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§ Notation and Overview of Changes

The § notation refers to chapters and sections in this book. For example,
§2.1 refers to the first section in Chapter 2, which is labeled in the text
and Table of Contents as 2.1. Its first subsection is §2.1.1.

This book combines text from a doctoral thesis with research papers
based on the thesis, and elaborates some topics with further thoughts.

Relative to the thesis (Jackson, 2014) :

The half-page Abstract has been replaced by a one-page Synopsis.

New material was added in §1.5, §2.1.2.6, §2.1.2.9, §2.1.2.10,
§2.1.2.11, §2.2.2, §2.2.4, §2.3.6, §2.3.7, §3.6.1, §3.6.4, §3.6.7, §3.7.5,
§4.2.5,8§4.2.6, §5.3.

§2.3.3.22 was moved into §4.2.6. §2.3.3.2.1 was moved up to
§2.3.3.2.

§2.3.3.6 is new. Previous material in §2.3.3.6 is now in §2.3.3.7.

A new Chapter 8 has been added. Some material previously in
Chapter 7 has been moved to §8.1 and §8.3. New material is added
in §8.1, §8.2, §8.3.

The previous Chapter 8 is now Chapter 9.
New epigraphs have been used for some chapters.

The infinity symbol is shown after each epigraph, to represent the
potential scope of human-level artificial intelligence. Previously,
each epigraph was followed by an icon for an open book.

Quotations were removed where permissions did not cover a
commercial book and possible translation to foreign languages.

To improve readability, first-person pronouns are now used in
several places, rather than references to “the author”.

xiii






Synopsis

This book advocates an approach to achieve human-level artificial
intelligence, based on a doctoral thesis (Jackson, 2014).

While a Turing Test may help recognize human-level Al if it is
created, the test itself does not define intelligence or indicate how to
design, implement, and achieve human-level Al

The doctoral thesis proposes a design-inspection approach: to define
human-level intelligence by identifying capabilities achieved by human
intelligence and not yet achieved by any Al system, and to inspect the
internal design and operation of any proposed system to see if it can in
principle support these capabilities.

These capabilities will be referred to as higher-level mentalities. They
include human-level natural language understanding, higher-level
learning, metacognition, imagination, and artificial consciousness.

To implement the higher-level mentalities, the thesis proposes a
novel research approach: Develop an Al system using a language of
thought based on the unconstrained syntax of a natural language;
Design the system as a collection of concepts that can create and modify
concepts, expressed in the language of thought, to behave intelligently
in an environment; Use methods from cognitive linguistics such as
mental spaces and conceptual blends for multiple levels of mental
representation and computation.

The thesis endeavors to address all the major theoretical issues and
objections that might be raised against this approach, or against the
possibility of achieving human-level Al in principle. No insurmountable
objections are identified, and arguments refuting several objections are
presented.

The thesis describes the design of a prototype demonstration system,
and discusses processing within the system that illustrates the potential
of the research approach to achieve human-level AL

If it is possible to achieve human-level Al, then it is important to
consider whether human-level Al should be achieved. So, this book
discusses economic risks and benefits of Al, considers how to ensure
that human-level AI and superintelligence will be beneficial to
humanity, and identifies reasons why human-level Al may be necessary
for humanity’s survival and prosperity.
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To be clear, in thanking these people it is not claimed they would agree
with everything I've written or anything in particular.
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It is appropriate to acknowledge the work of Noah Hart. In 1979, he
asked me to review his senior thesis, on use of natural language syntax
to support inference in an Al system. I advised the approach was
interesting, and could be used in a system of self-extending concepts to
support achieving human-level Al, which was the topic of my graduate
research. Later, I forgot salient information such as his surname, the title
of his paper, its specific arguments, syntax and examples, etc. It has now
been over 39 years since I read his paper, which if memory serves was
about 20 pages.

My research on the doctoral thesis initially investigated developing a
mentalese based on conceptual graphs, to support natural language
understanding and human-level Al. Eventually it was clear that was too
difficult in the time available, because the semantics to be represented
were at too high a level. So, I decided to explore use of natural language
syntax, starting from first principles. Eventually it appeared this
approach would be successful and, wishing to recognize Hart's work, I
used resources on the Web to identify and contact him. He provided the
title in the Bibliography, but said it was unpublished and he could not
retrieve a copy. He recalled about his system?:

“SIMON was written in Lisp and I had written a working
prototype that was trained or ‘taught’. There were hundreds
of facts, or snippets of information initially loaded, and
SIMON could respond to things it knew. It would also ask for

3 Email from Noah Hart, December 2011.
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more information for clarification, and ask questions as it tried
to ‘“understand’.”

To contrast, this doctoral thesis combines the idea of using natural
language as a mentalese with other ideas from Al and cognitive science,
such as the society of mind paradigm, mental spaces, and conceptual
blends. The following pages discuss higher-level mentalities in human-
level Al including reflection and self-programming, higher-level
reasoning and learning, imagination, and consciousness. The syntax for
Tala presented here was developed without consulting Hart or referring
to his paper. I recall he used a similar Lisp notation for English syntax,
but do not recall it specifically.

0
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Dan Bertrand, Charles Bess, William Bone, Sam Brewster, Michelle
Broadworth, Mark Bryant, Gregory Burnett, Tom Caiati, Pam Chappell,
David Clark, David Coles, Bill Corpus, Justin Coven, Doug Crenshaw,
Fred Cummins, Robert Diamond, Tom Finstein, Geoff Gerling, Dujuan
Hair, Phil Hanses, Steve Harper, Kathy Jenkins, Chandra
Kamalakantha, Kas Kasravi, Phil Klahr, Rita Lauer, Maureen Lawson,
Kevin Livingston, David Loo, Steve Lundberg, Babak Makkinejad, Mark
Maletz, Bill Malinak, Arvid Martin, Glenda Matson, Stephen Mayes,
Stuart McAlpin, Eileen McGinnis, Frank McPherson, Doug Mutart,
Bruce Pedersen, Tyakal Ramachandraprabhu, Fred Reichert, Paul
Richards, Anne Riley, Saverio Rinaldi, Marie Risov, Patrick Robinson,
Mike Robinson, Nancy Rupert, Bob Rupp, Bhargavi Sarma, Mike
Sarokin, Rudy Schuet, Dan Scott, Ross Scroggs, Pradip Sengupta, Cheryl
Sharpe, Scott Sharpe, Christopher Sherman, Michael K. Smith, Patrick
Smith, Scott Spangler, Kevin Sudy, Saeid Tehrani, Zane Teslik, Kathy
Tetreault, Lakshmi Vora, Rochelle Welsch, Robert White, Terry White,
Richard Woodhead, Scott Woyak, Glenn Yoshimoto, and Ruth Zarger. I
thank these individuals for leadership and collaboration. Again, any list
would be incomplete and in thanking these people it is not claimed they
would agree with everything I've written or anything in particular.
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It should be expressly noted that I alone am responsible for the
content of this book. Naturally, I hope the reader will find that its value
greatly outweighs its errors, and I apologize for any errors it contains.

I will always be grateful to my late parents, whose faith and
encouragement made this effort possible. Heartfelt thanks also to other
family and friends for encouragement over the years.

I'm especially grateful to my wife Christine, for her love,
encouragement, and patience with this endeavor.

Philip C. Jackson, Jr.
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1. Introduction

To unfold the secret laws and relations of those high
faculties of thought by which all beyond the merely
perceptive knowledge of the world and of ourselves is
attained or matured, is an object which does not stand
in need of commendation to a rational mind.

~ George Boole, An Investigation of the Laws of Thought, 1854

oo

1.1 Can Machines Have Human-Level Intelligence?

In 1950, Turing’s paper on Computing Machinery and Intelligence
challenged scientists to achieve human-level artificial intelligence,
though the term artificial intelligence (Al) was not officially coined until
1955, in the Dartmouth summer research project proposal by McCarthy,
Minsky, Rochester, and Shannon.

Turing suggested that scientists could say a computer thinks if it
cannot be reliably distinguished from a human being in an “imitation
game,” which is now called a Turing Test. He suggested programming a
computer to learn like a human child, calling such a system a “child
machine,” and noted that the learning process could change some of the
child machine’s operating rules. Understanding natural language would
be important for human-level Al, since it would be required to educate
a child machine and would be needed to play the imitation game.

McCarthy et al. proposed research toward computer systems that
could achieve every feature of learning and intelligence. They proposed
to investigate how computers could understand language, develop
abstract concepts, perform human-level problem solving, and be self-
improving. They planned to study neural networks, computational
complexity, randomness and creativity, invention and discovery.

McCarthy proposed that his research in the Dartmouth summer
project would focus on intelligence and language. He noted that every
formal language yet developed omitted important features of English,
such as the ability for speakers to refer to themselves and make
statements about progress in problem-solving. He proposed to create a
computer language that would have properties similar to English. The
artificial language would allow a computer to solve problems by
making conjectures and referring to itself. Concise English sentences
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would have equivalent, concise sentences in the formal language.
McCarthy’s envisioned artificial language would support statements
about physical events and objects, and enable programming computers
to learn how to perform tasks and play games.

Turing’s 1950 paper concluded by suggesting two alternatives for
developing machine intelligence. One alternative was to program a
computer to play chess; the other was to create a child machine and
teach it to understand and speak English.

The first approach, playing chess, was successfully undertaken by Al
researchers, culminating in the 1997 victory of Deep Blue over the world
chess champion Gary Kasparov. We* now know that this approach only
scratches the surface of human-level intelligence. It is clear that
understanding natural language is far more challenging: No computer
yet understands natural language as well as an average five-year-old
human child. No computer can yet replicate the ability to learn and
understand language demonstrated by an average child.

Though Turing’s paper and the Dartmouth proposal both stated the
long-term research goal to achieve human-level Al, for several decades
there were few direct efforts toward achieving this goal. Rather, there
was research on foundational problems in a variety of areas such as
problem-solving, theorem-proving, game-playing, machine learning,
language processing, etc. This was perhaps all that could be expected,
given the emerging state of scientific knowledge about these topics, and
about intelligence in general, during these decades.

There have been many approaches, at least indirectly, toward the
long-term goal. One broad stream of research to understanding
intelligence has focused on logical, truth-conditional, model theoretic
approaches to representation and processing, via predicate calculus,
conceptual graphs, description logics, modal logics, type-logical
semantics, and other frameworks.

A second stream of research has taken a bottom-up approach,
studying how aspects of intelligence (including consciousness and

4+ In these pages, “we” often refers to the scientific community, or to
people in general, e.g. “We now know X.” It may also refer to the author
plus the reader, e.g. “We next consider Y,” or as a “royal we” to just the
author, e.g. “We next present Z.” Yet in no case does “we” refer to
multiple authors; this thesis presents the doctoral research of just one
author, P.CJ.
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language understanding) may emerge from robotics, connectionist
systems, etc., even without an initial, specific design for representations
in such systems. A third, overlapping stream of research has focused on
“artificial general intelligence,” machine learning approaches toward
achieving fully general artificial intelligence.

Parallel to Al research, researchers in cognitive linguistics have
developed multiple descriptions for the nature of semantics and concept
representation, including image schemas, semantic frames, idealized
cognitive models, conceptual metaphor theory, radial categories, mental
spaces, and conceptual blends. These researchers have studied the need
for embodiment to support natural language understanding and have
developed construction grammars to flexibly represent how natural
language forms are related to meanings.

To summarize the current state of research, it has been clear for
many years that the challenges to achieving human-level artificial
intelligence are very great, and it has become clear that they are
somewhat commensurate with the challenge of achieving fully general
machine understanding of natural language. Progress has been much
slower than Turing expected in 1950. He predicted that in fifty years
people would commonly talk about machines thinking, and that this
would be an educated opinion.

While people do informally speak of machines thinking, it is widely
understood that computers do not yet really think or learn with the
generality and flexibility of humans. While an average person might
confuse a computer with a human in a typewritten Turing Test lasting
only five minutes, there is no doubt that within five to ten minutes of
dialog using speech recognition and generation (successes of Al
research), it would be clear that a computer does not have human-level
intelligence.

Progress on Al has also been much slower than McCarthy expected.
In 2006 he gave a lecture in which he said he had hoped in 1955 that
human-level AI would be achieved before many members of his
audience were born.

Indeed, while many scientists continue to believe human-level Al
will be achieved, some scientists and philosophers have for many years
argued that the challenge is too great, that human-level Al is impossible
in principle, or for practical reasons. Some of these arguments relate
directly to elements of the approach of this thesis. Both the general and
specific objections and theoretical issues will be discussed in detail, in
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Chapter 4.
In sum, the question remains unanswered:

How could a system be designed to achieve human-level artificial intelligence?

The purpose of this thesis is to help answer this question, by
describing a novel research approach to design of systems for human-
level Al This thesis will present hypotheses to address this question
and present evidence and arguments to support the hypotheses.

1.2 Thesis Approach

Since the challenges are great, and progress has been much slower
than early researchers such as Turing and McCarthy expected, there are
good reasons to reconsider the approaches that have been tried and to
consider whether another, somewhat different approach may be more
viable. In doing so, there are good reasons to reconsider Turing’s and
McCarthy’s original suggestions.

