

Table	of	Contents
Preface

Introduction	to	Svelte

Svelte	Components

Handling	State	in	Svelte

Svelte	Reactivity

Svelte	Props

Cross-component	State	Management	in	Svelte

Slots

Svelte	Lifecycle	events

Svelte	Bindings

Conditional	Logic	in	Templates

Looping	in	Svelte	Templates

Promises	in	Svelte	Templates

Working	with	Events	in	Svelte

Where	Do	We	Go	From	Here

2

Preface

Welcome!
I	wrote	this	book	to	help	you	quickly	learn	Svelte	and	get	familiar	with	how	it	works.

The	ideal	reader	of	the	book	has	zero	knowledge	of	Svelte,	has	maybe	used	Vue	or	React,	but
is	looking	for	something	more,	or	a	new	approach	to	things.

I	find	Svelte	is	very	well	worth	looking	into,	because	it	provides	a	refreshing	point	of	view	and
several	unique	features	to	the	Web.

Thank	you	for	getting	this	ebook.	I	hope	it	will	help	you	learn	more	about	Svelte!

Flavio

You	can	reach	me	via	email	at	flavio@flaviocopes.com,	on	Twitter	@flaviocopes.

My	website	is	flaviocopes.com.

Preface

3

mailto:flavio@flaviocopes.com
https://twitter.com/flaviocopes
https://flaviocopes.com

Introduction	to	Svelte
Svelte	is	an	exciting	Web	framework	that	offers	a	fresh	new	take	on	how	to	build	Web
applications.

If	you	are	already	experienced	in	React,	Vue,	Angular	or	other	frontend	frameworks	you	might
be	pleasantly	surprised	by	Svelte.

My	first	impression	with	Svelte	was	that	it	all	feels	so	much	more	like	plain	JavaScript	than
working	with	other	frameworks.	Sure,	you	have	some	rules	and	there	are	templates	that	are
not	100%	JavaScript	(they	look	more	like	HTML)	but	most	of	the	things	that	are	complicated
with	other	frameworks	are	very	simple	and	lightweight	with	Svelte.

And	my	first	impression	has	been	confirmed	by	further	usage	of	the	framework	and	its
ecosystem	of	tools.

Compared	to	React,	Vue,	Angular	and	other	frameworks,	an	app	built	using	Svelte	is
compiled	beforehand	so	you	don't	have	to	serve	the	whole	framework	to	every	one	of	your
site	visitors.	As	a	result,	the	fruition	of	the	experience	is	smoother,	consumes	less	bandwidth,
and	everything	feels	faster	and	more	lightweight.

At	deployment,	Svelte	disappears	and	all	you	get	is	plain	(and	fast!)	JavaScript.

How	to	get	started	with	Svelte
To	use	Svelte,	you	need	to	have	Node.js	installed	because	all	the	tooling	we're	going	to	use	is
based	on	Node.	Check	out	my	tutorial	how	to	install	Node.js	post	if	you	don't	have	it	already!

And	make	sure	it's	the	latest	version	(how	to	update	Node.js).

If	you	don't	want	to	install	Node,	the	Svelte	website	provides	a	very	cool	REPL	(Read-
Eval-Print	Loop)	at	https://svelte.dev/repl.	It's	handy	to	test	small	Svelte	apps	and	to
experiment	with	things.

Node	installs	the	 	npx		command,	which	is	a	handy	way	to	run	Node	commands.	In	particular,
we're	going	to	run	this:

npx	degit	sveltejs/template	firstapp

This	will	download	and	run	the	degit	command,	which	in	turn	downloads	the	latest	code	of	the
Svelte	project	template	living	at	https://github.com/sveltejs/template,	into	a	newly	created
	firstapp		folder.	Make	sure	that	git	is	installed	on	your	machine	and	added	to	the	PATH

Introduction	to	Svelte

4

https://flaviocopes.com/node-installation/
https://flaviocopes.com/how-to-update-node/
https://svelte.dev/repl
https://flaviocopes.com/npx/
https://github.com/Rich-Harris/degit
https://github.com/sveltejs/template
https://git-scm.com/download

variable,	otherwise	the	degit	command	won't	work.	In	case	things	are	still	not	working	out	for
you,	you	can	alternatively	'Clone	or	download'	the	template	project	and	then	delete	the	hidden
	.git		folder,	which	is	basically	the	same	thing	that	the	 	degit		command	does	(only	difference
is	that	the	folder	is	called	 	template		instead	of	 	firstapp).

Now	go	into	that	 	firstapp		folder	and	run	 	npm	install		to	download	the	additional
dependencies	of	the	template.	At	the	time	of	writing,	these	are	the	dependencies	of	that
project	template:

"npm-run-all"

"rollup"

"rollup-plugin-commonjs"

"rollup-plugin-livereload"

"rollup-plugin-node-resolve"

"rollup-plugin-svelte"

"rollup-plugin-terser"

"svelte"

As	you	can	see,	it's	the	Svelte	core,	plus	Rollup	(a	Webpack	alternative)	and	some	of	its
plugins.	Plus	 	npm-run-all	,	a	CLI	tool	that	is	used	to	run	multiple	npm	scripts	in	parallel	or
sequential.

We're	now	ready	to	run	our	Svelte	site	in	development	mode,	by	running

npm	run	dev

This	will	start	the	app	on	localhost,	on	port	5000,	by	default:

Introduction	to	Svelte

5

https://rollupjs.org/
https://www.npmjs.com/package/npm-run-all

If	you	point	your	browser	there,	you'll	see	the	"Hello	world!"	example:

You're	now	ready	to	open	the	code	in	your	favorite	editor.	The	 	src		folder	contains	all	you
need	to	tweak	the	app:	the	 	main.js		file:

Introduction	to	Svelte

6

This	file	is	the	entry	point	and	in	this	case	initializes	the	App	component,	which	is	defined	in
	App.svelte	,	a	single	file	component:

<script>

export	let	name;

</script>

<style>

h1	{

color:	purple;

}

</style>

<h1>Hello	{name}!</h1>

Introduction	to	Svelte

7

Svelte	Components
Modern	Web	development	is	very	much	focused	on	components,	and	Svelte	is	no	different.

