Fig. 13 Integration

f(x)

f(x)(x1,  f(x1))

(x0,  f(x0))

x0

x
x1

IT =  f(x)dx
x1

x0

∫

Fig. 14 Numerical Integration

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.001
https://www.cambridge.org/core


xxvi Preface

Chapter 14: First Order Ordinary Differential Equations: Initial Value Problems provides a 
detailed description of standard numerical techniques for the solution of first order ordinary 
differential equation (ODE) with the initial condition 

dy
dx

f x y y x y= =( , ), ( )0 0

The ODE with initial conditions is known as initial value problem (IVP). Most of the physical 
laws have a rate of change of quantity rather than the magnitude of the quantity itself; e.g., 
velocity of any fluid (rate of change of distance), radioactive decay (rate of change of radioactive 
material), etc. Differential equations govern all these physical phenomena. This chapter contains 
some basic definitions on differential equations. 

The main aim of this chapter in to study numerical methods for the solutions of first order 
IVP. Differential equations, especially nonlinear, are not easy to solve analytically, as very few 
analytical methods exist in the literature for a limited class of differential equations. Hence, 
numerical methods play an important role in the theories of the differential equations. 

Consider the following examples 

i) 
dy
dx

x y y= + =2 1 2, ( )

ii) 
d y
dx

x
dy
dx

y y y
2

2 0 1 0 1= + = ′ =sin ; ( ) , ( ) , .etc

These examples are difficult to solve analytically, but we can use numerical techniques for 
approximate solutions of such ODEs. 

xi

h

y

x

Slope = f (xi , yi)

yi+1 = yi + hf (xi , yi)

Compute   y(x)

xi+1

Given = f(x, y)=
dy

dx

Δy

Δx

Fig. 15 First order ODE

Chapter 15: Systems of First Order ODEs and Higher Order ODEs: Initial and Boundary Value 
Problems elucidates the steps involved for finding numerical solutions of a system of first order 
ODEs and higher order ODEs with initial and boundary conditions, for examples 
 

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.001
https://www.cambridge.org/core


Preface xxvii

Systems of First Order ODEs:

i) 

dy
dx

x y z

dz
dx

z xy

y z

= + −

= −

= = −

2

0 1 0 1

sin( )

( ) , ( )

  ii) 

dy
dx

w x y z

dz
dx

z xy

dw
dx

x w y

y z

= + −

= −

= + −

= = −

sin( )

sin( )

( ) , ( ) ,

2

2

2

1 1 1 1 ww( ) .1 1 3=

Second and Higher Order Initial Value Problems

i) 
d y
dx

x
dy
dx

y y y
2

2 3 0 1 0 2+ + = = ′ =; ( ) , ( )

ii) 
d y
dx

x
d y
dx

xy x y y y
3

3

2

2 0 1 0 2 0 2+ + = = ′ = ′′ =sin cos ; ( ) , ( ) , ( )

Second and Higher Order Boundary Value Problems

i) x
d y
dx

x
dy
dx

y y y y2
2

2 1 3 0 2 0 1 1 3+ − + = + ′ = =( ) ; ( ) ( ) , ( )

ii) 
d y
dx

x
d y
dx

xy x y y y y
3

3

2

2 0 1 1 2 3 3 4+ + = = ′ = + ′′ = −sin cos ; ( ) , ( ) , ( ) ( )

In last chapter, we have described various numerical methods for the solutions of the first order 

ODE dy
dx

f x y y x y= =( , ); ( )0 0. In this chapter, we will generalize these methods to find the 

numerical solutions of system of first order ODEs. 
The chapter deals with the conversion of higher order ODEs to the systems of first order 

ODEs. This chapter also includes the finite difference approximations of derivatives and further 
solutions of boundary value problems using these finite differences. 

Chapter 16: Partial Differential Equations: Finite Difference Methods presents various finite difference 
methods for the solutions of some standard linear partial differential equations (PDEs). The finite 
difference method is a simple and most commonly used method to solve PDEs. In this method, we 
select some node points in the domain of the PDE. Various derivative terms in the PDE and the 
derivate boundary conditions are replaced by their finite difference approximations at these node 
points. The PDE is converted to a set of linear algebraic equations at node points. This system of 
linear algebraic equations can be solved by any direct/iterative procedure discussed in Chapter 5.  
The solution of this system of linear equations leads to the solution of PDE at node points. An 
important advantage of this method is that the procedure is algorithmic, and the calculations can 
be carried out on the computer. So, the solutions can be obtained in a systematic and easy way.

PDEs are of great significance in describing the systems in which the behavior of any physical 
quantity depends on two or more independent variables. Laplace and Poisson equations (steady-
state flow, fluid mechanics, electromagnetic theory and torsion problems), heat conduction 
equation (temperature distribution) and wave equation (vibrations, fluid dynamics, etc.) are 
some important examples of second order linear PDEs. Numerical techniques for the solution 
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of PDEs include finite difference methods (FDMs), finite volume methods (FVMs) and finite 
element methods (FEMs). This chapter contains only a few finite difference techniques for the 
solutions of following PDEs governing some important physical phenomena. 

Parabolic Equation (Heat Conduction or Diffusion Equation)

∂
∂

= ∂
∂

u
t

c u
x

2

2    (1-Dimensional heat conduction equation)

∂
∂

= ∂
∂

+ ∂
∂







= ∇u
t

c u
x

u
y

c u
2

2

2

2
2  (2-Dimensional heat conduction equation)

Elliptic Equation (Laplace and Poisson Equations)

∇ ≡ ∂
∂

+ ∂
∂

=2
2

2

2

2 0u u
x

u
y

  (Laplace equation in 2-dimensions)

∇ ≡ ∂
∂

+ ∂
∂

=2
2

2

2

2u u
x

u
y

f x y( , ) (Poisson equation in 2-dimensions)

Hyperbolic Equation (Wave Equation) 

∂
∂

= ∂
∂

2

2
2

2

2

u
t

c u
x

   (1-Dimensional wave equation)

The primary focus is on the preliminary material and the basic concepts of the finite difference 
techniques used in the book along with their application procedures to derive the numerical 
solutions of the PDEs.
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Fig. 16 Partial differential equations
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1.1 Introduction 

In everyday life, we are habituated to doing arithmetic using numbers based on the decimal 
system. Any number in the decimal number system, say for example, 349.15, can be 
expressed as a polynomial in the base or radix 10 with integral coefficients 0 to 9.

(349.15)10 = 3 ×102 + 4 ×101 + 9 ×100 + 1 ×10–1 + 5 ×10–2

In number 349.15, 349 is an integral part and .15 is a fractional part. Note that the subscript 
(10) in the number (349.15)10 denotes the base of the number system. 

There is no intrinsic reason to use the decimal number system. Computers read electrical 
signals, and the state of an electrical impulse is either on or off. Hence, binary system, with 
base 2 and with integer coefficients 0 and 1, is convenient for computers. However, most 
computer users prefer to work with the familiar decimal system. It is cumbersome to work 
with the binary number system, as a large number of binary digits are required to represent 
even a moderate-sized decimal number. Hence the octal and hexadecimal number systems 
are also used for this purpose. If the base is two, eight or sixteen, the number is called as the 
binary, octal or hexadecimal number, respectively. Any number x a a a a b bn n= −( . )1 1 0 1 2… … β  
with base β can be represented as follows

Number Systems Chapter 
1

All the mathematical sciences are founded on relations between physical laws and laws 
of numbers, so that the aim of exact science is to reduce the problems of nature to the 

determination of quantities by operations with numbers. 

In a few years, all great physical constants will have been approximately estimated, 
and that the only occupation which will be left to men of science will be to carry these 

measurements to another place of decimals. 

James Clerk Maxwell 
(June 13, 1831–November 5, 1879) 

He pioneered the classical theory of “Electromagnetism”.
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2 Numerical Methods

x a a a a b bn
n

n
n= + + + + + +−

− − −β β β β β β1
1

1 0
0

1
1

2
2… …  (1.1)

The number system with base β contains numbers from 0 to β–1. For examples, decimal 
number system, with base 10, contains numbers from 0 to 9. Similarly, binary system, with 
base 2, contains numbers 0 and 1. 

Table 1.1 Binary, Octal, Decimal and Hexadecimal Numbers

Binary
Base: 2
Digits: 0, 1

Octal
Base: 8
Digits:  0, 1, 2, 3, 4, 

5, 6, 7

Decimal
Base: 10
Digits:  0, 1, 2, 3, 4, 

5, 6, 7, 8, 9

Hexadecimal
Base: 16
Digits:  0, 1, 2, 3, 4, 5, 6, 7, 

8, 9, A, B, C, D, E, F
0000 00 00 0

0001 01 01 1

0010 02 02 2

0011 03 03 3

0100 04 04 4

0101 05 05 5

0110 06 06 6

0111 07 07 7

1000 10 08 8

1001 11 09 9

1010 12 10 A

1011 13 11 B

1100 14 12 C

1101 15 13 D

1110 16 14 E

1111 17 15 F

To work with the computer-preferred binary and the people-preferred decimal, and also 
with the octal and hexadecimal number systems, it is imperative to have algorithms for 
conversion from one number system to another number system. In the next two sections, 
some algorithms are discussed to convert the integral and fractional parts of a number from 
one number system to another number system.

1.2 Representation of Integers 

The arithmetic for various number systems with some examples has been discussed in this 
section. We will use this for conversion of integers in different number systems. 
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Number Systems 3

Explore the addition and multiplication in the decimal, binary, octal and hexadecimal 
number systems with some examples.

Decimal Arithmetic (For base 10, digits are 0 … 9) 
(1295)10 + (357)10 = (1652)10
(734)10 × (46)10 = (33764)10

Binary Arithmetic (For base 2, digits are 0 and 1)
(101011)2 + (11011)2 = (1000110)2
(11101)2 × (1001)2 = (100000101)2

Octal Arithmetic (For base 8, digits are 0 … 7)
(1635)8 + (274)8 = (2131)8 
(752)8 × (23)8 = (22136)8

Hexadecimal Arithmetic (For base 16, digits are 0 … 9, A, B, C, D, E, F)
(5AB7)16 + (F63)16 = (6A1A)16
(A4B)16 × (7A)16 = (4E7BE)16

Note: Arithmetic for numbers with base β:
Consider the addition of two numbers (1635)8 and (274)8 in the octal number system with 
the base β = 8. Note that, the addition of numbers 5 and 4 will produce number 9. For  
β = 8, we have 1 carry, and the remaining number is 1. Similarly, other calculations give 
the following result 

  1 1 1  Carry
 (1 6 3 5)8
 + (2 7 4)8

 (2 1 3 1)8
⇒ (1635)8 + (274)8 = (2131)8

Similarly, consider the multiplication of two numbers. For example, multiplication of 
numbers 7 and 5 will produce number 35. In octal system (base β = 8), for number 32, we 
have 4 carry; and remaining is 3. So, final result is ( ) ( ) ( )7 5 438 8 8× = . 

1.1Example

1.2.1 Conversion from Any Number System to the Decimal Number System 
Conversion from any number system to the decimal form may be obtained directly from 
the definition (1.1)

x a a a a b bn
n

n
n= + + + + + +−

− − −β β β β β β1
1

1 0
0

1
1

2
2… …

Some of the examples are as follows
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4 Numerical Methods

1.2.2 Conversion between Binary, Octal and Hexadecimal Number Systems 
Conversion in the binary, octal and hexadecimal can be accomplished easily since four/
three binary digits make one hexadecimal/octal digit, respectively. To convert from the 
binary to the octal/hexadecimal, we have to partition the binary digits in groups of three/
four (starting from right in an integral part and from left in fractional part) and then 
replace each group by its equivalent octal/hexadecimal digit. To convert from octal and 
hexadecimal, we have to replace all digits by their binary equivalents.

 
(1101.101)2 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 + 1 × 2–1 + 0 × 2–2 + 1 × 2–3 = (13.625)10

(347.623)8 = 3 × 82 + 4 × 81 + 7 × 80 + 6 × 8–1 + 2 × 8–2 + 3 × 8–3 = (231.787109375)10

(A5F.B42)16 = 10 × 162 + 5 × 161 + 15 × 160 + 11 × 16–1 + 4 × 16–2 + 2 × 16–3 

     = (2655.70361328125)10

 
(1101.101)2 = (001 101. 101) = ( ) ( . )001 101 101 15 5

1 5 5
8  . =

(1101.101)2 =(1101. 1010) = ( )1101 1010
D A

.  = (D.A)16  

(347.623)8 = (011 100 111. 110  010  011)
3 4 7 6 2 3

 = (11100111.110010011)2

(A5F.B42)16= ( )1010  0101 1111. 1011  0100  0010
A 5 F B 4 2

 = (101001011111.101101000010)2

{ {

{ { { { { {

{ { { { { {

1.2

1.3

Example

Example

1.2.3 Conversion from Decimal Number System to Any Other Number System
The conversion of the integer N in decimal number system to another number system can be 
easily obtained in a systematic manner described as follows. Let there be a number N with 
base β

N a a a an
n

n
n= + + + +−

−β β β1
1

1 0…
Division by the base β will give 

N a a a
a

n
n

n
n

β
β β

β
= + + + +−

−
−1

1
2

1
0…
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The digit a0 is the remainder after the base β divides the number N. Let us consider the 
above equation in the form

N N
a

β β
= +0

0 , where N a a an
n

n
n

0
1

1
2

1= + + +−
−

−β β …

On dividing N0 by base β, we get

N
a a

a
n

n
n

n0 2
1

3 1

β
β β

β
= + + +−

−
− …

The number a1 is the remainder. We can continue the process till the quotient is 0. 
Apparently, the conversion from decimal number system to a number system with base β 
can be achieved by the following algorithm.

N N a= +β 0 0

N N a0 1 1= +β

N N a1 2 2= +β



till the quotient is 0.

Convert the decimal number (231)10 into its binary equivalent.

Ans.

231 = 115 × 2 + 1 N a0 0115 1= =  

115 = 57 × 2 + 1  N a1 157 1= =

57 = 28 × 2 + 1  N a2 228 1= =

28 = 14 × 2 + 0  N a3 314 0= =

14 = 7 × 2 + 0  N a4 47 0= =

7 = 3 × 2 + 1  N a5 53 1= =

3 = 1 × 2 + 1  N a6 61 1= =

1 = 0 × 2 + 1  N a7 70 1= =

Thus the binary representation of the decimal number (231)10 is (11100111)2. It can be 
computed from the expression a a a an n−( )1 1 0 2

… .

1.4Example
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6 Numerical Methods

1.2.4 Conversion from One Number System to Any Other Number System 
So far, we have discussed the algorithms for conversion of integers in some number systems. 
The following recursive algorithm can be utilized for conversion of integers in any general 
number systems. 

Compute the hexadecimal equivalent of the decimal number (2655)10.

Ans.

2655 = 165 × 16 + 15   N a F0 0 10 16
165 15= = ( ) = ( )  

165 = 10 × 16 + 5  N a1 1 10 16
10 5 5= = ( ) = ( )

10 = 0 × 16 + 10   N a A2 2 10 16
0 10= = ( ) = ( )

So, (A5F)16 is hexadecimal equivalent of (2655)10. 

Convert the binary number (110111)2 into its decimal equivalent.

Ans.

(110111)2= 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20

Since the conversion is from binary to decimal, we will use decimal arithmetic for this 
conversion. Note that each digit in the following calculation is in decimal number system.

1.5

1.6

Example

Example

Consider a number N with the coefficients a a an n, , ... ,−1 0  

N a a a an
n

n
n= + + + +−

−β β β β1
1

1 0
0…

Calculate the following numbers b b bn n, , ... ,−1 0 recursively using 

b an n=

b a b i n ni i i= + = − −+1 1 2 0β , , , ...,

Then b N0 = . 

Algorithm 1.1
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Number Systems 7

Compute the binary equivalent of the decimal number (231)10 using recursive algorithm 1.1.

Ans.

(231)10 = 2 × 102 + 3 × 101 + 1 × 100  = (10)2 × (1010)2
2  + (11)2 × (1010)2 + (1)2

This conversion uses binary arithmetic as follows

 b a2 2 2
10= = ( )

 b a b1 1 2 2 2 2 2
11 10 1010 10111= + = ( ) + ( ) × ( ) = ( )β

 b a b0 0 1 2 2 2 2
1 10111 1010 11100111= + = ( ) + ( ) × ( ) = ( )β

Compute the octal equivalent of the decimal number (231)10.

Ans.

(231)10 = 2 × 102 + 3 × 101 + 1 × 100 = (2)8 × (12)8
2 + (3)8 × (12)8 + (1)8

On using octal arithmetic in the Algorithm 1.1, we have

 b a2 2 8
2= = ( )

 b a b1 1 2 8 8 8 8
3 2 12 27= + = ( ) + ( ) × ( ) = ( )β

 b a b0 0 1 8 8 8 8 8 8
1 27 12 1 346 347= + = ( ) + ( ) × ( ) = ( ) + ( ) = ( )β

 b a5 5 1= =

 b a b4 4 5 1 1 2 3= + = + × =β

 b3 0 3 2 6= + × =

 b2 1 6 2 13= + × =

 b1 1 13 2 27= + × =

 b0 1 27 2 55= + × =

1.7

1.8

Example

Example
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8 Numerical Methods

On multiplying the fraction x b b b bF k
k

k

= =−

=

∞

∑ β
1

1 2 3. … with base β, we get 

 β β βx b b bF k
k

k
k

k

k

= = +− +

=

∞

+
−

=

∞

∑ ∑1

1
1 1

1

Thus the number b1 is an integral part of the product βxF. On repeating the process, we 
find that b2 is an integral part of β βxF F( ) , b3 is an integral part of β β βxF F F

( )( )  and 
so on. One can easily conclude the following algorithm for a general base β from the 
procedure above.

Algorithm 1.2

1.3 Representation of Fractions 

In a number system with base β, the fractional part can always be written as follows

x bF k
k

k

= −

=

∞

∑ β
1

where bk is a non-negative integer less than the number β. If bk = 0 for all k greater than a 
positive integer, then the fractional part is said to be terminating otherwise non-terminating. 

For example 1
4

0 25= .  is terminating, while 1
6

0 166666= . ... is non-terminating. Conversion 

of the fractional part from one number system to another number system can be achieved 
with the help of the following algorithm. 

Convert the decimal number (2655)10 into hexadecimal number.

Ans.

(2655)16 = 2 × 103 + 6 × 102 + 5 × 101 + 5 × 100 

 
= ( ) × ( ) + ( ) × ( ) + ( ) × ( ) + ( )2 6 5 5

16 16

3

16 16

2

16 16 16
A A A

 b a3 3 16
2= = ( )

 b a b A A2 2 3 16 16 16 16 16 16
6 2 6 14 1= + = ( ) + ( ) × ( ) = ( ) + ( ) = ( )β

 b a b A A1 1 2 16 16 16 16 16 16
5 1 5 104 109= + = ( ) + ( ) × ( ) = ( ) + ( ) = ( )β

 b a b A A A A F0 0 1 16 16 16 16 16 16
5 109 5 5 5= + = ( ) + ( ) × ( ) = ( ) + ( ) = ( )β

1.9Example
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Number Systems 9

Let  c xF0 =

 b c c c
I F1 0 1 0= ( ) = ( )β β,

 b c c c
I F2 1 2 1= ( ) = ( )β β,

 
. . .

where subscript I denotes an integral part, while subscript F denotes the fractional part.

Calculate the binary equivalent of the decimal number (.3125)10 using the recursive 
algorithm 1.2.

Ans.

Let c0 10
3125= ( ).

 2 3125 6250 0 6250
10 10 1 1 10

. . .( ) = ( ) = = ( )b c

 2 6250 1 250 1 250
10 10 2 2 10

. . .( ) = ( ) = = ( )b c

 2 250 50 0 50
10 10 3 3 10

. . .( ) = ( ) = = ( )b c

 2 50 1 00 1 0
10 10 4 4 10

. .( ) = ( ) = = ( )b c

The binary equivalent of (.3125)10 is . .b b b b1 2 3 4 2 2
0101( ) = ( ) . This example has a terminating 

binary fraction, but not each terminating decimal fraction will give a terminating binary 
fraction, and this is true for other number systems also. 

Find the binary equivalent of the decimal number (0.3)10. 

Ans. 

Let c0 10
3= ( ).

 2 3 6 0 6
10 10 1 1 10

. . .( ) = ( ) = = ( )b c

 2 6 1 2 1 2
10 10 2 2 10

. . .( ) = ( ) = = ( )b c

 2 2 4 0 4
10 10 3 3 10

. . .( ) = ( ) = = ( )b c

 2 4 8 0 8
10 10 4 4 10

. . .( ) = ( ) = = ( )b c

 2 8 1 6 1 6
10 10 5 5 10

. . .( ) = ( ) = = ( )b c


Since the digits are repeating, we can conclude that the binary equivalent of (.3)10 is a non-
terminating fraction (.0 1001 1001 1001 …)2 (or) (. )01001

1.10

1.11

Example

Example
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10 Numerical Methods

Find the decimal representation of the binary number (.0101)2.

Ans.

Using the algorithm 1.2 and binary arithmetic, we get

 c0 2
0101= ( ).

 ( ) . . ( ) .1010 0101 11 0010 11 3 00102 2 2 1 2 10 1 2( ) = ( ) = = ( ) = ( )b c

 ( ) . . ( ) .1010 0010 1 010 1 1 0102 2 2 2 2 10 2 2( ) = ( ) = = ( ) = ( )b c

 ( ) . . ( ) .1010 010 10 10 10 2 102 2 2 3 2 10 3 2( ) = ( ) = = ( ) = ( )b c

 ( ) . . ( )1010 10 101 0 101 5 02 2 2 4 2 10 4 2( ) = ( ) = = ( ) = ( )b c

Hence (.3125)10 is decimal equivalent of the binary fraction (.0101)2.

Convert the octal fraction (.71)8 to its equivalent decimal representation.

Ans.

Let c0 8
71= ( ).

 ( ) . . ( ) .12 71 10 72 10 8 728 8 8 1 8 10 1 8( ) = ( ) = = ( ) = ( )b c

 ( ) . . ( ) .12 72 11 04 11 9 048 8 8 2 8 10 2 8( ) = ( ) = = ( ) = ( )b c

 ( ) . . ( ) .12 04 0 5 0 0 58 8 8 3 8 10 3 8( ) = ( ) = = ( ) = ( )b c

 ( ) . . ( ) .12 5 6 2 6 6 28 8 8 4 8 10 4 8( ) = ( ) = = ( ) = ( )b c

 ( ) . . ( ) .12 2 2 4 2 2 48 8 8 5 8 10 5 8( ) = ( ) = = ( ) = ( )b c

 ( ) . . ( )12 4 5 0 5 5 08 8 8 6 8 10 6 8( ) = ( ) = = ( ) = ( )b c

The decimal representation is (.890625)10.

Convert the hexadecimal fraction (.B4)16 to its equivalent decimal representation.

Ans.

Let c B0 16
4= ( ).

( ) . . ( ) .A B b c16 16 16 1 16 10 1 16
4 7 08 7 7 08( ) = ( ) = = ( ) = ( )

( ) . . .A b c16 16 16 2 10 2 16
08 0 5 0 5( ) = ( ) = ( ) = ( )

1.12

1.13

1.14

Example

Example

Example
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Number Systems 11

( ) . . .A b c16 16 16 3 10 3 16
5 3 2 3 2( ) = ( ) = ( ) = ( )

( ) . . .A b c16 16 16 4 10 4 16
2 1 4 1 4( ) = ( ) = ( ) = ( )

( ) . . .A b c16 16 16 5 10 5 16
4 2 8 2 8( ) = ( ) = ( ) = ( )

( ) . .A b c16 16 16 6 10 6 16
8 5 0 5 0( ) = ( ) = ( ) = ( )

The decimal representation is (.703125)10.

For conversion from one number system to another number system, one can separately convert 
the integral and fractional part and then combine them. For example, the decimal equivalent 
of the number (.B4)16 is (.703125)10 and decimal equivalent of the number (A5F)16 is (2655)10. 
Therefore decimal equivalent of the number (A5F.B4)16 is (2655.703125)10.

Exercise 1 

1. Perform the given arithmetic in the following examples, where the subscript in the number 
represents the base of the number system:

 a) (583)10 + (3057)10    b) (312)10 × (281)10

  c) (10110111)2 + (101011)2   d) (10101)2 × (1101)2 

  e) (6047)8 + (165)8    f ) (536)8 × (37)8 
  g) (3A73)16 + (E84)16    h) (85D)16 × (23)16 

Ans. a) (3640)10  b) (87672)10 c) (11100010)2 d) (100010001)2

  e) (6234)8  f ) (25142)8 g) (48F7)16 h) (124B7)16

2. Convert the following numbers into their decimal equivalents:

 a) (11011.110)2   b) (67.243)8   c) (2A7.3F)16 

Ans. a) (27.75)10  b) (55.31835938)10  c) (679.2460938)10

3. Find the binary, octal and hexadecimal forms of the following numbers:

 a) (101101.110)2   b) (573.42)8   c) (A05.9A)16

Ans. a) [(55.6)8, (2D.C)16]   b) [(101111011.10001)2, (17B.88)16]
  c) [(101000000101.10011010)2, (5005.464)8]

4. Compute the binary, octal and hexadecimal equivalents of the decimal number (5680)10.

Ans. (1011000110000)2, (13060)8, (1630)16

5. Use the algorithm 1.1 for the following conversions:

 a) (1101101)2 in decimal   b) (5691)10 in octal 
 c) (237)8 in decimal  d) (110111)2 in hexadecimal
 e) (2AD3)16 in decimal   f ) (4529)10 in hexadecimal
 g) (438)10 in binary  h) (110111)2 in octal

Ans. a) (109)10 b) (13070)8 c) (159)10  d) (37)16

  e) (10963)10 f ) (11B1)16 g) (110110110)2 h) (67)8
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12 Numerical Methods

6. Obtain the following conversions for the fractional numbers with the aid of recursive algorithm 1.2

 a) (.1101101)2 in decimal   b) (.50)10 in octal  
 c) (.237)8 in decimal  d) (.A3)16 in decimal 
 e) (.45)10 in hexadecimal  f ) (.325)10 in binary

Ans. a) (.8515625000)10 b) (.40)8  c) (.3105468750)10

  d) (.1367187500)10 e) (.73)16  f ) (.0101001)2

7. Obtain the decimal equivalents of the numbers (A23.4D)16, (126.54)8, (10101.11)2.

Ans. (2595.300781)10, (86.6875)10, (21.750000)10

8. Compute the binary, octal and hexadecimal equivalents of the decimal number (238.40)10.

Ans. (11101110.01100)2, (356.3146)8, (EE.6)16 

9. Calculate the decimal equivalent of the octal number (. )647 8 with the aid of the recursive 
algorithm.

Ans. (.8261718750)10 
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Numerical methods use arithmetic operations to solve complex mathematical problems. 
The numerical processes are algorithmic, so these methods can be applied easily with the 
advent of high-speed computers. In fact, the development of more efficient computers 
has played a vital role in a veritable explosion in the usage of numerical techniques for 
engineering and scientific problems. The common characteristic of numerical techniques 
is that all these involve cumbersome arithmetic operations. During the implementation of 
the numerical techniques on a computer, we often come across various types of errors. The 
precisions (number of digits in the representation of a number) of a numerical solution 
can be diminished by these several possible errors. This chapter deals with various types of 
errors, and some standard remedies to trace and reduce these errors. 

In Section 2.1, measurement of the error will be discussed. Section 2.2 presents the 
various sources of errors in mathematical modeling of a real world problem. The study of 
errors during the implementation of numerical methods for the solution of a mathematical 
model is the primary objective of Section 2.3. The last section is about some interesting 
discussion on error.

2.1 Absolute, Relative and Percentage Errors 

The difference between the exact value and an approximate value of a quantity is called 
error in the measurement. Its absolute value is called absolute error. Let x be the exact value 
and x be an approximate value of a given quantity; then the absolute error is given by

Error Analysis Chapter
2

I claim to be a simple individual liable to err like any other fellow mortal. I own, however, 
that I have humility enough to confess my errors and to retrace my steps. 

Mohandas Karamchand Gandhi (Mahatma Gandhi)  
(October 2, 1869–January 30, 1948) 

He embraced non-violent civil disobedience and led India to independence  
from British rule. 
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14 Numerical Methods

Absolute error = E x xa = − 

Absolute error is not a complete measurement of the error. For example, let absolute error in 
any quantity be 0.1 m. This information is not complete until we define the quantity for the 
0.1 m error. If the 0.1 m error is in 10000 m, then it is small enough to be ignored. But, we 
cannot neglect 0.1 m error if it is in 1 m. In fact, the error in any quantity depends on the size 
of that quantity, so relative error and percentage error are the best measurements of the error. 

The relative and percentage errors are defined as follows

 Relative error = E x x
xr = − 

 Percentage error = E E x x
xp r= = −100 100


Let there exist a number ε > 0, such that x x− ≤ ε . Then ε is an upper limit of the absolute 
error and measures the absolute accuracy. 

The relative and percentage errors are independent of the units of the quantities used 
while the absolute error is expressed in terms of these units.

An approximation to the value of π is given by 22
7

, while its true value in 8 decimal digits 

is 3.1415926. Calculate the absolute, relative and percentage errors in the approximation.

Ans. Exact value = x = 3.1415926

Approximate value = 
x  = 22

7
 = 3.1428571

E x xa = − = − = 0 0012645 0 0012645. .

E x x
xr = − = =
 0 0012645

3 1415926
0 000402502.

.
.

E E x x
xp r= = − =100 100 0402502


. %

2.1Example

To recognize the major sources of errors and then how to quantify or minimize these errors 
in the numerical computations are the primary objectives of this chapter. 
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Revision of Model
if Necessary Modeling

Error

Obtainable for Limited Problems Error in Numerical Computation

Numerical Solution

Mathematical Model

Real World Problem

Exact Solution

Interpretation of
Solution

Implementation of
Model

Fig. 2.1 Steps in solving a real world problem 

In fact, the error is a multifaceted problem, but it mainly arises during two stages: error 
occurred during the mathematical modeling of the real world problem, and error when we 
solve the mathematical model numerically.

In this chapter, we will discuss different types of errors: those encountered during the 
first step (modeling) and the second step (mathematical model to the solution). 

Analysing any real world problem involves the following three major steps: the first step 
is to convert the real world problem into a mathematical model; the second step is to solve 
that model analytically or numerically; and the last step is to analyze the obtained solution 
for its physical and real-time significance. 

After the analysis part is complete, we implement the model for its application. 
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16 Numerical Methods

2.2 Errors in Modeling of Real World Problems 

The errors in modeling are not directly connected with numerical techniques, but they have 
a profound impact on the success of a model. Thus, before implementation of a numerical 
method to the mathematical model, we must have knowledge of the following errors 

1. Modeling Error
2. Error in Original Data (Inherent Error)
3. Blunder

2.2.1 Modeling Error 
Most of the physical phenomena in nature are inherently nonlinear, and the mathematical 
models governing these physical systems must be nonlinear. In real world phenomena, it 
is not possible to include nonlinearity and all other parameters in the mathematical model 
which govern the situation. For example, while introducing a model for calculating the 
force acting on the free falling body, it is not always possible to include the air resistance 
coefficient (drag coefficient) properly. It is not possible to exactly measure the magnitude 
and direction of the wind force acting on a free-falling body. We simplify the problem by 
assuming that wind force acting on the body is directly proportional to the velocity of the 
body. There are many simplifications in each mathematical model, and certainly, these 
simplifications produce errors in the mathematical model. Further, the model itself is not 
perfectly governing the situation itself. To check the validity of such models in the real 
world problem, we may need to perform sensitivity analysis. If our mathematical model is 
inadequate or inaccurate, then, in that case, obtained results are erroneous. 

To reduce such errors, we must ensure that the mathematical model must be formulated 
and refined by incorporating more features of the situation, which are essential to reduce 
the error. Simply, the error can be reduced by working with the best model.

2.2.2 Error in Original Data (Inherent Error) 
The mathematical model of any physical situation always has associated quantities which 
are imperfectly known. The reason is that the modeled problem often depends on some 
instruments whose measurements are of doubtful accuracy. For example, if we want to 
compute the area of a circular disk, then the radius of the disk is required. But, we cannot 
measure the radius of the disk with perfect accuracy as very high precision machines can 
measure up to the accuracy of maximum 5 to 6 decimal digits. Inherent errors can be 
minimized using high precision computing systems and by taking better data.

2.2.3 Blunder 
There is extensive use of the computer in applications of various numerical techniques; 
chances that the computers make mistakes are very less. But, during the implementation of 
algorithms on computers, we can make mistakes at various steps, like problem formulations, 
selection of numerical procedures, programming, and result interpretations, etc. These lead 
to blunders or gross errors. Some frequent and common types of errors are as follows
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i) Inaccurate or inadequate knowledge of the nature of the problem.
ii) Avoiding certain important features of the problem during formulation of the 

problem.
iii)  Some wrong assumptions during the formulation of the problem.
iv) Error in selecting the mathematical equation, which describes a part of the 

problem.
v) Errors in input data. 
vi) Selection of an inappropriate numerical process to determine a solution of the 

mathematical model.
vii) Implementing a wrong algorithm or avoiding certain important features of a 

mathematical model in the algorithm. 
viii) Starting with a wrong initial guess. 
ix) Other simple mistakes like misprints, wrong subscripts in variables, forgetting 

unit conversion, forgetting negative sign, etc. 
x) Implementing infinite series without having knowledge of the convergence. 

These errors can be reduced to a large extent by acquiring a hold over various intricacies of 
the real world phenomena, mathematical modeling of the phenomena and the numerical 
methods for the solutions of these mathematical models. We must carefully examine the 
results to avoid such blunders, and a test run with known results is worthwhile in this 
regard. Test problems more often reveal the mistake and permit its correction.

2.3 Errors in Implementation of Numerical Methods 

In this section, we will discuss those errors, which are due to the way that computers store 
numbers and do arithmetic. In any numerical computation, we come across following types 
of errors

i) Round-off Error
ii) Overflow and Underflow
iii) Floating Point Arithmetic and Propagated Error
iv) Truncation Error
v) Machine eps (Epsilon)
vi) Epilogue
vii) Loss of Significance: Condition and Stability

There are several potential sources of errors in numerical computation. But, round-off and 
truncation errors can occur in any numerical computation. 

2.3.1 Round-off Error 
During the implementation of a numerical algorithm with computing devices mainly 
calculator and computer, we have to work with a finite number of digits in representing 
a number. The number of digits depends on the word length of the computing device 
and software. The scientific calculations are carried out in floating point arithmetic. It is 
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18 Numerical Methods

necessary to have knowledge of floating point representations of numbers and the basic 
arithmetic operations performed by the computer (+, -, *, /) in these representations. 

Floating Point Representation of Numbers
To understand the major sources of error during the implementation of numerical algorithms, 
it is necessary to discuss how the computer stores the numbers.

An m -digits floating point number in the base β is of the following form

x d d d dm
n= ± ⋅⋅⋅( ). 1 2 3 β

β

where .d d d dm1 2 3 ⋅⋅⋅( )β
 is called as a mantissa and the integer n is called the exponent. A non-

zero number is said to be normalized if d1 0≠ .
All the real numbers are stored in normalized form in the computer to avoid wastage of 

computer memory on storing useless non-significant zeroes. For example, 0.002345 can be 
represented in a wasteful manner as (0.002345)100 which is wasting two important decimal 
points. However, the normalized form is (0.2345)10–2, which eliminates these useless zeroes; 
also known as spurious zeroes. 

If we want to enter the number 234.1205, then this number stored in the computer in 
normalized form, i.e., (0.2341205)103. Similarly, the number 0.00008671213 stored in the 
computer in normalized form (0.8671213)10 – 4.

The digits used in mantissa to express a number are called as significant digits or 
significant figures. More precisely, digits in the normalized form mantissa of a number are 
significant digits. 

a) All non-zero digits are significant. For examples, the numbers 3.1416, 4.7894 and 
34.211 have five significant digits each.

b) All zeroes between non-zero digits are significant. For examples, the numbers 
3.0156 and 7.5608 have five significant digits each. 

c) Trailing zeroes following a decimal point are significant. So, the numbers 3.5070 
and 76.500 have five significant digits each. 

 (Why the number 5.1 has two significant digits, and number 5.10 has three 
significant digits? To explain this, let us assume we are reading Chapter 5 of a book, 
and it contains 12 sections. The number 5.1 represents first section of Chapter 5, 
while the number 5.10 represents tenth section of Chapter 5.) 

d) Zeroes between the decimal point and preceding a non-zero digit are not significant. 
i.e., the numbers 0.0023401 and 0.00023401 have five significant digits each. 

e) Trailing zeroes are significant if the decimal point is not present, i.e., the numbers 
45067000 and 45000 have eight and five significant digits, respectively.

To compute the significant digits in a number, simply convert the number in the normalized 
form and then compute the significant digits. 

There is a limit on the mantissa (m) and exponent (n) as the storage capacity of any 
machine is finite. The precision or length m of the floating point numbers usually depends 
on the word length of the computer and software, and it may vary widely. For example, in 
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Error Analysis 19

single precision (float variable, 32 bits), the C-programming allows 23 bits for mantissa 
(m), 8 bits for exponent (n), and 1 bit for sign (±). Similarly, double variable gives 52 bits 
for mantissa, 11 bits for exponent, and 1 bit for sign. Note that the calculations in double 
precision require more storage and more running time as compared to single precision.

To understand the limit on storing capacity of the computer, consider the number 10/3. 
Since the computer can enter the number only in normalized form, hence the computer 
first solves 10/3 = 3.333333…, and then stores the number. There are infinite numbers of 
3’s in the expression, but computer will store the number up to its capacity. Let the capacity 
of the computer be ten digits (i.e., mantissa limit m <= 10), then the number will store as 
(0.3333333333)101. All computing devices represent such numbers with some imprecision. 
For examples, 5/3 =1.6666666…, 2 1 414213= . ...  and π = 3 141592. ...  cannot be expressed 
by a finite number of digits, since the computer cannot store 50/3, 2, etc. These numbers 
may be approximated by rounding off the last precision to m-digits floating point number. 
For example, let m = 6, then we can approximate 50/3, 2  and π by numbers 16.6667, 
1.41421 and 3.14159, respectively. 

This process of rounding off the numbers during the computation will give rise to round off 
errors.

Rounding and Chopping
Rounding and chopping are two commonly used ways of converting a given real number x 
into its m-digits floating point representation fl(x). In the case of chopping, the number x is 
retained up to m-digits, and remaining digits are simply chopped off. For example, consider 
6-digits floating point representation, then

x fl x

x fl x
x

1 1

2 2
7

3

2
3

0 666666

3456789 345678 10
0 001

= =

= = ( )
= −

( ) .

( ) .
. 11223344 112233 103

2fl x( ) (. )= − −

In rounding, the normalized floating point number fl(x) is chosen such that it is nearest to 
the number x. In the case of a tie, some special rules such as symmetric rounding can be 
used. Rules to round off a number to m significant figures are as follows

i) Discard all digits to the right of m-th digit.
ii) If the last discarded number is 

a) less than half of base β in the (m + 1)th place, leave the m-th digit unchanged;
b) greater than half of base β in the (m + 1)th place, increase the m-th digit by 

unity;
c) exactly half of base β in the (m + 1)th place, increase the m-th digit by unity if 

it is odd, otherwise leave the m-th digit unchanged. It is known as symmetric 
rounding around even number. Similarly, we can have symmetric rounding 
about odd number. 

Consider the following numbers with 6-digits floating point representation
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20 Numerical Methods

x fl x

x fl x
x

1 1

2 2
7

3

2
3

0 666667

3456789 345679 10
0 001

= =

= = ( )
= −

( ) .

( ) .
. 11223344 112233 103

2fl x( ) (. )= − −

The difference between x and fl(x) is called the round-off error. If the number is correct up 
to p decimal points, then the maximum absolute error in chopping and rounding is given by

Absolute error = E x fl xa

p

p
= − ≤







−

−
( )

1
2

β

β

 in rounding

in chopping
 

For example, if the number 12.345 (β = 10) is correct up to digits mentioned, then the 
maximum absolute error in this number is .001 in the case of chopping, and it is .0005 in 
the case of rounding. 

The relative error in the floating point representation of x is as follows

Relative Error = δ = −x fl x
x

( )

Let the number be correct up to m significant digits in normalized form. Then the maximum 
relative error is given by the following expression

δ
β

β
≤







−

−

1
2

1

1

m

m

 in rounding

in chopping

For example, let us assume that the number 123.45 (β = 10) is correct up to digits mentioned. 
It contains five significant digits, so the maximum relative error in this number is .0001 in 
the case of chopping, and it is .00005 in the case of rounding. 

Note: It is worth mentioning here that generally we use rounding. Until it is not mentioned to 
use chopping specifically, we will use rounding for computational work throughout the book. 

Consider the irrational number π = 3.14159265358979... It has an infinite number of digits. 
So, computer representation of the number π will produce the round-off error depending 
on the number of significant digits in arithmetic. In Table 2.1, we are presenting the 
absolute and percentage errors for 1,2,…,6 significant digits, while considering the exact 
value of π = 3.141593.

2.2Example
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Table 2.1

Number  
of digits

Approximation  
for π (Rounding)

Absolute  
error

Percentage 
error

1 3 0.141593 4.507045%

2 3.1 0.041593 1.323946%

3 3.14 0.001593 0.050707% 

4 3.142 0.000407 0.012955% 

5 3.1416 0.000007 0.000234%

6 3.14159 0.000003 0.000095%

Compute the absolute and relative errors in the four significant digits approximations of 
the numbers 124678 and 345.635.

Ans. Four significant digits approximations of the numbers 124678 and 345.635 are as 
follows

fl x
x
x

( )
.
. .

=
( ) =

( ) =







1247 10 124678
3456 10 345 635

6

3
   rounding

fl x
x
x

( )
.
. .

=
( ) =

( ) =







1246 10 124678
3456 10 345 635

6

3
   chopping

Absolute error = E x fl xa = − =
− =
− =






( )

. . .
124678 124700 22
345 635 345 6 035

 rounding

 E x fl xa = − =
− =
− =






( )

. . .
124678 124600 78
345 635 345 6 035

 chopping

 Relative error = E
x fl x

xr =
−

=
( )
( )







−

−

( ) .
.
1764545 10
1012628 10

3

3   rounding

 E
x fl x

xr =
−

=
( )
( )







−

−

( ) .
.
6256116 10
1012628 10

3

3   chopping

2.3Example
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22 Numerical Methods

The true value of π correct to 8-significant digits is 3.1415926. Calculate the absolute and 
relative error.

Ans. The value is correct up to 7-decimal digits, so the maximum absolute errors in case 

of rounding and chopping are 1
2

10 7−  and 10 7− , respectively.

Relative error in rounding = E X X
Xr = − ′ = × = ×

−
−0 5 10

3 1415926
0 15915494 10

7
7.

.
.

Relative error in chopping = Er = = ×
−

−10
3 1415926

0 31830989 10
7

7

.
.

2.4Example

2.12346 2.12347

Gap between
the numbers

Fig. 2.2 Gaps between floating point numbers 

In fact, using computer, we can only represent finite numbers of real numbers and in 
between every two such numbers, we have infinite numbers, which cannot be represented 
by the computer. 

2.3.2 Overflow and Underflow 
The normalized form for an m -digits non-zero floating point number in the base β is given 
by

x d d d dm
n= ± ⋅⋅⋅( ). 1 2 3 β

β , d1 0≠

where .d d d dm1 2 3 ⋅⋅⋅( )β
 is called as mantissa and the integer n is called as exponent. 

It is easy to see that, in between every two numbers, there are infinitely many numbers, which we 
cannot represent exactly using the computer. Let us consider the machine with 6–digits floating 
point arithmetic. Consider any two numbers, say 2.12346 and 2.12347. Then, it is easy to see 
that we cannot represent the in-between numbers like 2.1234652, 2.12346521, 2.1234603112, 
etc. and these are infinitely many numbers. 

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.003
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:32:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.003
https://www.cambridge.org/core


Error Analysis 23

The exponent n is restricted to a range l < n < L, for integers l and L; generally l = – L. 
This limit varies widely and depends on the computational device used. If in the floating 
point representation of a number x, the exponent n exceeds the limit, i.e., either x L≥ β
(overflow) or 0 1≤ ≤ −x lβ  (underflow), it results either in a stop or else fl(x) is represented 
by a special number (either 0 or infinity). These special numbers are not subject to the usual 
rules of arithmetic when combined with ordinary floating point numbers. 

Let a hypothetical computer with maximum ten digits mantissa and exponent range 
(–20, 20) in the decimal number system, then the overflow and underflow can be structured 
in the following figure 

Minimum
−.9999999999 × 1020

Maximum
.9999999999 × 1020

Overflow

−0.1 × 10−20 0.1 × 10−20

Overflow

Underflow
(“Gap” at zero)

Fig. 2.3 Overflow and underflow

Rather the limit is quite awesome, but it is not able to represent physical quantities like 
Avogadro’s number (6.022 × 1023) and Plank’s constant (6.626 × 10–34 J.s.), etc.

2.3.3 Floating Point Arithmetic and Error Propagation
In the last section, we have discussed the errors in number representations. These errors 
further propagate while performing basic arithmetic operations using a computer. The 
result of an arithmetic operation is usually not accurate to the same length as the numbers 
used for the operations. The floating point numbers are first converted into the normalized 
forms as soon as they enter in the computer. 

Here we will explain the arithmetic operations with 6-significant digits numbers. For 
example, let us take numbers x = 123.456 and y = 12.3456 with six significant digits. The 
various arithmetic operations (+, – , *, /) on these two numbers are as follows

x + y = (.123456)103 + (.123456)102 (Normalized form)
 = (.123456)103 + (.012346)103 (Equal exponent using symmetric rounding)
 = (.135802)103 
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24 Numerical Methods

 x – y = (.123456)103 – (.123456)102 
 = (.123456)103 – (.012346)103 (Equal exponent using symmetric rounding)
 = (.111110)103 

 x * y = (.123456)103 * (.123456)102 
 = (.123456) * (.123456) 103+2 (Add the exponents)
 = (.015241)105 
 = (.152410)104

 x / y = (.123456)103 / (.123456)102 
 = (.123456) / (.123456) 103–2 (Subtract the exponents)
 = (1.00000)101 
 = (0.100000)102 

Note: If two floating point numbers are added or subtracted, first they are converted into 
the numbers with equal exponents. The results in various arithmetic operations are not 
correct up to six significant digits due to rounding errors.

It is worth mentioning here that the result of subtraction of two nearly equal numbers leads 
to a very serious problem, i.e., loss of significant digits. For example, consider six significant 
digits numbers x = 123.456 and y = 123.432, then

 x – y = (.123456)103 –(.123432)103 (Normalized form)
 =  (.000024)103 (Result containing only two significant digits, four non-significant 

zeroes are appended)

This subtraction of two nearly equal numbers is called as subtractive cancellation or loss 
of significance. It is a classical example of computer handling mathematics can create a 
numerical problem. We will discuss it, in detail, in Section 2.3.7.

2.3.3.1 Propagated Error in Arithmetic Operations 

Propagated errors are the errors in the succeeding steps of a process due to an earlier error 
in the input. For example, error in the division of two numbers due to local errors in the 
numbers. In this section, we will see how errors in numbers may propagate through basic 
mathematical operations viz. addition, subtraction, multiplication, and division of two 
numbers. 

Consider any two numbers x1 and x2. Let the errors in the numbers x1 and x2 be δx1 and δx2, 
respectively. Then errors in the addition, subtraction, multiplication, and division of these 
two numbers are as follows 

i) Addition
Let X = x1 + x2 and the error in X is δX.
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Error Analysis 25

X X x x x x+ = + + +δ δ δ1 1 2 2

δ δ δX x x= +1 2

Absolute Error = δ δ δX x x≤ +1 2

Relative Error = 
δ δ δX
X

x
X

x
X

≤ +1 2  (2.1)

ii) Subtraction
Similarly, the error in subtraction X = x1 – x2  is given by

δ δ δX x x= −1 2

Absolute Error = δ δ δX x x≤ +1 2

Relative Error = δ δ δX
X

x
X

x
X

≤ +1 2  (2.2)

iii) Multiplication
Let X = x1x2, then

X X x x x x
x x x x x x x x

+ = +( ) +( )
= + + +

δ δ δ
δ δ δ δ

1 1 2 2

1 2 2 1 1 2 1 2

Neglecting second order term (δx1δx2), the error in the multiplication of two numbers is as 
follows

δ δ δX x x x x= +2 1 1 2

Absolute Error = δ δ δX x x x x≤ +2 1 1 2

Relative Error = 
δ δ δX
X

x
x

x
x

≤ +1

1

2

2

 (2.3)

iv) Division

Let X
x
x

= 1

2

, then
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26 Numerical Methods

X X
x x
x x

x x
x x

x x
x x

x x

+ =
+
+

=
+
+







−
−







=

δ
δ
δ

δ
δ

δ
δ

1 1

2 2

1 1

2 2

2 2

2 2

1 22 2 1 1 2 1 2

2
2

2
2

+ − −
−

x x x x x x
x x

δ δ δ δ
δ

On neglecting the second order terms (δx1δx2 and δ x2
2 ), the error is given by

δ
δ δ

X
x x x x

x
=

−2 1 1 2

2
2

Absolute Error = δ
δ δ

X
x

x
x x

x
≤ +1

2

1 2

2
2

Relative error = 
δ δ δX
X

x
x

x
x

≤ +1

1

2

2

 (2.4)

The numbers x1 = 0.123 and x2 = 12.37 are correct up to the significant digits in the 
numbers. Compute the relative errors in the addition, subtraction, multiplication and 
division of these two numbers. Consider symmetric rounding. 

Ans. Absolute errors in the numbers x1 = 0.123 and x2 = 12.37 are δx1 = .0005 and  
δx2 = .005, respectively.
Using the formulae (2.1 – 2.4) for various error terms, we have 

Relative error in the addition = δ δ δX
X

x
X

x
X

≤ +1 2 , where X x x= +1 2

 = + =.
.

.
.

.0005
12 493

005
12 493

000440246538

 Relative error in subtraction = δ δ δX
X

x
X

x
X

≤ +1 2 , where X x x= −1 2

 
= + =.

.
.
.

.0005
12 247

005
12 247

000449089573

Relative error in multiplication and division = +
δ δx
x

x
x

1

1

2

2

 
= + =.

.
.

.
.0005

123
005

12 37
004469244369

2.5Example
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Calculate the absolute and relative errors in the expression a
b
c

bc+ −5 3 , if the measurements 

of a = 3.5435, b = .2588 and c = 1.0150 are possibly correct up to four decimal points. 

Ans. Let x a b
c

bc A B C= + − = + −5 3 5 3 , where A a B b
c

= =,  and C bc= .

Value of x a b
c

bc= + −5 3  = 4.03033

Error in a, b and c is δ δ δa b c= = = .00005

Absolute error in A = δ A = .00005

Absolute error in B = δ
δ δ

B
c b b c

c
=

+
=

+( ) ×
=2 2

1 015 0 2588 00005
1 015

00006182
. . .

( . )
.

Absolute error in C = δ δ δC c b b c= + = +( ) × =1 015 0 2588 00005 00006369. . . .

Absolute error in x = δ δ δ δx A B C≤ + +5 3

 = + +. (. ) (. )00005 5 00006182 3 00006369

 = .0005502

Relative error in x = 
δ x
x

= =.
.

.0005502
4 03033

0001365

Percentage error in x = 0.01365%

2.6Example

2.3.3.2 Error Propagation in Function of Single Variable 

Let us consider a function f(x) of a single variable, x. Assume that the variable x has some 
error and its approximate value is x . The effect of error in the value of x on the value of 
function f(x) is given by

∆f x f x f x( ) ( ) ( )= − 

Evaluating Δf(x) is difficult as the exact value of x is unknown and hence exact f(x) is 
unknown. But if x  is close to x and the function f(x) is infinitely differentiable in some 
interval containing the points x  and x, then Taylor series can be employed as follows 

f x f x x x f x x x f x( ) ( ) ( ) ( ) ( )
!

( ) ...= + − ′ + −
′′ +  





2

2
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28 Numerical Methods

Since the difference ( )x x−   is very small, hence neglecting the second and higher order 
terms of ( )x x−   will give following relation

f x f x x x f x( ) ( ) ( ) ( )− − ′


 

or ∆f x x x f x
x f x

( ) ( )
( )


 




− ′
∆ ′

 (2.5)

where ∆f x f x f x( ) ( ) ( )= −   represents the estimated error in the function value and 
∆x x x= −   is the estimated error of x.

Let x = 3 42.  be an approximate value of the variable x with an error bound ∆x = 0 003. . 
Compute the resulting error bound in the function value f x x( ) = 3.

Ans. From Eq. (2.5), the resulting error in the function f(x) is given by

∆f x( ) ( . ) ( . ) .= =0 003 3 3 42 0 10526762

Note that the approximate function value is f ( . ) .3 42 40 001688= . Therefore, the predicted 
value of f(x) must be in the range

f ( . ) . .3 42 40 001688 0 1052676= ±

Equivalent Statement for Example 2.7: Let us assume that we want to compute the volume 
of a cube. We measure its length with a machine and find out that it is 3.42m. Let us also 
assume that the machine can measure with maximum error 0.003m. Find the volume of 
the cube. 

2.7Example

2.3.3.3 Error Propagation in Function of More than One Variable

General Error Formula

The approach above can be generalized to the function of more than one independent 
variable. Let y f x x xn= ( , ,..., )1 2  be a function of n-independent variables x x xn1 2, ,..., .  Let 
δ δ δx x xn1 2, ,...,  be the errors in calculating the variables x x xn1 2, ,..., , respectively. Let error 
in y be δ y , i.e.,

y y f x x x x x xn n+ = + + +δ δ δ δ( , ,..., )1 1 2 2

When the required partial derivatives exist, then Taylor’s series expansion is given by
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y y f x x x
f
x

x
f
x

x
f
x

xn
n

n+ = + ∂
∂

+ ∂
∂

+ + ∂
∂







δ δ δ δ( , ,..., ) ...1 2
1

1
2

2 +

 + terms involving second and higher powers of δ δ δx x xn1 2, ,...,  (2.6)

The errors in the numbers x x xn1 2, ,...,  are small enough to neglect the second and higher 
degree terms of the numbers δ δ δx x xn1 2, ,..., . We can obtain the following result from Eq. 
(2.6)

δ δ δ δy f
x

x f
x

x f
x

x
n

n≈ ∂
∂

+ ∂
∂

+ + ∂
∂1

1
2

2 ...  (2.7)

Equation (2.7) is known as the general error formula. Since the error term may be of any 
sign, (+)ve or (–)ve, we can take absolute values of the terms in the expression.

δ δ δ δy f
x

x f
x

x f
x

x
n

n≈ ∂
∂

+ ∂
∂

+ + ∂
∂1

1
2

2 ...

Compute the absolute and relative errors in the function f x y z
y x

z
( , , )

sin( )
=

2

34
 at x = 1 

and y = z = 5, if the errors in the values of x, y and z are 0.05.

Ans. On using general error formula (2.7), the error δ f x y z( , , )  in f x y z( , , )  is given by

 
δ δ

δ
δ δ

δ
δ δ

δ
δf x y z

f
x

x
f
y

y
f
z

z( , , ) = + +

 
= + −

y x
z

x
y x

z
y

y x
z

z
2

3 3

2

44 2
3

4
cos( ) sin( ) sin( )δ δ δ

Absolute error = y x
z

x
y x

z
y

y x
z

z
2

3 3

2

44 2
3

4
cos( ) sin( ) sin( )δ δ δ+ +

 = .001350756 + .000841471 + .001262206

 = .003454433

 Relative error = 
δ f x y z

f x y z
( , , )

( , , )
.
.

.= =003454433
04207355

082104624

2.8Example
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30 Numerical Methods

2.3.4 Truncation Error 
An infinite power series (generally Taylor series) represents the local behavior of a given 
function f(x) near a given point x = a. Approximation of an infinite power series with its 
finite number of terms, while neglecting remaining terms, leads to the truncation error. If 
we approximate the power series by the n-th order polynomial, then truncation error is of 
order n + 1. 

The radius r and height h of a right circular cylinder are measured as .25 m and 2.4 m, 
respectively, with a maximum error of 5%. Compute the resulting percentage error in the 
volume of the cylinder. Assume the value of π is exact for calculation.

Ans. The value of π is exact for calculation, so the volume V r h= π 2  is dependent only on 
radius r and height h of the cylinder i.e., V V r h= ( , ) . Therefore, the error δ V r h( , ) in the 
volume is given by 

δ δ δ π δ π δV r h V
r

r V
h

h rh r r h( , ) = ∂
∂

+ ∂
∂

= ( ) + ( )2 2

The radius r and height h of the cylinder are measured with a maximum error of 5% i.e.

δ δr
r

h
h

= = 0 05.

The relative error in volume V r h( , )  is given by

R E
V r h

V

r h
rh r r h

r
r

h
h

. .
( , )

( . ) .

=

= ( ) + ( )( )
= +

= +

δ

π
π δ π δ

δ δ

1 2

2

2 0 05 0 0

2
2

55 0 15= .

Percentage error in the volume of cylinder = R.E. × 100 = 15% 
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Error Analysis 31

Taylor series for the function f(x) at the point x = a is given by

 
f x f a x a f a x a f a x a

n
f a

n
n( ) ( ) ( ) ( ) ( )

!
( ) ( )

( )!
( )= + − ′ + −

′′ + ⋅⋅⋅+ − +( )
2

2
⋅⋅⋅⋅

(Or) f x f a x a f a x a f a x a
n

f a
n

n( ) ( ) ( ) ( ) ( )
!

( ) ( )
( )!

( )= + − ′ + −
′′ + ⋅⋅⋅+ − +( )

2

2
RR xn( )

where R x x a
n

fn

n
n( ) ( )

( )!
( )= −

+

+
+( )

1
1

1
ξ  for some ξ  between a and x. 

On replacing x a h= + , we get following form of the Taylor series

f a h f a h f a h f a h
n

f a R
n

n( ) ( ) ( ) ( ) ( )
!

( ) ( )
( )!

( )+ = + ′ + ′′ + ⋅⋅⋅⋅⋅⋅+ +( )
2

2 nn x( )

where R x h
n

f a a hn

n
n( ) ( )

( )!
( ); .=

+
< < +

+
+( )

1
1

1
ξ ξ

For a convergent series, R xn( ) → 0  as n → ∞ . Since it is not possible to compute an infinite 
number of terms, we approximate the function f x( )  by first n-terms, and neglecting higher 
order terms. Then the error is given by remainder term R xn( ) . The exact value of ξ  is not 
known, so the value of ξ  is such that the error term considered is maximum.

Use the following Taylor series expansion to compute the value of irrational number e. 

e x x xx = + + + + ⋅⋅⋅1
2 3

2 3

! !

Create a table for absolute and percentage errors with numbers of terms n = 1, 2, … 6 of 
Taylor series approximations. For the exact value of e, use e = 2.718282. 

Ans. Computation of exact value of ex  requires an infinitely long series. Approximating 
ex  with the Taylor series to n terms gives an inexact answer. Table 2.2 contains Taylor 
series approximations of e of order n = 1, 2, …6. It also contains absolute and percentage 
errors in these approximations
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32 Numerical Methods

Calculate the number of terms required in Taylor series approximation of sin(x) to 

compute the value of sin π
12







 correct up to 4-decimal places.

Ans. Using Taylor series of sin(x) at point x = 0, we have 

sin( )
! !

( )
( )!

( ) ( )x x x x x
n

R x
n

n
n= − + + ⋅⋅⋅+

−
− +

−
−

−

3 5 2 1
1

2 13 5 2 1
1

If we retain only first 2n–1 terms in this expression, then the error term is given by

R x x
n

f xn

n
n

2 1

2
2

2
0−

( )= < <( ) ( )
( )!

( ); .ξ ξ  at x = =π
12

0 2618.

The maximum value of f n2( )( )ξ  is 1. The error term must be less than .00005 for 4-decimal 
points accuracy

R x
nn

n

2 1

20 2618
2

00005− = ≤( ) ( . )
( )!

.

⇒ ≥2 5n

Hence, 4-decimal points accuracy can be achieved by computing more than five terms of 
Taylor series.

2.11Example

Table 2.2

Number  
of terms

Taylor Series of ex

Approximation  
for the function 

e

Absolute  
error

Percentage 
error

1 ex = 1 1 1.718282 63.212058%

2 e xx = +1 2 0.718282 26.424116%

3 e x
xx = + +1
2

2

!
2.500000 0.218282 8.030146% 

4 e x
x xx = + + +1
2 3

2 3

! !
2.666667 0.051615 1.898810% 

5 e x
x x xx = + + + +1
2 3 4

2 3 4

! ! !
2.708333 0.009948 0.365966% 

6 e x
x x x xx = + + + + +1
2 3 4 5

2 3 4 5

! ! ! !
2.716666 0.001616 0.059449%
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The Gauss error function erf x e dtt
x

( ) = −∫
2 2

0π
 is used widely in probability theory (e.g., 

normal distribution), statistics and partial differential equations. But the exact integral is 
not available for a finite value of x, so we use approximations. For example, one way is to 
use Taylor polynomial for the function e t− 2

 and compute the resulting integration. 

Compute the approximate value of the error function erf e dtt0 1 2 2

0

0 1

.
.

( ) = −∫π
 by using 

first four terms of the Taylor series. 

Ans. Taylor series of e t− 2

 at t = 0 is given by 

e t t tt− = − + − + ⋅⋅⋅
2

1
2 3

2
4 6

! !

Using the Taylor polynomial of first four terms, we have

erf x e dt

t t t dt

x x x

t
x

x

( ) =

= − + −






= − +

−∫

∫

2

2 1
2 3

2
3 1

2

0

2
4 6

0
3 5

π

π

π

! !

00 42

7

−






x

At x = 0.1, we have

erf e dtt0 1 2 0 112463
2

0

0 1

. .
.

( ) = =−∫π

2.12Example

2.3.5 Machine eps (Epsilon)
Machine epsilon for a given machine, for example a computer, is defined as the smallest 
positive number which, when added to 1, gives a number different from 1. In fact, the 
machine epsilon defines the lowest floating point number, which can take part in the 
arithmetic for a given machine. Machine epsilon depends on round-off of the floating point 
numbers. Since rounding is machine dependent, so machine epsilon also varies with the 
machine. Machine epsilon characterizes computer arithmetic in numerical analysis. The 
quantity is also called as macheps or unit round-off, and it has the symbol epsilon ε.
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34 Numerical Methods

2.3.6 Epilogue 
In following chapters, we will see that several alternative numerical methods are available 
for the solution of any problem. In the selection of any method, we have to keep in mind 
all aspects of the problems and the method itself. Only from experience can we develop the 
skill for right selection and this skill has a prominent role in effective implementation of 
the method. Following are the deciding factors for selection of a numerical method and its 
implementation to the problem.

1. Type of mathematical problem
2. Computer available
3. Development cost
4. Characteristics of the numerical method
5. Mathematical behavior of the problem
6. Ease of application
7. Maintenance

2.3.7 Loss of Significance: Condition and Stability 
In this section, we will study the two related concepts of condition and stability for function 
and process, respectively. The condition is used to describe the sensitivity of the function 
and stability is used to describe the sensitivity of the process. 

Condition:
The sensitivity of the function f(x) with the change in the argument x is described by the 
condition number (CN). It is a relative change in the function f(x) for per unit relative 
change in x. CN of the function f(x) at any point x is given by 

CN = 

f x f x
f x
x x

x

f x f x
x x

x
f x

( ) ( )
( ) ( ) ( )

( )

−

−
= −

−









For small change in x, Lagrange mean value theorem gives

f x f x

x x
f x( ) ( ) ( )−

−
≈ ′

∼

∼

So, CN is given by 

CN = xf x
f x

′( )
( )

 (2.8)

If CN ≤1, then the function f(x) is said to be well-conditioned. Otherwise, it is said to be 
ill-conditioned. The function with large CN is more ill-conditioned as compared to the 
function with small CN. 
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Error Analysis 35

Note: Let us consider a mathematical model of any system, in which variable x gives input, 
and output is the function f(x). If a small relative change in x (input) produces a large relative 
change in output f(x), then the system is said to be a sensitive system as fluctuation in input 
may break the system. Mathematically, if CN is large, then the function is more sensitive to 
changes and function is ill-conditioned. 

Find the CNs of the functions f x x( ) =  and x3.

Ans. Using Eq. (2.8), we have

CN of the function x  = 
xf x

f x

x x

x
′ =







=

−

( )
( )

1
2 1

2

1
2

CN of the function x3  = xf x
f x

x x

x
′ =

( )
=

( )
( )

3
3

2

3

CN of the function x  is less than 1, so the function x  is well conditioned. The function 
x3  is an ill-conditioned function as CN > 1. 

2.13Example

Check the condition of the function f x
x x

( ) =
− +

1
1 2 2  at x = 1.01.

Ans.

f x
x x x

( )
( )

=
− +

=
−

1
1 2

1
12 2

 CN = 
xf x

f x

x
x

x
x

x

′ =

−
−( )











−( )










=
=

=

( )
( )

.

.

1 01

3

2

1 01

2
1

1
1

202

The function f x
x x

( ) =
− +

1
1 2 2

 at x = 1.01 is highly ill-conditioned function. The function 

has a singular point x = 1, so near this point, there are sharp changes in the function value, 
which make the function highly ill-conditioned.
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36 Numerical Methods

Find the CN of the function f x x x( ) = + −1  at point x = 11111.

Ans.

CN = 
xf x

f x

x
x x

x x

x

′ = +
−







+ −
≈

=

( )
( )

1
2 1

1
2

1
1
2

11111

2.15Example

Compute the function f x x x
x x

( ) = + − =
+ +

1 1
1

 by using both the formulae at 

point x = 11111. Use six significant digits floating point rounding arithmetic. 

Ans. We have two formulas f x x x( ) = + −1  and f x
x x

( ) =
+ +

1
1

 to compute the 

function f x( )  at point x = 11111. We will use both the formulas with six significant digits 
arithmetic, and see that both the processes will produce different results for the same 
function. 

Process-I: f x x x( ) = + −1

f x( )
. .

.

= −
= −
=

11112 11111
105 413 105 409
004

Process-II: f x
x x

( ) =
+ +

1
1

f x( )

. .

.
.

=
+

=
+

=

=

1
11112 11111

1
105 413 105 409

1
210 822
0 00474334

Note that, the exact result up to 6 significant digits is .00474330. 
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Error Analysis 37

Stability of the Process: 
It is clear from Example 2.16 that computation of the same function from two different 
processes can produce different results. There are following two major phases for 
computation of the function value f x( ) :

i) First phase is to check the condition of the function by computing the CN of the 
function. 

ii) Second phase is to check the stability of the process involved in the computation 
of the function. The stability of process can be checked by calculating the 
condition of each step in the process. 

The function f x x( ) / ( )= −1 1 2  is ill-conditioned (CN 1 ) near x = ±1. If the function is 
ill-conditioned then whatever process we will use, it tends to error. So every process will 
produce an error in computation of the function value f x x( ) / ( )= −1 1 2  near x = ±1. 

The function f x x x( ) = + −1  at x = 11111 is well conditioned (CN ≈ 1/2, Example 
2.15). If the function is well conditioned, then we have to compute the function value by the 
stable process. If even a single step of the process is ill-conditioned, then the whole process 
is an unstable process, and we have to switch over to any other alternate stable process.

Discuss the stability of the Processes-I and II in Example 2.16. Hence, validate the results 
that the Processes-I yields erroneous result and Process-II produces a more accurate result 
for the same function f x( ) .

Ans. 
We will calculate the CN of each step involved in both the Processes-I and II.

Process-I: f x x x( ) = + −1

f x( )
. .

.

= −
= −
=

11112 11111
105 413 105 409
004

2.17Example

Note: Here, it is candidly seen that if we compute the function f x x x( ) = + −1  directly, 
then it is error-prone. This is due to the fact that if we subtract two approximately equal 
numbers, then there is a loss of significant digits. For example in Process-I, when we 
subtract 105.413 and 105.409, then these two numbers are correct up to six significant 
digits, but the result .004 contains only one significant digit. Since there is a loss of five 
significant digits, so the result obtained is highly erroneous. This step can be avoided by 
rationalizing the function f x( ). The result obtained in Process-II after rationalization is 
correct up to five significant digits. 
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38 Numerical Methods

Various computational steps in the process are as follows

x1 11111=    (f(x) = Constant, CN = 0)

x x2 1 1 11112= + =   (f(x) = x + 1, CN = 1)

x x3 2 105 413= = .   ( f x x( ) = , CN = ½)

x x4 1 105 409= = .   ( f x x( ) = , CN = ½)

x x x5 4 3 004= − = .   ( f x x x( ) = − 3  and f x x x( ) = −4 , CN  26352)

In the last step x x x5 4 3= − , we can assume the function f x( )  of variable x3  or x4 . Let 
f x x x( ) = −4 , so condition for this step is given by

CN = 
xf x

f x
x
x x

′ = −
−

= ≈
( )

( )
( ) .

.
1 105 409

004
26352

4

This step is not a stable step as CN is very large. So the whole process is an unstable process 
due to this step. That’s why the result obtained from this process is highly erroneous.

Process-II: f x
x x

( ) =
+ +

1
1

We will check the conditions of each step in Process-II, and conclude that each step in this 
process is well conditioned.

f x( )

. .

.
.

=
+

=
+

=

=

1
11112 11111

1
105 413 105 409

1
210 822
0 00474334

Various steps involved in this process are as follows

x
x x

x x

x x
x x x

1

2 1

3 2

4 1

5 4 3

11111
1 11112

105 413

105 409
21

=
= + =

= =

= =
= + =

.

.
00 822

1 0 004743346
5

.

.x
x

= =
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Error Analysis 39

The first four steps in the process are well conditioned as discussed in Process-I. For the 
fifth step, let f x x x( ) = +4 . The condition for this step is given by

CN = 
xf x

f x
x

x x
′ =

+
= ≈

( )
( )

( ) .
.

1 105 409
222 822

1
24

 The last step is f x
x

( ) = 1 , and the condition for this step is given by

CN = xf x
f x

x
x

x

′ =

−





=
( )

( )

1

1
1

2

From above discussion, it is clear that all the steps in Process-II are well conditioned, and 
hence this process is a stable process. Since the process is stable, so the result obtained is 
accurate to five significant digits.

Note: Even a single step in the process can make the whole process unstable. So we have to 
be extra careful during a large process, and must avoid the steps (if possible) with the loss 
of significant digits. We can use any alternate approach like rationalization, Taylor series 
expansion, etc. to avoid loss of significant digits. 

Discuss the stability of the function f x x( ) cos( )= −1 , when x is nearly equal to zero. Find 
a stable way to compute the function f x( ) . 

Ans. If we directly compute the function f x x( ) cos( )= −1  at x ≈ 0, then it will lead to 
subtraction of two nearly equal numbers and produce loss of significance. To avoid this 
loss, we can use any of the following three alternates

 i) f x x( ) cos( )= −1

 

= − − + − + ⋅⋅⋅







= − + −⋅⋅⋅

1 1
2 4 6

2 4 6

2 4 6

2 4 6

x x x

x x x

! ! !

! ! !
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40 Numerical Methods

 ii) f x x( ) cos( )= −1

  
= −

+

=
+

1
1
2

1

2

2

cos ( )
cos( )

sin ( )
cos( )

x
x

x
x

 iii) f x x( ) cos( )= −1

    
= 2

2
2sin x

Calculate the roots of the equation x x2 123 0 5 0+ + =.  using five digits floating point 
chopping arithmetic.

Ans. The roots of the quadratic equation ax bx c2 0+ + =  are given by

x b b ac
a

= − ± −2 4
2

The roots of the equation x x2 123 0 5 0+ + =.  using five digits floating point chopping 
arithmetic are given by 

Root 1. x b b ac
a1

2 4
2

= − + −

 b2 15129=

 b ac2 4 15127− =

 
b ac2 4 122 99− = .

 
x1

123 122 99
2

0 0005= − + = −. .

Root 2. x b b ac
a2

2 4
2

123 122 99
2

122 995 122 99= − − − = − − = − = −. . .

The roots of the equation correct up to some significant digits are x1 0 004065175= − .  and 
x2 122 995934825= − . . The root x2 122 99= − .  is correctly calculated up to five significant 
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2.4 Some Interesting Facts about Error 

a) Let us assume we are doing six significant digits arithmetic on a hypothetical 
computer. If we want to add a small number x = 0.000123 to a large number  
y = 123.456 using this computer, then

   x+ y = (.123456)103 + (.123000)10–3 (Normalized form)
     = (.123456)103 + (.000000)103 (Equal exponent using symmetric rounding)
     = (.123456)103 (Result, we missed the addition!)

 This type of situations occurred commonly during the computations of infinite 
series. In these series, the initial terms are comparatively large. So, usually after 
adding some terms of the series, we are in a situation of adding a small term to a 
very large term. It may produce high rounding error in the computation. To avoid 
this kind of error, we can use backward sum of the series instead of forward sum, 
such that the each new term is compatible with the magnitude of accumulated 
sum. 

digits. But the root x1 0 0005= − .  is not correct even up to one significant digit. This error 
is due to loss of significant digits which occurs due to subtraction of two nearly equal 
numbers (123 and 122.99). 

To avoid the loss of significant digits, we will rationalize the formula for x1, and then 
compute the root. 

x b b ac
a

b b ac

b b ac
c

b b ac

1

2 2

2

2

4
2

4

4
2

4

= − + − × + −

+ −

= −

+ −

 = −
+

= −1
123 122 99

0040652
.

.

This value is correct up to five significant digits. 

Note: There are two ways to produce the results with desired accuracy. One way is to use 
stable processes for the computation and another way is to use the computing device 
with very high precisions. For example, we want to compute the roots of the equation 
x x2 123 0 5 0+ + =.  correct up to five significant digits. In that case, we can use the 
computing device with more than ten digits floating point arithmetic, such that the results 
can be obtained up to desired accuracy even after the loss of significance. 
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42 Numerical Methods

b) In the case of series with mixed signs (like Taylor series of sin(x)), sometimes 
individual terms are larger than the summation itself. For example, in Taylor series 
of sin(2.13), the first term is 2.13. It is called as smearing, and we should use these 
kinds of series with extra care.

c) While performing arithmetic computations in a numerical method, the steps 
involving large number of arithmetic operations must be computed in double 
precisions. Such operations are error-prone to round-off error. For example, in 
Gauss-Seidel method for the solution of system of linear equations, the inner 
product 

   x y x y x y x yi
i

n

i n n
=
∑ = + + ⋅⋅⋅+

1
1 1 2 2  is a common operation, and such computations 

must be made in double precisions. 

The accumulated rounding error can create the disastrous results; the following two examples 
of rounding errors are picked from the internet. 

(http://mathworld.wolfram.com/RoundoffError.html)

1. An index was started with initial value 1000.000 for Vancouver stock exchange 
(McCullough and Vinod 1999) in 1982. Three decimal digits chopping arithmetic 
has been used to compute the index for each change in market value for next 
22 months. The computed value was 524.881, while its correct value up to three 
decimal points is 1009.811. 

2. The Ariane rocket was launched on June 4, 1996 (European Space Agency 1996). 
In the 37th second of flight, a 64-bits floating point number was converted to a 
16-bits number by the inertial reference system of the rocket. It was an overflow 
error, but the guidance system interpreted it as flight data, which led the rocket to 
getting destroyed. 

Exercise 2 

1. Define normalized form and hence the number of significant digits for floating point numbers 
with examples.

2. Find out the number of significant digits in the numbers 788500, 0.4785, .003523, 0.2300, and 
7.880. 

 Ans. 6, 4, 4, 4, 4

3. Compute the absolute errors (A.E.) and relative errors (R.E.) in the four significant digits chopping 
approximations of the numbers 234168 and 64.2685.

 Ans. A.E. = 68, 0.0085; R.E. = 0.000290389, 0.000132257 
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Error Analysis 43

4. If β based real number x d d d d dn n
e= ×+( . .... ....)0 1 2 3 1 β β  is chopped to n digits and fl x( ) is its 

representation, then show that 

 
0 1≤ − ≤ −x fl x

x
n( ) β

5. If x is any number in decimal number system and fl x( ) is its machine representation up to n 
digits, then for rounding, show that

 

x fl x
x

n− ≤ × −( ) 1
2

101

6. The true value of e(exponential) correct to 10-significant digits is 2.718281828. Calculate 
absolute and relative errors, if we approximate this value by 2.718.

 Ans. A.E. = .000281828, R.E. = 0.000103678

7. Find the relative errors for the following cases. Also, determine the number of significant digits 
in the approximations:

 x = 2.71828182 and x
∼

 = 2.7182

 Ans. R.E. = 0.0000301, 5 Significant Digits

 y = 28350 and y
∼

 = 28000

 Ans. R.E. = 0.0123457, At least 2 Significant Digits

 z = 0.000067 and z
∼
 = 0.00006.

 Ans. R.E. = 0.104478, 1 Significant Digits

8. Define the terms error, absolute error, relative error and significant digits. The numbers x = 1.28 
and y = 0.786 are correct to the digits specified. Find estimates to the relative errors in x + y, x – y, 
x y, and x/y.

 Ans. R.E. in x + y = 0.00266215, x – y = 0.0111336, x y and x/y = 0.00454238

9. Consider the following decimal numbers with a four digits normalized mantissas, a = 0.2473*104, 
b = 0.8125*103, c = 0.1523*101

 Perform the following operations in four significant digits symmetric rounding and indicate the 
errors in the results. 

i) a + b – c Ans. 0.3283*104, Error = 0.0000977
ii) b / c  Ans. 0.5335*103, Error = – 0.0001346 
iii) a – b  Ans. 0.1661*104, Error = – 0.00005 
iv) b / (a + c) Ans. 0.3283, Error = 0.00004611

10. The numbers x1 = 0.643 and x2 =1.631 are correct to the significant digits in the numbers. 
Compute the relative errors in the addition, subtraction, multiplication and division of these 
two numbers.

 Ans. R.E. in x1 + x2 = 0.00043975, R.E. in x1 – x2 = 0.001012145, 

    R.E. in x1x2 and x1 / x2 = 0.001084164
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44 Numerical Methods

11. Calculate the absolute and relative errors in the expression 3 2a bc
b
a

− + , if the measurement of 

a = 3.5435, b = .2588 and c = 1.0150 are possible only to correct up to four decimal points.

 Ans. Absolute Error = 0.0002925, Relative Error = 0.00002874

12. Estimate the error in evaluating the function f x e xx( ) sin( )= 2 2

 near the point x = 1, if the absolute 
error in value of x is 10 4− .

 Ans. Absolute Error = 0.0028863

13. The maximum error tolerance in the measurement of the area of a given circle is 0.1%. What is 
maximum relative error allowed in the measurement of the diameter? 

 Ans. 0.05

14. Compute the resulting error in the function f x x( ) = 3  for value of x
∼

= 2 38.  with an error 

∆ x
∼

= 0 005.
 Ans. Absolute Error = 0.084966 

15. Find the maximum possible error in the computed value of the hyperbolic sine function 

sinh( )x
e ex x

= − −

2
 at the point x = 1, if the maximum possible error in the value of x is dx = 0 01. .

 Ans. 0.01543

16. Let the function u
x y
z

= 4 2 3

4  and errors in the values of variables x y z, ,  are 0.001. Find the 

relative error in the function u at x y z= = =1.

 Ans. 0.009

17. The radius r and height h of a right circular cylinder are measured as 2.5 m and 1.6 m, respectively, 
with a maximum error of 2%. Compute the resulting percentage error measured in the volume 
of the cylinder by the formula V r h= π 2 . Assume the value of π is exact for calculation.

 Ans. 0.06

18. Consider a function u e y x zx= +sin( ) ln( ) . Let the variables x, y and z be measured with  

maximum possible errors of ±0 01. , ± =





2
90

o π  and ±0 5. , respectively. Estimate the maximum 

possible error in computing the function u for x = 0 1. , y = π
4

 and z = 50 .

 Ans. 0.4976

19. The voltage V in an electrical circuit satisfies the law V I R= , where I is the current and R is the 
resistance and their starting values are I = 5 amp, R = 600 ohms, respectively. Let us assume that 
after a certain time, resistance is changed 0.15% due to heating, and we changed the current I 
with 5%. Compute the percentage change in the voltage V. 

 Ans. 5.15%

20. The length of a simple pendulum measured is l = 0 362.  m, while the constants π = 3 1416.  and 
g = 9.8 m/sec2 are correct to the specified digits. Compute the relative error in the time-period 

T
l
g

= 2π .

 Ans. 0.0032575
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21. Compute the absolute and relative errors in the function f x y z y e xz( , , ) cos( )= 2  at x =1 5.
y = 2 3.  and z = 5 , if the error in the values of x, y and z are 0.05.

 Ans. Absolute Error = 44.3483, Relative Error = 0.7985

22. Calculate the number of terms required in Taylor series approximation of the function cos x( ) to 

compute the value of cos
π
12







 correct up to 4-decimal places.

 Ans. 5

23. Find the number of terms of the Taylor series expansion of the function e x  required to compute 
the value of e correct to six decimal places. 

 Ans. 10

24. Discuss CN and stability of the function y x= sec( )  in the interval 0
2

,
π





.

 Ans. CN = x xtan( ) ; as we move from 0 to 
π
2

 in the interval 0
2

,
π





, the CN increase and hence 

function y x= sec( )  become ill-conditioned.

25. Calculate the function f x x x( ) cos( ) sin( )= −  at the point x = 0.785398 using 6-decimal digits 
floating-point round-off arithmetic. Discuss the condition and stability of process involved.

 Ans. f x x x( ) cos( ) sin( )= −  = 0 at x = 0.785398 with 6-decimal digits floating-point round-off 
arithmetic.

 CN of f x x x( ) cos( ) sin( )= −  at x = 0.785398 is approximately 0, hence function is well conditioned. 
But the process is not a stable process.

 We can use any of the following stable processes for computation purpose

i) f x
x

x x
( )

cos( )
cos( ) sin( )

=
+
2

ii) f x x
x x x x x

( )
! ! ! ! !

= − − + + − − +⋅⋅⋅1
2 3 4 5 6

2 3 4 5 6

26. Discuss the condition and stability of the function f x x x( ) = − −2 1  at x =11111, using six 
significant digits floating point rounding arithmetic. Find a stable way to compute the function. 

 Ans. f x
x x

( ) =
+ −

1

12

27. Evaluate roots of the quadratic equation x x2 234 56 1 2345 0+ + =. . , with the minimum loss of 
significant digits. Use five significant digits chopping arithmetic.

 Ans. – 234.55, – 0.0052632

28. Avoiding loss of significance, find the smallest root of the quadratic equation x x2 500 2 0− + =  
by using five significant digits rounding arithmetic.

 Ans. 0.004, 500

29. Discuss the condition and stability of the function f x x x( ) sin( )= − , when x is nearly equal to 
zero. Find a stable way to compute the function f(x).

 Ans. 
x x x x3 5 7 9

3 5 7 9! ! ! !
− + − +⋅⋅⋅
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46 Numerical Methods

30. Subtraction of nearly equal numbers leads to loss of significant digits. Obtain equivalent 
formulas for the following functions to avoid loss of significance.

a) cos ( ) sin ( )2 2x x−  for x ≈ π
4

b) x x− sin( )  for x ≈ 0

c) x x− −2 1 for large x

d) 1 2− cos ( )x  for x ≈ 0

e) 1+ cos( )x  for x ≈ π

 Ans. a) cos( )2x , b) 
x x x x3 5 7 9

3 5 7 9! ! ! !
− + − +⋅⋅⋅, c) 

1

12x x+ −
, d) sin ( )2 x , e) 

sin ( )
cos( )

2

1
x

x−
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3.1 Introduction 

Mathematical models for many problems in different branches of science and engineering 
are formulated as

f(x) = 0 (3.1)

where the variables x and f(x) may be real or complex, and scalar or vector quantities. In this 
chapter, the variables x and f(x) are real and scalar quantities. The value of x, which satisfies 
the Eq. (3.1), is called the root of the equation. It is also known as the zero of the function 
f(x). For example, the quadratic equation

x x2 3 2 0− + =
has roots 1 and 2. 

Nonlinear Equations Chapter 
3

Truth is ever to be found in simplicity, and not in the multiplicity and confusion of things. 

Sir Isaac Newton 
(December 25, 1642–March 20, 1726) 

He was a great mathematician and physicist. He pioneered ‘classical mechanics’. 

Root
x

y = f(x)

f(x)

Fig. 3.1 Root of f(x) = 0

Fig. 3.2 Root of x2 – 3x + 2 = 0

1

1 32

2

3

4

5

y

y = x2 − 3x + 2

x
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48 Numerical Methods

Root finding is also essential in many branches of mathematics. For example, the critical 
points of the function f(x) are the roots of the equation f '(x) = 0. Eigenvalues of a square 
matrix A are the roots of the characteristic equation.

p A( ) detλ λ= −( ) =I 0 

where p(λ) is a polynomial of degree n (order of matrix A). 

The nonlinear equations can be categorized broadly as polynomial equations and 
transcendental equations as follows

3.1.1 Polynomial Equations 
The polynomial equations are given by

y f x a x a x a x an
n

n
n= = + + + + =−

−( ) 1
1

1 0 0…

This equation is an nth degree polynomial equation, and has exactly n roots. These roots 
may be real or complex. Some examples of polynomial equations are

i) 3 9 03 2x x+ − =
ii) x x2 4 5 0− − =

3.1.2 Transcendental Equations 
An equation which is not a polynomial equation is a transcendental equation. These 
equations involve trigonometric, exponential and logarithmic functions, etc. A few 
examples of the transcendental equations are as follows

i) 3 0sin( )x e x− =−

ii) 3 2 02x x− =cos
iii) 2 0e x xx sin ln( )− =

Transcendental equations may have finite or infinite numbers of real roots or may not have 
real roots at all. 

The roots of simple equations are easy to compute by the direct methods. But in the 
case of higher order equations and transcendental equations, there is no general analytical 
method to compute the exact roots. So for this purpose, numerical techniques can be used 
to find approximate roots of the equation. The main objective of this chapter is to present 
and discuss the various numerical techniques which are useful for finding the approximate 
roots of the nonlinear equation, Eq. (3.1). 

3.2 Methods for Solutions of the Equation f(x) = 0 

So far, various methods have been developed for the solution of Eq. (3.1). All these methods 
have their advantages and disadvantages, and broadly categories as follows
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Nonlinear Equations 49

i) Direct analytical methods
ii) Graphical methods
iii) Trial and error methods
iv) Iterative methods

In this section, we shall have a brief idea of these methods and conclude that iterative 
methods for finding numerical approximations for the roots of Eq. (3.1) are the best 
methods for the complex and complicated equations. 

3.2.1 Direct Analytical Methods 
We can solve the nonlinear equation by direct analytical methods in certain simple cases.  
For example, the roots of the quadratic equation ax bx c2 0+ + =  are given by 

x b b ac
a

= − ± −2 4
2

. Similarly, roots of cubic and quartic equations can be obtained 

using Cardano and Ferrari methods, respectively. The roots obtained by direct methods 
are exact roots of the equations. But these methods can be applied to some very special 
categories of the equations. The roots of higher order polynomial equations/ transcendental 
equations (like x x x x5 3 22 3 5 6 0+ + + + =  and 2 03e x xx− + =sin ) cannot be obtained from 
direct analytical methods. We don’t have direct methods even for the solutions of simple 
transcendental equations. 

3.2.2 Graphical Methods 
Plotting of the function f(x) with x-axis gives the root of the equation f(x) = 0. The points 
where the curve f(x) crosses the x-axis, are the roots of the equation. 

Solutions obtained using graphical methods are not accurate. But graphs of some 
standard curves are helpful in tracing the interval in which the root of the equation lies and 
are also important for an initial guess about the roots, etc. Let us discuss a few examples. 

Case 1. Equations x x2 1 0+ + = , x ex− = 0, x x− =l n( ) 0 with no real roots; 

The graph (Fig. 3.3) of y x x= + +2 1 has no point of intersection with x – axis, so the 
equation x x2 1 0+ + =  has no real root. 

Any equation f(x) = 0 can be rewritten as f1(x) = f2(x), and points of intersections of the 
curves y = f1(x) and y = f2(x) provide the roots of the equation f(x) = 0. For example, consider 
the graphs of y = ex and y = x, then the points of intersection of these two curves are the 
roots of equation x – ex = 0 (x = ex). It is easy to see that there is no point of intersection  
(Fig. 3.4), so the equation x – ex = 0 has no real root. Similarly, we can easily find that 
equation x x− =l n( ) 0 also has no real root (Fig. 3.5).
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50 Numerical Methods

Case 2. Equations with finite numbers of real roots like x x x3 23 2 0− + = , x x− =cos 0, etc.

The points of intersection of two curves y x= cos( ) and y = x are the roots of equation 
x x− =cos 0 (Fig. 3.6). There is only one point of intersection, so the equation x x− =cos 0 
has only one real root. Similarly, the graph of the function y x x x= − +3 23 2  provides that 
the equation x x x3 23 2 0− + =  has three real roots (Fig. 3.7).

2
3
4
5
6

1

y

x
10 2-2 -1

y

x
-1 1

2

4

6 y = ex

y = x

y = ln(x)

y = x

y

x

1

-1

-2

-3

0.2 0.4 0.6 0.8
0

Fig. 3.3 x2 + x + 1 = 0

Fig. 3.6 x = cos x, Root  0.7390851322

Fig. 3.7 x3 – 5x2 + 6x = 0, Roots = 0, 2, 3

Fig. 3.4 x = ex Fig. 3.5 x – ln(x)

4

3

2

2 4

1

-1

y
y = x

y = cos(x)

x

-10

-5

5

1 2 3

x

y

y = x3-5x2 + 6x

Case 3. Equations with infinite numbers of real roots like e xx − =cos 0, x x− =tan 0, 
e xx− − =sin 0, etc. The following graphs show that these equations have infinitely many 
real roots.
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Nonlinear Equations 51

3.2.3 Trial and Error Methods 
Other approaches to obtain the approximate solutions are the trial and error techniques. 
These methods involve a series of guesses for the root of the equation (3.1) and check 
whether the value of the function is close to zero. The value of x, where function is close to 
zero, is the approximate root of the equation.

The trial and error methods are cumbersome and time-consuming. These methods are 
not algorithmic, so programming is not possible. Also, approaches in these methods vary 
from problem to problem. So, these methods are no longer in use. 

Fig. 3.8 ex = cos (x), Roots  0, –1.2927, –4.7213, –7.8536, ...

Fig. 3.9 x = tan x, Roots  0, ±4.4934, ±7.7253, ...

0 2 x

–0.5
–4–6–8–10–12

y

y = cos(x)

y = ex

x = 0

–1

–1.5

0.5

1

1.5

–2

x=01

1

2

3

4

5

6

7

8

9

10

–1
–1

–2

–3

–4

–5

–6

–7

–8

–9

–10

2 3 4 5 6 7 8 9–2–3–4–5–6–7–8–9

y

y = x

y = tan(x)

π/2–π/2 π–π 3π/2–3π/2 5π/22π 3π

x

–2π–5π/2–3π

x � –7.7253

x � –4.4934

x � 4.4934

x � 7.7253
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52 Numerical Methods

3.2.4 Iterative Methods 
Let us assume an initial approximation {x0} to the solution of the given problem. Consider 
a mathematical procedure to generate a better approximation {x1} from this initial 
approximation. Let a sequence {xn} of such improvised approximations be generated using 
this mathematical procedure, where the next element of the sequence is obtained with the 
help of previous elements. These kinds of mathematical procedures are algorithmic, and 
known as the iterative methods. If the generated sequence converges to the solution of the 
given problem, then the iterative method is said to be convergent. 

In the case of graphical methods and trial and error methods, the solutions obtained 
are not up to the desired accuracy for most of the engineering and scientific problems. 
The direct methods have their limitations such as they are unable to find the roots of the 
equations when nature of the equations becomes complicated. The iterative methods are 
able to provide the solutions of complicated and cumbersome equations. Also the solutions 
with very high accuracy can be obtained with the advent of high-speed computers. Since 
these methods are algorithmic, therefore they can be easily implemented on the computer. 
Due to easy availability of the computers, these methods are becoming popular.

The iterative methods are the most successful methods to find the approximate roots of the 
nonlinear equations for the following main reasons. 

1. The iterative methods are able to find roots of the transcendental and higher order 
polynomial equations.

2. These procedures are algorithmic and systematic.
3. These methods provide the result with high accuracy.
4. The algorithms can be implemented with the aid of high-speed computers.
5. Same algorithm can be applied to different problems.

An important aspect of the iterative methods is to find an interval which contains the root 
of the nonlinear equation. The following intermediate value theorem is helpful in locating 
the roots:

Intermediate Value Theorem for Continuous Functions

Theorem 3.1

Let f (x) be a continuous function on the interval I. If a and b are two points in I and if 
f a c f b( ) ( )≤ ≤ ; then there exists a number ξ  in [a, b], such that f c( )ξ = . 

Since we are interested in finding the zeroes of the function f (x) i.e., f ( )ξ = 0, so we can 
modify this theorem as follows. 

Let f (x) be a continuous function on the interval I. Let a and b be two points in the interval I, 
such that f a f b( ) ( )≤ ≤0 ; then there exists a number ξ  in the interval I, such that f ( )ξ = 0. 
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Nonlinear Equations 53

Note: Consider the equation f (x) = 0, where the function f (x) is continuous in an interval 
I. The prime objective is to find the two points a and b in the interval I, such that f (a) and 
f (b) are of opposite signs f (a).f (b) ≤ 0. Then according to the Intermediate value theorem, 
there exists at least one root of the equation f (x) = 0 in the interval I.

(a, f(a))

(b, f(b))

ξ x

f(x)

Fig. 3.10 Intermediate value theorem for continuous functions

Consider the function f x x x( ) = + −3 1 , we have 

a) The function f(x) is continuous in interval [0, 1].
b) f(0) = – 1, f(1) = 1  ⇒ <f f( ) ( )0 1 0.

Using intermediate value theorem (3.1), there exists a number ξ  in (0, 1) such that 
f ( )ξ = 0. So at least one root of the equation f x x x( ) = + − =3 1 0  lies in the interval (0, 1).

Note: It is easy to see that continuity of the function f(x) is important for the intermediate 
value theorem. For example, the function f x x x( ) tan( )= −  satisfies the condition 
f f( ). ( )1 2 0< . But, there is no real root of the equation x x− =tan( ) 0  in the interval (1, 2), 

because the function f x x x( ) tan( )= −  has a discontinuity at the point π
2

1 5708 1 2≈ ∈. ( , ) .  

In fact, for every small interval (a, b) that contains ± nπ
2

, f(x) satisfies the condition 

f a f b( ). ( ) < 0. But there is no real root in that interval.

3.1Example
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54 Numerical Methods

The aim of this chapter is to discuss following iterative methods to compute the approximate 
roots of the equation f (x) = 0.

1. Bisection, (or) Bolzano (or) Interval-Halving Method 
2. Fixed-Point Method (or) Direct-Iteration Method (or) Iterative Method (or) 

Method of Successive Approximations (or) One-Point Iteration
3. Newton–Raphson Method, Modified (or) Generalized Newton–Raphson Method, 

and Accelerated Newton–Raphson Method
4. Method of False-Position (or) Regula Falsi Method 
5. Secant Method
6. Muller Method
7. Chebyshev Method
8. Aitken ∆2 -process

3.3 Bisection (or) Bolzano (or) Interval-Halving Method 

Bisection method is the simplest iterative method for finding the real roots of an equation, 
f (x) = 0. It is based on repeated applications of intermediate value theorem. We need two 
initial guesses, a and b, which satisfy the intermediate value theorem, i.e., f a f b( ) ( ) < 0  and 
function f (x) must be continuous in (a, b). 

Let a and b be two initial guesses, which bracket the root. The first approximation to root is 
the midpoint of the interval (a, b), i.e., 

x a b
0 2

= +

If f a f x( ) ( )0 0<  then according to intermediate value theorem, the root will lie in the 
interval ( , )a x0 . So the next approximation is given by

x
a x

1
0

2
=

+  

Else, the root will lie in the interval ( , )x b0  and the next approximation is given by

x
b x

1
0

2
=

+  

This process can be continued to generate a sequence x x x1 2 3, , ⋅⋅⋅  of approximations to 
the root. Let x xn n− −3 2,  and xn−1 be three latest approximations to the root, then the nth 
approximation xn  is given by

if f x f xn n( ) ( )− − ≤1 2 0  x
x x

n
n n=

+− −1 2

2

else    x
x x

n
n n=

+− −1 3

2
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Nonlinear Equations 55

The sequence is generated till the last approximation xn is correct up to the desired accuracy as 
discussed after Example 3.2. The graphical representation of the method is given in Fig. 3.11. 

a
ξ b

{a, f(a)}

{b, f(b)}

x1
xx0

f(x)

Fig. 3.11  Bisection method.

Use intermediate value theorem to prove that the equation x x3 4 9 0− − =  has a root 
in the interval (2, 3). Obtain the ten iterations of the Bisection method to compute the 
approximate root of the equation. 

Ans. The function f x x x( ) = − −3 4 9  is continuous in the interval (2, 3) and 

 f f( ) , ( )2 9 3 6= − =

According to intermediate value theorem, at least one root of the equation x x3 4 9 0− − =  
lies in the interval (2, 3). To obtain iterations of Bisection method, let us start with initial 
approximations

 a b= =2 3,

The first approximation to root is the midpoint of the interval (a, b).

 x a b
0 2

2 3
2

2 5= + = + = .

 f ( . )2 5 = −3.375000, while f ( )3 6=

3.2Example
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56 Numerical Methods

So, root lies in the interval (2.5, 3)

 x1
2 5 3

2
2 75= + =. . , f ( . )2 75 = 0.796875

Proceeding in a similar manner, we can obtain following iterations

 

x f x
x f x
x

2 2

3 3

4

2 625000 1 412109
2 687500 0 339111

= = −
= = −

. ( ) .

. ( ) .
  
  

== =
= = −

2 718750 0 220917
2 703125 0 061077

4

5 5

. ( ) .

. ( ) .
 
 

f x
x f x

 

x f x
x f x
x

6 6

7 7

8

2 710938 0 079423
2 707031 0 009049
2 7

= =
= =
=

. ( ) .

. ( ) .

.

 
 

005078 0 026045
2 706055 0 008506
2 706

8

9 9

10

 
 

f x
x f x

x

( ) .
. ( ) .
.

= −
= = −
= 5543 0 00027010 f x( ) .=

In this example, ten iterations were computed, but we can also compute more iterations. 
In general, numerical methods will not find the exact root; rather they find some suitably 
accurate approximations to the root. The numerical algorithms refine these approximations 
with iterations. Now the question is where to stop these iterations? It is necessary to impose 
certain conditions under which the iteration process is terminated. 

An error tolerance needs to be specified, i.e., either the value of the function is close to zero 
f xn( ) <( )δ  or the absolute difference between last two consecutive iterations is below the 

tolerance limit ( )x xn n− <( )−1 ε  or both. 

Let us define error tolerance δ = 0 0005.  in the Example 3.2. We will stop iterations if the 
absolute value of the function is less than δ = 0 0005. . At 10th iteration, we have x10 2 706543= . , 
and function value is f x( ) .10 0 000270= , which is less than error tolerance δ = 0 0005. . So, 
we can stop here and say that approximate root is x10 2 706543= . .

Similarly, say we define ε = 0 002. . The difference between 8th and 9th approximations 
is less than ε = 0 002. . Therefore, we can stop iterations and say that approximate root is 
x9 2 706055= . .  

Note: It is worth mentioning here that the tolerance limit defines the accuracy of the root. Say, 
we want the approximate root to be exact up to five decimal places, then the tolerance limit is 
ε = 0 000005. . But in that case, we need to perform more iterations. 

In this chapter, we will perform the iterations without specifying the error tolerance just to 
avoid the repetitions of the processes.
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Nonlinear Equations 57

Use Bisection method to compute the root of the equation cos x x− + =5 1 0 in the interval 
(0, 1). Note that the function cos(x) is to be evaluated in radians. 

Ans. The function f x x x( ) cos= − +5 1 is continuous and

 f ve f ve( ) , ( )0 1= + = −

Intermediate value theorem implies that there exists a root of the equation cos x x− + =5 1 0  
in the interval (0, 1). 

Let a b= =0 1,  be the initial approximations to the root. 1st approximation to root is the 
midpoint of the interval (a, b).

 x a b
0 2

0 1
2

0 5= + = + = .

 f ve( . )0 5 = − , while f ve( )0 = +

⇒ Root lies in the interval (0, 0.5), continuing in this way, we can easily find the following 
approximations to the root

 

x
x
x
x
x
x

1

2

3

4

5

6

0 250000
0 375000
0 437500
0 406250
0 390625

=
=
=
=
=

.
.
.
.
.

 

==
⋅
⋅
⋅

=

0 382812

0 38574212

.

.x

Note: Any trigonometric functions like cos(x), sin(x), etc. must be computed in radians not 
in degree. So, we must keep it in mind that the calculator/computer must be in the radian 
mode. For example, here in this question, we have to compute the value of cos( )x  at Radian 
x, not in degree x. 

3.3Example

Calculate the first positive root of the equation x x− =tan( ) 0  with the help of Bisection 
method. 

Ans. 
It is easy to see from the Fig. 3.9 that the equation x x− =tan 0 possesses an infinite 
number of roots. Also, the function f x x x( ) tan( )= −  has discontinuities at the points 

3.4Example
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58 Numerical Methods

± ⋅⋅⋅





π π π
2

3
2

5
2

, , . So, to compute the first positive root of the equation x x− =tan( ) 0, 

we cannot continue with the interval (4, 5) due to discontinuity at the point 
3
2

4 7124π = . .

The root lies in the interval π π, 3
2







 and function is also continuous in this interval 

so that we can continue with an interval π π, 3
2







. For easy computations, we can also 

proceed with smaller interval (4, 4.5) as f ve f ve( ) , ( . )4 4 5= + = − .

Using Bisection method, 1st approximation to root is given by 

 x a b
0 2

4 4 5
2

4 25= + = + =. .

The function, f ve( . )4 25 = + , while f ve( . )4 5 = − , so

 x1
4 25 4 5

2
4 375= + =. . .

Proceeding in a similar manner, following iterations can be computed easily 

 

x
x
x
x
x

2

3

4

5

6

=
=
=
=
=

⋅⋅⋅

4.437500
4.468750
4.484375
4.492188
4.496094

xx12 = 4.493164

 

Number of Iterations in Bisection Method
Let ξ  be the exact root of the equation f x( ) = 0, and initial approximations for the root in 
Bisection method are a and b, then 

 x b a
0 2

− ≤ −ξ  

 x b a
1 22

− ≤ −ξ

 ⋅⋅⋅
 x b a

n n− ≤ −
−ξ

2 1
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Nonlinear Equations 59

Since ξ  is the exact root and xn is the nth approximation to the root, so ε ξn nx= −  is the error 
in the nth approximation xn. Let the permissible error be ε , then the number of iterations (n) 
required to get this accuracy is given by the following formula 

b a
n

− ≤+2 1 ε

⇒ ≥ − − −n b aln( ) ln
ln

ε
2

1 (3.2)

For example: Let error tolerance be ε = .005 . If we start with an interval of unit length (b – a 
=1), then the required number of iterations are given by 

n ≥ − − = ≈ln( ) ln(. )
ln

.1 005
2

1 6 6438 7 

So, minimum seven iterations of Bisection method are required to get the root correct up to 
two decimal places (ε = .005), and it excludes the initial iteration x0. 

3.4  Fixed-Point Method (or) Direct-Iteration Method (or) Method 
of Successive-Approximations (or) Iterative Method (or)  
One-Point-Iteration Method

Let us define the fixed point (or point of attraction) of a function φ( )x  to start with Fixed-
Point method. 

A real number c is a fixed point of the function φ( )x , if and only if we have φ( )c c= , i.e., point 
c is fixed under the mapping function φ . 

For example x = 1, 2 are the fixed points of the function φ x
x( ) =

+2 2
3

 as φ φ( ) , ( )1 1 2 2= = .

Geometrically, the fixed points of a function φ( )x  are the points of intersection of the curve 
y x= φ( ) and line y x= . Let 

 f x x x( ) ( )= −φ  

Then the following statements are equivalent
i) C is the zero of the function f (x) 
ii) C is the root of the equation f (x) = 0 
iii) C is the fixed point of function φ( )x  

Definition 3.1
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60 Numerical Methods

Fixed-Point Method

Consider the equation f(x) = 0 and f x x x( ) ( )= −φ . Let x0 be any initial approximation to 
the root of the equation f(x) = 0, then the next approximation can be calculated by the value 
of the function φ( )x  at this point. 

x x1 0= φ( )

Proceeding in a similar manner, we can easily find the various approximations to the fixed 
point.

x x2 1= φ( )

x x3 2= φ( )
⋅⋅⋅
⋅⋅⋅
x xn n+ =1 φ( ) (3.3)

For example, consider the following equation 

  

f x x x

x x
x

x

x
x

x

( )

( ) ( )

( ) ( )

= − + =

− =
+ − =

=
+

=

2

2

2

3 2 0
2

3
0

2
3

or

or

φ

φ

 

Now, x = 1, 2 are the roots of the equation x x2 3 2 0− + = , and also fixed points of the 

function φ x
x( ) =

+2 2
3

.

Find the root of the equation cos x x− + =5 1 0  with the aid of Fixed-Point method. 
Perform only five iterations and start with an initial approximation x0 0 5= . .

Ans. Rewriting the given equation as follows 

  f x x x( ) cos= − + =5 1 0

 x x x= + =cos ( )1
5

φ

3.5Example
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Nonlinear Equations 61

Prove that the function φ π( ) tan ( )x x= +−1  can be an iteration function for the equation 
x x− =tan( ) 0. Use this iteration function to compute the approximate root corrects up to 
five decimal places. Take initial approximation x0 4 5= . . 

Ans. First, we rewrite the given equation as follows
 x x− =tan( ) 0
 x x= tan( )  
 x x= −tan( )π

3.6Example

The iteration function is φ( )
cos

x
x

=
+( )1

5
. Starting with an initial approximation x0 0 5= . ,  

we have following next approximation 

 x x1 0

0 5 1
5

0 375517= =
+( )

=φ( )
cos( . )

.

Similarly, the Fixed-Point method (3.3) generates the following successive approximations 
for the root of the given equation. 

 

x x

x x

2 1

3 2

0 375517 1
5

0 386064

0 385280

= =
+( )

=

= =

φ

φ

( )
cos( . )

.

( ) .                    
                   x x

x x
4 3

5 4

0 385339= =
=

φ
φ

( ) .
( ) == 0 385334.                     

Note: We can have infinite number of iteration functions for any given equation. For 
example

 f x x x( ) cos= − + =5 1 0

 x x x= + =cos ( )1
5

φ

 x x x x= − + =cos ( )4 1 φ

 x x x x= − + =cos ( )3 1
2

φ

 
⋅⋅⋅

Which iteration function is good enough? We will discuss various criteria for the selection 
of iteration function in coming sections and examples.
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62 Numerical Methods

 tan ( )− = −1 x x π
 x x x= + =−tan ( ) ( )1 π φ

So, we can have iteration function φ π( ) tan ( )x x= +−1  (we have some specific reason 
for selection of this iteration function, which will be discussed in Section 3.8.2 of this 
chapter). 

Starting with initial approximation x0 4 5= . , the iterations for the Fixed-Point method 
(3.3) are as follows 

 x x1 0
1 4 5 3 14159265= = + =−φ( ) tan ( . ) . 4.493720

 x x2 1
1 4 493720 3 14159265= = + =−φ( ) tan ( . ) . 4.493424

Similarly, other approximations are given by

 x x3 4= =4.493410, 4.493410

The difference between last two iterations is less than 0.000005, so the root x = 4.493410 
is correct to five decimal places.

The equation x x3 4 9 0− − =  has a root in the interval (2, 3). Use Fixed-Point method to 

show that the iteration function φ( )x
x

=
−( )3 9

4
 generates a divergent sequence, while the 

iteration function φ( )x x x= − − −3 19 9
15

 generates a convergent sequence. Start with any 

initial approximation in the interval (2, 3). 

Ans. Using the given equation, we can have following iteration functions

 

x x

x
x

x

x x x x

3

3

3

4 9 0

9

4
19 9
15

− − =

=
−( )

=

= − − − =

φ

φ

( )

( )

3.7Example

Let us introduce the idea of convergence and divergence for the sequence generated by 
iterative methods with an example.
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Nonlinear Equations 63

The root of the equation x x3 4 9 0− − =  lies in the interval (2, 3). So, we can continue with 
any initial approximation in this interval say x0 2 7= . . Using Fixed-Point method with 

iteration function φ( )x
x

=
−( )3 9

4
, we have following successive approximations

 x x1 0

32 7 9

4
2 670750= =

−( )
=φ( )

( . )
.

 x x2 1

32 670750 9

4
2 512554= =

−( )
=φ( )

( . )
.  

 
x
x
x

3

4

5

1 715393
0 988084
2 491169

=
= −
= −

.
.
.

 

x
x
x
x

6

7

8

9

6 114999
59 414871
52437 757812
3604726625075

= −
= −
= −
= −

.
.

.
22 000000.

⋅⋅⋅
It is easy to see that sequence generated by the Fixed-Point method is diverging towards 
−∞. So, the root cannot be obtained with this iteration function φ( )x . 

Let us change the iteration function φ( )x x x= − − −3 19 9
15

. Using Fixed-Point method 

with any initial approximation in (2, 3), say x0 2 5= . , we have following successive 

approximation

 x x
x x

1 0
0

3
019 9

15
2 722500= = −

− −
=φ( ) .

Similarly, other iterations are as follows

 
x
x

2

3

=
=

2.702678
2.707284

 
x
x

4

5

=
=

2.706378
2.706558

 

x
x
x

6

7

8

=
=
=

⋅⋅⋅

2.706522
2.706529
2.706528

Now, the iterations are converging to the root. This iteration function satisfies certain 
convergence conditions, which we will discuss in Section 3.8.2 of this chapter. 
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64 Numerical Methods

Use the Fixed-Point method to compute the root of the equation x e x− =− 0  in the 
interval (0, 1). 

Ans. Let us rewrite the given equation as follows

 x e x= −

We will use the iteration function φ( )x e x= −  for the Fixed-Point method. Since f ( )0 1= −  
and f ( ) .1 0 631= , so the root of the equation lies in (0, 1). Let us start with the initial 
approximation x0 0 5= . . 

x x e
x x e

1 0
0 5

2 1
0 606531

0 606531
0 545239

= = =
= = =

−

−

φ
φ

( ) .
( ) .

( . )

( . )

Similarly, we can compute following iterations

x3 =  0.579703  
x4 = 0.560065

x5 = 0.571172 

x6 = 0.564863

x7 =  0.568438

x8 0 566409= .   

x9 0 567560= .  

x10 0 566907= .  

x11 0 567277= .   

 x12 0 567067= .

x13 0 567186= .

x14 0 567119= .

x15 0 567157= .   

x16 0 567135= .

x17 0 567148= .  

x18 0 567141= .  

Fig. 3.12 Fixed Point oscillations around the root of the equation x e x= − , Root  0.567141

It is easy to see from the graph that, iterations are oscillating around the root (0.56714). 
Initial iteration is 0.5 (left to the root), then iteration is 0.606531 (right to the root), next 
iteration is 0.545239 (again left to the root) and so on.

3.8Example

x0

y = e–x y = x

5 x3210–1

y

0.5

4

1.5

2.5

1

2

x1x2 x3x4
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Nonlinear Equations 65

3.5 Newton–Raphson (NR) Method 

Let x0 be an initial approximation to the root of the equation f(x) = 0, and h be the error in 
this approximation. Then x0 + h is the exact root of the equation f(x) = 0, hence 

f(x0 + h) = 0 

The Taylor Series expansion of f(x0 + h) is given by 

f x h f x h f x h f x( ) ( ) ( ) ( ) ( )
!

( )0 0 0

2

02
+ = + ′ + ′′ + ⋅⋅⋅

where the prime (') denotes derivative on x. If our initial approximation is close to root, 
then h is a very small quantity. Setting the quadratic and higher terms of h to zero, we get 

f x h f x( ) ( ) ( )0 0 0+ ′ =

⇒ =
−

′
h

f x
f x

( )
( )

0

0

Let x x h1 0= +  be the next approximation to the root, so

x x
f x
f x1 0

0

0

= −
′
( )
( )

Similarly, the approximation x1 can be refined further for a better approximation and so on. 
In general, the subsequent iterations can be defined as follows 

x x
f x
f xn n

n

n
+ = −

′1

( )
( )

 n = 0, 1, 2 … (3.4)

Use Newton–Raphson method with initial approximation, x0 2 5= . , to compute the root 
of the equation x x3 4 9 0− − =  correct to five decimal places.

Ans. Initial approximation is x0 2 5= . . On using Newton–Raphson method (3.4), we 
have following successive approximations

x x
f x
f x

x
x x

x1 0
0

0
0

0
3

0

0
2

34 9
3 4

2 5 2 5 4 2 5 9
3

= −
′

= −
− −

−
= − − −( )

( )
. ( . ) ( . )

(22 5 42. ) −
= 2.728814

x x
f x
f x2 1

1

1

3 4 9
3

= −
′

= − − −( )
( )

( ) ( )
(

2.728814 2.728814 2.728814
2.7288814

2.706749
)2 4−

=

x3 = 2.706528

x4 = 2.706528

3.9Example
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66 Numerical Methods

Compute the root of the equation cos x x− + =5 1 0  with the help of Newton–Raphson 
method. Use an initial approximation x0 0 5= .  for computation. 

Ans. The root of the equation lies in the interval (0, 1). Let initial approximation be x0 0 5= . . 
Now, using Newton–Raphson method (3.4), we have following successive approximations

x x
f x
f x

x
x x

x1 0
0

0
0

0 0

0

5 1
5

0 5 0 5= −
′

= −
− +

− −
= − −( )

( )
cos( )

sin( )
. cos( . ) 55 0 5 1

0 5 5
( . )

sin( . )
+

− −
= 0.386408

x x
f x
f x2 1

1

1

5 1= −
′

= − − +
−

( )
( )

cos( ) ( )
sin

0.386408 0.386408 0.386408
(( )

.
0.386408

385335
−

=
5

0

x3 0= .385335

3.10Example

Derive Newton–Raphson iterative formula for computing the value of M , where M is a 
positive real number. Hence compute 40 .

Ans. Let x M= , then 

 f x x M( ) = − =2 0

The aim is to compute the root of this equation using Newton–Raphson method. The 
Newton–Raphson method (3.4) for this equation is given by

 x x
f x
f xn n

n

n
+ = −

′1

( )
( )

 x x
x M

x
x M

xn n
n

n
n

n
+ = −

−
= +





1

2

2
1
2

To compute 40 , the corresponding equation is x2 40 0− = . The root of this equation 
lies in the interval (6, 7). Let initial approximation be x0 6 5= . . Using afore-mentioned 
iterative formula, we have

 x x
x1 0

0

1
2

40 1
2

6 5 40
6 5

= +






= +





=.
.

6.326923

 x x
x2 1

1

1
2

40 1
2

40= +






= +





=6.326923
6.326923

6.324556

 x3 = 6.324555

3.11Example

The root of the equation x x− =tan( ) 0 with Newton–Raphson method will be discussed in 
Section 3.8.3.
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Nonlinear Equations 67

Geometrical Interpretation of Newton–Raphson Method

Let x f x0 0, ( )( ) be any point on the curve y f x= ( ), then equation of tangent at this point is 

y f x f x x x− = ′ −( ) ( )( )0 0 0

Let this tangent cut the x-axis at the point x x= 1. Value of y is zero at this point, so the 
equation of tangent is given by

− = ′ −f x f x x x( ) ( )( )0 0 1 0  

i.e.,  x x
f x
f x1 0

0

0

= −
′
( )
( )

 

In Newton–Raphson method, the function f(x) is approximated with the tangent of f(x) 
at point x = x0. Next approximation is the point of intersection of the tangent (at the point  
x = x0) and the x-axis. In general, the iteration xn+1 is the value of x at which tangent at the 
point x f xn n, ( )( )  cuts the x-axis. 

Note that, similar kind of formula can be obtained for the kth root of a number M, i.e., 
Mk . Let x Mk= , then f x x Mk( ) = − = 0.

y = f(x)

xx1

f(x)

x0x2

ξ

Fig. 3.13 Graphical interpretation of the Newton–Raphson method
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68 Numerical Methods

Note: We can easily observe from the iterations of Newton–Raphson method in Examples 3.9–
11 that root with very high accuracy is obtained in very small number of iterations compared 
to other methods. It is due to the high order of convergence of Newton–Raphson method. But 
the method converges to the root only for closer initial approximations with certain conditions 
on the function. So, this method can also be used to refine the approximations of the root that 
are obtained by some other methods in very less number of iterations. All these aspects, we will 
discuss in sections 3.8 and 3.9 of this chapter. 

3.6 Regula Falsi Method (or) Method of False Position 

Like Bisection method, the False-Position method also requires two initial guesses, a and 
b, which bracket the root. Let the root of the equation f(x) = 0 lie in the interval [a, b], and 
the function f(x) be a continuous function. Then, the next approximation is the point of 
intersection of the chord joining these two points a f a b f b, ( ) , , ( )( ) ( ){ }  and the x-axis. This 
point of intersection gives a “false position” of the root, and it is the reason for the name, 
method of false position or in Latin, regula falsi. The equation of the chord joining two 
points a f a, ( )( ) and b f b, ( )( ) is as follows

y f b f b f a
b a

x b− = −
−

−( ) ( ) ( ) ( )

Let x0 be the point of intersection of this chord and x-axis. At point x = x0, this equation is 
reduced to the following equation

− = −
−

−f b f b f a
b a

x b( ) ( ) ( ) ( )0

x af b bf a
f b f a0 = −

−
( ) ( )
( ) ( )

 (3.5)

So, x0 is the approximation to the root. We will continue with the new interval which 
brackets the root. If f a f x( ) ( )0 0< , then the root will lie in the interval ( , )a x0 , so the next 
approximation is given by

 x
af x x f a

f x f a1
0 0

0

=
−
−

( ) ( )
( ) ( )

else  x
bf x x f b

f x f b1
0 0

0

=
−
−

( ) ( )
( ) ( )

 (3.6)

We will continue this process to generate a sequence x x x1 2 3, , ⋅⋅⋅, till the nth approximation 
xn is correct up to the desired accuracy. 
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Nonlinear Equations 69

f(x) f(x)

ξ

(a, f(a))

x0

x1
x

(b, f(b))

Fig. 3.14 Graphical representation of Regula Falsi method

Use Regula Falsi method to compute the root of the equation x x3 4 9 0− − =  in the interval 
(2, 3). Perform only six iterations and start with the initial approximations 2 and 3. 

Ans. The initial approximations are a = 2 and b = 3. Using Regula Falsi method, we have 
following next approximation from Eq.(3.5)

 x
f f
f f0

2 3 3 2
3 2

2 6=
−
−

=
( ) ( )
( ) ( )

.

The function f ve( . )2 6 = − , so the root lies in the interval (2.6, 3). 

On applying the Regula Falsi method (3.6) with approximations 2.6 and 3, we have

 x
f f

f f1
2 6 3 3 2 6

3 2 6
=

−
−

=
. ( ) ( . )

( ) ( . )
2.693252

As f ve( )2.693252 = − , so the root lies in between 2.693252 and 3. Continuing with these 
approximations, we have

  x
f f

f f2
2 6 3 3 2 6

3 2 6
=

−
−

=
. ( ) ( . )

( ) ( . )
93252 93252

93252
2.704918

Similarly, we have

 

x
x
x
x

3

4

5

6

=
=
=
=

2.706333
2.706504
2.706525
2.706528

3.12Example
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70 Numerical Methods

Find the first positive root of the equation cos x x− + =5 1 0 with the help of Regula Falsi 
method correct to five decimal places. 

Ans. The first positive root of the equation lies in the interval (0, 1). Let the initial 
approximations be a b= =0 1, .

On using Regula Falsi method (3.5), we have

 x
f f
f f0

0 1 1 0
1 0

=
−
−

=
( ) ( )
( ) ( )

0.366321

The value of the function f ve( )0.366321 = + . So, the root lies in the interval (0.366321, 1). 
Again applying Regula Falsi method with these approximations, we have

 x
f f

f f1
1 1

1
=

−
−

=
0.366321 0.366321

0.366321
0.384476

( ) ( )
( ) ( )

Similarly, we have 

 

x
x
x

2

3

4

=
=
=

0.385296
0.385333
0.385334

3.13Example

Apply Regula Falsi method with initial approximations 4 and 4.5 to compute the root of 
the equation x x− =tan( ) 0. 

Ans. Applying Regula Falsi method with initial approximations 4 and 4.5, we have 
following successive approximations to the root

 

x
f f
f f

x
f

0

1

4 4 5 4 5 4
4 5 4

4 5 4

=
−
−

=

=
−

( . ) . ( )
( . ) ( )

( . ) .

4.476954

4.476954 55
4 5

2

3

f
f f

x
x

( )
( . ) ( )

4.476954
4.476954

4.492898

4.493393
4.49

−
=

=
= 33409

3.14Example
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3.7 Secant Method 

In this method, we proceed like the Regula Falsi method, i.e., we approximate our curve f(x) 
with the chord joining two points on the curve. The only difference is that we don’t check 
the intermediate value property for the next two approximation points. 

Let x0 and x1 be the two initial approximations, then the next approximation, as in Regula 
Falsi method, is given by

x
x f x x f x

f x f x2
0 1 1 0

1 0

=
−
−

( ) ( )
( ) ( )

Now, we will use the approximations x1 and x2 to compute the next approximation x3. 

x
x f x x f x

f x f x3
1 2 2 1

2 1

=
−
−

( ) ( )
( ) ( )

Similarly, the approximation x4 is given by

x
x f x x f x

f x f x4
2 3 3 2

3 2

=
−
−

( ) ( )
( ) ( )

Note that the next approximation is computed with latest available approximations. We do 
not check the intermediate value property in Secant method. So, the approximations need 
not to bracket the root. 

In general, let xn–1 and xn be two approximations at any step. The next approximation is 
given by the equation of the chord joining these two points x f xn n− −( )1 1, ( )  and x f xn n, ( )( )

 x
x f x x f x

f x f xn
n n n n

n n
+

− −

−

=
−

−1
1 1

1

( ) ( )
( ) ( )

(or) x x
x x

f x f x
f xn n

n n

n n
n+

−

−

= −
−
−1

1

1( ) ( )
( )  n = 1, 2, 3, … (3.7)

Note: In both the methods (Regula Falsi and Secant), we approximate our curves with the 
chord joining two points. The difference is that, in Regula Falsi method, we replace one of the 
two old approximations, so that the root is always between these two new approximations. But 
in the case of Secant method, the oldest point is always replaced with a new approximation. It 
is not necessary for Secant method that next two guesses will bracket the root.
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72 Numerical Methods

f(x)

f(x)
{x0, f(x0)}

{x1, f(x1)}

x
x1 x2

x3 x0

x4 ξ

Fig. 3.15 Geometrical representation of the Secant method

Find the approximate zero of the function x x3 4 9− −  using Secant method correct to five 
decimal places.

Ans. The Secant method (3.7) is given by

x
x f x x f x

f x f xn
n n n n

n n
+

− −

−

=
−

−1
1 1

1

( ) ( )
( ) ( ) ;  n = ⋅⋅⋅1 2, ,

Let initial approximations be x0 2=  and x1 3= . Using Secant method, we have following 
next approximation

 x
x f x x f x

f x f x
f f
f f2

0 1 1 0

1 0

2 3 3 2
3 2

2 6=
−
−

=
−
−

=
( ) ( )
( ) ( )

( ) ( )
( ) ( )

.

Similarly, we can obtain the following approximations by using the Secant method

 

x
x f x x f x

f x f x
f f
f f3

1 2 2 1

2 1

3 2 6 2 6 3
2 6 3

=
−
−

=
−
−

=
( ) ( )
( ) ( )

( . ) . ( )
( . ) ( )

2..693252

2.707193
2.706524
2.706528

x
x
x

4

5

6

=
=
=

3.15Example
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Nonlinear Equations 73

Obtain the root of the equation cos x x− + =5 1 0 with the help of Secant method. 

Ans. On using Secant method (3.7) with initial approximations x0 0=  and x1 1= , we have

 x
x f x x f x

f x f x
f f
f f2

0 1 1 0

1 0

0 1 1 0
1 0

=
−
−

=
−
−

=
( ) ( )
( ) ( )

( ) ( )
( ) ( )

0.3663211  

Similarly, the approximations are as follows

 

x
x f x x f x

f x f x
x
x

3
1 2 2 1

2 1

4

5

=
−
−

=

=
=

( ) ( )
( ) ( )

0.384476

0.385336
0.3853335
0.385335x6 =

Apply Secant method to compute the first positive root of equation x x− =tan( ) 0,  
which is close to 4.5. Procced with initial approximations x0 4=  and x1 5= ,  
and conclude that we cannot obtain this root with these initial approximations. Also, show 
that the Secant method with initial approximations 4.4 and 4.6 converges to this root. 

Ans. Let initial approximations be x0 4=  and x1 5= . Next approximation for Secant 
method (3.7) is given by

 x
x f x x f x

f x f x
f f
f f2

0 1 1 0

1 0

4 5 5 4
5 4

=
−
−

=
−
−

=
( ) ( )
( ) ( )

( ) ( )
( ) ( )

3.4868177

Secant method provides the following approximations

 

x
x f x x f x

f x f x
x
x

3
1 2 2 1

2 1

4

5

38
0

=
−
−

=

=
= −

( ) ( )
( ) ( )

2.586052

.867615
.9066766

.835925

.778018

.588269

x
x
x
x
x

6

7

8

9

10

1 315063
0
0
0

= −
= −
= −
= −
= −

.

00

0 001788
0 001349

29

30

.471978
⋅⋅⋅

= −
= −

x
x

.

.

3.16

3.17

Example

Example
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74 Numerical Methods

It is easy to see that Secant method is converging to the root ξ = 0. So, we cannot obtain 
the first positive root with the initial approximations x0 4=  and x1 5= . The convergence 
to the root ξ = 0 is also very slow, which is due to the fact that the equation has double 
root ξ = 0 ( f f( ) , ( )0 0 0 0= ′ = ). We will discuss about multiple roots in Section 3.9.

But if we continue with initial approximations x0 4 4= .  and x1 4 6= . , then the next 
approximation using Secant method is given by

 x
x f x x f x

f x f x
f f
f f2

0 1 1 0

1 0

4 4 4 6 4 6 4 4
4 6

=
−
−

=
−
−

( ) ( )
( ) ( )

. ( . ) . ( . )
( . ) (44 4. )

= 4.446862

On using x1 4 6= .  and x2 = 4.446862, we have

 x
x f x x f x

f x f x3
1 2 2 1

2 1

=
−
−

=
( ) ( )
( ) ( )

4.470296

Similarly, other approximations are as follows

 

x
x
x
x
x

4

5

6

7

8

=
=
=
=
=

4.498540
4.492849
4.493396
4.493410
4.493410

Now, the method is converging to the root for these initial approximations.

Note: In the case of closed ends method like Bisection method, if f(x) is continuous in  
(a, b) and root lies in (a, b), our method must converge to the root. But in the case of open 
end methods like Fixed-Point method, we have to satisfy certain conditions for convergence. 
We will discuss the convergence criteria for various methods in next section. 

If the convergence criteria are not satisfied for any method, then it is recommended to start 
with closer approximations to the root. Rather, starting with close approximation is not the 
guarantee for convergence. 

3.8 Convergence Criteria 

So far, we have generated the sequences xn{ } of approximations to the root of the equation 
f x( ) = 0 by various iterative methods. In this section, we will discuss the criteria for the 
convergence of these sequences. Once we ensure that sequence is converging to the root, 
then in Section 3.9 we will discuss how rapidly the sequence will converge to the root (order 
of convergence). 
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3.8.1 Convergence of Bisection Method
In Bisection method, we need two initial guesses, a and b, which bracket the root, i.e., 
f a f b( ) ( ) < 0 and also f(x) must be a continuous function in (a, b). If these two conditions 
hold, then it is easy to see that Bisection method is converging to the root. 

Let ξ  be the exact root of the equation f x( ) = 0, and xn{ } is a sequence generated by the 
Bisection method. Then, we have 

x b a
0 2

− ≤ −ξ  

x b a
1 22

− ≤ −

⋅⋅⋅

ξ

x b a
n n− ≤ −

+ξ
2 1  (3.8)

Since the quantities b and a are finite, so

lim
n n

b a
→∞ +

− →
2

01
 

This implies 

lim
n nx

→∞
− →ξ 0

lim
n nx

→∞
→ ξ

It proves that sequence xn{ } is a convergent sequence. 

A sequence an{ }, n = 1, 2, 3, 4 … is a convergent sequence if it approaches to a unique finite 
limit. 

For example, the sequence 1
1
2

1
3

1
4

, , , ,⋅⋅⋅







 or 1
n









 is a convergent sequence and converging 

to number zero. But the sequence n{ }  is divergent as it tends to infinity. Also the sequence 

−( ){ }1 n  is divergent as limit is oscillating between –1 and 1, i.e., not unique. 

Definition 3.2
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76 Numerical Methods

3.8.2 Convergence of Fixed-Point Method 
In Fixed-Point method, first, we rewrite the equation f x( ) = 0 as x x= φ( ). For each 
equation f x( ) = 0, there are infinite numbers of iteration function φ( )x . For example, in 
the case of the equation x e x− =− 0, we can take iteration functions e x− , –ln(x), 2x e x− − , 
3

2
x e x− −

, and so on. So which one is to select? Since the method is an iterative procedure, 

so the convergence of the Fixed-Point method will provide the answer. The function which 
satisfies the convergence criterion is the iteration function. 

For convergence of Fixed-Point method in any interval [a, b], the following three 
requirements should be met

i) For any initial approximation x0 in [a, b], we can compute successively x x1 2, , ⋅⋅⋅ 
for given iteration function φ( )x . Consider the iteration function φ( ) ln( )x x= ,  
let x0= 20, then 2.995732, 1.0971887, 0.09275118, –2.37783484 are successive 
approximations x x x1 2 3, , . But, it is not possible to compute x4 and further 
iterations. Hence, we cannot take 1n(x) as iteration function. Similarly, other 
examples are − x , tan(x) (at π / 2), etc. 

ii) There exists a fixed point ξ  of φ( )x  in [a, b].
iii) The sequence x x1 2, , ⋅⋅⋅ will converge to fixed point ξ . 

The following three theorems (3.2–4) establish the conditions on the iteration function φ( )x ,  
which need to be satisfied for the existence of fixed point and convergence of the Fixed-
Point method to a unique fixed point. 

Theorem 3.2

Let the iteration function φ( ) [ , ], [ , ]x a b x a b∈ ∀ ∈  and φ( )x  be defined on the interval [a, b]. 
Then, we can compute x x1 2, , ⋅⋅⋅  using Fixed-Point iteration for any initial approximation 
x0 in [a, b].

Proof: Let x0 be any point in [a, b], then 

x x1 0= φ( ) 

Since the iteration function φ( )x  is defined on the interval [a, b], so we can easily compute 
x1. 

Also, φ( ) [ , ] [ , ]x a b x a b∈ ∀ ∈  thus x a b1 ∈[ , ].

Similarly, we can calculate x x2 1= φ( )  and other iterations of Fixed-Point method. 
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Nonlinear Equations 77

Theorem 3.3

Let iteration function φ( ) [ , ], [ , ]x a b x a b∈ ∀ ∈ , and function φ( )x  be continuous on [a, b], 
then there exists a fixed point of φ( )x  in [a, b].

Proof: Since φ( ) [ , ], [ , ]x a b x a b∈ ∀ ∈ , we have 

φ( )a a≥  and φ( )b b≤

If a a= φ( ) then a is the fixed point of φ( )x  and if b b= φ( ) then b is the fixed point of the 
function φ( )x . If both are not true, then 

a a< φ( ) and b b> φ( ) (3.9)

Let us consider the following function
f x x x( ) ( )= −φ

The iteration function φ( )x  is a continuous function, so f(x) is also a continuous function. 
Using inequalities (3.9), we have

f a a a( ) ( )= − <φ 0

f b b b( ) ( )= − >φ 0 

These inequalities imply f a f b( ) ( ) < 0, and also the function f(x) is a continuous function. 
On using intermediate value theorem, there exists a number ξ ∈( , )a b  such that f ( )ξ = 0. 

Hence, there exists a fixed point ξ  of φ( )x  in [a, b].

Consider the equation x x− =cos( ) 0. Let the iteration function be φ( ) cos( )x x=  This 
iteration function is defined on [0, 1] and also 

 φ( ) [ , ] [ , ]x x∈ ∀ ∈0 1 0 1

Therefore, we can compute fixed point iterations x1, x2, x3 ... for any initial approximation 
x0 ∈ [0, 1].

3.18Example

Consider the equation x x− =cos( ) 0. The iteration function φ( ) cos( )x x=  is continuous 
on [0, 1] and 

φ( ) [ , ] [ , ]x x∈ ∀ ∈0 1 0 1

Hence, there exists a fixed point of φ( ) cos( )x x=  in [0, 1].

3.19Example
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78 Numerical Methods

Theorem 3.4

Let φ( ) [ , ] [ , ]x a b x a b∈ ∀ ∈ , and φ( )x  be differentiable on the interval [a, b]. Let there be a 
non-negative constant k<1, such that 

′ ≤ ∀ ∈φ ( ) [ , ]x k x a b

Then the sequence {xn} generated using Fixed-Point method with any initial approximation 
x0 in the interval [a, b], will converge to the fixed point of the function φ( )x  in the interval 
[a, b] 

Proof: The function φ( )x  is differentiable on [a, b], so it is also a continuous function. Also, 
we have

φ( ) [ , ] [ , ]x a b x a b∈ ∀ ∈

So, according to Theorem 3.3, there exists a fixed point ξ ∈( , )a b  of the iteration function, 
φ( )x . ξ  is the fixed point of iteration function, φ( )x .

⇒ =ξ φ ξ( )  (3.10)

The fixed point iterations (3.3) are given by

x xn n+ =1 φ( )  (3.11)

On using equations (3.10, 3.11), we have 

ξ φ ξ φ− = −+x xn n1 ( ) ( )

Let ε ξn nx= −  be the error term at nth iteration. Then, we have 

ε ξn nx+ += −1 1

   = −φ ξ φ( ) ( )xn  (3.12)

Using Lagrange mean value theorem, we have 

 φ ξ φ( ) ( )− xn = −φ λ ξ′( )( )n nx  for some λ ξn nx∈( , )  or ( , )ξ xn

  = φ λ ε′( )n n  
  ≤ k nε

On using equation (3.12), we have

⇒ ≤+ε εn nk1  (3.13)

Similarly, we can prove that ε εn nk≤ −1 . On using this in the inequality (3.13), we have

ε εn nk+ −≤1
2

1
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Nonlinear Equations 79

Repeatedly applying the same procedure, we get  

ε εn
nk+

+≤1
1

0
( )

Since the ε0 is the error in the initial approximation, it is a finite quantity and k<1, this 
implies 

lim
n n→∞ + →ε 1 0 (or) lim

n nx
→∞

→ ξ

The sequence generated with Fixed-Point method converges to ξ . 

Now, we have to prove that the fixed point is unique. Let there be another fixed point 
ζ  of the iteration function φ( )x , i.e., ζ φ ζ= ( ). If we generate the sequence with initial 
approximation, ζ , then it converges to the point ζ . But we have already proved that it 
converges to ξ , this shows that ξ ζ= . So, fixed point is unique. 

Note: The condition |ϕ'(x)|<1 provides that method will converge to the root of the equation. 
But if the equation has more than one root, in that case, it is necessary to satisfy the following 
condition 

φ( ) , ,x a b x a b∈( ) ∀ ∈( )
If both the conditions are satisfied, then the method will converge to the unique root that lies 
between a and b.

To illustrate this fact, let us consider the equation x x− =tan( ) 0. We can take iteration 
function, φ( ) tan ( )x x= −1 , which satisfies the condition φ ′( )x < 1 . But if we continue to 
this iteration function, then we will get the root x = 0 for any initial approximation. Since it 
possesses an infinite number of roots, so to calculate another root that is in fixed interval, 
we have to proceed as follows 

First, we rewrite the given equation as follows

 x x− =tan( ) 0

 x x m− − =tan( )π 0 ,  m is any integer

 x x m= −tan( )π

 x x m= +−tan ( )1 π

then, we select m such that the iteration function satisfies the condition 
φ( ) , ,x a b x a b∈( ) ∀ ∈( ).
For example, if we want to compute the root in the interval, π π, 2( ), then m must be 1. So, 
the iteration function must be x x= +−tan ( )1 π . Similarly, for the root in the interval (198, 
200), m must be 63, etc. Similar expressions for negative roots e.g. first negative root is given 
by the iteration function, x x= −−tan ( )1 π . 
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80 Numerical Methods

Geometrical Representations of Convergence Conditions of Fixed-Point Method
Now, we will describe the following four different cases geometrically, when tangent to 
iteration function φ( )x  has a slope in the intervals ( , ]−∞ −1 , ( , ]−1 0 , ( , )0 1  and [ , )1 ∞ . 

Compute the first positive root, root near 30 and root in the interval (199, 200) for the 
equation, x x− =tan( ) 0. 

Ans.
The iterative functions are as follows 
 φ π( ) tan ( )x x= +−1  (first positive root), 
 φ π( ) tan ( )x x= +−1 9  (root near 30) 
 φ π( ) tan ( )x x= +−1 63  (root in the interval (199, 200)).

Table 3.1 has computations of Fixed-Point method for the first positive root, root near 30 
and root in the interval (199, 200).

Table 3.1

1. First positive root: 

φ π( ) tan ( )x x= +−1

φ( ) tan ( ) .x x= +−1 3 14159265

Let initial approximation be x0 = 4.5, then

x x1 0
1 4 5 3 14159265= = + =−φ( ) tan ( . ) . 4.493720

x x2 1
1 4 493720 3 14159265= = +

=

−φ( ) tan ( . ) .

4.493424

x3 = 4.493410

x4 = 4.493410

Let us start with initial approximation x0 = 4, then

x x1 0
1 4 3 14159265= = + =−φ( ) tan ( ) . 4.467410

x x2 1
1 3 14159265= = +

=

−φ( ) tan ( ) .4.467410

4.492176

Similarly, we have other approximations as follows

 

x

x

x

x

3

4

5

6

=
=
=
=

4.493351

4.493407

4.493409

4.493410

2. Root near 30:

φ π( ) tan ( )x x= +−1 9 . 

φ( ) tan ( ) ( . )x x= +−1 9 3 14159265

Let initial approximation be x0 = 30, then

x x1 0
1 30 9 3 14159265= = +

=

−φ( ) tan ( ) ( . )

29.811810
x

x

x

2

3

4

=
=
=

29.811600

29.811599

29.811599

3. Root in the interval (199, 200):

φ π( ) tan ( )x x= +−1 63

Let initial approximation be x0 = 200, then

x x1 0
1 200 63 3 14159265= = +

=

−φ( ) tan ( ) ( . )

199.486130

x

x

x

2

3

4

=
=
=

199.486125

199.486121

199.486121
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Nonlinear Equations 81

Case 1. 0 45≤ < °θ  or 0 1≤ ′ <φ ( )x  

 Monotonously Convergent Sequence 

Case 3. 90 135° ≤ ≤ °θ  or ′ ≤ −φ ( )x 1

 Oscillatory Divergent Sequence 

Case 2. 45 90° ≤ < °θ  or ′ ≥φ ( )x 1

 Monotonously Divergent Sequence

Case 4. 135 180° < ≤ °θ  or − < ′ ≤1 0φ ( )x

 Oscillatory Convergent Sequence

y = ϕ(x)

y = x
x

y

0 ≤ θ < 45°

0 ≤ ϕ′(x) < 1

x
y = x

y
ϕ′(x)≥1

y =

45° ≤ θ < 90°

 ϕ(x)

y = ϕ(x)

y = x

ϕ′(x)≤−1
90°≤ θ ≤ 135°

y

x

y y = x

y = ϕ(x)

−1<ϕ′(x) ≤ 0
135° < θ < 180°

x

Fig. 3.16 Geometrical representations of convergence conditions of Fixed-Point method

3.8.3 Convergence of Newton–Raphson Method 
The iterations of Newton–Raphson method (3.4) are given by

x x
f x
f xn n

n

n
+ = −

′1

( )
( )
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82 Numerical Methods

If function f '(x) vanishes at any intermediate iteration point, then the method fails to 
converge. For example, consider the equation x x3 2 1 0+ − = , root of this equation lies in 
the interval (0, 1). But we cannot continue with the initial approximation x0 = 0, as at this 
point f '(x) vanishes. 

f(x)

f(x)

x1 x2

x0 xξ

Fig. 3.17 Divergence of the Newton–Raphson algorithm

The Newton–Raphson method is equivalent to Fixed-Point method.

x x
f x
f x

xn n
n

n
n+ = −

′
=1

( )
( )

( )φ

According to convergence of Fixed-Point method, the method will converge to a root in (a, b) if

′ = −
′











′
= ′′

′( )
< ∀ ∈φ ( ) ( )

( )
( ) ( )

( )
( , )x x f x

f x
f x f x

f x
x a b2 1  (3.14)

It is possible only if the approximation is close to the root, such that f x( ) ≈ 0; and f '(x) is 
not close to zero. Geometrically, near the root, the behavior of the graph is such that the 
tangent is not parallel to the y-axis. 

Newton–Raphson method converges if the initial approximation is close to the root. 

Compute the first positive root of the equation x x− =tan( ) 0 with the help of Newton–
Raphson method. Start with initial approximations 4, 4.25. 4.4 and 4.5.

Ans. Let initial approximation be x0 = 4. Using Newton–Raphson method (3.4), we have 
following successive approximations

3.21Example
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x x
f x
f x

x
x x

x

1 0
0

0

0
0 0

2
0

2

1

4 4 4
1

= −
′

= −
−

−

= − −
−

( )
( )

tan( )
sec ( )

tan( )
sec (( )4

= 6.120158

 

x x
f x
f x

x
x x

x

2 1
1

1

1
1 1

2
11

= −
′

= −
−

−

= −

( )
( )

tan( )
sec ( )

6.120158 6.1201588 6.120158
6.120158

238.403442

−
−

=

tan( )
sec ( )1 2

 

x x
x x

3 4

5 615102 013672 110992 46093
= =
= =

1948.533203 4231.167480
. . 88

1965980672 000000 63844655104 000000
70245744640

7 8

9

x x
x

= =
=

. .
.0000000 137027641344 000000

288688865280 000000 8
10

11 12

x
x x

=
= =

.
. 669090721792 000000

9176400618641208380000 00000013

.
.x =

⋅⋅⋅
The following table contains Newton–Raphson iterations with initial approximations 
4.25. 4.4 and 4.5. 

Table 3.2

x0 4 25= . , 

 x1 4 807401= .

 x2 4 946359= .

 x3 5 465665= .

 x4 11 209617= .

 x5 11 956651= .

 x6 37 894390= .

 x7 1001 399841= .

 ⋅⋅⋅
 x20 4145085440 000000= .

x0 4 4= .

 x1 4 535981= .

 x2 4 501860= .

 x3 4 493745= .

 x4 4 493410= .  

It is easy to see that, the 
method is divergent for 
initial approximations 4 and 
4.25. While it converges for 
initial approximations 4.4 
and 4.5.

x0 4 5= .
 x1 4 493614= .
 x2 4 493410= .
 x3 4 493410= .
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84 Numerical Methods

This example shows that the initial approximation must be close to the root for convergence 
of Newton–Raphson method. But this is only qualitative idea about the convergence. 
We never know that how close we should start for convergence of the Newton–Raphson 
method. If we want the method to converge to the root for any initial approximation in the 
given interval, then the function f(x) needs to satisfy some conditions. 

The following theorem provides the sufficient condition for the convergence of Newton–
Raphson method. Due to complexity, we are not presenting the proof of the theorem.

Theorem 3.5

Let the function f(x) be a twice continuously differentiable function on the interval [a, b], 
and satisfies the following conditions

i) f a f b( ) ( ) < 0 . 
ii) ′ ≠ ∀ ∈f x x a b( ) , [ , ]0 . 
iii) ′′ <f x( ) 0 or ′′ >f x( ) 0 for each point in the interval [a, b].

iv) f a
f a

b a f b
f b

b a( )
( )

( )
( )

.
′

< −
′

< −and

Then Newton–Raphson method will converge to the unique root of the equation f(x) = 0 in 
the interval [a, b] for any initial approximation in the interval [a, b].

Prove that the function f x x x( ) cos= − +5 1 satisfies all the four convergence conditions 
of Newton–Raphson method (Theorem 3.5) in the interval (0, 1). 

i) f f( ) ( )0 1 0< .

ii) ′ = − − ≠ ∀ ∈f x x x( ) sin , [ , ]5 0 0 1 . 

iii) ′′ = − <f x x( ) cos 0  for each point in the interval [0, 1].

iv) 
f
f

f
f

( )
( )

.
( )
( )

0
0

0 4 1
1
1′

= <
′

=and -3.459697694131
-5.841470984808

== <0 5922648 1. . 

Hence, Newton–Raphson method will converge to the root for any choice of initial 
approximation in the interval (0, 1).

Note: These conditions are very strict, and in general, the function f(x) does not satisfy all 
these conditions. So, we can first compute the approximate root with convergent methods 
like Bisection, etc. to obtain a close approximation to the root and then continue with 
Newton–Raphson method using that close approximation. 

3.22Example
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Nonlinear Equations 85

3.8.4 Convergence of Regula Falsi Method 
In Regula Falsi method, if the function f(x) is a convex and continuous function in  
(a, b) and two initial guesses bracket the root f a f b( ) ( ) <( )0 , then the method is always 
converging to the root. The proof of this result is not provided due to complexity.

3.8.5 Convergence of Secant Method 
The convergence criterion of Secant method is the same as Newton–Raphson method (Theorem 
3.5). We will discuss that Secant method and Newton–Raphson method have a similar 
structure. Newton–Raphson method (3.4) is given by 

x x
f x
f xn n

n

n
+ = −

′1

( )
( )

For large n, the iterations xn and xn+1 are close enough that we can replace the derivative f '(x) 
by a finite difference based on starting two points x f xn n− −{ }1 1, ( )  and x f xn n, ( ){ }. 

′ =
−
−

−

−

f x
f x f x

x xn
n n

n n

( )
( ) ( )1

1

We get

x x
f x

f x f x
x x

x f x x f x
n n

n

n n

n n

n n n n
+

−

−

− −= −
−
−







=
−

1
1

1

1 1( )
( ) ( )

( ) ( ))
( ) ( )f x f xn n− −1

It is formula for Secant method (3.7). 

Due to similar structure, the convergence criterion of Secant method is same as Newton–
Raphson method (Theorem 3.5). 

f(x)

f(x){x0, f(x0)}

{x1, f(x1)}

x
x1 x2

x3 x0

x4 ξ

Fig. 3.18 Convergence of the Secant method
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86 Numerical Methods

3.9 Order of Convergence 

Let us consider a sequence {xn} converges to a limit point, ξ . Then the order of convergence 

mainly describes the speed of convergence. For example, both the sequences 1
n









 and 
1

2n








 

converge to zero. The order of convergence of the sequence 
1

2n








 is more than the sequence 

1
n









. Because, after a few terms say 50 terms, the term 1 1
25002n









=  is more close to zero as 

compared to the term 1 1
50n









= . 

f(x)
{x0, f(x0)}

{x1, f(x1)}

x1 x2

ξ
x0 x

Fig. 3.19 Divergence of the Secant method

If {xn} is any sequence converges to ξ , then let ε ξn nx= − . If there exists a positive constant 
C and a constant p ≥ 1, such that 

 lim
n

n

n
p C

→∞

+ =
ε

ε
1

Then, the constant p is known as order of convergence, and constant C as asymptotic error 
constant. 

Definition 3.3
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Nonlinear Equations 87

Consider a convergent sequence {xn}, then lim
n n→∞

→ε 0. So, the error term εn is close to zero 
for large n. It is easy to see that, if p (order of convergence) is large, then sequence converges 
more rapidly as lim

n n n
pC

→∞ + =ε ε1 . For example, let us presume that the error at the tenth step 
ε10( ) is 0.002. If p = 1, then error at eleventh step ε11( ) is 0.002C. But if p = 2, then the error 

at eleventh step is 0.00004C. 
The order of convergence plays an important role in the theory of any iterative procedure 

that is producing a convergent sequence to the exact solution. The method converges faster 
to the solution for high order of convergence. Therefore, it requires a lesser number of 
iterations for a given accuracy. 

Let ξ  be the exact root of the equation f(x) = 0, and {xn} is a sequence generated by an 
iterative method. Let the sequence {xn} converge to limit point ξ . So, ε ξn nx= −  is the error 
in the nth approximation xn. Then the iterative method is said to be of order p, if 

lim
n

n

n
p C

→∞

+ =
ε

ε
1  (3.15)

Note: The asymptotic error constant (C) plays an important role in the convergence of the 
method with linear rate of convergence (i.e., p = 1). We must have C < 1 for the convergence 
of the first order method for order of convergence p > 1, the asymptotic error constant is 
less important. 

3.9.1 Order of Convergence for Bisection Method 
Let ξ  be the exact root of the equation f(x) = 0, and xn is the nth approximation to the root 
from Bisection method starting with initial interval (a, b). So, ε ξn nx= −  is the error in nth 
approximation xn. Then the upper bound to the error in the nth and (n + 1)th approximations 

are εn n

b a= −
+2 1  and εn n

b a
+ += −

1 22
 respectively. Hence, for Bisection method, we have

lim
n

n

n
→∞

+ =
ε
ε

1 1
2

 (3.16)

On comparing Eqs. (3.15) and (3.16), we have 

⇒ = =p C1 1
2

,

So the order of convergence for Bisection method is one (linear convergence). The Bisection 
method is very slow due to a linear rate of convergence. Therefore, a large number of 
iterations are required to obtain a root correct up to the desired accuracy as compared to 
other methods. But its simple structure and always converging nature are two important 
reasons for its popularity. 
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88 Numerical Methods

3.9.2 Order of Convergence for Fixed-Point Method 
Consider the equation f(x) = 0 and f x x x( ) ( )= −φ . Let ξ  be the fixed point of the iteration 
function, φ( )x .

⇒ =ξ φ ξ( )  (3.17)

Let xn and xn+1 be two consecutive iterations of the Fixed-Point method, then we have

x xn n+ =1 φ( )  (3.18)

On subtracting Eq. (3.18) from Eq. (3.17), we get 

ξ φ ξ φ− = −+x xn n1 ( ) ( )  (3.19)

ε φ ξ φ ξ εn n+ = − −1 ( ) ( )

On using Taylor series expansion, we have

ε φ ξ φ ξ ε φ ξ
ε

φ ξn n
n

+ = − − ′ + ′′ − ⋅⋅⋅





1

2

2
( ) ( ) ( )

!
( )  (3.20)

ε ε φ ξ
ε

φ ξn n
n

+ = ′ − ′′ + ⋅⋅⋅1

2

2
( )

!
( )

⇒ = ′
→∞

+lim ( )
n

n

n

ε
ε

φ ξ1

On comparing with Eq. (3.15), the order of convergence of Fixed-Point method is one. The 
method will converge to the exact root, if the following condition holds

′ <φ 1 (3.21)

Note: Consider that an iteration function φ( )x  satisfies the following equations

′ = ′′ = ⋅⋅⋅ = = ≠− ( )φ ξ φ ξ φ ξ φ ξ( ) ( ) ( ) , ( )( )m m1 0 0and

Then, the Eq. (3.20) reduces to 

ε
ε

φ ξ
ε

φ ξn
m n

m
m m n

m
m

m m+
−

+
+= −( ) + −( )

+
+ ⋅⋅⋅1

1
1

11 1
1!

( )
( )!

( )( ) ( )

⇒ =
→∞

+lim
!

( )( )

n

n

n
m

m

m
ε

ε
φ ξ1 1  (3.22)

So, the order of convergence increases to m for this iteration function, φ( )x . 
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Find the values of constants A and B, such that the following iteration formula will 
converge to the point ξ = 1.

 x A Bx xn n n+ = + +1
3

Also, find the constants A and B for which order of convergence is highest.

Ans. The iteration function is as follows 

 φ( )x A Bx x= + + 3

The iteration function will converge to ξ = 1 , if 

 φ( )1 1 1= = + +A B

and ′ = + <φ ( )1 3 1B .

These two equations imply the following conditions on constants A and B

 A = – B and − ≤ ≤ −4 2B

For higher convergence, we have

 ′ = + = ⇒ = − =φ ( )1 3 0 3 3B B Aand

If these two conditions are true, then the sequence converges to ξ = 1 , and order of 
convergence is quadratic (2).

3.23Example

Find the values of constants A, B, and C, such that the following iteration function gives a 
sequence with the highest order of convergence and has a limit point ξ = a .

  x Ax Bx Cxn n n n+
−= + +1

1 3

Use the obtained formula to compute the value of 40 . Starting with the initial 
approximation, x0 6= . 

Ans. The iteration function is as follows

 x Ax Bx Cx xn n n n n+
−= + + =1

1 3 φ( )  (3.23)

We have to find the constants A, B, and C, such that this iteration function gives a sequence 
with limit point ξ = a1 2/  and has the highest order of convergence. Therefore, we must have

3.24Example
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90 Numerical Methods

 
φ a Aa Ba Ca a1 2 1 2 1 2 3 2 1 2/ / / / /( ) = + + =−

 ′ ( ) = − + + =−φ a Aa B Ca1 2 1 3 0/

 ′′ ( ) = + =−φ a Aa Ca1 2 3 2 1 22 6 0/ / /

On solving these three equations for A, B, and C, we have

 A a B C
a

= = = −3
8

3
4

1
8

, and

On using these values in Eq. (3.23), we get following iteration function

 x Ax Bx Cx a x x
a

xn n n n n n n+
− −= + + = + −1

1 3 1 33
8

3
4

1
8

 (3.24)

This iteration function converges to ξ = a . Since ′ ( ) = ′′ ( ) =φ φa a1 2 1 2 0/ / " , so according to 
Eq. (3.22), the sequence (3.24) has cubic convergence.

The iteration formula (3.24) for the value of 40  is given by

 x x x xn n n n+
−= + −1

1 3120
8

3
4

1
320

On using the initial approximation, x0 6= , we get following iterations 

 
x x x x

x
x

1 0
1

0 0
3

2

3

120
8

3
4

1
320

6 325000

6 324555
6 324555

= + − =

=
=

− .

.

.

It provides the value of 40  correct up to five decimal places only in two iterations.

3.9.3 Order of Convergence for Newton–Raphson Method 
Consider the Newton–Raphson method (3.4) converges to a root ξ  of the equation,  
f(x) = 0. Let ε ξn nx= −  be the error in nth approximation, xn.

x x
f x
f xn n

n

n
+ = −

′1

( )
( )

ξ ε ξ ε
ξ ε
ξ ε

− = − −
−

′ −+n n
n

n

f
f1

( )
( )
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On using Taylor Series expansion of the function f(x) about the point x = ξ , we have

ε ε
ξ ε ξ

ε
ξ

ε
ξ

ξ ε
n n

n
n n

n

f f f f

f
+ = +

− ′ + ′′ − ′′′ + ⋅⋅⋅

′ − ′
1

2 3

2 3
( ) ( )

!
( )

!
( )

( ) ′′ + ′′′ − + ⋅⋅⋅f f fn n iv( )
!

( )
!

( )ξ
ε

ξ
ε

ξ
2 3

2 3

 (3.25)

Since ξ  is the exact root ⇒ =f ( )ξ 0

Let ξ  be simple root (i.e., multiplicity one), then ′ ≠f ( )ξ 0. On dividing the numerator and 
denominator in Eq. (3.25) with ′f ( )ξ , we get

ε ε
ε

ε ξ
ξ

ε ξ
ξ

ε
n n

n
n n

n

f
f

f
f

f+ = +
− + ′′

′
− ′′′

′
+ ⋅⋅⋅

− ′′1

2 3

2 3

1

!
( )
( ) !

( )
( )

(ξξ
ξ

ε ξ
ξ

ε ξ
ξ

)
( ) !

( )
( ) !

( )
( )′

− ′′′
′

+
′

− ⋅⋅⋅




f

f
f

f
f

n n
iv2 3

2 3

ε ε ε
ε ξ

ξ
ε ξ

ξn n n
n nf

f
f
f+ = + − + ′′

′
− ′′′

′
+ ⋅⋅⋅









 −1

2 3

2 3
1

!
( )
( ) !

( )
( )

εε ξ
ξ

ε ξ
ξ

ε ξ
ξn

n n
ivf

f
f
f

f
f

′′
′

− ′′′
′

+
′

− ⋅⋅⋅






( )
( ) !

( )
( ) !

( )
( )

2 3

2 3 



















−

z
  

1

 (3.26)

Let  z f
f

f
f

f
fn

n n
iv

= ′′
′

− ′′′
′

+
′

− ⋅⋅⋅ε ξ
ξ

ε ξ
ξ

ε ξ
ξ

( )
( ) !

( )
( ) !

( )
( )

2 3

2 3

Since εn is the error term and as lim
n n→∞

→ε 0, so we have z<<1

On using the expansion ( )1 11 2− = + + + ⋅⋅⋅−z z z , for z < 1 in the Eq. (3.26), we obtain 

ε ε ε
ε ξ

ξ
ε ξ

ξn n n
n nf

f
f
f+ = + − + ′′

′
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′
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ε
ε ξ

ξ
εn

n
n

f
f

O+ = − ′′
′

+1

2
3

2
( )
( )

( )  (3.27)

⇒ = ′′
′→∞

+lim ( )
( )n

n

n

f
f

ε

ε
ξ
ξ

1
2

1
2

 (3.28)

The equations (3.28) and (3.15) imply that, the order of convergence of Newton–Raphson 
method is 2 (quadratic convergence). 

Note: We assume that ξ  is a simple root (i.e., multiplicity one, then ′ ≠f ( )ξ 0 ) of the 
equation f(x) = 0. For example, consider the equation f x x x x x( ) ( )( )= − + = − − =2 3 2 1 2 0.  
So, x=1 is a simple root of this equation, as f ( )1 0= , but ′ ≠f ( )1 0. In case of multiple root 
ξ  of order (or multiplicity) m, we have

′ = ′′ = ⋅⋅⋅ = ≠−f f f fm m( ) ( ) ( ) ( )ξ ξ ξ ξ1 0 0and

For example, x = 1 is root of order two for the equation

f x x x x x x( ) ( ) ( )= − − + = − + =3 2 21 1 1 0

where f f f( ) ( ) ( )1 1 0 1 0= ′ = ′′ ≠and

In next section, we will prove that the order of convergence of Newton–Raphson method 
for the multiple roots is one. So, the modified Newton–Raphson method will be introduced 
in next section, which has quadratic convergence for the multiple roots. 

Order of Convergence for Newton–Raphson Method (Multiple Root)
In the case of multiple roots of order m, the Newton–Raphson method has convergence as 
follows. Continuing with equation (3.25), we have

ε ε
ξ ε ξ

ε
ξ

ε
ξ

ξ ε
n n

n
n n

n

f f f f

f
+ = +

− ′ + ′′ − ′′′ + ⋅⋅⋅

′ − ′
1

2 3

2 3
( ) ( )

!
( )

!
( )

( ) ′′ + ′′′ − + ⋅⋅⋅f f fn n iv( )
!

( )
!

( )ξ
ε

ξ
ε

ξ
2 3

2 3

Consider the equation f x( ) = 0  has multiple root ξ of order m, then 

′ = ′′ = ⋅⋅⋅ =−f f f m( ) ( ) ( )ξ ξ ξ1 0  and f m( )ξ ≠ 0
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So, Eq. (3.25) reduces to the following equation

ε ε
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On dividing the numerator and denominator by ( )
( )!
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1 1m
n
m

m

m
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 (3.29)

On using the expansion, ( )1 11 2− = + + + ⋅⋅⋅−z z z , for z < 1, the expression (3.29) can be 
rewritten as
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 (3.30)

So the order of convergence of Newton–Raphson method for multiple roots is linear (1). 
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94 Numerical Methods

Modified (or) Generalized Newton–Raphson Method

It is clear from the previous expressions that the term εn m
1 1−





 in Eq. (3.30) vanishes if we 

multiply the term 
f x
f x

( )
( )′  in Newton–Raphson formula with multiplicity m. It will increase 

the order of convergence from linear (1) to quadratic (2). Therefore, the Newton–Raphson 
method for multiple roots has been modified as follows 

x x m
f x
f xn n

n

n
+ = −

′1

( )
( )

 (3.31)

It is known as modified (or) generalized Newton–Raphson method. Proceeding in a similar 
manner, it is easy to see that, the modified Newton–Raphson method (3.31) has second 
order convergence for multiple roots of order m. 

In case of modified Newton–Raphson method, the Eq. (3.30) reduced to the following 
equation

ε
ε ξ

ξ
εn

n
m

m nm m
f
f

O+

+

= −
+

+1

2 1
3

1( )
( )

( )
( )

( )

( )

Note that the modified Newton–Raphson method is simply Newton–Raphson method for 
simple root (m = 1).

Solve the equation x x x3 2642 3 538959 3 490082 0− − + =. . .  with simple and modified 
Newton–Raphson methods to calculate the double root of the equation. Start with an 
initial approximation x0 1= .

Ans. We have following functions for given equation

 f x x x x( ) . . .= − − +3 2642 3 538959 3 490082

 and ′ = − −f x x x( ) . .3 1 284 3 5389592

Newton–Raphson method (3.4) will produce the following successive approximations to 
the root with an initial approximation, x0 1= . 

3.25Example
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 x x
f x
f x1 0

0

0

= −
′

=
( )
( )

1.169572  x2 1 247139= .  

 x3 1 284494= .     x4 1 302849= .

 x5 1 311950= .     x6 1 316481= .

 x7 1 318742= .     x8 1 319871= .

 x9 1 320436= .     x10 1 320718= .

 x11 1 320859= .     x12 1 320930= .

 x13 1 320965= .     x14 1 320997= .

Since the root is a double root (m = 2), therefore the modified Newton–Raphson method 
(3.31) is as follows

 x x
f x
f xn n

n

n
+ = −

′1 2
( )
( )

The modified Newton–Raphson method will produce the following successive 
approximations with an initial approximation x0 1= .

 x x
f x
f x1 0

0

0

2= −
′

=
( )
( )

1.339144

 x2 1 321049= .

 x3 1 321000= .

 x4 1 321000= .

Note that the Newton–Raphson method requires around 15 iterations for the accuracy of 
five decimal places, while only three iterations are sufficient for the same accuracy in the 
case of modified Newton–Raphson method. 

We can use the modified Newton–Raphson method if the multiplicity m of the root is known 
in advance. But, in general, the modified Newton–Raphson method is not applicable as we 
do not have multiplicity m. So, the accelerated Newton–Raphson method will be helpful in 
this case.
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Accelerated Newton–Raphson Method
Let the function f(x) have a zero ξ of multiplicity m, then the function ′f x( ) has zero ξ of 

multiplicity m – 1. So, the function g x f x
f x

( ) ( )
( )

=
′

 has a zero ξ of multiplicity 1, i.e., simple 

zero. So, the Newton–Raphson method will be applicable for the function g(x) to compute 
this zero, i.e., 

 x x
g x
g xn n

n

n
+ = −

′1

( )
( )

 

where g x f x
f x

( ) ( )
( )

=
′

 (3.32)

This method is known as the accelerated Newton–Raphson method. 

Solve the equation x x x3 2642 3 538959 3 490082 0− − + =. . .  with accelerated Newton–
Raphson method. Start with initial approximation 1.

 f x x x x( ) . . .= − − +3 2642 3 538959 3 490082

 ′ = − −f x x x( ) . .3 1 284 3 5389592

 g x
f x
f x

x x x
x x

( )
( )
( )

. . .
. .

=
′

= − − +
− −

3 2

2

642 3 538959 3 490082
3 1 284 3 5388959

 ′ = −
− − +( ) −( )

−
g x

x x x x

x x
( )

. . . .

.
1

642 3 538959 3 490082 6 1 284

3 1 284

3 2

2 −−( )3 538959
2

.

The accelerated Newton–Raphson method (3.32) is given by

 x x
g x
g xn n

n

n
+ = −

′1

( )
( )

Let initial approximation be x0 1= , then we get

 x x
g x
g x1 0

0

0

1 302097145

= −
′

=

( )
( )

.

3.26Example
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3.9.4 Order of Convergence for Secant Method 
Consider the Secant method converges to a root ξ of the equation, f x( ) = 0. Let ε ξn nx= −  
be the error in nth approximation, xn. Let xn−1  and xn  be two successive approximations, 
then the next approximation xn+1  with Secant method (3.7) is given by
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1

 ε ε
ε ε

ξ ε ξ ε
ξ εn n

n n

n n
nf f

f+
−

−

= −
−

−( )− −( ) −( )1
1

1

On expanding f(x) around the root x = ξ with the help of Taylor series, we get

ε ε
ε ε ξ ε ξ

ε
ξ

ξ ε
n n

n n n
n

n

f f f

f
+

−

= −
−( ) − ′ + ′′ − ⋅⋅⋅







−
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!
( ) ( ) ( )
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( )ξ

ε
ξ ξ ε ξ

ε
ξ
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1
1

2

2 2
⋅⋅⋅⋅







Since ξ is the exact root ⇒ =f ( )ξ 0, hence we have 

ε ε
ε ε ε ξ

ε
ξ

ε ξ
εn n

n n n
n

n
n

f f

f
+

−

= −
−( ) − ′ + ′′ − ⋅⋅⋅







− ′ +
1

1

2

2
( )

!
( )

( )
22

1
1

2

2 2!
( ) ( )

!
( )′′ − ⋅⋅⋅







− − ′ + ′′ − ⋅⋅⋅




−

−f f fn
nξ ε ξ

ε
ξ

 
x x

g x
g x2 1

1

1

1 320945602

= −
′

=

( )
( )

.

 x x
g x
g x3 2

2

2

1 320991553

= −
′

=

( )
( )

.

 x4 1 321000= .
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98 Numerical Methods

Assuming ξ is simple root, then ′ ≠f ( )ξ 0. On dividing the numerator and denominator 
with ′f ( )ξ , we get

ε ε
ε ε ε

ε ξ
ξ

ε
εn n

n n n
n

n
n

f
f

+

−

= −
−( ) − + ′′

′
− ⋅⋅⋅







− + ′′1
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2
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ε
ε ξ
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− − + ′′
′
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−

−
1

1
2

2

On simplifying the formula in denominator, we have

ε ε
ε ε ε

ε ξ
ξ

ε ε
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n n n
n
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f
f
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−

−
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−( ) − + ′′
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1

on using the expansion (1–z)–1 = 1 + z + z2 + ..., we get

ε ε ε
ε ξ

ξ
ε ε ξ
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f
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2 1

2ε ε ξ
ξ

εn n n
f
f

O−( ) ′′
′

+( )
( )

( )  (3.33)

This expression involves both εn−1  and εn]. To simplify the expression in terms of εn  only, 
let us assume that the order of convergence for Secant method is p, and asymptotic error 
constant is a. We have

 ε εn n
pa+ = ( )1  (3.34)
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and ε εn n
pa= ( )−1

 ⇒ = 



 ( )−ε εn

p

n
p

a1

1
11 /

/

Using, this value of εn−1  in the Eq. (3.33), we have

ε ε ε ξ
ξ

ε

ε

n n n
p

p

n

n

a
f
f

O+

+

= − ( )( )





′′
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+

= − ( )

1
1

1
2

1

1
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1

1
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/ ( )
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( )

11
1

21/
/ ( )

( )
( )p

p
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f

O( )( )





′′
′

+ξ
ξ

ε  (3.35)

On comparing the above expression with Eq. (3.34), we have

 
a

a
f
f

p

= − 





′′
′

1
2

1 1/ ( )
( )
ξ
ξ  

⇒ = ′′
′

+
a f

f

p
p( )

( )
ξ
ξ2

1

 p p= +1 1( / )  ⇒ = ±( )p 1
2

1 5  

On neglecting the –ve value of p, we have 

p = 1 618.
Using these two relations, we have

ε ξ
ξ

ε εn n n
f
f

O+ = ′′
′

+1

0 618
1 618 21

2
( )
( )

( )
.

.
 (3.36)

Therefore, the order of convergence for Secant method is 1.618 (super-linear).

3.9.5 Order of Convergence for Regula Falsi Method 
In Regula Falsi method, there is no general formula for next iteration in terms of previous 
iterations. So, we cannot obtain the order of convergence in general. But if the function 
f x( )  is convex in the interval ( , )x x0 1  containing a root, in that case, one iteration point 

either x0  or x1  is always fixed, and other varies with the approximations (see Fig. 3.20 for 
graphical interpretation). A function f x( )  is said to be convex if the chord, joining any two 
points of the curve, always lies above the curve.
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x2

ξ 

{x1, f(x1)}

f(x)

x

{x0, f(x0)}

x3

Fig. 3.20 Order of convergence of Regula Falsi method if function f(x) is convex

Let us assume that point x0 is fixed; then the function f(x) is approximated by the straight 
line joining the points x f x0 0, ( )( )  and x f x nn n, ( ) , , , ,( ) = ⋅⋅⋅1 2 3 . Proceeding in a similar 
way as in Secant method, our equation for the order of convergence is as follows

ε ε ξ
ξ

εn n
f
f+ = − ′′

′




1 0

1
2

( )
( )

Since the error in first approximation i.e., ε0 is fixed, so we have 

ε εn nC+ =1 , where C f
f

= − ′′
′







1
2 0ε ξ

ξ
( )
( )

This implies that the Regula Falsi method has linear convergence. 
If the function f(x) is not a convex function, then the Regula Falsi method may have a 

higher order of convergence, but at most 1.618 as that of Secant method. 

So far, we have discussed the methods in which the approximating curves are straight lines 
(tangent in Newton–Raphson method and chord joining two points in Regula Falsi and 
Secant methods). These methods are also known as linear interpolation methods. Now, we 
will discuss the methods in which the approximating curves are second order polynomials 
instead of straight line. The Muller method and Chebyshev method are two such methods, 
we will discuss these methods in sections 3.10 and 3.11 respectively. The Aitken method 
will be discussed in Section 3.12. It is an extension of the Fixed-Point method with higher 
rate of convergence 
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Nonlinear Equations 101

3.10 Muller Method 

In this method, we will approximate the function y = f (x) by a second-degree curve p2(x) in 
the neighborhood of the root.

Fig. 3.21 Graphical representation of Muller method

x3

(x2, f(x2))

(x1, f(x1))
(x0, f(x0))

x2

y = f(x)

y = p2(x)

y = f(x)

ξ x1 x0

y

x

Let x xi i− −2 1,  and xi  be the approximations to a root of the equation, f x( ) = 0 , then 

y f x y f xi i i i− − − −= =2 2 1 1( ), ( )  and y f xi i= ( )

Let the approximating curve be a quadratic polynomial of the following form

y A x x B x x Ci i= − + − +( ) ( )2  (3.34)

This parabola passes through the points ( , ), ( , )x y x yi i i i− − − −2 2 1 1  and ( , )x yi i . So, we must 
have

y A x x B x x Ci i i i i− − −= − + − +2 2
2

2( ) ( )

y A x x B x x Ci i i i i− − −= − + − +1 1
2

1( ) ( )

y Ci =  (3.35)
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102 Numerical Methods

Solving Eqs. (3.35) for the constants A, B and C, we have

A
x x y y x x y y

x x x x
i i i i i i i i

i i i i

=
− − − − −

− −
− − − −

− − −

( )( ) ( )( )
( )(

1 2 2 1

1 1 2 ))( )x xi i− −2

B
x x y y x x y y

x x x x
i i i i i i i i

i i i i

=
− − − − −

− −
− − − −

− −

( ) ( ) ( ) ( )
( )(

2
2

1 1
2

2

1 1 −− − −2 2)( )x xi i

C yi=  (3.36)

We can obtain the quadratic polynomial (3.34) by using the values of constants A, B and C 
from Eqs. (3.36). The approximation to the root of equation, f x( ) = 0  is given by the root 
of the following quadratic equation

A x x B x x Ci i( ) ( )− + − + =2 0

Let xi+1  be the next approximation to the root, i.e.

x x B B AC
Ai i+ − = − ± −

1

2 4
2

x x C

B B AC
i i+ = + −

± −
1 2

2

4
 (3.37)

Note that the sign in the denominator of the Eq. (3.37) is chosen, so that the denominator 
becomes largest in the magnitude. It is to reduce the loss of significance in the approximation 
xi+1  (as discussed in Chapter 2). The method can be used to obtain the complex root, when 

B AC2 4 0− <

Compute the approximate root of the equation x x3 4 9 0− − =  correct to six decimal 
places. Use Muller method with initial approximations 2, 3 and 4.

Ans. Let x x0 12 3= =,  and x2 4=  be the three initial approximations for the root of the 
equation

 y f x x x= = − − =( ) 3 4 9 0

This implies

 x x x
y y y

0 1 2

0 1 2

2 3 4
9 6 39

= = =
= − = =

3.27Example
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Let y A x x B x x C= − + − +( ) ( )2
2

2  be the parabola passing through the points 

( , ), ( , )x y x y0 0 1 1  and ( , )x y2 2 . We have

 y A x x B x x C0 0 2
2

0 2= − + − +( ) ( )

 y A x x B x x C1 1 2
2

1 2= − + − +( ) ( )

 y C2 =

Using the values of ( , ), ( , )x y x y0 0 1 1  and ( , )x y2 2 , and solving these equations for 
different constants, we have

 C = 39

 − = − +9 4 2 39A B

 6 39= − +A B    ⇒ = = =A B C9 42 39, ,

Let x3 be the next approximation. From Eq. (3.37), we have

 x x C

B B AC
3 2 2 2

2

4
4 2 39

42 42 4 9 39
2 720759= + −

+ −
= + −

+ ( ) −
=( )

( )( )
.

Note that the +ve sign in the denominator as the value of B is +ve.

On using the following values of ( , ),( , )x y x y1 1 2 2  and ( , )x y3 3

 

x x x
y y y

1 2 3

1 2 3

3 4 2 720759
6 39 0 257463

= = =
= = =

.
.

the next approximation of the Muller method (3.37) is as follows

 x4 2 706220= .

Similarly, we can obtain following approximations

 x5 = 2.706528

 x6 = 2.706528
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104 Numerical Methods

Perform three iterations of the Muller method to compute the approximate root of the 
equation, cos x x− + =5 1 0 . Assume the first three initial approximations for the root are 
0, 1 and 2.

Ans. The values of function y f x x x= = − + =( ) cos 5 1 0 at initial approximations are 
given by 

 x x x
y y y

0 1 2

0 1 2

0 1 2
2 3 45970 9 41615

= = =
= = − = −. .

Let y A x x B x x C= − + − +( ) ( )2
2

2  be the approximating curve, so we get

 y A x x B x x C0 0 2
2

0 2= − + − +( ) ( )

 y A x x B x x C1 1 2
2

1 2= − + − +( ) ( )

 y C2 =

On using the values of ( , ), ( , )x y x y0 0 1 1  and ( , )x y2 2  in above equations, and further 
solving these equations, we obtain

 A B C      = − = − = −0 248376 6 204825 9 416147. , . , .

Using the –ve sign in the denominator (as the value of B is –ve), we get following iteration 
of Muller method (3.37)

 x x C

B B AC
3 2 2

2

4
0 377006= + −

− −
= .

The new values of A, B, and C with points ( , ), ( , )x y x y1 1 2 2  and ( , )x y3 3  are as follows

  A B C= − = − =0 204124 5 497988 0 044743. , . , .   

On using these values, we can easily compute the value of x4 = 0.385141

Similarly, the results for the next iteration are as follows 

  A B C= − = − =0 283223 5 374220 0 001039. , . , .     

 x5 = 0.385335

3.28Example
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Obtain the root of the equation x x− =tan( ) 0  corrects up to five decimal places. Use 
Muller method and start with initial approximations 4, 4.5 and 5. 

Ans. The first three initial approximations for the root are x0 4= , x1 4 5= .  and x2 5= . 
Using these initial approximations, we have the following iterations of Muller method 
(3.37)

 A B C= = =22 994715 28 533052 8 380515. , . , .     

 x3 = 4.522664

 A B C= = − = −86 288124 22 197088 0 684731. , . , .    

 x4 4 494828= .

 A B C= = − = −84 237091 25 907677 0 028839. , . , .    

 x5 4 493719= .

 A B C= − = − = −110 777313 20 233555 0 006261. , . , .    

 x6 4 493409= .

 A B C= − = − =95 975304 20 190479 0 000006. , . , .  

 x7 4 493410= .

3.29Example

Perform five iterations of the Muller method to compute the approximate root of the 
equation, x x x x4 3 25 6 3 2 0− + − + = . Use initial approximations 0, 1 and 2. 

Ans. The first three initial approximations for the root are x0 0= , x1 1=  and x2 2= . 
Using these initial approximations, we have following iterations (3.37)

 A B C= − = − = −2 000000 7 000000 4 000000. , . , .    

 x3 1 280776= .

3.30Example
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106 Numerical Methods

 A B C= − = − =2 921165 3 719223 0 186021. , . , .    

 x4 1 328968= .

 A B C= − = − =2 720578 4 125710 0 006487. , . , .    

 x5 1 327394= .

 A B C= − = − =3 350903 4 145539 0 000046. , . , .    

 x6 1 327406= .

 A B C= − = − =3 338567 4 145632 0 000000. , . , .      

 x7 1 327406= .

It is easy to see that this method extracts a quadratic factor. So we can compute two roots 
simultaneously. This method can also be used to compute the complex roots of the nonlinear 
equation.

3.11 Chebyshev Method 

In this method, we approximate the function with the following second degree polynomial

f x Ax Bx C( ) = + +2  (3.38)

On differentiating this equation twice, we get

′ = +f x Ax B( ) 2

′′ =f x A( ) 2

Let xn  be the nth approximation to root, then we have

f x Ax Bx Cn n n( ) = + +2  (3.39)

′ = +f x Ax Bn n( ) 2  (3.40)

′′ =f x An( ) 2  (3.41)
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Solving these three Eqs. (3.39–3.41) for the constants A, B and C, we get

A
f xn=

′′( )
2

B f x x f xn n n= ′ − ′′( ) ( )

C f x
x f x

x f xn
n n

n n= +
′′

− ′( )
( )

( )
2

2

Using these values of the constants A, B and C in Eq. (3.38), we get

f x
f x

x f x x f x x f x
x f x

x fn
n n n n

n n
n( )

( )
( ) ( ) ( )

( )
=

′′
+ ′ − ′′( ) + +

′′
− ′

2 2
2

2

(( )xn

Let the next approximation x xn= +1  be the root, then f xn( )+ =1 0 . So, we have

f x
f x

x f x x f x x f x
x f

n
n

n n n n n n
n( )

( )
( ) ( ) ( )

(
+ + +=

′′
+ ′ − ′′( ) + +

′′
1 1

2
1

2

2
xx

x f xn
n n

)
( )

2
0− ′ =

⇒ ′′ −( ) + −( ) ′ + =+ +f x x x x x f x f xn n n n n n n( ) ( ) ( )1

2

12 2 0

This equation can be rearranged to the following relation

x x
f x
f x

x x
f x
f xn n

n

n
n n

n

n
+ +− =

− ′′
′

−( ) −
′1 1

2

2
( )
( )

( )
( )

On using Newton–Raphson method x x
f x
f xn n

n

n
+ − = −

′




1

( )
( )

 in R.H.S. of the above equation, 

we get

x x
f x
f x

f x
f x

f x
f xn n

n

n

n

n

n

n
+ − =

− ′′
′ ′







−
′1

2

2
( )
( )

( )
( )

( )
( )

Finally, we have following Chebyshev formula

x x
f x f x

f x

f x
f xn n

n n

n

n

n
+ = −

( ) ′′

′( )
−

′1

2

32

( ) ( )

( )

( )
( )

 (3.42)
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108 Numerical Methods

Compute the root of the equation x e x− =− 0  correct to six decimal places. Use Chebyshev 
method with initial approximation 0.5. 