To begin, this thesis will reconsider Turing’s suggestion of the
imitation test for recognizing intelligence. While a Turing Test can
facilitate recognizing human-level Al if it is created, it does not serve as
a good definition of the goal we are trying to achieve, for three reasons.
First, as a behaviorist test it does not ensure that the system being tested
actually performs internal processing we would call intelligent. Second,
the Turing Test is subjective: A behavior one observer calls intelligent
may not be called intelligent by another observer, or even by the same
observer at a different time. Third, it conflates human-level intelligence
with human-identical intelligence. Rather than create human-identical
Al we may wish to create human-like, human-level Al These issues are
further discussed in §2.1.1 and §2.1.2.

This thesis will propose a different approach ° that involves
inspecting the internal design and operation of any proposed system to
see if it can in principle support human-level intelligence. This approach
defines human-level intelligence by identifying and describing certain
capabilities not yet achieved by any Al system, in particular capabilities
this thesis will call higher-level mentalities, which include natural
language understanding, higher-level forms of learning and reasoning,

> A phrase describing this alternative as “augmenting” the Turing
Test has been removed because the Turing Test focuses on Al
indistinguishable from humans, rather than just human-like Al
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imagination, and consciousness.

Second, this thesis will reconsider Turing’s suggestion of the child
machine approach. Minsky (2006) gave a general discussion of this idea,
also called the ‘baby machine’ approach. He said the idea has been
unsuccessful because of problems related to knowledge representation:
A baby machine needs to be able to develop new ways of representing
knowledge, because it cannot learn what it cannot represent. This ability
to develop new forms of representation needs to be very flexible and
general.

It is not the case that people have been trying and failing to build
baby machines for the past sixty years. Rather, as noted above, most Al
research over the past sixty years has been on lower-level, foundational
problems in a variety of areas such as problem-solving, theorem-
proving, game-playing, machine learning, etc. Such research has made
it clear that any attempts to build baby machines with the lower-level
techniques would fail, because of the representational problems Minsky
identified.

What we may draw from this is that the baby machine approach has
not yet been adequately explored, and that more attention needs to be
given to the architecture and design of a child or baby machine, and in
particular to the representation of thought and knowledge. This
provides motivation for Hypothesis I of this thesis (stated in §1.4
below), which describes a form of the baby machine approach. This
thesis will discuss an architecture for systems to support this hypothesis
and will make some limited progress in investigation of the baby
machine approach. Chapters 3 and 4 will analyze theoretical topics
related to this architecture and discuss how the approach of this thesis
addresses the representational issues Minsky identified for baby
machines.

Next, this thesis will reconsider approaches toward understanding
natural language, because both Turing and McCarthy indicated the
importance of natural language in relation to intelligence, and because it
is clear that this remains a major unsolved problem for human-level Al
Indeed, this problem is related to Minsky’s representational problems
for baby machines, since the thoughts and knowledge that a human-
level AI must be able to represent, and that a baby machine must be able
to learn, include thoughts and knowledge that can be expressed in
natural language.

Although McCarthy proposed in 1955 to develop a formal language
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with properties similar to English, his subsequent work did not exactly
take this direction, though it appears in some respects he continued to
pursue it as a goal. He designed a very flexible programming language,
Lisp, for Al research, yet beginning in 1958 his papers concentrated on
use of predicate calculus for representation and inference in Al systems,
while discussing philosophical issues involving language and
intelligence. In an unpublished 1992 paper, he proposed a programming
language, to be called Elephant 2000, that would implement speech acts
represented as sentences of logic. McCarthy (2008) wrote that the
language of thought for an Al system should be based on logic, and
gave objections to using natural language as a language of thought.

McCarthy was far from alone in such efforts: Almost all Al research
on natural language understanding has attempted to translate natural
language into a formal language such as predicate calculus, frame-based
languages, conceptual graphs, etc., and then to perform reasoning and
other forms of cognitive processing, such as learning, with expressions
in the formal language. Some approaches have constrained and
“controlled” natural language, so that it may more easily be translated
into formal languages, database queries, etc.

Since progress has been very slow in developing natural language
understanding systems by translation into formal languages, this thesis
will investigate whether it may be possible and worthwhile to perform
cognitive processing directly with unconstrained natural language,
without translation into a conventional formal language. This approach
corresponds to thesis Hypothesis 11, also stated in §1.4 below. This thesis
will develop a conceptual language designed to support cognitive
processing of unconstrained natural language, in Chapters 3 and 5, and
will discuss the theoretical ramifications of the approach. Chapter 4 will
give a response to McCarthy’s objections to use of natural language as a
language of thought in an Al system, and to other theoretical objections
to this approach.

Finally, in considering how to design a system that achieves the
higher-level mentalities, this thesis will reconsider the relationship of
natural language understanding to other higher-level mentalities and
will consider the potential usefulness of ideas developed for
understanding natural language, in support of higher-level mentalities.
This approach corresponds to Hypothesis III of this thesis, also stated in
§1.4 below. The thesis will make progress in investigation of this
hypothesis, beginning in Chapter 3.
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1.3 Terminology: Tala and TalaMind

To further discuss the approach of this thesis, it will be helpful to
introduce some terminology to avoid cumbersome repetition of phrases
such as “the approach of this thesis.” (Other terms defined throughout
the thesis are collected in the Glossary.)

The name Tala® refers to the conceptual language defined in Chapter
5, with the proviso that this is only the initial version of the Tala
language, open to revision and extension in future work.” In general
throughout this thesis, the word concept refers to linguistic concepts, i.e.,
concepts that can be represented as natural language expressions (cf.
Evans & Green, 2006, p.158). The term conceptual structure will refer to
an expression in the Tala conceptual language.

The name TalaMind refers to the theoretical approach of this thesis
and its hypotheses, and to an architecture the thesis will discuss for
design of systems according to the hypotheses, with the same proviso.
TalaMind is also the name of the prototype system illustrating this
approach.

1.4 TalaMind Hypotheses
The TalaMind approach is summarized by three hypotheses:

I.  Intelligent systems can be designed as “intelligence kernels’,
i.e. systems of concepts that can create and modify concepts
to behave intelligently within an environment.

II.  The concepts of an intelligence kernel may be expressed in
an open, extensible conceptual language, providing a
representation of natural language semantics based very
largely on the syntax of a particular natural language such
as English, which serves as a language of thought for the
system.

¢ Trademarks for Tala and TalaMind have been created to support
future development.

7 The name Tala is taken from the Indian musical framework for
cyclic rhythms, pronounced “Tah-luh,” though I pronounce it to rhyme
with “ballad” and “salad.” The musical term tala is also spelled taal and
taala, and coincidentally taal is Dutch for “language.” Tala is also the
name of the unit of currency in Samoa.
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II. ~ Methods from cognitive linguistics may be used for
multiple levels of mental representation and computation.
These include constructions, mental spaces, conceptual
blends, and other methods.

Previous research approaches have considered one or more aspects
of these hypotheses, though it does not appear that all of them have
been previously investigated as a combined hypothesis. For each
hypothesis, the following pages will discuss its meaning and history
relative to this thesis. The testability and falsifiability of the hypotheses
are discussed in §1.6. Their relation to the Physical Symbol System
Hypothesis is discussed in §1.4.4.

1.4.1 Intelligence Kernel Hypothesis

I.  Intelligent systems can be designed as “intelligence kernels’,
i.e. systems of concepts that can create and modify concepts
to behave intelligently within an environment.

This hypothesis is a description of a baby machine approach, stated
in terms of conceptual systems, where concepts can include descriptions
of behaviors, including behaviors for creating and modifying concepts.
This hypothesis may be viewed as a variant of the Physical Symbol
System Hypothesis (Newell & Simon, 1976), which is discussed in
§1.4.4. It may also be viewed as a combination of the Knowledge
Representation Hypothesis and the Reflection Hypothesis (Smith, 1982),
which are discussed in §2.3.5, along with other related research.

Since I had written a book surveying the field of artificial intelligence
published in 1974, upon entering graduate school in 1977 I decided to
investigate how it might be possible to achieve “fully general artificial
intelligence,” Al at a level comparable to human intelligence. The
resulting master’s thesis (Jackson, 1979) formulated what is now
Hypothesis I and discussed the idea of a self-extending intelligence
kernel in which all concepts would be expressed in an extensible frame-
based concept representation language. Hypotheses II and III of this
thesis were not present in Jackson (1979).8 It also did not envision the

8 The wording in Jackson (1979) was “intelligent systems can be
defined as systems of concepts for the development of concepts.” It
described an intelligence kernel as a system of initial concepts that could

8



TalaMind Hypotheses

TalaMind demonstration design and story simulations, which have
been important for illustrating the TalaMind approach.

This thesis will investigate Hypothesis I by examining how
executable concepts can be represented in natural language, and how an
executable concept can create and modify an executable concept, within
a story simulation. This will illustrate how behaviors can be discovered
and improved, and how (as McCarthy sought in 1955) an Al system can
refer to itself and formulate statements about its progress in solving a
problem. There is much more work on intelligence kernels to be done in
future research.

1.4.2  Natural Language Mentalese Hypothesis

II.  The concepts of an intelligence kernel may be expressed in
an open, extensible conceptual language, providing a
representation of natural language semantics based very
largely on the syntax of a particular natural language such
as English, which serves as a language of thought for the
system.

This is a ‘natural language of thought’ hypothesis for human-level
Al: an hypothesis that natural language syntax provides a good basis
for a computer language of thought, and a good basis for representing
natural language semantics. It disagrees with the view that English
syntax is not important although semantics is important (§4.2.5), and
posits instead that a natural language such as English is important
because of how well its syntax can express semantics, and that the
unconstrained syntax of a natural language may be used to support
representation and processing in human-level AL° The word syntax is

develop and extend its concepts to understand an environment, i.e. a
self-extending system (viz. §2.3.5 re “seed Al”). The present wording
embeds the definition of “intelligence kernel” within the hypothesis,
and says “can be designed” rather than “can be defined,” since a
definition of something is different from a design to achieve it.

°To be clear, this thesis does not claim that people actually use
English or other natural languages as internal languages of thought.
Such claims are outside the scope of this thesis, which is focused only on
how machines might emulate the capabilities of human intelligence.
However, there is some evidence potentially supporting this hypothesis
for human intelligence, briefly discussed in §2.2.4.
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used in a very general sense, to refer to the structural patterns in a
natural language that are used in communication.!® This thesis will limit
discussion of the hypothesis to the syntax of sentences, with topics such
as morphology and phonology intended for future research.

The Tala conceptual language developed according to this
hypothesis will have properties McCarthy initially proposed in 1955: It
will support self-reference and conjecture, and its sentences will be as
concise as English — since they will be isomorphic to English. As will be
explained further beginning in §1.5, computer understanding of natural
language semantics will require conceptual processing of the language
of thought, relative to a conceptual framework and an environment.
That is, understanding of semantics (and pragmatics in general) is a
process that involves encyclopedic knowledge and at least virtual
embodiment (an idea discussed in §2.2.3).

Fodor (1975) considered that a natural language like English might
be used as a language of thought, extending a child’s innate, preverbal
language of thought. There is a long philosophical history to the idea of
natural language as a language of thought, which this thesis does not
attempt to trace. Even so, it appears there has been very little
investigation of this idea within previous Al research. As noted in §1.2,
research on natural language understanding has focused on translating
natural language to and from formal languages. Russell and Norvig
(2010) provide an introduction to the theory and technology of such
approaches. While inference may occur during parsing and
disambiguation, inference is performed within formal languages. Hobbs
(2004) gives reasons in favor of first-order logic as a language of
thought, discussed in §2.3.1. Wilks has advocated use of natural
language for representing semantics, though his practical work has used
non-natural language semantic representations. Section 2.2.1 discusses
the ‘language of thought’ idea in greater detail.

Hart (1979, unpublished) discussed use of natural language syntax
for inference in an Al system. Further information and
acknowledgement are given in the Preface.

10 The word grammar could be used instead, but has alternate senses
that encompass linguistic meaning and knowledge of language (cf.
Evans & Green, 2006, p.484).
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143 Multiple Levels of Mentality Hypothesis

III. ~ Methods from cognitive linguisticc may be used for
multiple levels of mental representation and computation.
These include grammatical constructions, mental spaces,
conceptual blends, and other methods.

This is an hypothesis that theoretical ideas developed for
understanding natural language will be useful for achieving the higher-
level mentalities of human-level intelligence, i.e. higher-level forms of
learning and reasoning, imagination, and consciousness.

Hypothesis III was developed while working on this thesis. This
hypothesis is equally as important as the first and second, and in some
ways more important, since it identifies a direction toward achieving
the higher-level mentalities of human-level intelligence, leveraging the
first and second hypotheses. Of course, it does not preclude the use of
other ideas from cognitive science to help achieve this goal.