What	is	a	component?	A	component	is	an	atomic	part	of	the	application	that	is	self-contained
and	optionally	references	other	components	to	compose	its	output.

In	other	words,	it's	a	compartmentalized	part	of	the	application.	A	form	can	be	a	component.
An	input	element	can	be	a	component.	The	whole	application	is	a	component.

Svelte	components	contain	all	that's	needed	to	render	a	piece	of	the	UI.	Every	Svelte
component	is	declared	in	a	 	.svelte		file,	and	in	there	you'll	find	the	content	(markup),	the
behavior	(JavaScript),	and	the	presentation	(CSS)	without	having	to	define	separate	files.

Which	is	a	sane	way	to	define	a	piece	of	the	UI	because	you	don't	need	to	search	for	the	items
that	affect	the	same	element	across	various	files.

Here's	a	sample	component,	which	we'll	store	in	a	file	called	 	Dog.svelte	:

<script>

export	let	name;

</script>

<style>

h1	{

		color:	purple;

}

</style>

<h1>The	dog	name	is	{name}!</h1>

Any	JavaScript	must	be	put	in	the	 	script		tag.

The	CSS	you	have	in	the	 	style		tag	is	scoped	to	the	component	and	does	not	"leak"	outside.
If	another	component	has	an	 	h1		tag,	this	style	will	not	affect	that.	This	is	very	handy	when
reusing	components	you	already	wrote	for	other	applications,	for	example,	or	when	you
include	Open	Source	libraries	published	by	other	people.

For	example,	a	few	weeks	ago	I	included	a	date	picker	component	built	with	Svelte	in	an
application	and	none	of	the	stylings	of	the	component	leaked	outside	of	it,	and	none	of	the
CSS	I	wrote	into	the	app	modified	the	look	of	the	date	picker.

Importing	the	component	in	other	components
A	component	can,	as	said,	be	used	by	other	components.

Svelte	Components

8

Other	components	can	now	import	the	 	Dog		component	in	their	code.

For	example	here's	a	 	House		component,	defined	in	a	 	House.svelte		file,	in	the	same	folder	of
	Dog.svelte	:

<script>

import	Dog	from	'./Dog.svelte'

</script>

You	can	now	use	the	Dog	component	like	an	HTML	tag:

<script>

import	Dog	from	'./Dog.svelte'

</script>

<Dog	/>

Exporting	specific	functions	from	a	component
As	you	saw	above,	to	export	the	component	we	didn't	have	to	do	anything,	because	the
component	itself	is	the	default	export.

What	if	you	want	to	export	something	other	than	the	component	markup	and	its	associated
and	built-in	functionality?

You	must	write	all	the	functions	you	want	to	export	from	a	special	 	script		tag	with	the
	context="module"		attribute.

Here's	an	example.	Say	you	have	a	Button	component	in	 	Button.svelte	:

<button>A	button</button>

and	you	want	to	provide	other	components	the	ability	to	change	the	color	of	the	button.

A	better	solution	for	this	use	case	is	to	use	props,	which	is	something	we'll	talk	about	in
the	next	chapter.	But	stick	with	me	for	this	example

You	can	provide	a	function,	called	 	changeColor	.

You	write	and	export	it	in	this	special	 	script		tag:

<script	context="module">

export	function	changeColor()	{

		//...logic	to	change	color..

}

</script>

Svelte	Components

9

<button>A	button</button>

Note	that	you	can	have	another	"normal"	script	tag,	in	the	component.

Now	other	components	can	import	Button,	which	is	the	default	export,	and	the	 	changeColor	
function	too:

<script>

import	Button,	{	changeColor	}	from	'./Button.svelte'

</script>

Now	that	is	probably	a	silly	example,	but	knowing	you	have	this	functionality	at	your	disposal
can	be	quite	helpful.

Svelte	Components

10

Handling	State	in	Svelte
Every	component,	in	addition	to	defining	the	markup,	the	CSS	and	the	JavaScript	logic,	can
host	its	own	state.

What	is	state?	State	is	any	data	that's	needed	to	make	the	component	render	what	it's
rendering.

For	example,	if	a	form	input	field	has	the	string	"test"	written	into	it,	there'll	be	a	variable
somewhere	holding	this	value.	That's	the	state	of	the	input	field.

The	field	is	selected?	A	variable	somewhere	will	register	this	fact.	And	so	on.

State	is	hosted	in	the	 	script		part	of	a	component:

<script>

let	count	=	0

</script>

Now,	if	you	come	from	other	frameworks	in	the	frontend	space	like	Vue	or	React,	you	might
think	"how	do	I	update	this	value?"	-	and	for	a	good	reason,	as	those	frameworks	make	this
operation	rather	unintuitive,	I'd	say.

One	great	thing	about	Svelte	is	that	you	don't	need	to	do	anything	special	to	update	the	state
of	a	component.

All	you	need	is	an	assignment.	A	simple	JavaScript	assignment,	using	the	 	=		operator	for
example.

Say	you	have	a	 	count		variable.	You	can	increment	that	using,	simply,	 	count	=	count	+	1	,	or
	count++	:

<script>

let	count	=	0

const	incrementCount	=	()	=>	{

		count++

}

</script>

{count}	<button	on:click={incrementCount}>+1</button>

This	is	nothing	groundbreaking	if	you	are	unfamiliar	with	how	modern	Web	frameworks	handle
state,	but	in	React	you'd	have	to	either	call	 	this.setState()	,	or	use	the	 	useState()		hook.