Ans. We have 

f x x e f x e f x ex x x( ) ( ) ( )= − ′ = + ′′ = −− − −1 x0 0 5= .

Starting with initial approximation, x0 0 5= . , the Chebyshev method (3.42) gives

x x
f x f x

f x

f x
f x

x
x e

n n
n n

n

n

n
n

n
xn

+

−

= −
( ) ′′

′( )
−

′
= −

−( )
1

2

3
2

( ) ( )

( )

( )
( )

22

3
2 1 1

−( )
+( )

−
−

+

−

−

−

−

e

e

x e
e

x

x

n
x

x

n

n

n

n

 

⇒ = −
−( ) −( )

+( )
−

−
+

= −
−− −

−

−

−x x
x e e

e

x e
e

ex x

x

x

x1 0
0

2

3
0

0 0

0

0

02 1 1
0 5

0 5
.

. −− −

−

−

−

( ) −( )
+( )

− −
+

=

0 5 2 0 5

0 5 3

0 5

0 5
2 1

0 5
1

0 567141

. .

.

.

.

.

.

e

e

e
e

Similarly, next two iterations can be computed and given by

 x2 0 567143= .

 x3 0 567143= .

3.31Example

Use Chebyshev method to calculate the root of the equation, x x3 4 9 0− − = . Perform five 
iterations with an initial approximation, x0 2= .

Ans. We have 

 f x x x( ) = − −3 4 9   ′ = −f x x( ) 3 42   ′′ =f x x( ) 6

Chebyshev method (3.42) with initial approximation x0 2=  produces the following result 

 
x x

f x f x

f x

f x
f x1 0

0
2

0

0
3

0

02
= −

( ) ′′

′( )
−

′
=

( ) ( )

( )

( )
( )

2.175781

3.32Example
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Similarly, other approximations are as follows

 x2 2 564529= .

 x3 2 705266= .

 x4 2 706528= .

 x5 2 706528= .

Obtain the root of the equation, cos x x− + =5 1 0 , correct to six decimal places with the 
aid of Chebyshev method. 

Ans. Starting with initial approximation, x0 0= , we have following iterations for 
Chebyshev method (3.42)

 x1 = 0.384000

 x2 = 0.385335

 x3 = 0.385335

3.33Example

Perform four iterations of Chebyshev method with initial approximations 4 and 4.5 for 
the equation, x x− =tan( ) 0. Conclude the results. 

Ans. The four iterations of Chebyshev method (3.42) with initial approximation x0 4=  
are given by

 x1 2 966685= − .

 x2 = −59233.894531

 x3 = −4741133824.000000

 x4 = −6709247677974358000000.000000

3.34Example
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110 Numerical Methods

3.12 Aitken Δ2 Process: Acceleration of Convergence of  
Fixed-Point Method

The Fixed-Point method has linear convergence. It can be improved with the Aitken method. 
Assume the function f x x x( ) ( )= −φ . Let ξ be the exact root of the equation f x( ) = 0  (or) ξ 
be the fixed point of the function φ( )x .

⇒ =ξ φ ξ( )  (3.43)

Let xn, xn+1 and xn+2 be three consecutive iterations of the Fixed-Point method, i.e.,

x xn n+ =1 φ( ) (3.44)

x xn n+ +=2 1φ( ) (3.45)

With the help of Lagrange mean value theorem, we have

φ φ ξ φ ξ( ) ( ) ( )( )x c xn n+ +− = ′ −1 1 1  for some c xn1 1∈ +( , )ξ  or ( , )ξ xn+1  (3.46)

On using Eqs. (3.43), (3.45) and (3.46), we have

x x c xn n n+ + +− = − = ′ −2 1 1 1ξ φ φ ξ φ ξ( ) ( ) ( )( ) (3.47)

It is easy to see that method diverges for this initial approximation. 

Starting with initial approximation, x0 4 5= . , we have

 x x
f x f x

f x

f x
f x1 0

0
2

0

0
3

0

02
= −

( ) ′′

′( )
−

′
= −

( ) ( )

( )

( )
( )

4.493416

 x2 = 4.493410

 x3 = 4.493410

For initial approximation, x0 4 5= . , the method is converging towards the root 4.493410. 

Note that the Chebyshev method may diverge like Newton–Raphson method. So it is 
recommended to start with an approximation that is close to the root.
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Proceeding in a similar manner, we have

x x c xn n n+ − = − = ′ −1 2ξ φ φ ξ φ ξ( ) ( ) ( )( ) for some c xn2 ∈( , )ξ  or ( , )ξ xn  (3.48)

As lim n → ∞ , we have xn → ξ . So, with some error, we can assume that c c c1 2= = . On 
eliminating ′φ ( )c  from Eqs. (3.47) and (3.48), we have

 x x xn n n+ +−( ) −( ) = −( )2 1
2ξ ξ ξ

On solving this equation for ξ, we get

ξ =
−

− +
= −

−
− +

+ +

+ +

+

+ +

x x x
x x x

x
x x

x x x
n n n

n n n
n

n n

n n n

2 1
2

2 1

1
2

2 12 2
( )

Since the error is introduced with assumption, hence we can take ξ as the next approximation 
x for the Aitken method

 x x
x
xn
n

n

= −
∆
∆

( )2

2
 (3.49)

where ∆ = −+x x xn n n1  and ∆ = − ++ +
2

2 12x x x xn n n n  are first and second forward differences 
respectively.

Compute the root of the equation x e x− =− 0  correct to 5 decimal places using Aitken 
process.

Ans. Since f ( )0 1= −  and f ( ) .1 0 631= , so the root of the equation lies in the interval  
(0, 1). The iteration function φ( )x e x= − satisfies both the convergence conditions, 
therefore, we can continue with any initial approximation in the interval (0, 1).

First Iteration of Aitken process

Let x0 0 5= . . We compute x1 and x2 from the Fixed-Point method as follows 

 x x e1 0
0 5 0 606531= = =−φ( ) .( . )

 x x e2 1
0 606531 0 545239= = =−φ( ) .( . )

3.35Example

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.004
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:32:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.004
https://www.cambridge.org/core


112 Numerical Methods

The Aitken process (3.49) gives the following approximation to the root

 x x
x x

x x x
= −

−
− +0

1 0
2

2 1 02
( )

 x = − −
− +

=0 5 0 606531 0 5
2 0 606531 0 5

2

. ( . . )
( . ) .0.545239

0.567624

Second Iteration of Aitken process

Let x0 = 0.567624,

 x x e1 0
0 567624= = =−φ( ) ( . ) 0.566871

 x x e2 1= = =−φ( ) ( )0.566871 0.567298

 x x
x x

x x x
= −

−
− +0

1 0
2

2 1 02
( )

 x = − −
− +

0.567624 0.566871 0.567624
0.567298 0.566871 0.5676

( )
( )

2

2 224
0.567143=

Third Iteration of Aitken process

Proceeding in a similar way with x0 = 0.567143, we have

 x = 0.567143

The root corrects up to 5 decimal places.

Perform two iterations of Aitken process for the equation x x3 4 9 0− − =  with iteration 

function φ( )x
x

=
−( )3 9

4
 and initial approximation 2.

Ans. First Iteration of Aitken process

 x0 2=

 x x1 0

32 9

4
0 25= =

−( )
= −φ( )

( )
.

 x x2 1

30 25 9

4
2 253906= =

− −( )
= −φ( )

( . )
.

3.36Example
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Using Aitken process (3.49), we get

x x
x x

x x x
= −

−
− +0

1 0
2

2 1 02
( )

x = − − −
− − − +

= −2 0 25 2
2 253906 2 0 25 2

2( . )
. ( . )

18.571428

Second Iteration of Aitken process

x0 = −18.571428

x
x

1

2

1603 561890
1030854080 000000

= −
= −

.
.

It shows the divergence of the method. 

Note: We can use the Aitken process with the iterative function φ( )x x x= − − −3 20 9
16

 to 

get the convergent result. 

Compute the root of the equation cos x x− + =5 1 0  correct to 5 decimal places with 
Aitken process. 

Ans. Let us consider the iterative function φ( )
cos

x
x

=
+( )1

5
. The root of this equation 

lies in the interval (0, 1). 

First Iteration of Aitken process:

Let the initial approximation be x0 0 5= . .

x x1 0

0 5 1
5

0 375517= =
+( )

=φ( )
cos( . )

.

x x2 1

0 375517 1
5

0 386064= =
+( )

=φ( )
cos( . )

.

x x
x x

x x x
= −

−
− +

=0
1 0

2

2 1 02
( )

0.385240

3.37Example
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114 Numerical Methods

Second Iteration of Aitken process

x0 = 0.385240

x1 0 385342= .

x2 0 385334= .

x = 0.385335

Use Aitken process to compute the first positive root of the equation x x− =tan( ) 0 . Start 
with initial approximation 4.5. 

Ans. Let the iteration function be φ π( ) tan ( )x x= +−1 . Starting with initial approximation 
x0 4 5= . , we have 

x x1 0
1 4 5 3 14159265= = + =−φ( ) tan ( . ) . 4.493720

x x2 1
1 4 493720 3 14159265= = + =−φ( ) tan ( . ) . 4.493424

On using Aitken process (3.49), we have following approximation 

x = 4 493410.

3.38Example

Consider the sequences xn{ } and xn{ } generated by the Fixed-Point method and Aitken

process, respectively. Then, the following theorem provides the idea about the order of 
convergence of Aitken process. 

Theorem 3.6

Consider a sequence xn{ }  converges linearly to the limit point ξ  and that

lim
n

n

n

x
x→∞

+ −
−

<1 1
ξ

ξ

Then the Aitken sequence xn{ } converges more rapidly than xn{ }, such that

lim
n

n

n

x

x→∞

−

−
=

 ξ

ξ
0
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Table 3.3 Formulation of Methods

Method
Formulation (Next Iteration x

n+1
) for the

roots of the equation f(x) = 0
Next Approximation

(Graphical Interpretation)

Bisection
xn+1  = 

a bn n+
2

 (interval ( , )a bn n  contains the 

root)

Mid-point of last two 
approximations (such that root lies 
in the interval)

Regula
Falsi xn+1  = 

f b a f a b

f b f a
n n n n

n n

( ) ( )
( ) ( )

−
−

(interval ( , )a bn n  contains the root)

Intersection of the chord joining 
last two approximations and the 
x-axis (such that root lies between 
these two approximations)

Secant
x

f x x f x x

f x f xn
n n n n

n n
+

− −

−

=
−

−1
1 1

1

( ) ( )
( ) ( )

Intersection of the chord joining 
last two approximations and the 
x-axis 

Newton–
Raphson x x

f x

f xn n
n

n
+ = −

′1

( )
( )

Intersection of the tangent at last 
approximation and the x-axis

Fixed-Point x xn n+ =1 φ( )  ( f x( ) = 0  is rewritten in the form 

x x= φ( ) )

Value of the function φ( )x  at the 
point xn

Muller 
x x

C

B B AC
n n+ = +

−
± −

1 2

2

4
, where

A
x x y y x x y y

x x x x
n n n n n n n n

n n n n

=
− − − − −

− −
− − − −

− − −

( )( ) ( )( )
( )(

1 2 2 1

1 1 2))( )x xn n− −2

B
x x y y x x y y

x x x x
n n n n n n n n

n n n n

=
− − − − −

− −
− − − −

− −

( ) ( ) ( ) ( )
( )(

2
2

1 1
2

2

1 1 −− − −2 2)( )x xn n

C yn=

Intersection of the interpolating 
quadratic polynomial and the x-axis

Chebyshev
x x

f x f x

f x

f x

f xn n
n n

n

n

n
+ = −

( ) ′′
′( )

−
′1

2

3
2

( ) ( )

( )

( )
( )

Intersection of the quadratic 
interpolation of the inverse 
function of f x( )  and the x-axis

Aitken Δ2 
Process

x xn n+ =1 φ( )

x xn n+ +=2 1φ( )

x x
x x

x x xn n
n n

n n n
+

+

+ +

= −
−

− +3
1

2

2 12
( )

Intersection of the extrapolating 
polynomial for the last three 
iterations ( xn , xn+1  and xn+2 ) with 
the x-axis 
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Table 3.4 Properties and Convergence of Methods 

Bisection Regula Falsi Fixed-Point Secant N. R. Muller Chebyshev Aitken ∆2

Type Bracketing Bracketing Open End Open End Open End Open End Open End Open End
Number 
of Initial 
Approximations 

2 2 1 2 1 3 1 3

Convergence Always Always --- --- --- --- --- ---

Order of 
Convergence

Linear (1) Linear (1) Linear (1) Super-linear 
(1.618)

Quadratic (2) 1.84 Cubic (3) Linear (1) 
and higher 
than Fixed-
Point method

Programming Easy Easy* Easy Easy* Easy** Moderate Moderate** Moderate

Stopping 
Criterion

In all the iterative methods, stopping criterion is either, last two iterations matches up to desired decimal points, (or) when 
the value of function f(x) is near to zero (whatever we required, say 0.000001, etc.) 

Accuracy Check We can always check our root for correctness by simply putting the value in the equation. For example, we obtain root 
( x = 0.385335 ) of the equation f x x x( ) cos= − + =5 1 0. Now

 f ( ) cos( ) (

.

0.385335 0.385335 0.385335)

.926675 

= − +
= −

5 1

0 926673 1 ++1

= −0 000002.

 Which is nearly equal to zero, hence root obtained is correct.

* Refer point 9 of next section
** Refer point 10 of next section 
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Nonlinear Equations 117

In this chapter, we have discussed various numerical techniques to compute the roots of 
nonlinear equations. Each method has its advantages and disadvantages. Sometimes the 
nature of the problem plays a prominent role in the selection of the numerical techniques. 
Here, we are enlisting a few important characteristics of all these methods.

1. Bisection method has simplest structure and easy to understand. It is surely
convergent if the function f x( ) is continuous in the interval (a, b) and f a f b( ) ( ) < 0 .
To compute the root of a given accuracy, the number of iterations (3.2) are known
in advance, which is not possible in any other method. The major disadvantage of
this method is its slow convergence.

2. Regula Falsi and Secant methods are linear interpolation methods, and generate
iterations in same manner, but Regula Falsi method tests that the successive
iterations always bracket the root. Regula Falsi method is slow to converge as
compared to Secant method, as it converges from one side. Bisection and Regula
Falsi methods have slow convergence, but always converging nature is an important 
criterion for their selection to solve any problem. A major disadvantage for both the 
methods is to compute the interval that contains the root. The open end methods,
like Secant, Newton–Raphson etc., do not require this condition.

3. Regula Falsi method has fast convergence as compared to Bisection method for
most of the problems. But, in certain cases, the Bisection method gives better
results as compared Regula Falsi method. Also, the computational effort for one
iteration of Bisection method is much less than the Regula Falsi method.

4. The flexibility to select iteration function φ( )x  is a major advantage for the fixed
point method. We can select the iteration function φ( )x , which satisfies the
convergence conditions and also has a higher order of convergence. We need to
compute only one function value for the iteration of Fixed-Point method, while
the Secant and Regula Falsi methods require two function values. The convergence
conditions for the Fixed-Point method are much relaxed as compared to Secant and 
Newton–Raphson methods.

5. The orders of convergence for Secant and Newton–Raphson methods are super-
linear (1.618) and quadratic (2), respectively. The Fixed-Point method has linear
rate of convergence.

6. The orders of convergence are very high for Newton–Raphson and Chebyshev
methods, and only few iterations are required for a very high accuracy. But, the
computation of the derivative terms is not possible without symbolic software like
Maple, Mathematica, etc.

7. The divergence occurs frequently in open end methods, such as Secant and Newton–
Raphson methods, so the initial approximation must be sufficiently close to the
exact root for these methods. But, these methods have high rate of convergence.
So, a sufficiently accurate initial approximation can be obtained from Bisection
method, and it can be refined with the help of these methods.

8. Secant and Newton–Raphson methods have problems in obtaining multiple roots.
The modified and accelerated Newton–Raphson methods are recommended for
faster convergence in such cases.

9. The formulae for Secant and Regula Falsi methods have the term f x f xn n( ) ( )− −1  in 
denominator. After some iterations, the difference between two successive iterations 
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118 Numerical Methods

Exercise 3 

1. Compute the point of intersection of the curve sin x  and x 3 1−  with the help of Bisection
method.

Ans. 1.24905

2. a) Use Bisection method to obtain first positive root of the following equation

x x x3 22 16 5 0+ − + =

Ans. (0.328171)
b) Use the Bisection method to find zeroes of the following functions

i) f x x x( ) sin .= − −3 5 3  in the interval (-2, -1) Ans. -1.84330
ii) f x x x( ) ln( )= − 2  in the interval (2, 3) Ans. 2.34575

3. Find the positive root of the equation xe x = 2 , which lies in the interval (0, 1) and correct to five 
decimal places. Use the following methods.

(a) Secant method 
(b) Newton–Raphson method

Ans. 0.8526055

4. Prove that the iteration function x e x= 1
2

2/  is not suitable to compute the root of the equation

e xx − =4 02  in the internal (4, 5). Find appropriate iteration function and use it to compute the root.

Ans. iteration function x x= ln( )4 2 , Root = 4.306585

(xn−1 and xn) is very small. So, we have subtraction of two nearly equal numbers 
( f x f xn n( ) ( )− −1 ) in the denominator. It may lead to overflow in the programming. 

10. The programming of Newton–Raphson and Chebyshev methods require the
computation of derivatives of the function f x( ), which is not possible in general 
programming software like C-programming, Fortran, etc. For this, we have to 
find the derivatives manually and use these as user-defined functions (Refer the 
C-programs). Consider the function f x( ) is not known explicitly, but it is produced 
within the other problem. The computation of derivatives is not possible in such 
cases, so we have to use other methods. For example, the characteristics equation 
is produced in the eigenvalue problem, and we have to compute the roots of this 
equation within the program to compute the eigenvalues. 

11. Muller method has high order of convergence (1.84), and generally gives the root
with any initial approximation. The method can also be used to obtain complex roots. 

12. Aitken process is used to accelerate the convergence of a linearly convergent
sequence. In this chapter, the convergence of Fixed-Point method has been speed 
up with the help of this method. But, Aitken process can also be used with other 
methods. 

13. The computational works, convergence criteria, implementation of algorithm on
computer, and order of convergence are some important factors in selection of an 
iterative procedure to solve a particular problem. 
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Nonlinear Equations 119

5. Write down the iteration formula to calculate a real root of the equation cos x x= −3 1 by the
Fixed-Point method, such that it satisfies the convergence conditions. Also, use it to compute
the root correct to four decimal places.

Ans. 0.6071

6. Use Newton–Raphson method to compute the root of the equation e e x xx x2 2 0− − + =sin( )  in
the interval (– 2, – 1), correct to four decimal places. (-1.4148)

7. Find the smallest root of the equation e xx− = 2cos  using Newton–Raphson method.

Ans. 1.453674

8. Use the Newton–Raphson method to derive the formula x x
a
xn n

n
+ = +





1

1
2

, n = ⋅⋅⋅0 1 2, , ,  for 

finding the square root of the positive number a. Use it to find 3  correct to 5 decimal places.

Ans. 1.73205

9. Use the Newton–Raphson method to derive the iterative formulae to determine
i) Square and cube root of a positive number.
ii) Reciprocal of a number.

Use them to obtain square root, cube root and reciprocal of 26 correct to four decimal places.

Ans. 5.0990, 2.9625, 0.03846

10. The bacteria concentration in reservoir varies as C e et t= +− −3 1 4 0 2. . . Using Newton–Raphson
method, calculate the time required for the bacteria concentration to be 0.7.

Ans. 2.488459

11. Compute the root of the equation x x3 23 85 0− − =  with the aid of Regula Falsi method correct 
to two decimal places.

Ans. 6.08

12. Find the positive root of the equation x e x2 6 0− =− , with initial approximations 2.5 and 2 using
Secant method.

Ans. 1.28705

13. Show that Newton–Raphson method oscillates for any initial approximation to the following
function

f x
x x

x x
( ) =

≥

− <







0

0

Ans. Since x x
f x
f x

x x xn n
n

n
n n n+ = −

′
= − = −1 2

( )
( ) , hence for any initial approximation x0 , the 

Newton–Raphson method will oscillate between x0  and – x0 . 

14. Find the cube root of 15 correct to four significant digits by Fixed-Point and Secant methods.

Ans. 2.4662

15. Find the roots of the equation f x x x( ) ( )= − + =2 23 1 0  using accelerated Newton–Raphson
method, correct to four significant figures. Assuming multiplicity m = 2 and starting with the
initial approximation x0 0 2= , .

Ans. 0.381966, 2.61803
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120 Numerical Methods

16. Find the multiple roots of the equation

27 27 36 28 9 1 05 4 3 2x x x x x+ + + + + =

with the aid of Newton–Raphson, accelerated Newton–Raphson and Secant methods. Start 
with an initial approximation x0 0= .

Ans. 0.3333

17. Show that the equation ( )sin( )1 1 0− − =x x  has a double root at the point x =1. Compute the
root by using the Newton–Raphson method and modified Newton–Raphson method with
m = 2 . Take initial approximation x0 0=  for both the methods.

18. Perform the Fixed-Point method to find all the roots of the equation 5 20 3 03x x− + = , starting
with initial approximation 0.5. (0.150169, 4.39516, –4.54533)

19. Determine the intervals of unit length which contain the roots of following equations and then
compute the roots of these equations by Bisection, Regula Falsi, Secant, Newton–Raphson,
Fixed-Point, Muller, Chebyshev and Aitken Δ2 methods

a) x x x3 23 2 2 0− − + = Ans. 0.585786, -1, 3.41421 
b) 3 5 2 03x x− + = Ans. 0.457427, 1, -1.45743 
c) 2 3 5 2 1 04 3 2x x x x+ − − + = Ans. 0.311836, –0.602027, 1.13557, -2.34538

20. Compute all the three roots of the cubic equation x x x3 23 5 1 0− − + =  with the aid of Muller
method, which are in the intervals (-2, -1), (0, 1) and (4, 5).

Ans. -1.32887, 0.181442. 4.14743

21. Apply the Muller method with x x x0 1 20 0 1 0 2= = =, . , . , to find the roots of the following 
equations

i) cos x x x− + =5 02 Ans. 0.204184
ii) x x x4 23 5 1 0− − + = Ans. 0.180635

22. All the following equations have one root in the interval (0, 1). Compute the roots of these
equations by Bisection, Regula Falsi, Secant, Newton–Raphson, Fixed-Point, Muller, Chebyshev
and Aitken Δ2 methods

a) 2 0x x− =cos( ) Ans. 0.450184

b) x x e x+ = −3 2sin( ) Ans. 0.355878

c) x x x3 23 5 0+ − =cos( ) Ans. 0.895651

23. In process of computing extreme values of the function, f x( ) , first we find the critical points
(values of x where ′ =f x( ) 0). These critical points are possible points of maxima and minima
(extreme values). Compute these critical points for the following functions and hence find the
extreme values for the following functions:

a) x e xx2 2− cos( ) b) x x x4 33 1− + + c) x x x3 23 5+ − cos( )
(Hint: Find the zeroes of ′f x( ) )

Ans. a) 0.557664, 3.97962, 7.064312 ..., (Infinite number of extreme points
b) 0.364091, 2.19826, -0.312356 (Only three)
c) 0, -2.44051 (only two)
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Nonlinear Equations 121

24. Find the x-coordinate of the point on the curve y e x= , which is closest to the origin. Use
Newton–Raphson method.

Ans. The distance between the point x e x,( )
 
from the origin (0, 0) is f x x e x( ) = −( ) + −( )0 02 2

. To 

compute point of minima, we have ′ = + =f x x e x( ) 2 0, which implies x = –0.5671433

25. The van der Waals equation for a fluid (n moles) is an equation relating the density of gases and
liquids (fluids) to the pressure (p), volume (V), and temperature (T) conditions

p
n a
V

V nb nRT+






−( ) =
2

2

On using v V n= / , we have

p
a

v
v b RT+





−( ) =2

where p is the pressure, v V n= /  is the partial molar volume, R is the universal gas constant, and 
T  is the absolute temperature. The factors a and b are constants dependent on the nature of 
the fluid. The constant “a” measures the attractive forces between the molecules. The constant 
“b” is the actual volume of a mole of molecules. 

a)  Consider the Carbon dioxide gas (5.00 moles) at 40.0 atmosphere pressure and 323 K
temperature. Van der Waals constants (a and b) for the carbon dioxide gas are given by: a =
3.610 L2 atm mol-2; b = 0.0429 L mol-1. Compute the partial molar volume of the given gas for 
these values. Given gas constant R = 0.08205746 L atm K-1 mol-1.

Ans. The van der Waals equation is

p
a

v
v b RT+





−( ) =2

40
3 61

0 0429 0 08205746 3232+





−( ) =.
. ( . )( )

v
v

40 28 22056 3 61 0 154869 03 2v v v− + − =. . .

The equation has only one real root in the interval (0, 1). Compute this root by any method, 
and the root is given by 0.55562574. So the partial molar volume for the Carbon dioxide is v = 
0.55562574 L mol-1.

b)  Consider the Helium gas (5.00 moles) at 50.0 atmosphere pressure and 373 K temperature.
Van der Waals constants (a and b) for the Helium gas are given by: a = 0.0341 L2 atm mol-2;
b = 0.0238 L mol-1. Compute the partial molar volume. Given gas constant R = 0.08205746 L
atm K-1 mol-1.

Ans. The van der Waals equation is

p
a

v
v b RT+





−( ) =2

50
0 0341

0 0238 0 08205746 3732+





−( ) =.
. ( . )( )

v
v

50 31 79743258 0 0341 0 00081158 03 2v v v− + − =. . .
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122 Numerical Methods

The equation has only one real root in the interval (0, 1). Compute this root by any method, 
and the root is given by 0.634914757. So the partial molar volume for the Carbon dioxide is 
v = 0.634914757 L mol-1. 

26. In general, the iteration method ( x xn n+ =1 φ( ) ) for computing the roots of an equation f x( ) = 0  
is of linear convergence (order of convergence is 1). To increase the order of convergence, we
select the iteration function φ λ λ( ) ( ) ( )x x f x f x= + + +⋅⋅⋅1 2

2 , where λi ’s are arbitrary constants to 
be determined. Compute the λ1  such that the order of convergence is quadratic (2); λ1 and λ2,
such that the order of convergence is cubic (3).

Use these derived methods to compute the roots of the following equations correct to six
decimal places

a) 2 0x x− =cos( )   Ans. 0.450184
b) x x e x+ = −3 2sin( )   Ans. 0.355878
c) x x x3 23 5 0+ − =cos( ) Ans. 0.895651

27. In the Bisection algorithm, let M denote the length of the interval [a, b]. Let { , , ...}x x0 1  represent 
successive midpoints generated by the Bisection method. Show that, x x Mi i

i
+

+− =1
22/  and 

find the number of iterations required to guarantee an approximation to a root to accuracy ε.

28. The function f x
x
x

( )
. .

. .
=

≤
− >





0 1 1 2
0 1 1 2

 changes its sign in the interval (1, 2); that is f a f b( ) ( ) < 0 . 

What does the Bisection algorithm locate? Is there any zero of the function f x( )?

Ans. x = 1.2 is a point of discontinuity, so, the Bisection method is not applicable to this function. 
In fact, the function f x( ) has no zero. 

29. Use convergence conditions of Fixed-Point method to determine an iterative function for the
equation x x= tan( )  in the interval (199, 200). Also, find the solution correct to four decimal
places.

Ans. 199.48612

30. Let the function f x a b a b( ) : [ , ] [ , ]→  be a continuous function, then prove that there exists a fixed 
point of the function f (x) in the interval [a, b].

31. Describe the False-Position method geometrically.

32. Find the value of constant C, such that the sequence generated by the formula x
x

C
x
an

n n
+ = −





1

2

22has second order convergence with the limit point a.

Ans. C = 3

33. For what value of K, the iteration function x Kx
K

xn n n+ = − + −



1

22
2

1  will have quadratic 
convergence to the fixed point ξ = 2 .

Ans. K = 4

34. Assume that the error of a Fixed-Point iteration satisfies the recurrence relation e ken n+ =1  for
some constant k, mod (k) <1. Find an expression for the number of iterations N required to
reduce the initial error e0  by a factor 10 0− >m m( ) .

35. For each of the following function locate an interval containing the smallest positive zero and
show that four conditions of Theorem 3.5 for the convergence of Newton–Raphson and Secant
methods are satisfied.
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Nonlinear Equations 123

( )

( )

( ) cos

a x e

b x x

c e x

x

x

− =
− − =

− =

−

−

0

1 0

0

3

2

36. For Newton–Raphson method, show that if f fξ ξ( ) = ′( ) ≠0 0,  and if the function f (x) is twice
continuously differentiable then ′( ) =φ ξ 0  and ′′( ) = ′′( ) ′( )φ ξ ξ ξf f/ .

37. The cubic equation 2 3 3 10 03 2x x x+ − − =  has a root near x =1 5. . Find at least two iteration
functions for iterative methods which satisfy the convergence conditions, and use these
iterative functions to compute the root.

Ans. 1.54975

38. The Newton–Raphson method has been modified for multiple roots. Similarly, the Chebyshev
method can also be modified for multiple roots of multiplicity m.Obtain the values of constants 
A and B in following modified Chebyshev iteration method, such that the method has cubic
convergence.

x x A
f x f x

f x
B

f x
f x

nn n
n n

n

n

n
+ = − ( )

′( )
−

′
= ⋅⋅⋅1

2

3
2

0 1 2
( ) "( )

( )

( )
( )

, ,

Ans. A m B
m m

= =
−( )2 3

2
,

39. Find the rate of convergence of the following two sequences (both converges to a )

x
x a

x
x

x x
an

n

n
n

n n
+ += +







= −




1 2 1

2

2
1

2
3,

Ans. Rate of convergence is quadratic for both the sequences 
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We have discussed various methods for the numerical solutions of a single nonlinear 
equation f x( ) = 0  in the last chapter. This chapter presents numerical methods for the 
solution of a system of nonlinear equations. A system of m nonlinear equations in m 
variables is given by

f x x x
f x x x

f x x x

m

m

m m

1 1 2

2 1 2

1 2

0
0

0

( , , , )
( , , , )

( , , , )

⋅⋅⋅
⋅⋅⋅

⋅⋅⋅
⋅⋅⋅

=
=

=

 (4.1)

For example, the following system of two equations, are in two variables (x, y)

sin( )
cos( )

x y x x y
x y y x y

− − −
+ + − − +

2

2

5 0
6 2 0
=

=

In this chapter, following methods have been discussed for the solutions of the system (4.1) 

i) Fixed-Point method
ii) Seidel Iteration method
iii) Newton–Raphson method.

These methods are also useful in finding complex roots of the equation, F z( ) = 0 , where z 
is a complex variable. 

Nonlinear Systems and 
Polynomial Equations

Chapter
4

No human investigation can be called real science if it cannot be demonstared 
mathematically. 

Leonardo di ser Piero da Vinci 
(April 15, 1452–May 2, 1519)

Credited with many achievements in diversifie fields such as mathematics, engineering, 
astronomy, geology, painting, architecture, history, botany, sculpting, etc. 
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Nonlinear Systems and Polynomial Equations 125

The methods presented in the last chapter can solve nonlinear equations including 
polynomial equations. This chapter also includes the methods which are exclusively for 
solutions of polynomial equations. These methods are better from computational point of 
view, to extract quadratic factor (which is helpful for complex roots), to obtain all the roots 
in single application, and to avoid divergence of the methods, etc. This chapter deals with 
the following methods for the solutions of polynomial equations. 

i) Birge–Vieta method 
ii) Lin–Bairstow method 
iii) Graeffe root squaring method.

4.1 Fixed-Point Method

Consider the following system of two nonlinear equations

f x y
g x y

( , )
( , )

=
=

0
0  (4.2)

On a similar pattern as in Fixed-Point method for single equation, first, we rewrite the 
system as follows 

x x y
y x y

=
=

φ
ψ

( , )
( , )

The zeroes of the functions, f (x, y) and g(x, y) are the fixed points of the functions, φ( , )x y  
and ψ ( , )x y , respectively. Let ( , )x y0 0  be any initial approximation to the root of the 
system (4.2). Then the next approximation can be calculated by the values of the functions 
φ( , )x y  and ψ ( , )x y  at this point. 

x x y y x y1 0 0 1 0 0= =φ ψ( , ) ( , )

Proceeding in a similar manner, we can compute the following approximations

x x y y x y2 1 1 2 1 1= =φ ψ( , ) ( , )

x x y y x y3 2 2 3 2 2= =φ ψ( , ) ( , )
⋅⋅⋅

In general, the Fixed-Point method for the system (4.2) is given by 

x x y y x yk k k k k k+ +1 1= =φ ψ( , ) ( , )   k = 0, 1, 2, … (4.3)

Note that the subscript denotes the iteration in Eqs. (4.3).
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126 Numerical Methods

Compute the solution of nonlinear system 
sin( )
cos( )

x y x x y
x y y x y

− − −
+ + − − +

2

2

5 0
6 2 0
=

=
 with the help 

of Fixed-Point method. Use an initial approximation (0, 0).

Ans. The given system can be written as follows

x x y x y x y
y x y y x x y

= =
= =

(sin( ) ) / ( , )
(cos( ) ) / ( , )

− −
+ + − +

2

2

5
2 6
φ

ψ

Let (0, 0) be the initial approximation, (x0, y0), then the first approximation of the Fixed 
Point iteration (4.3) is given by

x x y y x y1 0 0 1 0 0= =φ ψ( , ) ( , )

x x y x y x y
y x y y x

1 0 0 0
2

0 0 0

1 0 0 0
2

0

5 0
2

= = =
=

(sin( ) ) / ( , )
(cos( ) )

− −
+ + − +

φ
// ( , ) .6 0 50 0= =ψ x y

Similarly, the second approximation is as follows

x x y x y x y
y x y y x

2 1 1 1
2

1 1 1

2 1 1 1
2

1

5 0 1= = =
=

(sin( ) ) / ( , ) .
(cos( )

− − −
+ + −

φ
++ 2 6 0 5212641 1) / ( , ) .= =ψ x y

Proceeding in a similar manner, we can obtain the following iterations of Fixed-Point 
method

x y3 30 116673 0 547381= - =. .   

x y4 40 124963 0 554162= =− . .   

x y5 50 127794 0 556893= =− . .   

x y6 60 128866 0 557878= =− . .   

x y7 70 129263 0 558245= =− . .   

x y8 80 129410 0 558382= =− . .   

x y9 90 129465 0 558432= =− . .   

x y10 100 129486 0 558451= =− . .  

So, the approximate solution is given by

x y= − =0 129486 0 558451. .  

4.1Example
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Convergence Conditions for Fixed-Point Method

Let ( , )ξ η  be the exact solution of the system (4.2), then

ξ φ ξ η
η ψ ξ η

=
=

( , )
( , )

 (4.4)

The Fixed-Point iterations (4.3) are given by

x x y
y x y

k k k

k k k

+

+

=
=

1

1

φ
ψ

( , )
( , )

 k = 0, 1, 2, … (4.5)

Let the iterations converge to the exact solution, ( , )ξ η , then 

lim
k kx

→∞ + →1 ξ  and lim
k ky

→∞ + →1 η

On subtracting Eq. (4.5) from Eq. (4.4), we have

ξ φ ξ η φ
η ψ ξ η ψ

− = −
− = −

+

+

x x y
y x y

k k k

k k k

1

1

( , ) ( , )
( , ) ( , )

Let us consider the error at kth step ε ξk kx= −  and δ ηk ky= − , then we have

ε φ ε δ φ
δ ψ ε δ ψ

k k k k k k k

k k k k k k k

x y x y
x y x y

+

+

= + + −
= + + −

1

1

( , ) ( , )
( , ) ( , )

Using Taylor series expansion and neglecting the second and higher order terms of εk  and
δ k , we get 

ε φ ε φ δ φ φ

δ ψ
k k k k x k k k y k k k k

k

x y x y x y x y

x
+

+

= + +  −

=
1

1

( , ) ( , ) ( , ) ( , )

( kk k k x k k k y k k k ky x y x y x y, ) ( , ) ( , ) ( , )+ +  −ε ψ δ ψ ψ

In Matrix form, we have

ε
δ

φ φ
ψ ψ

ε
δ

k

k

x y

x y x y

k

k
k k

+

+









 =























1

1 ( , )

E A Ek k k+ =1  

where Ek
k

k
+

+

+

=








1

1

1

ε
δ

, Ak
x y

x y x yk k

=












φ φ
ψ ψ

( , )  

and Ek
k

k

=










ε
δ

 are the error vector at (k+1)th  

step, the Jacobian of iteration matrix at kth step and error vector at kth step, respectively.
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128 Numerical Methods

So, the sufficient condition for the convergence of the Fixed-Point method is that for each 
k, we have following condition on iteration matrix (Ak)

Ak < 1

where  is a suitable norm. For example, let us assume the maximum absolute row sum as 
a norm. Then, Fixed-Point method will converge to the solution, if the iteration functions ϕ 
and ψ satisfy the following conditions

φ φx k k y k kx y x y( , ) ( , )+ < 1

ψ ψx k k y k kx y x y( , ) ( , )+ < 1  (4.6)

A sufficient and necessary condition for the convergence of Fixed-Point method is that for 
each k, we have

ρ( )Ak < 1  (4.7)

where ρ( )Ak  is spectral radius (largest eigenvalue in magnitude) of matrix Ak.

Note: Convergence condition (4.6) is similar to Fixed-Point method for a single equation in 
Chapter 3. 

So far, we have discussed Fixed-Point method for a system of two equations. Now, we will 
generalize it to the Fixed-Point method for the solution of system (4.1) of m nonlinear 
equations.

First, rewrite the system (4.1) as follows

x x x x
x x x x

x x x x

m

m

m m

1 1 1 2

2 2 1 2

1 2

= ⋅⋅⋅
= ⋅⋅⋅

⋅⋅⋅
= ⋅⋅⋅

φ
φ

φ

( , , , )
( , , , )

( , , , mm )

Then, use the initial approximation x x xm1
0

2
0 0( ) ( ) ( ), , ,⋅⋅⋅  to compute next approximation as 

follows

x x x x
x x x x

m

m

1
1

1 1
0

2
0 0

2
1

2 1
0

2
0

( ) ( ) ( ) ( )

( ) ( ) ( )

( , , , )
( , , ,

= ⋅⋅⋅
= ⋅⋅⋅

φ
φ (( )

( ) ( ) ( ) ( )

)

( , , , )

0

1
1

0
2

0 0

⋅⋅⋅
= ⋅⋅⋅x x x xm m mφ

 

It is worth mentioning here that the subscript i in xi
j( )  denotes the variable and the 

superscript j in xi
j( ) denotes the iteration. 
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In general, the Fixed-Point iterations are given by

x x x x
x x x

k k k
m

k

k k k
1

1
1 1 2

2
1

2 1 2

( ) ( ) ( ) ( )

( ) ( ) ( )

( , , , )
( , ,

+

+

= ⋅⋅⋅
= ⋅⋅

φ
φ ⋅⋅

⋅⋅⋅
= ⋅⋅⋅+

, )

( , , , )

( )

( ) ( ) ( ) ( )

x

x x x x

m
k

m
k

m
k k

m
k1

1 2φ

 k = ⋅⋅⋅0 1 2, ,  (4.8)

Note: The necessary and sufficient convergence condition for Fixed-Point method for the 
system of nonlinear equations, Eq. (4.1) can be obtained easily by extending conditions 
(4.6) and (4.7) as follows 

Consider the following iteration matrix 

A

x x x

x x x

x

k

m

m

m m

=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

⋅⋅⋅
∂
∂

∂
∂

φ φ φ

φ φ φ

φ φ

1

1

1

2

1

2

1

2

2

2

1

...

...

xx x
m

m x x xk k
m

k2
1 2

...
( , , , )

∂
∂



























 ⋅⋅⋅

φ

 
k = ⋅⋅⋅0 1 2, ,

 

If ρ( )Ak  (spectral radius of the matrix Ak) is less than 1 for each k, then the Fixed-Point 
method will converge to the solution.

While sufficient condition is as follows

∂
∂

+
∂
∂

+ ⋅⋅⋅+
∂
∂

< ∀ = ⋅⋅⋅
φ φ φi i i

mx x x
i m

1 2

1 1 2, , ,  (4.9)

Solve the following system of nonlinear equations

e x x
x x x x x

x x

x x− + + + − =
+ + − =

+ −

( )

cos( ) sin

1 3 8 2 1 0
3 10 2 0

2 10

3 2

2 3 1 1 3

2
2

2 xx x3 12 2 0+ + =

with the help of Fixed-Point method. Consider the initial approximation, 

x x x1
0

2
0

3
0 0( ) ( ) ( )= = = .

4.2Example
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130 Numerical Methods

Ans. First, we rewrite the system as follows, keeping in mind the convergence conditions

x x x x x

x x x x

x e

1 2 3 1 3

2 2
2

3 1

3

1
10

3 2

1
10

2 2 2

1
8

= − + −( )

= − − + +( )
= −

cos( ) sin

−− + + −( )( )x x x1 3 2 12

Here, we write x3 from the first equation, and x1, x2 from the second and third equations, 
respectively. The iteration functions are as follows

φ

φ

1 1 2 3 2 3 1 3

2 1 2 3

1
10

3 2

1
10

2

( , , ) cos( ) sin

( , , )

x x x x x x x

x x x x

= − + −( )

= −
22

2
3 1

3 1 2 3 2

2 2

1
8

2 11 3

− + +( )
= − + −( )− +

x x

x x x e xx xφ ( , , ) ( )

The initial approximation is x x x1
0

2
0

3
0 0( ) ( ) ( )= = = , where the subscript and superscript 

denote the variables and iterations, respectively. For example, here 1, 2 and 3 in subscripts 
represent the variables while superscript 0 represents the initial approximation. Starting 
with initial approximation, x x x1

0
2
0

3
0 0( ) ( ) ( )= = = , we get our first approximation as follows

x x x x1
1

1 1
0

2
0

3
0 1

10
0 3 0 2 0 1

10
( ) ( ) ( ) ( )( , , ) cos( ) sin( ) ( )= = − + −( ) = −φ 11 0 1

1
10

2 0 0 2 0 22
1

2 1
0

2
0

3
0

( ) = −

= = − − + +( ) = −

.

( , , ) ( ) ( )( ) ( ) ( ) ( )x x x xφ 11
10

2 0 2

1
8

2 0 13
1

3 1
0

2
0

3
0 0

( ) = −

= = − + −( ) =−

.

( , , ) ( )( ) ( ) ( ) ( ) ( )x x x x eφ −− ( ) =1
8

0 0

On using the values of x x x1
1

2
1

3
1( ) ( ) ( ), , , the second approximation is given by

x x x x1
2

1 1
1

2
1

3
1 1

10
0 3 0 1 2 0( ) ( ) ( ) ( )( , , ) cos( ) sin( . ) ( )= = − + − −( ) = −φ 00 070050

1
10

2 0 5 0 2 02
2

2 1
1

2
1

3
1 2

.

( , , ) ( . ) ( .( ) ( ) ( ) ( )

 

x x x x= = − − − + −φ 11 2 0 188000

1
8

23
2

3 1
1

2
1

3
1 0 1

) .

( , , )( ) ( ) ( ) ( ) ( . )

+( ) = −

= = − +− −x x x x eφ (( . ) .− −( ) =0 5 1 0 036854

Similarly, other iterations are given by 
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Nonlinear Systems and Polynomial Equations 131

4.2 Seidel Iteration Method 

The Fixed-Point method can be modified by using the most recent approximations of the 
variables in calculating the next iterations. Let (x0, y0) be any initial approximation to the 
root of the system (4.2). The next approximate value x1 can be calculated by the value of the 
function ϕ(x, y) at the point (x0, y0). In general, x1 is better approximation of x as compared 
to x0. Therefore, the value of y1 can be calculated by the value of the function ψ(x, y) at the 
point (x1, y0). Proceeding in a similar manner, we can easily find the various approximations 
to the Seidel method as follows

x x y y x y1 0 0 1 1 0= =φ ψ( , ) ( , )

x x y y x y2 1 1 2 2 1= =φ ψ( , ) ( , )

x x y y x y3 2 2 3 3 2= =φ ψ( , ) ( , )
⋅⋅⋅
⋅⋅⋅

In general, the Seidel iterations for the solution of the system (4.2) are given by 

x x y y x yk k k k k k+ + += =1 1 1φ ψ( , ) ( , )  k = 0, 1, 2, … (4.10)

Note: Convergence conditions for Seidel method are same as of Fixed-Point method. But 
the order of convergence of Seidel method is higher than Fixed-Point method.

x x x1
3

2
3

3
30 071629 0 189373 0 042781( ) ( ) ( ). . .= − = − =      

x x x1
4

2
4

3
40 069970 0 188569 0 043685( ) ( ) ( ). . .= − = − =      

x x x1
5

2
5

3
50 070286 0 188749 0 043813( ) ( ) ( ). . .= − = − =      

x x x1
6

2
6

3
60 070166 0 188687 0 043834( ) ( ) ( ). . .= − = − =      

x x x1
7

2
7

3
70 070197 0 188704 0 043837( ) ( ) ( ). . .= − = − =      

x x x1
8

2
8

3
80 070187 0 188699 0 043837( ) ( ) ( ). . .= − = − =      

x x x1
9

2
9

3
90 070190 0 188700 0 043837( ) ( ) ( ). . .= − = − =       
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132 Numerical Methods

Use Seidel method to compute the root of nonlinear system in Example 4.1 

Ans. Rewrite the given system as follows

x x y x y x y
y x y y x x y

= − − =
= + + − + =

(sin( ) ) / ( , )
(cos( ) ) / ( , )

2

2

5
2 6
φ

ψ

On using the initial approximation (x0, y0) = (0, 0), the first approximation of Seidel 
iterations (4.10) is given by

x x y x y x y
y x y x y

1 0 0 0 0 0
2

0

1 1 0 1 0

5 0= = − − =
= = + +

φ
ψ

( , ) (sin( ) ) /
( , ) (cos( ) yy x0

2
1 2 6 0 5− + =) / .

Using these values, we can easily compute the second iteration as follows

x x y x y x y
y x y y x

2 1 1 1
2

1 1 1

2 2 1 1
2

2

5 0 1= − − = = −
= + + −

(sin( ) ) / ( , ) .
(cos( )

φ
++ = =2 6 0 5451772 1) / ( , ) .ψ x y

Similarly, other iterations are given by

x y3 30 121933 0 555152= − =. .   

x y4 40 127532 0 557614= − =. .   

x y5 50 128986 0 558243= − =. .   

x y6 60 129365 0 558405= − =. .   

x y7 70 129463 0 558448= − =. .    

Note: It is easy to point out here that the Seidel method converges with a faster rate than 
the Fixed-Point method. Therefore, the root of an accuracy of four decimal points can be 
obtained in seven iterations with Seidel method, and Fixed-Point method requires twelve 
iterations for a similar accuracy. 

4.3Example

The Seidel method (4.10) can be extended for the solution of the system (4.1) as follows 

Rewrite the system (4.1) as follows
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x x x x
x x x x

x x x x

m

m

m m

1 1 1 2

2 2 1 2

1 2

= ⋅⋅⋅
= ⋅⋅⋅

⋅⋅⋅
= ⋅⋅⋅

φ
φ

φ

( , , , )
( , , , )

( , , , mm )

Then, use the initial approximation x x xm1
0

2
0 0( ) ( ) ( ), , ,⋅⋅⋅  to compute next approximation as 

follows

x x x x x
x x x

m1
1

1 1
0

2
0

3
0 0

2
1

2 1
1

2
0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( , , , , )
( , ,

= ⋅⋅⋅
=

φ
φ xx x

x x x x x

x

m

m

m

3
0 0

3
1

3 1
1

2
1

3
0 0

( ) ( )

( ) ( ) ( ) ( ) ( )

, , )
( , , , )

⋅⋅⋅
= ⋅⋅⋅

⋅⋅⋅

φ

(( ) ( ) ( ) ( ) ( )( , , , )1
1

1
2

1
3

1 0= ⋅⋅⋅φm mx x x x

 (4.11)

Note that the latest available approximations are used here. Similarly, other approximations 
for Seidel method are as follows

x x x x x
x x

k k k k
m

k

k k
1

1
1 1 2 3

2
1

2 1
1

( ) ( ) ( ) ( ) ( )

( ) ( )

( , , , , )
( ,

+

+ +

= ⋅⋅⋅
=

φ
φ xx x x

x x x x

k k
m

k

k k k k
2 3

3
1

3 1
1

2
1

3

( ) ( ) ( )

( ) ( ) ( ) ( )

, , , )
( , ,

⋅⋅⋅
= ⋅⋅⋅+ + +φ ,, )

( , , ,

( )

( ) ( ) ( ) ( ) ( )

x

x x x x x

m
k

m
k

m
k k k

n
k

⋅⋅⋅
= ⋅⋅⋅+ + + +

−
+1

1
1

2
1

3
1

1
1φ ,, )( )xm

k

 k = ⋅⋅⋅0 1 2, ,  (4.12)

The subscript i and superscript j in the variable xi
j( )  denote variable and iteration, 

respectively.

Note: Convergence conditions for Seidel method are same as that of Fixed-Point method, 
and the rate of convergence of Seidel method is higher than Fixed-Point method.

Use Seidel iterative method to solve the following system 

e x x
x x x x x

x x

x x− + + + − =
+ + − =

+ −

( )

cos( ) sin

1 3 8 2 1 0
3 10 2 0

2 10

3 2

2 3 1 1 3

2
2

2 xx x3 12 2 0+ + =

Take initial approximation, x x x1
0

2
0

3
0 0( ) ( ) ( )= = = .

4.4Example
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134 Numerical Methods

Ans. First, rewrite the system as follows

x x x x x x x x

x x x x

1 1 1 2 3 2 3 1 3

2 2 1 2 3

1
10

3 2= = − + −( )

= =

φ

φ

( , , ) cos( ) sin

( , , ) −− − + +( )
= = − + −( )− +

1
10

2 2 2

1
8

2 1

2
2

3 1

3 3 1 2 3 2
1 3

x x x

x x x x e xx xφ ( , , ) ( )

Starting with initial approximation, x x x1
0

2
0

3
0 0( ) ( ) ( )= = = , we will get our first approximation 

from Eq. (4.11) as follows

x x x x1
1

1 1
0

2
0

3
0 1

10
0 3 0 2 0 1

10
( ) ( ) ( ) ( )( , , ) cos( ) sin( ) ( )= = − + −( ) = −φ 11 0 1

1
10

2 0 0 2 0 1 22
1

2 1
1

2
0

3
0

( ) = −

= = − − + − +(

.

( , , ) ( ) ( . )( ) ( ) ( ) ( )x x x xφ )) = − ( ) = −

= = − +− −

1
10

1 8 0 18

1
83

1
3 1

1
2
1

3
0 0 1

. .

( , , )( ) ( ) ( ) ( ) ( . )x x x x eφ 22 0 18 1 1
8

0 254829 0 031854( . ) . .− −( ) = − −( ) =

Similarly, second approximation to the root is given by

x x x x1
2

1 1
1

2
1

3
1 1

10
0 18 0 031854 3( ) ( ) ( ) ( )( , , ) cos(( . )( . )) si= = − − +φ nn( . ) ( . )

( , ,( ) ( ) ( ) ( )

− −( ) = −

=

0 1 2 0 031854

2
2

2 1
2

2
1

3
1

0.063678

x x x xφ )) ( . ) . ( )

( )

= − − − + − +( ) = −

=

1
10

2 0 18 0 031854 2 22

3
2

0.063678 0.190559

x φφ3 1
2

2
2

3
1 0 0318541

8
2( , , ) (( ) ( ) ( ) ( . )x x x e= − + −− − +0.063678 0.1905559 0.043598) −( ) =1

On computing other iterations from Eq. (4.12) in a similar manner, we have
x x x1

3
2
3

3
30 072187 0 188465 0 043491( ) ( ) ( ). . .= − = − =      

x x x1
4

2
4

3
40 069661 0 188822 0 043891( ) ( ) ( ). . .= − = − =      

x x x1
5

2
5

3
50 070337 0 188674 0 043819( ) ( ) ( ). . .= − = − =      

x x x1
6

2
6

3
60 070149 0 188708 0 043842( ) ( ) ( ). . .= − = − =      

x x x1
7

2
7

3
70 070201 0 188698 0 043836( ) ( ) ( ). . .= − = − =      

x x x1
8

2
8

3
80 070187 0 188700 0 043838( ) ( ) ( ). . .= − = − =      
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Nonlinear Systems and Polynomial Equations 135

4.3 Newton–Raphson (NR) Method 

Let (x0, y0) be initial approximation to the exact root (ξ, η) of the system (4.2) of two 
nonlinear equations 

f x y
g x y

( , )
( , )

=
=

0
0

Let (h, k) be the error in the approximation (x0, y0). Then, (x0 + h, y0 + k) is the exact root 
of the system, so 

f x h y k
g x h y k

( , )
( , )

0 0

0 0

0
0

+ + =
+ + =

Let the functions f(x, y) and g(x, y) be differentiable functions. On using the Taylor Series 
expansion, we obtain 

f x y h f
x

k f
yx y x y

( , )
, ,

0 0
0 0 0 0

+ ∂
∂







+ ∂
∂



















+
( ) ( )

secoond and higher order terms =

+ ∂
∂







+
( )

0

0 0
0 0

g x y h g
x

k
x y

( , )
,

∂∂
∂



















+ =
( )

g
y

x y0 0

0
,

second and higher order terms

Let the initial approximation be close to the root, then h and k are very small quantities. On 
setting the quadratic and higher terms to zero, we get 

f x y h f
x

k f
y

g

x y x y

( , )

(

, ,
0 0

0 0 0 0

0+ ∂
∂







+ ∂
∂



















=
( ) ( )

xx y h g
x

k g
yx y x y

0 0
0 0 0 0

0, )
, ,

+ ∂
∂







+ ∂
∂



















=
( ) ( )

On solving these two equations for h and k, we have

h
g f f g
f g g f

y y

x y x y x y

=
−
−

( , )0 0

k
f g g f
f g g f

x x

x y x y x y

=
−
−

( , )0 0

 (4.13)
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136 Numerical Methods

Since we neglected the second and higher order terms in Taylor series expansion, we will 
get approximate values of h and k. The next approximation to the root is given by

x x h
y y k

1 0

1 0

= +
= +

 (4.14)

Proceeding in a similar manner, we can further compute other approximations to the root. 
In general, the Newton–Raphson method for the solution of the system (4.2) is given by

x x
g f f g
f g g fi i

y y

x y x y x yi i

+ = +
−
−1

( , )

y y
f g g f
f g g fi i

x x

x y x y x yi i

+ = +
−
−1

( , )

  i = 0, 1, 2, … (4.15)

Solve the following system of nonlinear equations using Newton–Raphson method

sin( )
cos( )

x y x x y
x y y x y

− − − =
+ + − − + =

2

2

5 0
6 2 0

Use initial approximations, x y0 0 0= = .

Ans. The functions corresponding to the given system are given by 

f x y x y x x y
g x y x y y x y

( , ) sin( )
( , ) cos( )

= − − −
= + + − − +

2

2

5
6 2

f y x y x
g x y

x

x

= − −
= − + −

cos( )
sin( )

2 5
1   

f x x y
g x y y

y

y

= −
= − + + −

cos( )
sin( )

1
2 6

First iteration

Starting with initial approximations (x0 = y0 = 0) and using the Newton–Raphson (NR) 
method (4.13), we have

h
g f f g
f g g f

g f f g
f g g f

y y

x y x y x y

y y

x y x y

=
−
−

=
−
−

( , ) ( , )0 0 0 0

4.5Example
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=
+ + − − +( ) −( ) − − − −( ) − +cos( ) cos( ) sin( ) sin(x y y x y x x y x y x x y x2 26 2 1 5 yy y

y x y x x y y x y x

)

cos( ) sin( ) sin( ) co

+ −( )
− −( ) − + + −( ) − − + −( )

2 6

2 5 2 6 1 ss( )
( , )

x y −( )1
0 0

=
( ) −( ) − ( ) −( )
−( ) −( ) − −( ) −( ) = − = −

3 1 0 6
6 5 1 1

3
29

0 103448.

k
f g g f
f g g f

f g g f
f g g f

x x

x y x y x y

x x

x y x y

=
−
−

=
−
−

( , ) ( , )0 0 0 0

=
− − −( ) − + −( ) − + + − − +( )sin( ) sin( ) cos( ) cos(x y x x y x y x y y x y y x2 25 1 6 2 yy x

y x y x x y y x y x

)

cos( ) sin( ) sin( ) co

− −( )
− −( ) − + + −( ) − − + −( )

2 5

2 5 2 6 1 ss( )
( , )

x y −( )1
0 0

=
( ) −( ) − ( ) −( )
−( ) −( ) − −( ) −( ) = =

0 1 3 5
5 6 1 1

15
29

0 517241.

On using these values of h and k in Eqs. (4.14), we get the following next approximation 

x x h1 0 0 0 103448 0 103448= + = + − = −( . ) .

y y k1 0 0 0 517241 0 517241= + = + =. .

Second iteration

Proceeding with the approximation, x1 0 103448= − . , y1 0 517241= . , we have

h
g f f g
f g g f

g f f g
f g g f

y y

x y x y x y

y y

x y x y

=
−
−

=
−
−

−( , ) ( . , .1 1 0 103448 0 5172241

0 025531
)

.= −

k
f g g f
f g g f

f g g f
f g g f

x x

x y x y x y

x x

x y x y

=
−
−

=
−
−

−( , ) ( . , .1 1 0 103448 0 5172241

0 040789
)

.=

On using these values of h and k, the next iteration from Eq. (4.15) is as follows 

x x h2 1 0 103448 0 025531 0 128979= + = − − = −. . .

y y k2 1 0 517241 0 040789 0 558030= + = + =. . .
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138 Numerical Methods

Accelerated Newton–Raphson (NR) Method

Convergence of Newton–Raphson method (4.15) can be accelerated, if we use the latest 
approximation. For this, the value of xi+1 is computed as in Eqs. (4.15), but the value of yi+1 
is computed using the values at the point (xi+1, yi) instead of at the point, (xi, yi). 

x x
g f f g
f g g fi i

y y

x y x y x yi i

+ = +
−
−1

( , )

y y
f g g f
f g g fi i

x x

x y x y x yi i

+ = +
−
−

+

1

1( , )

  i = 0, 1, 2, … (4.16)

Use accelerated NR method to solve the following nonlinear system

sin( )
cos( )

x y x x y
x y y x y

− − − =
+ + − − + =

2

2

5 0
6 2 0

Assume initial approximation x y0 0 0= = .

Ans. We have 

f x y x y x x y
g x y x y y x y

( , ) sin( )
( , ) cos( )

= − − −
= + + − − +

2

2

5
6 2

f y x y x
g x y

x

x

= − −
= − + −

cos( )
sin( )

2 5
1   

f x x y
g x y y

y

y

= −
= − + + −

cos( )
sin( )

1
2 6

First iteration

Starting with initial approximations x y0 0 0= =  and using the accelerated Newton–
Raphson formula (4.16), we get

4.6Example

Similarly, we can obtain the following iterations 

x y3 30 129498 0 558462= − =. .   

x y4 40 129498 0 558463= − =. .   
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h
g f f g
f g g f

g f f g
f g g f

y y

x y x y x y

y y

x y x y

=
−
−

=
−
−

= −
( , ) ( , )

.
0 0 0 0

0 103448

x x h1 0 0 0 103448 0 103448= + = + − = −( . ) .

The value of k is computed at the point x y= − =0 103448 0. ,

k
f g g f
f g g f

f g g f
f g g f

x x

x y x y x y

x x

x y x y

=
−
−

=
−
−

−( , ) ( . , )1 0 0 103448 0

= 0..527800

y y k1 0 0 0 527800 0 527800= + = + =. .

Second iteration

Proceeding with the approximation, x1 0 103448= − . , y1 0 527800= . , we get following 
Newton–Raphson iteration (4.16)

h
g f f g
f g g f

g f f g
f g g f

y y

x y x y x y

y y

x y x y

=
−
−

=
−
−

−( , ) ( . , .1 1 0 103448 0 5278800

0 025633
)

.= −

x x h2 1 0 103448 0 025633 0 129081= + = − − = −. . .

k
f g g f
f g g f

f g g f
f g g f

x x

x y x y x y

x x

x y x y

=
−
−

=
−
−

−( , ) ( . , .2 1 0 129081 0 5278800

0 030557
)

.=

y y k2 1 0 527800 0 030577 0 558357= + = + =. . .

Similarly, further approximations for the solution are given by 

x y3 30 129498 0 558463= − =. .   

x y4 40 129498 0 558463= − =. .   

So far, we have discussed the Newton–Raphson method for system of two nonlinear 
equations. Now, we will extend the Newton–Raphson method (4.15) for the solution of the 
system (4.1). 
Consider the system (4.1) in vector form 

f x x x
f x x x

f x x x

m

m

m m

1 1 2

2 1 2

1 2

0
0

0

( , , , )
( , , , )

( , , , )

⋅⋅⋅ =
⋅⋅⋅ =

⋅⋅⋅
⋅⋅⋅ =

 or F X( ) = 0  (4.17)
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where X x x xm

T
= ⋅⋅⋅ 1 2, , ,  and F f f fm

T
= ⋅⋅⋅ 1 2, , , .

Let X x x xk k k
m

k T
= ⋅⋅⋅ 1 2, , ,  be an approximation to the exact root, ξ ξ ξ1 2, , ,⋅⋅⋅ m

T
. Also, 

assume that δ δ δ δX x x xk k k
m

k T
= ⋅⋅⋅ 1 2, , ,  be the change in X x x xk k k

m
k T

= ⋅⋅⋅ 1 2, , ,  such 

that X X x x x x x xk k k k k k
m

k
m

k T
+ = + + ⋅⋅⋅ + δ δ δ δ1 1 2 2, , ,  is the exact root of the system 

(4.17)

f x x x x x x
f x x x x

k k k k
m

k
m

k

k k k k
1 1 1 2 2

2 1 1 2 2

0( , , , )
( , ,

+ + ⋅⋅⋅ + =
+ + ⋅

δ δ δ
δ δ ⋅⋅⋅ + =

⋅⋅⋅
+ + ⋅⋅⋅ + =

, )

( , , , )

x x

f x x x x x x

m
k

m
k

m
k k k k

m
k

m
k

δ

δ δ δ

0

01 1 2 2  (4.18)

The Taylor series expansion for any function g x x xm( , ,..., )1 2  is given by 

g x x x x x x g x x x x
x

x
xm m m( , ,..., ) ( , ,..., )1 1 2 2 1 2 1

1
2+ + + = + ∂

∂
+ ∂

∂
δ δ δ δ δ

22

1
1

2
2

1
2

+ + ∂
∂







+ ∂
∂

+ ∂
∂

+ + ∂
∂







...

!
...

δ

δ δ δ

x
x

g

x
x

x
x

x
x

m
m

m
m

22

g  + terms involving third and higher powers 

With the help of above expression, the Taylor series expansion of the system (4.18) about 

the point X x x xk k k
m

k T
= ⋅⋅⋅ 1 2, , ,  is given by

f x x x x
x

x
x

x
x

fk k
m

k k k
m
k

m
1 1 2 1

1
2

2
1( , , , )⋅⋅⋅ + ∂

∂
+ ∂

∂
+ ⋅⋅⋅+ ∂

∂






δ δ δ (( , , , )

( , , , )

x x x

f x x x x
x

x

k k
m

k

k k
m

k k k

1 2

2 1 2 1
1

2

0⋅⋅⋅ + ⋅⋅⋅ =

⋅⋅⋅ + ∂
∂

+ ∂δ δ
∂∂

+ ⋅⋅⋅+ ∂
∂







⋅⋅⋅ + ⋅⋅⋅ =

⋅⋅⋅

x
x

x
f x x x

f x

m
k

m

k k
m

k

m
k

2
2 1 2

1

0δ ( , , , )

( , xx x x
x

x
x

x
x

f x xk
m

k k k
m
k

m
m

k
2 1

1
2

2
1, , ) ( ,⋅⋅⋅ + ∂

∂
+ ∂

∂
+ ⋅⋅⋅+ ∂

∂






δ δ δ 22 0k
m

kx, , )⋅⋅⋅ + ⋅⋅⋅ =

On neglecting the second and higher power of the error vector, δ δ δ δX x x xk k k
m
k T

= ⋅⋅⋅ 1 2, , , , 
we get 
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f x x x x
x

x
x

x
x

fk k
m

k k k
m
k

m
1 1 2 1

1
2

2
1( , , , ) ...⋅⋅⋅ + ∂

∂
+ ∂

∂
+ + ∂

∂






δ δ δ (( , , , )

( , , , )

x x x

f x x x x
x

x
x

k k
m

k

k k
m

k k k

1 2

2 1 2 1
1

2
2

0⋅⋅⋅ =

⋅⋅⋅ + ∂
∂

+ ∂
∂

+δ δ .... ( , , , )

( , , ,

+ ∂
∂







⋅⋅⋅ =

⋅⋅⋅

⋅⋅⋅

δ x
x

f x x x

f x x

m
k

m

k k
m

k

m
k k

2 1 2

1 2

0

xx x
x

x
x

x
x

f x x xm
k k k

m
k

m
m

k k) ... ( , , ,+ ∂
∂

+ ∂
∂

+ + ∂
∂







⋅⋅⋅δ δ δ1
1

2
2

1 2 mm
k ) = 0

In vector form, the above system is given by

F X X J FK k
k( )+ =δ . [ ] 0  (4.19)

where the Jacobian matrix J Fk[ ]  is as follows

J F

f
x

f
x

f
x

f
x

f
x

f
x

f
x

k

m

m

m

[ ]

...

...
=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

⋅⋅⋅
∂
∂

∂

1

1

1

2

1

2

1

2

2

2

1

ff
x

f
x

m m

m x x xk k
m
k∂

∂
∂



























 ⋅⋅⋅2

1 2

...
( , , , )

 (4.20)

On solving the system (4.19) for δ δ δ δX x x xk k k
m
k T

= ⋅⋅⋅ 1 2, , , , we get 

δ X J F F Xk
k

k= − −1[ ] ( )  (4.21)

Therefore, the next approximation is given by

X X X x x x x x xk k k k k k k
m

k
m

k T+ = + = + + ⋅⋅⋅ + 
1

1 1 2 2δ δ δ δ, , ,  (4.22)

Solve the following system of nonlinear equation using Newton–Raphson method.

cos( ) sin

( )

x x x x x
x x x x

e x x

2 3 1 1 3

2
2

2 3 1

3 10 2 0
2 10 2 2 0

81 3

+ + − =
+ − + + =

+− + xx x3 22 1 0+ − =

Assume initial approximation is x x x1
0

2
0

3
0 0( ) ( ) ( )= = = .

4.7Example
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Ans. We have 

f x x x x x x x x
f x x x x

1 1 2 3 2 3 1 1 3

2 1 2 3 2
2

3 10 2 0
2

( , , ) cos( ) sin
( , , )

= + + − =
= +110 2 2 0

8 2 1 0
2 3 1

3 1 2 3 3 2
1 3

x x x

f x x x e x xx x

− + + =

= + + − =− +( , , ) ( )

Initial approximation is x x x1
0

2
0

3
0 0( ) ( ) ( )= = = .

First Iteration
Compute the Jacobian matrix from Eq. (4.20) as follows

J F

f
x

f
x

f
x

f
x

f
x

f
x

f
x

f
x

f

k[ ] =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

1

1

1

2

1

3

2

1

2

2

2

3

3

1

3

2

3

xx
x x x3

1
0

2
0

3
0

























( , , )( ) ( ) ( )

 
=

+ − − −
+ −

− −− +

3 10 2
2 4 10 1

2

1 3 2 3 2 2 3

2

1 3

cos sin( ) sin( )

( )

x x x x x x x
x

e ex x −− + +















( )

( , , )

x x1 3 8
0 0 0

 

=
−
−

−

















13 0 2
2 10 1

1 2 7

On using Eq. (4.21), we get

δ X J F F X( ) [ ] ( )0
0

1 0= − −

δ
δ
δ

x
x
x

f1
0

2
0

3
0

1

113 0 2
2 10 1

1 2 7

( )

( )

( )

















= −
−
−

−

















−

ff
f

2

3 0 0 0

















( , , )

= −
−
−

−

































−
13 0 2
2 10 1

1 2 7

1
2
0

1
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= −

−

−

−



















18
227

1
227

5
227

13
908

89
908

9
908

7
454

13
454

65
454






















1
2
0

=

−

−























=
−
−

16
227

165
908
19
454

0 070485
0 181718
0 04

.

.

. 11850

















⇒ = − = − =δ δ δx x x1
0

2
0

3
00 070485 0 181718 0 041850( ) ( ) ( ). , . , .

From Eq. (4.22), the first approximation to the solution is given by 

x x x
x x x
x

1
1

1
0

1
0

2
1

2
0

2
2

3

0 070485
0 181718

( ) ( ) ( )

( ) ( ) ( )

.
.

= + = −
= + = −

δ
δ

(( ) ( ) ( ) .1
3
0

3
0 0 041850= + =x xδ

Second Iteration

Proceeding in a similar manner, the second iteration of Newton–Raphson formula (4.22) 
is computed as follows 

δ X J F F X1
1

1 1= − − [ ] ( )

=
+ − − −

+ −

− −− +

3 10 2
2 4 10 1

2

1 3 2 3 2 2 3

2

1 3

cos sin( ) sin( )

( )

x x x x x x x
x

e ex x −− +

−

− −
+















( )

( . , . , . )

x x

f
f
f1 3 8

1

0 070485 0 181718 0 041850

1

2

33 0 070485 0 181718 0 041850

















− −( . , . , . )

δ
δ
δ

x
x
x

1
1

2
1

3
1

0 000295
0 006972

0 001984

( )

( )

( )

.
.

.

















= −
















So, the second approximation to the root is given by

x x x
x x

1
2

1
1

1
1

2
2

2
1

0 070485 0 000295 0 070190( ) ( ) ( )

( ) ( )

. . .= + = − + = −
=

δ
++ = − − = −

= + =
δ
δ

x
x x x

2
1

3
2

3
1

3
1

0 181718 0 006972 0 188690
0

( )

( ) ( ) ( )

. . .
.0041850 0 001984 0 043834+ =. .
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Convergence Conditions for NR Method
The NR method is given by

X X X J F F Xk k k
k

k+ −− = = −1 1δ [ ] ( )   k = 0, 1, 2 …

where δ X X Xk k k= −+1  is the error vector. 

Hence, a sufficient condition for convergence is that for each k, we have

J Fk
− <1 1[ ] , for a suitable norm.

While the sufficient and necessary condition for convergence of NR method is that the 
spectral radius of Jacobian matrix is less than 1.

ρ J Fk
−( )<1 1[ ]  (4.23)

4.4 Complex Roots 

Let us consider a complex equation in complex variable z 
F(z) = 0

We separate the real and imaginary parts to solve this equation

F z F x iy f x y i g x y( ) ( ) ( , ) ( , )= + = +

The function F(z) will vanish if and only if the real and imaginary parts both vanish 
separately. It produces the system (4.2), for which we have already discussed the solution. 

Third Iteration

x
x
x

1
3

2
3

3
3

0 070190
0 188700

0 043837

( )

( )

( )

.

.
.

= −
= −
=

Fourth Iteration

x
x
x

1
4

2
4

3
4

0 070190
0 188700

0 043837

( )

( )

( )

.

.
.

= −
= −
=
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Use NR method to compute all three roots of the following complex equation 

F z z i z ez( ) = − − =3 24 3 0

where the variable z is complex. 

Ans. Let z x i y= + , the equation is given by 

F z x iy i x iy e x iy( ) ( ) ( ) ( )= + − + − =+3 24 3 0

F z x ix y xy iy i x y ixy e y i yx( ) ( ) (cos sin )= + − − − − + − + =3 2 2 3 2 23 3 4 2 3 0

On separating real and imaginary parts, we get

x xy xy e y
x y y x y e y

x

x

3 2

2 3 2 2

3 8 3 0
3 4 4 3 0

− + − =
− − + − =

cos
sin

Let, the functions be as follows 

f x y x xy xy e y
g x y x y y x y e y

x

x

( , ) cos
( , ) sin

= − + −
= − − + −

3 2

2 3 2 2

3 8 3
3 4 4 3

On differentiating the functions f(x, y) and g(x, y), we have

f x y y e y
g xy x e y

x
x

x
x

= − + −
= − −

3 3 8 3
6 8 3

2 2 cos
sin

 f xy x e y

g x y y e y
y

x

y
x

= − + +

= − + −

6 8 3

3 3 8 32 2

sin

cos

We will use Newton–Raphson method (4.15) to compute all the three roots of the system 
by starting with different initial approximations. 

First Root 
On using the Newton–Raphson method with initial approximations x y0 0 0 5= = − . , we 
have following iterations 

First iteration

h
g f f g
f g g f

g f f g
f g g f

y y

x y x y x y

y y

x y x y

=
−
−

=
−
−

= −
− −( , ) ( . , . )

.
0 0 0 5 0 5

0 0004313

k
f g g f
f g g f

f g g f
f g g f

x x

x y x y x y

x x

x y x y

=
−
−

=
−
−

=
− −( , ) ( . , . )

.
0 0 0 5 0 5

0 1066287

x x h1 0 0 5 0 004313 0 504313= + = − + − = −. ( . ) .

y y k1 0 0 5 0 106287 0 393713= + = − + = −. . .

4.8Example
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Second iteration

h
g f f g
f g g f

g f f g
f g g f

y y

x y x y x y

y y

x y x y

=
−
−

=
−
−

− −( , ) ( . , .1 1 0 504313 0 3933713

0 004468
)

.= −

k
f g g f
f g g f

f g g f
f g g f

x x

x y x y x y

x x

x y x y

=
−
−

=
−
−

− −( , ) ( . , .1 1 0 504313 0 3933713

0 007054
)

.=

x x h2 1 0 504313 0 004468 0 508781= + = − − = −. . .

y y k2 1 0 393713 0 007054 0 386659= + = − + = −. . .

Third Iteration

x y3 30 508831 0 386661= − = −. .   

So, the approximate root to the given complex equation is given by

z x iy i= + = − −0 508831 0 386661. .
Note that we will get the same root with initial approximation x y0 0 0= = , but the number 
of iterations increases in this case. Iterations with initial approximation x y0 0 0= =  are as 
follows

x y
x y
x

1 1

2 2

3

1 000000 0 000000
0 467584 0 136748
0

= − =
= − = −
= −

. .

. .
   
   

.. .

. .

.

491771 0 449375
0 506468 0 388324
0 50

3

4 4

5

   
   

y
x y
x

= −
= − = −
= − 88827 0 3866565   y = − .

Second Root
Proceeding in a similar manner, we can obtain the second complex root of the equation. 
The following iterations of Newton–Raphson methods are obtained with the initial 
approximation, x y0 0 0 5= = . .

x y
x y
x

1 1

2 2

3

0 029637 0 998927
0 367184 1 149769
0 3

= =
= =
=

. .

. .

.

    
    

111058 1 153530
0 310100 1 154557
0 310101

3

4 4

5

    
    

y
x y
x

=
= =
=

.
. .
.      y5 1 154558= .

The second root of given complex equation is as follows

z x iy i= + = +0 310101 1 154558. . . 
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4.5 Polynomial Equations

Before we discuss the methods to compute the roots of polynomial equation of degree n

P x a x a x a x a an
n n

n n( ) ,= + + ⋅⋅⋅⋅⋅⋅+ + = ≠−
−0 1

1
1 00 0  (4.24)

where a a a a an n0 1 2 1, , , ,⋅⋅⋅ −  are all real numbers, it is advantageous to have the following 
information 

i) The exact number of real (+ve and –ve) and complex roots
ii) The intervals containing roots

Descartes rule and Strum theorem will be helpful in this regard.

4.5.1 Descartes Rule of Signs 
Arrange all the terms of a polynomial in order. If a + sign follows a –sign (or) vice versa, 
then a change of signs is said to occur. Otherwise, it is a permanence or continuation of 
signs. 

The number of positive real roots of the equation Pn(x) = 0 cannot exceed the number of 
sign changes in the polynomial, Pn(x). The number of negative real roots cannot exceed the 
number of sign changes in the polynomial, Pn(–x). 

Third Root
Proceeding with the initial approximation, x y0 0 5= = , we have

x y
x y
x

1 1

2 2

3

3 719573 4 877457
2 464507 4 503765
1 4

= =
= =
=

. .

. .
.

    
    

660492 4 017134
0 642656 3 686140

0 13244

3

4 4

5

    
    

y
x y
x

=
= =
= −

.
. .

. 33 3 843745
0 206784 4 194346
0 096327

5

6 6

7

   
    
    

y
x y
x y

=
= =
=

.
. .
. 77

8 8

9 9

4 160002
0 091169 4 165862
0 091203 4 1

=
= =
= =

.
. .
. .

x y
x y

    
    665862

So, the third root of the given complex equation is given by

z x iy i= + = +0 091203 4 165862. .  
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4.5.2 Strum Sequence 
A Sturm sequence or Strum chain  for a polynomial function f(x) is a finite sequence of 
polynomials

f x f x f x f x f xm0 1 2 3( ), ( ), ( ), ( ), , ( )⋅⋅⋅

of decreasing degrees. 

This sequence is constructed by the following algorithm

f x f x0 ( ) ( )=

f x f x1( ) ( )= ′

f x f f2 0 1( ) ( , )= −remainder

f x f f3 1 2( ) ( , )= −remainder

⋅⋅⋅
f x f fm m m( ) ( , )= − − −remainder 2 1  (4.25)

The last term f xm( )  must be a constant term. 

The sequence f x f x f x f x f xm0 1 2 3( ), ( ), ( ), ( ), , ( )⋅⋅⋅  is known as Strum chain or Strum 
sequence. To avoid rational coefficients, we can multiply or divide the elements of a Strum 
sequence by any positive constants.

The polynomial equation

P x x x x x4
4 3 23 2 4 0( ) = − + + − =

has maximum three real +ve roots, as there are three sign changes in P x4 ( ). Also, the 
polynomial P x x x x x4

4 3 23 2 4( )− = + + − −  has only one sign change, so there is maximum 
one negative real root of the equation.

This rule provides the maximum number of positive and negative real roots, but not the 
exact number of real roots of polynomial equations. The exact number of real roots can 
be obtained from Strum theorem.

4.9Example
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Note the following points about Strum sequence

1. The function f x f x0 ( ) ( )=  is squarefree, i.e. no repeated root
2. If f x i mi ( ) ,= < <0 0 , then sign ( ( ))f xi− = −1 sign ( ( ))f xi+1

Strum Theorem: Let f x f x f x f x( ), ( ), ( ), ( ),1 2 3 ⋅⋅⋅  be a Sturm sequence. Let g(a) and g(b) be 
numbers of sign changes (ignoring zeroes) in Strum sequence at x = a and x = b, respectively 
for two real numbers a < b. Then the number of distinct real roots of the equation f x( ) = 0  
in the interval [a, b] is given by

g(a) – g(b), provided f(a) ≠ 0 and f(b) ≠ 0

A polynomial equation of degree n has exactly n number of roots. So, if we have s number of 
real roots (the root of multiplicity r must be counted r times), then the number of complex 
roots is n – s. 

Obtain the Strum sequence and compute the numbers of real and complex roots of the 
following polynomial equation

x x3 3 1 0− + =

Ans. The first two terms of Strum sequence (4.25) are as follows

f x f x x x0
3 3 1( ) ( )= = − +

f x f x x x1
2 23 3 3 1( ) ( ) ( )= ′ = − = −  (or) x2 1−

(To avoid rational coefficients, we can multiply or divide the elements of a Strum sequence 
by any positive constant).

 The other terms of Strum sequence (4.25) can be computed as follows

f x f f x2 0 1 2 1( ) ( , )= − = −remainder  (or) x − 1
2

f x f f3 1 2( ) ( , )= −remainder = 1

Finally, the Strum sequence is given by 

x x x x3 23 1 1 1
2

1− + − −





, , ,

Let g(a) be number of sign changes (ignoring zeroes) in the Strum sequence at x = a. To 
obtain number of real and complex roots, we have

4.10Example
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Note: We can also construct the following table to obtain the intervals containing roots of 
the equation in Example 4.10.

Table 4.1

x f
0
(x) = f(x) f

1
(x) f

2
(x) f

3
(x) g(x)

– 2 – + – + 3

– 1 + 0 – + 2

0 + – – + 2

1 – 0 + + 1

2 + + + + 0

All three roots are real, and lie in the intervals (–2, –1), (0, 1) and (1, 2). Since the function 
f(x) is continuous, hence we can also use Intermediate value theorem to compute the 
intervals containing roots. 

Note that the approximate roots of the equation are 0.347296355, 1.532088886 and 
–1.87938524. 

Obtain the Strum sequence and compute the numbers of real and complex roots of the 
following polynomial equation

x x x x4 3 24 8 4 3 0− + − + =  

Ans. The Strum sequence (4.25) can be computed as follows 

f x f x x x x x0
4 3 24 8 4 3( ) ( )= = − + − +

f x f x x x x1
3 24 12 16 4( ) ( )= ′ = − + −  (or) f x x x x1

3 23 4 1( ) = − + −

f x f f x x2 0 1
2 2( ) ( , )= − = − − −remainder

4.11Example

x f x0 ( ) f x1( ) f x2 ( ) f x3( ) g x( )

–∞ – + – + 3
∞ + + + + 0

According to Strum theorem, the number of distinct real roots of the equation f x( ) = 0 
in the interval [a, b] is g(a) – g(b). Since g( )−∞ = 3 and g( )∞ = 0, hence the equation has 
three distinct real roots in the interval ( , )−∞ ∞ .
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f x f f3 1 2( ) ( , )= −remainder = − −x 7
6

f x f f4 2 3( ) ( , )= −remainder = 1

The Strum sequence is given by

x x x x x x x x x x4 3 2 3 2 24 8 4 3 3 4 1 2 7
6

1− + − + − + − − − − − −





, , , ,

Let g(a) be number of sign changes (ignoring zeroes) in Strum sequence at x = a. To 
obtain number of real and complex roots, we have

x f x0 ( ) f x1( ) f x2 ( ) f x3( ) f x4 ( ) g x( )

–∞ + – – + + 2
∞ + + – – + 2

So, all the roots of the equation are complex.

Obtain the Strum sequence and compute the numbers of real and complex roots of the 
following polynomial equation

 x x x x4 3 22 2 4 1 0+ − − + =  

Ans. The Strum sequence is as follows

x x x x x x x x x x4 3 2 3 2 22 2 4 1 3
2

1 10
7

6
7

23
6

1+ − − + + − − + − + −





, , , ,

x f x0 ( ) f x1( ) f x2 ( ) f x3( ) f x4 ( ) g x( )

–∞ + – + – – 3
∞ + + + + – 1

The numbers of sign changes are given by

g( )−∞ = 3  and g( )∞ = 1 .

So, the equation has two distinct real roots in ( , )−∞ ∞  according to Strum theorem. The 
remaining two roots are complex. 

4.12Example
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152 Numerical Methods

So far, we have discussed the methods which are applicable for both transcendental 
equations as well as for the polynomial Eq. (4.24).

Polynomial equations have a simple structure and are easy to examine. So, many methods 
have been developed especially for the solutions of polynomial equations with the following 
advantages

i) Less computational efforts are required
ii) Quadratic factors can be extracted (which is helpful for complex roots)
iii) All the roots can be obtained at a time
iv) Divergence can be avoided, etc.

In this section, we will discuss following important methods to compute the roots of the 
polynomial equations. 

i) Birge–Vieta (or) Horner Method (extract linear factor from polynomial)
ii) Lin–Bairstow Method (extract quadratic factor from polynomial)
iii) Graeffe Root Squaring Method

Note that algorithm used in Birge–Vieta method is Horner algorithm, so some authors called 
this method as Horner method. 

4.6 Birge–Vieta (or) Horner Method 

In this method, we will extract a linear factor ( )x p−  from the polynomial 

P x a x a x a x an
n n

n n( ) = + + ⋅⋅⋅+ +−
−0 1

1
1

x x x x x x x x x x4 3 2 3 2 22 2 4 1 3
2

1 10
7

6
7

23
6

1+ − − + + − − + − + −





, , , ,

To obtain the intervals of real roots, we have used the Intermediate value theorem as 
follows

x –∞ –3 –2 –1 0 1 2 ∞

f x( ) + + + + + – + +

We have 

f f( ) ( )0 1 0<  and f f( ) ( )1 2 0< .

According to intermediate value theorem, the intervals (0, 1) and (1, 2) contain roots of 
the given equation. Note that two real roots are 0.2302926 and 1.3321898. 
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For this, let p0 be an initial approximation for p. If we divide P xn( ) by ( )x p− 0 , then let 
constant R be the remainder and Q xn−1( ) be the quotient.

 P x x p Q x Rn n( ) ( ) ( )= − +−0 1  (4.26)

where Q x b x b x b x bn
n n

n n−
− −

− −= + + ⋅⋅⋅+ +1 0
1

1
2

2 1( ) .

Now, we can use any iterative method to improve the value p0 . Let p be the exact root of the 
equation P xn( ) = 0 , so ( )x p−  is a factor of P xn( ) . Let us apply Newton–Raphson method 
for this purpose

 p p
P p

P p
n

n

1 0
0

0

= −
′
( )

( )
 (4.27)

Now, we will compute P pn( )0  and P pn
′ ( )0  in terms of coefficients of the polynomial 

equation. On comparing the coefficients of like powers of x on both sides of the equation 
(4.26), we get

a b b a
a b b p b a b p
a b b p b a b p

0 0 0 0

1 1 0 0 1 1 0 0

2 2 1 0 2 2 1 0

= =
= − = +
= − = +

⋅⋅⋅
a b b p b a b p

a b b p b a b p

k k k k k k

n n n n n n

= − = +
⋅⋅⋅

= − = +

− −

− − − − − −

1 0 1 0

1 1 2 0 1 1 2 00

1 0 1 0a R b p R a b pn n n n= − = +− −

 (4.28)

Note that these calculations with the help of synthetic division are as follows 

p
a a a a a

p b p b p b p b

b b b b b R

n n

n n

n n

0
0 1 2 1

0 0 0 1 0 2 0 1

0 1 2 1

⋅⋅⋅
⋅⋅⋅

⋅⋅⋅ =

−

− −

−

 (4.29)

It is easy to see from Eq. (4.26) that 

P p Rn( )0 =   (4.30)

On differentiating Eq. (4.26), we have

P x x p Q x Q xn n n
′ = − ′ +− −( ) ( ) ( ) ( )0 1 1

P p Q pn n
′ = −( ) ( )0 1 0
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154 Numerical Methods

As we compute the P pn( )0  by Eqs. (4.28), on a similar pattern the Q pn−1 0( ) can be computed 
as follows

p
b b b b

p c p c p c

c c c c Q p P

n

n

n n n

0
0 1 2 1

0 0 0 1 0 2

0 1 2 1 1 0

⋅⋅⋅
⋅⋅⋅

⋅⋅⋅ = = ′

−

−

− − ( ) (( )p0

 (4.31)

The algorithms (4.29) and (4.31) can be clubbed together to produce the following algorithm

p
a a a a a

p b p b p b p b

p
b b b b b

n n

n n

n n

0
0 1 2 1

0 0 0 1 0 2 0 1

0
0 1 2 1

⋅⋅⋅
⋅⋅⋅

⋅⋅⋅ =

−

− −

− PP p
p c p c p c

c c c c P p

n

n

n n

( )

( )

0

0 0 0 1 0 2

0 1 2 1 0

⋅⋅⋅

⋅⋅⋅ = ′

−

−

 (4.32)

The Newton–Raphson method (4.27) is given by 

p p
P p

P p
p

b
c

n

n

n

n
1 0

0

0

0
1

= −
′

= −
−

( )

( )
 (4.33)

Similarly, we can compute other iterations as follows

p p
b

ck k
n

n
+

−

= −1
1

, k = 0 1 2, , ,...  (4.34)

It is known as Birge–Vieta method. 

Compute the root of equation x x3 4 9 0− − =  using Birge–Vieta method, starting with an 
initial approximation, p0 2= .

Ans. The iterations of the Birge–Vieta method (4.34) are computed as follows 

First Approximation
The synthetic division table (4.32) for the given equation with initial approximation 
p0 2=  is given by

4.13Example
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2 1 0 4 9
2 4 0

2 1 2 0 9
2 8

1 4 8

3

2

− −

− =

=

b

c

On using Birge–Vieta method (4.34) with k = 0 and n = 3, we have

p p
b
c1 0

3

2

= −

⇒ p1 2 9
8

3 125= − − =( ) .

Second Approximation

3 125 1 0 4 9
3 125 9 765625 18 017578

3 125 1 3 125 5 765625 9 0175

.
. . .

. . . .

− −

778
3 125 19 53125 42 328

1 6 25 25 296875

3

2

=

=

b

c

. . .

. .

 p p
b
c2 1

3

2

= −

 ⇒ p2 3 125 9 017578
25 296875

2 768530= − =. ( . )
.

.

Third Approximation

2 76853 1 0 4 9
2 76853 7 664758 10 145993

2 76853 1 2 76853 3 6647

.
. . .

. . .

− −

558 1 145993
2 76853 15 329517

1 5 53706 18 994275

3

2

.
. .

. .

=

=

b

c

 
p p

b
c3 2

3

2

= −

 ⇒ p3 2 76853 1 145993
18 994275

2 708196= − =. ( . )
.

.
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4.7 Lin–Bairstow Method 

In this method, we extract a quadratic factor ( )x px q2 + +  from the polynomial 

P x a x a x a x an
n n

n n( ) = + + ⋅⋅⋅+ +−
−0 1

1
1  (4.35)

Let us divide the polynomial (4.35) by a quadratic factor, ( )x px q2 + + . Then, we obtain 
a quotient polynomial Q xn−2 ( )  of degree n – 2, and a remainder term R x S+  which is a 
polynomial of degree one. So, we have

 P x x p x q Q x R x Sn n( ) ( ) ( )= + + + +−
2

2  (4.36)

where Q x b x b x b x bn
n n

n n−
− −

− −= + + ⋅⋅⋅+ +2 0
2

1
3

3 2( ) .

If we want to extract a quadratic factor ( )x px q2 + +  from the polynomial P xn( ) , then the 
remainder term R x S+  must vanish. So, the aim is to find p and q, such that

R p q S p q( , ) ( , )= = 0

Let us solve this system of two simultaneous equations with the help of Newton–
Raphson method. On starting with an initial approximation ( , )p q0 0  for ( , )p q , the next 
approximation is given by 

p p p
q q q

1 0

1 0

= + ∆
= + ∆

where 

Proceeding in a similar manner, the fourth and fifth iterations are 2.706528 and 2.706528, 
respectively. So, approximate root of the equation is 2.706528.

Note: The Birge–Vieta method uses the Newton–Raphson algorithm to compute the root 
of the polynomial equation. The question is why to use Birge–Vieta method (4.34) for 
polynomial equations? In the Newton–Raphson method (4.27), we have to compute the 
differentiation of the function, which is not possible through programming. Also, we have 
to specify the function in the program. While Birge–Vieta method uses only numerical 
computation, so the programming is possible for any general polynomial equations. But, 
Birge–Vieta method can solve polynomial equations only.
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∆ =
−
−

p
S R R S

R S S R
q q

p q p q p q( , )0 0

∆ =
−
−

q
R S S R

R S S R
p p

p q p q p q( , )0 0

 (4.37)

The aim is to evaluate functions R S R S R Sp p q q, , , , ,  in terms of the coefficients of the 
polynomial (4.35). 

On comparing the L.H.S. and R.H.S. in Eq. (4.36), we have

a b b a
a b b p b a b p
a b b p b q b a b p b q

0 0 0 0

1 1 0 1 1 0

2 2 1 0 2 2 1 0

= =
= + = −
= + + = − −

⋅ ⋅⋅ ⋅⋅⋅ ⋅
= + + = − −

⋅ ⋅⋅ ⋅⋅ ⋅
= + +

− − − −

− −

a b b p b q b a b p b q

a R b p b

k k k k k k k k

n n n

1 2 1 2

1 2 −− − − −

− −

= − −
= + = −

3 1 2 3

2 2

q R a b p b q
a S b q S a b q

n n n

n n n n  (4.38)

Consider the constants bn−1  and bn  as follows

b R
b S pb

n

n n

−

−

=
= −
1

1

 (4.39) 

The following recursion formula can be obtained from Eqs. (4.38) and (4.39). 

b
b a
b a pb qb k nk k k k

−

− −

=
=
= − − = ⋅⋅⋅

1

0 0

1 2

0

1 2, , , ,
 (4.40)

Note that all ak ’s are constants for a given polynomial (4.35). But, all bk ’s are dependent on 
p and q (as if we divide the P xn( )  with x px q2 + + , then Q xn−2 ( )  will change according to 
the value of p and q). On differentiating the Eq. (4.40) with respect to the variables p and q, 
we obtain

−∂
∂

= +
∂
∂

+
∂

∂
∂
∂

=
∂
∂

=−
− − −b

p
b p

b
p

q
b

p
b
p

b
p

k
k

k k
1

1 2 0 1 0;
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−∂
∂

= +
∂
∂

+
∂

∂
∂
∂

=
∂
∂

=−
− − −b

q
b p

b
q

q
b

q
b
q

b
q

k
k

k k
2

1 2 0 1 0;  (4.41)

Let us introduce two new constants ck−1  and ck−2 , such that

c
b
p

c
b
qk

k
k

k
− −=

−∂
∂

=
−∂
∂1 2,  (4.42)

Using the expressions (4.42) in Eqs. (4.41), we have

c b pc qck k k k− − − −= − −1 1 2 3

c b pc qck k k k− − − −= − −2 2 3 4

The following recursion operators define the expressions above

c b pc qc k nk k k k= − − = ⋅⋅⋅ −− −1 2 1 2 1, , , ,

c c
b
p p

a pb b− = =
−∂
∂

= −∂
∂

−( ) =1 0
1

1 0 00,  (4.43)

Differentiating the Eqs. (4.39), and using the expressions (4.42), we obtain various partial 
derivatives of R and S as given below

R
b

p
c

R
b

q
c

S
p

b pb c b

p
n

n

q
n

n

p n n n n

=
∂
∂

= −

=
∂
∂

= −

= ∂
∂

+( ) = − +

−
−

−
−

− − −

1
2

1
3

1 1 11 2

1 2 3

−

= ∂
∂

+( ) = − −

−

− − −

pc

S
q

b pb c pc

n

q n n n n

From Eqs. (4.37 and 4.39) and the above expressions, we have

∆ =
−
−

=
−

− −
− − −

− − −

p
S R R S

R S S R
b c b c

c c c
q q

p q p q p q

n n n n

n n n( , )
(

0 0

1 2 3

2
2

3 1 bbn−1)

∆ =
−
−

=
− −

−
− − − −

− −

q
R S S R

R S S R
b c b c b
c c

p p

p q p q p q

n n n n n

n n( , )

( )

0 0

2 1 1 1

2
2

33 1 1( )c bn n− −−
 (4.44)
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On using these values, we can find the next approximations for p and q as follows

p p p
q q q

1 0

1 0

= + ∆
= + ∆  (4.45)

The constants bi’s and ci’s can be computed from Eqs.(4.40) and Eqs.(4.43) respectively. 
These constants are used to compute the Δp and Δq from Eqs.(4.44). Then, we can use Eqs.
(4.45) to get the improved values of p and q. The computations in Eqs.(4.40) and Eqs.(4.43) 
can be summarized in following table, starting with initial approximation (p0, q0).

−
−

− − −
− −

−
−

−

−

p
q

a a a a
p b p b p b

q b q b

p
q

b b b

n

n

n

0

0

0 1 2

0 0 0 1 0 1

0 0 0 2

0

0

0 1 2

...

.... b
p c p c p c

q c q c

c c c c

n

n

n

n

− − −
− −

−

−

0 0 0 1 0 1

0 0 0 2

0 1 2

Extract a quadratic factor with the aid of Lin–Bairstow method from the quartic 
equation x x x4 215 10 24 0− − + =  and hence determine all the roots. Start with an initial 
approximation, p q= =1 2, .

Ans. The coefficients for the equation x x x4 215 10 24 0− − + =  are as follows

 a a a a a0 1 2 3 41 0 15 10 24= = = − = − =, , , ,

First Iteration
To apply the Lin–Bairstow method, we will compute the constants bi’s and ci’s from the 
recursion formulas (4.40) and (4.43).

 

b c
b c a
b a pb qb k n
c b pc

k k k k

k k k

− −

− −

−

= =
= =
= − − =
= − −

1 1

0 0 0

1 2

1

0

1 2, , , ...,
qqc k nk− = −2 1 2 1, , , ...,

4.14Example
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These recursion formulas are implemented in the following table. 

−
−

− −
− −

−

−
−

= − = − = = =
−

1
2

1 0 15 10 24
1 1 16 8

2 2 32

1
2

1 1 16 8 48
1 2 1

0 1 2 3 4b b b b b
66

2 4

1 2 16 280 1 2 3

−

= − = − = =c c c c

From the Eqs. (4.44), we get

∆ =
−

− −
= − − −

−
− − −

− − − −

p
b c b c

c c c b
n n n n

n n n n

1 2 3

2
2

3 1 1

8 16 48 2
16( )
( ) ( )

( )22 2 28 8
32

296
0 108108

+ −
= − = −

( )
.

∆ =
− −

− −
= − −− − − −

− − − −

q
b c b c b
c c c b
n n n n n

n n n n

2 1 1 1

2
2

3 1 1

48 16 8 2( )
( )

( ) ( 88 8
296

3 135135− = −) .

The next approximations (4.45) for p and q are given by

p p p
q q q

1 0

1 0

1 0 108108 0 891892
2 3 135135 1 135135

= + ∆ = − =
= + ∆ = − = −

. .

. .

Second Iteration
The following table provides the values of constants bi ’s and ci ’s. 

−
− −

− −
0 891892

1 135135

1 0 15 10 24
0 891892 0 795471 11 656488 0 57

.
.

. . . . 44441
1 135135 1 012418 14 835526

0 891892
1 135135

1 0 890

. . .

.
.

.

− −

−
= −b 11892 13 069394 0 644070 8 590033

0 891892 1 5909
1 2 3 4= − = = =

−
b b b b. . .

. . 443 9 225121
1 135135 2 024836

1 1 783784 10 343317 70 1 2

.
. .

. .

−

= − = − =c c c ..844355 3= c
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The values of Δp and Δq are given by

∆ =
−

− −

= −

− − −

− − − −

p
b c b c

c c c b
n n n n

n n n n

1 2 3

2
2

3 1 1

0 644070 10 343
( )

( . )( . 3317 8 590033 1 783784
10 343317 1 783784 7 84432

) ( . )( . )
( . ) ( . )( .

− −
− + 555 0 644070
8 660943

119 827960
0 072278

−

= =

. )
.
.

.

∆ =
− −

− −

=

− − − −

− − − −

q
b c b c b
c c c b
n n n n n

n n n n

2 1 1 1

2
2

3 1 1

8 590033

( )
( )

( . )(−− − −

= −

10 343317 0 644070 7 844355 0 644070
119 827960

93 4

. ) ( . )( . . )
.

. 886922
119 827960

0 780176
.

.= −

On using these values, we can find the next approximations for p and q as follows

p p p
q q q

1 0

1 0

0 891892 072278 0 964170
1 135135 0 780

= + ∆ = + =
= + ∆ = − −

. . .
. . 1176 1 915311= − .

Similarly, the third iteration of Lin–Bairstow method provides the following results. 

b b b b
c

1 2 3 40 964170 12 155065 0 127136 0 841849= − = − = − =. , . , . , .      

11 2 31 928340 8 380506 4 259725= − = − =. , . , .     c c

∆ ∆p q
p q

    
    

= = −
= ≈ = − ≈ −

0 034169 0 082567
0 998339 1 1 997878

. , .
. , . 22

So, the polynomial x x2 0 998339 1 997878+ . .−  is the required quadratic factor. Note that the 
exact factor is the polynomial x x2 2+ − . On dividing the polynomial x x x4 215 10 24− − +  
by this factor, we get

x x x x x x x x x x x4 2 2 215 10 24 2 12 1 2 3 4− − + = −( ) − −( ) = −( ) +( ) +( ) −( )+  

Hence, roots are 1, –2, –3 and 4.

4.8 Graeffe Root Squaring Method 

Graeffe root squaring method computes all the roots (real or complex) of the real coefficients 
polynomial equation. In this method, we construct the new equation, whose roots are 
square of the roots of the given equation. The process of root squaring is repeated till certain 
number. Consider a polynomial equation.
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a x a x a x an n
n n0 1

1
1 0+ + + + =−

−...  (4.46)

with roots α α α α1 2 3, , ,..., n . Now, we will construct the equation with the roots 
− − − −α α α α1

2
2

2
3

2 2, , ,..., n . To separate the even and odd powers of x, rewrite the equation 
(4.46) as follows 

a x a x a x a xn n n n
0 2

2
1

1
3

3+ + = − + +( )− − −... ...

On squaring both sides and simplifying the resulting equation, we get

a x a x a x a xn n n n
0 2

2 2

1
1

3
3 2

+ +( ) = + +( )− − −... ...

a x a a a x a a a a a xn n n
0

2 2
1

2
0 2

2 2
2

2
1 3 0 4

2 42 2 2

1

− −( ) + − +( ) +

+ −

− − ...

... ( )nn
n n n

n
na a a x a−

− −−( ) + − =1
1

2
2

2 2 22 1 0( )

By using the expression y x= − 2  in the above equation, we have

b y b y b y bn n
n n0 1

1
1 0+ + + + =−

−...  (4.47)

where

b a0 0
2=

b a a a1 1
2

0 22= −

b a a a a a2 2
2

1 3 0 42 2= − +

⋅⋅⋅

b a a a a ak k k k k k= − + −− + − +
2

1 1 2 22 2 ... , till coefficients are available for cross product

⋅⋅⋅

b a a an n n n− − −= −1 1
2

22

b an n= 2  (4.48)

This new equation in y has roots − − − −α α α α1
2

2
2

3
2 2, , ,..., n . Equation (4.46) is converted 

into Eq. (4.47), such that roots of Eq. (4.47) are squares (in magnitude) of the roots of 
Eq. (4.46). Similarly, we can convert the Eq. (4.47) into a new equation with roots 
− − − −α α α α1

2
2

2
3

2 22 2 2 2

, , ,..., n . This root squaring process is repeated sufficient number of 
times say m-times. Let the final equation be

A z A z A z An n
n n0 1

1
1 0+ + + + =−

−...  (4.49)

So, the roots of this equation are − − − −α α α α1
2

2
2

3
2 2m m m m

n, , ,..., . 
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Let β αi i

m

i n= − =2 1 2; , ,..., .

If the roots α α α α1 2 3, , ,..., n  of Eq. (4.46) differ in magnitude, then there is a large difference 
in the magnitude of the roots β β β β1 2 3, , ,..., n . From Eq. (4.49), we have 

−
=

=
∑A

A i
i

n
1

0
1

1

β β

A
A i j

j

n

i

n
2

0 1
1

1
2=

==
∑∑ β β β β

−
=

===
∑∑∑A

A i
k

n

j k
j

n

i

n
3

0 11
1

1
2 3β β β β β β

⋅⋅⋅

−( ) =1
0

1 2
n n

n

A
A

β β β...

From these equations, we can easily obtain the following results

βi
i

i

A
A

i n=
−

=
−1

1 2; , ,...,

We can use these equations to compute the roots of Eq. (4.46) as follows

 
− = =

−
=

−

α βi i
i

i

m A
A

i n2

1

1 2; , ,...,

⇒ α i
i

i

m A
A

i n2

1

1 2= =
−

; , ,...,

 ln ln ln ; , ,...,α i
m

i iA A i n= −( ) =−
−2 1 21  (4.50)

Convergence of this method is fast if the roots of given equation are sufficiently different in 
magnitude. We can also apply this method to obtain the double roots as well as if the roots are 
complex conjugates. 

Equal Roots
If after a few iterations the magnitude of the coefficient Ak  is nearly half of the square of 
the coefficient Ak  in the previous step, then we can identify that α k  is double root. The 
following procedure can be used to compute this root.

βk
k

k

A
A



−

−1

 and βk
k

k

A
A+

+−
1

1
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Since the root is double root, so β βk k= +1

⇒ β β βk k k
k

k

A
A+

+

−
1

2 1

1

 

Finally, the root is given by the following equation

β αk k
k

k

m A
A

2 2 2 1

1

= +

−

( )
  (4.51)

Complex Roots
In the case of complex roots, the coefficients fluctuate both in magnitude and sign in 
successive steps. Let the complex roots be α α µ ν

k k k
ie k, +

±=1 . The following relations 
determine these roots.

µk
k

k

m A
A

2 2 1

1

( )


+

−

 and 2 1

1

µ νk
m

k
k

k

m
A
A

cos( )  +

−

If the equation has only one complex pair α αk k u i v, + = ±1 , then the sum of the roots is 
given by

α α α α α1 2 1 2
1

0

2+ + ⋅⋅⋅+ + + + ⋅⋅⋅+ =
−

− +k k nu
a

a
 (4.52)

This equation is used to compute the value of variable u. Then, we will compute the value of 
v from the following equation

u v k
2 2 2+ = µ , where µk

k

k

m A
A

2 2 1

1

( )


+

−

 (4.53)

Compute the roots of the quartic equation, x x x4 215 10 24 0− − + =  with the help of 
Graeffe root squaring method.

Ans. The coefficients for the equation x x x4 215 10 24 0− − + =  are as follows

 a a a a a0 1 2 3 41 0 15 10 24= = = − = − =, , , , .

Equations (4.48) provide the values of the coefficients bi ’s as follows 

 b a0 0
2=

 b a a a1 1
2

0 22= −
 b a a a a a2 2

2
1 3 0 42 2= − +

 ⋅⋅⋅

4.15Example
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 b a a a a ak k k k k k= − + −− + − +
2

1 1 2 22 2 ... , till coefficients are available for cross product

 ⋅⋅⋅

 b a a an n n n− − −= −1 1
2

22

 b an n= 2 .

The following table presents the calculations of all the coefficients till the fourth step (i.e., 
m = 4 ). 

m
0 1 0 15 10 24

1 0 225 100 576
30 0 720

48

1 1 30 273 820 576

1 900 74529 67240

− −

00 331776
546 49200 314496

1152

2 1 354 26481 357904 331776

1 125316

− − −

7701243361 128095273216 110075314176
52962 253396032 1757152− − − 00512

663552

3 1 72354 448510881 110523752704 110075314176

1 52351011316 201162010375396161 12215499911774947311616 121165747909445106558976
897021762 15993671206290432 98739952274859098− − − 1112

220150628352

4 1 4338079554 185168559319734081 121167599595000088213504 12116574790945106558976

Now, we will use the coefficients at last step to compute the roots by the Eqs. (4.50) 

ln ln ln ; , , ...,α i
m

i iA A i n= −( ) =−
−2 1 21

The magnitudes of roots are given by 

ln ln( ) ln( ) ( )α1
4 42 4338079554 1 2 0= −( ) = − =− − 22.190697588 1.38691886

 ⇒ = =α1 4 0025 4e1 . 3869186 . 

ln ln( ) ln( )
(

α2
4

4

2 185168559319734081 4338079554
2

= −( )
=

−

− 39.7600043 22.190700)=1.098084
1 . 098084

−
⇒ = =α2 2 9984 3e . 
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ln ln( ) ln( )α3
42 12116759959500088213504 185168559319734081= −− (( )

= −
⇒ = =

−2
1 999

4

3

(
.

50.848876 39.760043)=0.693052
0 . 693052α e 88 2

log log( ) log(α 4
42 12116574790945106558976 1211675995950008= −− 88213504

2 50 8488614

4

)
( .
( )

= − −
⇒ =

− 50.848876)= 0.000001
0 . 000α e 0001 = 0 999999 1. 

The magnitudes of the roots are 1, 2, 3 and 4. After substituting these values with +ve and 
–ve signs in the original equation, we can easily obtain that the exact roots are 4, –3, –2, 1

Use Graeffe root squaring method to compute the roots of the equation, 
x x x x4 3 24 5 18 10 0− − + − = .

Ans. The coefficients of the given equation are a a a a a0 1 2 3 41 4 5 18 10= = − = − = = −, , , , .

Proceeding in a similar manner as in the previous question, the calculations of all the 
coefficients till the fourth step are presented in the following table. 

m
0 1 4 5 18 10

1 16 25 324 100
10 144 100

20

1 1 26 149 224 100

1 676 22201 5

− − −

−
−

00176 10000
298 11648 29800

200

2 1 378 10753 20376 10000

1 142884 11

− − −

55627009 415181376 100000000
21506 15404256 215060000

20000

3 1

− − −

1121378 100242753 200121376 100000000

1 14732618884 100486095290119009 10000000000000000
200485506

40048565132133376
4858066− − 44752256

14532133378 1000002906

−20048550600000000
200000000

4 1 44266753 20000014532133376 10000000000000000

The following Eqs. (4.50) produce the roots 

 ln ln ln ; , , ...,α i
m

i iA A i n= −( ) =−
−2 1 21
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The magnitudes of the roots are given by 

 ln ln( ) ln( ) ( )α1
4 42 1 2 0= −( ) = − =− −14532133378 23.399628 1.462477

  ⇒ = =α1 4 3166386e1 . 462477 . , exact root up to seven decimal places is 4.31662479

 ln ln( ) ln( )
(

α2
4

4

2
2

= −( )
=

−

−

10000029064266753 14532133378
36.8413364 23.399628)=0.8401085−

  ⇒ = =α2 2 3166183e0.8401085 . , exact root up to seven decimal places is –2.31662479

It is easy to see that the magnitude of the coefficient A3  is nearly half of the square of the 
coefficient A3  in the previous step, so we can identify that α3  is double root. To compute 
this root, we can use Eq. (4.51) as follows

 α3
2 2 4

2

4( )


A
A

 α3
2 2 4

2

4 10000000000000000( )


A
A

= =
10000029064266753

0.9999971

 α3 = 1

The absolute values of the roots are1, 1, 2.3166183 and 4.3166386, while the exact roots 
are 1, 1, –2.3166183 and 4.3166386

Perform four iterations of Graeffe root squaring method to compute all the roots of the 
following equation x x x x4 3 23 5 2 31 0+ − + + =

The following table presents all the coefficients.

m
0 1 3 5 2 31

1 9 25 4 961
10 12 310

62

1 1 19 75 314 961
1 361 5625 98596

−

−

923521
−− − −

− −

150
1922

2 1 211 45554
1

11932 144150

4385 923521
44521 19228225 22075166916 852891037441

19223788 8099279170
1847042

5329

8770

3 1 11 40299055 10174446086 852891037441
2839930681 162401383389301 225 103519353156920719396 727423121747185263828481

80598110− −11084412812738052 68741405653683836510
1705782074882

27593

−

4 1 332571 541306803229855 34777947503236882886 7274231217471852633828481

4.17Example
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168 Numerical Methods

In successive steps, the coefficient A2 fluctuates both in magnitude and sign. So, we can 
easily identify complex roots. First, we will determine the real roots A1 and A4 as follows

 ln ln( ) ln( ) ( )α1
4 42 1 2 0= −( ) = − =− −2759332571 21.738255 1.358641

 ⇒ = =α1 3 890902e1 . 358641 . , exact root up to seven decimal places is –3.8908844

 ln ln( ) ln(α 4
42= −− 727423121747185263828481 347779475032368828886

54.943795 44.995515)=0.6217675
)

(
( )

= −−2 4

 ⇒ = =α2 1 862217e0.6217675 . .

The exact roots are given by

 α α1 43 890902= − = −. and 1.862217.

The equation has only one complex pair α αk k u i v, + = ±1 . The sum of the roots is given by

α α1 42 3
1

3

1 376560

+ + = − = −

⇒ =

u

u .
Now, we will compute the value of v from Eq. (4.53) as follows

 µ2
2 2 3

1

4( )


A
A

= 34777947503236882886
2759332571

⇒ = −( )
=

−

−

ln ln( ) ln( )µ2
5

5

2
2

34777947503236882886 2759332571
44.9995515 21.738255 0.726789−( ) =

 µ2 2 0684282= .

By using u v2 2
2

2+ = µ , we get

 v = =2.3834778 1 5438516.

Hence, complex pair of roots is α αk k u i v i, . .+ = ± = ±1 1 376560 1 5438516
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Table 4.2 Methods for Solutions of the Systems of Nonlinear Equations

Method Formulation Convergence Rate of 
convergence

Initial 
approximations 

required

Breadth of 
application

Programming

Fixed 
Point 

x x x x

x x x

k k k
n

k

k k k

1
1

1 1 2

2
1

2 1 2

( ) ( ) ( ) ( )

( ) ( ) ( )

( , , , )

( , ,

+

+

= ⋅ ⋅⋅

= ⋅ ⋅

φ
φ ⋅⋅

⋅⋅⋅
= ⋅ ⋅⋅+

, )

( , , , ).

( )

( ) ( ) ( ) ( )

x

x x x x

n
k

n
k

n
k k

n
k1

1 2φ

May diverge 1 1 General Easy

Seidel x x x x x

x x

k k k k
n

k

k k

1
1

1 1 2 3

2
1

2 1
1

( ) ( ) ( ) ( ) ( )

( ) ( )

( , , , , )

( ,

+

+ +

= ⋅ ⋅⋅

=

φ
φ xx x x

x x x x

k k
n

k

k k k k

2 3

3
1

3 1
1

2
1

3

( ) ( ) ( )

( ) ( ) ( ) ( )

, , , )

( , ,

⋅ ⋅⋅

= ⋅ ⋅⋅+ + +φ ,, )

( , , ,

( )

( ) ( ) ( ) ( ) ( )

x

x x x x x

n
k

n
k

n
k k k

n
k

⋅⋅⋅
= ⋅ ⋅⋅+ + + +

−
+1

1
1

2
1

3
1

1
1φ ,, ).( )xn

k

May diverge 1 1 General Easy

Newton–
Raphson

X X X x x x x x xk k k k k k k
n

k
n

k T+ = + = + + ⋅ ⋅⋅ + 
1

1 1 2 2δ δ δ δ, , ,

where δ X J F F Xk
k

k= − −1[ ] ( ) and

J F

f

x

f

x

f

x

f

x

f

x

f

x

f

x

k

n

n

n

[ ]

...

...
=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

⋅⋅⋅
∂
∂

∂

1

1

1

2

1

2

1

2

2

2

1

ff

x

f

x
n n

n x x xk k
n
k∂

∂
∂





























⋅⋅⋅2
1 2

...
( , , , )

May diverge 2 1 General Difficult 
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Table 4.3 Methods for the Solutions of the Polynomial Equations

Method Formulation Convergence Rate of 
convergence

Initial 
approximations 

required

Breadth of 
application

Programming

Birge–
Vieta p p

b

ck k
n

n
+

−

= −1
1

, where b
n
 and c

n–1 are given by

p
a a a a a

p b p b p b p b

p
b b b b b

p

k
n n

k k k n k n

k
n n

0 1 2 1

0 1 2 1

0 1 2 1

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅

−

− −

−

kk k k n

n

c p c p c

c c c c

0 1 2

0 1 2 1

⋅ ⋅ ⋅

⋅ ⋅ ⋅
−

−

May Diverge 2 1 Polynomial 
equations 
only

Moderate

Lin–
Bairstow p p p

q q q

p
b c b c

c c ck k

k k

n n n n

n n n+

+

− − −

− − −= + ∆
= + ∆

∆ =
−

− −1

1

1 2 3

2
2

3 1with
( bb

q
b c b c b

c c c b

n

n n n n n

n n n n

−

− − − −

− − − −

∆ =
− −

− −

1

2 1 1 1

2
2

3 1 1

)

( )
( )

where b
i
’s and c

i
’s are as given by

−
−

− − −
− −

−
−

−

−

p

q

a a a a

p b p b p b

q b q b

p

q

b b b

n

n

n

0

0

0 1 2

0 0 0 1 0 1

0 0 0 2

0

0

0 1 2

...

.... b

p c p c p c

q c q c

c c c c

n

n

n

n

− − −
− −

−

−

0 0 0 1 0 1

0 0 0 2

0 1 2

May Diverge 2 1 Extract 
quadratic 
factor from 
Polynomial 
equations, 
so it can 
compute 
complex 
roots also 

Moderate

Graeffe
Root 
Squaring

Create the new equations whose roots are squares 
of the roots of original equations and then use 
these to compute roots of original equations

May Diverge 2 No initial guess 
required

Polynomial 
equations 
only

Moderate
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Exercise 4 

1. Solve the following systems of simultaneous equations with the aid of Fixed-Point method and
Seidel iteration method.

 a) 
4 0

6 2

x y x

xy e yx

+ − =
− + = −−

sin( )

cos( )
Start with initial approximation (x = 0, y = 0)

  Ans. (x = 0.117115, y = –0.351612)

 b) 
3 3

4 1

2x y x

e y x yx

+ + =
+ − + =−

cos( )

sin( )
Start with initial approximation (x = 0, y = 0)

  Ans. (x = –2.70674, y = –3.46802)

 c) 
x y xy y

x y x

2 3

3 2

2 8 3

2 7 0

− − + =
+ − =

,

.
Start with initial approximation (x = 1, y = –1)

  Ans. (x = 1.55244, y = –1.83960)

2. Solve the following systems of equations with the help of Newton–Raphson method

a) cos( )

sin( )

x y xe

y x

y+ − =
− =

0

22
; Start with initial approximation (x = – 5, y = –1) 

Ans. (x = – 5.40668, y = –1.66388)

b) 5 2 0

02 2

y xy x

x y y

− − =
− =

ln( )

tan( )
; Start with initial approximation (x = 1, y = –5) 

Ans. (x = 2.55904, y = –7.95705)

3. Solve the following system of nonlinear equations using Newton–Raphson method starting
with the initial approximation (0, 0). Perform two iterations only.

3 2 16 3 0

2 3 11 0

3 2

3

x y xy y

x y x

+ − + + =
− + =

,

.

  Ans.  First Iteration x y= − = −0 051136 0 187500. .
Second Iteration x y= − = −0 052182 0 191428. .
Third Iteration x y= − = −0 052182 0 191430. .

4. Compute the roots of the following equations, where z is the complex variable
a) z z3 2 3 0+ + =

Ans. (–1, 0 5 1 65831. .± i)

b) i z z3 2 3 0+ + =
Ans. (− +1 00638 0 337588. . i, 1 48412 1 11040. .+ i , − −0 477743 1 44799. . i)

c) z z z z4 3 23 20 4 3 0− + − + =
Ans. (0 0921810 0 383062. .± i  , 1 40782 4 16458. .± i  )
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5. Use Fixed–Point, Seidel iteration and Newton–Raphson methods for the solution of the system

of simultaneous equations 

sin( )

.

x x x

e x x

x x x x

x

1 2 2

1 3

2 3 1 1
2

4 1

3 7 4

6 2 2

2

+ + =

+ − =

− + + = −

−

Ans. (x x x1 2 30 263187 0 149689 0 425235= = =. , . , .  )

6. Find the intervals containing roots of the following equation
  x x x3 211 30 22 0− + − = . 

Also, compute all the roots of the equation with the aid of Birge–Vieta method.

Ans. (1.21433, 2.47977, 7.30590)

7. Find the Strum sequences and obtain the numbers of real and complex roots for the following
algebraic equations. If the root is multiple, then find its multiplicity also.

a) x x3 23 2 0+ + =
Ans. Strum Sequence: [ , , , ]x x x x x3 2 23 2 2 1 1+ + + − + −

(Real =1, Complex =2)

b) x x x3 22 4 1 0− − + =

Ans. Strum Sequence x x x x x x3 2 22 4 1
4
3

4
3

1
32

1− − + − − −





, , ,

(All 3 roots are real)

c) 4 4 4 4 1 04 3 2x x x x+ + + + =

Ans. Strum Sequence: x x x x x x x x x x4 3 2 3 2 21
4

3
4

1
2

1
4

2
3
5

5
12

1+ + + + + + + − − − − − −





, , , ,

(Real =2, Complex =2)

8. Extract a quadratic factor from following polynomial equation with the help of Lin–Bairstow
method (perform only two iterations)

x x x x p q4 3 25 18 38 51 0 2 2− + + + = =, ( , ) ( , )  

Ans.  First Iteration p q= =1 78966 1 81379. .
Second Iteration p q= =1 77840 1 80538. .
Third Iteration p q= =1 77837 1 80536. .

9. Determine all the real roots of the following equations by Birge–Vieta, Lin–Bairstow and Graeffe 
root squaring methods

a) x x x3 23 2 2 0− − + = Ans. (0.585786, –1, 3.41421) 

b) 3 5 2 03x x− + = Ans. (0.457427, 1, –1.45743) 

c) 2 3 5 2 1 04 3 2x x x x+ − − + = Ans. (0.311836, – 0.602027, 1.13557, –2.34538)

10.  Use Graeffe root squaring method to compute the roots of the following polynomial equations.

a) x x3 2 3 0+ + =  Ans. (–1, 0 5 1 6583. .± i)

b) x x x x4 3 22 13 38 24 0− − + − = Ans. (1, 2, 3, –4)

c) x x x4 217 36 20 0− + − = Ans. (1, 2, 2, –5)

d) 4 4 5 4 1 04 3 2x x x x+ + + + = Ans. (− − ±0 5 0 5. , . , i)

e) x x x4 23 5 1 0− − + = Ans. (0.1806, 2.2429, − ±1 2118 0 9999. . i)
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5.1 Introduction 

The systems of linear equations arise in the modeling of many physical and engineering 
problems. The linear system of equations with m equations in n variables x x xn1 2, , ...,  has 
the following form. 

a x a x a x b
a x a x a x b

a x a

n n

n n

m

11 1 12 2 1 1

21 1 22 2 2 2

1 1

+ + ⋅⋅⋅+ =
+ + ⋅⋅⋅+ =

⋅⋅⋅
+ mm mn n mx a x b2 2 + ⋅⋅⋅+ =

(Or), equivalently 

a x b i mi j j
j

n

i
=

∑ = ≤ ≤
1

1;

The matrix form of the system is given by

AX B=

Mathematics is the queen of the sciences.
I have had my results for a long time: but I do not yet know how I am to arrive at them. 

Johann Carl Friedrich Gauss 
(April 30, 1777–February 23, 1855) 

He was a great mathematician having impact on many fields such as algebra, differential 
geometry, number theory, statistics, mechanics, astronomy, and optics. 

Systems of Linear Equations Chapter
5
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where 

A

a a a
a a a

a a a

X

xn

n

m m mn

= ⋅⋅⋅



















=

11 12 1

21 22 2

1 2

1...
...

...

,
xx

x

B

b
b

bn m

2

1

2
⋅⋅⋅



















= ⋅⋅⋅



















,

The matrix A is a coefficient matrix, and vector X is a solution vector. 

If each element of vector B is zero, then the system is called homogeneous system. Otherwise, 
it is a nonhomogeneous system. For any homogeneous system, zero solution is always a 
solution, and it is also known as trivial solution. 

The system of linear equations may have a unique solution, an infinite number of 
solutions, or no solution. Here, we are presenting all these cases with some simple examples. 

Homogeneous System (B is zero vector)

Unique solution (trivial zero solution)

x y
x y
+ =
− =
2 0

3 0  (x = 0, y = 0)

-3

-3

-2

-2

-1

-1 10
x

y

1

2

2

3

3

 x + 2*y = 0
 3*x – y = 0

Infinitely many solutions

x y
x y
+ =
+ =
2 0

3 6 0
 (x = – 2 y, and y is arbitrary) 

-3

-1

-2

-0.5

-1.5

1.5

0.5

-1 10

x

y

2

1

3

    x + 2*y = 0
3*x + 6*y = 0

Fig. 5.1 Homogeneous linear systems
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Nonhomogeneous System (B is non-zero vector)

Unique solution
x y
x y
+ =
− =
2 5

3 1
 (x=1, y=2)

3

1

1 2 30

-1

-1

-2

-3

2 (1, 2)

y

x

x + 2*y = 5
3*x – y = 1

Infinitely many solutions
x y
x y
+ =
+ =
2 3

3 6 9

(x = 3 – 2 y, and y is arbitrary).

-3 -2

0.5

1

1.5

-1 0 1
x

y

2

2

3

2.5

3

    x + 2*y = 3
3*x + 6*y = 9

No solution

x y
x y
+ =
+ =
2 3

3 6 5
. No Solution

-3 -2

0.5

-0.5

1

1.5

-1 1
x

y

2

2

3

2.5

3

    x + 2*y = 3
3*x + 6*y = 5

Fig. 5.2 Nonhomogeneous linear systems

In this chapter, linear systems with unique solutions have been discussed. There are many 
direct and iterative methods for the solutions of such systems. Both types of methods have 
some advantages and disadvantages. It depends on the size and structure of the coefficient 
matrix A, available computer resources, and solution strategies adopted. This chapter deals 
with following direct and iterative methods. 

Direct Methods

1. Cramer Rule 
2. Matrix Inversion Method
3. LU – Decomposition Method, Factorization Method, Triangularization Method 

  i)  Crout Method
  ii)  Doolittle Method 
  iii) Cholesky Method

4. Gauss Elimination Method
5. Gauss–Jordan Method 

Iterative Methods

1. Jacobi Method (or) Method of Simultaneous Displacement
2. Gauss–Seidel Method (or) Liebmann Method (or) Method of Successive 

Displacement
3. Relaxation Methods

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:32:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.006
https://www.cambridge.org/core


176 Numerical Methods

5.2 Cramer Rule 

The linear system of n equations with n variables x x xn1 2, , ...,  has the following form 

a x a x a x b
a x a x a x b

a x a

n n

n n

n

11 1 12 2 1 1

21 1 22 2 2 2

1 1

+ + ⋅⋅⋅+ =
+ + ⋅⋅⋅+ =

⋅⋅⋅
+ nn nn n nx a x b2 2 + ⋅⋅⋅+ =

 (5.1)

The matrix form of the above system is as follows 
AX B=

where 

A

a a a
a a a

a a a

X

xn

n

n n nn

= ⋅⋅⋅



















=

11 12 1

21 22 2

1 2

1...
...

...

, xx

x

B

b
b

bn n

2

1

2⋅⋅⋅



















= ⋅⋅⋅



















,  (5.2)

Let Cij be the cofactor associated with the element aij of the matrix A. Now, multiply the first 
equation with C1j, the second equation with C2j,…, the last equation with Cnj; and add all 
these equations to get the following expression

C a x a x a x C a x a x a x

C
j n n j n n1 11 1 12 2 1 2 21 1 22 2 2+ + ⋅⋅⋅+( )+ + + ⋅⋅⋅+( )

⋅⋅⋅+ nn j n n nn n j j n j na x a x a x C b C b C b1 1 2 2 1 1 2 2+ + ⋅⋅⋅+( ) = + + ⋅⋅⋅+

On collecting the coefficients of the variables x x xn1 2, , ...,  in the above expression, we have 

x a C x a C x a C x a Ci i j
i

n

i i j
i

n

j i j i j
i

n

n in i j1 1
1

2 2
1 1= = =

∑ ∑ ∑+ + ⋅⋅⋅+ + ⋅⋅⋅+
ii

n

i i j
i

n

b C
= =
∑ ∑=

1 1

 (5.3)

The coefficient a Ci k i j
i
k j

n

=
≠

∑
1

 is the expansion of the determinant obtained from matrix A by 

replacing the kth row by the jth row. This determinant is zero as it contains two identical 

rows. Therefore, all the coefficients a Ci k i j
i
k j

n

=
≠

∑
1

 in the L.H.S. vanish except the coefficients of 

xj, i.e., det A a Ci j i j
i

n

=
=
∑

1

. The system (5.3) reduces to the following expression 
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x A b Cj i i j
i

n

det =
=
∑

1

Let the matrix A be non-singular matrix (det A ≠ 0) and det A D= .

⇒ = ==
∑

x
b C

A
D
Dj

i i j
i

n

j1

det
 (5.4)

where Dj = det Aj,  j = 1, 2, …, n.

Matrix Aj is derived from the matrix A by replacing the jth column with the vector  
B = b b bn

T

1 2, , ...,  .

Solve the following system of linear equations with the help of Cramer rule

x x x
x x x
x x x

1 2 3

1 2 3

1 2 3

2 3 15
2 3 15

3 9

− + =
− + =
+ − = −

Ans. 
First, we will compute the following determinants 
 D = det A
and Dj = det Aj ,   j = 1, 2, 3

where Aj is the matrix derived from the matrix A by replacing the jth column with the 
vector B.

D D

D

=
−
−

−
= − =

−
−

− −
= −

=
− −

=

1 2 3
2 1 3
1 1 3

9
15 2 3
15 1 3

9 1 3
18

1 15 3
2 15 3
1 9 3

18

1

2 DD3

1 2 15
2 1 15
1 1 9

27=
−
−

−
= −

Using Eq. (5.4), the solution of system of equations is given by

 x
D
D

x
D
D

x
D
D1

1
2

2
3

32 2 3= = = = − = =; ;

5.1Example
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Use Cramer method to compute the solution of the following system of linear equations

x x x x
x x x x
x x x x

x x x x

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3

2 5
3 2 4 2

2 3 1
3 2 3

+ + − =
+ + + =
− + + =

+ − − 44 5=

Ans. 
The determinants D = det A and Dj = det Aj, j = 1, 2, 3, 4 are given by

D

D D

=

−

−
− −

=

=

−

−
− −

= =

−

1 1 2 1
3 2 1 4
1 2 3 1
1 3 2 3

74

5 1 2 1
2 2 1 4
1 2 3 1
5 3 2 3

74

1 5 2

1 2

11
3 2 1 4
1 1 3 1
1 5 2 3

74

1 1 5 1
3 2 2 4
1 2 1 1
1 3 5 3

74

1 1 2 5
3 2 1 2
1 23 4

− −

=

=

−

−
−

= =
−

D D
33 1

1 3 2 5

74

−

= −

On using these determinant, we get the following solution 

 x
D
D

x
D
D

x
D
D

x
D
D1

1
2

2
3

3
4

41 1 1 1= = = = = = = = −; ; ;

It is worth mentioning here that the calculation of higher order determinants requires 
a large number of arithmetic operations. In the case of floating point arithmetic, each 
arithmetic operation tends to round off error. So, the method produces large round-off 
error for higher order systems. But, this method has some theoretical importance.

5.2Example

5.3 Matrix Inversion Method 

The system (5.1) can be written in the matrix form as follows

AX B=  (5.5)
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where 

A

a a a
a a a

a a a

X

xn

n

n n nn

= ⋅⋅⋅



















=

11 12 1

21 22 2

1 2

1...
...

...

, xx

x

B

b
b

bn n

2

1

2⋅⋅⋅



















= ⋅⋅⋅



















,

Consider that matrix A is a nonsingular matrix (invertible), then A–1 exists. Pre-multiplying 
Eq. (5.5) with A–1, we get 

A A X A B

A A X A B

I X A B
I X A B

X A B

− −

− −

−

−

−

=

( ) =

( ) =
=
=

1 1

1 1

1

1

1  (5.6)

Equation (5.6) provides the solution of the given system (5.1).

Solve the following system of linear equations with matrix inversion method

 
3 1

2 3 4
3 2 6

1 2 3

1 2 3

1 2 3

x x x
x x x
x x x

− + =
+ + =
+ − =

Ans. The system of equations in matrix form is as follows 
 AX B=

where A X
x
x
x

B=
−

−

















=
















=








3 1 1
2 3 1
3 1 2

1
4
6

1

2

3

, ,








The matrix inverse (A–1) of the coefficient matrix A is given by 

 A− = −
−

















1 1
35

7 1 4
7 9 1

7 6 11

5.3Example
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On using equation (5.6), we have

 X A B= = −
−

































=
−













−1 1
35

7 1 4
7 9 1

7 6 11

1
4
6

1
1

1



Therefore, the solution is given by

 x x x1 2 31 1 1= = = −, ,

Use the matrix inversion method to solve the following system of linear equations

 
x x x

x x x
x x x

1 2 3

1 2 3

1 2 3

2 0
2 3 3 1
3 2

− + =
+ − = −
+ − =

Ans. Matrix inverse is given by

 A− =
−

− −
− −

















1 1
7

0 1 3
7 4 5
7 7 7

The solution of the given system is as follows

 X A B= =
−

− −
− −

















−
















=












−1 1
7

0 1 3
7 4 5
7 7 7

0
1

2

1
2
3





Use Matrix inversion method to compute the solution of the linear system in Example 5.2.

Ans. 
The system of equations in matrix form is given by 

 AX B=

where A X

x
x
x
x

=

−

−
− −





















=










1 1 2 1
3 2 1 4
1 2 3 1
1 3 2 3

1

2

3

4

,













=





















, B

5
2
1
5

5.4

5.5

Example

Example
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Matrix inverse is given by

 A− =

−
− −

− − −
− −





















1 1
74

37 8 48 39
37 6 38 17
37 2 12 19
0 10 14 16

The solution of the given system is as follows

 X A B= =

−
− −

− − −
− −



















−1 1
74

37 8 48 39
37 6 38 17
37 2 12 19
0 10 14 16























=

−





















5
2
1
5

1
1
1

1

Solve the following system of linear equations with matrix inversion method

 
x x x

x x x
x x x

1 2 3

1 2 3

1 2 3

2 0
2 3 3 1
3 2 1

− + =
+ − = −
+ − = −

Ans. The determinant of matrix A vanishes
 A = 0 

Matrix inverse (A–1) is not possible for singular matrix A. So, we cannot apply matrix 
inversion method for the solution of the given system. 

Note: It is easy to see that the third equation in the system is the addition of the first and 
second equations. So this system has only two independent equations, and one equation 
in the system is redundant. This system consists of two equations in three variables and 
has infinitely many solutions. 

Similarly, if we assume the following system of equations

 
x x x

x x x
x x x

1 2 3

1 2 3

1 2 3

2 0
2 3 3 1
3 2 1

− + =
+ − = −
+ − =

 

The matrix A is a singular matrix. Adding the first and second equations, and comparing 
with the third equation, we obtain – 1 = 1. The system is inconsistent, so no solution exists 
for this system.

5.6Example
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182 Numerical Methods

5.4  LU Decomposition (or) Factorization (or) Triangularization 
Method 

In this method, the coefficient matrix A is factorized into the product of two triangular 
matrices such that one matrix is lower triangular L and the other matrix is upper triangular 
U, i.e.,

A = LU

where L

l
l l

l l ln n nn

=

⋅⋅⋅
⋅⋅⋅

⋅⋅⋅
⋅⋅⋅



















11

21 22

1 2

0 0
0

 and U

u u u
u u

u

n

n

nn

=

⋅⋅⋅
⋅⋅⋅

⋅⋅⋅
⋅⋅⋅



















11 12 1

22 20

0 0

 are lower 

and upper triangular matrices, respectively. The matrices L and U have to be computed, 
such that  

A LU

l
l l

l l l

u u

n n nn

= =

⋅⋅⋅
⋅⋅⋅

⋅⋅⋅
⋅⋅⋅



















⋅⋅11

21 22

1 2

11 120 0
0

⋅⋅
⋅⋅⋅

⋅⋅⋅
⋅⋅⋅



















=

⋅⋅⋅

u
u u

u

l u l u l u

n

n

nn

1

22 2

11 11 11 12 11

0

0 0

11

21 11 21 12 22 22 21 1 22 2

1 11 1 12 2

n

n n

n n n

l u l u l u l u l u

l u l u l u

+ ⋅⋅⋅ +
⋅⋅⋅

+ 222 1 1 2 2⋅⋅⋅ + + ⋅⋅⋅+

















l u l u l un n n n nn nn

 (5.7)

After comparing the elements of both the matrices, we get the following relations

l u l u l u a i j ni j i j in nj i j1 1 2 2 1+ + ⋅⋅⋅+ = ≤ ≤,

where l j iij = >0,  and u i jij = >0,

This set contains n2 equations. But, the total number of variables is (n2 + n) in lower and 
upper triangular matrices. So, we have to predefine n variables for a unique solution. For 
convenience, let us consider

either lii = 1 (or) u i nii = ≤ ≤1 1;

Accordingly, we have following two methods
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5.4.1 Doolittle Method 
l i nii = ≤ ≤1 1;  (5.8)

5.4.2 Crout Method 
u i nii = ≤ ≤1 1;  (5.9)

Here, we will discuss the computation of lower and upper triangular matrices in Crout 
method i.e., we have u i nii = ≤ ≤1 1, . The similar procedure can be used in Doolittle method. 
We have

l u l u l u a i j ni j i j in nj i j1 1 2 2 1+ + ⋅⋅⋅+ = ≤ ≤,

where u i nii = ≤ ≤1 1, ; l j iij = >0, ; and u i jij = >0, . 

From (5.7) and u11 = 1; it is clear that the first columns of matrix L and A are identical. So, 
we have

l a i ni i1 1 1= ≤ ≤,

The first rows of both the matrices in (5.7) produce the first row of matrix U as follows

u11 1=  and u
a
l

j nj
j

1
1

11

2= ≤ ≤,

Now, we will compute second column of matrix L and second row of matrix U as follows

l a l u i ni i i2 2 1 12 2= − ≤ ≤,

u22 1=  and u
a l u

l
j nj

j j
2

2 21 1

22

3=
−

≤ ≤,

In general, we can compute kth column and kth row of matrices L and U, respectively by 
using following equations 

l a l u k i ni k i k
j

k

i j j k= − ≤ ≤
=

−

∑
1

1

,

ukk = 1 and u
a l u

l
k j nk j

k j k m m j
m

k

k k

=
−

+ ≤ ≤=

−

∑
1

1

1,

After computing the matrices L and U, the system of equations (5.5) is given by 

AX = B

LUX = B
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184 Numerical Methods

Let UX = Y, then the above system reduces to

LY = B (5.10)

The system LY = B is the lower triangular system. So, the vector Y can be easily determined by 
using forward substitution. The vector X can be easily computed by using back substitution 
from the following upper triangular system

UX = Y (5.11)

Use Crout and Doolittle methods to calculate the solution of the following system of 
linear equations

 
3 1
2 3 4
3 2 6

1 2 3

1 2 3

1 2 3

x x x
x x x
x x x

− + =
+ + =
+ − =

Ans. 
Crout method (5.9): First, we decompose the coefficient matrix A into the product of 
lower and upper triangular matrices with diagonal elements in upper triangular matrix 
as unity, i.e.

 

3 1 1
2 3 1
3 1 2

0 0
0

11

21 22

31 32 33

−

−

















=
















l
l l
l l l

L
     

1
0 1
0 0 1

12 13

23

11 11 12 11 1

u u
u

l l u l u
U

















=
33

21 21 12 22 21 13 22 23

31 31 12 32 31 13 32 23 33

l l u l l u l u
l l u l l u l u l

+ +
+ + +

















After equating the terms on both sides, we obtain following set of equations 

 

l l u l u
l l u l l u l u
11 11 12 11 13

21 21 12 22 21 13 22 23

3 1 1
2 3 1

= = − =
= + = + =

, ,
, ,

ll l u l l u l u l31 31 12 32 31 13 32 23 333 1 2= + = + + = −, ,

The solution of this system produces the values of lij and uij as follows

First Column: l l l11 21 313 2 3= = =, ,

First Row: u l12 111 1 3= − = −/ /  and u l13 111 1 3= =/ /

5.7Example

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:32:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.006
https://www.cambridge.org/core


Systems of Linear Equations 185

Second Column: l l u22 21 123 11
3

= − =  and l l u32 31 121 2= − =

Second Row: u l u l23 21 13 221 1
11

= −( ) =/

Third Column: l l u l u33 31 13 32 232 35
11

= − − + = −

So, we can easily write the coefficient matrix A in terms of the matrices L and U as follows 

 
3 1 1
2 3 1
3 1 2

3 0 0

2 11
3

0

3 2 35
11

1 1
3

1

−

−

















=

−























−
33

0 1 1
11

0 0 1

























 

The system (5.10) LY = B is given by 

  

 

3 0 0

2 11
3

0

3 2 35
11

1

4

6

1

2

3
−











































=





y

y

y


















 

This system of equations can be rewritten as follows

 

3 0 0 1

2 11
3

0 4

3 2 35
11

6

1 2 3

1 2 3

1 2 3

y y y

y y y

y y y

+ + =

+ + =

+ − =

From the first equation, we get

 y1
1
3

=

On substituting this value in the second equation, we have y2
10
11

= , and from the last 

equationy3 1= − .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:32:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.006
https://www.cambridge.org/core


186 Numerical Methods

On using these values of y1, y2 and y3 in the system (5.11) 
 UX = Y 

we have

 

1 1
3

1
3

0 1 1
11

0 0 1

1
3
1

1

2

3

−













































=

x

x

x

00
11

1−

























From the last equation x3 = –1, using this value in the second equation x2 = 1, and the first 
equation gives x1 = 1. So, the solution is given by

 x x x1 2 31 1 1= = = −, ,

Doolittle method (5.8): First, we decompose the coefficient matrix A in the product 
of lower and upper triangular matrices with diagonal elements in the lower triangular 
matrix as unity. 

 A = LU

 

3 1 1
2 3 1
3 1 2

1 0 0
1 0

1
21

31 32

−

−

















=
















l
l l

u

L
  

111 12 13

22 23

33

0
0 0

u u
u u

u
U

















  

Proceeding in a similar manner as in Crout method, we obtain 

 

3 1 1
2 3 1
3 1 2

1 0 0
2
3

1 0

1 6
11

1

3 1 1

0 11
3

−

−

















=























−
11
3

0 0 35
11
−























First, we solve LY = B by using forward substitution

 

1 0 0
2
3

1 0

1 6
11

1

1

4

6

1

2

3











































=










y

y

y
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The solution is, y y y1 2 31 10
3

35
11

= = =, , . Now, we solve UX = Y by using backward 
substitutions

 

3 1 1

0 11
3

1
3

0 0 35
11

1

1

1

2

3

−

−













































=

x

x

x

00
3
35
11

























On solving this system of equations, final solution is given by
 x1 = x2 = 1 and x3 = –1

Solve the linear system of Example 5.2 with the help of Doolittle method.

Ans. The LU factorization of matrix A is given by

 

A =

−

−
− −





















=

− −





1 1 2 1
3 2 1 4
1 2 3 1
1 3 2 3

1 0 0 0
3 1 0 0
1 3 1 0

1 2 7
8

1



















−
− −

−

−























1 1 2 1
0 1 5 7
0 0 16 19

0 0 0

 

37
8

The solution of the system LY = B using forward substitution is given by

 

1 0 0 0
3 1 0 0
1 3 1 0

1 2 7
8

1

1

2

3

4− −











































=

y
y
y
y

55
2
1
5
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The solution is, y y y y1 2 3 45 13 35 37
8

= = − = =, , , . Now, we will use backward substitution 

to solve the system UX = Y as follows

 

1 1 2 1
0 1 5 7
0 0 16 19

0 0 0

−
− −

−

−




































37
8

1

2

3

4

x
x
x
x







=
−























5
13

35
37
8

The final solution is given by
 x1 = x2 = x3 = 1 and x4 = –1

Solve the following system of linear equations with the help of LU-decomposition method

 

3 3 4
2 2 1

2 3

1 2 3

1 2 3

1 2 3

x x x
x x x

x x x

− + =
− + + = −

+ + =

Ans. Crout method: The coefficient matrix A can be written as the product of lower and 
upper triangular matrices as follows

 

3 3 1
2 2 1

1 1 2

0 0
0

111

21 22

31 32 33

12−
−

















=
















l
l l
l l l

u u113

230 1
0 0 1

u
















After equating the terms on both sides, we obtain

 

l l u l u
l l u l l u l u
11 11 12 11 13

21 21 12 22 21 13 22 23

3 3 1
2 2

= = − =
= − + = + =

, ,
, , 11

1 1 231 31 12 32 31 13 32 23 33l l u l l u l u l= + = + + =, ,

The solution of these equations is as follows

 l u u11 12 133 1 1
3

= = − =, ,

 l l21 222 0= − =,  

Since the element l22 0= , so we cannot solve the equation l u l u21 13 22 23 1+ =  for the variable 
u23.
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The method fails as the element l22 = 0 is zero. 

Similarly, in Doolittle method, the element u22 = 0 is zero, so method fails again. 

Note: Rather, the system has a unique solution x1 = 1, x2 = 0, x3 = 1, but LU-decomposition 
method does not work here. The first two rows of the system are a linear multiple of each 
other till the first two terms. Hence, the pivot element (l22and u22) becomes zero and the 
method fails. The solution can be obtained by interchanging any of first two rows with the 
third row. 

We will see that the other direct methods like Gauss elimination and Gauss–Jordan also fail 
to render solution without pivoting (interchange of rows), as the pivot element becomes zero. 

So far, we have discussed the LU decomposition method for a general coefficient matrix, 
but if the coefficient matrix A is a positive definite symmetric matrix, then the method 
becomes simpler and is known as a Cholesky method. 

A square matrix A is a positive definite symmetric matrix if it is symmetric and XTAX > 0 
for each nonzero column vector X.

Prove that matrix A =
−

−
















3 1 1
1 3 1

1 1 2
 is positive definite symmetric matrix.

Ans: Let nonzero vector be X
a
b
c

=















. Then, we have

X AX a b c
a
b
c

a b c
a b

T =  

−
−

































=  

−

3 1 1
1 3 1

1 1 2

3 ++
− + +

+ +

















= − + − + + + + +

=

c
a b c

a b c

a ab ac ab b bc ac bc c

a

3
2

3 3 22 2 2

22 2 2 2 2 2 2 2

2 2

2 2 2+ −( ) + + +( ) + + +( ) + +

= −( ) + +( ) + +

b ab a c ac b c bc a b

a b a c b cc a b( ) + +2 2 2

which is always positive for each nonzero vector X. The matrix A is symmetric matrix and 
XTAX > 0 for each nonzero X.

So, the matrix A is positive definite symmetric matrix.

5.10Example
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190 Numerical Methods

A symmetric matrix A is positive definite symmetric matrix, if any one of the following 
properties holds

1. All its eigen values are positive
2. All its leading principal minors are positive
3. aii > 0 and aii > aij

j i≠
∑  for each i

4. All pivots are positive

5.4.3 Cholesky Method 
In case of positive definite symmetric matrix A, there exists a unique decomposition of 
matrix A, known as Cholesky decomposition 

A=LLT (5.12)
where L is a lower triangular matrix and LT is its transpose. 
Therefore, the system AX = B can be written as follows 

LLTX = B
Let LTX = Y, then 

LY = B (5.13)
First we compute vector Y using forward substitution from Eq. (5.13) and then compute 
vector X from the equation 

LT X = Y (5.14) 
The matrix A can also be decomposed as A=UUT, where U is an upper triangular matrix.

Show that the matrix A =
−

−
















2 1 1
1 2 1

1 1 2
 is not positive definite symmetric matrix.

Ans:

For nonzero vector X
a
b
c

=















, we have

 X AX a b a c b cT = −( ) + +( ) + +( )2 2 2

The scalar XTAX can be zero for a, b, c such that a = b = –c. For example X =
−

















1
1
1

.

The matrix A is symmetric, but it does not satisfy XTAX > 0 for each nonzero X.
Hence, the matrix A is not positive definite symmetric matrix.

5.11Example
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Solve the following system of linear equations with the aid of Cholesky method

 

3 2
3 6

2 5

1 2 3

1 2 3

1 2 3

x x x
x x x
x x x

− + =
− + + =

+ + =

Ans. 

The matrix A =
−

−
















3 1 1
1 3 1

1 1 2
 is a positive definite matrix (refer to Example 

(5.10)). Using Eq. (5.12) to decompose the matrix, we get

 A = L LT

where L is a lower triangular matrix and LT is the transpose of L, i.e.

 

3 1 1
1 3 1

1 1 2

0 0
0

11

21 22

31 32 33

11 2−
−

















=
















l
l l
l l l

l l 11 31

22 32

33

0
0 0

l
l l

l

















 

On comparing both sides and solving the resulting equations, we get matrix L as 
follows

 L = −

























3 0 0

3
3

2 6
3

0

3
3

6
3

1

The system AX = B can be written as follows
 LLTX = B 
Let LTX = Y, then LY = B. Compute vector Y from the equation LY = B. 

 

3 0 0

3
3

2 6
3

0

3
3

6
3

1

2

6

1

2

3

−















































=

y

y

y 55























The solution of this system of equations is given by

 y y y1 2 3
2 3

3
5 6

3
1= = =, ,
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5.5 Gauss Elimination Method 

Gauss elimination method is one of the simplest algorithmic procedures in all known 
direct methods with a minimum number of arithmetic operations and hence most widely 
used direct method. Before we discuss this method; it is necessary to have knowledge of 
elementary row operations described as follows

Elementary Row Operations
Let us denote the ith equation of the system (5.1) with the symbol, R i ni ; 1 ≤ ≤ . The solution 
of a system of Eqs. (5.1) remains unaltered, if we perform the following row operations with 
the equations.

i) The interchange of any two equations, R Ri j↔ .
ii) The multiplication of any equation by a nonzero constant, R kR ki i→ ≠; 0 .
iii) The addition of an equation with the scalar multiple of another equation 

R R kRi i j→ + . 

These operations are known as elementary row operations. These elementary row operations 
are used in Gauss Elimination method. An algorithmic overview of the method is as follows

Let us rewrite the system (5.1) into the augmented matrix form [A:B] as follows

A B

a a a a b
a a a a b
a a a a

n

n

n:

...

...

...[ ] =

11 12 13 1 1

21 22 23 2 2

31 32 33 3





 bb

a a a a bn n n nn n

3

1 2 3

 

...























 (5.15)

On computing the vector X from the equation LT X = Y, we have

 

3 3
3

3
3

0 2 6
3

6
3

0 0 1

2 3
1

2

3

−













































=

x

x

x

33
5 6

3

1

























On solving this system of equations by back substitution, we get the following solution

 x x x1 2 31 2 1= = =, ,
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Systems of Linear Equations 193

In Gauss Elimination method, the solution of system (5.1) is obtained in two phases: In the 
first phase, the system of linear equations is converted into an equivalent upper triangular 
system with the aid of elementary row operations. In the second phase, the solution is 
obtained by back substitutions. 

First Phase (Conversion to upper triangular form)
In the first phase, we will convert the augmented matrix [A:B] into the upper triangular 
matrix by applying elementary row operations. 

We use the first equation to vanish the coefficients of x1 from the remaining equations 

by applying the elementary row operations, R R
a
a

R R R
a
a

R2 2
21

11
1 3 3

31

11
1→ − → − ⋅⋅⋅, , , 

R R
a
a

Rn n
n→ − 1

11
1 on the augmented matrix to get following row-equivalent matrix

A B

a a a a b
a a a b
a a a b

n

n

n:

...
...
...[ ]







 

11 12 13 1 1

22 23 2 2

32 33 3 3

0
0

00 2 3a a a bn n nn n... 























At this step, the element a11 is pivot element and a11 ≠ 0. 

Note that, the elements in last (n – 1) rows of augmented matrix are changed due to 
operations applied on these elements. But we can continue with the same notions without 
any loss of generality. 

Similarly, we use the second equation (a22 is pivot element and a22 ≠ 0) to vanish the 
coefficients of x2 from the equations below the second equation by applying the elementary 

row operations R R
a
a

R R R
a
a

R R R
a
a

Rn n
n

3 3
32

22
2 4 4

42

22
2

2

22
2→ − → − ⋅⋅⋅ → −, , ,  on the augmented 

matrix to get following row-equivalent matrix

A B

a a a a b
a a a b

a a b

n

n

n:

...

...
...[ ]







 

11 12 13 1 1

22 23 2 2

33 3 3

0
0 0

0 0 aa a bn nn n3 ... 
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194 Numerical Methods

On continuing in a similar manner by using 3rd, 4th,…, (n – 1)th equations, we will vanish all 
the lower triangular elements to obtain the following upper triangular matrix

A B

a a a a b
a a a b

a a b

a

n

n

n

nn

:[ ]

 

 

 

 

 

11 12 13 1 1

22 23 2 2

33 3 3

0
0 0

0 0 0 bbn























In algebraic form, this system can be written as follows 

a x a x a x a x a x b
a x a x a

n n n n11 1 12 2 13 2 1 1 1 1 1

22 2 23 3 2

+ + +⋅⋅⋅ + + =
+ + ⋅⋅⋅ +

− −

nn n n n

n n n n n n n

nn n n

x a x b

a x a x b
a x b

− −

− − − − −

+ =

+ =
=

1 1 2 2

1 1 1 1 1

   

 (5.16)

We have converted the augmented matrix in the upper triangular matrix by applying 
elementary row operations. The solution of system (5.1) remains unaltered on performing 
the elementary row operations. Therefore, the solution of the system (5.16) is a solution of 
the system (5.1). 

Second Phase (Obtain the solution from upper triangular form using back substitutions)
In the second phase, we will compute the solution from the upper triangular system (5.16) 
as follows: From last equation of system (5.16), we can easily compute the variable xn as 
follows

x
b
an

n

nn

=

On using the value of xn in second last equation, we have 

x
a

b a xn
n n

n n n n−
− −

− −= −( )1
1 1

1 1
1

Similarly, the remaining equations of the system (5.16) produce all other xi’s as follows

x
a

b a x i n ni
ii

i ij j
j i

n

= −






= − −

= +
∑1 1 2 1

1

, ,...,  (5.17)
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Use Gauss elimination method to compute the solution of the following system of linear 
equations

 
x x x
x x x

x x x

1 2 3

1 2 3

1 2 3

2 5
3 2 8

2 3 0

+ + =
+ + =

− + =

Ans. The associated augmented matrix is as follows

 A B:  =
−

















1 1 2 5
3 2 1 8
1 2 3 0

We use the first equation to eliminate x1 from the remaining equations by applying the 
elementary row operations R R R2 2 13→ −  and R R R3 3 1→ −  on the augmented matrix. We 
get following row-equivalent matrix

 A B: ~  − − −
− −

















1 1 2 5
0 1 5 7
0 3 1 5

Similarly, on applying R R R3 3 23→ −  to eliminate x2 from 3rd equation, we obtain an 
equivalent upper triangular system

 A B: ~  − − −
















1 1 2 5
0 1 5 7
0 0 16 16

Equivalently, the system of linear equations in algebraic form is given by 

 
x x x

x x
x

1 2 3

2 3

3

2 5
5 7

16 16

+ + =
− − = −

=

Now, we will make use of back substitutions to find the solution. From the last equation, 
we get 
 x3 = 1 
On using the value of x3 in the second last equation, we deduce
 x2 = 2 
Similarly, the value of x1 = 1 is obtained from back substitution in the first equation. The 
final solution is as follows
 x1 = 1, x2 = 2, x3 = 1 

5.13Example
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196 Numerical Methods

Use Gauss elimination method to compute the solution of the following system of linear 
equations

 

x x x x
x x x x
x x x x

x x x x

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3

2 5
3 2 4 2

2 3 1
3 2 3

+ + − =
+ + + =
− + + =

+ − − 44 5=

Ans. The associated augmented matrix is as follows

 A B:  =

−

−
− −





















1 1 2 1 5
3 2 1 4 2
1 2 3 1 1
1 3 2 3 5

 (5.18)

We use the first equation to eliminate x1 from the remaining equations by applying 
the elementary row operations R R R R R R2 2 1 3 3 13→ − → −,  and R R R4 4 1→ −  on the 
augmented matrix to get following row-equivalent matrix

 A B: ~ 

−
− − −
− −

− −





















1 1 2 1 5
0 1 5 7 13
0 3 1 2 4
0 2 4 2 0

 (5.19)

Similarly, applying R R R3 3 23→ −  and R R R4 4 22→ +  to eliminate x2 from the third and 
fourth equations, we obtain

 A B: ~ 

−
− − −

−
− −





















1 1 2 1 5
0 1 5 7 13
0 0 16 19 35
0 0 14 12 26

 (5.20)

The elementary row operation R R R4 4 3
7
8

→ +  reduces the system (5.20) into an equivalent 
upper triangular system

 A B: ~ 

−
− − −

−
−























1 1 2 1 5
0 1 5 7 13
0 0 16 19 35

0 0 0 37
8

37
8

 (5.21)

5.14Example
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This system is an upper triangular system. Equivalently, the system of linear equations in 
algebraic form is given by 

 

x x x x
x x x

x x

x

1 2 3 4

2 3 4

3 4

4

2 5
5 7 13

16 19 35
37
8

37
8

+ + − =
− − + = −

− =
− =

Now, we will make use of back substitutions to derive the solution. From the last equation, 
we get 
 x4 = –1 
On using the value of x4 in second last equation, we deduce
 x3 = –1 
Similarly, the values of x2 and x1 are obtained from back substitution in the second and the 
first equation, respectively. The final solution is as follows

 x1 = x2 = x3 = 1, x4 = –1 

Note: It is easy to see that system (5.18) is a 4x4 system, (4 equations in 4 variables). After 
one step, the system (5.19) has last three equations in three variables (x2, x3 and x4). Similarly, 
the system (5.20) has last two equations in two variables (x3 and x4). In the system (5.21), 
we simply have last equation in one variable. Means, in Gauss elimination method, we are 
reducing the order of the system one by one. 

Also, it is worth to notice that the upper triangular system obtained in above example is 
same as obtained in LU decomposition method in Example 5.8. It shows the similarity of 
LU decomposition method with the Gauss Elimination method. 

5.5.1 Operational Counts for Gauss Elimination Method 
Direct methods have fixed numbers of arithmetic operations for the solution of a system 
of linear algebraic equations. The numbers of multiplications and divisions are called as 
operational counts for the method. We have already discussed the rounding and chopping 
in arithmetic operations (+, -, *, /), so the number of arithmetic operations is an important 
criterion in the selection of method. The direct method with a lesser number of arithmetic 
operations is less error-prone as compared to the method with more number of arithmetic 
operations. 

In general, multiplication/ division requires more time on a computational device as 
compared to addition/subtraction. Also, the time required for multiplication and division 
on a computer is approximately equal. So, the operational count (number of multiplications 
and divisions) is an important criterion for the selection of method. In this section, we will 
obtain the operational counts (divisions and multiplications) for Gauss elimination method. 
This problem is dealt in following two phases: first operational counts for reduction to an 
upper-triangular system, and then operational counts for back substitutions.
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198 Numerical Methods

First Phase (Conversion to upper triangular form)
In the first phase, we convert the given augmented matrix in the upper triangular matrix by 
applying elementary row operations. 

In the first step, we use the first equation to vanish the coefficients of x1 
from the remaining equations by applying the elementary row operations 

R R
a
a

R R R
a
a

R R R
a
a

Rn n
n

2 2
21

11
1 3 3

31

11
1

1

11
1→ − → − ⋅⋅⋅ → −,  on the augmented matrix. 

In second step, we use the second equation to vanish the coefficients of x2 from 
the equations below second equation by applying the elementary row operations 

R R
a
a

R R R
a
a

R R R
a
a

Rn n
n

3 3
32

22
2 4 4

42

22
2

2

22
2→ − → − ⋅⋅⋅ → −,  on the resulting augmented matrix 

and so on.

Number of Divisions:
First step (division of a21, a31 ..., an1 by first pivot element a11): n – 1 
Second step (division of a32, a42 ..., an2 by second pivot element a22): n – 2


(n – 1)th step (division of (n – 1)th equation by (n – 1)th pivot element an–1 n–1): 1

Hence, total number of division = ( ) ( )n n n− = −∑ 1 1
2

Number of Multiplications:

First step R R
a
a

R R R
a
a

R R R
a
a

Rn n
n

2 2
21

11
1 3 3

31

11
1

1

11
1→ − → − ⋅⋅⋅ → −







,  

 Second equation: n
 Third equation:  n
 



 nth equation:  n
The total number of multiplication in the first step: n(n–1)
Similarly in the second step, the number of multiplications: (n–1)(n–2)
 



Hence, total numbers of multiplications are n n n n n n n( ) ( ) ( )( )− = − = + −∑∑ 1
3

1 12

Second Phase (Solution from upper triangular system using back substitutions)
In the first phase, we have converted the matrix in the upper triangular matrix by applying 
elementary row operations. In the second phase, we will compute the solution from this 
upper triangular system.
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Number of Divisions:

From the last equation, we compute x
b
an

n

nn

= . Similarly, in the computation of xi form ith 

equation, we have a division with a constant aii. 

x
a

b a x i n ni
ii

i ij j
j i

n

= −






= − −

= +
∑1 1 2 1

1

, ,...,  

Hence, total number of divisions: n 

Number of Multiplications: 

In the computation of xi form ith equation, we have a term a xij j
j i

n

= +
∑

1
 with the numbers of 

multiplications is n–i. Hence total number of multiplications is given by 

( ) ( )n n n− = −∑ 1 1
2

Total number of operational counts in both the phases:
The total number of divisions in both phases:

 
( ) ( )n n n n n− + = +1

2
1

2
The total number of multiplications in both phases: 

 
n n n n n n n n
3

1 1 1
2

1 2 5
6

( )( ) ( ) ( )( )+ − + − = − +

Total number of operational counts:  

 n n n n n n n n( ) ( )( ) ( )+ + − + = + −1
2

1 2 5
6

3 1
3

2

5.5.1 Thomas Algorithm (Tridiagonal Matrix Algorithm)
Tridiagonal system of linear equations contains non-zero elements only at diagonal, lower 
diagonal and upper diagonal of the matrix A. We will come across tridiagonal systems 
in Chapters 15 and 16 during the solutions of the differential equations with boundary 
conditions. These systems have simple structures, and therefore require less computational 
efforts. In this section, the Thomas algorithm also known as Tridiagonal Matrix Algorithm 
(TDMA) will be discussed. 
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200 Numerical Methods

Consider the following tridiagonal system

b c
a b c

a b c

a bn n

1 1

2 2 2

3 3 3

1

0 0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0

...

...

...

...

  

  

− −11 1

1

2

1

0 0 0 0 0
c

a b

x
x

x
x

n

n n

n

n

− −







































...






















=





























−

d
d

d
d

n

n

1

2

1



 (5.22)

This system of equations can be written as follows

 a x b x c x di i i i i i i− ++ + =1 1  i = 1, 2, …, n (5.23)

where a cn1 0= = .

Now, we will apply Thomas algorithm for the solution of system (5.22). It is worthy of 
mentioning here that the Thomas algorithm is simplified form of Gauss elimination method 
for tridiagonal systems. 

It is easy to see from the system (5.22) that the variable xi can be expressed in terms of xi +1 
as follows

 x P x Qi i i i= ++1  (5.24)

and x P x Qi i i i− − −= +1 1 1 (5.25)

On substituting the equation (5.25) in (5.23), we get
a P x Q b x c x di i i i i i i i i− − ++( )+ + =1 1 1

x
c

b a P
x

d a Q
b a Pi

i

i i i
i

i i i

i i i

=
−

+
+

−
+−

+
−

−1
1

1

1

 (5.26)

On comparing equations (5.24) and (5.26), we get

P
c

b a P
Q

d a Q
b a Pi

i

i i i
i

i i i

i i i

=
−

+
=

−
+−

−

−1

1

1

 (5.27)

These recurrence relations can be used to compute the values of the constants P and Q. To 
start recurrence relation, we require initial values P0 and Q0. These values can be computed 
from equation (5.23) for i = 1
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x
c

b
x

d
b1

1

1
2

1

1

=
−

+

On comparing this equation with (5.26) with i =1, we have

P0 = Q0 = 0 (5.28)

So, we can compute all the constants P and Q using equations (5.28) and (5.27). The system 
(5.24) implies the upper triangular system of equations. Now, we will compute the values of 
variables xi using back substitutions. Using the constant cn = 0 in the equation (5.27), we get 
Pn = 0. Using equation (5.24), we have 

xn = Qn (5.29)

Now, we can use equation (5.24) to compute x x xn n− −1 2 1, , ..., . 

Note that the Thomas algorithm requires O(n) operations as compared to O(n3) operations 
of Gauss elimination method. 

Use Thomas algorithm to compute the solution of the following system of linear equations

 

x x
x x x
x x x

x x

1 2

1 2 3

2 3 4

3 4

1
3 2 5
2 3 2

2 3 5

+ =
+ + =
+ + =

− − = −

Ans. The associated matrix form for the tridiagonal system is as follows

 

1 1 0 0
3 2 1 0
0 2 3 1
0 0 2 3

1
5
2

1

2

3

4− −









































=

x
x
x
x −−



















5

On comparing with system (5.22), we have

 

a a a
b b b b
c c c
d d

2 3 4

1 2 3 4

1 2 3

1 2

3 2 2
1 2 3 3
1 1 1
1 5

= = = −
= = = = −
= = =
= =

, ,
, , ,
, ,
, ,, ,d d3 42 5= = −

5.15Example
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Use Thomas algorithm to compute the solution of the following system of linear equations

 

1 5625 3 125 1 3671875
1 125 2 125 0 875 0 03125

2 1

3 2 1

. . .

. . . .
y y

y y y
− = −

− + =
−− + = −1 125 0 3125 2 05468753 2. . .y y

Ans. Comparing with system (5.22), we have

 

a a
b b b
c

2 3

1 2 3

1

0 875 0 3125
0 3125 2 125 1 125

1 5625

= =
= − = − = −
=

. , .
. , . , .

. , cc
d d d

2

1 2 3

1 125
1 3671875 0 03125 2 0546875

=
= − = = −

.
. , . , .

The recurrence relations (5.27) with P0 = Q0 = 0 provide following results

P Q
P Q
P Q

1 1

2 2

3 3

0 500000 0 437500
0 666667 0 208333
0 000000

= =
= =
= =

. .
. .
. 22 312500.

5.16Example

We can easily compute the constants P and Q from equations (5.27) with P0 = Q0 = 0. 

 P
c

b a P
Q

d a Q
b a Pi

i

i i i
i

i i i

i i i

=
−

+
=

−
+−

−

−1

1

1

These recurrence relations provide following results

 

P Q
P Q
P Q
P Q

1 1

2 2

3 3

4 4

1 1
1 2

0 2 1 2
0 1

= − =
= = −
= − =
= =

. .

On using equation (5.29), we get

 x Q4 4 1= =

Now, the equation (5.24) gives following values

 
x P x Q
x P x Q
x P x Q

3 3 4 3

2 2 3 2

1 1 2 1

1
1

2

= + =
= + = −
= + =

The final solution is as follows

 x x x x1 2 3 42 1 1 1= = − = =, , ,
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On using equation (5.29) and (5.24), we get

 y y y1 2 31 3125 1 75 2 3125= = =. , . , .

Note: The tridiagonal system of Example 5.16 is the resultant system of linear equations 
arises during solutions of boundary value problem (BVP) in Example 15.10 of Chapter 15. It 
is worth mentioning here that during solutions of BVPs, we come across tridiagonal systems 
with large number of equations. Therefore, the Thomas algorithm reduces the computational 
efforts and hence the rounding error to great extent. 

5.6 Gauss–Jordan Method 

In this method, the given system of linear equations (5.1) is converted into an equivalent 
diagonal system with the aid of elementary row operations. First, we convert the given 
augmented matrix in the upper triangular matrix by applying elementary row operations as 
in Gauss elimination method 

A B

a a a a b
a a a b

a a b

n

n

n: ~

...

...
...[ ]

11 12 13 1 1

22 23 2 2

33 3 3

0
0 0

0 0







 

00 ... a bnn n























Then, we use the last equation to vanish the coefficients of xn from the remaining equations 
by applying the elementary row operations. Similarly, the elementary row operations are 
used in reverse order to eliminate the coefficients of xn–1, xn–2 and x1 to get the equivalent 
diagonal matrix as follows

A B

a b
a b

a b

a bnn n

:

...

...
...

...

[ ]













 



11 1

22 2

33 3

0 0 0
0 0 0
0 0 0

0 0 0



















We can directly solve this system of get the solutions of system 5.1. 

Rather, the Gauss elimination and Gauss–Jordan Method are similar, but the number of 
operational counts is less in Gauss elimination method. Due to this reason, the Gauss 
elimination method is more popular than Gauss–Jordan and in fact from all other direct 
methods. But Gauss–Jordan method is useful from other points, for example, we use this 
method to compute the inverse of a matrix etc. 
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Use Gauss–Jordan method to compute the solution of the linear system of Example 5.13. 

 
x x x
x x x

x x x

1 2 3

1 2 3

1 2 3

2 5
3 2 8

2 3 0

+ + =
+ + =

− + =

Ans. We have already obtained following upper triangular matrix in Example 5.13

 A B: ~  − − −
















1 1 2 5
0 1 5 7
0 0 16 16

Till these steps, the Gauss Elimination and Gauss–Jordan Methods are same. In the 
Gauss–Jordan Method, this system is reduced further to vanish all other non-diagonal 
entries in the matrix A. We use the third equation to eliminate x3 from the remaining 
equations by applying the following elementary row operations 

 R R R R R R1 1 3 2 2 3
1
8

5
16

→ − → +, and

We get following row-equivalent matrix after these elementary row operations.

 A B: ~  − −
















1 1 0 3
0 1 0 2
0 0 16 16

On applying R R R1 1 2→ +  to eliminate x2 from the first equation, we get

 A B: ~  − −
















1 0 0 1
0 1 0 2
0 0 16 16

We can easily solve these equations to get the following result.

 x x x1 2 3
1
1

1 2
1

2 16
16

1= = = −
−

= = =, ,

5.17Example

Use Gauss–Jordan Method to compute the solution of following system of linear 
equations

5.18Example
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x x x x
x x x x
x x x x

x x x

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3

3 2 5
2 5 3 2 9
3 2 4 6

3 2

− + + =
− + + =
+ + + =

+ − ++ =3 14x

Ans. The associated augmented matrix is given by

 A B:  =

−
−

−





















1 3 2 1 5
2 5 3 2 9
3 1 2 4 6
1 3 2 3 1

On applying the elementary row operations R R R R R R2 2 1 3 3 12 3→ − → −,  and R R R4 4 1→ −  
on the augmented matrix, we get 

 A B:  =

−
− −
− −
− −





















1 3 2 1 5
0 1 1 0 1
0 10 4 1 9
0 6 4 2 4

We implemented R R R3 3 210→ −  R R R4 4 26→ −  to obtain the following reduced system

 A B:  =

−
− −





















1 3 2 1 5
0 1 1 0 1
0 0 6 1 1
0 0 2 2 2

The elementary row operation R R R4 4 3
1
3

→ −  reduces the system into following equivalent 
upper triangular system

 A B:  =

−
− −























1 3 2 1 5
0 1 1 0 1
0 0 6 1 1

0 0 0 5
3

5
3

This matrix is an upper triangular matrix. Now, this system is reduced further to vanish 
all other non-diagonal entries in the matrix A. We use the fourth equation to eliminate x4 
from the remaining equations by applying the following elementary row operations 
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206 Numerical Methods

 R R R R R R R R R1 1 4 2 2 4 3 3 4
3
5

0 3
5

→ − → − → −, , and

We get the following row-equivalent matrix after these elementary row operations.

 A B:  =

−
− −























1 3 2 0 4
0 1 1 0 1
0 0 6 0 0

0 0 0 5
3

5
3

By applying the elementary row operations R R R1 1 3
1
3

→ −  and R R R2 2 3
1
6

→ + , we will 

eliminate x3 from the remaining first and second equations as follows 

 A B:  =

−
−























1 3 0 0 4
0 1 0 0 1
0 0 6 0 0

0 0 0 5
3

5
3

On applying R R R1 1 23→ +  to eliminate x2 from the first equation, we get

 A B:  =
−























1 0 0 0 1
0 1 0 0 1
0 0 6 0 0

0 0 0 5
3

5
3

The solution from this reduced system is as follows

 x x x x1 2 3 41 1 0 1= = − = =, , ,

5.7 Comparison of Direct Methods 

We have discussed various direct methods for the solution of a system of linear equations 
(5.1) without considering round-off error. For each arithmetic operation, there is a chance 
for loss of significant digits. Therefore, these methods may produce erroneous results 
beyond desired accuracy. In the case of small systems (with lesser number of equations, say 
systems of three or four equations), few digits higher arithmetic (than required number of 
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accurate digits) can produce good results. But in the case of large systems, say system with 
20 equations, we have very large numbers of operational counts and loss of significant digits 
may produce an erroneous result. 

In direct methods, once the error is committed, it cannot be recovered by iterations, 
etc. Therefore, the number of operational counts is a major tool for comparison of direct 
methods. We have presented the operational counts for Gauss elimination method only. 
Table 5.1 gives the operational counts for large n.

Table 5.1

Sr. No. Method No. of operational counts for large n
1 Gauss Elimination ≈ n3 3/

2 Gauss Jordan ≈ n3 2/

3 Matrix Inversion ≈ n3

4 Cramer Rule ≈ n3

5 LU-Decomposition (Crout and Doolittle 
methods)

≈ n3 3/

6 Cholesky (only positive definite matrix) ≈ n3 6/

The number of operational counts is minimum in the Gauss elimination and LU decomposition 
methods. In Gauss Elimination method, pivoting can be used to reduce the error. Therefore, 
the Gauss elimination method produces better results as compared to other direct methods for 
large systems. 

5.8 Pivoting Strategies for Gauss Elimination Method 

So far, we have applied direct methods without discussing the round-off error caused due 
to finite digits floating point arithmetic. The round-off error mainly depends on the total 
number of operational counts, and this number is minimum in case of Gauss elimination 
method. Therefore, at this moment, we are presenting Gauss elimination method for 
explanations. In this section, we will discuss partial, scaled and complete pivoting strategies 
to reduce the round-off error. 

Partial Pivoting: At each stage (ith), we make the pivot element (aii) largest in magnitude by 
the elements below pivot element in that column, by simple row conversion. It is to ensure 
that magnitudes of the multipliers are less than 1 for each row. That is, at ith stage, we simply 
want

a a j i i nii j i≥ = + +; , ,...,1 2  (5.30)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:32:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.006
https://www.cambridge.org/core


208 Numerical Methods

Compute the solution of the following system of linear equations with the help of Gauss 
elimination method without pivoting and with partial pivoting. Use only seven significant 
digits rounding arithmetic for computations. 

 

5 42 16 78 0 78 38 0014
0 423 2 3 23 46 53 9783

1 2 3

1 2 3

. . . .

. . . .
x x x
x x x

+ + =
+ + = 33

26 73 1 274 2 45 68 749381 2 3. . . .x x x+ + =

Compare the results with the exact solution, x x x1 2 32 310000 1 420000 2 120000= = =. , . , . .

Ans. 
Without Pivoting
Proceeding in a similar manner as in Example 5.13, we eliminate x1 from the second 
and third equations with the help of the first equation by using seven significant digits 
arithmetic. 

 
5 42 16 78 0 78 38 0014
0 990417 23 39912 51 0125

1 2 3

2 3

. . . .

. . .
x x x

x x
+ + =

+ = 44
81 4805 1 396753 118 66342 3− − = −. . .x x

On eliminating x2 from the third equation, we get 

 

5 42 16 78 0 78 38 0014
0 990417 23 39912 51 0125

1 2 3

2 3

. . . .

. . .
x x x

x x
+ + =

+ = 44
1923 622 4078 0823. .x =

The solution is obtained using back substitutions, and it is given by

 

x
x
x

3

2

1

2 120002
1 419968
2 3101

=
=
=

.
.
.

On comparison with exact result, one can easily see that the error is at seventh, sixth and 
fifth significant digits in the values of variables x3, x2 and x1, respectively. So, we can use 
pivoting to reduce the error. It is only for a system of order three, and we are using 7-digits 
floating points arithmetic. The error increases significantly in the case of a large system.

With Partial Pivoting
In the first column [5.44, 0.423, 26.73] of the given system, the largest element in 
magnitude is 26.73. Therefore, we change the position of the last row to the first row, to 
make pivot element (a11) largest.

5.19Example

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:32:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.006
https://www.cambridge.org/core


Systems of Linear Equations 209

 

26 73 1 274 2 45 68 74938
5 42 16 78 0 78 38 00

1 2 3

1 2 3

. . . .

. . . .
x x x
x x x

+ + =
+ + = 114

0 423 2 3 23 46 53 978331 2 3. . . .x x x+ + =

On applying elementary row operations to eliminate x1 from second and third rows, we 
obtain

 
26 73 1 274 2 45 68 74938
16 52167 0 2832174 24 0

1 2 3

2 3

. . . .
. . .

x x x
x x

+ + =
+ = 6612

2 279839 23 42123 52 890382 3. . .x x+ =

In pivot column [16.52167, 2.279839], the largest element in magnitude is 16.52167. 
There is no need to interchange rows. Now, eliminating x2 from the third row, we get the 
following upper triangular system.

 
26 73 1 274 2 45 68 74938
16 52167 0 2832174 24 0

1 2 3

2 3

. . . .
. . .

x x x
x x

+ + =
+ = 6612

23 38215 49 570163. .x =

We can easily obtain the following solution by using back substitutions.

 
x
x
x

3

2

1

2 120000
1 420000
2 310000

=
=
=

.
.
.

The result is correct up to seven significant digits.

Note: It is not always possible to get the correct result with partial pivoting, especially if the 
variation in the magnitude of elements of matrix A is large. In that case, we can use scaled 
partial pivoting and complete pivoting strategies. We will first discuss these two pivoting 
strategies, and then take examples to show the effectiveness of these strategies. 

Scaled Partial Pivoting: In this pivoting strategy, the pivot element is scaled largest element 
in magnitude in its row.

Consider the largest elements in magnitude for each row in the matrix A are as follows

 S a i ni j n i j= ≤ ≤
≤ ≤

max
1

1

A vector S S S Sn=  1 2, , ...,  is defined using these values. We define following scaled pivot 
vector for first pivot element.

 R
a
S

a
S

a
S

n

n

=












11

1

21

2

1, , ...,  (5.31)
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Solve the following system of linear equations by Gauss elimination method with partial, 
scaled partial and complete pivoting using three significant digits floating points rounding 
arithmetic.

 
x x x

x x x
x x x

1 2 3

1 2 3

1 2 3

2 1
2 100 53
3 200 102

+ + =
− + =
+ + =

Compare the obtained results for each case with the exact solution, x x x1 2 31 1 0 5= = − =, , . .

Ans.
The augmented matrix for the given system of linear equations is as follows

 [ : ]A B = −
















1 1 2 1
2 1 100 53
3 1 200 102

Now, we will use Gauss Elimination method to obtain the solution of the given system 
with all three pivoting strategies as follows. 

With Partial Pivoting 
Since the element 3 is the largest in the first column of augmented matrix [A: B], hence 
interchanging the last and first rows R R1 3↔ , we have

 
3 1 200 102
2 1 100 53
1 1 2 1

−
















 

5.20Example

Let the largest scaled pivot element be a
S

i

i

1 , then ith row is the pivot row. We repeat the 

process for all pivot elements with the vector S. 

Complete Pivoting: At each stage (ith), we select the pivot element that is absolutely largest 
in the pivot row and rows below pivot element in the matrix A by using row as well as 
column conversion. Mathematically, we have

 a a j k i i i nii j k≥ = + +; , , , , ...,1 2  (5.32)
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Systems of Linear Equations 211

On applying the elementary row operations R R R2 2 1
2
3

667→ − =





.  and 

R R R3 3 1
1
3

333→ − =





.  with three significant digits rounding arithmetic, we have

 
3 1 200 102
0 1 67 33 0 15 0
0 0 667 64 6 33 0

− − −
− −

















. . .
. . .

The elementary row operation R R R3 3 2
0 667
1 67

399→ + =





.
.

.  produces the following upper 

triangular matrix.

 

3 1 200 102
0 1 67 33 0 15 0
0 0 77 8 39 0

− − −
− −

















. . .
. .

On using back substitutions, we get 

 

x
x
x

3

2

1

0 501
0 898

0 967

=
= −
=

.
.

.

The result obtained is highly erroneous. The value of the variable x1 is correct up to two 
significant digits; the variable x3 is correct up to one significant digit; while the variable x2 
is incorrect even for the first significant digit. 