This hypothesis is a result of pondering the multiple levels of mental
representation and processing discussed by Minsky (2006), and
considering how they could be represented and processed using a
natural language mentalese. This led to the idea that the higher-level
mentalities could be represented and processed within an intelligence
kernel using a natural language mentalese with constructions, mental
spaces, and conceptual blends. It does not appear that there is other,
previous Al research exploring a hypothesis stated in these terms,
where “multiple levels of mental representation and computation”
includes the higher-level mentalities discussed in this thesis.

1.4.4  Relation to the Physical Symbol System Hypothesis

The TalaMind hypotheses are essentially consistent with Newell and
Simon’s (1976) Physical Symbol System Hypothesis (PSSH), which
essentially hypothesizes that digital computers (or abstractly, physical
symbol systems) can support human-level artificial intelligence. Briefly,
Newell and Simon defined physical symbols as physical patterns, which
can occur in expressions (symbol structures). A physical symbol system
can contain a collection of expressions and have processes that operate
on the expressions to produce new expressions. Expressions can
designate processes to perform. The system can interpret expressions to
perform the processes they designate. Newell and Simon noted that
their definition of a physical symbol system essentially describes the
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symbolic processing abilities of digital computers.!

If the word “concept” is substituted for “expression,” then a variant
of PSSH is TalaMind Hypothesis I: “Intelligent systems can be designed
as ‘intelligence kernels’, i.e. systems of concepts that can create and
modify concepts to behave intelligently within an environment.”

Newell and Simon stipulated that expressions can designate objects
and processes. If expressions can also designate abstractions in general,
then functionally there is not a difference between an expression and a
conceptual structure, as the term is used in this thesis. The range of
abstractions that can be designated in the Tala conceptual language is a
topic discussed in Chapter 3.

In defining expressions as structures of symbols, PSSH implicitly
suggests an intelligent system would have some internal language for
its expressions. Newell and Simon discussed computer languages such
as Lisp, and also mentioned natural language understanding as a
problem for general intelligence. However, in discussing PSSH they did
not hypothesize along the lines of TalaMind Hypotheses II or III, which
are consistent with PSSH but more specific.

In presenting PSSH, Newell and Simon were not specific about the
nature or definition of intelligence. They briefly said they were referring
to the scope, abilities, behavior, speed, and complexity of human-level
intelligence.

In §2.1.2 this thesis identifies specific features of human-level
intelligence that need to be achieved in human-level AL

1.5 TalaMind System Architecture

This thesis next introduces an architecture it will discuss for design
of systems to achieve human-level Al, according to the TalaMind
hypotheses. This is not claimed to be the only or best possible
architecture for such systems. It is presented to provide a context for
analysis and discussion of the hypotheses. Figure 1-1 on the next page
shows elements of the TalaMind architecture. The term Tala agent will
refer to a system with this architecture.

' Newell & Simon’s definition of a physical symbol system appears
to cover any programs that can be processed by a digital computer,
including programs for neural networks (which they did not discuss).
However, whether neural networks are covered by their definition of
physical symbol systems is not central to the discussion of this thesis.
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Tala Agent

Conceptual Levels

Linguistic Level: Linguistic Concept Structures

Higher-Level Mentalities
Conceptual Processes
Tala Conceptual Language
Conceptual Framework

Percepts Control Concepts Effepts

Environment Interaction Systems

Conceptual | |
Interface

Archetype Level: Cognitive Concept Structures

Cognitive Models, Image Schemas, Radial Categories,
Conceptual Spaces, Conceptual Domains,
Semantic Frames, Perceptual Symbols...

Perceptions Attention Actions

I
N~ N~

Associative Level: Associations & Data Analysis

Connectionism, Statistical & Bayesian Processing, ...
Image, Sound, Haptic ...Processing

Sensors

Environment

Figure 1-1 TalaMind System Architecture

Effectors

In addition to the Tala conceptual language, the architecture contains
two other principal elements at the linguistic level:

Conceptual Framework. An information architecture for managing
an extensible collection of concepts, expressed linguistically.
A conceptual framework supports processing and retention of
concepts ranging from immediate thoughts and percepts to long-
term memory, including concepts representing definitions of
words, knowledge about domains of discourse, memories of past
events, context structures, etc.!?

2In saying concepts are expressed linguistically, all methods are
allowed, e.g. n-tuples of symbols, expressions in formal, logical languages,
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Introduction

o Conceptual Processes. An extensible system of processes that
operate on concepts in the conceptual framework, to produce
intelligent behaviors and new concepts.

Géardenfors (1995) discussed three levels of inductive inference,
which he called the linguistic, conceptual, and subconceptual levels.
This thesis considers all three levels to be conceptual levels, due to its
focus on linguistic concepts, and because an argument could be made
that associative concepts exist. Hence the middle is called the archetype
level to avoid describing it as the only conceptual level, and as a concise
description that does not favor any particular cognitive concept
representation. (It is not called the “cognitive level,” since cognition also
happens at the linguistic level, according to this thesis.) Section 2.2.2
further discusses the nature of concept representation at these levels.
This thesis will discuss how the TalaMind architecture at the linguistic
level could support higher-level mentalities in human-level AL

In general, this thesis will not discuss the archetype and associative
levels. Hence, throughout this thesis, discussions of “TalaMind
architecture” refer to the linguistic level of the architecture, except
where other levels are specified, or implied by context.

TalaMind is open to inclusion of other approaches toward human-
level Al, for instance permitting predicate calculus, conceptual graphs,
and other symbolisms in addition to the Tala language at the linguistic
level, and permitting integration across architectural levels, e.g.
potential use of neural nets at the linguistic and archetype levels. The
TalaMind system architecture is actually a broad class of architectures,
open to design choices at each level.

The TalaMind hypotheses do not require a generalized ‘society of
mind’ architecture (§2.3.3.2) in which subagents communicate using the
Tala conceptual language, but it is consistent with the hypotheses and
natural to implement a society of mind at the linguistic level of the
TalaMind architecture. This will be illustrated in Chapters 5 and 6.

This thesis does not discuss spatial reasoning and visualization,

or expressions in Tala. The framework should support representing
expected future contexts, hypothetical or imaginary contexts, etc. These
may be implemented using symbolic representations such as iconic
mental models, which have been addressed in previous research
(Johnson-Laird 1983 et seq.), discussed further in §2.3.6.
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which may also occur in conceptual processing and are topics for future
extensions of this approach.

From the perspective of the linguistic concept level, the lower two
nonlinguistic levels of concept processing may be considered
“environment interaction” systems. This interaction may be very
complex, involving systems at the archetype level for recognizing
objects and events in the environment, leveraging systems at the
associative level, as well as sensors and effectors for direct interaction
with the environment. While these environment interaction levels are
very important, they are not central to this thesis, which will limit
discussion of them and stipulate that concepts expressed in the Tala
mentalese are the medium of communication in a Conceptual Interface
between the linguistic level and the archetype level.

If environment interaction systems recognize a cat on a mat, they
will be responsible for creating a mentalese sentence expressing this as a
percept, received in the conceptual framework via the conceptual
interface. If the conceptual processes decide to pet the cat on the mat,
they will transmit a mentalese sentence describing this action via the
conceptual interface to environment interaction systems responsible for
interpreting the sentence and performing the action. This idea of a
conceptual interface is introduced to simplify discussion in the thesis,
and to simplify development of the thesis demonstration system: It
enables creating a demonstration system in which Tala agents
communicate directly with each other via the conceptual interface,
abstracting out their environment interaction systems. As the TalaMind
approach is developed in future research, the conceptual interface may
become more complex; or, alternatively, it may disappear through
integration of the linguistic and archetype levels. For instance, §§3.6.1
and 3.6.7.7 stipulate that concepts at the linguistic level can directly
reference concepts at the archetype level.

In addition to action concepts (“effepts”), the linguistic level may
send “control concepts” such as questions and expectations to the
archetype level. For example, a question might ask the archetype level
to find another concept similar to one it perceives, e.g. “What does the
grain of wheat resemble?” and a percept might be returned, “The grain
of wheat resembles a nut.” Expectation concepts may influence what the
archetype level perceives in information received from the associative
level, and cause the archetype level to focus or redirect attention at the
associative level. These are important topics, but they will be outside the
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focus of this thesis. Some discussion will be given related to them, in
considering interactions between consciousness, unconsciousness, and
understanding (§4.2.4).

This thesis relaxes PSSH requirements (2) and (3) stated by Newell
and Simon (1976, p.116), by not requiring that all conceptual processes
be describable in the Tala conceptual language, nor that all conceptual
processes be alterable or created by other conceptual processes; it is
allowed that some conceptual processes may result from lower-level
symbolic or non-symbolic (associative) processing. Hence, TalaMind
Hypothesis I may be considered a variant of PSSH.

1.6 Arguments and Evidence: Strategy and Criteria for Success

It should be stated at the outset that this thesis does not claim to
actually achieve human-level Al, nor even an aspect of it; rather, it
develops an approach that may eventually lead to human-level Al and
describes a demonstration system to illustrate the potential of this
approach.

Human-level artificial intelligence involves several topics, each so
large that even one of them cannot be addressed comprehensively
within the scope of a Ph.D. thesis. The higher-level mentalities are topics
for a lifetime’s research, and indeed, several lifetimes. Therefore, this
thesis cannot claim to prove that a system developed according to its
hypotheses will achieve human-level artificial intelligence. This thesis
can only present a plausibility argument for its hypotheses.

To show plausibility, the thesis will:

® Address theoretical arguments against the possibility of
achieving human-level Al by any approach.

® Describe an approach for designing a system to achieve human-
level Al, according to the TalaMind hypotheses.

e Present theoretical arguments in favor of the proposed
approach, and address theoretical arguments against the
proposed approach.

® Present analysis and design discussions for the proposed
approach.

e Present a functional prototype system that illustrates how the
proposed approach could in principle support aspects of
human-level Al if the approach were fully developed, though
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that would need to be a long-term research effort by multiple
researchers.

After these elements of the plausibility argument are presented in
Chapters 3 through 6, Chapter 7 will evaluate the extent to which they
have supported the TalaMind hypotheses. Showing the plausibility of
hypotheses will not be as clear-cut a result as proving a mathematical
theorem, nor as quantitative as showing that a system can parse a
natural language corpus with a higher degree of accuracy than other
systems.

The general strategy of this thesis is to take a top-down approach to
analysis, design, and illustration of how the three hypotheses can
support the higher-level mentalities, since this allows addressing each
topic, albeit partially. In discussing each higher-level mentality, the
strategy is to focus on areas that largely have not been previously
studied. Areas previously studied will be discussed if necessary to show
it is plausible that they can be supported in future research following
the approach of this thesis, but analyzing and demonstrating all areas
previously studied would not be possible in a Ph.D. thesis. Some
examples of areas previously studied are ontology, commonsense
knowledge, encyclopedic knowledge, parsing natural language,
uncertainty logic, reasoning with conflicting information, and case-
based reasoning.

The success criterion for this thesis will simply be whether
researchers in the field deem that the proposed approach is a
worthwhile direction for future research to achieve human-level Al,
based on the arguments and evidence presented in these pages.

The TalaMind approach is testable and falsifiable. There are
theoretical objections that would falsify Hypothesis II and the Tala
conceptual language. Some of these objections, such as Searle’s Chinese
Room Argument, would falsify the entire TalaMind approach and,
indeed, all research on human-level Al. Objections of this kind are
addressed in Chapter 4.

The Tala syntax defined in Chapter 5 could be shown to be
inadequate by identifying expressions in English that it could not
support in principle or with possible extensions. Tala's syntax has been
designed to be very general and flexible, but there probably are several
ways it can be improved.

Due to its scope, the TalaMind approach can only be falsified within
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a Ph.D. thesis by theoretical or practical objections, some of which are
not specific to Tala. For example, the theoretical objections of Penrose
against the possibility of achieving human-level Al would falsify the
TalaMind approach, if one accepts them. Objections of this kind are also
addressed in Chapter 4.

1.7 Overview of Chapters

Chapter 2 provides a review of previous research on human-level
artificial intelligence and natural language understanding and proposes
an alternative to the Turing Test, for defining and recognizing human-
level Al Chapter 3 will discuss the TalaMind architecture in more
detail, to analyze theoretical questions and implications of the TalaMind
hypotheses, and will discuss how a system developed according to the
hypotheses could achieve human-level AL Chapter 4 discusses
theoretical issues and objections related to the hypotheses. Chapter 5
presents the design for a TalaMind prototype demonstration system.
Chapter 6 describes processing within this system, which illustrates
learning and discovery by reasoning analogically, causal and purposive
reasoning, meta-reasoning, imagination via conceptual simulation, and
internal dialog between subagents in a society of mind using a language
of thought. The prototype also illustrates support for semantic
disambiguation, natural language constructions, metaphors, semantic
domains, and conceptual blends, in communication between Tala
agents. Chapter 7 evaluates how well the preceding chapters support
the hypotheses of this thesis. Chapter 8 discusses potential risks and
benefits resulting from human-level artificial intelligence. Chapter 9
gives a summation of this thesis.
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2. Subject Review: Human-Level Al and Natural Language

Those who are enamoured of practice without science
are like a pilot who goes into a ship without rudder or
compass and never has any certainty where he is going.
Practice should always be based upon a sound
knowledge of theory, of which perspective is the guide
and gateway, and without it nothing can be done well
in any kind of painting.