Vue	takes	a	more	structured	approach	using	classes	and	the	 	data		property.

Handling	State	in	Svelte

11

Having	used	both,	I	find	Svelte	to	be	a	much	more	JavaScript-like	syntax.

We	need	to	be	aware	of	one	thing,	which	is	learned	pretty	quickly:	we	must	also	make	an
assignment	when	changing	the	value.

Svelte	always	wants	an	assignment,	otherwise	it	might	not	recognize	that	the	state	changed.

For	simple	values	like	strings	and	numbers,	that's	mostly	a	given,	because	all	methods	on
String	return	new	strings,	and	same	for	numbers	-	they	are	immutable.

But	for	arrays?	We	can't	use	methods	that	alter	the	array.	Like	 	push()	,	 	pop()	,	 	shift()	,
	splice()	...	because	there's	no	assignment.	They	change	the	inner	data	structure,	but	Svelte
can't	detect	that.

Well,	you	can	still	use	them,	but	after	you've	done	your	operation,	you	reassign	the	variable	to
itself,	like	this:

let	list	=	[1,	2,	3]

list.push(4)

list	=	list

Which	is	a	bit	counter-intuitive,	but	you'll	quickly	remember	it.

Or	you	can	use	use	the	spread	operator	to	perform	operations:

let	list	=	[1,	2,	3]

list	=	[...list,	4]

Handling	State	in	Svelte

12

Svelte	Reactivity
In	Svelte	you	can	listen	for	changes	in	the	component	state,	and	update	other	variables.

For	example	if	you	have	a	 	count		variable:

<script>

let	count	=	0

</script>

and	you	update	it	by	clicking	a	button:

<script>

let	count	=	0

const	incrementCount	=	()	=>	{

		count	=	count	+	1

}

</script>

{count}	<button	on:click={incrementCount}>+1</button>

You	can	listen	for	changes	on	 	count		using	the	special	syntax	 	$:		which	defines	a	new	block
that	Svelte	will	re-run	when	any	variable	referenced	into	it	changes.

Here's	an	example:

<script>

let	count	=	0

const	incrementCount	=	()	=>	{

		count	=	count	+	1

}

$:	console.log(`${count}`)

</script>

{count}	<button	on:click={incrementCount}>+1</button>

I	used	the	block:

$:	console.log(`${count}`)

You	can	write	more	than	one	of	them:

<script>

Svelte	Reactivity

13

$:	console.log(`the	count	is	${count}`)

$:	console.log(`double	the	count	is	${count	*	2}`)

</script>

And	you	can	also	add	a	block	to	group	more	than	one	statement:

<script>

$:	{

		console.log(`the	count	is	${count}`)

		console.log(`double	the	count	is	${count	*	2}`)

}

</script>

I	used	a	console.log()	call	in	there,	but	you	can	update	other	variables	too:

<script>

let	count	=	0

let	double	=	0

$:	{

		console.log(`the	count	is	${count}`)

		double	=	count	*	2

		console.log(`double	the	count	is	${double}`)

}

</script>

Svelte	Reactivity

14

Svelte	Props
You	can	import	a	Svelte	component	into	any	other	component	using	the	syntax	 	import
ComponentName	from	'componentPath'	:

<script>

import	SignupForm	from	'./SignupForm.svelte';

</script>

The	path	is	relative	to	the	current	component	path.	 	./		means	"this	same	folder".	You'd
use	 	../		to	go	back	one	folder,	and	so	on.

Once	you	do	so,	you	can	use	the	newly	imported	component	in	the	markup,	like	an	HTML	tag:

<SignupForm	/>

In	this	way,	you	are	forming	a	parent/child	relationship	between	the	two	components:	the	one
that	imports,	and	the	one	that	is	imported.

Often	you	want	to	have	the	parent	component	pass	data	to	the	child	component.

You	can	do	so	using	props.	Props	behave	similarly	to	attributes	in	plain	HTML,	and	they	are	a
one-way	form	of	communication.

In	this	example	we	pass	the	 	disabled		prop,	passing	the	JavaScript	value	 	true		to	it:

<SignupForm	disabled={true}/>

In	the	SignupForm	component,	you	need	to	export	the	 	disabled		prop,	in	this	way:

<script>

		export	let	disabled

</script>

This	is	the	way	you	express	the	fact	that	the	prop	is	exposed	to	parent	components.

When	using	the	component,	you	can	pass	a	variable	instead	of	a	value,	to	change	it
dynamically:

<script>

import	SignupForm	from	'./SignupForm.svelte';

let	disabled	=	true

</script>

Svelte	Props

15

<SignupForm	disabled={disabled}/>

When	the	 	disabled		variable	value	changes,	the	child	component	will	be	updated	with	the	new
prop	value.	Example:

<script>

import	SignupForm	from	'./SignupForm.svelte';

let	disabled	=	true

setTimeout(()	=>	{	disabled	=	false	},	2000)

</script>

<SignupForm	disabled={disabled}/>

Svelte	Props

16

Cross-component	State	Management	in
Svelte
We've	already	seen	how	Svelte	makes	handling	the	state	of	a	single	component	very	easy.

But	how	do	we	pass	state	around	across	components?

Passing	state	around	using	props
The	first	strategy	is	common	to	other	UI	frameworks	and	it's	passing	state	around	using	props,
lifting	the	state	up.

When	a	component	needs	to	share	data	with	another,	the	state	can	be	moved	up	in	the
components	tree	until	there's	a	common	parent	to	those	components.

The	state	needs	to	be	passed	down	until	it	reaches	all	the	components	that	need	this	state
information.