With Scaled Partial Pivoting
In the augmented matrix, the attached largest elements for each row in the matrix A are 
as follows 

 [ : ]A B = −
















→
→
→

1 1 2 1
2 1 100 53
3 1 200 102

2
100
200

The vector S S S S=  1 2 3, ,  of the largest elements in magnitude for each row of the matrix 
A is as follows

 S S S S=   =1 2 3 2 100 200, , [ , , ]
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The scaled pivot vector is given by

 R
a
S

a
S

a
S

=












= 





11

1

21

2

31

3

1
2

2
100

3
200

, , , ,

Since the first element in this vector is the largest in magnitude, therefore the first row 
is the pivot row, and interchange of rows is not required. Apply R R R2 2 12→ − ( )  and 
R R R3 3 13→ − ( ) , by using three significant digits rounding arithmetic to get the following 
system.

 [ : ] . . .
. .

A B = −
−

















→
→
→

1 1 2 1
0 3 00 96 0 51 0
0 2 00 194 99 0

2
100
200

On computing scaled pivot vector, we have

 R
a
S

a
S

=












= 





22

2

32

3

3
100

2
200

, ,

Again, there is no need of interchanging the rows. Applying, R R R3 3 2
2
3

667→ − =





. , we 

have 

 [ : ] . . .
.

A B = −
















1 1 2 1
0 3 00 96 0 51 0
0 0 130 65 0

On solving this system, we obtained the following solution by using three significant 
digits arithmetic. 

 
x
x
x

3

2

1

0 500
1 00

1 00

=
= −
=

.
.

.

The result obtained is the exact result. 

With Complete Pivoting
The variables x1, x2, x3 are attached to the first, second and third columns of the augmented 
matrix, respectively. 

 

x x x

A B

1 2 3

1 1 2 1
2 1 100 53
3 1 200 102

[ : ] = −
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The absolutely largest element in the matrix A is 200. So, this element must be the pivot 
element. Interchanging the first and last rows, and then the first and third columns  
(R R1 3↔  and C C1 3↔ ), we have

 

x x x3 2 1

200 1 3 102
100 1 2 53
2 1 1 1

= −
















On applying the row operations R R R2 2 15→ − ( ).  and R R R3 3 101→ − ( ). , we get

 

x x x3 2 1

200 1 3 102
0 1 5 5 2
0 99 97 02

= −
−

















. .
. . .

Since the element –1.5 is absolutely largest element in second and third rows of matrix A, 
so there is no need to interchange the rows. Applying R R R3 3 166→ + ( ). , we obtained the 
following upper triangular matrix

 

x x x3 2 1

200 1 3 102
0 1 5 5 2
0 0 1 30 1 30

= −
















. .
. .

Solving this system of equations, we have

 

x
x
x

1

2

3

1 00
1 00

0 500

=
= −
=

.
.

.

The result obtained is the exact result.

Note: In this example, scaled and complete pivoting strategies are providing exact results, 
while the partial pivoting is producing erroneous results. In general, complete pivoting is 
better than partial and scaled pivoting, and it becomes clear from the following example. In 
case of complete pivoting, we are taking care of complete matrix A for largest element and 
hence the rounding error is minimized.
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Solve the following system of linear equations by Gauss elimination method. Use partial, 
scaled partial and complete pivoting strategies with three significant digits floating points 
rounding arithmetic.

 
3 200 102
2 100 53

5 2 3

1 2 3

1 2 3

1 2 3

x x x
x x x
x x x

+ + =
− + =
+ + = −

Compare the obtained results with exact solutions, x x x1 2 31 1 0 5= = − =, , . .

Ans.
The augmented matrix corresponding to the given system is given by 

 [ : ]A B = −
−

















3 1 200 102
2 1 100 53
1 5 2 3

The results obtained with various pivoting strategies are as follows.

With Partial Pivoting 
The absolutely largest entry in the first column is 3, so no interchange of rows is required. 

Applying R R R2 2 1
2
3

667→ − =





.  and R R R3 3 1
1
3

333→ − =





.  with three significant 

digits rounding arithmetic, we get

 

3 1 200 102
0 1 67 33 0 15 0
0 4 67 64 6 37 0

− − −
− −

















. . .
. . .

Now, the element 4.67 is largest of magnitude, therefore on interchanging the second and 
third rows, we have

 
3 1 200 102
0 4 67 64 6 37 0
0 1 67 33 0 15 0

. . .
. . .

− −
− − −

















Applying R R R3 3 2
1 67
4 67

358→ + =





.

.
. , we have

 

3 1 200 102
0 4 67 64 6 37 0
0 0 56 1 28 2

. . .
. .

− −
− −

















5.21Example
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The solution is given by

 
x
x
x

3

2

1

0 503
0 964

0 833

=
= −
=

.
.

.

With Scaled Partial Pivoting
Consider the augmented matrix with attached absolutely largest elements for each rows. 

 [ : ]A B = −
−

















→
→
→

3 1 200 102
2 1 100 53
1 5 2 3

200
100

5

The scaled pivot vector S S S S=  1 2 3, ,  is as follows

 S S S S=   =1 2 3 200 100 5, , [ , , ]
We define a scaled pivot vector as follows

 R
a
S

a
S

a
S

=












= 





11

1

21

2

31

3

3
200

2
100

1
5

, , , ,

Since the third element in this vector is largest, so after interchanging the first and third 
rows, we have 

 [ : ]A B =
−

−
















→
→
→

1 5 2 3
2 1 100 53
3 1 200 102

5
100
200

Applying R R R2 2 12→ − ( )  and R R R3 3 13→ − ( ) , we have

 [ : ]A B =
−

−
−

















→
→
→

1 5 2 3
0 11 96 59
0 14 194 111

5
100
200

The scaled pivot vector is given by

 R
a
S

a
S

=












= 





22

2

32

3

11
100

14
200

, ,

So, interchange of rows is not required. Applying R R R3 3 2
14
11

1 27→ − =





. , we have 
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 [ : ]
.

A B =
−

−
















→
→
→

1 5 2 3
0 11 96 59
0 0 72 36 1

5
100
200

On solving this system, we get

 

x
x
x

3

2

1

0 501
0 991

0 960

=
= −
=

.
.

.

With Complete Pivoting
The columns of augmented matrix are attached with the variables x1, x2 and x3 as follows 

 

x x x

A B

1 2 3

3 1 200 102
2 1 100 53
1 5 2 3

[ : ] = −
−

















On interchanging the first and third columns, C C1 3↔ , we have

 

x x x

A B

3 2 1

200 1 3 102
100 1 2 53
2 5 1 3

[ : ] = −
−

















The elementary row operations R R R2 2 15→ − ( ).  and R R R3 3 101→ − ( ).  produce the 
following equivalent system

 

x x x3 2 1

200 1 3 102
0 1 5 5 2
0 4 99 97 4 02

= −
−

















. .
. . .

Since the element 4.99 is largest in second and third rows of matrix A, so we have to 
interchange second and third rows. 

 

x x x3 2 1

200 1 3 102
0 4 99 97 4 02
0 1 5 5 2

= −
−

















. . .
. .
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5.9 Iterative Methods 

In direct methods, as a reference example of Gauss elimination method, we have discussed 
the round-off error and some remedies to reduce it. Certain scientific problems produce 
millions of equations, and large numbers of arithmetic computations are involved. The 
direct methods are easy to implement, but round-off error is significant in case of large 
systems. The iterative procedures can be used for solution of such systems. The iterative 
methods may require large numbers of iterations to produce the result with higher accuracy. 
But, once the algorithms for these methods are implemented, these iterations can be easily 
computed with the advent of high-speed computers. 

For more accuracy and lesser computational work, direct and iterative methods can be 
mixed up. First, we can apply the direct method to compute the solution and then further 
improve this solution for more accuracy with an iterative procedure.

However, the iterative procedures are not always converging to the solutions and rate 
of convergence is second important criteria in the applications of these methods. In  
Section 5.13, we will discuss the convergence criteria and see that these methods are not 
convergent for any arbitrary linear system of equations. The coming sections deal with the 
following three iterative methods.

1. Jacobi Method (or) Method of Simultaneous Displacement
2. Gauss–Seidel Method (or) Liebmann Method (or) Method of Successive 

Displacement
3. Successive Over Relaxation Method

On applying R R R3 3 1301→ + ( ). , we get

 

x x x3 2 1

200 1 3 102
0 4 99 97 4 02
0 0 792 790

= −
















. . .
. .

The solution of this system of equations is given by

 

x
x
x

1

2

3

997
1 00

0 500

=
= −
=

.
.

.

Note: The complete pivoting is the best strategy for the direct methods, but its 
programming is very difficult as it involves both rows and columns interchange. The 
columns interchange also involves the changes of attached variables, which is difficult to 
manage in programming. 
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5.10 Jacobi Method (or) Method of Simultaneous Displacement 

The linear system of equations (5.1) can be rewritten as follows

x
a

b a x a x a x

x
a

b a x a x

n n1
11

1 12 2 13 3 1

2
22

2 21 1 23

1

1

= − + + ⋅⋅⋅+ 

= − +

( )

( 33 2

1 1 2 2 1 1
1

+ ⋅⋅⋅+ 

= − + + ⋅⋅⋅+



− −

a x

x
a

b a x a x a x

n n

n
nn

n n n n n n

)

( )





Some initial approximation is required to compute the vector, x x xn1 2, , ..., , and let that 

approximation be x x xn1
0

2
0 0( ) ( ) ( ), , ..., . We use these values in the above expressions to get 

the next approximation x x xn1
1

2
1 1( ) ( ) ( ), , ...,  of the Jacobi method.

x
a

b a x a x a x

x
a

n n1
1

11
1 12 2

0
13 3

0
1

0

2
1

2

1

1

( ) ( ) ( ) ( )

( )

( )= − + + ⋅⋅⋅+ 

=
22

2 21 1
0

23 3
0

2
0

1 1

b a x a x a x

x
a

b a

n n

n
nn

n n

− + + ⋅⋅⋅+ 

= −

( )

(

( ) ( ) ( )

( )



11 1
0

2 2
0

1 1
0x a x a xn n n n

( ) ( ) ( ) )+ + ⋅⋅⋅+



− −  (5.33)

The subscripts and superscripts denote variables and iterations, respectively. For example, 
x3

1 denotes the first iteration of the variable x3. 

Similarly, the first approximation x x xn1
1

2
1 1( ) ( ) ( ), , ...,  is used to compute the second 

iteration of Jacobi method. The process is repeated till the desired accuracy is obtained. 
The (k+1)th iteration can be obtained from kth iteration by the following Jacobi iteration 
formula

x
a

b a x a x a x

x

k k k
n n

k

k

1
1

11
1 12 2 13 3 1

2
1

1( ) ( ) ( ) ( )

( )

( )+

+

= − + + ⋅⋅⋅+ 

== − + + ⋅⋅⋅+ 

=+

1

1

22
2 21 1 23 3 2

1

a
b a x a x a x

x
a

k k
n n

k

n
k

nn

( )( ) ( ) ( )

( )



bb a x a x a x kn n
k

n
k

n n n
k− + + ⋅⋅⋅+



 =− −( ) , , ,...( ) ( ) ( )

1 1 2 2 1 1 0 1 2  (5.34)
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The above Jacobi iteration formula (5.34) can be written as follows

x
a

b a x i n ki
k

ii
i i j j

k

j
j i

n
( ) ( ) ; , , ,...+

=
≠

= −












 ≤ ≤ =∑1

1

1 1 0 1 2  (5.35)

Solve the following system of linear equations using Jacobi iterative procedure

 

3 3
2 4 7

4 4

1 2 3

1 2 3

1 2 3

x x x
x x x
x x x

+ − =
+ + =
− + =

Consider the initial approximation, x x x1
0

2
0

3
00 0 0( ) ( ) ( ), ,= = = . Apply Jacobi method till 

the last two consecutive iterations have difference less than 0.0005.

Ans. To solve the system, first we rewrite the system as follows

 

x x x

x x x

x x x

1 2 3

2 1 3

3 1 2

1
3

3

1
4

7 2

1
4

4

= − +

= − −

= − +

( )

( )

( )

On using the initial approximation, x x x1
0

2
0

3
00 0 0( ) ( ) ( ), ,= = = , we get the first 

approximation of Jacobi method (5.33) as follows 

 

x x x

x x x

x

1
1

2
0

3
0

2
1

1
0

3
0

3
1

1
3

3 1

1
4

7 2 1 75

( ) ( ) ( )

( ) ( ) ( )

(

( )

( ) .

= − + =

= − − =

)) ( ) ( )( )= − + =1
4

4 11
0

2
0x x

The first approximation x x x1
1

2
1

3
11 1 75 1( ) ( ) ( ), . ,= = =  provides the next approximation as 

follows 

 

x x x

x x x

x

1
2

2
1

3
1

2
2

1
1

3
1

3
2

1
3

3 0 75

1
4

7 2 1

( ) ( ) ( )

( ) ( ) ( )

(

( ) .

( )

= − + =

= − − =

)) ( ) ( )( ) .= − + =1
4

4 1 18751
1

2
1x x
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Compute seven iterations of the Jacobi method for the following system of linear equations 

 

7 3 2 12
2 6 2 6

5 2 12
3 2

1 2 3 4

1 2 3 4

1 2 3 4

1 2

x x x x
x x x x
x x x x

x x x

− + + =
− + + =
+ + + =

+ − 33 48 5+ =x

5.23Example

Similarly, we can compute other iterations. The values of the variables x1, x2 and x3 at the 
first ten iterations are as follows 
Iteration 1 
1.0000 1.7500 1.0000 
Iteration 2 
0.7500 1.0000 1.1875 
Iteration 3 
1.0625 1.0781 1.0625 
Iteration 4 
0.9948 0.9531 1.0039 
Iteration 5 
1.0169 1.0016 0.9896 
Iteration 6 
0.9960 0.9941 0.9962 
Iteration 7 
1.0007 1.0030 0.9995 
Iteration 8 
0.9989 0.9998 1.0006 
Iteration 9 
1.0003 1.0004 1.0002 
Iteration 10 
0.9999 0.9998 1.0000 

The differences in the values of xi’s at the ninth and tenth iterations are less than 0.0005. 
So, after ten iterations, the solution is x x x1 2 30 9999 0 9998 1 0000= = =. , . , . .

The exact solution is x x x1 2 31 1 1= = =, , . 

Note: We can continue with any initial approximation, for example, 
x x x1

0
2

0
3

05 6 8( ) ( ) ( ), ,= = − = . But if our initial approximation is far away from the solution, 
then we need to do more number of iterations for the desired accuracy. In the absence of 
any better approximation, it is advisable to continue with zero initial approximation. 
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Consider the initial approximation, x x x x1
0

2
0

3
0

4
00 0 0 0( ) ( ) ( ) ( ), , ,= = = = . 

Ans. Rewrite the given system as follows

 

x x x x

x x x x

x x x x

1 2 3 4

2 1 3 4

3 1 2 4

1
7

12 3 2

1
6

6 2 2

1
5

12 2

= + − −( )

= − − − −( )

= − − −( ))

= − − +( )x x x x4 1 2 3
1
8

5 3 2

Using the initial approximation, x x x x1
0

2
0

3
0

4
00 0 0 0( ) ( ) ( ) ( ), , ,= = = = , we get the first 

approximation of Jacobi method (5.33) as follows 

 

x x x x

x x

1
1

2
0

3
0

4
0

2
1

1
7

12 3 2 12
7

1
6

6 2

( ) ( ) ( ) ( )

( )

= + − −( ) = =

= − −

1.714286

11
0

3
0

4
0

3
1

1
0

2
0

4
0

2 1 000000

1
5

12 2

( ) ( ) ( )

( ) ( ) ( ) (

.− −( ) = −

= − − −

x x

x x x x ))

( ) ( ) ( ) ( )

.

.

( ) =

= − − +( ) =

2 400000

1
8

5 3 2 0 6250004
1

1
0

2
0

3
0x x x x

The next approximation can be computed as follows 

 

x x x x

x x

1
2

2
1

3
1

4
1

2
2

1
1

1
7

12 3 2

1
6

6 2

( ) ( ) ( ) ( )

( ) (

= + − −( ) =

= − −

 0.510714

)) ( ) ( )

( ) ( ) ( ) ( )

− −( ) =

= − − −( ) =

x x

x x x x

3
1

4
1

3
2

1
1

2
1

4
1

2

1
5

12 2

0.179762

22.007143

1.385714x x x x4
2

1
1

2
1

3
11

8
5 3 2( ) ( ) ( ) ( )= − − +( ) =

Similarly, we can compute following iterations 
Iteration 3 
 1.019898 –0.033333 1.707619 0.995536
Iteration 4 
 1.069889 –0.043586 1.804473 0.936918
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Iteration 5 
 1.046197 –0.030319 1.819972 0.958727
Iteration 6 
 1.044339 –0.028363 1.813334 0.960588
Iteration 7 
 1.046808 –0.029469 1.812570 0.958427 

Note that the exact solution is, x x x x1 2 3 41 0 2 1= = = =, , , . 

It is worth to note that we are using values at last approximation to compute the next 
approximation. For example, we are using x1

0( ) in computation of x2
1( ). But, we have already 

computed x1
1( ), and it can be used in computation of x2

1( ). Since the approximation x1
1( ) is 

better as compared to x1
0( ), hence it will produce better results. Similarly, we can use other 

latest available approximations (if available) instead of old approximations. We will discuss 
Gauss–Seidel method in next section. The latest available values of variables are used in this 
method.

5.11 Gauss–Seidel Method (or) Method of Successive 
Displacement (or) Liebmann Method 

On a similar pattern as in Jacobi method, consider the system of equations (5.1) in the 
following form

x
a

b a x a x a x

x
a

b a x a x

n n1
11

1 12 2 13 3 1

2
22

2 21 1 23

1

1

= − + + ⋅⋅⋅+ 

= − +

( )

( 33 2

1 1 2 2 1 1
1

+ ⋅⋅⋅+ 

= − + + ⋅⋅⋅+



− −

a x

x
a

b a x a x a x

n n

n
nn

n n n n n n

)

( )



 (5.36)

Let the initial approximation be x x xn1
0

2
0 0( ) ( ) ( ), , ..., . In Gauss–Seidel method, the latest 

available values of the variables are used; while in Jacobi method, values in last approximation 
are used to get a new approximation. Let the next approximation of Gauss–Seidel iteration 
be x x xn1

1
2

1 1( ) ( ) ( ), , ..., . 

First, we calculate the approximation of variable x1 as follows 

x
a

b a x a x a xn n1
1

11
1 12 2

0
13 3

0
1

01( ) ( ) ( ) ( )( )= − + + ⋅⋅⋅+ 
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To calculate x2
1( ), we use x1

1( ) instead of x1
0( ) (as used in Jacobi method). 

x
a

b a x a x a xn n2
1

22
2 21 1

1
23 3

0
2

01( ) ( ) ( ) ( )( )= − + + ⋅⋅⋅+ 

Proceeding in a similar manner, the first approximation to the ith variable is computed as 
follows

x
a

b a x a x a x a xi
ii

i i i i i i i i i
( ) ( ) ( ) ( )(1

1 1
1

2 2
1

1 1
1

1 1
1= − + + ⋅⋅⋅+ +− − + +

(( ) ( ) ( ) )0
2 2

0 0+ + ⋅⋅⋅+



+ +a x a xii i in n

Similarly, the last variable is calculated as follows 

x
a

b a x a x a xn
nn

n n n n n n
( ) ( ) ( ) ( )( )1

1 1
1

2 2
1

1 1
11= − + + ⋅⋅⋅+



− −

On a similar pattern, we use this first approximation x x xn1
1

2
1 1( ) ( ) ( ), , ...,   to compute the 

second iteration. In general, the (k+1)th iteration of Gauss–Seidel method can be obtained 
from kth iteration by the following formula.

x
a

b a x a x a x

x

k k k
n n

k

k

1
1

11
1 12 2 13 3 1

2
1

1( ) ( ) ( ) ( )

( )

( )+

+

= − + + ⋅⋅⋅+ 

== − + + ⋅⋅⋅+ 

=

+

+

1

1

22
2 21 1

1
23 3 2

1

a
b a x a x a x

x
a

k k
n n

k

n
k

( )( ) ( ) ( )

( )



nnn
n n

k
n

k
n n n

kb a x a x a x k− + + ⋅⋅⋅+



 =+ +

− −
+( ) , ,( ) ( ) ( )

1 1
1

2 2
1

1 1
1 0 1 22,...  (5.37)

The above system can be written as follows

x
a

b a x a x ii
k

ii
i i j j

k

j

i

i j j
k

j i

n
( ) ( ) ( ) ;+ +

=

−

= +

= − −






≤∑ ∑1 1

1

1

1

1 1 ≤≤ =n k 0 1 2, , ,...  (5.38)

Solve the following system of linear equations corrects up to three decimal places using 
the Gauss–Seidel iterative procedure. Take zero vector as the initial solution vector.

 

3 3
2 4 7

4 4

1 2 3

1 2 3

1 2 3

x x x
x x x
x x x

+ − =
+ + =
− + =

Show that at the fifth iteration; the solution is correct to 3 decimal places. The exact 
solution is for the system is x x x1 2 31 1 1= = =, , .

5.24Example
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Ans. To solve the system, we rewrite the system as follows

 

x x x

x x x

x x x

1 2 3

2 1 3

3 1 2

1
3

3

1
4

7 2

1
4

4

= − +

= − −

= − +

( )

( )

( )

The initial approximation is x x x1
0

2
0

3
00 0 0( ) ( ) ( ), ,= = = . First approximation is given by 

 x x x1
1

2
0

3
01

3
3 1( ) ( ) ( )( )= − + =

To compute x2
1( ), we use latest values i.e. x x1

1
3

01 0( ) ( ),= =

 x x x2
1

1
1

3
01

4
7 2 1 25( ) ( ) ( )( ) .= − − =

Similarly the value of x3
1( ) is computed by using x x1

1
2

11 1 25( ) ( ), .= =

 x x x3
1

1
1

2
11

4
4 1 0625( ) ( ) ( )( ) .= − + =

From this first approximation, x x x1
1

2
1

3
11 1 25 1 0625( ) ( ) ( ), . , .= = = , we can compute the 

second approximation as follows

 

x x x

x x x

1
2

2
1

3
1

2
2

1
2

3
1

1
3

3 0 9375

1
4

7 2 1 0

( ) ( ) ( )

( ) ( ) ( )

( ) .

( ) .

= − + =

= − − = 1156

1
4

4 1 01953
2

1
2

2
2x x x( ) ( ) ( )( ) .= − + =

The approximate values of the variables x1, x2 and x3 at first seven iterations are as follows

Iteration 1 
1.0000 1.2500 1.0625 
Iteration 2 
0.9375 1.0156 1.0195 
Iteration 3 
1.0013 0.9945 0.9983 
Iteration 4 
1.0013 0.9998 0.9996 
Iteration 5 
0.9999 1.0001 1.0000 
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Iteration 6 
1.0000 1.0000 1.0000 
Iteration 7 
1.0000 1.0000 1.0000 

After seven iterations, we have x x x1 2 31 1 1= = =, , .
The exact solution is x x x1 2 31 1 1= = =, , .

Note: In Gauss–Seidel method, the result correct up to three decimal places can be 
obtained in the 5th iteration as the error in values of x is less than .0005. Hence, it is 
easy to see that for the same accuracy, the Jacobi method requires nine iterations, while 
Gauss–Seidel requires five iterations only. In Section 5.13, we will see that the Gauss–
Seidel method is faster than Jacobi method. Hence, we prefer Gauss–Seidel method over 
Jacobi method to solve the system of linear equations. 

Solve the following system of linear equations with the aid of Gauss–Seidel method. 

 

5 13 1 70 2 83 11 3569
1 20 5 03 2 91 9 630

1 2 3

1 2 3

. . . .

. . . .
x x x
x x x

− + =
− − + =

   
228

0 23 1 78 8 32 15 78211 2 3

   
   . . . .x x x+ − =

Ans. Rewrite the given system as follows

 

x x x

x x

1 2 3

2 1

1
5 13

11 3569 1 70 2 83

1
5 03

9 63028 1 20 2

= + −

= − + −

.
( . . . )

.
( . . .991

1
8 32

15 7821 0 23 1 78

3

3 1 2

x

x x x

)

.
( . . . )= − − −

Using the initial approximation x x x1
0

2
0

3
00 0 0( ) ( ) ( ), ,= = =  in the above system, we get the 

first approximation as follows

 

x
x
x

1
1

2
1

3
1

( )

( )

( )

=
= −
= −

2.213821
2.442717
2.358288

Similarly, we can easily compute the following approximations 
Iteration 2 
2.705309 –3.924308 –2.661676 
Iteration 3 
2.381700 –4.022624 –2.691656 

5.25Example
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Iteration 4 
2.365658 –4.036140 –2.694992 
Iteration 5 
2.363019 –4.037441 –2.695343 
Iteration 6 
2.362782 –4.037587 –2.695380 
Iteration 7 
2.362754 –4.037602 –2.695385 
Iteration 8 
2.362751 –4.037604 –2.695385 
Iteration 9 
2.362751 –4.037604 –2.695385 
After 9 iterations, we have 
 x x x1 2 32 362751 4 037604 2 695385= = − = −. , . , .  .

Compute seven iterations of the Gauss-Seidel method for the linear system of Example 
5.23. 

Ans. Rewrite the given system as follows

 

x x x x

x x x x

x x x x

1 2 3 4

2 1 3 4

3 1 2 4

1
7

12 3 2

1
6

6 2 2

1
5

12 2

= + − −( )

= − − − −( )

= − − −( ))

= − − +( )x x x x4 1 2 3
1
8

5 3 2

On using the initial approximation, x x x x1
0

2
0

3
0

4
00 0 0 0( ) ( ) ( ) ( ), , ,= = = = , we get the first 

approximation of Gauss–Seidel method (5.29) as follows 

 

x x x x

x x

1
1

2
0

3
0

4
0

2
1

1
1

1
7

12 3 2

1
6

6 2

( ) ( ) ( ) ( )

( ) ( )

= + − −( ) =

= − −

1.714286

−− −( ) = −

= − − −(
x x

x x x x

3
0

4
0

3
1

1
1

2
1

4
0

2

1
5

12 2

( ) ( )

( ) ( ) ( ) ( )

0.428571  

)) =

= − − +( ) =

2.142857

1.107143x x x x4
1

1
1

2
1

3
11

8
5 3 2( ) ( ) ( ) ( )

5.26Example
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5.12 Relaxation Method 

The system (5.36) can be rewritten as follows

x x
a

a x
a

b a x a x a x

x x
a

n n1 1
11

11 1
11

1 12 2 13 3 1

2 2

1 1

1

= − + − + + ⋅⋅⋅+ 

= −

( )

222
22 2

22
2 21 1 23 3 2

1

1

a x
a

b a x a x a x

x x
a

a x

n n

n n
nn

nn

+ − + + ⋅⋅⋅+ 

= −

( )



nn
nn

n n n n n na
b a x a x a x+ − + + ⋅⋅⋅+



− −

1
1 1 2 2 1 1( )

Or

Similarly the next approximation can be computed as follows 

 

x x x x

x x

1
2

2
1

3
1

4
1

2
2

1
2

1
7

12 3 2

1
6

6 2

( ) ( ) ( ) ( )

( ) ( )

= + − −( ) =

= − −

0.760204

−− −( ) = −

= − − −( ) =

x x

x x x x

3
1

4
1

3
2

1
2

2
2

4
1

2

1
5

12 2

( ) ( )

( ) ( ) ( ) ( )

0.020408

11.809184

0.989923x x x x4
2

1
2

2
2

3
21

8
5 3 2( ) ( ) ( ) ( )= − − +( ) =

Similarly, we have following iterations
Iteration 3
1.047212 –0.019424 1.798473 0.951001
Iteration 4
1.056254 –0.031169 1.814583 0.958302
Iteration 5
1.045575 –0.029610 1.813486 0.958779
Iteration 6
1.046488 –0.029330 1.813057 0.958452
Iteration 7
1.046778 –0.029414 1.813146 0.958470
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x x
a

b a x a x a x a x

x x
a

b

n n1 1
11

1 11 1 12 2 13 3 1

2 2
22

2

1

1

= + − + + + ⋅⋅⋅+ 

= +

( )

−− + + + ⋅⋅⋅+ 

= + − +

( )

(

a x a x a x a x

x x
a

b a x a

n n

n n
nn

n n n

21 1 22 2 23 3 2

1 1
1



22 2 1 1x a x a xn n n nn n+ ⋅⋅⋅+ +



− − )  (5.39)

Let us define ri’s as follows 

r b a x a x a x
r b a x a x a x

n n

n n

1 1 11 1 12 2 1

2 2 21 1 22 2 2

= − + + ⋅⋅⋅+
= − + + ⋅⋅⋅+

( )
( )



r b a x a x a xn n n n nn n= − + + ⋅⋅⋅+( )1 1 2 2

 (or) r b a x i ni i i j j
j

n

= − ≤ ≤
=

∑
1

1;

where ri’s are known as the residuals. For an exact solution x x xe e
n
e

1 2, , ...,( ), these residuals 
must vanish. 

r b a x a x a x
r b a x a x

e e
n n

e

e e
1 1 11 1 12 2 1

2 2 21 1 22 2

0= − + + ⋅⋅⋅+ =
= − + + ⋅⋅⋅

( )
( ++ =

= − + + ⋅⋅⋅+ =

a x

r b a x a x a x

n n
e

n n n
e

n
e

nn n
e

2

1 1 2 2

0

0

)

( )


 (or) r b a x i ni i i j j
e

j

n

= − = ≤ ≤
=

∑ ( ) ;0 1
1

Our aim is to find those values of x x xn1 2, , ..., , for which values of these residuals are zeroes. 
So, the iteration process can be speed up by multiplying these residual terms with a factor 
ω in the system (5.39),

i.e.,

x x
a

b a x a x a x a x

x x
a

b

n n1 1
11

1 11 1 12 2 13 3 1

2 2
22

2

= + − + + + ⋅⋅⋅+ 

= +

ω

ω

( )

−− + + + ⋅⋅⋅+ 

= + − +

( )

(

a x a x a x a x

x x
a

b a x a

n n

n n
nn

n n n

21 1 22 2 23 3 2

1 1



ω
22 2 1 1x a x a xn n n nn n+ ⋅⋅⋅+ +



− − )

 

Or 
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x x
a

b a x a x a x

x x
a

n n1 1
11

1 12 2 13 3 1

2 2

1

1

= − + − + + ⋅⋅⋅+ 

= − +

( ) ( )

( )

ω ω

ω ω

222
2 21 1 23 3 2

1 11

b a x a x a x

x x
a

b a x

n n

n n
nn

n n

− + + ⋅⋅⋅+ 

= − + −

( )

( ) (



ω ω ++ + ⋅⋅⋅+



− −a x a xn n n n2 2 1 1)  (5.40)

If we use simultaneous displacement (as in Jacobi iterations) for the system (5.40), then the 
relaxation method is as follows

x x
a

b a x i n ki
k

i
k

ii
i i j j

k

j
j i

n
( ) ( ) ( )( ) ;+

=
≠

= − + −












 ≤ ≤ =∑1

1

1 1ω ω 00 1 2, , ,...  (5.41)

Similarly, the relaxation method for successive displacement (Gauss–Seidel iterations) is as 
follows

x x
a

b a x a xi
k

i
k

ii
i i j j

k

j

i

i j j
k

j i

n
( ) ( ) ( ) ( )( )+ +

=

−

= +

= − + − −∑1 1

1

1

1

1 ω ω ∑∑






≤ ≤ =; , , ,...1 0 1 2i n k  (5.42)

The methods involving systems (5.41) or (5.42) are called as relaxation methods. In case 
0 1< <ω , the methods are called as under-relaxation methods, while for ω > 1, the methods 
are called as over-relaxation methods. These relaxation methods are used to accelerate the 
convergence of Jacobi and Gauss–Seidel methods. 

Since successive displacement (Gauss–Seidel) has faster convergence than simultaneous 
displacement (Jacobi), hence formula (5.42) is suggested. The method (5.42) (successive 
displacements) with over-relaxation is known as a successive over-relaxation (SOR) method. 

Solve the following system of linear equations corrects up to three decimal places using 
Gauss–Seidel relaxation scheme with relaxation parameter 0.9.

 

3 5
3 5

2 4 7

1 2 3

1 2 3

1 2 3

x x x
x x x

x x x

− + =
− + =

+ + =

Consider the initial approximation, x x x1
0

2
0

3
00 0 0( ) ( ) ( ), , .= = =
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Ans. Rewrite the system of equations in the form (5.40) with ω = 0 9.

 

x x x x

x x x x

x x

1 1 2 3

2 2 1 3

3 3

0 1 0 9
3

5

0 1 0 9
3

5

0 1 0 9
4

= + + −

= − − −

= +

. . ( )

. . ( )

. . (77 21 2− −x x )

 

Using the initial approximation x x x1
0

2
0

3
00 0 0( ) ( ) ( ), ,= = =  in the above system, we get 

following first approximation (use formula 5.42)

 

x x x x

x x

1
1

1
0

2
0

3
0

2
1

2
0

0 1 0 9
3

5 1 5

0 1 0 9
3

( ) ( ) ( ) ( )

( ) ( )

. . ( ) .

. . (

= + + − =

= − 55 1 05

0 1 0 9
4

7 2 1

1
1

3
0

3
1

3
0

1
1

2
1

− − = −

= + − − =

x x

x x x x

( ) ( )

( ) ( ) ( ) ( )

) .

. . ( ) ..71

Similarly, other approximations are given by 
Iteration 2 
0.822000 –0.845400 1.941480 
Iteration 3 
0.746136 –0.778255 1.951482 
Iteration 4 
0.755692 –0.765673 1.944670 
Iteration 5 
0.762466 –0.764426 1.941904 
Iteration 6
0.764348 –0.764567 1.941267 
Iteration 7 
0.764684 –0.764671 1.941175 
Iteration 8 
0.764715 –0.764700 1.941172 

After eight iterations, the approximate solution is as follows

 x x x1 2 30 764715 0 7647 1 941172= = − =. , . , . 
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Solve the system in Example 5.24 correct up to 0.000001 using Gauss–Seidel relaxation 
scheme with relaxation parameters 0.9, 1 and 1.1. 

Ans. The system of equations in Example 5.24 is as follows

 
3 3

2 4 7
4 4

1 2 3

1 2 3

1 2 3

x x x
x x x
x x x

+ − =
+ + =
− + =

Using Gauss–Seidel relaxation scheme (5.42) for the given system, we have 

 

x x x x

x x

k k k k

k k

1
1

1 2 3

2
1

2

1
3

3

1
4

7

( ) ( ) ( ) ( )

( ) ( )

( )

( )

+

+

= − + − +( )
= − +

ω ω

ω ω −− −( )
= − + − +( )

+

+ + +

2

1
4

4

1
1

3

3
1

3 1
1

2
1

x x

x x x x

k k

k k k k

( ) ( )

( ) ( ) ( ) ( )( )ω ω

Using the initial approximation x x x1
0

2
0

3
00 0 0( ) ( ) ( ), ,= = =  in the above system, we get 

following approximations for different values of relaxation parameter

Relaxation parameter ω = 0 9.

Iteration (k) x1
(k) x k

2
( ) x k

3
( )

1 0.900000 1.170000 0.960750

2 0.927225 1.058580 1.025630

3 0.982837 1.007814 1.008183

4 0.998394 0.999663 1.001104

5 1.000272 0.999596 0.999958

6 1.000136 0.999908 0.999945

7 1.000025 0.999992 0.999987

8 1.000001 1.000002 0.999999

9 0.999999 1.000001 1.000000

10 1.000000 1.000000 1.000000
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232 Numerical Methods

It is easy to see that the difference between the ninth iteration and the tenth iteration is less 
than 0.000001. So, total ten iterations are required for the accuracy of 0.000001. 

Relaxation parameter ω = 1 0.

Iteration (k) x1
(k) x k

2
( ) x k

3
( )

1 1.000000 1.250000 1.062500

2 0.937500 1.015625 1.019531

3 1.001302 0.994466 0.998291

4 1.001275 0.999790 0.999629

5 0.999946 1.000120 1.000043

6 0.999975 1.000002 1.000007

7 1.000002 0.999997 0.999999

8 1.000000 1.000000 1.000000

9 1.000000 1.000000 1.000000

Relaxation parameter ω = 1 1.

Iteration (k) x1
(k) x k

2
( ) x k

3
( )

1 1.100000 1.320000 1.160500

2 0.931517 0.961528 0.992203

3 1.018096 0.996039 0.994714

4 0.997705 1.003112 1.002016

5 0.999828 0.999229 0.999634

6 1.000166 1.000087 1.000015

7 0.999957 1.000011 1.000013

8 1.000005 0.999992 0.999995

9 1.000000 1.000002 1.000001

10 1.000000 1.000000 1.000000

11 1.000000 1.000000 1.000000
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Note: Here, we observe that Gauss–Seidel method (ω = 1 0. ) requires a minimum number 
of iterations (9 iterations) for the accuracy of 0.000001 as compared to relaxation method 
with relaxation parameters ω = 0 9.  and 1.1.
But, this is not the case always, which will be clear from the following example. 

Solve the following tridiagonal system of linear equations with an accuracy of 0.000001 
using Gauss–Seidel method 

 

3 2 18
2 3 19

3 9

1 2

1 2 3

2 3

x x
x x x

x x

− =
− + − = −

− + =

Also, solve the system using SOR method with relaxation parameter, ω = 1 2. . Consider the 
initial approximation, x x x1

0
2

0
3

00 0 0( ) ( ) ( ), ,= = = . Compare the results obtained from both 
the methods. Also, compare the results with the exact solution, x x x1 2 34 3 2= = − =, , .

Ans. 
The Gauss–Seidel iterations are given by

Gauss–Seidel 
Iteration (k) x1

(k) x k
2

( ) x k
3

( )

1 6.000000 –2.333333 2.222222

2 4.444445 –2.629629 2.123457

3 4.246914 –2.794238 2.068587

4 4.137175 –2.885688 2.038104

5 4.076208 –2.936493 2.021169

6 4.042338 –2.964719 2.011760

7 4.023521 –2.980399 2.006534

8 4.013067 –2.989111 2.003630

9 4.007259 –2.993951 2.002017

10 4.004033 –2.996639 2.001120

11 4.002241 –2.998133 2.000623

12 4.001245 –2.998962 2.000346
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13 4.000692 –2.999423 2.000192

14 4.000384 –2.999680 2.000107

15 4.000214 –2.999822 2.000059

16 4.000119 –2.999901 2.000033

17 4.000066 –2.999945 2.000018

18 4.000036 –2.999970 2.000010

19 4.000020 –2.999984 2.000005

20 4.000011 –2.999991 2.000003

21 4.000006 –2.999995 2.000002

22 4.000003 –2.999997 2.000001

23 4.000002 –2.999998 2.000000

24 4.000001 –2.999999 2.000000

It is easy to see that the difference between 23rd iteration and 24th iteration is less than 
0.000001. So, total 24 iterations of the Gauss–Seidel method are required for the accuracy 
of 0.000001. 

Let us solve this system using SOR method (5.42) with relaxation parameter, ω = 1.2. The 
SOR iterations are given by

SOR Iteration 
(k) x1

(k) x k
2

( ) x k
3

( )

1 7.200000  –1.840000 2.864000 

2 4.288000 –2.656000 1.964800 

3 4.217600 –2.908800 2.043520 

4 4.029440 –2.977280 2.000384 

5 4.012288 –2.994560 2.002099 

6 4.001894 –2.998733 2.000087 

7 4.000635 –2.999711 2.000098 

8 4.000104 –2.999935 2.000006 
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9 4.000031 –2.999985 2.000005 

10 4.000005 –2.999997 2.000000 

11 4.000001 –3.000000 2.000000 

12 4.000000 –3.000000 2.000000 

13 4.000000 –3.000000 2.000000 

It is easy to see that the difference between 12th iteration and 13th iteration is less than 
0.000001. So, total 13 iterations of the SOR method are required for the accuracy of 0.000001. 
It is easy to conclude that the number of iterations required in SOR method (13) is pretty 
less than the number of iterations of the Gauss–Seidel method (24). 

Note: Consider the relaxation method (5.42) with different relaxation parameter ω for the 
solution of the system in Example 5.29. The numbers of iterations required for the accuracy 
of 0.000001 with different values of relaxation parameter ω are given in the following table.

Sr. No. Relaxation parameter ω Number of iterations 
1 0.60 44
2 0.75 37
3 0.90 29
4 0.95 26
5 1.00 24
6 1.05 21
7 1.10 19
8 1.15 16
9 1.20 13

10 1.25 13
11 1.30 14
12 1.40 19
13 1.50 24

It is easy to see that for relaxation parameter ω = 1.2 and 1.25, the minimum number 
of iterations are required for a given accuracy 0.000001. So, these values of relaxation 
parameter are appropriate for this system. It is further worth mentioning here that the 
best relaxation parameter varies for different systems. So, the obvious question is which 
relaxation parameter is the best relaxation parameter for a given system? For a general 
system (5.1), we don’t have a complete answer to this question. But some theorems are 
useful in this regard, which we will state in the next sections. 
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Solve the following set of linear equations with the help SOR method (5.42) with relaxation 
parameter ω = 1.1. 

 

4 99 875
2 4 99 6875
2 4 0 3125

1 2 3

1 2 4

1 3 4

2 3

x x x
x x x
x x x
x x

− − =
− + = −
− + =
+ −

.
.

.
22 0 254x = .

Ans. Gauss–Seidel relaxation scheme (5.42) is given by

 x x
a

b a x a xi
k

i
k

ii
i i j j

k

j

i

i j j
k

j i

n
( ) ( ) ( ) ( )( )+ +

=

−

= +

= − + − −∑1 1

1

1

1

1 ω ω ∑∑






≤ ≤

= − + + +( )+

;

( . ) . .( ) ( ) ( ) ( )

1

0 1 1 1
4

99 8751
1

1 2 3

i n

x x x xk k k k

xx x x x

x

k k k k

k

2
1

2 1
1

4

3
1

0 1 1 1
4

99 6875 2( ) ( ) ( ) ( )

( )

( . ) . .

(

+ +

+

= − + + +( )
= −− − − −( )
= −

+ +

+

0 1 1 1
4

0 3125 2

0 1

3 1
1

4
1

4
1

4

. ) . .

( . )

( ) ( ) ( )

( ) (

x x x

x x

k k k

k kk k kx x) ( ) ( ). .− − −( )+ +1 1
2

0 25 2
1

3
1

We have following equations for the given system with relaxation parameter ω = 1.1

 

x x
a

b a x a xi
k

i
k

ii
i i j j

k

j

i

i j j
k

j i

n
( ) ( ) ( ) ( )( )+ +

=

−

= +

= − + − −∑1 1

1

1

1

1 ω ω ∑∑






≤ ≤

= − + + +( )+

;

( . ) . .( ) ( ) ( ) ( )

1

0 1 1 1
4

99 8751
1

1 2 3

i n

x x x xk k k k

xx x x x

x

k k k k

k

2
1

2 1
1

4

3
1

0 1 1 1
4

99 6875 2( ) ( ) ( ) ( )

( )

( . ) . .

(

+ +

+

= − + + +( )
= −− − − −( )
= −

+ +

+

0 1 1 1
4

0 3125 2

0 1

3 1
1

4
1

4
1

4

. ) . .

( . )

( ) ( ) ( )

( ) (

x x x

x x

k k k

k kk k kx x) ( ) ( ). .− − −( )+ +1 1
2

0 25 2
1

3
1

On using the initial approximation x x x x1
0

2
0

3
0

4
00 0 0 0( ) ( ) ( ) ( ), , ,= = = =  in the above 

system, we get the following first 10 iterations
Iteration 1
27.465626 42.520157 15.020157 31.509674
Iteration 2
40.542648 54.125664 29.375664 42.637264
Iteration 3
46.374222 59.232567 34.207565 46.990845
Iteration 4
48.524235 61.101612 36.104115 48.626564
Iteration 5
49.344776 61.815834 36.815582 49.247124
Iteration 6
49.654785 62.085575 37.085594 49.481934
Iteration 7
49.772217 62.187759 37.187752 49.570839
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Note: In Chapters 15 and 16, we have many examples of linear systems arising during the 
solutions of differential equations. These examples also contain systems of four and six 
simultaneous equations. We will use methods discussed in this chapter for the solutions of 
these systems. So, readers interested in more solved examples may refer to Chapters 15 and 16. 

5.13 Convergence Criteria for Iterative Methods 

The iterative methods (Jacobi, Gauss–Seidel, and Relaxation methods) may converge or 
diverge depending on the convergence conditions that the linear system (5.1) needs to 
satisfy. Now, we will discuss the convergence criteria for these iterative methods. 

Let {xn} be any sequence that converges to ξ  and 

ε ξn nx= −
Consider there exists a positive constant C and a constant p ≥ 1, such that 

lim
n

n

n
p C

→∞

+ =
ε

ε
1

Then p is called as the order of convergence and C is the asymptotic error constant. For 
convergence, we must have ε εn n+ <1  after sufficiently large n, i.e., error at (n+1)th step is 
less than the error at nth step after some iterations. 

Convergence of Jacobi Method
The kth iteration of Jacobi method (5.35) is as follows

x
a

b a x i n ki
k

ii
i i j j

k

j
j i

n
( ) ( ) ; , , , ,...+

=
≠

= −












 ≤ ≤ =∑1

1

1 1 0 1 2

Iteration 8
49.816673 62.226437 37.226440 49.604500
Iteration 9
49.833504 62.241085 37.241085 49.617241
Iteration 10
49.839874 62.246632 37.246628 49.622070

So, the final solution after 10 iterations is given by

x x x x1
10

2
10

3
10

4
10( ) ( ) ( ) ( ), , ,= = = =49.839874 62.246632 37.246628 449.622070
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238 Numerical Methods

Let vector ξ ξ ξ ξ= ⋅⋅⋅ 1 2 n
T

 be the exact solution, then

ξ ξi
ii

i i j j
j
j i

n

a
b a i n= −













 ≤ ≤

=
≠

∑1 1
1

;

From above two equations, we can easily conclude that

ξ ξi i
k

ii
i j

j
j i

n

j j
kx

a
a x i n− = − −( ) ≤ ≤+

=
≠

∑( ) ( ) ;1

1

1 1  

Let the term ε ξj
k

j j
kx( ) ( )= −  be the error at kth iteration of the jth variable. The above 

expression takes the form

 

ε ε

ε ε

i
k

ii
i j j

k

j
j i

n

i
k

ii
i j j

k

j

a
a i n

a
a

( ) ( )

( ) ( )

;+

=
≠

+

=

= − ≤ ≤

≤

∑1

1

1

1

1 1

1

jj i

n

i n
≠

∑ ≤ ≤; 1

i.e., ε εi
k

ii
i j j

k

j
j i

n

a
a i n( ) ( ) ;+

=
≠

≤ ≤ ≤∑1

1

1 1

 ε ε( ) ( ) ;k

ii
i j

k

j
j i

n

a
a i n+

=
≠

≤ ≤ ≤∑1

1

1 1  (5.43)

Let λ =











≤ ≤

=
≠

∑max ;
i

ii
i j

j
j i

n

a
a i n1 1

1

Therefore, the system (5.43) is given by 

ε λ ε( ) ( ) ;k k i n+ ≤ ≤ ≤1 1  (5.44)

Hence Jacobi method is linearly convergent as the order of convergence is one. Also 

ε λ ε λ ε λ ε( ) ( ) ( ) ( )...k k k k+ −≤ ≤ ≤ ≤1 2 1 0

If we have

λ =











< ≤ ≤

=
≠

∑max ;
i

ii
i j

j
j i

n

a
a i n1 1 1

1

 (5.45)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:32:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.006
https://www.cambridge.org/core


Systems of Linear Equations 239

then λ k → 0 as k → ∞ and hence ε ( )k+ →1 0. 

If the system of linear equations (5.1) satisfies the conditions (5.45), then the Jacobi method 
will converge for any initial approximation. 

The matrix A is said to be diagonally dominant matrix if it satisfies the following conditions

a a i ni j
j
j i

n

ii
=
≠

∑ ≤ ≤ ≤
1

1;

The convergence conditions (5.45) are as follows

a a i ni j
j
j i

n

ii
=
≠

∑ < ≤ ≤
1

1;  (5.46)

The condition (5.46) is known as strictly diagonally dominance condition. So if our matrix 
A in the system (5.1) is a strictly diagonally dominant matrix, then Jacobi method converges 
to the solution for any initial approximation. The condition represents that absolute value 
of each diagonal element in the coefficient matrix A must be greater than the sum of the 
absolute values of other elements in the row containing that diagonal element. 

Note that the condition (5.46) is much broader condition than required for the 
convergence of the method. So, this condition is sufficient condition, but not a necessary 
condition. If the condition (5.46) is true, the Jacobi method must converge. But there may be 
systems which are not strictly diagonally dominant, and method converges to the solutions 
for these systems. This statement may be well described by the examples in the next section. 

The following theorem will be helpful for computing the upper bound of the error at kth 
iteration of Jacobi method.

Theorem 5.1

Let us reconsider the relation

ε λ ε λ ε

λ λ ε
λ

λ

ε λ

( ) ( ) ( ) ( )

( ) ( )

( )

( )

k k k k

k k

k

k

e

e

e

+ +

+

+

≤ = +

≤ +

≤
−

⇒ ≤

1 1

1

1

1

1−− λ
e k( )  (5.47)

where e(k) is the difference between kth iteration and (k+1)th iteration i.e. e k k k( ) ( ) ( )= −+ε ε1 . 
It will be helpful in computing the upper bound of the error in some particular cases. 
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240 Numerical Methods

Convergence of Gauss–Seidel Method:
The kth iteration of Gauss–Seidel method (5.38) is given by

x
a

b a x a x ii
k

ii
i i j j

k

j

i

i j j
k

j i

n
( ) ( ) ( ) ;+ +

=

−

= +

= − −






≤∑ ∑1 1

1

1

1

1 1 ≤≤ =n k, , , ,...0 1 2

Proceeding in a similar manner as in Jacobi method, we have

ε ε εi
k

ii
i j j

k

j

i

i j j
k

j i

n

a
a a i n( ) ( ) ( ) ;+ +

=

−

= +

≤ +






≤ ≤∑ ∑1 1

1

1

1

1 1  (5.48)

where ξ j j n’s; 1 ≤ ≤  are exact values of the variables and ε ξj
k

j j
kx( ) ( )= −  is the error at kth 

iteration of the jth variable.

Let λ λ=











=





=
≠

=

−

∑ ∑max , max
i

ii
i j

j
j i

n

i i
ii

i j
j

i

a
a

a
a1 1

1 1

1 




≤ ≤; 1 i n

The system (5.48) takes the form

 ε λ ε λ λ ε( ) ( ) ( )( )k
i

k
i

k+ +≤ + −1 1

i.e., ε λ ε λ λ ε( ) ( ) ( )( )k
i

k
i

k+ +≤ + −1 1

 ε
λ λ

λ
ε( ) ( )( )k i

i

k+ ≤
−
−

1

1
 (5.49)

Therefore, order of convergence of Gauss Seidel method is one. 

From system (5.49), we have following convergence conditions

( )
( )

( )

λ λ
λ

λ λ

λ λ
λ

λ

−
−

< ≤ ≤ <

⇒
−
−

≤

i

i
i

i

i

1
1 0 1

1

or

The convergence condition (5.49) is similar to Jacobi method, ε λ ε( ) ( ) .k k+ ≤( )1  However, 

( )λ λ
λ

λ
−
−

≤i

i1
, so Gauss–Seidel method converges faster than Jacobi method. 
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Systems of Linear Equations 241

Which of the following systems is a strictly diagonally dominant system?

a) 
6 3 10

6 4 11
3 2 8 9

1 2 3

1 2 3

1 2 3

x x x
x x x
x x x

+ + =
+ + =
− + =

 b) 
x x x

x x x
x x x

1 2 3

1 2 3

1 2 3

3 5
4 2 7

3 5 5

− + =
+ + =

− + =
 c) 

3 2 2
2 4 1

2 5 8

1 2 3

1 2 3

1 2 3

x x x
x x x

x x x

− + =
− + = −

+ + =

Ans. For strictly diagonally dominant system, our coefficient matrix must satisfy the 
condition (5.46) given by 

 a a i ni j
j
j i

n

ii
=
≠

∑ < ≤ ≤
1

1;

Let us check the condition for each of the given systems.

a) The coefficient matrix A =
−

















6 3 1
1 6 4
3 2 8

 is a strictly diagonally dominant 

matrix as the absolute values of all the diagonal elements are greater than the 
sum of the absolute values of other elements in the row containing that diagonal 
element. We have

6 3 1 6 1 4 8 3 2> + > + > + −, ,

b) The coefficient matrix A =
−

−

















1 3 1
1 4 2
3 1 5

 is not strictly diagonally 

dominant matrix as for the first row, we have 1 3 1< − + .

c) The coefficient matrix A =
−
−

















3 2 1
2 4 1
1 2 5

 is not strictly diagonally 

dominant but simply diagonally dominant matrix. The second and third rows 
are satisfying the strict diagonally dominance criterion, but the first row is not 
satisfying the criterion as 3 2 1= − + .

5.31Example
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242 Numerical Methods

Consider the following system of linear equations 

 

x x x
x x x

x x x

1 2 3

1 2 3

1 2 3

3 5
2 4 7

3 5

− + =
+ + =

− + =

i. Compute the ten iterations of the Jacobi and Gauss–Seidel methods with initial 
approximation [0 0 0]T, and show that the methods are diverging for the given 
system.

ii. State the sufficient convergence condition (diagonally dominance) for the 
Jacobi and Gauss–Seidel methods. Rearrange the equations such that the system 
satisfies the convergence condition.

iii. Solve the given system correct up to three decimal places. Start with the initial 
approximation [0 0 0]T.

Ans. 

i. On using the initial approximation [0 0 0]T, the Jacobi iterations (5.35) are as 
follows

Jacobi Iteration 
(k) x1

(k) x k
2

( ) x k
3

( )

1 5.000000 3.500000 5.000000 

2 10.500000 –9.000000 –6.500000 

3 –15.500000 11.250000 –35.500000 

4 74.250000 82.250000 62.750000 

5 189.000000 –159.125000 –135.500000 

6 –336.875000 180.000000 –721.125000 

7 1266.125000 1614.187500 1195.625000 

8 3651.937500 –3020.812500 –2179.187500 

9 –6878.250000 2535.906250 –13971.625000 

10 21584.343750 31385.875000 23175.656250 

5.32Example
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Systems of Linear Equations 243

The Gauss–Seidel iterations (5.38) are given by

Gauss–Seidel
Iteration (k) x1

(k) x k
2

( ) x k
3

( )

1 5.000000 1.000000 –9.000000 

2 17.000000 13.000000 –33.000000 

3 77.000000 31.000000 –195.000000 

4 293.000000 247.000000 –627.000000 

5 1373.000000 571.000000 –3543.000000

6 5261.000000 4459.000000 –11319.000000

7 24701.000000 10291.000000 –63807.000000

8 94685.000000 80275.000000 –203775.000000

9 444605.000000 185251.000000 –1148559.000000

10 1704317.000000 1444963.000000 –3667983.000000

It is easy to see that both the Jacobi and Gauss–Seidel methods diverge for the given 
system. 

ii. The sufficient condition for convergence of Jacobi and Gauss–Seidel methods is 
that the coefficient matrix is strictly diagonally dominant (5.46). 

  a a i ni j
j
j i

n

ii
=
≠

∑ < ≤ ≤
1

1;

The system is not satisfying the convergence conditions, so Jacobi and Gauss–Seidel 
methods are diverging for the given system in the present form. 

On rearranging the equations in given system, we have 

 
3 5

3 5
2 4 7

1 2 3

1 2 3

1 2 3

x x x
x x x

x x x

− + =
− + =

+ + =
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244 Numerical Methods

This system is strictly diagonally dominant system, as we have

 3 1 1 3 1 1 4 1 2> − + − > + > +, ,

So the Jacobi and Gauss–Seidel methods will converge to the solution for any initial 
approximation. 

iii. The Jacobi iterations (5.35) with initial approximation [0 0 0]T are given by

Jacobi Iteration 
(k) x1

(k) x k
2

( ) x k
3

( )

1 1.6667 –1.6667 1.7500

2 0.5278 –0.5278 2.1667

3 0.7685 –0.7685 1.8819

4 0.7832 –0.7832 1.9421

5 0.7582 –0.7582 1.9458

6 0.7653 –0.7653 1.9396

7 0.7650 –0.7650 1.9413

8 0.7645 –0.7645 1.9413

9 0.7647 –0.7647 1.9411

10 0.7647 –0.7647 1.9412

After ten iterations of Jacobi method, the approximate solution correct up to three decimal 
places is as follows

 x x x1 2 30 7647 0 7647 1 9412= = − =. , . , . 

The Gauss–Seidel method provides following iterations for the given system.

Gauss–Seidel
Iteration (k) x1

(k) x k
2

( ) x k
3

( )

1 1.6667 –1.1111 1.8889

2 0.6667 –0.8148 1.9907

3 0.7315 –0.7593 1.9468

4 0.7647 –0.7629 1.9403

5 0.7656 –0.7647 1.9409

6 0.7648 –0.7648 1.9412

7 0.7647 –0.7647 1.9412
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Systems of Linear Equations 245

Note: For convergence of Jacobi and Gauss–Seidel iterative procedures, the strictly 
diagonally dominance condition of coefficient matrix A is only sufficient condition. The 
necessary and sufficient conditions for convergence of various iterative formulas are 
obtained in next section. 

5.14 Matrix Forms and Convergence of Iterative Methods 

Consider the system (5.1) of linear equations 

AX B=  

Let us write the coefficient matrix A as follows

A L D U= + +
where L is a lower triangular matrix with zero diagonal elements, D is a diagonal matrix, 
and U is an upper triangular matrix with zero diagonal elements. Then, the system (5.1) is 
given by

( )L D U X B+ + =

Now, we will construct the matrix forms for various iterative methods.

Matrix Form of Jacobi Method
Consider the Jacobi iteration formula (5.35)

x
a

b a x i ni
k

ii
i i j j

k

j
j i

n
( ) ( ) ;+

=
≠

= −












 ≤ ≤∑1

1

1 1

To determine the matrix form of Jacobi method, rewrite it as follows

a x a x b i nii i
k

i j j
k

j
j i

n

i
( ) ( ) ;+

=
≠

= − + ≤ ≤∑1

1

1

In matrix form, we can write the above equations as follows

DX L U X Bk k( ) ( )( )+ = − + +1

X D L U X D Bk k( ) ( )( )+ − −= − + +1 1 1 ; for each k = 0, 1, 2,…  (5.50)

After seven iterations of the Gauss–Seidel method, the approximate solution correct up to 
three decimal places is as follows

 x x x1 2 30 7647 0 7647 1 9412= = − =. , . , . 
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We can write the system (5.50) as follows

X T X Ck
J

k
J

( ) ( )+ = +1  (5.51)

where T D L UJ = − +−1( ) and C D BJ = −1

The iteration formula (5.50) is matrix form of the Jacobi method (5.35). We can use either 
formula (5.35) or (5.50) to obtain the Jacobi iterations. 

Note: We can also obtain the matrix form of the Jacobi iteration formula directly, by using 
following procedure. Consider the linear system (5.1) 

AX B
L D U X B

DX L U X B
X D L U X D B

=
+ + =

= − + +
= − + +− −

( )
( )

( )1 1

Using the kth iteration X(k), we can obtain the Jacobi iterative formula (5.50)

 X D L U X D Bk k( ) ( )( )+ − −= − + +1 1 1 ; for each k = 0, 1, 2,…

Matrix Form of Gauss–Seidel Method
The Gauss–Seidel iteration formula (5.38) is given by

x
a

b a x a x ii
k

ii
i i j j

k

j

i

i j j
k

j i

n
( ) ( ) ( ) ;+ +

=

−

= +

= − −






≤∑ ∑1 1

1

1

1

1 1 ≤≤ n

a x b a x a x i nii i
k

i i j j
k

j

i

i j j
k

j i

n
( ) ( ) ( ) ;+ +

=

−

= +

= − − ≤ ≤∑ ∑1 1

1

1

1

1

a x a x a x b i nii i
k

i j j
k

j

i

i j j
k

j i

n

i
( ) ( ) ( ) ;+ +

=

−

= +

+ = − + ≤ ≤∑ ∑1 1

1

1

1

1

a a x a x b i nii i j
j

i

i
k

i j j
k

j i

n

i+






= − + ≤ ≤

=

−
+

= +
∑ ∑

1

1
1

1

1( ) ( ) ;

In matrix form, we have

( )D L X UX Bk k+ = − ++( ) ( )1
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Systems of Linear Equations 247

It gives the following Gauss–Seidel formula

X D L UX D L Bk k( ) ( )( ) ( )+ − −= − + + +1 1 1  for each k = 0, 1, 2,… (5.52)

We can write this system as follows

X T X Ck
GS

k
GS

( ) ( )+ = +1  (5.53)

where T D L UGS = − + −( ) 1  and C D L BGS = + −( ) 1 .

Note that the Gauss–Seidel formulas (5.38) and (5.52) are equivalent formulas and iterations 
obtained from both the formulas are equal.

Matrix Form of Relaxation Method

a) Relaxation Method with Jacobi Iteration

The relaxation method with Jacobi iteration (5.41) is given by

x x
a

b a x i ni
k

i
k

ii
i i j j

k

j
j i

n
( ) ( ) ( )( ) ;+

=
≠

= − + −












 ≤ ≤∑1

1

1 1ω ω

a x a x b a x iii i
k

ii i
k

i i j j
k

j
j i

n
( ) ( ) ( )( ) ;+

=
≠

= − + −












 ≤ ≤∑1

1

1 1ω ω nn

a x a x b a x i nii i
k

ii i
k

i i j j
k

j

n
( ) ( ) ( ) ;+

=

= + −






≤ ≤∑1

1

1ω

a x a x a x b i nii i
k

ii i
k

i j j
k

i
j

n
( ) ( ) ( ) ;+

=

= − + ≤ ≤∑1

1

1ω ω

In matrix form, we can write the above equations as follows

DX DX AX Bk k k( ) ( ) ( )+ = − +1 ω ω

X X D AX D Bk k k( ) ( ) ( )+ − −= − +1 1 1ω ω

X I D A X D Bk k( ) ( )+ − −= −( ) +1 1 1ω ω ; for each k = 0, 1, 2,… (5.54)

The system (5.54) can also be written as follows

X T X Ck
R J

k
R J

( ) ( )+ = +1  (5.55)

where T I D AR J = − −ω 1  and C D BR J = −ω 1 .
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b) Relaxation Method with Gauss–Seidel Iteration

The relaxation method with Gauss–Seidel iteration (5.42) is as follows

 x x
a

b a x a xi
k

i
k

ii
i i j j

k

j

i

i j j
k

j i

n
( ) ( ) ( ) ( )( )+ +

=

−

= +

= − + − −∑1 1

1

1

1

1 ω ω ∑∑






≤ ≤; 1 i n

Or a x a x b a x a xii i
k

ii i
k

i i j j
k

j

i

i j j
k

j i

( ) ( ) ( ) ( )( )+ +

=

−

=

= − + − −∑1 1

1

1

1 ω ω
++

∑






≤ ≤

1

1
n

i n;

Or a a x a x b a xii i j
j

i

j
k

ii i
k

i i j j
k

j i

+






= − + −

=

−
+

=
∑ω ω ω

1

1
1 1( ) ( ) ( )( )

++
∑







≤ ≤

1

1
n

i n;

In vector form, we have

D L X DX UX Bk k k+( ) = −( ) − ++ω ω ω ω( ) ( ) ( )1 1

D L X D U X Bk k+( ) = −( ) −( ) ++ω ω ω ω( ) ( )1 1

X D L D U X D L Bk k( ) ( )+ − −= +( ) −( ) −( ) + +( )1 1 11ω ω ω ω ω  for each k = 0, 1, 2,…. 
 (5.56)

The system (5.56) can also be written as follows

X T X Ck
RGS

k
RGS

( ) ( )+ = +1  (5.57)

where T D L D URGS = +( ) −( ) −( )−ω ω ω1 1  and C D L BRGS = +( )−ω ω 1

Solve the following system of linear equations with the help of matrix form of Gauss–
Seidel method

 
4 2 4

4 0
2 5 7

1 2 3

1 2 3

1 2 3

x x x
x x x

x x x

− + =
− + =

+ + =

Use initial approximation vector, X T( ) [ ]0 0 0 0= .

5.33Example
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Ans. Matrix A L D U= + +  can be written as follows

4 2 1
1 4 1
1 2 5

0 0 0
1 0 0
1 2 0

4 0 0
0 4 0
0 0 5

−
−

















=
















+ −
















+
−















0 2 1
0 0 1
0 0 0

A L D U

Using the Gauss–Seidel method (5.52), we have 

X D L UX D L Bk k( ) ( )( ) ( )+ − −= − + + +1 1 1

x
x
x

k

k

k

1
1

2
1

3
1

4 0 0
0 4 0
0 0 5

0 0 0
1

( )

( )

( )

+

+

+

















= − −
















+ 00 0
1 2 0

0 2 1
0 0 1
0 0 0

1

1

2

































−















−
x
x

k

k

( )

( )

xx k
3

4 0 0
0 4 0
0 0 5

0 0 0
1 0 0
1 2 0

( )

















+ −
















+
















































−1
4
0
7

Using k = 0, and initial vector, X T( ) [ ]0 0 0 0=  in the above system, the first iteration 
X(1) is given by

 X T( ) . .1 1 0 25 1 1= [ ]
Similarly, the other iterations are given by 
Iteration 2 
0.850000 0.487500 1.035000 
Iteration 3 
0.985000 0.505000 1.001000
Iteration 4 
1.002250 0.500813 0.999225
Iteration 5 
1.000600 0.499956 0.999897
Iteration 6 
1.000004 0.499975 1.000009

After six iterations, the solution is as follows

 x x x1 2 3= = =1.000004  0.499975  1.000009, ,
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250 Numerical Methods

Solve the following system of linear equations with the help of matrix form of relaxation 
method with successive displacement

 

3 5
3 5

2 4 7

1 2 3

1 2 3

1 2 3

x x x
x x x

x x x

− + =
− + =

+ + =
Use initial approximation vector X T( ) [ ]0 0 0 0=  and relaxation parameter, 
ω = 1 02943725. .

Ans. Matrix A L D U= + +  can be written as follows

3 1 1
1 3 1
1 2 4

0 0 0
1 0 0
1 2 0

3 0 0
0 3 0
0 0 4

−
−

















=
















+ −
















+
−















0 1 1
0 0 1
0 0 0

A L D U

Using the matrix form (5.54), we have 

X D L D U X D L Bk k( ) ( )+ − −= +( ) −( ) −( ) + +( )1 1 11ω ω ω ω ω

x
x
x

k

k

k

1
1

2
1

3
1

3 0 0
0 3 0
0 0 4

1 029

( )

( )

( )

.

+

+

+

















= −
















+ 443725
0 0 0
1 0 0
1 2 0

0 02943725
3 0 0
0 3 0
0 0 4

1
































− −

−

.
















−
−































1 02943725
0 1 1
0 0 1
0 0 0

1

.

( )x
x

k

22

3

1 02943725
3 0 0
0 3 0
0 0 4

1 0294

( )

( )

. .

k

kx

















+ −
















+ 33725
0 0 0
1 0 0
1 2 0

5
5
7

1
















































−

Using the initial vector X T( ) [ ]0 0 0 0=  in the above system, the first iteration X(1) is 
given by

 X T( ) . . .1 1 715729 1 126984 1 940036= [ ]−

5.34Example
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Similarly, the other iterations are given by 
Iteration 2
0.612787 –0.806563 2.001852
Iteration 3
0.733994 –0.753192 1.941368
Iteration 4
0.769495 –0.763336 1.939233
Iteration 5
0.765702 –0.765071 1.941165
Iteration 6
0.764555 –0.764751 1.941239
Iteration 7
0.764674 –0.764694 1.941177
Iteration 8
0.764711 –0.764704 1.941175

After eight iterations, the solution is as follows

 x x x1 2 30 764711 0 764704 1 941175= = − =. , . , .  

Convergence Results for Iterative Methods
It is clear from the matrix forms [(5.51), (5.53), (5.55) and (5.57)] of the iterative formulas 
that the iterative methods have the following form

X T X Ck k( ) ( )+ = +1 ,  for each k = 0, 1, 2, … (5.58)

where T and C are fixed matrices for a given system and X(0) is arbitrary. The matrix T is 
known as iteration matrix. Note that the iteration matrices (T) for Jacobi (5.51), Gauss–Seidel 

(5.53), and relaxation methods (5.55, 5.57) are T D L UJ = − +−1( ), T D L UGS = − + −( ) 1  and 

T I D AR J = − −ω 1 , T D L D URGS = +( ) −( ) −( )−ω ω ω1 1 , respectively. To study the convergence 

of iterative methods (Jacobi, Gauss–Seidel, and Relaxation), we need to analyze the formula 
(5.58). 

It is not possible to conclude on the convergence properties of the iterative methods for 
the general system (5.1) of linear equations. However, there exist some special classes of the 
coefficient matrix A, for which we have convergence results for the iterative methods. Here, 
we are stating some useful results regarding the convergence of the iterative methods.
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Theorem 5.2

For any initial approximation, X(0), the sequence X k

k

( ){ } =

∞

1
 generated by the formula (5.58) 

 X T X Ck k( ) ( )+ = +1 ,   for each k = 0, 1, 2, …

converges to the unique solution of the system X T X C= +  if and only if the spectral radius 
ρ T( ) < 1. 

The theorem (5.2) provides the necessary and sufficient condition for the convergence of 
general iterative formula (5.58). Using Theorem 5.2, we can easily prove the following result 
for the convergence of iterative methods. 

Corollary: For the convergence of iterative methods (Jacobi, Gauss–Seidel, and Relaxation), 
the necessary and sufficient condition is that the absolute values of all the eigenvalues of 
iteration matrix T are less than unity.

λi T i n( ) , ,...,< =1 1 2

where the iteration matrices (T) for Jacobi, Gauss–Seidel and relaxation methods are given 
by following expressions

T D L U
T D L U
T I D A

T D L D U

J

GS

R J

RGS

= − +
= − +
= −

= +( ) −( ) −

−

−

−

−

1

1

1

1 1

( )
( )

ω

ω ω ω(( )
Since it is very difficult to compute the eigenvalues of iteration matrix T, therefore we use 
this condition only when it requires. 

Theorem 5.3

Let the coefficient matrix A be a strictly diagonally dominant matrix, then the relaxation 
methods converge if 0 1< ≤ω . 

Consider any matrix A Cn n∈ ×  and let λ λ λ1 2, ,..., n  be the eigenvalues (real or complex) of this 
matrix, then the spectral radius ρ(A) is defined as follows

 ρ λ λ λA n( ) = { }max , ,...,1 2

Definition 5.1
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Theorem 5.4

The relaxation method with Jacobi iterations is convergent if the corresponding Jacobi 
method is convergent and 0 1< ≤ω . 

Theorem 5.5 (Kahan)

The relaxation methods fail to converge if the relaxation parameter ω ≤ 0 or ω ≥ 2.

Theorem 5.6

If the coefficient matrix A is a positive definite symmetric matrix, then the Gauss–Seidel 
method is convergent. 

Theorem 5.7 (Ostrowski–Reich)

If the coefficient matrix A is a positive definite matrix, then the relaxation methods are 
convergent for any choice of initial approximate vector, if and only if ω ∈( , )0 2 . 

We have already discussed that the relaxation methods have more or less rapid convergence 
depending on the choice of relaxation parameter. For the optimal relaxation parameter with 
the highest convergence, the following theorem is useful. 

Theorem 5.8

If the coefficient matrix A is positive definite and tridiagonal, then 

ρ ρT TGS J( ) = ( )  <
2

1

The optimal relaxation parameter for the relaxation methods is given by 

ω
ρ

opt =
+ −  

2

1 1
2

( )TJ

Compute the optimal relaxation parameter for the system of linear equations in Example 
5.29. 

Ans. The system of linear equations in Example 5.29 is given by

5.35Example
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3 2 18
2 3 19

3 9

1 2

1 2 3

2 3

x x
x x x

x x

− =
− + − = −

− + =

Consider the matrix A = L + D + U as follows

3 2 0
2 3 1

0 1 3

0 0 0
2 0 0

0 1 0

3 0 0
0 3 0
0 0 3

−
− −

−

















= −
−

















+
















+
−

−
















0 2 0
0 0 1
0 0 0

A L D U

The iteration matrix for Jacobi method is given by

T D L UJ = − +−1( )

T D L UJ = − + = −
















−
− −

−










−1

1 3 0 0
0 1 3 0
0 0 1 3

0 2 0
2 0 1

0 1 0
( )

/
/

/ 





=
















0 2 3 0
2 3 0 1 3
0 1 3 0

/
/ /

/

The eigenvalues of iteration matrix TJ are the elements of the vector 

0

5
3

5
3

−

























On using the eigenvalue ρ( )TJ = 5
3

, the optimal relaxation parameter is given by

ω
ρ

opt =
+ −  

=

+ −










=2

1 1

2

1 1 5
3

1 2
2 2

( )
.

TJ

The optimal relaxation parameter is given by ω = 1.2. With this value of relaxation 
parameter, the relaxation method requires a minimum number of iterations as given in 
Example 5.29. 
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Table 5.2 Formulae for Iterative Methods

Method Formulation (Next Iteration xi
k( 1)+ , 1 ≤ ≤i n) Matrix Form (X T X Ck k( ) ( )+ = +1 ) 

Jacobi

x
a

b a x i ni
k

ii
i i j j

k

j
j i

n
( ) ( ) ;+

=
≠

= −














≤ ≤∑1

1

1
1 X D L U X D Bk k( ) ( )( )+ − −= − + +1 1 1

Gauss–Seidel
x

a
b a x a x ii

k

ii
i i j j

k

j

i

i j j
k

j i

n
( ) ( ) ( ) ;+ +

=

−

= +

= − −






≤∑ ∑1 1

1

1

1

1
1 ≤≤ n X D L UX D L Bk k( ) ( )( ) ( )+ − −= − + + +1 1 1

Relaxation 
(Jacobi)

x x
a

b a x i ni
k

i
k

ii
i i j j

k

j
j i

n
( ) ( ) ( )( ) ;+

=
≠

= − + −














≤ ≤∑1

1

1 1ω ω
X I D A X D Bk k( ) ( )+ − −= −( ) +1 1 1ω ω

Relaxation 
(Gauss–Seidel) x x

a
b a x a xi

k
i
k

ii
i i j j

k

j

i

i j j
k

j i

n
( ) ( ) ( ) ( )( )+ +

=

−

= +

= − + − −∑1 1

1

1

1

1 ω ω ∑∑






≤ ≤; 1 i n X D L D U X D L Bk k( ) ( )+ − −= +( ) −( ) −( ) + +( )1 1 1
1ω ω ω ω ω

Stopping 
Criterion

In all the iterative methods, stopping criterion is last two iterations matches up to desired decimal points 
(or whatever accuracy we required, say 0.000001, etc.) 

The necessary and sufficient condition for the convergence of iterative methods (Jacobi, Gauss–Seidel, and Relaxation), is that the absolute 
values of all the eigenvalues of iteration matrix T are less than unity. 

λi T( ) < 1; for each i n= 1 2, ,...,

The iteration matrices (T) for Jacobi, Gauss–Seidel, and relaxation methods are T D L UJ = − +−1( ), T D L UGS = − + −( ) 1  and T I D AR J = − −ω 1 , 
T D L D URGS = +( ) −( ) −( )−ω ω ω1

1 , respectively. 

Order of convergence is linear (1) for all the methods. But the Gauss–Seidel method converges faster than Jacobi method. The relaxation 
method is also faster for appropriate choice of relaxation parameter ω . 
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5.15 Discussion 

This section deals with some observations about the direct and iterative methods for the 
solution of a system of linear equations. 

i) Direct methods are applicable to any general system (5.1) of linear equations, while 
the iterative methods require very cumbersome calculations and converge for only 
a limited type of systems which satisfy the convergence conditions. The question is 
why to use iterative methods? In direct methods, as a reference example of Gauss
elimination method, we have discussed the round-off errors and some remedies
to reduce these errors. The direct methods require large number of arithmetic
computations for the higher-order systems, so the round-off error is significant.
Iterative procedures can be used for such systems. The iterative methods may
require large numbers of iterations to produce the result with higher accuracy.
But, once the algorithms for these methods are implemented, these iterations can
be computed with the advent of high-speed computers. In Chapter 16, we will see
that large systems of linear equations are produced during the solutions of linear
PDEs. In fact, we need to solve large systems of linear equations to reduce the
truncation error arises during the finite difference approximations of differential
coefficients in PDEs. In this case, it is imperative to use iterative methods for the
solutions to avoid the large round-off error in case of direct methods.

ii) In iterative procedures, the main question is when to stop the iterations? In
general, we do not have the exact solution, so the accuracy of iteration is not
known. Many books follow that when last two iterations are equal up to significant 
digits required, then we stop the iterations. The last iteration is our final solution
corrects up to the number of significant digits mentioned. But this is not true in
general, consider the following example with Gauss–Seidel method

6 7 8 0
4 9 7 12
6 8 9 4

1 2 3

1 2 3

1 2 3

x x x
x x x
x x x

+ + =
+ + =
+ + =

Use C – Program (Turbo C) and declare the elements of augmented matrix 
[A: B] and the variables (x1, x2, x3) as float variables and start with the initial 
approximation (100, 10, 10). Then at 37th iteration, the result is (–5.4356, 1.7629, 
2.4878) and at 38th iteration, the result is (–5.3738, 1.7867, 2.4388). Rather, the 
difference between these two consecutive iterations is less than 0.05, but the result 
is not correct even up to one decimal place as the exact solution is (–5, 2, 2). 

iii) If the system satisfies the convergence condition (spectral radius of iteration
matrix is less than unity or diagonally dominant system), then both Jacobi
and Gauss–Seidel methods must converge to a unique solution of the system.
Otherwise, no conclusion can be drawn about the convergence of the methods.
In that case, both the methods may converge or diverge simultaneously (Example 
5.24); (or) the Jacobi method may fail to converge, while the Gauss–Seidel scheme 
may be convergent; (or) vice-versa. For example, consider the following system
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− + − = −
− + − = −

+ − =

4 4 8 8
5 8 7 4
3 4 6 1

1 2 3

1 2 3

1 2 3

x x x
x x x
x x x

Note that the solution for this system is a unit vector. Let the initial approximation 
vector be X T( ) [ ]0 0 0 0= . The Jacobi method is convergent for this system, while 
the Gauss–Seidel method fails to converge. 

iv) Many books claim that the iterative methods may converge to the solution, if the
initial approximation is close to the solution, but this is not true. If the method 
is converging for any initial approximation, then it will converge for each initial 
approximation. If the initial approximation is far from the solution, then the 
number of iterations increases for the desired accuracy. For example, consider 
the following system 

5 7 8 5
4 9 7 12
6 8 9 4

1 2 3

1 2 3

1 2 3

x x x
x x x
x x x

+ + =
+ + =
+ + =

The iterative methods diverge even for approximations that are very close to the 
solutions. For example, start with the initial approximation (–4, 1.5, 1.5) and 
even for a closer initial solution (try yourself; except when the x2, x3 is 2, 2, as 
these are the exact values and in next approximation, we will get the exact result). 
Similar is the case for following two systems with the solution (1, –1, 1). 

The iterative methods converge for the linear system, 
3 3 4 4
4 7 6 3
5 7 8 6

1 2 3

1 2 3

1 2 3

x x x
x x x
x x x

+ + =
+ + =
+ + =

, 

even if the initial approximation is very far from the exact solution. While the 

iterative methods diverge for the system, 
2 3 4 4
4 7 6 3
5 7 8 6

1 2 3

1 2 3

1 2 3

x x x
x x x
x x x

+ + =
+ + =
+ + =

, even the initial 

approximation is very close to the exact solution.

Comparison between Direct Methods and Iterative Methods:
In direct methods, if the arithmetic is exact, and the matrix A is non-singular, then the 
solution obtained will be exact. But computer arithmetic is not exact in general; there will 
be some round-off and truncation error in the result. The numbers of operational counts 
are high for a large system. So, there is a chance of high round-off error. Pivoting is the only 
alternate to reduce this error. 

In direct methods, once the error is committed, it cannot be recovered. But in iterative 
procedures, we can increase the number of iterations to enhance the accuracy of the 
solutions. Especially, in the case of large systems, we can use iterative procedures, provided 
the availability of a reasonably good computer. 
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258 Numerical Methods

It is also worth to mention here that in SOR method, each time we have to compute 
optimal relaxation parameter for different systems, which is a very cumbersome job. 

5.16 Applications 

Electrical Network:
In Electrical Network, determining currents and voltages in resistor circuits is a common 
problem. Following two conservation laws are used for this purpose. 

Kirchhoff ’s First Law (Conservation of Charge)
Algebraic sum of all the currents flowing through a junction must be zero

I =∑ 0

where the current flowing into the junction is considered to be positive and flowing out is 
considered negative.

Kirchhoff ’s Second Law (Conservation of Energy)
The algebraic sum of the products I R in any closed loop is equal to the algebraic sum of 
voltage drops. 

I R V=∑∑

Use Kirchhoff ’s laws to determine the currents I I1 2,  and I3 for the electrical network 
shown in the following figure. Note that units for current, resistance and voltage drop in 
an electrical network are ampere (amp), ohm(Ω) and volt(V), respectively. 

A

E

25 V

16 V

R3 = 5Ω

F C

B

D
I3

I2

I1

R2 = 2Ω

R1 = 3Ω

Fig. 5.3 Electrical network 1

5.36Example
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Ans.
Kirchhoff ’s first law at Junction F produces the following equation

I I I I= − + =∑ 1 2 3 0 (5.59)
The currents I1 and I3 are positive as these are flowing towards the junction, and the current 
I2 is negative as it is flowing out the junction. Kirchhoff ’s law at junction C produces the 
same equation. 
Kirchhoff ’s second law along closed loops AFCB and CDEF produces following two 
equations

I R I R I I1 1 2 2 1 23 2 16+ = + = (5.60)
I R I R I I2 2 3 3 2 32 5 25+ = + = (5.61)

We have the following system of three linear equations (5.59–5.61) in the variables I1, I2 
and I3. 

I I I
I I
I I

1 2 3

1 2

2 3

0
3 2 16
2 5 25

− + =
+ =
+ =

The solution of system by using Gauss elimination method is given by 
I I1 22 5= =,  and I3 3=  amps.

Use Kirchhoff ’s laws to determine the currents for the electrical network shown in the 
following figure. 

BA C

ED F

I5

I3

I1 I2

I4

I6

R4 = 10Ω 220 VR3 = 10Ω

R6 = 5Ω

R2 = 10Ω

R5 = 10Ω

R1 = 5Ω

Fig. 5.4 Electrical network 2

5.37Example
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Ans.
Kirchhoff ’s first law at Junctions A, B, D, E produces the following equations

− + =
+ − =
− − =
− + =

I I
I I I
I I I

I I

1 3

1 2 4

4 5 6

3 5

0
0
0
0 (5.62)

Kirchhoff ’s second law along closed loops ABED and CBEF produces following two 
equations

I R I R I R I R I I I I
I R I R I R I

1 1 3 3 4 4 5 5 1 3 4 5

2 2 4 4 6 6

5 10 10 10 0
10

+ + + = + + + =
+ + = 22 4 610 5 220+ + =I I (5.63)

The systems (5.62) and (5.63) have six linear equations, and solution of these equations 
is as follows 

I I I I I1 3 5 2 6= = = − = =2.8387 9.9355,  and I4 = 7.0968 amps.

Chemical Equations:
In chemical engineering, the law of conservation of mass is used for balancing a chemical 
equation. It states that “mass is neither created nor destroyed in any chemical reaction.” 
Therefore, balancing of a chemical equation requires the equal number of atoms on both 
sides of a chemical reaction. 

Ethane (C2H6) reacts with oxygen (O2) to form carbon dioxide (CO2) and water (H2O). 
Balance the chemical equation.

Ans.
Let the chemical reaction be as follows

xC2H6 + yO2 → zCO2 + wH2O

where x, y, z, and w are constants to be determined by balancing the chemical reaction. 
According to the law of conservation of mass, the number of atoms of each element is 
equal on both sides of the equation. This implies

2
6 2
2 2

x z
x w
y z w

=
=
= +

5.38Example
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The solution of this system is given by
z x

w x

y x

=
=

=

2
3
7
2

Since we want integral values of the variables x, y, z and w. Let x = 2, we get y = 7, z = 4 and w = 6.  
The balanced equation is given by
 2C2H6 + 7O2 → 4CO2 + 6H2O
Beside many other applications in engineering and sciences, the system of linear equations 
frequently occurs in solutions of differential equations by finite difference methods, and 
other numerical methods. Kindly refer to Chapters 15 and 16 for these applications.

Exercise 5

1. Use Cramer, matrix inversion, LU-decomposition (both Crout and Doolittle), Gauss elimination
and Gauss–Jordan Methods for the solutions of the following systems of equations

 a) 
3 2 0
2 3 1
0 1 2

5
4
1

−
−

















=
















X  b) 
4 1 0
1 4 1

0 1 4

3
2
3

−
− −

−

















=
















X

Ans. a), b): [1 1 1]T

2. Solve the following systems of linear equations with the help of Cramer, matrix inversion,
triangularization (or) LU-decomposition (both Crout and Doolittle), Gauss elimination and
Gauss–Jordan Methods

 a) 

2 3 6

3 3

2 3 4

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

− + =
+ − = −

− − − = −
 b) 

x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

3

2 3 5

3

+ + =
+ + =

− − = −
 c) 

x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

3 5

2 4 3

3 5

− + =
+ + =

− + =

Ans. a) [1  – 1 1]T b) [0  1 2]T c) [1  – 1 1]T 

3. Show that the following system cannot be solved with the help of LU-decomposition method

3 3 4

2 2 1

2 3

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

− + =
− + + = −

+ + =

4. Solve the following system of linear equations by Cholesky method

2 6

3 5 11

5 4 13

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

+ − =
− + =

− + + =
Ans. 

59
17

24
17

40
17







T
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262 Numerical Methods

5. Find a parabola, y a bx cx= + + 2, which passes through the points 1 4 2 8 3 14, , , ,( ) ( ) ( )and .

Ans. 2 2+ +x x

6. Solve the following system of linear equations by Gauss elimination method with partial and
complete pivoting using three significant digits floating points rounding arithmetic.

2 2 4

2 100 100

3 50 52 5

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

+ + =
− + =
+ + = .

Compare the obtained results for each case with the exact solution x x x1 2 30 5 1 1= = =. , , . 

Ans. 
1. Partial Pivoting:

Upper triangular matrix: 

3 1 200 102
0 1 67 33 0 15 0
0 0 77 8 39 0

− − −
− −

















. . .
. .

Solution: x x x1 2 30 567 0 997 1 00= = =. , . , .

2. Complete Pivoting:

Upper triangular matrix: 

x x x3 2 1

100 1 2 100
0 50 0 2 98 51 5
0 0 1 90 0 95

−















. . .
. .

Solution: x x x1 2 30 500 1 00 1 00= = =. , . , .

7. Solve the given system of linear equations by Gauss elimination method with and without
partial pivoting. Use five significant digits floating points rounding arithmetic.

5 32 2 630 11 31 27 52

2 3 18 21 5 16 43 173

20

1 2 3

1 2 3

. . . .

. . . .

x x x

x x x

+ − =
+ + =

− .. . . .7 13 51 7 4 29 6831 2 3x x x+ − = −

Compare the solution with the exact solution up to five significant digits 
[3.0141  2.1371  –0.51852]T.

8. Carry out four significant digits chopping arithmetic to solve the following linear system using
Gauss elimination without pivoting and with partial, scaled and complete pivoting strategies
and compare it with the exact solution.

− + + =
+ + =

− + +

3 1 1 2 0 7 5 673

2 3 5 3 1 6 7 203

0 3 2 4

1 2

1 2 3

1 2

. . . .

. . . .

. .

x x

x x x

x x 66 2 4 1233. .x =

Ans. Exact solution up to four significant digits [–1.127 1.884 –0.1189]T

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.006
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:32:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.006
https://www.cambridge.org/core


Systems of Linear Equations 263

9. Solve the following system of linear equations with the help of Gauss elimination method. Use
seven significant digits rounding arithmetic.

27 534 8 432 2 783 51 8932

13 098 45 210 7 231
1 2 3

1 2 3

. . . .

. . .

x x x

x x x

− + =
− + ==

− + − = −
43 7638

2 134 3 564 17 230 76 43681 2 3

.

. . . .x x x

Use this solution as initial approximation for the Gauss–Seidel method and solve the system to 
obtain solution correct up to six decimal places

Ans. Exact solution up to seven significant digits [1.498103 0.150872 4.281924]T

10. Perform five iterations of Jacobi and Gauss–Seidel iterative methods to solve the following
system of linear equations. Consider the initial approximation is x x x1

0
2

0
3

00 0 0( ) ( ) ( ), ,= = = . 
16 2 3 34

23 42 4 88

5 9 32 1

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

+ − =
+ + =
− + =

Compare the obtained results with the exact solution [2 1 0]T.

Ans. 
Jacobi iterations

Iteration 1 2.1250 2.0952 0.0312

Iteration 2 1.8690 0.9286 0.2885

Iteration 3 2.0630 1.0443 0.0004

Iteration 4 1.9945 0.9655 0.0026

Iteration 5 2.0048 1.0027 –0.0089

Gauss–Seidel iterations

Iteration 1 2.125000 0.931548 –0.038783

Iteration 2 2.001285 1.002990 0.000640

Iteration 3 1.999746 1.000078 0.000062

Iteration 4 2.000002 0.999993 –0.000002

Iteration 5 2.000000 1.000000 0.000000

11. Perform 5 iterations of Gauss Seidel method in matrix form to solve the following systems of
linear equations.

 a) 

5 2 8

2 3 4

3 6 8

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

+ − =
+ + =

− + = −
 b) 

7 3 3

2 4 7

2 4 7

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

+ − =
− + =

− + =

Start with the initial approximation, x x x1
0

2
0

3
00 0 0( ) ( ) ( ), ,= = = . 

Ans. 
a) Gauss–Seidel iterations

Iteration 1 1.600000 0.266667 –1.466667

Iteration 2 0.960000 1.182222 –0.902222

Iteration 3 1.002667 0.965630 –1.017630

Iteration 4 0.999822 1.005995 –0.996973

Iteration 5 1.000012 0.998983 –1.000510
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264 Numerical Methods

b) Gauss–Seidel iterations

Iteration 1 0.428571 –1.535714 0.875000

Iteration 2 1.211735 –0.925383 0.984375

Iteration 3 0.965789 –1.021012 0.998047

Iteration 4 1.008726 –0.996125 0.999756

Iteration 5 0.998305 –1.000909 0.999969

Note that exact solutions are: a) [1 1 –1]T and b) [1 –1 1]T

12. State the convergence condition for the Gauss–Seidel method, and use pivoting such that the
following systems satisfy convergence condition. Then, solve the following systems correct up
to three decimal places, starting with the initial approximation (0, 0, 0).

 a) 
40 5 26 19
10 7 20 3
21 30 4 47

x y z
x y z
x y z

+ + =
+ + = −
+ + =

 b) 
2 6 9

2 14 11
6 4 9

x y z
x y z

x y z

+ − =
+ + = −
+ + =

Ans. a)  To make the system diagonally dominant (for convergence of Gauss–Seidel iterations), 
interchange the second and third equations. We have 

40 5 26 19
21 30 4 47
10 7 20 3

x y z
x y z
x y z

+ + =
+ + =
+ + = −

Applying Gauss–Seidel method to this system, we have

Iteration 1 0.475000 1.234167 –0.819458

Iteration 2 0.853377 1.078564 –0.954186

Iteration 3 0.960400 1.021611 –0.987764

Iteration 4 0.989345 1.005827 –0.996712

Iteration 5 0.997135 1.001567 –0.999116

Iteration 6 0.999229 1.000422 –0.999762

Iteration 7 0.999793 1.000113 –0.999936

b) The system can be rewritten as follows

6 4 9
2 6 9

2 14 11

x y z
x y z

x y z

+ + =
+ − =

+ + = −

Applying Gauss–Seidel method to this system, we have

Iteration 1 1.500000 1.000000 –1.071429

Iteration 2 1.011905 0.984127 –1.000567

Iteration 3 1.010677 0.996347 –1.001264

Iteration 4 1.002646 0.998907 –1.000300

Iteration 5 1.000778 0.999691 –1.000089

Iteration 6 1.000221 0.999911 –1.000025
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13. Find the solution of the following system of linear equations correct to four decimal places with 
the help of Gauss–Seidel method. Use initial approximation (0.5, –0.5, 0.5).

2 1 4
1 3 1

5 1 3

7
3
9

−
−

− −

















= −
−

















X

Ans. Rewrite the system as follows to convert it into the diagonally dominant system

− −
−

−

















=
−
−

















5 1 3
1 3 1
2 1 4

9
3

7
X

Iteration 1 1.400000 –1.300000 0.725000

Iteration 2 1.105000 –1.126667 0.915833

Iteration 3 1.025167 –1.036444 0.978306

Iteration 4 1.005728 –1.009141 0.994851

Iteration 5 1.001261 –1.002137 0.998835

Iteration 6 1.000272 –1.000479 0.999745

Iteration 7 1.000057 –1.000104 0.999945

Iteration 8 1.000012 –1.000022 0.999988

Iteration 9 1.000003 –1.000005 0.999998

14. Compute 5–7 iterations of Gauss–Seidel method with initial approximations (0, 0, 0) for the
following system of equations

 2 3 1 3 2 2 1 2 2 61 2 3 1 2 3 1 2 3x x x x x x x x x+ + = − + + = + + =; ; ;

Conclude that the method diverges for this system. 

Ans. 
Iteration 1 –0.500000     1.250000        2.000000

Iteration 2 –3.375000      3.562500       1.125000

Iteration 3 –6.406250      8.984375  –2.781250

Iteration 4 –12.585938   22.160156    –12.867188

Iteration 5 –27.306641   54.327148    –37.673828

Iteration 6 –63.153809   132.904541  –98.327637

Iteration 7 –150.692993 324.867126 –246.520630

15. Compute 7 iterations of SOR method with Jacobi iterations for the following system with initial
approximation (0 0 0)T.

5 7

2 2

3 5 3

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

+ − =
+ + =
− + = −

Use relaxation parameter ω = 1.15
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266 Numerical Methods

Ans.
Iteration 1 1.610000 1.150000 –0.690000

Iteration 2 0.945300 0.448500 –1.432900

Iteration 3 1.035483 1.363095 –1.024167

Iteration 4 0.905607 0.939029 –0.937346

Iteration 5 1.042593 1.027395 –0.988290

Iteration 6 0.996903 0.947417 –1.029344

Iteration 7 1.005809 1.026541 –1.005556

16. Solve the Exercise 15 using SOR method with Gauss–Seidel Iteration

Ans.
Iteration 1 1.610000 0.224250 –1.749323

Iteration 2 0.914578 1.596340 –0.691502

Iteration 3 0.946609 0.763862 –1.063747

Iteration 4 1.047658 1.044672 –1.013048

Iteration 5 0.979576 1.012546 –0.981065

Iteration 6 1.004533 0.984624 –1.009505

Iteration 7 1.000670 1.007386 –0.997338

17. Consider the following systems of linear equations

a) 5 3 0
3 5 2
0 2 7

7
10
6

1

2

3

−
−

































=
















x
x
x

b) 6 2 0
2 6 3
0 3 6

5
3
3

1

2

3

−
− −

−

































=
















x
x
x

Find the optimal relaxation parameter ωopt for SOR method, and use it to compute the solution 
correct upto 3 decimal places. Start with initial approximation [0.5  1  1]T.

Ans.

 a) 
T D L Uj = − +( ) =

−
−

















−1

0 0 6 0
0 6 0 0 4
0 0 285714 0

.
. .

.

Eigenvalues  of ’s areTj

opt

±( )
=

+ −
=

0 688684 0

2

1 1
1 159379

2

. ,

.ω
µ

Iteration 1 1.623131 1.189664 1.387831

Iteration 2 0.536875 2.399295 1.567331

Iteration 3 –0.131451 2.754654 1.656436

Iteration 4 –0.272132 2.837201 1.669578
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Systems of Linear Equations 267

Iteration 5 –0.307132 2.854487 1.673210

Iteration 6 –0.313578 2.857900 1.673762

Iteration 7 –0.314925 2.858549 1.673889

Iteration 8 –0.315162 2.858669 1.673908

The solution upto three decimal places is given by

x1 = –0.315162, x2 = 2.858669, x3 = 1.673908

 b) 
T D L Uj = − +( ) =

















−1

0 0 333333 0
0 333333 0 0 5

0 0 5 0

.
. .

.

Eigenvaluues of ’s areTj

opt

±( )
=

+ −
=

0 600925 0

2

1 1
1 111540

2

. ,

.ω
µ

Iteration 1 0.926283 0.898970 1.055391

Iteration 2 1.156046 1.470384 1.255247

Iteration 3 1.342135 1.586671 1.303328

Iteration 4 1.364464 1.605503 1.303328

Iteration 5 1.368951 1.608258 1.304218

Iteration 6 1.369471 1.608638 1.304330

Iteration 7 1.369554 1.608688 1.304346

The solution correct upto three decimal places is as follows

x1 = 1.369554, x2 = 1.608688, x3 = 1.304346
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6.1 Introduction

The eigenvalue problems play a crucial role in many engineering and scientific applications. 
For example, consider the following system of linear homogeneous first order differential 
equations with constant coefficients.

dx
dt

a x a x

dx
dt

a x a x

1
11 1 12 2

2
21 1 22 2

= +

= +

This system represents many important physical phenomena like concentrations x1 and x2 
of two constituents in a chemical process as a function of time t. This system in matrix form 
is as follows

dx
dt

Ax=  (6.1)

where x
x
x

=










1

2

 and A
a a
a a

=










11 12

21 22

 

Let the solution of this system be of the following form

x Xe t= λ

Mathematics is the language with which God wrote the universe.

Galileo Galilei
(February 15, 1564–January 8, 1642)

He is known as the ‘Father of Science’. He was a physicist, mathematician,  
astronomer, engineer, and philosopher. 

Eigenvalues and EigenvectorsChapter
6
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Eigenvalues and Eigenvectors 269

where X is a column vector of two elements and λ is a parameter to be determined. On 
substituting this solution in the system (6.1), we get

λ λ λXe AXet t=
The quantity e tλ  is a nonzero scalar; after cancellation, we have AX X= λ .

The problem to solve the system of differential equations is now the problem to determine 
a scalar λ and a column vector X such that 

AX X= λ
This problem is known as the eigenvalue problem. 

Let A be a square matrix of order n, X is a column vector of n elements and λ is scalar 
quantity, then the eigenvalue problem is defined as follows

AX X= λ  (6.2) 

The column vector X and matrix A are given by 

X

x
x

x

A

a a a
a a a

a an

n

n

n n

=





















=

⋅⋅⋅
⋅⋅⋅

1

2

11 12 1

21 22 2

1

 

and

22 ⋅⋅⋅



















ann

Equation (6.2) always has zero solution (X = 0) for any scalar λ. But this trivial solution 
is not an interesting and useful solution from application points. So, the aim is to find 
the nontrivial solutions X, known as eigenvectors or characteristic vectors. These solutions 
exist for some particular values of λ called as eigenvalues or characteristic values (or 
sometimes latent roots or proper values). The set of all eigenvalues is called as a spectrum 
of A. The radius ρ of the smallest circle, with center at the origin, and which contains all the 
eigenvalues is called the spectral radius of the A. 

In terms of linear transformation, the eigenvalue problem can be defined as follows 

we know that any matrix A transform a column vector X into a new column vector Y, i.e. 

AX = Y

where A is a square matrix of order n, and X and Y are column vectors of n elements. If we 
want our transformed vector Y is a scalar multiple of X, then the problem now transformed 
to eigenvalue problem 

AX = λX

Only certain special vectors X and scalars λ satisfy this equation, and these are known as 
eigenvectors and eigenvalues, respectively. The eigenvector X has the property that the 
transformation A does not change its direction, but only scaled by a factor of λ. In fact, 
matrix A acts to stretch the vector X without changing the direction.
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270 Numerical Methods

6.2 Eigenvalues and Eigenvectors

In this section, we will discuss the method to compute the eigenvalues (λ1, λ2, ... λn) and 
corresponding eigenvectors (X1, X2, ... Xn) of a square matrix A of order n. Equation (6.2) 
is given by

AX = λX
AX = λ(IX)

where the matrix I is the identity matrix. We can rewrite the above equation in the following 
form

A X−( ) =λI 0  (6.3)

The expression (6.3) is a homogeneous system of n linear equations. The system (6.3) has 
nontrivial solutions, if

det

...

...

...

A

a a a
a a a

a a a

n

n

n n nn

−( ) =

−
−

−

=λ

λ
λ

λ

I

11 12 1

21 22 2

1 2

0


Let

p A( ) detλ λ= −( ) =I 0  (6.4)

X

X

X

Y

λX

AX = λX

Fig.6.1 Eigenvalue and eigenvector

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:32:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.007
https://www.cambridge.org/core


Eigenvalues and Eigenvectors 271

The p(λ) is the polynomial of degree n. p(λ) is known as the characteristic polynomial, and 
the equation p A( ) detλ λ= −( ) =I 0 is called as a characteristic equation. Roots of Eq.(6.4) 
are the eigenvalues of matrix A (eigenvalues may be complex). Once we obtain the eigenvalue 
λk, the corresponding eigenvector Xk is derived by solving following homogeneous system 
for nontrivial solution

A Xk k−( ) =λ I 0

It easy to see that if X x x xn

T
=  1 2 ...  is an eigenvector, then for any scalar, α , α X is also 

an eigenvector. 
AX X

AX X
A X X

=
=

=

λ
α αλ

α λ α( ) ( )
 

So, we often use the normalized eigenvector X  defined by 

X
X

x
x

xn





=





















1
1

2  (6.5)

where X X X x x xT
n= ( ) = + + ⋅⋅⋅+( )1 2

1
2

2
2 2/

 is the norm or Euclidean length of the vector X 

in the space ℜn.

Let any eigenvalue μ be repeated r times with k linearly independent eigenvectors; then r is 
the algebraic multiplicity, and k is the geometric multiplicity of the eigenvalue, μ. The linearly 
independent eigenvectors of any matrix A form a basis for the corresponding vector space. 
This space comprises the all possible linear combinations of these eigenvectors. It is known 
as solution space or eigenspace. Now, we will discuss different types of eigenvalues problems.

6.2.1 Real Eigenvalues

Find the eigenvalues and corresponding eigenvectors of the matrix A =










1 2
3 2

.

Ans. The characteristic polynomial of matrix A is as follows

 p A( )λ λ
λ

λ
λ λ= − =

−
−

= −( ) +( )I
1 2
3 2

4 1

The solution of characteristic equation p( )λ = 0 provides the two eigenvalues λ1 4=  and 
λ2 1= − . The spectrum of matrix A is the set {4, –1} and the spectral radius is 4.

6.1Example
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For the eigenvalue, λ1 4= , the corresponding eigenvector X x x T
1 1 2= [ ]  is the 

solution of the following homogeneous system 

 

A X

x
x

−( ) =









 −

























 =











−

4 0

1 2
3 2

4
1 0
0 1

0
0

1

1

2

I

33 2 0
3 2 0

1 2

1 2

x x
x x

+ =
− =

These two equations are the same, so effectively we have only one equation in two variables. 

We can set one variable as arbitrary. Let x2 = α , then x1
2
3

= α . Therefore, the eigenvector 

X1 corresponding to the eigenvalue λ1 4=  is given by

 X1

2
3
1

=
















α

The normalized eigenvector is X1

2
13
3
13

=



















Similarly, for the eigenvalue, λ2 1= − , the pair of consistent equations (A+1)X2 = 0 is as 
follows

 2 2 0
3 3 0

1 2

1 2

x x
x x

+ =
+ =

The eigenvector X2 corresponding to the eigenvalue, λ2 1= − , is X2

1
1

=
−









α  for any 

arbitrary scalar α , and corresponding normalized eigenvector is X 2

1
2
1
2

=
−



















. Note that 

the vectors X1 and X2 are linearly independent eigenvectors, so they form a basis for the 
solution space or eigenspace, which is R2 space.
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6.2.2 Complex Eigenvalues

Find the eigenvalues and corresponding eigenvectors of the matrix A =
−









1 2
3 2

.

Ans.
The characteristic equation for matrix A is given by 

p A( )λ λ
λ

λ
λ λ= − =

− −
−

= − + =I
1 2
3 2

3 8 02

Roots of this characteristics equation give eigenvalues 
1
2

3 23±( )i . For the eigenvalue

λ1
1
2

3 23= +( )i , the corresponding eigenvector is the solution of the following 

homogeneous system

 
− +( ) − =

+ −( ) =

1
2

1 23 2 0

3 1
2

1 23 0

1 2

1 2

i x x

x i x

The solution of the system is an eigenvector X i1

2

1 23
2

= − −

















α , where α  is an arbitrary 

complex constant. The corresponding normalized eigenvector is X
i



1

1
7
1 23

4 7

=
− −



















.

Similarly, the linear system of equations for the eigenvalue λ2
1
2

3 23= −( )i  is as follow

 

1
2

1 23 2 0

3 1
2

1 23 0

1 2

1 2

− +( ) − =

+ +( ) =

i x x

x i x

The corresponding eigenvector is X i2

2

1 23
2

= − +

















α . The normalized eigenvector is 

X
i



1

1
7
1 23

4 7

=
− +



















. 

6.2Example

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:32:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.007
https://www.cambridge.org/core


274 Numerical Methods

6.2.3 Matrix with Real and Distinct Eigenvalues

Determine the eigenvalues and normalized eigenvectors of the matrix 

A = −
−

















0 2 4
1 1 2

2 0 5
.

Ans.
Characteristic equation

 p( )λ
λ

λ
λ

λ λ λ=
−

− −
− −

= − + − + =
0 2 4
1 1 2

2 0 5
6 11 6 03 2

gives eigenvalues, λ λ λ1 2 31 2 3= = =, , . Since the eigenvalues are distinct, we will get 
three linearly independent eigenvectors corresponding to each eigenvalue. For the first 
eigenvalue λ1 1= , the corresponding homogeneous system is as follows

 A X−( ) =I 0

In algebraic form, this system is given by

 
− + + =

− =
− + =

x x x
x x
x x

1 2 3

1 3

1 3

2 4 0
2 0

2 4 0
This system of equations has only two linearly independent equations (as the second 
equation is a constant multiple of the third equation). We can assume one variable, let 
x3, as arbitrary and other variables in terms of this variable. Let x3 = α , then x1 2= α  

and x2 = −α ; so the eigenvector is X1

2
1

1
= −

















α . We can easily deduce the normalized 

eigenvector X1
1
6

2
1

1
= −
















.

Similarly, corresponding to eigenvalues λ2 2=  and λ3 3= , the normalized eigenvectors 

are X 2
1
14

3
1

2
= −
















 and X 3

1
3

2
1

2
= −
















, respectively. Note that the three linearly independent 

eigenvectors form a basis for the solution space of the eigenvalue problem. The solution 
space is a real three-dimensional vector space.

6.3Example
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6.2.4 Matrix with Real and Repeated Eigenvalues 

6.2.4.1 Linearly independent eigenvectors

Find the eigenvalues and eigenvectors of the matrix A =
− −
− −
− −

















1 3 3
3 5 3
6 6 4

.

Ans. The characteristics equation is given by

 A I− =
− − −
− − −
− − −

















=λ
λ

λ
λ

1 3 3
3 5 3
6 6 4

0

It gives eigenvalues λ λ λ1 2 32 2 4= = = −, , . The eigenvalue λ λ1 2 2= =  is twice repeated 
(algebraic multiplicity 2). For λ λ1 2 2= = , the associated homogeneous linear system takes 
the form

 
− + − =
− + − =
− + − =

3 3 3 0
3 3 3 0
6 6 6 0

1 2 3

1 2 3

1 2 3

x x x
x x x
x x x

This system has only one linearly independent equation. Two variables can assume any 
arbitrary values. We can easily find two linearly independent solutions, for example

X X1 2

1
0

1

1
1
0

=
−

















=
















α βand . Since we have two linearly independent eigenvectors, 

hence geometric multiplicity is also two. 

For eigenvalue, λ3 4= − , the system of equations is as follows

 
3 3 3 0
3 9 3 0

6 6 0

1 2 3

1 2 3

1 2

x x x
x x x

x x

+ − =
− + − =

− + =

It is easy to see that, out of three only two equations are independent, as R R R1 3 2+ = . So, 
we can neglect any one equation, and can continue with other two equations. A solution 

of the system is an eigenvector X3

1
1
2

=
















γ . 

6.4Example
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The eigenvalues of the matrix are, λ λ λ1 2 32 2 4= = = −, , , and corresponding normalized 

eigenvectors are X X X1 2 3
1
2

1
0

1

1
2

1
1
0

1
6

1
1
2

=
−

















=
















=













, and

, respectively.

Similarly, the matrix A =
















1 2 5
2 4 10
3 6 15

 has eigenvalues, λ λ λ1 2 30 0 20= = =, , . 

The eigenvalue λ1 0=  is of algebraic as well as geometric multiplicity two with two 

independent normalized eigenvectors X1
1
5

2
1

0
= −
















 and X2

1
26

1
0

5
=

−
















. The normalized 

eigenvector corresponding to λ3 20=  is X3
1
14

1
2
3

=















. 

Find the eigenvalues and eigenvectors of the matrix A = − −
















5 6 7
0 2 2
0 2 2

.

Ans. The characteristics equation is given by

 A I− =
−

− − −
−

















=λ
λ

λ
λ

5 6 7
0 2 2
0 2 2

0

The eigenvalues are λ λ λ1 2 30 0 5= = =, , . The eigenvalue, λ λ1 2 0= = , has algebraic 
multiplicity 2, and the associated homogeneous linear system is as follows

 
5 6 7 0

2 2 0
2 2 0

1 2 3

2 3

2 3

x x x
x x
x x

+ + =
− − =

+ =

6.5

6.6

Example

Example

6.2.4.2 Linearly dependent eigenvectors
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Its solution gives only one linearly independent normalized eigenvector, X1
1
51

1
5

5
=

−

















.

So, eigenvalue λ λ1 2 0= =  has one geometric multiplicity. Similarly, for eigenvalue, λ3 5= , 

the normalized eigenvector is X3

1
0
0

=















.

6.3 Bounds on Eigenvalues

In this section, we will discuss the Gerschgorin and Brauer theorems, which will provide us 
the bounds on eigenvalues of a given square matrix.

6.3.1 Gerschgorin Theorem

Theorem 6.1

Modulus of the eigenvalue of a matrix cannot exceed the largest sum of the modulus of its 
elements along any row or column. Let λ be any eigenvalue of matrix A ai j= [ ] of order n, 
then

 λ ≤








 =

=
∑max , ,..., .

i i j
j

n

a i n
1

1 2   (Sum along any row) (6.6)

and  λ ≤








 =

=
∑max , ,..., .

j i j
i

n

a j n
1

1 2   (Sum along any column) (6.7)

Proof: Let the matrix A have eigenvectors X X Xn1 2, ,...,  corresponding to eigenvalues
λ λ λ1 2, ,..., n, respectively.

AX X i ni i i= ≤ ≤λ ; 1  

This system of linear equations is as follows

a x a x a x x
a x a x a x x

i i n in i i

i i n in i

11 1 12 2 1 1

21 1 22 2 2

+ + ⋅⋅⋅+ =
+ + ⋅⋅⋅+ =

λ
λ ii

n i n i nn in i ina x a x a x x

2

1 1 2 2



+ + ⋅⋅⋅+ = λ

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:32:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.007
https://www.cambridge.org/core


278 Numerical Methods

Let the largest of all xi k  be x xi r k i k= max . Then divide the rth equation by the quantity xi r.  
We obtain the following equation

λi r
i

i r
r

i

i r
r r rn

in

i r

a
x
x

a
x
x

a a
x

x
=









 +









 + ⋅⋅⋅+ + ⋅⋅⋅+




1

1
2

2 



  (6.8)

As x xi r k i k= max , so we have

x

x
j ni j

i r

≤ =1 1 2; , ,...,

⇒ ≤ + +⋅⋅⋅+ =
=

∑λi r r rn rj
j

n

a a a a1 2
1

Since r is unknown, so we can write it as

λ ≤








 =

=
∑max ; , ,...,

i i j
j

n

a i n
1

1 2

The matrices A and AT (transpose of matrix A) have same eigenvalues. So, proceeding in a 
similar manner, we can obtain the following result

λ ≤








 =

=
∑max , ,...,

j i j
i

n

a j n
1

1 2

Find the bounds on eigenvalues of a matrix A = − −
−

















0 2 4
1 1 2

2 0 5
 using Gerschgorin 

theorem.

Ans. Equation (6.6) of Gerschgorin theorem provides the result, λ ≤ 7 (the largest sum 
of modulus of elements along rows).

From Eq.(6.7), we have λ ≤ 11 (the largest sum of modulus of elements along columns)

Therefore, the intersection of these two inequalities provides the bound on eigenvalues 
λ ≤ 7.

6.7Example

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.007
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:32:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.007
https://www.cambridge.org/core


Eigenvalues and Eigenvectors 279

6.3.2 Brauer Theorem

Theorem 6.2

Every eigenvalue λ of a matrix A satisfies at least one of the following relations

λ − ≤ =
=
≠

∑a a r nr r r j
j
j r

n

1

1 2, ,..., .  (along rows) (6.9)

Similarly, along columns, we have that every eigenvalue λ of a matrix A satisfies at least one 
of the following relation

λ − ≤ =
=
≠

∑a a r nr r j r
j
j r

n

1

1 2, ,...,  (6.10)

(Consider the circles with centers at the diagonal elements of the matrix, and their radiuses 
are the sum of the modulus of elements along rows excluding diagonal element. Then, every 
eigenvalue of the matrix will lie inside or on the boundary of at least one of these circles. 
These circles are known as Gerschgorin circles, and bounds on eigenvalues are known as 
Gerschgorin bounds)

Proof: In the previous theorem, Eq.(6.8) is given by

λi r
i

i r
r

i

i r
r r rn

in

i r

a
x
x

a
x
x

a a
x

x
=









 +









 + ⋅⋅⋅+ + ⋅⋅⋅+




1

1
2

2 





λi r r r
i

i r
r

i

i r
rr

ir

r r

a a
x
x

a
x
x

a
x
x

− =








 +









 + ⋅⋅⋅+ −

−

−
1

1
2

2
1

1

1









 +









 ⋅⋅⋅+









+

+

+

a
x

x
a

x

xr r
i r

i r
rn

in

i r
1

1

1

 (6.11)

As x xi r k i k= max , so we have 

x

x
j ni j

i r

≤ =1 1 2; , ,...,

On using these inequalities in Eq.(6.11), we get

λ

λ

i r r r r rr rr rn

i r r rj
j
j r

n

a a a a a a

a a

− ≤ + + ⋅⋅⋅+ + ⋅⋅⋅+

⇒ − ≤

− +

=
≠

∑
1 2 1 1

1

Since λi is not specific, so we can generalize it for every eigenvalue (λ).

λ − ≤ =
=
≠

∑a a r nr r r j
j
j r

n

1

1 2, ,...,
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Note that the eigenvalues of A and AT are equal, so we can modify the above result as follows

λ − ≤ =
=
≠

∑a a r nr r j r
j
j r

n

1

1 2, ,...,

Hence proved.

Find the bounds on eigenvalues of a matrix A = − −
−

















0 2 4
1 1 2

2 0 5
 using Brauer 

theorem.

Ans. 
According to Brauer theorem, each and every eigenvalue satisfies at least one of following 
inequalities (6.9)

 λ − ≤ =
=
≠

∑a a r nr r r j
j
j r

n

1

1 2, ,..., . (along rows)

For matrix A, we have 

 

λ λ
λ λ
λ λ

− = − ≤
− = + ≤
− = − ≤

a
a
a

11

22

33

0 6
1 3
5 2  (6.12)

Since each and every eigenvalue satisfies at least one of these inequalities, so in general, 
we can use the union of these circles for the bounds on eigenvalues. Now, the inequality 
λ + ≤1 3 is included in the inequality, λ − ≤0 6. Therefore we can avoid the second 
inequality of system (6.12). 

Also, eigenvalues satisfy at least one of inequalities of system (6.10)

 λ − ≤ =
=
≠

∑a a r nr r j r
j
j r

n

1

1 2, ,...,  (along columns) 

For matrix A, we can easily have following three inequalities for bounds on eigenvalues 
along columns.

 

λ λ
λ λ
λ λ

− = − ≤
− = + ≤
− = − ≤

a
a
a

11

22

33

0 3
1 2
5 6  (6.13)

6.8Example
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The union of these circles provides the bounds on eigenvalues. The inequality λ + ≤1 2 is 
included in the inequality, λ − ≤0 3; therefore we can avoid the former inequality. From 
inequalities (6.12 and 6.13), the eigenvalues lie in the following region

 λ λ λ λ− ≤ − ≤( ) − ≤ − ≤( )5 2 0 6 0 3 5 6  

Find the bounds on eigenvalues of the matrix A = − −
−

















0 2 4
1 1 2

2 0 5
.

Ans.
From Example (6.7), the Gerschgorin theorem provides the following bound on eigenvalues

 λ ≤ 7 (6.14)

We have the following region for eigenvalues as derived in Example (6.8) by using Brauer 
theorem.

 λ λ λ λ− ≤ − ≤( ) − ≤ − ≤( )5 2 0 6 0 3 5 6    (6.15)

The intersection of (6.14) and (6.15) is the final region for the eigenvalues. 

6.9Example

In Section 6.2, we have discussed a direct method for computing eigenvalues of a square 
matrix. The eigenvalues can be obtained by using this method, but for higher order matrix, 
expanding the characteristic determinant and obtaining roots from the high-degree 
characteristic equation are very difficult. Also in the direct methods, the errors committed 
will remain in final results. In the case of higher order matrices, the numbers of operational 
counts are large, and the error propagation will cause great damage to the results obtained. 

Consequently, we require iterative procedures for the solution of eigenvalue problems. 
In next sections, we will discuss following iterative procedures to compute eigenvalues and 
eigenvectors for a square matrix. 

1. Rayleigh Power Method
2. Rutishauser (or) LU Decomposition Method

6.4 Rayleigh Power Method

Power method is used to determine the largest eigenvalue (in magnitude) of matrix A of 
order n. Let λ λ λ1 2, ,..., n be the eigenvalues of the matrix A, such that
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λ λ λ1 2> > >... n

The aim is to determine the absolutely largest eigenvalue (λ1).

Let X X Xn1 2, ,...,  be the eigenvectors corresponding to the eigenvalues, λ λ λ1 2, ,..., n, 
respectively. It implies

AX X i ni i i= ≤ ≤λ ; 1
If the matrix A has n-linearly independent eigenvectors, then we can write any vector X 
(from same vector space) as a linear combination of the vectors, X X Xn1 2, ,..., . Therefore, 
for some scalars, c i ni ; 1 ≤ ≤ , we have

X c X c X c Xn n= + + +1 1 2 2 ...  (6.16)

Pre-multiplying Eq. (6.16) with the matrix A, we get

AX A c X c X c X

c AX c AX c A X c i n
n n

n n i

= + + +( )
= + + + ≤ ≤

1 1 2 2

1 1 2 2 1

...

... ; are sccalars( )
= + + + = ≤ ≤( )
= +

c X c X c X AX X i n

c X c

n n n i i1 1 1 2 2 2

1 1 1

1λ λ λ λ

λ

... ;

22
2

1
2

1

λ
λ

λ
λ

X c Xn
n

n+ +






...

Again, pre-multiplying with matrix A, we get

A X c AX c AX c AX c i nn
n

n i i
2

1 1 1 2
2

1
2

1

1= + + +






≤ ≤λ
λ
λ

λ
λ

λ... , ; are scallars( )

= +






+ +














λ

λ
λ

λ
λ1

2
1 1 2

2

1

2

2
1

2

c X c X c Xn
n

n...


Repeating this process k-times successively, we obtain 

A X c X c X c X

A

k k

k

n
n

k

n

k

= +






+ +
















+

λ
λ
λ

λ
λ1 1 1 2

2

1
2

1

...

11
1

1
1 1 2

2

1

1

2
1

1

X c X c X c Xk

k

n
n

k

n= +






+ +












+

+ +

λ
λ
λ

λ
λ

...



Since λ λ λ1 2> > >... n , it implies 

lim ;

lim

k

i

k

k

k

k

i n

A X
A X

→∞

→∞

+







→ ≤ ≤

⇒ =

λ
λ

λ

1
1

1

0 2
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It provides the largest eigenvalue λ1.

Theoretically, the method is as follows: first, we take any initial vector X, then we multiply 
it by matrix A infinitely many times (k → ∞). At last, we divide the last two vectors. 
Practically, it is not possible to repeat the process infinite times. So, we can multiply the 

vector X as many times as feasible, for example 50 times. Then the common ratio A X
A X

51

50
 is 

the largest eigenvalue. But, it can create the problem of rounding error, as the elements of 
the vector A X51  become very large. Therefore, the method is applied by taking the largest 
element (magnitude) common at each iteration (to minimize the round-off error), and then 
continue with the remaining vector. 

A stepwise procedure is as follows

i) Let X(0) be any non-zero initial vector.
ii) Multiply X(0) with the matrix A to obtain the vector Y(0) i.e. Y(0) = AX(0).
iii) Take the absolutely largest element (λ(1)) common from the vector Y(0). Let 

remaining vector be X(1). 
  Y(0) = λ(1) X(1)

iv) Repeat steps ii) and iii) till the last iteration has the desired accuracy.
  Y(k) = λ(k +1) X(k +1)  k = 0, 1, 2, …

v) At last, λ(k +1) and X(k +1) are the approximations to the largest eigenvalue and 
eigenvector, respectively.

Note that we cannot start with trivial initial vector, i.e., zero vector X T
0 0 0 0= [ ] .

Determine the largest eigenvalue and corresponding eigenvector of the matrix 

A = −
−

















0 2 4
1 1 2

2 0 5
 

Start with the initial vector, X T( ) [ ]0 1 1 1= . Perform the iterations till the eigenvalue and 
eigenvector are same up to two decimal places, in last two iterations. 

Ans. The first iteration of the Power method is given by

 Y AX( ) ( )0 0

0 2 4
1 1 2

2 0 5

1
1
1

6
0
3

= = −
−

































=
















6.10Example
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284 Numerical Methods

On scaling the vector Y(0) with the absolutely largest element, we have

 Y X( ) ( ) ( ).0 1 16 1 0 0 5=   = λ

Similarly, the second iteration is computed as follows

 Y AX( ) ( )

. .

1 1

0 2 4
1 1 2

2 0 5

1
0
0 5

2
0
0 5

= = −
−

































=
















=
















2
1
0
0 25.

 λ ( ) ( ) . .2 22 1 0 0 25= =  and X
T

Proceeding in a similar manner, the subsequent iterations of the Power method are as 
follows

 

λ

λ

( ) ( )

( )

. , . . .

.

3 3

4

1 000000 1 000000 0 500000 0 7500003

5

= = [ ]
=

X T     

7750000 0 347826 0 521739 1 000000

4 3043

4

5

, . . .

.

( )

( )

X T= − −[ ]
=

     

λ 448 0 686869 0 505050 1 000000

3 626263

5

6

X

X

T( )

( )

. . .

.

= − −[ ]
=

       

λ (( )

( ) ( )

. . .

. .

6

7 7

0 824513 0 501393 1 000000

3 350975 0 89

= − −[ ]
= = −

T

Xλ  44431 0 500416 1 000000

3 211139 0 933989 0 50018 8

. .

. . .( ) ( )

−[ ]
= = −

T

Xλ 229 1 000000

3 132022 0 957765 0 500041 1 00009 9

−[ ]
= = − −

.

. . . .( ) ( )

T

Xλ  000

3 084470 0 972588 0 500013 1 00000010 10

[ ]
= = − −[ ]

T

TXλ

λ

( ) ( )

(

. . . . 
111 11

12

3 054824 0 982044 0 500004 1 000000

3 03

) ( )

( )

. . . .

.

= = − −[ ]
=

X T

λ 55911 0 988168 0 500001 1 000000

3 023663

12

13

X T( )

( )

. . .

.

= − −[ ]
=

 

   λ XX T( ) . . .13 0 992173 0 500000 1 000000= − −[ ]  

The difference in the values at last two iterations (twelfth and thirteenth) are less than 
0.005. Therefore, the approximate eigenvalue and eigenvector are λ ( ) .13 3 023663=  and 
X T( ) . . .13 0 992173 0 500000 1 000000= − −[ ] , respectively. 

From Example 6.3, the exact eigenvalue is 3 and eigenvector is − −[ ]1 0 5 1. .T

Note: In Example 3, the differences between the largest eigenvalue λ3 3=  and other 
eigenvalues λ λ1 21 2= =,  are relatively less. Therefore, a large number of iterations are 
required for higher accuracy. Note that the power method has following restrictions.

1. The largest (in magnitude) eigenvalue of the matrix must be distinct.
2. The matrix A has n-linearly independent eigenvectors. 

3. The rate of convergence is proportional to the ratio, λ
λ

2

1

, where λ2 is the second 

largest (in magnitude) eigenvalue and λ1 is the largest (in magnitude) eigenvalue 
of the matrix A.
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Determine the largest eigenvalue and the corresponding eigenvector of the matrix 

A = −
















10 6 7
1 7 2
2 2 2

Ans. Let us start the iterations with the initial vector, X T( ) [ ]0 1 1 1= . The first iteration 
is as follows

 Y AX( ) ( )0 0

10 6 7
1 7 2
2 2 2

1
1
1

23
6
6

= = −
































=
















=
















23
1
0.260870
0.260870

The second iteration is given by

 Y AX( ) ( )1 1

10 6 7
1 7 2
2 2 2

1
= = −






























0.260870

0.260870
=

















13.391304
1.000000
0.172078
0.227273

 λ ( ) ( )2 2= =  13.391304 and 1.000000 0.172078 0.227273X
T

Similarly, the subsequent iterations are as follows

λ

λ

( ) ( )

( )

. . . .

.

3 3

4

12 623377 1 000000 0 138632 0 2217083

12 383

= = [ ]
=

X T

7745 1 000000 0 123307 0 2196984

12 277726 1

4

5 5

X

X

T( )

( ) ( )

. . .

. .

= [ ]
= =λ 0000000 0 115963 0 2187715

12 227172 1 000000 0 116 6

. .

. . .( ) ( )

[ ]
= =

T

Xλ 22389 0 2183236

12 202589 1 000000 0 110638 0 21817 7

.

. . . .( ) ( )

[ ]
= =

T

Xλ 0037

12 190553 1 000000 0 109779 0 21799588 8

9

[ ]
= = [ ]

T

TXλ

λ

( ) ( )

( )

. . . .

== = [ ]
=

12 184639 1 000000 0 109356 0 2179429

12 18173

9

10

. . . .

.

( )

( )

X T

λ 00 1 000000 0 109148 0 217916110X T( ) . . .= [ ]
Note that the eigenvalues of the matrix A are 12.1789083458, 6, 0.8210916542. The 
difference between the largest and the second largest eigenvalues is large, so comparatively 
fewer iterations are required. 

6.11Example

6.4.1 Inverse Power Method 
The inverse power method is used to compute the smallest (in magnitude) eigenvalue of a 
given square matrix A. Inverse power method is a variation of power method. It involves 
computing of the largest (in magnitude) eigenvalue of the inverse matrix, A–1.
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Theorem 6.3

Let λi be an eigenvalue of matrix A, then 1
λi

 is the eigenvalue of the matrix A–1. The 

eigenvector Xi of matrix A–1 remains same as that of matrix A.

Proof: Let λi be an eigenvalue and Xi is the corresponding eigenvector of matrix A, then we 
have

AX Xi i i= λ

On pre-multiplying with the matrix A–1, we have

A AX A Xi i i
− −( ) = ( )1 1 λ  (6.17)

The matrix multiplication is associative, so we have

A AX A A X I X Xi i i i
− −( ) = ( ) = =1 1  (6.18)

where the matrix I is the identity matrix. Also, the eigenvalue λi is scaler quantity, so

A X A Xi i i i
− −( ) = ( )1 1λ λ  (6.19)

Equations (6.17–6.19) provide the following result

X A Xi i i= −λ 1

1 1

λi
i iX A X= −

It implies that 1
λi

 is the eigenvalue of A–1, the eigenvector Xi of matrix A–1 remains same as 

that of matrix A.

To find the smallest (in magnitude) eigenvalue of the matrix A, we find the largest eigenvalue 
(in magnitude) of the matrix A–1, and then the inverse of that eigenvalue is the smallest 
eigenvalue of the matrix A. 

Determine the smallest eigenvalue and the corresponding eigenvector of the matrix 

A = −
















10 6 7
1 7 2
2 2 2

.
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Ans.
The inverse of matrix A is given by

 A− =
−

−
− −

















1 1
60

18 2 61
6 6 27
12 8 64

To compute the smallest (in magnitude) eigenvalue of matrix A, first we find the largest 
eigenvalue (in magnitude) of A–1, and then inverse of that eigenvalue is the smallest 
eigenvalue of A. 

To compute the largest eigenvalue of matrix, A–1, let us start the iterations with initial 
vector X T( ) [ ]0 1 1 1= . The first iteration of Power method is given by

 
Y A X( ) ( )0 1 0 1

60

18 2 61
6 6 27
12 8 64

1
1
1

= =
−

−
− −

































=− 11
60

41
27
44

44
60

1

−















=
−















0.931818
0.613636

1

λ ( ) == = −[ ]44
60

1and 0.931818 0.613636 1X T( )

The second iteration is as follows

 
Y A X( ) ( )1 1 1 1

60

18 2 61
6 6 27
12 8 64

= =
−

−
− −

















−
−

0.931818
0.6136636

1

76.545456 0.473872
0.918052

















=
−













60

1

2λ ( )) ( )= = −[ ]76.545456 and 0.473872 0.918052
60

12X T

Other iterations are given by

 

λ

λ

( ) ( )

(

. / . . .3 3

4

73 053444 60 1 000000 0 460357 0 9166493= = − X
T

  
)) ( )

(

. / . . .= = −[ ]72 994881 60 1 000000 0 459096 0 91763544

5

X T      

λ )) ( )

( )

. / . . .= = −[ ]73 057564 60 1 000000 0 458963 0 91785055

6

X T     

λ == = −[ ]

=

73 070930 60 1 000000 0 458948 0 91788566

7

. / . . .( )

( )

X T     

λ 773 073082 60 1 000000 0 458946 0 91789077

8

. / . . .( )

( )

X T= −[ ]
=

      

λ 773 073402 60 1 000000 0 458945 0 9178918

73

8

9

. / . . .( )

( )

X
T

= − 
=

  

λ .. / . . .( )

( )

073441 60 1 000000 0 458945 0 9178919

73

9

10

X T= −[ ]
=

     

λ .. / - . . .( )073448 60 1 000000 0 458945 0 917891110X T= [ ]     

The approximate value of the largest eigenvalue of A–1 is λ(10) = 73.073448 / 60 = 1.2178908 
Hence, the smallest eigenvalue of A is 1/1.2178908 = 0.8210916775.
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6.4.2 Shifted Power Method
Shifted power method is another variation of power method. It is used to compute the 
eigenvalues which are farthest/nearest from a given scalar k. 

Theorem 6.4

Let λi be an eigenvalue of matrix A, then (λi – k) is an eigenvalue of the matrix (A – k I ) with 
the same eigenvector as that of matrix A.

Proof: Let λi be an eigenvalue and Xi is the corresponding eigenvector of matrix A, then we 
have 

AXi = λi Xi

To compute eigenvalues of (A – k I ), we have

( )

( )

A k I X AX k I X
X k X

k X

i i i

i i i

i i

− = −
= −
= −

λ
λ

It implies that if λi is an eigenvalue of matrix A, then (λi – k) is an eigenvalue of a matrix, 
(A – k I ). The vector Xi is the corresponding eigenvector of matrix A as well as (A – k I ).

Eigenvalue farthest to a given scalar: To compute eigenvalue of matrix A farthest to a 
given number k, first we find the largest eigenvalue (in magnitude) of the matrix, (A – k I ), 
and then that eigenvalue in addition with k is the desired eigenvalue of matrix A. 

For example, let us assume the eigenvalues of a matrix A are –5, 2 and 8 and we want to 
compute the eigenvalue that is farthest from the scalar 5. The eigenvalues of the matrix (A – 5 
I ) are –10, –3 and 3. The computational procedure is to compute the largest (in magnitude) 
eigenvalue of a matrix (A – 5 I ) (i.e. –10), and then add scalar 5 to that eigenvalue to get the 
desired eigenvalue (i.e. –5). 

Eigenvalue nearest to a given scalar: To compute eigenvalue of matrix A nearest to number 
k, first, we find the largest eigenvalue (in magnitude) of matrix (A – k I )–1, and then inverse 
of that eigenvalue in addition with k is the desired eigenvalue of matrix A. 

For example, let us assume the eigenvalues of a matrix A are –1, 4.5 and 7 and we want to 
compute the eigenvalue that is nearest to 4. We have

Eigenvalues of matrix A are –1, 4.5 and 7
Eigenvalues of matrix (A –4 I ) are –5, 0.5 and 3

Eigenvalues of matrix (A –4 I )–1 are −1
5

, 2 and 1
3

The computational procedure is to compute the largest (in magnitude) eigenvalue of a 
matrix (A – 4 I )–1 (i.e. 2). Then reciprocal (0.5) of that eigenvalue in addition with k (= 4) is 
the desired eigenvalue (4.5) of matrix A.
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Determine the eigenvalue farthest to 4 for the matrix 

 A =
−
−

−

















2 6 3
5 3 3
5 4 4

Start the iterations with the initial vector X T( ) [ ] .0 1 0 1=

Ans.
To compute the eigenvalue of matrix A which is farthest to 4, we will find the largest (in 
magnitude) eigenvalue of the matrix (A – 4 I ), and then add scalar 4 to that eigenvalue.

 A I− =
− −

− −
−

















4
2 6 3

5 1 3
5 4 0

Proceeding in a similar manner as in previous examples with an initial vector 
X T( ) [ ]0 1 0 1=  for matrix A – 4I, the largest eigenvalue of this matrix is computed as 
follows 

 Y A I X( ) ( )0 04
2 6 3

5 1 3
5 4 0

1
0
1

5
1
1

= −( ) =
− −

− −
−

































=
−















=
−















= = −[ ]

5
1

1

5 11 1

0.4

and 0.4 1λ ( ) ( )X T

Other iterations are given by

 

λ

λ

( ) ( )

( ) (

. . . .

.

2 2

3

8 4 0 166667 1 000000 0 7857142

4 833333

= = − −[ ]
=

X

X

T

33

4 4

0 822660 0 866995 1 000000

7 980295 0 482099

)

( ) ( )

. . .

. .

= −[ ]
= =

T

Xλ −− −[ ]
= = −

1 000000 0 9500004

6 410494 0 641791 0 976605 5

. .

. . .( ) ( )

T

X

 

λ 11 1 000000

7 185556 0 576599 1 000000 0 99023166 6

.

. . . .( ) ( )

[ ]
= = − −

T

Xλ   

  

[ ]

= = −[ ]
=

T

TXλ

λ

( ) ( )

( )

. . . .7 7

8

6 882997 0 607658 0 995742 1 000000

77 034031 0 595643 1 000000 0 9981848

6 978212

8

9

. . . .

.

( )

( )

 X T= − −[ ]
=λ XX

X

T( )

( ) ( )

. . .

. .

9

10 10

0 601405 0 999219 1 000000

7 006245 0

= −[ ]
= =λ   5599198 1 000000 0 99966610− −[ ]. . T
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290 Numerical Methods

These iterations are converging to the eigenvalue 7. Since the elements of eigenvectors are 
changing the sign alternatively, so the eigenvalue is –7. The largest eigenvalue of matrix  
(A – 4 I ) is –7, so the eigenvalue of matrix A is –7 + 4 = –3. The eigenvalue λ = –3 of matrix 
A is farthest from scalar 4. 

Note that the eigenvalues of matrix A are –3, 5 and 7. 

Determine the eigenvalue nearest to 5 and the corresponding eigenvector of the matrix 

A = −
















10 6 7
1 7 2
2 2 2

.

Ans.
First, we find the largest eigenvalue (in magnitude) of the matrix (A – 5 I )–1. Then, by 
adding number 5 to the inverse of that eigenvalue will produce an eigenvalue of the matrix 
A (nearest to number 5). 

 

A I

A I

− = −
−

















−( ) =
−

−
− −





−

5
5 6 7
1 2 2
2 2 3

5 1
30

2 32 26
1 29 17
2 2 4

1












Now, we have to compute the largest eigenvalue of the matrix, (A – 5 I )–1. Let us start the 
iterations with the initial vector, X T( ) [ ]0 1 1 1= . The first iteration is given by

Y A I X( ) ( )0 1 05 1
30

2 32 26
1 29 17
2 2 4

1
1
1

= −( ) =
−

−
− −





























− 



=
−

−

















=
−

−

















1
30

4
13

4

13
30

0.307692
1

0.307692

Similarly, other iterations are as follows 

 

λ

λ

( ) ( ). / . . .2 240 615383 30 1 000000 835227 0 034091= = − −[ ]X T    0   

(( ) ( ). / . . .3 329 613638 30 1 000000 835227 0 034091= = − −[ ]X T    0   

λ (( ) ( ). / . . .4 430 821949 30 1 000000 789591 0 101554= = − −[ ]X T    0   

λ (( ) ( ). / . . .5 529 907299 30 1 000000 789926 0 106093= = − −[ ]X T    0   
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Theorem 6.5

Let λi be an eigenvalue of matrix A, then λi
k is the eigenvalue of Ak. The eigenvector Xi is 

same for both the matrices A and Ak.

Proof: Let λi be an eigenvalue and Xi is the corresponding eigenvector of matrix A, then 

AXi  = λiXi

On pre-multiplying with the matrix A, we have

A X A X AX X Xi i i i i i i i i i
2 2= ( ) = ( ) = ( ) =λ λ λ λ λ

It implies that if λi is an eigenvalue of matrix A, then λi
2 is the eigenvalue of A2; and Xi is the 

corresponding eigenvector of both matrices A and A2. 

On repeating the process of pre-multiplying with matrix A, we can establish that λi
k is an 

eigenvalue of the matrix Ak. We can use this to compute eigenvalues of Ak and for other 
purposes. 

6.5 Rutishauser (or) LU Decomposition Method

In this method, we will generate a convergent sequence of upper triangular matrices,
A A A1 2 3, , .... LU decomposition method discussed in the last chapter is used for this purpose. 
Initially, we decompose the matrix A in lower and upper triangular matrices A L U= 1 1 with 
diagonal elements of the lower triangular matrix (L1) are unity, i.e., lii = 1. Then we create, 
A U L1 1 1= . 

We repeat the process to get

A L U A U L1 2 2 2 2 2= =and

Proceeding in a similar manner, decompose the matrix A L Uk k k= + +1 1 and then create the 
matrix A U Lk k k+ + +=1 1 1. At last, we have an upper triangular matrix, Ak+1. The diagonal 
elements of upper triangular matrix are the eigenvalues of the matrix.

The largest eigenvalue of the matrix (A – 5 I )–1 is 29 907299
30

1. ≈

The smallest eigenvalue of the matrix (A – 5 I ) is 
1
1

1=

The eigenvalue of the matrix A nearest to 5 is 1 + 5 =6. 
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Find the eigenvalues of a matrix A = −
















10 6 7
1 7 2
2 2 2

 using LU decomposition 

method.

Ans. 
First Iteration

First, we decompose the matrix A into lower triangular matrix (with diagonal element 
as 1) and upper triangular matrix using LU-decomposition method

A = −
















=

10 6 7
1 7 2
2 2 2

1.000000        0.000000        0.0000000
0.100000        1.000000        0.000000
0.200000         0.125000        1.000000

10.000000       6.















0000000        7.000000
0.000000        6.400000        -2.7700000
0.000000        0.000000        0.937500

















L11 1U

Then, we compute the following matrix

A U L1 1 1= =
12.000000       6.875000        7.000000
0.100000         6.062500        -2.700000
0.187500        0.117187         0.937500

















Second Iteration

We compute A L U1 2 2=  as follows

A1 =
1.000000        0.000000        0.000000
0.008333         1.000000        0.000000
0.015625        0.001626        11.000000

12.000000       6.875000        7.00000















00
0.000000        6.005208        -2.758333
0.000000         0.000000        0.832610

















L U2 2

On computing A U L2 2 2= , we get

A2 =
12.166667       6.886384        7.000000
0.006944         6.000723        -2.758333
0.013010        0.001354         0.832610
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Third Iteration

A2 =
1.000000        0.000000        0.000000
0.000571         1.000000        0.000000
0.001069        -0.001002       11.000000

12.166667       6.886384        7.00000















00
0.000000        5.996792        -2.762329
0.000000         0.000000        0.822357

12.178083 

















= =

L U

A U L

3 3

3 3 3

       6.879369        7.000000
0.000469        5.999560         -2.762329
0.000879        -0.000824       0.822357

















Fourth Iteration

A3 =
1.000000        0.000000        0.000000
0.000039         1.000000        0.000000
0.000072        -0.000220       11.000000

12.178083       6.879369        7.00000















00
0.000000        5.999295        -2.762599
0.000000         0.000000        0.821244

12.178854 

















= =

L U

A U L

4 4

4 4 4

       6.877828        7.000000
0.000032        5.999904         -2.762599
0.000059        -0.000181       0.821244

















The matrix A4 is approximately an upper triangular matrix. So, we can approximate 
the eigenvalues of matrix A as 12.178854, 5.999904 and 0.821244. 

Find the eigenvalues of a matrix A = −
















4 5 2
2 3 4
2 1 3

 using LU decomposition 

method.

Ans. 
First Iteration

A = −
















=
4 5 2
2 3 4
2 1 3

1 0000 0 0000 0 0000
0 500
. . .
.

            
00 1 0000 0 0000

0 5000 0 2727 1 0000
            
            

. .
. . .

















−
4 0000 5 0000 2 0000
0 0000 5 500

. . .

. .
              
     00 3 0000

0 0000 0 0000 1 1818

1

      
              

.
. . .

















L UU

A U L

1

1 1 1

7 5000 5 5455 2 0000
1 2500= = −
. . .

.
                 

     −−




 4 6818 3 0000
0 5909 0 3223 1 1818

. .
. . .
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=
4 5 2
2 3 4
2 1 3

1 0000 0 0000 0 0000
0 500
. . .
.

            
00 1 0000 0 0000

0 5000 0 2727 1 0000
            
            

. .
. . .

















−
4 0000 5 0000 2 0000
0 0000 5 500

. . .

. .
              
     00 3 0000

0 0000 0 0000 1 1818

1

      
              

.
. . .

















L UU

A U L

1

1 1 1

7 5000 5 5455 2 0000
1 2500= = −
. . .

.
                 

     −−




 4 6818 3 0000
0 5909 0 3223 1 1818

. .
. . .

      
                 












Second Iteration

A1 = −
1.0000        0.0000      0.0000

0.1667      1.0000       0.0000
0.0788        0.0305      1.0000

7.5000 















      5.5455        2.0000
0.0000     3.7576      3.3333
0.

−
00000      0.0000         0.9226

6.7333   

















=

L U

A

2 2

2

    5.6065        2.0000
0.8889     3.6559      3.3333
0.07

−
227      0.0281        0.9226

















Third Iteration

A2 =
1.0000      0.0000      0.0000
0.1320      1.0000      0..0000
0.0108      0.0074      1.0000

6.7333      















55.6065      2.0000
0.0000     -4.3960      3.0693
0.0000       0.0000      0.8784

7.4950        

















= =

L U

A U L

3 3

3 3 3

55.6212         2.0000
0.5472     4.3734      3.0693

0.009
− −

55        0.0065         0.8784

















Fourth Iteration

A3 = −
1.0000        0.0000      0.0000

0.0730      1.0000       0.0000
0.0013        0.0002      1.0000

7.4950 















      5.6212        2.0000
0.0000     3.9630      3.2153
0.

−
00000      0.0000        0.8753

7.087

















= =

L U

A U L

4 4

4 4 4

22      5.6215         2.0000
0.2934     3.9625      3.215− 33
0.0011      0.0001         0.8753

















Fifth Iteration

A4 =
1.0000      0.0000      0.0000
0.0414      1.0000      0..0000
0.0002      0.0002      1.0000

7.0872      















55.6215         2.0000
0.0000     4.1952      3.1325
0.0000

−
       0.0000         0.8745

















L U5 5
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A U L5 5 5= = − −
7.3202       5.6219         2.0000

0.1732    4.19447      3.1325
0.0001       0.0002         0.8745

















Sixth Iteration

A5 = −
1.0000        0.0000     0.0000

0.0237     1.0000      00.0000
0.0000       0.0000      1.0000

7.3202    















   5.6219        2.0000
0.0000     4.0617      3.1798
0.000

−
00      0.0000         0.8745

7.1873 

















= =

L U

A U L

6 6

6 6 6

      5.6218         2.0000
0.0962     4.0617      3.1798
0

−
..0000     0.0000          0.8745

















Seventh Iteration

A6 =
1.0000      0.0000      0.0000
0.0134      1.0000      0..0000
0.0000      0.0000      1.0000

7.1873      















55.6218         2.0000
0.0000     4.1369      3.1531
0.0000

−
       0.0000         0.8744

7.2625  

















= =

L U

A U L

7 7

7 7 7

        5.6218        2.0000
0.0553     4.1369      3.153− − 11

0.0000         0.0000        0.8744

















The approximate eigenvalues of matrix A are 7.2625, –4.1369 and 0.8744. 

Exercise 6

1. Compute the eigenvalues and the corresponding eigenvectors for the following matrices

 a) 
−

− −
















1 1 2
1 1 2
1 1 2

 Ans. 
2
0

2

1 0 1
1 2 1

2 1 0−

















−
− −

















 b) 
0 1 2
2 1 0
4 2 5

−

−

















 Ans. 
1
2
3

0 1 1
2 2 1
1 0 1

















−
−
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 c) 
−
−
−

















1 3 3
3 5 3
3 3 2

 Ans. 
2
2
2

1 0 0
1 0 0
0 0 0

































 d) 
2 3 3
3 5 3
3 3 2

















 Ans. 

5 3 2

5 3 2
1

1 1 1

2 2 0
1 1 1

+

−
−



















−

−

















 e) 
1 1 1
3 2 4
1 4 2

−

−

















 Ans. 
2
6

3

4 0 9
1 1 19

3 1 17−

















−
− −

















 f ) 

4 3 3
1 6 3

1 3 6

−
−

− −

















 Ans. 
10
3
3

1 3 3
1 1 0

1 0 1

















− −
−

















Note that eigenvalues are elements of column vector and eigenvectors are columns of matrix 
in Answer.

2. Find the bounds on eigenvalues of matrix A =
−

−

















1 1 1
3 2 4
1 4 2

 using Gerschgorin theorem only. 

Ans. λ ≤ 7

3. Find the bounds on eigenvalues of matrix A =
−

−

















1 1 1
3 2 4
1 4 2

 with the help of Gerschgorin and 

Brauer theorems.

Ans. λ − ≤2 5

4. Using Rayleigh power method, find the largest eigenvalue and the corresponding eigenvector 
of the following matrices with initial approximation [1, 1, 1]t. Perform only five iterations.

 a) 
1 1 1
3 2 4
1 4 2

−

−

















 b) 
4 3 3
1 6 3

1 3 6

−
−

− −

















 c) 
0 2 4
1 1 2

2 0 5
−

−

















 d) 
−

−
−

















9 2 6
5 0 3
16 4 11

Ans. a) 9.000000, [0.111111 1.000000 0.555556]T

 5.000000, [0.111111 0.911111  1.000000]T

 6.155556, [0.003610  1.000000 0.898917]T

 5.794224, [0.018069  0.967601  1.000000]T

 5.989408, [–0.002393  1.000000 0.977114]T
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 b) 4.000000, [1.000000  1.000000 0.500000]T

 5.500000, [1.000000  1.000000 –0.1818182]T

 7.545455, [1.000000  1.000000 –0.6746993]T

 9.024096, [1.000000  1.000000 –0.891856]T

 9.675568, [1.000000  1.000000 –0.966470]T

 c) 6.000000, [1.000000 0.000000 0.500000]T

 2.000000, [1.000000 0.000000 0.250000]T

 1.000000, [1.000000 0.500000 –0.750000]T

 5.750000, [–0.347826 0.521739 –1.000000]T

 4.304348, [–0.686869 0.505050 –1.000000]T

 d) 2.000000, [–0.500000 1.000000 –0.500000]T

 6.500000, [0.538462 –0.153846 1.000000]T

 1.769230, [0.478261 –0.173913 1.000000]T

 2.652176, [0.508197 –0.229508 1.000000]T

 1.950821, [0.495798 –0.235294 1.000000]T

5. Find all the eigenvalues and the corresponding eigenvectors of the matrix A =
−

− −
−

















2 1 0
1 2 1

0 1 2
with the help of Rayleigh power method. 

Ans. All three eigenvalues and corresponding eigenvectors are as follows

 3.4142, [0.7071 –1.0000 0.7071]T

 0.5858, [0.7071 1.0000 0.7071]T

 1.9999, [–1.0000 0.0001 1.0000]T

6. Use LU decomposition method to compute the eigenvalues of the following matrix. Perform 
only three iterations.

 
5 4 0
4 3 1
0 1 6

−
−

















Ans. 
First Iteration

Lower triangular matrix L1: 

1.0000 0.0000 0.0000 

0.8000 1.0000 0.0000 

0.0000 5.0000 1.0000

Upper triangular matrix U1: 

5.0000  4.0000 0.0000

0.0000 –0.2000 –1.0000 

0.0000  0.0000 11.0000 

Similarity matrix A1: 

 8.2000  4.0000  0.0000 

–0.1600 –5.2000 –1.0000 

 0.0000 55.0000 11.0000 
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298 Numerical Methods

Second Iteration

Lower triangular matrix L2:

 1.0000   0.0000  0.0000

–0.0195   1.0000  0.0000

 0.0000 –10.7381  1.0000

Upper triangular matrix U2:

8.2000  4.0000  0.0000

0.0000 –5.1220 –1.0000

0.0000  0.0000  0.2619

Similarity matrix A2:

8.1220  4.0000  0.0000

0.0999  5.6161 –1.0000

0.0000 –2.8124  0.2619

Third Iteration

The lower triangular matrix L3:

1.0000  0.0000 0.0000

0.0123  1.0000 0.0000

0.0000 –0.5052 1.0000

The upper triangular matrix U3:

8.1220 4.0000  0.0000

0.0000 5.5669 –1.0000

0.0000 0.0000 –0.2433

The similarity matrix A3:

8.1712 4.0000  0.0000

0.0685 6.0721 –1.0000 

0.0000 0.1229 –0.2433 

7. Consider the following matrices

A S=
−

−

















=
−
− −

















1 1 1
3 2 4
1 4 2

4 0 9
1 1 19

3 1 17
and

The matrix S–1 AS is a diagonal matrix. Use it to calculate the eigenvalues and the corresponding 
eigenvectors of matrix A.

Ans. S AS− =
−

















1

2 0 0
0 6 0
0 0 3

.  It implies eigenvalues are 2, 6 and –3, while the corresponding 

eigenvectors are the columns of matrix S, respectively.
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7.1 Introduction 

In Chapter 6, we have discussed a few methods to solve the eigenvalue problem

AX = λX (7.1)

where λ is a scalar quantity. The column vector X and matrix A are given by

X

x
x

x

A

a a a
a a a

a an

n

n

n n

=





















=

⋅⋅⋅
⋅⋅⋅

1

2

11 12 1

21 22 2

1

 

and

22 ⋅⋅⋅



















ann

The following properties of eigenvalues and eigenvectors of real matrices have already been 
discussed in the last chapter. Let λi be an eigenvalue of matrix A, then

i. 1
λi

 is the eigenvalue of the matrix A–1.

ii. λi – k is an eigenvalue of the matrix (A – k I).
iii. λi

k is the eigenvalue of the matrix Ak. 

Note that the eigenvector Xi is same for both the matrices in all these three cases.

Do not worry about your problems with mathematics, I assure you mine are far greater.

Albert Einstein 
(March 14, 1879–April 18, 1955)

He was a great theoretical physicist who gave the famous  
‘mass energy formula E = mc2’ and the ‘theory of relativity’.

Eigenvalues and Eigenvectors 
of Real Symmetric Matrices

Chapter
7
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300 Numerical Methods

The matrix A is real symmetric matrix if all its elements are real and transpose matrix 
AT equals A. In this chapter, we will discuss some methods to compute eigenvalues and 
eigenvectors of real symmetric matrices. These methods are easy to implement, and provide 
all the eigenvalues and eigenvectors. We will first discuss a few definitions and properties of 
matrices, which are pre-requisites for these methods. Let A be any square matrix, transpose 

AT, conjugate A, and transpose conjugate A A
T* = ( ) , then

1. Matrix A is symmetric if AT = A
2. Matrix A is skew-symmetric if AT = –A
3. Matrix A is Hermitian if A* = A
4. Matrix A is skew-Hermitian if A* = –A
5. Matrix A is orthogonal if AT = A–1 or AT A = AAT = I
6. Matrix A is unitary matrix if A* = A–1 or A* A = AA* = I. 

Theorem 7.1

Eigenvalues of a matrix A and its transpose AT are the same.

Proof: Let λ be an eigenvalue matrix A, then

 A I−( ) =λ 0

 A I T−( ) =λ 0  (Determinants of matrix and its transpose are equal) 

 A IT − =λ 0  (Identity matrix is symmetrical) 

It implies that characteristics equations of matrices A and AT are equal. So, the eigenvalues 
of these two matrices are equal.

Theorem 7.2

Eigenvectors of a matrix A and its transpose AT are bi-orthogonal.

Proof: Let us assume that the eigenvalues λ λ λ1 2, , ,⋅⋅⋅ n of matrix A are distinct. Since the 
eigenvalues of A and AT are same, so λ λ λ1 2, , ,⋅⋅⋅ n are also the eigenvalues of matrix AT. 
Corresponding to these eigenvalues, assume the eigenvectors of the matrix A and AT are 
X X Xn1 2, , ,⋅⋅⋅  and Y Y Yn1 2, , ,⋅⋅⋅ , respectively. So, we have

AX Xi i i= λ  (7.2)

A Y YT
j j j= λ  (7.3)
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On taking transpose on both sides of Eq. (7.2), we obtain

AX Xi
T

i i
T( ) = ( )λ

X A Xi
T T

i i
T

i
T

i i= =( )λ λ λ λ, for scaler  (7.4)

The expression Xi
T  (7.3) – (7.4) Yj gives the following equation

λ λi j i
T

jX Y−( ) = 0

The eigenvalues are distinct λ λi j i j≠ ≠( )if ; thus we have

X Yi
T

j = 0

So, the eigenvectors are bi-orthogonal.

Corollary: Eigenvectors of a symmetric matrix are orthogonal. 

Proof: Let matrix A be symmetric (AT = A), then eigenvectors of A and AT are identical, i.e.  
Xj = Yj. So, for distinct eigenvalues λ λi j i j≠ ≠( )if , we have

X Xi
T

j = 0

Theorem 7.3

Eigenvalues of a Hermitian matrix are real.

Proof: Let λ be an eigenvalue and X is corresponding eigenvector of a Hermitian matrix A, 
then 

AX = λX (7.5)

The transpose conjugate (*) provides the following results

AX X

X A X

X A X A A

( ) = ( )
=

= =( )

* *

* * *

* * *

λ

λ

λ

On post-multiplying with vector X, we get 

X A X X X X X* * *( ) = ( ) = ( )λ λ  (7.6)

On pre-multiplying Eq. (7.5) with X*, we have

X AX X X X X* * *( ) = ( ) = ( )λ λ  (7.7)
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302 Numerical Methods

The subtraction of Eq. (7.7) from Eq. (7.6) provides the following equation

λ λ−( ) =X X* 0

The product X*X cannot be zero, as it is the sum of the square of non-negative numbers 
with at least one nonzero. So, it gives

λ λ= , which implies λ is real. 

Corollary 1: Eigenvalue of the real symmetric matrix is real, as A* = AT for real symmetric 
matrix. 

Corollary 2: Eigenvalue of a skew-Hermitian matrix is either zero or pure imaginary.

Proof: Let λ be an eigenvalue and X is the corresponding eigenvector of a skew-Hermitian 
matrix A, then 

AX X
i AX i X
iA X i X

=

( ) = ( )
( ) = ( )

λ
λ
λ

It shows that iλ is an eigenvalue of the matrix iA. If matrix A is skew-Hermitian, then the 
matrix iA is Hermitian. From theorem 7.3, the eigenvalue iλ is real. Therefore eigenvalue λ 
is either zero or pure imaginary.

Theorem 7.4

Eigenvectors of a Hermitian matrix are orthogonal.

Proof: Let λi and λj be two eigenvalues and Xi and Xj are corresponding eigenvectors of a 
Hermitian matrix A, then 

AXi = λiXi (7.8)

AXj = λjXj (7.9)

On pre-multiplying Eq. (7.8) with the vector X j
*, we get

X AX X X X Xj i j i i i j i
* * *= = ( )λ λ

On taking transpose conjugate(*) of this equation, we have

X AX X X

X A X X X

X A X X

j i j i i

i j i i j

i j i i

* * * *

* * * * * * * *

* * * *

( ) = ( )
( ) = ( )

=

λ

λ

λ XX j
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The matrix A is Hermitian (A A* = ) and eigenvalues of Hermitian matrix are real  
(λ λ λ* = = ). So, we have

X A X X X

X AX X X

X AX X X

i j i i j

i j i i j

i j i i j

* * * * * *

* *

* *

( ) = ( )
=

= ( )

λ

λ

λ  (7.10)

On pre-multiplying Eq. (7.9) with the vector Xi
* and subtracting from Eq. (7.10), we have

0 = −( )( )λ λi j i jX X*

For λ λi j≠ , we have 

X Xi j
* = 0

⇒ Eigenvectors are orthogonal.

Theorem 7.5

Eigenvalues of a unitary matrix are of unit modulus. 

Proof: Let λ be an eigenvalue and X is the corresponding eigenvector of a unitary matrix A, 
then 

AX = λX

Transpose conjugate of this equation (AX)* = (λX)* provides the following equation

X A X* * *= λ
From these two equations, we have

X A AX X X* * *= λ λ

X A A X X X* * *( ) = ( )λλ

X I X X X* *( ) = ( )λλ   (A is unitary matrix, A A I* = )

X X X X* *= ( )λλ

1 0−( )( ) =λλ X X*

As X X* ≠ 0, therefore λλ = 1. 

So, the eigenvalues of unitary matrix are of unit modulus.
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Theorem 7.6

Eigenvectors of a unitary matrix are orthogonal

Left as an exercise.

7.1.1 Similarity Transformations 
The two matrices A and B (of same order) are said to be similar matrices, if a nonsingular 
matrix S exists, such that

B = S–1AS (7.11)

The matrix S is called similarity matrix, and transformation (7.11) is called similarity 
transformation.

Theorem 7.7

Let λi be an eigenvalue and Xi is corresponding eigenvector of matrix A. Also, let us assume 
the matrices A and B are similar matrices through the transformation B = S–1AS. Then, the 
eigenvalues of similar matrices A and B are equal, and eigenvector Yi of B can be obtained 
easily from the relation Yi = S–1Xi.

Proof: For matrix A, we have 

 AX Xi i i= λ

(or) S AX S Xi i i
− −=1 1λ  (7.12)

Substituting X SYi i=  in Eq. (7.12), we have
S A SY S SYi i i

− −=1 1( ) ( )λ

( ) ( ) )S AS Y S S Yi i i
− −=1 1λ

Using B S AS= −1 , we obtain

BY Yi i i= λ  (7.13)

It implies that λi is eigenvalue and Yi is eigenvector of matrix B.

Note: Let all the eigenvectors of matrix A be linearly independent, and S is the matrix of 
eigenvectors, then S–1 exists, and it is such that

S–1AS = D 

where the matrix D is a diagonal matrix. The eigenvalues of A are the diagonal elements of 
diagonal matrix D, and matrix A is said to be diagonalizable.
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Compute the eigenvalues and corresponding eigenvectors for the following matrix, 
and prove that the matrix is diagonalizable. 

 A =
−
−

− −

















4 3 3
1 6 3

1 3 6

Ans. The eigenvalues and corresponding eigenvectors of the matrix A have already 

obtained in exercise 6.1 (f). The eigenvalues are 10, 3, 3 and eigenvectors are 
−
−

















1
1

1
, 

−















3
1
0

,

3
0
1

















, respectively. On using the eigenvectors as column vectors for similarity matrix, we 

have

 S =
− −
−

















1 3 3
1 1 0

1 0 1

Matrix inverse of S is given by

 S− =
− −
−

















1 1
7

1 3 3
1 4 3

1 3 4

The transformation S–1AS is given by

 

S AS− =
− −
−

















−
−

− −

















− −
1 1

7

1 3 3
1 4 3

1 3 4

4 3 3
1 6 3

1 3 6

1 3 3
−−

















=
















1 1 0
1 0 1

10 0 0
0 3 0
0 0 3

The diagonal elements are eigenvalues of matrix A. It shows that the matrix A is 
diagonalizable.

7.1Example
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7.1.2 Orthogonal Transformations 
A nonsingular matrix S is said to be an orthogonal matrix if its inverse and transpose are 
equal, i.e., ST = S–1 or simply S ST = I = ST S. Let S be an orthogonal matrix, then the matrices 
A and B = ST AS are similar matrices.

Theorem 7.8

Product matrix of two orthogonal matrices is also orthogonal. 

Proof: Let S1 and S2 be two orthogonal matrices, then we have

 

S S S S S S S S

S S S S S

T T T

T T

1 2 1 2 1 2 2 1

1 2 2 1 2

( ) = ( )
= ( ) Matrix  is orthogonaal

Matrix  is orthogonal

⇒ =( )
= ( )
= ( )
=

S S I

S I S
S S S
I

T

T

T

2 2

1 1

1 1 1

It implies that product matrix S1S2 is orthogonal.

We can extend this result to prove that the product of any n orthogonal matrices is also an 
orthogonal matrix. 

Consider the real symmetric matrix A and orthogonal matrices Sr, r = 1, 2, 3, … S Sr
T

r=( )−1  
to obtain following successive similarity transformations 

A S AS
A S A S r

T

r r
T

r r

1 1 1

1 1 1 1 2 3
=

= =+ + + , , , ,...

Since the eigenvalues of similar matrices are equal, therefore the eigenvalues of A and Ar+1 
are equal. We will use these successive transformations to discuss following three methods 
for the eigenvalues of real symmetric matrix. 

i) Jacobi Method
ii) Givens Method
iii) Householder Method  

In Jacobi method, similarity transformations convert the matrix A into the diagonal matrix 
(Ar+1), so the diagonal elements of the matrix Ar+1 give the eigenvalues of the matrix A. 
Jacobi method needs a large number of similarity transformations for a desired accuracy. In 
Givens and Householder methods, the matrix A is transformed into the tridiagonal matrix 
(Ar+1). The eigenvalues of matrix Ar+1 are obtained using Strum sequence These methods 
require fixed number of iterations to obtain tridiagonal matrix.
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7.2 Jacobi Method 

All the eigenvalues of a real symmetric matrix are real. There exists a real orthogonal matrix 
S such that S–1AS is a diagonal matrix D, and diagonal elements of D are eigenvalues (as D 
and A are similar), and column vectors of S are corresponding eigenvectors. We will apply 
repeated orthogonal transformations to obtain the matrix S. First, we will explain how the 
orthogonal transformation is used to make non-diagonal elements of a real symmetric 
matrix zero with an example of a second order real symmetric matrix.

Let A
a a
a a

ii i j

i j j j
1 =












 be any real symmetric matrix. The aim is to make this matrix a 

diagonal matrix under orthogonal transformation. Let us consider an orthogonal matrix 

S ST
1

1
1

− =( ) defined by S1 =
−









cos sin
sin cos

θ θ
θ θ

. The angle θ is to be determined in such a way 

that matrix A1 becomes diagonal matrix after similarity transformation. On applying the 
similarity transformation, we have 

S A S
a a
a a

T ii i j

i j j j
1 1 1 =

−






















−cos sin
sin cos

cos siθ θ
θ θ

θ nn
sin cos

cos sin sin ( )sin c

θ
θ θ

θ θ θ θ











=
+ + −a a a a aii i j j j j j ii

2 22 oos cos

( )sin cos cos sin sin

θ θ

θ θ θ θ θ

+

− + − +

a

a a a a a a
i j

j j ii i j ii i j

2

2 22
jj j cos2 θ













For this matrix to be a diagonal matrix, we have

( )sin cos cos

( )sin cos

tan

a a a

a a a

j j ii i j

j j ii i j

− + =

− + =

θ θ θ

θ θ

2 0
1
2

2 2 0

22
2

1
2

2
1

θ

θ

=
−

=
−









−

a

a a

a

a a

i j

i i j j

i j

i i j j

( )

tan
( )

The values of the inverse of tangent function lie in the interval −





π π
2 2

, , so the value 

of θ
π π∈ −



4 4

, . So, non-diagonal elements vanish under this orthogonal transformation. 

These orthogonal transformations are also known as plane rotations. We can use repeated 
applications of this transformation in case of a matrix of order ≥3. The following steps are 
involved during application of Jacobi method for a real symmetric matrix A of order n.
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i. Find the absolutely largest off-diagonal element aij of matrix A. Compute 

θ =
−











−1
2

1tan
a

a a
ij

ii jj

. Note that at aii = ajj, then θ = –45° or 45° according to sign of aij

ii. Consider an identity matrix of order n, then replace the elements at (i, i), (i, j),  
(j, i), (j, j) positions with cos θ, –sin θ, sin θ, cos θ, respectively to create an 

orthogonal matrix S1

1 0 0 0 0
0 1 0 0 0

0 0 0

0 0

=
−

... ...

... ...

...
cos ... sin ...

s

    

   

θ θ

iin ... cos ...

...

θ θ 0

0 0 0 0 1
   

































. 

iii. Perform the similarity transformation A S AST
1 1 1= . 

iv. Repeat the steps (i–iii) on the matrix A1 to create the matrix A S A ST
2 2 1 2=  by using 

similarity matrix S2. 
v. Obtain following successive similarity transformations till the matrix Ar+1 is 

approximately diagonal matrix as per desired accuracy. 

  
A S AS

A S A S r

T

r r
T

r r

1 1 1

1 1 1 1 2 3
=
= =+ + + , , , ,...

vi. Since the eigenvalues of similar matrices (A and Ar+1) are equal, so the diagonal 
elements of Ar+1 are the eigenvalues of matrix A. 

vii. The eigenvectors can be calculated from similarity transformations. So, either 
column of matrix S S S Sr= 1 2 ...  or rows of the matrix S S S ST

r
T

r
T T= −1 1...  are the 

eigenvectors of matrix A. 

Compute all the eigenvalues of the following real symmetric matrix with the aid of Jacobi 
method

 A =
−

− − −
−

















3 2 1
2 5 1

1 1 3

Ans.
A maximum off-diagonal element in the magnitude of the matrix A is the element  
a12 = –2. The value of θ is given by

 θ =
−









 =

−






=− −1
2

2 1
2

2 1
2

1 1 12

11 22

tan
( )

tan
( )

a

a a
a

a a
i j

i i j j

ttan
( )

− −
+







= −1 4
3 5

0.231824

7.2Example
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On using this value of θ, we can easily obtain following orthogonal matrix

 S1

0
0

0 0 1

0
=

−















= −
cos sin
sin cos

θ θ
θ θ

0.973249 0.229753
0.2299753 0.973249 0

0 0 1

















The first plane rotation is given by

A S AST
1 1 1

0 973249 0 229753 0
0 229753 0 973249 0
0 0 1

= =
−















. .

. .
33 2 1

2 5 1
1 1 3

0 973249 0 229753 0
0 229753 0 97324

−
− − −

−

















−
. .

. . 99 0
0 0 1

3 472136 0 1 203002
0 5 47211

















= −A
. .

.
        

      336 0 743496
1 203002 0 743496 3 000000

−
−

















.
. . .   

The maximum off-diagonal element in the matrix A1 is a13 = 1.203002. It gives 

 θ =
−









 =

−






=− −1
2

2 1
2

2 1
2

1 1 13

11 33

tan
( )

tan
( )

a

a a
a

a a
i j

i i j j

ttan .
.

− 





=1 2 406004
0 472136

0.688513  

The orthogonal matrix for rotation is as follows 

 S 2

0
0 1 0

0
0 1 0=

−















=
−cos sin

sin cos

θ θ

θ θ

0.772192 0 0.635390

0..635390 0.7721920

















 

Second plane rotation is given by
A S A ST

2 2 1 2

0 1 0
0

=

=
−
















0.772192 0 0.635390

0.635390 0.772192
− −
−

3 472136 0 1 203002
0 5 472136 0 743496
1 203002 0 743496 3

. .
. .

. . .

 

0000000

0 1 0
0

  

0.772192 0 0.635390

0.635390 0.772192

















−















A2

4 462013 0 472410 0
0 472410 5 472136 0 574121

0 0 574121
=

−
− − −

−

. .
. . .

. 22 010123.  

















https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:35:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.008
https://www.cambridge.org/core


310 Numerical Methods

Similarly, other plane rotations are as follows 

Third Plane Rotation: 
Maximum element in matrix = –0.574121 
Value of θ = –0.076137 

 A3

4 462013 0 471041 0 035933
0 471041 5 515933 0

0 035933 0 2
=

−
− −

. . .
. .

. .0053919

















Fourth Plane Rotation:
Maximum element in matrix = –0.471041 
Value of θ = –0.047069 

 A4

4 484200 0 0 035893
0 5 538120 0 001691
0 035893 0 001691 2 05

= −
. .

. .
. . . 33919

















Fifth Plane Rotation:
Maximum element in matrix = 0.035893 
Value of θ = 0.014765 

 A5

4 484730 0 000025 0
0 000025 5 538120 0 001691
0 0 001690 2 05

= −
. .
. . .

. . 33389

















Maximum element in matrix = 2.000000

Sixth Plane Rotation:
Maximum element in matrix = 0.001691 
Value of θ = –0.000223 

 A6

4 484730 0 000025 0
0 000025 5 538121 0
0 0 2 053390

= −
















. .

. .
.

Seventh Plane Rotation:
Maximum element in matrix = 0.000025 
Value of θ = –0.000002 

 A7 = −
















4.484730 0 0
0 5.538121 0
0 0 2.053390

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:35:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.008
https://www.cambridge.org/core


Eigenvalues and Eigenvectors of Real Symmetric Matrices 311

7.3 Strum Sequence for Real Symmetric Tridiagonal Matrix 

In Givens and Householder methods, the matrix A is transformed into the following 
tridiagonal matrix 

B

b c
c b c

b c
c b

n n

n n

=




− −

−

1 1

1 2 2

1 1

1

0 0 0 0
0 0 0

0 0 0 0
0 0 0 0

...

. ..

. ..

. ..

  



















First, we will introduce Strum sequence to obtain the characteristic equation of the 
tridiagonal matrix B. Consider the following determinant 

 

f I B

b c
c b c

b c

n

n n

= −

=

− −
− − −

− −− −

λ

λ
λ

λ

1 1

1 2 2

1

0 0 0 0
0 0 0

0 0 0 0

...

. ..

. ..
  

11

10 0 0 0 ... − −−c bn nλ

On expanding the determinant through minors, we can easily construct the Strum sequence, 
which is given by

f f b
f b f c f r nr r r r r

0 1 1

1 1
2

2

1
2

= = −
= −( ) − ≤ ≤− − −

,
;

λ
λ  (7.14)

The diagonal elements of the matrix A7 give the eigenvalues of matrix A, which are 
4.484730, –5.538121, 2.053390. 

Note: 

1. The eigenvalues of similar matrices are equal, and the trace of a matrix is equal 
to sum of the eigenvalues, so 

  Tr(A) = λi
i

n

=
∑

1

= Tr (A1) = Tr (A2) = … 

2. The eigenvectors of matrix A are columns of the matrix S S S Sr= 1 2 ... . Here, due to 
the complexity of calculations, this step is avoided. 

3. The computational work is very cumbersome for the method, so programming 
is helpful this regard. 
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312 Numerical Methods

At last, we obtain the polynomial fn, and the equation fn = 0 is required characteristic equation. 
The roots of characteristics equation are the eigenvalues of the matrix. The Strum sequence 
{fn} satisfies the properties discussed in subsection 4.5.2. So, we can easily obtain the intervals 
containing the zeroes of polynomial fn, and then roots can be computed using any method 
discussed in Chapters 3, 4. 

Find all the eigenvalues of the tridiagonal matrix A =
−

− −
−

















2 1 0
1 2 1

0 1 2
 with the help of 

Strum sequence. 

Ans. 
On using Strum sequence (7.14), we have

 

f
f b

f b f c f

0

1 1

2 2 1 1
2

0
2 2

1
2

2 2 1 1 4

=
= − = −

= −( ) − = −( ) −( ) − −( ) = −

,

.

λ λ

λ λ λ λ λλ

λ λ λ λ λ

λ λ λ

+

= −( ) − = −( ) − +( ) − −( ) −( )
= − +

3

2 4 3 1 2

6 10
3 3 2 2

2
1

2 2

3 2

f b f c f

−− 4 
The characteristic equation is given by
 λ λ λ3 26 10 4 0− + − =
We can compute the roots (0.5858, 2 and 3.4142) of this equation by any method discussed 
in Chapters 3, 4. The eigenvalues are 0.5858, 2 and 3.4142. 

7.3Example

7.4 Givens Method 

The major disadvantage of Jacobi method is that, the off-diagonal elements which are made 
zeroes in an iteration may not remain zeroes in next iteration. In Givens method, the zero 
off-diagonal elements remain zeroes in subsequent iterations. The similarity transformations 
used in Givens method can reduce the matrix A into a similar tridiagonal matrix B. The Strum 
sequence {fn} can be obtained from this tridiagonal matrix and zeroes of polynomial fn are the 
eigenvalues of the matrix A. Further, the eigenvectors of matrix B can be used to compute 
the eigenvectors of matrix A. On a similar pattern as in the Jacobi method, we will use the 
orthogonal transformations to reduce the matrix A into its tridiagonal similar matrix B. 

In this method, we obtain zeroes at (1, 3) positions in first plane rotation, then we 
annihilate the elements at (1, 4), (1, 5), …, (1, n) positions in subsequent plane rotations. 
After, vanishing the off-tridiagonal elements in first row, we proceed to second row and use 
plane rotations to vanish the elements at (2, 4), (2, 5), …, (2, n) positions. We will continue 
this process till all the off-tridiagonal elements are zeroes. 
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Consider the real symmetric matrix A

a a a
a a a

a a a

n

n

n n nn

=





















11 12 1

21 22 2

1 2

...

...

...


. The aim is to 

obtain a similar tridiagonal matrix B by using similarity transformations. Givens method 
has the following steps.

i. Consider an identity matrix of order n, then replace the elements at (2, 2),  
(2, 3), (3, 2), (3, 3) positions with cos θ, –sin θ, sin θ, cos θ, respectively to create 

an orthogonal matrix S1

1 0 0 0 0
0 0 0
0 0 0

0 0 0 1

=
−
















. ..
cos sin . ..
sin cos . ..

. ..

θ θ
θ θ










. Now the 

angle θ is to be determined such that the elements ′ = ′ =a a13 31 0 in similar matrix 
A S AST

1 1 1= . We find that 

  

′ = ′ = − + =

⇒ =

a a a a
a
a

13 31 12 13

13

12

0sin cos

tan

θ θ

θ

We obtain zeroes at (3, 1) and (1, 3) positions by performing the plane rotation 
A S AST

1 1 1=  with this value of θ.
ii. On a similar pattern, we will obtain the zeroes at (4, 1) and (1, 4) positions by 

using similarity transformation on the matrix A1. For this, we create an orthogonal 
matrix S2 by replacing the elements of an identity matrix at (2, 2), (2, 4), (4, 2),  
(4, 4) positions with cos θ, –sin θ, sin θ, cos θ respectively. The value of angle θ is 

given by tanθ =
a
a

14

12

. Then, the plane rotation A S A ST
2 2 1 2=  gives zeroes at (4, 1) 

and (1, 4) positions. Proceeding in a similar manner, we will obtain zeroes at (5, 1) 
and (1, 5) positions and so on till zeroes at (n, 1) and (1, n) positions. At last, we 
will obtain zeroes at (i, 1) and (1, i) positions for all i = 3, 4, ..., n.

iii. Create an orthogonal matrix by replacing the elements of an identity matrix at  
(3, 3), (3, 4), (4, 3), (4, 4) positions with cos θ, –sin θ, sin θ, cos θ, respectively, and 
perform the plane rotation to obtain zeroes at (4, 2) and (2, 4) positions. Similarly, 
we will obtain zeroes at (i, 2) and (2, i) positions for all i = 4, 5, ..., n.
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iv. Repeat the process till the following tridiagonal matrix is obtained

  B

b c
c b c

b c
c b

n n

n n

=




− −

−

1 1

1 2 2

1 1

1

0 0 0 0
0 0 0

0 0 0 0
0 0 0 0

...

...

...

...

  



















Since all the transformations are orthogonal transformations, so the matrix B obtained 
from these transformations is similar to matrix A. The eigenvalues of both the matrices 
are equal. We can compute the Strum sequence {fn} to obtain characteristic polynomial of 
matrix B. The zeroes of this polynomial provide the eigenvalues of matrix A. 

The matrices A and B are similar matrices, so the eigenvectors of these two matrices are 
related by the following relation

X SYi i=

where S = S1 S2 ... Sj is the product of all orthogonal matrices used for plane rotations. The 
eigenvectors of the matrix A can be obtained with the help of eigenvectors of the matrix B. 

Obtain the similar tridiagonal form for the matrix A =
−

− −

















5 1 2
1 0 1

2 1 3
 with the 

help of Givens method. Then, compute the eigenvalues of matrix A by using Strum 
sequence. 

Ans. 

Step 1. To obtain similar tridiagonal matrix

Let us consider an orthogonal transformation defined by S1

1 0 0
0
0

= −
















cos sin
sin cos

θ θ
θ θ

 

to perform the plane rotation A S AST
1 1 1= . The angle θ is to be determined by the following 

formula

 
tan

.

θ

θ

= = − = −

⇒ = −

a
a

13

12

2
1

2

1 107149

7.4Example
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On using this value of θ, we have 

 S1

1 0 0
0 0 447214=

−

















. 0.894427
0 0.894427 0.447214

The plane rotation A S AST
1 1 1=  is given by

A S AST
1 1 1

1 0 0
0 0 447214

=

= −
















. 0.894427
0 0.894427 0.447214

55 1 2
1 0 1

2 1 3

1 0 0
0 0 447214
0

−

− −















 −

. 0.894427
89.4427 0.4472114

5 2.236068 0
2.236068 3.2 0.6
0 0.6 0.2

















= −
















The zeroes are obtained at (3, 1) and (1, 3) positions, so we have following required 
tridiagonal form

 A1 = −
















5 2.236068 0
2.236068 3.2 0.6
0 0.6 0.2

Step 2: To generate the Strum sequence from tridiagonal matrix

Let the tridiagonal matrix is B. 

 B A= = −
















1

5 2.236068 0
2.236068 3.2 0.6
0 0.6 0.2

The characteristic equation of matrix B is given by 

 λ
λ

λ
λ

I B− =
− −

− + −
− −

=
5 2 236068 0

2 236068 3 2 0 6
0 0 6 0 2

0
.

. . .
. .

Strum sequence can be computed in the following manner

 

f
f b

f b f c f

0

1 1

2 2 1 1
2

0
2

1
5

3 2 5 2 236068

=
= − = −

= −( ) − = +( ) −( ) − ( )
λ λ

λ λ λ. . .11 1 8 21

0 2 1 8 21 0 6

2

3 3 2 2
2

1
2 2

= − −

= −( ) − = −( ) − −( ) − ( )
λ λ

λ λ λ λ λ

.