~ Leonardo da Vinci, Notebooks, ca. 151013

(o o]

2.1 Human-Level Artificial Intelligence

2.1.1 How to Define and Recognize Human-Level Al

As stated in §1.2, a Turing Test can facilitate recognizing human-
level Al if it is created, but it does not serve as a good definition of the
goal we are trying to achieve, for three reasons.

First, the Turing Test does not ensure that the system being tested
actually performs internal processing we would call intelligent, if we
knew what is happening inside the system. As a behaviorist test, it does
not exclude systems that mimic external behavior to a sufficient degree
that we might think they are as intelligent as humans, when they aren't.

For example, with modern technology we could envision creating a
system that contained a database of human-machine dialogs in previous
Turing Tests, with information about how well each machine response
in each dialog was judged in resembling human intelligence. Initial
responses in dialogs might be generated by using simple systems like
Eliza (Weizenbaum, 1966), or by using keywords to retrieve information
from Wikipedia, etc. The system might become more successful in
passing Turing Tests over longer periods of time, simply by analyzing
associations between previous responses and test results and giving
responses that fared best in previous tests, whenever possible.

A system might also be designed to analyze all the publicly available

13 From Leonardo Da Vinci’s Note-Books, Arranged and rendered into
English with Introductions by Edward McCurdy, M. A. (1906), New
York: Charles Scribner’s Sons.
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information about a real human being, including the person’s recorded
interviews, speeches, and writings, and then imitate the person in a
Turing Test, performing text processing without itself achieving human-
level AL Such a system might often be perceived as a real person in a
Turing Test (cf. Peterson, 2013).

In 2011, a sophisticated information retrieval approach enabled the
IBM Watson system to defeat human champions in the television quiz
show Jeopardy! (Ferrucci et al., 2010). A more limited technology using
neural nets enables a handheld computer to successfully play “twenty
questions” with a person (Burgener, 2006). Both of these are impressive,
potentially useful examples of Al information retrieval, but they only
demonstrate limited aspects of intelligence — they do not demonstrate
true understanding of natural language, nor do they demonstrate other
higher-level mentalities such as consciousness, higher-level reasoning
and learning, etc.

The second reason the Turing Test is not satisfactory as a definition
of human-level Al is that the test is subjective and presents a moving
target: A behavior one observer calls intelligent may not be called
intelligent by another observer, or even by the same observer at a
different time. To say that intelligence is something subjectively
recognized by intelligent observers in a Turing Test does not define
where we are going, nor does it suggest valid ways to go there.

A third reason the Turing Test is not satisfactory is that it conflates
human-level intelligence with human-identical intelligence, i.e.
intelligence indistinguishable from humans. This is important, for
instance, because in seeking to achieve human-level Al we need not
seek to replicate erroneous human reasoning. An example is a common
tendency of people to illogically chain negative defaults (statements of
the form Xs are typically not Ys). Vogel (1996) examines psychological
data regarding this tendency. Many other examples have been
identified by Johnson-Laird (1983 et seq.), as will be discussed in §2.3.6.

Noting others had criticized the Turing Test, Nilsson (2005)
discussed an alternative called the “employment test” to measure
achievement of human-level Al by the percentage of jobs humans
normally perform that can be performed by Al systems. Much earlier,
Nilsson (1983, 1984) had warned about the potential for technological
unemployment and discussed solutions to the problem that could be
beneficial for humanity; this topic will be considered in §8.1.

While the employment test is an objective alternative to the Turing

20



Human-Level Artificial Intelligence

Test, it too is a behaviorist test, with similar issues limiting its
usefulness as a definition of human-level Al: Though most ordinary jobs
require natural language understanding and commonsense reasoning,
as well as domain-specific intelligence, arguably most do not require all
the abilities of human-level intelligence to be discussed in the next
section. It might not suffice to define the scope of the employment test
as “all jobs” or “economically important jobs,” because some abilities of
human intelligence may be shown outside of employment, or may not
be recognized as economically important.

Some Al researchers may respond to such definitional problems by,
in effect, giving up and saying it is not possible to define human-level
intelligence, even by external, behaviorist tests. Yet as discussed in §1.1,
if we go back to the early papers of the field it is clear the original spirit
of research was to understand every ability of human intelligence well
enough to achieve it artificially. This suggests an intuition that it should
be possible to have an internal, design-oriented explanation and
definition of human-level intelligence.

The fact that we do not yet have an explanation or definition does
not mean it is impossible or not worth seeking, or that human
intelligence inherently must be defined by external, behaviorist tests. It
may just mean we don't understand it well enough yet. The history of
science is replete with things people were able to recognize, but for ages
were unable to explain or define very well. This did not stop scientists
from trying to understand. It should not stop us from trying to
understand human intelligence well enough to define and explain it
scientifically, and to achieve it artificially if possible.

Throughout the history of AI research, people have identified
various behaviors only people could then perform, and called the
behaviors “intelligent.” Yet when it was explained how machines could
perform the behaviors, a common reaction was to say they were not
intelligent after all. A pessimistic view is that people will always be
disappointed with any explanation of intelligent behavior. A more
optimistic and objective response is to suppose that previously
identified behaviors missed the mark in identifying essential qualities of
human intelligence. Perhaps if we focus more clearly on abilities of
human intelligence that remain to be explained, we will find abilities
people still consider intelligent, even if we can explain how a computer
could possess them. These may be internal, cognitive abilities, not just
external behaviors. This will be endeavored, beginning in the next
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section.

Completeness is a very useful concept in this matter: People can
always deny a system is intelligent, but one can always turn the table
around and ask, “Can you show me something that in principle the
system cannot do, which you or someone else can do?” Completeness
arguments are a form of scientific falsifiability. If one can find
something human intelligence can do that an Al system cannot, then a
claim that the Al system is “human-intelligence complete” is falsified.

At present it is easy to find things existing Al systems cannot do.
Perhaps someday that may not be the case. Perhaps someday a system
will exist with such a complete design that no one will be able to find
something that in principle it could not do, yet that humans can.
Perhaps just by studying and testing its design and operation,
reasonable people will arrive at the conclusion that it is human-
intelligence complete, in the same way we say programming languages
are Turing-complete because we cannot find any formal systems that
exceed their grasp.

To summarize, an analysis of design and operation to say a system is
human-intelligence complete would not be a behaviorist test. It would
be an analysis that supports saying a system achieves human-level
artificial intelligence, by showing its internal design and operation will
support abilities we would say demonstrate human-level intelligence,
even when we understand how these abilities are provided.

2.1.2  Unexplained Features of Human-Level Intelligence

Given the previous discussion, this section lists some of the
unexplained characteristics of human-level intelligence, concentrating
on essential attributes and abilities a computer would need to possess
human-level artificial intelligence.

2.1.2.1 Generality

A key feature of human intelligence is that it is apparently
unbounded and completely general. Human-level Al must have this
same quality. In principle there should be no limits to the fields of
knowledge the system could understand, at least so far as humans can
determine.

Having said this, it is an unresolved question whether human
intelligence is actually unbounded and completely general. Some
discussion related to this is given in Chapter 4. Here it is just noted that
while we may be optimistic that human intelligence is completely
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general, there are many limits to human understanding at present. For
instance:

¢ Feynman at times suggested quantum mechanics may be
inherently impossible for humans to understand, because
experimental results defy commonsense causality. Yet at least
people have been able to develop a mathematical theory for
quantum mechanics, which has been repeatably verified by
experiments, to great precision.

* General relativity and quantum theory are not yet unified.
Astronomers have evidence black holes exist, which implies
existence of gravitational singularities.

e At present scientists are having great difficulty explaining
multiple, independent observations that appear to prove 95% of
the universe consists of matter and energy we have not yet been
able to directly observe, causing galaxies and galaxy clusters to
rotate faster than expected, and causing the expansion of the
universe to accelerate (Gates, 2009).

* Beyond this, there are several other fundamental questions in
physics one could list that remain open and unresolved. And
there are many open, challenging questions in other areas of
science, including the great question of precisely how our brains
function to produce human intelligence.

There is no proof at this point that we cannot understand all the
phenomena of nature. And as Chapter 4 will discuss, it is an unsettled
question whether human-level artificial intelligence cannot also do so.
Hopefully human-level AI will help us in the quest. Research on Al
systems for discovery of scientific theories is presented in (Langley et al.,
1987) and in (Shrager and Langley, 1990).

2.1.2.2 Creativity and Originality

A key feature of human intelligence is the ability to create original
concepts. Human-level Al must have this same quality. The test of
originality should be whether the system can create (or discover, or
accomplish) something for itself it was not taught directly — more
strongly, in principle and ideally in actuality, can it create something no
one has created before, to our knowledge? This is Boden’s (2004)
distinction of (personal, psychological) P-creativity vs. (historical) H-
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creativity.
2.1.2.3 Natural Language Understanding

A key feature of human intelligence is the ability to understand
natural languages, such as English or Dutch. Understanding natural
language is still largely an unexplained skill of human-level intelligence.
Attempts to build systems that process natural language have made
substantial progress in many areas of syntax processing, but they still
founder on the problem of understanding natural language in a general
way.

2.1.2.4 Effectiveness, Robustness, Efficiency

The system must be effective in solving problems and behave
successfully within its environment. The system must be able to deal
with conflicting and uncertain information. The system must be able to
identify and correct logical errors. The system must be able to rapidly
acquire human-level knowledge, and deal with intractable domains and
large amounts of information, at least as well as people do.

These are very important requirements for eventually achieving
human-level artificial intelligence, but they will only be discussed in this
thesis relative to its primary focus, to show how higher-level mentalities
can in principle be supported by the TalaMind approach. Hence, this
thesis will be more concerned with effectiveness and robustness than
with efficiency and scalability, e.g. because we will need to discuss how
a system that reasons with a natural language mentalese can detect and
resolve contradictions. Efficiency and scalability issues will be noted in
discussing other topics, but work on them will be a major topic for
future research.

2.1.2.5 Self-Development and Higher-Level Learning

A variation of the requirement for originality is a requirement for
‘self-development’. People not only discover new things, they develop
new skills they were not taught by others, new ways of thinking, etc. A
human-level AI must have this same capability. More specifically,
human-level intelligence includes the following higher-level forms of
learning:

o Learning by induction, abduction, analogy, causal and

purposive reasoning.

* Learning by induction of new linguistic concepts.
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* Learning by creating explanations and testing
predictions, using causal and purposive reasoning.

* Learning about new domains by developing analogies
and metaphors with previously known domains.

o Learning by reflection and self-programming.

* Reasoning about thoughts and experience to develop
new methods for thinking and acting.

* Reasoning about ways to improve methods for thinking
and acting.

o Learning by invention of languages and representations.

We shall use the term higher-level learning to describe these
collectively and distinguish them from lower-level forms of learning
investigated in previous research on machine learning (viz. Russell &
Norvig, 2010).

2.1.2.6 Metacognition and Multi-Level Reasoning

Metacognition'* is “cognition about cognition,” cognitive processes
applied to cognitive processes. This does not say much, until we say
what we mean by cognition. There are both broad and narrow usages
for the term cognition in different branches of cognitive science and Al
Many authors distinguish cognition from perception and action.

However, Newell (1990, p.15) gave reasons why perception and
motor skills should be included in “unified theories of cognition.” If we
wish to consider metacognition as broadly as possible, then it makes
sense to start with a broad idea of cognition, including perception,
reasoning, learning, and acting, as well as other cognitive abilities
Newell identified, such as understanding natural language,
imagination, and consciousness.

Since cognitive processes may in general be applied to other
cognitive processes, we may consider several different forms of
metacognition, for example:

Reasoning about reasoning.
Reasoning about learning.

14 This section uses text I provided as input to a joint paper (Kralik ef
al., 2018), which summarizes several other approaches to metacognition.
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Learning how to learn.

Others have focused on different aspects of metacognition, such as
“knowing about knowing” or “knowing about memory.” Cognitive
abilities could be considered in longer metacognitive combinations, e.g.,
“imagining how to learn about perception” — the combination could be
instantiated to refer to a specific perception.

Such examples illustrate that natural language has syntax and
semantics which can support describing different forms of
metacognition. More importantly, a ‘natural language of thought” could
help an Al system perform metacognition by supporting inner speech
(§2.2.4) and by enabling the expression of specific thoughts about other
specific thoughts, specific thoughts about specific perceptions, etc.

While in principle one may argue that all forms of metacognition
could be supported by the TalaMind approach, attention in this thesis is
focused on inner speech and meta-reasoning (reasoning about
reasoning). For concision, the term multi-level reasoning will be used to
refer collectively to the reasoning capabilities of human-level
intelligence, including meta-reasoning, analogical reasoning, causal and
purposive reasoning, abduction, induction, and deduction. It remains a
challenge to include multi-level reasoning in a unified framework for
human-level artificial intelligence, integrated with other unexplained
features of intelligence.

2.1.2.7 Imagination

Imagination allows us to conceive things we do not know how to
accomplish, and to conceive what will happen in hypothetical
situations. To imagine effectively, we must know what we do not know,
and then consider ways to learn what we do not know or to accomplish
what we do not know how to do. A human-level Al must demonstrate
imagination.