This	is	done	using	props,	and	it's	a	technique	that	I	think	is	the	best	as	it's	simple.

The	context	API
However,	there	are	cases	where	props	are	not	practical.	Perhaps	2	components	are	so	distant
in	the	components	tree	that	we'd	have	to	move	state	up	to	the	top-level	component.

In	this	case,	another	technique	can	be	used	and	it's	called	context	API,	and	it's	ideal	when
you	want	to	let	multiple	components	communicate	with	descendants,	but	you	don't	want	to
pass	props	around.

The	context	API	is	provided	by	2	functions	which	are	provided	by	the	 	svelte		package:
	getContext		and	 	setContext	.

You	set	an	object	in	the	context,	associating	it	to	a	key:

<script>

import	{	setContext	}	from	'svelte'

const	someObject	=	{}

setContext('someKey',	someObject)

</script>

Cross-component	State	Management	in	Svelte

17

In	another	component	you	can	use	 	getContext		to	retrieve	the	object	assigned	to	a	key:

<script>

import	{	getContext	}	from	'svelte'

const	someObject	=	getContext('someKey')

</script>

You	can	only	use	 	getContext		to	retrieve	a	key	either	in	the	component	that	used	 	setContext	
or	in	one	of	its	descendants.

If	you	want	to	let	two	components	living	in	2	different	component	trees	communicate	there's
another	tool	for	us:	stores.

Using	Svelte	stores
Svelte	stores	are	a	great	tool	to	handle	your	app	state	when	components	need	to	talk	to	each
other	without	passing	props	around	too	much.

You	must	first	import	 	writable		from	 	svelte/store	:

import	{	writable	}	from	'svelte/store'

and	create	a	store	variable	using	the	 	writable()		function,	passing	the	default	value	as	the
first	argument:

const	username	=	writable('Guest')

This	can	be	put	into	a	separate	file	which	you	can	import	into	multiple	components,	for
example,	called	 	store.js		(it's	not	a	component,	so	it	can	be	in	a	 	.js		file	instead	of
	.svelte):

import	{	writable	}	from	'svelte/store'

export	const	username	=	writable('Guest')

Any	other	component	now	loading	this	file	can	access	the	store:

<script>

import	{	username	}	from	'./store.js'

</script>

Cross-component	State	Management	in	Svelte

18

Now	the	value	of	this	variable	can	be	set	to	a	new	value	using	 	set()	,	passing	the	new	value
as	the	first	argument:

username.set('new	username')

And	it	can	be	updated	using	the	 	update()		function,	which	differs	from	 	set()		because	you
don't	just	pass	the	new	value	to	it	-	you	run	a	callback	function	that	is	passed	the	current	value
as	its	argument:

const	newUsername	=	'new	username!'

username.update(existing	=>	newUsername)

You	can	add	more	logic	here:

username.update(existing	=>	{

		console.log(`Updating	username	from	${existing}	to	${newUsername}`)

		return	newUsername

})

To	get	the	value	of	the	store	variable	once,	you	can	use	the	 	get()		function	exported	by
	svelte/store	:

import	{	writable,	get	}	from	'svelte/store'

export	const	username	=	writable('Guest')

get(username)	//'Guest'

To	create	a	reactive	variable	that's	updated	whenever	the	store	value	changes	instead,	you
can	prepend	the	store	variable	using	 	$		(in	this	example	 	$username).	Using	that	will	make	the
component	re-render	whenever	the	stored	value	changes.

Svelte	considers	 	$		to	be	a	reserved	value	and	will	prevent	you	to	use	it	for	things	that
are	not	related	to	stores	values	(which	might	lead	to	confusion),	so	if	you	are	used	to
prepending	DOM	references	using	 	$,	don't	do	it	in	Svelte.

Another	option,	best	suited	if	you	need	to	execute	some	logic	when	the	variable	changes,
is	to	use	the	 	subscribe()		method	of	 	username	:

username.subscribe(newValue	=>	{

		console.log(newValue)

})

In	addition	to	writable	stores,	Svelte	provides	2	special	kinds	of	stores:	readable	stores	and
derived	stores.

Cross-component	State	Management	in	Svelte

19

Svelte	Readable	Stores

Readable	stores	are	special	because	they	can't	be	updated	from	the	outside	-	there's	no
	set()		or	 	update()		method.	Instead,	once	you	set	the	initial	state,	they	can't	be	modified	from
the	outside.

The	official	Svelte	docs	show	an	interesting	example	using	a	timer	to	update	a	date.	I	can	think
of	setting	up	a	timer	to	fetch	a	resource	from	the	network,	perform	an	API	call,	get	data	from
the	filesystem	(using	a	local	Node.js	server)	or	anything	else	that	can	be	set	up	autonomously.

In	this	case	instead	of	using	 	writable()		to	initialize	the	store	variable,	we	use	 	readable()	:

import	{	readable	}	from	'svelte/store'

export	const	count	=	readable(0)

You	can	provide	a	function	after	the	default	value,	that	will	be	responsible	for	updating	it.	This
function	receives	the	 	set		function	to	modify	the	value:

<script>

import	{	readable	}	from	'svelte/store'

export	const	count	=	readable(0,	set	=>	{

		setTimeout(()	=>	{

				set(1)

		},	1000)

})

</script>

In	this	case,	we	update	the	value	from	0	to	1	after	1	second.

You	can	setup	an	interval	in	this	function,	too:

import	{	readable,	get	}	from	'svelte/store'

export	const	count	=	readable(0,	set	=>	{

		setInterval(()	=>	{

				set(get(count)	+	1)

		},	1000)

})

You	can	use	this	in	another	component	like	this:

<script>

import	{	count	}	from	'./store.js'

</script>

{$count}

Cross-component	State	Management	in	Svelte

20

Svelte	Derived	Stores

A	derived	store	allows	you	to	create	a	new	store	value	that	depends	on	the	value	of	an
existing	store.