. . .f b f c f −−( )
= − − +

5

2 21 63 2λ λ λ
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Characteristic equation is given by

 λ λ λ3 22 21 6 0− − + =

The roots of this characteristics equation are lies in the intervals (–4, 3), (0, 1), (5, 6). 

These roots can be easily determined by any iterative method discussed in Chapters 3 and 
4. The roots of the characteristic equation are –3.853556, 0.279322 and 5.574234 correct 
up to six decimal places. These are the required eigenvalues.

Reduce the symmetric matrix A =

−
−

−





















4 1 1 1
1 2 0 2

1 0 3 1
1 2 1 4

 to the similar tridiagonal matrix 

by using Givens method. Then compute the eigenvalues using strum sequence.

Ans. (Step 1) Givens method to obtain tridiagonal matrix

Let us consider an orthogonal transformation defined by S1

1 0 0 0
0 0
0 0
0 0 0 1

=
−





















cos sin
sin cos

,
θ θ
θ θ

 

where the value of θ is given by 

 
tanθ

θ π

= =
−

= −

⇒ = −

a
a

13

12

1
1

1

4
The orthogonal matrix is as follows 

  S1

1 0 0 0
0 0
0 0
0 0 0 1

1 0 0 0
0

=
−





















=
cos sin
sin cos

θ θ
θ θ

0.7071007 0.707107
0.707107 0.707107

0
0 0
0 0 0 1

−





















The first rotation A S AST
1 1 1=  annihilates the following resulting matrix with zeroes at  

(3, 1) and (1, 3) positions. We have 

7.5Example
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A S AST
1 1 1

1 0 0 0
0 0
0 0
0 0 0 1

=

=
−





 0.707107 0.707107
0.707107 0.707107
















−
−

−





















4 1 1 1
1 2 0 2

1 0 3 1
1 2 1 4

1 0 0 0
0 0.707107 00.707107

0.707107 0.707107

1.414214

0
0 0
0 0 0 1

4

−





















=

− 00 1
2 5 0 5

0 0 5 2 5
1 0 707107

− −
−

1.414214 0.707107
2.121320

2.1213

. .
. .

. 220 −



















4

On a similar pattern, we will obtain the zeroes at (4, 1) and (1, 4) positions. The value of 
angle θ is given by

 tan
.

.

.

θ

θ

= =
−

= −

⇒ = −

a
a

14

12

1
1 414214

0 707106

0 615480

The orthogonal matrix S2 is given by 

S2

1 0 0 0
0 0
0 0 1 0
0 0

1 0 0 0
0

=
−

−





















=
cos sin

sin cos

θ θ

θ θ

0.8164497 0

0.816497

0 577350
0 0 1 0
0 0 577350 0

.

.−





















The second plane rotation A S A ST
2 2 1 2=  produces the following similar matrix

A S A ST
2 2 1 2=

=
−



















1 0 0 0
0 0 816497 0 0 577350
0 0 1 0
0 0 577350 0 0 816497

. .

. . 


−
− −

−

4 1 414214 0 1
1 414214 2 5 0 5 0 707107

0 0 5 2 5 2 121320
1 0

.
. . . .

. . .
.7707107 2 121320 4

1 0 0 0
0 0 816497 0 0 577350
0 0 1 0
0.

. .

−



















 −−



















0 577350 0 0 816497. .

=

−4 000000 1 732051 0 000000 0 000000. . . .                        
−− −1 732051 0 333333 1 632993 3 299832
0

. . . .
.

                     
0000000 1 632993 2 500000 1 443376

0 0
                       − . . .

. 000000 3 299832 1 443376 1 166667                        . . .−





















To obtain the zeroes at (4, 2) and (2, 4) positions, the value of angle θ and orthogonal 
matrix are given by 
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 tan .
.

.

.

θ

θ

= =
−

= −

⇒ = −

a
a

24

23

3 299832
1 632993

2 020726

1 111260

 S3

1 0 0 0
0 1 0 0
0 0 0 443533

=
−

















. 0.896258
0 0 0.896258 0.443533






The plane rotation is given by

S A ST
3 2 3

1 0 0 0
0 1 0 0
0 0 0 443533 0 896258
0 0 0 896258 0 443533

=
−







 . .

. .












−
−
4 000000 1 732051 0 000000 0 000000

1 732051 0 33
. . . .

. .
  

33333 1 632993 3 299832
0 000000 1 632993 2 500000 1 443376
0

−
−

. .
. . . .

 
 

.. . . .000000 3 299832 1 443376 1 166667

1 0 0 0
0 1 0 0
0 0 0

−





















.. .

. .
443533 0 896258

0 0 0 896258 0 443533
−





















   A3

4 000000 1 732051 0 000000 0 000000

=

−. . . .                      
−− − −1 732051 0 333333 3 681787 0 000000
0 0000

. . . .
.

                
000 3 681787 1 592897 0 582083

0 000000
                  
   

− −. . .
.                     0 000000 0 582083 2 926229. . .





















This matrix A3 is the required tridiagonal matrix.

Step 2: Strum sequence

The tridiagonal matrix is given by

 B A= =

−

3

4 000000 1 732051 0 000000 0 00000. . . .                     00
1 732051 0 333333 3 681787 0 000000

0 00

 
                − − −. . . .

. 00000 3 681787 1 592897 0 582083
0 000000

                  
 

− −. . .
.                       0 000000 0 582083 2 926229. . .





















We have to compute the Strum sequence for the matrix B. The associated characteristic 
equation is as follows 

 λ

λ

I B− =

− 4 000000 1 732051 0 000000 0 000000. . . .                   
11 732051 0 333333 3 681787 0 000000
0 000
. . . .
.

                  λ +
0000 3 681787 1 592897 0 582083

0 000000
                   . . .

.
λ + −

                       0 000000 0 582083 2 926229

0

. . .− −

=

λ

Strum sequence is given by
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f
f b

f b f c f

0

1 1

2 2 1 1
2

0

1
4

0 333333 4 1 73205

=
= − = −

= −( ) − = +( ) −( ) −

λ λ

λ λ λ. . 11 1 3 666667 4 333353

1 592897

2 2

3 3 2 2
2

1

( ) = − −

= −( ) − = +(
. . .

.

λ λ

λ λf b f c f )) − −( ) − ( ) −( )
= − −

λ λ λ

λ λ

2 2

3 2

3 666667 4 333353 3 681787 4

2 073770 2

. . .

. 33 729511 47 319667

2 926229 1 0734 4 3 3
2

2
3

. .

. .

λ

λ λ λ

+

= −( ) − = −( ) −f b f c f 7770 23 729531 47 319637

0 582083 3 666667 4 3

2

2 2

λ λ

λ λ

− +( )
− −( ) − −

. .

. . . 333353

5 18 118 1374 3 2

( )
− − + − λ λ λ λ

The characteristic equation is given by
 λ λ λ λ4 3 25 18 118 137 0− − + − =

Roots of this equation are –4.867263, 1.859930, 3.057171 and 4.950163, which are 
eigenvalues of the matrix A. 

7.5 Householder Method 

Givens method requires (n–1)(n–2)/2 numbers of plane rotations to obtain similar 
tridiagonal matrix. But, Householder method produces tridiagonal matrix only after (n–2)
numbers of plane rotations. The following theorem is useful for similarity transformations 
in Householder method.

Theorem 7.9

Consider the matrix S I X XT= − 2 , where X x x x RT
n

n= ∈( , ,..., )1 2  is a vector, and such that 

X X x x xT
n= + + + =1

2
2
2 2 1...

Then, prove that the matrix S is symmetric and orthogonal, i.e., ST = S and ST = S–1.

Proof: Transpose of the matrix S = I – 2 X XT is given by

S I X X

I X X

I X X

I X X S

T T T

T T T

T T T

T

= −( )
= − ( )
= − ( )
= − =

2

2

2

2

It proves that the matrix S is symmetric. 
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S S I X X I X X

I X X X X X X
I X X X X
I

S S

T T T

T T T

T T

T

= −( ) −( )
= − +
= − +
=

⇒ = −

2 2

4 4
4 4 1( )

11

It proves that the matrix S is orthogonal.

Consider the real symmetric matrix A of order n. The aim is to obtain a similar tridiagonal 
matrix B. In Householder method, we use the following symmetric and orthogonal matrices 
for similarity transformations

S I X X r nr r r
T= − = −2 1 2 3 2, , , , ..., ;

where vector X x x xr
T

r r n
T= + +[ , ,..., , , ,..., ]0 0 0 1 2 , and it is such that 

X X x x xr
T

r r r n= + + + =+ +1
2

2
2 2 1...

From theorem 7.9, it is easy to see that the matrix Sr is symmetric and orthogonal. The 
following plane rotations are performed successively

A A
A S A S r n

S A S
r r r r

r r r

1

1
1 1 2 3 2

=
= = −
=

+
− for , , , ...,

Note that Sr is symmetric and orthogonal, therefore S Sr r= −1.

The aim is to reduce the matrix A into a tridiagonal matrix. The first plane rotation is given 
by 

A S A S2 1 1 1=

The vector X x x xT
n

T

1 2 30=  , , ,...,  is constructed with the aim to obtain zeroes at 
( , ),( , ),...,( , )1 3 1 4 1 n  positions. Similarly, during second plane rotation A S A S3 2 2 2= , zeroes are 
obtained at ( , ),( , ),...,( , )2 4 2 5 2 n  positions. Proceeding in a similar manner, the matrix A is 
reduced to tridiagonal form after (n – 2) such plane rotations. From tridiagonal matrix, the 
eigenvalues are obtained using Strum sequence.

Stepwise Procedure for rth transformation:

i) Select vector X x x xr
T

r r n= + +( , ,..., , , ,..., )0 0 0 1 2  for the rth transformation. Like 
vector X x x xT

n1 2 30= ( , , ,..., ) for first rotation, vector X x x xT
n2 3 40 0= ( , , , ,..., ) for 

second rotation and so on.
ii) Construct orthogonal matrices S I X X r nr r r

T= − = −2 1 2 3 2; , , , ..., . For example, 
let us consider matrix A of order 4, then for first rotation, we have
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  S I X X
x
x
x

T
1 1 1

2

3

4

2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2

0

= − =





















−





















 0 2 3 4x x x

  S
x x x x x

x x x x x
x x x x

1
2
2

2 3 2 4

2 3 3
2

3 4

3 4 3 4

1 0 0 0
0 1 2 2 2
0 2 1 2 2
0 2 2

=
− − −

− − −
− − 11 2 4

2−



















x

iii) The rth plane rotation is given by

  A S A S r nr r r r+ = = −1 1 2 2; , ,...,

In first plane rotation A2 = S1A1S1 (with A1 = A), we obtain zeroes at (1, 3),  
(1, 4), ..., (1, n) positions. Similarly, during the second rotation A3 = S2A2S2, zeroes 
at (2, 4), (2, 5), ..., (2, n) positions. Applying this procedure successively, the 
matrix A is reduced to tridiagonal form. 
 For example for first plane rotation A2 = S1A1S1, we have 

   

x
a a

s
x

a a
s x

x2
2 12 12

1
3

13 12

1 2

1
2

1 1
2

= +






=






sign( sign()
,

)
, 44

14 12

1 2

5
15 12

1 2

1
2

1
2

=






=






a a
s x

x
a a

s x

sign(

sign(

)
,

)
...,,

...where s a a a n1 12
2

13
2

1
2= + + +

Similarly, for second plane rotation A3 = S2A2S2, we have

 
x

a a
s

x
a a

s x
x3

2 23 23

2
4

24 23

2 3

1
2

1 1
2

= +






=






sign( sign()
,

)
, 55

25 23

2 3

2 23
2

24
2

2
2

1
2

=






= + + ⋅⋅⋅+

a a
s x

s a a a n

sign(

Where

)
, ...,

...
iv) After (n – 2) such rotations, the matrix A is reduced into the tridiagonal 

matrix. Eigenvalues and corresponding eigenvectors can be obtained from this 
tridiagonal form as explained earlier.
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Compute the equivalent similar tridiagonal form for the matrix A =
−
−

− −

















3 1 1
1 3 1

1 1 5
 

with the help of Householder method. Then, compute the eigenvalues of matrix A by 
using Strum sequence. 

Ans. The matrix A is given by

 A =
−
−

− −

















3 1 1
1 3 1

1 1 5

First, we will compute the elements for the orthogonal matrix as follows

 

s a a

x
a a

s

1 12
2

13
2

2
2 12 12

1

1 1 2

1
2

1 1
2

1
2

= + = + =

= +






= +






sign( 1)
 =

⇒ =

=






= −

0 853553

0 923880

1
2

1
2

1
2 0

2

3
13 12

1 2

.

.

)
.

x

x
a a

s x
sign(

9923880
0 382683

( )








 = − .

Using these values in following orthogonal matrix, we get 

 

S x x x
x x x

S

1 2
2

2 3

2 3 3
2

1

1 0 0
0 1 2 2
0 2 1 2

1 000000

= − −
− −

















=
.                  

            
0 000000 0 000000

0 000000 0 707107 0
. .

. .− ..

. . .
707107

0 000000 0 707107 0 707107                

















The similarity matrix is given by 

A S A S2 1 1 1

1 000000 0 000000 0 000000
0 000000 0 707107 0 70710

=

= −
. . .
. . . 77

0 000000 0 707107 0 707107

3 1 1
1 3 1

1 1 5. . .

















−
−

− −

















−
1 000000 0 000000 0 000000
0 000000 0 707107 0 707107
0 00000

. . .
. . .
. 00 0 707107 0 707107

3 000000 1 414214 0 000000
1 4

. .

. . .
.

















=
−

− 114214 5 00000 1 000000
0 000000 1 000000 3 000000

. .
. . .

















7.6Example
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This matrix is required tridiagonal matrix. Now, we will compute Strum sequence to 
compute the eigenvalues of the matrix A. Let the tridiagonal matrix be B. 

 B A= =
−

−2

3 000000 1 414214 0 000000
1 414214
. . .

.
             

                
               

5 00000 1 000000
0 000000 1 000000 3

. .
. . .0000000

















The characteristic equation of matrix B is given by 

 λ
λ

λ
λ

I B− =
−

− −
− −

















=
3 1 414214 0

1 414214 5 1
0 1 3

0
.

.

Strum sequence can be computed in the following manner

 

f
f b

f b f c f

0

1 1

2 2 1 1
2

0
2

1
3

5 3 1 414214 1

=
= − = −

= −( ) − = −( ) −( ) − ( ) =

λ λ

λ λ λ . . λλ λ

λ λ λ λ λ

λ

2

3 3 2 2
2

1
2 2

3

8 13

3 8 13 1 3

1

− +

= −( ) − = −( ) − +( ) − −( ) −( )
= −

f b f c f

11 36 362λ λ+ −
Characteristic equation is given by

 λ λ λ3 211 36 36 0− + − =

The roots of this characteristics equation are λ = 2, 3, 6. These are the required eigenvalues.

Transform the following symmetric matrix into equivalent tridiagonal similar matrix 
with the help of Householder method.

 A =

−

−
−





















4 2 1 1
2 1 0 3
1 0 1 4

1 3 4 0

Ans.
The matrix A is given by

 A A1

4 2 1 1
2 1 0 3
1 0 1 4

1 3 4 0

= =

−

−
−





















7.7Example
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First plane rotation 

First, we will compute the elements for the orthogonal matrix as follows

 

s a a a

x
a a

s

1 12
2

13
2

14
2

2
2 12 12

1

4 1 1 6

1
2

1 1
2

1

= + + = + + =

= +






= +
sign( ) 22

sign(

6
0 9082483

0 953021

1
2

2

3
13 12

1 2







=

⇒ =

=






.

.

)

x

x
a a

s x
==

( )








 =

=






1
2

1
6 0 953021

0 214186

1
24

14 12

1 2

.
.

)
x

a a
s x

sign(
== −

( )








 = −1

2
1

6 0 953021
0 214186

.
.

On using these values, we have following orthogonal matrix 

 

S
x x x x x

x x x x x
x x x x

1
2
2

2 3 2 4

2 3 3
2

3 4

3 4 3 4

1 0 0 0
0 1 2 2 2
0 2 1 2 2
0 2 2

=
− − −

− − −
− − 11 2

1 0 0 0
0 0 816497 0 408248 0 408248
0 0

4
2

1

−





















=
− −
−

x

S
. . .
.. . .

. . .
408248 0 908248 0 091752

0 0 408248 0 091752 0 908248





















The similarity matrix is given by 

 A S A S2 1 1 1

4 2 44949 0 0
2 44949 2 83333 1 312713 3 353954

0 1 3
= =

−
− − −

.
. . . .

. 112713 0 216326 2 083333
0 3 353954 2 083333 3 049660

−
−















. .
. . .







Second plane rotation

The elements for the orthogonal transformation are given by

 

s a a

x
a

2 23
2

24
2 2 2

3
2 23

1 312713 3 353954 3 601697

1
2

1

= + = + − =

= +

( . ) ( . ) .

siign(a
s

x

23

2

3

1
2

1 1 312713
3 601697

0 682235

0

) .
.

.






= +





=

⇒ = ..

) .
. ( .

825975

1
2

1
2

3 353954
3 601697 04

24 23

2 3

x
a a

s x
=







= −sign(
8825975

0 563706
)

.





= −
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The orthogonal matrix with these elements is as follows

 

S
x x x

x x x

S

2
3
2

3 4

3 4 4
2

2

1 0 0 0
0 1 0 0
0 0 1 2 2
0 0 2 1 2

1 0

=
− −

− −





















=

00 0
0 1 0 0
0 0 0 364471 0 931215
0 0 0 931215 0 364471

−





















. .
. .

The plane rotation provides the following matrix 

  A S A S3 2 2 2

4 2 44949 0 0
2 44949 2 833333 3 601697 0

0 3 601697
= =

−
− − −

−

.
. . .

. 11 201642 2 638316
0 0 2 638316 1 631692

. .
. .





















This matrix is the required tridiagonal similar matrix.

Step 2: Strum Sequence:

The tridiagonal matrix is as follows 

       B A= =

−
− − −

−3

4 2 44949 0 0
2 44949 2 833333 3 601697 0

0 3 601697 1 201

.
. . .

. . 6642 2 638316
0 0 2 638316 1 631692

.
. .





















The characteristic equation for matrix B is given by 

 λ

λ
λ

λ
I B− =

−
+

−

4 2 44949 0 0
2 44949 2 833333 3 601697 0
0 3 601697 1 20

.
. . .

. . 11642 2 638316
0 0 2 638316 1 631692

0
−

− −

=
.

. .λ

Strum sequence is given by

f
f b

f b f c f

0

1 1

2 2 1 1
2

0

1
4

2 833333 4 2 44949

=
= − = −

= −( ) − = +( ) −( ) −

λ λ

λ λ λ. .(( ) = − −

= −( ) − = −( )

2 2

3 3 2 2
2

1

1 1 166667 17 33333

1 201642

. . .

.

λ λ

λ λf b f c f λλ λ λ

λ λ

2 2

3 2

1 166667 17 33333 3 601697 4

2 368309 28

− −( ) − ( ) −( )
= − −

. . .

. .. .

. .

903638 72 717346

2 926229 1 07374 4 3 3
2

2
3

λ

λ λ λ

+

= −( ) − = −( ) −f b f c f 770 23 729531 47 319637

0 582083 3 666667 4 33

2

2 2

λ λ

λ λ

− +( )
− −( ) − −

. .

. . . 33353

4 32 128 24 3 2

( )
− − + + λ λ λ λ

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.008
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:35:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.008
https://www.cambridge.org/core


326 Numerical Methods

Exercise 7

1. Prove that eigenvectors of a Hermitian matrix are orthogonal.

2. Prove that eigenvectors of a unitary matrix are orthogonal.

3. Compute the eigenvalues and corresponding eigenvectors for the following matrices and prove 
that these matrices are diagonalizable. 

a) 
−

− −
















1 1 2
1 1 2
1 1 2

  b) 
0 1 2
2 1 0
4 2 5

−

−

















Ans. The elements of the following column vectors are the eigenvalues, and eigenvectors are 
given by the columns of the following matrices.

a) 
2
0

2

1 0 1
1 2 1

2 1 0−

















−
− −
















 b) 

1
2
3

0 1 1
2 2 1
1 0 1

















−
−

















Use these matrices to prove that the given matrices are diagonalizable, by simply using S–1 AS = D. 

4. Apply Jacobi method to compute the eigenvalues of the following matrices

 i) 
4 2 1

2 3 0
1 0 2

−
−

















  ii) 
5 1 0 5

1 2 0 2
0 5 0 2 2

−
−

−

















.

.
. .

Use six decimal digits arithmetic till all the off-diagonal elements are less than 0.002. 

Ans. 4. i)

First Iteration: θ = –0.662909

5.561553 –0.000000 0.788205

0.000000 1.438447 0.615412

0.788205 0.615412 2.000000

Ans. 4. ii)

First Iteration: θ = –0.294001

5.302776 –0.000000 0.420589

0.000000 1.697224 0.336311

0.420589 0.336311 –2.000000

f
f b

f b f c f

0

1 1

2 2 1 1
2

0

1
4

2 833333 4 2 44949

=
= − = −

= −( ) − = +( ) −( ) −

λ λ

λ λ λ. .(( ) = − −

= −( ) − = −( )

2 2

3 3 2 2
2

1

1 1 166667 17 33333

1 201642

. . .

.

λ λ

λ λf b f c f λλ λ λ

λ λ

2 2

3 2

1 166667 17 33333 3 601697 4

2 368309 28

− −( ) − ( ) −( )
= − −

. . .

. .. .

. .

903638 72 717346

2 926229 1 07374 4 3 3
2

2
3

λ

λ λ λ

+

= −( ) − = −( ) −f b f c f 770 23 729531 47 319637

0 582083 3 666667 4 33

2

2 2

λ λ

λ λ

− +( )
− −( ) − −

. .

. . . 33353

4 32 128 24 3 2

( )
− − + + λ λ λ λ

On solving the characteristic equation, the eigenvalues are –5.653614, –0.0155646, 
4.031504 and 5.637675. 
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Second Iteration: θ = 0.208349

5.728193 0.127295 –0.000000

0.127295 1.438447 0.602103

0.000000 0.602103 1.833360

Third Iteration: θ = –0.626952

5.728193 0.103086 0.074681

0.103086 1.002250 –0.000000

0.074681 –0.000000 2.269557

Second Iteration: θ = 0.057340

5.326919 0.019274 –0.000000

0.019274 1.697224 0.335758

–0.000000 0.335758 –2.024143

Third Iteration: θ = 0.089264

5.326919 0.019197 –0.001718

0.019197 1.727275 –0.000000

–0.001718 0.000000 –2.054194

Fourth Iteration: θ = 0.021799

5.730441 0.000000 0.074664

–0.000000 1.000002 –0.001628

0.074664 –0.001628 2.269557

Fifth Iteration: θ = –0.021560

5.732051 –0.000035 –0.000000

–0.000035 1.000002 –0.001627

–0.000000 –0.001628 2.267947

Eigenvalues are 5.732051, 1.000002 and 
2.267947 

Fourth Iteration: θ = –0.005333

5.327022 –0.000000 –0.001718

–0.000000 1.727173 0.000009

–0.001718 0.000009 –2.054194

Eigenvalues are 5.327022, 1.727173 and 
–2.054194

5. Construct the Strum sequence of the functions of eigenvalues, and hence find the eigenvalues 
of the following tridiagonal matrix

 
1 2 0

2 3 1
0 1 3

−
−

−

















Ans. Strum sequence is given by

f

f b

f b f c f

0

1 1

2 2 1 1
2

0
2 2

1

1

3 1 2 1 4 1

=
= − = −

= −( ) − = −( ) −( ) −( ) = − −

λ λ

λ λ λ λ λ.

ff b f c f3 3 2 2
2

1
2 2

3 2

3 4 1 1 1

14 2

= −( ) − = +( ) − −( )−( ) −( )
= − − −

λ λ λ λ λ

λ λ λ

Characteristic equation is given by 

 λ λ λ3 2 14 2 0− − − =
Roots of this equation are lying in the intervals (–4, –3), (–1, 0) and (4, 5). Computing the roots 
with the help of Newton Raphson method, we obtain following eigenvalues correct to five 
decimal places
 –3.19097, –0.14456 and 4.33553.
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6. Consider the following tridiagonal matrix

 
5 3 0
3 4 1
0 1 3

−
−

















a)  Construct the Strum sequence of the functions of eigenvalues and hence find the 
characteristics equations. 

b)  Obtain the bounds on the eigenvalues of matrices using Gerschgorin and Brauer theorems.

c)  Obtain the intervals of unit length in which eigenvalues of the matrices lies by using Strum 
sequence and further find the eigenvalues correct to four decimal places using NR method. 

Ans. a) Strum sequence is as follows

 

f

f b

f b f c f

0

1 1

2 2 1 1
2

0
2 2

1

5

4 5 3 1 9 1

=
= − = −

= −( ) − = −( ) −( ) −( ) = − +

λ λ

λ λ λ λ λ. 11

3 9 11 1 5

12 37

3 3 2 2
2

1
2 2

3 2

f b f c f= −( ) − = −( ) − +( )−( ) −( )
= − + −

λ λ λ λ λ

λ λ λ 228

 Characteristic equation is given by 

 λ λ λ3 212 37 28 0− + − =

 b) By using Gerschgorin and Brauer theorems, the bounds on eigenvalues are given by

 
λ

λ
− ≤

⇒ ≤ ≤
4 4

0 8

 c)  In this range, the roots of the equation lie in the intervals (1, 2), (3, 4) and (7, 8). We can 
compute the roots of the equation by any iterative method discussed in Chapter 3. The 
eigenvalues are as follows

 1.135115, 3.231460, 7.633425

7. Consider the real symmetric matrix 
3 1 1
1 4 2
1 2 5

















.

a)  Obtain the tridiagonal form using Givens and Householder methods.

b)  Find the Sturm sequences, and hence characteristics equation of the matrix.

c)  Find the intervals of unit length in which eigenvalues of the matrix lies by using Strum 
sequence and further find the eigenvalues correct to four decimal places using NR method. 

Ans. a) The tridiagonal forms using Givens and Householder methods are as follows

 Givens method:

   

3.000000        1.414214       0.000000 
1.414214        6.5500001       0.500000
0.000000        0.500000       2.5000000
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 Householder method:

   
3.000000        1.414214       0.000000 

1.414214       6
−

− ..500001        0.500000
0.000000        0.500000       2

−
− ..500000

















 b) Using Strum sequence, the final characteristic equation is as follows

 λ λ λ3 212 41 43 0− + − =

 c) Eigenvalues are 2.307978, 2.643104 and 7.048917

8. Reduce the following matrices to tridiagonal form using Givens and Householder methods and 
further obtain the eigenvalues of the matrices

i) 
2 3 1
3 2 2

1 2 5

−
− −

−

















 ii) 
2 1 1
1 3 4
1 4 6

−

−

















     iii) 

4 2 1 1
2 2 2 1

1 2 5 0
1 1 0 5

−
− −

−
− −



















Ans.
Givens method Householder method
i)   θ = –0.321751

2.000000 –3.162278 0.000000

–3.162278 3.500000 –2.500000

0.000000 –2.500000 3.500000

i)

2.000000 3.162278 0.000000

3.162278 3.500000 2.500000

0.000000 2.500000 3.500000
ii)  θ = –0.785398

2.000000 1.414214 0.000000

1.414214 0.500000 –1.500000

0.000000 –1.500000 8.500000

ii)

2.000000 –1.414214 0.000000

–1.414214 0.500000 1.500000

0.000000 1.500000 8.500000
iii) First Rotation θ = –0.463648

4.000000 2.236068 0.000000 1.000000

2.236068 –2.200000 –1.600000 –0.894427

0.000000 –1.600000 5.200000 –0.447214

1.000000 –0.894427 –0.447214 –5.000000

Second Rotation θ = 0.420534

4.000000 2.449490 0.000000 0.000000

2.449490 –3.333333 –1.643168 –1.639783

0.000000 –1.643168 5.200000 0.244949

0.000000 –1.639783 0.244949 –3.866667

Third Rotation θ = 0.784367

4.000000 2.449490 0.000000 0.000000

2.449490 –3.333333 –2.321398 0.000000

0.000000 –2.321398 0.920962 –4.532819

0.000000 0.000000 –4.532819 0.412371 

iii) First rotation

4.000000 –2.449490 0.000000 0.000000

–2.449490 –3.333333 1.799660 1.466327

0.000000 1.799660 5.157398 –0.666667

0.000000 1.466326 –0.666667 –3.824064

Second Rotation

4.000000 –2.449490 0.000000 0.000000

–2.449490 –3.333333 –2.321398 0.000000

0.000000 –2.321398 0.920962 4.532819

0.000000 0.000000 4.532818 0.412371
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330 Numerical Methods

Eigenvalues are as follows:

i) –1.093373, 2.941164, 7.152208

ii) –0.537231, 2.755516, 8.781715

iii) –5.649347, –2.603370, 4.514705, 5.738012
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8.1 Introduction

One of the important aspects in numerical methodology is the interpolation. The primary 
aim of this chapter is to obtain polynomial approximation for a given set of discrete data 
points. Interpolation deals with the problem of constructing a polynomial P(x) of minimum 
degree, which passes through a given set of discrete data points, ( , ), , ,...,x y i ni i = 0 1 . This 
polynomial P(x) is known as an interpolating polynomial. The interpolating polynomial 
can be used to estimate the value of the dependent variable y for any intermediate value of 
the independent variable x.

For example, let us consider data points (0, –1), (1, 1), (2, 9), (3, 29), (5, 129). The aim 
is to construct a polynomial of minimum degree which passes through all these points. 
The polynomial P x x x( ) = + −3 1 is the required interpolating polynomial. It is easy to see 
that the polynomial P(x) passes through every point of given data set {(0, –1), (1, 1), (2, 9),  
(3, 29), (5, 129)} as P(0) = –1, P(1) = 1,…. Now, we can use this interpolating polynomial 
to find the approximate value of the dependent variable y for any intermediate value of the 
independent variable x, say for example y(4)  P(4) = 67.

In this chapter, we will discuss how to build such polynomials in an algorithmic manner; 
Lagrange and Newton divided difference methods are most suitable for such constructions.

‘Obvious’ is the most dangerous word in mathematics.

Eric Temple Bell
(February 7, 1883–December 21, 1960)

He was a mathematician, science fiction, and non-fiction writer.

Mathematics is not only real, but it is the only reality.

Martin Gardner
(October 21, 1914–May 22, 2010)

He was a famous mathematician and science writer.

Interpolation Chapter
8
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332 Numerical Methods

Experimental observations contain a set of data points, i.e., inputs (x) and outputs (y). In 
many practical problems, we have data points instead of the mathematical models for such 
problems. For example, Indian government carries out national census after a gap of 10 
years to speculate about the development of the population of the country. Recently, the 
Indian government has carried out the census in 2011, before that it was carried out in 2001, 
1991, …, 1951. The population data in these years is as follows

Table 8.1

Years Population (in crores)
1961 43.9235

1971 54.8160

1981 68.3329

1991 84.6421

2001 102.8737

2011 121.0193

(The data set has population in four decimal points only)
Population data is available only for the years given in the above Table 8.1. To estimate the 
populations in intermediate years such as 1977, 2010, etc., numerical techniques can be used.

Sometimes, we also require approximating different complicated functions with 
polynomials. In fact, polynomials have simple structures, and polynomials are easy for 
fundamental operations of calculus like differentiation and integration etc. Also, the 
Weierstrass approximation theorem (Section 8.9) states that any continuous function on a 
finite interval is well approximated by a polynomial function within error limit. So, we have 
many reasons for polynomial approximations of data sets as well as functions.

Fig. 8.1 Interpolation

P(x)

(xn , yn)

(x0 , y0)

(x1 , y1)

(xn-1, yn-1)

x

y = f(x)
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Many other applications of numerical analysis involve the polynomial approximation of 
various functions. For examples, methods for finding roots of nonlinear equations, solutions 
of integral and differential equations and most importantly numerical approximation 
for integration and differentiation. The next section is devoted to various forms of the 
polynomials, and in successive sections, we will discuss the methods for computing the 
interpolating polynomials.

Readers who are interested only in finding interpolating polynomials, they can skip the 
next section and jump to interpolating polynomial Section 8.3.

8.2 Polynomial Forms

The following forms of the polynomials are widely used.

i) Power Form
ii) Shifted Power Form
iii) Newton Form
iv) Nested Newton Form

8.2.1 Power Form
The most common form of the polynomial of degree n is the following power form

P x a a x a x a x an n
n

n( ) ,= + + + ⋅⋅⋅+ ≠( )0 1 2
2 0

The calculus (differentiations, integrations) is easy with this polynomial form.

8.2.2 Shifted Power Form
The shifted power form about the center x = c has the following expression

P x a a x c a x c a x cn n
n( ) ( ) ( ) ( )= + − + − + ⋅⋅⋅+ −0 1 2

2

To discuss the advantage of the shifted power form, let us take a very simple example

Let andf f( ) ( )1110 5
6

1111 1
6

= − =

We will use five significant digits floating point rounding arithmetic to compute the 
polynomial P x a a x( ) = +0 1 , which passes through these two points. For this, we have

P a a

P a a

( ) .

( ) .

1110 5
6

1110 83333

1111 1
6

1111 16667

0 1

0 1

= − ⇒ + = −

= ⇒ + =

On solving these two equations with five significant digits floating point arithmetic, the 
polynomial obtained is as follows

P x x( ) .= − +1110 8  (8.1)
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334 Numerical Methods

The polynomial (8.1) gives P(1110) = –.8 and P(1111) = .2. These estimates are correct up to 
one significant digit only. So, there is a loss of four significant digits, which can be avoided 
using the shifted power form P x a a x( ) ( )= + −0 1 1110  about center x = 1110.

The equations are as follows

a
a a

0

0 1

83333
16667

= −
+ =

.
.  (8.2)

Solution of these two equations gives the following polynomial

P x x( ) . ( )= − + −83333 1110

The shifted power form (8.2) provides the following values
P
P

( ) . .
( ) .
1110 8 3333
1111 16667

= −
=

These values are correct up to five significant digits.
The data values are near to the point x = 1110. We are analysing the data set from origin 

(x = 0) in power form (8.1), and the origin is at x = 1110 in shifted power form (8.2). This is 
the reason behind the huge difference in both the approximations. The power form is like to 
see (analyze) the things (function) from the origin, while the region of study is far from the 
origin. The major advantage in shifted power form is that we shift the origin to the point in 
the data set where more information could be drawn for a better approximation. Therefore, 
it is always better to work with shifted power form with the center in the interval, in which 
we are discussing the function.

It is also easy to see that all the coefficients ai’s of the polynomial provide the derivative 
values at point x = c in the shifted power form.

P c
i

a
i

i
( )
!

=

8.2.3 Newton Form
A more generalized form of the shifted power form is Newton form

P x a a x c a x c x c a x c x c x cn n( ) ( ) ( )( ) ( )( ) (= + − + − − + ⋅⋅⋅+ − − ⋅⋅⋅ −0 1 1 2 1 2 1 2 nn )

This form plays a vital role in the interpolation theory. Newton form becomes shifted power 
form for the values c c c cn1 2= = =... , and further power form for the value c = 0.

8.2.4 Nested Newton Form
In Newton form of the polynomial of degree n, the total number of multiplications and 

additions are n n( )+1
2

 and n n n+ +( )1
2

, respectively. It will be better to use the following 

nested Newton form to minimize the number of arithmetic operations.
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P x a x c a x c a x c a a x cn n n n n( ) ( ) ( ) ( ) ( )= + − + − + ⋅⋅⋅+ − + −{ }⋅⋅⋅{ − −0 1 1 2 2 1 1 }}{ }
The nested Newton form involves only n multiplications and 2n additions.

8.2.5 Recursive Algorithm for the Nested Newton Form
Consider the nested Newton polynomial

P x a x c a x c a x c a a x cn n n n n( ) ( ) ( ) ( ) ( )= + − + − + ⋅⋅⋅+ − + −{ }⋅⋅⋅{ − −0 1 1 2 2 1 1 }}{ }
Let us start with the innermost part of this polynomial, and continue by adding a new term 
to the resulting expression.

P x a x c a x c a x c a a x cn n n n

a

n

n

( ) ( ) ( ) ( ) ( )= + − + − + ⋅⋅⋅+ − + −

− −0 1 1 2 2 1 1

′











⋅⋅⋅





















−a

a

n′

′

1

2

  

  

  

 































a

a

′

′

1

0

 

We can easily obtain the following recursive algorithm to get the polynomial Pn(x).

′ =
′ = + − ′
′ = + − ′

′ = +

− −

− − − −

a a
a a x c a
a a x c a

a a

n n

n n n n

n n n n

i i

1 1

2 2 1 1

( )
( )



(( )

( ) ( )

x c a

a a x c a P x

i i

n

− ′

′ = + − ′ =

+ +1 1

0 0 1 1



 (8.3)

The value of polynomial at any point x = z can be computed with this algorithm.

Evaluate the following polynomial at x = 4 using recursive algorithm (8.3)

P x x x x x x x x x x x4 2 1 3 1 2 4 1 2 3( ) ( ) ( )( ) ( )( )( )= + − + − − + − − −

8.1Example
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Replace the center x = 3 by new center x = 4 in the following polynomial, and write down 
the equivalent polynomial form using the recursive algorithm

 P x x x x x x x x x x x4 2 1 3 1 2 4 1 2 3( ) ( ) ( )( ) ( )( )( )= + − + − − + − − −  (8.6)

8.2Example

Ans.
The coefficients of the polynomial and centers are given by

a a a a a
c c c c

0 1 2 3 4

1 2 3 4

0 1 2 3 4
0 1 2 3

= = = = =
= = = =

, , , ,
, , ,

On using recursive algorithm (8.3), we get

′ = =
′ = + − ′ = + − =
′ = + − ′ = + −

a a
a a z c a
a a z c a

4 4

3 3 4 4

2 2 3 3

4
3 4 3 4 7
2 4

( ) ( ).
( ) ( 22 7 16

1 4 1 16 49
0

1 1 2 2

0 0 1 1

).
( ) ( ).
( ) (

=
′ = + − ′ = + − =
′ = + − ′ = +

a a z c a
a a z c a 44 0 49 196− =).

It provides the value P4(4) = 196.

8.2.6 Change of Center in Newton Form
Suppose we want to replace the center cn with a new center z in the polynomial

P x a a x c a x c x c a x c x c x cn n( ) ( ) ( )( ) ( )( ) (= + − + − − + ⋅⋅⋅+ − − ⋅⋅⋅ −0 1 1 2 1 2 1 2 nn )  (8.4)

On replacing the old coefficients a a a an0 1 2, , ,...,  of the polynomial by the new coefficients 
′ ′ ′ ′a a a an0 1 2, , ,...,  from the recursive algorithm (8.3), we get the following equivalent Newton 

form.

P x a c z a a c z a x c a c z an( ) ( ) ( ) ( ) ( )= ′ + − ′  + ′ + − ′[ ] − + ′ + − ′0 1 1 1 2 2 1 2 3 33 1 2

1 1 2

  − − +
⋅⋅⋅+ ′ + − ′  − − ⋅⋅⋅−

( )( )
( ) ( )( ) (

x c x c
a c z a x c x cn n n xx c a x c x c x c

P x a a x z

n n n

n

− + ′  − − ⋅⋅⋅ −

= ′ + ′ −

−1 1 2

0 1

) ( )( ) ( )

( ) (
(or)

)) ( )( ) ( )( ) ( )+ ′ − − + ⋅⋅⋅+ ′ − − ⋅⋅⋅ − −a x z x c a x z x c x cn n2 1 1 1  (8.5)

The equivalent form has the centers z c cn, , ...,1 1− , where P z an( ) = ′0. Note that both the 
polynomials (8.4) and (8.5) are equal, but in different forms.
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Change the following polynomial

 P x x x x x x x3 1 2 1 3 1 2 4 1 2 3( ) ( ) ( )( ) ( )( )( )= + − + − − + − − −

into its equivalent power form using the recursive algorithm.

Ans.
In power form, all the centers are zeroes, i.e., c c c z1 2 3 0= = = = . We will change all the 
centers one by one. On using recursive algorithm 8.3 for the polynomial with coefficients 
a a a a0 1 2 31 2 3 4= = = =, , , ; and centers c c c1 2 31 2 3= = =, , , we get

 

′ = =
′ = + − ′ = + − = −
′ = + − ′ = + −

a a
a a z c a
a a z c a

3 3

2 2 3 3

1 1 2 2

4
3 0 3 4 9
2 0

( ) ( )
( ) ( 22 9 20

1 0 1 20 190 0 1 1

)( )
( ) ( )

− =
′ = + − ′ = + − = −a a z c a

Equivalent polynomial (8.5) with centers c c c1 2 30 1 2= = =, ,  is given by

 P x x x x x x x3 19 20 0 9 0 1 4 0 1 2( ) ( ) ( )( ) ( )( )( )= − + − − − − + − − −

Again applying the recursive algorithm to this new polynomial, we get

 

′′= ′ =
′′= ′ + − ′′= − + − = −
′′= ′ + −

a a
a a z c a
a a z c

3 3

2 2 3 3

1 1 2

4
9 0 2 4 17( ) ( )

( ) ′′′= + − − =
′′= ′ + − ′′= + − = −

a
a a z c a

2

0 0 1 1

20 0 1 17 37
1 0 1 20 19

( )( )
( ) ( )

On using these coefficients in polynomial (8.5), we have

 P x x x x x x x3 19 37 0 17 0 0 4 0 0 1( ) ( ) ( )( ) ( )( )( )= − + − − − − + − − −

8.3Example

Ans.
In Example 8.1, we have already computed the coefficients as follows

 ′ = ′ = ′ = ′ = ′ =a a a a a4 3 2 1 04 7 16 49 196, , , ,

On using these values in polynomial (8.5), we have the following equivalent form of the 
given polynomial with new center x = 4.

P x x x x x x x x x x4 196 49 4 16 4 7 4 1 4 4 1( ) ( ) ( )( ) ( )( )( ) ( )( )( )= + − + − + − − + − − (( )x − 2  (8.7)

It is worth mentioning here that the polynomial (8.7) is equal to polynomial (8.6). The 
algorithm (8.3) is very helpful in obtaining the equivalent polynomial forms (8.4) and 
(8.5) with different centers. These equivalent polynomials are otherwise very difficult to 
obtain. Also, the algorithm (8.3) can be implemented on the computer easily.
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Note that the polynomial in Example 8.3 can be expanded directly to get power form. But, 
we cannot multiply characters (x) with the real values (ai’s and ci’s) on the computer to get 
the power form directly. While, the recursive algorithm (8.3) requires arithmetic of real 
numbers (ai’s, ci’s and z) only. So, the algorithm (8.3) is needed to obtain the equivalent 
polynomial forms by using computer.

Next, we will discuss following two lemmas which show that there exists a unique polynomial 
of degree ≤n, which passes through (n + 1) points.

Lemma 8.1

Let P(x) be any polynomial having k distinct zeroes, z z zk1 2, , ..., . Then, for some polynomial, 
R(x), we can write P x x z x z x z R xk( ) ( )( ) ( ) ( )= − − ⋅⋅⋅ −1 2 .

Proof: Let P(x) be a polynomial of degree n. On applying the algorithm (8.1) on the 
polynomial P(x) to introduce the center z, we get

P x a a x z a x z x c a x z x c x cn( ) ( ) ( )( ) ( )( ) (= ′ + ′ − + ′ − − + ⋅⋅⋅+ ′ − − ⋅⋅⋅ −0 1 2 1 1 nn

n nP x P z x z a a x c a x c x c
−

−= + − ′ + ′ − + ⋅⋅⋅+ ′ − ⋅⋅⋅ −
1

1 2 1 1 1

)
( ) ( ) ( ) ( ) ( ) ( ){{ }

⇒ = + −P x P z x z Q x( ) ( ) ( ) ( ) , where Q(x) is a polynomial of degree less than n.

Since z1 is the zero of the polynomial P(x), so P(z1) = 0. The above expression at the point  
z = z1 is as follows

⇒ = −P x x z Q x( ) ( ) ( )1

The z2 is zero of the polynomial P(x) and so that of the polynomial Q(x).

⇒ = −Q x x z Q x( ) ( ) ( )2 1

On continuing in this way, we arrive at following result

P x x z x z x z R xk( ) ( )( ) ( ) ( )= − − ⋅⋅⋅ −1 2 , for some R(x) of the degree ≤ (n-k).

A similar treatment to this polynomial leads us to the polynomial with all new centers as 
zeroes, and the polynomial is as follows

 P x x x x3
2 319 37 21 4( ) = − + − +

Note: One can easily verify that the various polynomials computed in this example are 
equivalent forms with different centers, i.e.,

P x x x x x x x
x

3 1 2 1 3 1 2 4 1 2 3
19 20 0 9

( ) ( ) ( )( ) ( )( )( )
( ) (

= + − + − − + − − −
= − + − − xx x x x x

x x x x
− − + − − −

= − + − − − − + −
0 1 4 0 1 2

19 37 0 17 0 0 4 0
)( ) ( )( )( )

( ) ( )( ) ( ))( )( )x x
x x x

− −
= − + − +

0 1
19 37 21 42 3
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Lemma 8.2

Let P(x) and Q(x) be two polynomials of degree ≤k–1. Let these polynomials match the 
function f(x) at k distinct points, z z zk1 2, , ..., . Then P x Q x( ) ( )= .

Proof: Consider the following polynomial
M x P x Q x( ) ( ) ( )= −

Since P(x) and Q(x) are two polynomials which agree with the function f(x) at k distinct 
points z z zk1 2, , ..., . This implies

P z Q z f zi i i( ) ( ) ( )= =   for i = 1, 2, …, k

Hence M x P x Q x( ) ( ) ( )= −  has k distinct zeroes z z zk1 2, , ..., .

According to Lemma 8.1, we have

M x x z x z x z R xk( ) ( )( ) ( ) ( )= − − ⋅⋅⋅ −1 2  (8.8)

for some polynomial R(x).

Now the polynomials P(x) and Q(x) are of degree ≤k–1, so the degree of the polynomial 
M x P x Q x( ) ( ) ( )= −  must be ≤k–1. But from Eq. (8.8), if R(x) is nonzero, then the degree of 
M(x) is ≥k. Hence, only possibility is R(x) = 0. Then, from Eq. (8.8), we have

M(x) = 0

This result eventually implies that P x Q x( ) ( )= .

Remark: This Lemma has very important consequence in polynomial approximation, 
that there exist a unique polynomial of degree ≤n, which passes through (n + 1) points 
x f x i ni i, ( ) ; , , ...,( ) = 0 1 . This unique polynomial is known as an interpolating polynomial. 

It is worth mentioning here that there are infinitely many polynomials of degree > n, which 
pass through (n + 1) points x f x i ni i, ( ) ; , , ...,( ) = 0 1 .

(Interpolating Polynomial): Let y = f(x) be a real-valued function defined on some interval  
I = [a, b] and x0, x1, ..., xn are (n+1) points in the interval I. Then, interpolating polynomial 
Pn(x) is a polynomial of degree ≤n, which agrees with the function f(x) at these points, i.e.,

 P x f x i nn i i( ) ( ); , , ...,= = 0 1

Definition 8.1

Now, we will discuss Lagrange and Newton divided difference methods to construct 
interpolating polynomial.
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8.3 Lagrange Method

Let y = f(x) be a real-valued function defined on some interval I = [a, b] and x0, x1, ..., xn  
are (n+1) points in the interval I. We have already proved that there exists a unique 
interpolating polynomial of degree ≤n which agrees f(x) at these (n+1) points. We will 
use the following form, also known as the Lagrange form of polynomials, to obtain this 
interpolating polynomial.

P x a l x a l x a l x a l xn i i
i

n

n n( ) ( ) ( ) ( ) ... ( )= = + + +
=
∑

1
0 0 1 1

where l x
x x
x x

x x x x x x x x
i

k

i kk
k i

n
i i( )

( )( ) ( )(
=

−
−

=
− − ⋅⋅⋅ − −

=
≠

− +∏
0

0 1 1 11

0 1 1 1

) ( )
( )( ) ( )( ) ( )

⋅⋅⋅ −
− − ⋅⋅⋅ − − ⋅⋅⋅ −− +

x x
x x x x x x x x x x

n

i i i i i i i n

The expression for polynomial Pn(x) is given by

P x a l x a l x a l x

a
x x x x x x

n n n

n

( ) ( ) ( ) ... ( )
( )( ) ( )

(

= + + +

=
− − ⋅⋅⋅ −

0 0 1 1

0
1 2

xx x x x x x

a
x x x x x x

x x x

n

n

0 1 0 2 0

1
0 2

1 0 1

− − ⋅⋅⋅ −

+
− − ⋅⋅⋅ −
−

)( ) ( )
( )( ) ( )

( )( −− ⋅⋅⋅ −

+
− − ⋅⋅⋅ −
− − ⋅⋅

−

x x x

a
x x x x x x

x x x x

n

n
n

n n

2 1

0 1 1

0 1

) ( )

( )( ) ( )
( )( )



⋅⋅ − −( )x xn n 1

 (8.9)

Since the polynomial Pn(x) is an interpolating polynomial, it must agree f(x) at (n+1) points 
x f x i ni i, ( ) , , , , ,( ) = ⋅⋅⋅0 1 2

P x f x i nn i i( ) ( ), , , , ,= = ⋅⋅⋅0 1 2  (8.10)

The values of coefficients a i ni , , , , ,= ⋅⋅⋅0 1 2  can be computed with the help of Eqs. (8.9) and 
(8.10) as follows

At any point x = xi, Eq. (8.9) implies that

Pn(xi) = ai

So, from Eq. (8.10), we have

ai = f(xi)

On using the values of the constants a i ni , , , , ,= ⋅⋅⋅0 1 2  in Eq. (8.9), the resulting interpolating 
polynomial is given by
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P x f x l x

f x l x f x l x f x l x

n i
i

n

i

n n

( ) ( ) ( )

( ) ( ) ( ) ( ) ... ( ) ( )

=

= + + +
=
∑

0

0 0 1 1

==
− − ⋅⋅⋅ −
− − −

+
−

f x
x x x x x x
x x x x x x

f x
x

n

n

( )
( )( ) ( )
( )( )( )

( )
(

0
1 2

0 1 0 2 0

1

xx x x x x
x x x x x x

f x
x x

n

n

n

0 2

1 0 1 2 1

0

)( ) ( )
( )( ) ( )

...

( )
(

− ⋅⋅⋅ −
− − ⋅⋅⋅ −

+

+
− ))( ) ( )

( )( ) ( )

( )
(

x x x x
x x x x x x

f x
x

n

n n n n

i
i

n

− ⋅⋅⋅ −
− − ⋅⋅⋅ −

=

−

−

=
∑

1 1

0 1 1

0

−−
−=

≠

∏
x

x x
j

i jj
j i

n )
( )0

 (8.11)

Therefore, there exists an interpolating polynomial Pn(x) of degree ≤n which agrees the function 
f(x) at (n+1) points.

From Lemma 8.2, there is at the most one interpolating polynomial Pn(x) of degree ≤n 
which agrees f(x) at (n+1) points.

Hence, we can conclude that there exists a unique polynomial of degree ≤n which interpolates 
f(x) at (n+1) points. (Existence and Uniqueness of Interpolating Polynomial)

We have following data for the population of India from the year 1981 to 2011. Use 
Lagrange interpolation to find the approximate population in 2006.

Year (x) 1981 1991 2001 2011
Population (y) 
(in crores) 68.3329 84.6421 102.8737 121.0193

Ans.
The four data points in the table are as follows

x0 = 1981 x1 = 1991 x2 = 2001 x3 = 2011

f(x0) = 68.3329 f(x1) = 84.6421 f(x2) = 102.8737 f(x3) = 121.0193

8.4Example
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Lagrange interpolating polynomial (8.11) for n = 3, is given by

P x f x
x x x x x x

x x x x x x
f x

x
( ) ( )

( )( )( )
( )( )( )

( )
(

=
− − −
− − −

+
−

0
1 2 3

0 1 0 2 0 3
1

xx x x x x
x x x x x x

f x
x x x x x

0 2 3

1 0 1 2 1 3

2
0 1

)( )( )
( )( )( )

( )
( )( )(

− −
− − −

+
− − − xx

x x x x x x
f x

x x x x x x
x x x

3

2 0 2 1 2 3
3

0 1 2

3 0

)
( )( )( )

( )
( )( )( )

( )(− − −
+

− − −
− 33 1 3 2− −x x x)( )

On computing this polynomial at x = 2006, we have

P( ) ( ) ( )( )( )
(

2006 2006 1991 2006 2001 2006 2011
1981 19

= − − −
−

68.3329
991 1981 2001 1981 2011

2006 1981 2006 2001
)( )( )

( ) ( )( )
− −

+ − −84.6421 (( )
( )( )( )

( ) (

2006 2011
1991 1981 1991 2001 1991 2011
2

−
− − −

+ 102.8737 0006 1981 2006 1991 2006 2011
2001 1981 2001 1991 200

− − −
− −

)( )( )
( )( )( 11 2011
2006 1981 2006 1991 2006 2001
2011

−

+ − − −
−

)

( ) ( )( )( )
(

121.0193
11981 2011 1991 2011 2001)( )( )− −

P( ) ( ) ( ) ( )2006 1
16

5
16

1= 





+ −





+68.3329 84.6421 102.8737 55
16

5
16

2006 112 082775







+ 





=

( )

( ) .

121.0193

P

The approximate population in the year 2006 is 112.082775 crores.

Derive interpolating polynomial for the data points (0, –1), (1, 1), (2, 9), (3, 29), (5, 129) 
using Lagrange interpolation. Use this polynomial to compute the value of the function 
y(4).

Ans.
Interpolating polynomial (8.11) is of degree ≤4 for following five points. 
0 1 1 1 2 9 3 290 0 1 1 2 2 3 3= − =( ) = =( ) = =( ) = =x f x x f x x f x x f x, ( ) , , ( ) , , ( ) , , ( )) , , ( )( ) = =( )5 1294 4x f x 

0 1 1 1 2 9 3 290 0 1 1 2 2 3 3= − =( ) = =( ) = =( ) = =x f x x f x x f x x f x, ( ) , , ( ) , , ( ) , , ( )) , , ( )( ) = =( )5 1294 4x f x and is given by

P x f x
x x x x x x x x

x x x x x x x
( ) ( )

( )( )( )( )
( )( )( )(

=
− − − −

− − −0
1 2 3 4

0 1 0 2 0 3 0 −−
+

− − − −
− − −x

f x
x x x x x x x x

x x x x x x x4
1

0 2 3 4

1 0 1 2 1 3)
( )

( )( )( )( )
( )( )( )( 11 4

2
0 1 3 4

2 0 2 1 2 3

−

+
− − − −

− − −

x

f x
x x x x x x x x

x x x x x x

)

( )
( )( )( )( )

( )( )( )(xx x
f x

x x x x x x x x
x x x x x x2 4

3
0 1 2 4

3 0 3 1 3 2−
+

− − − −
− − −)

( )
( )( )( )( )

( )( )( )(( )

( )
( )( )( )( )

( )( )(

x x

f x
x x x x x x x x

x x x x x x

3 4

4
0 1 2 3

4 0 4 1 4 2

−

+
− − − −

− − − ))( )x x4 3−

8.5Example
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8.4 Newton Divided Difference (NDD) Method

In Section 8.3, we have obtained Lagrange form of the interpolating polynomial. In this 
section, we will obtain another form of interpolating polynomial known as Newton 
divided difference form. We have already proved the importance of Newton form over 
other polynomial forms in Section 8.2. Let us consider the interpolating polynomial in the 
following Newton form with centers x x xn0 1 1, , ..., − .

P x a a x x a x x x x a x x x x x xn n( ) ( ) ( )( ) ( )( ) (= + − + − − + ⋅⋅⋅+ − − ⋅⋅⋅ −0 1 0 2 0 1 0 1 nn−1)  (8.12)

This polynomial is interpolating polynomial, if it passes through the (n+1) points 
x f x x f x x f xn n0 0 1 1, ( ) , , ( ) ,..., , ( )( ) ( ) ( ), i.e.,

P x f x i nn i i( ) ( ); , , ...,= = 0 1

At point x = x0, Eq. (8.12) provides the following result

P x f x an( ) ( )0 0 0= =  (8.13)

Equation (8.12) at point x = x1 is given by

P x f x f x a x x

a
f x f x

x x

n( ) ( ) ( ) ( )
( ) ( )

1 1 0 1 1 0

1
1 0

1 0

= = + −

⇒ =
−
−

 (8.14)

The coefficient a1 depends on the points x0 and x1 only. For this reason, we take f x x0 1,  
notation for this first divided difference. Similarly, we have following formula for other first 
divided differences

P x x x x x x x( ) ( )( )( )( )
( )( )( )( )

( )(= − − − − −
− − − −

+ − −1 1 2 3 5
0 1 0 2 0 3 0 5

1 0 2))( )( )
( )( )( )( )

( )( )( )( )
(

x x

x x x x

− −
− − − −

+ − − − −
−

3 5
1 0 1 2 1 3 1 5

9 0 1 3 5
2 0))( )( )( )

( )( )( )( )
( )( )( )(2 1 2 3 2 5

29 0 1 2 5
3 0 3 1 3 2 3− − −

+ − − − −
− − − −

x x x x
55

129 0 1 2 3
5 0 5 1 5 2 5 3

13

)
( )( )( )( )
( )( )( )( )

( )

+ − − − −
− − − −

= + −

x x x x

P x x x

So, the polynomial P x x x( ) = + −3 1 is the required interpolating polynomial.

We have P(4) = 67.

Note: It is easy to see that this polynomial passes through all these points (0, –1), (1, 1),  
(2, 9), (3, 29), (5, 129) as P(0) = –1, P(1) = 1,….
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f x x
f x f x

x x
f x xi j

i j

i j
j i,

( ) ( )
,  =

−
−

=  

Equation (8.12) at point x = x2 gives the following equation
P x f x a a x x a x x x xn( ) ( ) ( ) ( )( )2 2 0 1 0 2 0 1= = + − + − −

On using results (8.13) and (8.14) in this expression, and making some rearrangements, we 
have

a
f x x f x x

x x2
1 2 0 1

2 0

=
  −  

−
, ,

 (8.15)

Now, a2 depends on the points x0, x1 and x2 only, this motivates the notation for second 
divided difference as f [x0, x1, x2], and so on. In the next section, we will prove that the 
second and higher order divided differences are defined in terms of lower order divided 
differences by the following formulae

f x x x
f x x f x x

x xi i i
i i i i

i i

, ,
, ,

+ +
+ + +

+

  =
  −  

−1 2
1 2 1

2

f x x x x x
f x x x x

i i i i i k
i i i i k, , , , ...,

, , , ...,
+ + + +

+ + + +  =


1 2 3
1 2 3  −  

−
+ + + + −

+

f x x x x x
x x

i i i i i k

i k i

, , , , ...,1 2 3 1  (8.16)

On using Eqs. 8.13–8.16 in Eq. 8.12, the interpolating polynomial is given by the following 
formula

P x f x f x x x x f x x x x x x x
f x

n( ) ( ) [ , ]( ) [ , , ]( )( )
[

= + − + − − + ⋅⋅⋅
+

0 0 1 0 0 1 2 0 1

00 1 0 1 1, , , ]( )( ) ( )x x x x x x x xn n⋅⋅⋅ − − ⋅⋅⋅ − −  (8.17)

This formula is known as Newton divided difference (NDD) formula for interpolating 
polynomial.

Divided Difference Table
x f x

x f x

f x x
f x f x

x x

x f x

( ) [ , ] [ , , ] [ , , , ]

( )

,
( ) ( )

( )

0 0

0 1
1 0

1 0

1 1

  =
−
−

ff x x x
f x x f x x

x x

f x x
f x f x

x

0 1 2
1 2 0 1

2 0

1 2
2 1

, ,
[ , ] [ , ]

,
( ) ( )

  =
−
−

[ ] =
−

22 1
0 1 2 3

1 2 3 0 1 2

3 0

2 2

−
  =

−
−x

f x x x x
f x x x f x x x

x x

x f x f

, , ,
[ , , ] [ , , ]

( ) xx x x
f x x f x x

x x

f x x
f x f x

1 2 3
2 3 1 2

3 1

2 3
3 2

, ,
[ , ] [ , ]

,
( ) ( )

  =
−
−

  =
−

xx x
x f x

3 2

3 3

−






 

( )
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Use Newton divided difference (NDD) formula to derive interpolating polynomial for 
the data points (0, –1), (1, 1), (2, 9), (3, 29), (5, 129), and hence compute the value of the 
point y(4).

Ans.
We have following five points

0 1 1 1 2 9 3 290 0 1 1 2 2 3 3= − =( ) = =( ) = =( ) = =x f x x f x x f x x f x, ( ) , , ( ) , , ( ) , , ( ))

, ( )

( )
= =( )5 1294 4x f x

To compute interpolating polynomial, first we will construct divided difference table for 
these data points as follows

x f x

x f x
f x x

x f x

( ) [ , ] [ , , ] [ , , , ] [ , , , ,]

( )
,

( )

0 1
2

1 1

0 0

0 1

1 1

= − =
=  

= = 33

8 1

2 9 6

0 1 2

1 2 0 1 2 3

2 2

=  
= [ ] =  

= = =

f x x x

f x x f x x x x

x f x f

, ,

, , , ,

( ) xx x x f x x x x x

f x x f x x x
1 2 3 0 1 2 3 4

2 3 1 2 3

0

20 1

, , , , , ,

, , ,

  =  
=   = ,,

( ) , ,
,

x

x f x f x x x
f x x

x f

4

3 3 2 3 4

3 4

4

3 29 10
50

5 129

 
= = =  

=  
= = (( )x4

Newton divided difference formula (8.17) for interpolating polynomial is given by

P x f x f x x x x f x x x x x x x
f x

n ( ) ( ) [ , ]( ) [ , , ]( )( )
[

= + − + − − + ⋅⋅⋅
+

0 0 1 0 0 1 2 0 1

00 1 0 1 1

1 2 0 3 0
, , , ]( )( ) ( )

( ) ( ) ( )(
x x x x x x x x

P x x x
n n⋅⋅⋅ − − ⋅⋅⋅ −

= − + − + −
−

xx x x x x x x x
P x x x

− + − − − + − − − −
= + −

1 1 0 1 2 0 0 1 2 3
13

) ( )( )( ) .( )( )( )( )
( )

Therefore, x3 + x – 1 is the required interpolating polynomial, and P(4) = 67.

Note: The polynomials obtained from Lagrange and Newton divided difference formulas 
are same. In fact, we have already established in Lemma 2, that a unique polynomial 
of degree ≤n exists, which passes through (n + 1) points x f x i ni i, ( ) ; , , ..., .( ) = 0 1  In 
fact, Lagrange and NDD polynomials are different polynomial forms of an identical 
polynomial.

8.6Example
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Following table gives the population data of India from the year 1981 to 2011. Use Newton 
divided difference formula to find the approximate population in 2006.

Table 8.2

Year (x) 1981 1991 2001 2011
Population (y) 
(in crores) 68.3329 84.6421 102.8737 121.0193

Ans.
The data points in the Table 8.2 are as follows

x x x x
f x f x f x

0 1 2 3

0 1 3

=1981 =1991 =2001 =2011
68.3329 84.6421( ) ( ) (= = )) ( )= =102.8737 121.0193f x3

The divided difference table for these data points is given by

Years ( ) Population( ) 

1981 68.3329

1991 8

x y [ , ] [ , , ] [ , , , ]

.1 63092
44.6421 .009612

1.82316
2001 102.8737 0.00043

1.81

0
0 000334733−

−
.

4456
2011 121.0193

Newton divided difference formula (8.17) with n = 3 is of the following form

P x f x f x x x x f x x x x x x x
f x x

( ) ( ) [ , ]( ) [ , , ]( )( )
[ , ,

= + − + − −
+

0 0 1 0 0 1 2 0 1

0 1 xx x x x x x x x
P

2 3 0 1 2

2006 68 3329 1 63092 2006 19
, ]( )( )( )

( ) . ( . )(
− − −

= + − 881 0 009612 2006 1981 2006 1991
0 000334733 2006

) ( . )( )( )
( . )(

+ − −
+ − −11981 2006 1991 2006 2001

2006 112 082775
)( )( )

( ) .
− −

=P

8.7Example

8.4.1 Proof for Higher Order Divided Differences
In many available textbooks on numerical methods, the proofs for general kth order divided 
differences are not available. The kth divided difference is given by following formula

f x x x x x
f x x x x f x x x x

k
k

0 1 2 3
1 2 3 0 1 2 3, , , ,...
, , ,... , , , ,..

  =
  − ..x

x x
k

k

− 
−

1

0

Here, we are providing the proof for general kth order divided differences.
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Proof:
Let us take three polynomials Pk–1(x), Qk–1(x) and Pk(x) of degree ≤k–1, k–1 and k, 
respectively, such that Pk–1(x) interpolates x x xk0 1 1, , ..., − , Qk–1(x) interpolates x x xk1 2, , ..., ,  
and Pk(x) interpolates x x xk0 1, , ..., .

Newton divided difference formulae for these three polynomials are as follows

P x f x f x x x x f x x x x x x x
f

k− = + − + − − + ⋅⋅⋅
+

1 0 0 1 0 0 1 2 0 1( ) ( ) [ , ]( ) [ , , ]( )( )
[[ , , , ]( )( ) ( )

( ) ( ) [
x x x x x x x x x

Q x f x f x
k k

k

0 1 1 0 1 2

1 1 1

⋅⋅⋅ − − ⋅⋅⋅ −
= +

− −

− ,, ]( ) [ , , ]( )( )
[ , , , ](

x x x f x x x x x x x
f x x x xk

2 1 1 2 3 1 2

1 2

− + − − + ⋅⋅⋅
+ ⋅⋅⋅ − xx x x x x

P x f x f x x x x f x x x
k

k

1 2 1

0 0 1 0 0 1 2

)( ) ( )
( ) ( ) [ , ]( ) [ , ,

− ⋅⋅⋅ −
= + − +

−

]]( )( )
[ , , , ]( )( ) ( )

x x x x
f x x x x x x x x xk k

− − + ⋅⋅⋅
+ ⋅⋅⋅ − − ⋅⋅⋅ − −

0 1

0 1 0 1 1

Consider the polynomial Hk(x) of the following form

H x
x x
x x

Q x
x x
x x

P xk
k

k
k

k
k( )

( )
( )

( )
( )
( )

( )=
−
−

+
−
−− −

0

0
1

0
1

It is easy to see that Hk(x) interpolates all the points, x x xk0 1, , ..., . We have used the 
interpolating polynomials Pk–1(x) and Qk–1(x) for this result. Therefore, we have

H x f x i kk i i( ) ( ), , , , ,= = ⋅⋅⋅0 1 2

Note that a unique polynomial of degree ≤k exists such that it agrees with the function f(x) 
at (k+1) points [Refer Lemma 8.2], so H x P xk k( ) ( )= . It implies

P x
x x
x x

Q x
x x
x x

P xk
k

k
k

k
k( )

( )
( )

( )
( )
( )

( )=
−
−

+
−
−− −

0

0
1

0
1

On comparing the coefficients of xk from both sides of the above equation, we get

f x x x x x
f x x x x f x x x x

k
k

0 1 2 3
1 2 3 0 1 2 3, , , , ...
, , , ... , , , , ..

  =
  − ..x

x x
k

k

− 
−

1

0

Hence, proved.

8.4.2 Advantages of NDD Interpolation over Lagrange Interpolation
There are following two major disadvantages of using Lagrange method for interpolation.

1. Lagrange interpolation requires more arithmetic operations than NDD. In 
Lagrange method, more repetitions of calculations occurred as compared to NDD. 
Further, nested Newton form can be used in NDD formula to avoid repetitions of 
computational work.
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348 Numerical Methods

2. If we want to add a new point to the data set, then Lagrange method requires 
starting afresh and repeating all computation. But in NDD, we can simply add a 
new point without repeating all the arithmetic. Let Pn(x) be the NDD interpolating 
polynomial of degree ≤n, for the points x x xn0 1, , ,⋅⋅⋅ , i.e.,

P x f x f x x x x f x x x x x x x
f x

n( ) ( ) [ , ]( ) [ , , ]( )( )
[

= + − + − − + ⋅⋅⋅
+

0 0 1 0 0 1 2 0 1

00 1 0 1 1, , , ]( )( ) ( )x x x x x x x xn n⋅⋅⋅ − − ⋅⋅⋅ − −

Let any point x other than the points, x x xn0 1, , ,⋅⋅⋅ . Let Pn+1(x) be polynomial of 
degree ≤ +( )n 1 , which interpolates the points x x xn0 1, , ,⋅⋅⋅  and x, then we have

P x f x f x x x x f x x x x x x x
f

n+ = + − + − − + ⋅⋅⋅
+

1 0 0 1 0 0 1 2 0 1( ) ( ) [ , ]( ) [ , , ]( )( )
[[ , , , ]( )( ) ( )
[ , , , , ](
x x x x x x x x x

f x x x x
n n

n

0 1 0 1 1

0 1

⋅⋅⋅ − − ⋅⋅⋅ −
+ ⋅⋅⋅

−

 xx x x x x x
P x P x f x x x x x x

n

n n n

− − ⋅⋅⋅ −
= + ⋅⋅⋅ −+

0 1

1 0 1 0

)( ) ( )
( ) ( ) [ , , , , ]( ))( ) ( )x x x xn− ⋅⋅⋅ −1

In another way, if we want to add a data point to existing data, then we have to add 
only a last term to the existing polynomial from the previous data set. It is easy to 
see that, if we want to interpolate only one point x f x0 0, ( )( ), then first term of the 
interpolating polynomial Pn(x) is sufficient. Similarly for two points x f x0 0, ( )( ) and 
x f x1 1, ( )( ), only first two terms of NDD polynomial are required. In general, first 

(k+1) terms are sufficient for (k+1) points, x f x x f x x f xk k0 0 1 1, ( ) , , ( ) ,..., , ( )( ) ( ) ( ); 
as the higher terms are zero on these (k+1) points x x xk0 1, , ..., .

8.4.3 Properties of Divided Differences

i) The Newton divided difference is symmetrical in operation, since

  f x x
f x f x

x x
f x xi i

i i

i i
i i,

( ) ( )
,+

+

+
+  =

−
−

=  1
1

1
1

ii) The kth generalization of Newton divided difference formula is as follows

    f x x x x x
f x x x x f x x x x

k
k

0 1 2 3
1 2 3 0 1 2 3, , , ,...
, , ,... , , , ,..

  =
  − ..x

x x
k

k

− 
−

1

0

iii) Divided differences are independent of the order of data points, i.e., if we 
interchange the position of the points in the divided difference table, then the 
last divided difference remains same. This result can be proved using the fact that 
there exists a unique interpolating polynomial Pn(x) for given (n+1) points. So, 
we get the desired result by equating the coefficients of xn in both the polynomials.

 For example, the coefficient of xn in the NDD interpolating polynomial 
(8.17) is f x x x xn0 1 2, , ,... . Let us interchange the position of x0 and x1, then the 
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coefficient of xn in new interpolating polynomial is f x x x x xn1 0 2 3, , , ,... . Since, 
the polynomial is unique, so we have

  f x x x x x f x x x x xn n0 1 2 3 1 0 2 3, , , ,... , , , ,...  =  
iv) The mth divided difference in compact form is as follows

  f x x x x x
f

mm

m

0 1 2 3, , , ,... ( )
!

  = ξ

for some ξ  in the given interval. The proof of the result is given in following 
theorem.

Theorem 8.1

Let f(x) be a well-defined real-valued function on the interval [a, b] containing (m+1) –
points, x x xm0 1, , ,⋅⋅⋅ . If the function f(x) is m-times differentiable in (a, b), then there exists 
a point, ξ ∈( , )a b , such that

f x x x x x f
mm

m

0 1 2 3, , , , ... ( )
!

  = ξ

Proof: For m = 1, we can prove the result using Lagrange mean value theorem as follows

f x x
f x f x

x x
f0 1

1 0

1 0

,
( ) ( )

( )  =
−
−

= ′ ξ , at some point ξ ∈( , )a b

For m > 1, the interpolating polynomial for points x x xm0 1, , ,⋅⋅⋅  is given by

P x f x f x x x x f x x x x x x x
f x

m( ) ( ) [ , ]( ) [ , , ]( )( )
[

= + − + − − + ⋅⋅⋅
+

0 0 1 0 0 1 2 0 1

00 1 0 1 1, , , ]( )( ) ( )x x x x x x x xn m⋅⋅⋅ − − ⋅⋅⋅ − −

We have

P x f x i mm i i( ) ( ), , , , ,= = ⋅⋅⋅0 1 2

Consider the error function as follows
ε( ) ( ) ( )x f x P xm= −

It has at least (m+1) zeroes, x x xm0 1, , ,⋅⋅⋅ , as ε ε ε( ) ( ) ( )x x xm0 1 0= = ⋅⋅⋅ = = .

According to Rolle theorem, the function ′ε ( )x  has at least m zeroes in the intervals, 
( , ), ( , ), ,( , ) ( , ).x x x x x x a bm m0 1 1 2 1⋅⋅⋅ ∈−

Similarly, the function ′′ε ( )x  has at least m–1 zeroes in the interval (a, b).
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350 Numerical Methods

The function ε m x( ) has at least one zero in the interval (a, b), let that zero be ξ . So, we have

ε ξ
ε ξ ξ ξ

m

m m
m

mf P
( ) .

( ) ( ) ( )
=

⇒ = − =
0

0  (8.18)

On using interpolating polynomial Pm(x), we get

P x f x x x x x mm
m

m( ) , , , ,... !=  0 1 2 3  (8.19)

The last two equations (8.18) and (8.19) provide the desired result

f x x x x x
f

mm

m

0 1 2 3, , , ,... ( )
!

  = ξ

8.5 Error in Interpolating Polynomial

Let Pn(x) be the interpolating polynomial of degree ≤n, for the points x x xn0 1, , ,⋅⋅⋅  in the 
interval (a, b)

P x f x f x x x x f x x x x x x x
f x

n( ) ( ) [ , ]( ) [ , , ]( )( )
[

= + − + − − + ⋅⋅⋅
+

0 0 1 0 0 1 2 0 1

00 1 0 1 1, , , ]( )( ) ( )x x x x x x x xn n⋅⋅⋅ − − ⋅⋅⋅ − −

Hence P x f x i nn i i( ) ( ), , , , ,= = ⋅⋅⋅0 1 2 .

At any point x other than x x xn0 1, , ,⋅⋅⋅ , the error in interpolating polynomial is given by
ε( ) ( ) ( )  x f x P xn= −

Let P xn+1( ) be polynomial of degree ≤ +( )n 1 , which interpolates the points x x xn0 1, , ,⋅⋅⋅  and 
x also. We have

P x f x f x x x x f x x x x x x x
f

n+ = + − + − − + ⋅⋅⋅
+

1 0 0 1 0 0 1 2 0 1( ) ( ) [ , ]( ) [ , , ]( )( )
[[ , , , ]( )( ) ( )
[ , , , , ](
x x x x x x x x x

f x x x x
n n

n

0 1 0 1 1

0 1

⋅⋅⋅ − − ⋅⋅⋅ −
+ ⋅⋅⋅

−

 xx x x x x x
P x P x f x x x x x x

n

n n n

− − ⋅⋅⋅ −
= + ⋅⋅⋅ −+

0 1

1 0 1 0

)( ) ( )
( ) ( ) [ , , , , ]( ))( ) ( )x x x xn− ⋅⋅⋅ −1

The polynomial P xn+1( ) interpolates x, so P x f xn+ =1( ) ( )  . This implies

f x P x P x f x x x x x x x xn n n( ) ( ) ( ) [ , , , , ]( )( ) (     = = + ⋅⋅⋅ − − ⋅⋅⋅+1 0 1 0 1 x xn− )
The error term is given by

εn n nx f x P x f x x x x x x x x x( ) ( ) ( ) [ , , , , ]( )( ) (      = − = ⋅⋅⋅ − − ⋅⋅⋅0 1 0 1 −− xn )  (8.20)

The error is likely to be the next term in the interpolating polynomial.
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From an equally spaced table of the function sin(x) with spacing h = 0.1, we have following 
data set

 
x

x
0 1 0 2 0 3
0 0998334 0 198669 0 295520

. . .
sin . . .

Compute the value of sin(x) at x = 0.123 using Lagrange method. Also, compute the error 
bound.

Ans.
Lagrange interpolation formula (8.11) for 3 data points is as follows

P x f x
x x x x

x x x x
f x

x x x x
x

( ) ( )
( )( )

( )( )
( )

( )( )
(

=
− −
− −

+
− −
−0

1 2

0 1 0 2
1

0 2

1 xx x x
f x

x x x x
x x x x0 1 2

2
0 1

2 0 2 1)( )
( )

( )( )
( )( )−

+
− −
− −

P( . ) ( . ) ( . . )( . . )
( . . )( . .

0 123 0 0998334 0 123 0 2 0 123 0 3
0 1 0 2 0 1 0

= − −
− − 33

0 198669 0 123 0 1 0 123 0 3
0 2 0 1 0 2 0 3

0

)
( . ) ( . . )( . . )

( . . )( . . )

( .

+ − −
− −

+ 2295520 0 123 0 1 0 123 0 2
0 3 0 1 0 3 0 2

0 123 0

) ( . . )( . . )
( . . )( . . )

( . )

− −
− −

=P ..122741

8.8Example

For (n + 2) points x x xn0 1, , ,⋅⋅⋅  and x, the theorem 8.1 implies that

f x x x x
f
nn

n

[ , , , , ] ( )
( )!0 1

1

1
⋅⋅⋅ =

+

+



ξ

On using this expression in Eq. (8.20), we get error term as follows

ε ξ ξ
n

n

n

n

x
f
n

x x x x x x
f
n

( )
( )

( )!
( )( ) ( )

( )
( )!

   =
+

− − ⋅⋅⋅ − =
+

+ +1

0 1

1

1 1
(( )x xi

i

n

−
=

∏
0

 (8.21)

where ξ  is any point in the interval (a, b).

Let f Mn+ ≤1( )ξ  for all ξ ∈( , )a b .

Then, error bound (8.21) for interpolating polynomial is given by

εn i
i

n

x M
n

x x( )
( )!

 ≤
+

−
=

∏1 0
 (8.22)

Note: It is worth emphasizing here that we cannot compute the error bound in interpolation 
for the data points only. For example, we cannot compute an error bound in the examples 
8.6, 8.7, etc. But if we are approximating a sufficiently differentiable function with an 
interpolating polynomial, then the error bound can be computed like in next example.
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Suppose we want to create an equally spaced table with spacing h for the function 

f x x( ) cos( )=  in the interval 0
2

, π





. Compute the total number of entries required in the 

table so that interpolation with a quadratic polynomial will yield minimum accuracy of 
six decimal places.

Ans.
Let the table contain equally spaced points with spacing h, i.e.,

 x ih i Ni = + = ⋅⋅⋅0 1 2, , ,

where N is the number of entries in the table and given by

 N
h h

=
−

=

π
π2

0

2
Let the polynomial approximation be computed at any point x x xi i∈ − +( , )1 1 . Consider P2(x) 
is the quadratic polynomial, which interpolates the function f(x) at points x x xi i i− +1 1, , .  
Then the error bound (8.21) is given by

 f x P x
f

x x x x x x xi i i( ) ( )
( )
!

( )( )( ) ,    − =
′′′

− − − ∈− +2 1 13
ξ

ξfor some ii ix− +( )1 1,

As ξ  is not known to us, we simply compute its upper bound,

 ′′′ ≤ =
≤ ≤

f x
x

( ) max sin( )
/

ξ
π0 2

1

8.9Example

Error term (8.22) for a quadratic interpolation is given by

 ε ξ2
0

2

0 1 0 33
( )

( )!
, max ( )

. .
 x M x x M fi

i x
≤ − = ′′′

= ≤ ≤∏ where  (8.23)

As ξ  is not known to us, we simply compute its upper bound for f x x( ) sin( )= ,

 M f x x
x x

= ′′′ = =
≤ ≤ ≤ ≤

max ( ) max cos( ) .
. . . .0 1 0 3 0 1 0 3

0 9950

The error bound (8.23) is given by

 
ε

ε

2

2

0 995
6

0 123 0 1 0 123 0 2 0 123 0 3

0 000

( ) . ( . . )( . . )( . . )

( ) .





x

x

≤ − − −

≤ 0010517

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:35:07, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.009
https://www.cambridge.org/core


Interpolation 353

Let x x yi− = , then we have

 ( )( )( ) ( ) ( )  x x x x x x y h y y hi i i− − − = − +− +1 1

The maximum of value of the function ( ) ( )y h y y h− +  is at the point y h= ±
3

, and that 

value is 2
3 3

3h . So, the maximum error in interpolating polynomial is given by

 f x P x
f

x x x x x x h h
i i i( ) ( )

( )
!

( )( )( )    − =
′′′

− − − ≤ ≤− +2 1 1

3 3

3
1
6

2
3 3

ξ
99 3

For an accuracy of six decimal places, the error term must be less than .0000005. Therefore, 
we have

 

h

h N

3
7

9 3
5 10

019827 2
0

019827
80

≤ ×

⇒ ≤ ≥
−

≈

−

. ( )
.

or

π

8.6 Discussion

It is worth emphasizing here that the interpolating polynomial is unique. However, we 
use different forms of polynomials depending on their use in different applications (so far 
we examined only Lagrange and Newton forms). The computations in Lagrange method 
are repetitive, so the number of arithmetic operations in Lagrange method is greater than 
the NDD-method. Consequently, the result we obtain from Lagrange method is more 
error-prone to the round-off error than the NDD-method. But, Lagrange method has its 
applications in some theoretical concepts.

Polynomials are the best approximation for the smooth experiments. But sometimes if 
the data size is large, then it is very difficult to obtain a polynomial of very high degree. For 
examples, if we have a set of 50 data points, then the interpolating polynomial is of degree 
49. Also, it is very difficult to handle the round-off error during the calculations of values at 
any intermediate points. Let there be an intermediate value up to 6-significant digits, then, 
to compute 49th power of this value without round-off requires 6(249) significant digits, i.e., 
something unrealistic to compute with normal computers so we have to switch over to 
some other methodology.

Also, the global nature of the interpolating polynomial is a major concern because if we 
change the position of one point then the whole polynomial gets changed. So, we cannot 
use the interpolation for designing/graphics purpose.
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354 Numerical Methods

The Lagrange and NDD interpolation methods are applicable for equally as 
well as unequally spaced data sets. But if our input variable (x) is equally spaced 
x x ih i ni = + = ⋅⋅⋅( )0 1 2 3, , , , , , then our interpolation can be simpler. In Chapter 10, we 

will obtain certain simplified interpolation formulas, which are applicable only for equally 
spaced data sets.

8.7 Hermite Interpolation

We have discussed the interpolating polynomial of degree ≤n; which passes through 
(n+1) points x f x i ni i, ( ) ; , , ,... , .( ) = 0 1 2  Now, let us derive interpolating polynomial for a 
function f(x) such that the values of the function f(x) and its derivative f '(x) match with this 
polynomial at (n + 1) points x i ni ; , , ,..., .= 0 1 2  The polynomial of degree ≤2n+1 is required 
to satisfies 2n+2 conditions. Let us consider an interpolating polynomial of degree ≤2n+1 
which satisfies the following 2(n+1) restrictions at (n+1) points x i ni ; , , ,..., .= 0 1 2

P x f x
P x f x

i nn i i

n i i

2 1

2 1

0 1 2+

+

=
′ = ′






= ⋅⋅⋅

( ) ( )
( ) ( )

, , , , ,  (8.24)

We have to express the polynomial P xn2 1+ ( ) in terms of (n+1) points, x i ni ; , , ,..., .= 0 1 2  
Therefore, let the polynomial P xn2 1+ ( ) be of the following form

P x u x P x v x P x

u x f x

n i n i
i

n

i n i
i

n

i

2 1 2 1
0

2 1
0

+ +
=

+
=

= + ′

=

∑ ∑( ) ( ) ( ) ( ) ( )

( ) ( ii
i

n

i i
i

n

v x f x) ( ) ( )+ ′
= =
∑ ∑

0 0

 (8.25)

where ui(x) and vi(x) are polynomials of degree ≤2n+1. Let us rewrite these polynomials in 
terms of Lagrange polynomial coefficients li(x) as follows

u x a x b l x
v x c x d l x

i ni i i i

i i i i

( ) ( ) ( )
( ) ( ) ( )

, , , , ,
= +
= +

= ⋅⋅⋅
2

2 0 1 2  (8.26)

where ai, bi, ci, di are constants to be determined. The coefficients li(x) are given by

l x
x x
x x

x x x x x x x x
i

k

i kk
k i

n
i i( )

( )( ) ( )( )
=

−
−

=
− − ⋅⋅⋅ − − ⋅⋅⋅

=
≠

− +∏
0

0 1 1 1 (( )
( )( ) ( )( ) ( )

x x
x x x x x x x x x x

n

i i i i i i i n

−
− − ⋅⋅⋅ − − ⋅⋅⋅ −− +0 1 1 1

with property l x
i j
i ji j( ) =

=
≠







1
0

 (8.27)

The polynomial (8.25) is interpolating polynomial if it satisfies the conditions (8.24). For 
this, we have
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u x
i j
i j

v x j n

i j

i j

( )

( ) , , ,
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1
0

0 0 1
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′ =
=
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′ = ∀ = ⋅⋅⋅

v x
i j
i j

u x j n

i j

i j

( )

( ) , , ,

1
0

0 0 1
 (8.28)

On using Eqs. (8.26–8.28), we have

u x
i j
i j

a x b l x
i j
i j

a x b

i j i j i i j

i i i

( ) ( ) ( )=
=
≠
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=
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1
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1
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=
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=
≠

1
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1
0
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+ ′ + =

′ = ∀ = ⋅⋅⋅ ⇒ +
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c x d l x c
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i i i i i i

i j i j i

2 1
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( ) ( )
2 0
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2l x l x a l x
a x b l x a

i j i j i i j

i i i i i i

′ + =
+ ′ + =

Therefore, we have following four sets of equations in the variables, a b c d i ni i i i, , , ; , , , .= ⋅⋅⋅0 1

a x b
c x d
c x d l x c
a x b l x

i i i

i i i

i i i i i i

i i i i i

+ =
+ =
+ ′ + =
+ ′ +

1
0

2 1
2
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=
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0

2
1 2
1
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( )

On using these values of constants, a b c d i ni i i i, , , ; , , ,= ⋅⋅⋅0 1  in Eqs. (8.26), we get

u x a x b l x l x x x l x l x
v x

i i i i i i i i i i

i

( ) ( ) ( ) ( ) ( ) ( )
( )

= + = − ′ + + ′( )
=

2 22 1 2
(( ) ( ) ( ) ( )c x d l x x x l xi i i i i+ = −2 2

Use these values in Eq. (8.25) to get the following Hermite interpolating polynomial

P x u x f x v x f x

l x x x

n i i
i

n

i i
i

n

i i i

2 1
0 0

2 1 2

+
= =

= + ′
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i

n
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i

n
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 (8.29)
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Compute the Hermite interpolating polynomial and then the value of the function f(0.5) 
from the following data set.

 
x
f x
f x

−

′

1 0 1 2
2 2 2 26
2 0 2 68

( )
( )

Ans: We have 4 1( )= +n  points, x x x x0 1 2 31 0 1 2= − = = =, , , ; therefore, the Hermite 
polynomial (8.29) is of degree ≤ = +7 2 1( )n . It is given by

 P x l x x x l x l x f x x x l xi i i i i i i
i

i i( ) ( ) ( ) ( ) ( ) ( ) (= − ′ + + ′( ) + −
=
∑ 2 1 2 2

0

3
2 )) ( )′

=
∑ f xi
i 0

3

We have to calculate Lagrange coefficients polynomials li(x) and their derivatives l'i(xi) to 
compute the interpolating polynomial. On using n = 3 in the following formula, we have

 l x
x x
x x

x x x x x x x x
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For i = 0, 1, 2, 3, we have
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8.10Example
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The interpolating polynomial is given by

P x l x x x l x l x f x x x l xi i i i i i i
i
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Note: We can easily verify that the polynomial satisfies all the conditions

 

x
P x x x

P x x x

−
= − +

′ = −

1 0 1 2
2 2 2 2 26

5 3 2 0 2 68

5 3

4 2

( )
( )

The polynomial x x5 3 2− +  is a unique polynomial of degree ≤ = +7 2 1( )n , and it satisfies 
the conditions above. Again, it is worth to mentioning here that there are an infinite 
number of polynomials of degree >7 which satisfying above conditions.

8.8 Piecewise Interpolation

If the data points are large in number, then interpolating polynomial is of very high degree 
which is difficult to handle. Oscillations may occur for a polynomial of large degree, and also 
the global nature of interpolating polynomial is a major issue. To overcome these problems, 
we can divide the large set of data points into small sets. For example, consider data points, 
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358 Numerical Methods

( , ), , , ...,x y ii i = 0 1 10, then instead of fitting a single polynomial of degree 10, we can fit lower 
degree polynomials by subdividing the interval. For example, quadratic polynomials can be 
used for following five different sets of points.

( , ), ( , ), ( , ) , ( , ), ( , ), ( , ) , ... (x y x y x y x y x y x y x0 0 1 1 2 2 2 2 3 3 4 4 8{ } { } ,, ), ( , ), ( , )y x y x y8 9 9 10 10{ }
We can fit five different quadratic polynomials to these five sets.

f(x)

f(x)

x

Fig. 8.2 Linear piecewise interpolation

In piecewise interpolation, we have different polynomials in subintervals. So, smoothness is a 
major issue at nodal points which is also visible from the above figure.

Fit piecewise quadratic polynomials in the following data set

x
y

:
:

− −2 1 0 1 3 4 5
10 5 2 5 23 43 69

Hence, compute y(–0.5), y(2) and y(4.2).

Ans.
To fit quadratic polynomial, divide the interval (–2, 5) into following subintervals and 
compute the interpolating polynomials for each subinterval

 x
y

:
:

− −2 1 0
10 5 2

 The interpolating polynomial is x x2 2 2− +

8.11Example
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8.9 Weierstrass Approximation Theorem

In interpolation, we use polynomials as approximating functions. Polynomials are most 
widely used approximations from theoretical as well as applications point of view. Other 
commonly used approximating functions are trigonometric functions, exponential/
hyperbolic functions and rational functions. Any continuous function on a finite interval is 
well approximated by a polynomial function within error limit, and the existence of such a 
polynomial is given by Weierstrass approximation theorem, which states.

Weierstrass Approximation Theorem: Consider a continuous real-valued function defined 
on a real finite interval [a, b], then for every ε>0, there exists a polynomial P(x), such that

f x P x x a b( )− ( ) < ∈[ ]ε for all ,

In fact, Weierstrass approximation theorem has far reaching consequences as it implies 
that we can approximate any continuous function with a polynomial function as close 
as required. The polynomials have simple structures and can easily be computed with a 
computer. Further, polynomials are convenient for analysis like differentiation, integration, 
etc. Therefore, polynomial approximations are most commonly and widely used structures.

Exercise 8

1. Prove that there exists at most one polynomial of degree less than equal to k which takes on 
specified values at (k+1) distinct points.

2. Use nested multiplication algorithm to convert the polynomial 1 2 3 2+ +x x  into its equivalent 
Newton form whose centers are 1 and 2, respectively.

Ans. 6 11 1 3 1 2+ − + − −( ) ( )( )x x x

 x
y

:
:

0 1 3
2 5 23

 The interpolating polynomial is 2 22x x+ +

 x
y

:
:

3 4 5
23 43 69

 The interpolating polynomial is 3 12x x− −

Hence, piecewise quadratic polynomial is given by

 P x
x x x

x x x
x x x

2

2

2

2

2 2 2 0
2 2 0 3
3 1 3 5

( ) =
− + − ≤ ≤
+ + ≤ ≤
− − ≤ ≤









One can easily compute the desired values from this piecewise polynomial as follows

 y P y P y P( . ) ( . ) . , ( ) ( ) ( . ) ( . ) .− = − = = = = =0 5 0 5 3 25 2 2 12 4 2 4 2 47 722 2 2and
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3. Derive nested multiplication algorithm for converting a Newton form into another Newton 
form with different centers. Obtain the first derivative at x = 1 by converting the polynomial 
P x x x x x x x( ) ( ) ( )( ) ( )( )( )= + − + − − + − − −1 2 1 3 1 2 4 1 2 3  to shifted power form with center 1.

Ans. 1 7 1 9 1 4 1 1 72 3+ − − − + − =( ) ( ) ( ) , ’( )x x x P

4. Use Lagrange interpolating polynomial to compute the value of f(1.3) for data points (0, –1), (1, 1),  
(2, 9), (3, 29).

Ans. 2.497

5. Obtain interpolating polynomial for the following table, and hence compute the value of f(2.5) 
with the help of Lagrange formula.

 
x
f x

1 2 3 4
1 8 27 64( )

 Ans. x3, 15.625

6. Using Lagrange interpolation formula, find the value of sin
π
6







 from the following set of data 
points

 x
x

: / /
sin : . .

0 4 2
0 0 707107 1 0

π π

Also, estimate the error limit in the solution.

Ans. sin
π
6







 = 0.517428,  Error ≤ π 3

1296

7. In an experiment, the current (I) in a wire for various imposed voltages (V) is as follows

 
V
I

(
( . . . .

Volts):
Amperes):

5 10 20 40
7 4 12 9 21 7 45 8

Use Lagrange interpolation to compute the approximate current in wire for a voltage of 15 V.

Ans. 17.4845 Ampere

8. Find a polynomial of degree 3 or less, such that it interpolates the data set (0,1), (1,3), (2,13) and 
(4,81) by using Newton divided difference interpolation technique.

Ans. x x3 2 1+ +

9. Construct the Lagrange interpolating polynomial for the following data set

 x
f x

0 0 1 0 2 0 4
0 74 1 2 1 87 5 15

. . .
( ) . . . .

Ans. 54 583 5 875 4 642 0 743 2. . . .x x x− + +

10. The tensile strengths of stainless steel cables of different diameters are investigated to give 
following results.

 
Cable diameter ( ): 1.2 1.6 2.4 .6
Tensile Strength( ): 1.32 2.5

x
y

3
33 5.28 8 34.

Use Lagrange’s interpolation to compute the tensile strength of a cable of diameter 2.

Ans. 3.892
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11. Given
x
f x

1 0 2 5 3 0
0 34 0 42 0 53

. . .
( ) . . .

  Ans. 2.7255

Find the value of x for f(x) = 0.44 by using inverse Lagrange method.

12. In an experimental setup, we have following input and output values. Compute the 
approximation for the output value if the input value is 1.35. Find the input value for maximum 
output. Also find that maximum output value. Use Newton divided difference method for the 
calculations.

Input 0.5 1.0 1.5 2.0

Output 2.4 5.7 12.8 6.3

Ans. 11.3063, Maximum output is 13.1453 at the input 1.604

13. The following data reveals the tensile strength of a given plastic, and the time it is heat treated. 
Use Lagrange interpolation to determine the tensile strength at a time of 40 min. and 65 min.

 
Time (In Min.)
Tensile Strength:

: 15 30 45 60 70
18 28 26 37 48

Ans. 25.734, 42.817

14. The growth of cell culture (optical density) at various pH levels are tabulated in the following 
table.

 
pH: 4 4.5 5 5.5 6
Optical density: .28 .35 .41 .46 0.520 0 0 0

Compute the optical density at pH level 5.8.

Ans. 0.492688

15. The following data set represents the resistivity of a given metal with temperature. Predict the 
resistivity at 350 K temperature
 Temperature (K): 100 200 300 400  500
 Resistivity (Ω-cm, × 106): 4.2  8.1  12.8 16.6 20.0

Ans. 14.8328 × 106 Ω-cm

16. The population of a certain town (as obtained from census data) is shown in the following table

 Year 1981 1991 2001 2011
 Population 12.92 16.46 21.14 25.35 (in millions)

Find the estimate for the population in the year 2008 using the Lagrange method.

Ans. 24.232145 millions

17. The tensile strengths of stainless steel cables of different diameters are investigated to give 
following results.

Cable diameter ( ): 1.2 1.6 2.4 .6
Tensile Strength( ): 1.32

x
y

3 5 0.
22.53 5.28 8 34 12 83. .

Use Newton divided difference formula to compute the tensile strength of a cable of diameter 2.

Ans. 3.920725
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18. The function values f (x) for given values of x are as follows

 f (0) = 0, f (1) = – 1, f (2) = 0, f (4) = 32

Use Lagrange formula to compute the value of x for which f(x) is minimum.

Ans. The interpolating polynomial is x x3 22− , and point of minima is x = 1.333

19. By the mean of Newton divided difference formula, find the value of f(5) from the following 
table

 
x
f x

2 3 4 6 7
25 80 189 641 1020( )

Ans. f(5) = 370

20. Derive interpolating polynomial for log10 1 0= , log .10 2 0 3010= , log .10 3 0 4771= , and hence 
calculate log ( )10 15  using Newton divided difference formula.

Ans. − + −0 06245 0 48835 0 425902. . .x x ;   log ( . )10 1 5  = 0.16611250

log ( ) log ( . ) log ( ) log ( . ) .10 10 10 1015 10 1 5 10 1 5 1 0 16611250= × = × = + =11 16611250.  

21. Approximate the exponential value e1.3 by Newton divided difference polynomial from the data 
set e e e0 1 21 2 7183 7 3891= = =, . , . . What is the estimate for the error bound?

Ans. e1.3 = 3.8095, Error bound = 0.3362

22. The following values are obtained from the function f(x) = 2x

 
x
f x

:
( ) :

1 2 3 5 7
2 4 8 32 128

   Ans. 15.65

Use NDD formula to obtain f(4), and explain why it differs from the function 24.

23. Let f(x) be a real-valued function defined on the interval [a, b] and n times differentiable in the 
interval (a, b). If x x xn0 1, , . . . ,  are (n+1) distinct points in interval [a, b], then show that there exists 

a point c ∈[ , ]a b , such that f x x x
f c

nn

n

[ , . . . , ]
( )
!

( )

0 1, = .

24. Derive an error bound in the linear approximation of a function f(x).

25. Determine the spacing h in a table of equally spaced values of the function f x x( ) sin( )=  in the 

interval, 0
2

,
π





, so that the interpolation with a second degree polynomial in the table will yield 

the desired accuracy of six decimal points.

Ans. h ≤ .019827 or N ≥
−

≈

π
2

0

019827
80

.

26. From the following table, find f (0.5), f ’(1.5) using Hermite interpolation
 x 0 2 3
 f (x) 2 16 80
 f ’ (x) –1 31 107

Ans. f (0.5) = 1.5625, f ’(1.5) = 12.5 x x4 2− +( )is the Hermite polynomial
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27. Apply Hermite interpolation formula to obtain a cubic polynomial which satisfies the following 
specifications

 

x
f x
f x

:
( ) :
( ) :

0.1 0.2
0.201 0.408
2.03 .12′ 2

Ans. x3 + 2x

28. Calculate f (1.2) by approximating the following values with cubic polynomial

f f f f( ) , ( ) , ( ) . , ( ) .1 0 1 1 2 0 693147 2 0 5= ′ = = ′ =

Ans. 0.0792
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9.1 Introduction

The finite difference operators play a central role in obtaining the interpolating polynomials 
for equally spaced points. Difference equations are also solved using finite differences. Most 
importantly, the finite difference methods for the numerical solutions of ordinary and 
partial differential equations with boundary conditions are based on the finite difference 
approximations of derivatives. This chapter presents various finite difference operators and 
their properties.

Emptiness is everywhere, and it can be calculated, which gives us a great opportunity.  
I know how to control the universe. So, tell me, why should I run for a million.

Grigori Yakovlevich Perelman
(Born: June 13, 1966)

A mathematician who declined the field medal; he has made great contributions to 
Riemannian geometry and geometric topology.

Consider a function y = f(x) defined on an interval containing points x + a and x + b. The 
finite difference is a mathematical expression of the form f x b f x a( ) ( )+ − + .

Definition 9.1

The most commonly used finite differences are forward difference (Δ), backward difference 
∇( ), and central difference δ( ). We will discuss these finite differences along with average µ( ),  

shift (E), and differential (D) operators.

Let x x x xn0 1 2, , ,...,  be (n + 1) equidistant points in the given interval. The spacing of these 
points is equal and let it be given by

Finite OperatorsChapter
9
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h x x
x x ih i n

i i

i

= −
⇒ = + = ⋅⋅⋅

+1

0 1 2; , , ,

Let y f x y f x y f x y f xn n0 0 1 1 2 2= = = =( ), ( ), ( ),..., ( ) be corresponding values for the 
function, y f x= ( ). The differences y y y y y yn n1 0 2 1 1− − − −, ,...,  are called finite differences.

9.2 Finite Difference Operators

In this section, we will discuss finite difference operators. Let us consider a function  
y = f(x) defined on the interval [a, b]. Let x x x xn0 1 2, , ,...,  be a set of (n + 1) equidistant points 
with spacing h in the given interval, and let y f x y f x0 0 1 1= =( ), ( ), y f x y f xn n2 2= =( ),..., ( )
be corresponding values for the curve y = f(x). Then, the finite difference operators, viz. 
forward difference ∆( ), backward difference ∇( ), and central difference δ( ), are defined as 
follows.

9.2.1 Forward Difference Operator (Δ)
The first forward difference operator is denoted by Δ, and defined as follows

∆ = − = −
∆ = − ∆ = − ∆ =

+

−

y y y i n
y y y y y y y

i i i

n

1

0 1 0 1 2 1 1

0 1 1; , ,...,
( ) , , ...or yy yn n− −1

The forward differences ∆ ∆ ∆ −y y yn0 1 1, ,...,  are first forward differences of y.

Further, the forward differences of first forward differences are called second forward 
differences and are denoted by Δ2. The second forward differences are defined as follows

∆ = ∆ ∆( ) = ∆ − ∆
= −( )− −( )
= − +

+

+ + +

+ +

2
1

2 1 1

2 12

y y y y
y y y y

y y y i

i i i i

i i i i

i i i == −0 1 2, , ...,n

For example, let i = 0, then

 
∆ = ∆ ∆( ) = ∆ − ∆

= −( )− −( )
= − +

2
0 0 1 0

2 1 1 0

2 1 02

y y y y
y y y y

y y y

Similarly, the forward differences of second forward differences are third forward differences 
Δ3 and so on, in general

∆ = ∆ − ∆ = −−
+

−m
i

m
i

m
iy y y i n m1

1
1 0 1; , ,...,
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366 Numerical Methods

9.2.2 Backward Difference Operator ∇( )
The first backward difference operator ∇( ) is defined as follows

∇ = − =
∇ = − ∇ = − ∇ = −

−y y y i n
y y y y y y y y

i i i

n n

1

1 1 0 2 2 1

1 2; , ,...,
( ) , , ...,or yyn−1

The backward differences ∇ ∇ ∇y y yn1 2, ,...,  are first backward differences of y.

The second backward differences (∇2) are defined as follows

∇ = ∇ ∇( ) = ∇ − ∇
= −( )− −( )
= − +

−

− − −

− −

2
1

1 1 2

1 22

y y y y
y y y y

y y y i

i i i i

i i i i

i i i == 2 3, ,...,n

For example

∇ = ∇ ∇( ) = ∇ − ∇
= −( )− −( )
= − +

2
2 2 2 1

2 1 1 0

2 1 02

y y y y
y y y y

y y y

In general, we have mth backward differences as follows

∇ = ∇ − ∇ = +− −
−

m
i

m
i

m
iy y y i m m n1 1

1 1; , ,...,

9.2.3 Central Difference Operator δ( )
The first central differences (δ) are defined as follows

δ
δ δ
y y y i n

y y y y y y
i i i+ += − = −

= − = −
1 2 1

1 2 1 0 3 2 2 1

0 1 1/

/ /

; , ,...,
( ) , , .or ..., /δ y y yn n n− −= −1 2 1

Similarly, the second central differences (δ2) are defined in terms of first central differences, 
and given by

δ δ δ δ
δ δ

2
1 2 1 2

1 2 1 2

1

y y y y
y y

y y y

i i i i

i i

i i i

= ( ) = −( )
= −
= −( )− −

+ −

+ −

+

/ /

/ /

yy
y y y i n

i

i i i

−

+ −

( )
= − + = −

1

1 12 1 2 1; , ,...,

For example

δ δ δ δ
δ δ

2
1 1 3 2 1 2

3 2 1 2

2 1 1 0

2 2

y y y y
y y

y y y y
y y

= ( ) = −( )
= −
= −( )− −( )
= −

/ /

/ /

11 0+ y
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The higher order central differences are as follows

δ δ δm
i

m
i

m
iy y y−

− −
−= −1 2

1 1
1/ ;   if m is odd

δ δ δm
i

m
i

m
iy y y= −−

+
−

−
1

1 2
1

1 2/ / ;   if m is even 

Remark: For a given function, y = f(x), the first differences are given by

∆f x f x h f x
f x f x f x h
f x f x h f x h

( ) ( ) ( )
( ) ( ) ( )
( ) ( / ) ( / )

= + −
∇ = − −

= + − −δ 2 2

Higher order differences are as follows

∆ ∆ ∆m m m

m m m

m

f x f x h f x
f x f x f x h

f x

( ) ( ) ( )
( ) ( ) ( )

( )

= + −
∇ = ∇ − ∇ −

− −

− −

1 1

1 1

δ == + − −− −δ δm mf x h f x h1 12 2( / ) ( / )

9.3 Average, Shift and Differential Operators

In this section, we will discuss average (μ), shift (E) and differential (D) operators. These 
operators are not finite difference operators, but these are useful for many applications in 
science and engineering.

9.3.1 Mean or Average Operator (μ )
The average operator is denoted by μ, and is given by

µ y y yi i i= +( )+ −
1
2 1 2 1 2/ /

If h is the spacing in the two consecutive values of equidistant points, x x x xn0 1 2, , ,..., , then 
for a given function y = f(x), the average operator is as follows

µ f x f x h f x h( ) ( / ) ( / )= + + −( )1
2

2 2

9.3.2 Shift Operator (E )
The shift operator is denoted by E and is defined as follows

Ey yi i= +1

If h is the spacing in the two consecutive values of equidistant points, x x x xn0 1 2, , ,..., , then 
for a given function y = f(x), the shift operator is as follows

Ef x f x h( ) ( )= +
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Similarly, second order shift operator is defined as follows

E f x E Ef x E f x h f x h2 2( ) ( ) ( ) ( )= ( ) = +( ) = +

In general, the shift operator is given by

E f x E Ef x f x mh
E y y

m m

m
i i m

( ) ( ) ( )
( ) ( )

= ( ) = +
=

−

+

1

or

Similarly, we can define inverse shift operator as follows

E y yi i
−

−=1
1

For a given function y = f(x), the inverse shift operator is as follows

E f x f x h− = −1 ( ) ( )

In general, we have

E f x f x mh E y ym m
i i m

− −
−= − =( ) ( ) ( ) ( )or

9.3.3 Differential Operator (D)
The differential operator is denoted by D, and defined as follows

Df x d
dx

f x f x

D f x d
dx

f x f x

( ) ( ) ( )

( ) ( ) ( )

= = ′

= = ′′2
2 etc

The differential is not a finite operator, but we can relate it with the finite operator through 
Taylor series; we will discuss it later in this chapter.

Table 9.1 Finite Differences and Other Operators

Forward Difference Operator (Δ)
∆f x f x h f x( ) ( ) ( )= + −

∆
∆

∆

f x f x h f x

f x f x f x

y y y

i i i

i i i

i i i

( ) ( ) ( )

( ) ( ) ( )

= + −
= −
= −

+

+

1

1

Backward Difference Operator (∇)
∇ = − −f x f x f x h( ) ( ) ( )

∇ = − −
∇ = −

∇ = −
−

−

f x f x f x h

f x f x f x

y y y

i i i

i i i

i i i

( ) ( ) ( )

( ) ( ) ( )1

1

Central Difference Operator (δ )
δ f x f x h f x h( ) ( / ) ( / )= + − −2 2

δ
δ

δ

f x f x h f x h

f x f x f x

y y

i i i

i i i

i i

( ) ( / ) ( / )

( ) ( ) ( )/ /

= + − −
= −
=

+ −

2 2

1 2 1 2

++ −−1 2 1 2/ /yi
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Mean or Average Operator (μ)

µ f x f x h f x h( ) ( / ) ( / )= + + −[ ]1
2

2 2
µ

µ

f x f x h f x h

f x f x f x

i i i

i i i

( ) ( / ) ( / )

( ) ( ) (/ /

= + + −[ ]

= + + −

1
2

2 2

1
2 1 2 1 2 

= +( )+ −µ y y yi i i

1
2 1 2 1 2/ /

Shift Operator (E)
Ef x f x h( ) ( )= +

Ef x f x h

Ef x f x

Ey y

i i

i i

i i

( ) ( )

( ) ( )

= +
=
=

+

+

1

1

Differential Operator (D)

Df x
d

dx
f x( ) ( )=

Df x
d

dx
f x( ) ( )=

It is worth mentioning here that these are only first order differences, higher order differences are 
further obtained on a similar pattern. Like second order forward difference is ∆ ∆ ∆2

1y y yi i i= −+  
and so on.

It is worth mentioning here that only three major differences are used to derive the 
interpolating polynomials, these are forward difference (Δ), backward difference (∇) and 
central difference (δ). Hence, we will primarily concentrate here on these three operators 
(Δ, ∇ and δ). Other operators (shift, average, and differential) are not the finite differences, 
but these operators are used for various other applications.

9.4 Properties and Interrelations of Finite Operators

This section contains the linearity and commutative properties satisfied by various operators. 
Also, we will tabulate the relations among the operators and some identities.

9.4.1 Linearity and Commutative Properties
The operators defined in this chapter, (viz. forward difference (Δ), backward difference ∇( ),  
central difference (δ), average (μ), shift (E) and differential (D) operators) satisfy the 
linearity and commutative properties.

Let us assume that a a an1 2, ,...,  are constants; L L L Ln, , ,...,1 2  are operators; 
f x f x f x f xn( ), ( ), ( ),..., ( )1 2  are given functions, then following axioms hold

i) Linearity:

L a f x a f x a f x a L f x a L f xn n1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ( )+ + ⋅⋅⋅+  = [ ]+ [ ]+ ⋅⋅⋅++  
+ + ⋅⋅⋅+( ) = [ ]+

a L f x
a L a L a L f x a L f x a L f x

n n

n n

( )
( ) ( ) ( )1 1 2 2 1 1 2 2 [[ ]+ ⋅⋅⋅+ [ ]a L f xn n ( )
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ii) Commutative:
L L f x L L f x

L L f x L L f x
1 2 2 1

1 2 2 1

( ) ( )

( ) ( )

=

+[ ] = + 
iii) Exponentiation:

L L f x L f x L L f xm n m n n m( ) ( ) ( )= =+

9.4.2 Interrelations of Finite Operators
This subsection is mainly concerned with the interrelations of various finite operators 
discussed in this chapter.

Prove the following relations

i) E ≡ + ∆1 , ii)  ∇ ≡ − −1 1E , iii) ∆ ≡ ∇ ≡ ∇ ≡E E Eδ
1
2 ,

iv) ∆∇ ≡ ∇∆ ≡ δ 2 , v)  1 1 1+ ∆( ) − ∇( ) ≡ , vi) ∆ ≡ ∇ − ∇( )−1 1 ,

vii) 1 1 1+ ∆( ) ≡ −( )∇−E , viii) δ ≡ −
−

E E
1
2

1
2 ,  ix) µ ≡ +







−1
2

1
2

1
2E E

x) µ δ2 21 1
4

≡ + ,  xi) µδ ≡ ∆ + ∇
2

 xii) E ehD≡ , 

xiii) µ ≡ 





cosh hD
2

, xiv) δ ≡ 





2
2

sinh hD , xv) µδ ≡ ( )sinh hD

xvi) ∆ = ∇3
2

3
5y y .

Ans.

i) 1
1

+ ∆( ) = + ∆ = + + −( ) = + =
⇒ = + ∆

f x f x f x f x f x h f x f x h Ef x
E

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ii)  L.H.S

R.H.S

= ∇ = − −

= −( ) = − =− −

f x f x f x h

E f x f x E f x f x

( ) ( ) ( )

( ) ( ) ( ) ( )1 1 1 −− −

⇒ ∇ ≡ − −

f x h

E

( )

1 1

iii) ∆ = + −
∇( ) = − −( ) = + −

∇

f x f x h f x
E f x E f x f x h f x h f x

Ef x

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( )(( ) = ∇ +( ) = + −







= +( ) = +

f x h f x h f x

E f x f x h f x h

( ) ( ) ( )

( ) ( / ) ( )δ δ
1
2 2 −−

⇒ ∆ ≡ ∇ ≡ ∇ ≡

f x

E E E

( )

δ
1
2

9.1Example
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Finite Operators 371∆ = + −
∇( ) = − −( ) = + −

∇

f x f x h f x
E f x E f x f x h f x h f x

Ef x

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( )(( ) = ∇ +( ) = + −







= +( ) = +

f x h f x h f x

E f x f x h f x h

( ) ( ) ( )

( ) ( / ) ( )δ δ
1
2 2 −−

⇒ ∆ ≡ ∇ ≡ ∇ ≡

f x

E E E

( )

δ
1
2

iv)  ∆ ∇( ) = ∆ − −( ) = ∆ − ∆ − = + − + −
∇

f x f x f x h f x f x h f x h f x f x h( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
∆∆( ) = ∇ + −( ) = ∇ + − ∇ = + − + −f x f x h f x f x h f x f x h f x f x h( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

δδ δ δ δ δ δ2 2 2 2f x f x f x h f x h f x h f x h( ) ( ) ( / ) ( / ) ( / ) (( ) = ( ) = + − −( ) = +( ) − − // )
( ) ( ) ( )

2
2 2

2

( )
= + − + −

⇒ ∆∇ ≡ ∇∆ ≡

f x h f x f x h

δ

v) 1 1 1 1+ ∆( ) − ∇( )( ) = + ∆( ) − ∇( ) = + ∆( ) −( )
= − + ∆

f x f x f x f x h
f x h f

( ) ( ) ( ) ( )
( ) (( ) ( ) . ( )x h f x f x− = =

⇒ + ∆( ) − ∇( ) ≡
1

1 1 1

vi) ∆ ≡ ∇ − ∇( ) ∆ − ∇( ) ≡ ∇
= ∆ − ∇( ) = ∆ − ∇( ) = ∆

−1 1
1

1 ( )
( ) ( ) ( ) (

or
L.H.S. f x f x f x f x −−( )

= − − = ∇ =

⇒ ∆ ≡ ∇ − ∇( )−

h
f x f x h f x

)
( ) ( ) ( ) R.H.S.

1 1

vii) 1 1 1 1
1 1

1+ ∆( ) ≡ −( )∇ + ∆( )∇ ≡ −( )
+ ∆( )∇ = + ∆( ) − −(

−E E
f x f x f x h

( )
( ) ( ) ( )

or

)) = − −( ) + ∆ − −( )
= − −( ) + + −(

f x f x h f x f x h
f x f x h f x h f x

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ))) − − −( )

= + −
−( ) = − = + −

f x f x h
f x h f x

E f x Ef x f x f x h f

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) (1 xx
E

)
⇒ + ∆( ) ≡ −( )∇−1 1 1

viii) δ

δ

f x f x h f x h E E f x

E E

( ) ( / ) ( / ) ( )= + − − = −






⇒ ≡ −

−

−

2 2
1
2

1
2

1
2

1
2

ix) µ

µ

f x f x h f x h E E f x

E E

( ) ( / ) ( / ) ( )= + + −( ) = +






⇒ ≡ +

−1
2

2 2 1
2

1
2

1
2

1
2

1
2

−−





1
2

x) µ2
1
2

1
2

2 1
2

1
2

2
1
4

1
4

4f x E E f x E E f( ) ( ) (= +






= +






+










− −

xx f x) ( )= +





⇒ ≡ +

1 1
4

1 1
4

2

2 2

δ

µ δ
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xi) L.H.S. = = + − −( ) = +( ) − −( )µδ µ µ µf x f x h f x h f x h f x h( ) ( / ) ( / ) ( / ) ( / )2 2 2 2

== + +( ) − + −( ) = + − −( )

=

1
2

1
2

1
2

f x h f x f x f x h f x h f x h( ) ( ) ( ) ( ) ( ) ( )

R.H.S. ∆∆ + ∇ = ∆ + ∇( ) = + − −( )

⇒ ≡ ∆ + ∇
2

1
2

1
2

2

f x f x f x f x h f x h( ) ( ) ( ) ( ) ( )

µδ

xii) L.H.S. = = +Ef x f x h( ) ( )

On using Taylor series, we have

Ef x f x h f x hf x h f x h f x

h D h

( ) ( ) ( ) ( )
!

( )
!

( )= + = + ′ + ′′ + ′′′ + ⋅⋅⋅

= + +

2 3

2 3

1
22

2
3

3

2 3! !
( )

( )

D h D f x

e f x
E e

hD

hD

+ + ⋅⋅⋅







= =
⇒ ≡

R.H.S.

xiii) µ f x E E f x e e f x hDhD hD

( ) ( ) ( ) cosh= +






= +






= − −1
2

1
2 2

1
2

1
2 2 2





⇒ ≡ 





f x

hD

( )

coshµ
2

xiv) δ f x E E f x e e f x hDhD hD

( ) ( ) ( ) sinh= −






= −






= 


− −1
2

1
2 2 2 2

2 

⇒ ≡ 





f x

hD

( )

sinhδ 2
2

xv) Using results in xiii) and xiv), we have

µδ ≡ 











≡2
2 2

cosh sinh sinh( )hD hD hD

xvi) ∆ = ∇

∆ = ∆ ∆( ) = ∆ −( ) = ∆ ∆ −( )( ) = ∆ ∆ − ∆( )
= ∆

3
2

3
5

3
2

2
2

2
3 2 3 2 3 2

4

y y

y y y y y y y y

y −− +( ) = ∆ − ∆ + ∆ = − + −

∇ = ∇ ∇( ) = ∇ −(
2 2 3 33 2 4 3 2 5 4 3 2

3
5

2
5

2
5 4

y y y y y y y y y

y y y y )) = ∇ ∇ −( )( ) = ∇ ∇ − ∇( )
= ∇ − +( ) = ∇ − ∇ + ∇ = −

y y y y

y y y y y y y y
5 4 5 4

5 4 3 5 4 3 5 42 2 3 ++ −
⇒ ∆ = ∇

3 3 2
3

2
3

5

y y

y y
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Table 9.2 Relations between the Operators

E Δ ∇ δ μ hD

E E 1 + Δ
1

1− ∇( )−

1
2

1
4

2 2

+ + +
δ δ δ µ µ+ −( )2

2

1
ehD

Δ E – 1 Δ
1 1

1− ∇( ) −− δ δ δ2 2

2
1

4
+ + µ µ+ −( ) −2

2

1 1
ehD – 1

∇ 1 – E–1

1 1
1− +( )−∆ ∇

− + +
δ δ δ2 2

2
1

4
1 12

2

− + −( )−
µ µ

1 – e–hD

δ
E E

1
2

1
2−

− ∆ +( )−
1

1
2∆ ∇ − ∇( )−

1
1
2

δ 2 12µ − 2sinh(hD/2)

μ 1
2

1
2

1
2E E+







−
1

2
1

1
2+





+( )−∆
∆ 1

2
1

1
2−

∇





− ∇( )−
1

4

2

+
δ μ cosh(hD/2)

hD log E log(1+ Δ)

− − ∇

( )

log 1 2 2

1

sinh /

− ( )

δ sinh− −( )1 22 1µ µ

hD
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9.5 Operators on Some Functions

In this section, we will apply finite operators on some functions especially on polynomials. 
Forward difference operator has been considered for most of the cases, but similar kind of 
results can also be proved for backward and central differences.

Prove that
∆ = + − + − + + −n n na x a x nh C a x n h C a x n hln( ) ln( ( )) ln( ( ( ) )) ln( ( ( ) ))1 21 2 −−⋅⋅⋅

+ − + − + ⋅⋅⋅+ − + +−
−( ) ln( ( ( ) )) ( ) ln( ( )) (1 1 1

1
r n

r
n n

nC a x n r h C a x h −−1) ln( )n a x
Ans.

∆n n n na x a x a x h a x a xln( ) ln( ) ln( ( )) ln( ) ln( (= ∆ ∆( ) = ∆ + −( ) = ∆ ∆− − −1 1 2 ++ − ∆( )
= ∆ + − + +( )
= ∆

−

−

h a x

a x h a x h a xn

n

)) ln( )

ln( ( )) ln( ( )) ln( )

l

2

3

2 2

nn( ( )) ln( ( )) ln( ( )) ln( )

ln( (

a x h a x h a x h a x

a xn

+ − + + + −( )
= ∆ +−

3 3 2 3

44 hh a x h a x h a x h a x

a

)) ln( ( )) ln( ( )) ln( ( )) ln( )

ln( (

− + + + − + +( )

=

4 3 6 2 4


xx nh C a x n h C a x n h
C

n n

r n
r

+ − + − + + − −⋅⋅⋅
+ −

)) ln( ( ( ) )) ln( ( ( ) ))
( )

1 21 2
1 lln( ( ( ) )) ( ) ln( ( )) ( ) ln( )a x n r h C a x h a xn n

n
n+ − + ⋅⋅⋅+ − + + −−

−1 11
1

9.2Example

Prove that

∇   = ∇ + ∇ − ∇ ∇f x g x f x g x g x f x f x g x( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Ans.

∇   = − − −
= − − +

f x g x f x g x f x h g x h
f x g x f x h g x f

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) (xx h g x f x h g x h

g x f x f x h f x h g x g x h

− − − −

= − −( ) + − − −

) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )(( )
= ∇ + − ∇

= ∇ + − ∇( )∇
=

g x f x f x h g x

g x f x f x f x g x
f x

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )∇∇ + ∇ − ∇ ∇g x g x f x f x g x( ) ( ) ( ) ( ) ( )

Similarly, we can easily prove the result

∆   = ∆ + ∆ + ∆ ∆f x g x f x g x g x f x f x g x( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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Prove the following results

a) ∆ =( )c 0, where c is a constant
b) ∆ = ∆ = ∆ =( ) ( ) ( )cx c x ch cxand 2 0
c) ∆ = ∆ = +( ) ∆ = ∆ =( ) ( ) , ( ) ( )cx c x c hx h cx ch cx2 2 2 2 2 2 3 22 2 0and
d) ∆ = ∆ = + + + +− − −

−
−( ) ( ) ...cx c x c C x h C x h C x h C x hn n n n n n n n n

n
n

1
1

2
2 2

3
3 3

1
1 ++( )hn

e) ∆ =n n ncx c h n( ) !
f) Use all these results to find the nth finite differences of a polynomial of degree n.

Ans.

a) ∆ = − =( )c c c 0
b) ∆ = ∆( ) ( )cx c x  (linearity property)

c x c x h x c h
cx cx c h c h c h

∆ = + − =
∆ = ∆∆ = ∆ = − =

( ) ( )
( ) ( ) ( )2 0

Similarly, third and higher order differences are zero.

c) ∆ = ∆ = + −( ) = +( )
∆ = ∆∆ = ∆ +

( ) ( ) ( )

( ) ( )

cx c x c x h x c hx h

cx c x c hx

2 2 2 2 2

2 2 2

2

2 hh c h x h h hx h ch

cx cx ch

2 2 2 2

3 2 2 2 2

2 2 2

2 0

( ) = + + − −( ) =

∆ = ∆∆ = ∆ ( ) =

( )

( ) ( )

Fourth and higher order differences are also zero.

d) ∆ = ∆

= + −( )
= + + +− − −

( ) ( )

( )

(

cx c x

c x h x

c x C x h C x h C x

n n

n n

n n n n n n n
1

1
2

2 2
3

3hh C x h h x

c C x h C x h C x h

n
n

n n n

n n n n n n

3
1

1

1
1

2
2 2

3
3 3

+ + + −( )
= + + +

−
−

− − −

... )

.... + +( )−
−n

n
n nC x h h1

1

e) We will use the principle of mathematical induction to prove the result
∆ =n n ncx c h n( ) !.

From part b) and c), the result is true for n = 1, 2.
Let this be true for n –1, i.e.

 ∆ = −− − −n n ncx c h n1 1 1 1( ) ( )!

Also, we have

∆ = >k jx k j( ) 0 for all

It means all differences of order k + 1 and higher, are zeroes for the polynomial xk.

9.4Example
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 For n, we have

∆ = ∆
= ∆ ∆
= ∆ + +

−

− − − −

n n n n

n n

n n n n n n n

cx c x
cx

c C x h C x h C x

( ) ( )
( )
(

1

1
1

1
2

2 2
3

33 3
1

1

1
1 1

2
2 1 2

h C x h h
c C h x C h x

n
n

n n

n n n n n n n

+ + +
= ∆ + ∆ +

−
−

− − − −

... )
( ( ) ( ) CC h x
C h x h

n n

n
n

n n n n
3

3 1 3

1
1 1 1

∆ +
+ ∆ + ∆

− −

−
− − −

( ) ...
( ) ( ))

Since all the differences of order k + 1 and higher are zeroes for xk, therefore, we have

∆ = ∆( )
= −( )( )
=

− −

−

n n n n n

n n

n

cx c C h x

c C h h n

ch n

( ) ( )

( )!

!

1
1 1

1
1 1

Hence, it is also true for all n by the principle of mathematical induction.

f) Let P x a a x a x a x

P x a a x a x a
n n

n

n
n

n

( )

( )

= + + + ⋅⋅⋅+

∆ ( ) = ∆ + + + ⋅⋅⋅+
0 1 2

2

0 1 2
2

nn
n

n n n
n

n n

x

a a x a x a x
( )

= ∆ + ∆ + ∆ + ⋅⋅⋅+ ∆0 1 2
2

Since all the differences of order k + 1 and higher are zeroes for xk, thus we have
∆ ( ) = ∆n

n n
n nP x a x( ) ,

On using the result ∆ =n n ncx c h n( ) ! of part d), we have

∆ ( ) =n
n n

nP x a h n( ) !

Note: On a similar pattern, it is easy to prove that

i) ∇ ( ) =n
n n

nP x a h n( ) !

ii)  δ n
n n

nP x a h n( ) !( ) =

iii)  All the backward and central differences of order k + 1 and higher are zeroes
for xk,

Evaluate δ 6 2 31 1 1( )( )( ) .− − − x x x

Ans.
Since all the central differences of order k + 1 and higher are zeroes for xk, hence we have

δ δ6 2 3 6 6 61 1 1 6( )( )( ) ( ) !− − −  = − = −x x x x h
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9.6 Newton Divided Differences and Other Finite Differences

In this section, we will derive the relations between the divided differences and the 
other finite differences. In the next chapter, we will use these relations to obtain various 
interpolation formulas for equally spaced points.

Lemma 9.1

For equispaced points x x ihi = +0 ; i n= ⋅⋅⋅1 2, , , , the following relation holds between 
forward differences and divided differences

f x x x x
m h

f xi i i i m m
m

i, , ,...
!

( )+ + +  =1 2
1 ∆  (9.1)

Proof: We will prove the above result with the aid of mathematical induction:
For m =1:

f x x
f x f x

x x
f x f x

h h
f xi i

i i

i i

i i
i,

( ) ( ) ( ) ( )
( )+

+

+

+  =
−
−

=
−

=

⇒

1
1

1

1 1 ∆

ff x x
h

f x0 1 0
1, ( )  = ∆

So, it is true for m =1.
For m = 2:

f x x x
f x x f x x

x x
f x

i i i
i i i i

i i

i

, ,
, ,

+ +
+ + +

+

+

  =
  −  

−

=

1 2
1 2 1

2

1,, ,

( ) ( ) (

x f x x
h

h
f x f x

x x
f x

i i i

i i

i i

i

+ +

+ +

+ +

  −  

=
−
−

−

2 1

2 1

2 1

2
1

2
++

+

+

−
−







= −





=

1

1

1 2

1
2

1 1 1
2

) ( )

( ) ( )
!

f x
x x

h h
f x

h
f x

h

i

i i

i i∆ ∆ ∆∆

∆

2

0 1 2 2
2

0
1

2

f x

f x x x
h

f x

i( )

, ,
!

( )⇒   =

So, it is also true for m = 2.

[Many authors simply generalize the above result up to any finite number of indices, but 
here we shall prove the generalization in a logical manner by using mathematical induction]

Let the relation be true for m = k, i.e.,

f x x x x
k h

f xi i i i k k
k

i, , ,...
!

( )+ + +  =1 2
1 ∆  (9.2)
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378 Numerical Methods

Since we do not have any restriction on the subscript i (it may take any value from 0 to m), 
the following relation is also true by simply replacing i with i + 1.

f x x x x
k h

f xi i i i k k
k

i+ + + + + +  =1 2 3 1 1
1, , ,...
!

( )∆ (9.3)

Now, we have to prove that the relation is true for m = k +1. The k +1 divided differences 
are given by

f x x x x
f x x x f x x

i i i i k
i i i k i, , ,...

, ,... ,
+ + + +

+ + + +  =
  −

1 2 1
1 2 1 ii i i k

i k i

k
k

i k
k

i

x x
x x

k h
f x

k h
f x

+ + +

+ +

+

 
−

=
−

1 2

1

1
1 1

, ,...

!
( )

!
( )∆ ∆

kk h

k h
f x f x

k h
f x

k
k

i
k

i

k
k

i

+( )
=

+
−( )

=
+

+ +

+
+

1
1

1
1

1

1 1

1
1

( )!
( ) ( )

( )!
(

∆ ∆

∆ ))

The relation is true for m = k +1, whenever it is true for m = k. Therefore, by the principle of 
mathematical induction, it is true for each m

⇒   =f x x x x
m h

f xm m
m

0 1 2 0
1, , ,...
!

( )∆

Note: On a similar pattern, it is easy to prove the following relations between backward 
differences and divided differences

f x x x x
m h

f x

f x x x x

i i i i m m
m

i m

m

, , ,...
!

( )

, , ,...

+ + + +  = ∇

⇒ 

1 2

0 1 2

1

 = ∇1
m h

f xm
m

m!
( )

Similarly, relations between central differences and divided differences are as follows

f x x x x
m h

f x

f x x x

i i i i m m
m

i m

i i i

, , ,...
!

, , ,

+ + + +

+ +

  = ( )1 2 2 2
2

1 2

1
2

δ

....
( )!

x
m h

f xi m m
m

i m+ + +
+

+ +
  =

+ ( )2 1 2 1
2 1

1
2

1
2 1

δ
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Lemma 9.2

Let f(x) be a well-defined real-valued function on the interval [a, b] containing (m+1) –
points, x x xm0 1, , ,⋅⋅⋅ . If the function f(x) is m-times differentiable in (a, b), then there exists 
a point, ξ ∈( , )a b , such that

1
0h

f x fm
m m∆ ( ) ( )= ξ

Proof: From theorem 8.1, we have

f x x x x x
f

mm

m

0 1 2 3, , , ,...
( )
!

  =
ξ

On using expression (9.1), we can easily obtain the required result, i.e.,

1
0h

f x fm
m m∆ ( ) ( )= ξ

Note: Similarly, following results can also be proved for backward and central differences:

1

1

1

2
2 2

2 1
2 1

1
2

h
f x f

h
f x f

h
f x

m
m

m
m

m
m

i m
m

m
m

i m

∇ ( ) = ( )

( ) =

( )
+

+
+

+ +

ξ

δ ξ

δ

( )

== +f m2 1( )ξ

9.7 Finite Difference Tables and Error Propagation

In this section, we will focus on the construction of the finite difference tables for three 
finite differences (Δ, ∇ and δ) and then examine the error propagation in these tables.

It is easy to construct various difference tables with the aid of the finite difference 
formulas given the Table 9.1, like forward difference, ∆y y yi i i= −+1 , backward difference, 
∇ = − −y y yi i i 1, and central difference, δ y y yi i i= −+ −1 2 1 2/ / . We have similar formulas for 
higher order differences like ∆2

1y y yi i i= ∆ − ∆+ , etc.
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Table 9.3 Forward Differences

x y = f (x) First forward 
differences (Δ)

Second forward 
differences (Δ2)

Third forward 
differences (Δ3)

Fourth forward 
differences (Δ4)

x0 y0

y y y1 0 0− = ∆

x1 y1 ∆ − ∆ = ∆y y y1 0
2

0

y y y2 1 1− = ∆ ∆ − ∆ = ∆2
1

2
0

3
0y y y

x2 y2 ∆ − ∆ = ∆y y y2 1
2

1 ∆ − ∆ = ∆3
1

3
0

4
0y y y

y y y3 2 2− = ∆ ∆ − ∆ = ∆2
2

2
1

3
1y y y 

x3 y3 ∆ − ∆ = ∆y y y3 2
2

2


y y y4 3 3− = ∆ 

x4 y4 

 

xn–1 yn–1

y y yn n n− = ∆− −1 1

xn yn

Table 9.4 Backward Differences

x y = f (x) First backward 
differences (∇)

Second backward 
differences (∇2)

Third backward 
differences (∇3)

Fourth backward 
differences (∇4)

x0 y0

y y y1 0 1− = ∇

x1 y1 ∇ − ∇ = ∇y y y2 1
2

2

y y y2 1 2− = ∇ ∇ − ∇ = ∇2
3

2
2

3
3y y y

x2 y2 ∇ − ∇ = ∇y y y3 2
2

3 ∇ − ∇ = ∇3
4

3
3

4
4y y y

y y y3 2 3− = ∇ ∇ − ∇ = ∇2
4

2
3

3
4y y y 

x3 y3 ∇ − ∇ = ∇y y y4 3
2

4


y y y4 3 4− = ∇ 

x4 y4 

 

xn–1 yn–1

y y yn n n− = ∇−1

xn yn
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Finite Operators 381

Table 9.5 Central Differences

x y = f (x) δ δ 2 δ 3 δ 4

x0 y0

y y y1 0 1 2− = δ /

x1 y1 δ δ δy y y3 2 1 2
2

1/ /− =

y y y2 1 3 2− = δ / δ δ δ2
2

2
1

3
3 2y y y− = /

x2 y2 δ δ δy y y5 2 3 2
2

2/ /− = δ δ δ3
5 2

3
3 2

4
2y y y/ /− =

y y y3 2 5 2− = δ / δ δ δ2
3

2
2

3
5 2y y y− = /



x3 y3 δ δ δy y y7 2 5 2
2

4/ /− = 

y y y4 3 7 2− = δ /


x4 y4 

 

From these three Tables (9.3–9.5), it is easy to notice that the values in the difference table 
are same and expressed in terms of different differences, like

y y y y y1 0 0 1 1 2− = ∆ = ∇ = δ /

Hence, we have only one difference table expressed in terms of forward, backward and 
central differences.

Construct the finite difference table for the following data set
x
y

0 15 30 45 60 75 90
0 0

 
0.258819 0.5 0.707107 0.866025 .965926 1

Ans.
We have following values of variables x and y

x x x x
y y y y

0 1 2 6

0 1 2 6

0 15 30 90
0 0 0 5 1

= = = =
= = = =

, , , ... ,
, , . , ... ,.258819

Different finite differences can be obtained as follows

First difference, d y y ii i i, , , , , ... ,1 1 0 1 2 6= − =+

Second difference, d d d ii i i, , , , , , , ... ,2 1 1 1 0 1 2 5= − =+

Third difference, d d d ii i i, , , , , , , ... ,3 1 2 2 0 1 2 4= − =+  and so on.

9.6Example

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:35:06, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.010
https://www.cambridge.org/core


382 Numerical Methods

x y ∆ ∆ ∆ ∆ ∆ ∆( , ) ( , ) ( , ) ( , ) ( , ) ( , )∇ ∇ ∇ ∇ ∇ ∇δ δ δ δ δ δ2 2 2 3 3 3 4 4 4 5 5 5 6 6 6

0 0
0.2558819

15 .017638
.016436

.500000 .034

0 258819 0
0 241181 0

30 0 0

.
.

−
−

− 0074

.707107 .048189

0 002321
0 207107 0 014115 0 000966

45 0 0 0

.
. . .

.
−

− 0003287 0 000235
0 0 010828 0 000731

60

−
−

−

.
. ..158918

0.866025 0.0590117 0.004018
.006810

.965926 .065827
0.034074

90 1

0 099901 0
75 0 0

. −
−

All three finite differences can be represented by one table, and we can treat it as forward, 
backward or central difference table according to our requirement. More precisely the 
difference between these finite differences can only be viewed from their respective 
relative positions in the table, but they all are same in the absolute form.

This table as forward, backward and central difference table can be represented as follows

Forward Difference Table:
x y

x y
y

x y

 

0.258819
15 .

∆ ∆ ∆ ∆ ∆ ∆

∆

2 3 4 5 6

0 0

0

1 1

0 0

0 258819 0

( ) ( )
( )

( ) . ( ) − 0017638
.016436

.500000

( )
. ( ) ( )

( ) (

∆
∆ ∆

2
0

1
3

0

2 2

0 241181 0
30 0

y
y y

x y
−

)) ( ) . ( )
. ( ) . (

−
−

0 0 002321
0 207107 0 014115

2
1

4
0

2
3

1

.034074 ∆ ∆
∆ ∆

y y
y y )) . ( )

( ) ( ) ( ) . (
0 000966

45 0 0 0 003287

5
0

3 3
2

2

∆
∆

y
x y y.707107 .048189− ∆∆ ∆

∆ ∆

4
1

6
0

3
3

2

0 000235
0 0 010828 0 000731

y y
y y

) . ( )
( ) . ( ) . (

−
−.158918 ∆∆

∆ ∆

5
1

4 4
2

3
4

260
0 099

y
x y y y

)
( ) ( ) ( ) ( )

.
0.866025 0.059017 0.004018−

9901 0
75 0 0

4
3

3

5 5
2

4

( ) ( )
( ) ( ) ( )

∆ ∆
∆

y y
x y y

−
−

.006810
.965926 .065827

0..034074
90 1

( )
( ) ( )

∆y
x y

5

6 6
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Finite Operators 383

Backward Difference Table:

x y

x y
y

x y

 

0.258819
15 .

∇ ∇ ∇ ∇ ∇ ∇

∇
−

2 3 4 5 6

0 0

1

1 1

0 0

0 258819 0

( ) ( )
( )

( ) . ( ) 0017638
.016436

.500000

( )
. ( ) ( )

( ) (

∇
∇ − ∇

2
2

2
3

3

2 2

0 241181 0
30 0

y
y y

x y )) ( ) . ( )
. ( ) . (

− ∇ ∇
∇ − ∇

0 0 002321
0 207107 0 014115

2
3

4
4

3
3

4

.034074 y y
y y )) . ( )

( ) ( ) ( ) . (
0 000966

45 0 0 0 003287

5
5

3 3
2

4

∇
− ∇

y
x y y.707107 .048189 ∇∇ − ∇

∇ − ∇

4
5

6
6

4
3

5

0 000235
0 0 010828 0 000731

y y
y y

) . ( )
( ) . ( ) . (.158918 ∇∇

− ∇ ∇

5
6

4 4
2

5
4

660
0 099

y
x y y y

)
( ) ( ) ( ) ( )

.
0.866025 0.059017 0.004018

9901 0
75 0 0

5
3

6

5 5
2

6

( ) ( )
( ) ( ) ( )

∇ − ∇
− ∇

y y
x y y

.006810
.965926 .065827

0..034074
90 1

( )
( ) ( )

∇y
x y

6

6 6

Central Difference Table:

x y

x y
y

x y

 

0.258819

15

δ δ δ δ δ δ

δ

2 3 4 5 6

0 0

1 2

1 1

0 0

0 258819

( ) ( )
( )

( ) . ( )
/

−00

0 241181 0

30 0

2
1

3 2
3

3 2

2

.017638

.016436

.500

( )

. ( ) ( )

( )
/ /

δ

δ δ

y

y y

x

−

0000 .034074( ) ( ) . ( )

. ( ) ./

y y y

y
2

2
2

4
2

5 2

0 0 002321

0 207107 0 014

−

−

δ δ

δ 1115 0 000966

45 0 0

3
5 2

5
5 2

3 3
2

( ) . ( )

( ) ( ) (
/ /δ δ

δ

y y

x y.707107 .048189− yy y y

y
3

4
3

6
3

7 2

0 003287 0 000235

0 0 010828

) . ( ) . ( )

( ) . (/

δ δ

δ

−

−.158918 δδ δ

δ

3
7 2

5
7 2

4 4
2

4

0 000731

60

y y

x y y
/ /) . ( )

( ) ( ) ( )0.866025 0.059017 0− ..004018

.006810

.9659

( )

. ( ) ( )

( )
/ /

δ

δ δ

4
4

9 2
3

9 2

5

0 099901 0

75 0

y

y y

x

−

226 .065827
0.034074

90 1

( ) ( )
( )

( ) ( )
/

y y
y

x y

5
2

5

11 2

6 6

0− δ
δ

It is easy to see that the underline values can be defined in terms of different finite 
differences as follows

0 207107

0

0 003287

2 3 5 2

2
1

2
3

2
2

4

.

.

/= = ∇ =

− = = ∇ =

=

∆

∆

∆

y y y

y y y

y

δ

δ.034074

11
4

5
4

3

6
0

6
6

6
30 000235

= ∇ =

− = = ∇ =

y y

y y y

δ

δ. ∆

Note: It is easy to verify that the data set is taken for the function, y = sin x, where x is in 
degree.
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384 Numerical Methods

Construct the finite difference table for the function y = ln x on interval [1, 2] by taking 
step size equal to 0.25.

Ans.

x xln( ) ( ) ( ) ( ) ( )

.
. .

∆ ∇ ∆ ∇ ∆ ∇ ∆ ∇δ δ δ δ2 2 2 3 3 3 4 4 4

1 0
0 223143551

1 25 0 2231443551 0 040821995
0 182321557 0 012651118

1 5 0 405465108 0 0

−

−

.
. .

. . . 228170877 0 005099528
0 15415068 0 00755159

1 75 0 559615788 0

−

−

.
. .

. . ..
.

.

020619287
0 133531393

2 0 693147181

9.7Example

The input and output values of a certain experiment are given below except one output 
value.

Input
Output

:
: . . . ? .

50 100 150 200 250
4 52 6 78 9 31 16 54

Compute that value by constructing finite difference table.

Ans.
We have following values of x and y

x x x x x
y y y y

0 1 2 3 4

0 1 2

50 100 150 200 250
4 52 6 78 9 31

= = = = =
= = =

, , , ,
. , . , . , 33 4 16 54= =?, .y

A polynomial of degree three can be fitted to these four data points. For polynomial of 
degree three, the fourth forward difference Δ4y0 must be zero, this implies

∆ = −( )
= − + − +( )
= − + − +
= −

4
0

4
0

4 3 2
0

4 3 2 1 0

1

4 6 4 1
4 6 4

16 54

y E y

E E E E y
y y y y y

. 44 6 9 31 4 6 78 4 52
49 8 4

49 8 4 0 49 8
4

12

3

3

3 3

y
y

y y

+ − +
= −

⇒ − = = =

( . ) ( . ) .
.

. .or ..45

9.8Example

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.010
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:35:06, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.010
https://www.cambridge.org/core


Finite Operators 385

The following data is calculated from a polynomial of degree three, but there is some error 
in data, locate the error and remove it to obtain correct data set.

x
y

:
:

−
−

1 0 1 2 3 4
2 1 4 15 34 73

Ans.
Since the data is obtained from a polynomial of degree 3, therefore all the fourth and 
higher order differences must be zero. We will construct the forward difference table for 
the data set to locate and correct the error.

9.9Example

Error in Difference Table:
It is easy to see that, once an error is committed in tabulated value, it will propagate and 
amplify in subsequent entries. An illustration (by introducing error ε in the value of y3) 
from forward difference table can be seen as follows

x y f x

x y
y

x y y
y y

x y y y
y

=

+
+ −

( ) ∆ ∆ ∆ ∆

∆
∆

∆ ∆
∆ ∆

∆

2 3 4

0 0

0

1 1
2

0

1
3

0

2 2
2

1
4

0

2

4
ε

ε ε
++ −

+ − +
− +

+ −

ε ε
ε ε ε

ε ε
ε

∆
∆ ∆

∆ ∆
∆ ∆

3
1

3 3
2

2
4

1

3
3

2

4 4
2

3
4

2

3
2 6

3
4

y
x y y y

y y
x y y y εε

ε∆ ∆
∆

∆

y y
x y y

y
x y

4
3

3

5 5
2

4

5

6 6

− 







 

It is easy to see that the error (ε) propagates in the difference table in a Binomial manner  
i.e. [(1–1)n]. For example, the error in first difference is given by ε(1, –1). So, binomially, it is  
ε(1, –2, 1) in second difference; ε(1, –3, 3, –1) in third difference; ε(1, –4, 6, –4, 1) in fourth 
difference, and so on.
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386 Numerical Methods

x y ∆ ∆ ∆ ∆

− −

−

2 3 4

1 2
3

0 1 0
3 8

1 4 8 8
11 0

2 15 8 12
19 12

3 34 20
39

4 73

The fourth differences must vanish for a polynomial of degree 3. The error terms propagate 
in a Binomial manner (for fourth differences ε(1, –4, 6, –4, 1)). It is easy to see that in 
fourth differences, we have ( , ) ..., , , ..., ...− −( )8 12 2 4 6 . Hence we have an error, ε = 2,
which is corresponding to x =  2.

Hence, the correct value for y2 is given by
y2 = 15 – 2 =13

On using this value of y2, we have a correct table as follows
x
y

:
:

−
−

1 0 1 2 3 4
2 1 4 13 34 73

Exercise 9

1. Use the definitions of various finite differences to prove the following results

a) ∆3
1

3
4

3
5 2f f f= ∇ =δ / ,

b) 1 1
2

2 2
2 2

+ ≡ +






δ µ δ
,

c) E1 2

2
/ ,≡ +µ δ

d) ∆ + ∇ = ∆
∇

− ∇
∆

.
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Finite Operators 387

2. Find the value of the expression, 
∆





2
2

E
x .  Ans. 2h2

3. Prove that, if the polynomial Pn(x) is a polynomial of degree n, then ∆2P xn( ) is of degree ≤ −n 2.

4. Show that for the polynomial, P x a a x a x a xn n
n( ) = + + +⋅⋅⋅⋅⋅⋅+0 1 2

2 ; the nth order difference is 
constant and higher order differences are zero. Is the converse true?

5. Prepare the finite difference table for the polynomial P x x x3
3 3 1( ) = + −  for the points x = –1, 0, 

1, 2, 3, 4 and 5. Verify that the third differences are constants and fourth and higher differences 
are zeroes.

Ans.

x y ∆( , )∇ δ ∆2 2 2( , )∇ δ ∆3 3 3( , )∇ δ ∆4 4 4( , )∇ δ ∆5 5 5( , )∇ δ ∆6 6 6( , )∇ δ

–1 –5 4 0 6 0 0 0

0 –1 4 6 6 0 0

1 3 10 12 6 0

2 13 22 18 6

3 35 40 24

4 75 64

5 139

6. Prove that ∆








 = ∆ − ∆

+
f x
g x

g x f x f x g x
g x g x h

( )
( )

( ) ( ) ( ) ( )
( ) ( )

 and use this result to verify that 

∆








 = −∆

+
1

g x
g x

g x g x h( )
( )

( ) ( )
 provided g x( ) ≠ 0.

7. Find the nth forward differences of the functions sin( ), cos( )ax b ax b+ +  and eax+b.

Ans.

2
2 2

2
2

sin

sin

ah
ax b

n
ah

ah

n












+ + +( )














 sin π





+ + +( )





−( ) +

n

ah n ax b

ax b
n

ah

e e

 cos
2

1

π

8. Evaluate ∇ −( ) −( ) −( ) 
6 2 31 1 2 1 3x x x  at h = 2.

Ans. –6(6!26) = –276480

9. Evaluate 
∆ +( )

2

2E
x hsin( ) .

Ans. sin( ) sin( ) sin( )x h x x h+ − + −2
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388 Numerical Methods

10. Prepare the finite difference table for the function f x
x

x( ) ( . )=
+

= −1
1

2 0 5 22 at .

Ans.

x f(x) ∆( , )δ ∇ ∆2 2 2( , )δ ∇ ∆3 3 3( , )δ ∇ ∆4 4 4( , )δ ∇ ∆5 5 5( , )δ ∇ ∆6 6 6( , )δ ∇ ∆7 7 7( , )δ ∇ ∆8 8 8( , )δ ∇

–2 0.2

–1.5 0.307692 0.107692

–1 0.5 0.192308 0.084615

–0.5 0.8 0.3 0.107692 0.023077

0 1 0.2 –0.1 –0.20769 –0.23077

0.5 0.8 –0.2 –0.4 –0.3 –0.09231 0.138462

1 0.5 –0.3 –0.1 0.3 0.6 0.692308 0.553846

1.5 0.307692 –0.19231 0.107692 0.207692 –0.09231 –0.69231 –1.38462 –1.93846

2 0.2 –0.10769 0.084615 –0.02308 –0.23077 –0.13846 0.553846 1.938462 3.876923

11. The population of Haryana state during census years is given below

Years Population (in Lakh)
1951 52.8
1961 5.9
1971 0.4
1981 .

7
10
129 22

1991
2001
2011 .5

?
.211 4

253

Compute the missing population data and compare with the exact population of Haryana in 
1991. 

Ans. 164.6 Lakh.

12. Change the following data, such that the data follows a certain fourth-degree polynomial.

x
y

:
:

− −2 1 0 1 2 3 4
25 8 6 4 17 80 253

Ans. Change the value of variable y at x = 0, from 6 to 5.
x
y

:
:

− −2 1 0 1 2 3 4
25 8 5 4 17 80 253

Note that we can also compute the interpolating polynomial x x4 2 5− +  from Lagrange or NDD 
formula.
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In Chapter 8, we have discussed the Lagrange and Newton divided difference interpolation 
methods. These methods are applicable to the data set of equally as well as unequally spaced 
points. We have already discussed that the interpolating polynomial is unique for a given 
set of data points. But, for equally spaced points, the calculations become simpler with 
lesser number of arithmetic operations. So, various errors and most importantly rounding 
error tend to decrease. A wide range of interpolation problems falls in the class of equally 
spaced points, for examples, the experiments with equispaced inputs. In this chapter, we 
will discuss the following interpolation methods for equally spaced points:

Forward difference formula

i) Newton forward difference formula

Backward difference formula

ii) Newton backward difference formula

Mathematics is the supreme judge; from its decisions there is no appeal.

Tobias Dantzig 
(February 19, 1884–August 9, 1956) 

He is the author of Number: The Language of Science (A critical survey written for the  
cultured non-mathematician) (1930) and Aspects of Science (1937). 

The saddest aspect of life right now is that science gathers knowledge  
faster than society gathers wisdom. 

Isaac Asimov 
(January 2, 1920–April 6, 1992) 

He was a biochemist, professor, and prolific writer, who wrote or edited approximately 500 
books on popular science and science fiction.

Interpolation for Equal Intervals 
and Bivariate Interpolation

Chapter
10
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390 Numerical Methods

Central difference formulas

iii) Gauss formulas (forward central and backward central)
iv) Stirling formula
v) Bessel formula
vi) Everett formula
vii) Steffensen formula 

Note: The motivation for introducing so many interpolation methods will be discussed 
later in this chapter. The position of the interpolation point in the data set defines the 
suitability of all these interpolation methods. If we want to compute the value of function 
y = f(x) at the beginning of the table, Newton forward difference formula is suitable. If we 
want to perform interpolation for a point lying near to the end of the data set, Newton 
backward difference formula is suitable for interpolation. If the value is in the mid of the 
table, central difference formulas are suitable. 

10.1 Gregory–Newton Forward Difference Formula 

Let us consider a function, y = f(x) defined on the interval, [a, b]. Let x0, x1, x2,...,xn be 
(n + 1) equidistant points in the given interval. Let h be the spacing between two consecutive 
values of x, i.e., 

h x xi i= −+1  

⇒ = +x x ihi 0 ; i n= ⋅⋅⋅1 2, , ,  (10.1)

Newton divided difference interpolating polynomial (8.12) is given by

P x f x f x x x x f x x x x x x x
f x

n( ) ( ) [ , ]( ) [ , , ]( )( )
[

= + − + − − + ⋅⋅⋅
+

0 0 1 0 0 1 2 0 1

00 1 0 1 1, , , ]( )( ) ( )x x x x x x x xn n⋅⋅⋅ − − ⋅⋅⋅ − −
 (10.2)

The relation between forward differences and divided differences (Lemma 9.1) is as follows 

f x x x x
m h

f x m nm m
m

0 1 2 0
1 1 2, , , ...
!

( ); , ,...,  = =∆  (10.3)

On using the relation (10.3) in the expression (10.2), we get following Newton forward 
difference formula for interpolating polynomial

P x f x
h

f x x x
h

f x x x x x

n

n( ) ( ) ( )( )
!

( )( )( )= + − + − − + ⋅⋅⋅

+

0 0 0 2
2

0 0 1
1 1

2
1

∆ ∆

!!
( )( )( ) ( )

h
f x x x x x x xn

n
n∆ 0 0 1 1− − ⋅⋅⋅ − −

  (10.4)
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The formula (10.4) can be modified to compute the value at any intermediate point. For 
this, consider the following transformation

x x s h= +0  (10.5)

On using expressions (10.1) and (10.5) in Eq. (10.4), we have 

P x f x f x s
f x

s s
f x
n

s sn

n

( ) ( ) ( )( )
( )
!

( )( )
( )
!

( )(= + + − + ⋅⋅⋅+0 0

2
0 0

2
1∆

∆ ∆
−− ⋅⋅⋅ − +1 1) ( )s n  (10.6)

The expression (10.6) provides another form of Newton forward difference formula. 

Note: The formula (10.4) produces the interpolating polynomial to approximate the 
function f(x). While, the formula (10.6) gives the approximate value of function f(x) at any 
given point x = x0 + sh. 

Alternative:
The formula (10.6) can be obtained alternatively using shift operator. Let x = x0 + sh

f x f x s h
E f xs

( ) ( )
( )

= +
=

0

0

    = +( ) ( )1 0∆ s f x  (10.7)

The binomial expansion for ( )1+ ∆ s
 (only symbolic expansion) is as follows

( ) ( )
!

1 1 1
2

2+ = + + − + ⋅⋅⋅∆ ∆ ∆s s s s  (10.8)

If we approximate the function f(x) with interpolating polynomial Pn(x) of degree ≤ n, 
then finite differences of order n + 1 and higher are zero. We can easily obtain the Newton 
forward difference formula from (10.7) and (10.8)

P x f x f x s
f x

s s
f x
n

s sn

n

( ) ( ) ( )( )
( )
!

( )( )
( )
!

( )(= + + − + ⋅⋅⋅+0 0

2
0 0

2
1∆

∆ ∆
−− ⋅⋅⋅ − +1 1) ( )s n

We can use the expression s
x x

h
=

− 0  in the above formula to get the interpolating 
polynomial formula (10.4) 

It is worth mentioning here that tabular points for Newton forward difference formula are 
given by following table (from Chapter 9)
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x f x

x f x
f x

x f x f x
f x f x

x f x

( )

( )
( )

( ) ( )
( ) ( )

( )

∆ ∆ ∆

∆
∆

∆ ∆
∆

2 3

0 0

0

1 1
2

0

1
3

0

2 2
22

1

2

3 3

f x
f x

x f x

( )
( )

( )







 

∆

Note: The Newton forward difference formula is used to compute the values at the points 

which are at the beginning of the table. Therefore, the absolute value of variable s
x x

h
=

− 0  is 

small in magnitude. It will reduce the round-off error during computations. 

Use Newton forward difference formula to find the value of f(1.2) for the following data 
set 

x
f x

: . . . .
( )

1 1 25 1 5 1 75 2 0
0 0.223144 0.405465 0.559616 0.693147

Ans. 
The data set is equispaced with spacing h = 0.25.

x x x x x
f x f x f

0 1 2 3 4

0 1

1 1 25 1 5 1 75 2 0= = = = =
= =
, . , . , . , .

( ) ( )0, 0.223144, (( ) ( ) ( )x f x f x2 3 4= = =0.405465, 0.559616, 0.693147

We simply use the forward difference formulas, ∆ = −+f x f x f xi i i( ) ( ) ( )1 , 
∆ = ∆ − ∆+

2
1f x f x f xi i i( ) ( ) ( )  and so on, to make the following forward difference table for 

the given data set

10.1Example
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x f x

x f x
f x

x

( )

( )
. ( )

. .

 ∆ ∆ ∆ ∆2 3 4

0 0

0

1

1 0
0 223144

1 25 0 223144

( ) ( )
∆( )

( ) ff x f x

f x f x

( ) . ( )

. ( ) . ( )
1

2
0

1
3

0

0 040823

0 182321 0 012653

( ) − ∆( )
∆( ) ∆( ))

( ) ( ) − ∆( ) − ∆1 5 0 405465 0 028170 0 0051032 2
2

1
4

0. . ( ) . ( ) . ( )x f x f x f x(( )
∆( ) ∆( )

( ) (
0 154151 0 007550

1 75 0 559616
2

3
1

3 3

. ( ) . ( )

. . ( )

f x f x

x f x )) − ∆( )
∆( )

( ) ( )

0 020620

0 133531
2 0 693147

2
2

3

4 4

. ( )

. ( )
. ( )

f x

f x
x f x

To compute value at x = 1.2, we have 

s
x x

h
=

−
= − =0 1 2 1

0 25
0 8.

.
.

On using Newton forward difference formula (10.6), we have

P f x f x s
f x

s s
f x
n

s
n

( . ) ( ) ( )( )
( )
!

( )( )
( )
!

( )(1 2
2

10 0

2
0 0= + + − + ⋅⋅⋅+∆

∆ ∆
ss s n− ⋅⋅⋅ − +

= + + − − +

1 1

0 0 223144 0 8 0 040823
2

0 8 0 2 0 01

) ( )

. ( . ) . ( . )( . ) . 22653
6

0 8 0 2 1 2

0 005103
24

0 8 0 2 1 2 2 2

( . )( . )( . )

. ( . )( . )( . )( . )

− −

+ − − − −

P( . ) . . . . .1 2 0 178515 0 003266 0 000405 0 000090 0 182276= + + + =

Hence, the approximate value of f ( . ) . .1 2 0 182276=

10.1.1 Error in Newton Forward Difference Formula 
Since the interpolating polynomial obtained through any method is unique, hence the error 
in each method is the same. But the error formula becomes simpler for equispaced points. 
As discussed in Chapter 8, the error term, (8.14), is as follows

ε ξ ξ
n

n

n

n

x f
n

x x x x x x f
n

x x( ) ( )
( )!

( )( ) ( ) ( )
( )!

(=
+

− − ⋅⋅⋅ − =
+

−
+ +1

0 1

1

1 1 ii
i

n

)
=

∏
0

 (10.9)

where the point ξ is a point in the given interval. The points are equally spaced points, i.e., 
xi = x0 + ih; i = 1, 2, ···, n. 
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On using the transformation x x s h= +0  in the error formula (10.9), we have

ε ξ
n

n

x
f
n

s h s h s n h( )
( )

( )!
( )( )( ) ( )=

+
− ⋅⋅⋅ −

+1

1
1

  = +
− ⋅⋅⋅ −

+
+f

n
h s s s n

n
n

1
1

1
1

( )
( )!

( )( ) ( )ξ
 (10.10)

The tabulated values in Example 10.1 are obtained from the function f(x) = ln(x). Compute 
the error bound in the approximation for f(1.2) from Newton forward difference formula. 

Ans.
In Example 10.1, the points are equispaced points in the interval [1, 2] with spacing 

h = 0.25. Also, we have s
x x

h
=

−
= − =0 1 2 1

0 25
0 8.

.
. . The polynomial of degree 4 is used for 

interpolation, so the error term from Eq. (10.10) is given by

 ε ξ
= − − − −

f
h s s s s s

v( ) ( )
!

( )( )( )( )( )
5

1 2 3 45  (10.11)

Since the function f(x) = ln(x), we have 

f x
x

v( ) ( ) = 24
5

Its absolutely maximum value in the interval [1, 2] is at x = 1.

f xv( ) ( ) ≤ 24   ∀ ∈x [ , ]1 2

Hence, from Eq. (10.11), maximum absolute error is given by 

ε = − − − − =24
5

0 25 0 8 0 2 1 2 2 2 3 2 0 0002645

!
( . ) ( . )( . )( . )( . )( . ) .

Note: The approximate value obtained from the Newton forward difference formula is 

 f(1.2) = P(1.2) = 0.182276

Note that, the exact value is f ( . ) ln( . ) .1 2 1 2 0 182322= = .
The error in obtained value is 0.000046. 

10.2Example
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10.2 Gregory–Newton Backward Difference Formula 

Consider the transformation, x x s hn= + , then we have

f x f x s h E f x f xn
s

n
s

n( ) ( ) ( ) ( ) ( )= + = = − ∇ −1

On using the expansion 

( ) ( )
!

1 1 1
2

2− ∇ = + ∇ + + ∇ +⋅⋅⋅− s s s s , 

and the fact that for a polynomial of degree n, the finite differences of order n + 1 and higher 
are zero, we have 

P x f x f x s
f x

s s
f x

s sn n n
n n( ) ( ) ( )( )

( )
!

( )( )
( )
!

( )( )(= + ∇ +
∇

+ +
∇

+
2 3

2
1

3
1 ss

f x
n

s s s s n
n

n

+ + ⋅⋅⋅

+
∇

+ + ⋅⋅⋅ + −

2

1 2 1

)

( )
!

( )( )( ) ( )

 

(10.12)

This formula is known as Gregory–Newton backward difference interpolation formula. The 

interpolating polynomial can be obtained by using s
x x

h
n=

−  in the above formula. We 
have

P x f x
f x
h

x x
f x
h

x x x x
f x

n n
n

n
n

n n
n( ) ( )

( )
( )

( )
!

( )( )
(

= +
∇

− +
∇

− − +
∇

−

2

2 1

3

2
))

!
( )( )

( )
( )

!
( )( )

3 3 1

2 1

h
x x x x

x x
f x

n h
x x x x

n n

n

n
n

n n n

− −

− + ⋅⋅⋅+
∇

− −

−

− − ⋅⋅⋅⋅ −( )x x1 (10.13)

The following table contains the tabular points for Newton backward difference formula by 
using table 9.4. 

x f x

x f x
f x

x f x f x
f x

n n

n

n n n

( )

( )
( )

( ) ( )
(

∇ ∇ ∇

∇
∇

∇

− −

−

− − −

2 3

3 3

2

2 2
2

1

 







nn n

n n n

n

n n

f x
x f x f x

f x
x f x

−

− −

∇
∇

∇

1
3

1 1
2

) ( )
( ) ( )

( )
( )
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396 Numerical Methods

Note that Newton backward difference formula will be used to compute the values at the 
points which are at the end of the table.

Use Newton backward difference formula to find the value of f(1.9) for the following data 
set 

x
f x

: . . . .
( )

1 1 25 1 5 1 75 2 0
0 0.223144 0.405465 0.559616 0.693147

Ans. 
Similar to Example 10.1, the data set is equispaced with spacing h = 0.25.

x x x x x
f x f x f

0 1 2 3 4

0 1

1 1 25 1 5 1 75 2 0= = = = =
= =
, . , . , . , .

( ) ( )0, 0.223144, (( ) ( ) ( )x f x f x2 3 4= = =0.405465, 0.559616, 0.693147

We will use the backward difference formulas, ∇ = − −f x f x f xi i i( ) ( ) ( )1 , 
∇ = ∇ − ∇ −

2
1f x f x f xi i i( ) ( ) ( )  and so on, to make the following backward difference table 

for the given data set

x f x

x f x
f x

x

( )

( )
. ( )

. .

 ∇ ∇ ∇ ∇

( ) ( )
∇( )

( )

2 3 4

0 0

1

1

1 0
0 223144

1 25 0 223144 ff x f x

f x f x

( ) . ( )

. ( ) . ( )
1

2
2

2
3

3

0 040823

0 182321 0 012653

( ) − ∇( )
∇( ) ∇( ))

( ) ( ) − ∇( ) − ∇1 5 0 405465 0 028170 0 0051032 2
2

3
4

4. . ( ) . ( ) . ( )x f x f x f x(( )
∇( ) ∇( )

( ) (
0 154151 0 007550

1 75 0 559616
3

3
4

3 3

. ( ) . ( )

. . ( )

f x f x

x f x )) − ∇( )
∇( )

( ) ( )

0 020620

0 133531
2 0 693147

2
4

4

4 4

. ( )

. ( )
. ( )

f x

f x
x f x

At x = 1.9, n = 4, we have 

s
x x

h
n=

−
= − = −1 9 2

0 25
0 4.

.
.

 
On using Newton backward difference formula, (10.12), we have

10.3Example
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10.2.1 Error in Newton Backward Difference Formula 
On using x x s hn= +  and x x ihi = +0 ; i n= ⋅⋅⋅1 2, , ,  in Eq. (10.9), we have following error 
term for Newton backward difference formula

ε ξ
n

n

nx f
n

x x x x x x( ) ( )
( )!

( )( ) ( )=
+

− − ⋅⋅⋅ −
+1

0 11

ε ξ
n

n

x f
n

s n h s n h s h( ) ( )
( )!

( )( )( )( ) ( )=
+

+ + − ⋅⋅⋅
+1

1
1

  =
+

+ ⋅⋅⋅ +
+

+f
n

h s s s n
n

n
1

1

1
1( )

( )!
( )( ) ( )ξ  (10.14)

P f x f x s
f x

s s
f x

s s( . ) ( ) ( )( )
( )
!

( )( )
( )
!

( )( )1 9
2

1
3

14 4

2
4

3
4= + ∇ +

∇
+ +

∇
+ (( )

( )
!

( )( )( )( )

( . ) . .

s

f x
s s s s

P

+ + ⋅⋅⋅

+
∇

+ + +

= +

2

4
1 2 3

1 9 0 693147 0 13

4
4

33531 0 4 0 020620
2

0 4 0 6 0 007550
6

0 4 0 6 1 6( . ) . ( . )( . ) . ( . )( . )( .− + − − + − ))

. ( . )( . )( . )( . )

( . ) . .

+ ⋅⋅⋅

+ − −

= −

0 005103
24

0 4 0 6 1 6 2 6

1 9 0 693147 0 0P 553412 0 002474 0 000483 0 000212 0 641938+ − + =. . . .

Obtain the error bound for the approximate value of f(1.9) in Example 10.3. 

Ans.
The error term from Eq. (10.14) is given by

 ε ξ
= + + + +

f
h s s s s s

v( ) ( )
!

( )( )( )( )( )
5

1 2 3 45  (10.15)

The maximum value of f xv( ) ( )  in the interval [1, 2] is 24 (Example 10.2). The value of s 
is given by 

10.4Example

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:35:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.011
https://www.cambridge.org/core


398 Numerical Methods

10.3 Central Difference Formulas 

The interpolating polynomial is unique for a given data set. But round-off error can be 
reduced by using the appropriate formula for computation of function value at any 
intermediate point. In case, if we have to find the value at a point, which is in beginning of 
the table (near x0), it is always better to use Newton forward difference formula. Similarly, 
for the points at the end of the table (near xn), the Newton backward difference formula is 
suitable. If the point is in the middle of data set, then central difference formulas are used. 
The following central difference formulas will be discussed in this chapter 

i) Gauss forward central difference formula
ii) Gauss backward central difference formula
iii) Stirling central difference formula
iv) Bessel central difference formula
v) Everett central difference formula
vi) Steffensen central difference formula 

As the interpolating polynomial is unique, therefore, the error term is also same for all the 
interpolation formulas. The only difference is in their representations. To avoid repetitions 
of cumbersome computations and lengthy formulas, we will not discuss error formulas for 
all these central difference interpolation formulas. 

The tabular points from table 9.5 for all these central difference formulas are as follows

s
x x

h
n=

−
= − = −1 9 2

0 25
0 4.

.
.

On substituting the values of various constants in Eq. (10.15), we have the following upper 
bound for error 

ε = − =24
5

0 25 0 4 0 6 1 6 2 6 3 6 0 0007025

!
( . ) ( . )( . )( . )( . )( . ) .

Note: The approximate value obtained from the Newton backward difference formula is 

f P( . ) .1 9 0 641938= =(1.9)

The exact value is f ( . ) ln( . ) . .1 9 1 9 0 641854= =
Therefore, the error in obtained value is 0.000084. 
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x f x

x f x
f x

x f x f x

f x
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( )
( )

( ) ( )
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δ δ δ

δ

δ

δ

2 3

2 2

3 2
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1 2
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1
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x f x f x

f x f x
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δδ f x
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( )
( )

/3 2

2 2





 

10.4 Gauss Forward Central Difference Formula 

The Newton forward difference interpolation formula, (10.6), is as follows

P x f x f x s
f x

s s
f x
n

s sn

n

( ) ( ) ( )( )
( )
!

( )( )
( )
!

( )(= + + − + ⋅⋅⋅+0 0

2
0 0

2
1∆

∆ ∆
−− ⋅⋅⋅ − +1 1) ( )s n  (10.16)

We have the following formulae for forward differences

∆ − ∆ = ∆− −
2

0
2

1
3

1f x f x f x( ) ( ) ( )

⇒ ∆ = ∆ + ∆− −
2

0
2

1
3

1f x f x f x( ) ( ) ( )

Similarly, we have

∆ = ∆ + ∆
∆ = ∆ + ∆

− −

− −

3
0

3
1

4
1

4
0

4
1

5
1

f x f x f x
f x f x f x
( ) ( ) ( )
( ) ( ) ( )



On substituting these results into Newton forward difference formula, (10.16), we have
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P x f x s f x s s f x f x

s s s

n( ) ( ) ( ) ( )
!

( ) ( )

( )(

= + ∆ + − ∆ + ∆( )

+ − −

− −0 0
2

1
3

1
1

2
1 2))

!
( ) ( ) ( )( )( )

!
( ) (

3
1 2 3

4
3

1
4

1
4

1
5

1∆ + ∆( )+ − − − ∆ + ∆− − − −f x f x s s s s f x f x ))( )+ ⋅⋅⋅

P x f x s f x s s f x s s s f xn ( ) ( ) ( ) ( )
!

( ) ( ) ( )
!

( )= + ∆ + − ∆ + + − ∆− −0 0
2

1
3

1
1

2
1 1

3

++ + − − ∆ + + − − − ∆− −
( ) ( )( )

!
( ) ( ) ( )( )( )

!
(s s s s f x s s s s s f x1 1 2

4
1 1 2 3

5
4

1
5

11) + ⋅⋅⋅  (10.17)

Also, we have 

∆ = ∆ + ∆
∆ = ∆ + ∆

− − −

− − −

4
1

4
2

5
2

5
1

5
2

6
2

f x f x f x
f x f x f x

( ) ( ) ( )
( ) ( ) ( )



On using these values in Eq. (10.17), we get

P x f x s f x s s f x s s s f xn ( ) ( ) ( ) ( )
!

( ) ( ) ( )
!

( )= + ∆ + − ∆ + + − ∆− −0 0
2

1
3

1
1

2
1 1

3
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!
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1 1 2

4
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5
2

−− ∆ + ∆( )+ ⋅⋅⋅− −
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5
5

2
6

2
)

!
( ) ( )f x f x
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Similarly, we will continue these steps to get the following formula

P x f x s f x s s f x s s s f xn( ) ( ) ( ) ( )
!

( ) ( ) ( )
!

( )= + ∆ + − ∆ + + − ∆− −0 0
2

1
3

1
1

2
1 1

3

++ + − − ∆ + + + − − ∆− −
( ) ( )( )
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( ) ( )( ) ( )( )

!
(s s s s f x s s s s s f x1 1 2

4
2 1 1 2

5
4

2
5

22 ) + ⋅⋅⋅  (10.18)

On using the results ∆ =f x f x( ) ( )/0 1 2δ , ∆ =−
2

1
2

0f x f x( ) ( )δ , …, we have
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P x f x f x s
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!

( )( )( )( )
( )
!

( )(/

s s

f x
s s s s

f x
s s

−

+ + − − + + +

1

4
1 1 2

5
2 1

4
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(10.19)

The formula (10.19) is known as Gauss forward central difference formula.

Use Gauss forward central difference formula to find the value of f(1.55) for the following 
data set 

x
f x

: . . . .
( )

1 1 25 1 5 1 75 2 0
0 0.223144 0.405465 0.559616 0.693147

Ans. 
The data set is equispaced with spacing h = 0.25. Contrary to Newton forward and 
backward differences, we will now assume the points as follows 

x x x x x
f x f x

− −

− −

= = = = =
= =

2 1 0 1 2

2 1

1 1 25 1 5 1 75 2 0, . , . , . , .
( ) ( )0, 0.2231444, 0.405465, 0.559616, 0.693147f x f x f x( ) ( ) ( )0 1 2= = =

We will use the central difference formulas for the given data set to construct the following 
central difference table.

x f x

x f x
f x

x

( )

( )
. ( )

. .
/

 δ δ δ δ

δ

2 3 4

2 2

3 2

1

1 0
0 223144

1 25 0

− −

−

−

( ) ( )
( )

( ) 2223144 0 040823

0 182321 0 012

1
2

1

1 2

f x f x

f x

( ) . ( )

. ( ) ./

− −

−

( ) − ( )
( )

δ

δ 6653

1 5 0 405465 0 028170 0

3
1 2

0 0
2

0

δ

δ

f x

x f x f x

( )

. . ( ) . ( )

/−( )
( ) ( ) − ( ) − .. ( )

. ( ) . ( )

.

/ /

005103

0 154151 0 007550

1 75

4
0

1 2
3

1 2

δ

δ δ

f x

f x f x

( )
( ) ( )

xx f x f x

f x
x

1 1
2

1

3 2

0 559616 0 020620

0 133531
2

( ) ( ) − ( )
( )

. ( ) . ( )

. ( )/

δ

δ

22 20 693147( ) ( ). ( )f x

To compute value at x = 1.55, we have 

s
x x

h
=

−
= − =0 1 55 1 5

0 25
0 2. .

.
.
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10.5 Gauss Backward Central Difference Formula 

The Newton forward interpolation formula is given as follows 

P x f x f x s
f x

s s

f x
n

s s

n

n

( ) ( ) ( )( )
( )
!

( )( )

( )
!

( )(

= + + − + ⋅⋅⋅

+

0 0

2
0

0

2
1∆

∆

∆
−− ⋅⋅⋅ − +1 1) ( )s n

 

(10.20)

On using forward difference, we have

∆ − ∆ = ∆− −f x f x f x( ) ( ) ( )0 1
2

1

⇒ ∆ = ∆ + ∆− −f x f x f x( ) ( ) ( )0 1
2

1

Similarly, the following results can be obtained easily

∆ = ∆ + ∆
∆ = ∆ + ∆

− −

− −

2
0

2
1

3
1

3
0

3
1

4
1

f x f x f x
f x f x f x
( ) ( ) ( )
( ) ( ) ( )



On substituting these results into Newton forward difference formula, (10.20), we get

P x f x s f x f x s s f x f xn( ) ( ) ( ) ( ) ( )
!

( ) ( )= + ∆ + ∆( )+ − ∆ + ∆(− − − −0 1
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1
2

1
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2 ))
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s s s f x f x s s s s f( )( )
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( ) ( ) ( )( )( )

!
(1 2

3
1 2 3

4
3

1
4

1
4 xx f x− −+ ∆( )+ ⋅⋅⋅1

5
1) ( )

On using Gauss forward central difference formula (10.19), we have

P f x f x s
f x

s s
f x

s( . ) ( ) ( )( )
( )
!

( )( )
( )
!

(/
/1 55

2
1

30 1 2

2
0

3
1 2= + + − + +δ

δ δ
11 1

4
1 1 2

5
2

4
0

5
1 2

)( )( )

( )
!

( )( )( )( )
( )
!

( )(/

s s

f x
s s s s

f x
s s

−

+ + − − + +
δ δ

++ − − + ⋅⋅⋅1 1 2)( )( )( )s s s

P( . ) . . ( . ) . ( . )( . ) .1 55 0 405465 0 154151 0 2 0 028170
2

0 2 0 8 0 007= + + − − + 5550
6

1 2 0 2 0 8

0 005103
24

1 2 0 2 0 8 1 8

( . )( . )( . )

. ( . )( . )( . )( . )

−

+ − − −

P( . ) . . . . . .1 55 0 405465 0 030830 0 002254 0 000242 0 000073 0 438= + + − − = 2234

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:35:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.011
https://www.cambridge.org/core


Interpolation for Equal Intervals and Bivariate Interpolation 403
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(10.21)

The higher order forward differences provide the following results 

∆ − ∆ = ∆− − −
3

1
3

2
4

2f x f x f x( ) ( ) ( )

 ⇒ ∆ = ∆ + ∆− − −
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1
3
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On using these forward differences in Eq. (10.21), we get
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(10.22)

On using the results, ∆ =− −f x f x( ) ( )/1 1 2δ , ∆ =−
2

1
2

0f x f x( ) ( )δ , …, we get

P x f x f x s
f x

s s
f x

sn( ) ( ) ( )( )
( )
!

( )( )
( )
!

(/
/= + + + + +−

−
0 1 2

2
0

3
1 2

2
1

3
δ

δ δ
11 1

4
2 1 1

5
2

4
0

5
1 2

)( )( )
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(10.23)

The formulas (10.22) and (10.23) are known as the Gauss backward central difference 
interpolation formula.

Use Gauss backward difference formula to find the value of f(1.45) for the data set of 
Example 10.5.

Ans. 
The data set is equispaced with spacing h = 0.25. We will now assume the points as follows 

x x x x x
f x f x

− −

− −

= = = = =
= =

2 1 0 1 2

2 1

1 1 25 1 5 1 75 2 0, . , . , . , .
( ) ( )0, 0.2231444, 0.405465, 0.559616, 0.693147f x f x f x( ) ( ) ( )0 1 2= = =
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10.6 Stirling Formula 

Gauss forward central difference interpolation formula, (10.19), is given by 

P x f x s f x s s f x s s s f xn( ) ( ) ( ) ( )
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( ) ( ) ( )
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4
2 1 1 2

5
4

2
5

22 ) + ⋅⋅⋅
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−
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4
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5
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4
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5
1 2δ δ
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(10.24)

Gauss backward central difference interpolation formula, (10.23), is given by
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To compute value at x = 1.45, we have 

s
x x

h
=

−
= − = −0 1 45 1 5

0 25
0 2. .

.
.

On using Gauss backward difference formula (10.23) and values from central difference 
table of Example 10.5, we have

P f x f x s
f x
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f x
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!
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(/
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2
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(/δ δ
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P( . ) . . ( . ) . ( . )( . ) .1 45 0 405465 0 182321 0 2 0 028170
2

0 8 0 2 0 01= + − + − − + 22653
6

0 8 0 2 1 2

0 005103
24

1 8 0 8 0 2 1 2

( . )( . )( . )

. ( . )( . )( . )( . )

− −

+ − − −

P( . ) . . . . . .1 45 0 405465 0 036464 0 002254 0 000405 0 000073 0 371= − + + − = 5587
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(10.25)

On taking the mean of (10.24) and (10.25), we have
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(10.26)

The formula (10.26) is known as Stirling central difference formula.

Use Stirling central difference formula to find the value of f(1.55) for the data points of 
Example 10.5.

Ans. 
Given
h = 0.25

x x x x x
f x f x

− −

− −

= = = = =
= =

2 1 0 1 2

2 1

1 1 25 1 5 1 75 2 0, . , . , . , .
( ) ( )0, 0.2231444, 0.405465, 0.559616, 0.693147f x f x f x( ) ( ) ( )0 1 2= = =

At x = 1.55, we have 

s
x x

h
=

−
= − =0 1 55 1 5

0 25
0 2. .

.
.

On using the values from central difference table of Example 10.5 and Stirling central 
difference formula (10.26), we have
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10.7 Bessel Formula 

Gauss forward interpolation formula (10.19) is as follows
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The formula (10.27) can be rewritten as follows 
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The forward differences provide the following results
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Similarly, we have 
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On using these results in Eq. (10.28), we have
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The formula (10.29) is known as Bessel central difference formula.