2.1.2.8 Consciousness

To act intelligently, a system must have some degree of awareness
and understanding of its own existence, its situation and relation to the
world, and its perceptions, thoughts, and actions, both past and present,
as well as potentials for the future. Without such awareness, a system is
greatly handicapped in managing its interactions with the world, and in
managing its thoughts. So, at least some aspects of consciousness are
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necessary for a system to demonstrate human-level intelligence.

In stating this requirement, this thesis goes beyond what has been a
standard assumption of many Al researchers: Turing (1950) wrote that
the question of whether machines can think could be answered without
solving the mystery of consciousness. Russell and Norvig (2010) agreed
with Turing that we can create intelligent programs without trying to
make them be conscious.

On the other hand, both McCarthy (1995, 2002) and Minsky (2006)
have discussed how Al systems might emulate aspects of consciousness.
Section 2.3.4 will discuss research on “artificial consciousness”
conducted by Aleksander et al. (1992 et seq.) and others.

The perspective here is that it is both necessary and possible for a
system to demonstrate at least some aspects of consciousness, to achieve
human-level artificial intelligence. This thesis accepts the objection of Al
critics that a system that is not aware of what it is doing, and does not
have some awareness of itself, cannot be considered to have human-
level intelligence. Further, consciousness is intertwined with
understanding of natural language, and understanding in general, as
we shall see in §4.2.4’s discussion of Searle’s Chinese Room Argument.

2.1.2.9 Sociality, Emotions, Values

A human-level Al will need some level of social understanding to
interact with humans. It will need some understanding of cultural
conventions, etiquette, politeness, etc. It will need some understanding
of emotions humans feel, and it may even have some emotions of its
own, though we will need to be careful about this. One of the values of
human-level artificial intelligence is likely to be its objectivity and
freedom from being affected by some emotions. People would be very
concerned about interacting with emotional robots if robots could lose
control of their emotions and become emotionally unpredictable. We
probably would not want an Al system performing an important
function like air traffic control to be emotional. On the other hand, we
might want a robot taking care of infants, children, or hospital patients
to show compassion and affection (cf. McCarthy, 2004); we might want
a robot defending a family from violent home invaders to emulate
anger.

Within an Al system, emotions could help guide choices of goals, or
prioritization of goals. Apart from whether and how emotions may be
represented internally, a human-level Al would also need to understand
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how people express emotions in behaviors and linguistically, and how
its behaviors and linguistic expressions may affect people and their
emotions.

A human-level Al must have values that guide its efforts to
understand and act within its environment, and with human beings. It
must have some understanding of human values to interact successfully
with us. Thus, a human-level Al will need an understanding of ethical
values, ethical rules, and principles to interact with humans, and to
support “beneficial AI” — Al that is beneficial to humanity and to life in
general (Bringsjord, Arkoudas, & Bello, 2006; Tegmark, 2017). This topic
has become increasingly important as people have considered the
potential good and bad consequences Al might have for humanity.

Questions related to sociality, emotions, and values are even more
difficult and at a higher level than the issues that are the primary focus
of this thesis. Section 3.7.5 will give a few very preliminary remarks
about this topic, within the TalaMind approach. Section §8.2 discusses
future issues related to beneficial Al in more detail.

2.1.2.10 Visualization, Spatial-Temporal Reasoning

Very closely related to imagination (some might claim identical) is
the ability people have to visualize situations in three-dimensional
space and reason about how these situations might change, e.g. by
visualizing motions of objects. This ability is important for
understanding natural language expressions and metaphors, for
imagination, and for discovery of theories and inventions. So, this
ability is listed as a higher-level mentality of human-level intelligence,
though arguably it is foundational for cognition in general.
Visualization and spatial-temporal reasoning are topics for future
research and development in the TalaMind approach.

2.1.2.11 Curiosity, Self-Programming, Theory of Mind

To support higher-level learning, an intelligent system must have
another general trait, curiosity, which at the level of human intelligence
may be described as the ability to ask relevant questions and
understand relevant answers.

In English, questions involve the interrogatives who, what, where,
when, why, and how. The last two in particular merit further discussion:

A how question asks for a description of a method, which can be a
procedure or a process. To understand the answer, an intelligent system
needs to be able to represent procedures and processes, think about
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such representations, and ideally perform the procedures or processes
described by representations, if it has the necessary physical abilities
and resources. It is natural for an intelligent system to represent
procedures and processes at the linguistic level of its Al architecture.
With such representations it is a relatively direct step to support self-
programming within an Al system.

A why question asks for a description of either a cause or an intent.
Understanding the answer requires that an intelligent system be able to
support causal reasoning about physical events, and also be able to
support reasoning about people’s intentions for performing actions.
Reasoning about intentions involves supporting ‘Theory of Mind’, the
ability for an Al system to consider itself and other intelligent agents
(including people) as having minds with beliefs, desires, different
possible choices, etc.

2.1.2.12 Other Unexplained Features

In addition, there are other features of human-level intelligence one
could imagine eventually wishing to address in artificial intelligence,
yet which are even more difficult and remote from consideration at this
time.

One such feature is “freedom of will.” This is a difficult
philosophical topic, with debate about its nature and whether humans
truly possess it in a universe apparently predetermined by the laws of
physics. It will be a topic outside the scope of this thesis.

Beyond emotions, values, and freedom of will, unexplained features
include “virtues.” There may be no reason in principle why we would
not want an artificial intelligence to possess a virtue such as wisdom,
kindness, or courage, if the situation merited this. Yet what little
wisdom I possess indicates it would not be wise to discuss wisdom or
other virtues in this thesis. It is challenging enough to discuss higher-
level mentalities such as imagination and consciousness.

2.2 Natural Language

2.2.1 Does Thought Require Language?

This is an old and important question. For example, Wittgenstein
(1953) wrote that St. Augustine !5 described the language learning

15 Viz. Wittgenstein (1953, p.15e, remark #32), and Augustine’s
Confessions, Book I, Chapter VIII paragraph 13. Augustine also suggests
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process as if a child has an innate language preceding and enabling the
acquisition of a spoken, public language.

Wittgenstein’s own thoughts about the relationship between thought
and language may be difficult to discern, because he discusses the topic
throughout his Philosophical Investigations in a series of Socratic
questions to himself and the reader, often seeming to answer each
question with another question. Mulhall (2007) notes that Wittgenstein
is open to the idea that an individual may talk to himself but questions
whether an individual can have a private language to express inner
experiences that are inherently private, such as sensations of pain. It
does not appear that Wittgenstein considered the possible role of a
language of thought in a society of mind (§2.3.3.2), i.e. it appears he took
the unity of self as axiomatic.

Fodor (1975 et seq.) argued in favor of a language of thought
hypothesis, essentially in agreement with Augustine. This has been the
subject of lengthy philosophical arguments pro and con, e.g. concerning
issues such as whether an innate language is needed to learn an external
language and the degree to which an innate language must contain all
possible concepts, or constrains the concepts that can be learned and
expressed. Fodor (2008) accepted the principle of semantic
compositionality, an issue in earlier philosophical debates. Fodor (1975)
considered that a natural language like English might be used as a
language of thought, extending a child’s innate, preverbal language of
thought. He reasoned the innate language of thought must be as
powerful as any language learnable by humans, though extensions such
as English would enable concise expression of concepts not primitive in
the innate language. He also described the innate language of thought
as a meta-language, in which natural language extensions could be
defined.

Fodor’s writings do not yield the only possible language of thought
theory. Schneider (2011) considered arguments for and against Fodor’s
theory and presented an alternative theory for a computational
language of thought, which she developed to be compatible with
cognitive science and neuroscience.

humans have an innate gestural natural language, which supports
learning of spoken natural languages — an idea being explored in
modern work, e.g. by Sloman (2008). See also Tomasello (2003)
regarding the importance of gestures for acquiring natural language.
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Sloman (1979 et seq.) contended that the primary role of language is
the representation of information within an individual, and that its role
in communication is an evolutionary side effect, i.e. human-level
intelligence requires some innate, internal language for representation
of thoughts, prior to learning and using natural language. (Viewed this
way, the existence of an internal representation language can be seen as
a corollary of the Physical Symbol System Hypothesis.) Sloman
disagreed with Fodor about the necessary content of the innate
language, arguing that in principle a system can learn new concepts
(which may be represented by new words or symbols) that may not be
definable in terms of previously known concepts, words, or symbols.
Thus, he emphasized the extensibility of innate representation
languages.

Nirenburg and Wilks (2001) give a dialog on questions about
ontologies, representations, and languages. Wilks essentially argues that
representation languages (RLs) are natural languages (NLs) in some
respects. Nirenburg argues against this. Wilks suggests that the
predicates of any semantic representation language will either
inherently or eventually represent natural language words, and have
the ambiguity of NL words. Nirenburg contends that predicates can be
defined as distinct senses of NL words. This is consistent with Wilks’
previous theoretical work and with the view of Wittgenstein (and some
of his other followers, e.g. Masterman and Sparck Jones) that the
meaning of words depends on how they are used.

Berwick and Chomsky (2016) give a perspective on the evolution
and nature of a language of thought in humans and discuss how it
might be related to an innate “universal grammar” (Chomsky, 1966).
There are diverse theories for how children learn languages (e.g.
Vygotsky, 2012; Piaget, 1926) and for the evolution of language in our
species (e.g. Coulardeau & Eve, 2017).

It is tempting to say that if we restrict “language” to verbal or
written, serial human natural languages such as English, Chinese, etc.,
then thought is possible without language: People can solve some kinds
of problems using spatial reasoning and perception that are at least not
easy to express in English. Children can display intelligence and
thinking even if they haven’t yet learned a language such as English.
Pinker (1994) cites medical and psychological evidence showing that
thought and intelligence are not identical to the ability to understand
spoken, natural languages. Yet these considerations do not rule out the
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possibility that a child’s mind may use an innate language of thought to
support reasoning, before the child learns a spoken natural language.

Pinker also argues against the Sapir-Whorf hypothesis that language
determines and limits our thinking abilities, providing a variety of
arguments and evidence to refute a strict interpretation of Sapir-Whorf.
On the other hand, Boroditsky and Prinz (2008) discuss evidence that
statistical regularities in English, Russian, and other natural languages
have an important role in thought, suggesting people who speak
different languages may think in different ways. And Pinker (1994, p.72)
concluded that people do have a language of thought, or mentalese,
though he reasoned that it is different from a spoken, natural language.

There is an elegant argument that concepts must be expressed as
sentences in a mental language (viz. Jackendoff, 1992): Since natural
language sentences can describe an effectively unlimited number of
concepts, and the brain is finite, concepts must be represented internally
within the mind as structures within a combinatorial system, or
language.'® Jackendoff called these concepts “sentential concepts.” He
developed a theory of conceptual semantics to provide a linguistic
description of concepts corresponding to the semantics of natural
languages (Jackendoff, 1983 et seq.).

Pinker (2007, p.150) agrees human intelligence may rely on
conceptual semantics as an internal language of thought distinct from
spoken natural languages. Spoken natural languages may be seen as
ways of “serializing” mentalese concepts for communication between
people. The psychological experiments cited against the equivalence of
language and thought may only show cases where the mechanisms for
spoken language are impaired, while the mechanisms for mentalese
continue to function, or vice versa.

The expressive capabilities of natural languages should be matched
by expressive capabilities of mentalese, or else by Jackendoff's argument
the mentalese could not be used to represent the concepts expressed in
natural language. The ability to express arbitrarily large, recursively
structured sentences is plausibly just as important in a mentalese as it is
in English. The general-purpose ability to metaphorically weld concepts
together across arbitrary, multiple domains is plausibly just as
important in a mentalese as it is in English. Considering Jackendoff’s
argument, it is cognitively plausible that natural language

16 Others gave similar arguments, e.g. Chomsky (1975), Fodor (1975).
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representation and processing are in some form core functionalities of
human-level intelligence, needed for representation of thoughts.

This is not to say mentalese would have the same limitations as
spoken English, or any particular spoken natural language. In
mentalese, sentences could have more complex, non-sequential,
graphical structures not physically permitted in speech, and indeed this
thesis will use hierarchical list structures for representing English
syntax, to facilitate conceptual processing.

2.2.2  What Does Meaning Mean?

To address this question, this section briefly discusses Peirce and
Wittgenstein’s theories of understanding and meaning. Wilks et al.
(1996a) survey the history of thoughts about meaning. Nirenburg and
Raskin (2004) discuss the evolution of formal representations for
semantics and ontologies.

Besides understanding natural language, Peirce also considered
understanding of phenomena in general, e.g. developing and using
explanations of how (by what cause) and why (for what purpose)
something happens or is done. Peirce discussed language as a system of
signs, where a ‘sign’ is something that can stand for (represent)
something else.

Peirce described a general process by which signs are understood.
He called an initial sign (thing to be understood) a representamen. It is
typically something external in the environment. It may be a symbol
printed on paper (such as a Chinese symbol for “lamp” *T ); or smoke
perceived at a distance; or, to use Atkin’s (2010) example, a molehill in
one’s lawn; or a natural language utterance (such as “a log is in the
fireplace”); or anything else perceived in the environment.