You	can	do	so	using	the	 	derived()		function	exported	by	 	svelte/store		which	takes	as	its	first
parameter	the	existing	store	value,	and	as	a	second	parameter	a	function	which	receives	that
store	value	as	its	first	parameter:

import	{	writable,	derived	}	from	'svelte/store'

export	const	username	=	writable('Guest')

export	const	welcomeMessage	=	derived(username,	$username	=>	{

		return	`Welcome	${$username}`

})

<script>

import	{	username,	welcomeMessage	}	from	'./store.js'

</script>

{$username}

{$welcomeMessage}

Cross-component	State	Management	in	Svelte

21

Slots
Slots	are	a	handy	way	to	let	you	define	components	that	can	be	composed	together.

And	vice	versa,	depending	on	your	point	of	view,	slots	are	a	handy	way	to	configure	a
component	you	are	importing.

Here's	how	they	work.

In	a	component	you	can	define	a	slot	using	the	 	<slot	/>		(or	 	<slot></slot>)	syntax.

Here's	a	 	Button.svelte		component	that	simply	prints	a	 	<button>		HTML	tag:

<button><slot	/></button>

For	React	developers,	this	is	basically	the	same	as	 	<button>{props.children}</button>	

Any	component	importing	it	can	define	content	that	is	going	to	be	put	into	the	slot	by	adding	it
into	the	component's	opening	and	closing	tags:

<script>

import	Button	from	'./Button.svelte'

</script>

<Button>Insert	this	into	the	slot</Button>

You	can	define	a	default,	which	is	used	if	the	slot	is	not	filled:

<button>

		<slot>

				Default	text	for	the	button

		</slot>

</button>

You	can	have	more	than	one	slot	in	a	component,	and	you	can	distinguish	one	from	the	other
using	named	slots.	The	single	unnamed	slot	will	be	the	default	one:

<slot	name="before"	/>

<button>

		<slot	/>

</button>

<slot	name="after"	/>

Here's	how	you	would	use	it:

Slots

22

<script>

import	Button	from	'./Button.svelte'

</script>

<Button>

		Insert	this	into	the	slot

		<p	slot="before">Add	this	before</p>

		<p	slot="after">Add	this	after</p>

</Button>

And	this	would	render	the	following	to	the	DOM:

<p	slot="before">Add	this	before</p>

<button>

		Insert	this	into	the	slot

</button>

<p	slot="after">Add	this	after</p>

Slots

23

Svelte	Lifecycle	events
Every	component	in	Svelte	fires	several	lifecycle	events	that	we	can	hook	on,	to	help	us
implement	the	functionality	we	have	in	mind.

In	particular,	we	have

	onMount		fired	after	the	component	is	rendered
	onDestroy		fired	after	the	component	is	destroyed
	beforeUpdate		fired	before	the	DOM	is	updated
	afterUpdate		fired	after	the	DOM	is	updated

We	can	schedule	functions	to	happen	when	these	events	are	fired	by	Svelte.

We	don't	have	access	to	any	of	those	methods	by	default,	but	we	need	to	import	them	from
the	 	svelte		package:

<script>

		import	{	onMount,	onDestroy,	beforeUpdate,	afterUpdate	}	from	'svelte'

</script>

A	common	scenario	for	 	onMount		is	to	fetch	data	from	other	sources.

Here's	a	sample	usage	of	 	onMount	:

<script>

		import	{	onMount	}	from	'svelte'

		onMount(async	()	=>	{

				//do	something	on	mount

		})

</script>

	onDestroy		allows	us	to	clean	up	data	or	stop	any	operation	we	might	have	started	at	the
component	initialization,	like	timers	or	scheduled	periodic	functions	using	 	setInterval	.

One	particular	thing	to	notice	is	that	if	we	return	a	function	from	 	onMount	,	that	serves	the
same	functionality	of	 	onDestroy		-	it's	run	when	the	component	is	destroyed:

<script>

		import	{	onMount	}	from	'svelte'

		onMount(async	()	=>	{

				//do	something	on	mount

				return	()	=>	{

Svelte	Lifecycle	events

24

						//do	something	on	destroy

				}

		})

</script>

Here's	a	practical	example	that	sets	a	periodic	function	to	run	on	mount,	and	removes	it	on
destroy:

<script>

		import	{	onMount	}	from	'svelte'

		onMount(async	()	=>	{

				const	interval	=	setInterval(()	=>	{

						console.log('hey,	just	checking!')

				},	1000)

				return	()	=>	{

						clearInterval(interval)

				}

		})

</script>

Svelte	Lifecycle	events

25

Svelte	Bindings
Using	Svelte	you	can	create	a	two-way	binding	between	data	and	the	UI.

Many	other	Web	frameworks	can	provide	two-way	bindings,	it's	a	very	common	pattern.

They	are	especially	useful	with	forms.

bind:value
Let's	start	with	the	most	common	form	of	binding	you'll	often	use,	which	you	can	apply	using
	bind:value	.	You	take	a	variable	from	the	component	state,	and	you	bind	it	to	a	form	field:

<script>

let	name	=	''

</script>

<input	bind:value={name}>

Now	if	 	name		changes	the	input	field	will	update	its	value.	And	the	opposite	is	true,	as	well:	if
the	form	is	updated	by	the	user,	the	 	name		variable	value	changes.