Compute the value of f(1.65) by using Bessel central difference formula to the data set of 
Example 10.5. 

Ans. 
At x = 1.65, we have
 

s
x x

h
=

−
= − =0 1 65 1 5

0 25
0 6. .

.
.

Bessel central difference formula (10.29) provides the following approximation to the 
value of f(1.65)
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10.8 Everett Formula 

In Everett formula, we will retain only even order central differences, and eliminate all the 
odd order central differences. 

Gauss forward interpolation formula is as follows

P x f x s f x s s f x s s s f xn( ) ( ) ( ) ( )
!

( ) ( ) ( )
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++ + − − ∆ + + + − − ∆− −
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(s s s s f x s s s s s f x1 1 2

4
2 1 1 2

5
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2
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22 ) + ⋅⋅⋅
 
(10.30)

On eliminating odd differences with the following formulas 

∆ = −f x f x f x( ) ( ) ( )0 1 0
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On rearranging the terms, we get
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 (10.31)

On using relations between forward and central difference formulas, we have
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 (10.32)

The formula (10.32) is known as Everett central difference formula.

Consider Example 10.5, use Everett central difference formula to obtain the value of 
f(1.70). 

Ans. 
At x = 1.70, we have 

s
x x

h
=

−
= − =0 1 70 1 5

0 25
0 8. .

.
.  

r s= − =1 0 2.  
On using Everett central difference formula (10.32), we have
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( ) ( ) ( )
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10.9 Steffensen Formula 

In Steffensen formula, we will retain only odd order central differences and eliminate all the 
even order differences. 

Gauss forward interpolation formula is as follow

P x f x s f x s s f x s s s f xn( ) ( ) ( ) ( )
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On eliminating even differences with the formulas 
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On rearranging the terms, we get
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On rewriting the above formula in central differences, we have
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The formula (10.35) is known as Steffensen central difference formula.

Find the value of f(1.40) for the data set of Example 10.5. Use Steffensen central difference 
formula. 

Ans. 
At point x = 1.40, we have

s
x x

h
=

−
= − = −0 1 4 1 5

0 25
0 4. .

.
.

On using Steffensen central difference formula (10.35) and central differences from 
Example 10.5, we have
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Numerical Methods

Table 10.1 Finite Differences Formulas

Newton forward difference formula: ( )0 1< <s ( )x x sh= +0

P x f x f x s
f x

s s
f x

s sn( ) ( ) ( )( )
( )
!

( )( )
( )
!

( )( )(= + + − + −0 0

2
0

3
0

2
1

3
1∆

∆ ∆
ss − + ⋅ ⋅ ⋅2)

x f x

x f x

f x

x f x f x

f x f x

x f x

( )

( )

( )

( ) ( )

( ) ( )

( )

∆ ∆ ∆

∆

∆

∆ ∆

∆

2 3

0 0

0

1 1
2

0

1
3

0

2 2
22

1

2

3 3

f x

f x

x f x

( )

( )

( )







 

∆

Newton backward difference formula: ( )− < <1 0s ( )x x shn= +
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Gauss forward central difference formula: ( / )0 1 2< <s ( )x x sh= +0
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Gauss backward central difference formula: ( / )− < <1 2 0s
( )x x sh= +0
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Stirling formula: ( / / )− < <1 4 1 4s ( )x x sh= +0
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Bessel formula: ( / / )1 4 3 4< <s ( )x x sh= +0
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Everett formula: ( )0 1< <s ( )x x sh= +0 ( )r s= −1

P x r f x s f x
r r r

f x
s s s

n( ) ( ) ( )
( ) ( )
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!
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21 1
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1 1
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!
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!
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Steffensen formula: ( / / )− < <1 2 1 2s ( )x x sh= +0
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Motivation and Few Remarks: 
The interpolating polynomial is unique for a given set of data points. All the interpolation 
methods produce same function value at any intermediate point theoretically. But, we have 
different sources of errors in practical implications of all these interpolation methods to 
find function values. The main motivation to discuss so many interpolation methods is to 
minimize these errors. There are following three major sources of errors in approximating 
the given function f(x) with the interpolating polynomial, Pn(x). 

1. Approximation Error: We have already discussed that the error term in 
interpolating polynomial of degree n for a given function f(x) is given by

 ε ξ ξ
n

n

n

n

x
f
n

x x x x x x
f
n

x x( )
( )

( )!
( )( ) ( )

( )
( )!

(=
+

− − ⋅⋅⋅ − =
+

−
+ +1

0 1

1

1 1 ii
i

n

)
=

∏
0

 This error can be reduced by taking appropriate numbers of data points, such that 
interpolating polynomial is of sufficient degree. But, we should keep it in mind 
that a polynomial of very large degree suffers from the polynomial oscillations. For 
example, consider the following polynomial of degree 13
P x x x x x x x x x x x x13 6 5 4 3 2 1 1 2 3( ) ( )( )( )( )( )( )( )( )( )( )(= − − − − − − + + + + 44

5 6
)

( )( )x x+ +
 It is easy to see from the Figure 10.1 that this polynomial has very large values (up 

to 107) as we move away from the zeroes of this polynomial and the origin. It is 
due to use of large degree of polynomial. As degree of polynomial increases, the 
oscillation increases wildly. So, we have to use polynomial approximation up to a 
reasonable degree. 

–2

–2. × 107

–4. × 107

–6. × 107

6. × 107

4. × 107

2. × 107

–6 –4 0 2
x

4 6

Fig. 10.1 Example of polynomial oscillations
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2. Round-off Error: We have already discussed that the rounding error will increase 
with the number of computations. It is worth to remind here that the numbers 
10.13 and 0.1013 have same significant digits, but the round off errors in these 
numbers are 0.005 and 0.00005 respectively. So, it is always recommended to work 
with the number having absolute value less than 1 to reduce rounding error. 

We have to select the appropriate difference formula for the computation 
of interpolated value with less rounding error. For example, Newton forward 
difference formula is used to compute the value at the beginning of the table. The 
question is why to use Newton forward difference formula? If the value of x is near 

the starting point x0, then the value of s
x x

h
=

− 0  is in the interval (0, 1). So, the 

rounding error is less in the Newton forward difference formula which contains s 
in each term except the first term. Similar arguments authenticate our assertions 
that Newton forward difference formula is suitable for the values at the upper end 
of the table, Newton backward difference formula is suitable for the values at the 
lower end of the table, and finally if the value is in the mid of the table, central 
difference formulas are suitable. 

  Newton forward difference formula: (0 < s < 1)
  Newton backward difference formula: (–1 < s < 0)
  Gauss forward central difference formula: (0 < s < 1/2)
  Gauss backward central difference formula: (–1/2 < s < 0)
  Stirling formula: (–1/4 < s < 1/4)
  Bessel formula: (1/4 < s < 3/4)
  Everett formula: (0 < s < 1)
  Steffensen formula: (–1/2 < s < 1/2)

3. Truncation Error: We have already discussed that polynomial approximation 
of very large degree is not suitable for practical applications. So, we can neglect 
higher order differences by truncating the interpolation formula. But, it will 
produce the truncation error. An appropriate selection is required to minimize the 
truncation error. For example, in second order approximations of function values, 
the truncation terms in various central difference formulas are given by

i. Gauss forward:  δ 3
1 2

3
1 1

f x
s s s

( )
!

( )( )( )/ + −

ii. Gauss backward:  δ 3
1 2

3
1 1

f x
s s s

( )
!

( )( )( )/− + −

iii. Stirling:   ( )( )
!

( ) ( )/ /s s f x f x2 3
1 2

3
1 21

3 2
− +











−δ δ
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iv. Bessel:   s s s f x−





−1
2

1
3

3
1 2

( )( )
!

( )/δ

v. Everett: 

 ( )( ) ( )( )
!

( ) ( )( ) ( )( )
!

(r r r r r f x s s s s s f+ + − − + + + − −2 1 1 2
5

2 1 1 2
5

4
0

4δ δ xx1)

vi. Steffensen:

 ( )( ) ( )
!

( ) ( ) ( )( )
!

( )/ /
s s s s f x s s s s f x+ + − − + − −

−
2 1 1

4
1 1 2

4
3

1 2
3

1 2δ δ

 It is clear from the truncation terms that the truncation terms are of order 3 except 
Everett formula. In Everett formula the approximation is exact up to polynomial 
of degree 3, and it has truncation term of order 4. Therefore, Everett formula has 
minimum truncation error for second order approximations of function values. 
Similarly, Steffensen formula has minimum truncation error for third order 
approximations. 

To conclude, we have to keep in mind the round-off error, truncation error and 
degree of polynomial approximations to get the desired accuracy and optimize the 
computational results. 

In a given table of sin(θ), we have following values

θ
θ

( )
sin

In degree
( ) 0.258819 0.5 0.707107 0.86602

0 15 30 45 60 75 90
0 55 .965926 10

Compute the values of the function sin(θ) at the values θ = ° ° ° ° ° ° °5 40 48 50 55 57 87, , , , , , .

Ans. 
First, we construct the finite difference table by simply subtracting the values of sin(θ), 
and then we proceed further. Finite difference table for the given values of sin(θ) is as 
follows 

10.11Example
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θ θ δ δ δ δ δ δsin ( , ) ( , ) ( , ) ( , ) ( , ) ( ,( ) ∆ ∆ ∆ ∆ ∆ ∆∇ ∇ ∇ ∇ ∇ ∇2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 ))

.
.

0 0

0 258819 0
0 241181 0

30 0

0.258819
15 .017638

.016436
.500000

−
−

−−
−

−

0 0 002321
0 207107 0 014115 0 000966

45 0 0

.034074

.707107 .04

.
. . .

88189
.158918

0.866025

0 003287 0 000235
0 0 010828 0 000731

60

. .
. .

−
−

− 00.059017 0.004018
.006810

.965926 .065827
0.034

0 099901 0
75 0 0

. −
−

0074
90 1

The values of θ = 5 40 48 50 55 57 870o o o o o o, , , , , ,  are at starting, middle and at the end of 
the table, so we will use appropriate forward, backward and central difference formulas 
to compute values of the function sin(θ). We have following values of s corresponding to 
these values of θ.

s
x x

h
=

−
= − =0 5 0

15
1
3

; Newton forward difference formula 

s
x x

h
=

−
= − = −0 40 45

15
1

3
; Gauss backward difference formula

s
x x

h
=

−
= − =0 48 45

15
1
5

; Stirling central difference formula

s
x x

h
=

−
= − =0 50 45

15
1
3

; Gauss forward difference (or) Steffensen formula

s
x x

h
=

−
= − =0 55 45

15
2
3

; Bessel formula

s
x x

h
=

−
= − =0 57 45

15
4
5

; Everett formula

s
x x

h
=

−
= − = −6 87 90

15
1
5

; Newton backward difference formula

Note that in Newton forward difference formula, the point x0 = 0, while in all central 
difference formulas x0 = 45. It is due to the fact that the tabular points are given different 
subscripts in forward and central difference tables. 

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:35:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.011
https://www.cambridge.org/core


420 Numerical Methods

The value of sin( )θ  at θ = °5 : s
x x

h
=

−
= − =0 5 0

15
1
3

Newton forward difference formula:

θ θsin

( ) ( )
( )

( ) . (

( ) 

0.258819
15

∆ ∆ ∆ ∆ ∆ ∆

∆

2 3 4 5 6

0 0
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0 258819

x y
y

x y11
2
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1
3

0

2

0
0 241181 0

30 0

) ( )
. ( ) ( )

( )

−
−

.017638
.016436

.5000

∆
∆ ∆

y
y y

x 000 .034074( ) ( ) . ( )
. ( ) .

y y y
y

2
2

1
4

0

2

0 0 002321
0 207107 0 014115

−
−

∆ ∆
∆ (( ) . ( )

( ) ( ) ( ) .
∆ ∆

∆

3
1

5
0

3 3
2

2

0 000966
45 0 0 0 00

y y
x y y.707107 .048189− 33287 0 000235

0 0 010828 0 00

4
1

6
0

3
3

2

( ) . ( )
( ) . ( ) .

∆ ∆
∆ ∆

y y
y y

−
−.158918 00731

60

5
1

4 4
2

3
4

2

( )
( ) ( ) ( ) ( )

∆
∆ ∆

y
x y y y0.866025 0.059017 0.004018−

00 099901 0
75 0 0

4
3

3

5 5

. ( ) ( )
( ) ( ) (

∆ ∆
∆

y y
x y

−
−

.006810
.965926 .065827 22

4

5

6 6

y
y

x y

)
( )

( ) ( )
0.034074

90 1
∆

Newton forward difference formula is given by

P x f x f x s
f x

s s
f x
n

s s
n

( ) ( ) ( )( )
( )
!

( )( )
( )
!

( )(= + + − + ⋅⋅⋅+ −0 0

2
0 0

2
1∆

∆ ∆
11 1) ( )⋅⋅⋅ − +s n

P( ) ( . ) ( .5 0 1
3

0 258819 1
2

1
3

2
3

0 01° = + 





+ 











−





− 77638 1
6

1
3

2
3

5
3

0 016436

1
24

) ( . )+ 











−





−





−

+ 











−





−





−





+ 


1
3

2
3

5
3

8
3

0 002321 1
120

( . ) 








−





−





−





−





1
3

2
3

5
3

8
3

11
3

0 000966( . ))

+ 











−





−





−





−





1
720

1
3

2
3

5
3

8
3

11
3

−−





−14
3

0 000235( . )

P( ) . . . . . .5 0 0 086273 0 001960 0 001014 0 000094 0 000031 0 000° = + + − − + + 0008

= 0.087164 (Approximate value of sin(θ) at θ = 5°)

Note that the exact value of sin(θ) up to six decimal points at θ = 5° is 0.087156.

Error = Exact value – Approximate value
= – 0.000008 
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Value of sin(θ) at θ = 40°: s
x x

h
=

−
= − = −0 40 45

15
1

3
; 

Gauss backward difference formula:

θ θ δ δ δ δ δ δ

δ

sin

( ) ( )
( )

( ) .
/

( ) 

0.258819

15

2 3 4 5 6

3 3

5 2

2

0 0

0 25

x y
y

x

− −

−

− 88819 0

0 241181 0
2

2
2

3 2
3

3
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. ( ) (/ /

y y

y y
− −

− −

−

−

.017638

.016436

δ

δ δ 22

1 1
2

1
4

130 0 0 0 002321

0 20

)

( ) ( ) ( ) . ( )

.

x y y y− − − −−.500000 .034074 δ δ

77107 0 014115 0 000966

45 0
1 2

3
1 2

5
1 2

0

( ) . ( ) . ( )

( )
/ / /δ δ δy y y

x
− − −−

.7077107 .048189

.158

( ) ( ) . ( ) . ( )y y y y0
2

0
4

0
6

00 0 003287 0 000235

0

− −δ δ δ

9918

0.866025

( ) . ( ) . ( )

( )
/ / /δ δ δy y y

x
1 2

3
1 2

5
1 2

1

0 010828 0 000731

60

−

(( ) ( ) ( )

. ( )/

y y y

y
1

2
1

4
1

3 20 099901 0

−

−

0.059017 0.004018

.006810

δ δ

δ (( )

( ) ( ) ( )
( )

/

/

δ

δ
δ

3
3 2

2 2
2

2

5 2

75 0 0

y

x y y
y

.965926 .065827
0.034074

9

−

00 1( ) ( )x y3 3

Gauss backward difference formula

P x f x f x s
f x

s s
f x

s( ) ( ) ( )( )
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!

(/
/= + + + + +−

−
0 1 2

2
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3
1 2

2
1

3
1δ
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( )(/

s s

f x
s s s s

f x
s s

−

+ + + − + +−

1

4
2 1 1

5
2

4
0

5
1 2δ δ

++ − − + ⋅⋅⋅1 1 2)( )( )( )s s s

P( ) . ( . )40 0 707107 1
3

0 207107 1
2

2
3

1
3

° = + −
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−





−
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( . )

( .

0 048189

1
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2
3

1
3
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3

0 0141115

1
24

5
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2
3

1
3

4
3

0 003287

)

( . )+ 

















−





−





++ 

















−





−





−





1
120

5
3

2
3

1
3

4
3

7
3

0( .0000966

1
720

8
3

5
3

2
3

1
3

4
3

)

+ 























−





−





−





−7
3

0 000235( . )

P( ) . . . . . .40 0 707107 0 069036 0 005354 0 000697 0 000068 0 0000° = − + − + − 009 0 000003+ .

= 0.642790 (Approximate value of sin(θ) at θ = 40°)

Exact value of sin(θ) up to six decimal points at θ = 40° is 0.642788
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Value of sin(θ) at θ = 48°: s
x x

h
=

−
= − =0 48 45

15
1
5

;

Stirling central difference formula:

θ θ δ δ δ δ δ δ

δ

sin

( ) ( )
( )

( ) .
/

( ) 

0.258819

15

2 3 4 5 6

3 3

5 2

2

0 0

0 25

x y
y

x

− −

−

− 88819 0

0 241181 0
2

2
2

3 2
3

3

( ) ( )

. ( ) (/ /

y y

y y
− −

− −

−

−

.017638

.016436

δ

δ δ 22

1 1
2

1
4

130 0 0 0 002321

0 20

)

( ) ( ) ( ) . ( )

.

x y y y− − − −−.500000 .034074 δ δ

77107 0 014115 0 000966

45 0
1 2

3
1 2

5
1 2

0

( ) . ( ) . ( )

( )
/ / /δ δ δy y y

x
− − −−

.7077107 .048189

.158

( ) ( ) . ( ) . ( )y y y y0
2

0
4

0
6

00 0 003287 0 000235

0

− −δ δ δ

9918
0.866025

( ) . ( ) . ( )
( )

/ / /δ δ δy y y
x

1 2
3

1 2
5

1 2

1

0 010828 0 000731
60

−
(( ) ( ) ( )

. ( )/

y y y

y
1

2
1

4
1

3 20 099901 0

−

−

0.059017 0.004018

.006810

δ δ

δ (( )

( ) ( ) ( )
( )

/

/

δ

δ
δ

3
3 2

2 2
2

2

5 2

75 0 0

y

x y y
y

.965926 .065827
0.034074

9

−

00 1( ) ( )x y3 3

Stirling central difference formula 

P x f x s f x f x s f x s( ) ( ) ( ) ( ) ( ) ( )
!

( )
!

( )/ /= + +( ) + +−0 1 2 1 2
2 2

0
1
2

1
2

1
3

δ δ δ (( ) ( ) ( )

!
( )( ) ( )

!

/ /s f x f x

s s f x

2 2 3
1 2

3
1 2
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P( ) . ( . . )48 0 707107 1
5

1
2

0 207107 0 158918 1
5

° = + 











+ + 

















−

+ 











−





1
5

1
2

0 048189

1
6

1
5

24
25

( . )

11
2

0 014115 0 010828 1
24

1
5

1
5

24





− − + 

















−( . . )
225

0 003287

1
120

1
5

24
25

99
25







+ 











−





−




( . )








+

+ 

















−

1
2

0 000966 0 000731

1
720

1
5

1
5

( . . )

224
25

99
25

0 000235





−





−( . )

P( ) . . . . . .48 0 707107 0 036602 0 000964 0 000399 0 000005 0 0000° = + − + − + 005 0−

P( ) .48 0 743144° =  (Approximate value of sin(θ) at θ = 48°)

Exact value of sin(θ) up to six decimal points at θ = 48° is 0.743145
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Interpolation for Equal Intervals and Bivariate Interpolation 423

Value of sin(θ) at θ = 50°: s
x x

h
=

−
= − =0 50 45

15
1
3

; 

Gauss forward difference formula (or) Steffensen formula:

θ θ δ δ δ δ δ δ

δ

sin

( ) ( )
( )

( ) .
/

( ) 

0.258819

15

2 3 4 5 6

3 3

5 2

2

0 0

0 25

x y
y
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− −

−

− 88819 0

0 241181 0
2

2
2

3 2
3

3

( ) ( )

. ( ) (/ /

y y

y y
− −

− −

−

−

.017638

.016436

δ

δ δ 22

1 1
2

1
4

130 0 0 0 002321

0 20

)

( ) ( ) ( ) . ( )

.

x y y y− − − −−.500000 .034074 δ δ

77107 0 014115 0 000966

45 0
1 2

3
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5
1 2

0

( ) . ( ) . ( )

( )
/ / /δ δ δy y y

x
− − −−

.7077107 .048189

.158

( ) ( ) . ( ) . ( )y y y y0
2

0
4

0
6

00 0 003287 0 000235

0

− −δ δ δ

9918

0.866025

( ) . ( ) . ( )
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/ / /δ δ δy y y

x
1 2

3
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5
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1

0 010828 0 000731

60

−

(( ) ( ) ( )

. ( )/

y y y

y
1

2
1

4
1

3 20 099901 0

−

−

0.059017 0.004018

.006810

δ δ

δ (( )

( ) ( ) ( )
( )

/

/

δ

δ
δ

3
3 2

2 2
2

2

5 2

75 0 0

y

x y y
y

.965926 .065827
0.034074

9

−

00 1( ) ( )x y3 3

Gauss forward difference formula

P x f x f x s
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!
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!
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−
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−





−
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1
720

7
3

4
3

1
3

2
3

5
3

)

+ 























−





−





−−





−8
3

0 000235( . )

P( ) . . . . . .50 0 707107 0 052973 0 005354 0 000535 0 000068 0 0000° = + − + + + 007 0 000003+ .

P( ) .50 0 766047° =  (Approximate value of sin(θ) at θ = 50°)
Exact value of sin(θ) up to six decimal points at θ = 50° is 0.766044

Steffensen formula
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1 2δ 22 3
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1 2
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0 000966( . )

P( ) . . . . . .50 0 707107 0 035315 0 023012 0 000312 0 000290 0 0000° = + + + + + 004 0 000004+ .

P( ) .50 0 766044° =  (Approximate value of sin(θ) at θ = 50°)

Exact value of sin(θ) up to six decimal points at θ = 50° is 0.766044

Value of sin(θ) at θ = 55°: s
x x

h
=

−
= − =0 55 45

15
2
3

; 

Bessel formula:
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1
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1
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. .
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2
3

1
3

4
3

1
120

0 000731( . )

P( ) . . . . .55 0 786566 0 026486 0 005956 0 000067 0 000075° = + + + +

P( ) .55 0 819152° =  (Approximate value of sin(θ) at θ = 55°)

Exact value of sin(θ) up to six decimal points at θ = 55° is 0.819152
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Value of sin(θ) at θ = 57°: s
x x

h
=

−
= − =0 57 45

15
4
5

; 

Everett formula:
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1
120

14
5

9
5

4
5







−





+ 



















( . )





−





−





1
5

6
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0 004018( . )

P( ) . . . . . .57 0 141421 0 692820 0 001542 0 002833 0 000021 0 0000° = + + + + + 332

P( ) .57 0 838669° =  (Approximate value of sin(θ) at θ = 57°)

Exact value of sin(θ) up to six decimal points at θ = 57° is 0.838670

Value of sin(θ) at θ = 87°: s
x x

h
=

−
= − = −6 87 90

15
1
5

; 

Newton backward difference formula:
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426 Numerical Methods

Indian government carries out census after a gap of 10 years. According to census details 
conducted from 1961 to 2011, the populations up to four decimal digits in these years are 
as follows

Years Population (in crores)
1961 43.9235
1971 54.8160
1981 68.33229
1991 84.6421
2001 102.8737
2011 121.0193

Use appropriate finite difference technique to find the approximate population in 1966, 
1985, 1996 and 2009.

Ans. 
The finite difference table for given data set is as follows

10.12Example

P x f x f x s
f x

s s
f x

s s sn n
n n( ) ( ) ( )( )

( )
!

( )( )
( )
!

( )( )(= + ∇ +
∇

+ +
∇

+
2 3

2
1

3
1 ++ + ⋅⋅⋅2)

P( ) ( . ) ( .87 1 1
5

0 034074 1
2

1
5

4
5

0° = + −





+ 





−











− 0065827 1
6

1
5

4
5

9
5

0 006810

1
24

) ( . )+ 





−

















−
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−
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1
5

4
5

9
5

14
5

0 004018 1
120

( . ) 


−





























+

1
5

4
5

9
5

14
5

19
5

0 000731( . )

11
720

1
5

4
5

9
5

14
5

19
5

24
5







−



































−( . )0 000235

P( ) . . . . . .87 1 0 006815 0 005266 0 000327 0 000135 0 000018 0 00° = − + + − − + 00007
P( ) .87 0 998632° =  (Approximate value of sin(θ) at θ = 87°)

Exact value of sin(θ) up to six decimal points at θ = 87° is 0.998630
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Interpolation for Equal Intervals and Bivariate Interpolation 427

Years ( ) Population( ) 

1

x y ∆ ∆ ∆ ∆ ∆( , ) ( , ) ( , ) ( , ) ( , )∇ ∇ ∇ ∇ ∇δ δ δ δ δ2 3 4 5

9961 43.9235
 10.8925

1971 54.8160 2.6244
 13.5169 0.1679

1981 68.33329 2.7923
 

1991 84.6421 1.9224

−
− −

−

1 0378
16 3092 0 8699 0 1007

1

.
. . .

..
.

1385
2 0084 18.2316

2001 102.8737 0.0860
 18.1456

2011 121.01

−
−

993

The years 1966, 1985 and 2009 are at starting, middle and at the end of the table. The 
values of s for these years are as follows

s
x x

h
=

−
= − = =0 1966 1961

10
1
2

0 5. ; Newton forward difference formula 

s
x x

h
=

−
= − = =0 1985 1981

10
2
5

0 4. ; Bessel formula

s
x x

h
=

−
= − = − = −5 2009 2011

10
1
5

0 2. ; Newton backward difference formula

The year 1996 is not at the end of the table, therefore here we are using 2001 as xn, while 
discarding the value at 2011. 

s
x x

h
=

−
= − = − = −4 1996 2001

10
1
2

0 5. ; Newton backward difference formula.

Note that this exclusion of data point will create error in interpolation value. Rather, here 
we are excluding the data point, but is recommended to use all the data points.
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428 Numerical Methods

Population at year (x) = 1966:
Newton forward difference formula:

Years ( ) Population( )

1961( ) 43.9235( )
10.8925(

x y

x y

∆ ∆ ∆ ∆ ∆2 3 4 5

0 0

∆∆
∆

∆ ∆

y
x y y

y y
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1 1
2
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1
3

)
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2 2
2

1
4

0

2

1 0378
16 3092

)
1981( ) 68.3329( ) 2.7923( ) ( )

(
x y y y

y
∆ − ∆

∆
.

. )) ( ) ( )
1991( ) 84.6421( ) 1.9224(

− ∆ − ∆
∆
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1

5
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3 3
2

2

. .y y
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4
1

3
3

2

4

.
.

y
y y

x y44
2

3

4

5 5

) 0.0860( )
18.1456( )

2011( ) 121.0193( )

− ∆
∆

y
y

x y

s
x x

h
=

−
= − = =0 1966 1961

10
1
2

0 5.

Newton forward difference formula is given by
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!
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0 0
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∆ ∆
11 1) ( )⋅⋅⋅ − +s n

P( ) . .1966 43 9235 1
2

10 8925 1
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1
2

1
2

= + 
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( . ) ( . )2 6244 1
6

1
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2
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1
24
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− + 


1
2

1
2

3
2

5
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1 0378 1
120

( . ) 








−





−





−





−





−1
2

1
2

3
2

5
2

7
2

0 1007( . )

P( ) . . . . . .1966 43 9235 5 44625 0 32805 0 010494 0 040539 0 002753= + − + + − 55

P( ) .1966 49 0899795=  (Approximate population of India in 1966)

Population at year (x) = 1985:
Bessel formula:

s
x x

h
=

−
= − = =0 1985 1981

10
2
5

0 4. ; Bessel formula
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Years ( ) Population( ) 

1961( ) 43.9235( )
10.89

x y

x y

δ δ δ δ δ2 3 4 5
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5

2
5

3
5

8
5

1.. .0378 1 1385

1
10

7
5

2
5

3
5

8
5

−( )

+ −

















−





−











−1
120

0 1007( . )

P( ) . . . . . .1985 76 4875 1 63092 0 282876 0 0034796 0 0243746 0 000= − − − − + 004511

  = 74.545895 (Approximate population of India in 1985)

Population at year (x) = 2009:
Newton backward difference formula:

s
x x

h
=

−
= − = − = −5 2009 2011

10
1
5

0 2.
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Years ( ) Population( )

1961( ) 43.9235( )
10.8925(

x y

x y

∇ ∇ ∇ ∇ ∇2 3 4 5

0 0

∇∇
∇

∇ ∇

y
x y y

y y

1

1 1
2

2

2
3

)
1971( ) 54.8160( ) 2.6244( )

13.5169( ) 0.1679( 33

2 2
2

3
4

4

3

1 0378
16 3092

)
1981( ) 68.3329( ) 2.7923( ) ( )

(
x y y y

y
∇ − ∇

∇
.

. )) ( ) ( )
1991( ) 84.6421( ) 1.9224(

− ∇ − ∇
∇

0 8699 0 10073
4

5
5

3 3
2

4

. .y y
x y y )) ( )

18.2316( ) ( )
2001( ) 102.8737(

− ∇
∇ − ∇

1 1385
2 0084

4
5

4
3

5

4

.
.

y
y y

x y44
2

5

5

5 5

) 0.0860( )
18.1456( )

2011( ) 121.0193( )

− ∇
∇

y
y

x y

Newton backward difference formula with n = 5

P x f x f x s
f x

s s
f x

s s s( ) ( ) ( )( )
( )
!

( )( )
( )
!

( )( )(= + ∇ +
∇

+ +
∇

+5 5

2
5

3
5

2
1

3
1 ++ + ⋅⋅⋅2)

P( ) . ( . )2009 121 0193 1
5

18 1456 1
2

1
5

4
5

= + −





+ 





−











− + 





−

















−

+

( . ) ( . )0 0860 1
6

1
5

4
5

9
5

2 0084

1
224

1
5

4
5

9
5

14
5

1 1385 1
120







−























− + ( . )





−





























−1
5

4
5

9
5

14
5

19
5

0 1007( . )

P( ) . . . . . .2009 121 0193 3 62912 0 00688 0 0964032 0 0382536 0 025= − + + + + 77148

P( ) .2009 117 5574316=  (Approximate population of India in 2009)

Population at year (x) = 1996:
Newton backward difference formula:
The value (1996) is not at the end of the table, so we can either continue with the formula 
as for the year 2009 or skip the last tabulated value i.e. for 2011 and continue with the  
n = 4. i.e. 

s
x x

h
=

−
= − = − = −4 1996 2001

10
1
2

0 5.
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Years ( ) Population( )

1961( ) 43.9235( )
10.8925(

x y

x y

∇ ∇ ∇ ∇ ∇2 3 4 5

0 0

∇∇
∇

∇ ∇

y
x y y

y y

1

1 1
2

2

2
3

)
1971( ) 54.8160( ) 2.6244( )

13.5169( ) 0.1679( 33

2 2
2

3
4

4

3

1 0378
16 3092

)
1981( ) 68.3329( ) 2.7923( ) ( )

(
x y y y

y
∇ − ∇

∇
.

. )) ( )
1991( ) 84.6421( ) 1.9224( )

18.2316( )

− ∇
∇

∇

0 8699 3
4

3 3
2

4

4

. y
x y y

y
22001( ) 102.8737( )x y4 4

Newton backward difference formula with n = 4

P x f x f x s
f x

s s
f x

s s s( ) ( ) ( )( )
( )
!

( )( )
( )
!

( )( )(= + ∇ +
∇

+ +
∇

+4 4

2
4

3
4

2
1

3
1 ++ + ⋅⋅⋅2)

P( ) . ( . )1996 102 8737 1
2

18 2316 1
2

1
2

1
2

= + −





+ 





−











+ 





−

















− +

( . )

( . )

1 9224

1
6

1
2

1
2

3
2

0 8699 1
244

1
2

1
2

3
2

5
2

1 0378





−























−( . )

P( ) . . . . .1996 102 8737 9 1158 0 2403 0 05436875 0 04053906= − − + +

   = 93.61250781 (Approximate population of India in 1996)

10.10 Bivariate Interpolation 

So far, we have discussed interpolation for one independent variable (x); we can extend it to 
multivariate interpolation for data set where we have more than one independent variable. 
In our current discussion, we will restrict ourselves to bivariate interpolation only; the 
extension to more number of independent variables is straightforward but cumbersome.

10.10.1 Lagrange Bivariate Interpolation 
Let us consider the function f(x, y) of two independent variables x and y defined at (m+1) 

(n+1) distinct points, x y i m j ni j, , , ,..., , , ,...,( ) = =0 1 0 1 . Our aim is to obtain an interpolating 

polynomial P x ymn ( , )  of degree at most m in x and n in y, such that

P x y f x y i m j nmn i j i j, , ; , ,..., , , ,...,( ) = ( ) = =0 1 0 1 .
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First, we define two different Lagrange polynomials of degree m in variable x and degree n 
in variable y as follows. 

X x
x x
x x

x x x x x x x x
i

k

i kk
k i

m
i i( )

( )( ) ( )( )
=

−
−

=
− − ⋅⋅⋅ − − ⋅⋅⋅

=
≠

− +∏
0

0 1 1 1 (( )
( )( ) ( )( ) ( )

x x
x x x x x x x x x x

m

i i i i i i i m

−
− − ⋅⋅⋅ − − ⋅⋅⋅ −− +0 1 1 1

       i m= 0 1, ,...,

Y y
y y
y y

y y y y y y y y
j

l

j ll
l j

n
j j( )

( )( ) ( )( )
=

−
−

=
− − ⋅⋅⋅ − − ⋅⋅⋅

=
≠

− +∏
0

0 1 1 1 (( )
( )( ) ( )( ) ( )

y y
y y y y y y y y y y

n

j j j j j j j n

−
− − ⋅⋅⋅ − − ⋅⋅⋅ −− +0 1 1 1

       j n= 0 1, ,...,

We have 

X xi k i k( ) = δ  and Y yj k jk( ) = δ

where δ i j  is Kronecker delta function, such that 

δ i j

i j
i j

=
≠
=







0
1

Lagrange interpolating polynomial is given by

P x y X x Y y f x ymn i j
j

n

i

m

i j, ( ) ( ) ,( ) = ( )
==
∑∑

00

 (10.36)

Since Xi(x) is polynomial degree m in variable x and Yj(y) is polynomial degree n in variable 
y, therefore the interpolating polynomial Pmn(x, y) is of degree at most m in x and n in y. 
Note that interpolating polynomial Pmn(x, y) satisfies the conditions 

P x y f x y i m j nmn i j i j, , ; , ,..., , , ,...,( ) = ( ) = =0 1 0 1

Compute the bivariate interpolating polynomial for the following set of data points for the 
function f(x, y). Hence find the value of f(–0.5, 4)

x  
y

1 2 5
–1 –1 –7 –49
0 2 1 –2

10.13Example
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Ans. 
The data points are given by 

x x0 11 0= − =,

y y y0 1 21 2 5= = =, ,

f x y f x y f x y
f x y f x y
( , ) , ( , ) , ( , )
( , ) , ( , ) ,

0 0 0 1 0 2

1 0 1 1

1 7 49
2 1

= − = − = −
= = ff x y( , )1 2 2= −

The bivariate interpolating polynomial (10.36) is given by 

P x y X x Y y f x ymn i j
j

n

i

m

i j, ( ) ( ) ,( ) = ( )
==
∑∑

00

For m = 1 and n = 2, we have

P x y X x Y y f x y

X x Y y f x y

i j
ji

i j

i
i

i

12
0

2

0

1

0
0

1

, ( ) ( ) ,

( ) ( ) ,

( ) = ( )
=

==

=

∑∑

∑ 00 1
0

1

1 2
0

1

2( ) + ( ) + ( )
= =
∑ ∑X x Y y f x y X x Y y f x yi
i

i i
i

i( ) ( ) , ( ) ( ) ,

P x y X x Y y f x y X x Y y f x y

X x Y y f
12 0 0 0 0 1 0 1 0

0 1

, ( ) ( ) , ( ) ( ) ,

( ) ( )

( ) = ( ) + ( )
+ xx y X x Y y f x y

X x Y y f x y X x Y y f
0 1 1 1 1 1

0 2 0 2 1 2

, ( ) ( ) ,
( ) ( ) , ( ) ( )

( ) + ( )
+ ( ) + xx y1 2,( )

P x y
x x
x x

y y y y
y y y y

f x y12
1

0 1

1 2

0 1 0 2
0 0,

( )
( )

( )( )
( )( )

,
(( ) =

−
−

− −
− −

( ) +
xx x
x x

y y y y
y y y y

f x y

x x
x

−
−

− −
− −

( )

+
−
−

0

1 0

1 2

0 1 0 2
1 0

1

0

)
( )

( )( )
( )( )

,

( )
( xx

y y y y
y y y y

f x y
x x
x x

y y

1

0 2

1 0 1 2
0 1

0

1 0

0

)
( )( )

( )( )
,

( )
( )

( )− −
− −

( ) +
−
−

− (( )
( )( )

,

( )
( )

( )( )
(

y y
y y y y

f x y

x x
x x

y y y y
y

−
− −

( )

+
−
−

− −

2

1 0 1 2
1 1

1

0 1

0 1

2 −− −
( ) +

−
−

− −
− −y y y

f x y
x x
x x

y y y y
y y y y0 2 1

0 2
0

1 0

0 1

2 0 2)( )
,

( )
( )

( )( )
( )( 11

1 2)
,f x y( )

On using the data values in this expression, we have

P x y x y y x
12

0
1 0

2 5
1 2 1 5

1 1
0

, ( )
( )

( )( )
( )( )

( ) ( ( ))
( (

( ) = −
− −

− −
− −

− + − −
− −11

2 5
1 2 1 5

2

0
1 0

1 5
2 1 2 5

))
( )( )
( )( )

( )

( )
( )

( )( )
( )(

y y

x y y

− −
− −

+ −
− −

− −
− − ))

( ) ( ( ))
( ( ))

( )( )
( )( )

( )

( )
( )

− + − −
− −

− −
− −

+ −
− −

7 1
0 1

1 5
2 1 2 5

1

0
1 0

x y y

x (( )( )
( )( )

( ) ( ( ))
( ( ))

( )( )
( )

y y x y y− −
− −

− + − −
− −

− −
−

1 2
5 1 5 2

49 1
0 1

1 2
5 1 (( )

( )
5 2

2
−

−
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P x y x y y x y y x y y12
1
4

2 5 1
2

1 2 5 7
3

1 5

1
3

, ( )( ) ( )( )( ) ( )( )

(

( ) = − − + + − − − − −

− xx y y x y y x y y+ − − + − − − + − −1 1 5 49
12

1 2 1
6

1 1 2)( )( ) ( )( ) ( )( )( )

P x y xy xy x y12
22 2 3,( ) = − + − +

It is required interpolating polynomial.
Approximate value of f(–0.5, 4) is computed with this polynomial, and given by

f P( . , ) . , ( . )( ) ( . ) ( . )− = −( ) = − − − + − − + = −0 5 4 0 5 4 2 0 5 4 0 5 4 2 0 5 4 3 1612
2

Obtain the bivariate interpolating polynomial for the following values of function f(x, y), 
and hence find the value of f(1.5, 1)

x  
y

–1 0 2
0 1 2 4
1 5 2 2
2 17 2 –4

Ans. 
We have

m n= = 2
 

x x x
y y y

0 1 2

0 1 2

0 1 2
1 0 2

= = =
= − = =

, ,
, ,  

f x y f x y f x y
f x y f x y f x
( , ) , ( , ) , ( , ) ,
( , ) , ( , ) , (

0 0 0 1 0 2

1 0 1 1

1 2 4
5 2

= = =
= = 11 2

2 0 2 1 2 2

2
17 2 4

, ) ,
( , ) , ( , ) , ( , )

y
f x y f x y f x y

=
= = = −

For m = n = 2, the bivariate interpolating polynomial (10.36) is given by

P x y X x Y y f x y

X x Y y f x y

i j
ji

i j

i
i

i

22
0

2

0

2

0
0

2

, ( ) ( ) ,

( ) ( ) ,

( ) = ( )
=

==

=

∑∑

∑ 00 1
0

2

1 2
0

2

2( ) + ( ) + ( )
= =
∑ ∑X x Y y f x y X x Y y f x yi
i

i i
i

i( ) ( ) , ( ) ( ) ,

P x y X x Y y f x y X x Y y f x y X x Y y f22 0 0 0 0 1 0 1 0 2 0, ( ) ( ) , ( ) ( ) , ( ) ( )( ) = ( ) + ( ) + xx y

X x Y y f x y X x Y y f x y X x Y y f
2 0

0 1 0 1 1 1 1 1 2 1

,

( ) ( ) , ( ) ( ) , ( ) ( )

( )
+ ( ) + ( ) + xx y

X x Y y f x y X x Y y f x y X x Y y f
2 1

0 2 0 2 1 2 1 2 2 2

,
( ) ( ) , ( ) ( ) , ( ) ( )

( )
+ ( ) + ( ) + xx y2 2,( )
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10.10.2 Newton Bivariate Interpolation for Equi-spaced Points 
Consider the forward differences for two variables with equispaced points, with spacing h 
in x and k in y as follows

∆ ( ) = +( )− ( )x f x y f x h y f x y, , ,

 = −( ) ( )E f x yx 1 ,

∆ ( ) = +( )− ( )y f x y f x y k f x y, , ,

 
= −( ) ( )E f x yy 1 ,

Similarly, second and higher order differences are given by

∆ ( ) = ∆ +( )− ∆ ( )xx x xf x y f x h y f x y, , ,

 = −( ) ( )E f x yx 1 2 ,

∆ ( ) = ∆ +( )− ∆ ( )yy y yf x y f x y k f x y, , ,

 
= −( ) ( )E f x yy 1

2
,

P x y
x x x x

x x x x
y y y y

y y y22
1 2

0 1 0 2

1 2

0 1 0

,
( )( )

( )( )
( )( )

( )(
( ) =

− −
− −

− −
− − yy

f x y
x x x x

x x x x
y y y y

y y2
0 0

0 2

1 0 1 2

1 2

0 1)
,

( )( )
( )( )

( )( )
( )

( ) +
− −
− −

− −
− (( )

,

( )( )
( )( )

( )( )
(

y y
f x y

x x x x
x x x x

y y y y
y

0 2
1 0

0 1

2 0 2 1

1 2

0

−
( )

+
− −
− −

− −
−− −

( ) +
− −
− −

− −
y y y

f x y
x x x x

x x x x
y y y y

1 0 2
2 0

1 2

0 1 0 2

0 2

)( )
,

( )( )
( )( )

( )( ))
( )( )

,
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( )( )

( )(
y y y y

f x y

x x x x
x x x x

y y
1 0 1 2

0 1

0 2

1 0 1 2

0

− −
( )

+
− −
− −

− yy y
y y y y

f x y
x x x x

x x x x
y−

− −
( ) +

− −
− −

−2

1 0 1 2
1 1

0 1

2 0 2 1

)
( )( )

,
( )( )
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( yy y y
y y y y

f x y

x x x x
x x x x

0 2

1 0 1 2
2 1

1 2

0 1 0 2

)( )
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,
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−
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y y y y

y y y y
f x y

x x x x
x x x

− −
− −

( ) +
− −
−

0 1

2 0 2 1
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1 0 11 2

0 1

2 0 2 1
1 2

0 1

2
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− −
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y y y y
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−
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( )

On using the data values and after simplifying the expression, we have

P x y x y x y y22
2 2 23 2,( ) = − + +

Approximate value of f(1.5, 1) is as follows

f P( . , ) . , .1 5 1 1 5 1 1 522= ( ) = −
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∆ ( ) = ∆ +( )− ( )  = ∆ ∆ ( )xy x x yf x y f x y k f x y f x y, , , ,

 
= −( ) −( ) ( )E E f x yx y1 1 ,

 
= −( ) −( ) ( )E E f x yy x1 1 ,

 = ∆ ∆ ( ) = ∆ ( )y x yxf x y f x y, ,

Let x x r h= +0  and y y s k= +0 , then we have 

f x y f x r h y s k E E f x yx
r

y
s( , ) , ,= + +( ) = ( )0 0 0 0

 
= + ∆( ) + ∆( ) ( )1 1 0 0x

r
y

s
f x y,

 = + ∆ + − ∆ + − − ∆ + ⋅⋅⋅












1 1
2

1 2
3

r r r r r r
x xx xxx

( )
!

( )( )
!

 × + ∆ + − ∆ + − − ∆ + ⋅⋅⋅












1 1
2

1 2
3 0 0s s s s s s f x yy yy yyy

( )
!

( )( )
!

( , )

 
= + ∆ + ∆ + ∆ ∆ + − ∆ + − ∆ + ⋅⋅⋅













1 1
2

1
2 0r s r s r r s s f xx y x y xx yy

( )
!

( )
!

( , yy0 )

On applying the operator, we have

f x y f x y r s f x y

r s r r s

x y

x y xx

( , ) ( , ) ( , )

!
( )

= + ∆ + ∆ 

+ ∆ ∆ + − ∆ +

0 0 0 0

1
2

2 1 (( ) ( , )s f x yyy− ∆  + ⋅⋅⋅1 0 0

f x y f x y r f x y s f x y

r s f x

x y

x y

( , ) ( , ) ( , ) ( , )

!
(

= + ∆ + ∆ 

+ ∆ ∆

0 0 0 0 0 0

0
1
2

2 ,, ) ( ) ( , ) ( ) ( , )y r r f x y s s f x yxx yy0 0 0 0 01 1( )+ − ∆ ( )+ − ∆ ( )  + ⋅⋅⋅

  (10.37)

The formula (10.37) is known as Newton bivariate interpolation.
It is worth mentioning here that if the number of points in variable x is m+1 and in y is n+1; 
then we must consider terms up to order (m)(n). 

If we replace r
x x

h
=

− 0  and s
y y

k
=

− 0 , we will get the Newton bivariate interpolating 

polynomial for equispaced points in x and y as follows
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P x y f x y
x x

h
y y

k
f x y

h
x x

x y( , ) ( , ) ( , )

!

= +
−

∆ +
−

∆





+ −( )

0 0
0 0

0 0

2 0
1
2

1 xx x
hk

x x y y
k

y y y y f xxx xy yy−( )∆ + −( ) −( )∆ + −( ) −( )∆



1 0 0 2 0 1 0

2 1
, yy0( )

+ ⋅⋅⋅

Given the following set of data points for the values of f(x, y), compute the value of 
f(1.5, 0.25)

x  
y

0 1 2
1 2 5 10
3 4 11 20

Ans. 

We have 
x x
y y y

0 1

0 1 2

1 3
0 1 2

= =
= = =

,
, ,

 
f x y f x y f x y
f x y f x y f
( , ) , ( , ) , ( , ) ,
( , ) , ( , ) ,

0 0 0 1 0 2

1 0 1 1

2 5 10
4 11

= = =
= = (( , )x y1 2 20=

 (10.38)

Also, the step size for x is h = 2, and for y is k = 1.
The data points are up to x1 and y2, so all second and higher differences are zero for x, 
and all third and higher differences are zero for y. Therefore, we will consider the formula 
(10.37) that is up to first order differences in x and second order differences in y. For this, 
we have

f x y f x r h y s k E E f x yx
r

y
s( , ) , ,= + +( ) = ( )0 0 0 0

 = + ∆( ) + ∆( ) ( )1 1 0 0x
r

y

s
f x y,

f x y r s s s f x yx y yy( , ) ( )
!

( , )= + ∆  × + ∆ + − ∆












1 1 1
2 0 0

f x y r s r s s s r s s
x y x y yy yy x( , ) ( )

!
( )

!
= + ∆ + ∆ + ∆ ∆ + − ∆ + − ∆ ∆













1 1
2

1
2

ff x y( , )0 0  (10.39)

We have to compute the value of f(1.5, 0.25), so 

r
x x

h
=

−
= − =0 1 5 1

2
0 25. .

s
y y

k
=

−
= − =0 0 25 0

1
0 25. .

10.15Example
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438 Numerical Methods

On using these values of r and s in Eq. (10.39), we have

f x y
x y x y

( , )
( . ) ( . ) ( . )( . )

( . )( . )=
+ ∆ + ∆ + ∆ ∆

+ −
1 0 25 0 25 0 25 0 25

0 25 0 75
2!!

( . ) ( . )( . )
!

( , )
∆ + − ∆ ∆















yy yy x

f x y
0 25 0 25 0 75

2
0 0  (10.40)

Now, we have to find forward differences for the given data set as follows 

∆ ( ) = +( ) − ( )
= ( ) − ( ) = − =

x f x y f x h y f x y
f x y f x y

0 0 0 0 0 0

1 0 0 0 4 2 2
, , ,

, ,

∆ ( ) = +( ) − ( )
= ( ) − ( ) = − =

y f x y f x y k f x y

f x y f x y
0 0 0 0 0 0

0 1 0 0 5 2 3

, , ,

, ,

Similarly, second forward differences are given by 

∆ ( ) = −( ) ( )
= + −( ) ( )
= ( ) +

yy y

y y

f x y E f x y

E E f x y

f x y f

0 0

2

0 0

2
0 0

0 2

1

1 2

, ,

,

, xx y f x y0 0 0 12
10 2 2 5 2

, ,
( )

( ) − ( )
= + − =

∆ ( ) = −( ) −( ) ( )
= − − +( ) ( )
=

xy y x

y x y x

f x y E E f x y

E E E E f x y

f x

0 0 0 0

0 0

1 1

1

, ,

,

11 1 0 1 1 0 0 0

11 5 4 2 4
, , , ,y f x y f x y f x y( ) − ( ) − ( ) + ( )

= − − + =
Similarly, we have

∆ ∆ ( ) = −( ) −( ) ( )
= −( ) ( ) + (

x yy x y

x

f x y E E f x y

E f x y f x y
0 0

2

0 0

0 2 0 0

1 1

1

, ,

, , )) − ( )( )
= ( ) + ( ) − ( )  − ( ) +

2

2
0 1

1 2 1 0 1 1 0 2

f x y

f x y f x y f x y f x y f x

,

, , , , 00 0 0 12
20 4 2 11 10 2 2 5 0

, ,
( ) ( ( ))

y f x y( ) − ( ) 
= + − − + − =

On using all these forward differences in Eq. (10.40), we have

f

f x y f x y f x yx y

( . , . )

( , ) ( . ) ( , ) ( . ) ( , )

1 5 0 25

0 25 0 250 0 0 0 0 0

=

+ ∆ ( ) + ∆ ( )
++ ∆ ∆ ( ) + − ∆ ( )

+

( . )( . ) ( , ) ( . )( . )
!

( , )0 25 0 25 0 25 0 75
20 0 0 0x y yyf x y f x y

(( . ) ( . )( . )
!

( , )0 25 0 25 0 75
2 0 0
− ∆ ∆ ( )



























yy x f x y
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f ( . , . )
( . )( ) ( . )( ) ( . )( . )( )

( . )(1 5 0 25
2 0 25 2 0 25 3 0 25 0 25 4

0 25=
+ + +

+ −00 75
2

2 0 25 0 25 0 75
2

0. )
!

( ) ( . ) ( . )( . )
!

( )+ −
















f ( . , . )
( . )( ) ( . )( ) ( . )( . )( )

( . )(1 5 0 25
2 0 25 2 0 25 3 0 25 0 25 4

0 25=
+ + +

+ −00 75
2

2 0 25 0 25 0 75
2

0. )
!

( ) ( . ) ( . )( . )
!

( )+ −
















f ( . , . ) .1 5 0 25 3 3125=

(Result is correct as data from polynomial y xy x2 2 1+ + + )

Consider the following set of data points for the values of f(x, y)

x  
y

0 1 2
–1 0 1 0
0 –1 1 3
1 0 3 8

Compute the interpolating polynomial using Newton bivariate formula, and hence find 
the value of f(–0.5, 0.5).

Ans. 

We have 
x x x
y y y

0 1 2

0 1 2

1 0 1
0 1 2

= − = =
= = =

, ,
, ,

 
f x y f x y f x y
f x y f x y f
( , ) , ( , ) , ( , ) ,
( , ) , ( , ) , (

0 0 0 1 0 2

1 0 1 1

0 1 0
1 1

= = =
= − = xx y

f x y f x y f x y
1 2

2 0 2 1 2 2

3
0 3 8

, ) ,
( , ) , ( , ) , ( , )

=
= = =

 (10.41)

Step sizes for x and y are h = k = 1.

The data points are up to x2 and y2, so the Newton bivariate formula (10.37) must be up to 
second order in x and second order in y. For this, we have

f x y r r r s s s
x xx y yy( , ) ( )

!
( )

!
= + ∆ + − ∆













× + ∆ + − ∆












1 1
2

1 1
2

ff x y( , )0 0

f x y
r s r s r r s s

r s s

x y x y xx yy

y

( , )

( )
!

( )
!

( )
!

=
+ ∆ + ∆ + ∆ ∆ + − ∆ + − ∆

− ∆

1 1
2

1
2

1
2 yy x xx y xx yys r r r r s s

f x
∆ + − ∆ ∆ + − − ∆ ∆



















( )
!

( )
!

( )
!

(
1

2
1

2
1

2

0 ,, )y0

 
 (10.42)

10.16Example
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On using r
x x

h
=

− 0 , s
y y

k
=

− 0 , and h k= = 1  in Eq. (10.42), we have

P x y f x y x x y y f x y

x x x x

x y( , ) ( , ) ( , )

!

= + −( )∆ + −( )∆ 

+ −( ) −

0 0 0 0 0 0

0
1
2 11 0 0 0 1 0 0

0

2( )∆ + −( ) −( )∆ + −( ) −( )∆  ( )

+
−(

xx xy yyx x y y y y y y f x y

x x

,

)) −( ) −( )
∆ ∆ + −( ) −( ) −( )

∆ ∆

+
−( ) −

y y y y
y y

x x x x

x x x x

yy x xx y
0 1

0
0 1

0 1

2 2! !

(( ) −( ) −( )
∆ ∆



















2 2

0 1
0 0

! !

( , )
y y y y

f x y

xx yy

P x y f x y x x y y f x y

x x x x

x y( , ) ( , ) ( , )= + −( )∆ + −( )∆ 

+ −( ) −

0 0 0 0 0 0

0 1
1
2

(( )∆ + −( ) −( )∆ + −( ) −( )∆  ( )

+
−

xx xy yyx x y y y y y y f x y

x x

2

1
4

2

0 0 0 1 0 0,

00 0 1 0 0 1

0 1

2( ) −( ) −( )∆ ∆ + −( ) −( ) −( )∆ ∆

+ −( ) −(
y y y y y y x x x x

x x x x
yy x xx y

)) −( ) −( )∆ ∆











y y y y

f x y
xx yy0 1

0 0( , )

On using the values of variables xi, yj, and f(xi, yj), we have

 

P x y x y f x y

x x x y

x y

xx

( , ) ( , )= + +( )∆ + ( )∆ 

+ +( )( )∆ + +( )( )

0 1

1
2

1 2 1

0 0

∆∆ + ( ) −( )∆  ( )

+
+( )( ) −( )∆ ∆ + ( ) +

xy yy

yy x

y y f x y

x y y y x

1

1
4

2 1 1 2 1

0 0,

(( )( )∆ ∆

+ +( )( )( ) −( )∆ ∆













x

x x y y
f x yxx y

xx yy1 1 0 0( , )

 (10.43)

The first forward differences for the given data set are as follows

∆ ( ) = +( ) − ( )
= ( ) − ( ) = − − = −

x f x y f x h y f x y
f x y f x y

0 0 0 0 0 0

1 0 0 0 1 0 1
, , ,

, ,

∆ ( ) = +( ) − ( )
= ( ) − ( ) = − =

y f x y f x y k f x y

f x y f x y
0 0 0 0 0 0

0 1 0 0 1 0 1

, , ,

, ,

Similarly, second forward differences are given by

∆ ( ) = −( ) ( )
= + −( ) ( )
= ( ) +

xx x

x x

f x y E f x y

E E f x y

f x y f

0 0
2

0 0

2
0 0

2 0

1

1 2

, ,

,

, xx y f x y0 0 1 02
0 0 2 1 2

, ,
( )

( ) − ( )
= + − − =
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∆ ( ) = −( ) ( )
= + −( ) ( )
= ( ) +

yy y

y y

f x y E f x y

E E f x y

f x y f

0 0

2

0 0

2
0 0

0 2

1

1 2

, ,

,

, xx y f x y0 0 0 12
0 0 2 1 2

, ,
( )

( ) − ( )
= + − = −

∆ ( ) = −( ) −( ) ( )
= − − +( ) ( )
=

xy y x

y x y x

f x y E E f x y

E E E E f x y

f x

0 0 0 0

0 0

1 1

1

, ,

,

11 1 0 1 1 0 0 0

1 1 1 0 1
, , , ,y f x y f x y f x y( ) − ( ) − ( ) + ( )

= − + + =

The other differences which are to be used in the interpolation are given by

∆ ∆ ( ) = −( ) −( ) ( )
= −( ) ( ) + (

x yy x y

x

f x y E E f x y

E f x y f x y
0 0

2

0 0

0 2 0 0

1 1

1

, ,

, , )) − ( )( )
= ( ) + ( ) − ( )  − ( ) +

2

2
0 1

1 2 1 0 1 1 0 2

f x y

f x y f x y f x y f x y f x

,

, , , , 00 0 0 12
3 1 2 0 0 2 2

, ,
( )

y f x y( ) − ( ) 
= − − − + − =

∆ ∆ ( ) = −( ) −( ) ( )
= −( ) ( ) + (

y xx y x

y

f x y E E f x y

E f x y f x y
0 0

2
0 0

2 0 0 0

1 1

1

, ,

, , )) − ( )( )
= ( ) + ( ) − ( )  − ( ) +

2

2
1 0

2 1 0 1 1 1 2 0

f x y

f x y f x y f x y f x y f x

,

, , , , 00 0 1 02
3 1 2 0 0 2 0

, ,
( )

y f x y( ) − ( ) 
= + − − + + =

∆ ∆ ( ) = −( ) −( ) ( )
= + −( ) ( ) +

xx yy x y

x x

f x y E E f x y

E E f x y
0 0

2 2

0 0

2
0 2

1 1

1 2

, ,

, ff x y f x y

f x y f x y f x y f x
0 0 0 1

2 2 2 0 2 1 0

2

2

, ,

, , , ,

( ) − ( )( )
= ( ) + ( ) − ( )  + yy f x y f x y

f x y f x y f x y
2 0 0 0 1

1 2 1 0 1 1

2

2 2

( ) + ( ) − ( ) 
− ( ) + ( ) − ( )(

, ,

, , , )) 
= + − + + − − − − =8 0 6 0 0 2 2 3 1 2 0( )

On using different values of forward differences in Eq. (10.43), we get

P x y x y f x y

x x x y

x y

xx

( , ) ( , )= + +( )∆ + ( )∆ 

+ +( )( )∆ + +( )( )

0 1

1
2

1 2 1

0 0

∆∆ + ( ) −( )∆  ( )

+
+( )( ) −( )∆ ∆ + ( ) +

xy yy

yy x

y y f x y

x y y y x

1

1
4

2 1 1 2 1

0 0,

(( )( )∆ ∆

+ +( )( )( ) −( )∆ ∆













x

x x y y
f x yxx y

xx yy1 1 0 0( , )
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Exercise 10

1. Use Newton forward, Newton backward, Lagrange and NDD methods to find the cubic 
polynomial which takes the following values, and verify the result that the polynomial is unique

 x
f x

0 1 2 3
1 2 1 10( )

Ans. 2 7 6 13 2x x x− + +

2. The populations (in millions) of Punjab state up to two decimal points in the census years are 
given below. Estimate the populations for the years 1973, 1995, and 2007.

year    1971    1981    1991    2001    2011
Population  13.55     16.79    20.28     24.36     27.70
(in millions)

Ans. 14.25, 21.88, 26.61

3. Compute the value of log(2875) from the following values of log(x) with the help of Newton 
backward difference formula

 

x
x

25 30 35 40 45
1 39794 1 47712 1 54407 1 60206 1 65321log . . . . .

Ans. 3.45863

4. Given:

 

θ
θ

° :
tan : . . . . . .

0 5 10 15 20 25 30
0 0 0875 0 1763 0 2679 0 364 0 4663 0 5774

Find the value of tan 16° using Stirling formula.

Ans. 0.2867

P x y x y x x x y y( , ) ( ) ( )
!

( ) ( )= +( ) − + ( )  + +( )( ) + +( )( ) + (1 1 1 1
2

1 2 2 1 1 )) −( ) − 

+ +( )( ) −( ) + ( ) +( )( ) + +( )

y

x y y y x x x x

1 2

1
4

2 1 1 2 2 1 0 1

( )

( ) ( ) (( )( ) −( ) y y 1 0( )

P x y xy x y( , ) .= + + −2 2 2 1

So, the interpolating polynomial is P x y xy x y( , ) .= + + −2 2 2 1

The approximate value of f(–0.5, 0.5) is as follows 

 f ( . , . ) ( . )( . ) ( . ) ( . ) .− = − + − + − =0 5 0 5 0 5 0 5 0 5 2 0 5 1 0 1252 2
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5. The growth of cell culture (optical density) at various pH levels are tabulated in the following 
table. 

 

pH: 4 4.5 5 5.5 6
Optical density: .28 .35 .41 .46 0.520 0 0 0

Compute the optical density at pH level 5.8.

Ans. 0.492688

6. The following data set represents the resistivity of a given metal with temperature. Predict the 
resistivity at 350 K temperature

Temperature (K):        100   200   300   400   500
Resistivity (Ω-cm, ×106):   4.2    8.1     12.8    16.6    20.0 

Ans. 14.8328 × 106 Ω-cm

7. Prepare the finite difference table for the function f x
x

( ) =
+
1

1 2  at x = −2 0 5 2( . ) . Use this table 

to compute f f f( . ), ( . ), ( . )−1 7 0 2 1 8 , and compare the results with exact values.

Ans.

x –2 –1.5 –1 –0.5 0 0.5 1 1.5 2

f x
x

( ) =
+
1

1 2 0.2 0.307692 0.5 0.8 1 0.8 0.5 0.307692 0.2

Approximate values f f f( . ) . , ( . ) . , ( . ) .− = = =1 6 0 252424 0 25 0 943369 1 9 0 127260

Exact values f f f( . ) . , ( . ) . , ( . ) .− = = =1 6 0 280899 0 25 0 941176 1 9 0 216920

(Error due to polynomial approximation of a rational function)

8. Use Stirling formula to find the value of y18 for the given data set 

y y y y y10 15 20 25 30362 487 642 897 1206= = = = =

Ans. 569.32

9. From an equally spaced table of sin(x) with spacing h = 0.1, we have following data

x
x

0 1 0 2 0 3 0 4 0 5
0998334 198669 295520 389418 479426
. . . . .

sin . . . . .

Compute the value of sin(x) at x = 0.17 by using Newton forward difference formula.

Ans. 0.169182

10. Use Newton forward and backward difference formulas to find the values of sin 48° and sin 62°  
respectively from the given table

θ
θ

° 45 50 55 60 65
0 7071 0 7660 0 8192 0 8660 0 9063sin . . . . .

Ans. sin 48° = 0.7431, sin 62°  = 0.8829
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444 Numerical Methods

11. Apply Stirling and Steffensen formulas to find the value of f(37.5) from the following table

x
f x

35 36 37 38 39 40
4 1 4 146 4 204 4 321 4 448 4 583( ) . . . . . .

Ans. 4.258 

12. Use appropriate formulas to compute the values of f(1.2), f(3.7) and f(5.8) from the data set (0,1) 
(1,3) (2,11) (3,31) (4,69) (5,131) (6,223).

Ans. 3.928, 55.353, 201.912

13. Compute the value of f(–0.5, 4) for the following set of data points for the function f(x, y).

x  
y

1 2 5

–1 2 5 26

0 1 4 25

Ans. 16.5

14. Given the following set of data points for the values of f(x, y)

x  
y

–1 1

0 –2 2

2 –4 8

4 –14 22

Compute the interpolating polynomial using Newton bivariate formula, and hence find the 
value of f(0.5, –0.25)

Ans. Interpolating polynomial is x2y + 2y + x, and f(0.5, –0.25) = –0.0625

15. Compute the value of f(1, –1) from the following data points

x  
y

–2 0 2

0 4 0 4

2 24 4 24

4 84 16 84

Ans. f(1, –1) = 3

(Data was generated from interpolating polynomial x2y2 + y2 + x2)

16. Obtain the Lagrange bivariate interpolating polynomial from the following tabulated values

x  
y

–1 1 2

–1 –4 –4 –7

0 –1 –1 –1

1 2 2 5

Ans. xy2 + 2x – 1
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11.1 Introduction 

Experimental observations produce data sets of the type ( , ), ( , ), ( , ), ,( , )x y x y x y x yn n0 0 1 1 2 2 ⋅⋅⋅{ } 
with (n + 1) readings. Here, the variable “x” can serve as input, and variable “y” serves as 
the output of experiment. At any intermediate value of a variable, the corresponding value 
of another variable can be approximated by some numerical techniques. The problem of 
constructing an approximating function y(x) that estimates value of dependent variable y 
at any intermediate value of independent variable x for a given set of discrete data points is 
very important. The data values ( , ), , ,...,x y i ni i = 0 1  are values of some well-defined function 
or may be some experimental observations. Some important approximating techniques are 
as follows 

i) Interpolation
ii) Piecewise Interpolation 
iii) Spline Interpolation
iv) Bězier Curves
v) B-Spline Curves

The essence of mathematics lies in its freedom. 

Georg Ferdinand Ludwig Philipp Cantor
(March 3, 1845–January 6, 1918) 

The mathematician who developed the set theory. 

Mathematics is the science of what is clear by itself.

Carl Gustav Jacob Jacobi 
(December 10, 1804–February 18, 1851)

He made landmark contributions to the fields of differential equations,  
elliptic functions, and number theory.

Splines, Curve Fitting, and 
Other Approximating Curves

Chapter
11
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vi) Least Squares Approximation 
vii) Chebyshev Polynomial Approximation
viii) Padé Approximation

We have already discussed the interpolation and piecewise interpolation for a given set of 
data points in Chapters 8 and 10. Polynomials are the best approximation if the data size is 
small and observations are without any singularity. However, if the data size is large, then it 
is very difficult to obtain a polynomial of large degree. For examples, consider a data set of 
50 points, the interpolating polynomial is of degree 49. The difficulty is not only to compute 
the polynomial of degree 49 but also to handle the round-off error during the approximation 
of values at any intermediate points. For example, if we have an intermediate value, say, 
up to 6-significant digits. Then, the 49th power of this value contains approximately 6(249) 
significant digits. It is very difficult to compute such value without round-off error. Therefore 
we have to switch over to some other methodology. Also, higher order polynomials produce 
large oscillations which may give erroneous results compare to its lower order counterpart. 
Also, the global nature of the interpolating polynomial is a major concern as if we change 
the position of one point then the whole polynomial has to be changed. Therefore, for 
designing or graphic purposes, where large sets of data points are involved, we cannot carry 
out polynomial approximations. Rather these problems can be handled using piecewise 
interpolation, but in the case of piecewise interpolation, the smoothness is a major issue at 
the nodal points, as two different polynomials are joining at nodal points.

In this chapter, we will discuss the cubic spline interpolation, Bězier and B-Spline curves 
for the smooth and elegant fitting of the polynomial for a given data set. Oscillations and 
rounding error in large degree interpolation and problems of smooth fitting in piecewise 
interpolation are two major reasons for popularity of cubic spline for a large data set. Bězier 
and B-Spline curves serve as mandatory basic tools for computer graphics and computer 
aided designing. Then, we will discuss the least squares fitting to fit a curve of our choice that 
needs not to be a polynomial. The Chebyshev polynomial approximation to find the best 
lower order polynomial approximation is also a part of this chapter. At last, approximation 
by rational function in polynomials known as Padé approximation is also discussed which 
will be helpful to introduce singularity in experiments. 

11.2 Spline Interpolation 

A sequence of continuous curves that are connected to form a single continuous curve is 
called as a spline curve. Consider a given set of data points ( , ), , ,...,x y i ni i = 0 1  such that 
x xi i< +1 for all i n= −0 1 1, ,..., . In general, a mth degree spline Ps(x) for this data set is a 
piecewise polynomial of degree m, which satisfies following two conditions.

1. It is of degree ≤m for each interval x xi i, +( )1 , i n= −0 1 1, ,...,  and of degree m in at 
least one such interval.

2. The spline Ps(x) and its first m –1 derivatives are continuous at each node points xi, 
i n= −1 1,...,  in the interval x xn0 ,( ). 
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The following function is a spline of degree 2 (quadratic spline) 

 f x
x x x

x x x
x x x

( ) =
− + ≤ ≤
− + ≤ ≤

− − ≤ ≤









2

2

2

5 1 0 1
2 7 2 1 2

3 2 2 3

,
,

The function is a polynomial of degree 2 over each interval. Also, the function and its first 
derivative are continuous throughout the interval [0, 3]. We get following values of the 
function and its derivatives from both sides 
   f (1) = – 3, f (2) = – 4

 ′ ( ) = − ′ ( ) =f f1 3 2 1,

The linear spline provides only continuity of the function; the quadratic spline is also 
continuous for first order derivative. In cubic spline approximation, the approximating 
cubic polynomials are such that the function values, first derivatives and second derivatives 
are continuous at nodal points. So, the cubic spline curve is continuous curve such that 
the gradient and curvature also remain same everywhere in the whole domain. Therefore, 
cubic spline provides sufficient smoothness on the approximating curve. For example, 
we have following cubic spline polynomials in different intervals for the data set (0, 1),  
(0.5, –2), (1, –5), (1.5, 7), (2, 10) and (2.5, 8).

 P x

x x x
x x x

cs ( )

. . ( , . )
. . . .

=

− − ∈
− + − +
1 3 55 9 80 0 0 5

6 35 40 54 88 19 48 99

3

2 3 xx
x x x x

∈
− + − ∈

− +

( . , )
. . . . ( , . )

.

0 5 1
108 83 304 99 257 34 66 18 1 1 5

194 63

2 3

3301 93 147 27 23 73 1 5 2
30 80 56 19 24 40 3

2 3

2

. . . ( . , )
. . . .

x x x x
x x

− + ∈
− + − + 225 2 2 53x x ∈













 ( , . )

The graphs of these polynomials are as follows. We can easily see the smoothness in the 
graph at nodal points. 

11.1Example

5

0.5 1 21.5 2.5
0

x

- 5

10

Fig. 11.1 Cubic spline curve
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Among all the spline interpolations, cubic spline is one of the best approximations and most 
widely used as it ensures the smooth approximation with a less computational error. Here, 
we will discuss the construction of cubic spline polynomials only. The linear and quadratics 
splines are easy to obtain, and splines of higher degree (>3) require much computation and 
very difficult to handle. 

11.2.1 Cubic Spline Interpolation 
Let us approximate the function f(x) by different cubic polynomials 
P x a x b x c x d i ni i i i i( ) = + + + =3 2 1 2, , ,...,  for each subinterval x xi i− 1,  in the given interval 
[ , ].x xn0

P x

P x a x b x c x d x x x
P x a x b x c x d x

( ) =

( ) = + + + ≤ ≤

( ) = + + +
1 1

3
1

2
1 1 0 1

2 2
3

2
2

2 2 1 ≤≤ ≤

( ) = + + + ≤ ≤











−

x x

P x a x b x c x d x x xn n n n n n n

2

3 2
1



P1

x0 x1 x2 x3 xn ‒1 xn

P2 P3 Pn

In cubic spline approximation, the polynomials and their first and second derivatives are 
continuous at node points. A cubic spline polynomial P(x) satisfies the following three 
properties 

1. On each subinterval x x i ni i−  ≤ ≤1 1, , , P(x) is a third-degree polynomial, i.e.,

  P x a x b x c x d i ni i i i i( ) = + + + =3 2 1 2, , ,...,

 We have to find 4n unknowns: a b c d i ni i i i, , , ; , ,...,= 1 2 .
2. The values of the cubic spline at node points equal the values of the function at 

these points.

  P x f i ni i( ) = =, , ,...,0 1

3. The polynomials P x P x( ), ( )′  and ′′P x( ) are continuous throughout the interval 
( , )x xn0 .

On using the above second and third properties, we have following results 

a) Continuity of P(x): At each node point x = xi, the values of two polynomials Pi(x) 
and Pi+1(x) must be equal, and also equals to the value of the function f(xi). At any 
node point x = xi, i = 1, 2, …, n –1, we can obtain following equations.

The polynomial value Pi(xi) for interval [xi–1, xi], must equals the function value f(xi)

  P x a x b x c x d f x fi i i i i i i i i i i( ) = + + + = =3 2 ( )
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Similarly, polynomial for interval [xi, xi+1] gives following equations

  P x a x b x c x d f x fi i i i i i i i i i i+ + + + +( ) = + + + = =1 1
3

1
2

1 1 ( )

So, we have following set of equations

  
a x b x c x d f
a x b x c x d f

i i i i i i i i

i i i i i i i i

3 2

1
3

1
2

1 1

+ + + =
+ + + =+ + + +

 (11.1)

b) At the end points x0 and xn of the interval, the values of splines must be equal to the 
values of the function. 

  
f a x b x c x d
f a x b x c x dn n n n n n n n

0 1 0
3

1 0
2

1 0 1
3 2

= + + +
= + + +

 (11.2)

c) Continuity of Pʹ(x) and P"(x): At each node point x = xi; the values of polynomials 
Pʹi(x) and Pʹi+1(x) are equal, and the values of polynomials P"i(x) and P"i+1(x) are 
also equal. At node points x = xi, i = 1, 2, …, n–1; we must have

  3 2 3 22
1

2
1 1a x b x c a x b x ci i i i i i i i i i+ + = + ++ + +  (11.3)

  6 2 6 21 1a x b a x bi i i i i i+ = ++ +  (11.4)

We have 2(n–1) equations from system (11.1); two equations from system (11.2); and  
2(n–1) equations from systems (11.3) and (11.4). So, we have total 4n–2 equations, while 
the number of arbitrary constants to be determined is 4n a b c d i ni i i i, , , ; , ,...,=( )1 2 . Hence, 
we need two more equations for the polynomials to be unique. 

Let us take the notation ′ ( ) =P x mi i and ′′ ( ) =P x Mi i . In general, we assign some values 
to the polynomial ′′ ( )P x  at the end points, that is ′′ ( ) =P x M0 0 and ′′ ( ) =P x Mn n. If the 
end conditions are M0 = 0 and Mn = 0, then our spline is called as a natural spline (As the 
drafting of the spline always behaves in this manner). 

At last, we have 4n equations in 4n variables; which can be easily solved to obtain the required 
cubic spline. But to reduce the computational work, we use an alternative method to obtain the 
cubic spline interpolation described below. 

Alternative Method for Cubic Spline:
Since the function P(x) is a cubic polynomial, so the function P"(x) is linear function of x in 
the interval x x xi i− ≤ ≤1  and can be written as

′′ ( ) =
−

−
′′ ( )+

−( )
−

′′ ( )
−

−
−

−

P x
x x

x x
P x

x x
x x

P xi

i i
i

i

i i
i

1
1

1

1

Let us assume that the length of the interval ( , )x xi i−1  is hi i.e. h x xi i i= − −1. Also, assume 
M P xi i= ′′ ( )

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.012
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:36:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.012
https://www.cambridge.org/core


450 Numerical Methods

′′ ( ) =
−

+
−( )

−
−P x

x x
h

M
x x

h
Mi

i
i

i

i
i1

1

On integrating this equation twice on x, we have

P x
x x

h
M

x x
h

M k x ki

i
i

i

i
i( ) =

−( )
+

−( )
+ +−

−
3

1
1

3

1 26 6
 (11.5)

where k1 and k2 are arbitrary constants. The values of cubic spline polynomials must equal 
to function values at nodal points; therefore, we have

P x f x f P x f x fi i i i i i− − −( ) = ( ) = ( ) = ( ) =1 1 1 and

On using these conditions in Eq. (11.5), we have 

P x f h M k x k

P x f h M k x k

i i i i i

i i i i i

− − − −( ) = = + +

= = + +

1 1
2

1 1 1 2

2
1 2

1
6

1
6

( )

Solution of these two equations for k1 and k2 is given by

k
h

f f M M h

k
h

x f x f x M

i
i i i i i

i
i i i i i i

1 1 1

2 1 1

1 1
6

1 1
6

= −( )− −( )

= −( )−

− −

− − −11 1−( )−x M hi i i

On substituting these values of k1 and k2 in Eq. (11.5), we have

P x
h

x x M
h

x x M x
h

f f

x M M

i
i i

i
i i

i
i i

i i

( ) = −( ) + −( ) + −( )

− −

− − −

−

1
6

1
6

6

3
1 1

3
1

11 1 1 1 1 1
1 1

6
1

( ) + −( )− −( ) ≤ ≤( )

=

− − − − −h
h

x f x f x M x M h x x xi
i

i i i i i i i i i i i

66
1

6
2 2

1 1 1
2 2

h
x x x x h M

h
x x x x h

i
i i i i

i
i i−( ) −( ) −{ }





+ −( ) −( ) −− − − ii iM{ }





 + −( ) + −( ) =− −
1 1 1 21 1h

x x f
h

x x f i n
i

i i
i

i i , ,...,  (11.6)

To compute values of Mi–1 and Mi, we will use continuity of the polynomial Pʹ(x). On 
differentiating the Eq. (11.6) w.r.t. x, we get

′ ( ) = −
−( )

+
−( )

−
−( )

+
−

−
− − −P x

x x
h

M
x x

h
M

M M h f f
h

i

i
i

i

i
i

i i i i i

2

1
1

2
1 1

2 2 6 ii
i ix x x− ≤ ≤1  (11.7)
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Similarly, we can obtain Pʹ(x) for the interval x x xi i≤ ≤ +1, by simply changing i i= +1 in 
Eq. (11.7).

′ ( ) = −
−( )

+
−( )

− −( ) ++

+ +
+ + +P x

x x
h

M
x x

h
M M M h

fi

i
i

i

i
i i i i

1
2

1

2

1
1 1 12 2

1
6

ii i

i
i i

f
h

x x x+

+
+

−
≤ ≤( )1

1
1

 (11.8)

The continuity of the derivatives implies that the derivatives Pʹ(x) in both the intervals 
x x xi i− ≤ ≤1  and x x xi i≤ ≤ +1 must be equal at the node point x xi= . We have

⇒ −
−( )

+
−

= − − −( ) +− −
+ + +

1
2 6

1
2

1
6

1 1
1 1 1h M

M M h f f
h

h M M M h
f

i i
i i i i i

i
i i i i i

ii i

i

f
h
+

+

−1

1

On rewriting this equation, we have

h
M

h h
M

h
M

h
f f

h
f f ii

i
i i

i
i

i
i

i i
i

i i6 3 6
1 1

1
1 1

1
1

1 1−
+ +

+
+

+ −+
+

+ = −( )− −( ) = 11 2 1, ,...,n −

        x x xi i− ≤ ≤1  (11.9)

The system (11.9) will produce a linear system of (n–1) equations in (n+1) unknowns 
M M Mn0 1, ,..., . We can use any two additional conditions for unique solution of the system. 
The spline is a natural spline in case of end conditions M0 = 0 and Mn = 0. 

We solve the system (11.9), and then use the values of M M Mn0 1, ,...,  in system (11.6) to 
obtain the following cubic spline as desired.

P x
h

x x M
h

x x M x
h

f f x M M
i

i i
i

i i
i

i i i i( ) = −( ) + −( ) + −( )− −− − − −
1

6
1

6 6
3

1 1
3

1 11

1 1 1 1
1 1

6
1 2

( )

+ −( )− −( ) =− − − −h
h

x f x f x M x M h i ni
i

i i i i i i i i i , ,...,  (11.10)

11.2.2 Cubic Spline for Equi-spaced Points 
The interval length of all the intervals is same in case of equi-spaced points, i.e., 

h h h hn1 2= = = =...

So, our system of Eqs. (11.9) and (11.10) reduces to following Eqs. (11.11) and (11.12), 
respectively

M M M
h

f f f i ni i i i i i− + + −+ + = − +( ) = −1 1 2 1 14 6 2 1 2 1, ,...,  (11.11)
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P x
h

x x M x x M
h

x x f h Mi i i i i i i( ) = −( ) + −( )



 + −( ) −


− − − −

1
6

1
6

3
1 1

3
1

2

1



+ −( ) −






=−
1

6
1 21

2

h
x x f h M i ni i i , ,...,  (11.12)

These systems can be solved to obtain the desired cubic spline.

Determine the cubic spline polynomial for the following data set and hence compute the 
values of f(0.3) and f(2.6).

 
x
f x

0 1 2 3
1 8 30 59( ) − − −

Use natural spline conditions. Also, verify the interpolation and continuity conditions of 
the cubic spline at x = 2. 

Ans.
Here, we have equispaced points with spacing h = 1, and the points are

x x x x
f f f f

0 1 2 3

0 1 2 3

0 1 2 3
1 8 30 59

= = = =
= = − = − = −

, , ,
, , ,

The natural spline condition implies M0 = M3 = 0.
First, we will use the Eqs. (11.11) to compute the values of M1 and M2. 

M M M
h

f f fi i i i i i− + + −+ + = − +( )1 1 2 1 14 6 2

i M M M
h

f f f

M M

= + + = − +( )
+ = −

1 4 6 2

4 78

0 1 2 2 2 1 0

1 2  (11.13)

i M M M
h

f f f

M M

= + + = − +( ) = −

+ = −

2 4 6 2 42

4 42

1 2 3 2 3 2 1

1 2  (11.14)

On solving Eqs. (11.13) and (11.14) for M1 and M2, we get 

M1 = –18 and M2 = –6

We will use these values of M1 and M2 in Eq. (11.12) to obtain the cubic spline curves as 
follows

11.2Example
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P x
h

x x M x x M
h

x x f h Mi i i i i i i( ) = −( ) + −( )



 + −( ) −


− − − −

1
6

1
6

3
1 1

3
1

2

1



+ −( ) −






≤ ≤− −
1

61

2

1h
x x f h M x x xi i i i i

i

P x
h

x x M x x M
h

x x f h M

=

( ) = −( ) + −( )



 + −( ) −







+

1

1
6

1
61

3
0 0

3
1 1 0

2

0
11

60 1

2

1h
x x f h M−( ) −







 P x x x x x x x( ) = − − + ≤ ≤ ≤ ≤3 6 1 0 13
0 1; ( )for or  (11.15)

i

P x
h

x x M x x M
h

x x f h M

=

( ) = −( ) + −( )



 + −( ) −







+

2

1
6

1
62

3
1 1

3
2 2 1

2

1

11
61 2

2

2h
x x f h M−( ) −







P x x x x x x x x( ) = − + − ≤ ≤ ≤ ≤2 15 9 4 1 23 2
1 2; ( )for or  (11.16)

i

P x
h

x x M x x M
h

x x f h M

=

( ) = −( ) + −( )



 + −( ) −







+

3

1
6

1
63

3
2 2

3
3 3 2

2

2

11
62 3

2

3h
x x f h M−( ) −







P x x x x x x x x( ) = − − + ≤ ≤ ≤ ≤3 2
2 39 3 4 2 3; ( )for or  (11.17)

On combining the results (11.15), (11.16) and (11.17), we finally have cubic spline as 
follows

 P x
x x x

x x x x
x x x x

( ) =
− − + ≤ ≤

− + − ≤ ≤
− − + ≤ ≤









3 6 1 0 1
2 15 9 4 1 2

9 3 4 2 3

3

3 2

3 2

 (11.18)
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On using the polynomials (11.18), the values of f(0.3) and f(2.6)are given by

f
f

( . ) .
( . ) .
0 3 0 881
2 6 47 064

= −
= −

Verification: We can easily check the authenticity of cubic spline by simply verifying 
the interpolatory conditions P x fi i( ) =  at x = 0 1 2 3, , ,  and the continuity conditions of 
P x P x( ), ( )′  and ′′P x( ) at the nodes x = 1 2, , say for example at the point x = 2.

Interpolatory Condition: P
x
x

f2
30 1 2
30 2 3 2( ) =

− ≤ ≤
− ≤ ≤






=

Continuity of

Continuity of

P x P
x
x

( ) : 2
30 1 2
30 2 3( ) =

− ≤ ≤
− ≤ ≤







′PP x P x
x x x
x x x

P
x

( ) : ′ ( ) =
− + ≤ ≤
− − ≤ ≤






⇒ ′( ) =

− ≤6 30 9 1 2
3 18 3 2 3

2
27 12

2

≤≤
− ≤ ≤







′′ ′′ ( ) =
− ≤ ≤

−

2
27 2 3

12 30 1 2
6 1

x

P x P x
x x

x
Continuity of ( ) :

88 2 3
2

6 1 2
6 2 3≤ ≤






⇒ ′′ ( ) =

− ≤ ≤
− ≤ ≤





x
P

x
x

1

–50

–40

–30

–20

–10

0
2

x
3 x

f(x)

Fig. 11.2
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Obtain cubic spline approximation for e0.2 from the following values of ex correct up to six 
significant digits. Use natural spline conditions. 

 x
ex

0 0 1 0 3 0 4
1 1 10517 1 34986 1 49182

. . .
. . .

Ans. 
Given 

 

h h h
x x x x
f f

1 2 3

0 1 2 3

0 1

0 1 0 2 0 1
0 0 1 0 3 0 4
1 1 105

= = =
= = = =
= =

. , . , .
, . , . , .
, . 117 1 34986 1 491822 3, . , .f f= =

Natural spline conditions are M0 = M3 = 0.

Since the points are not equispaced; we have to use Eq. (11.9) for the values of M1 and M2
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2
2 1

1 2 . 99  (11.20)

On solving Eqs. (11.19) and (11.20) for M1 and M2, we get 

 M M1 21 196625 1 562625= =. .and

We have to compute the value of e0.2, that is in the interval (x1, x2). Therefore, we will 
use these values of M1 and M2 in the Eq. (11.10) for i = 1 to obtain the cubic spline 
approximation of the value e0.2.
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11.3 Bězier Curve 

In addition to splines, we have other important curves like Bězier and B-Spline curves. These 
curves are not like the interpolating splines; as these curves, in general, do not pass through 
all the data points (in this section and next section, we will use the words control points 
instead of data points). However, these curves stay within the convex polygon formed by 
the data points. These curves are commonly used in computer-aided designs and computer 
graphics. These curves are also used in interior designing, animation, graphics, etc. (e.g. 
shape of the interior of a car) where we need aesthetical approach over accuracy. 

 

i

P x
h

x x M
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x x M x
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f f
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=
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1 0

1 0 1 ++ −( ) − −( )1 1
61
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x f x f x M x M h

On using different values and x = 0.2, we obtain following cubic spline approximation for e0.2

 P 0 2 1 22088. .( ) =
While the exact value of e0.2 is 1.22140.

We can also compute the following cubic spline polynomials for the data set

 
1 1 032 1 994 0 0 1
1 002 0 981 0 507 0 305 0 1 0

3
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. . . . . .
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Before we discuss Bězier and B-Spline curves, it is better to introduce convex hull and 
Bernstein polynomials. 

a) Convex Polygon and Convex Hull 
Let us consider n – points of a set P x y P x y P x yn n n1 1 1 2 2 2( , ), ( , ),..., ( , ). Then draw 
these points on the drawing board and stick pins to these points. Then take a 
rubber band and stretch it over a minimum number of pins such that all pins are 
either touching the rubber band or inside the rubber band. Such polygon formed 
by the rubber band is a convex polygon of these points and interior of the polygon 
is convex hull. Bězier and B-Spline curves always remain in the convex hull formed 
by the control points. 

b) Bernstein Basis Polynomials 
The (n + 1) Bernstein basis polynomials of degree n are defined as follows

  J t C t t
n

r n r
t t r nn r

n
r

r n r r n r
, ( ) ( )

!
! ( )!

( ) , , ...,= − =
−

− =− −1 1 0 1

 For first few n, Bernstein polynomials are as follows 
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These (n + 1) Bernstein basis polynomials of degree n form a basis of the vector 
space ℘( )n  of polynomials of degree at most n.
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Fig. 11.3 Graphs of some Bězier curves
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For a given set of (n+1) control points P x y i ni i i( , ), , ,...,= 0 1 , the parametric form of 
Bězier curve of degree n (with parameter t, 0 1≤ ≤t ) is linear combination of Bernstein 
basis polynomials

B t P J t P C t t P
n

r n rr n r
r
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r
r

n
n

r
r n r

r
r
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( ) ( ) ( )
!

! ( )!,= = − =
−= =

−

=
∑ ∑ ∑

0 0 0

1 tt t tr n r( )1 0 1− ≤ ≤( )−

The coefficients Pr’s (control points with component (x, y)) are called as Bernstein coefficients 
or Bězier coefficients. We have the following parametric (X(t), Y(t)) components

X t x J t x C t t x
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0 1  (11.21)

Obtain the quartic Bězier curve for the following set of control points P x y ii i i( , ), , , ..., .= 0 1 4

 x
y

−
−

1 2 3 5 6
1 3 4 8 11

Ans. 
The control points are given by

 
x x x x x
y y y y y

0 1 2 3 4

0 1 2 3 4

1 2 3 5 6
1 3 4 8 11

= − = = = =
= = = − = =

, , , ,
, , , ,

On using these values in the Eq. (11.21), we have following Bězier curve
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Fig. 11.4 Bězier curve

Obtain the cubic Bězier curve for the following set of control points 

 
x
y

−
−

1 5 3 2
1 11 4 8

Ans. 
We have the following set of control points 

 
x x x x
y y y y

0 1 2 3

0 1 2 3

1 5 3 2
1 11 4 8

= − = = =
= = = − =

, , ,
, , ,

The Bězier curve (11.21) for these control points is given by
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Matrix Form of Bězier Curve
It is convenient to represent the Bězier curve in the matrix form. Here, we are presenting 
the matrix forms of Bězier curves up to order 4. 

n J
P t P

n J t J t

P t t
P

= =
=

= = − =

= [ ] −









0 1

1 1

1
1 1

1 0

0 0

0

1 0 1 1

0

,

, ,

( )

( ),

( )
PP

n J t J t t J t

P t t t

1

2 0
2

2 1 2 2
2

2

2 1 2 1

1
1











= = − = − =

=  

, , ,( ) , ( ),

( )
−−

−
































= = − =

2 1
2 2 0

1 0 0

3 1 3

0

1

2

3 0
3

3 1

P
P
P

n J t J, ,( ) , tt t J t t J t

P t t t t

( ) , ( ),

( )

, ,1 3 1

1

1 3 3 1
3 6 3 0

3

2
3 2

2
3 3

3

3 2

− = − =

=  

− −
−

− 33 0 0
1 0 0 0

0

1

2

3









































P
P
P
P

–1 1 2

2

3

4

5

6

7

8

30

Fig. 11.5 Bězier curve
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 (11.22)

Properties of Bernstein Polynomials and Bězier Curves

1. We have different Bězier curves for the same set of control points but not in same 
order. For example, the Bězier curves for following three sets are different

  a) 
x
y

−
−

1 5 3 2
1 11 4 8

  b) 
x
y

−
−

1 2 3 5
1 8 4 11

  c) 
x
y

5 3 2 1
11 4 8 1

−
−

2. In general, the Bězier curve does not pass through the control points except the 
first and last points.

3. The summation of all the Bernstein Polynomials is equal to 1 for any given t, i.e.,

  J t C t t t tn r
r

n

r

n
n

r
r n r r

r

n

, ( ) ( ) ( )
= =

−

=
∑ ∑ ∑= − = − +( ) =

0 0 0

1 1 1

4. The Bězier curve always lies within the convex hull of the control points. So, it 
remains bounded by the control points.

5. For a given set of (n+1) control points P x y i ni i i( , ), , ,...,= 0 1 , Bězier curve is 
always of degree n. Therefore, two control points result in a straight line; similarly, 
Bězier curve for three control points is a parabola, etc.

6. A closed curve can be generated with equal first and last control points.
7. If the data size is large, then it is very difficult to obtain a large degree of Bězier 

curve. For examples, if we have a dataset of 20 control points, then the Bězier curve 
is of degree 19. The difficulty is not only to compute the polynomial of degree 19 
but also to handle the round-off error during the calculations of values at any 
intermediate points. Therefore, we will derive different sets of Bězier curves in this 
case, and club together these Bězier curves to form a single curve. Since the Bězier 
curve passes through first and last control points, we have continuity of the curve. 
Also, first order continuity can be achieved by simply ensuring that the tangents 
between first two points and last two points are equal. In general, it is not possible 
to achieve second order continuity. 
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11.4 B-Spline Curve 

B-spline curves are commonly used in computer-aided designs and computer graphics. 
We have a single Bězier curve of degree n for (n+1) control points. But B-Spline curves are 
different for each interval, and may be of any degree. B-Spline is similar to cubic spline in 
the sense that, we have different B-Spline curves for each subinterval. But contrary to cubic 
splines, the B-Spline curves need not pass through the control points. Also, it is worth 
mentioning here that B-Spline curves have first and second order continuity (like cubic 
spline). Without going into further details, here we will discuss only the cubic B-Spline curve. 

For a given set of control points P x y i mi i i( , ), , ,...,= 0 1 , we have following cubic 
B-Spline curves Bj(t) for the intervals ( , ), , ,...,P P j mj j+ = −1 1 2 1  in parametric form (with 
parameter t)

B t P t tj j r r
r

( ) ( );= ≤ ≤+
= −
∑ β

1

2

0 1

where the set βr t( ) is the basis, and it remains same for every set of intervals 
( , ), , ,...,P P j mj j+ = −1 1 2 1. The basis polynomials βr t( ) r = −1 0 1 2, , ,  are given by 
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The parametric components X t Y tj j( ), ( )( ) are as follows
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(Set P P− =1 0 and P Pm m+ =1  for calculations)

Obtain the cubic B-Spline curve for the following set of control points P x y ii i i( , ), , , .= 0 1 2

 x
y

:
:

−
−

3 1 5
1 2 6

Ans. 
We have the following set of control points (keeping all the control points in order) 
P x y ii i i( , ), , , .= 0 1 2

 
x x x
y y y

0 1 2

0 1 2

3 1 5
1 2 6

= − = =
= = − =

, ,
, ,

To start with the computation, we set the following conditions 
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P x y P x y
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5 6
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The cubic B-Spline curve Bj(t) for the interval ( , ), , , ...,P P j mj j+ = −1 1 2 1 is given by
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B-Spline curve for the interval (P0, P1) [j = 0] is given by
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B-Spline curve for the interval (P1, P2) [j = 0] is as follows
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We can combine these curves for each subintervals to get the final B-Spline curve.

Obtain the cubic B-Spline curve for the following set of control points P x y ii i i( , ), , , ...,= 0 1 4  

x
y

−
−

1 2 3 5 6
1 3 4 8 11

Ans. 
The set of control points P x y ii i i( , ), , , , ,= 0 1 2 3 4  is as follows 

 
x x x x x
y y y y y

0 1 2 3 4

0 1 2 3 4

1 2 3 5 6
1 3 4 8 11

= − = = = =
= = = − = =

, , , ,
, , , ,

Let P x y P x y− − − = = −1 1 1 0 0 0 1 1( , ) ( , ) ( , )

 P x y P x y5 5 5 4 4 4 6 11( , ) ( , ) ( , )= =

Proceeding in a similar manner as in the previous example, we can easily obtain the 
following B–Spline curves for the intervals ( , ), , , ...,P P j mj j+ = −1 1 2 1  in parametric form 
(with parameter t).

The B-Spline curve for the interval (P0, P1)

11.7Example
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The B-Spline curve for the interval (P1, P2)

X t t t t t t t( ) ( ) ( ) ( )= − −( )





+ − +






+ − + + +1 1
6

1 2
2

2
3

3
2 2 2

3
3

2
3 2 11

6
5

6
5
3

2 1
2

3

2 3







+






= + − +

( ) t

t t t

Y t t t t t t t( ) ( ) ( ) ( )= −( )





+ − +






+ − − + + +1 1
6

1 3
2

2
3

4
2 2 2

3
3

2
3 2 11

6
8

6
3
2

5
2

9
2

14
3

3

2 3







+






= − − +

( ) t

t t t

The B-Spline curve for the interval (P2, P3)
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The B-Spline curve for the interval (P3, P4)
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Y t t t t t t t( ) ( ) ( ) ( )= − −( )
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On combining all these curves, we get following final B-Spline curve
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Fig. 11.6 Graphical representation for the B-Spline curve
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Properties of B-Spline Curves:

1. If order of control points is altered, then B-Spline curve get changed. For example, 
we have different B-Spline curves for the following two sets  

 a) x
y

−
−

1 5 3 2
1 11 4 8

 b) x
y

−
−

1 2 3 5
1 8 4 11

2. In general, the B-Spline curves do not pass through any of the control points.
3. Like Bězier curve, B-Spline curve also lies within the convex hull of the control 

points.
4. For a set of (n+1) control points P x y i ni i i( , ), , ,...,= 0 1 , the B-Spline curve can be 

of any degree. 
5. B-Spline curves have first and second order continuity at nodal points.
6. B-Spline curve has a local effect, i.e. if we change one control point Pj, then the 

B-Spline is changing only for the points P x y i j j j ji i i( , ), , , ,= − + +1 1 2 .

11.5 Least Squares Curve 

In the least squares approximation, we approximate given data set by some standard 
functions e.g. straight line, polynomial, exponential function, etc. Suppose we have to fit a 
function g(x) to n points x y i ni i, ; , ,...,( ) = 1 2 . At any given point xi, the function value g(xi) 
is approximate value and yi is an exact value. Therefore, the error at this point is given by

e y g xi i i= − ( )  

The aim is to find g(x), such that the error at points x y i ni i, , , ,...,( ) = 1 2  is minimum.
To find a total effective error (E), we cannot simply add these errors as some errors may 

be of opposite signs and hence during addition total error could be less than effective error. 

To overcome this difficulty, we can use absolute values of errors i.e. E ei
i

n

=
=
∑

1
. But in that 

case, it is difficult to perform analysis like differentiation, etc. on modulus function. 

Keeping in mind all these, we can use the sum of squares of errors i.e. E ei
i

n

=
=
∑ 2

1

. The aim 

is to find the function g(x), such that this error E is least. It is the reason that the method is 
known as least squares method. Now, we will obtain equations for some possible fittings like 
a straight line, parabola, etc.
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11.5.1 Linear Curve (or) Straight Line Fitting 
Let us consider a straight line g x a bx( ) = + . The aim is to find a and b such that the error 
(E) is minimum

E e y g x y a bxi
i

n

i i
i

n

i i
i

n

= = −( ) = − +( )
= = =
∑ ∑ ∑2

1

2

1

2

1

( ) ( )

To find the extreme points of the variable E, the partial derivatives with respect to variables 
a and b must vanish

∂
∂

= ∂
∂

− +( ) =

− − +( ) =

− +

=

=

∑

∑

E
a a

y a bx

y a bx

y a bx

i i
i

n

i i
i

n

i i

( )

( )

(

2

1

1

0

2 0

))( ) =

− − =

⇒ + =

=

= ==

= =

∑

∑ ∑∑

∑ ∑

i

n

i
i

n

i
i

n

i

n

i
i

n

i
i

n

y a bx

na b x y

1

1 11

1 1

0

0

 (11.21)

xx1

(x1, y1)

e1

e2

en
ei = yi – g(xi)

g(x) = a + bx

(x2, y2)

(xi, yi)

(xn, yn)

x2 xi xn

g(x)

Fig. 11.7  Approximation by a straight line g(x) = a+bx. The dots are exact data points 
(x

i
, y

i
); i = 1,2,...,n, therefore the vertical differences between straight line and dots  

are errors.
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∂
∂

= ∂
∂

− +( ) =

− +( ) − =

−

=

=

∑

∑

E
b b

y a bx

y a bx x

x y

i i
i

n

i i
i

n

i

i i
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( ) ( )
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1

1

0

2 0

aa x b xi i
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n

i

n

i

n

− =
===
∑∑∑ 2

111

0

⇒ + =
== =
∑∑ ∑a x b x x yi i
i

n

i

n

i i
i

n
2

11 1
 (11.22)

Equations (11.21) and (11.22) are called as normal equations for straight line fitting.

na b x yi
i

n

i
i

n

+ =
= =
∑ ∑

1 1

a x b x x yi i
i

n

i

n

i i
i

n

+ =
== =
∑∑ ∑2

11 1

 (11.23)

We can solve these equations for variables a and b. The straight line g x a bx( ) = +  with 
these values of a and b is the straight line with minimum least square error.

Fit a straight line to the following data set 

x
y

: . . . . .
: . . . . .

1 1 2 1 4 1 6 1 8 2 0
0 0 182322 0 336472 0 470004 0 587787 0 6931147

Ans. 
Normal Eqs. (11.23) for the straight line fitting are as follows

na b x yi
i

n

i
i

n

+ =
= =
∑ ∑

1 1

a x b x x yi i
i

n

i

n

i i
i

n

+ =
== =
∑∑ ∑2

11 1

We have to compute the values x y xi
i

n

i
i

n

i
i

n

= = =
∑ ∑ ∑

1 1

2

1

, ,  and x yi i
i

n

=
∑

1

 for solution of these 

equations

11.8Example
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470 Numerical Methods

11.5.2 Nonlinear Curve Fitting by Linearization of Data 
There are some nonlinear curves, which are equivalent to linear fitting after some 
transformations in the dependent and independent variables. For example, if we want to 
fit a curve of the type y = aebx to a data set. Then taking natural log on both sides, we have 

ln( ) ln( )y a b x= +

This expression is equivalent to following linear expression

Y A BX= +

where Y y A a B b X x= = = =ln( ), ln( ), ,

In the next table, we are summarizing some nonlinear curves, which with simple operations 
and transformations can be converted into linear curve fitting. 

x y x xy2

1 0 1 0
1 2 0 182322 1 44 0 218786
1 4 0 336472 1 96 0 471061
1

. . . .

. . . .

.66 0 470004 2 56 0 752006
1 8 0 587787 3 24 1 058017
2 0 0 693147 4

. . .
. . . .
. . .00 1 386294

9 0 2 269732 14 2 3 8861642

.
. . . .x y x xy∑ ∑ ∑ ∑= = = =

On using these values and n = 6 in normal equations (11.23), we get

6 9 2 269732
9 14 2 3 886164

a b
a b

+ =
+ =

.
. .

Solution of these equations is given by 

a b= − =0 653638 0 687951. , .

Therefore, the linear curve with minimum least square error is as follows

y x= − +0 653638 0 687951. .

Note: It is worth mentioning here that the data set is generated by the function y = ln(x).
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Table 11.1 Linearization of Nonlinear Curves

Sr. 
No.

Function
y = f(x)

Operations
Linearization

Y = A+BX
New Variables and Constants 

Y = A+BX 
1 y aebx=

y a xebx=

y a xb=

Take Log ln( ) ln( )y a b x= +

ln ln( )
y

x
a b x





= +

ln( ) ln( ) ln( )y a b x= +

Y y A a B b X x= = = =ln( ), ln( ), ,

Y
y

x
A a B b X x= 





= = =ln , ln( ), ,

Y y A a B b X x= = = =ln( ), ln( ), , ln( )

2
y

x

ax b
=

+

y
a bx

=
+
1

y
a

x b
=

+

Inverse 1 1
y

ax b

x
a b

x
=

+
= +

1
y

a bx= +

1 1
y a

x
b

a
= +

Y
y

A a B b X
x

= = = =
1 1

, , ,

Y
y

A a B b X x= = = =
1

, , ,

Y
y

A
b

a
B

a
X x= = = =

1 1
, , ,

3
y

C

aebx
=

+1

Inverse and 
Log ln ln( )

C

y
a b x−







= +1 Y
C

y
A a B b X x= −







= = =ln , ln( ), ,1

4 y a bx m= +( ) mth root (m 
fixed)

( )y a bxm− = + Y y A a B b X xm= = = =−( ) , , ,

5 y a b g x= + ( )

y a b
x

= +
1

y a b x= + ln( )
Etc.

Let X g x= ( )

     
X

x
=

1

     
X x= ln( )

y a b g x= + ( )

y a b
x

= +
1

y a b x= + ln( )

Y y A a B b X g x= = = =, , , ( )

Y y A a B b X
x

= = = =, , ,
1

Y y A a B b X x= = = =, , , ln( )

Fit a curve y = axb to the following data 

x
y

:
:

1 2 3 5 6
1 9 29 129 221

Ans. 
On taking log on both sides of the curve y = axb, we get 

 ln( ) ln( ) ln( )y a b x= +

So, the curve fitting of type y a xb=  is equivalent to fit a straight line Y A bX= + , where 

Y y A a X x= = =ln( ), ln( ), ln( ) .

11.9Example
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Normal equations for straight line Y A bX= +  fitting are as follows

n A b X Yi
i

n

i
i

n

+ =
= =
∑ ∑

1 1

A X b X X Yi i
i

n

i

n

i i
i

n

+ =
== =
∑∑ ∑2

11 1

 (11.24)

On computing various terms in normal equations

x X x y Y y X XY= =ln( ) ln( )

. . .

2

1 0 1 0 0 0
2 0 693147181 9 2 197224577 0 4804530014 1 523000021
3 1 098612289 29 3 36729583 1 206948961 3 699352

.
. . . . 5578

5 1 609437912 129 4 859812404 2 590290394 7 821566331
6 1 791

. . . .

. 7759469 221 5 398162702 3 210401996 9 672209137
5 192956851 15 8

. . .
. . 22249551 7 488094364 22 7. . 1612807

The normal Eqs. (11.24) are as follows

5 5 192956851 15 82249551A b+ =. .

5 192956851 7 488094364 22 7. . .A b+ = 1612807

On solving these equations for A and b, we obtain
 A = 0.04931094359, b = 2.99943582

 a eA= = 1 050546961. , b = 2.99943582

Hence, our curve is y a x xb= = 1 050546961. 2.99943582 .

Following are census details for the population of India from the year 1961 to 2011. Fit an 
exponential curve y = aebx to these data, and hence find the approximate population in the 
years 1966, 1985, 1996 and 2009.

Year( 1961 1971 1981 1991 2001 2011

Population 43.9235 54.816

x

y

)

( ) 00 68.3329 84.6421 102.8737 121.0193
(in crores)

11.10Example
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Ans. 
We have to fit an exponential curve y aebx=  for years (x) from 1961 to 2011. To avoid 

lengthy calculations (like y aebx= = a ( . )( )2 718 1961 b ), we can shift the origin and rescale the 

data as follows

X x= −1981
10

Now, we have to fit the exponential curve y aebX=  to the following data

X
y

:
:

− −2 0 1 2 31
43.9235 54.8160 68.3329 84.6421 102.8737 121.0193

On taking logarithmic on both side to the equation y aebX= , we get 

ln lny a bX= +

By replacing Y y A a= =ln( ), ln( ), we have following straight line

Y A bX= +

Normal equations for this straight line are as follows

n A b X Yi
i

n

i
i

n

+ =
= =
∑ ∑

1 1

A X b X X Yi i
i

n

i

n

i i
i

n

+ =
== =
∑∑ ∑2

11 1

X y Y y X XY=

− −
− −

ln( )

.

.

2

2 7 5649
1 1 4 0

43.9235 3.78245 4
54.8160 4.00398 00398

0 68 3329 4 22439 0 0
1 84 6421 4 43843 1 4 43843
2 102 8737 4 63

. .

. . .
. . 3350 4 9 26700

3 121 0193 4 79595 9 14 38785

3 25 87870 19 16 52440

.
. . .

. .

The normal equations are given by

6 3 25 87870A b+ = .
3 19 16 52440A b+ = .
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11.5.3 Quadratic Curve Fitting 
So far, we have discussed the straight line fitting and fitting of those nonlinear curves 
which are reducible to linear curve fitting. Now, we will discuss fitting of a quadratic curve. 
Proceeding in a similar manner as in the case of straight line fitting; we will find the normal 
equations for quadratic fit. Let g x a bx cx( ) = + + 2  be a required quadratic curve. The error 
term is given by 

E e y g x y a bx cxi
i

n

i i
i

n

i i i
i

n

= = −( ) = − + +( )
= = =
∑ ∑ ∑2

1

2

1

2 2

1

( ) ( )

On equating the partial derivatives of function E with respect to variables a, b and c with 
zero, we can produce the following normal equations for the quadratic fitting

On solving these equations, we have 

A = 4 21069. , b = 0 20486.  

Since A a= ln( ) ⇒ =a 67 40281.

Hence, the fitted curve is given by

y e X= 67 40281 0 20486. .

Now, we have to compute populations in the years (x) = 1966, 1985, 1996 and 2009. 
Corresponding to these years, the variable X is given by

 X x= −1981
10

= –1.5, 0.4, 1.5., 2.8

So, the populations are given by

y e( ) . . ( . )1966 67 40281 0 20486 1 5= =− 49.570533

y e( ) . . ( . )1985 67 40281 0 20486 0 4= = 73.158664

y e( ) . . ( . )1996 67 40281 0 20486 1 5= = 91.649962

y e( ) . . ( . )2009 67 40281 0 20486 2 8= = 119.616951

Note: Try the example without shifting of origin and scaling. We will see that the 
calculations are almost impossible to even with a good computer.
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Equations (11.25), (11.26) and (11.27) are three normal equations for quadratic fitting

na b x c x yi
i

n

i
i

n

i
i

n

+ + =
= = =
∑ ∑ ∑

1

2

1 1

a x b x c x x yi i
i

n

i

n

i
i

n

i i
i

n

+ + =
== = =
∑∑ ∑ ∑2

11

3

1 1

a x b x c x x yi i
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i

n

i
i

n

i i
i

n
2 3

11
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1

2

1

+ + =
== = =
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Fit a quadratic curve to the following data, and compute the value of variable y at point 
x = 3
x
y

:
:

0 1 2 4 5
2 0 10 78 148−

Ans. 
The normal equations (11.28) for quadratic fitting are given by

na b x c x yi
i

n

i
i

n

i
i

n

+ + =
= = =
∑ ∑ ∑

1

2

1 1

a x b x c x x yi i
i

n

i

n

i
i

n

i i
i

n

+ + =
== = =
∑∑ ∑ ∑2

11

3

1 1

a x b x c x x yi i
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n

i

n

i
i

n

i i
i

n
2 3

11

4

1

2

1

+ + =
== = =
∑∑ ∑ ∑

For these equations, we have to compute the following values

x y x x x xy x y2 3 4 2

0 2 0 0 0 0 0
1 0 1 1 1 0 0
2 10 4 8 16 20 40
4 78 16 64 256 312 1248
5 1

−

448 25 125 625 740 3700
12 234 46 198 898 1072 4988

The following normal equations, are obtained

5 12 46 234
12 46 198 1072
46 198 898 4988

a b c
a b c
a b c

+ + =
+ + =
+ + =

On solving these equations, we have
a b c= = − =5 11 269 22 181 22/ , / , /

The desired quadratic curve is as follows

 y x x= − +5
11

269
22

181
22

2

 
⇒ = =y( ) .3 416

11
37 818182

11.11Example
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Following are the values of ln(x) for x = 1 (0.2) 2

x
x

: . . . . .
ln( ) . . . . .

1 1 2 1 4 1 6 1 8 2 0
0 0 182322 0 336472 0 470004 0 587787 0 6693147

Fit a quadratic curve to these values, and use the result to compute the value of ln(1.7).

Ans. 
Proceeding in a similar manner as in the previous example, compute the following values

x y x x x x xy x y= ln( )

. . . . . .

2 3 4 2

1 0 1 1 1 0 0
1 2 0 182322 1 44 1 728 2 0736 0 2187886 0 262544
1 4 0 336472 1 96 2 744 3 8416 0 471061 0 659485
1 6 0

.
. . . . . . .
. .4470004 2 56 4 096 6 5536 0 752006 1 203210

1 8 0 587787 3 24 5 832
. . . . .

. . . . 110 4976 1 058017 1 904430
2 0 0 693147 4 0 8 00 16 00 1 386294 2 7

. . .
. . . . . . . 772588

9 0 2 269732 14 2 23 4 39 9664 3 886164 6 802257. . . . . . .

The normal equations, Eqs. (11.28) are given by

6 9 14 2 2 269732
9 14 2 23 4 3 886164
14 2 23 4 39

a b c
a b c

a b

+ + =
+ + =

+ +

. .
. . .

. . .99664 6 802257c = .

We get a b c= − = = −1 158640 1 398110 0 236720. , . , . , hence our quadratic curve is as 
follows

y x x= − + −1 158640 1 398110 0 236720 2. . .

⇒ = − + − =y( . ) . . ( . ) . ( . ) .1 7 1 158640 1 398110 1 7 0 236720 1 7 0 5340262

The exact value of ln( . ) .1 7 0 530628= .

11.12Example

Note: In general, the least squares curves do not pass through any data point. The least 
squares curves have global effects (if we change the position of one point, it will change the 
whole curve). 

Interpolating polynomial is best suitable for a data set having less number of points, 
as it has zero least squares error. But, for large data set, we have already discussed the 
disadvantages of higher order polynomials. Least squares fitting are suitable for large data 
set having global patterns like a straight line, exponential, parabolic, etc. But selection of 
appropriate curve is very difficult task, as it is not possible to predict the suitable curve by 
just looking at the data set. Scatter diagram will be helpful in this regard. 
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11.6 Chebyshev Polynomials Approximation 

In this section, we are mainly concerned with the approximation by Chebyshev polynomials. 
To begin, here we will briefly discuss some basic aspects of Chebyshev polynomials. 

Chebyshev differential equation of degree n is given by

( )1 02
2

2
2− − + =x

d y
dx

x
dy
dx

n y  − ≤ ≤1 1x

Two linearly independent solutions of this differential equation are Chebyshev polynomial 
of the first kind T x n xn ( ) = ( )−cos cos 1  and Chebyshev polynomial of the second kind 
U x n xn ( ) = ( )−sin cos 1 . Here, we will concentrate only on Chebyshev polynomials of the 
first kind Tn(x) and use its minimax property to obtain best lower approximation for a given 
polynomial. 

Now, we will discuss important forms, recurrence relation and orthogonal property of 
Chebyshev polynomials of the first kind Tn(x) of degree n.

1. Forms of Chebyshev polynomial 

T x n xn ( ) = ( )−cos cos ,1
 − ≤ ≤1 1x

On replacing x = cos( )θ  or θ = −cos 1 x , we have

T nn cos cosθ θ( ) = ( )
On using the de Moivre’s formula cos sin cos( ) sin( )θ θ θ θ±( ) = ±i n i nn , we have

T n

i i

n

n n

(cos ) cos( )

cos sin cos sin

cos

θ θ

θ θ θ θ

θ

=

= +( ) + −( )





= +

1
2
1
2

ii i
n n

n

1 1

1
2

1

2 2

2

−( ) + − −( )





= + −( ) +

cos cos cos

cos cos cos

θ θ θ

θ θ θ −− −( )





cos2 1θ
n

Substitute x = cos( )θ  to get the following form

T x x x x xn

n n

( ) = + −( ) + − −( )





1
2

1 12 2

2. Chebyshev polynomial in terms of Gauss hypergeometric function

If we put x t= −1 2  in Chebyshev differential equation, then it will transform into the 
following differential equation
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t t
d y
dt

t
dy
dt

n y−( ) + −





+ =2
2

2
21

2
0

This differential equation is equivalent to following Gauss hypergeometric equation

t t
d y
dt

t
dy
dt

y−( ) + − + +( ) − =2
2

2 1 0γ α β αβ( ) , with α β= = −n n,  and γ = 1
2

Therefore, the Chebyshev polynomial can also be written in terms of Gauss hypergeometric 
function F t( , ; ; )α β γ  as follows

T x F n n x
n ( ) = − −





, ; ;1
2

1
2

3. Polynomial expansion for Chebyshev polynomials

De Moivre’s formula is given by

cos( ) sin( ) cos sin cos sinn i n i C in n
m

n m

m

n
mθ θ θ θ θ θ+ = +( ) = ( ) ( )−

=
∑

0

In this expansion, real terms exist only for m k= 2  as 

i im k k k k
sin sin sin cosθ θ θ θ( ) = ( ) = −( ) ( ) = −( )2 2 21 1

On equating real terms, we have

cos( ) cos cos
/

n Cn
k

n k

k

n
k

θ θ θ= ( ) −( )−

=

[ ]
∑ 2

2

0

2
2 1

Use T nn cos cosθ θ( ) = ( )  and x = cos( )θ  to get following form

T x
n

k n k
x xn

k

n
n k k( )

!
!( )!

( )
[ / ]

=
−

−
=

−∑ 2 2
1

0

2
2 2

4. Recurrence relation for Chebyshev polynomials 

Consider the following trigonometric identies
cos cos ( )

cos cos ( ) sin sin ( )

n n

n n

θ θ θ
θ θ θ θ

( ) = + −( )
= ( ) −( )− ( ) −( )

1

1 1

cos ( ) cos ( )

cos cos ( ) sin sin (

n n

n n

−( ) = − + −( )
= ( ) −( )+ ( ) −

2 1

1 1

θ θ θ
θ θ θ ))θ( )
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480 Numerical Methods

On adding these equations, we get

cos cos ( ) cos cos ( )n n nθ θ θ θ( )+ −( ) = ( ) −( )2 2 1

On using T nn cos cosθ θ( ) = ( )  and x = cos( )θ , we have

 T x T x xT xn n n( )+ ( ) = ( )− −2 12

(or) T x xT x T xn n n( ) = ( )− ( )− −2 1 2  (11.29)

Since, we have T x n xn ( ) = ( )−cos cos 1 , ⇒ = =T x T x x0 11( ) , ( )

Higher degree Chebyshev polynomials can be obtained using recurrence relation (11.29), 
and Chebyshev polynomials up to degree six are listed in following table

Chebyshev Polynomial in Power of x Power of x in Chebyshev Polynomial

T x0 1( ) =

T x x1( ) =

T x xT x T x x2 1 0
22 2 1( ) = ( ) − ( ) = −

T x xT x T x x x3 2 1
32 4 3( ) = ( ) − ( ) = −

T x x x4
4 28 8 1( ) = − +

T x x x x5
5 316 20 5( ) = − +

T x x x x6
6 4 232 48 18 1( ) = − + −



1 0= T x( )

x T x= 1( )

x T x T x2
0 2

1
2

= ( ) + ( )( )

x T x T x3
1 3

1
4

3= ( ) + ( )( )

x T x T x T x4
0 2 4

1
8

3 4= ( ) + ( ) +( )( )

x T x T x T x5
1 3 5

1
16

10 5= ( ) + ( ) + ( )( )

x T x T x T x T x6
0 2 4 6

1
32

10 15 6= ( ) + ( ) + + ( )( )( )



5. Orthogonal property of Chebyshev polynomials

Chebyshev polynomials Tn(x) are orthogonal w.r.t. weight function 1

1 2− x
 over the 

interval [–1, 1], i.e.

T x T x

x
dx n mm n( ) ( )

;
1

0
2

1

1

−
= ≠

−
∫  (11.30)

When n = m, we have T x

x
dx

n

n
n

2

2
1

1

1

0

2
0

( )

−
=

=

≠





−
∫

π
π
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6. Minimax property of Chebyshev polynomials

One of the most important properties of Chebyshev polynomials is minimax property. 
We will use this property to obtain lower order polynomial approximation for a given 
polynomial. 

The coefficient of xn in the polynomial Tn(x) is 2n–1, therefore 21–nTn(x) is a polynomial 
with coefficient of xn is 1. It means leading coefficient in polynomial 21–nTn(x) is 1. Since 
T x n xn ( ) = ( )−cos cos 1  so its maximum absolute value is 1.

max ( )
− ≤ ≤

=
1 1

1
x nT x

On using these facts, we can state the minimax property of Chebyshev polynomial as follows

Consider polynomials with leading coefficients 1 (known as a monic polynomial) and of 
degree n > 0, i.e.,

P x x a x a x a x an
n

n
n

n
n( ) = + + + ⋅⋅⋅+ +−

−
−

−
1

1
2

2
1 0

Then, following relations hold in the domain − ≤ ≤1 1x ,

max ( ) max ( )
− ≤ ≤ − ≤ ≤

− −≥ =
1 1 1 1

1 12 2
x n x

n
n

nP x T x  (11.31)

The minimax property implies that among all the monic polynomials of degree n, the 
21−n

nT x( )  has smallest least upper bound for its absolute value in the domain − ≤ ≤1 1x . 
Thus if we approximate a given polynomial by lower order polynomial, then by Chebyshev 
polynomial we can minimize the maximum absolute error. 

Use Chebyshev polynomials to compute the best lower order approximation for the 
polynomial 3 5 14 3x x x+ − +  in the domian − ≤ ≤1 1x . Also, compute the error bound 
in this approximation.

Ans. 
First, we replace the highest order term in the polynomial with the help of Chebyshev 
polynomial as follows 

3 5 1 3
8

3 4 5 14 3
0 2 4

3x x x T x T x T x x x+ − + = ( ) + ( ) +( ) + − +( )

 
= + ( ) + ( ) + − +3

8
3
2

9
8

5 14 2 0
3T x T x T x x x( )

11.13Example
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= + −( ) + + − +3

8
3
2

2 1 9
8

5 14
2 3T x x x x( )

 
= + + − +3

8
5 3 5

84
3 2T x x x x( )

On neglecting the term 3
8 4T x( ) , the lower order approximation is as follows

3 5 1 5 3 5
8

4 3 3 2x x x x x x+ − + ≈ + − +

The maximum absolute error (11.31) in this approximation is given by

3
23 4T x( )  = 3

2
3
8

0 3753 = = .  

Note that if we directly neglect the term 3 4x  from the given polynomial, then the maximum 
possible error in the interval − ≤ ≤1 1x  is 3.

Economize the Taylor series expansion cos
! ! !

( )x x x x O x= − + − +1
2 4 6

2 4 6
8  to lower order 

approximation over the interval − ≤ ≤1 1x . Also, compute the error bound. 

Ans. 
On using the value of x6 in terms of Chebyshev polynomials, we have

1
2 4 6

1
2 4

1
6

1
32

10 15 6
2 4 6 2 4

0 2 4− + − = − + − ( ) + ( ) + +x x x x x T x T x T x
! ! ! ! ! !

( ) TT x6 ( )( )





 
= − + − + −( ) + − + +( )





1
2 4

1
6

1
32

10 15 2 1 6 8 8 1
2 4

2 4 2
6

x x x x x T x
! ! !

( ) ( )

On neglecting the term containing T x6 ( ), we have

1
2 4 6

1
2 4

1
6

1
32

10 15 2 1 6 8 8
2 4 6 2 4

2 4 2− + − ≈ − + − + −( ) + − +x x x x x x x x
! ! ! ! ! !

( 11)( )





 
= − +23039

23040
639

1280
19
480

2 4x x

11.14Example
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This polynomial is the lower order economized approximation for the function cos x. The 
error in this approximation is given by

1
6

2 1
6

1
2

1
6

1
2

0 0000434027771
5 6 5!

( )
!

( )
!

.− = = =n
nT x T x

Approximate the polynomial x x x3 25 2 1+ + −  to a quadratic polynomial with minimum 
error in the interval (3, 4).

Ans. 
To apply the Chebyshev approximation, first of all, we have to change the variable x to 
variable t, such that the interval converts from (3, 4) to (–1, 1). Let our new variable be 
t = ax + b. At x = 3 and x = 4, we want t = –1 and t = 1 respectively, i.e.,

− = +1 3a b

  1 4= +a b

On solving these two equations for a and b and using these values, we have 

t x= −2 7  or x t= +( )1
2

7  

On using this expression for x in given polynomial, we have 

x x x t t t3 2
3 2

5 2 1 1
2

7 5 1
2

7 2 1
2

7+ + − = +( )





+ +( )





+ +( )





−11

1
8

31
8

295
8

881
8

3 2= + + +t t t

Now, we have to convert 1
8

31
8

295
8

881
8

3 2t t t+ + +  to a quadratic polynomial over the 

domain (–1, 1). 

1
8

31
8

295
8

881
8

1
8

1
4

3 31
8

295
8

3 2
1 3

2t t t T t T t t t+ + + = ( ) + ( )( )





+ + ++ 881
8

 

= ( ) + ( ) + + +

= ( ) + + +

1
32

3
32

31
8

295
8

881
8

1
32

3
32

31
8

29

3 1
2

3
2

T t T t t t

T t t t 55
8

881
8

1
32

31
8

1183
32

881
83

2

t

T t t t

+

= ( ) + + +

11.15Example
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11.7  Approximation by Rational Function of Polynomials 
(Padé Approximation) 

So far, we have discussed only polynomial approximations, except in Section 11.5 of curve 
fitting where other functions are also discussed. Polynomials are best approximations for the 
functions which are smooth in behavior and for the data sets of experimental observations 
without singularity. But if our function/experiment behaves in chaos or singular manner 
(i.e., tends to infinity at some points), then we have to approximate with some other 
functions, one of that function is rational function of polynomials

R x
a a x a x a x

b x b x b xm n
m

m

n
n, ( ) =

+ + + ⋅⋅⋅+
+ + + ⋅⋅⋅+

0 1 2
2

1 2
21

This approximation by the rational function of polynomials is called Padé approximation.

Lower order approximation is given by 

 

31
8

1183
32

881
8

2t t+ +  over the interval (–1, 1)

(or) 31
8

2 7 1183
32

2 7 881
8

2x x−( ) + −( ) + = − +15 5 34 5625 41 218752. . .x x  over the interval 

(3, 4).

Fit a rational function R x
a a x a x

b x b x2 2
0 1 2

2

1 2
21, ( ) =

+ +
+ +

 to the function ex.

Ans.
We require total five equations to compute values of five arbitrary constants a a a b b0 1 2 1 2, , , ,  
in the function R x2 2, ( ). Consider the first five terms of the Taylor series expansion of the 
function ex as follows 

 e x x x xx = + + + +1
2 3 4

2 3 4

! ! !

11.16Example
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The approximation of the function ex with R2,2(x) implies that 

R x ex
2 2, ( ) =

⇒
+ +
+ +

= + + + +
a a x a x

b x b x
x x x x0 1 2

2

1 2
2

2 3 4

1
1

2 6 24

a a x a x x x x x b x b x0 1 2
2

2 3 4

1 2
21

2 6 24
1+ + = + + + +







+ +( )

On comparing various coefficients of different powers of x up to x4, we have the following 
set of equations

a
a b

a b b

b
b

b b

0

1 1

2 1 2

1
2

1 2

1
1

1
2

0 1
6 2

0 1
24 6 2

=
= +

= + +

= + +

= + +

On solving this system of equations, we get

a a a b b0 1 2 1 21 1
2

1
12

1
2

1
12

= = = = − =, , , ,

Therefore, Padé approximation to ex is as follows

R
x x

x x
2 2

2

2

1 1
2

1
12

1 1
2

1
12

, =
+ +

+ − +

Fit a rational function R x
a a x a x

b x b x2 2
0 1 2

2

1 2
21, ( ) =

+ +
+ +

 to the following data set, and use the 

result to compute the output at an input 2.5.

11.17Example
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486 Numerical Methods

Input
Output

:
: / /

−
− −

1 0 1 2 3
1 1 2 13 5 13 5

Ans. 
The approximation R x

a a x a x
b x b x2 2

0 1 2
2

1 2
21, ( ) =

+ +
+ +

 should match with the data set at given 

points. Therefore, we have 
R y22 1 1 1( ) ( )− = − = −

R y22 0 0 1( ) ( )= = −

R y22 1 1 2( ) ( )= =

R y22 2 2 13
5

( ) ( )= =

R y22 3 3 13
5

( ) ( )= =

On using the value of R x
a a x a x

b x b x2 2
0 1 2

2

1 2
21, ( ) =

+ +
+ +

 in these equations and simplifying the 

expressions, we have following five equations in five unknowns a a a b b0 1 2 1 2, , , , .

a a a b b0 1 2 1 2 1− + − + = −

a0 1= −

a a a b b0 1 2 1 22 2 2+ + − − =

5 10 20 26 52 130 1 2 1 2a a a b b+ + − − =

5 15 45 39 117 130 1 2 1 2a a a b b+ + − − =

On solving these five equations, we have 

a a a b b0 1 2 1 21 3 2 0 1= − = = = =, , , ,

Therefore, the Padé approximation is given by 

R x x
x2 2

2

2

1 3 2
1, = − + +

+
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Obtain a rational approximation R x
a a x a x

b x b x b x b x2 4
0 1 2

2

1 2
2

3
3

4
41, ( ) =

+ +
+ + + +

 for the Taylor series 
expansion of the function 

cos
! ! !

x x x x= − + − + ⋅⋅⋅1
2 4 6

2 4 6

Ans. 
We have seven arbitrary constants a a a b b b b0 1 2 1 2 3 4, , , , , ,  in rational approximating function 
R x2 4, ( ) . Therefore, we will consider first seven terms of the Taylor series expansion of 
function

cos
! ! !

x x x x= − + −1
2 4 6

2 4 6

R x x x x
2 4

2 4 6

1
2 4 6, ( )

! ! !
= − + −

a a x a x
b x b x b x b x

x x x0 1 2
2

1 2
2

3
3

4
4

2 4 6

1
1

2 4 6
+ +

+ + + +
= − + −

! ! !

a a x a x x x x b x b x b x b x0 1 2
2

2 4 6

1 2
2

3
3

4
41

2 4 6
1+ + = − + −







+ + + +( )! ! !

On comparing various coefficients of different powers of x up to x6, we have the following 
set of linear equations

a0 1= ,  a b1 1= , a b2 2
1

2
= − + , 0 1

2 1 3= − +b b ,

0 1
24

1
2 2 4= − +b b , 0 1

24
1
21 3= −b b , 0 1

720
1

24
1
22 4= − + −b b .

Solution of this system provides the following result

a a a b b b b0 1 2 1 2 3 41 0 61
150

0 7
75

0 1
200

= = = − = = = =, , , , , ,

So, Padé approximation to cos x is as follows

R
x

x x
2 4

2

2 4

1 61
150

1 7
75

1
200

, =
−

+ +

11.18Example
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Table 11.2 Summary and Comparison 

Approximation techniques for a given data set of (n+1) points (x
i
, y

i
); i = 0,1,2,...,n

Interpolation
Piecewise 

Interpolation
Cubic Spline Bězier B-Spline Least Squares

Padé 
Approximation

Approximating 
function

A single 
polynomial of 
degree ≤ n 
for complete 
interval 

x xn0,( )

Divide x xn0,( )
into m 
subintervals, 
and then 
fit different 
polynomials 
of degree 
n/m to each 
subinterval

Cubic 
polynomials 
to each 
subinterval 
( , )x x0 1 ,
( , )x x1 2 ,…, 

( , )x xn n−1

A single 
Polynomial of 
degree exactly 
n in parametric 
form

polynomials 
of any degree 
to each 
subinterval 
( , )x x0 1 , 
( , )x x1 2 ,…, 
( , )x xn n−1  

Fit any single 
suitable 
function not 
necessarily 
polynomial

Rational function 
of polynomials

Continuity Interpolating 
polynomial and 
all derivatives 
are continuous

Piecewise 
polynomials are 
continuous, but 
derivatives are 
not continuous 
at nodal points

Interpolating 
polynomial, 
its first and 
second 
derivatives are 
continuous

Bězier curve 
and its first 
derivative are 
continuous

B-Spline curve 
and its first 
and second 
derivatives are 
continuous

Depend on the 
approximating 
curve 

Discontinuous at 
the points where 
denominator is 
zero

Pass through All the data 
points

All the data 
points

All the data 
points

First and last 
points 
(in general)

no points 
(in general)

no points 
(in general)

All the data 
points

Effect; If we 
change the 
value of one 
data point 

x yj j,( )

Global, 
complete 
polynomial will 
change

Local (only on 
the intervals 
containing the 
changed point, 
i.e. x xj j−( )1, , 

x xj j, +( )1 )

Global, all 
cubic spline will 
change

Global, 
complete 
polynomial will 
change

Local (only on 
the intervals 
x xj j−( )1,

x xj j, +( )1
 and 

x xj j+ +( )1 2,

Global, 
complete 
approximating 
curve will 
change

Global

No. of curves one n/m n One n one one

Chebyshev polynomial computes best lower order approximation for a given polynomial. 
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Exercise 11

1. Check the following functions, that they are splines or not

(i)  f x
x x
x x

x x
( ) =

≤ ≤
− ≤ ≤

− + ≤ ≤







5 0 1
11 6 1 2

4 10 2 3

,
,

,

(ii) f x
x x x

x x x
( ) =

− ≤ ≤
+ − ≤ ≤







12 7 0 1

1 10 6 1 2

2

2

,

,

Ans. i) Linear spline, satisfying interpolating conditions at nodes 
ii)  Quadratic spline, satisfying interpolating condition as well as continuity of first derivatives 

at nodes. 

2. Find the cubic spline fit for the following data points
x: – 1 0 1
f (x):  2 5 9

Use natural spline conditions ′′ − =f ( )1 0 and ′′ =f ( )1 0.

Ans. f x
x x x x

x x x x
( ) =

+ + + − ≤ ≤

+ + − ≤ ≤










5
7
2

3
4

1
4

1 0

5
7
2

3
4

1
4

0 1

2 3

2 3

,

,

3. Fit a cubic spline curve to the following data set

x
y

:
:

−1 1 3 5
2 4 11 23

Use end conditions ′′ − =f ( )1 0 and ′′ =f ( )5 0.

Ans. f x

x x x x

x x x

x

( ) =

+ + + − ≤ ≤

+ + ≤ ≤

− +

21
8

7
8

3
8

1
8

1 1

11
4

1
2

3
4

1 3

49
8

23
8

15
8

2 3

2

,

xx x x2 31
8

3 5− ≤ ≤













 ,

4. Construct the cubic spline with the natural end conditions that passes through the points (–1, 0), 
(0, 1), (2, 5) and (3, 2).

Ans. f x

x x x x

x x x x

x x

( ) =

+ + + − ≤ ≤

+ + − ≤ ≤

− + − +

1 2
3
2

1
2

1 0

1 2
3
2

3
4

0 2

13 23 9

2 3

2 3

2

,

,

xx x3 2 3, ≤ ≤
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490 Numerical Methods

5. Find the values of y(1.5) and y’(3) by using the cubic spline fit for the following data with the end 
conditions y’(0) = –1, y’(4) = 2

x
y

:
:

0 1 3 4
10 1 8 5− −

Ans. y x

x x x x

x x x x( ) =

− − + − ≤ ≤

− + + − ≤ ≤

− +

10
39
2

15
2

0 1

16 17
3
2

3
2

1 3

421 42

2 3

2 3

,

,

22
267

2
27
2

3 4

1 5 7 8125 3 14 5

2 3x x x x

y y

− + ≤ ≤















= ′ = −

,

( . ) . , ( ) .

6. Obtain the cubic Bězier curve for the following set of control points

x
y

2 0 1 1 5
1 3 4 8

−
−

.

Ans. 2 6 3 2 5 1 12 33 142 3 2 3− + + − + −( )t t t t t t. ,

7. Obtain the cubic Bězier curve for the following set of control points P x y ii i i( , ), , , ,= 0 1 3  

x
y

−
−

1 2 3 5
1 8 4 11

Compare the obtained curve with the cubic Bězier curve of Example 5. It establishes the fact 
that we have different Bězier curves for the same data sets but data points are in different order. 

Ans. − + − + + − +( )1 9 6 3 1 21 57 462 3 2 3t t t t t t,

8. Obtain the quartic Bězier curve for the following set of control points

x
y

−
−

2 0 1 3 2
1 3 4 7 9

Ans. − + − + − − + − +2 8 6 8 6 1 16 66 60 182 3 4 2 3 4t t t t t t t t,

9. Obtain the cubic B-Spline curve for the following set of control points
x
y

− −
− − −

2 1 0 3
5 1 2 4

Ans. B-Spline curve for the interval (P0, P1)

X t t
t

t
t t t

( ) ( ) ( ) ( )= − −( )





+ − − +






+ − − + +2
1
6

1 2
2

2
3

1
2 2

3
3

2
3 2

22
1
6

0
6

11
6

1
2

1
2

1
6

5
1
6

1

3

2 3

+






+






− + + −

= − −( )

( )

( ) ( )

t

t t t

Y t t 33
3

2
3 2

5
2

2
3

1
2 2 2

1
6

2





+ − − +






+ − − + + +






+ −( ) ( ) ( )
t

t
t t t tt

t t t

3

2 3

6

13
2

2 2
3
2







− + + −
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The B-Spline curve for the interval (P1, P2) 

X t t
t

t
t t t

( ) ( ) ( ) ( )= − −( )





+ − − +






+ − + +2
1
6

1 1
2

2
3

0
2 2 2

3
3

2
3 2

++






+






− + +

= − −( )





+ −

1
6

3
6

1
1
3

5
1
6

1

3

3

3

( )

( ) ( ) (

t

t t

Y t t 11
2

2
3

2
2 2 2

1
6

4
6

1

3
2

3 2 3

) ( ) ( )
t

t
t t t t− +







+ − − + + +






+






− 11
6

3
2

5
2

22 3+ − +t t t

The B-Spline curve for the interval (P2, P3) 

X t t
t

t
t t t

( ) ( ) ( ) ( )= − −( )





+ − +






+ − + + +1
1
6

1 0
2

2
3

3
2 2 2

3
3

2
3 2 11

6
3

6

1
3

2
5
6

1
1
6

1

3

2 3

3







+






+ + −

= − −( )





( )

( ) ( )

t

t t t

Y t t ++ − − +






+ − + + +






+






( ) ( ) ( )2
2

2
3

4
2 2 2

1
6

4
6

3
2

3 2 3t
t

t t t t

−− + + −5
6

5
2

7
2

13
6

2 3t t t

Hence, the final B-Spline curve is as follows

B t

X t t t t

Y t t t t

( )

( )

( )
(

=

= − + + −

= − + + −










−

11
6

1
2

1
2

1
6

13
3

2 2
3
2

2 3

2 3

22 5 1 1

1
1
3

11
6

3
2

5
2

2

3

2 3

, ), ( , )

( )

( )

− − −( )

= − + +

= − + − +









X t t t

Y t t t t

− − −( )

= + + −

= − + + −

( , ),( , )

( )

( )

1 1 0 2

1
3

2
5
6

5
6

5
2

7
2

13
6

2 3

2

X t t t t

Y t t t t 33

0 2 3 4










−( )























( , ), ( , )

10. Find the least squares curve y = a + bx for the data set
x
y

:
:

50 70 100 120
12 15 21 25

Ans. y x= +2 276 0 118. .

11. Fit a straight line y = a + bx to the following data
x
y

: . . . .
: . . . . .

1 1 1 2 2 3 3 4 4
2 8 4 7 6 4 8 5 10 3

Ans. y x= +1 751 1 993. .
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492 Numerical Methods

12. The growth of cell culture (optical density) at various pH levels are tabulated in the following
table.

pH ( ): 4 4.5 5 5.5 6
Optical density( ): .28 .35 .41

x
y

3 5 6 5 7
0 20 0 0 0

. .

. 00.46 0.52 0.55 0.62
Fit a linear curve y = a + bx to data set, and compute the optical density at pH level 5.8.
Ans. y = – 0.183 + 0.115 x, 0.484 

13. The following data represents the heat capacity (σ) at different temperatures (T) for a given gas. 
Use the method of least square to determine heat capacity as a linear function of temperature.

T :
:

−20 0 30 70 120
1180 1235 1310 1470 1675σ

Ans. σ = +1231 778 3 556. . T

14. The tensile strengths of stainless steel cables of different diameters are investigated to give
following results.

Cable diameter ( ): 1.2 1.6 2.4 .6
Tensile Strength( ): 1

x
y

3 5 0 8 0. .
..32 2.53 5.28 8 34 12 83 23 92. . .

Fit linear and exponential curves to the data set. Find the least square error estimates for both 
the curves. 

Ans. Linear curve y x= − +2 902 3 286. . , Least square error = 1.146
Exponential curve y e x=1 449 0 390. . , Least square error = 95.5996  

15. An empirical formula for the effect of temperature on viscosity of a liquid is given by Andrade’s
equation

µ = aebT

where μ is the dynamic viscosity of the liquid, T is absolute temperature, and a, b are constants. 
Compute the best fitted Andrade’s model to the following data for a given liquid.

T :
: . . . . .

10 20 30 40 50
4 67 3 84 3 17 2 71 2 53µ

Ans. µ = −5 288 0 016. .e T  

16. Find the least squares curve y a bx cx= + + 2 for the following data points

x
y

:
:

− −3 1 1 3
15 5 1 5

Ans. y x x= − +2 125 1 7 0 875 2. . .

17. Obtain the least squares fit of the form y ax bx c= + +2  for the following data set.

x
y

:
:

10 12 15 23 20
14 17 23 25 21

Solve the system of normal equations with the aid of Gauss elimination method.

Ans. y x x= + −0 069 3 010 8 728 2. . .
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18. Obtain the quadratic approximation for the following discrete data points
x: –1 0 1 2 3
f (x): 1.4 1 1.5 3.5 12

Ans. y x x= − +0 131 0 387 1 379 2. . .

19. It is expected from theoretical consideration, that the rate of flow is proportional to some
power of the pressure at the nozzle of a fire hose. Get the least squares values for exponent and 
proportionality factor.

Flow rate (F): 90 110 130 150 170
 Pressure (P): 10 18 28 41 53.

Ans. F P= 37 306 0 377. .

20. Fit a curve of the type y = aebx to the following data
x
y

:
: . . . .

0 1 3 5
1 8 6 3 10 1 15 2

Ans. y e x= 2 751 0 379. .

21. Fit a curve y
c
x

c x= +0
1  to the following data values

x
y

: . . . .
: . . . . .

1 1 2 1 4 1 5 1 7 2
1 2 3 5 5 6 3 6 6 5 3

Hint: The given expression is as follows

y x c c x= + ( )0 1

3
2

Let it is Y c c X= +0 1  with Y yx=  and X x= ( )
3
2

Ans. y
x

x= − +3 334
5 780

.
.

22. Fit a curve of the form y = aebx to the following data points

x 0 0.1 0.2 0.3
y 1.8 2.7 3.6 5.0

How far does the fit agree with the data?

Ans. y e x=1 85 3 353. . , least square error estimate = 0.019015

23. Economize Taylor series expansion e x
x x x

O xx = + + + + +1
2 3 4

2 3 4
5

! ! !
( ) to lower order Chebyshev 

approximation over the interval − ≤ ≤1 1x .

Ans. 0 9946 0 9973 0 5430 0 17722 3. . . .+ + +x x x

24. Use the Chebyshev polynomials to obtain the approximations of second degree for the
following polynomials

 (i) 2 3 24 3x x x+ − + on −[ ]1 1,

(ii)  x x x3 22 5 3+ − +  on 2 3,[ ]
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Ans. i) 3 2 1 753 2x x x+ − + . ,

ii) x
t

x x x
t t t

t= + + − + = + + + ∈ −[ ]5
2

2 5 3
8

19
8

95
8

149
8

1 13 2
3 2

, , ,

Lower order approximation = 
19

8
383

32
149

8

2t t+ +

= − + = − +19
2

377
16

581
32

9 5 23 5625 18 15625
2

2x x
x x. . . )

25. From the Maclaurin expansion e x
x x xx− = − +
!

−
!

+
!

1
2 3 4

2 3 4

, obtain an approximation of the form 

a a x a x
b x b x

0 1 2
2

1 2
21

+ +
+ +

Ans. 
1

1
2

1
12

1
1
2

1
12

2

2

− +

+ +

x x

x x

26. Fit a rational function R x
a a x a x a x

b x b x2 2
0 1 2

2
3

3

1 2
21, ( ) = + + +

+ +
 to the function sinh(x).

Ans. 

7
60

1
1

20

3

2

x x

x

+

−
.  Hint: Use the following series expansion for the hyperbolic sine function

sinh
( )! ! ! !

x
x
n

x
x x xn

n

=
+

= + + + +⋅⋅⋅
+

=

∞

∑
2 1

0

3 5 7

2 1 3 5 7

27. Following are the experimental data points

Input
Output

:
:

−
− −

1 0 1 2
15 1000 2000 150

Fit a rational function R x
a a x a x

b x2 1
0 1 2

2

11, ( ) = + +
+

 to these data points, and use the result to compute 

the output at an input 0.5.

Ans. R x
x x

x

R

2 1

2

2 1

1000
200725

381
165725

381

1
589
381

0 5 50

,

,

( )

( . )

=
− − +

−

= − 885 910405.

28. Use Maclaurin series expansion tan x x
x x x= + + +

3 5 7

3
2
15

17
315

 to obtain the following expression 

for the function tan (x)

tan
/
/

x
x x

x
= −

−

3

2

15
1 2 5
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12.1 Introduction 

Differentiation and integration are two important concepts of mathematics. Many physical 
phenomena involve differentiation of the original function. Continuous change produces 
differentiation and it has many applications in science and engineering. Very few but 

important examples are Newton second law, F ma m d x
dt

= =
2

2 ; heat flow, q k
dT
dx

= − ; current 

flow, J
dV
dx

= −σ , etc. 

In fact, differentiation is an integral part of almost each branch of science and engineering. 
We have already mentioned that in the case of experimental results, data sets are obtained, 
and no analytical differentiation is possible in these cases. So, numerical differentiation 
provides alternative ways to deal such problems.

In this chapter, numerical differentiation techniques based on interpolation are discussed. 
We have already discussed in previous chapters that the interpolating polynomial is unique. 
So for each method, the same interpolating polynomial is obtained. But, each numerical 
method has its advantages and disadvantages. 

No mathematician should ever allow him to forget that mathematics, more than any 
other art or science, is a young man’s game. … Galois died at twenty one, Abel at twenty 

seven, Ramanujan at thirty three, Riemann at forty. There have been men who have 
done great work later… [but] I do not know a single instance of a major mathematical 

advance initiated by a man past fifty… A mathematician may still be competent 
enough at sixty, but it is useless to expect him to have original ideas. 

Godfrey Harold Hardy 
(February 7, 1877–December 1, 1947)

He had made influential contributions in mathematical analysis and number theory. 

Numerical Differentiation Chapter
12
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496 Numerical Methods

In this chapter, we will discuss various examples for equally as well as unequally spaced 
points. Lagrange and Newton divided difference methods are used for unequally spaced 
data sets.

Derive interpolating polynomial for the data points (0, –1), (1, 1), (2, 9), (3, 29), (5, 129) 
using Newton divided difference formula, and hence compute the value of ′y ( )4  and ′′y ( )4 .

x f x

x f x
f x x

x f x

( ) [ , ] [ , , ] [ , , , ] [ , , , ,]

( )
,

( )

0 1
2

1 1

0 0

0 1

1 1

= − =
=  

= = 33

8 1

2 9 6

0 1 2

1 2 0 1 2 3

2 2

=  
= [ ] =  

= = =

f x x x

f x x f x x x x

x f x f

, ,

, , , ,

( ) xx x x f x x x x x

f x x f x x x
1 2 3 0 1 2 3 4

2 3 1 2 3

0

20 1

, , , , , ,

, , ,

  =  
=   = ,,

( ) , ,
,

x

x f x f x x x
f x x

x f

4

3 3 2 3 4

3 4

4

3 29 10
50

5 129

 
= = =  

=  
= = (( )x4

P x f x f x x x x f x x x x x x xn ( ) ( ) [ , ]( ) [ , , ]( )( )= + − + − − + ⋅⋅⋅⋅⋅⋅
+

0 0 1 0 0 1 2 0 1

ff x x x x x x x x x
P x x x

n n[ , , , ]( )( ) ( )
( ) ( ) (

0 1 0 1 1

1 2 0 3
⋅⋅⋅ − − ⋅⋅⋅ −

= − + − + −
−

00 1 1 0 1 2 0 0 1 2 3
3

)( ) ( )( )( ) .( )( )( )( )
( )

x x x x x x x x
P x x x

− + − − − + − − − −
= + −11

It is required interpolating polynomial. To compute ′y ( )4  and ′′y ( )4 , we have

 ′ = + − = +P x x x x( ) 3 21 3 1

 ⇒ ′ =P ( )4 49  (Approximate value of ′y ( )4 )

Similarly, the approximate value of ′′y ( )4  is given by

 
′′ = + − =

⇒ ′′ =
P x x x x

P
( )

( ) .

3 1 6
4 24

12.1Example

In the case of equally spaced data, the computational work becomes easier. Therefore we will 
also discuss following numerical differentiation techniques for the equally spaced data set.

Forward and Backward Difference Formulas

i) Newton Forward Difference Formula
ii) Newton Backward Difference Formula
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Numerical Differentiation 497

Central Difference Formulas

i) Gauss Formulas (Forward and Backward Differences)
ii) Stirling Formula
iii) Bessel Formula
iv) Everett Formula
v) Steffensen Formula

All these formulas are used according to our choices for interpolating points. Newton 
forward difference formula is suitable for the points which are at the beginning of the table. 
If we want to perform numerical differentiation for a point lying at the end of the data set, 
Newton backward difference formula is suitable. For the numerical differentiation at the 
point in the mid of the table, central difference formulas are suitable. 

12.2 Numerical Differentiation Formulas 

In this section, we will compute numerical differentiation formula using Newton forward 
difference interpolation, and then list all the formulas in Table 12.1. 

Let Pn(x) be the interpolating polynomial of degree ≤n, for the points x x xn0 1, , , .⋅⋅⋅  Newton 
forward difference formula [10.4] for interpolating polynomial is as follows

P x f x
h

f x x x
h

f x x x x x

n

n( ) ( ) ( )( )
!

( )( )( )= + − + − − + ⋅⋅⋅

+

0 0 0 2
2

0 0 1
1 1

2
1

∆ ∆

!!
( )( )( ) ( )

h
f x x x x x x xn

n
n∆ 0 0 1 1− − ⋅⋅⋅ − −

This formula is used to compute the interpolating polynomial for numerical differentiation. 
If we want to compute the numerical differentiation at any intermediate point, then 
following form of Newton forward difference formula [10.6] is suitable. 

P x f x f x s
f x

s s
f x
n

s sn

n

( ) ( ) ( )( )
( )
!

( )( )
( )
!

( )(= + + − + ⋅⋅⋅+0 0

2
0 0

2
1∆

∆ ∆
−− ⋅⋅⋅ − +1 1) ( )s n

where s
x x

h
=

− 0   (12.1)

Differentiating with respect to x, we get

P x d
dx

f x f x s
f x

s s
f x
nn

n

′ = + + − + ⋅⋅⋅+( ) ( ) ( )( )
( )
!

( )( )
( )
!

(0 0

2
0 0

2
1∆

∆ ∆
ss s s n

P x d
ds

f x f x s
f x

n

)( ) ( )

( ) ( ) ( )( )
(

− ⋅⋅⋅ − +












′ = + +

1 1

0 0

2
0∆

∆ ))
!

( )( )
( )
!

( )( ) ( )
2

1 1 10s s
f x
n

s s s n ds
dx

n

− + ⋅⋅⋅+ − ⋅⋅⋅ − +












∆
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498 Numerical Methods

We have, x x s h= +0 . It implies dx hds=  or ds
dx h

= 1.

P x
h

f x s f x s s f x

s s

n
′ = + − + − +



+ − +

( ) ( ) ( ) ( )1 2 1
2

3 6 2
6

2 9 1

0
2

0

2
3

0

3 2

∆ ∆ ∆

11 3
12

4
0

s f x− + ⋅⋅⋅



∆ ( )  (12.2)

Similarly, again differentiating this formula with respect to x, we have 

P x
h

f x s f x s s f x

s

n
′′ = + − + − +



+

( ) ( ) ( ) ( ) ( )1 1 6 18 11
12

2

2
2

0
3

0

2
4

0

3

∆ ∆ ∆

−− + − + ⋅⋅⋅



12 21 10
12

2
5

0
s s f x∆ ( )

 
(12.3)

The formulae (12.2) and (12.3) are forward difference formulae for first and second 
derivatives, respectively.

On a similar pattern, we can easily obtain the various numerical differentiation formula for 
equally spaced points listed in the following table 

Table 12.1 Summary Table for Numerical Differentiation Formulas

Newton Forward Difference: ( ) ( )0 1 0< < = +s x x sh

P x f x f x s
f x
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f x
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( )
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Steffensen Formula: ( / / ) ( )− < < = +1 2 1 2 0s x x sh

P x f x
s s
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+
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The formulas in Table 12.1 can be simplified to compute derivatives at a tabulated point. For 
example, consider forward difference formula for first order derivative

P x
h

f x s f x s s f x s s s
n
′ = + − + − + + − + −( ) ( ) ( ) ( )1 2 1

2
3 6 2

6
2 9 11

0
2

0

2
3

0

3 2

∆ ∆ ∆ 33
12

4
0∆ f x( ) + ⋅⋅⋅







To compute derivative at x = x0, we have s = 0. This implies

P x
h

f x f x f x f x f xn
′ = − + − + −⋅( ) ( ) ( ) ( ) ( ) ( )0 0

2
0

3
0

4
0

5
0

1 1
2

1
3

1
4

1
5

∆ ∆ ∆ ∆ ∆ ⋅⋅⋅





Similarly, the second derivative is given by

P x
h

f x f x f x f xn
′′ = − + − + ⋅⋅⋅





( ) ( ) ( ) ( ) ( )1 11
12

5
62

2
0

3
0

4
0

5
0∆ ∆ ∆ ∆

In a given table of sin(θ), we have following values

θ
θ

( )
sin

In degree
( ) 0.258819 0.5 0.707107 0.86602

0 15 30 45 60 75 90
0 55 .965926 10  

compute the values of ′y  and ′′y  at the angles, θ = ° ° ° ° ° ° °20 40 48 50 55 57 87, , , , , , .

12.2Example
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502 Numerical Methods

Ans. 
Finite difference table for the given values of sin(θ) is as follows 

θ θ δ δ δ δ δ δsin ( , ) ( , ) ( , ) ( , ) ( , ) ( , )( ) 

0.25881

∆ ∆ ∆ ∆ ∆ ∆∇ ∇ ∇ ∇ ∇ ∇2 3 4 5 6

0 0
99

15 .017638
.016436

.500000 .034074

0 258819 0
0 241181 0

30 0 0 0

.
.

−
−

− ..
. . .

.

002321
0 207107 0 014115 0 000966

45 0 0 0 0032
−

−.707107 .048189 887 0 000235
0 0 010828 0 000731

60

−
−

−

.
. ..158918

0.866025 0.059017 0.0004018
.006810

.965926 .065827
0.034074

90 1

0 099901 0
75 0 0

. −
−

First, we should change the step size h = 15° from degree to radian, h = × =15
180

0 261799π . , 
such that we can use it to various finite difference formulas.

1. Newton Forward Difference for ′y  at angle θ = 20°.

Let x0 = 15°. We will use following finite differences table to compute the value at θ = 20°.

θ θsin

.
.

.

( ) 

15

.500000 .034074

∆ ∆ ∆ ∆ ∆ ∆2 3 4 5 6

0 258819
0 241181

30 0 0
0

−
2207107 0 014115

45 0 0 0 003287
0 0 0108

−
−

−

.
.

.
.707107 .048189

.158918 228 0 000731
60

0 099901 0
75 0

.

.
0.866025 0.059017 0.004018

.006810
−

−
..965926 .065827

0.034074
90 1

−0
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We have, s = − =20 15
15

1
3

. Forward difference formula for the first derivative is given by

P x
h

f x s f x s s f x s s s

n
′ =

+ − + − + + − + −

( )
( ) ( ) ( )1

2 1
2

3 6 2
6

2 9 11
0

2
0

2
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0

3 2

∆ ∆ ∆ 33
12
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120

4
0
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5
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∆

f x
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+ −





− + − +


( )
.

. ( . )
x 1

0 261799

0 241181 1
2

2
3

1 0 34074 1
6

1
3

2 2


−

+ − + −





+ −

( . )

( . )

0 014115

1
12

2
27

1 11
3

3 0 003287 1
120

5
81

40
277

105
9

100
3

24 0 000731+ − +





















( . )

P xn
′ = + + − + −( )

.
. ( . ) ( . ) (1

0 261799
0 241181 1

6
0 34074 1

18
0 014115 7

324
00 003287 74

9720
0 000731. ) ( . )+





P xn
′ = + − − +( )

.
. . . . .1

0 261799
0 241181 005679 0 000784 0 000071 0 0000066( )

P xn
′ =( ) .0 939694  (Approximate value of ′ = =y d

dx
x x(sin ) cos  at θ = 20°)

While exact value of cos 20° = 0.939693.

2. Newton Backward Difference for ′′y  at angle θ = 70°.

Since we have to compute the value at θ = 70°, hence we can skip the last value θ = 90°. Let 
xn = 75°. Finite differences table is given by 

θ θsin

.
.

( ) 

0.258819
15 .017638

∇ ∇ ∇ ∇ ∇ ∇

−
−

2 3 4 5 6

0 0

0 258819 0
0 241181 0..016436

.500000 .03407430 0 0 0 002321
0 207107 0 014115 0 0009

−
−

.
. . . 666

45 0 0 0 003287
0 0 010828

60

.707107 .048189
.158918

0.866025

−
−

−

.
.

00.059017

.965926
0 099901

75 0
.
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θ θsin

.
.

( ) 

0.258819
15 .017638

∇ ∇ ∇ ∇ ∇ ∇

−
−

2 3 4 5 6

0 0

0 258819 0
0 241181 0..016436

.500000 .03407430 0 0 0 002321
0 207107 0 014115 0 0009

−
−

.
. . . 666

45 0 0 0 003287
0 0 010828

60

.707107 .048189
.158918

0.866025

−
−

−

.
.

00.059017

.965926
0 099901

75 0
.

We have, s = − = −70 75
15

1
3

. Backward difference formula for the second derivative is 

given by

P x
h

f x s f x s s f x s
n n n n
′′ = ∇ + + ∇ + + + ∇ + +( ) ( ) ( ) ( ) ( )1 1 6 18 11

12
2 12

2
2 3

2
4

3 ss s f xn

2
521 10

12
+ + ∇







( )

P xn
′′ =

− + − +





− + −
( )

( . )

. ( . )
1

0 261799

0 059017 1
3

1 0 10828 1
12

2
3

2

66 11 0 003287

1
12

2
27

4
3

7 10 0 000966

+





+ − + − +













( . )

( . )










P xn
′′ = −( ) .0 938754 (Approximate value of ′′ = = −y d

dx
x x

2

2 (sin ) sin  at θ = 70°)

The exact value is given by

− ° = −sin . .70 0 939693

3. Stirling Central Difference for ′y  at angle θ = 50°.

θ θ δ δ δ δ δ δsin

.
.

( ) 

0.258819
15 .017638

2 3 4 5 6

0 0

0 258819 0
0 241181 0

−
− ..016436

.500000 .03407430 0 0 0 002321
0 207107 0 014115 0 0009

−
−

.
. . . 666

45 0 0 0 003287 0 000235
0 0 010828 0

.707107 .048189
.158918

− −
−

. .
. .0000731

60
0 099901 0

75 0

0.866025 0.059017 0.004018
.006810

.965

−
−.

9926 .065827
0.034074

90 1

−0
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We have, s = − =50 45
15

1
3

, and Stirling central difference formula for the first derivative is 

as follows

P x
h

f x s f x s f x s s f x

sn
′ =

+ + − + −

+
( )

( ) ( ) ( ) ( )
1

3 1
6

2
12

5

0
2

0

2
3

0

3
4

0µδ δ µδ δ

44 2
5

0

5 3
6

0
15 4

120
6 20 8

720
− + + − + + ⋅⋅⋅



















s f x s s s f xµδ δ( ) ( )

P xn
′ =

+( ) + − + −

( )
.

. . ( . )

1
0 261799

1
2

0 207107 0 158918 1
3

0 048189 1
6

2
3










− −( ) + −





1
2

0 014115 0 010828 1
12

2
27

1
3

0 00328. . ( . 77 1
120

5
81

5
3

4

1
2

0 000966 0 000731 1
720

6
243

20
27

)

. .

+ − +





+( ) + − + 88
3

0 000235





−























( . )

P xn
′ = − + − +( )

.
. . . . .1

0 261799
0 183012 0 016063 0 001386 0 000071 0 0000117 0 000001−( ).

P xn
′ =( ) .0 642783 (Approximate value of ′ = =y d

dx
x x(sin ) cos  at θ = 50°)

While exact value of cos 50° = 0.642788

4. Gauss Backward Central Difference Formula for ′′y  at angle θ = 40°.

We have, s = − = −40 45
15

1
3

, and Gauss backward central difference formula for second 

derivative is as follows

P x
h

f x s f x s s f x s s

n
′′ =

+ + + − + −
−

( )
( ) ( ) ( )/1

6 6 1
12

2 3
12

2

2
0

3
1 2

2
4

0

3

δ δ δ δ 55
1 2

4 3 2
6

0
30 60 60 90 8

720

f x

s s s s f x

( )

( )

/−

+ + − − + + ⋅⋅⋅

















δ

P xn
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− + −
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( . )

. ( . )
1
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0 048189 1
3

0 014115 1
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2
3

2

2

−−





+ − +





+ −

1 0 003287

1
12

2
27

1 0 000966 1
720

10
27

20
9

( . )

( . ) −− + +





−



















20
3

30 8 0 000235( . )

P xn
′′ = − + − + −( )

( . )
. . . .1

0 261799
0 048189 0 004705 0 000639 0 000080 02 ..000010( )

P xn
′′ = −( ) .0 642746 (Approximate value of ′′ = = −y d

dx
x x

2

2 (sin ) sin  at θ = 40°)
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The exact value is given by
− ° = −sin .40 0 642787

5. Steffensen Central Difference Formula for ′y  at angle θ = 50°.

We have, s = − =50 45
15

1
3

, and Steffensen central difference formula for the first derivative 

is as follows

P x
h

s f x s f x s s s
n
′ =

+ − −( ) + + − −−
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( ) ( ) ( ) ( ) (/ /1

1
2

2 1 2 1 1
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2 31 2 1 2
3 2δ δ 11 2 3 1
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5 4 3
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/ /δ δf x s s s f x

s s s

− − − +( )
+ + − −

−

445 8 12 6 15 20 45 8 122 5
1 2

5 4 3 2 5
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1
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2
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5
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3
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5
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3
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P xn
′ = + + + +( )

.
. . . . .1

0 261799
0 132432 0 034518 0 000835 0 000479 0 0000009 0 000007+( ).

P xn
′ =( ) .0 642783 (Approximate value of ′ = =y d

dx
x x(sin ) cos  at θ = 50°)

The exact value is given by

cos .50 0 642788° =
Steffensen formula for second derivative is as follows

P x
h

f x f x s s f x s
n
′′ =

−( ) + + − −−

( )
( ) ( ) ( ) ( ) (/ / /1

1
12

6 6 1 6
2

1 2 1 2
2 3

1 2δ δ δ 22 3
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1 2s s s s f x− − + +( )
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−
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2 1 0
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27
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P xn
′′ = − − − − −( )

( . )
. . . .1

0 261799
0 048189 0 001504 0 002744 0 000026 02 ..000040( )

P xn
′′ = −( ) .0 766034 (Approximate value of ′′ = = −y d

dx
x x

2

2 (sin ) sin  at θ = 50°)

The exact value is given by
− ° = −sin .50 0 766044
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Exercise 12

1. Derive interpolating polynomial for (–1, –1), (0, 1), (1, 3), (3, 31), (5, 131) using Newton divided 
difference formula, and hence compute the value of ′y ( . )2 5  and ′′y ( . )1 2 .

Ans. P x x x( ) = + +3 1, 19.75, 7.2

2. Approximate the values ′f ( . )1 2  and ′′f ( . )1 2  for the following data set. 

 
x
f x

: . . . .
( )

1 1 25 1 5 1 75 2 0
0 0.223144 0.405465 0.559616 0.693147

Ans. 0.834355, –0.696651 

3. Obtain the value of ′f ( . )2 2  using Stirling formula to the following data

 
x
f x

: . . . .
( ) : . . . . .

2 2 1 2 2 2 3 2 4
0 135335 0 122456 0 110803 0 100259 0 0907118

Ans. –0.110799 

4. The following table provides compressive strength of an alloy as a function of concentration of 
some additive 

 Concentration: 5 7.5 10 12.5 15

 Compressive Strength: 26.4 29.8 31.5 30.8 27.6

Estimate the concentration that corresponds to maximum compressive strength.

Ans. 10.568867

5. The following data represents thermal resistance for a certain metal tube as a function of 
insulation thickness. 

 Thickness: 1 3 7 10 15

 Thermal Resistance: 7.45 6.38 5.23 6.19 6.48

Use interpolation to compute the thickness for which thermal resistance is minimum. 

Ans. 6.616718

6. Derive interpolating polynomial for following data and hence compute the maximum and 
minimum values for the function f(x). 

 
x
f x

: . . .
( ) : . . . . .

0 0 5 1 1 5 2 5
2 53 5 38 6 34 4 79 3 21

Ans. P x x x x x4
4 3 21 537333 5 438667 1 687667 6 023667 2 53( ) . . . . .= − + + +  

 Extreme points (x) = 0.929753, 2.202004

 Maximum value of f x( ) .= 6 367049 at x = 0.929753

 Minimum value of f x( ) .= 2 052364 at x = 2.2020004

7. Find the first and second derivatives of y = f(x) at x = 0 and 0.3, from the following table

 
x
y

0 0 1 0 2 0 3
1 1

. . .
1.105170 .221403 1.349859

Consider that the values are obtained from the function f x e x( ) =  correct to 6 decimal places. 

Hence estimate the errors in the values of dy
dx

 and d y
dx

2

2
 at x = 0.3.
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508 Numerical Methods

Ans. ′ = ′ =f f( ) ( . )0 1 0 3 1.000252, .349542

 ′′ = ′′ =f f( ) ( . )0 0 0 3 1.990300, .338300

8. Compute the growth rate of population in years, 1971, 1991 and 2011 from the following 
population data and interpret the results.

Years Population (in crores)
1971 54.8160
1981 68.3329
1991 84.64221
2001 102.8737
2011 121.0193

 Ans. 1.2113, 1.7509, 1.7147

9. A car traveled on a straight road, and it is found on the certain milestones (distance x) after a 
certain time (t) as follows

 
t
x
( ) : . . . . .
( ) :
InHrs
InKms

0 0 48 0 78 1 10 1 42 1 82
0 50 100 150 200 250

Compute the approximate time of maximum velocity. 
Ans. 0.552554

10. A machine has inputs and their corresponding outputs as follows

 
Input:
Output:

0 5 10 15 20
3 05 11 43 8 57 5 32 6 58. . . . .

Find out the maximum output of the machine.

Ans. 11.439852

11. In a given table of y = cos(x), we have following values

 
x

x
: . . . . .1 1 1 1 2 1 3 1 4 1 5

cos( ): 0.540302 0.453596 0.362358 0.26749888 0.169967 0.070737

Compute the values of ′y  and ′′y at the point x = 1. Also, estimate the errors.

Ans. – 0.841476, –0.540075

12. Find the first and second derivatives of f (x) at x = 1.2 and x = 2.0 from the following table

 x 1.0  1.2 1.4 1.6 1.8 2.0 

 f (x) 2.7183 3.3201 4.0552 4.9530 6.0496 7.3891 

These values are obtained from the function y = ex, Use this function to estimate the errors in the 

values of 
dy
dx

 and 
d y
dx

2

2  at x = 1.2 and 2.0.

Ans. ′ = ′ =f f( . ) ( )1 2 23.3202, 7.3896

 ′′ = ′′ =f f( . ) ( )1 2 23.3212, 7.3854

13. The following table provides values of the function f x x( ) cos= +1 2 . Use interpolation to estimate 
the values of ′f ( . )1 32  and ′′f ( . )1 65 .

 x
f x

: . . . . .
( ) :

1 3 1 4 1 5 1 6 1 7
1.071556 1.028889 1.005004 1.000853 1.0166601

Ans. ′f ( . )1 32  = –0.480808, ′′f ( . )1 65  = 1.975196.
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Many scientific and engineering applications require integration of a function. For example, 
arc length of the curve y = f(x) in the interval [a, b] is given by the following formula 

Arc length = 1
2

+ 



∫

dy
dx

dx
a

b

Consider the arc length of a curve y = sin x in the interval 0 ≤ ≤x π . It requires 

computing the integral 1 2

0

+∫ cos x dx
π

. Similarly, surface area and volume of solid of 

revolution obtained by rotating the curve y f x a x b= ≤ ≤( ),  about the x-axis are given by 

S y dy
dx

dx
a

b

= + 



∫2 1

2

π  and V y dx
a

b

= ∫π 2 , respectively. Integrals are used to compute the 

center of gravity of irregular objects, the total amount of given physical quantity, work done, 
kinetic energy and many more. The normal or Gaussian distribution involves the integral 

e dzz

a

b
−∫

2

, and it is most commonly used continuous probability distribution in statistics. 

The integrals are evaluated analytically for simple functions. In general, it is very difficult 
and some times not possible to integrate analytically. There are two main reasons to study 
numerical integration 

Nature laughs at the difficulties of integration.

Pierre-Simon, marquis de Laplace 
(March 23, 1749–March 5, 1827) 

He made important contributions in the fields of mathematics, statistics,  
physics, and astronomy. 

Numerical Integration Chapter
13
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510 Numerical Methods

i) Analytical integration may be impossible or infeasible. For example, we do not 

have analytical solutions of the integrals like 1 2

0

+∫ cos x dx
π

, sin x
x

dx
1

2

∫  and 

e dxx−∫
2

0

2

, etc. In these cases; numerical methods can be used for the approximate 

solutions.
ii) We wish to integrate tabulated data. For example, to compute the value of integral 

y x dx( )
0

5

∫  from data set (0, –1), (1, 1), (2, 9), (3, 29), (5, 129).

This chapter deals with the techniques for numerical integration. In numerical integration, 
we replace function f(x) or data set with an approximating curve to compute the given 
integral. Since, the approximating curve has an error, that error needs to be evaluated in 
case of integration also. This chapter contains following numerical integration techniques

1. Newton–Cotes quadrature formulas 
 1.1 Trapezoidal rule
 1.2 Simpson 1/3 rule
 1.3 Simpson 3/8 rule
 1.4 Boole rule
 1.5 Weddle rule

2. Gauss Quadrature formulas
 2.1 Gauss–Legendre method
 2.2 Gauss–Chebyshev method
 2.3 Gauss–Laguerre method
 2.4 Gauss–Hermite method

3. Euler–Maclaurin formula
4. Romberg integration 

13.1 Newton–Cotes Quadrature Formulas (Using Lagrange Method)

Let f(x) be a real-valued function defined on some interval [a, b] containing (n+1) points 
x x xn0 1, , , .⋅⋅⋅  Let the points be equispaced points with spacing h, i.e., 

x x ih i ni = + = ⋅⋅⋅0 1 2; , , ,

We want to evaluate the integral f x dx
x

xn

( ) .
0

∫
Let Pn(x) be the interpolating polynomial, which interpolates function f(x) at (n+1) points 
x x xn0 1, , , .⋅⋅⋅  Also, let εn(x) be the error in the interpolation. When we approximate the 
function f(x) with interpolating polynomial Pn(x), then let In be the approximate value of 
integration and EIn be the error term. The integral can be computed as follows 
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Numerical Integration 511

I f x dx P x x dx P x dx x dx
x

x

n n
x

x

n
x

x

n
x

n n n

= = +  = +∫ ∫ ∫( ) ( ) ( ) ( ) ( )
0 0 0

ε ε
00

x

n n

n

I EI∫ = +  (13.1)

First, we will compute the integration (In) and then error (EIn) in numerical integration. 
Consider Lagrange form of interpolating polynomial Pn(x) to get the following Newton–
Cotes quadrature formula 

I P x dx

f x l x f x l x f x l x

n n
x

x

n n
x

n

=

= + + ⋅⋅⋅+ 

∫ ( )

( ) ( ) ( ) ( ) ( ) ( )

0

0

0 0 1 1

xx

i
i

n

i
x

x

i i
x

x

i

n

n

n

n

dx

f x l x dx

f x l x dx

∫

∑∫

∫∑

=






=

=

=

( ) ( )

( ) ( )

0

0

0

0

==
=
∑ f xi
i

n

i( )
0

λ  (13.2)

where λi i
x

x

l x dx
n

= ∫ ( ) ;
0

 i n= ⋅⋅⋅0 1 2, , , ,  are the constants to be determined. The points are 

equispaced, i.e., 

x x ih i ni = + = ⋅⋅⋅0 1 2; , , , ,

Let x x s h= +0 , we have

l x
x x x x x x x x x x

x x x xi
i i n

i i

( )
( )( ) ( )( ) ( )

( )(
=

− − ⋅⋅⋅ − − ⋅⋅⋅ −
− −

− +0 1 1 1

0 11 1 1

1 1
) ( )( ) ( )

( ) ( ) ( ) (
⋅⋅⋅ − − ⋅⋅⋅ −

=
− ⋅⋅⋅ − +

− +x x x x x x
s h s h s i h s

i i i i i n

−− − ⋅⋅⋅ −
− ⋅⋅⋅ − ⋅⋅⋅ −

=
− ⋅⋅

i h s n h
i h i h h h i n h

s s

1
1 1 1

1

) ( )
( ) ( ) ( ) ( ) ( )

( )( ) ⋅⋅ − + − − ⋅⋅⋅ −
− −−

( )( ) ( )
( ) ! ( )!

s i s i s n
i n in i

1 1
1

On using the expression for l xi ( ) in λi i
x

x

l x dx
n

= ∫ ( )
0

, we have 

λi i
x

x

n i

l x dx

s s s i s i s n
i

n

=

=
− ⋅⋅⋅ − + − − ⋅⋅⋅ −

−

∫

−

( )

( )( ) ( )( ) ( )
( ) !

0

1 1 1
1 (( )!

, , , ,
n i

hds i n
n

−
= ⋅⋅⋅∫

0

0 1 2  (13.3)

We will use these expressions in Eq. (13.2) to get the approximate value of the integral for 
different values of n.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.014
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:39:20, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.014
https://www.cambridge.org/core


512 Numerical Methods

13.1.1 Trapezoidal Rule (n = 1) 
For n = 1, we have only two points x0 and x1. Therefore the integral f x dx

x

x

( )
0

1

∫  can be 
computed as follows from Eq. (13.2)

f x dx I f x f x f x
x

x

T i
i

i( ) ( ) ( ) ( )

0

1

0

1

0 0 1 1∫ ∑= = +
=

λ λ λ  

where λ0 and λ1 are computed with the aid of formula (13.3), and given by

λ0
0

1

1
2

= − − =∫ ( )s hds h

λ1
0

1

2
= =∫ ( )s hds h

Hence, the value of integral IT is given by 

 I f x f x h f x f xT = + = + λ λ0 0 1 1 0 12
( ) ( ) ( ) ( )  (13.4)

Geometrical Interpretation:
In Trapezoidal rule, we approximate the function f(x) with a straight line joining (x0, f(x0)) 

and (x1, f(x1)). Therefore, the integral f x dx
x

x

( )
0

1

∫ , which is the area under the curve f(x) in 

[x0, x1] is approximated by the area under the straight line joining (x0, f(x0)) and (x1, f(x1)) 
in [x0, x1].

Fig. 13.1 Trapezoidal rule

f(x)

f(x)(x1,  f(x1))

(x0,  f(x0))

x0

x
x1

IT =  f(x)dx
x1

x0

∫

Since this formula is equivalent to the area of a trapezium, that’s why this method is known 
as Trapezoidal rule.
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Numerical Integration 513

13.1.2 Simpson 1/3 Rule (n = 2) 
For n = 2, Eq. (13.2) gives following approximation for the integral

f x dx I f x f x f x f x
x

x

S i
i

i( ) ( ) ( ) ( ) ( )/

0

2

1 3
0

2

0 0 1 1 2 2∫ ∑= = + +
=

λ λ λ λ  

where λ0, λ1 and λ2 can be computed easily from Eq. (13.3). We have 

λ0
0

2 1 2
2 3

= − − =∫
( )( )s s hds h

λ1
0

2

2 4
3

= − − =∫ ( )( )s s hds h

λ2
0

2 1
2 3

= − =∫
( )( )s s hds h

So, the value of integral is given by

I f x f x f x h f x f x f xS1 3 0 0 1 1 2 2 0 1 23
4/ ( ) ( ) ( ) ( ) ( ) ( )= + + = + + λ λ λ  (13.5)

Geometrical Interpretation:
The function f(x) is approximated with a parabola passing through the points (x0, f(x0)), 

(x1, f(x1)) and (x2, f(x2)). Hence, the integral f x dx
x

x

( )
0

2

∫ , which is the area under the curve  

f(x) in [x0, x2], is approximated by the area under this parabola.

Fig. 13.2 Simpson 1/3 rule

x0 x1

x
x2

y

f(x)

P2(x)(x0,  f(x0))

(x1,  f(x1)) (x2,  f(x2))

IS =  f(x)dx
x2

x0

∫
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514 Numerical Methods

13.1.3 Simpson 3/8 Rule (n = 3) 
For n = 3, Eq. (13.2) provides the following rule

f x dx I f x f x f x f x f
x

x

S i
i

i( ) ( ) ( ) ( ) ( )/

0

3

3 8
0

3

0 0 1 1 2 2 3∫ ∑= = + + +
=

λ λ λ λ λ (( )x3

From Eq. (13.3), we have

λ0
0

3 1 2 3
6

3
8

= − − − − =∫
( )( )( )s s s hds h

λ1
0

3 2 3
2

9
8

= − − =∫
( )( )( )s s s hds h

λ2
0

3 1 3
2

9
8

= − − − =∫
( )( )( )s s s hds h

λ3
0

3 1 2
6

3
8

= − − =∫
( )( )( )s s s hds h

The approximate integral (IS3/8) is given by 

I f x f x f x h f x f x f x f xS3 8 0 0 1 1 2 2 0 1 2 3
3
8

3 3/ ( ) ( ) ( ) ( ) ( ) ( ) ( )= + + = + + +λ λ λ    (13.6)

Geometrical Interpretation:

In Simpson 3/8 rule, the integral f x dx
x

x

( )
0

3

∫  is approximated by the area under a cubic 

polynomial, which passes through four equally spaced points x f x0 0, ( )( ), x f x1 1, ( )( ), 
x f x2 2, ( )( ) and x f x3 3, ( )( ).

13.1.4 Boole Rule (n = 4)
Similar to previous expressions, Boole rule for the integral f x dx

x

x

( )
0

4

∫  can be derived as 
follows

I f x dx f x f x f x f x f xB
x

x

i
i

i= ≈ = + + +∫ ∑
=

( ) ( ) ( ) ( ) ( ) (
0

4

0

4

0 0 1 1 2 2 3 3λ λ λ λ λ )) ( )+ λ4 4f x

From Eq. (13.3), we have

λ0
0

4 1 2 3 4
24

14
45

= − − − − =∫
( )( )( )( )s s s s hds h

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.014
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:39:20, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.014
https://www.cambridge.org/core
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λ1
0

4 2 3 4
6

64
45

= − − − − =∫
( )( )( )( )s s s s hds h

λ2
0

4 1 3 4
4

24
45

= − − − =∫
( )( )( )( )s s s s hds h

λ3
0

4 1 2 4
6

64
45

= − − − − =∫
( )( )( )( )s s s s hds h

λ4
0

4 1 2 3
24

14
45

= − − − =∫
( )( )( )( )s s s s hds h

The value of integral is given by 

I f x f x f xB = + + ⋅⋅⋅+λ λ λ0 0 1 1 4 4( ) ( ) ( )

  = + + + + 
2

45
7 32 12 32 70 1 2 3 4h f x f x f x f x f x( ) ( ) ( ) ( ) ( )  (13.7)

Geometrically, the integral f x dx
x

x

( )
0

4

∫  is approximated by the area under a quartic polynomial 

(degree 4), which passes through five equally spaced points x f x0 0, ( )( ) , x f x1 1, ( )( ) , 

x f x2 2, ( )( ) , x f x3 3, ( )( )  and x f x4 4, ( )( ) .