The process of understanding the representamen leads the mind to
conclude that it stands for (or represents, or suggests the existence of)
something, called the object. The object of the Chinese symbol might be a
real lamp, the object of the smoke might be a fire that produces it, the
object suggested by the molehill could be a mole that created it, the
object of the natural language utterance could be a log in a fireplace, etc.

From Peirce’s perspective, the process of understanding a sign or
representamen involves developing an explanation for the meaning or
cause of the sign. Peirce used the term abduction to refer to reasoning
that develops explanations: If one observes something surprising, B,
then one considers what fact A might naturally cause or explain B, and
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one concludes it is reasonable to think A might be true (Peirce, CP
5.189).

So, understanding involves developing explanations for what is
observed. This applies both to understanding natural language and to
understanding in general for human intelligence (cf. Hobbs et al., 1993;
Bunt & Black, 2000).

According to Peirce, the mind does not go directly from the
representamen to the object in developing an explanation for what is
observed. The mind internally creates another sign, called the
interpretant, which it uses to refer to the object. Within the mind, the
interpretant stands for, or represents, the external object that is the
represented by the first sign, the representamen (Peirce, CP 2.228).17

We do not have to know precisely how this internal sign is expressed
in the brain to believe some pattern of physical information must exist
in the brain constituting an internal sign, providing a link between the
external representamen and the external object. Importantly, we do not
have to believe there is just one kind of physical information pattern
used to express all internal meanings — the brain could use a variety of
different physical information media and patterns for expressing
meanings.'$

Though Wittgenstein (1922) presented a purely logical description of
the relationship between language and reality in Tractatus Logico-
Philosophicus, he later restated much of his philosophy about language
in Philosophical Investigations. A central focus of Investigations was the
idea that the meaning of words depends on how they are used, and that
words in general do not have a single, precisely defined meaning. As an
example, Wittgenstein considered the word “game” and showed it has
many different, related meanings. What matters is that people are able
to use the word successfully in communication about many different
things. Wittgenstein introduced the concept of a “language game” as an
activity in which words are given meanings according to the roles that

17 Viz. Atkin’s (2010) discussion of how Peirce’s theory of signs
evolved throughout his lifetime. Vogt (2000 et seq.) has used computer
simulation of the Peircean triad in studies of symbol grounding and
language learning; also see Vogel & Woods (2006).

18 The original text of this paragraph used “represent” instead of
“constitute” and “express,” which are now used to clarify and avoid
over-using “represent.”
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words perform in interactions between people.!

It does not appear there is any fundamental contradiction between
Wittgenstein and Peirce. Rather, what Wittgenstein emphasized was
that an external representamen may stand for many different external
objects. From a Peircean perspective this implies that the representamen
may have many different internal signs, or interpretants, corresponding
to different external meanings in different situations. A Peircean
understanding process needs to support disambiguation (via abductive
inference) of different interpretants to understand what a usage of an
external sign means in a particular context.

These considerations can be summarized by saying that just as a
word like “game” can have many different meanings, the word
“meaning” itself can in principle have many different meanings. Hence
the TalaMind architecture is open to many different ways of
representing meanings at the three conceptual levels, for example:

o Linguistic Level: Linguistic Concept Structures

e Concepts represented as sentences in a language of
thought

* Semantic domains — Collections of sentences about a
topic

* Mental spaces, conceptual blends

® Scenarios for simulation of hypothetical contexts

* Grammatical constructions for translation and
disambiguation of linguistic meanings

* Executable concepts for representing and developing
complex behaviors

* Finite state automata for representing simple behavioral
systems

¢ Formal logic representations, e.g. predicate calculus or
conceptual graphs.

o Archetype Level: Cognitive Concept Structures

¥ Vogt (2005) showed that perceptually grounded language games
can lead to the emergence of compositional syntax in language
evolution. Also see Bachwerk & Vogel (2011) regarding language
evolution for coordination of tasks.
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e Idealized Cognitive Models (Lakoff, 1987)

e Conceptual Spaces as topological or metric structures
(e.g. convex regions) in multiple quality dimensions
(Géardenfors, 2000), with support for prototype effects,
similarity detection, etc.

e Radial Categories (Lakoff, 1987)
* Image Schemas (Johnson, 1987; Talmy, 2000)

* Semantic Frames (Fillmore, 1975 ef seq.) and Conceptual
Domains (Lakoff & Johnson, 1980; Langacker, 1987)

e Perceptual Symbols (Barsalou, 1993 et seq.)

o Associative Level: Associations and Data Analysis
e Neural networks (e.g. Hinton, 2006)

* Expressions or data structures induced via machine
learning algorithms (e.g. Valiant, 2013)

* Bayesian networks (e.g. Pearl, 1988 et seq.)

This is just an illustrative, not exhaustive, list of different ways to
represent meanings at different conceptual levels, which will be
discussed in greater detail as needed in the following chapters.

So, clearly there is not a consensus view in modern linguistics about
how word senses (meanings) exist and should be represented. Indeed,
much modern work on computational linguistics is corpus-based and
does not directly represent word meanings and definitions. A respected
lexicographer wrote a paper (Kilgarriff, 1997) saying he did not believe
in word senses. However, Kilgarriff (2007) clarified his position and
continued to support research on word sense disambiguation (WSD)
(Evans et al., 2016). A sub-community within computational linguistics
conducts research on WSD, reported in annual SemEval workshops.

A general view of cognitive semantics® is that word senses exist
with a radial, prototypical nature; words may develop new meanings
over time, and old meanings may be deprecated; words when used
often have meanings that are metaphorical or metonymical and may
involve mental spaces and conceptual blends?!; commonsense reasoning
and encyclopedic knowledge may be needed for disambiguation

20 See Evans & Green (2006).
21 See Fauconnier & Turner (2002).
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relative to situations in which words are used; the meanings of words
and sentences in general depend on the intentions of speakers (viz.
Kilgarriff, 2007).

Note that a representation of meaning may span levels and forms of
representation, e.g. a linguistic concept structure may reference a
cognitive concept structure. Also, some authors may disagree with this
placement at different levels. Thus, Fauconnier and Turner might argue
mental spaces and conceptual blends should be at the archetype level.
While conditional probabilities fit the associative level, Bayesian
networks may represent semantics of sentences at the linguistic level in
future research. Within the scope of this thesis, precisely how concepts
are represented in the archetype and associative levels is not crucial. A
Tala agent may not need to include all the different forms of concept
representation listed above, particularly at the archetype level, since
these overlap in representing concepts. Ways to unify representations
within or across the three levels may be a worthwhile topic for future
research.

2.2.3 Does Human-Level Al Require Embodiment?

Though the TalaMind approach focuses on the linguistic level of
conceptual processing, a Tala agent also includes environment
interaction systems with lower levels of conceptual processing, as
discussed in §1.5 and shown in Figure 1-1. Consequently a Tala agent
can in principle be embodied in a physical environment. So, to the
extent that understanding natural language requires embodiment, the
TalaMind approach supports this.

However, embodiment does not require that an intelligent system
must have physical capabilities exactly matching those of human
beings. This would imply that human-level intelligence requires the
human physical body and could only be possessed by people. Yet we
know people have human-level intelligence even when born without
senses like sight or hearing. Also, the unexplained features of human-
level intelligence, and in particular the higher-level mentalities, can be
described in terms that are essentially independent of the human body
(viz. §2.1.2).22 So, there should be no reason in principle why human-

22 Perhaps the only exception would be the first-person, subjective
experience of consciousness. Yet the possibility that other species might
possess human-level intelligence suggests that human-level intelligence
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level artificial intelligence must require human physical embodiment.

And we should note that embodiment for humans is not what
people normally think it to be: We do not have direct knowledge of
external reality, or even direct knowledge of our bodies. Instead, we
have an internal, projected reality (Jackendoff, 1983) constructed from our
perceptions of external reality and our perceptions of our bodies. This
can be appreciated by considering various illusions, both in our
perceptions of external reality and in our perceptions of our bodies (e.g.
virtual body illusions). Such illusions show that our perceptions are
internal constructs that indirectly represent external reality and our
bodies, sometimes incompletely, inaccurately, or paradoxically. It is
only because our perceptions generally track reality very closely that we
normally think we directly perceive reality.

The TalaMind approach accepts that a language of thought must be
embodied by reference to perceptions of an environment, yet that such
perceptions are generally incomplete and potentially inaccurate.
Understanding of concepts related to the environment, one’s body, or
physical systems in general can be achieved indirectly by representing
knowledge of physical systems and by reasoning within and about such
representations. Such reasoning may amount to a mental simulation. A
variety of different kinds of representations may be useful, e.g. image
schemas, finite state automata for representing behaviors of simple
systems, mental spaces, conceptual simulation, etc. These
representations may exist within a Tala agent’s projected reality or
elsewhere in its conceptual framework.

In these pages, this idea is called virtual embodiment. It allows an
intelligent system to understand and reason about physical reality and
to transcend the limitations of its physical body (or lack thereof) in
reasoning about the environment — perhaps in the same way a person
blind from birth may reason about sight, without direct experience or
memory of sight. The projected reality of a TalaMind conceptual
framework will be virtual and indirect, though it could in principle be

does not require the subjective experience of what it is like to have a
human body. Thus it’s clear other species (e.g. dolphins, whales, octopi,
elephants, ...) have substantial intelligence and yet have very different
physical senses and embodiment. And it's at least conceivable that
extraterrestrial intelligence may exist comparable or superior to
humans, yet with different physical bodies from humans.
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interfaced with physical reality (viz. §4.2.2.4).

To appreciate how limited our perceptions are of reality, consider
that the frequency of visible light ranges from about 400 to 800 trillion
cycles per second, while our nerve cells can only transmit about 1000
pulses per second. So, the reality we see visually is producing waves
that oscillate hundreds of billions of times faster than we can perceive.
The processing of information by 140 million neurons in each
hemisphere’s visual cortex, as well as many more neurons elsewhere,
enables a 100-billion- neuron human brain to perceive a visual projected
reality with great complexity. Yet what we perceive is only a miniscule
fraction of the complexity of events around us, happening at different
scales of space and time within external reality.

Also, what we perceive of reality is qualitatively different from what
actually exists. For example, we now know that what we perceive as
solid objects are in reality almost entirely empty space pervaded by
force fields and subatomic particles (Close, 2009). So, our human
projected reality is inaccurate at the lowest levels of physics, though it is
pragmatically very accurate at our day-to-day level of existence.

Our ability to have this knowledge, and to transcend our projected
reality, is an example of our own virtual embodiment: It is only by
applying human-level intelligence that after generations of thought and
experiment we have been able to find ways to virtually perceive aspects
of reality that are either too small or too fast for us to perceive in
projected reality (such as viruses, microbes, molecules, atoms,
subatomic particles, the speed of light, etc.) or too large or too slow for
our projected reality (such as Earth’s precession about its axis, evolution
of species, continental drift, the Sun’s lifecycle, the size and age of the
universe, etc.)

2.2.4  Natural Language, Metacognition, Inner Speech

Natural language plays an important role in ‘broad metacognition’
(§2.1.2.6) for human-level intelligence: Mental discourse (inner speech)
is perhaps the single best example of broad metacognition involving
perception and/or action, as well as reasoning, in human intelligence.

Inner speech is a feature people ascribe to their minds and a
psychological phenomenon that has been remarked upon for centuries:
We have the ability to mentally hear some of our thoughts expressed
internally in natural language. Baars and Gage (2007) write that inner
speech is not just for verbal rehearsal but provides an individual’'s
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“running commentary” on current issues, and is related to linguistic
and semantic long-term memory. Fernyhough (2016 et seq.) describes
functional MRI studies of inner speech, indicating it can involve parts of
the brain that are often used to understand other people's points of view
(Theory of Mind or “perspective taking”), and that inner speech may be
a conversation between multiple points of view. He suggests inner
speech may help our intelligence to be self-directing, flexible, and open-
ended.

In terms of broad metacognition, inner speech corresponds to a
perception of a silent speech action expressing a thought in natural
language. The thought that is expressed may be a phrase, statement, or
question about anything, in any domain: The thought may refer to a
perception of an external situation or event, or to an (actual or possible)
action in the external environment, or it may refer to another thought,
or to an emotion, or to oneself, or to a combination. So the thought
expressed by an inner speech act may itself indicate further broad
metacognition.

These considerations suggest inner speech is not an epiphenomenon,
but may play a role in human intelligence, and that natural language
may play a role in representing thoughts within the mind, beyond its
role for communicating thoughts between people. The fact that we hear
inner speech suggests some thoughts are represented internally in a
language of thought with the expressiveness of natural language.?

So, the fact that we hear inner speech supports the cognitive
plausibility of a natural language of thought within a computer model
of cognition. Fernyhough's studies also indicate the cognitive
plausibility of using a natural language of thought in a 'generalized
society of mind' architecture, as described by Doyle (1983) rather than
Minsky (1986) — viz. §2.3.3.2.