Just	be	aware	that	the	variable	must	be	defined	using	 	let/var		and	not	 	const	,
otherwise	it	can't	be	updated	by	Svelte,	as	 	const		defines	a	variable	with	a	value	that
can't	be	reassigned.

	bind:value		works	on	all	flavors	of	input	fields	(type="number"	,	 	type="email"		and	so	on),	but
it	also	works	for	other	kind	of	fields,	like	 	textarea		and	 	select		(more	on	 	select		later).

Checkboxes	and	radio	buttons
Checkboxes	and	radio	inputs	(input		elements	with	 	type="checkbox"		or	 	type="radio")	allow
those	3	bindings:

	bind:checked	

	bind:group	

	bind:indeterminate	

	bind:checked		allows	us	to	bind	a	value	to	the	checked	state	of	the	element:

<script>

let	isChecked

</script>

Svelte	Bindings

26

<input	type=checkbox	bind:checked={isChecked}>

	bind:group		is	handy	with	checkboxes	and	radio	inputs,	because	those	are	very	often	used	in
groups.	Using	 	bind:group		you	can	associate	a	JavaScript	array	to	a	list	of	checkboxes,	and
have	it	populated	based	on	the	choices	made	by	the	user.

Here's	an	example.	The	 	goodDogs		array	populates	based	on	the	checkboxes	I	tick:

<script>

let	goodDogs	=	[]

let	dogs	=	['Roger',	'Syd']

</script>

<h2>

		Who's	a	good	dog?

</h2>

		{#each	dogs	as	dog}

				{dog}	<input	type=checkbox	bind:group={goodDogs}	value={dog}>

		{/each}

<h2>

		Good	dogs	according	to	me:

</h2>

		{#each	goodDogs	as	dog}

				{dog}

		{/each}

See	the	example	on	https://svelte.dev/repl/059c1b5edffc4b058ad36301dd7a1a58

	bind:indeterminate		allows	us	to	bind	to	the	 	indeterminate		state	of	an	element	(if	you	want	to
learn	more	head	to	https://css-tricks.com/indeterminate-checkboxes/)

Select	fields
	bind:value		also	works	for	the	 	select		form	field	to	get	the	selected	value	automatically
assigned	to	the	value	of	a	variable:

<script>

let	selected

</script>

<select	bind:value={selected}>

Svelte	Bindings

27

https://svelte.dev/repl/059c1b5edffc4b058ad36301dd7a1a58
https://css-tricks.com/indeterminate-checkboxes/

		<option	value="1">1</option>

		<option	value="2">2</option>

		<option	value="3">3</option>

</select>

{selected}

The	cool	thing	is	that	if	you	generate	options	dynamically	from	an	array	of	objects,	the	selected
option	is	now	an	object,	not	a	string:

<script>

let	selected

const	goodDogs	=	[

		{	name:	'Roger'	},

		{	name:	'Syd'	}

]

</script>

<h2>List	of	possible	good	dogs:</h2>

<select	bind:value={selected}>

		{#each	goodDogs	as	goodDog}

				<option	value={goodDog}>{goodDog.name}</option>

		{/each}

</select>

{#if	selected}

<h2>

		Good	dog	selected:	{selected.name}

</h2>

{/if}

See	example:	https://svelte.dev/repl/7e06f9b7becd4c57880db5ed184ea0f3

	select		also	allows	the	 	multiple		attribute:

<script>

let	selected	=	[]

const	goodDogs	=	[

		{	name:	'Roger'	},

		{	name:	'Syd'	}

]

</script>

<h2>List	of	possible	good	dogs:</h2>

<select	multiple	bind:value={selected}>

		{#each	goodDogs	as	goodDog}

				<option	value={goodDog}>{goodDog.name}</option>

		{/each}

</select>

{#if	selected.length}

Svelte	Bindings

28

https://svelte.dev/repl/7e06f9b7becd4c57880db5ed184ea0f3

<h2>Good	dog	selected:</h2>

		{#each	selected	as	dog}

				{dog.name}

		{/each}

{/if}

See	example:	https://svelte.dev/repl/b003248e87f04919a2f9fed63dbdab8c

Other	bindings
Depending	on	the	HTML	tag	you	are	working	on,	you	can	apply	different	kinds	of	bindings.

	bind:files		is	a	binding	valid	on	 	type="file"		input	elements,	to	bind	the	list	of	selected	files.

The	 	details		HTML	element	allows	the	use	of	 	bind:open		to	bind	its	open/close	value.

The	 	audio		and	 	video		media	HTML	tags	allow	to	bind	several	of	their	properties:
	currentTime	,	 	duration	,	 	paused	,	 	buffered	,	 	seekable	,	 	played	,	 	volume	,	 	playbackRate	.

	textContent		and	 	innerHTML		can	be	bound	on	 	contenteditable		fields.

All	things	very	useful	for	those	specific	HTML	elements.

Read-only	bindings
	offsetWidth	,	 	offsetHeight	,	 	clientWidth	,	 	clientHeight		can	be	bound,	read	only,	on	any
block	level	HTML	element,	excluding	void	tags	(like	 	br)	and	elements	that	are	set	to	be	inline
(display:	inline).

Get	a	reference	to	the	HTML	element	in
JavaScript
	bind:this		is	a	special	kind	of	binding	that	allows	you	to	get	a	reference	to	an	HTML	element
and	bind	it	to	a	JavaScript	variable:

<script>

let	myInputField

</script>

<input	bind:this={myInputField}	/>

Svelte	Bindings

29

https://svelte.dev/repl/b003248e87f04919a2f9fed63dbdab8c

This	is	handy	when	you	need	to	apply	logic	to	elements	after	you	mount	them,	for	example,
using	the	 	onMount()		lifecycle	event	callback.

Binding	components	props
Using	 	bind:		you	can	bind	a	value	to	any	prop	that	a	component	exposes.