13.1.5 Weddle Rule (n = 6) 
Similar to previous expressions, Weddle rule for the integral f x dx

x

x

( )
0

6

∫  can be derived as 
follows

I f x dx f x f x f x f xW
x

x

i
i

i= ≈ = + + ⋅⋅⋅+∫ ∑
=

( ) ( ) ( ) ( ) ( )
0

6

0

6

0 0 1 1 6 6λ λ λ λ

  
= + + + + + +h f x f x f x f x f x f x

140
41 216 27 272 27 216 410 1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( ) ff x( )6 

 (13.8)

In Weddle Rule, the integral f x dx
x

x

( )
0

6

∫  is approximated by the area under a polynomial of 

degree 6, which passes through x f xi i, ( )( ); i = 0 1 2 6, , ,..., .
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516 Numerical Methods

Compute the value of integral e dxx−∫
2

1

2

 with the aid of Trapezoidal, Simpson 1/3 and 
Simpson 3/8 formulas.

Ans.

The value of integral e dxx−∫
2

1

2

 from different formulas are given by

i) Trapezoidal rule (13.4)

 x x0 11 2= =,  and h = 1

 
I h f x f x e eT = +  = +  = + =− −

2
1
2

1
2

0 367879 0 018316 00 1
1 4( ) ( ) [ . . ] ..193098

ii) Simpson 1/3 rule (13.5)

 x x x0 1 21 3
2

2= = =, ,  and h = 1
2

 
I h f x f x f x e e eS1 3 0 1 2

1 9 4 4

3
4 1

6
4 0 1346/

/( ) ( ) ( ) .= + +  = + +  =− − − 332

iii) Simpson 3/8 Rule (13.6)

 x x x x0 1 2 31 4
3

5
3

2= = = =, , ,  and h = 1
3

 
I h f x f x f x f x e e eS3 8 0 1 2 3

1 16 9 253
8

3 3 1
8

3 3/
/( ) ( ) ( ) ( )= + + +  = + +− − − // .9 4 0 134971+  =−e

13.1Example

We have following input and output from an experiment

Input x
Output f x

: . . .
( ) : . . . . . . .

0 0 5 1 2 2 5 3 3 5
2 3 3 8 4 7 5 4 6 0 6 4 6 7

Use Weddle rule to compute the integral f x dx( )
.

0

3 5

∫ .

Ans. 
The points and step size are as follows

x x x0 1 60 0 5 3 5= = =, . , ..., .  and h = 0.5. 

13.2Example
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Numerical Integration 517

13.2 Composite Newton–Cotes Quadrature Rules 

In case of large intervals, the higher order approximating polynomials are very difficult to 
apply practically. Also, the lower order polynomial approximations produce large error in 
such cases. So, it is better to compute the integral by using composite rules. We subdivide 
the interval in composite rules, and then apply a particular lower order method to each of 
these subintervals.

13.2.1 Composite Trapezoidal Rule 
The interval [a, b] is subdivided into m equal sub-intervals with a = x0 and b = xm. The 
spacing for variable x is given by

h
x x

m
m=

− 0

The integral f x dx
a

b

( )∫  can be computed as follows

f x dx f x dx f x dx f x dx f x dx
a

b

x

x

x

x

x

x

x

m

m

( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫= = + + ⋅⋅⋅+
0 0

1

1

2

−−

∫
1

xm

On using Trapezoidal rule (13.4) for each interval, we have following approximation for the 

integral f x dx
x

xm

( )
0

∫ .

f x dx I h f x f x h f x f x h f
x

x

CT

m

( ) ( ) ( ) ( ) ( ) (≈ = +  + +[ ]+ ⋅⋅⋅+∫
0

2 2 20 1 1 2 xx f x

h f x f x f x f x f x

m m

m m

−

−

+ 

= + + + + ⋅⋅⋅+ 

1

0 1 2 12
2

) ( )

( ) ( ) ( ) ( ) ( ){ } (13.9)

On applying the Weddle rule (13.8), we have

I f x dx

h f x f x f x f x f x

W
x

x

=

= + + + +

∫ ( )

( ) ( ) ( ) ( ) (

0

6

140
41 216 27 272 270 1 2 3 44 5 6216 41) ( ) ( )+ + f x f x

 
= + + + + + +0 5

140
41 2 3 216 3 8 27 4 7 272 5 4 27 6 0 216 6 4. ( . ) ( . ) ( . ) ( . ) ( . ) ( . ) 441 6 7

15 463928

( . )

.

[ ]
=
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518 Numerical Methods

Geometrical Interpretation:

In each interval, we approximate the function f(x) with a straight line joining end points of 
the interval. 

Fig. 13.3 Composite Trapezoidal rule

13.2.2 Composite Simpson 1/3 Rule 
Similar to Trapezoidal rule, we divide the interval [a, b] into m equal parts with a = x0 and 

b = xm. Let spacing for x be h
x x

m
m=

− 0 . The integral f x dx
a

b

( )∫  is given by

f x dx f x dx f x dx f x dx f x dx
a

b

x

x

x

x

x

x

x

m

m

( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫= = + + ⋅⋅⋅+
0 0

2

2

4

−−

∫
2

xm

Note that m must be an even number, as the integrands are over the intervals
x x x x x xm m0 2 2 4 2⋅⋅⋅( ) ⋅⋅⋅( ) ⋅⋅⋅ ⋅⋅⋅( )−, , , . We apply Simpson 1/3 rule (13.5) on each interval to 

get the following composite rule 

f x dx f x dx f x dx f x dx

I

x

x

x

x

x

x

x

x

CS

m

m

m

( ) ( ) ( ) ( )

/

0 0

2

2

4

2

1

∫ ∫ ∫ ∫= + + ⋅⋅⋅+
−

33 0 1 2 2 3 43
4

3
4= + +  + + +  +

⋅⋅⋅+

h f x f x f x h f x f x f x

h

( ) ( ) ( ) ( ) ( ) ( )

33
4

3
2

2 1

0 2 4

f x f x f x

h f x f x f x f x

m m m

m

( ) ( ) ( )

( ) ( ) ( ) ( )

− −+ + 

=
+ + + + ⋅⋅⋅⋅+ 

+ + + ⋅⋅⋅+ 













=

−

−

f x
f x f x f x

h

m

m

( )
( ) ( ) ( )

2

1 3 14

3

firrst term+ last term sum of even terms

sum of odd terms

+  
+

2

4  












 (13.10)

f(x)dx
x0

∫
x1 f(x)

f(x)

{b, f(b)}

ICT =   f(x)dx
b

a
∫

a = x0 x1

x
xm−1xm−2 xm = bx2 - - - - - -

h

{a, f(a)}f(x)dx
x1

∫
x2

f(x)dx∫
xm−1

xm−2

f(x)dx∫
xm

xm−1
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Numerical Integration 519

This method is known as composite Simpson 1/3 rule or simply Simpson 1/3 rule with m 
equal sub-intervals. 

Geometrical Interpretation:

Geometrically, we approximate the function f x( )  with quadratic polynomials in 
subintervals, x x x x x xm m0 2 2 4 2⋅⋅⋅( ) ⋅⋅⋅( ) ⋅⋅⋅ ⋅⋅⋅( )−, , , .

Fig. 13.4 Composite Simpson 1/3 rule

13.2.3 Composite Simpson 3/8 rule 
Simpson 3/8 rule (13.6) (m to be a multiple of 3) can be used to produce following composite 
rule 

f x dx f x dx f x dx f x dx

h f

x

x

x

x

x

x

x

xm

m

m

( ) ( ) ( ) ( )
0 0

3

3

6

3

3
8

∫ ∫ ∫ ∫= + + ⋅⋅⋅+

≈

−

(( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x f x f x f x h f x f x f x f x0 1 2 3 3 4 5 63 3 3
8

3 3+ + +  + + + +  +

⋅⋅⋅+ + + + 

=

− − −
3
8

3 3

3
8

3 2 1

3 8

h f x f x f x f x

I h

m m m m

CS

( ) ( ) ( ) ( )

/

ff x f x f x f x f x f x f x f xm m m( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 4 5 2 13+ + + + + ⋅⋅⋅+ + − − 
+ + + ⋅⋅⋅+ 











−2 3 6 3f x f x f xm( ) ( ) ( )

 

 (13.11)

13.2.4 Composite Boole Rule 
Like Trapezoidal and Simpson rules, we can derive following composite Boole rule (for m 
to be a multiple of 4).

f(x)

f(x)

{b, f(b)}

ICT⅓ =   f(x)dx
xm

x0

∫  

a = x0 x1 xxm−1xm−2 xmx2

{a, f(a)}

f(x)dx
x0

∫
x2

f(x)dx
xm–2

∫
xm

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.014
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:39:20, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.014
https://www.cambridge.org/core


520 Numerical Methods

f x dx f x dx f x dx f x dx I

I

x

x

x

x

x

x

x

x

CB

m

m

m

( ) ( ) ( ) ( )
0 0

4

4

8

4

∫ ∫ ∫ ∫= + + ⋅⋅⋅+ ≈
−

CCB h f x f x f x f x f x

h f x

= + + + + 

+

2
45

7 32 12 32 7

2
45

7

0 1 2 3 4( ) ( ) ( ) ( ) ( )

( 44 5 6 7 8

4

32 12 32 7

2
45

7 32

) ( ) ( ) ( ) ( )

( ) (

+ + + + 

+

+ +−

f x f x f x f x

h f x fm



xx f x f x f xm m m m− − −+ + + 3 2 112 32 7) ( ) ( ) ( )
 

 (13.12)

Similarly, we can derive composite Weddle rule.

Compute the value of integral e dxx−∫
2

1

2

 with the aid of Trapezoidal formula by dividing 

the interval into ten equal parts.

Ans. 
We have to divide the interval [1, 2] into ten equal subintervals, so the spacing 

h = − =2 1
10

0 1. . The function f x e x( ) = − 2

 is tabulated below on the points 

x x x x x0 1 2 3 101 1 1 1 2 1 3 2= = = = =, . , . , . , ... ,  correct to six decimal places 

x f x e x( ) = − 2

1 0.367879
1.1 0.298197
1.2 0.236928
1.3 0.18452
1.4 0.140858
1.5 0.105399
1.6 0.077305
1.7 0.055576
1.8 0.039164
1.9 0.027052
2 0.018316

13.3Example
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Numerical Integration 521

Composite Trapezoidal Rule (13.9) gives the following result 

f x dx I h f x f x f x f x f x
x

x

CT( ) ( ) ( ) ( ) ( ) ( )
0

10

2
20 10 1 2 9∫ ≈ = + + + + ⋅⋅⋅+ {{ }

ICT = + +
+ + +0 1

2
0 367879 0 018316 2

0 298197 0 236928 0 184520 0 14. . .
. . . . 00858 0 105399
0 077305 0 055576 0 039164 0 027052

+
+ + + +














.
. . . .











= 0 135810.

The approximate value of integral f x dx( ) .
1

2

0 135810∫ = .

Evaluate the integral 1
1 2 2

1

2 2

+ +∫ x x
dx

.

 by Trapezoidal and Simpson rules by dividing the 

interval into 12 equal subintervals.

Use six decimal places round-off arithmetic.

Ans. 
The step size is given by 

h = − =2 2 1
12

0 1. .

We have
x x x x x0 1 2 3 121 1 1 1 2 1 3 2 2= = = = =, . , . , . , ... , .

Values of the function f x
x x

( ) =
+ +

1
1 2 2  at these points are as follows

x
f x

1 1 1 1 2 1 3. . .
( ) 0.250000 0.226757 0.206612        0.189036 

x
f x

1 4 1 5 1 6 1 7. . . .
( ) 0.173611         0.160000 0.147929          0.137174 

x
f x

1 8 1 9 2 0 2 1 2 2. . . . .
( )   0.127551      0.118906      0.1111111         0.104058         0.097656 

13.4Example
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522 Numerical Methods

We compute the integral with the Trapezoidal and Simpson rules. 

i) Composite Trapezoidal Rule (13.9)

 
f x dx I h f x f x f x f x f x

x

x

T( ) ( ) ( ) ( ) ( ) ( )
0

12

2
20 12 1 2 11∫ ≈ = + + + + ⋅⋅⋅+[ ]{ }

ICT = + + + + + ⋅⋅⋅+0 1
2

0 25 0 097656 2 0 226757 0 206612 0 189036 0 11. . . . . . . 11111 0 104058+[ ]{ }.

ICT = 0 187657.

ii) Composite Simpson 1/3 Rule (13.10)

 
f x dx I h f x f x f x f x f x

x

x

CS( )
( ) ( ) ( ) ( ) ( )

/

0

12

1 3
0 12 2 4 10

3
2

∫ ≈ =
+ + + + ⋅⋅⋅+ 

+ + + ⋅⋅⋅+ 











4 1 3 11f x f x f x( ) ( ) ( )

ICS1 3
0 1
3

0 25 0 097656 2 0 206612 0 173611 0 147929 0 127
/

. . . . . . .
=

+ + + + + 5551 0 111111
4 0 226757 0 189036 0 160000 0 137174 0 118

+[ ]
+ + + + +

.
. . . . . 9906 0 104058+[ ]











.

ICS1 3 0 187500/ .=

iii) Composite Simpson 3/8 Rule (13.11)

 

f x dx h f x f x
f x f x f x f x

f x
x

x

( )
( ) ( )

( ) ( ) ( ) ( )
(

0

12 3
8

30 12
1 2 4 5

7∫ =
+ +

+ + +
+ )) ( ) ( ) ( )

( ) ( ) ( )

+ + +










+ + + 











f x f x f x

f x f x f x
8 10 11

3 6 92






 

ICS3 8
0 3
8

0 25 0 097656 3
0 206612 0 226757 0 173611 0 160

/
. . .

. . . .
=

+ +
+ + + 0000

0 137174 0 127551 0 111111 0 104058

2 0 189036 0

+ + + +










+ +

. . . .

. .. .147929 0 118906+[ ]

















 = 0.187500

Note: The exact value of integral is given by

1
1 2

1
1

1
1

1
3 2

1
2

0 18752
1

2 2

2
1

2 2

1

2 2

+ +
=

+
= −

+
= − + =∫ ∫x x

dx
x

dx
x

. . .

( ) .
.

The composite Simpson rules produce an exact answer.
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Numerical Integration 523

Use Trapezoidal rule to compute the integral 2
2

0

1

x e dxx∫  by dividing the interval into 

50, 200, 1000, 5000, 9000, 40000, 50000 and 100000 equal subintervals with the aid of 
C-programming by declaring variables as float variables. Solve the integral analytically to 
fine exact answer, and hence errors in the values by Trapezoidal rule. Interpret the results.

Ans.

On using C-Program of composite Trapezoidal rule (13.9) for the integral 2
2

0

1

x e dxx−∫  by 

declaring variables as float variables, we have following results 

Sr. No. No. of intervals Value of Integral from Trapezoidal Rule
1       50    1.718759
2      200    1.718311
3    1000    1.718283
4    5000    1.718283
5    9000    1.718284
6   40000 – 0.000106
7   50000 – 0.000175
8 100000 – 0.000087

Note that the Turbo C/C++ compiler is used for the computation.

Exact value of the integral 2
2

0

1

x e dxx∫  is given by

2 1 2 718282 1 1 718282
2 2

0

1

0

1
x e dx e ex x∫ = = − = − =. .

It is easy to see from the table that if we increase numbers of points beyond a certain limit, 
our rounding error starts dominating the results. At 5000 points, our result is 1.718283, 
while at 9000 points, the result is 1.718183. After 40000 points the result is the totally 
wrong result. 

13.5Example

Evaluate the integral 1 2

1

2

+∫ cos x dx  with the aid of Trapezoidal and Simpson 1/3 rule 
with spacing h = 0.1.

Ans. 
The values of function f x x( ) cos= +1 2  in the interval [1, 2] with h = 0.1 are given 
below. 

13.6Example
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524 Numerical Methods

x 1 2+ cos ( )x f x x( ) cos= +1 2

1 1.291927 1.136629
1.1 1.205749 1.098066
1.2 1.131303 1.063627
1.3 1.071556 1.03516
1.4 1.028889 1.014342
1.5 1.005004 1.002499
1.6 1.000853 1.000426
1.7 1.016601 1.008266
1.8 1.051621 1.025486
1.9 1.104516 1.05096
2 1.173178 1.083134

It is again worth to mention here that for calculation of trigonometric functions, our 
calculator/computer must be in radian mode. 

i) Trapezoidal Rule (13.9)

 
f x dx I h f x f x f x f x f x

x

x

CT( ) ( ) ( ) ( ) ( ) ( )
0

10

2
20 10 1 2 9∫ ≈ = + + + + ⋅⋅⋅+ {{ }

ICT = + +
+ + +0 1

2
1 136629 1 083134 2

1 098066 1 063627 1 03516 1 014. . .
. . . . 3342 1 002499

1 000426 1 008266 1 025486 1 05096
+

+ + + +
















.
. . . .






ICT = 1 040871.

ii) Simpson 1/3 Rule (13.10)

 
f x dx I h f x f x f x f x f x

x

x

CS( )
( ) ( ) ( ) ( ) ( )

/

0

10

1 3
0 10 2 4 8

3
2

∫ ≈ =
+ + + + ⋅⋅⋅+ 

+ + + ⋅⋅⋅+ 











4 1 3 9f x f x f x( ) ( ) ( )

ICS1 3
0 1
3

1 136629 1 083134 2 1 063627 1 014342 1 000426 1
/

. . . . . .
=

+ + + + + ..
. . . . .

025486
4 1 098066 1 03516 1 002499 1 008266 1 05096

[ ]
+ + + + +[ ]













ICS1 3 1 040244/ .=

Note: The integral 1 2

1

2

+∫ cos x dx  provides the arc length* of the curve sin(x) from x = 1 

to x = 2 and its correct value up to seven decimal points is 1.0402463.

*Formula to compute the arc length of a curve y f x= ( ) from x = a to x = b is 1
2

+ 



∫

dy
dx

dx
a

b

.
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Numerical Integration 525

A car is running on a straight road and the velocity of car at a regular interval of 5 minutes 
is given below

Time (in minutes): 0 5 10 15 20 25 30
Velocity (in km/hr.): 80 88 90 95 93 85 83

Apply Simpson 1/3 rule and Weddle rule to find the distance covered by the car in these 
30 minutes.

Ans.

The step size (h) is 
1

12
hrs. The distance covered is integral of velocity, so the distance 

covered by the car is given by

i) Composite Simpson 1/3 rule (13.10)

f x dx I h f x f x f x f x f x f x
x

x

CS( ) ( ) ( ) ( ) ( ) ( ) (/= = + + +[ ]+ +∫
0

6

1 3 0 6 2 4 13
2 4 33 5) ( )+ { }f x

f x dx I
x

x

CS( )

.

/= = + + +[ ]+ + +[ ]{ }
=

∫
0

6

1 3
1

36
83 2 90 93 4 88 95 85

44 4722

80

222

ii) Weddle rule (13.8)

f x dx I

h f x f x f x f x f x

x

x

W( )

( ) ( ) ( ) ( ) (

=

= + + + +

∫
0

6

140
41 216 27 272 270 1 2 3 44 5 6216 41) ( ) ( )+ + f x f x

= + + + + + +[ ]
=

1
1680

3280 19008 2430 25840 2511 18360 3403

44 542857.

13.7Example

The volume of the solid of revolution obtained by rotating the curve y f x a x b= ≤ ≤( ),  
about the x-axis is given by

V y dx
a

b

= ∫π 2

13.8Example
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526 Numerical Methods

Determine the volume of the solid obtained by rotating the region bounded by 
y e x xx= = =, ,0 2  and the x-axis about the x-axis. Use Simpson 1/3 rule with nine nodes. 

Ans. 
The volume of solid of revolution is given by

V y dx e dx e dx
a

b
x x= = ( ) =∫ ∫ ∫π π π2 2

0

2
2

0

2

The values of function y e x= 2  in the interval [0, 2] with h = 0.25 are given below. 

x ex e x2

0 1 1
0.25 1.284025 1.648721
0.5 1.648721 2.718282

0.75 2.117 4.481689
1 2.718282 7.389056

1.25 3.490343 12.18249
1.5 4.481689 20.08554

1.75 5.754603 33.11545
2 7.389056 54.59815

On using Simpson 1/3 Rule (13.10), we have

π e dx
f x f x f x f x f x

f x f
x2

0

2
0 8 2 4 6

1

0 25
3

2
4∫ ≈

+ + + + 
+ +

. ( ) ( ) ( ) ( ) ( )
( ) (( ) ( ) ( )x f x f x3 5 7+ + 













 
=

+ + + +[ ]
+ +

0 25
3

1 2
4

. π 54.59815 2.718282 7.389056 20.08554
1.648721 44.481689 12.18249 33.11545+ +[ ]













  = 26.808111π

We have following width measurements of 80 meters wide lake

distance
width

:
:

0 10 20 30 40 50 60 70 80
0 18 35 54 65 48 32 26 0

Compute the area of lake by using Simpson 1/3 and Boole rules. Assume that the lake is 
symmetrical about mid-line.

13.8Example
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Numerical Integration 527

Ans. 
f(x)

(20, 17.5)

(30, 27) (40, 32.5)
(50, 24)

(60, 16)
(70, 13)

(80, 0)

(10, 9)

(0, 0) x

The integral f x dx
a

b

( )∫  is the area under the curve f(x) from a to b. Now, we approximate 

the area of lake by computing the half area. For this, we have

x
f x

:
( ) : . .

0 10 20 30 40 50 60 70 80
0 9 17 5 27 32 5 24 16 13 0

i) Simpson 1/3 Rule (13.10)

 
f x dx I h f x f x f x f x f x

fx

x

s( )
( ) ( ) ( ) ( ) ( )

(/

0

8

1 3
0 8 2 4 6

3
2

4∫ ≈ =
+ + + + 

+ xx f x f x f x1 3 5 7) ( ) ( ) ( )+ + + 













 
f x dx Is( ) . ./

0

80

1 3
10
3

0 0 2 17 5 32 5 16 4 9 27 24 13

14

∫ ≈ = + + + +[ ]+ + + +[ ]{ }
= 113 3333.

The area of the lake is approximately 1413 3333 2. × = 2826.667.
ii) Composite Boole rule (13.12) 

 
f x dx h

f x f x f x f x f x
f

( )
( ) ( ) ( ) ( ) ( )

(0

80
0 1 2 3 42

45
7 32 12 32 14

32∫ =
+ + + +

+ xx f x f x f x5 6 7 812 32 7) ( ) ( ) ( )+ + +










 
f x dx( )

0

80 4
9

0 288 210 864 455
768 192 416 0∫ =

+ + + +
+ + + +











 = 1419.111

The area of the lake is approximately 1419.111×2 = 2838.222.
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528 Numerical Methods

Note: There are following two ways to increase the accuracy during the numerical integration

1. To apply higher order formulas, but it is difficult to compute the higher order formulas 
say approximation with the polynomials of degree 15. Also, high amplitude oscillations 
are present in such higher degree polynomials.

2. To apply composite rules of lower degree polynomials like composite Simpson etc. with a 
large number of subintervals. But it will increase the rounding error.

Hence, a balance of these two ways is necessary for better results from numerical integration. 

13.3 Errors in Newton–Cotes Quadrature Formulas 

We have already discussed [Refer Eq. (13.1)] that in numerical integration, if P xn ( )  is 
interpolating polynomial and εn x( )  is the error in the interpolation, then the integration 
can be computed as follows

I f x dx P x x dx P x dx x dx
x

x

n n
x

x

n
x

x

n
x

n n n

= = +  = +∫ ∫ ∫( ) ( ) ( ) ( ) ( )
0 0 0

ε ε
00

x

n n

n

I EI∫ = +

where In is the approximate value of integration, when we approximate the function f(x)
with interpolating polynomial Pn(x). The term EIn gives error in the value of integration. 
Now, we will compute the errors in numerical integration formulas. 

If we approximate a function f(x) with a polynomial of degree n, then the error in 
interpolating polynomial at any point x is given by Eq. (8.14)

ε ξ ξ
n

n

n

n

x f
n

x x x x x x f
n

x x( ) ( )
( )!

( )( ) ( ) ( )
( )!

(=
+

− − ⋅⋅⋅ − =
+

−
+ +1

0 1

1

1 1 ii
i

n

)
=

∏
0

 (13.13)

where ξ is any point in the given interval. Hence, error in numerical integration formula can 
be computed as follows

EI x dxn n
x

xn

= ∫ ε ( )
0

   

=
+

− − ⋅⋅⋅ −

=
+

+

+

∫
f
n

x x x x x x dx

f
n

x

n

n
x

x

n

n 1

0 1

1

1

1

0

( )
( )!

( )( ) ( )

( )
( )!

(

ξ

ξ
−− − ⋅⋅⋅ −∫ x x x x x dxn

x

xn

0 1

0

)( ) ( )

On using x x s h= +0  and x x ihi = +0 , we have 

 dx hds=  

at x x= 0, s = 0; and at x xn= , s n= .
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Error term is given by

EI
f
n

h s s s n dsn

n
n

n

=
+

− ⋅⋅⋅ −
+

+ ∫
1

2

01
1

( )
( )!

( ) ( )ξ
 (13.14)

Now, we will compute the error formulas for different values of n.

13.3.1 Error in Trapezoidal Rule (n = 1) 

For n = 1, Eq. (13.14) is given by 

EI f
h s s ds

h f
T = ′′ − = − ′′∫

( )
!

( )( ) ( )ξ ξ
2

1
12

3

0

1 3

 (13.15)

This equation gives error in Trapezoidal rule for the integral, f x dx
x

x

( )
0

1

∫ . To compute error 

in composite Trapezoidal rule, divide the interval into m equal parts, i.e.,

f x dx f x dx f x dx f x dx f x dx
a

b

x

x

x

x

x

x

x

m

m

( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫= = + + ⋅⋅⋅+
0 0

1

1

2

−−

∫
1

xm

Error in the value of integral f x dx
x

xm

( )
0

∫  is sum of errors for all these subintervals. The error 

in the integral f x dx
x

x

i

i

( )
+

∫
1

 is given by

EI h f
Ti

= − ′′3

12
( )ξ

where ξ is any point in the given interval x xi i, + 1 . The exact value of ξ for different 
intervals is not known, so we can consider only one value of ξ for which the ′′f ( )ξ  is 
maximum. Summing up all the errors and let assuming η  is the point of maxima for the 
function ′′f ( )ξ , we have 

EI mh f
CT = − ′′3

12
( )η

On using the number of intervals m
b a

h
= −

, we have

EI
mh f b a h f

CT =
− ′′

=
− − ′′3 2

12 12
( ) ( ) ( )ξ ξ  (13.16)

13.3.2 Error in Simpson 1/3 Rule (n = 2) 
Equation (13.14) for n = 2 is given by

EI f h s s s dsS1 3
4

0

2

3
1 2 0/

( )
!

( )( )( )= ′′′ − − =∫
ξ
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This result implies that Simpson 1/3 rule is not only exact for quadratic polynomial, but 
also it is exact for cubic polynomials. So the error term is due to next order polynomial. To 
compute error term, we have to consider four points such that error term is zero for these 
points. Without loss of generality, let one more point be, again, x1 (for simplification only, 
we can also take a point x0 or x2). 

ε ξ
3 0 1

2
24

( )
( )
!

( )( ) ( )x
f

x x x x x x
iv

= − − −

EI
f

x x x x x x dx

f
h s s

S

iv

x

x

iv

1 3 0 1
2

2

5

4

4

0

2

/
( )
!

( )( ) ( )

( )
!

( )(

= − − −

= −

∫
ξ

ξ 11 2

90

2

0

2

5

) ( )

( )

s ds

f
h

iv

−

= −

∫
ξ  (13.17)

This equation gives error in Trapezoidal rule for the integral, f x dx
x

x

( )
0

2

∫ . To compute error 

in composite Simpson 1/3 rule, let us divide the interval (x0, xm) in m (even) equal parts

f x dx f x dx f x dx f x dx
x

x

x

x

x

x

x

xm

m

m

( ) ( ) ( ) ( )
0 0

2

2

4

2

∫ ∫ ∫ ∫= + + ⋅⋅⋅+
−

On adding errors for all these intervals, we have

EI
mh f b a h f

CS

iv iv

1 3

5 4

180 180/

( ) ( ) ( )
=

−
=

− −ξ ξ
 (13.18)

13.3.3 Error in Simpson 3/8 Rule (n = 3) 
In Simpson 3/8 rule, we approximate our function with cubic interpolation (n = 3). From 
Eq. (13.14), the error is given by 

EI f h s s s s ds

f h

S

iv

iv

3 8
5

0

3

5

4
1 2 3

3
80

/
( )
!

( )( )( )( )

( )

= − − −

= −

∫
ξ

ξ  (13.19)

Since the error term in Simpson 3/8 is of equal order as in Simpson 1/3 rule, hence Simpson 
3/8 rule has no extra advantage over Simpson 1/3 rule.

Proceeding in a similar manner as in composite Simpson 1/3 rule, we can easily obtain 
following error term for composite Simpson 3/8 rule 

EI
m f

hCS

iv

3 8
5

80/

( )
=

− ξ
 (13.20)
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Note that the error terms in Simpson 1/3 rule and Simpson 3/8 rule are of same order (h4). 
So, both the formulas are correct up to polynomials of degree 3. Therefore, the Simpson 3/8 
rule has no extra advantage over Simpson 1/3 rule. 

13.3.4 Error in Boole Rule (n = 4) 
In Boole rule, we approximate our function with quartic interpolation (n = 4). Error Eq. 
(13.14) is as follows

f
h s s s s s ds

v( )( )
!

( )( )( )( )( )ξ
5

1 2 3 4 06

0

4

− − − − =∫

This result implies that Boole rule is also exact for a polynomial of degree 5. Consequently, 
the error term is due to next order polynomial. We can consider six points such that 
error term is zero for these points. So, without loss of generality, let one more point be x2. 
Accordingly, error in Boole rule is given by

EI f h s s s s s ds

f h

B

vi

vi

= − − − −

=

∫
( )

( )

( )
!

( )( )( ) ( )( )

( )
!

ξ

ξ
6

1 2 3 4

6

7 2

0

4

7 −−





= −





128
21

8
945

7f h
vi( )( )ξ  (13.21)

Boole rule is correct up to polynomial of degree 5, so there is no need to derive the formula 
for n = 5.

13.3.5 Error in Weddle Rule (n = 6) 
In Weddle rule, the error term is as follows

f h s s s s s s s ds
vii( )( )

!
( )( )( )( )( )( )( )ξ

7
1 2 3 4 5 6 08

0

6

− − − − − − =∫
The error term is due to next order polynomial. Let one more point in this case be x3. The 
error in Weddle rule is given by

EI f h s s s s s s s dsW

viii

= − − − − − −

=

∫
( )( )

!
( )( )( )( ) ( )( )( )ξ

8
1 2 3 4 5 69 2

0

6

ff h

f h

viii

viii

( )

( )

( )
!

( )

ξ

ξ

8
1296
5

9
1400

9

9

−





= −





 (13.22)
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532 Numerical Methods

Compute the value of integral e dxx−∫
2

1

2

 with the aid of Trapezoidal formula by dividing 

the interval into ten equal parts and find the error bound in the value of the integral. 

Ans. 
We have already computed the value of integral by the composite Trapezoidal rule 
(Example 13.3)

e dxx−∫ =
2

1

2

0 135810.

Error in the integral value by composite Trapezoidal rule is given by Eq. (13.16)

EI
mh f

CT =
− ′′3

12
( )ξ

Here, the number of intervals are m = 10  and step size h = 0 1. .

Also  f x e x( ) = − 2

 ′ = − −f x xe x( ) 2
2

′′ = − −−f x e xx( ) ( )2 1 2
2 2

Now, we have to compute maximum value of ′′f x( )  in the interval [1, 2], which is 
maximum at x = 1. 

′′ ≤ −f x e( ) 2 1

Error bound is given by

EI
mh f

e
eCT =

− ′′ ≤ =−
3 3

1

12
10 0 1

12
2 1

600
( ) ( . )ξ

13.9Example

Find the minimum number of interval required to evaluate the integral 
1

1 2 2
0

1

+ +∫ x x
dx

correct to 4 decimal places by i) Trapezoidal rule and ii) Simpson 1/3 rule. 

Ans.

i) Error in the composite Trapezoidal rule (13.16) is as follows

EI
mh f b a h f

CT =
− ′′ =

− − ′′3 2

12 12
( ) ( ) ( )ξ ξ

13.10Example
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Now f x
x

( )
( )

=
+
1

1 2

′ = −
+

f x
x

( )
( )

2
1 3

′′ =
+

f x
x

( )
( )

6
1 4

The maximum value of ′′f x( )  in the interval [0, 1] is at the point x = 0. 

′′ ≤f ( )ξ 6

Error bound is given by

EI
b a h f h h

CT =
− − ′′ ≤ − − =

( ) ( ) ( )2 2 2

12
1 0 6

12 2
ξ

The error bound must be less than 0.00005 for an accuracy of 4 decimal places. It implies

h2

2
0 00005≤ .  or h ≤ 0 01.

Hence number of intervals required in Trapezoidal method for accuracy of four decimal 
places is given by

m b a
h

= − = − =1 0
0 01

100
.

ii) Error in composite Simpson 1/3 Rule (13.18) is given by

EI
mh f b a h f

CS

iv iv

1 3

5 4

180 180/

( ) ( ) ( )
=

−
=

− −ξ ξ

We have, f x
x

iv ( )
( )

=
+
120

1 6 , which is maximum at x = 0 in the interval [0, 1]; this implies 

f iv ( )ξ ≤ 120

The error is given by

EI
b a h f

hCS

iv

1 3

4
4

180
2
3

0 00005/

( ) ( )
.=

− −
≤ ≤

ξ

⇒ ≤h 0 09306.

The number of intervals required for an accuracy of four decimal places is given by

m b a
h

= − ≥11
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Table 13.1 Newton–Cotes Quadrature Formulas

Newton–Cotes Formulas
Method

Formulation f x dx
a

b

( )∫







Error Term 

Trapezoidal
f x dx

h
f x f x

x

x

( ) ( ) ( )
0

1

2 0 1∫ = +[ ]
− ′′h f3

12
( )ξ

Composite 
Trapezoidal f x dx

h
f x f x f x f x f x

x

x

m m

m

( ) ( ) ( ) ( ) ( ) ( )
0

2
20 1 2 1∫ = + + + + ⋅ ⋅ ⋅ +[ ]{ }−

− ′′mh f3

12
( )η

Simpson 1/3 
Rule f x dx

h
f x f x f x

x

x

( ) ( ) ( ) ( )= + +[ ]∫
0

2

3
40 1 2

−f
h

iv ( )ξ
90

5

Composite 
Simpson 1/3 
Rule

f x dx
h f x f x f x f x f x

f xx

x
m m

m

( )
( ) ( ) ( ) ( ) ( )

(
0

3

2

4
0 2 4 2

1
∫ =

+ + + + ⋅ ⋅ ⋅ +[ ]
+

−

)) ( ) ( )+ + ⋅ ⋅ ⋅ +[ ]










−f x f xm3 1

 m must be multiple of 2.
−mh f iv5

180
( )ξ

Simpson 3/8 
Rule f x dx

h
f x f x f x f x

x

x

( ) ( ) ( ) ( ) ( )= + + +[ ]∫
0

3 3
8

3 30 1 2 3

−3
80

5f
h

iv ( )ξ

Composite 
Simpson 3/8 
Rule

f x dx
h f x f x f x f x f x f x f x

x

x
m

m

( )
( ) ( ) ( ) ( ) ( ) ( ) (

0

3
8

30 1 2 4 5∫ =
+ + + + + ⋅ ⋅ ⋅ + mm m

m

f x

f x f x f x

− −

−

+[ ]
+ + + ⋅ ⋅ ⋅ +[ ]













2 1

3 6 32

) ( )

( ) ( ) ( )
 m must be multiple of 3.

−mf
h

iv ( )ξ
80

5

Boole Rule
f x dx h f x f x f x f x f x

x

x

( ) ( ) ( ) ( ) ( ) ( )
0

4 2
45

7 32 12 32 70 1 2 3 4∫ = + + + +[ ] −





8
945

7f
h

vi( ) ( )ξ

Weddle Rule
f x dx

h
f x f x f x f x f x

x

x

( ) ( ) ( ) ( ) ( ) ( )
0

6

140
41 216 27 272 270 1 2 3 4∫ = + + + + + 2216 415 6f x f x( ) ( )+[ ] −





9
1400

9f
h

viii( ) ( )ξ
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13.4 Gauss Quadrature Formulas 

In numerical integration, the value of integral, f x dx
a

b

( )∫ , depends on the values of function

f(x) at suitable number of points. It can be written as follows

I f x dx f x
a

b

i i
i

n

= ≈∫ ∑
=

( ) ( )λ
0

where x x xn0 1, , ,⋅⋅⋅  are (n+1) node points in the interval [a, b], and λi’s are weights given to 
the values of function f(x) at these node points. 

In the case of Newton–Cotes quadrature formula, the node points are already defined 
(i.e., x x ihi = +0 ; i n= ⋅⋅⋅1 2, , , ) and λi’s are to be computed. A polynomial of degree n is 
used for approximation to compute these (n + 1) weights λi’s. Let, there be no restriction 
on the points xi’s also, then there are total 2n+2 arbitrary constants [(n + 1) weights λi’s 
and (n+1) node points xi’s]. For these 2n+2 constants, a polynomial of degree 2n+1 can be 
utilized to approximate the function. So, higher accuracy can be achieved by these formulas. 
These methods are known as Gauss quadrature methods. Here, we will discuss following 
four Gauss quadrature methods

i) Gauss–Legendre formula
ii) Gauss–Chebyshev formula
iii) Gauss–Laguerre formula
iv) Gauss–Hermite formula

13.4.1 Gauss–Legendre Formula 
In this method, we assume the integral is of the form, f x dx( )

−
∫

1

1

. Note that any definite 

integral, g x dx
a

b

( )∫  can be converted to the form, f x dx( )
−
∫

1

1

 by substituting following formula

x b a t b a= − + +
2 2

Let the function f(x) in the integral f x dx( )
−
∫

1

1

 be approximated by the following polynomial 

of degree 2n + 1

f x a a x a x a xn
n( ) ≈ + + + ⋅⋅⋅+ +

+
0 1 2

2
2 1

2 1

The integral is approximated by following expression 

f x dx f xi i
i

n

( ) ( )
− =
∫ ∑=

1

1

0

λ (13.23)
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L.H.S. and R.H.S. of Eq. (13.23) are as follows

L.H.S. = = + + + ⋅⋅⋅+( )
= +

−
+

+

−
∫ ∫f x dx a a x a x a x dx

a

n
n( )

1

1

0 1 2
2

2 1
2 1

1

1

02 2
33

2
52 4a a+ + ⋅⋅⋅

R.H.S. = = + + + ⋅⋅⋅+( )
+

=
+

+∑λ λ

λ

i i
i

n

n
nf x a a x a x a x

a

( )
1

0 0 1 0 2 0
2

2 1 0
2 1

1 0 ++ + + ⋅⋅⋅+( )
+ + + + ⋅⋅⋅+

+
+

+

a x a x a x

a a x a x a x
n

n

n

1 1 2 1
2

2 1 1
2 1

2 0 1 2 2 2
2

2 1 2λ 22 1

0 1 2
2

2 1
2 1

n

n n n n n
na a x a x a x

+

+
+

( )

+ + + + ⋅⋅⋅+( )


λ

On comparing both sides, we get

λ λ λ λ
λ λ λ λ

λ λ λ

0 1 2

0 0 1 1 2 2

0 0
2

1 1
2

2 2

2
0

+ + + ⋅⋅⋅+ =
+ + + ⋅⋅⋅+ =

+ +

n

n nx x x x

x x x 22 2

0 0
2 1

1 1
2 1

2 2
2 1 2 1

2
3

0

+ ⋅⋅⋅+ =

+ + + ⋅⋅⋅+ =+ + + +

λ

λ λ λ λ

n n

n n n
n n

n

x

x x x x


(13.24)

In general, it is very difficult to solve these 2n + 2 nonlinear equations. But fortunately, the 
values of xi’s are zeroes of Legendre orthogonal polynomials (discussed later in the chapter). 
Once the values of xi’s are known, we can use these values in the system (13.24). We will 
get linear system for λi’s, which can be easily solved. Here, we are considering only some 
particular cases. 

1-Point Formula (n = 0)
For n = 0, we have following two equations from system (13.24)

λ
λ

0

0 0

2
0

=
=x

Solution is λ0 02 0= =, x .

On using these values in Eq. (13.23), we have following Gauss–Legendre 1-point formula

f x dx f x f( ) ( ) ( )
−
∫ = =

1

1

0 0 2 0λ (13.25)
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2-Points Formula (n = 1)
For n = 1, we have following four Eqs. (13.24)

λ λ
λ λ

λ λ

λ λ

0 1

0 0 1 1

0 0
2

1 1
2

0 0
3

1 1
3

2
0

2
3
0

+ =
+ =

+ =

+ =

x x

x x

x x [13.26 (a), (b), (c), (d)]

(d) – x1
2 (b) implies 

λ0 0 0
2

1
2 0x x x−( ) =  or λ0 0 0 1 0 1 0x x x x x−( ) +( ) =

Now if we select λ0 = 0, or x0 = 0, or x0 = x1, then remaining equations do not hold.
Therefore, we have x0 = –x1. On using this in Eq. (13.26 b) and solving Eqs. (13.26 a) and 
(13.26 b) simultaneously, we have 

λ λ0 1 1= =

On substituting the values x x0 1= −  and λ λ0 1 1= =  in Eq. (13.26 c), we get 

x x0 1
1
3

1
3

= = −,

Equation (13.23) provides the following Gauss–Legendre 2-points formula

f x dx f x f x f f( ) ( ) ( )
−
∫ = + = −





+




1

1

0 0 1 1
1
3

1
3

λ λ (13.27)

3-Points Formula
For n = 2, we have following six equations from system (13.24)

λ λ λ0 1 2 2+ + =

λ λ λ0 0 1 1 2 2 0x x x+ + =

λ λ λ0 0
2

1 1
2

2 2
2 2

3
x x x+ + =

λ λ λ0 0
3

1 1
3

2 2
3 0x x x+ + =

λ λ λ0 0
4

1 1
4

2 2
4 2

5
x x x+ + =

λ λ λ0 0
5

1 1
5

2 2
5 0x x x+ + =

Here, we are presenting solution directly without giving any computational details. Readers 
interested in finding the solutions can continue with the next section.
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x x x0 1 2
3
5

0 3
5

= − = =, , ,
  

λ λ λ0 1 2
5
9

8
9

5
9

= = =, ,

Gauss–Legendre 3-points formula is given by

f x dx f x f x f x f f f( ) ( ) ( ) ( ) ( )
−
∫ = + + = −







+ +

1

1

0 0 1 1 2 2
5
9

3
5

8
9

0 5
9

λ λ λ 33
5







 (13.28)

On a similar pattern, we can obtain Gauss–Legendre formulas for higher values of n.

Number 
of 

points 
(n + 1)

Points
(xi)

Weights
λi( ) Gauss–Legendre formula f x dx f xi i

i

n

( ) ( )
− =
∫ ∑=
1

1

0

λ

1 0 2 = 2 0f ( )

2
±

1
3

1
= −







+







f f

1
3

1
3

3 0 8
9

= −






+ +







5
9

3
5

8
9

0
5
9

3
5

f f f( )
±

3
5

5
9

4
±

−3 2 6 5
7

/ 18 30
36
+

=
+ −









+
+

−
−









+
−

18 30
36

3 2 6 5
7

18 30
36

3 2 6 5
7

18 30
36

f

f f

/

/ 33 2 6 5
7

18 30
36

3 2 6 5
7

+









+
−

−
+









/

/
f

±
+3 2 6 5

7
/ 18 30

36
−

5 0 128
225 =

+
− −











+
+

−










322 13 70
900

1
3

5 2
10
7

322 13 70
900

1
3

5 2
10
7

f

f


+ +
−

− +










+
−

128
225

0
322 13 70

900

1
3

5 2
10
7

322 13 70
900

1
3

f

f f

( )

55 2
10
7

+










− −
1
3

5 2
10
7

322 13 70
900
+

± +
1
3

5 2
10
7

322 13 70
900
−
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Numerical Integration 539

Compute the integral 1
1 2

1

1

+−
∫ x

dx  with the help of Gauss–Legendre 1, 2 and 3-points 

formulas. Compare the results with exact value.

Ans. 

i) Gauss–Legendre 1-point formula (13.25)

 
f x dx f( ) ( )

−
∫ =
1

1

2 0

 

1
1

2 1 22
1

1

+
= =

−
∫ x

dx ( )

ii) Gauss–Legendre 2-points formula (13.27)

 
f x dx f f( )

−
∫ = −





+




1

1 1
3

1
3

 

1
1

1

1 1
3

1

1 1
3

3
2

1 52
1

1

2 2+
=

+ −





+

+






= =
−
∫ x

dx .

iii) Gauss–Legendre 3-points formula (13.28)

 
f x dx f f f( ) ( )

−
∫ = −







+ +






1

1 5
9

3
5

8
9

0 5
9

3
5

 

1
1

5
9

1

1 3
5

8
9

1
1 0

5
9

1

1 3
5

114
72

12
1

1

2 2+
=

+ −







+
+

+

+







= =
−
∫ x

dx .558333

Exact solution is given by 

 

1
1 2

1 5712
1

1
1

1

1

+
= = =

−

−

−∫ x
dx xtan ( ) .π

Hence, 3-points formula gives better approximation.

13.11Example
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540 Numerical Methods

Use Gauss–Legendre 2-points formula to compute the approximate value of the integral 

1 2

1

2

+∫ cos x dx .

Ans.
To apply Gauss–Legendre formula, we first convert the interval [1, 2] to [–1, 1]. For this, 
we use the following formula

x b a t b a t= − + + = +
2 2

1
2

3
2

On substituting this transformation in the integral, we have 

1 1 1
2

3
2

1
2

1
2

1 1
2

2

1

2
2

1

1

2

+ = + +











= + +

∫ ∫
−

cos cos

cos

x dx t dt

t 33
21

1 















−
∫ dt

This resulting integral is calculated with the help of Gauss–Legendre 2-points formula as 
follows

1
2

1 1
2

3
2

1
2

1
3

1
3

2

1

1

+ +













 = −





+







−

∫ cos t dt f f



= + −





+






+ +






+






1
2

1 1
2

1
3

3
2

1 1
2

1
3

3
2

2 2cos cos 










= +( )
=

1
2

1 023095667 1 060070203. .

1.041582935

13.12Example

Solve the integral exp( )
.

−∫ x dx2

0

0 5

 numerically with the help of Gauss–Legendre 3-points 
formula.

Ans.
To convert the interval [0, 0.5] in to interval [–1, 1], the transformation is given by

x b a t b a t= − + + = +
2 2

1
4

1
4

13.13Example
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Numerical Integration 541

We have derived composite rules for Trapezoidal and Simpson methods. Similarly, 
composite rule for Gauss quadrature method can also be obtained. For this, we divide the 
given interval into subintervals and then apply Gauss quadrature formula to each interval. 
Here, we are not discussing the composite Gauss quadrature to avoid repetitions.

Now, we will discuss computation of nodes and weights for Gauss-Legendre quadrature 
formula with the help of Legendre polynomials.

Computation of Weights and Nodes using Legendre Polynomials

Since our major concern is to compute the weights λi and nodes xi for Gauss–Legendre 

integration f x dx f xi i
i

n

( ) ( )
− =
∫ ∑=

1

1

0

λ with the help of Legendre polynomials, hence here we 

are discussing the various properties of Legendre polynomials in brief only.

1. Legendre polynomial L xn ( )  of degree n is solution of following second order 
differential equation

  
( ) ( )1 2 1 02

2

2− − + + =x d y
dx

x dy
dx

n n y

2. Rodrigues formula 
 The Legendre polynomials can be obtained using Rodrigues formula

  
L x

n
d

dx
xn n

n

n
n( ) = −( )1

2
12

!
( )

On using this expression in the given integral, we get 

exp( ) exp

exp

.

− = − +















= − +

∫ ∫
−

x dx t dt

t

2

0

0 5 2

1

1

4
1
4

1
4

1
4 4

1
4



























−
∫

2

1

1

dt

On applying Gauss–Legendre 3-points formula, we have

1
4 4

1
4

1
4

5
9

3
5

8
9

0
2

1

1

exp ( )− +























 = −







+

−
∫

t dt f f ++
















= − −






+

























5
9

3
5

1
4

5
9

1
4

3
5

1
4

2

f

exp










+ −























 + −







+





8
9

1
4

5
9

1
4

3
5

1
4

2

exp exp 











































2

= ( ) + + ( )





1
4

5
9

8
9

5
9

0.9968296200 0.9394130628 0.8213346963( ) 

= 0.4612812800
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542 Numerical Methods

3. Recurrence relation for Legendre polynomials
 We have following recurrence relation for Legendre polynomials 

  n L x n xL x nL xn n n+( ) = +( ) −+ −1 2 11 1( ) ( ) ( )

 From Rodrigues formula, we can easily compute following Legendre polynomials 

  L x0 1( ) =  and L x x1( ) =  

 On using the recurrence relation for n = 1, we have 

  2 3 3 12 1 0
2( ) = ( ) − = −L x xL x L x x( ) ( ) ( )

  
L x x2

21
2

3 1( ) = −( )
  Similarly, the recurrence relation provides higher order Legendre polynomials for 

n = 2, 3, 4… The Legendre polynomials up to order 6 are as follows

 L x0 1( ) =  L x x1( ) =   L x x2
21

2
3 1( ) = −( )

 
L x x x3

31
2

5 3( ) = −( )
   

L x x x4
4 21

8
35 30 3( ) = − +( )

 
L x x x x5

5 31
8

63 70 15( ) = − +( )
 

L x x x x6
6 4 21

16
231 315 105 5( ) = − + −( )

 

4. Orthogonal property of Legendre polynomials
  Here, without going in details, we will only state the orthogonal property of 

Legendre polynomials. 

 Legendre polynomials Ln(x) are orthogonal over the interval [–1, 1]

  L x L x dx n mm n( ) ( ) ;= ≠
−
∫ 0

1

1

 When n = m, we have 

  
L x dx

nn
2

1

1 2
2 1

( ) =
+−

∫
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Numerical Integration 543

Theorem 13.1

Let us consider that orthogonal polynomials with weight functions w(x) over the interval 
[a, b]. If xi’s i n= ⋅⋅⋅0 1 2, , , ,  are zeroes of orthogonal polynomials, then the integral 

w x f x dx f xi i
i

n

a

b

( ) ( ) ( )=
=
∑∫ λ

0

 is exact for polynomials of degree ≤ +( )2 1n .

Proof: 

Let the function f x( )  be a polynomial of degree ≤ +( )2 1n .

Let P xn ( ) be the interpolating polynomial of degree ≤ n which agrees f x( ) at (n+1) points 

P x f x i nn i i( ) ( ), , , , ,= = ⋅⋅⋅0 1 2

Therefore, the function f x P xn( ) ( )−  has (n + 1) zeroes xi, i n= ⋅⋅⋅0 1 2, , , , . Let Q xn+1( )  be 
polynomial of degree (n+1) having zeroes xi’s. 

We can write f x P xn( ) ( )−  as product of two polynomials Q xn+1( )  and R xn ( ) , where R xn ( )  
is a polynomial of degree at most n, i.e.,

f x P x Q x R xn n n( ) ( ) ( ) ( )− = +1  (13.29)

On multiplying (13.29) with w(x) and then integrating from a to b, we have

w x f x dx w x P x dx w x Q x R x dx
a

b

n
a

b

n n
a

b

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫− = +1

The integral on right hand side is zero, if the function Q xn+1( )  is orthogonal over the 
interval [a, b] with respect to weight function, w x( ) , to all polynomials of degree ≤ n . 
Then, we have

w x f x dx w x P x dx
a

b

n
a

b

( ) ( ) ( ) ( )∫ ∫=  (13.30)

Consider the interpolating polynomial P xn ( )  of Lagrange form

P x f x l xn i i
i

n

( ) ( ) ( )=
=
∑

1

From Eq. (13.30), we have

w x f x dx w x P x dx w x f x l x d
a

b

n
a

b

a

b

i i
i

n

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∑= =




=1

xx f xi i
i

n

=
=
∑λ ( )

0

 (13.31)

where λi i
a

b

w x l x dx= ∫ ( ) ( )  are the weights.
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544 Numerical Methods

As we start with the assumption, that f x( )  is a polynomial of degree ≤ +( )2 1n . It proves 
that the formula has an accuracy of (2n + 1) degree polynomial.

Note: We prove that if xi’s are zeroes of orthogonal polynomials, then the integral 

w x f x dx f xi i
i

n

a

b

( ) ( ) ( )=
=
∑∫ λ

0

 is exact for polynomials of degree ≤ +( )2 1n .

Now, Legendre polynomials are orthogonal with respect to weight function w x( ) = 1  over the 
interval [ , ] [ , ]a b = −1 1 . So, we will use Legendre polynomials for the calculation of the weights 

λi  and nodes xi  for Gauss–Legendre integration f x dx f xi i
i

n

( ) ( )
− =
∫ ∑=

1

1

0

λ

1-Point Formula (n = 0)
The nodes xi’s are zeroes of orthogonal polynomials. For n = 0, we have Legendre polynomial, 
L x x1( ) = . Therefore, the node x0 is zero of this polynomial, and it follows x0 0= . Weight 

λi i
a

b

w x l x dx= ∫ ( ) ( )  is given by 

λ0
1

1

1 2= =
−
∫ dx

Hence f x dx f x f x fi i
i

n

( ) ( ) ( ) ( )
− =
∫ ∑= = =

1

1

0
0 0 2 0λ λ  

2-Points Formula (n = 1)
For n = 1, nodes are zeroes of the Legendre polynomial 

L x x2
21

2
3 1( ) = −( )

Nodes are x x0 1
1
3

1
3

= − =, . The weights are given by the formula λi i
a

b

w x l x dx= ∫ ( ) ( ) , we 

have

λ0 0
1

1
1

0 11

1

1

13
2

1
3

1= =
−
−

= − −






=
− − −
∫ ∫ ∫l x dx

x x
x x

dx x dx( )

λ1 1
1

1
0

1 01

1

1

13
2

1
3

1= =
−
−

= +






=
− − −
∫ ∫ ∫l x dx

x x
x x

dx x dx( )

So, Gauss–Legendre 2-points formula is given by

f x dx f x f x f f( ) ( ) ( )
−
∫ = + = −





+




1

1

0 0 1 1
1
3

1
3

λ λ
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Numerical Integration 545

3-Points Formula (n = 2)

For n = 2, we have following equation for Legendre polynomial 

L x x x3
31

2
5 3 0( ) = −( ) =

Nodes are x x x0 1 2
3
5

0 3
5

= − = =, , . 

Weights are given by

λ0 0
1

1
1 2

0 1 0 21

1 5
6

3
5

= =
−( ) −( )
−( ) −( ) = −



− −
∫ ∫l x dx

x x x x
x x x x

dx x x( )



=

−
∫ dx

1

1 5
9

λ1 1
1

1
0 2

1 0 1 21

1
25

3
3
5

= =
−( ) −( )
−( ) −( ) = − −

− −
∫ ∫l x dx

x x x x
x x x x

dx x( ) 



=
−
∫ dx

1

1 8
9

λ2 2
1

1
0 1

2 0 2 11

1 5
6

3
5

= =
−( ) −( )
−( ) −( ) = +



− −
∫ ∫l x dx

x x x x
x x x x

dx x x( )



=

−
∫ dx

1

1 5
9

Gauss–Legendre 3-points formula is given by

f x dx f x f x f x f f f( ) ( ) ( ) ( ) ( )
−
∫ = + + = −







+ +

1

1

0 0 1 1 2 2
5
9

3
5

8
9

0 5
9

λ λ λ 33
5








Similarly, for 4-points Gauss–Legendre formula, we have

L x x x4
4 21

8
35 30 3 0( ) = − +( ) =

Roots of this equation are ± −3 2 6 5
7

/ , ± +3 2 6 5
7

/ . Corresponding to these nodes, 

the weights are 18 30
36
+ , 18 30

36
+ , 18 30

36
−  and 18 30

36
−  respectively. Gauss–Legendre 

4-points formula is as follows

f x dx f f( ) / /

−
∫ = + −









+ + − −









1

1 18 30
36

3 2 6 5
7

18 30
36

3 2 6 5
7 

+ − +









+ − − +









18 30
36

3 2 6 5
7

18 30
36

3 2 6 5
7

f f/ /
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546 Numerical Methods

We can easily compute similar formulas from other orthogonal functions. Without going 
into details, here we are discussing some other important integration formulas in the 
following section.

13.4.2 Gauss–Chebyshev Formula
We have already discussed Chebyshev polynomials in details in Section 11.6. 

i) Chebyshev polynomials T x n xn ( ) = ( )−cos cos ,1  are orthogonal with weight 

function w x
x

( ) =
−

1

1 2
 over the interval [–1, 1], i.e.,

  
T x T x

x
dx n mm n( ) ( )

;
1

0
2

1

1

−
= ≠

−
∫

 When n = m, we have 

  
T x

x
dx

n

n
n

2

2
1

1

1

0

2
0

( )

−
=

=

≠





−
∫

π
π

ii) Chebyshev polynomials satisfy recurrence relation

  T x xT x T x T x T x xn n n( ) = ( )− ( ) = =− −2 11 2 0 1with and( ) ( )

Higher order Chebyshev polynomials can be computed as follows

T x
T x x
T x xT x T x x
T x xT x T x

0

1

2 1 0
2

3 2 1

1

2 2 1
2

( )
( )

=
=

( ) = ( )− ( ) = −

( ) = ( )− ( ) == −

( ) = − +

( ) = − +

( ) = − +

4 3
8 8 1
16 20 5
32 48 1

3

4
4 2

5
5 3

6
6 4

x x
T x x x
T x x x x
T x x x 88 12x −


On using the orthogonal property of Chebyshev polynomials, we have Gauss–Chebyshev 
integration formula as follows

1

1 2
1

1

0−
=

− =
∫ ∑

x
f x dx f xi i

i

n

( ) ( )λ
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Numerical Integration 547

where nodes xi are zeroes of orthogonal polynomials Ti(x), which are as follows

1-Point formula: T x x x1 00 0( ) = = ⇒ =

2-Points formula: T x x x x2
2

0 12 1 0 1
2

1
2

( ) = − = ⇒ = − =,

3-Points formula: T x x x x x x3
3

0 1 24 3 0 3
2

0 3
2

( ) = − = ⇒ = − = =, ,



Weights are given by the formula λi i
x

l x dx=
−
∫

1

1 2
1

1

-
( ) .

It can be obtained that all the weights for an n-points Gauss–Chebyshev formula are equal 

and given by 
π
n

Using the values of nodes and weights, we can easily have following Gauss–Chebyshev 
integration formulas.

Number 
of  

points 
(n + 1)

Points
(x

i
)

Weights
λi( ) Gauss–Chebyshev formula 

1

1 2
1

1

0−
=

− =
∫ ∑

x
f x dx f xi i

i

n

( ) ( )λ

1 0 π = π f ( )0

2 ±
1
2

2
π
2 = −





+ 











π
2

1

2

1

2
f f

3

0 π
3

= −






+ +

















π
3

3
2

0
3
2

f f f( )±
1
2

3

4

± −
1
2

2 2
π
4

=

−
−





+ −





+
−

+





+ +









π
4

1
2

2 2
1
2

2 2
1
2

2 2

1
2

2 2

f f f

f













± +

1
2

2 2

5

0 π
5

=

−
−( )





+ −( )





+ ( )

+
−

+( )




π
5

1
2

1
2

5 5
1
2

1
2

5 5 0

1
2

1
2

5 5

f f f

f


+ +( )
























f

1
2

1
2

5 5± −( )1
2

1
2

5 5

± +( )1
2

1
2

5 5
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548 Numerical Methods

Solve the integral 
x

x
dx

2

2
1

1

1−−
∫  numerically with Gauss–Chebyshev 2-points formula. 

Ans.
Gauss–Chebyshev 2-points formula is given by

 
1

1 2
1
2

1
22

1

1

−
= −







+










−

∫
x

f x dx f f( ) π

On using f x x( ) = 2, we have

 
x

x
dx

2

2
1

1 2 2

1 2
1
2

1
2 2−

= −






+














 =

−
∫

π π

13.14Example

Approximate the integral 
e
x x

dx
x

sin( ) +∫
2

4

 using Gauss–Chebyshev 3-points formula. 

Ans. 
To change the limit of the integral, we have

 x b a t b a t= − + + = +
2 2

3

On substituting this expression in the given integral, we have 

 

e
x x

dx e
t t

dt

e
t t

t

x t

t

sin( ) sin( )

sin( )

+
=

+ + +

=
+ + +

−

∫ ∫
+

−

+

2

4 3

1

1

3

3 3

3 3
1 22

2
1

1

2
1

1
1

1

−

=
−

−

−

∫

∫
t

dt

f t

t
dt

( )

where f t e t
t t

t

( )
sin( )

= −
+ + +

+3 21
3 3

.

On applying Gauss–Chebyshev 3-points formula, we get

 
f t

t
dt f f f

( )
( )

1 3
3

2
0 3

22
1

1

−
= −







+ +

















−
∫

π  = 15.986186

13.14Example
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13.4.3 Gauss–Laguerre Formula 
Without going into detail, here we will discuss only a few properties of Laguerre polynomials

G x e d
dx

e xn
n x

n

n
x n

+
+

+

+
− +( ) = −( ) ( )1

1
1

1
11

i) Laguerre polynomials are orthogonal with weight function w x e x( ) = −  over the 
interval [ , )0 ∞

  e G x G x dx n mx
m n

−
∞

= ≠∫ ( ) ( ) ;0
0

ii) Laguerre polynomials satisfy recurrence relation

 ( ) ( )n G x n x G x nG xn n n+ ( ) = + − ( )− ( )+ −1 2 11 1  with G x0 1( ) =  and G x x1 1( ) = − + . 

On using this recurrence relation, following Laguerre polynomials can be computed easily

G x
G x x

G x x x

G x x x x

0

1

2
2

3
3 2

1
1

1
2

4 2

1
6

9 18 6

( )
( )

=
= − +

( ) = − +( )
( ) = − + − +( )



Gauss–Laguerre integration formula is given by

e f x dx f xx
i i

i

n
−

∞

=
∫ ∑=( ) ( )
0 0

λ

where nodes xi are zeroes of orthogonal polynomials Gi(x), which are as follows

1-Point formula: G x x x1 01 0 1( ) = − + = ⇒ =

2-Points formula: G x x x x x2
2

0 1
1
2

4 2 0 0 585786 3 41421( ) = − +( ) = ⇒ = =. , .  

3-Points formula: G x x x x x x x3
3 2

0 1 2
1
6

9 18 6 0 0 415775 2 29428 6 2899( ) = − + − +( ) = ⇒ = = =. , . , . 55 

   G x x x x x x x3
3 2

0 1 2
1
6

9 18 6 0 0 415775 2 29428 6 2899( ) = − + − +( ) = ⇒ = = =. , . , . 55



The following formula gives the weights

λi
x

ie l x dx= −
∞

∫ ( )
0
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550 Numerical Methods

In the following table, we are listing nodes and weights for Gauss–Laguerre formulas as well 
as associated Gauss–Laguerre integration formulas

Number 
of points 
(n + 1)

Points
(x

i
)

Weights
λi( ) Gauss–Laguerre formula e f x dx f xx

i i
i

n
−

∞

=
∫ ∑=( ) ( )
0 0

λ

1 1 1 = f(1)

2 0.585786 0.853553
= ( ) + ( )0.853553 0.146447f f0 585786 3 41421. .

3.41421 0.146447

3 0.415774 0.711093
= +

+
0 711093 0 415774 0 278518 2 29428

0 0103892 6 28994

. ( . ) . ( . )

. ( .

f f

f ))
2.29428 0.278518

6.28994 0.0103892

4 0.322548 0.603154

= +
+
0 603154 0 322548 0 357419 1 74576

0 0388879 4 53662

. ( . ) . ( . )

. ( .

f f

f )) . ( . )+ 0 00053929 9 39507f

1.74576 0.357419

4.53662 0.0388879

9.39507 0.00053929

5 0.263560 0.521756

= +
+
0 521756 0 263560 0 398667 1 41340

0 075942 3 59642

. ( . ) . ( . )

. ( . )

f f

f ++
+

0 0036118 7 08581

0 0000234 12 6408

. ( . )

. ( . )

f

f

1.41340 0.398667

3.59642 0.075942

7.08581 0.0036118

12.6408 0.0000234

Compute the integral x e x dxx−
∞

∫ sin( )
0

 with Gauss–Laguerre 2-points formula. 

Ans. 
Gauss–Laguerre 2-points formula

 e f x dx f fx−
∞

∫ = ( ) + ( )( ) . .
0

0 585786 3 414210.853553 0.146447

Here, the function is f x x x( ) sin( )=  

e x x dxx−
∞

( ) = ( ) +∫ sin( ) . sin( . )
0

0 585786 0 5857860.853553 0.146447 33 41421 3 41421

0 141800

. sin( . )

.

( )
=
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13.4.4 Gauss–Hermite Formula 
Following properties of Hermite polynomials will be useful for the derivation of Gauss–
Hermite integration formula.

i) Hermite polynomials H x e d
dx

en
n x

n

n
x

+
+

+

+
−( ) = −( ) ( )1

1
1

11
2 2

, are orthogonal with 

weight function w x e x( ) = − 2

 over the interval ( , )−∞ ∞

  e H x H x dx n mx
m n

−

−∞

∞

= ≠∫
2

0( ) ( ) ;

ii) Hermite polynomials satisfy recurrence relation

  H x x H x nH x H x H x xn n n+ −( ) = ( )− ( ) = =1 1 0 12 2 1 2with and( ) ( )

From the recurrence relation, higher-order Hermite polynomials are given by

H x x
H x x x
H x x x
H x x x

2
2

3
3

4
4 2

5
5 3

4 2
8 12
16 48 12
32 160

( ) = −

( ) = −

( ) = − +

( ) = − ++120x


On using the orthogonal property of Hermite polynomials, we have Gauss–Hermite 
integration formula as follows

e f x dx f xx
i i

i

n
−

−∞

∞

=
∫ ∑=

2

0

( ) ( )λ

Compute the integral sin( )x
x

dx2
0

∞

∫  with Gauss–Laguerre 3-points formula. 

Ans.
Gauss–Laguerre 3-points formula

e f x dx f fx−
∞

∫ = + +( ) . ( . ) . ( . ) .
0

0 711093 0 415774 0 278518 2 29428 0 01038892 6 28994f ( . )

Here, the function f x e x
x

x

( ) sin( )= 2 , and approximate value of the integral is given by 

 
sin( )x

x
dx2

0

∞

∫  = 2.912237505
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552 Numerical Methods

where nodes xi are zeroes of orthogonal polynomials Hi(x), and weights are given by the 

formula λi
x

ie l x dx= −

−∞

∞

∫
2

( ) . 

The following table contains the Gauss–Hermite integration formulas up to 5-points

Number 
of points 
(n + 1)

Points
(x

i
)

Weights
λi( ) Gauss–Hermite formula e f x dx f xx

i i
i

n
−

−∞

∞

=
∫ ∑=

2

0

( ) ( )λ

1 0 π = π f ( )0

2 ±0.707107 0.886227 = − +( )0 886227 0 707107 0 707107. ( . ) ( . )f f

3 0 1.18164 = − +
+
0 295409 1 22474 1 18164 0

0 295409 1 22474

. ( . ) . ( )

. ( . )

f f

f±1.22474 0.295409

4 ±0.524648 0.804914 = − +
+ −
0 804914 0 524648 0 804914 0 524648

0 081313 1 650

. ( . ) . ( . )

. ( .

f f

f 668 0 081313 1 65068) . ( . )+ f±1.65068 0.081313

5 0 0.945309 = + −
+ +
0 945309 0 0 393619 0 958572

0 393619 0 958572 0 0

. ( ) . ( . )

. ( . ) .

f f

f 119953 2 02018

0 019953 2 02018

f

f

( . )

. ( . )

−
+

±0.958572 0.393619

±2.02018 0.019953

Compute the value of the integral x e dxx2 2−

−∞

∞

∫  with the help of Gauss–Hermite 3-points 

formula.

Ans.
Gauss–Hermite 3-points formula is as follows

 e f x dx f f fx−

−∞

∞

∫ = − + +
2

0 295409 1 22474 1 18164 0 0 295409 1( ) . ( . ) . ( ) . ( .. )22474

For f x x( ) = 2, we have

 
e x dxx−

−∞

∞

∫ = − + +
2 2 20 295409 1 22474 1 18164 0 0 295409 1 224. ( . ) . ( ) . ( . 774

0 88621995

2)

.=
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Numerical Integration 553

13.5 Euler–Maclaurin Formula 

Euler–Maclaurin formula is used to compute numerical quadrature and to approximate 
the sum of finite and infinite series. Some Newton–Cotes formulas like Trapezoidal and 
Simpson 1/3 can also be deduced using this formula. 

Let us derive Euler–Maclaurin formula with the help of Binomial expansion and shift 
operator Ef x f x h( ) ( )= +( ).

1
1

1
1

1

2 3 4

2 3 4

E
f x

e
f x

hD
hD hD hD

f x

hD−
( ) =

−
( )

=

+ ( ) + ( ) + ( ) + ⋅⋅⋅
( )

! ! !

usinng E e

hD hD hD hD
f x

hD z
f

hD=( )

=

+ + ( ) + ( ) + ⋅⋅⋅










( )

=
+( )

1

1
2 6 24

1
1

2 3

xx( )

where z
hD hD hD

= +
( )

+
( )

+ ⋅⋅⋅
2 6 24

2 3

.

On using the expression, 1
1

1 2 3

+
= − + − + ⋅⋅⋅

z
z z z , we have

1
1

1 1

1 1
2 6 24

2 3

2 3

E
f x

hD
z z z f x

hD
hD hD hD

−
( ) = − + − + ⋅⋅⋅( ) ( )

= − +
( )

+
( )







 + +

( )
+

( )















− +
( )

+
( )








hD hD hD

hD hD hD

2 6 24

2 6 24

2 3 2

2 3

 + ⋅⋅⋅






( )

= − +
( )

−
( )

+
( )

− ⋅⋅⋅




3

2 4 6
1 1

2 12 720 30240

f x

hD
hD hD hD hD





 ( )

−
( ) = − + −

( )
+

( )
− ⋅⋅⋅










f x

E
f x

hD
hD hD hD1

1
1 1

2 12 720 30240

3 5

 ( )f x (13.32)
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554 Numerical Methods

Consider the following expression

E
E

f x
E

E f x

E
f x f x

n
n

n

−
−

( ) =
−

−( ) ( )( )
=

−
( )− ( )( )

1
1

1
1

1

1
1

0 0

0

On using Eq. (13.32) in this expression, we get

E
E

f x
hD

hD hD hD
f x

n

n
−
−

( ) = − + −
( )

+
( )

− ⋅⋅⋅








 (1

1
1 1

2 12 720 302400

3 5

))− ( )( )

= ( )− ( )( )− ( )− ( )( )+ ( )− (

f x

hD
f x f x f x f x hD f x f xn n n

0

0 0 0
1 1

2 12
))( )

−
( ) ( )− ( )( )+ ⋅⋅⋅

= − ( )− ( )∫

hD
f x f x

h
f x dx f x f x

n

x

x

n

n

3

0

0

720

1 1
2

0

( ) (( )+ ′ ( )− ′ ( )( )

− ′′′ ( )− ′′′ ( )( )+ ⋅⋅⋅

h f x f x

h f x f x

n

n

12

720

0

3

0 (13.33)

Also, we have the following expression 

E
E

f x E E E f x

f x f x f x

n
n−

−
( ) = + + + ⋅⋅⋅+( )

= + + + ⋅⋅⋅+

−1
1

10
2 1

0

0 1 2

( )

( ) ( ) ( ) ff x

f x

n

i
i

n

( )

( )

−

=

−

= ∑
1

0

1

 (13.34)

On equating Eq(13.33) and Eq(13.34), we have

f x
h

f x dx f x f x h f x f xi
i

n

x

x

n n

n

( ) ( )
=

−

∑ ∫= − ( )− ( )( )+ ′ ( )− ′ (
0

1

0 0
1 1

2 12
0

))( )

− ′′′ ( )− ′′′ ( )( )+ ( )− ( )( )− ⋅h f x f x h f x f xn
v

n
v

3

0

5

0720 30240
( ) ( ) ⋅⋅⋅

= + ( )+ ( )( )+ ′ ( )− ′
=
∑ ∫f x

h
f x dx f x f x h f x f xi

i

n

x

x

n n

n

( ) ( )
0

0 0
1 1

2 12
0

(( )( )

− ′′′ ( )− ′′′ ( )( )+ ( )− ( )( )−h f x f x h f x f xn
v

n
v

3

0

5

0720 30240
( ) ( ) ⋅⋅⋅⋅  (13.35)
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Equation (13.35) can be used to compute the series expansion. But to compute the integral 
value, rewrite the Eq. (13.35) as follows

f x dx h f x f x f x h f x
x

x

i
i

n

n n

n

( ) ( )
0 1

1

0

21
2 12∫ ∑= + ( )+ ( )( )





− ′ ( )

=

−

−− ′ ( )( )

+ ′′′ ( )− ′′′ ( )( )− ( )−

f x

h f x f x h f x f xn
v

n
v

0

4

0

6

0720 30240
( ) ( ) (( )( )+ ⋅⋅⋅  (13.36)

Note: It is worth mentioning here that from the integral formula (13.36), we can easily 
derive composite Trapezoidal and Simpson 1/3 rules. In formula (13.36), on neglecting all 
the derivative terms, we have

f x dx h f x f x f x
x

x

i
i

n

n

n

( ) ( )
0 1

1

0
1
2∫ ∑= + ( )+ ( )( )




=

−

It is nothing but the composite Trapezoidal rule. Similarly, we can derive Simpson 1/3 rule. 

Find the sum of cubes of first n natural numbers using Euler–Maclaurin formula.

Ans. 
Euler–Maclaurin formula for the sum of finite series (Eq. 13.35) is as follows

 

f x
h

f x dx f x f x h f x f xi
i

n

x

x

n n

n

( ) ( )
=
∑ ∫= + ( ) + ( )( ) + ′ ( ) − ′ ( )(

0
0 0

1 1
2 12

0

))

− ′′′ ( ) − ′′′ ( )( ) + ( ) − ( )( ) − ⋅⋅⋅h f x f x h f x f xn
v

n
v

3

0

5

0720 30240
( ) ( )

To find the sum of cubes of first n natural numbers, let f(x) = x3 with x0 = 0, xn = n 
and x i i ni = =, , , , ...,0 1 2 . We have ′ =f x x( ) 3 2, ′′′ =f x( ) 6 and higher derivatives terms are 
zeroes. Also, the step size is h = 1. Now, using all these values in Eq. (13.35), we have

 
x x n x x

x

i
i

n

x

x

n

i
i

n

n

3

0

4
3 2

0
2

3

0

4
1
2

0 1
12

3 3 1
720

6 6
0

=

=

∑

∑

= + +( ) + −( ) − −( )

== + ( ) + ( ) = +





n n n n n4
3 2

2

4
1
2

1
12

3 1
2

( )
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Use Euler–Maclaurin formula to prove that

 cos( ) cos cos cos0
100

2
100

2 1+ 





+ 





+ ⋅⋅⋅+ ( ) =π π π

Ans. 
We have to prove that

 cos
i

i

π
100

1
0

200 





=
=
∑

The function is f x x( ) cos( )=  with step size h = π
100

.

On using the Euler–Maclaurin formula (13.35), we have

 

f x
h

f x dx f x f x h f x f xi
i

n

x

x

n n

n

( ) ( )
=
∑ ∫= + ( ) + ( )( ) + ′ ( ) − ′ ( )(

0
0 0

1 1
2 12

0

))

− ′′′ ( ) − ′′′ ( )( ) + ( ) − ( )( ) − ⋅⋅⋅h f x f x h f x f xn
v

n
v

3

0

5

0720 30240
( ) ( )

ccos cos( ) cos( ) cos
i

x dx
i

π
π

π
π

100
100 1

2
2 0

0

200

0

2





= + + ( )( )
=
∑ ∫ ++ ( ) − ( )( )

− − ( ) + ( )( ) +

π π

π

1200
2 0

720
2 0

30240
2

3 5

sin sin

sin sin sinh h ππ

π

( ) − ( )( ) − ⋅⋅⋅







= +( ) =
=
∑

sin

cos

0

100
1
2

1 1 1
0

200 i

i

13.19Example

Use Euler–Maclaurin formula to compute the value of the integral, e dxx−∫
2

1

2

. Divide the 

interval into ten equal parts and use up to third derivative terms only.

Ans. 
The spacing is h = 0.1, and we have to compute the function f x e x( ) = − 2

 at 11 node points 
x x x x x0 1 2 3 101 1 1 1 2 1 3 2= = = = =, . , . , . , ... ,

13.20Example
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x f x e x( ) = − 2

1 0.367879
1.1 0.298197
1.2 0.236928
1.3 0.18452
1.4 0.140858
1.5 0.105399
1.6 0.077305
1.7 0.055576
1.8 0.039164
1.9 0.027052
2 0.018316

For n = 10, Euler–Maclaurin formula (13.36) is given by 

 

f x dx h f x f x f x h f x
x

x

i
i

( ) ( )
0

10

1

9

10 0

2

10
1
2 12∫ ∑= + ( ) + ( )( )





− ′ (

=
)) − ′ ( )( )

+ ′′′ ( ) − ′′′ ( )( ) − ( ) −

f x

h f x f x h f x fv
n

v

0

4

10 0

6

720 30240
( ) ( ) xx0( )( ) + ⋅⋅⋅

 (13.37)

The derivative terms up to third order are as follows

   f x e x( ) = − 2

 
′ = − ′ = − ′ = −

′′ = − +

−

−

f x xe f f

f x e

x

x

( ) ( ) . ( ) .

( )

2 1 0 735758 2 0 073264

2 4

2

2

xx e

f x xe x e f f

x

x x

2

3

2

2 2

12 8 1 1 471516 2 0 7

−

− −′′′ = − ′′′ = ′′′ = −( ) ( ) . ( ) . 332640

On using these values of derivative terms and h = 0.1 in Eq. (13.37), we have 

f x dx f x f f
x

x

i
i

( ) ( . ) ( ) ( . )

0

10

0 1 1
2

2 1 0 1
121

9 2

∫ ∑= + ( ) + ( )( )





− ′

=

ff f

f f

f x dx

2 1

0 1
720

2 1

0 1 1 1

4

1

2

( ) − ′ ( )( )

+ ′′′ ( ) − ′′′ ( )( )

=∫

( . )

( ) ( . ) . 664999 1
2

0 018316 0 367879 0 1
12

0 073264 0 73
2

+ +( )





− − − −. . ( . ) . . 55758

0 1
720

0 732640 1 471516

0 135810

4

1

2

( )( )

+ − −( )

= −∫

( . ) . .

( ) .f x dx 00 000552 0 0000003 0 1352577. . .− =
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558 Numerical Methods

13.6 Richardson Extrapolation 

Richardson extrapolation techniques are used to improve the order of numerical techniques. 
We consider suitable numerical method with different spacing to improve the accuracy of 
the method. Here, we will discuss Richardson extrapolation for numerical integration. 

Consider a numerical method for the value of the integral I f x dx
a

b

= ( )∫  with spacing h 

has an accuracy of order k. A method is said to be of order k if the order of error term is 
k +1. Let the approximate value computed by this method be I1. Hence, we can write the 
method as follows

I I a h a hk k= + + + ⋅⋅⋅+ +
1 1

1
2

2  (13.38)

where ai’s are the asymptotic error constants.

Suppose we use the same method with spacing h
2

 and computed value is I2. Then, in that 
case, we have

I I a h a hk k

= + 





+ 





+ ⋅⋅⋅
+ +

2 1

1

2

2

2 2
 (13.39)

To increase the order of method, multiply Eq. (13.39) with 2 1k+  and then subtract it from 
Eq. (13.38), we get 

I
I I

b h b h
k

k
k k=

−( )
−( ) + + + ⋅⋅⋅

+

+
+ +

2

2 1

1
2 1

1 2
2

3
3

The value of the integral is given by

I f x dx
I I

a

b k

k
= ( ) =

−( )
−( )∫

+

+

2

2 1

1
2 1

1
 (13.40)

This scheme is of order at least k + 1.
This process of finding higher-order formula from two different spacing is called 

Richardson extrapolation. 
Here we elaborate the technique for numerical integration, but we can apply this 

technique to other numerical methods also. 

Note: It is worth mentioning here that, if we neglect all the derivative terms then the 
approximate value of the integral is 0.135810, and the integration formula is the Trapezoidal 
rule. In this example, we use derivative terms up to third order and result obtained is 
0.1352577. The exact value of the integral correct up to nine decimal places is 0.1352572579.
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Numerical Integration 559

Use Richardson extrapolation to obtain higher order technique from Trapezoidal rule. 

Compute the value of the integral e dxx−∫
2

1

2

 with the help of this improved technique. 

Further prove that this improved scheme is equivalent to Simpson 1/3 rule. 

Ans.
We have already obtained that the error term in the Trapezoidal rule with spacing h is of 
order h2. Let the approximate value computed by the Trapezoidal method be T1. We can 
write the method as follows

 I T a h a h= + + + ⋅⋅⋅1 1
2

2
4  (13.41)

Consider the method with spacing, h
2

, and let computed value be T2

 I T a h a h= + 





+ 





+ ⋅⋅⋅2 1

2

2

4

2 2
 (13.42)

Eliminating the term h2 from Eqs. (13.41) and (13.42), we have

 I
T T

b h=
−
−

+ + ⋅⋅⋅
2

2 1

2
2 1

2 2
4  (13.43)

The formula, I
T T

=
−
−

2
2 1

2
2 1

2  is a higher-order formula, and the order of error term is at least 

four. 

Now, we will use the formula (13.43) to compute the value of the integral, e dxx−∫
2

1

2

.

 

T h f f h

T h

1

2

2
1 2 1

2
0 018316 0 193098= +( ) = +( ) =

=

( ) ( ) . .0.367879 (  = 1)

22
1 2 1 5 2

1
4

0 367879 2 0 105399 0 018316

f f f

h

( ) ( . ) ( )

. ( . ) .

+ +( )

= + +( ) (  == )1 2

0 149248= .

Value of integral with improved scheme is as follows

 I
T T

=
−
−

= − =
2

2 1
4 0 149248 0 193098

3
0 134631

2
2 1

2

( . ) . .

Now, we will deduce that the formula (13.43) is equivalent to Simpson 1/3 rule. Trapezoidal 
rules with spacing h and h/2 are given by

13.21Example
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560 Numerical Methods

 
T h f a f b h

T h f a f a b

1

2

2

4
2

2

= +( )

= + +


( ) ( )

( )

(interval spacing is )




+






f b h( ) (interval spacing is /2)

The improved formula (13.43) is given by

 

I
T T h f a f a b f b h f=

−
−

= + +





+












−
2

2 1
1
3

4
4

2
2 2

2
2 1

2 ( ) ( ) (aa f b

h f a f a b f b

) ( )

( ) ( )

+( )












= + +





+




6

4
2

This expression is Simpson 1/3 formula with spacing h/2.

Note: We have already discussed higher order integration formula by interpolating several 
data points. For example, we interpolate seven data points with 6th order polynomial in 
Weddle rule. The order of global truncation error for Weddle rule is much higher, but we 
rarely use it for numerical integration. Such types of rules do not produce good numerical 
approximations, as the rounding error is large and often they are a victim of polynomial 
wiggle (oscillate widely between the samples). 

Therefore, instead of using higher order numerical integration formulas, we use iterative 
approaches such as Romberg integration for lower order integration techniques like 
Trapezoidal and Simpson, etc. to reduce the truncation errors of these techniques.

13.7 Romberg Integration 

Romberg integration technique is an iterative technique. It uses repeated applications of 
Richardson extrapolation for numerical integration. In Romberg integration, we use a 
numerical method with different spacing to improve the accuracy of the method. 

The Richardson formula (13.40) is given by

I f x dx
I I

a

b k

k
= ( ) =

−( )
−( )∫

+

+

2

2 1

1
2 1

1

where I1 is numerical integration with spacing h and I2 is numerical integration with spacing 
h/2. In Romberg integration, we will use Richardson scheme successively to obtain further 
higher order scheme. 

For example, we will compute the integral with spacing h, h/2, h/4, h/8, … from any 
method like Trapezoidal or Simpson method. Let these values be I1

0, I2
0 , I3

0 , I4
0, … Here 

the subscript denotes the integration with different spacing (subscript is 1 for spacing h,  
subscript 2 for spacing h/2, so on), and superscript denotes the iteration number (the 
superscript 0 denotes initial approximation for Romberg integration).
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Numerical Integration 561

We have error formulas for composite Newton Cotes and Gauss quadrature formulas, 
which can be used to determine the number of subintervals needed to guarntee a given 
accuracy (e.g. 13.10). But, in many cases, the computations required to determine number 
of subintervals is cumbersome and difficult enough to avoid. Also the upper bound of error 
sometimes provides much greater number of subintervals than actually necessary. We can 
use Romberg integration for higher accuracy, and also we can stop iterations as the desired 
accuracy is obtained.

We apply Richardson scheme for each set (h, h/2), (h/2, h/4), (h/4, h/8), (h/8, h/16) … 
to obtained the values of I1

1, I2
1, I I I1

1
2
1

3
1, , , ...( ), …. Then, Richardson scheme is applied further by using 

these obtained values. This process is repeated till only one value is remained. 
For easy understanding and to keep all these computations at one place, we can build a 

table of the form
I
I I
I I I
I I I I
I I I I I

1
0

2
0

2
1

3
0

3
1

3
2

4
0

4
1

4
2

4
3

5
0

5
1

5
2

5
3

5
4

Let us discuss this scheme for composite Trapezoidal and Simpson schemes for numerical 
integrations. 

Trapezoidal Rule: 
The composite Trapezoidal scheme is given by

I I a h a hT= + + + ⋅⋅⋅1
2

2
4

Let the computed values for the integral with spacing h, h/2, h/4, h/8, … using composite 
Trapezoidal scheme be I1

0, I2
0 , I3

0 , I4
0, …. As discussed in Example 13.21, the Richardson 

scheme for composite trapezoidal rule (13.43) provides first iteration as follows

I
I I

b h kk
k k

+
+=

−( )
−( ) + + ⋅⋅⋅ = ⋅⋅⋅1

1 1
0 0

2
4

4

4 1
1 2 3, , , ,

This expression provides the values of the first approximations I I I1
1

2
1

3
1, , , ...( ) of Romberg 

integration. We can further use these values to obtain the higher approximations. In general, 
the jth iteration is given by

I
I I

kk
j

j
k
j

k
j

j+
+
− −

=
−( )
−( ) =1

1
1 14

4 1
1 2 3, , , ,... (13.44)

Simpson Rule:
The composite Simpson scheme is given by

I I a h a hS= + + + ⋅⋅⋅1
4

2
6
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562 Numerical Methods

Compute the value of integral I
x

dx=
+∫
1

10

1

 with the help of Romberg integration. Use 

only four initial values of integral with the Trapezoidal rule. 

Ans. 

First, we will compute the four initial approximation to the integral I
x

dx=
+∫
1

10

1

 by using 

Trapezoidal rule with spacing h = 1, h/2 = 0.5, h/4 = 0.25, h/8 = 0.125. These values are 
listed in following Table. 

n = 1
h = 1

I h f f1
0

2
0 1 1

2
1 1

2
0 75= +( ) = +





=( ) ( ) .

n = 2
h/2 = 0.5

I h f f f2
0

2
0 2 0 5 1 0 5

2
1 2 1

1 5
1
2

0 708= + +( ) = + 





+






=( ) ( . ) ( ) .
.

. 3333

n = 4
h/4 = 0.25 I h f f f f f3

0

2
0 2 0 25 0 5 0 75 1 0 697024= + + +( ) +( ) =( ) ( . ) ( . ) ( . ) ( ) .

n = 8
h/8 = 0.125 I4

0 0 694122= .

The Romberg integration formula (13.44) is given by

 I
I I

kk
j

j
k
j

k
j

j+
+
− −

=
−( )
−( ) =1

1
1 14

4 1
1 2 3, , , , ....  

On using this formula and initial values from the table, we can easily compute the 
iterations of Romberg integration. For the first iteration, we have

 

I
I I

I
I I

I
I I

2
1 2

0
1
0

3
1 3

0
2
0

4
1 4

0

4

3
0 694444

4

3
0 693254

4

=
−( )

=

=
−( )

=

=
−

.

.

33
0

3
0 693155

( )
= .

13.22Example

Proceeding in a similar manner as in Trapezoidal method, the jth iteration of Romberg 
integration for composite Simpson rule is given by

I
I I

kk
j

j
k
j

k
j

j+

+
+
− −

+
=

−( )
−( ) =1

1
1
1 1

1

4

4 1
1 2 3, , , ,...  (13.45)
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Numerical Integration 563

Similarly, the second iteration is given by

 
I

I I

I
I I

3
2 3

1
2
1

4
2 4

1
3
1

16

15
0 693175

16

15
0 693148

=
−( )

=

=
−( )

=

.

.

The last iteration is as follows

 I
I I

4
3 4

2
3
264

63
0 693147=

−( )
= .

This value of the integral is correct up to 6 decimal places. In table form, we can list the 
iterations as follows

Spacing Value of 
integral using 
Trapezoidal rule

1st iteration 
of Romberg 
Integration

2nd iteration 
of Romberg 
Integration

3rd iteration 
of Romberg 
Integration

h = 1 0.750000
h/2 = 0.5 0.708333 0.694444
h/4 = 0.25 0.697024 0.693254 0.693175
h/8 = 0.125 0.694122 0.693155 0.693148 0.693147

Note that last two iterations (0.693148 and 0.693147) matches upto five decimal points. So 
the result 0.693147 is at least correct upto five decimal places.

Use Trapezoidal formula to compute the value of integral e dxx−∫
2

1

2

 with n = 1, 2 and 4. 

Then use the Romberg integration to improve these values.

Ans. 
First, we will compute initial values with the help of Trapezoidal formula as follows

n = 1 I f f1
0 1

2
1 2 0 193098= +( ) =( ) ( ) .

n = 2 I f f f2
0 0 5

2
1 2 1 5 2 0 149248= + +( ) =. ( ) ( . ) ( ) .

n = 4 I f f f f f3
0 0 25

2
1 2 1 25 1 5 1 75 2 0 138720= + + +( ) +( ) =. ( ) ( . ) ( . ) ( . ) ( ) .

13.23Example
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564 Numerical Methods

The following table contains the iterations of the Romberg integration (13.44)

Spacing Value of integral using 
Trapezoidal rule

1st iteration of 
Romberg Integration

2nd iteration of 
Romberg Integration

h = 1 0.193098
h/2 = 0.5 0.149248 0.134632
h/4 = 0.25 0.138720 0.135210 0.135249

Hence, the value of integral e dxx−∫
2

1

2

 from Romberg integration is 0.135249.

Use Simpson formula to compute the value of integral e dxx−∫
2

1

2

 with n = 2, 4 and 8. Then 
use the Romberg integration to improve these values.

Ans. 
First, we will compute initial values with the help of Simpson formula as follows 

n = 2 I f f f1
0 0 5

2
1 4 1 5 2 0 134632= + +( ) =. ( ) ( . ) ( ) .

n = 4 I f f f f f2
0 0 25

2
1 4 1 25 4 1 75 2 1 5 2 0 135210= + + + +( ) =. ( ) ( . ) ( . ) ( . ) ( ) .

n = 8 I
f f f f f

f3
0 0 125

2
1 4 1 125 1 375 1 625 1 8755

2
=

+ + + +( )
+

. ( ) ( . ) ( . ) ( . ) ( . )
(11 25 1 5 1 75 2

0 135254
. ) ( . ) ( . ) ( )

.
+ +( ) +







=

f f f

The following table contains the iterations of the Romberg integration (13.45)

Spacing Values of integral 
using Simpson rule

1st iteration of 
Romberg Integration

2nd iteration of 
Romberg Integration

h = 0.5 0.134632
h/2 = 0.25 0.135210 0.135249
h/4 = 0.125 0.135254 0.135257 0.135257

Hence, the value of integral e dxx−∫
2

1

2

 from Romberg integration is 0.135257. It is correct 

up to six decimal points. Note that the correct value of the integral up to ten decimal 
points is 0.1352572579. 

13.24Example
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Table 13.2 Numerical Techniques for Integration

Newton–Cotes Formulas
Method

Formulation f x dx
a

b

( )∫






Order of 
Approximating 

Polynomial 

Order 
of Error 
term

Programming

Trapezoidal
f x dx I

h
f x f x

x

x

T( ) ( ) ( )
0

1

2 0 1∫ ≈ = +[ ]
1 2 Easy

Composite 
Trapezoidal f x dx I

h
f x f x f x f x f x

x

x

CT m m

m

( ) ( ) ( ) ( ) ( ) ( )
0

2
20 1 2 1∫ ≈ = + + + + ⋅ ⋅ ⋅ +[ ]{ }−

1 2 Easy

Simpson 1/3 
Rule f x dx I

h
f x f x f xS

x

x

( ) ( ) ( ) ( )/≈ = + +[ ]∫ 1 3 0 1 2

0

2

3
4

3 4 Easy

Composite 
Simpson 1/3 
Rule

f x dx I
h f x f x f x f x f x

x

x

CS

m m
m

( )
( ) ( ) ( ) ( ) ( )

/

0

1 3

0 2 4 2

3

2
∫ ≈ =

+ + + + ⋅ ⋅ ⋅ +[ − ]]
+ + + ⋅ ⋅ ⋅ +[ ]











−4 1 3 1f x f x f xm( ) ( ) ( )

m must be multiple of 2.

3 4 Easy

Simpson 3/8 
Rule f x dx I

h
f x f x f x f xS

x

x

( ) ( ) ( ) ( ) ( )/≈ = + + +[ ]∫ 3 8 0 1 2 3

0

3 3
8

3 3
3 4 Easy

Composite 
Simpson 3/8 
Rule

f x dx I
h f x f x f x f x f x f x

x

x

CS

m
m

( )
( ) ( ) ( ) ( ) ( ) ( )

/

0

3 8

0 1 2 4 53
8

3
∫ ≈ =

+ + + + + ⋅⋅ ⋅ ⋅[
+ + ] + + + ⋅ ⋅ ⋅ +[ ]











− − −f x f x f x f x f xm m m( ) ( ) ( ) ( ) ( )2 1 3 6 32 

m must be multiple of 3.

3 4 Easy

Boole Rule
f x dx I h f x f x f x f x f x

x

x

B( ) ( ) ( ) ( ) ( ) ( )
0

4 2
45

7 32 12 32 70 1 2 3 4∫ ≈ = + + + +[ ]
5 6 Easy

Weddle Rule
f x dx I

h f x f x f x f x f x

x

x

W( )
( ) ( ) ( ) ( ) (

0

6

140

41 216 27 272 270 1 2 3∫ ≈ =
+ + + + 44

5 6216 41

)

( ) ( )+ +








f x f x

7 8 Easy
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566 Numerical Methods

Gauss–Legendre Formulas

Method
Formulation f x dx IGL( ) ≈





−

∫
1

1 Order of 
method 

Order of 
Error term

Programming

1 - point 
f x dx I fGL( ) ( )

−
∫ ≈ =
1

1

1 2 0
1 2 Easy

2 - point
f x dx I f fGL( )

−
∫ ≈ = −







+






1

1

2

1
3

1
3

3 4 Easy

3 - point 
f x dx I f f fGL( ) ( )

−
∫ ≈ = −







+ +






1

1

3

5
9

3
5

8
9

0
5
9

3
5

5 6 Easy

4 - point

f x dx I f fGL( )
/ /

−
∫ ≈ =

+ −









+
+

−
−

1

1

4

18 30
36

3 2 6 5
7

18 30
36

3 2 6 5
7








+
− +









+
−

−
+









18 30
36

3 2 6 5
7

18 30
36

3 2 6 5
7

f f
/ /

7 8 Easy

Euler–Maclaurin Formula
For Series 
Summation f x

h
f x dx f x f x

h
f x f xi

i

n

x

x

n n

n

( ) ( )
=
∑ ∫= + ( ) + ( )( ) + ′ ( ) − ′ ( )(

0
0 0

1 1
2 12

0

))

− ′′′ ( ) − ′′′ ( )( ) + ( ) − ( )( ) − ⋅ ⋅ ⋅
h

f x f x
h

f x f xn
v

n
v

3

0

5

0720 30240
( ) ( )

General General Programming 
not possible 
as it requires 
derivative 
terms

For 
Integration f x dx h f x f x f x

h
f x

x

x

i
i

n

n n

n

( ) ( )
0

1

1

0

21
2 12∫ ∑= + ( ) + ( )( )





− ′ ( )
=

−

−− ′ ( )( )

+ ′′′ ( ) − ′′′ ( )( ) − ( ) −

f x

h
f x f x

h
f x f xn

v
n

v

0

4

0

6

0720 30240
( ) ( ) (( )( ) + ⋅ ⋅ ⋅

General General Programming 
not possible 
as it requires 
derivative 
terms
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13.8 Double Integrals 

The numerical
In this section, we will extend Trapezoidal and Simpson rules to evaluate numerical 

approximation for double integral, I f x y dxdy
a

b

c

d

= ∫∫ ( , ) .

Let f(x, y) be a real-valued function defined on the region, a x b≤ ≤ , c y d≤ ≤ . Let the 
interval [a, b] contain (m+1) equispaced points a x x x bm= ⋅⋅⋅ =0 1, , ,  with spacing h and the 
interval [c, d] contains (n+1) equispaced points c y y y dn= ⋅⋅⋅ =0 1, , ,  with spacing k. 

13.8.1 Trapezoidal Rule 

To estimate the integral, I f x y dxdy
a

b

c

d

= ∫∫ ( , ) , first we will apply Trapezoidal rule for variable

x keeping variable y constant. Then, Trapezoidal rule is used for variable y. 

I f x y dxdy f x y dx dy I

I h f x y

a

b

c

d

x

x

y

y

T

T

mn

= =








 ≈

=

∫∫ ∫∫( , ) ( , )

,

00

2 0(( )+ ( )+ ( )+ ( )+ ⋅⋅⋅+ ( ){ } 




−f x y f x y f x y f x y dym m

y

, , , ,2 1 2 1

0

yy

m
y

y

y

y

n

n nh f x y dy f x y dy f x y dy f x y dy

∫

∫ ∫= ( ) + ( ) + ( ) + ( ) +
2

20 1 2

0 0

, , , ,
yy

y

m
y

y

y

y n nn

f x y dy

hk

f x y
0 00

1

0 0

4

∫ ∫∫ ⋅⋅⋅ ( )
























=

− ,

,(( )+ ( )+ ( )+ ( )+ ⋅⋅⋅+ ( ){ }
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(13.46)

Apply Trapezoidal rule to compute the integral e dx dyx y+∫∫
0

0 5

0

0 6 ..

 by taking two equal 

subintervals for the variable x and three equal subintervals for the variable y. Also, find 
the exact solution.

13.25Example
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568 Numerical Methods

Ans. 
We have 

f x y ex y( , ) = +

m = 2, n = 3
x x x0 1 20 0 25 0 5= = =, . , .
y y y y0 1 2 30 0 2 0 4 0 6= = = =, . , . , .

On using Trapezoidal rule (13.46) with h = 0.25 and k = 0.2, we have the following 
approximation for the integral

e dx dy

f x y f x y f x y f x
x y+∫∫







=

( ) + ( ) + ( ) +

0

0 5

0

0 6 0 0 0 3 0 1
1

80

2
..

, , , 00 2

2 0 2 3 2 1 2 2

1 0

2

2

,

, , , ,

,

y

f x y f x y f x y f x y

f x y

( ){ }
+ ( ) + ( ) + ( ) + ( ){ }
+ ( ) ++ ( ) + ( ) + ( ){ } 

















f x y f x y f x y1 3 1 1 1 22, , ,

= 0.537887
The exact solution is given by

e dx dy e dx e dy ex y x y+∫∫ ∫ ∫






=













=

0

0 5

0

0 6

0

0 5

0

0 6
0

.. . .
.. .5 0 61 1−( ) −( ) =e 0.533325953

Calculate the approximation to the double integral 
2

1 2
1

2

0

1 y
x

dx dy
+( )∫∫  with the aid of 

Trapezoidal method by dividing both the intervals in 4 equal sub-intervals (h = k = 0.25)

Ans. 
Dividing both the intervals in 4 equal parts (i.e., m = n = 4), we have

x x x x x
y y y y

0 1 2 3 4

0 1 2 3

1 1 25 1 5 1 75 2
0 0 25 0 5 0 7

= = = = =
= = = =

, . , . , . ,
, . , . , . 55 14, y =

By using Trapezoidal rule (13.46) with h = k = 0.25, we have 

2
1

1
64

2

2
1

2

0

1

0 0 0 4 0 1

y
x

dx dy

f x y f x y f x y

+( )










=

( ) + ( ) + ( ) +

∫∫

, , , ff x y f x y

f x y f x y f x y f x y
0 2 0 3

4 0 4 4 4 1 4 22

, ,

, , , ,

( ) + ( ){ }
+ ( ) + ( ) + ( ) + ( ) + ff x y

f x y f x y f x y f x y f x y
4 3

1 0 1 4 1 1 1 2 1 3

2

2

,

, , , , ,

( ){ }

+

( ) + ( ) + ( ) + ( ) + ( ){{ }
+ ( ) + ( ) + ( ) + ( ) + ( ){ }
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f x y f x y f x y f x y f x y
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2 0 2 4 2 1 2 2 2 3

3 0

2, , , , ,

,(( ) + ( ) + ( ) + ( ) + ( ){ }


























f x y f x y f x y f x y3 4 3 1 3 2 3 32, , , ,























= 0.323523
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13.8.2 Simpson 1/3 Rule 

Simpson 1/3 rule to approximate double integral I f x y dxdy
x

x

y

y mn

= ∫∫ ( , )
00

 is given by

I f x y dxdy f x y dx dy

h f x y

x

x

y

y

x

x

y
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= =
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00 00
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  (13.47)

Note: We can easily separate the integral to get the exact integral as follows

  
2

1
1

1
2

2
1

2

0

1

2
1

2

0

1y
x

dx dy
x

dx ydy
+( )











=
+( )
















∫∫ ∫ ∫ 
= −( )( ) =− −tan tan1 12 1 1 0.3217505546.

In some cases, it is possible to separate the terms and integrate. But, in general, it is not 
possible to find the exact solutions, on that account, we require numerical approximation. 
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570 Numerical Methods

Note: Similar kind of expressions can be computed for other integral formulas like Simpson 
3/8 rule and Gauss quadrature formulas. Also for triple integral, we can derive expressions 
with the help of Trapezoidal and Simpson rules. Here, we are avoiding all these formulas 
due to the complexity.

Calculate the approximation to the double integral 1
11

2

1

2

+ +( )∫∫ x y
dx dy with the aid of 

Simpson method by taking h = 0.5 and k = 0.25. 

Ans. 
We have

 f x y
x y

( , ) =
+ +

1
1

 h = 0.5, k = 0.25 (m = 2, n = 4)
 x x x0 1 21 1 5 2= = =, . ,
 y y y y y0 1 2 3 41 1 25 1 5 1 75 2= = = = =, . , . , . ,

Using Simpson rule (13.47), we get

1
1

1
72

4

1

2

1

2 0 0 0 4 0 1

+ +( )






=

( ) + ( ) + ( ) +

∫∫ x y
dx dy

f x y f x y f x y f x, , , 00 3 0 2

2 0 2 4 2 1 2 3

2

4

, ,

, , , ,

y f x y

f x y f x y f x y f x y

( ){ } + ( )
+ ( ) + ( ) + ( ) + ( ){ } ++ ( )
+ ( ) + ( ) + ( ) + ( ){ } +

2

4 4 2
2 2

1 0 1 4 1 1 1 3 1

f x y

f x y f x y f x y f x y f x y

,

, , , , , 22( ) 



















= 0. 252681

13.27Example

Use Simpson method to estimate the double integral in the Example 13.25.

Ans. 
Simpson rule (13.47) provides following approximation to the given integral 

2
1

1
144

4

2
1

2

0

1

0 0 0 4 0 1

y
x

dx dy

f x y f x y f x y
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( ) + ( ) + ( )
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4
4 2
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1 0 1 4 1 1 1 3

f x y

f x y f x y f x y f x y f x

,

, , , , 11 2

3 0 3 4 3 1 3 3 3 24 2
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+ ( ) + ( ) + ( ) + ( ){ } + ( )2 4 22 0 2 4 2 1 2 3 2 2f x y f x y f x y f x y f x y, , , , , 



























= 0.321748
It is easy to see that the result is very close to exact value 0.321750 up to six decimal places. 

13.28Example
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Numerical Integration 571

Exercise 13

1. Use Simpson 1/3 rule to estimate the integral e dxx−∫
2

0

1

 by taking five ordinates. 

Ans. 0.746855

2. Find the approximate value of the integral 1
0

2

+∫ cos
/

θ θ
π

d  by dividing the interval into six equal 

parts. Use the composite Trapezoidal and Simpson 1/3 rules. 

Ans. 1.997143, 2.000003

3. Integrate the function f(x) between x = 2.0 to x = 2.8, using the Trapezoidal rule. 

x 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

f (x) 1.53 1.97 2.64 3.34 4.10 4.97 5.86 5.43 4.21

Ans. 3.118

4. We have many integrals in different branches of sciences and engineering, which cannot be 
solved analytically. Consider following examples

a) 1 2

0

+∫ cos ,x dx
π

 b) 
sin

,
x

x
dx

1

2

∫  c) e dxx−∫
2

0

2

Approximate these integrals by Trapezoidal and Simpson 1/3 rules. Divide the intervals into ten 
equal parts. 

Ans. a) 3.820197, 3.820188
  b) 0.659218, 0.659330
  c) 0.881839, 0.882075

5. The arc length of the curve y = f(x) in the interval [a, b] is given by following formula 

 Arc length = 1
2

+ 



∫

dy
dx

dx
a

b

Approximate the arc lengths for the following functions. Use composite Trapezoidal and 
composite Simpson 1/3 rules with nine nodes.

 
a (Ans. 1.910099, 1.910099)

b (Ans.

) cos( ) /

)

y x x

y e xx

= ≤ ≤
= ≤ ≤

0 2

0 1

π
  2.005898, 2.003499)

c (Ans. 4.656889, 4.646834)) y x x= ≤ ≤2 0 2

6. The surface area of the solid of revolution obtained by rotating the curve y f x a x b= ≤ ≤( ),  
about the x-axis is given by

 S y
dy
dx

dx
a

b

= + 



∫2 1

2

π

Approximate the surface area of solid of revolution using composite Simpson 1/3 rule with 11 
nodes for the following curves

 

a (Ans. 7.211876) 

b (Ans. 22.94320

) cos( ) /

)

y x x

y e xx

= ≤ ≤
= ≤ ≤

0 2

0 1

π
11)

c (Ans. 53.226620)) y x x= ≤ ≤2 0 2
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572 Numerical Methods

7. The volume of the solid of revolution obtained by rotating the curve y f x a x b= ≤ ≤( ),  about the 
x-axis is given by

 V y dx
a

b

= ∫π 2

Approximate the volume of solid of revolution obtained by rotating the following curves about 
the x-axis. Use Simpson 1/3 rule with 11 nodes. 

 

a (Ans. 2.467401)

b (Ans. 10.035995

) cos( ) /

)

y x x

y e xx

= ≤ ≤
= ≤ ≤

0 2

0 1

π
))

c (Ans. 20.107536)) y x x= ≤ ≤2 0 2

8. We recorded the car velocity at regular intervals of 10 seconds during its travel of 2 minutes. The 
velocities (converted in metre/second) are given in following table

Time 0 10 20 30 40 50 60 70 80 90 100 110 120
Velocities 0 2 4 5 7 5 6 4 3 4 3 2 0

Compute the total distance traveled by the car. Use Simpson 1/3 rule.

Ans. 446.67 metre

9. A solid of revolution is formed by rotating about the x-axis, the lines x = 0 and x= 1 and curve 
through the points with the following coordinates

 
x
y

: . . .
: .

0 0 25 0 5 0 75 1
0 0 247404 0.479426 0.681639 0.841471

Estimate the volume of the solid formed using composite Simpson rule.

Ans. 0.856380

10. Estimate the average value of the function f x x( ) sin( )=  on the interval 0
2

,
π




 by using 

Trapezoidal and Simpson 1/3 rules with step size h = π
12

. 
Ans. 0.632980, 0.636636

11. Find an upper bound of the error in estimation of the integral sin( )x dx
0

2
π

∫  with Trapezoidal and 

Simpson 1/3 rules for number of subintervals n = 6. 

Ans. 0.00897172, 0.0000409941

12. Compute the errors in approximate values of the integral e dxx−∫
1

2

 by Trapezoidal, Simpson 1/3 

and Simpson 3/8 formulas with 11 nodes.

Ans. 
1

1200
1

1800000
1

800000e e e
, ,

13. Estimate the integral, I
dx

x
=

+∫10

1

, using Trapezoidal and Simpson 1/3 formulas with eight equal 

subintervals and compare the result with exact value. Compute the upper bounds of the errors 
in both the formulas. 

Ans. I I EI EICT CS CT CS= = = =0.694122 0.00260417 0.000, . , ,/ /1 3 1 30 693155 00325521
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Numerical Integration 573

14. Compute the value of integral, sin ( )2

0

2

x dx

π

∫  with the aid of Trapezoidal formula by dividing the 

interval into ten equal parts and find the error bound in the value of the integral. 

Ans. 0.785577, 0.00645964

15. Find the minimum number of intervals required to evaluate the integral, sin( )x dx
0

1

∫  correct to 4 

decimal places by i) Trapezoidal rule and ii) Simpson 1/3 rule. 

Ans. 41, 4

16. Find the minimum number of intervals required to evaluate the integral, e dxx−∫
4

0

1

 correct to 4 

decimal places by i) Trapezoidal rule ii) Simpson 1/3 rule.

Ans. 77, 11; use max ( ) .
0 1

3 5
≤ ≤

′′ <
x

f ξ  and max ( )
0 1

95
≤ ≤

<
x

ivf ξ

17. Evaluate the following integrals by using Gauss–Legendre 2-points and 3-points formulas.

 a) ( ln )x x dx2

1

2

∫ −   c) 1 2

0

2

+∫ sin x dx

π

 b) x e dxx2

0

1
2−∫  d) 

e
x

dx
x

10

1

+∫ sin( )

Ans. a) 1.946738, 1.947033; c) 1.906879, 1.910344
   b) 0.188321, 0.189539; d) 1.154197, 1.154765

18. Solve the integral 
x x

x
dx

−
−−

∫
sin ( )2

2
1

1

1
 numerically with Gauss–Chebyshev 2 and 3-points formula. 

Ans. –1.506160, –1.427621

19. Approximate the integral 
e x

x
dx

x −
∫

cos( )
2

2

4

 with the help of Gauss–Chebyshev 2 and 3-points 

formula. 

Ans. 5.592587, 5.184131; Hint: change the limit by using transformation x = t + 3 and then use 

function f t
e t

t
t

t

( )
cos( )

( )
= − +

+
−

+3

2
23

3
1  

20. Compute the integral 
(ln( ) )sin( )x x x

e
dxx

+∞

∫
2

0

 with Gauss–Laguerre 2-points formula. (–0.598504)

21. Use Gauss–Laguerre 3-points formula to compute the numerical approximation for the integral 

x
x x

dx
−

+

∞

∫
3

3
0 cos( )

.

Ans. –2.919626
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574 Numerical Methods

22. Apply Gauss–Hermite 2 and 3-points formula to obtain the approximate values of the following 
integral 

 a) x x e dxx2 2

+( ) −

−∞

∞

∫ sin( )  Ans. 0.886228, 0.886220

 b) 3 2 2

x e e dxx x+( ) −

−∞

∞

∫  Ans. 4.893024, 4.932461

 c) 
cos( )x

x
dx

4 32 −−∞

∞

∫  Ans. –1.347500, –0.327079

23. Compute the value of the integral 
1

1 2+−∞

∞

∫ x
dx with the help of Gauss–Hermite 3-points formula. 

Ans. 2.240777

24. Calculate the value of loge 2 from the integral dx
x10

1

+∫  by using Euler–Maclaurin formula.

Ans. 0.693147

25. Find the value of the integral 
dx

x1 2 2
2

3

+∫  by using Euler–Maclaurin formula.

Ans. 0.0766218

26. Use Euler–Maclaurin formula to prove that

 sin( ) sin sin sin .0
100

2
100

2 0+ 





+ 





+ ⋅⋅⋅+ ( ) =π π π

27. Prove the following results with the help of Euler–Maclaurin formula

 a) x
n n

x

n

=
∑ = +

1

1
2

( )
 b) x

n n n

x

n
2

1

1 2 1
6=

∑ = + +( )( )

28. Use Euler–Maclaurin formula to compute the value of the series 1

1

100

xx=
∑ . Use derivative terms up 

to order 5. 

Ans. 5.189130

29. Compute the value of integration I e dxx= −∫
2

1

1 75.

 with the help of Romberg integration. Use only 

three initial values of integral with the Trapezoidal rule. 

Ans.
 0.155494
 0.134363 0.127320 
 0.129271 0.127574  0.127591 

30. Compute the value of integration I
x

dx=
+∫
1

1 2
0

1

 with help of Romberg integration. Use only 4 

initial values of integral with Trapezoidal rule. 

Ans. 

 
0.750000
0.775000 0.783333
0.782794 0.785392 0.785529
0.784747 0.7785398 0.785399 0.785396 
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Numerical Integration 575

31. Find the approximate value of the double integral sin( )x y dx dy+∫∫
0

1

0

1

 with the help of Trapezoidal 

and Simpson 1/3 methods by taking h = 0.5 and k = 0.25.

Ans. 0.753510, 0.773938

32. Calculate the approximation to the double integral 
1

1 2 2
1

2

1

2

+ +( )∫∫ x y
dx dy  with the help of 

Trapezoidal and Simpson 1/3 methods by taking h = 0.25 and k = 0.25.

Ans. 0.185930, 0.185470

33. Apply Trapezoidal rule to compute the integral 
x y

x y
dx dy

+
+∫∫ cos( )

.

0

0 5

0

1

 by taking two equal 

subintervals for x and four equal subintervals for y. 

Ans. 0.988098
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The theories of modern physics, generally involve a mathematical model, as far as possible, 
it is a set of differential equations. In last few decades, the differential equations become the 
most important tool to study various applied sciences as well as engineering phenomena. 
We first obtain solutions of the mathematical models, and then come to the mathematical 
and physical interpretations of these solutions. Various aspects of physical phenomena are 
well described by the solutions of their respective differential equations. 

An equation containing one or more independent variables, dependent variables, and 
their derivatives is known as a differential equation. For examples

i) 
dy
dx

xy x+ =1 2/ cos   ii) x z
x

y z
y

z∂
∂

+ ∂
∂

=

iii) x d y
dx

dy
dx

xy ex
2

2

2

+ 





+ =  iv) y z
x

x z
y

z z
x

y2
2

2

2 3

0∂
∂







+ ∂
∂

+ ∂
∂







+ =sin

v) ∂
∂

= ∂
∂

+ ∂
∂

2

2
1 3

2

2

2

2

z
t

x z
y

z
x

/   vi) 
d y
dx

y
2

2 0+ =sin( )

vii) y d y
dx

x dy
dx

2

2 3+ =  (or) yy xy′′ + ′ = 3

viii) y z
x

x z
y

y2
3

3

2
1 2 0∂

∂
+ ∂

∂






+ =sin / . (or) y z x z yxxx y
2 2 1 2 0+ + =sin /

Mathematics is the tool specially suited for dealing with abstract concepts of any kind 
and there is no limit to its power in this field.

Paul Adrien Maurice Dirac 
(August 8, 1902–October 20, 1984) 

A physicist who had made fundamental contributions in the fields of quantum mechanics 
and quantum electrodynamics. 

First Order Ordinary 
Differential Equations:  
Initial Value Problems

Chapter
14
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In Section 14.1, we will discuss some basics of differential equations. Subsequent sections 
present some numerical methods for first order ordinary differential equations with the 
initial conditions.

14.1 Some Important Classifications and Terms 

In this section, we will discuss some basic definitions, classifications, and terms; those are 
important in the theories of differential equations. 

14.1.1 Ordinary and Partial Differential Equations 
An ordinary differential equation (ODE) is a relation between an independent variable x, 
dependent variables, and their derivatives. In case of only one dependent variable and its 
derivatives, we have a single ODE of the following form

φ x y dy
dx

d y
dx

d y
dx

n

n, , , , ,
2

2 0⋅⋅⋅






=

Equations i), iii), vi) and vii) are ODEs with one independent variable x and only one 
dependent variable y. We have a system of ODEs for more than one dependent variable 
(but only one independent variable). For example, the system of ODEs

x d y
dx

dz
dx

x

dy
dx

x dz
dx

z

2

2 0

0

+ + =

+ + =

sin

cos

consists of two dependent variables y(x) and z(x) and one independent variable x. 

A partial differential equation (PDE) is a relation between two or more independent 
variables (let x x xm1 2, , ,⋅⋅⋅ ), dependent variable and its derivatives. In case of only one 
dependent variable and its derivatives, we have single PDE of the following form

ψ x x x u u
x

u
x

u
xm

m
1 2

1 2

0, , , , , , , ,⋅⋅⋅ ∂
∂

∂
∂

⋅⋅⋅ ∂
∂







=

For examples, the equations ii), iv), v) and viii) are PDEs with a single dependent variable 
z and two independent variables (x, y) in equations ii), iv) and viii) and three independent 
variables (t, x, y) in equation v).

If numbers of dependent variables are more than one, then we have system of PDEs. For 
examples
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u uu v ut x x xxx= − + +3 3 1
2

( )ϕ

v uv vt x xxx= −3

ϕ ϕ ϕt x xxxu= −3

This system is famous Hirota–Satsuma coupled KdV system of PDEs with three dependent 
variables ( , , )u v ϕ  and two independent variables (t, x). This system is used to model physical 
phenomena of one-dimensional nonlinear waves in dispersion media without dissipation. 

14.1.2 Order and Degree of Differential Equations 
The order of a differential equation is the order of the highest order derivative term present 
in the differential equation. The order of differential equations i) and ii) is one; the order of 
equations iii)–vii) is two; while the last equation viii) is of order three. 

The degree of a differential equation is the power of the highest order derivative term in 
differential equation (without any fractional power of dependent variable and its derivatives 
in the differential equation). The degree of the first equation is two (after eliminating the 
fraction of dependent variable, i.e., y1 2/ ). The degree of equation iv) is also two. All other 
equations are of degree one.

14.1.3 Homogeneous and Non-homogeneous Differential Equations 
The first order differential equation M x y dx N x y dy( , ) ( , )+ = 0  is said to be homogeneous 
if both the functions M and N are of the same degree in x and y. For examples 

x xy dx yx dy3 2 23 0+( ) + ( ) =  is homogeneous first order differential equation, while 

x xy dx yx dy3 23 0+( ) + ( ) =  is a nonhomogeneous differential equation.

In the case of higher order differential equation, if each term contains the dependent 
variable or its derivative then it is called homogeneous differential equation. Otherwise, it 
is a nonhomogeneous differential equation. For examples, following differential equations 
(i–iv) are homogeneous and (v–vii) are nonhomogeneous differential equations

   i) x d y
dx

dy
dx

xy
3

3

2

0+ 





+ =   ii) 
∂
∂

= ∂
∂

+ ∂
∂

2

2
1 3

2

2

2

2

u
t

x u
y

u
x

/

 iii) 
d y
dx

y
2

2 0+ =sin( )  iv) 
d y
dx

p x dy
dx

q x y
2

2 0+ + =( ) ( )

  v) y z
x

x z
y

z z
x

y2
2

2

2 3

0∂
∂







+ ∂
∂

+ ∂
∂







+ =sin  vi) 
d y
dx

y ex
3

3 0+ + =sin( )

vii) 
d y
dx

p x dy
dx

q x y r x
2

2 + + =( ) ( ) ( )
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14.1.4 Constant and Variable Coefficient Differential Equations 
In constant coefficient differential equation, the coefficients of the terms containing the 
dependent variables and their derivatives are constants only. Otherwise, the differential 
equation is said to be variable coefficient differential equation. Consider the following 
differential equations

  i) 3 2
2

2

2

2

2

2

∂
∂

− ∂
∂

− ∂
∂

=u
t

u
y

u
x

u   ii) 
d y
dx

dy
dx

y r x
2

2 3 2− + = ( )

iii) d y
dx

y
2

2 0+ =sin( )  iv) y z
x

x z
y

z z
x

y2
2

2

2 3

0∂
∂







+ ∂
∂

+ ∂
∂







+ =sin

 v) x
d y
dx

y ex
3

3 0+ + =sin( )  vi) d y
dx

p x
dy
dx

q x y
2

2 0+ + =( ) ( )

The differential equations (i–iii) are with constant coefficients, while equations (iv–vi) are 
variable coefficient differential equations. 

14.1.5 Linear and Nonlinear Differential Equations 
In a differential equation, if the dependent variable and its derivatives are in linear form 
(degree of all these is one), then it is called as linear differential equation. Otherwise, it is 
nonlinear. Consider following differential equations.

i) 
d y
dx

x dy
dx

y x
2

2
2 3+ + = sin( )  ii) 

d y
dx

y
2

2 0+ =sin( )

iii) y z
x

x z
y

z z
x

y2
2

2 0∂
∂

+ ∂
∂

+ ∂
∂

+ =sin  iv) 
dy
dx

y x+ =2

The differential equation (i) is a linear differential equation as dependent variable y, and 
its derivative terms are of the linear form. While, the equations (ii) – (iv) are nonlinear 
differential equations. In equation (ii), we have sine function of dependent variable y; in the 

3rd equation, there is a multiplicative term of dependent variable z and its derivative ∂
∂

z
x

; in 

last equation, the term y2 is nonlinear. 
The law of superposition is applicable to the homogeneous linear systems only, and 

hence these systems are easy to solve. Some methods have been introduced in the literature, 
to solve the linear systems analytically. But as far as nonlinear systems are concerned, 
only a few methods have been developed to solve some very particular types of nonlinear 
systems analytically. The mathematical models, arriving from the real world problems, are 
inherently nonlinear. Hence a very strong desire to have solutions of nonlinear systems 
leads us to numerical techniques. Numerical techniques are initially not easy to implement 
due to cumbersome computational work involved. But now with the advent of high-speed 
computers and software, these techniques are easy to implement and provide solutions for 
those problems which we are not able to solve analytically and in fact, sometimes provide 
better results than the analytical methods.
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580 Numerical Methods

14.1.6 General, Particular and Singular Solutions 
The general solution of an ODE of order n is a solution, which contains n arbitrary constants. 
For examples

i) dy
dx

y= 3    y c e x= 3  is general solution

ii) ′′ + =y y 0   y c x c x= +1 2sin( ) cos( )  is a general solution

iii) yy x′ + =4 0   4 2 2 2x y c+ =  is a general solution

Any solution obtained from the general solution by assigning particular values to arbitrary 
constants is called as a particular solution.

i) 
dy
dx

y= 3    y e x= 2 3  is particular solution

ii) ′′ + =y y 0   y x x= −sin( ) cos( )2  is particular solution

iii) yy x′ + =4 0   4 12 2x y+ =  is a particular solution

In the case of linear differential equations, each solution of a differential equation is deducible 
from the general solution by assigning some particular values to the arbitrary constants. But 
in the case of nonlinear differential equations, sometimes there may exist solutions which 
are not deducible from general solution. These solutions are known as singular solutions. 
For example, Clairaut equation y xy y= ′ + ′2  has a general solution y cx c= + 2 , but it also 
has a singular solution x y2 4 0+ = , which cannot be obtained from the general solution.

The solution of a differential equation is also called as the integral of the differential 
equations. The curves representing the solutions of the ordinary differential equation are 
the integral curves. The general integral of ordinary differential equation is also called as 
complete integral or complete primitive.

14.1.7 Initial Value Problem (IVP) and Boundary Value Problem (BVP) 
To describe any physical phenomenon, we must define the initial or boundary conditions 
or both. For example, we take a very simple model of population growth. The rate of change 
of population is directly proportional to population itself. If X(t) is population of any town 

at any time t, then the rate of change of population dX
dt







 at any time t is given by the 

following first order ordinary differential equation 

dX
dt

kX=

where constant k depends on nature of the population.
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Say, we want to compute the population of the town after five years i.e. X(5), then we must 
have the present population. i.e., X(0). Let X(0) = 10000. Now the model is complete for the 
computation of the population of the town at any time t.

dX
dt

kX X= =; ( )0 10000

The condition X( )0 10000=  is an initial condition. The conditions are known as initial 
conditions if these are defined at a single point. If the conditions are at more than one point 
then these conditions are known as boundary conditions. Differential equation with initial 
conditions is known as initial value problem (IVP), and with boundary conditions is known 
as boundary value problem (BVP). For examples, the differential equations (i) – (iii) are 
IVPs, and equations (iv)–(v) are BVPs

i) 
dy
dx

x y y+ = =2 3 1 2; ( )

ii) 
d y
dx

x dy
dx

y y y
2

2 3 0 1 0 2+ + = = ′ =; ( ) , ( )

iii) d y
dx

x d y
dx

xy x y y y
3

3

2

2 0 1 0 2 0 2+ + = = ′ = ′′ =sin cos ; ( ) , ( ) , ( )

iv) x d y
dx

x dy
dx

y y y2
2

2 1 3 0 1 1 3+ − + = = =( ) ; ( ) , ( )

v) 
d y
dx

x d y
dx

xy x y y y
3

3

2

2 0 1 1 2 3 4+ + = = = = −sin cos ; ( ) , ( ) , ( )

14.1.8 Existence and Uniqueness of Solutions 
It is not necessary that each differential equation has a solution, and also if a solution exists 
it may not be unique. Consider the following first order ODEs

i) 
dy
dx

y+ = 0  has a trivial solution y = 0  only

ii) 
dy
dx

y c c+ + = >0 0, ; has no solution

iii) 
dy
dx

y+ = 0  has infinitely many solutions y c e x= −

Similarly, in the case of second order ODEs, the solution may not exist, and if it exists, it is 
not necessarily unique. 

i) ′′ + = = ′ =y y y y0 0 0 0 1; ( ) , ( ) has unique solution

ii) ′′ + = = ( ) =y y y y0 0 1 2; ( ) , π has no solution
iii) ′′ + = = ( ) = −y y y y0 0 1 1; ( ) , π has infinitely many solutions
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582 Numerical Methods

Note that few theorems on existence and uniqueness of the solutions of differential equations 
are helpful in this regard, but these are beyond the scope of this book. So, we will discuss 
numerical methods for only those IVPs/ BVPs, which have unique solutions.

14.1.9 Comparison of Analytical and Numerical Methods 
Exact solutions play a vital role in the theories of different physical and engineering problems. 
Analytical methods are important methods for deriving exact solutions of differential 
equations. But, these methods can solve limited categories of the problems, generally for 
linearized models or those having low dimensionality and simple geometry. Since most of 
the real time problems are nonlinear and complex; hence study of numerical methods is 
inevitable for approximate solutions of differential equations governing important physical 
phenomena.

In pre-computer era, a significant amount of energy is used in the implementation of 
the numerical technique rather than applications of the technique, as numerical methods 
require repeated applications of arithmetic operations. In last few decades, the widespread 
availability and evolution of cheaper digital computers have led to a veritable explosion in 
the use and development of numerical methods. Consider following first order ODE with 
initial condition 

dy
dx

f x y

y x y

=

=

( , )

( )0 0  (14.1)

In this chapter, we will discuss following numerical methods for the solutions of IVP (14.1)

i) Picard method of successive approximations 
ii) Taylor series method
iii) Euler and modified Euler (Heun) methods
iv) Runge–Kutta methods
v) Milne method
vi) Adams method (Adams–Bashforth predictor and Adams–Moulton corrector 

methods) 

14.2 Picard Method of Successive Approximations 

In this method, we reduce the IVP (14.1) 

dy
dx

f x y y x y= =( , ), ( )0 0

into the integral equation by integrating the differential equation from initial point x0 to any 
general point x.
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dy
dx

dx f x y dx
x

x

x

x

0 0

∫ ∫= ( , )

y x y x f x y dx
x

x

( ) ( ) ( , )− = ∫0

0

y x y x f x y dx
x

x

( ) ( ) ( , )= + ∫0

0

The right-hand side of equation involves yet to be determined value y(x). Therefore to start 
the iterations, let initial approximation be y x( )( )0 = y0 .

The next approximation y x( )( )1  can be computed by the following formula

y x y x f x y x dx
x

x
( ) ( )( ) ( ) ( , ( ))1

0
0

0

= + ∫

Similarly, the following iterative formula produces the higher approximations 

y x y x f x y x dx nn n

x

x
( ) ( )( ) ( ) ( , ( )) , , ,+ = + = ⋅⋅⋅∫1

0

0

0 1 2  (14.2)

Use Picard method to solve the following IVP 

dy
dx

xy y= − =2 0 1, ( )

Ans. 
We have initial values x0 0= , y x( )0 = y0 1= , and the function, f x y xy( , ) = −2 .

The Picard formula (14.2) is given by

y x y x f x y x dx nn n

x

x
( ) ( )( ) ( ) ( , ( )) , , ,+ = + = ⋅⋅⋅∫1

0

0

0 1 2

Using n = 0 and y x y( ) ( )0
0 1= = , we get

y x y x f x y x dx y x dx
x

x x
( ) ( )( ) ( ) ( , ( ))1

0
0

0
00

2= + = + −∫ ∫

 = −1 2x

14.1Example
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584 Numerical Methods

Similarly, for n = 1, we have

y x x dx
x

( ) ( )2 2

0

1 2 1= + − −∫

 
= − +1

2
2

4

x x

For n =2, 3, …, we obtain

y x x x dx
x

( ) ( )3 2
4

0

1 2 1
2

= + − − +∫

 = − + −1
2 6

2
4 6

x x x

y x x x x( )4 2
4 6 8

1
2 6 24

= − + − +

y x x x x x( )5 2
4 6 8 10

1
2 6 24 120

= − + − + −



It is easy to see that these successive approximations will converge to the exact solution, 
y e x= − 2 .

Perform four iterations of Picard method to solve the following IVP

dy
dx

x y y= + =, ( )0 1 . Hence, compute the value of y( . )0 1 .

Ans. 
We have x0 0= , y x( )0 = y0 1= , f x y x y( , ) = + .

Using the Picard formula (14.2) for n = 0, 1, 2, …, we get 

y x y x f x y x dx nn n

x

x
( ) ( )( ) ( ) ( , ( )) , , ,+ = + = ⋅⋅⋅∫1

0

0

0 1 2

y x dx x x
x

( ) ( )1
2

0

1 1 1
2

= + + = + +∫

14.2Example

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:39:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.015
https://www.cambridge.org/core
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The Picard method involves integration, which is very difficult to solve in many problems. 
For example

dy
dx

ye yx= =− 2

0 1, ( )

The Picard method for this IVP requires y e dxx1

0

1

1
2( ) −= + ∫ . The integration e dxx−∫

2

0

1

 is not 

solvable analytically till now.

14.3 Taylor Series Method 

Taylor series expansion of function y(x) about the point x = x0 is given by

y x y x x x y x
x x

y x
x x

n
y

n
n( ) ( ) ( ) ( )

( )
!

( ) ...
( )

!
(( )= + − ′ +

−
′′ +

−
0 0 0

0
2

0
0

2
xx0 ) + ⋅⋅⋅  (14.3)

y x x x dx
x( )2

2

0
1 1

2
= + + + +





∫

 
= + + +1

6
2

3

x x x

y x x x x dx
x( )3 2

3

0
1 1

6
= + + + + +





∫

 
= + + + +1

3 24
2

3 4

x x x x

y x x x x x dx
x( )4 2

3 4

0
1 1

3 24
= + + + + + +





∫

 
= + + + + +1

3 12 120
2

3 4 5

x x x x x

The value of y( . )0 1  is given by

y( . ) ( . ) ( . ) ( . ) ( . ) ( . ) .0 1 1 0 1 0 1 0 1
3

0 1
12

0 1
120

0 99004982
3 4 5

= + + + + + =

Note that the method is converging towards the following exact solution 

y x e x= − − + +1 2  = − − + + + + + + ⋅⋅⋅






x x x x x1 2 1
2 3 4

2 3 4

! ! !

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:39:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.015
https://www.cambridge.org/core


586 Numerical Methods

Now, we have to compute the terms in right-hand side of equation (14.3). The first term 
in series expansion is y(x0), which is given by initial condition in IVP (14.1). The second 

term can be computed by ′ =y x f x y( ) ( , )0 0 0  using dy
dx

f x y= ( , ) . We can differentiate the 

equation 
dy
dx

f x y= ( , ) , to compute higher order derivatives at the point (x0, y0).

Use Taylor series method to solve the IVP 
dy
dx

x y y= + =, ( )0 1 . Also, compute the value 

y( . )0 1 .

Ans. 
From initial condition, we have x0 0=  and y0 1= .

By using the equation dy
dx

x y= + , we have following derivative terms at initial point 

( , )x y0 0  = (0, 1)

′ = + ⇒ ′ = = + = + =y x y y f x y x y( ) ( , )0 0 1 10 0 0 0

′′ = + ′ ⇒ ′′ = + =y y y1 0 1 1 2( )

′′′ = ′′ ′′′ =
=
=

y y y
y
y

iv

v

( )
( )
( ) ...

0 2
0 2
0 2





Taylor series formula (14.3) is given by

y x y x x x y x
x x

y x( ) ( ) ( ) ( )
( )

!
( )= + − ′ +

−
′′ + ⋅⋅⋅0 0 0

0
2

02

y x x x x( ) ( )
! !

= + + + + ⋅⋅⋅1 1
2

2
3

2
2 3

 
= − − + + + + + + ⋅⋅⋅







1 2 1

2 3 4

2 3 4

x x x x x
! ! !

 = − − +1 2x ex

We can easily compute y( . ) .0 1 1 110342=  from this solution. 

14.3Example
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First Order Ordinary Differential Equations: Initial Value Problems  587

Use Taylor series method to solve the IVP 
dy
dx

xy y= − =2 0 1, ( )  and obtain the value, 

y( . )0 1 .

Ans. 
We have following derivative terms at initial point (0, 1) 

′ = − ′ =y xy y2 0 0( )

′′ = − ′ − ′′′ = −y xy y y2 2 0 2( )

′′′ = − ′′ − ′ ′′′ =y xy y y2 4 0 0( )

y xy y yiv iv= − ′′′ − ′′ =2 6 0 12( )

y xy y yv iv iv= − − ′′′ =2 6 0 0( )

y xy y yvi v iv vi= − − = −2 8 0 96( )



Substituting these values in Taylor series formula (14.3), we obtain

y x y x x x y x
x x

y x( ) ( ) ( ) ( )
( )

!
( )= + − ′ +

−
′′ + ⋅⋅⋅0 0 0

0
2

02

 
= + + − + + + + − + ⋅⋅⋅1 0

2
2

3
0

4
12

5
0

6
96

2 3 4 5 6

x x x x x x( )
!

( )
!

( )
!

( )
!

( )
!

( )

 
= − + − + ⋅⋅⋅1

2
2
15

2
4 6

x x x

y( . ) ( . ) ( . ) ( . ) .0 1 1 0 1 0 1
2

2 0 1
15

0 990049862
4 6

= − + − =

14.4Example

Compute the value of y(0.2) with the help of Taylor series method for the following IVP

2 1 0 0 0 1 0 1yy xy y y y y′ − ′′ + ′′′ = = ′ = ′′ =( ) , ( ) , ( )

14.5Example

The IVPs of higher order can also be solved with the help of Taylor series method. Note that the 
number of initial conditions is equal to order of ODE in IVP. Consider the following example 
for this purpose.
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588 Numerical Methods

Picard and Taylor series methods have implementation problems on the computer, as 
these methods require integration and differentiation analytically. So these methods are 
not basically numerical methods. Now, we will discuss the methods, which only require 
simple arithmetic operations and hence can be implemented easily on the computer. Many 
explicit, embedded and implicit numerical methods have been developed for the solutions 
of first order ODEs with initial conditions. Some methods are as follows.

1. Euler method 
2. Modified (or) Improved Euler method (or) Heun method
3. Runge–Kutta methods
4. Milne method 
5. Adams method
6. Bogacki–Shampine method
7. Fehlberg method
8. Cash–Karp method
9. Dormand–Prince method
10. Backward Euler method
11. Implicit midpoint method
12. Lobatto IIIA, IIIB, IIIC methods 


Ans.
We have following initial conditions 

y y y( ) , ( ) , ( )0 0 0 1 0 1= ′ = ′′ =

To compute the higher derivative terms of order three and more, we will use the differential 
equation 2 1yy xy y′ − ′′ + ′′′ = . 

′′′ = − ′ + ′′ ′′′ = − + =y yy xy y1 2 0 1 2 0 1 0 1 1( ) ( )( ) ( )

y yy y y xy yiv iv= − ′′ − ′( ) + ′′ + ′′′ = − + + = −2 2 0 0 2 1 0 12 ( )

y yy y y y xy yv iv v= − ′′′ − ′ ′′ + ′′′ + = − − + + + = −2 6 2 0 0 2 4 1 1 0 4( )



Using these values in Taylor series expansion (14.3) for x = 0.2, we have

y y y y( . ) ( ) ( . ) ( ) ( . )
!

( )0 2 0 0 2 0 0 2
2

0
2

= + ′ + ′′ + ⋅⋅⋅

y( . ) ( . )( ) ( . )
!

( ) ( . )
!

( ) ( . )
!

( ) ( .0 2 0 0 2 1 0 2
2

1 0 2
3

1 0 2
4

1 02 3 4

= + + + + − + 22
5

4
5)

!
( )− + ⋅⋅⋅

y( . ) . . . . .
.

0 2 0 0 2 0 02 0 00133333 0 000066667 0 000010667
0 221

= + + + − −
= 2256
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First Order Ordinary Differential Equations: Initial Value Problems  589

In this book, only two explicit methods (Euler and Runge–Kutta methods) and three implicit 
methods (modified Euler, Milne and Adams) have been discussed. Interested readers may 
consult other books (exclusively based on numerical techniques for differential equations) 
for a detailed and exhaustive study of numerical methods for differential equations. 

14.4 Euler Method 

Forward Euler method (or simply known as Euler method) is the simplest method for 
computation of numerical solution of IVP (14.1) ′ = =y f x y y x y( , ), ( )0 0.

Taylor series expansion (14.3) for x x h1 0= +  is as follows 

y y x y x h y x h y x h y x h
n

n

1 1 0 0 0

2

0

1

2
= = + = + ′ + ′′ + ⋅⋅⋅+

−

−

( ) ( ) ( ) ( ) ( )
!

( ) ( )
( 11

1
0)!

( )y xn− + ⋅⋅⋅

On neglecting second and higher order terms of h, we get

y y x y x h y x1 1 0 0= = + ′( ) ( ) ( )

Using Eq(14.1), we have

y y h f x y1 0 0 0= + ( , )

Similarly, the values at other points are given by

y y h f x y
y y h f x y

y y h f x yn n n n

2 1 1 1

3 2 2 2

1 1 1

= +
= +

= +− − −

( , )
( , )

( , )


 (or) y y h f x y i ni i i i+ = + = ⋅⋅⋅1 0 1( , ); , , ,  (14.4)

Calculate value of y(1) for following IVP

 

dy
dx

x y y= + =, ( )0 1

Use Euler method with step size h = 0.1.

Ans. 
We have initial values x0 0=  and y x( )0 = y0 1= , function f x y x y( , ) = +  and step size 
h = 0 1. .

14.6Example
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590 Numerical Methods

Euler formula (14.4) is as follows 

 y y h f x y i ni i i i+ = + = ⋅⋅⋅1 0 1( , ); , , ,

Using i = ⋅⋅⋅0 1 9, , ,  in this formula, we have 

 

y x y y y h f x y
y h x y

( ) ( . ) ( , )
( ) ( . )( ) .

1 1 0 0 0

0 0 0

0 1
1 0 1 0 1 1 1

= = = +
= + + = + + =

y y y h x y2 1 1 10 2 1 1 0 1 0 1 1 1 1 22= = + + = + + =( . ) ( ) . ( . )( . . ) .

y y y h x y3 2 2 20 3 1 22 0 1 0 2 1 22 1 362= = + + = + + =( . ) ( ) . ( . )( . . ) .

Similarly, other iterations are as follows

 y y4 = =( . ) .0 4 1 5282000    y y5 0 5 1 7210200= =( . ) .

 y y6 0 6 1 9431220= =( . ) .    y y7 0 7 2 1974342= =( . ) .

 y y8 0 8 2 4871776= =( . ) .    y y9 0 9 2 8158953= =( . ) .

 y y10 1 3 1874850= =( ) .

Solve the IVP dy
dx

x y y= − =2 1 2, ( )  to obtain the value of y( . )1 5  for following IVP with 

the help of Euler method. Use step size h = 0 1. .

Ans. 
Given that x0 1= , y x( )0 = y0 2= , f x y x y( , ) = − 2  and h = 0 1. .

By using Euler formula (14.4), we have

y x y y y h f x y y h x y( ) ( . ) ( , ) ( ) ( . )( ) .1 1 0 0 0 0 0 0
2 21 1 2 0 1 1 2 1= = = + = + − = + − = 77

y y y h x y2 1 1 1
2 21 2 1 7 0 1 1 1 1 7 1 521= = + − = + − =( . ) ( ) . ( . )( . . ) .

Similarly, we can compute following iterations
y y3 1 3= =( . ) 1.4096559

y y4 1.3409430= =( . )1 4

y y5 1 5= =( . ) 1.3011302

14.7Example
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First Order Ordinary Differential Equations: Initial Value Problems  591

Use Euler method for the IVP 
dy
dx

x y y= − =2 0 5sin , ( ) . , to compute y( )1  with step size 

h = 0 2. .

Ans.
We have x0 0= , y0 0 5= . , f x y x y( , ) sin= −2  and h = 0 2. .

By using Euler method, we obtain

y x y y y h x y( ) ( . ) ( sin ) . ( . )( sin( . )) .1 1 0 0
2

00 2 0 5 0 2 0 0 5 0 40= = = + − = + − = 441149

y y y h x y2 1 1
2

10 4 0 4041149 0 2 0 2 0 404114= = + − = + −( . ) ( sin ) . ( . )( . sin( . 99 0 33347389)) .=

Successive values are given by
y y3 0 6= =( . ) 0.30000839
y y4 0 8= =( . ) 0.31290275
y y5 1= =( ) 0.37933841

14.8Example

Geometrical Interpretation of Forward Euler Method

Consider first order Taylor series expansion of any function g x( ) about a point x xi= . It 
approximate the function g x( ) by tangent at the point x xi= . In Euler method, we are using 
first order Taylor series. It means, we are approximating the solution curve y(x) with the 
tangent at initial point x x= 0. 

y

A

h
θ

C

D

x0 x1

x

B (x0 , y0)

y (x)

E (x1, y1)

hf (x0, y0)

y1 = y0+ hf (x0, y0)

Error

y0

0 0

0 0 0 0
( , )x ydx

0 0

1 1 0

Given ( , ), ( ) , we have

( ) tan

( , )

dy
f x y y x y

dx
y x y CE CD DE y h

dy
y h y hf x y

θ

= =

= = = + = +
 = + = +  

Fig. 14.1 Euler method
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592 Numerical Methods

Note: In Euler method, we neglect the terms of h2 and higher orders of Taylor series 
expansion. Therefore, a very small step size h is required to achieve even a moderate accuracy. 
For example, to achieve an accuracy of 5 decimal places, the step size is approximately 
h = 0 001.  depending on the derivatives of the function, f x y( , ). Consider Example 14.6  

with h = 0 001. , we have to compute total n = − =1 0
0 001

1000
.

 iterations to find the value at the 

point x = 1 . In these thousand iterations, a sufficiently large round-off error is generated to 
contaminate the final value to a large extent. 

Exercise 14.1 Write a C-program with float variables (x, y) declaration and solve the 
Example 14.8 with different step sizes (10, 50, 1000, 10000, 50000) and interpret the results. 
We will see that increasing number of steps will increase the accuracy to a threshold point, 
and after that, there is a sharp decrease in accuracy.

It is worth mentioning here that the Euler method is conditionally stable as discussed 
in Section 14.11. We will discuss backward Euler method in Section 14.12, which is 
unconditionally stable, but implicit method.

14.5 Modified (or) Improved Euler Method (or) Heun Method 

Euler method involves the slope at an initial point, ( , )x y0 0 . In modified Euler method, 
we use the average value of slopes at the initial point ( , )x y0 0  and last point, ( , )x y1 1 . It 
improves the estimate of the slope for the interval ( , )x x0 1

y y h f x y f x y1 0 0 0 1 12
= + +( )( , ) ( , )

The right-hand side of the equation involves the yet-to-be-determined value, y1 . To start, 
we can use y1  obtained from Euler method and let it be initial approximation, y1

0( ) . 

y y h f x y1
0

0 0 0
( ) ( , )= +

The next approximate value of y1 is computed by modified Euler method as follows

y y h f x y f x y1
1

0 0 0 1 1
0

2
( ) ( )( , ) ( , )= + +( )  (14.5)

The formula (14.5) can be generalized in the following form 

y y
h

f x y f x yk k
1

1
0 0 0 1 12

( ) ( )( , ) ( , )+ = + +( ) ,  k = 0, 1, 2, … (14.6)

The process is repeated till the desired decimal points matches in two consecutive iterations. 
The formula (14.6) can be extended to compute, yi+1 , i n= ⋅⋅⋅0 1, , ,  as follows
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First Order Ordinary Differential Equations: Initial Value Problems  593

y y h f x yi i i i+ = +1
0( ) ( , )

y y
h

f x y f x yi
k

i i i i i
k

+
+

+ += + +( )1
1

1 12
( ) ( )( , ) ( , ) ,  k = 0, 1, 2, … (14.7)

Use modified Euler method to compute y(1) for the following IVP 

dy
dx

x y y= + =, ( )0 1

Use step size, h = 0 1. . 

Ans.
We have

 x0 0= , y0 1= , f x y x y( , ) = +  and h = 0 1. .

Value of y x y y( ) = (0.1) =1 1

Using Euler formula, we get following initial approximation y1
0( )

y x y y y h f x y y h x y( ) ( . ) ( , ) ( ) ( . )( ) .1 1 0 0 0 0 0 00 1 1 0 1 0 1 1 1= = = + = + + = + + = = yy1
0( )

Modified Euler method (14.6) can be used to improve the estimated value of y(0.1) as 
follows

y y h f x y f x y y h x y x y1
1

0 0 0 1 1
0

0 0 0 1 1
0

2 2
( ) ( ) ( )( , ) ( , ) ( ) ( )= + +( ) = + + + +( ))

 
= + + + +( ) =1 0 1

2
0 1 0 1 1 1 1 11. ( ) ( . . ) .

y y h f x y f x y y h x y x y1
2

0 0 0 1 1
1

0 0 0 1 1
1

2 2
( ) ( ) ( )( , ) ( , ) ( ) ( )= + +( ) = + + + +( ))

 
= + + + +( ) =1 0 1

2
0 1 0 1 1 11 1 1105. ( ) ( . . ) .

y y h f x y f x y y h x y x y1
3

0 0 0 1 1
2

0 0 0 1 1
2

2 2
( ) ( ) ( )( , ) ( , ) ( ) ( )= + +( ) = + + + +( ))

 
= + + + +( ) =1 0 1

2
0 1 0 1 1 1105 1 110525. ( ) ( . . ) .

 Value of y x y y( ) ( . ) .1 10 1 1 110525= = =

14.9Example
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594 Numerical Methods

In these calculations, note that the superscripts are for the iterations of modified Euler 
method, while subscript denotes the variable. 

Value of y x y y( ) = (0.2) =2 2

Using Euler formula, we have

y y y h x y2 1 1 10 2 1 110525 0 1 0 1 1 110525 1 23157= = + + = + + =( . ) ( ) . ( . )( . . ) . 88 2
0= y( )

Modified Euler method (14.7) for i = 1 gives following iterations

y y h f x y f x y y h x y x y2
1

1 1 1 2 2
0

1 1 1 2 2
0

2 2
( ) ( ) ( )( , ) ( , ) ( ) ( )= + +( ) = + + + +( ))

 
= + + + +( ) =1 110525 0 1

2
0 1 1 110525 0 2 1 231578 1 242631. . ( . . ) ( . . ) .

y y h f x y f x y y h x y x y2
2

1 1 1 2 2
0

1 1 1 2 2
1

2 2
( ) ( ) ( )( , ) ( , ) ( ) ( )= + +( ) = + + + +( ))

 
= + + + +( ) =1 110525 0 1

2
0 1 1 110525 0 2 1 242631 1 243184. . ( . . ) ( . . ) .

y y h f x y f x y y h x y x y2
3

1 1 1 2 2
0

1 1 1 2 2
2

2 2
( ) ( ) ( )( , ) ( , ) ( ) ( )= + +( ) = + + + +( ))

 
= + + + +( ) =1 110525 0 1

2
0 1 1 110525 0 2 1 243184 1 243212. . ( . . ) ( . . ) .

Value of y x y y( ) = (0.3) =3 3

The initial approximation for y y3 0 3= ( . )  is given by
y3

0( ) = 1.387534

Using modified Euler formula, we get

y3
1 1 399750( ) .=

y3
2 1 400361( ) .=

y3
3 1 400392( ) .=  

Value of y x y y( ) = (0.4) =4 4

y4
0( ) = 1.570433

y4
1( ) = 1.583935
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First Order Ordinary Differential Equations: Initial Value Problems  595

y4
2 1 584610( ) .=

y4
3 1 584643( ) .=  

Similarly, we have the following values of y at x = 0.5, 0.6, …,1
y y y y5

0
5
1

5
2

5
31 783110 1 798033 1 798779 1( ) ( ) ( ) ( ). . . .= = = =        7798816

y y y y6
0

6
1

6
2

62 028700 2 045194 2 046019( ) ( ) ( ) (. . .=      =    =    33 2 046060) .= 

y y y y7
0

7
1

7
2

7
32 310668 2 328898 2 329810( ) ( ) ( ) ( ). . .= = =           == 2 329856.  

y y y y8
0

8
1

8
2

8
32 632844 2 652993 2 654000( ) ( ) ( ) (. . .= = =            )) .= 2 654051 

y y y y9
0

9
1

9
2

9
32 999459 3 021729 3 022842( ) ( ) ( ) (. . .= = =            )) .= 3 022898 

y y y y10
0

10
1

10
23 415191 3 439806 3 441036( ) ( ) ( ). . .= = =            110

3 3 441098( ) .=

It is worth mentioning here that all these iterations are obtained using C-Programs. It is 
very difficult and cumbersome to obtain all these manually or using a calculator. Hence it is 
advisable to solve these types of questions only for two or three iterations. For example, this 
question can be solved up to the value of y(0.3). 

Solve the IVP dy
dx

x y y= − =2 1 2, ( )  to compute y( . )1 5 . Use modified Euler method with 

step size h = 0 1. . 

Ans.
We have initial values x0 1=  and y x( )0 = y0 2= . Also, the function f x y( , )  is x y− 2 , 
and the step size is h = 0 1. .

Value of y x y y( ) = (1.1) =1 1

Use Euler formula to compute following initial approximation ( y1
0( ) ) 

y x y y y h f x y y h x y( ) ( . ) ( , ) ( ) ( . )( ) .1 1 0 0 0 0 0 0
2 21 1 2 0 1 1 2 1= = = + = + − = + − = 77 1

0= y( )

This value can be improved using modified Euler method (14.6) as follows

y y h f x y f x y y h x y x y1
1

0 0 0 1 1
0

0 0 0
2

1 1
0

2 2
2( ) ( ) ( )( , ) ( , ) ( ) (= + +( ) = + − + − ))( )

 
= + − + −( ) =2 0 1

2
1 2 1 1 1 72 2. ( ) ( . . ) 1.760500

14.10Example
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596 Numerical Methods

y y h f x y f x y y h x y x y1
2

0 0 0 1 1
1

0 0 0
2

1 1
1

2 2
2( ) ( ) ( )( , ) ( , ) ( ) (= + +( ) = + − + − ))( )

 
= + − + −( ) =2 0 1

2
1 2 1 1 1 76052 2. ( ) ( . . ) 1.750032

y y h f x y f x y y h x y x y1
3

0 0 0 1 1
2

0 0 0
2

1 1
2

2 2
2( ) ( ) ( )( , ) ( , ) ( ) (= + +( ) = + − + − ))( )

 
= + − + −( ) =2 0 1

2
1 2 1 1 1 7500322 2. ( ) ( . . ) 1.751869

y y h f x y f x y y h x y x y1
4

0 0 0 1 1
3

0 0 0
2

1 1
3

2 2
2( ) ( ) ( )( , ) ( , ) ( ) (= + +( ) = + − + − ))( )

 
= + − + −( ) =2 0 1

2
1 2 1 1 1 7518692 2. ( ) ( . . ) 1.751548

y y h f x y f x y y h x y x y1
5

0 0 0 1 1
4

0 0 0
2

1 1
4

2 2
2( ) ( ) ( )( , ) ( , ) ( ) (= + +( ) = + − + − ))( )

 
= + − + −( ) =2 0 1

2
1 2 1 1 1 7515482 2. ( ) ( . . ) 1.751604

Proceeding in a similar manner as in the previous problem, we can obtain following 
values of y at different x

             y y y
y

2
0

2
1

2
2

2

1 554786 1 592322 1 586416( ) ( ) ( )

(

. . .= = =
33

2
4

2
51 587354 1 587205 1 587229) ( ) ( ). . .= = =      y y

y y y y3
0

3
1

3
2

3
31 455297 1 480367 1 476687( ) ( ) ( ) ( ). . .= = =           == 1 477231.

y y y y4
0

4
1

4
2

41 388953 1 406592 1 404127( ) ( ) ( ) (. . .= = =             33 1 404473) .=

y y y y5
0

5
1

5
2

51 347184 1 360059 1 358316( ) ( ) ( ) (. . .= = =             33 1 358553) .=

For the given IVP dy
dx

x y y= − =2 0 5sin , ( ) . , use modified Euler method to compute y( )1  

with step size h = 0 2. . 

14.11Example
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First Order Ordinary Differential Equations: Initial Value Problems  597

14.6 Runge–Kutta (RK) Methods 

The Euler method is the Taylor series method with terms containing only up to the first 
order of h. Similarly, we will see that the modified Euler method is also Taylor series method 
containing terms up to the order h2. The inclusion of higher order terms is required to increase 
the accuracy. Higher order Taylor series requires the computation of partial derivatives 
of function, f(x, y). In general, we cannot compute the partial derivatives of a function 
with the help of computer. Only some symbolic software like MAPLE, Mathematica, etc. 
can produce the partial derivatives symbolically, which cannot be used for computational 
purpose. So, Taylor series method cannot be implemented on a computer. Hence, Taylor 
series method is not suitable for practical applications.

In this section, we will derive certain higher order formulas known as Runge–Kutta 
methods, which do not involve the computations of derivative terms. Runge–Kutta methods 
(RK methods) are used to achieve the higher order accuracy of Taylor series without 
computing the higher order derivative terms. For this, we assume that the solution of the IVP

dy
dx

f x y y x y= =( , ), ( )0 0

is of the form

y yi i+ = +1 λ  (14.8)

where the general form of λ  for an accuracy of O hm( )  is given by the following expression

λ = + + + ⋅⋅⋅+w k w k w k w km m1 1 2 2 3 3  (14.9)

The aim is to determine the values of w j ’s and kj ’s in such a manner that we can achieve 
the desired accuracy. For this, let us assume kj ’s of the forms

k h f x yi i1 = ( ),

Ans.
Modified Euler formula (14.7) provides the following iterations

y y y y1
0

1
1

1
20 404115 0 416737 0 415580( ) ( ) ( ). . .=      =     =    11

3 0 415685 0 2( ) . ( . )= = y

y y y y2
0

2
1

2
2

2
30 342914 0 361672 0 359911( ) ( ) ( ) ( ). . .= = =           == =0 360076 0 4. ( . )y  

y y y y3
0

3
1

3
2

30 321594 0 345219 0 342987( ) ( ) ( ) (. . .= = =             33 0 343197 0 6) . ( . )= = y

y y y y4
0

4
1

4
2

40 347881 0 375439 0 372861( ) ( ) ( ) (. . .= = =             33 0 373101 0 8) . ( . )= = y

y y y5
0

5
1

5
20 428182 0 459109 0 456315( ) ( ) ( ). . .= = =                yy y5

3 0 456566 1( ) . ( )= =
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598 Numerical Methods

k h f x a h y b ki i2 1 1 1= + +( ),

k h f x a h y b k b ki i3 2 2 1 3 2= + + +( ),

k h f x a h y b k b k b ki i4 3 4 1 5 2 6 3= + + + +( ),
  (14.10)

where ai’s and bi’s are constants to determined.

First Order RK Method (m = 1)
Taylor series expansion is given by 

y y x h y x h y x h y xi i i i i+ = + = + ′ + ′′ + ⋅⋅⋅1

2

2
( ) ( ) ( ) ( )

!
( )

By neglecting second and higher order terms, we get

y y x h y x h y x y x h f x yi i i i i i i+ = + = + ′ = +1 ( ) ( ) ( ) ( ) ( , )

On using m = 1 in Eqs. (14.8)–(14.10), we have

y y y k y hf x yi i i i i i+ = + = + = + ( )1 1 1 1λ ω ω ,

We get w1 1=  by comparing last two equations. So, RK method of order 1 is given by 

y y x h f x yi i i i+ = +1 ( ) ( , )

So, first order RK method is Euler method.

Second Order RK Method (m = 2)
Consider Eqs. (14.8–14.10) with m = 2, we have

y yi i+ = +1 λ , with λ = +w k w k1 1 2 2

where k1 and k2 are given by

k h f x yi i1 = ( ),

k h f x a h y b ki i2 1 1 1= + +( ),

Accordingly, we have
y y y w k w ki i i+ = + = + +1 1 1 2 2λ

 = + ( )+ + +( )y w h f x y w h f x a h y b ki i i i i1 2 1 1 1, ,  (14.11)
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First Order Ordinary Differential Equations: Initial Value Problems  599

Expanding the term f x a h y b ki i+ +( )1 1 1,  by the Taylor series for the function of two 
variables

y y w h f x y w h f x y a h
f
x

b k
f
yi i i i i i

x y xi i i

+ = + ( )+ ( )+ ∂
∂

+ ∂
∂1 1 2 1 1 1, ,

( , ) ( ,, )yi

+ ⋅⋅⋅












 
= + ( )+ ( )+ ∂

∂
+ ( )( ) ∂

y w h f x y w h f x y a h
f
x

b h f x y
f

i i i i i
x y

i i
i i

1 2 1 1, , ,
( , ) ∂∂

+ ⋅⋅⋅










y

x yi i( , )

 = + +( ) ( )+ ∂
∂

+ ( )( ) ∂
∂

y w w h f x y w h a f
x

b f x y f
yi i i

x y
i i

xi i i

1 2 2
2

1 1, ,
( , ) ( ,, )yi

+ ⋅⋅⋅












  (14.12)

Since we have to achieve the accuracy up to O h( )2 , higher order terms can be avoided. 
Taylor series is given by

y y x h y x h y x h y xi i i i i+ = + = + ′ + ′′ + ⋅⋅⋅1

2

2
( ) ( ) ( ) ( )

!
( )  (14.13)

By using the given equation, ′ =y f x y( , ), we have 

′ =y x f x yi i i( ) ( , )

′′ = ∂
∂

+ ∂
∂

′y f
x

f
y

y

⇒ ′′ = ∂
∂

+ ∂
∂

′ = ∂
∂

+ ∂
∂

y x f
x

f
y

y x f
x

f
yi

x y x y
i

x y xi i i i i i i

( ) ( )
( , ) ( , ) ( , ) ( ,, )

( , )
y

i i

i

f x y  (14.14)

Substituting the values of ′y  and ′′y  from Eqs. (14.14) in the Taylor series (14.13), we have

y y x h y x h f x y h f
x

f
yi i i i i

x y x yi i i i

+ = + = + + ∂
∂

+ ∂
∂1

2

2
( ) ( ) ( , ) ( )

! ( , ) ( , )

ff x yi i( , )












+ ⋅⋅⋅  (14.15)

Comparing the coefficients of f x y f
x

f
y

f x yi i
x y x y

i i
i i i i

( , ), , ( , )
( , ) ( , )

∂
∂

∂
∂

 from Eqs. (14.12) 

and (14.15), we have
w w1 2 1+ =

w a2 1
1
2

=

w b2 1
1
2

=  (14.16)
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600 Numerical Methods

The system (14.16) has three equations in four unknowns. One variable in system (14.16) 
can assume any value. Hence, infinite numbers of RK methods can be generated, here we 
are discussing only following two cases.

Case 1. w1
1
2

=  (Modified Euler method) 

Let w1
1
2

= , then we have 

w2
1
2

= , a b1 1 1= = .

Using values w w1 2
1
2

= = , a b1 1 1= = , the formula (14.11) is given by

y yi i+ = +1 λ , with λ = +( )1
2 1 2k k

where k1  and k2  are given by

k h f x yi i1 = ( ),

k h f x h y ki i2 1= + +( ),  (14.17)

It is easy to see that it is modified Euler method.

Case 2 w1
1
3

=  (Ralston and Rabinowitz Method)

For second order RK method, Ralston and Rabinowitz obtained that if we select w1
1
3

= , 

then truncation error has a minimum bound. For this case, we have

w2
2
3

= , a b1 1
3
4

= =

On substituting the values w w1 2
1
3

2
3

= =, , a b1 1
3
4

= = , the formula (14.11) produces 

following Ralston and Rabinowitz method for solution of IVP (14.1)

 y yi i+ = +1 λ , with λ = +





1
3

2
31 2k k

where k1 and k2 are given by

 k h f x yi i1 = ( ),

 k h f x h y ki i2 1
3
4

3
4

= + +





,  (14.18)
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First Order Ordinary Differential Equations: Initial Value Problems  601

Third Order RK Method (m = 3)
For m = 3, the formulas (14.8–14.10) are given by

y yi i+ = +1 λ , with λ = + +w k w k w k1 1 2 2 3 3

where k1, k2  and k3  are as follows

k h f x yi i1 = ( ),

k h f x a h y b ki i2 1 1 1= + +( ),

k h f x a h y b k b ki i3 2 2 1 3 2= + + +( ),  (14.19)

Therefore, we have

y y y w k w k w ki i i+ = + = + + +1 1 1 2 2 3 3λ

 = + ( )+ + +( )+ + + +y w h f x y w h f x a h y b k w h f x a h y b k bi i i i i i i1 2 1 1 1 3 2 2 1 3, , , kk2( )
Expanding the term f x a h y b ki i+ +( )1 1 1,  and f x a h y b k b ki i+ + +( )2 2 1 3 2,  by the Taylor 
series of function of two variables

y y w h f x y w h f x y a h f
x

b k f
yi i i i i i

x y xi i i

+ = + ( )+ ( )+ ∂
∂

+ ∂
∂1 1 2 1 1 1, ,

( , ) ( ,, )

( , )

,

y

i i
x y

i

i i

w h f x y a h f
x

b k b k f

+ ⋅⋅⋅












+ ( )+ ∂
∂

+ +( ) ∂
3 2 2 1 3 2 ∂∂

+ ⋅⋅⋅










y

x yi i( , )

 (14.20)

Taylor series expansion is given by

y y x h y x h y x h y x h y xi i i i i i+ = + = + ′ + ′′ + ′′′ + ⋅⋅1

2 3

2 3
( ) ( ) ( ) ( )

!
( ) ( )

!
( ) ⋅⋅

By using the given equation ′ =y f x y( , )  on a similar pattern as RK method of order 2, we 
have

y y x h y x h f x y h f
x

f
yi i i i i

x y x yi i i i

+ = + = + + ∂
∂

+ ∂
∂1

2

2
( ) ( ) ( , ) ( )

! ( , ) ( , )

ff x yi i( , )












+ ⋅⋅⋅  (14.21)

Comparing the different coefficients in Eqs. (14.20) and (14.21), we get the following six 
equations 

w w w1 2 3 1+ + =

b a1 1 0− =
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602 Numerical Methods

b b a2 3 2 0+ − =

a w a w1 2 2 3
1
2

+ =

a w a w1
2

2 2
2

3
1
3

+ =

a b w1 3 3
1
6

=  (14.22)

The system (14.22) has six equations in eight unknowns, so any two variables can be set as 
free variables to obtain infinite numbers of solutions. One solution is given by 

 w1
1
4

= , w w2 3
3
8

= = , a a b1 2 1
2
3

= = = , b2 0= , b3
2
3

=  (14.23)

So, the RK method of order three is given by

y yi i+ = +1 λ , with λ = + +( )1
8

2 3 31 2 3k k k

where k1, k2 and k3 are as follows

k h f x yi i1 = ( ),

k h f x h y ki i2 1
2
3

2
3

= + +





,

k h f x h y ki i3 2
2
3

2
3

= + +





,  (14.24)

Fourth Order Runge–Kutta Method
The solution is assumed to be of the following form 

y yi i+ = +1 λ , with λ = + + +w k w k w k w k1 1 2 2 3 3 4 4

where k1, k2, k3 and k4 are given by

k h f x yi i1 = ( ),

k h f x a h y b ki i2 1 1 1= + +( ),

k h f x a h y b k b ki i3 2 2 1 3 2= + + +( ),

k h f x a h y b k b k b ki i4 3 4 1 5 2 6 3= + + + +( ),
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First Order Ordinary Differential Equations: Initial Value Problems  603

Proceeding in a similar manner as in previous methods, following 11 equations in 13 
unknowns are obtained

w w w w1 2 3 4 1+ + + =

b a1 1 0− =

b b a2 3 2 0+ − =

b b b a4 5 6 3 0+ + − =

a w a w a w1 2 2 3 3 4
1
2

+ + =

a w a w a w1
2

2 2
2

3 3
2

4
1
3

+ + =

a w a w a w1
3

2 2
3

3 3
3

4
1
4

+ + =

a b w a b w a b w1 3 3 1 5 4 2 6 4
1
6

+ + =

a b w a b w a b w1
2

3 3 1
2

5 4 2
2

6 4
1

12
+ + =

a b b w1 3 6 4
1

24
=

a a b w a a b w a a b w1 2 3 3 1 3 5 4 2 3 6 4
1
8

+ + =

We can construct infinite numbers of 4th order RK method from solution of this system. But 
most commonly used method is classical RK method or simply known as RK fourth order 
method with the following values

w w1 4
1
6

= = , w w2 3
1
3

= =

a a1 2
1
2

= = , a3 1=

b b1 3
1
2

= = , b b b2 4 5 0= = = , b6 1=

RK fourth order method with these values is given by

y y k k k ki i+ = + + + +( )1 1 2 3 4
1
6

2 2
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604 Numerical Methods

where k1, k2, k3 and k4 are as follows

k h f x yi i1 = ( ),

k h f x h y ki i2 1
1
2

1
2

= + +





,

k h f x h y ki i3 2
1
2

1
2

= + +





,

k h f x h y ki i4 3= + +( ),  (14.25)

Use Runge–Kutta second order method with minimum bound on truncation error 
(Ralston and Rabinowitz method) to solve the following IVP

dy
dx

x y y= + =, ( )0 1

Compute y( . )0 5  with step size h = 0 1. .

Ans. 
Given that x0 0= , y x( )0 = y0 1= , f x y x y( , ) = +  and h = 0 1. .

Ralston and Rabinowitz formula (14.18) is given by

y y k ki i+ = + +



1 1 2

1
3

2
3

where k1 and k2 are as follows

k h f x yi i1 = ( ),

k h f x h y ki i2 1
3
4

3
4

= + +





,

Value of y(0.1)

k h f x y x y1 0 0 0 00 1 0 1 0 1 0 1= ( ) = + = + =, . ( ) . ( ) .

k h f x h y k2 0 0 1
3
4

3
4

0 1 075 1 075 115= + +





= +( ) =, . . . .

y y y k k( . ) ( . ) ( . ) .0 1 1
3

2
3

1 1
3

0 1 2
3

0 115 1 11 0 1 2= = + +





= + +





= 11

14.12Example
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First Order Ordinary Differential Equations: Initial Value Problems  605

Value of y(0.2)

  k h f x y x y1 1 1 1 10 1 0 1 0 1 1 11 0 121= ( ) = + = + =, . ( ) . ( . . ) .

  
k h f x h y k2 1 1 1

3
4

3
4

0 1 175 1 20075 137575= + +





= +( ) =, . . . .

y y y k k( . ) . ( . ) ( . )0 2 1
3

2
3

1 11 1
3

0 121 2
3

0 1375752 1 1 2= = + +





= + +





= 1 242050.

Similarly, other iterations are as follows

k k y y1 2 30 144205 0 162520 0 3 1 398465= = = =. . ( . ) .                 
                                                                                  

        k k y1 20 169847 0 190085 0 4= =. . ( . )) .= =y4 1 581804 
                                                                                 

        k k1 0 198180= . 22 50 220544 0 5 1 794894= = =. ( . ) .         y y

Solve the IVP dy
dx

x y y= + =, ( )0 1 , for the value y( . )0 5 . Use Runge–Kutta fourth order 

method with step size h = 0 1. .

Ans.
RK fourth order method (14.25) is given by 

y y k k k ki i+ = + + + +( )1 1 2 3 4
1
6

2 2

where k1, k2, k3 and k4 are given by

k h f x yi i1 = ( ),

k h f x h y ki i2 1
1
2

1
2

= + +





,

k h f x h y ki i3 2
1
2

1
2

= + +





,

k h f x h y ki i4 3= + +( ),

14.13Example
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606 Numerical Methods

Value of y(0.1)

k h f x y x y1 0 0 0 00 1 0 1 0 1 0 1= ( ) = + = + =, . ( ) . ( ) .

k h f x h y k2 0 0 1
1
2

1
2

0 1 05 1 05 11= + +





= +( ) =, . . . .

k h f x h y k3 0 0 2
1
2

1
2

0 1 05 1 055 1105= + +





= +( ) =, . . . .

k h f x h y k4 0 0 3 0 1 0 1 1 1105 0 12105= + +( ) = + =, . ( . . ) .

y y y k k k k( . )

. ( . ) ( . ) (

0 1 1
6

2 2

1 1
6

0 1 2 0 11 2 0 1105

1 0 1 2 3 4= = + + + +( )

= + + + + 00 12105

1 110342

.

.

( )
=

Value of y(0.2)

k h f x y x y1 1 1 1 10 1 0 1 0 1 1 110342 0 121034= ( ) = + = + =, . ( ) . ( . . ) .

k h f x h y k2 1 1 1
1
2

1
2

0 132086= + +





=, .

k h f x h y k3 1 1 2
1
2

1
2

0 132638= + +





=, .

k h f x h y k4 1 1 3 0 144298= + +( ) =, .

y y y k k k k( . )

. . ( .

0 2 1
6

2 2

1 110342 1
6

0 121034 2 0 132

2 1 1 2 3 4= = + + + +( )

= + + 0086 2 0 132638 0 144298

1 242805

) ( . ) ( .

.

+ +( )
=

Similarly, the values at other iterations are as follows

k k k1 2 30 144281 0 156495 0 157105= = =. . .                                          

 

3

k
y y

k

4

1

0 169991
0 3 1 399717

0 169972

=
= =

=

.
( . ) .

.                            k k k2 3 40 183470 0 184145 0 1983= = =. . . 886
0 4 1 583648

0 198365

4

1

                
 

         

y y

k

( . ) .

.

= =

= kk k k2 3 40 213283 0 214029 0 229768= = =. . .                                   
 y y( . ) .0 5 1 7974415= =
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First Order Ordinary Differential Equations: Initial Value Problems  607

Use Runge–Kutta fourth order method with step size h = 0 1.  for the IVP 
dy
dx

x y y= − =2 1 2, ( ) , to compute y( . )1 2

Ans.
RK method of order 4 produces following iterations. 

First Iteration

k h f x y x y1 0 0 0 0
2 20 1 0 1 1 2 0 3= ( ) = − = − = −, . ( ) . ( ) .

k h f x h y k2 0 0 1
21

2
1
2

0 1 1 05 1 85 0 237250= + +





= −( ) = −, . . ( . ) .

k h f x h y k3 0 0 2
21

2
1
2

0 1 1 05 1 881375 0 248957= + +





= −( ) = −, . . ( . ) .

k h f x h y k4 0 0 3
20 1 1 1 1 751043 0 196615= + +( ) = −( ) = −, . . ( . ) .

y y y k k k k( . )

. ( . ) ( .

1 1 1
6

2 2

2 1
6

0 3 2 0 23725 2 0 2

1 0 1 2 3 4= = + + + +( )

= + − + − + − 448957 0 196615

1 755162

) .

.

−( )
=

Second Iteration

k h f x y1 1 1
20 1 1 1 1 755162 0 198059= ( ) = −( ) = −, . . ( . ) .

k h f x h y k2 1 1 1
1
2

1
2

0 159277= + +





= −, .

k h f x h y k3 1 1 2
1
2

1
2

0 165738= + +





= −, .

k h f x h y k4 1 1 3 0 132627= + +( ) = −, .

y y y k k k k( . ) .1 2 1
6

2 2 1 5917092 1 1 2 3 4= = + + + +( ) =

14.14Example

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.015
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:39:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.015
https://www.cambridge.org/core


608 Numerical Methods

Given the IVP 

dy
dx

x y y= − =2 0 5sin , ( ) .

Estimate y( . )0 4  using 4th order RK method with step size h = 0 2. . 

Ans.
Proceeding in a similar manner as in previous examples, one can easily obtain the 
following iterations 

k k k k1 2 30 095885 0 085363 0 086309= − = − = −. . .                     44

1

1 2

0 072398
0 2 0 414729

0 072588 0 055

= −
= =

= − = −

.
( . ) .

. .

y y

k k       8893 0 057442 0 0379473 4                             k k
y

= − = −. .

22 0 4 0 358528= =y( . ) .  

14.15Example

Predictor-Corrector Methods

In predictor-corrector methods, the initial value of y is estimated using a predictor formula; 
then corrector formula is used to improve this value. For example, modified Euler method

y y h f x yi i i i+ = +1
0( ) ( , )

y y
h

f x y f x yi
k

i i i i i
k

+
+

+ += + +( )1
1

1 12
( ) ( )( , ) ( , ) ,  k = 0, 1, 2, …

The initial approximation yi+1
0( )  is derived by Euler method (predictor formula), and this value 

is improved by using modified Euler method (corrector formula). In this section, we will 
derive two important predictor-corrector methods known as Milne and Adams methods.

The Euler, modified Euler, RK methods are single step methods as the values (xk, yk) at 
one previous point is used to compute the value yk+1 at next point. Once we have values 
at several points, then information at these points can be used to compute the values at 
successive points. The Milne and Adams methods require value at previous four points to 
compute values at sucessive point.

14.7 Milne Method (Milne Simpson Method) 

This method requires three initial values, y y y1 2 3, , , which are to be computed using any 
other method like Picard, Taylor series, Euler, Runge–Kutta method. These values of y are 
used to compute following function, f (x, y) values

f f x y f f x y f f x y f f x y0 0 0 1 1 1 2 2 2 3 3 3= = = =( , ), ( , ), ( , ), ( , )
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First Order Ordinary Differential Equations: Initial Value Problems  609

Now, we will compute the value of y4 using Milne method. Newton forward interpolation 
formula is given by

f x y f s f
f

s s
f

s s s( , ) ( )
!

( )( )
!

( )( )( )= + + − + − − + ⋅⋅⋅0 0

2
0

3
0

2
1

3
1 2∆

∆ ∆
 (14.26)

Integrating dy
dx

f x y= ( , )  from x0 to x4, we have

y f x y dx
x

x

x

x

0

4

0

4= ∫ ( , )

y x y x f x y dx
x

x

( ) ( ) ( , )4 0

0

4

− = ∫

y y f x y dx
x

x

4 0
0

4= + ∫ ( , )

Using Newton forward difference formula (14.26), we get

y y f s f s s f dx
x

x

4 0 0 0
2

0
1

20

4= + + ∆ + − ∆ +∫ ( ( ) ...)

On differentiating x x sh= +0 , we get dx h ds= .

⇒ = + + ∆ + − ∆ +∫y y f s f s s f h ds4 0 0 0
2

00

4 1
2

( ( ) ...)

 = + + ∆ + ∆ + ∆ +y h f f f f0 0 0
2

0
3

04 8 20
3

8
3

( ...)  (14.27)

The first, second, and third order forward differences have following expressions 

∆ = −
∆ = − +
∆ = − + −

f f f
f f f f
f f f f f

0 1 0
2

0 2 1 0
3

0 3 2 1 0

2
3 3  (14.28)

On neglecting ∆4
0f  and higher order differences and using (14.28) in (14.27), we get 

y y h f f f4 0 1 2 3
4
3

2 2= + − +( )

This is predictor formula for the value of y4

y y h f f fp
4 0 1 2 3

4
3

2 2( ) ( )= + − +  (14.29)

The value of f f x y4 4 4= ( , )  is computed using this value of y p
4
( ) .
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610 Numerical Methods

On integrating 
dy
dx

f x y= ( , )  from x2 to x4 and using Simpson 1/3 rule in the interval 

( , )x x2 4 , we get

y x y x f x y dx h f f f
x

x

( ) ( ) ( , )4 2 2 3 4

2

4

3
4− = = + +( )∫

y x y x h f f f( ) ( )4 2 2 3 43
4= + + +( )

y y h f f f4 2 2 3 43
4= + + +( )

This expression is the corrector formula for the value of y4 .

y y h f f fc
4 2 2 3 43

4( ) ( )= + + +

We can use this formula iteratively as follows

 y y h f f f nn n
4

1
2 2 3 43

4 0 1 2( ) ( )( ); , , ,...+ = + + + =  (14.30)

where f f x y P
4

0
4 4

( ) ( )= ( ),

We can generalize the predictor formula (14.29) and corrector formula (14.30) to further 
compute the values of y y5 6, ... as follows

y y h f f fk
P

k k k k+ + + += + − +4 1 2 3
4
3

2 2( ) ( )

y y h f f f n kk
n

k k k k
n

+
+

+ + + += + + + = =4
1

2 2 3 43
4 0 1 2 1 2( ) ( )( ); , , ,... , ,and 33, ...

where f f x yk k k
P

+
( )

+ +
( )= ( )4

0
4 4,

Stepwise Procedure

i) To solve IVP 
dy
dx

f x y y x y= =( , ); ( )0 0 ; first compute the values of y y y1 2 3, ,  

by using any method like Picard, Taylor series, Euler or Runge–Kutta method.
ii) Use predictor formula (14.29) to compute the initial approximation y P

4
( )

  y y h f f fP
4 0 1 2 3

4
3

2 2( ) ( )= + − +

 The value f4
0( )  can be computed at the point y P

4
( ) . f f x y P

4
0

4 4
( ) ( ),= ( ) .
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First Order Ordinary Differential Equations: Initial Value Problems  611

iii) Use corrector formula (14.30) 

  y y h f f f nn n
4

1
2 2 3 43

4 0 1 2( ) ( )( ); , , ,...+ = + + + =  

 to correct the y4 till the desired accuracy achieved.
iv) Compute the values y y5 6, ...  by using following generalized formula

  
y y h f f fk

P
k k k k+ + + += + − +4 1 2 3

4
3

2 2( ) ( )

  
y y h f f f n kk

n
k k k k

n
+
+

+ + + += + + + = =4
1

2 2 3 43
4 0 1 2 1 2 3( ) ( )( ); , , ,... , , , ....

Where f f x yk k k
P

+
( )

+ +
( )= ( )4

0
4 4,

Compute the values of y y( . ), ( . )0 1 0 2  and y( . )0 3  with Runge–Kutta fourth order method 

for the IVP 
dy
dx

x y y= + =, ( )0 1 . Use Milne method to compute y( . )0 5  with step size 

h = 0 1.  till last two consecutive iterations are equal up to five decimal places. 