A computer model could (in effect) emulate perception of internal
speech acts by pattern-matching list-structures representing syntax of
expressions in a natural language of thought, the approach taken in this
thesis (cf. Jackson, 2018d). Internal speech acts and mental percepts of
them are represented as conceptual expressions in the TalaMind
prototype demonstration system (§6.3.6).

2 It has also been reported that deaf people may experience “inner
sign language” (Sacks, 1989).
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2.3 Relation of Thesis Approach to Previous Research

2.3.1 Formal, Logical Approaches

As noted in §1.1, one broad stream of research related to
understanding intelligence has focused on formal logical approaches to
representation and processing. If one accepts the Physical Symbol
System Hypothesis (§1.4.4), then one may argue these approaches have,
in principle, the ability to support intelligent systems, based on their
generality for representing symbolic systems. So this thesis accepts the
potential value of formal logic approaches and acknowledges that much
has been accomplished with them. Further, the TalaMind architecture is
open to use of formal, logical systems within it, including systems based
on predicate calculus, conceptual graphs, etc.

Thus, we note in particular the work of Hobbs et al. (1993 et seq.)
regarding interpretation as abduction in understanding natural language
using first-order predicate calculus; the work of Sowa (1984 et seq.) and
others on conceptual graph structures; and McCarthy’s papers on
artificial intelligence cited in the Bibliography, as research directions to
consider in future extensions of the TalaMind approach.

Hobbs (2004) advocates abduction (reasoning to determine best
explanations) to support commonsense, nonmonotonic reasoning for a
language of thought. Hobbs et al. (1993) discuss how abduction with
first-order logic can be used to solve a variety of problems in natural
language understanding, including reference resolution, ambiguity
resolution, metonymy resolution, and recognizing discourse structure.
Hobbs (2004) discusses how it can be used to recognize a speaker’s plan
or intentions.

Wilks et al. (1996b) note that abduction as a form of logical proof is
not sufficient for semantic interpretation: given a false premise, one can
prove anything, so abduction needs to filter out false hypotheses.
Abduction needs to be guided by meta-knowledge and meta-reasoning
to determine which hypotheses are most relevant. Together with Hobbs,
their remarks show the importance of viewing abduction as providing
explanations, rather than just logical proofs — a perspective consistent
with Peirce’s view of abduction and with Wittgenstein's view of
meaning as involving explanations (viz. §2.2.2).

Hobbs (2004) noted that to support commonsense reasoning a
language of thought should be able to represent conjunctions, inference,
contradictions, predications, and variable bindings, and these features
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would give the language of thought the expressive power of first-order
logic. He noted higher-order logics can be recast into first-order logic
using reification (Hobbs, 2003). In addition, he noted the logic for a
language of thought must be nonmonotonic: It must be possible for us
to change what we believe to be the truth value of a statement if we gain
more information.

However, Hobbs (2004) only claimed a language of thought must
have at least these features. While these features are necessary, it does
not appear they are sufficient for a language of thought.

Formal, logical approaches do not seem to easily provide the broad
range of representations we express with natural language, e.g. features
of natural language like self-reference, meta-expressions, metaphor,
mental spaces, conceptual blends, idioms, modal verbs, verb aspect and
tense, de dicto and de re expressions, metonymy, anaphora, mutual
knowledge, etc. — though in principle each of these features should be
possible to represent within formal, logical approaches, and many of
them have been investigated. For instance, Vogel (2011) discusses a
formal model of first-order belief revision to represent dynamic
semantics for metaphors and generic statements. Doyle (1980) described
a formal logic approach to reflection and deliberation, discussed further
in §2.3.5.

It has been an implicit assumption by Al scientists over the decades
that computers must use formal logic languages (or simpler symbolic
languages) for internal representation and processing of thoughts in Al
systems. It does not appear there is any valid theoretical reason why the
syntax and semantics of a natural language like English cannot be used
directly by an Al system as its language of thought, without translation
into formal languages, to help achieve human-level AI (§3.2.1, §3.3,
§4.2.5). There would be theoretical advantages for using a natural
language of thought in an Al system: Natural language already has
syntax and semantics that can support extensibility, self-reference,
meta-reasoning, metaphors, temporal references, analogical reasoning,
causal and purposive reasoning, and inference in any domain. Using a
natural language of thought would also make an Al system’s reasoning
more understandable to humans, supporting beneficial AI (§8.2.1).

2.3.2  Cognitive Approaches and Cognitive Linguistics

If formal, logical approaches are one broad stream of research
related to understanding intelligence and natural language semantics,
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then cognitive approaches may be considered as “everything else.” This
includes a wide variety of approaches by researchers in Artificial
Intelligence, Linguistics, Anthropology, Psychology, Neuroscience,
Philosophy, and Education.?*

In Al research, cognitive approaches include Newell’s unified
theories of cognition, Minsky’s society of mind architecture, Wilks’
work on preference semantics, Schank’s work on narrative case-based
dynamic memory structures, Sloman’s (1971 et seq.) research, Sowa’s
cognitive architecture, and work by many other researchers on cognitive
architectures and neural networks. Some of this research will be
discussed in more detail in §2.3.3.

Outside of Al, linguists, psychologists, philosophers, neuroscientists,
and researchers in other fields have developed approaches to
understanding intelligence and natural language. Many of these
researchers would not agree their approaches can be replicated by
computers: There is no general agreement among cognitive scientists
that human-level Al is possible. Perhaps the only general agreement
within cognitive science is that what happens within the human brain
cannot be explained simply by observing external behavior, i.e.
behaviorist psychology is not sufficient, and one must consider internal
information and processes in the brain, to understand the mind.

The TalaMind approach is consistent in many respects with
cognitive linguistics research, such as work on Embodied Construction
Grammar (ECG) by Feldman (2002 et seq.) and Bergen et al. (2004), or the
research of Steels and de Beule (2006) on Fluid Construction Grammar.
ECG provides a computable approach to construction grammar, with
embodiment represented via simulation of discrete events. ECG also has
grounding in a connectionist, neural theory of language. ECG is
relevant to this thesis by providing an existence proof that a
computational approach may be considered “embodied.” Fluid
Construction Grammar research has focused on demonstrating the
evolution and emergence of language, using constraint processing for
identification and matching in embodied systems, which is an
interesting topic for future research in the TalaMind approach, outside
the scope of this thesis.

One difference of the TalaMind approach appears to be that previous

2 Fields included within Cognitive Science, listed by the Cognitive
Science Society.
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approaches do not provide constructions for an internal language of
thought. Rather, they provide constructions for external natural
language parsing and generation, with internal representations of
semantics that in general have been somewhat restricted and apparently
not described as languages of thought.

Many researchers in cognitive linguistics have not supported a
language of thought hypothesis, but have developed multiple other
descriptions for the nature of internal conceptualizations. Some
cognitive linguists have expressly rejected a computational language of
thought hypothesis.?> Lakoff (1987, p.343) presented arguments against
the viability of an artificial mentalese. However, he left the door open
that Al researchers could develop representations that would mesh with
his approach to cognitive models.

Evans (2009) presents a cognitive linguistics account of meaning
construction in natural language called Lexical Concepts and Cognitive
Models (LCCM) theory, which appears to be consistent with the
TalaMind approach. He describes lexical concepts as being based on
construction grammar, so that by extension it appears his semantic
structures can include multi-word expressions, e.g. sentences. He
describes LCCM cognitive models as being similar to Barsalou’s (1999)
description of simulators and perceptual symbols (§4.2.2.4), and as
encompassing frames and simulations. Thus, Evans’ lexical concepts
correspond to the linguistic level of Figure 1-1, and his cognitive models
for conceptual structure correspond to elements of the archetype level
(although not identical to Lakoff’s idealized cognitive models).

LCCM theory is consistent with the TalaMind approach in using
conceptual structures based on natural language at the linguistic level,
interacting with an archetype level. LCCM theory is different from the
TalaMind approach in several respects. For instance, LCCM is not a
theory of how to achieve human-level AL it does not describe a
conceptual framework at the linguistic level;, it does not include
Hypotheses I and III of this thesis; and it does not discuss support of
higher-level mentalities.

2 Thus the terms mentalese and language of thought are not mentioned
in either of the comprehensive texts on cognitive linguistics by Evans &
Green (2006) or by Croft & Cruse (2004).
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2.3.3  Approaches to Human-Level Artificial Intelligence

This section gives some further discussion of research toward
human-level Al, augmenting the brief discussion in §§1.1 and 1.2.

2.3.3.1 Sloman

Sloman (1978) published a high-level description of an architecture
for an intelligent system that would be able to work flexibly and
creatively in multiple domains. He wrote that to achieve artificial
intelligence comparable to an adult human, it would be necessary to
develop a baby machine that could learn through interaction with
others. In general, Sloman’s (1978) discussion and some of his
subsequent work appear to have been in a similar direction to this
thesis, though with different focus. Sloman’s (2008) discussion of
“generalized languages” for representation is similar though not
identical to the TalaMind natural language mentalese hypothesis.

2.3.3.2 Minsky

As noted in §1.5, the TalaMind hypotheses do not require a
generalized “society of mind” architecture, but it is consistent with the
hypotheses and natural to implement a society of mind at the linguistic
level. Since Minsky (1986) described the society of mind as a theory of
human-level intelligence, this section provides a brief discussion of his
ideas and of similarities and contrasts with the TalaMind approach.

Singh (2003) gave an overview of the history and details of Minsky’s
theory, noting that Minsky and Papert began work on this idea in the
early 1970s. Minsky’s description and choice of the term society of mind
were evocative, inspiring research on cognitive architectures more
broadly than he described, to the point that the idea may be considered
a paradigm for research. Thus, the term may be used in either of two
senses:

1. The society of mind as proposed by Minsky, including a specific
set of methods for organizing mental agents and communicating
information, i.e. K-lines, connection lines, nomes, nemes, frames,
frame-arrays, transframes, etc.

2. A society of mind as a multi-agent system, open to methods for
organizing agents and communication between agents, other
than the methods specified by Minsky, e.g. including languages
of thought.
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Other sections of this thesis will use the term society of mind with the
second, generalized sense, though not precluding future research on use
of Minsky’s proposed methods for organization and communication
within TalaMind architectures.

To give a few examples of the second perspective, Doyle (1983)
described a mathematical framework for specifying the structure of
societies of mind having alternative languages of thought.? More
recently, Wright (2000) discussed the need for an economy of mind in
an adaptive, multi-agent society of mind. Bosse and Treur (2006) gave a
formal logic discussion of the extent to which collective processes in a
multi-agent society can be interpreted as single-agent processes.
Shoham and Leyton-Brown (2008) provide an extensive text on multi-
agent systems, including a chapter on communication between agents.
Sowa (2011) describes communication of conceptual graphs between
heterogeneous agents in a framework inspired by Minsky’s society of
mind.

Minsky described a society of mind as an organization of diverse
processes and representations, rejecting the idea that there is a single,
uniform process or representation that can achieve human-level
intelligence. This thesis is compatible with Minsky’s tenet — the
TalaMind architecture is envisioned to enable integration of diverse
processes and representations.

However, issues related to a language of thought are an area of
difference between the TalaMind approach and Minsky’s theory. He
considered that because agents would be simple and diverse, in general
they would not be able to understand a common language. Agents
would need different representations and languages, which would tend
to be very specialized and limited.

Thus, Minsky did not describe agents in a society of mind sharing an
interlingua. He described other, lower-level ways for agents to partially
communicate, which he called K-lines and connection lines. To
exchange more complex descriptions, Minsky proposed an “inverse-
grammar-tactic’ mechanism for communication by reconstructing
frame representations (viz. Singh, 2003).

In contrast, the TalaMind approach enables agents in a society of

% As example languages, Doyle discussed logic (FOL — Weyhrauch,
1980), list structures and rational algebraic functions (CONLAN -
Sussman & Steele, 1980), and nodes and links (NETL — Fahlman, 1979).
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mind to share a language of thought based on the syntax of a natural
language.” Two agents can communicate to the extent that they can
process concepts using common words, and can share pointers to
referents and senses of the words. Pattern-matching can be used to
enable an agent to recognize concepts it can process, that were created
by other agents. This will be discussed and illustrated further in
Chapters 3, 5, and 6. An agent in a society of mind may reason directly
with concepts expressed in the Tala mentalese, or it may translate to and
from other representations and languages, if needed.

Chapter 3 will also discuss how the Tala mentalese can support
representing and reasoning with underspecification in natural language.
This is compatible with Minsky’s (1986, p.207) discussion of ambiguity
in thought within a society of mind.

Although Minsky attributed the ambiguity of thought to the act of
expression being a process that simplifies descriptions of mental states,
the TalaMind approach allows individual thoughts to be ambiguous,
just as natural language sentences can be. For instance, in the TalaMind
approach the agents in a society of mind could communicate and
process the thought “In most countries most politicians can fool most people
on almost every issue most of the time”28 (Hobbs, 1983) without needing to
consider all the sentence’s different logical interpretations, and without
needing to consider nonsensical interpretations (viz. §3.6.3.7).

Per §1.6, a society of mind will only be developed in this thesis to a
limited extent, as needed to illustrate the thesis approach.