Say	you	have	a	 	Car.svelte		component:

<script>

export	let	inMovement	=	false

</script>

<button	on:click={()	=>	inMovement	=	true	}>Start	car</button>

You	can	import	the	component	and	bind	the	 	inMovement		prop:

<script>

		import	Car	from	'./Car.svelte';

		let	carInMovement;

</script>

<Car	bind:inMovement={carInMovement}	/>

{carInMovement}

This	can	allow	for	interesting	scenarios.

Svelte	Bindings

30

Conditional	Logic	in	Templates
In	a	Svelte	component,	when	it	comes	to	rendering	HTML	you	can	work	with	some	specific
syntax	to	craft	the	UI	you	need	at	every	stage	of	the	application	lifecycle.

In	particular,	we'll	now	explore	conditional	structures.

The	problem	is	this:	you	want	to	be	able	to	look	at	a	value/expression,	and	if	that	points	to	a
true	value	do	something	if	that	points	to	a	false	value	then	do	something	else.

Svelte	provides	us	a	very	powerful	set	of	control	structures.

The	first	is	if:

{#if	isRed}

		<p>Red</p>

{/if}

There	is	an	opening	 	{#if}		and	an	ending	 	{/if}	.	The	opening	markup	checks	for	a	value	or
statement	to	be	truthy.	In	this	case	 	isRed		can	be	a	boolean	with	a	 	true		value:

<script>

let	isRed	=	true

</script>

An	empty	string	is	falsy,	but	a	string	with	some	content	is	truthy.

0	is	falsy,	but	a	number	>	0	is	truthy.

The	boolean	value	 	true		is	truthy,	of	course,	and	 	false		is	falsy.

If	the	opening	markup	is	not	satisfied	(a	falsy	value	is	provided),	then	nothing	happens.

To	do	something	else	if	that's	not	satisfied,	we	use	the	appropriately	called	 	else		statement:

{#if	isRed}

		<p>Red</p>

{:else}

		<p>Not	red</p>

{/if}

Either	the	first	block	is	rendered	in	the	template	or	the	second	one.	There's	no	other	option.

You	can	use	any	JavaScript	expression	into	the	 	if		block	condition,	so	you	can	negate	an
option	using	the	 	!		operator:

Conditional	Logic	in	Templates

31

{#if	!isRed}

		<p>Not	red</p>

{:else}

		<p>Red</p>

{/if}

Now,	inside	the	 	else		you	might	want	to	check	for	an	additional	condition.	That's	where	the
	{:else	if	somethingElse}		syntax	comes	along:

{#if	isRed}

		<p>Red</p>

{:else	if	isGreen}

		<p>Green</p>

{:else}

		<p>Not	red	nor	green</p>

{/if}

You	can	have	many	of	these	blocks,	not	just	one,	and	you	can	nest	them.	Here's	a	more
complex	example:

{#if	isRed}

		<p>Red</p>

{:else	if	isGreen}

		<p>Green</p>

{:else	if	isBlue}

		<p>It	is	blue</p>

{:else}

		{#if	isDog}

				<p>It	is	a	dog</p>

		{/if}

{/if}

Conditional	Logic	in	Templates

32

Looping	in	Svelte	Templates
In	Svelte	templates	you	can	create	a	loop	using	the	 	{#each}{/each}		syntax:

<script>

let	goodDogs	=	['Roger',	'Syd']

</script>

{#each	goodDogs	as	goodDog}

		{goodDog}

{/each}

If	you	are	familiar	with	other	frameworks	that	use	templates,	it's	a	very	similar	syntax.

You	can	get	the	index	of	the	iteration	using:

<script>

let	goodDogs	=	['Roger',	'Syd']

</script>

{#each	goodDogs	as	goodDog,	index}

		{index}:	{goodDog}

{/each}

(indexes	start	at	0)

When	dynamically	editing	the	lists	removing	and	adding	elements,	you	should	always	pass	an
identifier	in	lists,	to	prevent	issues.

You	do	so	using	this	syntax:

<script>

let	goodDogs	=	['Roger',	'Syd']

</script>

{#each	goodDogs	as	goodDog	(goodDog)}

		{goodDog}

{/each}

<!--	with	the	index	-->

{#each	goodDogs	as	goodDog,	index	(goodDog)}

		{goodDog}

{/each}

You	can	pass	an	object,	too,	but	if	your	list	has	a	unique	identifier	for	each	element,	it's	best	to
use	it:

Looping	in	Svelte	Templates

33

<script>

let	goodDogs	=	[

		{	id:	1,	name:	'Roger'},

		{	id:	2,	name:	'Syd'}

]

</script>

{#each	goodDogs	as	goodDog	(goodDog.id)}

		{goodDog.name}

{/each}

<!--	with	the	index	-->

{#each	goodDogs	as	goodDog,	index	(goodDog.id)}

		{goodDog.name}

{/each}

Looping	in	Svelte	Templates

34

Promises	in	Svelte	Templates
Promises	are	an	awesome	tool	we	have	at	our	disposal	to	work	with	asynchronous	events	in
JavaScript.

The	relatively	recent	introduction	of	the	 	await		syntax	in	ES2017	made	using	promises	even
simpler.

Svelte	provides	us	the	 	{#await}		syntax	in	templates	to	directly	work	with	promises	at	the
template	level.

We	can	wait	for	promises	to	resolve,	and	define	a	different	UI	for	the	various	states	of	a
promise:	unresolved,	resolved	and	rejected.

Here's	how	it	works.	We	define	a	promise,	and	using	the	 	{#await}		block	we	wait	for	it	to
resolve.