Ans.
The following values of y y( . ), ( . )0 1 0 2  and y( . )0 3  have already been computed with RK 
fourth order method in the Example 14.13

y y
y y
y y

1

2

3

0 1 1 110342
0 2 1 242805
0 3 1 399717

= =
= =
= =

( . ) .
( . ) .
( . ) .

Now, we will compute y y4 0 4= ( . )  and y y5 0 5= ( . )  using Milne method.

Value of y y4 = (0.4)

Value of y y4 0 4= ( . )  using Milne predictor formula (14.29) is given by

y y h f f fP
4 0 1 2 3

4
3

2 2

1 0 4
3

2 0 1 1 110342 0 2 1 2428

( ) ( )

. ( . . ) ( . .

= + − +

= + + − + 005 2 0 3 1 399717

1 583642

) ( . . )

.

+ +( )
=

Using this value of y y yP
4 4

0 0 4 1 583642( ) ( ) ( . ) .= = =  in Milne corrector formula (14.30), we 
obtain

14.16Example
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612 Numerical Methods

y y h f f f4
1

2 2 3 4
0

3
4

1 242805 0 1
3

0 2 1 242805 4 0

( )

. . ( . . ) ( .

= + + +( )
= + + +

( )

33 1 399717 0 4 1 583642

1 583649

+ + +( )
=

. ) ( . . )

.

 

Again using corrector formula with this new value of y y4
1 0 4 1 583649( ) ( . ) .= = , we get

y y h f f f4
2

2 2 3 4
1

3
4

1 242805 0 1
3

0 2 1 242805 4 0

( )

. . ( . . ) ( .

= + + +( )
= + + +

( )

33 1 399717 0 4 1 583649

1 583649

+ + +( )
=

. ) ( . . )

.

The last two approximations of y y4 0 4 1 583649= =( . ) .  are equal to five decimal places. 

Value of y y5 = (0.5)

Value of y y5 0 5= ( . ) using Milne predictor formula is given by

y y h f f fP
5 1 2 3 4

4
3

2 2

1 110342 0 4
3

2 0 2 1 242805 0 3

( ) ( )

. . ( . . ) ( .

= + − +

= + + − ++ + +( )
= = ( )

1 399717 2 0 4 1 583649

1 797434 5
0

. ) ( . . )

. y

The value of y y5
0 0 5( ) = ( . ) is used in Milne corrector formula to get 

y y h f f f5
1

3 3 4 5
0

3
4

1 399717 0 1
3

0 3 1 399717 4 0

( )

. . ( . . ) ( .

= + + +( )
= + + +

( )

44 1 583642 0 5 1 797434

1 797442

+ + +( )
=

. ) ( . . )

.

 

Using corrector formula with y5
1( ) , we get

  

y y h f f f5
2

3 3 4 5
1

3
4

1 399717 0 1
3

0 3 1 399717 4 0

( )

. . ( . . ) ( .

= + + +( )
= + + +

( )

44 1 583642 0 5 1 797442

1 797442

+ + +( )
=

. ) ( . . )

.
⇒ = =y y5 0 5 1 797442( . ) .
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First Order Ordinary Differential Equations: Initial Value Problems  613

Note: We can also obtain following values if require

y y y6
0

6
1

6
22 044228 2 044237 2 044238( ) ( ) ( )= = =. . .    

                                                                                  

         y y y7
0

7
1

7
22 327494 2 327505 2 32( ) ( ) ( )= = =. . . 77505     

                                                                                 

y y8
0

8
12 651070 2 651( ) ( )= =. . 0082 2 6510828

2          
                              

y ( ) = .
                                                   

y9
0 3( ) = .. . .019193 3 019206 3 0192079

1
9
2y y( ) ( )= =             

                                                                                  

             y y10
0

10
13 436550 3 436564( ) ( )= =. .            y10

2 3 436565( ) = .

Use modified Euler method to solve the IVP dy
dx

x y y= − =2 1 2, ( )  for x = 1.1, 1.2, 1.3, and 

then compute y( . )1 5  with step size h = 0 1.  using Milne method.

Ans.
The values of y y( . ), ( . )1 1 1 2  and y( . )1 3  have already been obtained in the Example 14.10 
with modified Euler method

y
y
y

( . ) .
( . ) .
( . ) .

1 1 1 751604
1 2 1 587229
1 3 1 477231

=
=
=

Now, we will compute y y4 1 4= ( . )  and y y5 1 5= ( . )  using Milne method.

Value of y y4 = (1.4)

Value of y y4 1 4= ( . )  using Milne predictor formula (14.29) is given by

y y h f f fP
4 0 1 2 3

2

4
3

2 2

2 0 4
3

2 1 1 1 751604 1 2 1 5

( ) ( )

. . ( . ) . ( .

= + − +

= + −( ) − − 887229 2 1 3 1 477231

1 415819

2 2

4
0

) . ( . )

.

( ) −( )( )
= = ( )

+

y

14.17Example
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614 Numerical Methods

The iterations of Milne corrector formula (14.30) are as follows

y y h f f f4
1

2 2 3 4
0

2

3
4

1 587229 0 1
3

1 2 1 587229 4

( )

. . . ( . )

= + + +( )
= + −( )

( )

+ 11 3 1 477231 1 4 1 415819

1 405473

2 2. ( . ) . ( . )

.

−( ) + −( )( )
=

 

y y h f f f4
2

2 2 3 4
1

2

3
4

1 587229 0 1
3

1 2 1 587229 4

( )

. . . ( . )

= + + +( )
= + −( )

( )

+ 11 3 1 477231 1 4 1 405473

1 406446

2 2. ( . ) . ( . )

.

−( ) + −( )( )
=

y y h f f f4
3

2 2 3 4
2

2

3
4

1 587229 0 1
3

1 2 1 587229 4

( )

. . . ( . )

= + + +( )
= + −( )

( )

+ 11 3 1 477231 1 4 1 406446

1 406355

2 2. ( . ) . ( . )

.

−( ) + −( )( )
=

y y h f f f4
4

2 2 3 4
3

2

3
4

1 587229 0 1
3

1 2 1 587229 4

( )

. . . ( . )

= + + +( )
= + −( )

( )

+ 11 3 1 477231 1 4 1 406355

1 406363

2 2. ( . ) . ( . )

.

−( ) + −( )( )
=

y y h f f f4
5

2 2 3 4
4

2

3
4

1 587229 0 1
3

1 2 1 587229 4

( )

. . . ( . )

= + + +( )
= + −( )

( )

+ 11 3 1 477231 1 4 1 406363

1 406362

2 2. ( . ) . ( . )

.

−( ) + −( )( )
=

y y h f f f4
6

2 2 3 4
5

2

3
4

1 587229 0 1
3

1 2 1 587229 4

( )

. . . ( . )

= + + +( )
= + −( )

( )

+ 11 3 1 477231 1 4 1 406362

1 406362

2 2. ( . ) . ( . )

.

−( ) + −( )( )
=

Value of y y5 = (1.5)

Value of y y5 1 5= ( . )  using Milne predictor formula is given by

y y h f f fP
5 1 2 3 4

2

4
3

2 2

1 751604 0 4
3

2 1 2 1 587229 1

( ) ( )

. . . ( . )

= + − +

= + −( ) − .. ( . ) . ( . )

.

3 1 477231 2 1 4 1 406362

1 363325

2 2

5
0

−( ) + −( )( )
= = ( )y
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First Order Ordinary Differential Equations: Initial Value Problems  615

On applying Milne corrector formula, we can easily obtain following values

y y h f f f5
1

3 3 4 5
0

2

3
4

1 477231 0 1
3

1 3 1 477231 4

( )

. . . ( . )

= + + +( )
= + −( ) +

( )

11 4 1 406362 1 5 1 363325

1 358821

2 2. ( . ) . ( . )

.

−( ) + −( )( )
=

 

y y h f f f5
2

3 3 4 5
1

2

3
4

1 477231 0 1
3

1 3 1 477231 4

( )

. . . ( . )

= + + +( )
= + −( ) +

( )

11 4 1 406362 1 5 1 358821

1 359230

2 2. ( . ) . ( . )

.

−( ) + −( )( )
=

y y h f f f5
3

3 3 4 5
2

2

3
4

1 477231 0 1
3

1 3 1 477231 4

( )

. . . ( . )

= + + +( )
= + −( ) +

( )

11 4 1 406362 1 5 1 359230

1 359193

2 2. ( . ) . ( . )

.

−( ) + −( )( )
=

y y h f f f5
4

3 3 4 5
3

2

3
4

1 477231 0 1
3

1 3 1 477231 4

( )

. . . ( . )

= + + +( )
= + −( ) +

( )

11 4 1 406362 1 5 1 359193

1 359196

2 2. ( . ) . ( . )

.

−( ) + −( )( )
=

y y h f f f5
5

3 3 4 5
4

2

3
4

1 477231 0 1
3

1 3 1 477231 4

( )

. . . ( . )

= + + +( )
= + −( ) +

( )

11 4 1 406362 1 5 1 359196

1 359196

2 2. ( . ) . ( . )

.

−( ) + −( )( )
=

Use Milne method for the IVP dy
dx

x y y= − =2 0 5sin , ( ) . , to compute y( )1  with step 

size h = 0 2. . Compute the prerequisite values with the aid of Runge–Kutta fourth order 
method.

Ans.
From Example 14.15, we have 

14.18Example
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616 Numerical Methods

14.8  Adams Method (Adams–Bashforth Predictor and Adams–
Moulton Corrector Formulas) 

Newton forward difference formula is used to obtain Milne method. In Adams–Bashforth 
method, we will use Newton backward difference formula (10.12) with n = 0 as follows

f x y f s f
f

s s
f

s s s( , ) ( )
!

( )( )
!

( )( )( )= + ∇ +
∇

+ +
∇

+ + + ⋅⋅⋅0 0

2
0

3
0

2
1

3
1 2  (14.31)

Assume that IVP is of the following form 
dy
dx

f x y= ( , ) , y x y( )− −=3 3

Solve this IVP to compute the values of y y− −2 1,  and y0  by any method like Euler, etc.

On integrating 
dy
dx

f x y= ( , )  from x0  to x1 , we have

y f x y dx
x

x

x

x

0

1

0

1= ∫ ( , )

y y f x y dx
x

x

1 0
0

1= + ∫ ( , )

By using Newton backward difference formula (14.31), we get

y y f s f
f

s s
f

s s s dx1 0 0 0

2
0

3
0

2
1

3
1 2= + + ∇ +

∇
+ +

∇
+ + + ⋅⋅⋅( ( )

!
( )( )

!
( )( )( ) )

xx

x

0

1∫

y y
y y
y y

1

2

3

0 2
0 4
0 6

= =
= =
= =

( . )
( . )
( . )

0.414729 
0.358528 
0.341313

Proceeding in a similar manner as in previous examples, we can easily obtain the following 
values using Milne predictor-corrector formula.

Value of y y4 = (0.8)

y yP
4 4

00 370817( ) ( )= =.

y y y y4
1

4
2

4
3

4
40 371050 0 371035 0 371036 0 371036( ) ( ) ( ) ( )= = = =. . . .  

Value of y y5 = (1.0)

y yP
5 5

0( ) ( )= =0.454134

y y y y5
1

5
2

5
3

5
40( ) ( ) ( ) ( )= = = =0.454397 .454382 0.454383 0.454383
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Put x x sh= +0

 ⇒ =dx h ds

y y f s f
f

s s
f

s s s hd1 0 0 0

2
0

3
0

2
1

3
1 2= + + ∇ +

∇
+ +

∇
+ + + ⋅⋅⋅( ( )

!
( )( )

!
( )( )( ) ) ss

0

1

∫

 = + + ∇ + ∇ + ∇ +⋅⋅⋅






y h f f f f0 0 0

2
0

3
0

1
2

5
12

3
8

 (14.32)

The backward difference formulas are given by 

∇ = −
∇ = − +
∇ = − + −

−

− −

− − −

f f f
f f f f
f f f f f

0 0 1
2

0 0 1 2
3

0 0 1 2 3

2
3 3  (14.33)

Neglecting ∇4
0f  and higher order differences and using the expressions (14.33) in equation 

(14.32), we obtain

y y h f f f f1 0 0 1 2 324
55 59 37 9= + − + −− − −( )

This expression is Adams–Bashforth predictor formula for the value of y1

y y h f f f fp
1 0 0 1 2 324

55 59 37 9( ) ( )= + − + −− − −  (14.34)

At x x= 1 , the Newton backward difference formula is given by

f x y f s f
f

s s
f

s s s( , ) ( )
!

( )( )
!

( )( )( )= + ∇ +
∇

+ +
∇

+ + + ⋅⋅⋅1 1

2
1

3
1

2
1

3
1 2  (14.35)

Integrating dy
dx

f x y= ( , )  from x0  to x1 , we have 

y x y x f x y dx
x

x

( ) ( ) ( , )1 0

0

1

− = ∫

Using Newton backward difference formula (14.35), we have

y x y x f s f
f

s s
f

s s s( ) ( ) ( )
!

( )( )
!

( )( )( )1 0 1 1

2
1

3
1

2
1

3
1 2− = + ∇ +

∇
+ +

∇
+ + + ⋅⋅⋅⋅






∫ dx
x

x

0

1
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618 Numerical Methods

Put x x sh= +1 , ⇒ =dx h ds

y y f s f
f

s s
f

s s s1 0 1 1

2
1

3
1

2
1

3
1 2= + + ∇ +

∇
+ +

∇
+ + + ⋅⋅⋅






( )
!

( )( )
!

( )( )( )
−

∫ hds
1

0

y y h f f f f1 0 1 1
2

1
3

1
1
2

1
12

1
24

= + − ∇ − ∇ − ∇ −






...

Neglecting ∇4
1f  and higher order differences, and using the similar expressions (14.33) 

for backward differences ∇ ∇ ∇( )f f f1
2

1
3

1, , , we get the following Adams–Moulton corrector 
formula

 
y y h f f f f1 0 1 0 1 224

9 19 5= + + − +( )− −

 
y y h f f f fc

1 0 1 0 1 224
9 19 5( ) = + + − +( )− −

(or) y y h f f f f nn n
1

1
0 1 0 1 224

9 19 5 0 1 2( ) ( ) ; , , ,...+
− −= + + − +( ) =  (14.36)

The function value f1
0( )  can be computed at the point y P

1
( ).

The Adams–Bashforth predictor formula (14.34) and Adams–Moulton corrector formula 
(14.36) can be generalized to further compute the values of y y2 3, ,...  as follows

y y h f f f f yk
P

k k k k k k+ − − − +
( )= + − + −( ) =1 1 2 3 1
0

24
55 59 37 9( )

y y h f f f f n kk
n

k k
n

k k k+
+

+ − −= + + − +( ) = =1
1

1 1 224
9 19 5 0 1 2 0( ) ( ) ; , , ,... ,11 2, ,...

where f f x yk k k+
( )

+ +
( )= ( )1

0
1 1

0,

Stepwise Procedure

i) Solve IVP 
dy
dx

f x y y x y= =− −( , ); ( )3 3; to compute the values of y y− −2 1,  and y0 

by using any other method like Taylor series, Euler or Runge–Kutta method.
ii) Use Adams–Bashforth predictor formula (14.34) to predict the initial 

approximation y P
1
( ) 

  y y h f f f fP
1 0 0 1 2 324

55 59 37 9( ) ( )= + − + −− − −

 The function value f1
0( )  can be computed at the point y P

1
( )  

  f f x y P
1

0
1 1

( ) ( )( , )=
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First Order Ordinary Differential Equations: Initial Value Problems  619

iii) Use Adams–Moulton corrector formula (14.36) 

  y y h f f f f nn n
1

1
0 1 0 1 224

9 19 5 0 1 2( ) ( ) ; , , ,...+
− −= + + − +( ) =  

 to correct the y1 till the desired accuracy achieved.
iv) The following generalized formula can be used to further compute the values of 

y y2 3, ,...  

  
y y h f f f fk

P
k k k k k+ − − −= + − + −1 1 2 324

55 59 37 9( ) ( )

  
y y h f f f f n kk

n
k k

n
k k k+

+
+ − −= + + − +( ) = =1

1
1 1 224

9 19 5 0 1 2 0( ) ( ) ; , , ,... ,11 2, ,...

where f f x yk k k+
( )

+ +
( )= ( )1

0
1 1

0,

Consider the following IVP

dy
dx

x y y= + =, ( )0 1

Use Adams method to compute y( . )0 5  with step size, h = 0 1. . Compute the starting 
values y y( . ), ( . )0 1 0 2  and y( . )0 3  with Runge–Kutta fourth order method.

Ans.
To apply Adams method, we will take initial condition x− =3 0  and y x( )−3 = y− =3 1 . The 
function is f x y x y( , ) = + , and the step size is h = 0 1. .

We have already obtained the values of y y y y y y− −= = =2 1 00 1 0 2 0 3( . ), ( . ), ( . )  with RK 
fourth order method in Example 14.13. These values are given by 

y y
y y
y y

−

−

= =
= =

= =

2

1

0

0 1 1 110342
0 2 1 242805

0 3 1 399717

( . ) .
( . ) .

( . ) .

Now, we will compute y y1 0 4= ( . )  and y y2 0 5= ( . )  using the Adams method.

Value of y y1 = (0.4)

Adams–Bashforth predictor formula (14.34) is given by 

y y h f f f fP
1 0 0 1 2 324

55 59 37 9( ) = + − + −( )− − −

14.19Example
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620 Numerical Methods

= + + − + + +1 399717 0 1
24

55 0 3 1 399717 59 0 2 1 242805 37 0 1 1. . ( . . ) ( . . ) ( . .1110342 9 0 1) ( )− +( )

= = ( )1 583640 1
0. y

Now, we will use Adams–Moulton corrector formula (14.36) till the desired accuracy 
achieved

y y h f f f f1
1

0 1
0

0 1 224
9 19 5( ) = + + − +( )( )

− −

y1
1 1 399717 0 1

24
9 0 4 1 583640 19 0 3 1 399717

5 0 2
( ) . . ( . . ) ( . . )

( .
= +

+ + +
− ++ + +







=
1 242805 0 1 1 110342

1 583649
. ) ( . . )

.

y1
2 1 399717 0 1

24
9 0 4 1 583649 19 0 3 1 399717

5 0 2
( ) . . ( . . ) ( . . )

( .
= +

+ + +
− ++ + +







=
1 242805 0 1 1 110342

1 583649
. ) ( . . )

.
The last two approximations for y1 are equal up to five decimal places, so

y y1 0 4 1 583649= =( . ) .

Value of y y2 = (0.5)

Apply Adams–Bashforth predictor formula (14.34) for the value of y2

y y h f f f fP
2 1 1 0 1 224

55 59 37 9( ) ( )= + − + −− −

 
= +

+ − +
+ +

1 583649 0 1
24

55 0 4 1 583649 59 0 3 1 399717
37 0 2 1

. . ( . . ) ( . . )
( . .2242805 9 0 1 1 110342) ( . . )− +







 = = ( )1 797433 2
0. y

Using Adams–Moulton corrector formula, we get

y y h f f f f2
1

1 2
0

1 0 124
9 19 5( ) = + + − +( )( )

−

y2
1 1 583649 0 1

24
9 0 5 1 797433 19 0 4 1 583649

5 0 3
( ) . . ( . . ) ( . . )

( .
= +

+ + +
− ++ + +







=
1 399717 0 2 1 242805

1 797443
. ) ( . . )

.

y2
2 1 583649 0 1

24
9 0 5 1 797443 19 0 4 1 583649

5 0 3
( ) . . ( . . ) ( . . )

( .
= +

+ + +
− ++ + +







=
1 399717 0 2 1 242805

1 797443
. ) ( . . )

.
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First Order Ordinary Differential Equations: Initial Value Problems  621

Since last two values are equal to six decimal places, hence

y y2 0 5 1 797443= =( . ) .

Note: On a similar pattern, we can also compute following values 

y y y y y

y

P
3
0

3 3
1

3
2

4
0

0 6 2 044228 2 044239 2 044240( ) ( ) ( )

(

= = = = =( . ) . . . 

)) ( ) ( )

( )

= = = = =

=

y y y y

y y

P
4 4

1
4
2

5
0

0 7 2 327496 2 327508 2 327508( . ) . . . 

55 5
1

5
2

6
0

6

0 8 2 651073 2 651086 2 651086P

P

y y y

y y y

= = = =

= =

( ) ( )

( )

( . ) . . .

(( . ) . . .

( .

0 9 3 019197 3 019212 3 019212

1

6
1

6
2

7
0

7

= = =

= =

( ) ( )

( )

 y y

y y yP 00 3 436555 3 436571 3 4365727
1

7
2) . . .= = =( ) ( ) y y

Use modified Euler method to solve the IVP 
dy
dx

x y y= − =2 1 2, ( )  for x = 1.1, 1.2, 1.3, 

and then compute y( . )1 5  with step size h = 0 1.  using the Adams method.

Ans.
Consider initial condition x− =3 1  and y x( )−3 = y− =3 2 . From Example 14.13, the values 
of y y( . ), ( . )1 1 1 2  and y( . )1 3  with modified Euler method are given by

y y
y y
y y

−

−

= =
= =

= =

2

1

0

1 1 1 751604
1 2 1 587229

1 3 1 477231

( . ) .
( . ) .

( . ) .

Now, we will compute y y1 1 4= ( . )  and y y2 1 5= ( . )  using the Adams method.

Value of y y1 = (1.4)

Use Adams–Bashforth predictor formula (14.34) for initial value of y1

y y h f f f fP
1 0 0 1 2 324

55 59 37 9( ) ( )= + − + −− − −

y P
1

2

1 477231 0 1
24

55 1 3 1 477231 59 1 2 1 587229
( ) . . ( . ( . ) ( . ( .

= +
−( ) − −

 
))

. ( . ) ( )

2

2 237 1 1 1 751604 9 1 2

( )
+ −( ) − −













y P
1 1 408466( ) .=

14.20Example
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622 Numerical Methods

Use Adams method for the IVP 
dy
dx

x y y= − =2 0 5sin , ( ) . , to compute y( )1  with step 

size, h = 0 2. . Compute the prerequisite values with the aid of Runge–Kutta fourth order 
method.

Ans.
Let x− =3 0  and y x( )−3 = y− =3 0 5. . The values of y y( . ), ( . )0 2 0 4  and y( . )0 6  with RK 
fourth order method obtained in Example 14.15 are as follows

y y
y y
y y

−

−

= =
= =

= =

2

1

0

0 2
0 4

0 6

( . )
( . )

( . )

0.414729
0.358528

0.341313

The following results can easily be obtained with Adams method

Value of y y1 = (0.8)

y y
y y y y

P

c c c c
1 1

0

1 1 1 1

0 370805
0 371067 0 371049 0 371050

= =
= = = =

( ).
. . . 00 371050.

Value of y y2 = (1)

y y
y y y y

P

c c c c
2 2

0

2 2 2 2

= =
= = = =

( )0.454128
0.454428 0.454407 0.454409 00.454409

Using Adams–Moulton corrector formula and proceeding in a similar manner as in the 
previous example, we have

y y h f f f fn n
1

1
0 1 0 1 224

9 19 5+ ( )
− −= + + − +( )

y y y y1
1

1
2

1
3

1
41 404782 1 405171 1 405130 1 405134( ) ( ) ( ) ( )= = = =. . . .

Value of y y2 = (1.5)

Similarly, predicted and corrected values of y2 are given by

yP
2 1 360790= .

y y y y2
1

2
2

2
3

2
41 359353 1 359499 1 359484 1 359486( ) ( ) ( ) ( )= = = =. . . .

14.21Example
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First Order Ordinary Differential Equations: Initial Value Problems  623

14.9 Errors in Numerical Methods 

Various numerical schemes have been discussed for the solutions of first order ordinary 
differential equations. Here, we will briefly discuss following five types of errors, which can 
occur during implementation of these numerical schemes for the solutions of first-order 
ordinary differential equations with initial conditions.

1. Errors in Initial Value Problem 
2. Truncation Error
3. Round-off Error
4. Inherited Error
5. Propagated (or) Progressive Error 

These errors and their effects on the obtained numerical solutions have much relevance and 
hence need to be discussed. 

Errors in Initial Value Problem: During discussion of different numerical schemes for 
the IVP, we did not mention that whether a solution for IVP exists or not, and if it exists 
whether it is unique or not. An IVP may not have any solution or can have an infinite 
number of solutions. In these cases, our numerical schemes may oscillate or can produce 
diverging solutions, etc., thus needs more exploration. But these are not the parts of this 
book. Therefore, whenever we solve an IVP in this book, it is assumed that it has a unique 
solution. Also, the function f(x, y)and initial values (x0, y0) may have errors (modeling and 
computational errors). 

Truncation Error: We approximate the exact derivatives by finite differences in many 
numerical schemes for the solution of IVP. We truncate the Taylor series up to certain order, 
this error is known as truncation error. The method is said to be of order n if the error term 
of the method is of order n + 1. 

For example, in Euler method, we approximate the solution from the Taylor series up to 
first order term. 

y y x y x h y x h y x h y x h
n

n

1 1 0 0 0

2

0

1

2
= = + = + ′ + ′′ + ⋅⋅⋅+

−

−

( ) ( ) ( ) ( ) ( )
!

( ) ( )
( 11

1
0)!

( )y xn− + ⋅⋅⋅

y y x h y x O h1 0 0
2= + ′ +( ) ( ) ( )

On neglecting second and higher order terms, we obtain Euler method 

y y x y x h y x
y h f x y

1 1 0 0

0 0 0

= = + ′
= +

( ) ( ) ( )
( , )

Hence, the scheme is accurate up to first order and has error term of order two. Truncation 
error depends on the step size h; it decreases as the step size decreases. The orders of different 
numerical schemes are listed in the Table 14.1.

Round-off Error: Round-off error has already been discussed in Chapter 2. We have to work 
with a finite number of digits in representing or storing a floating point number during the 
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624 Numerical Methods

implementation of numerical algorithms with computing devices (mainly calculator and 
computer. It depends on the word length of the computer and hence machine dependent. 
There is a possibility of round-off error at any step. So, the rounding error increases as the 
number of computation increases. Therefore, before applying any numerical scheme for the 
solution of IVP, we must ensure that precision capability of the computer is such that it can 
maintain the desired number of significant digits in numerical calculations.

Inherited Errors: The mathematical model of any real-time problem always has coefficients 
that are imperfectly known. The reason is that the modeled problems often depend on some 
instruments whose measurements are up to only few precisions. Further, the model itself 
is not perfectly governing the situation itself. These kinds of errors are known as inherited 
error. Numerical methods cannot remove such type of errors, but we need to be more careful 
to avoid such uncertainty. To check the validity of such models in the real world problem, 
we may need to perform sensitivity analysis. Inherent errors can also be minimized using 
high precision computing machines and by taking better data. 

Propagated or Progressive Errors: Propagated errors are the errors in the succeeding 
steps of a process due to an earlier error in the input. Previous iteration results are used 
to compute next iteration, so the error moves from one step to another step. All these 
errors (like round-off error, truncation error, and inherited error) propagate and tend to 
accumulate as computational numbers increase. 

14.10 Order and Stability of Numerical Methods 

We select a suitable step size, say h, in any numerical schemes like Euler, modified 
Euler, Runge–Kutta methods, Milne and Adams predictor-corrector methods. Then, we 
successively compute the values of y at different values of x with an interval of h. While 
computing successive iterations with the numerical schemes, we have to discuss following 
two important aspects for the numerical schemes

1. Order 
2. Stability 

Order of Numerical Scheme
A numerical scheme is said to be of order n if the error term of the scheme is of order n+1. 
For example, the Euler scheme is accurate up to first order and has error term of order two 
O h( )2 . 

Stiff Equations and Stability of Numerical Scheme
A numerical scheme for solutions of initial value problem is said to be stable if the initial 
error introduced at some step does not increse indefinately at subsequent steps. The stiff 
equation is a differential equation, for which certain numerical method is stable only for 
very small step size. In fact, a precise definition of stiffness does not exist, but we have an 
idea that stiff equation has some terms that lead to variation in the solution. The concept of 
stiffness becomes clear from the following examples of first order IVPs.
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First Order Ordinary Differential Equations: Initial Value Problems  625

Use Euler method for the IVP 
dy
dx

y y= − =20 0 1, ( ) , to compute y( )1  with step size  

h = 0 1. , 0.2 and 0.02 and compare the solution with exact results. 

Ans. 
The exact solution of IVP is given by

y e x= −20 , which tends to zero as x tends to infinity. 
We have initial condition x0 0=  and y0 1= , function f x y y( , ) = −20 . Let us discuss the 
Euler method with different spacing, h = 0 1. , 0.2 and 0.02. 

For step size h = 0.1, Euler formula produces following results

y x y y y h f x y
y h y

( ) ( . ) ( , )
( ) ( . )( )

1 1 0 0 0

0 0

0 1
20 1 0 1 20 1

= = = +
= + − = + − = −

y y y h y2 1 10 2 20 1 0 1 20 1= = + − = − + =( . ) ( ) ( . )( )

Similarly, y3 1= − , y4 1= , y5 1= − , y6 1= , y7 1= − , and so on.

Solution oscillates between –1 and 1.

With step size h = 0.2, the iterations of Euler method are as follows

y1 3= −    y2 9=     y3 27= −

y4 81=    y5 243= −    y6 729=

y7 2187= −    y8 6561=    y9 19683= −



Solution oscillates wildly and increasing.
With step size h = 0.02, we have following iterations of Euler method

y1 0 6= .    y2 0 36= .    y3 0 216= .

y4 0 1296= .    y5 0 07776= .    y6 0 046656= .

y7 0 027994= .   y8 0 016796= .    y9 0 010078= .



The solution is decreasing monotonically as the exact solution. 

14.22Example

It is clear from these computations that step size h plays a very significant role in stability 
of a numerical scheme. The small step size not only reduces the truncation error, but it is 
also crucial for convergent solution of the IVP. Note that very small step size (h) increases 
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626 Numerical Methods

number of computations significantly, and hence round-off error also increases drastically. 
Therefore, we have to maintain a balance between round-off error, truncation error and 
stability of numerical scheme, while selecting step size h.

Solve the IVP in Example 14.22 with the help of Runge-Kutta 4th order method. Use step 
size h = 0.1 and 0.2

Ans.
Runge–Kutta method of order 4 with spacing h = 0.1 gives following iterations

y1 0 333333= .   y2 0 111111= .    y3 0 037037= .
y4 0 012346= .   y5 0 004115= .    y6 0 001372= .
y7 0 000457= .   y8 0 000152= .    y9 0 000051= .


The solution is decreasing monotonically as the exact solution and converging. 

While with step size h = 0.2, we have following iterations of Runge–Kutta fourth order 
method

y1 5=    y2 25=    y3 125=
y4 625=    y5 3125=   y6 15625=



The solution is increasing monotonously and diverging.

14.23Example

Note: It is clear from examples 14.22 and 14.23 that for different IVPs and numerical schemes, 
we have different stability analysis. In next section, we will discuss stability analysis for a 
model IVP ′ = =y Ay y x y, ( )0 0, where constant A may be real or complex. Let A A iAR I= + , 
where AR is real part and AI is imaginary part. The exact solution of this IVP is y e yAt= 0. It 
is worth to mentioning that the real part (AR) of constant A must be negative for a convergent 
solution. The solution y → 0 as t → ∞ for real part AR < 0. 

14.11 Stability Analysis of IVP y' = Ay, y(0) = y0

The IVP ′ = =y Ay y x y, ( )0 0 can always be converted into ′ = =y Ay y y, ( )0 0 by a simple 
translation in x. So, in this section, we will discuss stability analysis of IVP ′ = =y Ay y y, ( )0 0 
for Euler method to have an understanding of the stability of numerical scheme. 

Since the stability topic is very wide, it is not possible to cover it here; the reader further 
interested can consult any book which is exclusive on the topic of numerical solutions of 
differential equations.
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Euler Method
The Euler method is given by

y y h f x yn n n n= +− − −1 1 1( , )     n = 1, 2, 3, ….

For IVP, ′ = =y A y y y, ( )0 0 , we have

y y h A y Ah yn n n n= + = +( )− − −1 1 11( )

Using this expression recursively, we have

y y h A y

Ah y

Ah y

Ah y

n n n

n

n

n

= +

= +( )
= +( )

= +( )

− −

−

−

1 1

1

2

2

0

1

1

1

( )



The Euler scheme is stable and produces convergent solution, if 1 1+ ≤Ah . Otherwise, as 
n increases, solution will increase indefinitely. Consider the following different cases

a) A is real number; then Euler scheme is stable for 1 1+ ≤Ah  or − ≤ ≤2 0Ah  

b) A is pure imaginary; let A ai= , then 1 1 12 2+ = + ≤ahi a h , which is not possible, 
hence for pure imaginary A, Euler scheme is unstable for each h. 

c) A is complex number; A A iAR I= + , then 

 
1 1 1 1

2 2+ = + +( ) = +( ) + ( ) ≤Ah A iA h A h A hR I R I

 This result implies that the region inside the unit circle is the stability region for 
Euler method. Thus the Euler scheme is conditionally stable. It is also clear from 

1 12+( ) + ≤A h A hr I  that Ar<0, other wise Euler scheme is unstable scheme

0 x(ARh)

y(AIh)

|1+Ah|≤1

Fig. 14.2 Stability region for Euler Method
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628 Numerical Methods

Discuss the stability of Euler method for the IVP in Example 14.22. 

Ans. 
The IVP is as follows 

 
dy
dx

y y= − =20 0 1, ( ) , with step size h = 0 1. , 0.2 and 0.02.

In this case, A = – 20 is real number, so for stable Euler scheme, we have

 − ≤ ≤2 0Ah

 − ≤ − ≤2 20 0( )h , or ( 0 0 1≤ ≤h . )

In case, step size h = 0 02. , the Euler scheme is a stable scheme. But for step size h = 0 2. , 
the scheme is unstable. For step size h = 0 1. , the scheme is stable but oscillating, and It is 
not approaching to the solution.

14.24Example

Remark: It is worth mentioning here that stability of a scheme and accuracy are two 
different terms. Stability implies that numerical scheme gives a convergent result, but it 
is not always true that the result is accurate, the result may be inaccurate. If the total error 
(truncation error + round-off error) remains bounded as iterations tend to ∝, then the 
numerical scheme is stable, otherwise it is unstable. Stability implies that numerical scheme 
gives the results with a finite upper bound on error, but it is not necessary that the result is 
correct up to desired accuracy.

The explicit schemes are conditionally stable for stiff problems and require very small 
step sizes. But the implicit schemes are generally unconditionally stable schemes for stiff 
problems. Now, we will discuss backward Euler method as an example of implicit scheme. 
First, we will introduce the method and then discuss its stability. Note that backward Euler 
requires tedious computations. 

14.12 Backward Euler Method 

Taylor series expansion for the point x x h0 1= −  is as follows 

y y x y x h y x h y x h y x h
n

n

0 0 1 1 1

2

1

1

2
= = − = − ′ + ′′ + ⋅⋅⋅+

−

−

( ) ( ) ( ) ( ) ( )
!

( ) ( )
( 11

1
1)!

( )y xn− + ⋅⋅⋅

On neglecting second and higher order terms of h, we get

y x y x h y x( ) ( ) ( )0 1 1= − ′

y x y x h y x( ) ( ) ( )1 0 1= + ′
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By using y' = f(x, y) from Eq. (14.1), we have

y y h f x y1 0 1 1= + ( , )

Similarly, the values at other points are given by

y y h f x y
y y h f x y

y y h f x yn n n n

2 1 2 2

3 2 3 3

1

= +
= +

= +−

( , )
( , )

( , )


Therefore, the backward Euler method is given by

y y h f x y i ni i i i+ + += + = ⋅⋅⋅1 1 1 0 1( , ); , , ,  (14.37)

The scheme (14.37) is an implicit scheme as it involves the unknown variable yi+1  on both 
sides of the equation. If the function f x y( , )  is nonlinear in variable y, then Eq. (14.37) 
produces nonlinear algebraic equation. We have to solve this nonlinear equation using the 
methods described in Chapter 3. 

Calculate value of y(1) for following IVP

dy
dx

x y y= + =, ( )0 1

Use backward Euler method with step size h = 0 1. . 

Ans. 
From initial condition, we have initial values x0 0=  and y x( )0 = y0 1= . Also, the function 
f x y x y( , ) = +  and the step size is h = 0 1. .

Backward Euler formula (14.37) is as follows 

y y h f x y i ni i i i+ + += + = ⋅⋅⋅1 1 1 0 1( , ); , , ,

y y h x y i n

y
y h x

h
y h

i i i i

i
i i

i

+ + +

+
+

= + + = ⋅⋅⋅

=
+

−
= +

1 1 1

1
1

0 1

1
1

0 9

( ); , , ,

.
( xx i ni+ = ⋅⋅⋅1 0 1); , , ,

Using i = ⋅⋅⋅0 1 9, , ,  in this formula, we have

y x y y
y h x

h

y y

( ) ( . ) . ( . )
.

.

( . )

1 1
0 1

2

0 1
1

1 0 1 0 1
0 9

1 122222

0 2

= = =
+
−

= + =

= =
yy h x

h
1 2

1
1 122222 0 1 0 2

0 9
1 269136

+
−

= + =. . ( . )
.

.

14.25Example
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630 Numerical Methods

y y
y y
y y
y y

3

5

6

0 3 1 443484
0 4
0 5

= =
= =
= =
=

( . ) .
( . )
( . )

4 1.648316
1.887017

(( . )
( . )
( . )
( .

0 6
0 7
0 8
0

7

8

9

=
= =
= =
=

2.163352
2.481503
2.846114

y y
y y
y y 99

110

)
( )

=
= =

3.262349
3.735943y y

Note: The function f x y x y( , ) = +  is linear in y; therefore we have obtained the solution 
easily. The linear equations are easy to solve for analytical solutions, and we generally 
use the numerical methods for nonlinear equations. In case of nonlinear equations, it 
is very tedious to apply implicit schemes. So, explicit schemes are used much frequently 
as compared to implicit schemes. But, the explicit schemes are conditionally stable for 
some IVPs and require very small step sizes. Since the implicit schemes are generally 
unconditionally stable schemes, and hence preferred in such cases. 

Solve the IVP 
dy
dx

x y y= − =2 1 2, ( )  to obtain the value of y( . )1 2  for following IVP with 

the help of backward Euler method. Use step size h = 0 1. .

Ans. 
Given that x0 1= , y x( )0 = y0 2= , f x y x y( , ) = − 2  and h = 0 1. .

By using backward Euler formula (14.37), we have

y y h f x y i ni i i i+ + += + = ⋅⋅⋅1 1 1 0 1( , ); , , ,

y y h x y i ni i i i+ + += + − = ⋅⋅⋅1 1 1
2 0 1( ); , , ,

y y y x i ni i i i+ + ++ = + = ⋅⋅⋅1
2

1 110 10 0 1; , , ,

This quadratic equation can be solved for i = 0, 1 to obtain the following results
for i = 0

y y y x1
2

1 0 110 10 21 1+ = + = .

y y1
2

110 21 1 0+ − =.

y1 1 789698= .

14.26Example
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For i = 1

y y y x2
2

2 1 210 10 19 09698+ = + = .

y y2
2

210 19 09698 0+ − =.

y2 1 640556= .

Use backward Euler method for the IVP 
dy
dx

x y y= − =2 0 5sin , ( ) . , to compute y( . )0 4  

with step size h = 0 2. . 

Ans.
We have x0 0= , y0 0 5= . , f x y x y( , ) sin= −2  and h = 0 2. .
By using backward Euler method, we obtain

y y h f x y i ni i i i+ + += + = ⋅⋅⋅1 1 1 0 1( , ); , , ,

y y h x y i ni i i i+ + += + −( ) = ⋅⋅⋅1 1
2

1 0 1sin( ) ; , , ,

5 5 0 11 1 1
2y y y x i ni i i i+ + ++ = + = ⋅⋅⋅sin( ) ; , , ,

Using i = 0 in this equation, we get

5 51 1 0 1
2y y y x+ = +sin( )

5 2 541 1y y+ =sin( ) .

We can use Newton–Raphson method to solve this nonlinear equation. The iterations of 
Newton–Raphson method with initial approximation y1

0 0 5= .  are as follows

y1
1 0 425237= .

y1
2 0 425453= .

y1
3 0 425453= .

So, value of y y1 0 2 0 425453= =( . ) .

Similarly, for i = 1, we get

5 52 2 1 2
2y y y x+ = +sin( )

5 2 2872651 1y y+ =sin( ) .

14.27Example
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632 Numerical Methods

Stability Analysis of Backward Euler Method for IVP ′ = =y Ay y y, ( )0 0
The backward Euler method (14.37) is given by

y y h f x y nn n n n= + =−1 1 2 3( , ); , , ,...

For IVP ′ = =y A y y y, ( )0 0, we have

y y h A yn n n= +−1

y
hA

yn n=
− −
1

1 1( )
Using this expression recursively, we have

y
hA

y

hA
y

hA
y

n n

n

n

=
−

=
−

=
−

−

−

1
1

1
1

1
1

1

2 2

0

( )

( )

( )



The backward Euler scheme is stable, if 
1

1
1

−
≤

hA
. Otherwise, as n increases, it will increase 

indefinitely. Consider following different cases

a) A is real number, then backward Euler scheme is stable for Ah ≤ 0. The step size h is 
a positive constant. Also, the constant A must be negative for convergent solution.
Therefore Ah ≤ 0. It implies that backward Euler method is unconditionally stable
for real A≤ 0.

b) A is complex number A A iAR I= + , then 

1
1

1
1

1

1 2 2−
=

− +( ) =
−( ) + ( )h A A iA h A h A hR I R I

The Newton–Raphson method provides following iterations with initial approximation, 
y2

0 0 4= . .

y2
1 0 382747= .

y2
2 0 382757= .

So, value of y y2 0 4 0 382757= =( . ) .
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Use backward Euler method for the IVP 
dy
dx

y y= − =20 0 1, ( ) , to compute y( )1  with step 

size h = 0 2. . Compare the result with forward Euler method in Example 14.22. 

Ans. 
The IVP is as follows 

dy
dx

y y= − =20 0 1, ( ) , with step size h = 0 2.

Backward Euler formula (14.37) is as follows 

y y h f x y i ni i i i+ + += + = ⋅⋅⋅1 1 1 0 1( , ); , , ,

y y y i ni i i+ += + − = ⋅⋅⋅1 10 2 20 0 1( . )( ); , , ,

y y y i ni i i+ = = = ⋅⋅⋅1
1
5

0 2 0 1( ) . ; , , ,

Using i = 0 1 4( )  in this formula, we have

y x y y y( ) ( . ) . .1 1 00 2 0 2 0 2= = = =

y y y2 10 4 0 2 0 04= = =( . ) . .

y y3 0 6 0 008= =( . ) .

y y4 = =( . ) .0 8 0 0016

y y5 1 0 0= =( . ) .00032

It shows the stability of backward Euler scheme. 

14.28Example

The real part (AR) of constant A must be negative for a convergent solution. 
Therefore, for a nonzero constant A 

1

1
1

2 2−( ) + ( )
<

A h A hR I

Hence, backward Euler scheme is unconditionally stable for the IVP 
′ = =y A y y y, ( )0 0 with negative real part (AR) of constant A.
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Numerical Methods

Table 14.1 Numerical Schemes for IVP 

Sr. 
No. Numerical Scheme for IVP 

dy

dx
f x y y x y= =( , ), ( )0 0

Order of 
Scheme

Order of Error 
Term

Programming Value obtained 
in Iterations

1 Picard method

y x y x f x y x dx nn n

x

x
( ) ( )( ) ( ) ( , ( )) , , , ,+ = + = ⋅ ⋅ ⋅∫1

0

0

0 1 2

where y x y x( ) ( ) ( )0
0=

Approximation 
is not 
numerical 

Approximation 
is not numerical

Not possible, 
as computation 
requires analytical 
integration

Accuracy 
depends on 
the number of 
iterations

2 Taylor series method of order n

y y x h y x
h

y x
h

n
y x

n
n

1 0 0

2

0 02
= + ′ + ′′ + +( ) ( )

( )
!

( ) ...
( )
( )!

( )

n n + 1 Not possible, 
as computation 
requires derivative 
terms

1 iteration

3 Euler method

y y x y hf x y ii i i i i+ = = + =1 0 1 2( ) ( , ), , , ,...

1 2 Easy 1 iteration

4 Modified Euler method

y y hf x yi i i i+ = +1
0( ) ( , )

y y
h

f x y f x y

i k

i
k

i i i i i
k

+
+

+ += + + ( )( )
= =

1
1

1 12
0 1 2 0 1

( ) ( )( , ) ,

, , ,...; , ,, ,...2

2 3 Moderate Accuracy 
depends on 
the number of 
iterations

5 Ralston and Rabinowitz method

y y k ki i+ = + +



1 1 2

1
3

2
3

, 

where k1 and k2 are given by
k hf x yi i1 = ( ),

k hf x h y ki i2 1

3
4

3
4

= + +





,

2 3 Easy 1 iteration
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6 3rd Order Runge–Kutta method

y y k k ki i+ = + + +( )1 1 2 3

1
8

2 3 3 ,

where k1 , k2  and k3  are given by

k hf x yi i1 = ( ),

k hf x h y ki i2 1

2
3

2
3

= + +





,

k hf x h y ki i3 2

2
3

2
3

= + +





,

3 4 Easy 1 iteration

7 Classical Runge–Kutta method 
(or) Runge–Kutta method order 4 

y y k k k ki i+ = + + + +( )1 1 2 3 4

1
6

2 2

where k1, k2, k3 and k4 are given by

k hf x yi i1 = ( ),

k hf x h y ki i2 1

1
2

1
2

= + +





,

k hf x h y ki i3 2

1
2

1
2

= + +





,

k hf x h y ki i4 3= + +( ),

4 5 Easy 1 iteration

8 Milne method (Milne–Simpson method) 

y y
h

f f f4
0

0 1 2 3

4
3

2 2( ) ( )= + − +

y y
h

f f f nn n
4

1
2 2 3 42

4 0 1 2( ) ( )( ); , , ,...+ = + + + =

3 4 Moderate Accuracy 
depends on 
the number of 
iterations

9 Adams formula (Adams–Bashforth predictor and Adams–
Moulton corrector).

y y
h

f f f f1
0

0 0 1 2 324
55 59 37 9( ) ( )= + − + −− − −

y y
h

f f f f nn n
1

1
0 1 0 1 224

9 19 5 0 1 2( ) ( ) , , , ...+
− −= + + − +( ) =

3 4 Moderate Accuracy 
depends on 
the number of 
iterations
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Exercise 14

1. Classify the following differential equations according to sections (14.1.1–5)

  i) 
∂
∂

− ∂
∂

− ∂
∂







=
2

2

2

2

2

2

2
u

t
u

u
y

u
x

usin( )  ii) 
d y
dx

x
dy
dx

y x
2

2 − + = cos( )

iii) 
d y
dx

y
2

2 0+ =sin( ) iv) y
z

x
x

z
y

z
z
x

y2
2

2

3

0
∂
∂

+ ∂
∂

+ ∂
∂







+ =sin

v) x
d y
dx

e yx
3

3 0+ =

Ans.
i) PDE, Order = 2, Degree = 2, Homogeneous, Constant Coefficient, Nonlinear
ii) ODE, Order = 2, Degree = 1, Nonhomogeneous, Variable Coefficient, Linear
iii) ODE, Order = 2, Degree = 1, Homogeneous, Constant Coefficient, Nonlinear
iv) PDE, Order = 2, Degree = 1, Nonhomogeneous, Variable Coefficient, Nonlinear
v) ODE, Order = 3, Degree = 1, Homogeneous, Variable Coefficient, Linear

2. Find the solution of first order IVP

dy
dx

x y y= + =2 0 0; ( ) , for x = 0.1

with the help of Picard method. Compute only first four nonzero terms.

Ans. y
x x x x= + + +

3 4 5 6

3 12 60 360
, y( . ) .0 1 000341837=

3. Obtain first four successive approximations of Picard method to the following IVP

dx
dt

t x x= − =; ( ) .0 1

Use it to compute x( . )0 2  and compare the result with the exact solution.

Ans. 1
2
2

2
3

2
4 5

2 3 4 5

− + − + −t
t t t t
! ! ! !

, x( . )0 2 = 0.837464

Exact Solution, x t e t= − + + −1 2 , x( . ) .0 2 0 837462=

4. Use Taylor series of order four to estimate y 0 1.( )  for the following IVP

′ = − =y x y y2 1 0 1, ( ) .

Ans. y( . ) .0 1 0 900308=

5. Compute the values of y( . )0 1  and y( . )0 2  using Taylor series method of order five for the
following IVP
dy
dx

x y y= + =; ( )0 2

Use six decimal places arithmetic and compare the result with exact solutions.

Ans. 2 2 3
2

3
3

3
4

3
5

2 3 4 5

+ + + + +x
x x x x

! ! ! !
, y( . ) .0 1 2 215513= , y( . ) .0 2 2 464208=

Exact Solution, y x e x= − − +1 3 , y( . ) .0 1 2 215512754= , y( . ) .0 2 2 464208274=
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6. Evaluate the first five terms of Taylor series for the second order IVP

′′ + ′ − = = ′ =y xy y x y y2 0 0 0 02 ; ( ) , ( ) .

Also, compute y(0.1).

Ans. x x3 5

6 20
− , 0.000166167

7. Find the first six terms of Taylor series to solve the following IVP
′′′ + ′′ − = = ′ = ′′ =y yy xy y y y2 0 0 1 0 1 0 1; ( ) , ( ) , ( )  and hence find y( . )0 1 .

Ans. 1
2 3 4

3
6

2 3 4 6

+ + − + −x
x x x x

! ! ! !
, y( . ) .0 1 1 1048375=

8. Solve the IVP 
dy
dx

x y y= − + =2 1 02( ), ( ) ; in the range 1 2≤ ≤x  using Euler method. Use step size 

h = 0.2.

Ans. x = 1.2, y = –0.400000 
 x = 1.4, y = –0.944000 
 x = 1.6, y = –1.860454
 x = 1.8, y = –3.884971
 x = 2.0, y = –10.642171

9. Calculate the solution of IVP 
dy
dx

e y yx= − =sin( ), ( )0 0 , at x = 0 2.  with the aid of Euler method. 

Use step size h = 0 05. . 

Ans. x = 0.05, y = 0.05 
 x = 0.10, y = 0.100065 
 x = 0.15, y = 0.150328
 x = 0.20, y = 0.200932 

10. Given dx
dt

t x
t x

x= −
+

=
2

2 0 1, ( ) , compute the values of x x x( . ), ( . ), ( . )0 05 0 1 0 15  with the aid of Euler 

method.

Ans. t = 0.05, x = 0.95
 t = 0.10, x = 0.905249
 t = 0.15, x = 0.866125

11. Use Euler method to estimate the value of y( )2  for the IVP ′ = =y e yx , ( )1 1 with the step sizes 
h = 0 25 0 5. , . . Compare the solutions with the exact solution and discuss the performance of 
Euler method. 

Ans. For h = 0 25. , we have
 x = 1.25, y = 1.679570 
 x = 1.50, y = 2.552156
 x = 1.75, y = 3.672579
 x = 2.00, y = 5.111229 
 For h =0 5. , we have
 x = 1.5, y = 2.359141 
 x = 2.0, y = 4.599986

 Exact solution is y e x= , hence y e( ) .2 7 3890562= =
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638 Numerical Methods

12. One of the first order nonlinear differential equation of the form
dy
dx

P x y Q x y n+ =( ) ( )  is known 

as Bernoulli differential equation. For example, dy
dx

y xy+ = 3 , solve this equation to obtain y( )1

for given initial condition y( )0 1= . Use Euler method with step size h = 0.2. 

Ans.
x = 0.2, y = 0.800000 
x = 0.4, y = 0.660480 
x = 0.6, y = 0.551434 
x = 0.8, y = 0.461269 
x =1.0, y = 0.384718 

13. The population of a given city is governed by the law, 
dx
dt

x x= −( . ) (. )0 02 0001 2 , where time (t) and 

city population (x) are measured in years and thousands, respectively. Estimate the population 
of the city in year 2012, while it was given that population of the city in the year 2011 is 28,750. 
Apply Euler formula with step size h = 3 months. 

Ans. Given t x h0 02011 28 750 0 25= = =, . , . , we have
t = 2011.250, x = 28.873085
t = 2011.500, x = 28.996609
t = 2011.750, x = 29.120571
t = 2012.000, x = 29.244974

14. Solve the IVP
dy
dx

x y y= − =2 1 0, ( )  in the range 1 1 2≤ ≤x .  using Euler and modified Euler 

methods. Take step size h = 0 1. .

Ans. Euler method
 x = 1.1, y = 0.1

x = 1.2, y = 0.209 
Modified Euler method

x = 1.1, y y y y1
0

1
1

1 1
30 1 0( ) ( ) ( ). ,= = = =0.104500, 0.104454,  .104454(2)

 x = 1.2, y y y y2
0

2
1

2 2
3( ) ( ) ( ),= = = =0.213363 0.216633, 0.216562,  0.216(2) 5564  

15. Use modified Euler method to find an approximate value of variable u when x = 1.2 for the IVP
du
dx

x u u= + =2 1 2; ( ) .

Compute only four iterations of modified Euler method. Take h = 0.1.

Ans.

u u u u1
0

1
1

1
2

1
32 300000 2 325500 2 326775 2 3268( ) ( ) ( ) ( ). , . , . , .= = = = 339 2 326842

2 680526 2 709710 2
1

4

2
0

2
1

2
2

, .

. , . , .

( )

( ) ( ) ( )

  u

u u u

=

= = = 7711169 2 711242 2 7112462
3

2
4, . , .( ) ( ) u u= =

16. Calculate the solution of
dy
dx

e x y yx= + =sin( ), ( )0 0 , at x = 0 2.  with the aid of modified Euler 

method. Use step size h = 0 05. . Compute the iterations till the difference between last two 
consecutive iterations is less than 0.00005. 
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Ans.

y y y

y y

1 1
1

1
2

2
0

2

(0) 0.05 0.051344 0.051346

0.104038

= = =

=

, ,

,

( ) ( )

( ) (11
2

3 3
1

)

( ), ,

= =

= =

0.105581, 0.105585

0.161370 0.163126

(2)

(0)

y

y y y33
2

4 4
1

4
2

( )

( ) ( ), ,

=

= = =

0.163132

0.222442 0.224425 0.224435(0)y y y

17. Find the values of y( . )0 1  and ( . )0 2  for Riccati equation ′ = + − =y y xy y2 1 0 0; ( )  with the help of 
modified Euler method.

Ans.

y y

y y

1 1
1

2
0

2
1

0 0.1 0.1

0.2 0.2

= − =−

= − = −

,

,

18. Use Runge–Kutta second order method with minimum bound on truncation error (Ralston and 

Rabinowitz method) to solve the IVP 
dy
dx

x y y= − =2 0 1 25, ( ) . . Compute y( . )0 2  with step size

h = 0 1. .

Ans.
k k y1 20 156250 0 120826 0 1 1 117366= − = − =. . ( . ) .               

              k k1 20 114851 0 088843= − = −. .  y( . ) .0 2 1 019853=

19. Find the value of y( . )1 3  for Bernoulli equation ′ = −y x y y2 3  with initial condition, y( )1 2= . Use
Ralston and Rabinowitz method with step size 0.1.

Ans.

k k y1 20 600000 0 193266 1 1 1 6= − = − =. . ( . ) .                        771156 

       k k1 20 264504 0 116= − = −. . 1121 1 2 1 505574                  y( . ) .=

                        k k y1 20 124474 0 052074 1 3= − = − =. . ( . ) 11 429367.  

20. Solve the initial value problem dy
dx

y
x

y= − 1 2 , y( )1 1=  to find y( . )1 2  by Runge–Kutta method of 

order four with step size 0.1.

Ans.

k k k1 2 30 0 004762 0 004546= = =           . .                       

          

k

y
4 0 008717

1 1 1 004555

=
=

.

( . ) .

   k1 0 008716= .                          k k k2 3 40 012378 0 012239 0 015524= = =. . .  

 y( . ) .1 2 1 016801=
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640 Numerical Methods

21. Solve the initial value problem 
dy
dx

x y= −2 sin( ) , y( )0 1=  to compute y( . )0 3  by Runge–Kutta 

fourth order method with step size 0.1.

Ans.

 

k k k k1 30 084147 0 081550 0 081625= − = − = −. . .                     2 44 0 078462

0 1 0 918507

= −
=

.

( . ) .       
                        
y

                                                         
k11 30 078470 0 074777 0 074895= − = − = −. . .                     2k k k44 0 070705

0 2 0 843754

= −
=

.

( . ) .                        
       
y

                                                                           
              k k k1 2 30 070714 0 066068= − = − =. . −− = −

=
0 066228 0 061152

0 3 0 777677
4. .

( . ) .

       

 

k

y

22. A body of weight 10 kg falls from rest toward the earth with a velocity v. Air resistance on the 
body that is dependent on the velocity of a body is approximately 2v. Find the velocity of the 
body after time t = 2 sec. Use fourth order Runge–Kutta method with step size 1 sec.

(Hint: Newton’s second law F ma= ; where a
dv
dt

=  and m = =10 9 8 1 02/ . . . 

Two forces acting on the body are given by
 i) Gravitational force ( F mg1 10= = ) 
ii) Air resistance ( F v2 2= − , negative sign as it opposes the motion)
Since body falls from rest i.e. v( )0 0= . 
Finally, we have the following IVP

m
dv
dt

F F= +1 2  (or) 1 02 10 2.
dv
dt

v= −

v( )0 0= . 

On solving this IVP with Runge–Kutta fourth order method, we have

 

k k k k1                         = = =9 803922 0 192234 9 6154582 3. . . 44 9 049916

1 3 394898

= −
=

.

( ) .

 

                        
        
v

                                                                          
                k k k1 2 33 147259 0 061711 3= = =. . .. .

( ) .

086758 2 905207

2 4 484730
4          k

v

= −
=

23. Solve the initial value problem 
dx
dt

t x
t x

x=
−
−

=2
2

0 1, ( )  on the interval [0, 0.4] with the aid of fourth 

order Runge–Kutta method. Take h =0.2.

Ans.

 

k k k k1 2 30 400000 0 460000 0 458252= = =. . .                        44 0 513395

0 2 1 458317

=
=

.

( . ) .       
                         
x

                                                        
k1 == = =0 513388 0 561433 0 5580292 3 4. . .                        k k k ==

=
0 597312

0 4 2 016587

.

( . ) .   x
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First Order Ordinary Differential Equations: Initial Value Problems  641

24. Solve the initial value problem dr
d

r r
θ

θ+ = =2 2 0 0sin ; ( )  by using 4th order Runge–Kutta method 

to compute the values of r( . )0 2  and r( . )0 4 .

Ans.
k k k k1 2 30 000000 0 039734 0 039655= = =. . .                        44

1

0 077569

0 2 0 039391

0

=
=

=

.

( . ) .r

k .. . .077573 0 111706 0 111114 02 3 4                        k k k= = = ..

( . ) .

138941

0 4 0 149750r =

25. Use Milne predictor-corrector method to compute y(0.4) from differential equation 
dy
dx

y x= −2 2

and following values
x
y

: . . .
: . . .

0 0 1 0 2 0 3
1 1 11 1 25 1 42

Ans.

y y

y y y

P
4 4

0

4
1

4
2

4
3

1 636600

1 641552 1 642093 1

( ) ( )

( ) ( ) ( )

= =

= = =

.

. , . , .6642152 1 642159 1 6421594
4

4
5, . , .y y( ) ( )= =

26. The values of y( . )1 1 , y( . )1 2  and y( . )1 3  are obtained in exercise 19 for Bernoulli equation
′ = −y x y y2 3  with initial condition y( )1 2= . Use these values in Milne predictor-corrector

method to obtain the value of y( . )1 5  with h = 0.1.

Ans.
y y y( . ) . ( . ) . ( . ) .1 1 1 671156 1 2 1 505574 1 3 1 4= = =                  229367 

y y

y y y

P
4 4

0

4
1

4
2

4
3

1 326035

1 405702 1 396040 1

( ) ( )

( ) ( ) ( )

= =

= = =

.

. , . , .3397305 1 397141 1 397162 1 3971604
4

4
5

4
6, . , . , .y y y( ) ( ) ( )= = =

y y

y y y

P
5 5

0

5
1

5
2

5
3

1 409478

1 426398 1 424265 1 42

= =

= = =

( )

( ) ( ) ( )

.

. , . , . 44538 1 424503 1 4245085
4

5
5, . , .y y( ) ( )= =

27. Use Adams predictor-corrector method in exercise 25. 
Ans.

y y

y y y

P
1 1

0

1
1

1
2

1
3

1 638092

1 640505 1 640802 1

( ) ( )

( ) ( ) ( )

=

= = =

= .

. , . , .. , .640839 1 6408431
4y ( ) =

28. Solve the initial value problem,
dy
dx

x y= −2 sin( ) , y( )0 1=  to find y( . )0 1 , y( . )0 2  and y( . )0 3  by 

Runge–Kutta fourth order method. Further, obtain the values of y( . )0 4  and y( . )0 5  using the 
Adams method.

Ans.
y y y( . ) . ( . ) . ( . ) .0 1 0 918507 0 2 0 843754 0 3 0 7776= = =               777

y

y y

P
1

1
1

1
2

0 721933

0 721938 0 721938

( )

( ) ( )

=

= =

.

. , .                

y P
2 0 677928( ) = .

y y2
1

2
20 677939 0 677939( ) ( )= =. , .
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In Chapter 14, we have discussed the numerical methods for the solutions of the first order 
ordinary differential equation with initial condition (14.1)

dy
dx

f x y y x y= =( , ); ( )0 0

In this chapter, we will discuss the numerical solutions of systems of first order ordinary 
differential equations (ODEs) and the higher order ODEs with initial and boundary 
conditions. Some examples of these ODEs are as follows

System of first order 
ODEs with initial 
conditions

Second and higher order ODEs with initial conditions
Initial value problems (IVPs)

dy
dx

x y z

dz
dx

x y e

y z

z

= −

=

= = −

sin( )

cos( )

( ) , ( )

2

1 2 1 1

i) d y
dx

x dy
dx

y y y
2

2 3 0 1 0 2+ + = = ′ =; ( ) , ( )

ii) d y
dx

x d y
dx

xy x y y y
3

3

2

2 0 1 0 2 0 2+ + = = ′ = ′′ =sin cos ; ( ) , ( ) , ( )

Mathematics compares the most diverse phenomena and discovers  
the secret analogies that unite them. 

Jean-Baptiste Joseph Fourier 
(March 21, 1768–May 16, 1830) 

He was a great mathematician, who discovered the Fourier series and  
the greenhouse effect. 

Systems of First Order ODEs 
and Higher Order ODEs: Initial 
and Boundary Value Problems

Chapter
15
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Systems of First Order ODEs and Higher Order ODEs: Initial and Boundary Value Problems 643

Second and higher order ODEs with boundary conditions
Boundary value problems (BVPs)

i) x
d y
dx

x dy
dx

y y y2
2

2 1 3 0 1 1 3+ − + = = =( ) ; ( ) , ( )

ii) d y
dx

x
d y
dx

xy x y y y
3

3

2

2 0 1 1 2 3 4+ + = = = = −sin cos ; ( ) , ( ) , ( )

These differential equations arise in the mathematical formulations of various scientific 
and engineering problems (for examples, refer to exercises 15.7 and 15.8). In this chapter, 
following three types of problems are discussed for numerical solutions.

System of first order ODEs with initial conditions 
The numerical methods discussed in Chapter 14 can be generalized easily to the following 
systems of first order ODEs with initial conditions

dy
dx

f x y z

dz
dx

g x y z

y x y z x z

=

=

= =

( , , )

( , , )

( ) , ( )0 0 0 0  (15.1)

This chapter contains following four methods for the solution of system (15.1) 

i) Picard method
ii) Taylor series method
iii) Euler method
iv) Classical Runge–Kutta method 

Note that we have discussed these methods for solutions of a system of two first order 
ODES only. But, these methods can be generalized for a general system of any finite number 
of first order ODEs. 

Second and higher order ODEs with initial conditions
Initial value problems (IVPs)
The higher order ODE with initial conditions can be converted into the system of first order 
ODEs of the types (15.1). For example

′′ + ′ + = = ′ =y xy y x y y2 0 1 0 1sin( ); ( ) , ( )

Let ′ =y z , using this in above equation, we have

′ + + = ′ = − −z xz y x z x xz y2 2sin( ) ( ) sin( )or
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644 Numerical Methods

Equivalently, the system of first order ODEs with initial conditions is as follows

dy
dx

y z

dz
dx

z x xz y

= ′ =

= ′ = − −sin( ) 2

; y z( ) , ( )0 1 0 1= =

Therefore, solutions for second and higher order ODEs with initial conditions can be 
obtained by converting them into the system of first order ODEs like system 15.1. 

Second and higher order ODEs with boundary conditions
Boundary value problems (BVPs)
General linear second order ODE with boundary conditions is given by

d y
dx

p x
dy
dx

q x y r x

c y a c y a c c y b c y b

2

2

1 2 3 4 5

+ + =

+ ′ = + ′

( ) ( ) ( )

( ) ( ) , ( ) ( ) == c6

The following methods are discussed for the numerical solutions of the linear boundary 
value problems (BVPs). 

i) Shooting method
ii) Finite difference method 

In Shooting method, the BVP is converted into an equivalent system of IVPs, then the 
solution of BVP can be obtained from the solution of these IVPs. In the finite difference 
method, the various derivative terms in the BVP are approximated with the help of finite 
differences. The BVP is converted into a system of linear algebraic equations, which can be 
solved easily to give the solution of BVP.  

15.1 Picard Method 

The Picard method has been discussed in Section 14.2 for a single first order ODE with 
the initial condition. The method can be generalized to find the numerical solutions of the 
system of first order ODEs (15.1).

On integrating the system (15.1) from initial point x0 to any general point x, we get

y x y x f x y z dx

z x z x g x y z dx

x

x

x

x

( ) ( ) ( , , )

( ) ( ) ( , , )

= +

= +

∫

∫

0

0

0

0

Let y0 and z0 have initial approximations y(0)(x) and z(0)(x) respectively. The next 
approximations y(1)(x) and z(1)(x) are given by
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y x y x f x y x z x dx

z x z x g x

x

x
( ) ( ) ( )

( )

( ) ( ) ( , ( ), ( ))

( ) ( ) ( ,

1
0

0 0

1
0

0

= +

= +

∫

yy x z x dx
x

x
( ) ( )( ), ( ))0 0

0

∫
Similarly, the higher approximations are as follows

y x y x f x y x z x dx

z x z x

n n n

x

x

n

( ) ( ) ( )

( )

( ) ( ) ( , ( ), ( ))

( ) ( )

+

+

= +

= +

∫1
0

1
0

0

gg x y x z x dx nn n

x

x

( , ( ), ( )) , , ,...( ) ( )

0

0 1 2∫ =  (15.2)

Solve the following IVP with the help of Picard method. Obtain only first three 
approximations and find the values of y(0.1) and z(0.1). 

dy
dx

z x

dz
dx

y x z

y z

= +

= + +

= =

2

0 0 0 0( ) , ( )

Ans.
Comparing the given system with the system (15.1), we get

dy
dx

z x f x y z

dz
dx

y x z g x y z

x y z

= + =

= + + =

= = =

( , , )

( , , )2

0 0 0 0

The initial approximation is y x y( ) ( )0
0 0= =  and z x z( ) ( )0

0 0= = . Using Picard method 
(15.2), the iterations are given by 

First approximation

 
y x y x f x y x z x dx

z x z x g x

x

x
( ) ( ) ( )

( )

( ) ( ) ( , ( ), ( ))

( ) ( ) ( ,

1
0

0 0

1
0

0

= +

= +

∫

yy x z x dx

y x dx x

z x x

x

x
( ) ( )

( )

( )

( ), ( ))

( )

0 0

1
2

1 2
2

0

0
2

0 0 0
2

∫

∫

∫

= + =

= + + + =

15.1Example
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646 Numerical Methods

 

y x y x f x y x z x dx

z x z x g x

x

x
( ) ( ) ( )

( )

( ) ( ) ( , ( ), ( ))

( ) ( ) ( ,

1
0

0 0

1
0

0

= +

= +

∫

yy x z x dx

y x dx x

z x x

x

x
( ) ( )

( )

( )

( ), ( ))

( )

0 0

1
2

1 2
2

0

0
2

0 0 0
2

∫

∫

∫

= + =

= + + + =

Second approximation

 

y x y x f x y x z x dx

z x z x g x

x

x
( ) ( ) ( )

( )

( ) ( ) ( , ( ), ( ))

( ) ( ) ( ,

2
0

1 1

2
0

0

= +

= +

∫

yy x z x dx

y x x dx x x

z

x

x
( ) ( )

( )

( )

( ), ( ))1 1

2
2 3 2

2

0

0
2 6 2

0

∫

∫= + +






= +

= ++






+ +










= + +∫
x x x dx x x x2 2 2 5 2 5

2 2 20 2 6

Third approximation

 

y x y x f x y x z x dx

z x z x g x

x

x
( ) ( ) ( )

( )

( ) ( ) ( , ( ), ( ))

( ) ( ) ( ,

3
0

2 2

3
0

0

= +

= +

∫

yy x z x dx

y x x x x dx

x

x
( ) ( )

( )

( ), ( ))2 2

3
5 2 3

0

0
20 2 6

∫

= + + +






+





∫∫ = + + +

= +






+ + + +





x x x x

z x x x x x x

6 3 4 2

3
3 2 2 5 2 3

120 6 24 2

6 2 20 2 6
( )








= + + + + +∫ dx x x x x x x7 6 5 4 3 2

252 45 20 24 6 2

Values of y(0.1) and z(0.1)

 
y

z

( . ) ( . ) ( . ) ( . ) ( . ) .

( . )

0 1 0 1
120

0 1
6

0 1
24

0 1
2

0 00517084

0 1

6 3 4 2

= + + + =

== + + + + + =( . ) ( . ) ( . ) ( . ) ( . ) ( . ) .0 1
252

0 1
45

0 1
20

0 1
24

0 1
6

0 1
2

0 0
7 6 5 4 3 2

00517091

Note that we can use latest value y(n+1)(x) in 2nd equation of formula (15.2) to get faster 
convergence. Therefore, we have

z x z x g x y x z x dxn n n

x

x
+( ) + ( )( ) = ( )+ ( ) ( )( )∫1

0
1

0

, ,( )
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15.2 Taylor Series Method 

The Taylor series method discussed in Section 14.3 can be extended easily for the solution 
of system (15.1). The Taylor series expansions for y(x) and z(x) are as follows

y x y x x x y x
x x

y x
x x

n
y

n
n( ) ( ) ( ) ( )

( )
!

( ) ...
( )

!
(( )= + − ′ +

−
′′ +

−
0 0 0

0
2

0
0

2
xx

z x z x x x z x
x x

z x
x x

0

0 0 0
0

2

0
0

2

)

( ) ( ) ( ) ( )
( )

!
( ) ...

( )

+ ⋅⋅⋅

= + − ′ +
−

′′ +
− nn

n

n
z x

!
( )( )

0 + ⋅⋅⋅  (15.3)

We can obtain the following equivalent form by using x x h= +0  in the expressions (15.3)

y x h y x h y x h y x h
n

y x
n

n( ) ( ) ( ) ( )
!

( ) ( )
( )!

( )0 0 0

2

0 02
+ = + ′ + ′′ + ⋅⋅⋅+ + ⋅⋅⋅

zz x h z x h z x h z x h
n

z x
n

n( ) ( ) ( ) ( )
!

( ) ( )
( )!

( )0 0 0

2

0 02
+ = + ′ + ′′ + ⋅⋅⋅+ + ⋅⋅⋅⋅

The higher order derivative terms at x y z0 0 0, ,( ) can be computed by differentiating the 

equations dy
dx

f x y z= ( , , ) and 
dz
dx

g x y z= ( , , ) from the system (15.1).

Use Taylor series method to compute the values of y(0.1) and z(0.1) for the following 
system 

 

dy
dx

z x

dz
dx

y x z

y z

= +

= + +

= =

2

0 0 0 0( ) , ( )
Compute only first five terms of Taylor series.

Ans. 
The initial conditions are given by

 x y x y z x z0 0 0 0 00 0 0= = = = =, ( ) , ( )

Computing various derivative terms for the given system, we have 

 

′ = + ′ =

′ = + + ′ =

′′ = ′ + ′′=
′′ = ′ + + ′′=

y z x y
z y x z z

y z y
z yy z z

0
2

0

0

0

0
0

1 1
2 1 1
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′′′ = ′′′=

′′′ = ′′ + ′ + ′′ ′′′=

= ′′′ =
=

y z y
z yy y z z

y z y
z

iv iv

iv

0
2

0

0

1
2 2 1

1
6 ′′ ′′ + ′′′ + ′′′ =

= = =
= ′′ + ′ ′′′ +

y y yy z z

y z y z
z y y y

iv

v iv v iv

v

2 1

1
6 8 2

0

0 0
2 yyy z ziv iv v+ =0 7

By using these derivative terms in the Taylor series (15.3), we get

 
y x x x x x x( ) ( )( ) ( )

!
( ) ( )

!
( ) ( )

!
( ) ( )= + − + − + − + − + −0 0 0 0

2
1 0

3
1 0

4
1 02 3 4 5

55
1

0 0 0 0
2

1 0
3

1 0
4

2 3 4
!

( )

( ) ( )( ) ( )
!

( ) ( )
!

( ) ( )
!

+ ⋅⋅⋅

= + − + − + − + −z x x x x x (( ) ( )
!

( )1 0
5

7
5

+ − + ⋅⋅⋅x

The final expressions for Taylor series expansions up to first five terms are as follows

 
y x x x x x

z x x x x x

( )

( )

= + + +

= + + +

2 3 4 5

2 3 4 5
2 6 24 120

2 6 24
7
120

Values of y(0.1) and z(0.1) are given by

 
y

z

( . ) ( . ) ( . ) ( . ) ( . ) .

( .

0 1 0 1
2

0 1
6

0 1
24

0 1
120

0 005170916

0 1

2 3 4 5

= + + + =

)) ( . ) ( . ) ( . ) ( . ) .= + + + =0 1
2

0 1
6

0 1
24

7 0 1
120

0 005171416
2 3 4 5

15.3 Euler Method 

Euler method is the simplest method for the computation of numerical solution of system 
(15.1). The Taylor series expansions for y(x) and z(x) are as follows

 
y x h y x h y x h y x h

n
y x

n
n( ) ( ) ( ) ( )

!
( ) ( )

( )!
( )0 0 0

2

0 02
+ = + ′ + ′′ + ⋅⋅⋅+ + ⋅⋅⋅

zz x h z x h z x h z x h
n

z x
n

n( ) ( ) ( ) ( )
!

( ) ( )
( )!

( )0 0 0

2

0 02
+ = + ′ + ′′ + ⋅⋅⋅+ + ⋅⋅⋅⋅
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Let x x h1 0= + . Neglecting second and higher order terms in Taylor series expansions and 
using system (15.1), we get 

y y x y x h y x
y h f x y z

z z x z x h z x

1 1 0 0

0 0 0 0

1 1 0

= = + ′
= +
= = + ′

( ) ( ) ( )
( , , )

( ) ( ) ( 00

0 0 0 0

)
( , , )= +z h g x y z

Similarly, the values at other points are given by

y y h f x y z
z z h g x y z

y y h f x y z
z z

2 1 1 1 1

2 1 1 1 1

3 2 2 2 2

3

= +
= +

= +
=

( , , )
( , , )

( , , )

22 2 2 2

1 1 1 1

1 1

+

= +
= +

− − − −

− −

h g x y z

y y h f x y z
z z h g x

n n n n n

n n n

( , , )

( , , )
( ,



yy zn n− −1 1, )

(or) 
y y h f x y z
z z h g x y z i n

i i i i i

i i i i i

+

+

= +
= + = ⋅⋅⋅

1

1 0 1
( , , )
( , , ); , , ,  (15.4)

Find the values of y(0.75) and z(0.75) for the following system of first order ODEs. Use 
Euler method with step size h = 0.25. 

 

dy
dx

z x

dz
dx

y x z

y z

= +

= + +

= =

2

0 0 0 0( ) , ( )
Ans.
For given system, the initial conditions are as follows

 x y x y z x z0 0 0 0 00 0 0= = = = =, ( ) , ( )

The functions are f x y z x z( , , ) = +  and g x y z y x z( , , ) = + +2 . The step size is h = 0.25.

Using Euler formula (15.4), the approximations are given by

 
y y x y y h f x y z

y h x z
1 1 0 0 0 0

0 0 0

0 25
0 0 25 0 0 0

= = = +
= + + = + + =

( ) ( . ) ( , , )
( ) . ( )
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650 Numerical Methods

Use Euler method to compute the values of y(1.5) and z(1.5) for the following system of 
first order ODEs with step size h = 0.1. 

 

dy
dx

x yz f x y z

dz
dx

x yz g x y z y z

= + =

= − = = − =

2

2 1 1 1 2

( , , )

( , , ) ( ) , ( )

Ans.
Given initial conditions, x y x y z x z0 0 0 0 01 1 2= = = − = =, ( ) , ( ) ,
 functions f x y z x yz( , , ) = + 2 and g x y z x yz( , , ) = −2

 step size h = 0.1.

By using Euler formula (15.4), we have

 

y y x y y h f x y z
y h x y z

1 1 0 0 0 0

0 0 0 0
2

1 1
1 0 1 1

= = = +
= + + = − + + −

( ) ( . ) ( , , )
( ) . ( ( 11 2 1 3

1 1

2

1 1 0 0 0 0

0 0
2

0 0

) ) .
( ) ( . ) ( , , )

( )

= −
= = = +
= + − =

z z x z z h g x y z
z h x y z 22 0 1 1 1 2 2 32+ − − =. ( ( )( )) .

15.4Example

 

z z x z z h g x y z
z h y x z

1 1 0 0 0 0

0 0
2

0 0

0 25
0 0 25 0

= = = +
= + + + = +

( ) ( . ) ( , , )
( ) . ( ) ==

= = = +
= + + = +

0

0 5
0 0 25 0 25

2 2 1 1 1 1

1 1 1

y y x y y h f x y z
y h x z

( ) ( . ) ( , , )
( ) . ( . ++ =

= = = +
= + + +

0 0 0625
0 52 2 1 1 1 1

1 1
2

1 1

) .
( ) ( . ) ( , , )

( )
z z x z z h g x y z

z h y x z == + + + =

= = = +
=

0 0 25 0 25 0 0 0625

0 753 3 2 2 2 2

. ( . ) .

( ) ( . ) ( , , )y y x y y h f x y z
y22 2 2

3 3

0 0625 0 25 0 5 0 0625 0 203125
0 7

+ + = + + =
= =

h x z
z z x z

( ) . . ( . . ) .
( ) ( . 55

0 0625 0 25 0 0625
2 2 2 2

2 2
2

2 2
2

) ( , , )
( ) . . (( . )

= +
= + + + = + +

z h g x y z
z h y x z 00 5 0 0625
0 2041015625

. . )
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+
=
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y y x y y h f x y z
y h x y z

2 2 1 1 1 1

1 1 1 1
2

1 2
1 3 0 1 1

= = = +
= + + = − +

( ) ( . ) ( , , )
( ) . . ( .11 1 3 2 3 1 8777

1 2

2

2 2 1 1 1 1

1

+ − = −
= = = +
=

( . )( . ) ) .
( ) ( . ) ( , , )z z x z z h g x y z

z ++ − = + − − =

= =

h x y z

y y x y

( ) . . (( . ) ( . )( . )) .

( ) (

1
2

1 1
2

3 3

2 3 0 1 1 1 1 3 2 3 2 72

1.. ) ( , , )
( ) . . ( . ( .

3
1 8777 0 1 1 2 1 87

2 2 2 2

2 2 2 2
2

= +
= + + = − + + −

y h f x y z
y h x y z 777 2 72 3 146897

1 3

2

3 3 2 2 2 2

2

)( . ) ) .
( ) ( . ) ( , , )

= −
= = = +
= +

z z x z z h g x y z
z h(( ) . . (( . ) ( . )( . )) .x y z2

2
2 2

22 72 0 1 1 2 1 8777 2 72 3 374734− = + − − =

Similarly, other values can be computed as follows

 
      
     
y z
y z

4 4

5 5

6 600846 4 605729
20 463047 7 841899

= − =
= − =

. .
. .

Given the second order ODE ′′ + ′ + =y xy y x2 sin( ) with initial conditions  
y y( ) , ( ) .0 1 0 1= ′ =  Use Euler method to find the values of y and ′y  at x = 0.5. Let the step 
size be 0.1.

Ans.
On substituting ′ =y z  in the given second-order ODE, the following system of first order 
ODEs is obtained

 

dy
dx

y z

dz
dx

z x xz y

y z

= ′ =

= ′ = − −

= =

sin( )

( ) , ( )

2

0 1 0 1
For this system, we have 
 initial conditions x y x y z x z0 0 0 0 00 1 1= = = = =, ( ) , ( ) , 
 functions f x y z z( , , ) =  and g x y z x xz y( , , ) sin= − − 2 
 step size h = 0.1.

On applying Euler formula as in previous examples, we get 

 
y y x y y h f x y z

y h z
1 1 0 0 0 0

0 0

0 1
1 0 1 1 1 1

= = = +
= + = + =

( ) ( . ) ( , , )
( ) . ( ) .
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15.4 Runge–Kutta Fourth Order Method 

Runge–Kutta method of different orders can be used to solve the system (15.1), but here we 
are presenting only classical Runge–Kutta method (also known as Runge–Kutta method of 
order 4). Keeping in mind the method for a single equation, classical Runge–Kutta method 
for the solution of the system (15.1) is as follows 

y y k k k k

z z l l l l i

i i

i i

+

+

= + + + +( )

= + + + +( ) =

1 1 2 3 4

1 1 2 3 4

1
6

2 2

1
6

2 2 0 1 2, , ,....,n  (15.4)

where k k k k1 2 3 4, , ,  and l l l l1 2 3 4, , ,  are given by the following expression 

k h f x y z

k h f x h y
k

z
l

k h f x h y

i i i

i i i

i i

1

2
1 1

3

2 2 2

2

=

= + + +





= +

( , , )

, ,

, ++ +





= + + +( )

k
z

l

k h f x h y k z l

i

i i i

2 2

4 3 3

2 2
,

, ,  

l h g x y z

l h g x h y
k

z
l

l h g x h y

i i i

i i i

i i

1

2
1 1

3

2 2 2

2

=

= + + +





= +

( , , )

, ,

, ++ +





= + + +( )

k
z

l

l h g x h y k z l

i

i i i

2 2

4 3 3

2 2
,

, ,  (15.5)

 
z z x z z h g x y z

z h x x z y
1 1 0 0 0 0

0 0 0 0 0
2

0 1
1 0 1

= = = +
= + − − = +

( ) ( . ) ( , , )
(sin ) . (( ) .0 0 1 0 9− − =

Similarly, other iterations are as follows

 

       

       

2y z

y z

= =

= =

1 190000 0 779983

1 267998 0 642641

2

3 3

. .

. .

        

       

y z

y z

4 4

5 5

1 332262 0 492131

1 381476 0 33389

= =

= =

. .

. . 66

Note that y y( . ) .0 5 1 3814765= =  and ′ = =y z z( . ) ( . )0 5 0 5 5 = 0.333896.
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Use classical Runge–Kutta method to find the values of y(0.2) and z(0.2) for the following 
system of first order ODEs. Use step size h = 0.1. 

 

dy
dx

z x

dz
dx

y x z

y z

= +

= + +

= =

2

0 0 0 0( ) , ( )
Ans.
By using the following values 

 
x y x y z x z
f x y z x z g x y z y x z
h

0 0 0 0 0
2

0 0 0

0

= = = = =
= + = + +

=

, ( ) , ( )
( , , ) , ( , , )

.11
in the equations (15.4) and (15.5), the following results are obtained. 

Values of y(0.1) and z(0.1)

On computing the values of k k k k1 2 3 4, , ,  and l l l l1 2 3 4, , ,  from equations (15.5), we have

k h f x y z h x z
l h g x y z h y x
1 0 0 0 0 0

1 0 0 0 0
2

0 1 0 0 0= = + = + =
= = +

( , , ) ( ) . ( )
( , , ) ( 00 0

2 0 0
1

0
1

0 0
1

0 1 0 0

2 2 2 2

+ = =

= + + +





= + + +

z

k h f x h y
k

z
l

h x h z
l

) . ( )

, ,
22

0 1 0 0 1
2

0 0 005

2 2 22 0 0
1

0
1







= + + +





=

= + + +

. . .

, ,l h g x h y
k

z
l





= +





+ + + +










= + + + +


h y
k

x h z
l

0
1

2

0 0
1

2 2 2

0 1 0 0 0 1
2

0 0. .





=

= + + +





= + + +


0 005

2 2 2 2 23 0 0
2

0
2

0 0
2

.

, ,k h f x h y
k

z
l

h x h z
l 


= + + +





=

= + +

0 1 0 0 1
2

0 0 005
2

0 005250

2 23 0 0
2

0

. . . .

, ,l h g x h y
k

z ++





= +





+ + + +










= 


l
h y

k
x h z

l2
0

2
2

0 0
2

2 2 2 2

0 1 0 005
2

. . 


+ + + +








 = ≈

2

0 0 1
2

0 0 005
2

0 005250625 0 005251. . . .
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k h f x h y k z l h x h z l4 0 0 3 0 3 0 0 3

0 1 0 0 1 0 00525062

= + + +( ) = + + +( )
= + + +

, ,

. . . 55 0 0105250625 0 010525

4 0 0 3 0 3 0 3

( ) =

= + + +( ) = +( )
. .

, ,



l h g x h y k z l h y k
22

0 0 3

20 1 0 00525 0 0 1 0 005250625 0 01052

+ + + +( )
= ( ) + + + +( ) =

x h z l

. . . . . 7775875 0 010528 .

The following values of y(0.1) and z(0.1) are computed by using above obtained values in 
Eqs. (15.4).

 

y y y k k k k1 0 1 2 3 40 1 1
6

2 2

0 1
6

0 2 0 005 2 0 00525 0

= = + + + +( )

= + + + +

( . )

( . ) ( . ) ..

. .

( . )

0105250625

0 00517084375 0 005171

0 1 1
6

21 0 1 2

( )
=

= = + +



z z z l l ++ +( )

= + + + +( )
=

2

0 1
6

0 2 0 005 2 0 005250625 0 01052775875

0

3 4l l

( . ) ( . ) .

.. .005171501458333 0 005172

Values of y(0.2) and z(0.2)

Using the values of y( . ) .0 1 0 005171=  and z( . ) .0 1 0 005172=  in Eqs. (15.5), we have 
following results

  

k h f x y z h x z

l h g x
1 1 1 1 1 1

1

0 1 0 1 0 005172 0 010517= = + = +

=

( , , ) ( ) . ( . . ) .
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x h= + + +





= +





+ + +, , zz
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1
1
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2
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2
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2 2 2
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 =
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2 2 2
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2
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2
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+ +





=

= + + +





=

z
l
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.
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k h f x h y k z l h x h z l

l h g x h y

4 1 1 3 1 3 1 1 3

4 0 0

0 022151= + + +( ) = + + +( ) =

= +

, , .

, ++ +( ) = +( ) + + + +( ) =k z l h y k x h z l3 0 3 0 3

2

0 0 3 0 022197, .

We can compute the values of y(0.2) and z(0.2) from equation (15.4) as follows

 

y y y k k k k2 1 1 2 3 40 2 1
6

2 2

0 005171 1
6

0 010517 2 0 016

= = + + + +( )

= + +

( . )

. . ( . 0043 2 0 016320 0 022151 0 021403

0 2 1
6

22 1 1 2

) ( . ) . .

( . )

+ +( ) =

= = + +z z z l l ++ +( )

= + + + +

2

0 005172 1
6

0 010520 2 0 016054 2 0 016337 0 0

3 4l l

. . ( . ) ( . ) . 222197 0 021421( ) = .

 

Use classical Runge–Kutta method to compute the values of y(1.2) and z(1.2) for the 
following system of first order ODEs with step size h = 0.1. 

 
dy
dx

x yz f x y z

dz
dx

x yz g x y z y z

= + =

= − = = − =

2

2 1 1 1 2

( , , )

( , , ) ( ) , ( )

Ans.
Values of y(1.1) and z(1.1)
Proceeding like the previous example, we get the following values of k k k k1 2 3 4, , ,  and 
l l l l1 2 3 4, , ,

 

k h f x y z h x y z
l h g x y
1 0 0 0 0 0 0

2 2

1 0

0 1 1 1 2 0 3= = + = + − = −
=

( , , ) ( ) . ( ( )( ) ) .
( , 00 0 0

2
0 0

2 0 0
1

0

0 1 1 1 2 0 3

2 2

, ) ( ) . ( ( )( )) .

, ,

z h x y z

k h f x h y
k

z

= − = − − =

= + + +
ll

l h g x h y
k

z
l

1

2 0 0
1

0
1

2
0 426588

2 2 2
0 35750







= −

= + + +





=

.

, , . 00

15.7Example
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k h f x h y
k

z
l

l h g x h y
k

3 0 0
2

0
2

3 0 0
2

2 2 2
0 470945

2 2

= + + +





= −

= + +

, , .

, , zz
l

k h f x h y k z l

l

0
2

4 0 0 3 0 3

4

2
0 374596

0 719423

+





=

= + + +( ) = −

=

.

, , .

hh g x h y k z l0 0 3 0 3 0 470290+ + +( ) =, , .

The values of y(1.1) and z(1.1) are given by

 
y y y k k k k

z z z l

1 0 1 2 3 4

1 0 1

1 1 1
6

2 2 1 469081

1 1 1
6

= = + + + +( ) = −

= = + +

( . ) .

( . ) 22 2 2 3724142 3 4l l l+ +( ) = .

Values of y(1.2) and z(1.2)
By using the values of y( . ) .1 1 1 469081= −  and z( . ) .1 1 2 372414=  in Eq. (15.5), we have

 

k h f x y z
l h g x y z

k h f x h

1 1 1 1

1 1 1 1

2 1

0 716850
0 469527

= = −
= =

= +

( , , ) .
( , , ) .

22 2 2
1 127224

2 2 2

1
1

1
1

2 1 1
1

1
1

, , .

, ,

y
k

z
l

l h g x h y
k

z
l

+ +





= −

= + + +





=

= + + +





= −

=

0 608713

2 2 2
1 3414453 1 1

2
1

2

3

.

, , .k h f x h y
k

z
l

l h gg x h y
k

z
l

k h f x h y k z l

1 1
2

1
2

4 1 1 3 1 3

2 2 2
0 676355+ + +





=

= + + +(

, , .

, , )) = −

= + + +( ) =

2 492383

1 0008654 0 0 3 0 3

.

, , .l h g x h y k z l

The values of y(1.2) and z(1.2) are as follows

 
y y y k k k k

z z z l

2 1 1 2 3 4

2 1 1

1 2 1
6

2 2 2 826843

1 2 1
6

= = + + + +( ) = −

= = + +

( . ) .

( . ) 22 2 3 0458352 3 4l l l+ +( ) = .
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Solve the following IVP 

 ′′ + ′ + = = ′ =y xy y x y y2 0 1 0 1sin( ); ( ) , ( )

Use Runge–Kutta fourth order method to find the value of y at x = 0.5 with step size 0.25.

Ans.
From Example 15.5, the given IVP is equivalent to the following system

 

dy
dx

y z

dz
dx

z x xz y y z

= ′ =

= ′ = − − = =sin( ) ; ( ) , ( )2 0 1 0 1

Continuing in the same way as in the previous examples, we can easily compute the 
following iterations 

Values of y(0.25) and z(0.25)

The values of k k k k1 2 3 4, , ,  and l l l l1 2 3 4, , ,  are given by

 
k k k k1 2 30 250000 0 218750 0 210927= = =. . .                        44

1 2 3

0 174281
0 250000 0 312581 0 3028

=
= − = − = −

.
. . .l l l             775 0 3483064      l = − .

 

The values of y(0.25) and z(0.25) are as follows

 
y y y k k k k

z z z l

1 0 1 2 3 4

1 0 1

0 25 1
6

2 2 1 213939

0 25 1
6

= = + + + +( ) =

= = +

( . ) .

( . ) ++ + +( ) =2 2 0 6951302 3 4l l l .

Values of y(0.5) and z(0.5)

The values of k k k k1 2 3 4, , ,  and l l l l1 2 3 4, , ,  are given by

 
k k k k1 2 30 173783 0 130032 0 126253= = =. . .                        44

1 2 3

0 082605
0 350007 0 380234 0 3647

=
= − = − = −

.
. . .l l l             008 0 3704754      l = − .

The values of y(0.5) and z(0.5) are as follows

 
y y y k k k k

z z z l

2 1 1 2 3 4

2 1 1

0 5 1
6

2 2 1 342099

0 5 1
6

2

= = + + + +( ) =

= = + +

( . ) .

( . ) ll l l2 3 42 0 326736+ +( ) = .
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Table 15.1 Formulations for solutions of IVPs

Sr. No. Numerical Scheme for the solution of IVP 

dy
dx

f x y z

dz
dx

g x y z

y x y z x z

=

=

= =

( , , )

( , , )

( ) , ( )0 0 0 0

1 Picard method

 

y x y x f x y x z x dx

z x z x

n n n

x

x

n

( ) ( ) ( )

( )

( ) ( ) ( , ( ), ( ))

( ) ( )

+

+

= +

= +

∫1
0

1
0

0

gg x y x z x dx nn n

x

x

( , ( ), ( )) , , ,( ) ( )

0

0 1 2∫ = ⋅ ⋅ ⋅

 where y0 and z0 are initial approximations y x( ) ( )0  and z x( ) ( )0  respectively

2 Taylor series method of order n

 y x h y x h y x
h

y x
h

n
y x

n
n( ) ( ) ( )

( )
!

( )
( )
( )!

( )0 0 0

2

0 02
+ = + ′ + ′′ + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅

zz x h z x h z x
h

z x
h

n
z x

n
n( ) ( ) ( )

( )
!

( )
( )
( )!

( )0 0 0

2

0 02
+ = + ′ + ′′ + ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅⋅

3 Euler method

 
y y hf x y z

z z h g x y z i n
i i i i i

i i i i i

+

+

= +
= + = ⋅ ⋅⋅

1

1 0 1

( , , )

( , , ); , , ,

4 Classical Runge–Kutta method (or) Runge–Kutta 4th order method 

 
y y k k k k

z z l l l l i

i i

i i

+

+

= + + + +( )

= + + + +( ) =

1 1 2 3 4

1 1 2 3 4

1
6

2 2

1
6

2 2 0 1 2, , ,⋅⋅ ⋅ ⋅,n

where k k k k1 2 3 4, , ,  and l l l l1 2 3 4, , ,  are given by the following expression 

 

k hf x y z

k hf x
h

y
k

z
l

k hf x
h

y

i i i

i i i

i i

1

2
1 1

3

2 2 2

2

=

= + + +





= +

( , , )

, ,

, ++ +





= + + +( )

k
z

l

k hf x h y k z l

i

i i i

2 2

4 3 3

2 2
,

, ,

 

l h g x y z

l h g x
h

y
k

z
l

l h g x
h

y

i i i

i i i

i i

1

2
1 1

3

2 2 2

2

=

= + + +





= +

( , , )

, ,

, ++ +





= + + +( )

k
z

l

l h g x h y k z l

i

i i i

2 2

4 3 3

2 2
,

, ,

15.5 Boundary Value Problem: Shooting Method 

This section deals with the shooting method for the solutions of BVPs. In shooting method, 
the given BVP is converted into a set of IVPs. Then, we construct the solution of given BVP 
by using the solutions of these IVPs. 
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Systems of First Order ODEs and Higher Order ODEs: Initial and Boundary Value Problems 659

Only linear BVPs are considered in this chapter. It is worth mentioning that nonlinear 
BVPs can also be solved using Shooting method. But, nonlinear BVPs are not discussed due 
to the complexity of solution procedure. 

Consider the following linear BVP

′′ + ′ + = ≤ ≤
= =

y p x y q x y r x a x b
y a y b

( ) ( ) ( ),
( ) ( )α βand  (15.6)

where p(x), q(x) and r(x) are continuous functions of x in the interval [a, b]. 

Let u(x) be the solution of the following nonhomogeneous IVP

′′ + ′ + = = ′ =u p x u q x u r x u a u a( ) ( ) ( ); ( ) ( )α and 0  (15.7)

and v(x)be the solution of the following homogeneous IVP

′′ + ′ + = = ′ =v p x v q x v v a v a( ) ( ) ; ( ) ( )0 0 and β  (15.8)

Let the linear combination y x c u x c v x( ) ( ) ( )= +1 2  be a solution of BVP (15.6) for some 
constants c1 and c2. Using y x c u x c v x( ) ( ) ( )= +1 2  in Eq. (15.6) and then using Eqs. (15.7) and 
(15.8), we get

c1 = 1 (15.9)

Now, we require that the solution y x u x c v x( ) ( ) ( )= + 2  also satisfies boundary conditions, 
i.e., 

y a u a c v a
y b u b c v b
( ) ( ) ( )
( ) ( ) ( )

= + =
= + =

2

2

α
β

Using conditions from IVPs (15.7) and (15.8), it is easy to show that first equation is 
identically satisfied, and second equation gives the following result

c u b
v b2 = −β ( )

( )
 (15.10)

On substituting the values from Eqs. (15.9) and (15.10) in y x c u x c v x( ) ( ) ( )= +1 2 , the solution 
of BVP (15.6) is given by

y x u x u b
v b

v x( ) ( ) ( )
( )

( )= + −β
 (15.11)

Stepwise Procedure: In this method, we have following three steps

i) Convert the given BVP (15.6) in to two IVPs (15.7) and (15.8).
ii) Solve these two IVPs from any methods like Taylor series method, Runge–Kutta 

fourth order method, etc.
iii) Use these two solutions u(x) and v(x) in Eq. (15.11) to obtain the solution of 

given BVP.
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660 Numerical Methods

Solve the differential equation with the help of shooting method,
 ′′ − = ≤ ≤y y x x; .0 0 2
subject to boundary conditions
 y y( ) , ( . ) .0 0 0 2 0 2= = −
Solve the corresponding IVPs by Runge–Kutta fourth order method with step size h = 0.1. 

Ans. 
Given BVP is as follows

 ′′ − = = = −y y x y y; ( ) , ( . ) .0 0 0 2 0 2 (15.12)

Step 1
First, we have to create the following two IVPs corresponding to the given BVP (15.12)

 ′′ − = = ′ =u u x u u; ( ) , ( )0 0 0 0  (15.13)

 ′′ − = = ′ = −v v v v0 0 0 0 0 2; ( ) , ( ) .  (15.14)

Step 2
On solving the IVPs (15.13) and (15.14) with the help of Runge–Kutta fourth order 
method with step size h = 0.1, we obtain following results. 

Solution of IVP (15.13)

The second order ODE (15.13) is equivalent to the following system 

 

du
dx

u z

dz
dx

z x u u z

= ′ =

= ′ = + = =; ( ) , ( )0 0 0 0

Proceeding in a similar manner as in the examples (15.6–15.8), the values of k k k k1 2 3 4, , , , 
l l l l1 2 3 4, , ,  and u(0.1), u(0.2) are given by

k k k k
l l l l

1 2 3 4

1 2 3 4

0 0 0 00025 0 0005
0 0 005 0 005 0 010025

= = = =
= = = =

. .
. . .

uu

k k k k

( . ) .

. . . .

0 1 0 000167

0 0005 0 001001 0 001253 0 0020071 2 3 4

=

= = = =
ll l l l

u
1 2 3 40 010017 0 015042 0 015067 0 020142

0 2 0 001
= = = =

=
. . . .

( . ) .
 

3336

u(0.1) = 0.000167

k k k k
l l l l

1 2 3 4

1 2 3 4

0 0 0 00025 0 0005
0 0 005 0 005 0 010025

= = = =
= = = =

. .
. . .

uu

k k k k

( . ) .

. . . .

0 1 0 000167

0 0005 0 001001 0 001253 0 0020071 2 3 4

=

= = = =
ll l l l

u
1 2 3 40 010017 0 015042 0 015067 0 020142

0 2 0 001
= = = =

=
. . . .

( . ) .
 

3336
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Solution of IVP (15.14)
The IVP (15.14) is equivalent to the following system 

 

dv
dx

v z

dz
dx

z v v v

= ′ =

= ′ = = ′ = −; ( ) , ( ) .0 0 0 0 2

On solving this system with Runge–Kutta fourth order method, we get 
k k k k
l l l

1 2 3 4

1 2 3

0 02 0 02 0 02005 0 0201
0 0 001 0 00

= − = − = − = −
= = − = −

. . . .
. . 11 0 002005

0 1 0 020033

0 0201 0 0202 0 0

4

1 2 3

l
v

k k k

= −
= −

= − = − = −

.
( . ) .

. . .

 

220251 0 020401
0 002003 0 003008 0 003013

4

1 2 3 4

k
l l l l

= −
= − = − = − = −

.
. . . 00 004028

0 2 0 040267
.

( . ) .v = −

Step 3
By using the values β = −0 2. , u b u( ) ( . ) .= =0 2 0 001336 and v b v( ) ( . ) .= = −0 2 0 040267 in Eq. 
(15.11), we have

 

y x u x v x
y u v

( ) ( ) . ( )
( . ) ( . ) . ( . )

.

= +
= +
=

5 000025
0 1 0 1 5 000025 0 1

0 0001677 5 000025 0 020033
0 099998

+ −
= −

. ( . )
.

Note that the exact solution of BVP is y x x( ) = − . So the solution obtained by shooting method 
y( . ) .0 1 0 099998= −  is in good approximation with the exact result. 

15.6 Finite Difference Approximations for Derivatives 

The finite difference method is a simple and most commonly used numerical method to 
solve differential equations with boundary conditions. In this method, various derivative 
terms in the differential equation, and the derivative boundary conditions are replaced by 
their finite difference approximations. Consequently, the differential equation is converted 
into a set of algebraic equations. If the differential equation and boundary conditions are 
linear, then the system of algebraic equations is also linear. This system of linear equations 
can be solved by any direct or iterative procedure discussed in Chapter 5. Then, the solution 
of the differential equation is the solution to this system of linear equations. An important 
advantage of this method is that most of the calculations can be carried out on the computer 
and hence the solution is easy to obtain. In this section, we will discuss the finite difference 
approximations of the derivatives using Taylor series.
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Consider the following Taylor series expansions

y x h y x hy x h y x( ) ( ) ( )
!

( )+ = + ′ + ′′ + ⋅⋅⋅
2

2
 (15.15)

y x h y x hy x h y x( ) ( ) ( )
!

( )− = − ′ + ′′ − ⋅⋅⋅
2

2
 (15.16)

y x h y x hy x
h

y x( ) ( ) ( )
!

( )+ = + ′ +
( )

′′ + ⋅⋅⋅2 2
2
2

2

 (15.17)

y x h y x hy x
h

y x( ) ( ) ( )
!

( )− = − ′ +
( )

′′ − ⋅⋅⋅2 2
2
2

2

 (15.18)

On using these Taylor expansions, Eqs. (15.15–15.18), we can easily obtain following 
approximations for first and second orders derivatives in subsections 15.6.1 and 15.6.2, 
respectively.

15.6.1 First Order Derivatives 
Forward Difference: On using the expression (15.15), we get

′ = + − − ′′ − ⋅⋅⋅y x y x h y x
h

h y x( ) ( ) ( ) ( )
2

On using Big O notation, we can rewrite it as follows

′ = + − +y x y x h y x
h

O h( ) ( ) ( ) ( )

On neglecting the terms contained in notation, O(h), the forward difference approximation 
for first order derivative is given by 

′ = + −y x y x h y x
h

( ) ( ) ( )

At any point x = xi, we have

′ =
+ −

+

=
−

+

=
−

+

+

+

y x
y x h y x

h
O h

y x y x
h

O h

y y
h

O

i
i i

i i

i i

( )
( ) ( )

( )

( ) ( )
( )

(

1

1 hh)

 (15.19) 

Backward Difference: From Taylor expansion (15.16), the backward difference 
approximation for first order derivative is as follows 

′ = − − +y x y x y x h
h

O h( ) ( ) ( ) ( )
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At x = xi, we get

′ =
− −

+

=
−

+

=
−

+

−

−

y x
y x y x h

h
O h

y x y x
h

O h

y y
h

O

i
i i

i i

i i

( )
( ) ( )

( )

( ) ( )
( )

(

1

1 hh)

 (15.20)

Central Difference: Taylor expansions (15.15) and (15.16) provide following central 
difference approximation for first order derivative

′ = + − − +y x y x h y x h
h

O h( ) ( ) ( )
( )

2
2

At x = xi, we have

′ =
+ − −

+

=
−

+

=

+ −

+

y x
y x h y x h

h
O h

y x y x
h

O h

y

i
i i

i i

i

( )
( ) ( )

( )

( ) ( )
( )

2

2

2

1 1 2

11 1 2

2
−

+−y
h

O hi ( )

 (15.21)

15.6.2 Second Order Derivatives 
Forward Difference: On using the expressions (15.15) and (15.17), the forward difference 
approximation for second order derivative is given by 

′′ = + − + + +y x y x h y x h y x
h

O h( ) ( ) ( ) ( ) ( )2 2
2

At x = xi, we have

′′ =
+ − + +

+

=
− ++ +

y x
y x h y x h y x

h
O h

y x y x y

i
i i i

i i

( )
( ) ( ) ( )

( )

( ) ( ) (

2 2

2
2

2 1 xx
h

O h

y y y
h

O h

i

i i i

)
( )

( )

2

2 1
2

2

+

=
− +

++ +

 (15.22)

Backward Difference: From Taylor expansions (15.16) and (15.18), the backward difference 
approximation is as follows 

′′ = − − + − +y x y x y x h y x h
h

O h( ) ( ) ( ) ( ) ( )2 2
2
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664 Numerical Methods

At x = xi, we have

′′ =
− − + −

+

=
− +−

y x
y x y x h y x h

h
O h

y x y x y x

i
i i i

i i i

( )
( ) ( ) ( )

( )

( ) ( ) (

2 2

2
2

1 −−

− −

+

=
− +

+

2
2

1 2
2

2

)
( )

( )

h
O h

y y y
h

O hi i i

 (15.23)

Central Difference: Taylor expansions (15.15) and (15.16) provide following central 
difference approximation for second order derivative

′′ = + − + − +y x y x h y x y x h
h

O h( ) ( ) ( ) ( )
( )

2
2

2

At x = xi, we have

′′ =
+ − + −

+

=
− ++

y x
y x h y x y x h

h
O h

y x y x y x

i
i i i

i i i

( )
( ) ( ) ( )

( )

( ) ( ) (

2

2
2

2

1 −−

+ −

+

=
− +

+

1
2

2

1 1
2

22

)
( )

( )

h
O h

y y y
h

O hi i i

 (15.24)

Note: The neglecting terms [O(h2)] are of order h2 in central differences as compared to the 
order of h in forward and backward differences. So, the central differences for derivatives 
are better approximations compared to other differences. Therefore, central difference 
formulas are preferred over forward and backward difference formulas. 

15.7 Boundary Value Problem: Finite Difference Method 

Consider the following second-order linear differential equation

 d y
dx

p x dy
dx

q x y r x a x b
2

2 + + = ≤ ≤( ) ( ) ( ),

(or)  ′′ + ′ + = ≤ ≤y p x y q x y r x a x b( ) ( ) ( ),  (15.25)

where the functions p(x), q(x) and r(x) are continuous functions of x. Let the boundary 
conditions at the boundary points (x = a and x = b) be given by

l y a m y a n
l y b m y b n

1 1 1

2 2 2

( ) ( )
( ) ( )

+ ′ =
+ ′ =  (15.26)
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where l m n ii i i, , ; ,= 1 2 are constants. We have following two particular cases for the 
boundary conditions

1. Let mi = 0, then the boundary condition is said to be of Dirichlet type. In this case, 
only function value is prescribed on the boundary.

2. Let li = 0, then the condition is said to be of Neumann type. The boundary condition 
contains only the value of yʹ (derivative value).

Equation (15.25), along with the boundary conditions (15.26) are known as boundary value 
problem. For the solution of BVP, the first step is to divide the interval [a, b] into n numbers 
of sub-domains; 

( , ), ,x x i n a x b xi i n+ ≤ ≤ − = =1 00 1 where and  

Each sub-domains are of equal length, h b a
n

= −( ) . Also, the points x x ihi = +0  are known 

as mesh/nodal/pivotal points. The aim is to obtain the values of y y xi i= ( ) at the internal 
node points x i ni ,1 1≤ ≤ −  with the help of finite difference approximations. Various 
derivatives in the differential equation are replaced by their corresponding finite differences 
to obtain a linear system of simultaneous algebraic equations in the variables y i ni , 0 ≤ ≤ . 
This linear system of equations can be easily solved to get the solution of BVP. 

Solve the differential equation

 ( ) ( ) ;1 1 0 12− ′′ + ′ − = − ≤ ≤x y xy y x x

subject to boundary conditions 
 y y( ) , ( )0 1 1 3= =  

by taking four equal subintervals (or) step size h = 0.25. Use central difference 
approximations.

Ans.
The nodal points for the interval (0, 1) with step size h = 0.25 are as follows

 x x x x x0 1 2 3 40 0 25 0 5 0 75 1= = = = =, . , . , . ,  

The given function values are y y y y0 40 1 1 3= = = =( ) , ( ) . Now, we have to compute the 
values of y y y( . ), ( . ), ( . )0 25 0 5 0 75  (or y y y1 2 3, ,  respectively) for the following BVP 

 ( ) ( )1 1 2− ′′ + ′ − = −x y xy y x

At any point x = xi, we have

 ( ) ( ) ( ) ( ) ( )1 1 2− ′′ + ′ − = −x y x x y x y x xi i i i i i

15.10Example
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On using the central difference formulas (15.21) and (15.24) for derivative terms, we get

  

( ) ( )

( )[

1
2

2
1

2 1

1 1
2

1 1 2

1

−
− +

+
−

− = −

−

+ − + −

+

x
y y y

h
x

y y
h

y x

x y

i
i i i

i
i i

i i

i i −− + + − − = −
− +

− + −2 2 2 1
2 1

1 1 1
2 2 2y y hx y y h y h x

x hx y
i i i i i i i

i i i

] [ ] ( )
[ ( ) ] ++ −− − + + − − = −1

2
1

2 22 2 1 2 1 2 1[ ( ) ] [ ( ) ] ( )x h y x hx y h xi i i i i i  (15.25)

Using i = 1, 2, 3 in this equation, the following set of three algebraic equations is obtained

 

[ ( ) ] [ ( ) ] [ ( ) ] ( )2 1 2 2 1 2 1 2 11 1 2 1
2

1 1 1 0
2

1
2− + − − + + − − = −x hx y x h y x hx y h x

[[ ( ) ] [ ( ) ] [ ( ) ] ( )2 1 2 2 1 2 1 2 12 2 3 2
2

2 2 2 1
2

2− + − − + + − − = −x hx y x h y x hx y h x 22

3 3 4 3
2

3 3 3 2
2

32 1 2 2 1 2 1 2 1[ ( ) ] [ ( ) ] [ ( ) ] (− + − − + + − − = −x hx y x h y x hx y h x ))2

By using h = 0.25; x x x x x0 1 2 3 40 0 25 0 5 0 75 1= = = = =, . , . , . ,  and y y0 41 3= =, , in the 
above three equations, the following three simplified equations are obtained

 

1 5625 3 125 1 3671875
1 125 2 125 0 875 0 03125

2 1

3 2 1

. . .

. . . .
y y

y y y
− = −

− + =
−− + = −1 125 0 3125 2 05468753 2. . .y y

This system of three equations can be solved easily by any method. Here, Gauss–Seidel 
method is used for the solution, and the result obtained after 14 iterations is as follows

 
y y

y y
y y

( . ) .
( . ) .

( . ) .

0 25 1 312497
0 5 1 749998

0 75 2 312500

1

2

3

= =
= =
= =

Note. It is worth mentioning here that the exact solution of the above BVP is y(x) = 1+ x + 

x2; therefore the exact result is 
y y

y y
y y

( . ) .
( . ) .

( . ) .

0 25 1 3125
0 5 1 75

0 75 2 3125

1

2

3

= =
= =
= =

. Also, note that the central differences 

are used for approximations of derivatives as they provide a higher order of accuracy as 
compared to forward and backward differences. 

Solve the differential equation

 ′′ − ′ + = + ≤ ≤y xy y x x2 4 0 0 6; .

subject to boundary conditions

′ = =y y( ) , ( . ) . ,0 1 0 6 1 96  by taking step size h = 0.2. Use central difference approximations 
for the differential equation and derivative boundary condition. 

15.11Example
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Ans.
The nodal points are x x x x0 1 2 30 0 2 0 4 0 6= = = =, . , . , . . Discretization of BVP at x xi=  
gives

 

y y y
h

x
y y

h
y x

y y y x h

i i i
i

i i
i i

i i i i

+ − + −

+ −

− +
−

−
+ = +

− +( ) −

1 1
2

1 1

1 1

2
2

2 4

2 2 yy y h y h x

x h y x h y h
i i i i

i i i i

+ −

+ −

−( ) + = +( )
−( ) + +( ) − −(

1 1
2 2

1 1
2

4 2 4

2 2 4 1 )) = +( )y h xi i2 42  (15.26)

The central difference approximation of derivative boundary condition ′ =y ( )0 1 provides 
the following result

 
y y

h
y y1 1

1 12
1 0 4

−
= = −−

−, .or  (15.27)

Now, we will evaluate Eq. (15.26) at different values of x. 

At x = x0 = 0; Eq. (15.26) is given by

 
2 2 4 1 2 4

2 2 3 84 3
0 1 0 1

2
0

2
0

1 1 0

−( ) + +( ) − −( ) = +( )
+ − =

−

−

x h y x h y h y h x
y y y. . 22

Replacing y y− = −1 1 0 4.  from Eq. (15.27), we get

 4 3 84 1 121 0y y− =. .  (15.28)

At x = x1 = 0.2; the expression (15.26) provides 

 
2 2 4 1 2 4

1 96 2 04 3 84
1 2 1 0

2
1

2
1

2 0

−( ) + +( ) − −( ) = +( )
+ −

x h y x h y h y h x
y y y. . . 11 3216= .  (15.29)

Similarly at x = x2 = 0.4, we have

 
2 2 4 1 2 4

1 92 2 08 3 84
2 3 2 1

2
2

2
2

3 1

−( ) + +( ) − −( ) = +( )
+ −

x h y x h y h y h x
y y y. . . 22 3232= .

Using value of y y3 0 6 1 96= =( . ) . , from given boundary condition, we get

 2 08 3 84 3 441 2. . .y y− = −  (15.30)

On solving the system of equations (15.28–15.30), the values of y at different nodal points 
are as follows

 

y y
y y
y y

0

1

2

0 1 046396684
0 2 1 284540816
0 4 1 591626

= =
= =
= =

( ) .
( . ) .
( . ) . 2276

Note that the exact analytical solution is x2 + x + 1. We can easily compare the solution 
obtained from finite difference method and exact solution. 
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668 Numerical Methods

15.8 Finite Difference Approximations for Unequal Intervals 

So far, we have discussed the BVPs with equally spaced node points, which is not always 
practically suitable. In many scientific and engineering problems, the changes near the 
boundaries are much more as compare to the other points in the domains. Therefore, the 
spacing between nodes near the boundaries has to be much less in comparison with other 
nodes in the domain. So, computations with unequally spaced nodes produce more accurate 
results as compared to equally spaced nodes. 

Consider the values of function y(x) are given at unequal intervals, e.g., x h x x h− +2 1, , . 
Then, the various difference formulas for first and second derivatives are as follows 

Forward Difference
Let the values of function be on the points with unequal length, x x h x h h, ,+ + +1 1 2, then 
using the Taylor expansions, we have 

y x h y x h y x
h

y x( ) ( ) ( )
!

( )+ = + ′ + ′′ + ⋅⋅⋅1 1
1

2

2
 (15.31)

y x h h y x h h y x
h h

y x( ) ( ) ( ) ( )
!

( )+ + = + + ′ +
+( )

′′ + ⋅⋅⋅1 2 1 2
1 2

2

2
 (15.32)

The finite difference approximation for the first order derivative term from Eq. (15.31) is as 
follows

′ =
+ −

+y x
y x h y x

h
O h( )

( ) ( )
( )1

1
1  (15.33)

This formula has order one as the error term is of the order O(h1). A more accurate 
approximation can be obtained from Eqs. (15.31) and (15.32), where the order is two.

′ =
− + + + + + − + −

y x
h y x h h h h y x h h h h y x

h h
( )

( ) ( ) ( ) {( ) } ( )1
2

1 2 1 2
2

1 1 2
2

1
2

1 22 1 2
1

2
1 2( )

( , )
h h

O h h h
+

+  (15.34)

Similarly, the forward difference approximation for the second order derivative is given by

′′ =
+ + − + + +{ }

+
+y x

h y x h h h h y x h h y x
h h h h

O( )
( ) ( ) ( ) ( )

( )
(

2 1 1 2 1 2 1 2

1 2 1 2

hh h1 2, )  (15.35)

Backward Difference 
Let the values of function be on the points, x h h x h x− + −( ), ,1 2 1 , then using the Taylor 
expansions, we have 

y x h y x h y x
h

y x( ) ( ) ( )
!

( )− = − ′ + ′′ − ⋅⋅⋅1 1
1

2

2
 (15.36)

y x h h y x h h y x
h h

y x− +{ } = − + ′ +
+( )

′′ − ⋅⋅⋅( ) ( ) ( ) ( )
!

( )1 2 1 2
1 2

2

2
 (15.37)
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On using the Taylor expansion (15.36), we get following backward difference formula for 
first order derivative

′ =
− −

+y x
y x y x h

h
O h( )

( ) ( )
( )1

1
1  (15.38)

This approximation has order one, we can compute the backward difference approximation 
of order two by using both the Taylor expansions (15.36) and (15.37) 

′ =
+ − − + − + − −

y x
h h h y x h h y x h h y x h h

h h
( )

{( ) } ( ) ( ) ( ) ( )1 2
2

1
2

1 2
2

1 1
2

1 2

1 2 (( )
( , )

h h
O h h h

1 2
1

2
1 2+

+  (15.39)

Similarly, the second order derivative term can be approximated by the following formula

′′ =
− + − + − −{ }

+
+y x

h y x h h y x h h y x h h
h h h h

O( )
( ) ( ) ( ) ( )

( )
(

2 2 1 2 1 1 1 2

1 2 1 2

hh h1 2, )  (15.40)

Central Difference
On using Taylor expansions at the points x – h2 and x + h1, we have 

y x h y x h y x
h

y x

y x h y x h y x
h

( ) ( ) ( )
!

( )

( ) ( ) ( )

+ = + ′ + ′′ + ⋅⋅⋅

− = − ′ +

1 1
1

2

2 2

2
22

2

2!
( )′′ − ⋅⋅⋅y x

 (15.41)

We can easily compute the following central difference approximation for the first order 
derivative term 

′ =
+ + − − −

+
+y x

h y x h h h y x h y x h
h h h h

O h h( )
( ) ( ) ( ) ( )

( )
(2

2
1 1

2
2

2
1
2

2

1 2 1 2
1 22 )  (15.42)

Second order derivative can be approximated by following central difference formula

′′ =
+ − + + −{ }

+
−y x

h y x h h h y x h y x h
h h h h

h( )
( ) ( ) ( ) ( )

( )
(

2 1
6

2 1 1 2 1 2

1 2 1 2
1 −− ′′′ +h y x O h h h2

2
1 2) ( ) { ( , )}

 (15.43)

Solve the differential equation

 ( ) ( ) ;1 1 0 12− ′′ + ′ − = − ≤ ≤x y xy y x x

subject to boundary conditions 
 y y( ) , ( )0 1 1 3= =

by taking nodal points 0.2, 0.5 and 0.8. 

15.12Example
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Ans.
The nodal points are given by

 
x x x x x
y y y y y y

0 1 2 3 4

0 1 2

0 0 2 0 5 0 8 1
0 0 2 0 5

= = = = =
= = =

, . , . , . ,
( ), ( . ), ( . ), yy y y y3 40 8 1= =( . ), ( )

The given differential equation is as follows

 ( ) ( )1 1 2− ′′ + ′ − = −x y xy y x

On using the finite differences (16.28) and (16.29), at x = xi, we get the following expression

 
( )

( ) ( ) ( ) ( )
( )

1
2 2 1 1 2 1 2

1 2 1 2

−
+ − + + −{ }

+





x
h y x h h h y x h y x h

h h h hi
i i i



+
+ + − − −

+



x
h y x h h h y x h y x h

h h h hi
i i i2

2
1 1

2
2

2
1
2

2

1 2 1 2

( ) ( ) ( ) ( )
( )




− = −y x xi i( ) ( )1 2

 
2 1 2 1 1 2 1 2

2
2

1

( ) ( ) ( ) ( ) ( )

( )

− + − + + −{ }
+ + +

x h y x h h h y x h y x h

x h y x h
i i i i

i i (( ) ( ) ( )

( ) ( ) ( )

h h y x h y x h

y x h h h h x h h
i i

i i

1
2

2
2

1
2

2

1 2 1 2
2

1 21

− − −( )
− + = − (( )h h1 2+

 

2 1

2 1
2 2

2
1

1 2 1
2

2
2

1 2

( ) ( )

( )( ) ( )

− +( ) +

+ − − + + − −

x h x h y x h

x h h x h h h h
i i i

i i (( ) ( )

( ) ( ) ( ) (

h h y x

x h x h y x h x h h h h
i

i i i i

1 2

1 1
2

2
2

1 2 12 1 1

+( )
+ − −( ) − = − + 22 )  (15.44)

Using the values i = 1, 2, 3 in Eq. (15.44), the following set of three algebraic equations is 
obtained

i = 1, h h y2 1 00 2 0 3 1= = =. , . ,

2 1 0 2 0 2 0 2 0 2

2 1 0 2 0 3 0 2 0 2 0 3

2
2

2

( . ) . ( . )( . )

( . )( . . ) . (( . )

− +( )
+ − − + + −

y

(( . ) ) ( . )( . )( . . )

( . ) . ( . )( . )

0 2 0 3 0 2 0 3 0 2

2 1 0 2 0 3 0 2 0 3

2
1

2

− +( )
+ − −( )

y

(( ) ( . ) ( . )( . )( . . )
. . .

1 1 0 2 0 3 0 2 0 3 0 2
0 328 0 829 0 4428

2

2 1

= − +
− = −y y

 (15.45)

i = 2, h h2 10 3 0 3= =. , .

2 1 0 5 0 3 0 5 0 3

2 1 0 5 0 3 0 3 0 5 0 3 0 3

2
3

2 2

( . ) . . ( . )

( . )( . . ) . ( . .

− +( )
+ − − + + −

y

)) . ( . )( . . )

( . ) . . ( . ) ( . )

− +( )
+ − −( ) = −

0 3 0 3 0 3 0 3

2 1 0 5 0 3 0 5 0 3 1 0 5
2

2
1

y

y 22

3 2 1

0 3 0 3 0 3 0 3
0 345 0 654 0 255 0 0135

( . )( . )( . . )
. . . .

+
− + =y y y

 (15.46)
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i = 3, h h y2 1 40 3 0 2 3= = =. , . ,

2 1 0 8 0 3 0 8 0 3 3

2 1 0 8 0 2 0 3 0 8 0 2

2

2

( . )( . ) . ( . ) ( )

( . )( . . ) . (( . )

− +( )
+ − − + + −− − +( )
+ − −( )

( . ) ) ( . )( . )( . . )

( . ) . . ( . )

0 3 0 2 0 3 0 2 0 3

2 1 0 8 0 2 0 8 0 2

2
3

2

y

y22
2

3 2

1 0 8 0 2 0 3 0 2 0 3
0 27 0 048 0 5748

= − +
− + = −

( . ) ( . )( . )( . . )
. . .y y

 (15.47)

Solving equations (15.45–15.47), we get

 
y y
y y
y y

( . ) .
( . ) .
( . ) .

0 2 1 223776
0 5 1 743020
0 8 2 438759

1

2

3

= =
= =
= =

15.9 Discussion

Differential equations arise in the modeling of many physical phenomena. So, the solutions 
of these differential equations are of great importance in the understanding of these physical 
phenomena. In practical problems, the solutions of differential equations are not an easy 
task. The existence and uniqueness of the solution of boundary value problem also needs to 
be addressed. For example, exercise 15.14 has two such simple examples of boundary value 
problems without unique solutions. 

During the implementation of the numerical schemes to the boundary value problems, 
we face many problems. Here, we point out some major aspects of implementing the finite 
difference method to boundary value problems.

1. We have neglected the terms containing powers of step size (h) in finite difference 
approximations of derivative terms. In central difference approximations of 
derivative terms in Example 15.10, we have neglected the terms containing h2 = 
(0.25)2 = 0.0625 and higher power of h. This error is very large in scientific and 
engineering computations. We have to reduce the step size h to decrease this 
error, for example, step size h = 0.001. In this case, we have a linear system of 999 
equations in 999 variables. The problems in the solution of this large system are 
discussed below. 

2. Programming is the only way to solve such a large system. The solution procedure 
involves two major steps 
i. Construction of linear system from the boundary value problem
ii. To apply the numerical method for the solution of this linear system
These two steps require very large numbers of computations. To handle these 
computations and to reduce round-off errors, we require high-end computers and 
latest software. 
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672 Numerical Methods

3. We can solve this large system using direct methods like Gauss elimination, 
and then a large round-off error is produced during computation. We can use 
different strategies like pivoting to reduce this error, but still, a large error remains 
in computations. 

4. If we solve the large system using an iterative procedure like Gauss–Seidel, then 
following two problems need to addressed properly:
i. Convergence of iterative procedure to the exact solution, see discussion section 

of Chapter 5 for more details. 
ii. The number of computations increases significantly as compared to the direct 

method, which increases the run-time of the algorithm as well as required 
high configuration computer for computations.

5. It is worth mentioning that the generated linear system is tridiagonal. So, instead 
of using algorithms for general systems, we can use some efficient algorithms 
specifically designed to solve tridiagonal systems. For example, Thomas algorithm 
in Example 5.16 is used to solve the linear system of Example 15.10.

Exercise 15

1. Obtain first two approximations of Picard method for the following system of ODEs and hence 
find the values of y(0.2) and z(0.2).

 

dy
dx

x z

dz
dx

x y y z

= +

= − = =2 0 2 0 1; ( ) , ( )

Ans.

 

y x x
x

z x x
x

y x x
x x

z x

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1
2

1
2

2
2 3

2

2
2

1 4
2

2
3

2 6

= + + = − +

= + − + == − − − − −

= =

1 4
3

2 4 20
0 2 2 141333 0 2 0 131584

2
3

4 5

x
x

x
x x

y z( . ) . ( . ) .

2. Find the third approximation of Picard method for the following IVP and hence find the value 
of y(0.1). 

 
d y
dx

xy

y y

2

2 1

0 1 0 0

− =

= ′ =( ) , ( )

Ans. y
x x

y3

2 3

1
2 6

0 1 1 005167= + + =; ( . ) .
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Systems of First Order ODEs and Higher Order ODEs: Initial and Boundary Value Problems 673

3. Solve the following system of first order ODEs with the aid of Taylor series method. Obtain first 
five terms of Taylor series and hence find the values of y(0.1) and z(0.1). 

 

dy
dx

z y x

dz
dx

y x

y z

= + −

= +

= =

2

0 0 0 0

2

cos( )

( ) , ( )

Ans.

 
y x x

x x
z x x

x x

y z

( ) ( )

( . ) . ( . ) .

= + + = + +

= =

2
4 5 3 5

12 60 6 40
0 1 0 0100085 0 1 0 10001669

4. Find the values of y(0.5) and z(0.5) for the following system of first order ordinary differential 
equations with the help of Euler method. Use step size h=0.1

 

dy
dx

x y z

dz
dx

x z y y z

= + +

= − + = =

sin( )

cos( ) ; ( ) , ( )

2

2 0 1 0 1

Ans. 
y(0.1) = 1.184147 z(0.1) = 1.100000 
y(0.2) = 1.407765 z(0.2) = 1.229721 
y(0.3) = 1.677660 z(0.3) = 1.402936 
y(0.4) = 2.003913 z(0.4) = 1.639630 
y(0.5) = 2.403517 z(0.5) = 1.969340 

5. Find the values of y(0.4) and z(0.4) for the following system of first order ODEs with the help of 
Runge–Kutta method of order 4. Use step size h = 0.2. 

 

dy
dx

x y z

dz
dx

y z

y z

= + +

= +

= =

2

0 0 0 0

2

( ) , ( )

Ans.

 

k k k k

l l l l

y

1 2 3 4

1 2 3 4

0 0 02 0 024 0 05

0 0 0 002 0 004801

0 2

= = = =
= = = =

. . .

. .

( . )) . ( . ) .= =0 023 0 2 0 001467       z

 
k k k k

l l
1 2 3 4

1 2

0= = = =
= =

0.049493 079852 0.086419 0.126580

0.004600

.

00.009552 0.012593 0.021923

      

l l

y z
3 4

0 4 0 107769 0 4

= =
=( . ) . ( . ) == 0 013269.  
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674 Numerical Methods

6. Apply the Runge–Kutta fourth order method to the following IVP

 x y xy y y y2 3 4 8 1 3 1 2′′ − ′ + = = ′ =, ( ) , ( )

 to estimate y(1.4) with h = 0.2 and compare the results with the exact solution.
Ans. 
The equivalent system of first order ODEs is as follows

 

dy
dx

z

dz
dx

xz y
x

y z

=

=
+ −

= =

8 3 4

1 3 1 2

2

( ) , ( )

On solving the given system with the help of Runge–Kutta fourth order method, we get

k1=0.400000 k2=0.440000 k3=0.440661 k4=0.479038
I1=0.400000 I2=0.406612 I3=0.395192 I4=0.397229

y(1.2) = 3.440060 z (1.2) = 2.400139

k1=0.480028 k2=0.520031 k3=0.520505 k4=0.559307
I1=0.400036 I2=0.404771 I3=0.396396 I4=0.398284

y (1.4) = 3.960128 z (1.4) = 2.800248

Exact Solution: y x x( ) = +2 2

7. Consider a series circuit with resistor R, inductor L, and capacitor C, along with electromotive 
force (voltage supply) E. 

R

Inductor

Capacitor

Resistor
Electromotive

Force
E

L

C

The resistance R, inductance L and capacitance C are measured in ohms (Ω), henrys (H) and farads 
(F) respectively. Electromotive force E is measured in volts (V) and it may be a function of time. 

Charge (q) and current I
dq
dt

=





 in the circuit are measured in coulombs and amperes 

respectively. Kirchhoff’s second law can be used to study current flow in the circuit. It states that 
the electromotive force E around a closed circuit loop is equal to the sum of voltage drops across 
every component in the circuit. 
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Systems of First Order ODEs and Higher Order ODEs: Initial and Boundary Value Problems 675

If the initial charge on the capacitor and initial current are zero, then the charge (q) on the 
capacitor at any time t > 0 is given by the following differential equation 

 1
5

2 20 10 2 0 0 0
2

2

d q
dt

dq
dt

q t q q+ + = = ′ =sin( ); ( ) ( )

Solve the above differential equation with the aid of Runge–Kutta method of order 4 to compute 
the charges on the capacitor at time t = 0.1 and 0.2 [i.e., find the values of q(0.1) and q(0.2)].

Ans.

 

k k k k

l l l l
1 2 3 4

1 2 3

0 0

0

= = = =
= = =

0.024958 0.024958

0.499167  0.249584 44

1 2 3

0 1 0 012479

=
=

= = =

0.494180

0.033195 0.060025 0.06252

q

k k k

( . ) .

44 0.075939

0.536608 0.586585  0.427445 0.437669

k

l l l l
4

1 2 3 4

=
= = = =    

q( . ) .0 2 0 071518=

The inductor L, resistor R and capacitor C produce the voltage drops of L
d q
dt

2

2 , R
dq
dt

 and 
1
C

q 

respectively. So, Kirchhoff’s second law gives the following equation

 L
d q
dt

R
dq
dt C

q E
2

2

1+ + =

Now, we will discuss the application of this model to investigate the current flow in a closed 
series circuit with the help of the following example. 

A series circuit has an inductor of 0.2 H, a resistor of 2Ω  and a capacitor of 
1

20
 F as shown in the 

following figure. An electromotive force E t=10 2sin( ) is applied to the 

E 10 Sin(2t) R = 2Ω

L = 0.2 H

C =        F1
20
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676 Numerical Methods

8. A coil spring, with spring constant k, is suspended from a fixed support; weight (mg) is attached 
to the lower end of the coil. The spring stretched l1 metres from its equilibrium position due 
to attached weight. The weight further pulled down l2 metres below equilibrium position and 

release from an initial velocity v0 at time t = 0. The resistance of the medium is given by a
dx
dt

, 

where a is a constant depending on medium viscosity and 
dx
dt

 is the velocity of the spring. If 

an external force F(t) is applied, then the displacement x of the weight at any time t is given by 
following initial value problem

 m
d x
dt

a
dx
dt

k x F t x l
dx
dt

v v
t

2

2 2
0

00 0+ + = = = =
=

( ); ( ) , ( )

The following initial value problems represent a few of such kind of models. 

Solve the following IVPs with the help of Runge–Kutta method of order 4 to compute the values 
of x(0.1) and x(0.2).

 a) 
d x
dt

dx
dt

x x x
2

2 2 10 0 0 10 0 0+ + = = ′ =; ( ) , ( )

 b) 
d x
dt

dx
dt

x t x x
2

2 4 20 2 2 0 0 0 0+ + = = ′ =cos( ); ( ) , ( )

 c) 
d x
dt

dx
dt

x t x x
2

2 4 20 2 2 0 0 0 1+ + = = ′ =cos( ); ( ) , ( )

Ans.

a k k k k

l l l l

x

) .1 2 3 4

1 2 3 4

0 0 5

10 9 8 7

= = − = − = −
= − = − = − = −

0.45 0.885

.85 .78

(( . )

. . .

0 1

0 891333 1 278992 1 217943 11 2 3 4

=

= − = − = − = −

9.535833 

 k k k k ..

. . . .

(

537379

7 753166 6 532184 6 460453 5 2431341 2 3 4l l l l

x

= − = − = − = −
00 2

0 0 01

0 2
1 2 3 4

1 2

. )

) .

.

=

= = = =
= =

8.298737

0.007950 0.015720b k k k k

l l 00.159001 0.157201 0.117233

0.008603

0.015827

l l

x

k k

3 4

1

0 1

= =
=

=

( . )

22 3 4

1 2

= = =
= =

0.021602 0.019409 0.023290  

0.115498 0.071625

k k

l l l33 4

1 2 3

0 2

0 1 0 09

= =
=

= = =

0.074624 0.035030  

0.028793

0

l

x

c k k k

( . )

) . . ..086950         0.076120

0.260999 0.238799

k

l l l
4

1 2 30 2

=
= − = − = −. ll

x

k k k

4

1 2 3

0 1

= −
=

= = =

0.282367

0.088337

0.075301 0.061207 0.060

( . )

0014 0.046614

0.281862 0.305737 0.286869 0.2

k

l l l l
4

1 2 3 4

=
= − = − = − = − 998944

0.149063x( . )0 2 =
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Systems of First Order ODEs and Higher Order ODEs: Initial and Boundary Value Problems 677

9. Compute the approximate solution of following differential equation using finite difference 
method,

 xy y xy x x′′ − ′ + = ≤ ≤2 1 2;

subject to boundary conditions

 y y( ) , ( )1 1 2 3= =

Subdivide the interval [1, 2] into four equal parts. 

Ans. 
y(1.25) = 1.5093, y(1.5) = 2.0355, y(1.75) = 2.5422 

10. Use finite difference approximation to find the values of y(0.25), y(0.5), and y (0.75) for the 
following BVP

 ′′ − ′ + = = =y xy y x y y2 0 0 1 02 ; ( ) , ( )

Ans.
y(0.25) = –0.02191, y(0.5) = – 0.04045, y(0.75) = – 0.04296 

11. Use finite difference approximation to find the values of y(0.25), y(0.5), and y (0.75) for the 
following BVP

 ′′ − ′ + = = =y y y y y0 0 0 1 1; ( ) , ( )

Ans.
y(0.25) = 0.1938, y(0.5) = 0.4290, y(0.75) = 0.7007 

12. Solve the following differential equation with boundary conditions with the aid of finite 
difference method

 
′′ + ′ − = ≤ ≤

= − =
y xy y x
y y

1 0 1
0 1 1 1

;
( ) , ( )

Subdivide the interval [0, 1] into five equal parts. 

Ans.
y y y y( . ) . , ( . ) . , ( . ) . , ( . ) .0 2 0 6 0 4 0 2 0 6 0 2 0 8 0 6= − = − = =

13. Solve the following BVP with the aid of finite difference method

 
′′ − ′ + = − ≤ ≤
′ = = −

y xy y x x
y y

2 4 2 2 0 0 6
0 1 0 6 0 04

; .
( ) , ( . ) .

Replace derivative boundary condition by central difference and divide the interval into three 
equal subintervals (or h = 0.2). 

Ans.
 y y y( ) , ( . ) . , ( . ) .0 1 0 2 0 76 0 4 0 44= − = − = −

14. Try to solve the following boundary value problems with the help of finite difference method 
and interpret the results. 

 i) ′′ + = = ( ) =y y y y0 0 1 2; ( ) , π  (BVP has no solution)

 ii) ′′ + = = ( ) =y y y y0 0 1 1; ( ) , π  (BVP has infinitely many solutions)

15. Find the approximate solution of the following differential equation with the help of shooting 
method,
 xy y xy x x′′ − ′ + = ≤ ≤2 1 2;
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678 Numerical Methods

subject to boundary conditions

 y y( ) , ( )1 1 2 3= =

Subdivide the interval [1, 2] into two equal parts and use Runge–Kutta 4th order method to solve 
the IVPs. 

Ans.

u u
v v

( . ) . ( )
( . ) ( )
1 5 0 861875 2 0
1 5 2 3

= =
= =

.467040
 1.721875 .163212

On using these values in the following expression, we get

 y x u x
u b

v b
v x( ) ( )

( )
( )

( )= + −β

16. Use shooting method to find the values of y(0.2) and y(0.4) for the following BVP

 ′′ − ′ + = + = =y xy y x y y2 4 2 6 0 1 0 6 1 96; ( ) , ( . ) .

Use Runge–Kutta 4th order method to solve the corresponding IVPs. Compare the result with the 
exact solutions y x x x( ) = + +1 2 .

Ans.
u u u
v

( . ) . ( . ) ( . ) .
( . )
0 2 1 042699 0 4 0 6 1 434736
0 2

= = =
=

1.181706
 0.3867721 0.741434v v( . ) ( . ) .0 4 0 6 1 029416= =

By using these values, we have
 y y( . ) . ( . ) .0 2 1 240025 0 4 1 560026= =
The exact solution is given by

 y y( . ) . ( . ) .0 2 1 24 0 4 1 56= =
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Parabolic Equation (Heat Conduction or Diffusion Equation) 
Elliptic Equation (Laplace and Poisson Equations) 
Hyperbolic Equation (Wave Equation)

Most of the problems posed by nature, and which are of interest to physicists and 
mathematicians are usually governed by a single or a system of differential equations. 
In general, a physical system involves more than one independent variable; in that case, 
our mathematical model contains partial differential equations (PDEs). PDEs play a vital 
role in the study of many branches of applied sciences and engineering; for example, fluid 
dynamics, heat transfer, elasticity, electromagnetic theory, optics, plasma physics, quantum 
mechanics, etc. In fact, the theories of modern physics, generally involve a mathematical 
model, as far as possible it is a set of PDEs. We first solve the mathematical model for 
solutions and then come to mathematical and physical interpretations of these solutions. So 
it is necessary to solve the mathematical model to study the physical system. Often, it is very 
difficult to solve these sets of PDEs explicitly for exact solutions. Consequently, numerical 
methods are applied to obtain approximate solutions of these equations. In fact, there is 
much current interest in obtaining numerical solutions of the PDEs. 

There’s no sense in being precise when you don’t even know what you’re talking about. 

John von Neumann 
(December 28, 1903–February 8, 1957) 

He was a great mathematician, physicist and computer scientist who had  
many research investigations to his credit. 

Mathematics is the science which draws necessary conclusions. 

Benjamin Peirce 
(April 4, 1809–October 6, 1880) 

He was a mathematician who had contributed to algebra, number theory,  
statistics and mechanics.

Partial Differential Equations: 
Finite Difference Methods

Chapter
16
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680 Numerical Methods

The finite difference method is a simple and most commonly used method to solve 
PDEs. In this method, various derivatives in the partial differential equation are replaced by 
their finite difference approximations, and the PDE is converted to a set of linear algebraic 
equations. This system of linear equations can be solved by any iterative procedure discussed 
in Chapter 5. Then, the solution of PDE is the solution of this system of linear equations. An 
important advantage of this method is that the most of the calculations can be carried out 
on the computer, and hence the solution is easy to obtain.

16.1 Classification of Second-Order Quasi-Linear PDEs 

Many physical phenomena like heat flow in a metal rod, waves in the string can be well 
described by a second order PDE of type

R x y u
x

S x y u
x y

T x y u
y

L x y u u
x

u
y

( , ) ( , ) ( , ) , , , ,∂
∂

+ ∂
∂ ∂

+ ∂
∂

+ ∂
∂

∂
∂




2

2

2 2

2 



= 0  (16.1)

where the functions R, S, T are continuous functions of the variables x and y only, while 

L is a continuous function of x y u u
x

u
y

, , , ,∂
∂

∂
∂

. The equation is linear in highest derivatives 

(second derivative), therefore it is quasi-linear. The PDE (16.1) is classified according to the 
value of S RT2 4−  as follows

a) Elliptic;  if S RT2 4 0− <  
b) Parabolic;  if S RT2 4 0− =
c) Hyperbolic;  if S RT2 4 0− >

It is similar to the general second-degree equation ax bxy cy fx gy h2 2 0+ + + + + =  in 
coordinate geometry, where it represents an ellipse, parabola and hyperbola if the value of 
b ac2 4−  is negative, zero and positive respectively. Similar to an ellipse with no asymptote, 
the elliptic equation has no characteristic; like parabola has one asymptote, the parabolic 
equation has one characteristic; and the hyperbolic equation has two characteristics similar 
to the hyperbola, which has two asymptotes.

The functions R, S, T are continuous functions of the variables x and y, hence S RT2 4−  is 
also a function of the variables x and y. Therefore, the domain of PDE (16.1) is important in 
describing the classification of PDE, consider the following example of a PDE 

x u
x

x u
x y

x y u
y

xy u
y

u∂
∂

+ ∂
∂ ∂

+ + ∂
∂

+ ∂
∂

+ =
2

2

2 2

22 0( )

For this PDE, we have

S RT x x x y xy2 24 2 4 4− = ( ) − + = −( )( )

This PDE is parabolic on x and y-axes, elliptic in 1st and 3rd quadrants and hyperbolic in 2nd 
and 4th quadrants.
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Partial Differential Equations: Finite Difference Methods 681

Standard P.D.E.:
Equation (16.1) can be classified as discussed above, but certain particular equations govern 
some of the important physical systems. These standard PDEs are as follows

a) Parabolic Equation: Heat conduction or diffusion equation is an important example 
of a parabolic equation, which in one dimension can be read as follows

  ∂
∂

= ∂
∂

u
t

c u
x

2

2

where the constant c
K=

ρω
 is known as diffusivity constant or coefficient of heat 

conduction, and it depends on the nature of the medium. The constants K, ρ , 
and ω  are the conductivity, density and specific heat of the medium, respectively. 
This equation represents heat flow in a homogeneous medium along the x-axis. 
The variable u x t( , ) denotes the temperature at any point x and at any time t. This 
equation describes many other physical phenomena like fluid flow, diffusion, etc. 

The equation represents the change with respect to temporal (time variable t) 
and spatial (space variable x) variables. Therefore it involves both initial as well as 
boundary conditions. It contains the first derivative of the time variable, so only 
one initial condition is present. Two boundary conditions are required due to 
presence of second derivative of space variable. 

 Similarly, two-dimensional heat conduction equation is as follows

  
∂
∂

= ∂
∂

+ ∂
∂







= ∇u
t

c u
x

u
y

c u
2

2

2

2
2

 where ∇ ≡ ∇ ∇ ≡ ∂
∂

+ ∂
∂

2
2

2

2

2.
x y

 is a two dimensional Laplace operator. 

 Similarly three-dimensional heat conduction equation is as follows

  ∂
∂

= ∇u
t

c u2  

 where ∇ ≡ ∂
∂

+ ∂
∂

+ ∂
∂

2
2

2

2

2

2

2x y y
 is Laplace operator in three dimensions. 

b) Hyperbolic Equation: Vibrations of a tightly stretched string between two points 
are well described by the hyperbolic equation known as wave equation in one 
dimension 

  ∂
∂

= ∂
∂

2

2

2

2

u
t

c u
x

Here c
T
m

=  (T is tension in the string and m is the mass per unit length) is a positive 

constant, and it depends on the nature of string. The string is homogeneous, i.e., 
uniform and elastic. The dependent variable u(x, t) is the displacement of the string 
at any point x and at any time t from equilibrium position.
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682 Numerical Methods

Similar expressions for two and three dimensional wave equations are as follows 

  
∂
∂

= ∂
∂

+ ∂
∂







= ∇
2

2

2

2

2

2
2u

t
c u

x
u

y
c u

  
∂
∂

= ∂
∂

+ ∂
∂

+ ∂
∂







2

2

2

2

2

2

2

2

u
t
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c) Elliptic Equation: All time-dependent problems are known as “transient” problems. 
As time increases, transient problem tends to steady state i.e. independent of time 

(mathematically, 
∂
∂

=u
t

0). In many cases, the process attains its final stage very 

soon. In such cases, we are interested in the final stage of the problem, i.e., the 
steady state. Two important cases of elliptic equations are Laplace and Poisson 
equations. These equations also represent heat and wave equations in steady states. 

  ∇ ≡ ∂
∂

+ ∂
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=2
2

2
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2 0u u
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u
y

  (Laplace equation)

  ∇ ≡ ∂
∂

+ ∂
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=2
2

2

2

2u u
x

u
y

f x y( , )  (Poisson equation)

These equations also describe other physically important phenomena in different 
branches of science, like electromagnetic theory and torsion problems etc. These 
equations are also known as potential equations as the variable u represents the 
gravitational potential, velocity potential, and electromagnetic potential in various 
relevant fields of science. 

16.2 Initial and Boundary Conditions 

The mathematical model for any physical phenomenon contains the adequate number 
of constraints, such that we can determine a unique solution for the problem. It is worth 
mentioning here that if the mathematical model has derivative term with respect to time 
variable, then the restrictions are initial conditions. Therefore, in case of one-dimensional 
heat conduction equation only one initial condition [u(x, 0) = f (x)] is required. It is quite 
obvious as initially (t = 0), the composition of system is well known. Similarly, two initial 
conditions (u(x, 0) = f (x) and ut(x, 0) = g (x)) are given in case of wave equation as the time 
derivative is up to second order. 

If the differential equation contains the derivative terms on spatial variables, then 
the boundary conditions are prescribed. Since all three types of equations (Heat, Wave, 
and Laplace and Poisson), have second derivatives w.r.t. space variable, so two boundary 
conditions must be given for each spatial variable. Also, the boundary condition can contain 
term up to the first derivative. Boundary conditions at the boundary points a and b must 
be of term form
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l u a t m u
n

a t k

l u b t m u
n

b t k

1 1 1

2 2 2

( , ) ( , )

( , ) ( , )

+ ∂
∂

=

+ ∂
∂

=

where k l m ii i i, , , ,= 1 2; are the functions of t only and n is the direction of the outward 
drawn normal to the surface (in two and three dimensions). In the case of one dimension, 
the direction of the outward drawn normal is the direction of increasing x. This type of 
boundary conditions is known as mixed type boundary conditions, as it involves both 
values of the function u(x, t) and its normal derivative. Particular types of the boundary 
condition are classified as follows

i) Dirichlet conditions: If only function value u(x, t) is prescribed on the boundary.
ii) Neumann conditions: If only normal derivative (flux) of u(x, t) is prescribed on 

the boundary.

16.3 Finite Difference Approximations for Partial Derivatives 

The finite difference method is simple and most commonly used numerical method to solve 
differential equations with boundary conditions. In this method, various derivative terms 
in the differential equation are replaced by their finite difference approximations, and the 
differential equation is converted into a set of algebraic equations. Then, the solution of the 
system of linear equations provides the solution of the differential equation. This system of 
linear equations can be solved by any direct or iterative procedure discussed in Chapter 5.  
We have already discussed finite difference method for solutions of boundary value 
problems of ODEs in Chapter 15. An important advantage of this method is that it can be 
implemented on the computer to obtain the solution easily. In this section, we will discuss 
the finite difference approximations of partial derivatives using Taylor series.

The Taylor series expansions for the function u = u(x, y) are as follows
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We can easily obtain following approximations for first and second orders partial derivatives 
by using these Taylor expansions.

First Order Partial Derivatives: 

∂
∂

= + − +

∂
∂

= + − +

u x y
x

u x h y u x y
h

O h

u x y
y

u x y k u x y
k

( , ) ( , ) ( , )
( )

( , ) ( , ) ( , ) OO k( )
  Forward Differences

∂
∂

= − − +

∂
∂

= − − +

u x y
x

u x y u x h y
h

O h

u x y
y

u x y u x y k
k

( , ) ( , ) ( , ) ( )

( , ) ( , ) ( , ) OO k( )
  Backward Differences

∂
∂

= + − − +

∂
∂

= + −

u x y
x

u x h y u x h y
h

O h

u x y
y

u x y k u x

( , ) ( , ) ( , )
( )

( , ) ( , ) ( ,
2

2

yy k
k

O k− +)
( )

2
2

 Central Differences

Second Order Partial Derivatives:
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Last mixed derivative is obtained from finite difference approximations of first order 
derivatives. Similarly, backward and central differences for second order derivatives are as 
follows
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To replace various derivative terms by their finite difference approximations, we discretize 
the derivative terms at any point ( , )x yi j . Let the variables x and y be equidistant with spacing 
h and k respectively. Let us assume that the node points are ( , ); ( ) , ( )x y i n j mi j = =1 1 1 1 . 
Consider the function u x y ui j i j( , ) ,= . So, we can obtain following approximations for first 
and second order derivative terms at a point ( , )x yi j  by using the above expressions.
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Now, we will discuss various finite difference methods (FDM) for the solutions of some 
standard PDEs representing important physical systems. These PDEs include heat 
conduction (diffusion) equation, Laplace and Poisson equations, and wave equation. 

Note: The central differences are better approximations compared to other differences, as 
the neglecting terms are of order h2 in central differences compared to the order of h in 
forward and backward differences. Hence, central difference formulas are preferred over 
forward and backward differences. 

16.4 Parabolic Equation (1-dimensional Heat Conduction Equation)

The heat conduction (or diffusion) equation in 1-dimension is a parabolic equation of 
following form

∂
∂

= ∂
∂

u
t

c u
x

2

2  (16.2)

The following five finite difference schemes for 1-dimensional heat conduction Eq. (16.2) 
will be discussed.
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Partial Differential Equations: Finite Difference Methods 689

i) Bender–Schmidt Explicit Scheme
ii) Crank–Nicolson (CN) Scheme
iii) General Implicit Scheme
iv) Richardson Scheme
v) Du-Fort and Frankel Scheme

16.4.1 Bender–Schmidt Explicit Scheme 
Let us assume that the value of u x t( , ) at point ( , )x ti j  is ui j,  i.e. u x t ui j i j( , ) ,= . Also assume 
that step size for the variable t is ∆ =t k, and step size for the variable x is ∆ =x h.

Discretizing Eq. (16.2) at point ( , )x ti j , we get 

∂
∂

= ∂
∂

u
t

c u
xx t x ti j i j

( , ) ( , )

2

2

The forward difference formula of first order derivative term for time variable and central 
difference formula of second order derivative term for space variable (from Section 16.3) 
are given by

∂
∂

=
−

+

∂
∂

=
− +

+

+

u x t
t

u u
k

O k

u x t
x

u u u

i j i j i j

i j i j i j i

( , )
( )

( , )

, ,

, ,

1

2

2
1 2 −− +1

2
2, ( )j

h
O h

Using these formulas in heat equation, and neglecting the error terms (O(k) and O(h2)), we 
have

 
u u

k
c

u u u
h

i j i j i j i j i j, , , , ,+ + −−
=

− +1 1 1
2

2

(or) u u
c k
h

u u ui j i j i j i j i j, , , , ,+ + −− = − +( )1 2 1 12

Let r
c k
h

= 2 , then the Bender–Schmidt explicit scheme for the solution of Eq. (16.2) is as 

follows

u r u r u r ui j i j i j i j, , , ,( )+ − += + − +1 1 11 2  (16.3)

This scheme (16.3) is known as explicit scheme.

Here, forward difference formula is used to approximate the term ∂
∂
u
t

. Therefore, the error 

term in time derivative approximation is of linear order O(k). In next section, we will show 
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690 Numerical Methods

that the explicit scheme is stable for the value r
c k
h

= ≤2

1
2

. Now we will move towards more 

accurate and unconditionally stable scheme, i.e., Crank–Nicolson scheme, in which, both the 
derivative terms are replaced by central difference formulas.

16.4.2 Crank–Nicolson (CN) Scheme 
Let us discretize Eq. (16.2) at point ( , )/x ti j+1 2

∂
∂

= ∂
∂

+ +

u
t

c u
xx t x ti j i j

( , ) ( , )/ /1 2 1 2

2

2  (16.4)

Assume the node points in time variable t with step size k/2 are t k t t kj j j− +/ , , /2 2 (or 

t t tj j j− +1 2 1 2/ /, , ). Using central difference approximation for ∂
∂
u
t

 with these points, we have 

∂
∂

=
−

=
−+ + +u x t

t
u u

k
u u

k
i j i j i j i j i j( , )

( / )
/ , , , ,1 2 1 1

2 2
 (16.5a)

As the values at the point ( , )/x ti j+1 2  are not known therefore the central difference 

formula ∂
∂

=
− ++ + + + − +

2
1 2

2
1 1 2 1 2 1 1 2

2

2u x t
x

u u u
h

i j i j i j i j( , )/ , / , / , /  cannot be used for the derivative term 

∂
∂

+

2

2

1 2

u
x

x ti j( , )/

 in Eq. (16.4). So, we will approximate the term 
∂
∂

+

2

2

1 2

u
x

x ti j( , )/

 with average values 

of 
∂
∂

2

2

u
x

 at ( , )x ti j  and ( , )x ti j+1 . i.e.

∂
∂

=
∂

∂
+

∂
∂











=

+ +
2

1 2
2

2

2

2
1

2

1
2

1
2

u x t
x

u x t
x

u x t
x

i j i j i j( , ) ( , ) ( , )/

uu u u
h

u u u
h

i j i j i j i j i j i j+ − + + + − +− +
+

− +





1 1

2
1 1 1 1 1

2

2 2, , , , , ,  (16.5b)

Using Eqs. (16.5a) and (16.5b) in Eq. (16.4), we get

u u
k

c
u u u

h
u u ui j i j i j i j i j i j i j i, , , , , , ,+ + − + + + −−

=
− +

+
− +1 1 1

2
1 1 11

2
2 2 11 1

2
, j

h
+






Let r
c k
h

= 2 , then the Crank–Nicolson (CN) implicit scheme for the solution of Eq. (16.2) is 

as follows
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− + + − = + − +− + + + + − +r u r u r u r u r u r ui j i j i j i j i j i1 1 1 1 1 1 12 1 2 1, , , , ,( ) ( ) ,, j  (16.6)

It is easy to see that this scheme is implicit scheme, as we can’t obtain the solution ui j, +1 directly 
from the scheme. First, a set of equations is obtained, then we solve this set for values of ui j, +1 
in a row. 

16.4.3 General Implicit Scheme 
In CN-scheme, equal weightage is given to both j and j +1 levels, consider Eq. (16.5b) 

∂
∂

=
∂

∂
+

∂
∂











+ +
2

1 2
2

2

2

2
1

2

1
2

u x t
x

u x t
x

u x t
x

i j i j i j( , ) ( , ) ( , )/

Let us construct an implicit scheme by giving different weight to different levels, say θ and 
(1–θ) to levels j and j + 1, respectively, then

∂
∂

=
∂

∂
+ −

∂
∂

+ +
2

1 2
2

2

2

2
1

21
u x t

x
u x t

x
u x t

x
i j i j i j( , ) ( , )

( )
( , )/ θ θ

It is worth to note down that CN method can be obtained for θ = 1
2

. Using central difference 

formulas, we have 

u u
k

c
u u u

h
u ui j i j i j i j i j i j i j, , , , , , ,( )+ + − + + +−

=
− +

+ −
−1 1 1

2
1 1 12

1
2

θ θ
++





− +u

h
i j1 1

2
,

Assume, r
c k
h

= 2 , the general implicit scheme for the solution of Eq. (16.2) is as follows

u u r u u u u ui j i j i j i j i j i j i j, , , , , , ,( )+ + − + + +− = − +( ) + − − +1 1 1 1 1 12 1 2θ θ uu

r u r u r u
i j

i j i j

− +

− + +

( )( )
− − + + − − −

1 1

1 1 11 1 2 1 1
,

, ,( ) ( ) ( ( )) ( )or θ θ θ ii j i j i j i jr u r u r u+ + − += + − +1 1 1 11 2, , , ,( )θ θ θ

 (16.7)

This scheme (16.7) is known as general implicit scheme.
So far, we have discussed Bender–Schmidt explicit scheme and CN and general implicit 

schemes for the solutions of 1-dimensional heat conduction Eq. (16.2). It is worth to mentioning 
here that these schemes are two-level schemes as these involve only two levels (j and j+1) of 
time variable (clear from formulas 16.3, 16.6 and 16.7 of these schemes). 

Now, we will discuss three level schemes for the solution of Eq. (16.2) known as Richardson 
scheme and Du-Fort & Frankel scheme.
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692 Numerical Methods

16.4.4 Richardson Scheme 
Consider Eq. (16.2) at point ( , )x ti j

∂
∂

= ∂
∂

u
t

c u
xx t x ti j i j

( , ) ( , )

2

2

Using central difference formulas for 
∂

∂
=

−
++ −u x t

t
u u

k
O ki j i j i j( , )

( ), ,1 1 2

2
 and 

∂
∂

=
− +

++ −
2

2
1 1

2
22u x t

x
u u u

h
O hi j i j i j i j( , )

( ), , , , we have

 
u u

k
c

u u u
h

i j i j i j i j i j, , , , ,+ − + −−
=

− +1 1 1 1
22

2

(or) u u
c k
h

u u ui j i j i j i j i j, , , , ,+ − + −= + − +( )1 1 2 1 12 2

 u u r u u ui j i j i j i j i j, , , , ,+ − + −= + − +( )1 1 1 12 2  (16.8)

This expression is known as Richardson scheme.

Note that this scheme is unstable for all values of r
c k
h

= 2 . So, we will construct an unconditionally 

stable Du-Fort and Frankel scheme, which is stable for all values of r. 

16.4.5 Du-Fort and Frankel Scheme 
Richardson scheme (16.8) for the solution of Eq. (16.2) is as follows

u u r u u ui j i j i j i j i j, , , , ,+ − + −= + − +( )1 1 1 12 2

Replace the term u u ui j i j i j, , ,= +( )− +
1
2 1 1  with average value at j–1 and j+1 levels as follows 

u u r u u u ui j i j i j i j i j i j, , , , , ,( )+ − + − + −= + − + +( )1 1 1 1 1 12

Rearranging the terms, Du-Fort and Frankel scheme is given by

u
r
r

u
r

r
u ui j i j i j i j, , , ,+ − + −=

−
+

+
+

+( )1 1 1 1

1 2
1 2

2
1 2

 (16.9)

So far, we have discussed five finite difference schemes for the solution of 1-dimensional 
heat conduction Eq. (16.2).

We will use all these schemes to compute the values of u u x ti j i j, ( , )=  at various node points. 
We will construct the following table to collect all the values at one place. 
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Table for values of u
i,j
 = u(x

i
, t

j
)

 i 
j 

0 1 2 … n

0

1

2
.
.
.

u00

u01

u02

.

.

.

u10

u11

u12

.

.

.

u20

u21

u22

.

.

.

…

…

…
.
.
.

u
n0

u
n1

u
n2

.

.

.

Note that the initial condition provides the first row of the table, and boundary conditions 
give first and last columns of the table. 

Solve the 1-dimensional heat conduction equation 

 
∂
∂

= ∂
∂

≤ ≤u
t

u
x

x2 0 1
2

2 ;  with 

 initial condition u x x x( , ) ( )0 2= − , and 
 boundary conditions u t( , )0 0=  and u t( , )1 1= . 
Use Explicit scheme to find the value u x t( , ) up to t = 0 02. , with ∆ =x 0 2.  and ∆ =t 0 005. . 

Ans.
Since ∆ =x 0 2.  for 0 1≤ ≤x , hence our node points are as follows

 x x x x x x0 1 2 3 4 50 0 2 0 4 0 6 0 8 1= = = = = =, . , . , . , . ,

Let u u x ti j i j, ( , )= . The initial condition u x x x( , ) ( )0 2= −  at t0 0=  provides

u u x t u
u u x t u

0 0 0 0

1 0 1 0

0 0 0 2 0 0
0 2 0 0 2 2

,

,

( , ) ( , ) ( )
( , ) ( . , ) . (

= = = − =
= = = − 00 2 0 36

0 4 0 0 4 2 0 4 0 642 0 2 0

3 0 3

. ) .
( , ) ( . , ) . ( . ) .
( ,

,

,

=
= = = − =
=

u u x t u
u u x tt u
u u x t u

0

4 0 4 0

0 6 0 0 6 2 0 6 0 84
0 8 0 0 8 2

) ( . , ) . ( . ) .
( , ) ( . , ) . (,

= = − =
= = = − 00 8 0 96

1 0 1 2 1 15 0 5 0

. ) .
( , ) ( , ) ( ),

=
= = = − =u u x t u  (16.10)

u = 0.84
x = 0.6

u = 0.96
x = 0.8

u = 1
x = 1

u = 0
x = 0

u = 0.36
x = 0.2

u = 0.64

For t = 0

x
x = 0.4

16.1Example
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694 Numerical Methods

Similarly, boundary conditions are u t( , )0 0=  and u t( , )1 1= , so

 

u u x t u t
u u x t u t j

j j

j j

0 0

5 5

0 0
1 1 0 1 2 3

,

,

( , ) ( , )
( , ) ( , ) ; , , ,

= = =
= = = ∀ =for ,,⋅⋅⋅  (16.11)

In the table form, initial values (16.10) and boundary values (16.11) are as follows

 i (x)
j (t)

0(0) 1(0.2) 2(0.4) 3(0.6) 4(0.8) 5(1)

0(0)

1(0.005)

2(0.01)

3(0.015)

4(0.02)

0

0

0

0

0

0.36 0.64 0.84 0.96 1

1

1

1

1

After utilizing the initial and boundary conditions, we will now use the explicit method 
to find the values of u x t( , ) at node points. With ∆ = ∆ =x t0 2 0 005. , .  and c = 2, our r is 
given by

 r c t
x

ck
h

= ∆
∆

= = =2 2 2

1 0 005
0 2

0 25
( . )
( . )

.

Bender–Schmidt Explicit Scheme (16.3) is given by 

 u r u r u r ui j i j i j i j, , , ,( )+ − += + − +1 1 11 2

For r = 0.25, we have 

 u u u ui j i j i j i j, , , ,. . .+ − += + +1 1 10 25 0 5 0 25

Using j = 0 in the above formula, we have

 u u u ui i i i, , , ,. . .1 1 0 0 1 00 25 0 5 0 25= + +− +  

Computing the values for i = 1, 2, 3 and 4, we get

 

u u u u1 1 0 0 1 0 2 00 25 0 5 0 25 0 25 0 0 5 0 36 0 25 0 64, , , ,. . . . ( ) . ( . ) . ( .= + + = + + )) .
. . . . ( . ) . ( . ), , , ,

=
= + + = +

0 34
0 25 0 5 0 25 0 25 0 36 0 5 0 642 1 1 0 2 0 3 0u u u u ++ =

= + + =
0 25 0 84 0 62

0 25 0 5 0 25 0 25 0 643 1 2 0 3 0 4 0

. ( . ) .
. . . . ( . ), , , ,u u u u ++ + =

= + + =
0 5 0 84 0 25 0 96 0 82

0 25 0 5 0 254 1 3 0 4 0 5 0

. ( . ) . ( . ) .
. . ., , , ,u u u u 00 25 0 84 0 5 0 96 0 25 0 1 0 94. ( . ) . ( . ) . ( . ) .+ + =
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These values give the second row of the table.

 i (x)
j (t)

0(0) 1(0.2) 2(0.4) 3(0.6) 4(0.8) 5(1)

0(0)

1(0.005)

2(0.01)

3(0.015)

4(0.02)

0

0

0

0

0

0.36

0.34

0.64

0.62

0.84

0.82

0.96

0.94

1

1

1

1

1

Proceeding in a similar manner, for j = 1, 2, 3, 4 and 5, we will get different rows of the 
table as follows (up to six decimal digits):

 i (x)
j (t)

0(0) 1(0.2) 2(0.4) 3(0.6) 4(0.8) 5(1)

0(0)

1(0.005)

2(0.01)

3(0.015)

4(0.02)

0

0

0

0

0

0.36

0.34

0.325

0.3125

0.301563

0.64

0.62

0.60

0.58125

0.564063

0.84

0.82

0.80

0.78125

0.764063

0.96

0.94

0.925

0.9125

0.901563

1

1

1

1

1

Use Explicit scheme to compute temperature distribution in a uniform insulated rod of 
length 1m with diffusivity constant of the material of the rod is given 1. Both ends of the 
rod are kept at zero temperature, and initial temperature distribution in the rod is given 
by the function u x x( , ) sin( )0 = π . Take ∆ = ∆ =x t1 4 1 16/ , / ; solve up to t = 1/8. 

Ans.
The diffusivity constant of the material of the rod is 1, i.e. c = 1. So, the temperature 
distribution is given by following heat conduction equation 

16.2Example
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∂
∂

= ∂
∂

≤ ≤u
t

u
x

x
2

2 0 1;

Both ends of the rod are kept at zero temperature; therefore boundary conditions are 
given by

 u t u t( , ) ( , )0 1 0= =

Also, initial temperature distribution gives following initial condition 

 u x x( , ) sin( )0 = π

The mathematical model for the given physical problem is complete.

Now, we will compute the temperature distribution at various nodes using explicit scheme

With ∆ = =x t1 4 0/ , , the initial condition u(x, 0) = sin(πx) gives

 

u u x t u
u u x t

1 0 1 0

2 0 2 0

1 4 0 4 1 2 0 707107,

,

( , ) ( / , ) sin( / ) / .
( , )

= = = = =
= =

π
uu

u u x t u

( / , ) sin( / )

( , ) ( / , ) sin( / ) /,

1 2 0 2 1

3 4 0 3 4 1 2 03 0 3 0

= =

= = = = =

π

π ..707107  (16.12)

u = 0.707107
x = 3/4

u = 0
x = 1

u = 0
x = 0

u = 0.707107
x = 1/4

u = 1

For t = 0

x
x = 1/2

The boundary conditions u t u t( , ) ( , )0 1 0= =  provide

 
u u x t u t
u u x t u t j

j j

j j

0 0

4 4

0 0
1 0 0 1 2 3

,

,

( , ) ( , )
( , ) ( , ) ; , , ,

= = =
= = = ∀ =for ,,⋅⋅⋅ (16.13)

In the table form, (16.12) and (16.13) are as follows

 i (x)
j (t)

0(0) 1(1/4) 2(1/2) 3(3/4) 4(1)

0(0)

1(1/16)

2(1/8)

0

0

0

0.707107 1 0.707107 0

0

0

With ∆ = ∆ =x t1 4 1 16/ , /  and c = 1, the value of constant r is given by 

 r c t
x

= ∆
∆

= =2 2

1 1 16
1 4

1
( / )

( / )
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Partial Differential Equations: Finite Difference Methods 697

Explicit scheme (16.3) for r = 1 is as follows

 u u u ui j i j i j i j, , , ,+ − += − +1 1 1

Using j = 0 in the above formula, we have

 u u u ui i i i, , , ,1 1 0 0 1 0= − +− +

Computing the different values of ui,1 for i = 1, 2 and 3, we get second row of following 
table

 i (x)
j (t)

0(0) 1(1/4) 2(1/2) 3(3/4) 4(1)

0(0)

1(1/16)

2(1/8)

0

0

0

0.707107

0.292803

1

0.414214

0.707107

0.292803

0

0

0

By using, j = 1 in the explicit formula, we get 

 u u u ui i i i, , , ,2 1 1 1 1 1= − +− +

For i = 1, 2, 3, we can find values at time t = 1/8. These values are given in the third row 
of the following table.

 i (x)
j (t)

0(0) 1(1/4) 2(1/2) 3(3/4) 4(1)

0(0)

1(1/16)

2(1/8)

0

0

0

0.707107

0.292803

0.121411

1

0.414214

0.171392

0.707107

0.292803

0.121411

0

0

0

Solve the PDE of Example 16.2 using Crank–Nicolson scheme.

Ans. 
Values of ui,j for t = 1/16 (or j = 1): 

Crank–Nicolson formula (16.6) is as follows
− − + + = + + −+ + − + + + −ru ru r u ru ru r ui j i j i j i j i j i1 1 1 1 1 1 12 1 2 1, , , , ,( ) ( ) ,, j

16.3Example
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698 Numerical Methods

With r = 1, j = 0, the CN-formula gives following equations for i = 1, 2, 3

 

− − + = +
− − + = +
− −

u u u u u
u u u u u
u

2 1 0 1 1 1 2 0 0 0

3 1 1 1 2 1 3 0 1 0

4 1

4
4

, , , , ,

, , , , ,

, uu u u u2 1 3 1 4 0 2 04, , , ,+ = +  (16.14)

Using values from Eqs. (16.12) and (16.13) in the system (16.14), we get 

 

− + = + =

− − + = + =
− + = +

u u

u u u
u u

2 1 1 1

3 1 1 1 2 1

2 1 3 1

4 1 0 1

4 1 2 1 2 2
4 0 1

, ,

, , ,

, ,

/ /
== 1  (16.15)

On solving the system (16.15), we have 

 u u u11 31 210 386729 0 546916= = =. , .  (16.16)

 i (x)
j (t)

0(0) 1(1/4) 2(1/2) 3(3/4) 4(1)

0(0)

1(1/16)

2(1/8)

0

0

0

0.707107

0.386729

1

0.546916

0.707107

0.386729

0

0

0

Values of ui,j for t = 1/8 (or j = 2):
With r = 1, j = 1, i = 1, 2, 3, the CN-formula (16.6) provides the following linear system

 

− − + = +
− − + = +
− −

u u u u u
u u u u u
u

2 2 0 2 1 2 2 1 0 1

3 2 1 2 2 2 3 1 1 1

4 2

4
4

, , , , ,

, , , , ,

, uu u u u2 2 3 2 4 1 2 14, , , ,+ = +  (16.17)

Using the known values in the above system, and solving the resulting system of equations, 
we get

 u u u12 32 210 211509 0 29912= = =. , .

 i (x)
j (t)

0(0) 1(1/4) 2(1/2) 3(3/4) 4(1)

0(0)

1(1/16)

2(1/8)

0

0

0

0.707107

0.386729

0.211509

1

0.546916

0.29912

0.707107

0.386729

0.211509

0

0

0
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Partial Differential Equations: Finite Difference Methods 699

Note: The systems 16.15 and 16.17 are tridiagonal systems of linear equations. These small 
systems can be solved using any method discussed in Chapter 5. We have neglected the 
terms containing ∆( ) = =x 2 20 25 0 0625   ( . ) .  and ∆( ) = =t 2 20 0625 0 00390625( . ) . . These 
errors are very large in scientific and engineering computations. We have to reduce the 
step sizes ∆x and ∆t  to decrease these errors, for example, let ∆x = ∆t  = 0.001. Then, 
we have to solve 124 linear systems of 999 equations each to compute the temperature 
distribution up to time t = 0.125. Programming is the only way to solve so many large 
systems. The solution procedure requires very large numbers of computations. To handle 
these computations and to reduce round-off errors, we require high-end computers and 
latest software. Also, it is worth to mention here that these systems are tridiagonal systems, 
so some computationally efficient algorithms for tridiagonal systems will be helpful to 
reduce round-off error to large extent. Since, these systems are diagonally dominant, so 
iterative procedures like Gauss–Seidel method can be used. 

Solve the PDE in Example 16.2 with the help of Richardson scheme and Du-Fort & 
Frankel scheme. 

Ans. 
The Richardson scheme (16.8)

 u u r u u ui j i j i j i j i j, , , , ,+ − + −= + − +( )1 1 1 12 2

is a three level scheme. To start with Richardson scheme, we must have values for at least 
j = 0 and j = 1. Let us use values for t = 1/16 (or j = 1) from CN-scheme of Example 16.3. 

 i (x)
j (t)

0(0) 1(1/4) 2(1/2) 3(3/4) 4(1)

0(0)

1(1/16)

2(1/8)

0

0

0

0.707107

0.386729

1

0.546916

0.707107

0.386729

0

0

0

The values of ui,j for t = 1/8 (or j = 2) with the aid of Richardson scheme (16.8) for i = 1, 
2, 3 are given by 

 i (x)
j (t)

0(0) 1(1/4) 2(1/2) 3(3/4) 4(1)

0(0)

1(1/16)

2(1/8)

0

0

0

0.707107

0.386729

0.254025

1

0.546916

0.359246

0.707107

0.386729

0.254025

0

0

0

16.4Example
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700 Numerical Methods

Similarly, we can compute values for j = 3, 4.

 i (x)
j (t)

0(0) 1(1/4) 2(1/2) 3(3/4) 4(1)

0(0)

1(1/16)

2(1/8)

3(3/16)

4(1/4)

0

0

0

0

0

0.707107

0.386729

0.254025

0.149613

0.089121

1

0.546916

0.359246

0.211586

0.126036

0.707107

0.386729

0.254025

0.149613

0.089121

0

0

0

0

0

Du-Fort and Frankel Scheme
This scheme is also three level scheme, again using values for t = 1/16 (or j = 1) from 
CN-scheme

 i (x)
j (t)

0(0) 1(1/4) 2(1/2) 3(3/4) 4(1)

0(0)

1(1/16)

2(1/8)

0

0

0

0.707107

0.386729

1

0.546916

0.707107

0.386729

0

0

0

On applying Du-Fort and Frankel scheme (16.9) to calculate the values of ui,j for t = 1/8 
(or j = 2), we have 

 
u

r
r

u
r

r
u u

u
r
r

u

i j i j i j i j

i i

, , , ,

,

+ − + −=
−
+

+
+

+( )
=

−
+

1 1 1 1

2

1 2
1 2

2
1 2

1 2
1 2 ,, , ,0 1 1 1 1

2
1 2

+
+

+( )+ −

r
r

u ui i

The values for i = 1, 2, 3 are given by third row of the following table

 i (x)
j (t)

0(0) 1(1/4) 2(1/2) 3(3/4) 4(1)

0(0)

1(1/16)

2(1/8)

0

0

0

0.707107

0.386729

0.128910

1

0.546916

0.182306

0.707107

0.386729

0.128910

0

0

0
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Similarly, values for j = 3 and 4 are as follows

 i (x)
j (t)

0(0) 1(1/4) 2(1/2) 3(3/4) 4(1)

0(0)

1(1/16)

2(1/8)

3(3/16)

4(1/4)

0

0

0

0

0

0.707107

0.386729

0.128910

– 0.007372

– 0.049921

1

0.546916

0.182306

– 0.010426

– 0.070599

0.707107

0.386729

0.128910

– 0.007372

– 0.049921

0

0

0

0

0

16.5  Consistency, Convergence and Stability of Explicit and 
Crank–Nicolson Schemes 

In this section, following three important features of finite difference method have been 
discussed, which are useful to select finite difference scheme for solutions of PDEs

1. Consistency 
2. Convergence and Order
3. Stability

Consider any linear PDE of the following form
Lu = 0 (16.18)

For example, heat conduction equation 

∂
∂

− ∂
∂

=

∂
∂

− ∂
∂







= =

u
t

c u
x

t
c

x
u Lu

2

2

2

2

0

0

where linear operator L
t

c
x

≡ ∂
∂

− ∂
∂

2

2

In any finite difference scheme, we approximate derivative terms of the differential equation 
with finite differences to obtain discretized equation. The discretized equation

LD(u) = 0 (16.19)

is finite difference equation containing parameters ∆t and ∆x. During computation of 
solution from this finite difference equation, various other errors like rounding error, 
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702 Numerical Methods

also occur. Let u be the exact solution of Eq. (16.18) and uD be the exact solution of the 
discretized Eq. (16.19). Let us assume that uC is the final solution obtained from discretized 
Eq. (16.19). The solution uC contains following two types of errors.

a) Truncation Error: In any finite difference scheme, we approximate partial 
derivatives of given PDE with finite difference approximations (like forward, 
central differences, etc.). These finite differences are Taylor series approximations 
of partial derivatives, therefore these finite differences have truncation error. So, 
the finite difference scheme has truncation error also known as discretization error. 
The difference u–uD is called as “discretization error.” A finite difference scheme is 
consistent with a PDE if the discretization error vanishes as the grid spacing goes 
to zero independently.

b) Stability Error: Once a finite difference scheme is created, it is used to obtain the 
solution of given linear PDE. We have already discussed the stability of Euler 
method in Section 14.11 that the spacing h must be small enough to produce 
bounded solutions. Similarly, a finite difference scheme is stable if it gives the 
bounded solution for a stable PDE. The difference uC–uD is called as “stability error.” 

Since u is the exact solution of differential Eq. (16.18) and uC is the final solution obtained 
from the scheme (16.19), so the total error is given by

Total error = u u u u u uC D D C− = − + −( ) ( )

The total error is the sum of discretization error and stability error. 

16.5.1 Consistency 
A finite difference scheme is consistent with a PDE if the difference (u–uD) between the 
solutions of both the equations (i.e., truncation error) vanishes as the sizes of the grid spacing 
go to zero independently. If T is truncation error, then we can write Eq. (16.18) as follows

Lu L u TD= +( )

If the finite difference approximation LD(u) tends to Lu (truncation error vanishes) as the 
grid spacing between different independent variables tend to zero; then the finite difference 
scheme is said to be compatible or consistent with the original differential equation. In 
any finite difference scheme, we approximate partial derivatives of given PDE with 
finite difference approximations. These finite differences are nothing, but Taylor series 
approximations of partial derivatives. Hence, these finite differences have truncation error. 
For example, consider following Taylor series expansion 

u x t t u x t t u
t

t u
t

( , ) ( , )
!

+ ∆ = + ∆ ∂
∂

+ ∆ ∂
∂

+ ⋅⋅⋅
2 2

22

On rearranging the terms, we get

∂
∂

=
+ ∆ −

∆
− ∆ ∂

∂
−⋅⋅⋅u

t
u x t t u x t

t
t u

t
( , ) ( , )

!2

2

2
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On neglecting the terms containing grid spacing ∆t and its higher powers, we get following 

forward difference approximation of the partial derivative 
∂
∂
u
t

∂
∂

=
+ ∆ −

∆
+ ∆u

t
u x t t u x t

t
O t

( , ) ( , )
( )

The truncation of Taylor series produces the truncation error. A finite difference method is 
compatible with a PDE if the truncation error vanishes if the grid spacing between different 
independent variables tends to zero. For example, consider Bender–Schmidt explicit 

scheme (16.3) for 1-dimensional heat conduction equation ∂
∂

= ∂
∂

u
t

c u
x

2

2

u r u r u r ui j i j i j i j, , , ,( )+ − += + − +1 1 11 2

The truncation error (T) of finite difference approximation tends to zero with ∆ ∆ →t x, .0  
Therefore, the scheme is consistent with heat conduction equation in one space variable.