Once	the	promise	resolves,	the	result	is	passed	to	the	 	{:then}		block:

<script>

		const	fetchImage	=	(async	()	=>	{

				const	response	=	await	fetch('https://dog.ceo/api/breeds/image/random')

				return	await	response.json()

		})()

</script>

{#await	fetchImage}

		<p>...waiting</p>

{:then	data}

		

{/await}

You	can	detect	a	promise	rejection	by	adding	a	 	{:catch}		block:

{#await	fetchImage}

		<p>...waiting</p>

{:then	data}

		

{:catch	error}

		<p>An	error	occurred!</p>

{/await}

Run	the	example:	https://svelte.dev/repl/70e61d6cc91345cdaca2db9b7077a941

Promises	in	Svelte	Templates

35

https://svelte.dev/repl/70e61d6cc91345cdaca2db9b7077a941

Promises	in	Svelte	Templates

36

Working	with	Events	in	Svelte

Listening	to	DOM	events
In	Svelte	you	can	define	a	listener	for	a	DOM	event	directly	in	the	template,	using	the	 	on:
<event>		syntax.

For	example,	to	listen	to	the	 	click		event,	you	will	pass	a	function	to	the	 	on:click		attribute.

To	listen	to	the	 	onmousemove		event,	you'll	pass	a	function	to	the	 	on:mousemove		attribute.

Here's	an	example	with	the	handling	function	defined	inline:

<button	on:click={()	=>	{

		alert('clicked')

}}>Click	me</button>

and	here's	another	example	with	the	handling	function	defined	in	the	 	script		section	of	the
component:

<script>

const	doSomething	=	()	=>	{

		alert('clicked')

}

</script>

<button	on:click={doSomething}>Click	me</button>

I	prefer	inline	when	the	code	is	not	too	verbose.	If	it's	just	2-3	lines,	for	example,	otherwise	I'd
move	that	up	in	the	script	section.

Svelte	passes	the	event	handler	as	the	argument	of	the	function,	which	is	handy	if	you	need	to
stop	propagation	or	to	reference	something	in	the	Event	object:

<script>

const	doSomething	=	event	=>	{

		console.log(event)

		alert('clicked')

}

</script>

<button	on:click={doSomething}>Click	me</button>

Working	with	Events	in	Svelte

37

https://flaviocopes.com/javascript-events/#the-event-object

Now,	I	mentioned	"stop	propagation".	That's	a	very	common	thing	to	do,	to	stop	form	submit
events	for	example.	Svelte	provides	us	modifiers,	a	way	to	apply	it	directly	without	manually
doing	it.	 	stopPropagation		and	 	preventDefault		are	the	2	modifiers	you'll	use	the	most,	I	think.

You	apply	a	modifier	like	this:	 	<button	on:click|stopPropagation|preventDefault=
{doSomething}>Click	me</button>	

There	are	other	modifiers,	which	are	more	niche.	 	capture		enables	capturing	events	instead	of
bubbling,	 	once		only	fires	the	event	once,	 	self		only	fires	the	event	if	the	target	of	the	event	is
this	object	(removing	it	from	the	bubbling/capturing	hierarchy).

Creating	your	events	in	components
What's	interesting	is	that	we	can	create	custom	events	in	components,	and	use	the	same
syntax	of	built-in	DOM	events.

To	do	so,	we	must	import	the	 	createEventDispatcher		function	from	the	 	svelte		package	and
call	it	to	get	an	event	dispatcher:

<script>

		import	{	createEventDispatcher	}	from	'svelte'

		const	dispatch	=	createEventDispatcher()

</script>

Once	we	do	so,	we	can	call	the	 	dispatch()		function,	passing	a	string	that	identifies	the	event
(which	we'll	use	for	the	 	on:		syntax	in	other	components	that	use	this):

<script>

		import	{	createEventDispatcher	}	from	'svelte'

		const	dispatch	=	createEventDispatcher()

		//when	it's	time	to	trigger	the	event

		dispatch('eventName')

</script>

Now	other	components	can	use	ours	using

<ComponentName	on:eventName={event	=>	{

		//do	something

}}	/>

You	can	also	pass	an	object	to	the	event,	passing	a	second	parameter	to	 	dispatch()	:

<script>

		import	{	createEventDispatcher	}	from	'svelte'

Working	with	Events	in	Svelte

38

https://flaviocopes.com/javascript-events/#event-bubbling-and-event-capturing

		const	dispatch	=	createEventDispatcher()

		const	value	=	'something'

		//when	it's	time	to	trigger	the	event

		dispatch('eventName',	value)

		//or

		dispatch('eventName',	{

				someProperty:	value

		})

</script>

the	object	passed	by	 	dispatch()		is	available	on	the	 	event		object.

Working	with	Events	in	Svelte

39

Where	Do	We	Go	From	Here
I	hope	this	little	handbook	was	useful	to	shine	a	light	on	what	Svelte	can	do	for	you,	and	I	hope
you	are	now	interested	to	learn	more	about	it!

I	can	now	point	you	to	two	places	to	learn	more:

The	official	Svelte	website
Sapper,	an	awesome	framework	built	on	top	of	Svelte	that	lets	you	build	SSR	apps	with
Node.js	and	Svelte

That's	it!

I	can	point	you	to	my	website	flaviocopes.com	if	you	are	interested	in	learning	more,	I	publish
one	new	tutorial	every	day	and	I'll	be	posting	more	Svelte	guides	soon!

Where	Do	We	Go	From	Here

40

https://svelte.dev/
https://sapper.svelte.dev/
https://flaviocopes.com

	Preface
	Introduction to Svelte
	Svelte Components
	Handling State in Svelte
	Svelte Reactivity
	Svelte Props
	Cross-component State Management in Svelte
	Slots
	Svelte Lifecycle events
	Svelte Bindings
	Conditional Logic in Templates
	Looping in Svelte Templates
	Promises in Svelte Templates
	Working with Events in Svelte
	Where Do We Go From Here