16.5.2 Consistency of Explicit Scheme 
Let us assume that the grid spacings for variables t and x are k t= ∆  and h x= ∆ , respectively. 
Consider following Taylor series expansions

u x t k u x t k u
t

k u
t

( , ) ( , )
!

+ = + ∂
∂

+ ∂
∂

+ ⋅⋅⋅
2 2

22
 (16.20)

u x h t u x t h u
x

h u
x

h u
x

( , ) ( , )
! !

+ = + ∂
∂

+ ∂
∂

+ ∂
∂

+ ⋅⋅⋅
2 2

2

3 3

32 3
 (16.21)

u x h t u x t h u
x

h u
x

h u
x

( , ) ( , )
! !

− = − ∂
∂

+ ∂
∂

− ∂
∂

+ ⋅⋅⋅
2 2

2

3 3

32 3
 (16.22)

Using Eq. (16.20), we have

u x t k u x t
k

u
t

k u
t

k u
t

( , ) ( , )+ −
= ∂

∂
+ ∂

∂
+ ∂

∂
+ ⋅⋅⋅

2 6

2

2

2 3

3
 (16.23)

Addition of Eqs. (16.21) and (16.22) gives the following expression for ∂
∂

2

2

u
x

u x h t u x t u x h t
h

u
x

h u
x

h u
x

( , ) ( , ) ( , )+ − + −
= ∂

∂
+ ∂

∂
+ ∂

∂
+

2
12 3602

2

2

2 4

4

4 6

6 ⋅⋅⋅⋅  (16.24)

From Eqs. (16.23) and (16.24), we obtain

u x t k u x t
k

c
u x h t u x t u x h t

h
T u

t
c u( , ) ( , ) ( , ) ( , ) ( , )+ −

−
+ − + −

+ = ∂
∂

− ∂
∂

2
2

2

xx2  (16.25)
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where T is truncation error. It is given by

T c h u
x

h u
x

k u
t

k u
t

= ∂
∂

+ ∂
∂

+ ⋅⋅⋅






− ∂
∂

+ ∂
∂

+ ⋅⋅⋅
2 4

4

4 6

6

2

2

2 3

312 360 2 6







The scheme (16.25) is Bender–Schmidt Explicit Scheme. It is easy to see that truncation 
error T → 0 as k h, → 0. So the explicit scheme is compatible with heat conduction equation. 

We can minimize the truncation error by selecting the suitable value of r. Using the 

expression ∂
∂

= ∂
∂t

c
x

2

2
 from heat conduction equation ∂

∂
= ∂

∂
u
t

c u
x

2

2 , we have

∂
∂

= ∂
∂

∂
∂

= ∂
∂

⋅⋅⋅
2

2
2

4

4

3

3
3

6

6

u
t

c u
x

u
t

c u
x

,

Consider the truncation error T in the following form

T c h u
x

k u
t

c h u
x

k u
t

= ∂
∂

− ∂
∂







+ ∂

∂
− ∂

∂






+
2 4

4

2

2

4 6

6

2 3

312 2 360 6
⋅⋅⋅⋅

= ∂
∂

− ∂
∂







+ ∂

∂
− ∂

∂
c h u

x
k c u

x
c h u

x
k c u

x

2 4

4
2

4

4

4 6

6

2
3

6

612 2 360 6






+ ⋅⋅⋅

Let r
ck
h

= =2

1
6

, then the first term vanishes, and truncation error reduces to the following 

expression

T k c u
x

= − ∂
∂

+ ⋅⋅⋅
2 3 6

615

So, the truncation error is of the highest order for the value r ck
h

= =2

1
6

16.5.3 Convergence and Order 
The finite difference scheme is said to be convergent to the exact solution if the discretization 
error (u–uD) tends to zero as step sizes of various independent variables approach zero. For 
example, the explicit scheme of one-dimensional heat conduction equation is convergent to 
the exact solution as u uD →  for ∆ ∆ →t x, 0. 

The order is the rate at which the finite difference scheme tends to the exact solutions 
as the grid sizes go to zero. In other words, the minimum degree of error terms present in 
the finite difference approximation of the derivative terms of the differential equation is the 
order. For example, in Bender–Schmidt Explicit Scheme (16.3), we approximate the time 
derivative term with forward difference 
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∂
∂

=
−

++u x t
t

u u
k

O ki j i j i j( , )
( ), ,1

While the derivative term containing spatial variable is approximated with central difference 
formula

∂
∂

=
− +

++ −
2

2
1 1

2
22u x t

x
u u u

h
O hi j i j i j i j( , )

( ), , ,

Hence, the explicit scheme has truncation error of order O Ok h( )+ ( )2 . 

16.5.4 Stability 
If the stability error uC–uD tends to zero with ∆ ∆ →t x, 0, then the scheme is said to be a 
stable scheme. The exact solutions of a given PDE must be examined to discuss the stability 
of any finite difference scheme. If the PDE is itself unstable, then the solution obtained by 
finite difference scheme is also unstable. But the numerical solution must be bounded for a 
stable PDE. Stability analysis is performed only for linear PDEs. So, nonlinear PDEs must 
be linearized locally for stability analysis. There are several methods for stability analysis of 
a finite difference scheme. The following three methods are most commonly used methods 
for stability analysis of any finite difference scheme. 

1. Matrix method
2. Von Neumann method
3. Discrete perturbation method

In this book, only matrix method and Neumann method have been discussed for the 
stability of two finite difference schemes (only for explicit and CN schemes).

16.5.5 Matrix Method for Stability of Explicit Scheme 
The explicit scheme is given by

u r u r u r ui j i j i j i j, , , ,( )+ − += + − +1 1 11 2  i = 1, 2, … n–1 (16.26)

The values ui,j computed by this method have certain error, let these approximate values be 
u*i,j

u r u r u r ui j i j i j i j
*

,
*

,
*

,
*

,( )+ − += + − +1 1 11 2  i = 1, 2, … n–1 (16.27)

Consider the error e u ui j i j i j, ,
*

,= − . On subtracting Eq. (16.27) from Eq. (16.26), we get

e r e r e r ei j i j i j i j, , , ,( )+ − += + − +1 1 11 2   i = 1, 2, … n–1 (16.28)

Note that for linear finite difference scheme; the error equation is same as that of the scheme 
itself. Let the boundary conditions be prescribed at end points, so the error in these values 
is zero, i.e. 

e e j nj n j0 0 1 2, , , , ...,= = ∀ =
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The equations (16.28) can be written in matrix form as follows

e
e
e

e

r rj

j

j

n j

1 1

2 1

3 1

1 1

1 2 0 0 0 0,

,

,

,

...+

+

+

− +

























=

−



rr r r
r r r

r r

e j

1 2 0 0 0
0 1 2 0 0

0 0 0 0 1 2

1

−
−

−























...

...

...

,



ee
e

e

j

j

n j

2

3

1

,

,

,



−

























In compact form, let 
E AEj j+ =1

where 

E

e
e
e

e

A

r r

j

j

j

j

n j

+

+

+

+

− +

=

























=

−

1

1 1

2 1

3 1

1 1

1 2,

,

,

,

,


00 0 0 0
1 2 0 0 0

0 1 2 0 0

0 0 0 0 1 2

...

...

...

...

r r r
r r r

r r

−
−

−


























=























−

,

,

,

,

,

E

e
e
e

e

j

j

j

j

n j

1

2

3

1



Let error vector at initial time t = t0 be E0, so E1 = AE0. Similarly E2 = AE1. After m numbers 
of steps, we have 

Em = AmE0 (16.29)

The initial error vector E0 is finite quantity. The scheme is stable, if Am → 0 as m → ∞. Let 

us study the behavior of matrix A containing the elements dependent on the value r
ck
h

= 2 . 

Let the eigenvalues λ λ λ1 2 1, , ,⋅⋅⋅ −n  of matrix A be distinct with corresponding eigenvectors 
X X Xn1 2 1, , ,⋅⋅⋅ − .

AX Xi i i= λ  i = 1, 2, … n–1

The error vector E0 can be written as linear combination of eigenvectors as follows

E c X c X c Xn n0 1 1 2 2 1 1= + + ⋅⋅⋅+ − −

Pre-multiplying with matrix A, we get

A E A c X c X c X

c AX c AX c A X c
n n

n n i

0 1 1 2 2 1 1

1 1 2 2 1 1

= + + ⋅⋅⋅+( )
= + + ⋅⋅⋅+

− −

− − ; 11 1

1 11 1 1 2 2 2 1 1

≤ ≤ −( )
= + + ⋅⋅⋅+ = ≤ ≤ −( )− −

i n

c X c X c X AX X i nn n n i iλ λ λ λ ;

Again, pre-multiplying with A, we have

A E c X c X c Xn n n
2

0 1 1
2

1 2 2
2

2 1 1
2

1= + + + − − −λ λ λ...  (c i ni i, ;λ 1 ≤ ≤  are scalars)
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Repeating the multiplication m-times successively, we obtain 
A E c X c X c Xm m m

n n
m

n0 1 1 1 2 2 2 1 1 1= + + + − − −λ λ λ...

The scheme is stable if the error term E A Em
m= 0 is finite as limit m → ∞. So, we must have

λ λi i n≤ ∀ ≤ ≤ ≤1 1 1; ( ) maxor

The maximum absolute eigenvalue must be less than or equal to unity. The quantity r ck
h

= 2  

is always positive. Using Brauer theorem 6.2 for matrix A, we have

λ λ− − ≤ − − ≤( ) ( )1 2 1 2 2r r r rand
On simplifying, we get

1 3 1 1 4 1− ≤ ≤ − − ≤ ≤r r rλ λand

For λ ≤ 1, we must have

− ≤ − ≤ − ≤ − ≤ − ≤ − ≤1 1 3 1 1 1 1 1 1 4 1r r r, , and

0 2
3

0 2 0 1
2

≤ ≤ ≤ ≤ ≤ ≤r r r, and

All these conditions satisfy for 0 1
2

≤ ≤r . So, the explicit scheme is a stable scheme for 

0 1
2

≤ ≤r .

16.5.6 Matrix Method for Stability of CN Scheme 
The CN scheme is given by

− + + − = + − +− + + + + − +r u r u r u r u r u r ui j i j i j i j i j i1 1 1 1 1 1 12 1 2 1, , , , ,( ) ( ) ,, j

Proceeding in a similar manner as in explicit scheme, we have

A E B Ej j+ =1  (16.30)

where 

A

r r
r r r

r r r=

+ −
− + −

− + −

−

2 1 0 0 0 0
2 1 0 0 0

0 2 1 0 0

0 0 0 0

( ) ...
( ) ...

( ) ...

...


rr r

E

e
e
e

e

j

j

j

j

n j
2 1

1

1 1

2 1

3 1

1 1
( )

,

,

,

,

,
+























=



+

+

+

+

− +
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B

r r
r r r

r r r

r r

=

−
−

−

−

2 1 0 0 0 0
2 1 0 0 0

0 2 1 0 0

0 0 0 0 2 1

( ) ...
( ) ...

( ) ...

... (


))

,

,

,

,

,























=
























−

E

e
e
e

e

j

j

j

j

n j

1

2

3

1





From Eq. (16.30), we have

E A B Ej j+
−=1

1

The CN scheme is stable if the modulus of eigenvalues of A–1B is less than or equal to unity. 
For simplification, consider the following matrix 

C =

−
− −

−





















2 1 0 0 0
1 2 1 0 0

0 0 0 1 2

...

...

...


Let us assume that the eigenvalue of matrix C is μ. Using Brauer theorem 6.2 for matrix C, 
we have 

− ≤ − ≤ ⇒ ≤ ≤2 2 2 0 4µ µ

The matrix A B I r C I r C− −
= +( ) −( )1 1

2 2 . Let the eigenvalue of matrix A–1B be λ, then

λ µ
µ

= −
+

2
2

r
r

Since r and μ both are non-negative quantities, so we have λ ≤ 1. Hence, the CN scheme is 
stable for each r, i.e., unconditionally stable scheme. 

16.5.7 Neumann Method for Stability of Explicit Scheme 
The exact solution of heat conduction equation by the method of separation of variables is 
as follows

u x t A t I x( , ) exp( )exp( )= α β  (16.31)

where A, α and β are constants and I = −1. The error Eq. (16.28) for explicit scheme is 
given by

e r e r e r ei j i j i j i j, , , ,( )+ − += + − +1 1 11 2  i = 1, 2, … n–1 (16.32)

Since the heat conduction equation is linear, therefore explicit scheme and error equation 
have the same expressions. From Eq. (16.31), we have

e A j t I i xi j, exp( )exp( )= ∆ ∆α β  (16.33)

The error term must be bounded as j → ∞, so exp( )α ∆ ≤t 1. Using Eq. (16.33) in (16.32) 
and canceling constant A from both sides of the equation, we have
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exp( ( ) )exp( )
exp( )exp( ( ) ) ( )exp
α β

α β
j t I i x

r j t I i x r
+ ∆ ∆

= ∆ − ∆ + −
1

1 1 2 (( )exp( ) exp( )exp( ( ) )α β α βj t I i x r j t I i x∆ ∆ + ∆ + ∆1

On simplifying, we obtain
exp( ) exp( ) ( ) exp( )

cos( )
α β β

β
∆ = − ∆ + − + ∆

= ∆ + −

= −

t r I x r r I x
r x r

1 2
2 1 2

1 4rr
x

sin2

2
β ∆





For stability, we must have

 exp( )α ∆ ≤t 1

or  1 4
2

12−
∆





≤r
x

sin
β

or  − ≤ −
∆





≤1 1 4
2

12r
x

sin
β

Using sin2

2
1

β ∆





≤
x

, we get

 0 1
2

≤ ≤r

This is required condition for the stability of the explicit method.

16.5.8 Neumann Method for Stability of CN Scheme 
The CN scheme is given by

− + + − = + − +− + + + + − +r u r u r u r u r u r ui j i j i j i j i j i1 1 1 1 1 1 12 1 2 1, , , , ,( ) ( ) ,, j

The error equation for CM scheme is as follows
–rei–1, j+1+2(1+r)ei, j+1–rei+1, j+1 = rei–1, j+2(1–r)ei,j + rei+1,j

Using Eq. (16.33) and simplifying the expressions, we have
exp( ) cos( ) cos( )α β β∆ + − ∆( )= − + ∆t r r x r r x2 2 2 2 2 2

Rearranging the terms, we have

exp( )
cos( )
cos( )

sin

α
β
β

β

∆ =
− + ∆
+ − ∆

=
−

∆





t
r r x
r r x

r
x

2 2 2
2 2 2

1 2
2

2

11 2
2

2+
∆





r
x

sin
β

For stability, we must have exp( )α ∆ ≤t 1. It is true for all values of the variable r ≥ 0. So the 
CN scheme is unconditionally stable. 
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Table 16.1  Summary Table of Finite Difference Methods for 1-Dimensional Heat Conduction Equation

Method Formulation Level Stability Difficulty Truncation Error
Explicit u r u r u r ui j i j i j i j, , , ,( )+ − += + − +1 1 11 2 2 Stable for r ≤ 1 2/ Easy (u

i,j
 can be 

obtained directly)
O O∆( ) + ∆( )t x2

Crank–
Nicolson

− + + −
= + − +

− + + + +

− +

r u r u r u

r u r u r u
i j i j i j

i j i j i

1 1 1 1 1

1 1

2 1

2 1
, , ,

, ,

( )

( ) ,, j

2 Unconditionally stable Difficult (system of 
equations in u

i,j
 has 

to solve)

O O∆( ) + ∆( )t x2 2

General 
Implicit

− − + + − − −
= +

− + + + +

−

r u r u r u

r u
i j i j i j

i j

( ) ( ( )) ( ), , ,

,

1 1 2 1 11 1 1 1 1

1

θ θ θ
θ (( ) , ,1 2 1− + +r u r ui j i jθ θ

2 For 1 2 1/ ≤ ≤θ  

Stable if r ≤ −
1
2

2 1( )θ  

For 0 1 2≤ ≤θ /
Unconditionally stable

Difficult (system of 
equations in u

i,j
 has 

to solve)

O O∆( ) + ∆( )t x2 2

Richardson u u r u u ui j i j i j i j i j, , , , ,+ − + −= + − +( )1 1 1 12 2 3 Unstable Easy (u
i,j
 can be 

obtained directly)
O O∆( ) + ∆( )t x2 2

Du-Fort and 
Frankel u

r

r
u

r

r
u ui j i j i j i j, , , ,+ − + −=

−
+

+
+

+( )1 1 1 1

1 2
1 2

2
1 2

3 Unconditionally stable Easy (u
i,j
 can be 

obtained directly)
O O∆( ) + ∆( )t x2 2
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16.6 2-Dimensional Heat Conduction Equation 

The 2–dimensional heat conduction equation is as follows

∂
∂

= ∂
∂

+ ∂
∂







u
t

c u
x

u
y

2

2

2

2 (16.34)

The following schemes will be discussed for the numerical solutions of Eq. (16.34)

i) Explicit Scheme
ii) Crank–Nicolson Scheme
iii) Alternating Direction Implicit (ADI) Scheme

16.6.1 Explicit Scheme 
Let the value of u x y t( , , ) at point ( , , )x y ti j k  be ui,j,k i.e. u x y t ui j k i j k( , , ) , ,= . Also assume 

that step sizes for the variable t, x and y are ∆t , ∆x, and ∆y respectively.

Discretize Eq. (16.34) at point ( , , )x y ti j k , i.e.

∂
∂

= ∂
∂

+ ∂
∂







u
t

c u
x

u
yx y t x y ti j k i j k

( , , ) ( , , )

2

2

2

2

Using forward difference formula for 
∂

∂
=

−

∆
+ ∆+u x y t

t

u u

t
O ti j k i j k i j k( , , )

( ), , , ,1  and 

central difference formulas for 
∂

∂
=

− +

∆
+ ∆+ −

2

2
1 1

2
2

2u x y t
x

u u u

x
O xi j k i j k i j k i j k( , , )

( ), , , , , ,  and 

∂
∂

=
− +

∆
+ ∆+ −

2

2
1 1

2
2

2u x y t
y

u u u

y
O yi j k i j k i j k i j k( , , )

( ), , , , , ,  in this equation and neglecting the error 

terms in discretization, we have

u u

t
c

u u u

x

ui j k i j k i j k i j k i j k i j k, , , , , , , , , , , ,+ + − +−

∆
=

− +

∆
+

−1 1 1
2

12 2uu u

y
i j k i j k, , , ,+

∆






−1

2

(or) u u c t
x

u u u c t
y

ui j k i j k i j k i j k i j k i, , , , , , , , , ,+ + −− = ∆
∆

− +( )+ ∆
∆1 2 1 1 22 ,, , , , , ,j k i j k i j ku u+ −− +( )1 12

Let r c t
x1 2= ∆

∆
and r c t

y2 2= ∆
∆

, then the explicit scheme for the solution of Eq. (16.34) is as 

follows
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u u r u u u r ui j k i j k i j k i j k i j k i j k, , , , , , , , , , , ,+ + − +− = − +( )+ −1 1 1 1 2 12 2uu u

u r u u r u

i j k i j k

i j k i j k i j k i j

, , , ,

, , , , , , , ,

+( )
= +( )+

−

+ + − +

1

1 1 1 1 2 1 kk i j k i j ku r r u+( )+ − −−, , , ,( )1 1 21 2 2  (16.35)

The scheme (16.35) is known as explicit scheme. 

If the spacing in x and y are equal, i.e., ∆ = ∆x y, then 

r c t
x

c t
y

= ∆
∆

= ∆
∆2 2

The explicit scheme (16.35) is simplified in the following form

u r u u u u r ui j k i j k i j k i j k i j k i j, , , , , , , , , , ,( )+ + − + −= + + +( )+ −1 1 1 1 1 1 4 ,, k (16.36)

Forward difference formula is used for the term 
∂
∂
u
t

, so the error term in time t is of order 

O t( ).∆  Also, the explicit scheme is stable if c t
x y

∆
∆

+
∆







≤1 1 1
22 2 . Let us discuss more accurate 

and unconditionally stable scheme, i.e., Crank–Nicolson scheme, in which, we replace all the 
derivative terms by central difference formulas.

16.6.2 Crank–Nicolson (CN) Scheme 

Discretize Eq. (16.34) at point x y ti j k
, ,

+






1
2

, i.e.,

∂
∂

= ∂
∂

+ ∂
∂







+ +
















u
t

c u
x

u
yx y t x y ti j k i j k

, , , ,1
2

1
2

2

2

2

2








Let the points be t t t t tk k k− ∆ + ∆/ , , /2 2 (or t t tk k k− +1 2 1 2/ /, , ) with step size ∆t / 2. The central 

difference formula for 
∂
∂
u
t

 is as follows

∂
∂

=
−

∆
+ ∆( )+ +u x y t

t

u u

t
O ti j k i j k i j k( , , )

( / )
/ , , , ,1 2 1 2

2 2
(16.37)
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We will approximate value of ∂
∂

2

2

u
x

 at ( , , )/x y ti j k+1 2  with average values of ∂
∂

2

2

u
x

 at ( , , )x y ti j k  

and ( , , )x y ti j k+1 , i.e.,

∂
∂

=
− +

∆
++ + − +

2
1 2

2
1 1

2
11

2

2u x y t
x

u u u

x

ui j k i j k i j k i j k i j( , , )/ , , , , , , , ,, , , , , ( )k i j k i j ku u

x
O x+ + − +− +

∆






+ ∆1 1 1 1

2
2

2

(16.38)

Similarly, the value of ∂
∂

2

2

u
y

 at ( , , )/x y ti j k+1 2  will be approximated by the average values of 

∂
∂

2

2

u
y

 at ( , , )x y ti j k  and ( , , )x y ti j k+1  

∂
∂

=
− +

∆
++ + − +

2
1 2

2
1 1

2
11

2

2u x y t
y

u u u

y

ui j k i j k i j k i j k i j( , , )/ , , , , , , , ,, , , , , ( )k i j k i j ku u

y
O y+ + − +− +

∆






+ ∆1 1 1 1

2
2

2

(16.39)
Using Eqs. (16.37–16.39) in Eq. (16.34) and neglecting the error terms, we have

u u

t
c

u u u

x

u

i j k i j k

i j k i j k i j k i j k

, , , ,

, , , , , , , ,

+

+ − +

−

∆
=

− +

∆
+

1

1 1
2

11
2

2 ++ + − +

+ −

− +

∆







+
− +

1 1 1 1
2

1

2

1
2

2

u u

x

u u u

i j k i j k

i j k i j k i j

, , , ,

, , , , , 11
2

1 1 1 1 1
2

2, , , , , , ,k i j k i j k i j k

y

u u u

y∆
+

− +

∆























+ + + − +






Let r
c t

x1 2= ∆
∆

and r c t
y2 2= ∆

∆
, then we get

u u
r u u u u

i j k i j k

i j k i j k i j k i j k

, , , ,

, , , , , , , ,

+

+ − + +
− =

− + + −
1

1 1 1 1 1
1
2

2 2uu u

r u u u u

i j k i j k

i j k i j k i j k i j

, , , ,

, , , , , , ,

+ − +

+ − +

+( )
+ − + +

1 1 1

2 1 1
1
2

2 11 1 1 1 12, , , , ,k i j k i j ku u+ + − +− +( )

















On collecting the terms at (k +1)th level in L.H.S. and terms at kth level in R.H.S., the Crank–
Nicolson (CN) Scheme is as follows

− +( )− +( )+ ++ + − + + + − +r u u r u u ri j k i j k i j k i j k1 1 1 1 1 2 1 1 1 1 12 1, , , , , , , , ++( )
= +( )+ +( )

+

+ − + −

r u

r u u r u u

i j k

i j k i j k i j k i j k

2 1

1 1 1 2 1 1

, ,

, , , , , , , , ++ − −( )2 1 1 2r r ui j k, ,  (16.40)
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Let the spacing in x and y be equal, i.e. ∆ = ∆x y. Assume, r c t
x

c t
y

= ∆
∆

= ∆
∆2 2 , then CN scheme 

(16.40) is simplified as follows

− + + +( )+ +( )+ + − + + + − +r u u u u r ui j k i j k i j k i j k i1 1 1 1 1 1 1 1 2 1 2, , , , , , , , , jj k

i j k i j k i j k i j k i jr u u u u r u

,

, , , , , , , , , ,

+

+ − + −= + + +( )+ −( )
1

1 1 1 1 2 1 2 kk (16.41)

It is easy to see that this scheme is implicit scheme, as we can’t obtain the solution at (k + 1)th  

level directly from the values at kth level. First, a set of equations is obtained then we solve 
this set for final values ui j k, , +1. 

The major problem in CN-Scheme is that a set of a large number of equations is obtained. 
For example, if we have 20 nodes for both the variables x and y, then total 400 simultaneous 
equations are obtained in 400 variables. It is very difficult to solve, and round off error is 
very high for such a large system. But, this scheme is an unconditionally stable scheme.

In 1955, Peaceman and Rachford suggested a scheme known as alternating direction 
implicit (ADI) scheme, which is unconditionally stable and computational work is much 
less than CN-scheme.

In the next section, we will discuss alternating direction implicit method. This scheme 
involves two phases: in the first phase of computation, we move from kth level to (k+1)th 

level, in which one space derivative say ∂
∂







2

2

u
x

 is approximated at (k+1)th level, and another 

space derivative 
∂
∂







2

2

u
y  is approximated at kth level. In next phase, we move from (k+1)th

level to (k+2)th level, in which alternating space derivative 
∂
∂







2

2

u
y  is approximated at (k+2)th

level, and another space derivative 
∂
∂







2

2

u
x

 is approximated at (k+1)th level.

Hence, in ADI scheme, say we have 20 nodes for the variables x and y, then instead of 400 
simultaneous equations as in CN-scheme, we have 20 sets of 20 simultaneous equations, 
which reduces the computational efforts to large extent and hence round off error. 

16.6.3 Alternating Direction Implicit (ADI) Scheme 
This method contains two phases: In phase-1 (from kth level to (k+1)th level), one space 

derivative term say ∂
∂







2

2

u
x

 is approximated at a lower level (kth level), while another 

derivative term 
∂
∂







2

2

u
y  at a higher level ((k+1)th level). In phase-2 (from (k+1)th level to
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(k+2)th level), the approximation levels are interchanged. Therefore the derivative term 

∂
∂







2

2

u
y  is approximated at a higher level [(k+2)th level], while another derivative term

∂
∂







2

2

u
x

is approximated at a lower level [(k+1)th level]. These two phases combined to form one 
iteration of ADI method. 

Phase-1 (kth level to (k+1)th level)

On discretizing Eq. (16.34) at point x y ti j k
, ,

+






1
2

, we get

∂
∂

= ∂
∂

+ ∂
∂







+ +
















u
t

c u
x

u
yx y t x y ti j k i j k

, , , ,1
2

1
2

2

2

2

2








(16.42)

The central difference formula for ∂
∂
u
t

 with step size ∆t / 2 (as in CN-scheme) is as follows

∂
∂

=
−

∆
+ ∆( )+ +u x y t

t

u u

t
O ti j k i j k i j k( , , )

( / )
/ , , , ,1 2 1 2

2 2
(16.43)

In CN-scheme, we approximated both the space derivatives 
∂
∂







2

2

u
x

 and 
∂
∂







2

2

u
y  with an average

value at points ( , , )x y ti j k  and ( , , )x y ti j k+1 . But in ADI scheme, we approximate one space 

derivative say ∂
∂







2

2

u
x

 at (k+1)th level and another derivative 
∂
∂







2

2

u
y  at kth level.

∂
∂

=
− +

∆
++ + + + − +

2
1 2

2
1 1 1 1 1

2

2u x y t
x

u u u

x
Oi j k i j k i j k i j k( , , )

(/ , , , , , , ∆∆

∂
∂

=
− +

∆
+ ∆+ + −

x

u x y t
y

u u u

y
Oi j k i j k i j k i j k

2

2
1 2

2
1 1

2

2

)

( , , )
(/ , , , , , , yy2 ) (16.44)

Using equations (16.43) and (16.44) in Eq. (16.42), and neglecting the error terms, we get

u u

t
c

u u u

x
i j k i j k i j k i j k i j k, , , , , , , , , ,+ + + + − +−

∆
=

− +

∆






1 1 1 1 1 1

2

2
 +

− +

∆
















+ −u u u

y
i j k i j k i j k, , , , , ,1 1

2

2

Let r
c t

x1 2= ∆
∆

and r c t
y2 2= ∆

∆
, then the ADI scheme for the solution of Eq. (16.34) is as follows

u u r u u u r ui j k i j k i j k i j k i j k i j, , , , , , , , , , ,+ + + + − +− = − +( )+1 1 1 1 1 1 1 22 ++ −− +( )1 12, , , , ,k i j k i j ku u
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716 Numerical Methods

On collecting the terms at (k + 1)th level in L.H.S. and kth level terms in R.H.S., we obtain

− + + − = + −+ + + − + +r u r u r u r ui j k i j k i j k i j k1 1 1 1 1 1 1 1 2 11 2 1 2, , , , , , , ,( ) ( rr u r ui j k i j k2 2 1) , , , ,+ −  (16.45)

Phase-2 [(k+1)th level to (k+2)th level]

Discretize Eq. (16.34) at point, x y ti j k
, ,

+






3
2

, i.e.,

∂
∂

= ∂
∂

+ ∂
∂







+ +
















u
t

c u
x

u
yx y t x y ti j k i j k

, , , ,3
2

3
2

2

2

2

2








(16.46)

For the points t t t t tk k k+ + +− ∆ + ∆1 1 12 2/ , , / , the central difference formula for ∂
∂
u
t

 is as 
follows

∂
∂

=
−

∆
+ ∆( )+ + +u x y t

t

u u

t
O ti j k i j k i j k( , , )

( / )
/ , , , ,3 2 2 1 2

2 2
(16.47)

On approximating 
∂
∂







2

2

u
x

 at (k+1)th level and 
∂
∂







2

2

u
y  at (k+2)th level, we get

∂
∂

=
− +

∆
++ + + + − +

2
3 2

2
1 1 1 1 1

2

2u x y t
x

u u u

x
Oi j k i j k i j k i j k( , , )

(/ , , , , , , ∆∆

∂
∂

=
− +

∆
+ + + + − +

x

u x y t
y

u u ui j k i j k i j k i j k

2

2
3 2

2
1 2 2 1 22

)

( , , )/ , , , , , ,

yy
O y2

2+ ∆( ) (16.48)

Using equations (16.47) and (16.48) in Eq. (16.46), we have

u u

t
c

u u u

x
i j k i j k i j k i j k i j k, , , , , , , , , ,+ + + + + − +−

∆
=

− +

∆



2 1 1 1 1 1 1

2

2 


+

− +

∆
















+ + + − +u u u

y
i j k i j k i j k, , , , , ,1 2 2 1 2

2

2

Let r c t
x1 2= ∆

∆
and r c t

y2 2= ∆
∆

, then

u u r u u u r ui j k i j k i j k i j k i j k i, , , , , , , , , ,+ + + + + − +− = − +( )+2 1 1 1 1 1 1 1 22 ,, , , , , ,j k i j k i j ku u+ + + − +− +( )1 2 2 1 22

On collecting the terms, we have

− − +( ) = + −+ + − + + + +r u r u r u r ui j k i j k i j k i j k2 1 2 2 1 2 2 2 1 1 11 2 1, , , , , , , , ( 22 1 1 1 1 1r u r ui j k i j k) , , , ,+ − ++  (16.49)

Equations (16.45) and (16.49) are collectively form one iteration of ADI scheme for the 
solution of 2-dimensional heat conduction Eq. (16.34)
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Partial Differential Equations: Finite Difference Methods 717

Table 16.2 Summary Table of Finite Difference Methods for 2-Dimensional Heat Conduction Equation

Method Formulation Stability Difficulty
Truncation 

Error
Explicit 

u r u u r u u ri j k i j k i j k i j k i j k, , , , , , , , , , (+ + − + −= +( ) + +( ) + −1 1 1 1 2 1 1 1 2 11 22− r ui j k) , ,

Stable for 

r r1 2

1
2

+ ≤

Easy (u
i,j,k

 
can be 
obtained 
directly)

O O∆( ) + ∆( )t x2

Crank–
Nicolson

− +( ) − +( ) + ++ + − + + + − +r u u r u u ri j k i j k i j k i j k1 1 1 1 1 2 1 1 1 1 12 1, , , , , , , , ++( )
= +( ) + +( )

+

+ − + −

r u

r u u r u u

i j k

i j k i j k i j k i j k

2 1

1 1 1 2 1 1

, ,

, , , , , , , , ++ − −( )2 1 1 2r r ui j k, ,

Unconditionally 
stable

Difficult 
(system of 
large number 
of equations 
in u

i,j,k
 has to 

solve)

O O∆( ) + ∆( )t x2 2

ADI 
Scheme

− + + − = + −+ + + − + +r u r u r u r ui j k i j k i j k i j k1 1 1 1 1 1 1 1 2 11 2 1 2, , , , , , , ,( ) ( rr u r u

r u r u r u

i j k i j k

i j k i j k i j

2 2 1

2 1 2 2 2 21 2

) , , , ,

, , , , ,

+

− + +( ) −
−

+ + + −11 2 1 1 1 1 1 1 1 11 2, , , , , , ,( )k i j k i j k i j kr u r u r u+ + + + − += + − +

Unconditionally 
stable

Moderate 
(systems 
of small 
number of 
equations in 
u

i,j,k
 have to 

solve)

O O∆( ) + ∆( )t x2 2

https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/9781108685306.017

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. U

niversity of Sussex Library, on 01 M
ay 2019 at 22:41:34, subject to the Cam

bridge Core term
s of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.017
https://www.cambridge.org/core


718 Numerical Methods

Solve the following initial-boundary value problem
∂
∂

= ∂
∂

+ ∂
∂

u
t

u
x

u
y

2

2

2

2

u x y x y x y

u x y t

( , , ) cos cos ,

, , ,

0
2 2

1 1

0 1 1 0

= 











− ≤ ≤

= = ± = ± ≥

π π

using the Explicit method with step size ∆ = ∆ =x y 2 3/ . Take r r1 2
1
6

= = . Integrate for two 

steps only.

Ans.

We have ∆ = ∆ =x y 2 3/ , c = 1, and r r1 2
1
6

= =

As r r c t
x

t1 2 2

1
6

4
9

2
27

= = ∆
∆

⇒ ∆ = × =

The initial condition 

u x y x y x y( , , ) cos cos , ,0
2 2

1 1= 











− ≤ ≤π π

gives the values of u x yi j( , , )0  These values are presented in the following table at t = 0 (k = 0). 

 i (x)
j (y)

0 (–1) 1 (–1/3) 2 (1/3) 3 (1)

0 (–1) 0 0 0 0
1 (–1/3) 0 0.75 0.75 0
2 (1/3) 0 0.75 0.75 0
3 (1) 0 0 0 0

From the given boundary conditions 

u x y t= = ± = ± ≥0 1 1 0, , , ,  we have following values at t = 2
27

 (k = 1).

 i (x)
j (y)

0 (–1) 1 (–1/3) 2 (1/3) 3 (1)

0 (–1) 0 0 0 0
1 (–1/3) 0 0
2 (1/3) 0 0
3 (1) 0 0 0 0

16.5Example
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Partial Differential Equations: Finite Difference Methods 719

At time t = 2
27

 (k = 1), the explicit scheme to compute remaining values is as follows:

First Iteration:
The explicit scheme (16.35) is given by

 u r u u r u u ri j k i j k i j k i j k i j k, , , , , , , , , , (+ + − + −= +( ) + +( ) + −1 1 1 1 2 1 1 1 2 11 22− r ui j k) , ,

Using r r1 2
1
6

= =  and k = 0, we have

 u u u u u ui j i j i j i j i j i j, , , , , , , , , , , ,1 1 0 1 0 1 0 1 0 0
1
6

1
3

= + + +( ) ++ − + −

We can compute the values of u at nodal points by putting the values i j, ,= 1 2 in the above 
equation.

 
u u u u u u1 1 1 2 1 0 0 1 0 1 2 0 1 0 0 1 1 0

1
6

1
3

1
6

0 75 0 0

, , , , , , , , , , , ,

.

= + + +( ) +

= + + .. . .75 0 1
3

0 75 0 5+( ) + =
 i j, =( )1

 
u u u u u u2 1 1 3 1 0 1 1 0 2 2 0 2 0 0 2 1 0

1
6

1
3

1
6

0 0 75 0

, , , , , , , , , , , ,

.

= + + +( ) +

= + + .. . .75 0 1
3

0 75 0 5+( ) + =
 i j= =( )2 1,

 
u u u u u u1 2 1 2 2 0 0 2 0 1 3 0 1 1 0 1 2 0

1
6

1
3

1
6

0 75 0 0

, , , , , , , , , , , ,

.

= + + +( ) +

= + + ++( ) + =0 75 1
3

0 75 0 5. . .
 i j= =( )1 2,

 
u u u u u u2 2 1 3 2 0 1 2 0 2 3 0 2 1 0 2 2 0

1
6

1
3

1
6

0 0 75 0

, , , , , , , , , , , ,

.

= + + +( ) +

= + + ++( ) + =0 75 1
3

0 75 0 5. . .
 i j= =( )2 2,

On collecting all these values in a table, we have following values for t = 2
27

 (k = 1)

 i (x)
j (y)

0 (–1) 1 (–1/3) 2 (1/3) 3 (1)

0 (–1) 0 0 0 0
1 (–1/3) 0 0.5 0.5 0
2 (1/3) 0 0.5 0.5 0
3 (1) 0 0 0 0
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720 Numerical Methods

Second Iteration: The boundary condition u x y t= = ± = ± ≥0 1 1 0, , ,  provides the values 

of u x y ti j( , , )2  for t = 4
27

 (k = 2). 

 i (x)
j (y)

0 (–1) 1 (–1/3) 2 (1/3) 3 (1)

0 (–1) 0 0 0 0
1 (–1/3) 0 0
2 (1/3) 0 0
3 (1) 0 0 0 0

The explicit scheme (16.35) for r r1 2
1
6

= =  and k = 1, is given by

 u u u u u ui j i j i j i j i j i j, , , , , , , , , , , ,2 1 1 1 1 1 1 1 1 1
1
6

1
3

= + + +( ) ++ − + −

Proceeding in a similar manner as in iteration 1, we can easily obtain following values for 

t = 4
27

 (k = 2) by using i j, ,= 1 2 in the above equation.

 i (x)
j (y)

0 (–1) 1 (–1/3) 2 (1/3) 3 (1)

0 (–1) 0 0 0 0
1 (–1/3) 0 0.333333 0.333333 0
2 (1/3) 0 0.333333 0.333333 0
3 (1) 0 0 0 0

Note: We can use the symmetry over x and y – axes. It will reduce our computational 
efforts. We will elaborate the symmetric problem in case elliptic equations.

Solve the problem in Example 16.5 with CN (Crank–Nicolson) method.

Ans.
CN scheme (16.40) is as follows:

 
− +( ) − +( ) + ++ + − + + + − +r u u r u u ri j k i j k i j k i j k1 1 1 1 1 2 1 1 1 1 12 1, , , , , , , , ++( )

= +( ) + +( )
+

+ − + −

r u

r u u r u u

i j k

i j k i j k i j k i j k

2 1

1 1 1 2 1 1

, ,

, , , , , , , , ++ − −( )2 1 1 2r r ui j k, ,
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Partial Differential Equations: Finite Difference Methods 721

First Iteration: 

Using r r1 2
1
6

= =  and k = 0, we have

 
− + + +( ) +

= +

+ − + −

+

u u u u u

u u

i j i j i j i j i j

i j

1 1 1 1 1 1 1 1 1

1 0

16, , , , , , , , , ,

, , ii j i j i j i ju u u− + −+ +( ) +1 0 1 0 1 0 08, , , , , , , ,

 

By using the initial values of Example 16.5, at t = 0 and i j, ,= 1 2, we get following set of 
linear equations

 
− + + +( ) +

= + +

u u u u u

u u u

2 1 1 0 1 1 1 2 1 1 0 1 1 1 1

2 1 0 0 1 0 1 2

16, , , , , , , , , ,

, , , , , ,, , , , ,0 1 0 0 1 1 08+( ) +u u
 i j, =( )1

 

− + + +( ) + = + + +( ) +

−

u u u

u
2 1 1 1 2 1 1 1 1

2 1

0 0 16 0 75 0 0 75 0 8 0 75, , , , , ,

,

. . ( . )

,, , , , , .1 1 2 1 1 1 116 7 5− + =u u  (16.50)

 
− + + +( ) +

= + +

u u u u u

u u u

3 1 1 1 1 1 2 2 1 2 0 1 2 1 1

3 1 0 1 1 0 2 2

16, , , , , , , , , ,

, , , , , ,, , , , ,0 2 0 0 2 1 08+( ) +u u
 i j= =( )2 1,

 

− + + +( ) + = + + +( ) +

−

0 0 16 0 0 75 0 75 0 8 0 751 1 1 2 2 1 2 1 1

1 1

u u u

u
, , , , , ,

,

. . ( . )

,, , , , , .1 2 2 1 2 1 116 7 5− + =u u  (16.51)

 
− + + +( ) +

= + +

u u u u u

u u u

2 2 1 0 2 1 1 3 1 1 1 1 1 2 1

2 2 0 0 2 0 1 3

16, , , , , , , , , ,

, , , , , ,, , , , ,0 1 1 0 1 2 08+( ) +u u  i j= =( )1 2,

 

− + + +( ) + = + + +( ) +

−

u u u

u
2 2 1 1 1 1 1 2 1

2 2

0 0 16 0 75 0 0 0 75 8 0 75, , , , , ,

,

. . ( . )

,, , , , , .1 1 1 1 1 2 116 7 5− + =u u  (16.52)

 
− + + +( ) +

= + +

u u u u u

u u u

3 2 1 1 2 1 2 3 1 2 1 1 2 2 1

3 2 0 1 2 0 2 3

16, , , , , , , , , ,

, , , , , ,, , , , ,0 2 1 0 2 2 08+( ) +u u
 i j= =( )2 2,

 

− + + +( ) + = + + +( ) +

−

0 0 16 0 0 75 0 0 75 8 0 751 2 1 2 1 1 2 2 1

1 2

u u u

u
, , , , , ,

,

. . ( . )

,, , , , , .1 2 1 1 2 2 116 7 5− + =u u  (16.53)

The solution of the Eqs. (16.50–16.53) is as follows

 u u u u1 1 1 1 2 1 2 1 1 2 2 1, , , , , , , ,= = = = 0.535714
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722 Numerical Methods

So, for t = 2
27

(k = 1), we have following values 

 i (x)
j (y)

0 (–1) 1 (–1/3) 2 (1/3) 3 (1)

0 (–1) 0 0 0 0
1 (–1/3) 0 0.535714 0.535714 0
2 (1/3) 0 0.535714 0.535714 0
3 (1) 0 0 0 0

Second Iteration: The CN scheme (16.40) for r r1 2
1
6

= =  and k = 1 is given by

 
− + + +( ) +

= +

+ − + −

+

u u u u u

u u

i j i j i j i j i j

i j

1 2 1 2 1 2 1 2 2

1 1

16, , , , , , , , , ,

, , ii j i j i j i ju u u− + −+ +( ) +1 1 1 1 1 1 18, , , , , , , ,

Similar to First iteration, we can obtain following four equations

 − − + =u u u2 1 2 1 2 2 1 1 216 5 35714, , , , , , .  (16.54)

 − − + =u u u1 1 2 2 2 2 2 1 216 5 35714, , , , , , .  (16.55)

 − − + =u u u2 2 2 1 1 2 1 2 216 5 35714, , , , , , .  (16.56)

 − − + =u u u1 2 2 2 1 2 2 2 216 5 35714, , , , , , .  (16.57)

The solution of these four equations is given by

 u u u u1 1 2 1 2 2 2 1 2 2 2 2, , , , , , , ,= = = = 0.382653

For t = 4
27

 (k = 2), we have

 i (x)
j (y)

0 (–1) 1 (–1/3) 2 (1/3) 3 (1)

0 (–1) 0 0 0 0
1 (–1/3) 0 0.382653 0.382653 0
2 (1/3) 0 0.382653 0.382653 0
3 (1) 0 0 0 0

Note: The linear systems are diagonally dominant systems, therefore the solution can also 
be obtained using iterative methods.
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Partial Differential Equations: Finite Difference Methods 723

Solve the problem in Example 16.5 with Alternating Direction Implicit (ADI) method. 

Ans.
ADI scheme has two phases, phase-1 is from level k to level k + 1, and phase-2 is for level 
k + 1 to level k + 2.

Phase-1 
ADI scheme (16.45) for phase-1 is as follows

 − + + − = + −+ + + − + +r u r u r u r ui j k i j k i j k i j k1 1 1 1 1 1 1 1 2 11 2 1 2, , , , , , , ,( ) ( rr u r ui j k i j k2 2 1) , , , ,+ −

On putting r r1 2
1
6

= =  and k = 0 in the above equation, we get

 − + − = + ++ − + −u u u u u ui j i j i j i j i j i j1 1 1 1 1 1 0 0 1 08 4, , , , , , , , , , , ,  (16.58)

For i = 1 2,  and j =1, we get following two linear equations

 − + − = + +u u u u u u2 1 1 1 1 1 0 1 1 1 2 0 1 1 0 1 0 08 4, , , , , , , , , , , ,  (i = 1)

 − + − = + +u u2 1 1 1 1 18 0 0 75 4 0 75 0, , , , . ( . )  (16.59)

 − + − = + +u u u u u u3 1 1 2 1 1 1 1 1 2 2 0 2 1 0 2 0 08 4, , , , , , , , , , , ,  (i = 2)

 0 8 0 75 4 0 75 02 1 1 1 1 1+ − = + +u u, , , , . ( . )  (16.60)

On solving equations (16.59) and (16.60), we get

 u u2 1 1 1 1 1 0 535714, , , , .= =  (16.61)

Similarly, using i = 1, 2 and j =2 in Eq. (16.58), we have

 − + − = + +u u u u u u2 2 1 1 2 1 0 2 1 1 3 0 1 2 0 1 1 08 4, , , , , , , , , , , ,  (i = 1)

 − + − = + +u u2 2 1 1 2 18 0 0 4 0 75 0 75, , , , ( . ) .  (16.62)

 − + − = + +u u u u u u3 2 1 2 2 1 1 2 1 2 3 0 2 2 0 2 1 08 4, , , , , , , , , , , ,  (i = 2)

 − + − = + +0 8 0 4 0 75 0 752 2 1 1 2 1u u, , , , ( . ) .  (16.63)

The solution of equations (16.62) and (16.63) is given by

 u u2 2 1 1 2 1 0 535714, , , , .= =  (16.64)

16.7Example
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724 Numerical Methods

The following table contains the results from (16.61) and (16.64) for t = 2
27

 (k = 1). 

 i (x)
j (y)

0 (–1) 1 (–1/3) 2 (1/3) 3 (1)

0 (–1) 0 0 0 0
1 (–1/3) 0 0.535714 0.535714 0
2 (1/3) 0 0.535714 0.535714 0
3 (1) 0 0 0 0

Phase – 2 
The ADI scheme (16.49) is given by 

 − + +( ) − = ++ + + − + + +r u r u r u r ui j k i j k i j k i j k2 1 2 2 2 2 1 2 1 1 11 2 1, , , , , , , , ( −− ++ − +2 1 1 1 1 1r u r ui j k i j k) , , , ,

For r r1 2
1
6

= =  and k = 2, we have

 − + − = + ++ − + + + − +u u u u u ui j i j i j i j k i j k i j k, , , , , , , , , , , ,1 2 2 1 2 1 1 1 1 18 4  (16.65)

Using j = 1,2 and i = 1, we have

 − + − = + +u u u u u u1 2 2 1 1 2 1 0 2 2 1 1 1 1 1 0 1 18 4, , , , , , , , , , , ,  (j = 1)

 − + − = +u u1 2 2 1 1 28 0 0 535714 4 0 535714, , , , . ( . )  (16.66)

 − + − = + +u u u u u u1 3 2 1 2 2 1 1 2 2 2 1 1 2 1 0 2 18 4, , , , , , , , , , , ,  (j = 2)

 0 8 0 535714 4 0 535714 01 2 2 1 1 2+ − = + +u u, , , , . ( . )  (16.67)

The solution of Eqs. (16.66–16.67) gives 

 u u1 2 2 1 1 2 0 382653, , , , .= =  (16.68)

Using j = 1,2 and i = 2 in Eq. (16.65), we have

 − + − = + +u u u u u u2 2 2 2 1 2 2 0 2 3 1 1 2 1 1 1 1 18 4, , , , , , , , , , , ,  (j = 1)

 − + − = + +u u2 2 2 2 1 28 0 0 4 0 535714 0 535714, , , , ( . ) .  (16.69)

 − + − = + +u u u u u u2 3 2 2 2 2 2 1 2 3 2 1 2 2 1 1 2 18 4, , , , , , , , , , , ,  (j = 2)

 − + − = + +0 8 0 4 0 535714 0 5357142 2 2 2 1 2u u, , , , ( . ) .  (16.70)

On solving Eqs. (16.69–16.70), we get 

 u u2 2 2 2 1 2 0 382653, , , , .= =  (16.71)
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Partial Differential Equations: Finite Difference Methods 725

16.7 Elliptic Equations (Laplace and Poisson Equations) 

All time-dependent problems are known as “transient” problems. As time increases, 
all transient problems tend to steady state, i.e., the problems are independent of time 

(mathematically, 
∂
∂

=u
t

0). Some physical processes come to the steady state in a very short 

span of time. Therefore, we are interested in final stage for these processes. Parabolic and 

hyperbolic equations in two and three dimensions tend to elliptic equations in their steady 
state conditions. For example, heat conduction and wave equations reduce to the following 
Laplace and Poisson equations.

∇ ≡ ∂
∂

+ ∂
∂

=2
2

2

2

2 0u u
x

u
y

  (Laplace equation)

∇ ≡ ∂
∂

+ ∂
∂

=2
2

2

2

2u u
x

u
y

f x y( , )  (Poisson equation)

These equations are also known as potential equations as the variable u represents the 
gravitational potential, velocity potential, and electromagnetic potential in various relevant 
fields of science. Finite difference approximation will be used for the solutions of various 
types of these elliptic equations. 

In this section, Laplace and Poisson equations for the following cases are discussed with 
the help of finite difference approximations to obtain solutions at the pivotal points.

i) Dirichlet conditions only
ii) Symmetric problem
iii) Mixed type boundary conditions (Dirichlet and Neumann both)
iv) Non-rectangular domain 

The solutions (16.68), (16.71) and boundary conditions are given in the following table. 

For t = 4
27

 (k = 2)

 i (x)
j (y)

0 (–1) 1 (–1/3) 2 (1/3) 3 (1)

0 (–1) 0 0 0 0
1 (–1/3) 0 0.382653 0.382653 0
2 (1/3) 0 0.382653 0.382653 0
3 (1) 0 0 0 0
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726 Numerical Methods

16.7.1 Laplace Equation 
Consider the Laplace equation

∂
∂

+ ∂
∂

=
2

2

2

2 0u
x

u
y

 (16.72)

Let xi and yj be equally spaced points with spacing h and k, respectively, and u x y ui j i j( , ) .,=  
The central differences for derivative terms are given by

∂
∂

=
+ − + −

+

=

2

2 2
22u x y

x
u x h y u x y u x h y

h
O h

u x

i j i j i j i j

i

( , ) ( , ) ( , ) ( , )
( )

( ++ −

+ −

− +
+

=
− +

1 1
2

2

1 1
2

2

2

, ) ( , ) ( , )
( )

, , ,

y u x y u x y
h

O h

u u u
h

j i j i j

i j i j i j ++ O h( )2

∂
∂

=
+ − + −

+

=

2

2 2
22u x y

y
u x y k u x y u x y k

k
O k

u x

i j i j i j i j

i

( , ) ( , ) ( , ) ( , )
( )

( ,, ) ( , ) ( , )
( )

, , ,

y u x y u x y
k

O k

u u u
k

j i j i j

i j i j i j

+ −

+ −

− +
+

=
− +

1 1
2

2

1 1
2

2

2
++ O k( )2

Note that both h and k are spacing in the values of spatial variables, therefore we can consider 
the square meshes for our calculations. Let h = k. Using central difference approximations 
in Laplace equation at point, ( , )x yi j , we get

∂
∂

+ ∂
∂

=
− +

+
− +

++ − + −
2

2

2

2
1 1

2
1 1

2

2 2u
x

u
y

u u u
h

u u u
h

i j i j i j i j i j i j, , , , , , OO h( )2 0=

On neglecting the terms in O(h2), we have

u u u
h

u u u
h

u u

i j i j i j i j i j i j

i j i j

+ − + −

+ −

− +
+

− +
=

+

1 1
2

1 1
2

1 1

2 2
0, , , , , ,

, , ++ + − =

= + + +(
+ −

+ − + −

u u u

u u u u u

i j i j i j

i j i j i j i j i j

, , ,

, , , , ,

1 1

1 1 1 1

4 0
1
4 ))  (16.73)

This formula is known as standard 5-points formula. It becomes clearer from the following 
figure that the value at any point is the average of four other points, situated at the lower, 
upper, left and right sides. 
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Partial Differential Equations: Finite Difference Methods 727

Similarly, we can obtain following diagonal 5-points formula by considering diagonal points for 
finite differences

u u u u ui j i j i j i j i j, , , , ,= + + +( )+ + − − − + + −
1
4 1 1 1 1 1 1 1 1  (16.74)

ui, j+1

ui, j–1

ui–1, j ui, j ui+1, j

Fig. 16.1 Standard five-points formula

Fig. 16.2 Diagonal five-points formula

ui–1, j+1

ui+1, j–1
ui–1, j–1

ui, j

ui+1, j+1

It is easy to see from the Fig. 16.2, that the value of the function at any point is an average 
of the values at the diagonal points of the square meshes. But the value obtained from 
diagonal 5-points formula is less accurate, in general, as the points under discussion are at 
more distance in this case as compared to the standard 5-points formula. So, we will use the 
diagonal formula only when the standard formula is not applicable to the grid, or to ease 
the computation. 
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728 Numerical Methods

Case i) Dirichlet conditions only

Solve the Laplace equation ∇ = + =2 0u u uxx yy  for the square mesh with the boundary 
values (Dirichlet conditions) as shown in the following figure. Use Gauss–Seidel method 
till two consecutive iterations have same values up to three decimal points. Take initial 
approximation, u u u u1

0
2

0
3

0
4

00 0 0 0( ) ( ) ( ) ( ), , ,= = = = .

10

10

u1 u2

u4 u3

10

5

5

10

15

15

Ans. 
Dirichlet conditions (function value, u(x, t)) are given at both the boundaries for the 
variables x and y. It is easy to apply standard 5-points formula (16.73)

 u u u u ui j i j i j i j i j, , , , ,= + + +( )+ − + −
1
4 1 1 1 1

Using the function values u(x, t) at the nodal points, we get following four equations 

 

u u u

u u u

u u u

u

1 2 4

2 1 3

3 2 4

4

1
4

5 5

1
4

10 10

1
4

15 15

1
4

1

= + + +( )

= + + +( )

= + + +( )

= 00 10 1 3+ + +( )u u

On solving this system of simultaneous linear equations by Gauss–Seidel method with 
initial approximation [0, 0, 0, 0]T, the following iterations u u u u1 2 3 4  are obtained.

Iteration 1

2.500000 5.625000 8.906250 7.851562

Iteration 2

5.869141 8.693848 11.636353 9.376373

16.8Example
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Partial Differential Equations: Finite Difference Methods 729

Iteration 3

7.017555 9.663477 12.259962 9.819380

Iteration 4

7.370714 9.907669 12.431763 9.950619

Iteration 5

7.464572 9.974084 12.481175 9.986437

Iteration 6

7.490130 9.992826 12.494816 9.996237

Iteration 7

7.497266 9.998020 12.498564 9.998958

Iteration 8

7.499245 9.999453 12.499602 9.999712

Iteration 9

7.499791 9.999848 12.499890 9.999920

Iteration 10

7.499942 9.999958 12.499969 9.999978

The last two iterations are equal up to three decimal digits. So the solution is given by 
values at 10th iteration. Note that exact answer is given by 

u u u u1 2 3 47 5 10 12 5 10= = = =. .

Note: The result can be justified by the following figure. The standard 5-points formula is 
exactly true for each nodal point.

10

15

5

10

10
12.5

10

15

5

10

10

7.5
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730 Numerical Methods

Find the steady state temperature distribution in a thin rectangular plate, whose edges 
x x y y= = = =0 0 8 0 0 6, . , , .  are kept at the temperature shown in the following figure. 
Find the values of temperature at the nodal points of the rectangular region with mess 
length 0.2. Use the Gauss–Seidel method to compute the temperature at nodal points 
until the difference between successive iterations is less than 0.005. 

8.4 9.6 10.1

10.47.3

5 9.7

5.5 6.7 8.5

u1 u2
u3

u4 u5
u6

Ans. 
On applying standard 5-points formula at each nodal point, we get

 

u u u u u u u

u u u u

1 2 4 2 1 3 5

3 2 6

1
4

5 5 5 1
4

6 7

1
4

8 5 9 7

= + + +( ) = + + +( )

= + + +( )

. .

. . 44 1 5

5 2 4 6 6 3

1
4

7 3 8 4

1
4

9 6 1
4

10 1 10 4

= + + +( )

= + + +( ) = + + +

. .

. . .

u u

u u u u u u u55( )

On solving the above system by Gauss–Seidel method with initial approximation [0, 0, 0, 
0, 0, 0]T, the following iterations u u u u u u1 2 3 4 5 6  are obtained

Iteration1 

2.625000 2.331250 5.132812 4.581250 4.128125 7.440234

Iteration 2

4.353125 5.078516 7.679688 6.045313 7.041016 8.805176

Iteration 3

5.405957 6.706665 8.427960 7.036743 8.037146 9.241277

Iteration 4

6.060852 7.306490 8.686942 7.449499 8.399317 9.396564

16.9Example
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Partial Differential Equations: Finite Difference Methods 731

Iteration 5

6.313997 7.525064 8.780407 7.603329 8.531240 9.452911

Iteration 6

6.407098 7.604687 8.814400 7.659584 8.579296 9.473424

Iteration 7

6.441068 7.633691 8.826778 7.680091 8.596802 9.480895

Iteration 8

6.453445 7.644257 8.831288 7.687562 8.603178 9.483617

Iteration 9

6.457954 7.648106 8.832931 7.690283 8.605501 9.484608 

Iteration 10

6.459597 7.649508 8.833529 7.691275 8.606348 9.484969

Final solution is as follows 

 
u u u
u u

1 2 3

4 5

0
0

= 6 459597 = 7 6495 8 = 8 833529
= 7 691275 = 8 6 63

. . .
. . 448 = 9 484969u6 .

Case ii) Symmetric Problem

Find the steady state temperature distribution in a thin rectangular plate, whose edges 
x x= =0 2,  are kept at 0°C (in ice), and edges y y= =0 2,  are kept at temperature 100°C 
(in boiling water). Find the values of temperature at the nodal points of the rectangular 
region with mess length 0.5. Compute ten iterations of Gauss–Seidel method for 
temperature distribution on the grid. 

Ans. 
The temperature at the edges x x= =0 2,  is 0°C, and the edges y y= =0 2,  are kept at 
temperature 100°C. The grid with spacing h = 0.5 is shown in the following figure.

16.10Example
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732 Numerical Methods

u13

100 100 100

100

0

0

0

0

0

0

100 100
x

y

u12 u22 u32

u23

u11 u21 u31

u33

The steady state temperature distribution in a thin rectangular plate is defined by the 
Laplace equation. The boundary conditions and Laplace equation (u uxx yy+ = 0) both are 
symmetrical around the lines x = 1 and y = 1. Therefore, the values about these lines are 
equal, i.e.

 u u u u u u11 31 12 32 13 33= = =, ,  (Symmetry about x = 1)

 u u u u u u11 13 21 23 31 33= = =, ,  (Symmetry about y = 1) (16.75)

So, the values u u u u11 21 12 22, , ,  need to be computed only. Using standard 5-points formula 
and symmetries [from Eq. (16.75)], we have following simplified equations for i, j = 1, 2.

At (1, 1)  4 10011 21 12u u u− − =

At (2, 1)  4 2 10021 11 22u u u− − =

At (1, 2)  4 2 012 22 11u u u− − =

At (2, 2)  2 022 12 21u u u− − =

The ten iterations of Gauss–Seidel method for u u u u11 21 12 22, , ,  are as follows. The zero 
vector is used as initial approximation.

Iteration 1 

25.000000 37.500000 12.500000 25.000000

Iteration 2

37.500000 50.000000 25.000000 37.500000

Iteration 3

43.750000 56.250000 31.250000 43.750000

Iteration 4

46.875000 59.375000 34.375000 46.875000
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Iteration 5

48.437500 60.937500 35.937500 48.437500

Iteration 6

49.218750 61.718750 36.718750 49.218750

Iteration 7

49.609375 62.109375 37.109375 49.609375

Iteration 8

49.804688 62.304688 37.304688 49.804688

Iteration 9

49.902344 62.402344 37.402344 49.902344

Iteration 10

49.951172 62.451172 37.451172 49.951172

The final iteration is approximately given by

 u u u u11 21 12 2250 62 5 37 5 50= = = =, . , . ,

The solution is as follows

 

u u u u
u u
u u
u

11 13 31 33

21 23

12 32

22

50
62 5
37 5

50

= = = =
= =
= =
=

.

.

Note: There are discontinuities at corner points, as the temperature at the corner points 
are 0°C from the boundary condition at edges, x x= =0 2, , and 100°C from the boundary 
conditions at the edges, y y= =0 2, . To avoid discontinuity, the values of temperature at 
the corner points are not used. Also, the correctness of the result is easily verified by the 
following figure, where the standard 5-points formula holds for these values.

100

50 5062.5

50

37.5 37.5

50

50

62.5

100 100

100

0

0

0

0

0

0

100 100
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734 Numerical Methods

Solve the Dirichlet problem 

 ∇ =2 0u  in ℜ, where ℜ is the square 0 0 75≤ ≤x y, . . 

Given that u x y= +  on the boundary of the square ℜ. Take h = 0.25. 

Ans. 
The node points are as follows

 
x x x x
y y y y

0 1 2 3

0 1 2 3

0 0 25 0 5 0 75
0 0 25 0 5 0 75

= = = =
= = = =

, . , . , .
, . , . , .

Let u u x yi j i j= ( , )

The boundary condition u x y= +  provides the following results

u u u u
u u u u

10 01 02 20

13 31 32 23

0 25 0 5
1 0 1 25

= = = =
= = = =

. .
. .

0.50

0.50

0.25

0.25 1.00

1.00

1.25

1.25

u12 u22

u11 u21

The standard 5-points formula provides following simplified set of linear equations

At (1, 1)  4 0 511 21 12u u u− − = .

At (2, 1)  4 1 521 11 22u u u− − = .

At (1, 2)  4 1 512 22 11u u u− − = .

At (2, 2)  4 2 522 12 21u u u− − = .

16.11Example
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The following table contains 6 iterations u u u u11 12 21 22  of Gauss–Seidel method with 
initial approximation [0 0 0 0]T for the above diagonally dominant system. 

Iteration 1 

0.125000 

0.406250 

0.406250 

0.828125 

Iteration 2 

0.328125 

0.664062 

0.664062 

0.957031 

Iteration 3 

0.457031 

0.728516 

0.728516 

0.989258 

Iteration 4 

0.489258 

0.744629 

0.744629 

0.997314 

Iteration 5 

0.497314 

0.748657 

0.748657 

0.999329 

Iteration 6 

0.499329 

0.749664 

0.749664 

0.999832 
 
The exact answer is as follows

u u u u11 21 12 220 5 0 75 0 75 1 00= = = =. , . , . , .

0.50

0.50

0.50

0.25

0.25
0.75

1.00

1.00

1.00

1.25

1.25

0.75
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736 Numerical Methods

Case iii) Mixed type boundary conditions (Dirichlet and Neumann both) 

The Laplace equation ∇ = + =2 0u u uxx yy  is defined over the square region 
{ . ; . }0 0 6 0 0 6≤ ≤ ≤ ≤x y . The boundary conditions are defined by

i) u = 0 over the edges x y y= = =0 0 0 6, , .  (Dirichlet condition)

ii) ∂
∂

=u
x

1 at the edge x = 0 6. . (Neumann condition)

Find the values of u x y( , ) at the nodal points of the square region with mess length 0.2 
with the aid of Gauss–Seidel method. Replace the derivative boundary condition with 
their central difference approximation. 

Ans.
The nodal points of the square region { . ; . }0 0 6 0 0 6≤ ≤ ≤ ≤x y  with mess length 0.2 are 
given by

x x x x
y y y y

0 1 2 3

0 1 2 3

0 0 2 0 4 0 6
0 0 2 0 4 0 6

= = = =
= = = =

, . , . , .
, . , . , .

The Dirichlet condition ( u = 0 ) is given at x y y= = =0 0 0 6, , . , and Neumann condition

∂
∂

=





u
x

1  is given at the edge, x = 0 6. . The values of u x y( , ) have to be determined at the 

mess points and boundary (x = 0 6. ). 

Let u u x yi j i j= ( , ) . Now, we have to compute the values u u u u u u11 12 21 22 31 32, , , , , .

To replace the derivative boundary condition at x = 0 6.  with central difference, we have 
to extend the boundary at x = 0 6. . 

0

0 0 0

0 u12 u22 u32

u11 u21 u31
0

0 0 x

y

16.12Example
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On replacing the boundary condition 
∂
∂

=u
x

1 at any point ( , )x yi j  with central difference, 
we get 

∂
∂

=
−

=+ −u
x

u u

hx y

i j i j

i j( , )

, ,1 1

2
1

At the edge x = 0 6. (i = 3) and for j = 1 2, , we have

 
u u

u u4 1 2 1
4 1 2 12 0 2

1 0 4, ,
, ,( . )

.
−

= ⇒ = +  (16.76)

 
u u

u u4 2 2 2
4 2 2 22 0 2

1 0 4, ,
, ,( . )

.
−

= ⇒ = +  (16.77)

On applying standard 5-points formula for calculations at each nodal point, we have 

At (1, 1)  u u u21 12 114 0+ − =

At (2, 1)  u u u u31 11 22 214 0+ + − =

At (3, 1)  u u u u21 32 41 314 0+ + − =

   u u u u21 32 21 310 4 4 0+ + + − =( . )  From Eq. (16.76)

At (1, 2)  u u u22 11 124 0+ − =

At (2, 2)  u u u u12 21 32 224 0+ + − =

At (3, 2)  u u u u31 22 42 324 0+ + − =

   u u u u31 22 22 320 4 4 0+ + + − =( . )  From Eq. (16.77)

Equations (16.76) and (16.77) are used to replace values of u41 and u42 from equations at 
nodes (3, 1) and (3, 2). Now, we are left with following six equations.

u u u11 21 12
1
4

= +( )
u u u u21 31 11 22

1
4

= + +( )

u u u u31 21 32 21
1
4

0 4= + + +( ).

u u u12 22 11
1
4

= +( )

u u u u22 12 21 32
1
4

= + +( )

u u u u32 31 22 22
1
4

0 4= + + +( ).
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738 Numerical Methods

These equations are diagonally dominant, so we can apply Gauss–Seidel method. On 
solving this system by Gauss–Seidel with initial approximation [0, 0, 0, 0, 0, 0]T, we get 
following iterations
Iteration 1 
0.000000  0.000000  0.100000  0.000000  0.000000  0.125000 
Iteration 2 
0.000000  0.025000  0.143750  0.000000  0.037500  0.154687 
Iteration 3 
0.006250  0.046875  0.162109  0.010938  0.053125  0.167090 
Iteration 4 
0.014453  0.057422  0.170483  0.016895  0.060352  0.172797 
Iteration 5 
0.018579  0.062354  0.174376  0.019733  0.063721  0.175454 
Iteration 6 
0.020522  0.064655  0.176191  0.021061  0.065292  0.176694 
Iteration 7 
0.021429  0.065728  0.177037  0.021680  0.066026  0.177272 
Iteration 8 
0.021852  0.066229  0.177432  0.021969  0.066368  0.177542 

The final solution of the Laplace equation is given by

u u u
u u

11 21 31

12 22

0 0 0 0 0
0 0 0 0

= = =
= =

. . .

. .
21852 66229 177432
21969 663668 177542u32 0= .

Case iv) Non-rectangular domain

The Laplace equation ∇ = + =2 0u u uxx yy  is defined over the following triangular region, 
{ ; ; }x y x y= = + =0 0 5 . The following boundary conditions are prescribed

i) u = 0 over the edges x y= =0 0,
ii) u x y= − −25 2 2 at the edge x y+ = 5 

Find the values of u x y( , ) at the nodal points of the square region with mess length 1, with 
the aid of Gauss–Seidel method till the last two iterations have same values up to three 
decimal points. 

16.13Example
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Partial Differential Equations: Finite Difference Methods 739

Ans. 
Since we have to compute the values of u x y( , ) at the nodal points of the triangular region 
{ ; ; }x y x y= = + =0 0 5  with mess length 1. Therefore, mesh points are given by 

x x x x x x
y y y y y y

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5
0 1 2 3 4 5

= = = = = =
= = = = = =

, , , , ,
, , , , ,

Let u u x yi j i j= ( , ) . We have to compute the values of u u u u u u11 21 31 12 22 13, , , , , . 

The following boundary conditions are defined

i) u = 0  over the edges x y= =0 0,
ii) u x y= − −25 2 2  at the edge x y+ = 5  

So, we have
u u u u u u
u u u u u
u u
u

00 10 20 30 40 50

01 02 03 04 05

14 41

23

0
0

8

= = = = = =
= = = = =
= =
== =u32 12

12

12

8

8

0

y

x

0

0

0

0

0 0 0 0

u13

u12

u11 u21 u31

u22

It is easy to apply standard 5-points formula for calculations at each nodal point to get 
following equations 
At (1, 1)  u u u21 12 114 0+ − =
At (2, 1)  u u u u31 11 22 214 0+ + − =
At (3, 1)  u u21 314 20− = −
At (1, 2)  u u u u22 11 13 124 0+ + − =
At (2, 2)  u u u12 21 224 24+ − = −
At (1, 3)  u u12 134 20− = −
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740 Numerical Methods

We get following iterations of Gauss–Seidel method for u u u u u u11 21 31 12 22 13, , , , ,  

Iteration 1 

0.000000 0.000000 5.000000 0.000000 6.000000 5.000000 

Iteration 2 

0.000000 2.750000 5.687500 2.750000 7.375000 5.687500 

Iteration 3 

1.375000 3.609375 5.902344 3.609375 7.804688 5.902344 

Iteration 4 

1.804688 3.877930 5.969482 3.877930 7.938965 5.969482 

Iteration 5 

1.938965 3.961853 5.990463 3.961853 7.980927 5.990463 

Iteration 6 

1.980927 3.988079 5.997020 3.988079 7.994040 5.997020 

Iteration 7 

1.994040 3.996275 5.999069 3.996275 7.998137 5.999069 

Iteration 8 

1.998137 3.998836 5.999709 3.998836 7.999418 5.999709 

Iteration 9 

1.999418 3.999636 5.999909 3.999636 7.999818 5.999909 

Iteration 10 

1.999818 3.999887 5.999971 3.999887 7.999943 5.999971 

The final solution is given by 
u u u u u u11 21 31 12 22 132 4 6 4 8 6= = = = = =, , , , ,

Note: The Laplace equation and boundary conditions are symmetrical about the line y x= . 
So, the problem can also be discussed with following symmetry consideration

 u u21 12=  and u u31 13=

16.7.2 Poisson Equation 
Let us consider the Poisson equation

∂
∂

+ ∂
∂

=
2

2

2

2

u
x

u
y

f x y( , )
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Partial Differential Equations: Finite Difference Methods 741

where f (x, y) is any function of the variables x and y. Assuming that the variables x and y 
are equally spaced points with spacing h and k, respectively, the central differences for the 
derivative terms are as follows

∂
∂

=
− +

++ −
2

2
1 1

2
22u x y

x
u u u

h
O hi j i j i j i j( , )

( ), , ,

∂
∂

=
− +

++ −
2

2
1 1

2
22u x y

y
u u u

k
O ki j i j i j i j( , )

( ), , ,

The Poisson equation at any point ( , )x yi j  is as follows

∂
∂

+ ∂
∂

=
− +

+
−+ − +

2

2

2

2
1 1

2
12 2u

x
u

y
u u u

h
u

x y x y

i j i j i j i j

i j i j( , ) ( , )

, , , , uu u
k

f x yi j i j
i j

, , ( , )
+

=−1
2

Let h = k, then

u u u u u h f x yi j i j i j i j i j i j+ − + −+ + + − =1 1 1 1
24, , , , , ( , )  (16.78)

Now, we will discuss few examples of Poisson equation. 

Case i) Dirichlet conditions only

Solve the Poisson equation ∇ = + = +2u u u x yxx yy  for the square mesh, whose edges, 
x x y y= = = =0 0 8 0 0 6, . , , .  are kept at the temperature shown in the following figure. 
Find the values of u x y( , ) at the nodal points of the rectangular region with mess length 
0.2. Use Gauss–Seidel iterative method to compute values at nodal points until the 
difference between successive values at each point is less than 0.005.

5.5 6.7 8.5

8.4

u12 u22 u32

u11 u21 u31

9.6

9.7

10.47.3

5

10.1

16.14Example
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742 Numerical Methods

Ans. 
The edges of the rectangular region are x x y y= = = =0 0 8 0 0 6, . , , .  with the mess length 
0.2. So, values of x and y are as follows

 

x y
x y
x y
x y
x y
x

0 0

1 1

2 2

3 3

4

0 0
0 2 0 2
0 4 0 4
0 6 0 6
0 8

= =
= =
= =
= =
=

. .
. .
. .
.  (16.79)

Let the value of u x y ui j i j( , ) = , we have

u u u u u
u u u

10 20 30 01 02

13 23 33

8 4 9 6 10 1 7 3 5
5 5 6 7

= = = = =
= = =

. , . , . , . ,

. , . , 88 5 10 4 9 741 42. , . , .u u= =  (16.80)

On replacing the derivative terms with central differences in the Poisson equation 
u u x yxx yy+ = +  at the point, ( , )x yi j , we have

 
u u u

h
u u u

h
x yi j i j i j i j i j i j

i j
+ − + −− +

+
− +

= +1 1
2

1 1
2

2 2, , , , , ,

(or) u u u u u h x yi j i j i j i j i j i j+ − + −+ + + − = +( )1 1 1 1

2
4, , , , ,

For i = 1, 2, 3 and j = 1, 2, we obtain

At (1, 1)  u u u u u x y21 01 12 10 11
2

1 14 0 2+ + + − = +( )( . )

At (2, 1)   u u u u u x y31 11 22 20 21
2

2 14 0 2+ + + − = +( )( . )

At (3, 1)   u u u u u x y41 21 32 30 31
2

3 14 0 2+ + + − = +( )( . )

At (1, 2)   u u u u u x y22 02 13 11 12
2

1 24 0 2+ + + − = +( )( . )

At (2, 2)   u u u u u x y32 12 23 21 22
2

2 24 0 2+ + + − = +( )( . )

At (3, 2)   u u u u u x y42 22 33 31 32
2

3 24 0 2+ + + − = +( )( . )

Using the values of x y ui j i j, ,  from Eqs. (16.79) and (16.80), we get

u u u
u u u u
u u u

21 12 11

31 11 22 21

21 32 31

4 15 684
4 9 576

4 2

+ − = −
+ + − = −
+ − = −

.
.

00 468
4 10 476

4 6 668
4

22 11 12

32 12 21 22

22 31

.
.

.
u u u
u u u u
u u

+ − = −
+ + − = −
+ − uu32 18 16= − .
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Partial Differential Equations: Finite Difference Methods 743

On solving the above system of simultaneous linear equations by Gauss–Seidel with initial 
approximation [0, 0, 0, 0, 0, 0]T, the following iterations [ u u u u u u11 21 31 12 22 13, , , , , ] are 
obtained
Iteration 1 
3.921000 3.374250 5.960563 3.599250 3.410375 6.882734 
Iteration 2 
5.664375 6.152828 8.375891 4.887688 6.147813 8.170926 
Iteration 3 
6.681129 7.695209 9.083534 5.826235 7.090093 8.583406 
Iteration 4 
7.301361 8.262747 9.328539 6.216864 7.432755 8.730324 
Iteration 5 
7.540903 8.469549 9.416968 6.362414 7.557571 8.783635 
Iteration 6 
7.628991 8.544883 9.449129 6.415641 7.603040 8.803042 
Iteration 7 
7.661131 8.572325 9.460842 6.435042 7.619602 8.810111 
Iteration 8 
7.672842 8.582321 9.465109 6.442111 7.625636 8.812686 
Iteration 9 
7.677108 8.585963 9.466662 6.444686 7.627833 8.813623 
Iteration 10 
7.678662 8.587290 9.467228 6.445624 7.628634 8.813966 

The final solution is as follows 
u u u
u u

11 21 31

12 22

0= = =
= =

7 678662 8 58729 9 467228
6 445624 7 6286
. . .
. . 334 8 813966u32 = .

Case ii) Symmetric problem

Solve the Poisson equation u u x yxx yy+ = +2 2 for a thin rectangular plate, whose edges 
x x= =0 2,  are kept at 0°C (in ice) and edges y y= =0 2,  are kept at temperature 100°C 
(in boiling water). Find the values of u x y( , ) at the nodal points of the rectangular region 
with mess length 0.5. Use Gauss–Seidel iterative method to compute values at nodal 
points until the difference between successive values at each point is less than 0.005. Use 
symmetry.

16.15Example
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744 Numerical Methods

Ans.
The edges of the square region are x x y y= = = =0 2 0 2, , ,  with the mess length 0.5. So, 
the values of x and y are as follows

 

x y
x y
x y
x y
x y
x y

0 0

1 1

2 2

3 3

4 4

0 0
0 5 0 5
1 1
1 5 1 5
2 2

= =
= =
= =
= =
= =

. .

. .
 (16.81)

Let the value of u x y ui j i j( , ) = , we have

  

u u u x
u u u x
u u

01 02 03

41 42 43

10 20

0 0 0 0
0 0 0 2
100 10

= = = =
= = = =
= =

, , ( )
, , ( )

, 00 100 0
100 100 100 2

30

14 24 34

, ( )
, , ( )

u y
u u u y

= =
= = = =  (16.82)

u13 u23 u33

u12 u22 u32

u11

100 100 100

100

0

0

0

0

0

0

100 100

u21 u31

Let us solve the Poisson equation u u x yxx yy+ = +2 2  with symmetry consideration. Since 
the boundary conditions and the Poisson equation are symmetrical around the lines x = 1 
and y = 1; so we can assume the values about these lines are equal; i.e.

 u u u u u u11 31 12 32 13 33= = =, ,   (Symmetry about x = 1)

 u u u u u u11 13 21 23 31 33= = =, ,   (Symmetry about y = 1) (16.83)

So, we need to find values of u u u u11 21 12 22, , ,  only. 

The Poisson equation ∇ = + = +2 2 2u u u x yxx yy  at point ( , )x yi j  is given by 
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Partial Differential Equations: Finite Difference Methods 745

 

u u u
h

u u u
h

x yi j i j i j i j i j i j
i j

+ − + −− +
+

− +
= +1 1

2
1 1

2
2 2

2 2, , , , , ,

(or) u u u u u h x yi j i j i j i j i j i j+ − + −+ + + − = +( )1 1 1 1

2 2 24, , , , ,

We need to find values of u u u u11 21 12 22, , , , so

At (1, 1)  u u u u u x y21 01 12 10 11

2

1
2

1
24 0 5+ + + − = +( )( . )

At (2, 1)  u u u u u x y31 11 22 20 21

2

2
2

1
24 0 5+ + + − = +( )( . )

At (1, 2)  u u u u u x y22 02 13 11 12

2

1
2

2
24 0 5+ + + − = +( )( . )

At (2, 2)  u u u u u x y32 12 23 21 22

2

2
2

2
24 0 5+ + + − = +( )( . )  (16.84)

Using symmetries from Eq. (16.81), the values of x y ui j i j, ,  from Eqs. (16.82) and (16.83), 
the set of Eqs. (16.84) becomes

u u u21 12 11
24 100 0 5 0 5 99 875+ − = − + ( ) = −( . ) . .

2 4 100 0 5 1 25 99 687511 22 21
2u u u+ − = − + ( ) = −( . ) . .

u u u22 11 12
22 4 0 5 1 25 0 3125+ − = ( ) =( . ) . .

2 2 4 0 5 2 0 512 21 22
2u u u+ − = ( ) =( . ) .

On solving this system of linear equations with the help of Gauss–Seidel method for 
u u u u11 21 12 22, , , , we have

Iteration 1 

24.968750 37.406250 12.406250 24.781250 

Iteration 2 

37.421875 49.828125 24.828125 37.203125 

Iteration 3 

43.632812 56.039062 31.039062 43.414062 

Iteration 4 

46.738281 59.144531 34.144531 46.519531 

Iteration 5 

48.291016 60.697266 35.697266 48.072266 

Iteration 6 

49.067383 61.473633 36.473633 48.848633 
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746 Numerical Methods

Iteration 7 

49.455566 61.861816 36.861816 49.236816 

Iteration 8 

49.649658 62.055908 37.055908 49.430908 

Iteration 9 

49.746704 62.152954 37.152954 49.527954 

Iteration 10 

49.795227 62.201477 37.201477 49.576477 

Iteration 11 

49.819489 62.225739 37.225739 49.600739 

Iteration 12 

49.831619 62.237869 37.237869 49.612869 

Iteration 13 

49.837685 62.243935 37.243935 49.618935 

Iteration 14 

49.840717 62.246967 37.246967 49.621967 

Iteration 15 

49.842232 62.248482 37.248482 49.623482 

Iteration 16 

49.842991 62.249241 37.249241 49.624241 

The Final solution is given by

u u u u
u u
u u

11 13 31 33

21 23

12 32

= = = =
= =
= =

49 842991
62 249241
37 24924

.
.
. 11

49 624241u22 = .

Solve the following Poisson problem 

 ∇ = +2u ex y in ℜ, where ℜ is the square 0 0 75≤ ≤x y, . .

Given that u x y= +2 2 on the boundary of the square ℜ. Take h = 0 25. . 

16.16Example

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.017
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:41:34, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.017
https://www.cambridge.org/core


Partial Differential Equations: Finite Difference Methods 747

Ans.
The node points are as follows

x x x x
y y y y

0 1 2 3

0 1 2 3

0 0 25 0 5 0 75
0 0 25 0 5 0 75

= = = =
= = = =

, . , . , .
, . , . , .

The boundary condition u x y= +2 2 provides the following values

u u u u
u u u u

10 01 02 20

13 31 32 23

0 0625 0 25
0 625 0 8125

= = = =
= = = =

. .

. .

0.625

0.6250.0625

u12 u22

u11 u21

0.0625

0.25

0.25

0.8125

0.8125

The system of linear equations is obtained by applying standard 5-points formula. Then, 
Gauss–Seidel method provides following 6 iterations 

Iteration 1 

0.005489 0.187044 0.187044 0.457299 

Iteration 2 

0.099011 0.324749 0.324749 0.526151 

Iteration 3 

0.167863 0.359176 0.359176 0.543365 

Iteration 4 

0.185077 0.367782 0.367782 0.547668 

Iteration 5 

0.189380 0.369934 0.369934 0.548744 

Iteration 6 

0.190456 0.370472 0.370472 0.549013 

After 6 iterations, the solution is as follows 

u u u11 12 210 190456 0 370472 0 370472= = =. . .                        u22 0 549013= .
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748 Numerical Methods

Case iii) Mixed type boundary conditions (Dirichlet and Neumann both) 

A Poisson equation u u x yxx yy+ = +4( )  is defined over a domain 0 0 75≤ ≤x y, .  with the 
following boundary conditions,

 u = 0 on the sides x = 0, 0.75 and y = 0 (Dirichlet conditions)

 ∂
∂

=u
y

u  on y = 0.75    (Neumann condition)

Solve the given Poisson equation by dividing the domain into squares of side 0.25. 
Approximate the derivative boundary condition with the central difference, and use 
Gauss–Seidel method. 

Ans. 
Nodes in the directions of variables x and y are x x x x0 1 2 30 0 25 0 5 0 75= = = =, . , . , .  and 
y y y y0 1 2 30 0 25 0 5 0 75= = = =, . , . , .  respectively. The following figure shows the boundary 
conditions u = 0 on the sides x = 0, 0.75 and y = 0. 

0

0

0

0

0 u13 u23

u12 u22

u11 u21
0

0 0 0 0

On replacing the derivative boundary condition at the boundary y = 0.75 ( y y= 3 ) with 
the central difference, we have

∂
∂

=
−

=+ −u x y
y

u u
h

ui j i j i j
ij

( , ) , ,1 1

2

∂
∂

=
−

=
u x y

y
u u

ui i i
i

( , )
.

, ,3 4 2
30 5

 u u ui i i, , .4 2 30 5= +  (16.85) 

This formula can be used for the hypothetical values at j = 4. In another way, we are 
extending the boundaries to compute the required mesh values at j = 3. Using the central 
differences for derivative terms in the Poisson equation, we have 

16.17Example
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u u u u u h f x y

x y
i j i j i j i j i j i j

i

+ − + −+ + + − =

= ( ) +
1 1 1 1

2

2

4

0 25 4
, , , , , ( , )

. ( jj

i jx y

)

. ( )=( ) +0 25
Using different values of i, j at the mesh points, we have

At (1, 1)  u u u u u21 01 12 10 114 125+ + + − = .

At (2, 1)  u u u u u31 11 22 20 214 1875+ + + − = .

At (1, 2)  u u u u u22 02 13 11 124 1875+ + + − = .

At (2, 2)  u u u u u32 12 23 21 224 25+ + + − = .

At (1, 3)  u u u u u23 03 14 12 134 25+ + + − = .

At (2, 3)  u u u u u33 13 24 22 234 3125+ + + − = .

Equation (16.85) is used to replace the values of u14  and u24  from last two equations. 
Therefore, we are left with following six equations with six unknowns.

u u u
u u u
u u u u
u

21 12 11

11 22 21

22 13 11 12

4 125
4 1875

4 1875

+ − =
+ − =
+ + − =

.
.

.

112 23 21 22

23 12 13

13 22 23

4 25
2 3 5 25
2 3 5 31

+ + − =
+ − =
+ − =

u u u
u u u
u u u

.
. .
. . 225

Applying Gauss–Seidel method, we have following iterations

Iteration 1 
–0.031250 –0.054688 –0.054688 –0.089844 –0.087054 –0.139828 
Iteration 2 
–0.058594 –0.083984 –0.105748 –0.144890 –0.141593 –0.171138 
Iteration 3 
–0.078683 –0.102768 –0.138167 –0.165518 –0.159801 –0.182234 
Iteration 4 
–0.091484 –0.111125 –0.151076 –0.173609 –0.166660 –0.186505 
Iteration 5 
–0.096800 –0.114477 –0.156142 –0.176781 –0.169328 –0.188174 
Iteration 6 
–0.098905 –0.115797 –0.158129 –0.178025 –0.170372 –0.188828 
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Iteration 7 
–0.099731 –0.116314 –0.158907 –0.178512 –0.170781 –0.189084 
Iteration 8 
–0.100055 –0.116517 –0.159212 –0.178703 –0.170942 –0.189184 
After 8 iterations, we have 

u u u
u u

11 21 12

22 13

0 100055 0 116517 0 159212
0 178703

= − = − = −
= − = −

. . .
.

 
00 170942 0 18918423. .u = −    

Discussion:

1. We have discussed the elliptic equations with rectangular and triangular 
boundaries with equal grid spacing in both the directions. These equations can 
also be discussed with irregular boundaries with different grid spacing like circular 
etc. We have already discussed such case for ordinary differential equation in  
Section 15.8. Due to complexity of such problems, here we have avoided it. 

2. Laplace and Poisson equations in 3-dimensions can also be solved on similar 
pattern. Here, we have avoided 3-dimensional cases due to cumbersome 
computation. 

3. There is truncation error in finite difference approximations of derivative terms. 
We have to reduce the grid sizes to decrease this error. The number of equations 
becomes very large with very small grid sizes. The problems increase manifold 
during solution of such a large system. Few such problems have already been 
discussed in Section 15.9. 

4. Here, we have discussed only Gauss–Seidel method for solutions of systems of 
linear equations. The relaxation method can also be used to solve these systems, 
and in some cases it can reduce computational efforts.

16.8 Hyperbolic Equation (Wave Equation) 

Vibrations in a tightly stretched string between two points are well described by the 
following hyperbolic equation known as 1-dimensional wave equation

∂
∂

= ∂
∂

2

2

2

2

u
t

c u
x

 (16.86)

where c T
m

=  (T is tension in the string and m is the mass per unit length) is a positive 

constant and it depends on the nature of string. Second order derivative terms in the variables 
x and t are present in Eq. 16.86. Therefore, two boundary conditions (corresponding to x) 
and two initial conditions (corresponding to t) are required for a well-posed problem. 
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Similar expressions for two and three-dimensional wave equations are as follows 

∂
∂

= ∂
∂

+ ∂
∂







= ∇
2

2

2

2

2

2
2u

t
c u

x
u

y
c u

∂
∂

= ∂
∂

+ ∂
∂

+ ∂
∂







= ∇
2

2

2

2

2

2

2

2
2u

t
c u

x
u

y
u

z
c u

We will discuss explicit and implicit schemes for the solution of wave Eq. (16.86). Higher 
dimensional equations are not discussed in this book.

16.8.1 Explicit Scheme 
Let the value of u x t( , )  at point ( , )x ti j  be ui j,  i.e. u x t ui j i j( , ) ,= . Also assume that step 
sizes for the variable x and t are ∆ =x h  and ∆ =t k , respectively. 

Let us discretize Eq. (16.86) at point ( , )x ti j

∂
∂

= ∂
∂

2

2

2

2

u
t

c u
x

x t x ti j i j( , ) ( , )

 (16.87)

Using central difference formulas in this equation, and neglecting the error terms in 
discretization, we have

 

u u u
k

c
u u u

h
i j i j i j i j i j i j, , , , , ,+ − + −− +

=
− +1 1

2
1 1

2

2 2

(or) u
c k
h

u u u u ui j i j i j i j i j i j, , , , , ,+ + − −= − +( ) + −1

2

2 1 1 12 2

Let r
c k
h

=
2

2 , then we have

u r u u r u ui j i j i j i j i j, , , , ,( )+ + − −= +( ) + − −1 1 1 12 1
 (16.88)

The explicit scheme (16.88) is stable for r ≤ 1 ; Let us discuss the unconditionally stable 
implicit scheme.

16.8.2 Implicit Scheme 
In this scheme, the central difference formula for the time derivative and average of central 
differences at j – 1 and j + 1 levels for space derivative are used in Eq. (16.87). After neglecting 
the error terms in discretization, we have

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.017
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:41:34, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.017
https://www.cambridge.org/core


752 Numerical Methods

u u u
k

c
u u u

h
ui j i j i j i j i j i j i, , , , , , ,+ − + − − − − +− +

=
− +

+1 1
2

1 1 1 1 1
2

12 1
2

2 jj i j i ju u
h

+ + − +− +





1 1 1 1

2

2 , ,  (16.89)

Let r
c k
h

=
2

2 , then we have

− + + − = − + +− + + + + − − −r u r u r u r u r u ri j i j i j i j i j1 1 1 1 1 1 1 12 1 2 1, , , , ,( ) ( ) uu ui j i j+ − +1 1 4, ,  (16.90)

The scheme (16.90) is known as implicit scheme. 

Note: In the implicit scheme (16.90), equal weightage is given to ( j–1)th and ( j+1)th levels 
and zero weightage to ( j)th level. Different implicit schemes can be obtained depending on 
the weightage given to different levels. For example, θ1  to ( j–1)th level, θ2  to ( j)th level and 
1 1 2− −θ θ  to ( j+1)th level, then Eq. (16.87) is given by

u u u
k

c

u u u
hi j i j i j

i j i j i j

, , ,

, , ,

+ −

+ − − − −

− +
=

− +




1 1
2

1
1 1 1 1 1

22
2

θ ++
− +






+ − −
− +

+ −

+ + +

θ

θ θ

2
1 1

2

1 2
1 1 1

2

1
2

u u u
h

u u

i j i j i j

i j i j

, , ,

, ,( )
uu

h
i j− +

















1 1

2
,

Note that 0 ≤ θ1, θ2 ≤ 1. On rearranging the terms and using r
c k
h

=
2

2 , we can easily obtain 

following the general implicit scheme.

u u u r
u u u u

i j i j i j

i j i j i j i

, , ,

, , , ,

+ −

+ − − − − +
− + =

− +( ) +
1 1

1 1 1 1 1 1 2 1
2

2θ θ jj i j i j

i j i j i j

u u

u u u

− +( )
+ − − − +( )







−

+ + + − +

2

1 2
1

1 2 1 1 1 1 1

, ,

, , ,( )θ θ







− − − + + − −( ) − − −− + + +( ) ( ) ( ), , ,1 1 2 1 11 2 1 1 1 2 1 1 2 1θ θ θ θ θ θr u r u r ui j i j i j++

+ − − − − + −= +( ) − + + +
1

1 1 1 1 1 1 1 2 1 11 2r u u r u r u ui j i j i j i j i jθ θ θ, , , , ,( ) (( ) − −( ) ,1 2 2r ui jθ

Table for u
i,j
 = u(x

i
, t

j
)

 i (x) 
j (t)

0 1 2 … n

0

1

2
.
.
.

u00

u01

u02

.

.

.

u10

u11

u12

.

.

.

u20

u21

u22

.

.

.

…

…

…
.
.
.

un0

un1

un2

.

.

.
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Solve the wave equation ∂
∂

= ∂
∂

2

2

2

24u
t

u
x

 with 

 initial conditions u x
x x

x x
( , )

. ( ) /

. ( ) /
0

0 1 0 1 2
0 1 1 1 2 1

=
≤ ≤

− ≤ ≤





 and ∂

∂
=

=

u
t t 0

0

 boundary conditions u t u t t( , ) ( , )0 1 0 0= = ≥ . 

Take the step size for t is 0.1, and step size for x is 0.25. Use explicit scheme to compute 
the solution up to time t = 0.3. Use central difference formula for the derivative term in 
the initial condition. 

Ans.
It is given that step size for t is 0.1 (k = 0.1) and step size for x is 0.25 (h = 0.25). So, we have 
x = 0 0 25 0 5 0 75 1, . , . , . ,  and t = 0 0 1 0 2 0 3, . , . , . . 

Using the initial condition 

u x
x x

x x
( , )

. ( ) /

. ( ) /
0

0 1 0 1 2
0 1 1 1 2 1

=
≤ ≤

− ≤ ≤






and boundary conditions 
u t u t t( , ) ( , ) ,0 1 0 0= = ≥

we have following table for values of u u x ti j i j, ( , )=

i (x) 
j (t) 0(0) 1(0.25) 2(0.5) 3(0.75) 4(1)

0 (0)

1 (0.1)

2 (0.2)

3(0.3)

4(0.4)

0

0

0

0

0

0.025

.

.

.

0.05

.

.

.

0.025

.

.

.

0

0

0

0

0

The explicit scheme (16.88) for the solution of wave equation is as follows

u r u u r u ui j i j i j i j i j, , , , ,( )+ + − −= +( ) + − −1 1 1 12 1

16.18Example
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Using r
c k
h

= =
( )

( )
=

2

2

2

24
0 1

0 25
0 64

.

.
. , we have

 u u u u ui j i j i j i j i j, , , , ,. .+ + − −= +( ) + −1 1 1 10 64 0 72  (16.91)

Equation (16.91) can be used to compute various nodal values for different j. 
j = 1.
At time t = 0, the initial condition is ∂

∂
=

=

u
t t 0

0 . The central difference formula provides 

the following equation

∂
∂

=
−

=
−

=
=

+ −

=

−

=

u
t

u u

k

u u

kt

i j i j

j

i i

j0

1 1

0

1 1

0
2 2

0, , , ,

 ⇒ = −u ui i, ,1 1  (16.92)

The scheme (16.91) for j = 0 is given by

 u u u u ui i i i i, , , , ,. .1 1 0 1 0 0 10 64 0 72= +( ) + −+ − −

Using Eq. (16.92), we have

 u u u ui i i i, , , ,. .1 1 0 1 0 00 32 0 36= +( ) ++ −

For i = 1 2 3, , , we can easily obtain the following values

 
u u u u1 1 2 0 0 0 1 00 32 0 36 0 32 0 05 0 0 36 0 025 0 0, , , ,. . . . . ( . ) .= +( ) + = +( ) + = 225

 
u u u u2 1 3 0 1 0 2 00 32 0 36 0 32 0 025 0 025 0 36 0 05, , , ,. . . . . . ( . )= +( ) + = +( ) + == 0 034.

 
u u u u3 1 4 0 2 0 3 00 32 0 36 0 32 0 0 05 0 36 0 025 0 0, , , ,. . . . . ( . ) .= +( ) + = +( ) + = 225

The following table shows these values in the second row. 

i (x) 
j (t)

0(0) 1(0.25) 2(0.5) 3(0.75) 4(1)

0 (0)

1 (0.1)

2 (0.2)

3(0.3)

0

0

0

0

0.025

0.025

0.05

0.034

0.025

0.025

0

0

0

0
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j = 2, 

The explicit scheme (16.91) for j = 1 gives following equation

u u u u ui i i i i, , , , ,. .2 1 1 1 1 1 00 64 0 72= +( ) + −+ −

For i = 1 2 3, , , we can easily obtain the following values

u u u u u1 2 2 1 0 1 1 1 1 00 64 0 72 0 64 0 034 0 0 72 0 02, , , , ,. . . . . ( .= +( ) + − = +( ) + 55 0 025 0 01476) . .− =

u u u u u2 2 3 1 1 1 2 1 2 00 64 0 72 0 64 0 025 0 025 0 72, , , , ,. . . . . . (= +( ) + − = +( ) + 00 034 0 05 0 00648. ) . .− =

u u u u u3 2 4 1 2 1 3 1 3 00 64 0 72 0 64 0 0 034 0 72 0 02, , , , ,. . . . . ( .= +( ) + − = +( ) + 55 0 025 0 01476) . .− =

i (x) 
j (t)

0(0) 1(0.25) 2(0.5) 3(0.75) 4(1)

0 (0)

1 (0.1)

2 (0.2)

3(0.3)

0

0

0

0

0.025

0.025

0.01476

0.05

0.034

0.00648

0.025

0.025

0.01476

0

0

0

0

j = 3, 
For j = 2, the explicit scheme (16.91) becomes

 
u u u u ui i i i i, , , , ,. .3 1 2 1 2 2 10 64 0 72= +( ) + −+ −

For i = 1 2 3, , , the following values are obtained

u u u u u1 3 2 2 0 2 1 2 1 10 64 0 72 0 64 0 00648 0 0 72 0, , , , ,. . . . . ( .= +( ) + − = +( ) + 001476 0 025
0 0102256

) .
.

−
= −

u u u u u2 3 3 2 1 2 2 2 2 10 64 0 72 0 64 0 01476 0 01476 0, , , , ,. . . . .= +( ) + − = +( ) + .. ( . ) .
.

72 0 00648 0 034
0 0104416

−
= −

u u u u u3 3 4 2 2 2 3 2 3 10 64 0 72 0 64 0 0 72, , , , ,. . . . (= +( ) + − = +( ) +0.00648 0.001476) .
.

−
= −

0 025
0 0102256
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i (x) 
j (t)

0(0) 1(0.25) 2(0.5) 3(0.75) 4(1)

0 (0)

1 (0.1)

2 (0.2)

3(0.3)

0

0

0

0

0.025

0.025

0.01476

–0.0102256

0.05

0.034

0.00648

–0.0104416

0.025

0.025

0.01476

–0.0102256

0

0

0

0

A tightly stretched flexible string has its ends fixed at x = 0 and x = 1. The string is plucked 
at middle point by an initial displacement 0.05 and then released from this position. Find 
the transverse displacement of a point at a distance x from one end and at any time t of 
the vibrating string. The displacement at any time t and at a distance x satisfies the wave 

equation ∂
∂

= ∂
∂

2

2

2

24u
t

u
x

. 

Take the step size for t is 0.1 and step size for x is 0.25. Use explicit scheme to compute the 
solution up to time t = 0.3. Use central difference formula for the derivative term in the 
initial condition. 

Ans. 
The mathematical model for this problem is exactly same as in Example 16.18. So, the 
solution to this problem is the solution of Example 16.18.

16.19Example

Solve the wave equation, ∂
∂

= ∂
∂

2

2

2

2

u
t

u
x

; 0 1 0≤ ≤ ≥x t,

with 

 initial conditions u x x( , ) sin( )0 = π  and 
∂
∂

=
=

u
t t 0

0  

 boundary conditions u t u t t( , ) ( , )0 1 0 0= = ≥  

Take the step size for time t is 1/6, and step size for x is 1/3. Use implicit scheme to compute 
the solution up to time t = 1/3. Use central difference formula for the derivative term in 
the initial condition.

16.20Example
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Ans. 
The spacing h = 1/3 and k = 1/6 for variables x and t provide the following grid points 

 x t= =0 1 3 2 3 1 0 1 6 1 3, / , / , , / , / .and

The initial and boundary conditions are summarize in the following table

i (x) 
j (t)

0(0) 1(1/3) 2(2/3) 3(1)

0 (0)

1 (1/6)

2 (1/3)

0

0

0

0.8660 0.8660 0

0

0

The implicit scheme for the solution of wave equation is as follows

− + + − = − + +− + + + + − − −r u r u r u r u r u ri j i j i j i j i j1 1 1 1 1 1 1 12 1 2 1, , , , ,( ) ( ) uu ui j i j+ − +1 1 4, ,

Using r
c k
h

= =
( )
( )

=
2

2

2

2

1 6

1 3
1 4

/

/
/ , we get

 − + − = − + +− + + + + − − − + −u u u u u u ui j i j i j i j i j i j1 1 1 1 1 1 1 1 1 110 10 16, , , , , , ii j,  (16.93)

This implicit scheme will be used to compute solution for different j.

j = 1.

The initial condition is ∂
∂

=
=

u
t t 0

0 . Using central difference formula, we get

∂
∂

=
−

=
−

=
=

+ −

=

−

=

u
t

u u

k

u u

kt

i j i j

j

i i

j0

1 1

0

1 1

0
2 2

0, , , ,

 
⇒ = −u ui i, ,1 1  (16.94)

Implicit scheme (16.93) for j = 0 is given by

− + − = − + +− + − − − + −u u u u u u ui i i i i i i1 1 1 1 1 1 1 1 1 1 010 10 16, , , , , , ,

Using Eq. (16.94), we have

− + − =− +u u u ui i i i1 1 1 1 1 010 8, , , ,

For i = 1, 2, we get following two equations respectively
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− + − =u u u u0 1 1 1 2 1 1 010 8, , , ,

− + − =u u u u1 1 2 1 3 1 2 010 8, , , ,

Using the values u u0 1 3 1 0, ,= =  and u u1 0 2 0 0 8660, , .= = , and on solving resulting two 
equations, we get 

u u1 1 2 1 0 7698, , .= =

So, we have

i (x) 
j (t)

0(0) 1(1/3) 2(2/3) 3(1)

0 (0)

1 (1/6)

2 (1/3)

0

0

0

0.8660

0.7698

0.8660

0.7698

0

0

0

j = 2.

Implicit scheme (16.93) for j = 1 is given by

− + − = − + +− + − +u u u u u u ui i i i i i i1 2 2 1 2 1 0 0 1 0 110 10 16, , , , , , ,

The following equations are obtained for i = 1 2,

− + − = − + +u u u u u u u0 2 1 2 2 2 0 0 1 0 2 0 1 110 10 16, , , , , , ,

− + − = − + +u u u u u u u1 2 2 2 3 2 1 0 2 0 3 0 2 110 10 16, , , , , , ,

Use u u u u0 0 0 2 3 2 3 0 0, , , ,= = = = , u u1 1 2 1 0 7698, , .= =  and u u1 0 2 0 0 8660, , .= =  in these two 
equations, then solution of the equations are given by 

u u1 2 2 2 0 5025, , .= =

So, we have

i (x) 
j (t)

0(0) 1(1/3) 2(2/3) 3(1)

0 (0)

1 (1/6)

2 (1/3)

0

0

0

0.8660

0.7698

0.5025

0.8660

0.7698

0.5025

0

0

0
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Partial Differential Equations: Finite Difference Methods 759

16.9 Creating Own Scheme for a Problem 

An example will be discussed in this section to understand that how we can create schemes 
for linear PDEs. For this, we simply replace derivative terms with their finite difference 
approximations in the given linear PDE and then use initial and boundary conditions. Here, 
a very simple example has been discussed from the explanation point of view.

Obtain an explicit finite difference scheme for the solution of following variable 
coefficient problem 

∂
∂

= ∂
∂

+ ∂
∂

≤ ≤ ≥u
t

u
x

x u
x

x t
2

2 0 1 0,

with following initial and boundary conditions

u x x x( , ) ( )0 2= −

u t u t( , ) , ( , )0 0 1 1= =

Replace temporal derivative term with forward difference and spatial derivative terms by 
central differences. Use this scheme for the solution over a rectangular grid defined by 
spacing ∆ =x 0 2.  and ∆ =t 0 005. . Solve up to t = 0 02.  only. 

Ans.
The spacing is ∆ =x 0 2.  for 0 1≤ ≤x ; so, our node points are given by

x x x x x x0 1 2 3 4 50 0 2 0 4 0 6 0 8 1= = = = = =, . , . , . , . ,

Let u u x ti j i j, ( , )= . The initial condition is u x x x( , ) ( )0 2= − , so we have

 

u u x t u
u u x t u

0 0 0 0

1 0 1 0

0 0 0 2 0 0
0 2 0 0 2 2

,

,

( , ) ( , ) ( )
( , ) ( . , ) . (

= = = − =
= = = − 00 2 0 36

0 4 0 0 4 2 0 4 0 642 0 2 0

3 0 3

. ) .
( , ) ( . , ) . ( . ) .
( ,

,

,

=
= = = − =
=

u u x t u
u u x tt u
u u x t u

0

4 0 4 0

0 6 0 0 6 2 0 6 0 84
0 8 0 0 8 2

) ( . , ) . ( . ) .
( , ) ( . , ) . (,

= = − =
= = = − 00 8 0 96

1 0 1 2 1 15 0 5 0

. ) .
( , ) ( , ) ( ),

=
= = = − =u u x t u  (16.95)

 u = 0.84
x = 0.6

u = 0.96
x = 0.8

u = 1
x = 1

u = 0
x = 0

u = 0.36
x = 0.2

u = 0.64

For t = 0

x
x = 0.4

16.21Example
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760 Numerical Methods

Similarly, boundary conditions are u t( , )0 0=  and u t( , )1 1= . This implies

 

u u x t u t
u u x t u t j

j j

j j

0 0

5 5

0 0
1 1 0 1 2 3

,

,

( , ) ( , )
( , ) ( , ) ; , , ,

= = =
= = = ∀ =for ,,⋅⋅⋅  (16.96)

The following table shows the initial (16.95) and boundary (16.96) conditions.

i (x)
j (t)

0(0) 1(0.2) 2(0.4) 3(0.6) 4(0.8) 5(1)

0(0)

1(0.005)

2(0.01)

3(0.015)

4(0.02)

0

0

0

0

0

0.36 0.64 0.84 0.96 1

1

1

1

1

Let the value of u x t( , )  at point ( , )x ti j  be ui j,  i.e. u x t ui j i j( , ) ,= . Discretizing the given 
variable coefficient problem at point ( , )x ti j , we get

 ∂
∂

= ∂
∂

+ ∂
∂

u
t

u
x

x u
xx t x t x ti j i j i j( , ) ( , ) ( , )

2

2
 (16.97)

The following forward difference (for time derivative term) and central difference (for 
space derivative terms) formulas can be used to generate the explicit scheme

 ∂
∂

=
−

∆
+ ∆+u x t

t
u u

t
O ti j i j i j( , )

( ), ,1

 ∂
∂

=
−
∆

+ ∆+ −u x t
x

u u
x

O xi j i j i j( , )
( )

( ), ,1 1 2

2

 
∂

∂
=

− +
∆

+ ∆+ −
2

2
1 1

2
2

2u x t
x

u u u
x

O xi j i j i j i j( , )
( )

( ), , ,  (16.98)

Putting the finite differences (16.98) in Eq. (16.97) and neglecting the error terms in 
discretization, we have

u u
t

u u u
x

x
u u

x
i j i j i j i j i j

i
i j i j, , , , , ,,

( ) (
+ + − + −−
∆

=
− +

∆
+

−
∆

1 1 1
2

1 12
2 ))

On rearranging the terms, we have following explicit scheme

 u t
x

x x u x x u t
i j i i j i i j, , ,( )

( ( )) ( ( )) ( )
+ + −= ∆

∆
+ ∆ + − ∆( ) + − ∆

1 2 1 12
2 2 1 2

(( ) ,∆




x

ui j2
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Partial Differential Equations: Finite Difference Methods 761

Using ∆ =x 0 2.  and ∆ =t 0 005. , we have

 u x u x u ui j i i j i i j i j, , , ,. ( . ) ( . ) .+ + −= + + −( ) +1 1 10 0625 2 0 2 2 0 2 0 75  (16.99)

For j = 0, we get

 u x u x u ui i i i i i, , , ,. ( . ) ( . ) .1 1 0 1 0 00 0625 2 0 2 2 0 2 0 75= + + −( ) ++ −

Computing the values for i = 1, 2, 3 and 4, we get

u x u x u u1 1 1 2 0 1 0 0 1 00 0625 2 0 2 2 0 2 0 75, , , ,. ( . ) ( . ) .= + + −( ) + = 0.351600

uu x u x u u2 1 2 3 0 2 1 0 2 00 0625 2 0 2 2 0 2 0 75, , , ,. ( . ) ( . ) .= + + −( ) + = 0.6324000

u x u x u u3 1 3 4 0 3 2 0 3 00 0625 2 0 2 2 0 2 0 75 0 8324, , , ,. ( . ) ( . ) . .= + + −( ) + = 000

0 0625 2 0 2 2 0 2 0 754 1 4 5 0 3 0 4 0u x u x u ui, , , ,. ( . ) ( . ) .= + + −( ) + = 0.9516600

These values give the second row of the table. 
Proceeding in a similar manner, for j = 1, 2, and 3, we will get different rows of the table. 
The results are presented in the following table (only six decimal digits)

i (x)
j (t)

0(0) 1(0.2) 2(0.4) 3(0.6) 4(0.8) 5(1)

0(0)

1(0.005)

2(0.01)

3(0.015)

4(0.02)

0

0

0

0

0

0.36

0.351600 

0.344331

0.337898 

0.332098 

0.64

0.632400 

0.624704 

0.617058 

0.609559 

0.84

0.832400 

0.824694 

0.817060 

0.809605 

0.96

0.951600

0.944426 

0.938159

0.932581 

1

1

1

1

1

Exercise 16.1 

Parabolic Equation (Heat Conduction or Diffusion Equation)

1. Classify the following PDEs

a) 
∂
∂

+ ∂
∂

+ =
2

2

2

2 0
u

x
u

y
u   b) 

∂
∂

+ ∂
∂

+ =
2

2 0
u

x
y

u
y

u

c) 2 3 4 0
2

2

2 2

2

∂
∂

+ ∂
∂ ∂

+ ∂
∂

+ =u
x

u
x y

u
y

u   d) 
∂
∂

+ + ∂
∂

+ =
2

2

2

2 0
u

x
x y

u
y

xu( )

e) 2
2 2

2x
u

x y
x y

u
y

u
x

e u xx∂
∂ ∂

+ + ∂
∂

+ ∂
∂

+ =( ) sin  f) ( ) ( )y
u

x
x

u
x y

y
u

y
+ ∂

∂
+ ∂

∂ ∂
+ − ∂

∂
1 2 1

2

2

2 2

2
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762 Numerical Methods

Ans.
a)  Elliptic 
b)  Parabolic
c)  Hyperbolic
d)  Elliptic in the region x y+ > 0, Parabolic on the line x y+ = 0, Hyperbolic in the region x y+ < 0
e)  Hyperbolic
f )  Elliptic inside the circle x y2 2 1+ < , Parabolic on the circle x y2 2 1+ = , and Hyperbolic outside 

the circle x y2 2 1+ >

2. Solve the 1-dimensional heat conduction equation 

 
∂
∂

= ∂
∂

≤ ≤
u
t

u
x

x2 0 1
2

2 ;  with 

 initial condition u x x x( , ) ( )0 22= − , and 

 boundary conditions u t( , )0 0=  and u t( , )1 1= . 
Use Explicit scheme to find the values of u x t( , ) up to t = 0 02. , with ∆ =x 0 25.  and ∆ =t 0 005. . 

Ans. r = 0.160

i (x)
j (t)

0(0) 1(0.25) 2(0.5) 3(0.75) 4(1)

0(0)

1(0.005)

2(0.01)

3(0.015)

4(0.02)

0

0

0

0

0

0.109375 
 
0.134375
 
0.152975

0.163127

0.165978

0.375000

0.385000

0.369400

0.344072

0.316041

0.703125

0.538125

0.427525

0.349821

0.292930

1

1 

1

1

1

3. Given the following initial-boundary value problem

 

∂
∂

= ∂
∂

≤ ≤u
t

u
x

x
2

2 0 0 5; .

 u x x( , ) cos( )0 = π
 u t( , )0 1=  and u t( . , )0 5 0= .
Compute the values of u x t( , ) up to t = 0 02. , with ∆ =x 0 1.  and ∆ =t 0 005. . Use Explicit scheme. 

Ans. r = 0.5

i (x)
j (t)

0(0) 1(0.1) 2(0.2) 3(0.3) 4(0.4) 5(0.5)

0(0)

1(0.005)

2(0.01)

3(0.015)

4(0.02)

1

1

1

1

1

0.951057 

0.904509 

0.884710 

0.865881 

0.854092 

0.809017

0.769421

0.731763

0.708184

0.685759

0.587785

0.559017

0.531657

0.505636

0.487006

0.309017

0.293893

0.279509

0.265828

0.252818

0

0 

0

0

0
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Partial Differential Equations: Finite Difference Methods 763

4. Use Bender–Schmidt Explicit Scheme to compute temperature distribution in a uniform 
insulated rod of length 1m with diffusivity constant of the material of the rod is 1. Both ends 
of the rod are kept at zero temperature, and initial temperature distribution in the rod is 
u x x x( , ) ( )0 1= − . Take h = 1/5 and k = 0.005. Compute till t = 0.02. 

Ans. The temperature distribution in the rod is given by 

 
∂
∂

= ∂
∂

≤ ≤
u
t

u
x

x
2

2 0 1; .

Both ends of the rod are kept at zero temperature, so we have following boundary conditions
 u t u t( , ) ( , )0 1 0= =
Also, initial temperature distribution gives following initial condition
 u x x x( , ) ( )0 1= −
r = 0.125

 i (x)
j (t)

0(0) 1(0.2) 2(0.4) 3(0.6) 4(0.8) 5(1)

0(0)

1(0.005)

2(0.01)

3(0.015)

4(0.02)

0

0

0

0

0

0.16

0.15 

0.14125 

0.133437 

0.126348 

0.24

0.23

0.22

0.210156

0.200566

0.24

0.23

0.22

0.210156

0.200566

0.16

0.15

0.14125

0.133437

0.126348 

0

0

0

0

0

5. Use Crank–Nicolson scheme to compute numerical solution of parabolic equation 

 
∂
∂

= ∂
∂

≤ ≤
u
t

u
x

x2 0 1
2

2 ;  with 

 initial condition u x x x( , ) ( )0 22= − , and 

 boundary conditions u t( , )0 0=  and u t( , )1 1= .
Find the values of u x t( , )  up to t = 0 01. , with ∆ =x 0 25.  and ∆ =t 0 005. . 

Ans.

 i (x)
j (t)

0(0) 1(0.25) 2(0.5) 3(0.75) 4(1)

0(0)

1(0.005)

2(0.01)

0

0

0

0.109375 

0.131610

0.149054

0.375000

0.384904

0.394474

0.703125

0.699498

0.698214

1

1 

1

6. Consider following initial-boundary value problem

 ∂
∂

= ∂
∂

≤ ≤u
t

u
x

x
2

2 0 0 5; .  with 

 initial condition u x x( , ) cos( )0 = π , and 
 boundary conditions u t( , )0 1=  and u t( . , )0 5 0= . 
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764 Numerical Methods

Use Crank–Nicolson scheme to find the values of u x t( , ) up to t = 0 01. , with ∆ =x 0 125.  and 
∆ =t 0 005. .

Ans. r = 0.5

 i (x)
j (t)

0(0) 1(0.125) 2(0.250) 3(0.375) 4(0.5)

0(0)

1(0.005)

2(0.01)

1

1

1

0.923880

0.885793

0.858657

0.707107

0.674198

0.645101

0.382683

0.364571

0.347724

0

0 

0

7. Solve the following heat conduction equation 

 16 0 1
2

2

∂
∂

= ∂
∂

≤ ≤
u
t

u
x

x;  

 u x x( , ) sin( )0 2 2= π  
 u t u t( , ) ( , )0 1 0= = .
Use Crank–Nicolson scheme to find the values of u x t( , )  up to t = 0 5. . The step sizes are 
∆ = ∆ =x t 0 25. .

Ans. r = 0.25

 i (x)
j (t)

0(0) 1(0.25) 2(0.5) 3(0.75) 4(1)

0(0)

1(0.25)

2(0.5)

0

0

0

2

1.2

0.72

0

0

0

– 2 

– 1.2

– 0.72 

0

0 

0

8. Solve the 1-dimensional heat conduction equation 

 
∂
∂

= ∂
∂

≤ ≤
u
t

u
x

x2 0 1
2

2 ;   

 u x x x( , ) ( )0 22= − , 
 u t( , )0 0= , u t( , )1 1=
Use Crank–Nicolson scheme to find the values of u x t( , ) at time t = 0 005. . Further use Richardson 
scheme to compute the values up to time t = 0 02. . Take ∆ =x 0 25.  and ∆ =t 0 005. . 

Ans.

 i (x)
j (t)

0(0) 1(0.25) 2(0.5) 3(0.75) 4(1)

0(0)

1(0.005)

2(0.01)

3(0.015)

4(0.02)

0

0

0

0

0

0.109375 

0.131610

0.148314

0.162966

0.173093

0.375000

0.384904

0.394616

0.403367

0.412181

0.703125

0.699498

0.698616

0.698661

0.700550

1

1 

1

1

1
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9. Consider following initial-boundary value problem

 
∂
∂

= ∂
∂

≤ ≤u
t

u
x

x
2

2 0 0 5; .  with 

 initial condition u x x( , ) cos( )0 = π , and 
 boundary conditions u t( , )0 1=  and u t( . , )0 5 0= . 
Use Crank–Nicolson scheme to find the values of u x t( , ) at time t = 0 005. . Then, use Du-Fort and 
Frankel scheme up to t = 0 02. , with ∆ =x 0 125.  and ∆ =t 0 005. . 

Ans. r = 0.5

 i (x)
j (t)

0(0) 1(0.125) 2(0.250) 3(0.375) 4(0.5)

0(0)

1(0.005)

2(0.01)

3(0.015)

4(0.02)

1

1

1

1

1

0.923880

0.885793

0.856148

0.835678

0.819177

0.707107

0.674198

0.643165

0.617557

0.596479

0.382683

0.364571

0.347105

0.331019

0.317192

0

0 

0

0

0

10. Consider following heat conduction equation 

 16 0 1
2

2

∂
∂

= ∂
∂

≤ ≤
u
t

u
x

x;  with 

 initial condition u x x( , ) sin( )0 2 2= π , and 
 boundary conditions u t u t( , ) ( , )0 1 0= = .
Use Crank–Nicolson method to find the values of u x t( , ) at time t = 0 25. . Further use Du-Fort and 
Frankel scheme to compute other values of u x t( , ) up to t =1 0. . Take ∆ = ∆ =x t 0 25. .

Ans. r = 0.25

 i (x)
j (t)

0(0) 1(0.25) 2(0.5) 3(0.75) 4(1)

0(0)

1(0.25)

2(0.5)

3(0.75)

4(1.0)

0

0

0

0

0

2

1.2

0.666667

0.4

0.222222

0

0

0

0

0

–2 

–1.2

–0.666667

–0.04

–0.222222 

0

0 

0

0

0

11. Check the stability conditions of Bender–Schmidt Explicit Scheme for heat conduction equation 
of order two in one space variable.

12. Prove that the Crank–Nicolson scheme is always convergent for a heat conduction equation of 
order two in one space variable.

13. The parabolic equation ∂
∂

= ∂
∂

u
t

u
x

2

2
 is approximated by finite difference scheme
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766 Numerical Methods

u u r u u u u ui j i j i j i j i j i j i, , , , , ,( ) ( )(+ − + + + + −− = − + + − −1 1 1 1 1 1 12 1 2θ θ ,, , )j i ju+( )+1  

where r
t

x
=

∆
∆ 2 , and θ  is a parameter 0 1≤ ≤θ .

Prove that the scheme is stable for r ≤ −( )1
2

1 2θ  if 0
1
2

≤ ≤θ  and unconditionally stable when 
1
2

1≤ ≤θ . It may be assumed that Dirichlet conditions are prescribed at the end points.

14. Use explicit scheme to solve the 2-dimensional equation 

 ∂
∂

= ∂
∂

+ ∂
∂

u
t

u
x

u
y

2

2

2

2

with initial condition
 u x y x y( , , ) sin sin0 2 2= ( ) ( )π π  0 1≤ ≤x y,

and boundary conditions

 u = 0  for x y x y t, ; , ;= = >0 1 0

Take step size ∆ = ∆ =x y
1
3

 and r r r1 2

1
8

= = = . Integrate for one-time step only.

Ans.

We have ∆ = ∆ =x y 1 3/ , c = 1, and r r1 2

1
8

= = .

As r r
c t

x
t1 2 2

1
8

1
9

1
72

= = ∆
∆

⇒ ∆ = × = .

The initial condition 
u x y x y( , , ) sin sin0 2 2= ( ) ( )π π  0 1 0≤ ≤ ≥x y t, ;

gives the following values of u x yi j( , , )0  in the table at t = 0 (k = 0). 

 i (x)
j (y)

0 (0) 1 (1/3) 2 (2/3) 3 (1)

0 (0) 0 0 0 0

1 (1/3) 0 0.75 –0.75 0

2 (2/3) 0 –0.75 0.75 0

3 (1) 0 0 0 0

Using the given boundary conditions and explicit scheme, we have following values for t = 1
72

 
(k = 1).

 i (x)
j (y)

0 (1) 1 (1/3) 2 (2/3) 3 (1)

0 (1) 0 0 0 0

1 (1/3) 0 0.1875 –0.1875 0

2 (2/3) 0 –0.1875 0.1875 0

3 (1) 0 0 0 0
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15. Consider the following two-dimensional heat conduction equation, 

 ∂
∂

= ∂
∂

+ ∂
∂

u
t

u
x

u
y

2

2

2

2

with following initial and boundary conditions 

 u x y x x y y x y t( , , ) ( ( . ) ( . )), , . ;0 3 0 75 0 75 0 0 75 0= − + − ≤ ≤ =

 u = 0  on x x y y= = = =0 0 75 0 0 75, . , .and .

Use Crank–Nicolson (CN) method with step size ∆ = ∆ =x y 0 25.  to evaluate various mesh values. 

Take r r1 2

1
6

= = . Integrate for one-time step.

Ans. We have ∆ = ∆ =x y 0 25. , c = 1, and r r1 2

1
6

= = .

As r r
c t

x
t1 2 2

1
6

1
16

1
96

= = ∆
∆

⇒ ∆ = × = .

The initial condition 
 u x y x x y y x y t( , , ) ( ( . ) ( . )), , . ;0 3 0 75 0 75 0 0 75 0= − + − ≤ ≤ =

gives the following values of u x yi j( , , )0  in the table at t = 0 (k = 0). 

 i (x)
j (y)

0 (0) 1 (0.25) 2 (0.5) 3 (0.75)

0 (0) 0 0 0 0

1 (0.25) 0 0.75 0.75 0

2 (0.5) 0 0.75 0.75 0

3 (0.75) 0 0 0 0

By using the given boundary conditions and CN scheme, we have following values for t = 1
96

 

(k = 1).

 i (x)
j (y)

0 (0) 1 (0.25) 2 (0.5) 3 (0.75)

0 (0) 0 0 0 0

1 (0.25) 0 0.535714 0.535714 0

2 (0.5) 0 0.535714 0.535714 0

3 (0.75) 0 0 0 0

16. A heat flow equation in two dimensions is given by

 ∂
∂

= ∂
∂

+ ∂
∂

u
t

u
x

u
y

2

2

2

2
, 0 1 0≤ ≤ ≥x y t, ;

with initial condition u x y x y( , , ) sin( )sin( )0 = π π  and boundary conditions u x y t( , , ) = 0  on 

x y, ,= 0 1. Use ADI (Alternating Direction Implicit) method with the step sizes ∆ = ∆ =x y
1
3

 to 

evaluate various mesh values. Take r r1 2

1
6

= = . Integrate for two-time steps.
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Ans. We have ∆ = ∆ =x y 1 3/ , c = 1, and r r1 2

1
6

= = .

As r r
c t

x
t1 2 2

1
6

1
9

1
54

= = ∆
∆

⇒ ∆ = × = .

The initial condition 

 u x y x y( , , ) sin sin0 = ( ) ( )π π   0 1≤ ≤x y,

gives the following values of u x yi j( , , )0  in the table at t = 0 (k = 0). 

 i (x)
j (y)

0 (0) 1 (1/3) 2 (2/3) 3 (1)

0 (0) 0 0 0 0

1 (1/3) 0 0.75 0.75 0

2 (2/3) 0 0.75 0.75 0

3 (1) 0 0 0 0

By using the given boundary conditions and ADI scheme, we obtain following values for t = 1
54

 

(k = 1).

 i (x)
j (y)

0 (0) 1 (1/3) 2 (2/3) 3 (1)

0 (0) 0 0 0 0

1 (1/3) 0 0.535714 0.535714 0

2 (2/3) 0 0.535714 0.535714 0

3 (1) 0 0 0 0

ADI scheme gives following solution for t = 1
27

 (k = 2).

 i (x)
j (y)

0 (0) 1 (1/3) 2 (2/3) 3 (1)

0 (0) 0 0 0 0

1 (1/3) 0 0.382653 0.382653 0

2 (2/3) 0 0.382653 0.382653 0

3 (1) 0 0 0 0

17. Use ADI method to evaluate various mesh values for the following initial-boundary value 
problem, 

 ∂
∂

= ∂
∂

+ ∂
∂

u
t

u
x

u
y

2

2

2

2
,

 u x y x y( , , ) cos cos0
2 2

= 











π π
 − ≤ ≤1 1x y,

 u = 0, x y t= ± = ± >1 1 0, ,
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Take r r1 2

1
6

= =  and step size ∆ =x 1 2/ . Integrate for one-time step only. Use symmetry over x 

and y – axes.

Ans. 
The symmetry over x and y – axes gives

 

u u u u

u u u u
11 31 33 13

12 21 23 32

= = =
= = =  

So, we have to compute only u u11 12,  and u22. 
Using the given initial and boundary conditions, we have following values at node points ui j  at 
initial time t = 0 (k = 0)

i (x)
j (y)

0 (–1) 1 (–1/2) 2 (0) 3 (1/2) 4 (1)

0 (–1) 0 0 0 0 0

1 (–1/2) 0 0.5 0.7071 0.5 0

2 (0) 0 0.7071 1 0.7071 0

3 (1/2) 0 0.5 0.7071 0.5 0

4 (1) 0 0 0 0 0

Using the given boundary conditions and ADI scheme, we have following equations for the 
values at node points

 

8 2 7071
1 9142

8 2 5 4142

11 21

11 21

22 21

u u
u u

u u

− =
− + =

− =

.
.
.

On solving these equations, we get following values of ui j  at t = 1
24

 (k = 1).

i (x)
j (y)

0 (–1) 1 (–1/2) 2 (0) 3 (1/2) 4 (1)

0 (–1) 0 0 0 0 0

1 (–1/2) 0 0.4110 0.5813 0.4110 0

2 (0) 0 0.5813 0.8210 0.5813 0

3 (1/2) 0 0.4110 0.5813 0.4110 0

4 (1) 0 0 0 0 0
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770 Numerical Methods

Exercise 16.2

Elliptic Equation (Laplace and Poisson Equations)

18. Solve the Laplace equation ∇ = + =2 0u u uxx yy  for the square mesh with the boundary values 
(Dirichlet conditions) as shown in the following figure. Use Gauss elimination method. 

u4 u3

u1 u2

100 200

300

500

50

100

200 450

 Ans. u u u u1 2 3 4150 250 350 200= = = =

19. Find the steady state temperature distribution in a thin rectangular plate, whose edges 
x x y y= = = =0 0 8 0 0 6, . , , .  are kept at the temperature shown in the following figure. Find the 

values of temperature at the nodal points of the rectangular region with mess length 0.2. Use 
Gauss–Seidel iterative method to compute values at nodal points until the difference between 
successive values at each point is less than 0.005.

10

15

20

25

15

5 5

10 5 10

u4 u5 u6

u1 u2 u3

Ans. Exact solution u u u u u u1 2 3 4 5 610 10 15 10 10 15= = = = = = .

20. Find the steady state temperature distribution in a thin rectangular plate, whose edges 
x x= =0 2,  are kept at 20°C (cold water), and edges y y= =0 2,  are kept at temperature 100°C 
(in boiling water). Find the values of temperature at the nodal points of the rectangular region 
with mess length 0.5. Use Gauss–Seidel iterative method to compute values at nodal points 
until the difference between successive values at each point is less than 0.005. Use symmetry 
about x = 1 and y = 1 lines. 
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Ans.

20

20

20

60

50

60

70

60

70

60

50

60

20

20

20

100 100 100

100 100 100

21. Solve the Laplace equation ∇ =2 0u  in 0 0 6≤ ≤x y, . , over a grid of mesh length 0.2. Given 
u e yx= − sin( ) on the boundary of the square region 0 0 6≤ ≤x y, . . Use Gauss–Seidel method 
with zero vector as an initial solution. 

Ans.
The node points are as follows

 

x x x x

y y y y
0 1 2 3

0 1 2 3

0 0 2 0 4 0 6

0 0 2 0 4 0 6

= = = =
= = = =

, . , . , .

, . , . , .

Let u u x yi j i j= ( , ).

The boundary condition u e yx= − sin( )  provides following values

u u u

u u u
10 20 01

02 13 31

0 0= = =
= = =

0.198669

0.389418 0.462290 0.1090322

0.213717 0.378491u u32 23= =

Using Gauss–Seidel method, we get following iterations for u u u u11 12 21 22, , ,[ ]
Iteration 1 

0.049667 

0.225344 

0.039675 

0.214307 

Iteration 2 

0.115922 

0.295484 

0.109815 

0.249377 

Iteration 3 

0.150992 

0.313019 

0.127350 

0.258145 

Iteration 4 

0.159760 

0.317403 

0.131734 

0.260336 

Iteration 5 

0.161952 

0.318499 

0.132830 

0.260884 

Iteration 6 

0.162500 

0.318773 

0.133104 

0.261021 
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772 Numerical Methods

22. Solve the Poisson equation ∇ = + = +2u u u x yxx yy sin cos  for the square mesh, whose edges 
x x y y= = = =0 0 8 0 0 6, . , , .  are kept at the temperature shown in the following figure. Find 
the values of u x y( , ) at the nodal points of the rectangular region with mess length 0.2. Use 
Gauss–Seidel iterative method to compute values at nodal points until the difference between 
consecutive iterations is less than 0.005.

0.5

0.5

0.3

0.1 0.2 0.1

0.50.7

0.7

0.4

u12 u22 u32

u11 u21 u31

Ans. The result is obtained after seven iterations of the Gauss–Seidel method with zero initial 
approximation. The values at 7th iteration are given by

u u u
u u

11 12 21

22 31

0 265608 0 419638 0 292323
0 458575 0 3

= = =
= =

. . .
. .

   
001323 0 47511832 u = .

23. Solve the Poisson equation u u x yxx yy+ = +sin( )  for a thin rectangular plate, whose edges, 
x x= =0 0 6, .  are kept at 0°C, and edges y y= =0 0 6, .  are kept at temperature 100°C. Find the 

values of u x y( , )  at the nodal points of the square region with mess length 0.2. Use Gauss–Seidel 
iterative method to compute values at nodal points until the difference between successive 
values at each point is less than 0.005. Use [0 0 0 0]T as initial approximation.

Ans. The result is obtained after nine iterations of the Gauss–Seidel method. The ninth iteration 
is given by

u u u u11 12 21 2249 968647 49 966934 49 966228 49 964371= = = =. . . .  

24. Solve the Poisson equation ∇ = +2 2 2u x y  in 0 0 6≤ ≤x y, . , over a grid of mesh length 0.2. Given 
u e x yy= +− sin( ) on the boundary of the square region 0 0 6≤ ≤x y, . . Use Gauss–Seidel method 
with zero vector as an initial solution. 

Ans.
The node points are as follows

 

x x x x

y y y y
0 1 2 3

0 1 2 3

0 0 2 0 4 0 6

0 0 2 0 4 0 6

= = = =
= = = =

, . , . , .

, . , . , .

The boundary condition u e x yy= +− sin( ) provides the following results

 

u u u

u u
10 20 01

02 13

= = =
= =

0.198669 0.389418 0.162657

0.261035 0.3936693 0.587322

0.564055 0.461809

u

u u
31

32 23

=
= =
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The Gauss–Seidel iterations for u u u u11 12 21 22, , ,[ ]  are given by

Iteration 1 

0.089532 

0.184065 

0.264568 

0.365424 

Iteration 2 

0.201690 

0.303461 

0.383963 

0.425122 

Iteration 3 

0.261387 

0.333309 

0.413812 

0.440046 
Iteration 4 

0.276312 

0.340772 

0.421275 

0.443778 

Iteration 5 

0.280043 

0.342637 

0.423140 

0.444710 

Iteration 6 

0.280976 

0.343104 

0.423607 

0.444944 

Exercise 16.3 
Hyperbolic Equation (Wave Equation)

25. Solve the wave equation 
∂
∂

= ∂
∂

2

2

2

24
u

t
u

x
; 0 1 0≤ ≤ ≥x t,  with following initial and boundary 

conditions.

u x x( , ) sin( )0 = π  and 
∂
∂

=
=

u
t t 0

0

u t u t t( , ) ( , )0 1 0 0= = ≥ .
Use explicit scheme to compute the solution up to time t = 0.375 with the step sizes for variables 
t and x are 0.125 and 0.25 respectively. Approximate the derivative term of initial condition with 
central difference formula.

Ans. r = 1

i (x) 
j (t)

0(0) 1(0.25) 2(0.5) 3(0.75) 4(1)

0 (0)

1 (0.125)

2 (0.25)

3(0.375)

0

0

0

0

0.707107

0.588388

0.125000

–0.411612

1.000000

0.832107

0.176777

–0.582107

0.707107

0.588388

0.125000

–0.411612

0

0

0

0

26. Solve the wave equation ∂
∂

= ∂
∂

2

2

2

2

u
t

u
x

; 0 1 0≤ ≤ ≥x t,

with 

initial conditions u x x( , ) cos( )0 = π  and 
∂
∂

=
=

u
t t 0

0

boundary conditions u t u t t( , ) ( , )0 1 1 1 0= = − ≥ .
Use explicit scheme to compute the solution up to time t = 0.5. Take the step size for t is 0.125 and 
step size for x is 0.25. Use central difference formula for derivative term in the initial condition.

Ans.
r = 0.250000 
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774 Numerical Methods

i (x) 
j (t)

0(0) 1(0.25) 2(0.5) 3(0.75) 4(1)

0 (0)

1 (0.125)

2 (0.25)

3(0.375)

4(0.5)

1.000000

1.000000

1.000000

1.000000

1.000000

0.707107

0.743718

0.658471

0.493988

0.332511

0.000000

0.000000

0.000000

0.000000

0.000000

–0.707107

–0.743718

–0.658471

–0.493988

–0.332511

–1.000000

–1.000000

–1.000000

–1.000000

–1.000000

27. A tightly stretched flexible string has its ends fixed at x = 0 and x = 1. The string is plucked at 
middle point by an initial displacement ½ and then released from this position. The transverse 
displacement of a point at a distance x from one end and at any time t of the vibrating string 

satisfies the wave equation 
∂
∂

= ∂
∂

2

2

2

22
u

t
u

x
. Evaluate the pivotal values for the interval 0 0 4≤ ≤t . . 

Take ∆ =x 0 2. , ∆ =t 0 1. . Use explicit method.

Ans. The mathematical formulation is given by following wave equation

∂
∂

= ∂
∂

2

2

2

22
u

t
u

x
with following initial and boundary conditions

 
u x

x x
x x

( , )
/

/
0

0 1 2
1 1 2 1

=
≤ ≤

− ≤ ≤




 

∂
∂

( ) =u
t

x ,0 0

 u t u t( , ) ( , )0 1 0= = .

The solution with spacing ∆ =x 0 2. , ∆ =t 0 1.  by using the explicit method is as follows
r = 0.500000 

i (x)
j (t)

0(0) 1(0.2) 2(0.4) 3(0.6) 4(0.8) 5(1)

0 (0)

1 (0.1)

2 (0.2)

3(0.3)

4(0.4)

0.000000

0.000000

0.000000

0.000000

0.000000

0.200000

0.220000

0.215000

0.142500

0.007500

0.400000

0.390000

0.295000

0.160000

0.016250

0.400000

0.390000

0.295000

0.160000

0.016250

0.200000

0.220000

0.215000

0.142500

0.007500

0.000000

0.000000

0.000000

0.000000

0.000000

28. Solve the initial boundary value problem in cylindrical coordinates

 

∂
∂

= ∂
∂

+ ∂
∂

u
t

r
u

r
r

u
r

sin( )
2

2
2
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 u r r r( , ) ( )0 1= − , 0 1≤ ≤r
 u t( , )0 0= , u t( , )1 0=  t > 0
Create own explicit scheme with ∆ =r 0 2.  and ∆ =t 0 02. . Solve up to t = 0.08.

Ans. The spacing is ∆ =r 0 2.  for the interval 0 1≤ ≤r . The initial condition and boundary 
conditions give following tabulated values

 i (x)
j (t)

0(0) 1(0.2) 2(0.4) 3(0.6) 4(0.8) 5(1)

0(0)

1(0.02)

2(0.04)

3(0.06)

4(0.08)

0

0

0

0

0

0.16 0.24 0.24 0.16 0

0

0

0

0

Let the value of u r t( , )  at point ( , )r ti j  is ui j,  i.e. 
 u r t ui j i j( , ) ,=  
On discretizing the given variable coefficient problem at point ( , )r ti j , we get

 

∂
∂

= ∂
∂

+ ∂
∂

u
t

r
u

r
r

u
rr t

i

r t

i
r ti j i j i j( , ) ( , ) ( , )

sin( )
2

2
2

Using forward difference for time derivative term and central difference for space derivative 
terms, we have following explicit scheme

 

u u

t
r

u u u

r
r

u ui j i j
i

i j i j i j
i

i j i, , , , , ,sin( )
( )

+ + − +−
∆

=
− +

∆
+

−1 1 1
2

2 12 −−

∆
1

2
,

( )
j

r

Using ∆ =r 0 2.  and ∆ =t 0 02. , and rearranging the terms

 
u u r u u u r ui j i j i i j i j i j i i, , , , ,( . )sin( ) ( . )+ + − += + − +( )+1 1 1

20 5 2 0 05 11 1, ,j i ju−( )−

 
u r r u r ri j i i i j i, ,( . )sin( ) ( . ) ( . )sin( ) ( . )+ += +( ) + −1

2
10 5 0 05 0 5 0 05 ii i j i i ju r u2

1 1( ) + −( )− , ,sin( )

For i = 1, 2, 3, 4 and j = 0, 1, 2, we get

 i (x)
j (t)

0(0) 1(0.2) 2(0.4) 3(0.6) 4(0.8) 5(1)

0(0)

1(0.02)

2(0.04)

3(0.06)

4(0.08)

0

0

0

0

0

0.16

0.152533 

0.145036 

0.137470 

0.129792 

0.24

0.225063 

0.209679 

0.193751

0.178449 

0.24

0.215974

0.190642 

0.170103 

0.152927 

0.16

0.123626

0.105496

0.092097

0.081599 

0

0

0

0

0
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29. Consider the Poisson problem 

 
∂
∂

+ − − ∂
∂

=
2

2
2 2

2

21 1
u

x
x y

u
y

( )  x y, . ;≤ 0 2

with following boundary conditions

 u = 0 , for x y= =0 2 0 2. , .
Obtain a suitable finite difference scheme and discuss symmetry for the nodal points shown in 
the following figure.

x

2

6

7

1

9

3

8

y

5 4

Ans.
The node points are as follows

 

x x x x x

y y y y
0 1 2 3 4

0 1 2 3

0 2 0 1 0 0 1 0 2

0 2 0 1 0

= − = − = = =
= − = − = =

. , . , , . , .

. , . , , 00 1 0 24. , .y =

Let u u x yi j i j= ( , ) . The boundary condition is u = 0 , on the boundary x y= =0 2 0 2. , . . The 
differential equation and boundary conditions are symmetrical about x and y-axes, therefore
 u u u u u u u u7 9 6 8 2 3 4 5= = = = =, ,

So, we have to compute only u u u1 2 6, ,  and u7 . On replacing the derivative terms with central 
difference in the given PDE and neglecting error terms, we have

 

u u u

h
x y

u u u

h
i j i j i j

i j
i j i j i j+ − + −− +

+ − −
− +

=1 1
2

2 2 1 1
2

2
1

2
1, , , , , ,( )

 
u u u x y u u u hi j i j i j i j i j i j i j+ − + −− + + − − − +( ) =1 1

2 2
1 1

22 1 2, , , , , ,( )

 
u u x y u u x y ui j i j i j i j i j i j i j+ − + −+ + − − +( )+ + − =1 1

2 2
1 1

2 21 2 2, , , , ,( ) ( ) hh 2

This scheme is required finite difference scheme. For computation purpose, note that 

 

u u u u u u u u u u

u u u u u u u
1 22 2 11 3 31 4 33 5 13

6 12 7 21 8 32 9

= = = = =
= = = =

, , , ,

, , , uu23
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30. Obtain a suitable finite difference scheme for following boundary value problem 

u u u x yxx xy yy− + = ≤ ≤4 0 0 1; ,

u y y u y y y

u x x u x x x

( , ) , ( , )

( , ) , ( , )

0 1 1

0 1 1

2 2

2 2

= = + +
= = + +

Use symmetry about the line y x=  and take the step sizes h k= = 0 25. . Note that the exact 
solution is u x y x y xy( , ) = + +2 2 .

Ans. The boundary conditions provide following values at boundaries of the square region 
0 1≤ ≤x y,

2.31250.5625

0.5625

u13

u12 u22 u32

u23

u11 u21 u31

u33

0.25

0.25

0.0625

0.0625

1.75

1.75

1.3125

1.31251.3125

y = x

x

y

Using symmetry about line, y x= , we get

 u u u u u u12 21 13 31 23 32= = =, ,

So, we have to compute only u u u u u11 12 13 22 23, , , ,  and u33 . On replacing the derivative terms with 
central difference in the given PDE and neglecting error terms, we have

 

u u u

h

u u u ui j i j i j i j i j i j i j+ − + + + − − + − −− +
−

− − +1 1
2

1 1 1 1 1 1 1 12
4, , , , , , ,

44

2
01 1

2hk

u u u

h
i j i j i j+

− +
=+ −, , ,

 
u u

h
k

u u u u ui j i j i j i j i j i j i j+ − + + + − − + − −+ − − − +( )+1 1 1 1 1 1 1 1 1 1, , , , , , , ++ −− + =1 14 0u ui j i j, ,

The scheme is required finite difference scheme.
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In this section, we discuss some advantages and disadvantages of numerical, analytical and 
graphical techniques. 

a) Analytical methods, which provide exact solutions, are important methods so far 
for deriving solutions of different problems. These exact solutions play a vital role in 
the theory of different physical and engineering problems and provide a deep insight 
into various systems. But, these methods have their applicability to limited categories 
of the problems, generally for linearized models or those having low dimensionality 
and simple geometry. Since most of the real time problems are nonlinear and 
complex; hence these methods have limited applications in the present scenario.

b) Graphical methods require plotting the problem for solutions. These solutions can 
be obtained even for complex problems, but the results obtained are not up to the 
desired accuracy. These methods are limited to the problems with three or fewer 
dimensions, and are very difficult to implement. However, these graphical solutions 
provide information about the behavior of the physical phenomena.

c) Numerical techniques require applications of an unambiguous set of arithmetic 
operations to solve mathematical models numerically. Computations involved in 
implementation of numerical methods are tedious and cumbersome, and these 
methods provide approximate solutions to the problems. In pre-computer era, the 
mathematical problems are linear and simple, which are easily solvable with the 
help of analytical methods. In last few decades, the nature of problems are becoming 
nonlinear and complex, and we are unable to solve these problems analytically. 
Numerical methods are now frequently used to solve such problems. Also, due to 
the widespread availability of digital computers, these numerical techniques are easy 
to implement. In fact, the widespread availability and evolution of cheaper digital 
computers have led to a veritable explosion in the use and development of the 
numerical methods.

Comparison of Numerical and Analytical Techniques 
i) In many practical problems, we have set of data points instead of the mathematical 

model for the problem. Analytical methods do not work for these cases, but we can 
apply various numerical techniques for approximate solutions. 

Comparison of Analytical and 
Numerical Techniques

Appendix
A

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108685306.018
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 01 May 2019 at 22:43:10, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108685306.018
https://www.cambridge.org/core


780 Appendices

ii) Integrals like 1 2

0

+∫ cos ,x dx
π

 e dxx−∫
2

1

1

, and 
sin x

x
dx

2

3

∫  have no available exact 

solutions, but numerical techniques provide numerical answers to these problems. 
iii) In the case of transcendental equations, e.g., xe xx + =cos 0, x e x− =− 0, etc., the roots 

are not possible to obtain using direct analytical methods. The numerical methods 
are helpful in obtaining the approximate roots of these equations.

iv) It is comparatively easy to obtain exact solutions of linear differential equations. But 
in the case of nonlinear differential equations, it is almost impossible to examine these 
differential equations for exact solutions except some particular cases. Numerical 
methods provide an easy and comprehensive way to get approximate solutions of 
these nonlinear differential equations.

v) The analytical methods are not easy to implement on a computer, but almost all 
the numerical methods are algorithmic and require simple arithmetic operations. 
Hence, computers and numerical techniques make a perfect combination.

vi) It is worth mentioning here that numerical techniques provide approximate 
solutions, while analytical methods provide an exact answer. Hence we prefer 
analytical solutions over numerical solutions if available.

vii) Analytical methods usually give results containing mathematical functions; these 
can be evaluated for specific instances. Thus, there is an advantage to the analytic 
result that the behavior and properties of the function are often apparent; this is not 
the case for purely numerical results. However, numerical results can be plotted to 
show some properties of the solution.

viii) Number of arithmetic operations (+, -, *, /) is an important factor in analyzing the 
efficiency of a numerical method. The round-off error and the execution time of the 
algorithm, both are directly related to the number of arithmetic operations involved 
in the numerical computation. 

ix) In direct analytical methods, we apply the method without any repetition. If any 
error occurs at any step, there is no remedy to recover it. But in the case of numerical 
techniques, we can increase the iterations and results can be made accurate up to 
some desired tolerance. The level of accuracy achievable in numerical methods is 
limited, because of the way that computers do arithmetic. We will discuss these 
limitations in Chapter 2. 

x) In some cases, especially when cumbersome calculations are involved, errors 
in obtaining exact solutions from the direct method are higher than numerical 
methods. In numerical methods, the desired accuracy can be achieved by increasing 
number of iterations. 

xi) Convergence and stability are two major aspects of any numerical method. Before 
implementing numerical schemes to a mathematical model, we need to consider 
these two properties.

To summarize, the computer-oriented numerical techniques have methods to solve the scientific 
and engineering problems; have algorithms to implement on the computer; and have solutions 
to those problems which we are not able to solve analytically. 
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Numerical methods require tedious, cumbersome and repetitive arithmetic operations for large 
problems. It is almost impossible to do these cumbersome arithmetic operations manually. The 
development of information technology enhances the potential of these numerical techniques, 
and various software can handle algebra involved in these techniques in a very simple and 
sophisticated manner. Since most of the numerical techniques are algorithmic in nature and 
require repetitive cumbersome iterations, so it is practical to apply these algorithms to a 
computer. Of course, a computer must be given detailed and complete instructions for each step. 
During the formulation of any algorithm, we must keep in mind the following main features of 
the computer.

i) The computer is capable of performing only the basic arithmetic operations. Hence, 
each problem must be reduced to problems of these arithmetic operations. Numerical 
techniques provide these algorithms for a wide range of problems.

ii) The memory of the computer stores the algorithms and results of computations, and 
this enables the repetitive execution and results can be retrieved as per requirement. 

iii) Computer’s memory facilitates the alteration in the execution of instructions 
depending on results obtained during the execution. 

A systematic stepwise set of instructions utilizing above features of the computer enables us to 
solve complicated and cumbersome problems. Our efforts aim at the search for such algorithms. 
We will see that for a specific type of problems, there are several algorithms (For example, to 
solve nonlinear equations, we can choose among various algorithms like Bisection, Regula–
Falsi, Newton–Raphson, etc.). We have a lot of choices depending on our requirement for speed, 
accuracy, and convergence, etc. A combination of two algorithms can also be used. For example, 
we can find a close approximation to the root of an equation by Bisection method keeping 
in mind the convergence; and then continue with the Newton–Raphson method from this 
approximation onwards keeping in mind the speed of the method. For modest size problem, we 
can easily implement any algorithm with high configuration computer. But in the case of large-
scale problems, slow algorithms need to be rejected. 

So far, many algorithms are developed for different kinds of problems. As we discussed 
above, there are so many reasons to select an algorithm over others. Many algorithms developed 
in the past are now obsolete, just because we get better new algorithms compared to these old 
algorithms. For example, Gauss–Seidel method replaces the Jacobi method for the solution of 
system of linear equations, as the rate of convergence of Gauss–Seidel method is double than 
the Jacobi method.

Numerical Techniques and 
Computer

Appendix
B
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The knowledge of programming is must for the implementation of numerical techniques. 
This book contains solutions for various complicated problems using numerical techniques, 
to illustrate the strength of the numerical methods over analytical methods. Discussion on 
mathematical software is not a part of this book, but we must know about the software with 
user-friendly interfaces. The software provides not only graphical and numerical outputs 
but also capable of generating algebraic, closed form analytical solutions to a wide range of 
mathematical problems and development in this field continues at a rapid rate. Derive, Maple, 
Mathematica, Matlab, and Reduce are some important software. 
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Many numerical methods are based on Taylor series expansions of functions. If the function f(x)
has infinite continuous derivatives on any interval I and a is some point in I, then for all x I∈ , 
Taylor series expansion for function f(x) at center a is given by 

f x f a x a f a x a f a x a
n

f a
n

n( ) ( ) ( ) ( ) ( )
!

( ) ... ( )
( )!

( )= + − ′ + −
′′ + + − +( )

2

2
⋅⋅⋅⋅

If we use first (n) terms of this series expansion, then Taylor series expansion of the function f(x) 
is of order (n), and truncation error is said to be of order (n + 1). 

Let the function f(x) have (n + 1) continuous derivatives on any interval I and a is some point 
in the interval I, then for all x I∈  

f x f a x a f a x a f a x a
n

f a
n

n( ) ( ) ( ) ( ) ( )
!

( ) ( )
( )!

( )= + − ′ + −
′′ + ⋅⋅⋅+ − +( )

2

2
RRn ( )ξ  (1)

where R x a
n

fn

n
n( ) ( )

( )!
( );ξ ξ= −

+

+
+( )

1
1

1
 for some ξ ∈( , ).a x  Rn ( )ξ  is known as remainder term. 

For a small change in the value of x (say δ x), the function value at the point x x+δ  can be 
represented by the following form of Taylor series

f x x f x x f x x f x( ) ( ) ( )
!

( )+ = + ′ + ′′ + ⋅⋅⋅δ δ δ 2

2

The above Taylor series up to n-terms is as follows

f x x f x x f x x f x x
n

f x R
n

n
n( ) ( ) ( )

!
( )

( )!
( ) ( )+ = + ′ + ′′ + ⋅⋅⋅+ +( )δ δ δ δ ξ

2

2
 (2)

where R
x

n
f x x xn

n
n( ) ( )

( )!
( );ξ δ ξ ξ δ=

+
< < +

+
+( )

1
1

1
If we replace x = a + h in Taylor expansion (1), then another form of Taylor series is given by

f a h f a h f a h f a h
n

f a R
n

n
n( ) ( ) ( ) ( ) ( )

!
( ) ( )

( )!
( ) (+ = + ′ + ′′ + ⋅⋅⋅+ +( )

2

2
ξ ))  (3)

Taylor Series Appendix
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where R h
n

f a a hn

n
n( ) ( )

( )!
( );ξ ξ ξ=

+
< < +

+
+( )

1
1

1
For a convergent series, Rn ( )ξ → 0 as n → ∞. Expressions (1–3) are different forms of 
Taylor series expansion. Since it is not possible to compute an infinite number of terms, we 
approximate the function f(x) by first n+1-terms by neglecting higher order terms. It is known 
as approximation by Taylor polynomial of degree n. The remainder term Rn ( )ξ  gives the error 
term in this approximation. It is not possible to compute the exact value of ξ , hence the value 
of ξ  is such that the error term is maximum.

The Taylor series expressions of some basic functions about the point x = 0 (Maclaurin series) 
are as follows.

sin ( )
( )! ! ! !

x x
n

x x x xn
n

n

= −
+

= − + − + ⋅⋅⋅
+

=

∞

∑ 1
2 1 3 5 7

2 1

0

3 5 7

 for all x

cos ( )
( )! ! ! !

x x
n

x x xn
n

n

= − = − + − + ⋅⋅⋅
=

∞

∑ 1
2

1
2 4 6

2

0

2 4 6

 for all x

sinh
( )! ! ! !

x x
n

x x x xn

n

=
+

= + + + + ⋅⋅⋅
+

=

∞

∑
2 1

0

3 5 7

2 1 3 5 7
 for all x

cosh
( )! ! ! !

x x
n

x x xn

n

= = + + + + ⋅⋅⋅
=

∞

∑
2

0

2 4 6

2
1

2 4 6
 for all x

sin .−
+

=

∞

=




 +







= +






+∑1
2 1

0

31
4

2
2 1

1
2 3

1 3
2

x
n

n
x
n

x x
n

n

n ..
. .
. .4 5

1 3 5
2 4 6 7

5 7x x





+






+ ⋅⋅⋅  for x < 1

cos sin− −= −1 1

2
x xπ

 for x < 1

tan−
+

=

∞

= −( )
+







= − + − + ⋅⋅⋅∑1
2 1

0

3 5 7

1
2 1 3 5 7

x x
n

x x x xn
n

n

 for x < 1

cot tan− −= −1 1

2
x xπ

 for x < 1

sec cos− −= 





1 1 1x
x

 for x ≥1

csc ( ) sin− −= 





1 1 1x
x

 for x ≥1

e x
n

x x x xx
n

n

= = + + + + + ⋅⋅⋅
=

∞

∑ ! ! ! !0

2 3 4

1
2 3 4

 for all x

ln( ) ( )1 1
2 3 4

1

1

2 3 4

+ = − = − + − + ⋅⋅⋅+

=

∞

∑x x
n

x x x xn
n

n

 for x < 1
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1
1

1
0

2 3

−
= = + + + + ⋅⋅⋅

=

∞

∑x
x x x xn

n

 for x < 1

( ) ( )
!

( )( )
!

1 1 1
2

1 2
3

2 3+ = + + − + − − + ⋅⋅⋅x n x n n x n n n xn  for x < 1

Note: Since only arithmetic operations are possible on computer, hence the series expansions are 
very useful. For example, we want to compute value of sin(0.23), then our computer will put  
x = 0.23 in series expansion of sin(x), and compute specified number of terms (depending up on the 
accuracy required) of series and give back the result. 

Taylor Series for the Functions of More than One Variable
The Taylor series expansions for the functions of one independent variable can be generalized to 
the functions of more than one independent variable. Let y f x x xn= ( , , ..., )1 2  be a function of n- 
independent variables x x xn1 2, , ..., . Let δ δ δx x xn1 2, , ...,  be the errors in calculating the x x xn1 2, , ...,  
respectively. Then, Taylor series expansion is given by

y y f x x x x x x

y y f x x x x

n n

n

+ = + + +

+ = + ∂
∂

δ δ δ δ

δ δ

( , , ..., )

( , , ..., )

1 1 2 2

1 2 1 xx x
x

x
x f

x
x x

x
x

n
n

n

1 2
2

1
1 2

2
1
2

+ ∂
∂

+ + ∂
∂







+ ∂
∂

+ ∂
∂

+ + ∂
∂

δ δ

δ δ

...

!
... δδ

δ

x f

x

n







2

+ terms involving third and higher powers of 11 2, , ...,δ δx xn

Lagrange Mean Value (LMV) Theorem
Taylor series formula up to first order term provides Lagrange mean value (LMV) theorem. 
LMV theorem states as follows

If the function f(x) is continuous on the finite interval [a, b] and differentiable on (a, b), then 
there exists a point ξ ∈( , )a b  such that 

f b f a
b a

f
( ) ( )

( )
−
−

= ′ ξ

Rolle Theorem
A further particular case of LMV-theorem is Rolle theorem, which states as follows

Let the function f(x) be continuous on the finite interval [a, b] and differentiable on (a, b), if 
f a f b( ) ( )= = 0; then there exists a point ξ ∈( , )a b  such that 

′ =f ( )ξ 0
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Any function of one variable which does not graph as a straight line in two dimensions or any 
function of two variables which does not graph as a plane in three dimensions is said to be 
nonlinear. 

The function y = f(x) is a linear function if the dependent variable y changes in direct 
proportion to the change in an independent variable x. For example, y x= +2 10 is a linear 
function as the variable x appears only with degree one. But the functions y x= +2 3 and  
y = x–e–x are nonlinear functions, as the terms x2 and e–x are nonlinear. In the case of two variables, 
f x y x y( , ) = + −3 8 is a linear function, while f x y x y f x y xy x y( , ) , ( , )= + = + + +2 3 2 2 and 
f x y x e yx( , ) sin( )= − +−  are nonlinear functions.

In the case of single equations, 2 3 0x + =  is a linear equation and x x2 4 5 0− + =  is a nonlinear 

equation. Similarly, the system of equations 
x y

x y
+ =

− =
3

2 3 5
 is a linear system of equations and 

x y
x y

2 3
2 3 5

+ =
− =

 is a system of nonlinear equations since the first equation is nonlinear. In broader 

sense, if the unknown variables involved in the system have only linear terms (i.e. with degree 
one only), then the system is a linear system. 

A differential equation is linear if the dependent variable and its derivatives are in linear form, 

otherwise, it is nonlinear. For example, the differential equation 
d y
dx

x
dy
dx

y x
2

2
2 3+ + = sin( ) is a 

linear differential equation as dependent variable y, and its derivative terms are of the linear 

form (degree of all these is one). The differential equations, 
d y
dx

y
2

2 0+ =sin( ) , y
d y
dx

x
dy
dx

2

2 3+ =  

and 
dy
dx

y x+ =2  are nonlinear differential equations. In the first equation, we have sine function 

of y; in the second equation, there is a multiplicative term of dependent variable y and its 
derivative; in third equation, the term y2 is nonlinear. 

Linear and NonlinearAppendix
D
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Many analytical methods have been introduced in the literature to solve the linear systems 
of different kinds. Also, the superposition principle implies that if X, Y (functions, vectors, 
vector fields or any other mathematical quantities) are two solutions of a homogeneous linear 
system, then aX + bY is also a solution for scalars a, b. Therefore, the analytical methods and 
superposition principle form a great combination for the solution of linear systems. But, very 
few analytical methods have been developed to solve some very particular types of nonlinear 
systems. Therefore, a number of complex nonlinear systems remain unsolved by analytical 
methods.

Since all the mathematical models governing real world problems are inherently nonlinear, 
hence a very strong desire to have solutions to nonlinear systems leads us to numerical 
techniques. A few decades ago, numerical techniques were not easy to implement due to the 
cumbersome computational work involved. Now days, with the advent of high-speed computers 
and software,  these techniques are easy to implement. Numerical techniques provide solutions 
for those problems which we are not able to solve analytically and in fact, sometimes provide 
better results than the analytical methods.
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Transcendental Functions

Exponential Functions Logarithmic Function
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Trigonometric Functions
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This table contains the Greek symbols and their pronunciation. 

Uppercase Lowercase  Greek Letter Name 
Α α Alpha
Β β Beta
Γ γ Gamma
Δ δ Delta
Ε ε Epsilon
Ζ ζ Zeta
Η η Eta
Θ θ Theta
Ι ι Iota
Κ κ Kappa
Λ λ Lambda
Μ μ Mu
Ν ν Nu
Ξ ξ Xi
Ο ο Omicron
Π π Pi
Ρ ρ Rho
Σ σ Sigma
Τ τ Tau
Υ υ Upsilon
Φ ϕ Phi
Χ χ Chi
Ψ ψ Psi
Ω ω Omega

Greek LettersAppendix
F
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absolute error, 13
absolute, relative and percentage errors, 13
accelerated Newton–Raphson method, 96, 138
accelerating convergence, 110
Adam–Bashforth–Moulton method, 616

Adams–Bashforth predictor formula, 617
Adams–Moulton corrector formula, 618

advantages of NDD interpolation over 
Lagrange interpolation, 347

Aitken process, 110
algorithm for conversion of fractions in 

number systems, 8
algorithm for conversion of integers in number 

systems, 6
alternating direction implicit (ADI) scheme, 

714
applications of linear system of equations, 258
approximation by rational function of 

polynomials, 484
Padé approximation, 484

approximation of data and functions
Bězier curve, 456
B – Spline curve, 462
interpolation, 331, 389
least squares curve, 467
Padé approximation, 484
Spline interpolation, 446

augmented matrix, 192
average operator, 367

backward difference approximation of
first order ordinary derivative, 662, 669
first order partial derivatives, 684
second order ordinary derivative, 663, 669
second order partial derivative, 684

backward difference interpolation  
formula, 395

error in Newton backward difference 
formula, 397

Gregory–Newton backward difference 
formula, 395

backward difference operator, 366
Bender–Schmidt explicit scheme, 689, 704
Bernstein polynomials, 457, 461
Bessel formula, 406, 500
Bězier curve, 456
binary numbers, 1
Birge–Vieta method, 152
bisection method, 54, 74, 87
bivariate interpolation

Lagrange bivariate interpolation, 431
Newton bivariate interpolation for equi-

spaced points, 435
blunder, 16
Bolzano method, 54
Boole rule, 514, 519, 531
boundary value problem (ODE), 658, 664

finite difference method, 661, 664
shooting method, 658

bounds on eigenvalues, 277
Brauer theorem, 279
Gerschgorin theorem, 277

Brauer theorem, 279
B-Spline curve, 462
central difference approximations of, 671

first order ordinary derivative, 663, 669
first order partial derivatives, 684–685
second order ordinary derivative, 664, 669
second order partial derivative, 684, 686

Index
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792 Index

central difference interpolation formulas, 398
Bessel formula, 406
Everett formula, 408
Gauss backward central difference formula, 

402, 413, 417, 505
Gauss forward central difference formula, 

399, 401–402, 413, 417
Steffensen formula, 410
Stirling formula, 404

central difference operator, 366
change of center in Newton form, 336
characteristic equation, 271
characteristic polynomial, 271
Chebyshev

Gauss–Chebyshev method, 546
method for nonlinear equations, 106
polynomials, 478, 546
polynomials approximation, 478

Cholesky method, 190
chopping error, 19
classification of second order quasilinear PDEs, 

680
elliptic equations, 682, 725
hyperbolic equations, 681, 750
parabolic equations, 681, 688

comparison of analytical and numerical 
methods for ODEs, 582

comparison of analytical and numerical 
techniques, 779

comparison of direct methods for systems of 
linear equations, 206

compatibility of explicit scheme, 702
complex roots, 144, 164
composite Newton–Cotes quadrature rules, 517

Boole rule, 514, 519, 531
Simpson 1/3 rule, 513, 518, 529
Simpson 3/8 rule, 514, 519, 530
trapezoidal rule, 512, 517, 529
Weddle rule, 515, 520

condition number, 34
consistency of explicit scheme, 702
constant and variable coefficients differential 

equations, 579
conversion of fractions in number systems, 8
conversion of integers in number systems, 2, 6
convergence and order of a finite difference 

scheme, 704

convergence criteria: root finding methods for 
nonlinear equations, 74

bisection method, 75
fixed point method, 76
Newton–Raphson method, 81
Regula–Falsi method, 85
secant method, 85

convergence criteria: root finding methods for 
systems of nonlinear equations:

fixed point method, 127
Newton–Raphson method, 144
Seidel iteration method, 131

convergence criteria: iterative methods for 
linear systems of equations, 237

Gauss–Seidel method, 240, 252
Jacobi method, 237, 252
relaxation methods, 251–253

convex hull, 457
C programs www.cambridge.

org/9781108716000
Cramer rule, 176
Crank–Nicolson (CN) scheme, 689–690, 707, 

709, 712
Creating own finite difference scheme, 759
Crout method, 183
cubic spline, 446–456
cubic spline for equi-spaced points, 451

Descartes rule of signs, 147
diagonal 5-points formula, 727
diagonalization, 304–305
diagonally dominant, 239, 241
differential equation, xxvi, 576, 642, 679
differential operator (D), 368
discussion on methods for linear systems, 256
divided differences, 343–344
Doolittle method, 183
double integral, 567

Simpson 1/3 rule, 569
trapezoidal rule, 567

Du-Fort and Frankel scheme, 692

eigenvalues and eigenvectors, 268, 299
complex eigenvalues, 273
matrix with distinct eigenvalues, 274
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Index 793

matrix with repeated eigenvalues & linearly 
dependent eigenvectors, 276

matrix with repeated eigenvalues & linearly 
independent eigenvectors, 275

real eigenvalues, 271
eigenvalues and eigenvectors of real symmetric 

matrices, 299
Givens Method, 312
Householder Method, 319
Jacobi Method, 307

elementary row operations, 192
elliptic equations, 682, 725

Laplace equation, 682, 725–726
Poisson equation, 682, 740

epilogue, 34
error, 34

absolute, relative and percentage errors, 13
errors in implementation of numerical 

methods, 17
errors in modeling of real world problems, 

15
floating point arithmetic and error 

propagation, 23
loss of significance: condition & stability, 34
machine eps (Epsilon), 33
overflow and underflow, 22
round-off error, 17
some interesting facts about error, 41
truncation error, 30

error analysis, 13
error in interpolation, 350
errors in numerical solutions of differential 

equations, 623
error in Newton–Cotes quadrature formulas, 

528
Boole rule, 531
Simpson 1/3 rule, 529
Simpson 3/8 rule, 530
trapezoidal rule, 529
Weddle rule, 531

error propagation in function of more than one 
variable, 28

general error formula, 28
error propagation in function of single variable, 

27
Euler method, 588–598, 623, 625–634, 648–651
Euler–Maclaurin formula, 553

Everett formula, 408
existence and uniqueness of solutions, 581
explicit scheme, 689, 703, 711, 751

1-dimensional heat equation, 688, 703
1-dimensional wave equation, 751
2-dimensional heat equation, 711

exponent, 18
exponential fit, 472
extrapolation, 558

false position method, 68
finite difference approximations 

ordinary derivatives, 661 
partial derivatives, 683
derivatives for unequal intervals, 668 

finite difference interpolation formulae
Bessel formula, 500 
Everett formula, 500 
Gauss backward central difference formula, 

499 
Gauss forward central difference formula, 

499 
Newton backward difference formula, 458 
Newton forward difference formula, 497 
Steffensen formula, 501 
Stirling formula, 500 

finite difference methods for differential 
equations, 661, 664, 683

boundary value problems, 580, 658, 664
finite difference operators

backward difference, 366
central difference, 366
forward difference, 365

finite difference table, 379
finite difference tables and error propagation, 

379, 385
first order ODEs: Initial value problems, 576
fixed point, 59
fixed point method, 60, 76, 88, 125
fixed point method (or) direct iteration method 

(or) method of successive approximations, 
59

floating point arithmetic, 23
floating point arithmetic and error propagation, 

23
floating point numbers, 18, 22–24
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794 Index

forward difference approximations of, 662–663, 
668, 684

first order ordinary derivative, 662, 668
first order partial derivatives, 684–685
second order ordinary derivative, 663, 668
second order partial derivative, 684, 686

forward difference interpolation method, 390, 
393

error in Newton forward difference formula, 
393

Gregory–Newton forward difference 
formula, 390

forward difference operator, 365, 368

Gauss backward central difference formula, 402
Gauss elimination method, 192, 207
Gauss forward central difference formula, 399
Gauss quadrature formulas, 535

Gauss–Chebyshev method, 546
Gauss–Hermite method, 551
Gauss–Laguerre method, 549
Gauss–Legendre method, 535

Gauss–Jordan method, 203
Gauss–Seidel iteration method, 222, 240, 246
general error formula, 28
general implicit scheme, 691
general, particular and singular solutions, 580
Gerschgorin theorem, 277
Givens method, 312
Graeffe root squaring method, 161
graphical methods for roots of nonlinear 

equations, 49
graphical representation of

bisection method, 55
fixed point method, 64, 81
Muller method, 101
Newton–Raphson method, 67, 82
Regula–Falsi method, 69
secant method, 72, 85

graphical representation of
Boole method, 515
Simpson 1/3 method, 513, 519
Simpson 3/8 method, 514
trapezoidal method, 512, 518

graphical representation of
Euler method, 591

Gregory–Newton backward difference formula, 
395

Gregory–Newton forward difference formula, 
390

heat conduction equation, 688, 711
Hermite interpolation, 354
Heun’s method, 592
hexadecimal numbers, 2
homogeneous and nonhomogeneous 

differential equations, 578
Householder method, 319
hyperbolic equation, 680–681, 750
hyperbolic equation (1-dimensional wave 

equation), 750
explicit scheme, 751
implicit scheme, 751

implicit scheme
1-dimensional heat equation, 691
1-dimensional wave equation, 751

initial and boundary value problems, 580
intermediate value theorem, 52
interpolating polynomial, 331, 389
interpolation, xviii, 331, 389
interpolation for equal intervals, 389
interrelations of finite operators, 370
interval halving method, 54
inverse power method, 285

Jacobi method for linear systems, 218, 237, 245
Jacobi method (or) method of simultaneous 

displacement, 218
Jacobi method for eigenvalues, 307

Lagrange bivariate interpolation, 431
Lagrange method, 340
Lagrange polynomial, 340
Laplace equation, xxviii, 682, 726
least squares curve, 467
least squares method, 467

linear curve (or) straight line fitting, 468
nonlinear curve fitting by linearization of 

data, 470
quadratic curve fitting, 474
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Index 795

Lin–Bairstow method, 156
linear and nonlinear, 786
linear and nonlinear differential equations, 579
linear systems of equations, 173

Cramer rule, 176
Gauss elimination method, 192, 207
Gauss–Jordan method, 203
Gauss–Seidel method, 222, 240, 246
Jacobi method, 218, 237, 245
LU decomposition method, 182
matrix inversion method, 178
relaxation method, 227, 247

linearity and commutative properties of 
difference operators, 369

loss of significance, 34
LU decomposition method, 182

Cholesky method, 190
Crout method, 183
Doolittle method, 183

machine eps (Epsilon), 33
Maclaurin series, 784
Mantissa, 18
matrix forms of

Gauss–Seidel method, 246
Jacobi method, 245
relaxation methods, 247, 248

matrix inversion method, 179
matrix method for stability of CN scheme, 707
matrix method for stability of explicit scheme, 

705
matrix with distinct eigenvalues, 274
matrix with repeated eigenvalues and linearly 

dependent eigenvectors, 276
matrix with repeated eigenvalues and linearly 

independent eigenvectors, 275
mean or average operator, 367, 369
mean value theorems, 785
Milne–Simpson method, 608
modeling error, 16
modified (or) generalized Newton–Raphson 

method, 94
modified (or) improved Euler method, 592
Muller method, 101
multiple roots, 92

nested Newton form, 334
Neumann boundary conditions, 683
Neumann method for stability of CN scheme, 

709
Neumann method for stability of explicit 

scheme, 708
Newton–Cotes quadrature formulas (using 

Lagrange method), 510
Boole rule, 514, 519, 531
Simpson 1/3 rule, 513, 518, 529
Simpson 3/8 rule, 514, 519, 530
trapezoidal rule, 512, 517, 529
Weddle rule, 515

Newton bivariate interpolation for equi-spaced 
points, 435

Newton divided difference (NDD)  
method, 343

Newton divided differences and other finite 
differences, 377

Newton form, 333–336
Newton–Raphson method, 65, 81, 90, 135
nonlinear curve fitting by linearization of data, 

470
nonlinear equations

Aitken Δ2-process, 110
bisection method, 54, 74, 87
Chebyshev method, 106
fixed point method, 60, 76, 88, 125
Muller method, 101
Newton–Raphson method, 65, 81, 90, 135
Regula–Falsi method, 68, 85, 99
secant method, 71, 85, 97

nonlinear systems of equations, 124
fixed point method, 127
Newton–Raphson (NR) method, 135
Seidel iterative method, 131

normal equations, 469, 475
normalized form of numbers, 18
number systems, 1

representation of fractions, 8
representation of integers, 2

numerical differentiation, 495
numerical integration, 509
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796 Index

octal numbers, 2
order of convergence, 86, 237

bisection method, 87
fixed point method, 88
Newton–Raphson method, 90
Regula–Falsi method, 99
secant method, 97

operational counts for Gauss elimination 
method, 197

operators on some functions, 374
optimal relaxation parameter, 253
order and degree of differential equations, 578
order and stability of numerical methods, 624
ordinary and partial differential equations, 577
ordinary differential equations with initial 

conditions, 582
Adams method, 616
Euler method, 588, 623, 625, 648
Milne method, 608
modified (or) improved Euler method (or) 

Heun method, 592
Picard method of successive approximations, 

582, 644
Runge–Kutta (RK) methods, 597, 652
Taylor series method, 585, 647

orthogonal transformations, 306
overflow and underflow, 22

Padé approximation, 484
parabolic equation, 681, 688, 711
parabolic equation (1-dimensional heat 

conduction or diffusion equation), 688
Bender–Schmidt explicit scheme, 689, 703, 

705, 708, 765
Crank–Nicolson (CN) scheme, 690, 707, 709
Du-Fort and Frankel scheme, 692
general implicit scheme, 691
Richardson scheme, 692

parabolic equation (2-dimensional heat 
conduction or diffusion equation)

alternating direction implicit (ADI) scheme, 
714

Crank–Nicolson (CN) scheme, 712
explicit scheme, 711

partial differential equations, 679

partial differential equations: finite difference 
methods, 679

partial pivoting, 207
Picard method of successive approximations, 

582, 644
piecewise interpolation, 357
pivoting strategies for Gauss elimination 

method, 207
complete pivoting, 210
partial pivoting, 207
scaled partial pivoting, 209

plane rotations, 307
Poisson equation, 682, 725
polynomial, 147, 333
polynomial equations

Birge–Vieta method, 152
Descartes rule of signs, 147
Graeffe root squaring method, 161
Lin–Bairstow method, 156
Strum sequence, 148

polynomial forms
change of center in Newton form, 336
nested Newton form, 334
Newton form, 334
power form, 333
recursive algorithm for the nested Newton 

form, 335
shifted power form, 333

polynomial wiggle, 416
power form of polynomials, 333
power method, 281 

inverse power method, 285
shifted power method, 288

predictor-corrector method for first order IVPs
Adams method, 616
Milne method, 608

propagated error in arithmetic operations, 24
properties and convergence of methods for 

roots of nonlinear equations, 116
properties and interrelations of finite operators, 

369
properties of divided differences, 348

quadratic convergence, 92
quadratic curve fitting, 474
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Index 797

Ralston and Rabinowitz method, 600
recursive algorithm for the nested Newton 

form, 335
Regula–Falsi method (or) method of false 

positions, 68, 85, 99
relational table for finite operators, 373
relative error, 13
relaxation method, 227, 247
representation of fractions, 8
representation of integers, 2
Richardson extrapolation, 558
Richardson scheme for heat conduction 

equation, 692
Rolle’s theorem, 785
Romberg integration, 560
roots, 47, 124
roots of nonlinear equations, 47

Aitken Δ2- process, 110
bisection method, 54, 74, 87
Chebyshev method, 106
fixed point method, 60, 76, 88, 125
Muller method, 101
Newton–Raphson method, 65, 81, 90, 135
Regula–Falsi method, 68, 85, 99
secant method, 71, 85, 97

rounding error, 17
round-off, 17
row operations, 192
Runge–Kutta (RK) methods, 597

1st order RK method (Euler method), 598
2nd order RK method (Modified Euler 

method and Ralston–Rabinowitz method), 
598

3rd order RK method, 601
4th order RK method (Classical RK method), 

602, 652
Rutishauser (LR) method, 291

scaled partial pivoting, 209
secant method, 71, 85, 97
Seidel iterative method, 131
shift operator, 367
shifted power form, 333
shifted power method, 288
shooting method, 658

significant digits, 18
similarity transformation, 304
Simpson 1/3 rule, 513, 518, 529
Simpson 3/8 rule, 514, 519, 530
some important classifications and terms for 

differential equations, 577
some interesting facts about error, 41
SOR method, 227, 233
spline interpolation, 446
splines, 446, 462
spectral radius, 128, 252
stability of process, 34
stability analysis of IVP y´ = Ay, y(0) = y0, 626
stability of explicit scheme, 705, 708
stability of CN scheme, 707, 709
standard 5-points formula, 726
Steffensen formula, 410
stiff equation, 624
Stirling formula, 404
stopping criteria for iterations, 56
Strum sequence for polynomials, 148
Strum sequence for tridiagonal matrix, 311
Strum theorem, 149
successive over relaxation (SOR) method, 227, 

247
synthetic division, 153
systems of first order odes and higher order 

odes, 642
Euler method, 648
Picard method, 644
Runge–Kutta 4th order method, 652
Taylor series method, 647

systems of linear equations, 173
Cramer rule, 176
Gauss elimination method, 192
Gauss–Jordan method, 203
Gauss–Seidel method, 222, 240, 246
Jacobi method, 218, 237, 245
LU Decomposition method, 182
matrix inversion method, 178
relaxation method, 227, 247

systems of nonlinear equations, 124
fixed point method, 127
Newton–Raphson (NR) method, 135
Seidel iterative method, 131
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798 Index

Table:
approximation techniques for a given data 

set of (n+1) points, 488
finite difference methods for 1-dimensional 

heat conduction equation, 710
finite difference methods for 2-dimensional 

heat conduction equation, 717
formulation of methods for roots of 

nonlinear equations, 115
Iterative methods for linear systems, 255
methods for solutions of nonlinear systems, 

169
methods for solutions of polynomial 

equations, 170
Newton–Cotes quadrature formulas, 534
numerical schemes for IVP , 634, 635
numerical schemes for system of IVPs, 658
numerical techniques for integration, 565, 

566
properties and convergence of methods for 

roots of nonlinear equations, 116
summary and observations for roots of 

nonlinear equations, 117

summary table for finite differences formulas, 
412–415

summary table for numerical differentiation 
formulas, 498–501

Taylor polynomial, 783
Taylor series, 783
Taylor series method, 585, 647
Thomas algorithm, 199
transcendental equations, 48
trapezoidal rule, 512, 517, 529
trial and error methods, 51
tridiagonal systems, 199
Truncation error, 30

underflow, 22

wave equation, 681, 750
Weddle rule, 515
Weierstrass approximation theorem, 359
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