2.3.3.3 McCarthy

Two papers by McCarthy (2007, 2008) considered the general
problem of how to achieve human-level artificial intelligence. He said to
achieve human-level Al we would need to create systems that can be
successful in situations requiring commonsense about information. He
said these are situations in which known facts are incomplete; there are

7 This corresponds somewhat to the idea of a “network of question-
answerers” described in Jackson (1974, p.328) which suggested a form
of emergence for such systems, in the potential for a network of
question-answerers to answer a question that could not be answered by
a single agent in the system.

2 Reprinted with permission of Jerry Hobbs and the Association for
Computational Linguistics.
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no a priori limits on what facts are relevant; it cannot be decided in
advance what phenomena are to be considered; concepts and theories
are approximate and cannot be fully defined; nonmonotonic reasoning
is needed to reach conclusions; and introspection may be needed about
the system’s mental state.

Though McCarthy supported extending mathematical logic
formalisms to operate in such commonsense situations, he allowed that
some other approach might work. McCarthy (2007) listed several
problems that would confront any approach to human-level Al related
to representation of knowledge about the world, nonmonotonic
reasoning, reasoning about as well as within contexts, introspection, etc.

Humans have historically used natural language to describe and
help solve these problems, and natural language already possesses
syntax to represent their semantics. Hence these problems may be
plausibly represented and solved within a human-level Al using a
mentalese with the expressive scope of natural language, as proposed in
this thesis.

McCarthy (2008) discussed the design of a baby machine approach
to human-level Al In general, his discussion is consistent with the
approach of this thesis, which would agree the system needs to have an
initial set of concepts corresponding to innate knowledge about the
world. He lists several kinds of innate conceptual knowledge the system
should have, which in general could be supported in the TalaMind
architecture. It appears the major difference between McCarthy’s
perspective and this thesis is regarding the nature of the language of
thought that a well-designed baby machine should have. McCarthy
wrote that a robot’s language of thought should be based on logic, and
not on natural language. Responses to his objections are given in §4.2.5.

2.3.3.4 Reverse-Engineering the Brain

Markram (2006) describes the Blue Brain project, for which the long-
term goal is to perform detailed, biologically accurate computer
simulations of a human brain’s neural processing. This approach,
reverse-engineering the brain, appears to have the potential to achieve
human-level Al. Arguably, the physical processes used by the brain to
achieve intelligence could be simulated by computers — especially since,
if needed, emerging technologies for computation could be applied, e.g.
nanotechnology, quantum computation, etc. However, it is beyond the
scope of this thesis to discuss the technical feasibility of this approach.
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At minimum the Blue Brain project, and related research, should yield
insights into human brain function and could also help support other
research toward human-level Al. For example, such research may
identify computational neural modules that could be simulated in the
associative level of a Tala agent, perhaps supporting Barsalou’s
perceptual symbols (§4.2.2.4).

2.3.3.5 Cognitive Architectures and AGI

Several authors have conducted research into cognitive architectures
and/or artificial general intelligence (AGI). This includes Newell and
Simon’s research (discussed in §2.3.3.6), and research discussed in
Albus and Meystel (2001), Anderson and Lebiere (1998), Cassimatis
(2002 et seq.), Doyle (1980 et seq.), Forbus and Hinrichs (2006), Goertzel
and Pennachin (2007), Laird, Lebiere and Rosenbloom (2017), Langley,
Choi and Rogers (2009), Lenat (1995), Pollock (1990 ef seq.), Schlenoff et
al. (2006), Schmidhuber (1987 et seq.), Sowa (2011), Swartout et al. (2006),
and Wang and Goertzel (2012).

Kotseruba and Tsotsos (2018) give an overview of 84 cognitive
architectures developed over 40 years of research, of which 49
architectures are presently being actively developed. They report that
over 900 practical projects were implemented using these architectures.

In general, these efforts do not discuss research in the same direction
as the TalaMind approach, i.e. an intelligence kernel using a language of
thought based on natural language syntax and semantics.

Yudkowsky (2007) advocates levels of organization in “deliberative
general intelligence” (DGI) as a direction for future research in AGI. The
DGI paper proposes a research direction somewhat similar to the
TalaMind approach, although the DGI and TalaMind approaches were
developed independently. The DGI paper does not present a prototype
design or demonstration of its proposed approach. It includes a
proposal for “Seed Al” that is similar to the TalaMind intelligence
kernel hypothesis (§§1.4.1, 2.3.5). DGI’s five levels of organization map
into the three levels of conceptual processing discussed in §1.5. In
particular, the archetype level corresponds to DGI’s layer for concepts,
and the linguistic level includes DGI's layers for thoughts and
deliberation. Yudkowsky’s description of the thoughts layer (2007,
p-407) is similar to the TalaMind natural language mentalese hypothesis
(§81.42) and to Evans’ LCCM theory (§2.3.2). However, it appears
Yudkowsky (2007, pp.458-461) does not expect that DGI thoughts will
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(at least initially) be represented as sentences in a natural language
mentalese, nor does Yudkowsky propose representing thoughts in
structures corresponding to parse-trees of natural language expressions,
as this thesis discusses in §§3.3, 3.4, 3.5. Also, DGI focuses on mental
images for reasoning. To contrast, this thesis focuses on linguistic
reasoning, with spatial reasoning and visualization left as topics for
future research.

To the extent that DGI envisions internal use of concept structures
different from the Tala natural language mentalese, its proposed
research direction appears similar to that investigated by Sloman
(§2.3.3.1), or to that implemented independently by Sowa’s (2011)
VivoMind Cognitive Architecture (VCA). Sowa describes VCA as using
conceptual graphs for communication within a society of mind
architecture (§2.3.3.2), and as a scalable, efficient system supporting
applications that include natural language processing.

2.3.3.6 Newell and Simon’s Cognitive Research

In the decades after their groundbreaking research on artificial
intelligence in the 1950s, Newell and Simon continued their research
and wrote a series of papers about cognitive systems. Simon wrote
several books, including one with Newell in 1972 on Human Problem
Solving. Newell wrote a book in 1990 on Unified Theories of Cognition.
Their 1976 Turing Lecture proposed the Physical Symbol System
Hypothesis (viz. §1.4.4).

2.3.3.6.1 Unified Theories of Cognition

Newell (1990) advocated that scientists develop a series of
progressively more complete unified theories of cognition. His initial
list of areas to eventually be covered by a unified theory included
problem solving, perception, language, emotion, imagination, learning,
and self-awareness. He noted the list was incomplete and could be
expected to grow. He also made clear that unified theories should be
simulated by working computer systems. Thus, the broad scope of a
unified theory corresponds to achieving human-level artificial
intelligence. His advocacy for unified theories of cognition was in itself
an important step toward human-level Al

Newell (1990) intentionally did not focus on language; he gave
reasons for discounting Minsky’s (1986) ‘society of mind’ theory; and he
noted that Soar did not address consciousness. In contrast, this thesis
focuses on support for a natural language of thought, for the axioms of
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artificial consciousness proposed by Aleksander and Morton (2007), and
for generalized societies of mind (Doyle, 1983). However, there do not
appear to be any essential conflicts between Newell’s (1990) advocacy of
unified theories of cognition and the research direction of this thesis.

2.3.3.6.2 The ‘Knowledge Level’ and ‘Intelligence Level’

Newell (1982) proposed the existence of a “knowledge level” for
computer systems, above the level of symbolic processing. Jackson
(2018¢) discussed theoretical and practical faults of Newell’s proposed
knowledge level: It is unreal, unchangeable, potentially infinite, and
unnecessary.

Newell said an agent at the knowledge level is composed of a set of
actions, a set of goals, and a body. Knowledge is a “medium” the agent
processes. He said there are no laws of composition for these
components, and there is an absence of structure at the knowledge level.

Newell did not define “knowledge” for a system at the knowledge
level. He said it is whatever an agent uses to choose actions to achieve
goals, according to a “principle of rationality.” This principle was given
a circular definition, referring to the use of knowledge that an action
will achieve a goal.

Newell also said an agent at the knowledge level may have infinite
knowledge, because an agent knows all the consequences of everything
it knows. He said real systems can only approximate the knowledge
level. Given these issues, he said intelligent systems cannot be defined
entirely in terms of the knowledge level, and that representations need
to exist at the symbolic processing level.

Newell (1990) continued to advocate his 1982 definition of the
knowledge level. He defined “perfect” intelligence as an agent using all
its knowledge to achieve goals, and said thermostats have perfect
intelligence, while humans have imperfect intelligence.?

All these problems can be avoided by taking a different theoretical
approach. To begin, we observe that Newell (1982) gave an insightful

2 Newell’s (1990) discussion of “bands of action” was different from
the theoretical idea of a potentially infinite knowledge level: The bands
of action are based on real processing in finite human brains. Likewise,
his description of unified theories of cognition was different from the
unrealistic, potentially infinite knowledge level. Confusingly, he
intermixed discussion of the knowledge level with these other ideas.
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discussion of computer system levels, including the electronic device level,
circuit level, logic level, register-transfer level, and symbolic program
level. 3 Each computer system level is a functional specialization
(subset) of the systems that can be described at the next-lower level.
That is, each level provides functionality that not all systems at the next-
lower level provide. For example, circuits at the logic level perform
logical operations, a functionality that not all systems at the circuit level
perform.

According to Newell and Simon’s (1976) Physical Symbol System
Hypothesis, a subset of the systems at the symbolic program level can
achieve human-level artificial intelligence. Jackson (2018c) observed that
this subset will be a functional specialization of systems at the symbolic
program level, and therefore it will be a computer system level above
the symbolic program level. Human-level Al will exist at this level, if
and when it is achieved.

It is appropriate to call this future, new computer system level the
intelligence level, or more fully, the human intelligence level. Systems at the
intelligence level will be real, finite, changeable, useful systems.3! They
will support Newell’s unified theories of cognition, discussed in the
previous section.

However, an Al skeptic might say the intelligence level is just as
unreal as Newell’s knowledge level, arguing that human-level Al is
impossible or just an undefinable, fictional idea. To address Al skeptics,
this thesis gives a proposal for how to define human-level intelligence
and how to design and implement systems having human-level
artificial intelligence. In describing the intelligence level and claiming it
will exist, Jackson (2018c) also described the TalaMind approach.3
Arguments of Al skeptics are further discussed in §4.1 and §4.2.4. A
significant minority of Al experts may be skeptics about human-level Al

% Newell remarked that the knowledge level broke many of the rules
he identified for these real, physical computer system levels.

31 Although human-level Als will be finite systems, they will be able
to reason about infinity (using finite concepts), the same way that
human mathematicians do (cf. §4.1.2.3).

32 The human brain is an existence proof that systems can exist at the
intelligence level, if the brain can in theory be completely simulated by a
large enough digital computer. However, an Al skeptic might argue
that the brain cannot be simulated by a computer.
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(viz. §8.2.18).

Jackson (2018c) noted that systems at the intelligence level will be
able to create, read, and debug computer programs, and to understand
how computer programs are supposed to operate for human purposes
(in part by reading comments in programs). This could eventually have
a real consequence, causing unemployment for human computer
programmers. Technological unemployment is discussed in §8.1.

2.3.3.7 Other Influences for Thesis Approach

The approach proposed in this thesis has been influenced by several
previous research efforts related to the analysis of human-level
intelligence, including Géardenfors’ (2000) discussion of conceptual
spaces; Gelernter's (1994) discussion of focus of attention and the
“cognitive pulse”; Hofstadter’s (1995) discussions of fluid concepts and
analogies; and Mandler’s (1988 et seq.) study of how babies develop an
extensible representation system with conceptual primitives.

2.3.4  Approaches to Artificial Consciousness

Blackmore (2011, pp.286-301) gives an overview of research on
artificial consciousness. Much of this research has derived from work in
robotics and has focused on the associative level of conceptual
processing (viz. Figure 1-1).

Aleksander (1996) writes that in 1991 he began investigating artificial
consciousness based on neural nets. He and Morton (2007) propose five
“axioms of being conscious,” using introspective statements:

1. Ifeel asif I am at the focus of an out there world.
I can recall and imagine experiences of feeling in an out there
world.

3. My experiences in 2 are dictated by attention, and attention is
involved in recall.

4. I canimagine several ways of acting in the future.

5. I can evaluate emotionally ways of acting into the future in
order to act in some purposive way.*

Aleksander uses first-person statements to address Chalmers’ (1995)
“Hard Problem” of explaining the subjective experience of

3 Reprinted with permission of Igor Aleksander, Helen Morton, and
Imprint Academic. Earlier versions of these axioms were given by
Aleksander & Dunmall (2003) and Aleksander (2005).
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consciousness (cf. Aleksander, 2005, pp.156-158).

This approach supports at least one answer to the Hard Problem,
namely that if the subjective, first-person aspect of consciousness is an
illusion, then in principle machines could also have this illusion (viz.
Blackmore 2011, p.285). Of course, we are not interested in machines
simply giving canned responses saying they believe they are conscious;
we want to be able to point to the internal design of the machine and the
processing within it that supports a machine’s having perceptions of
itself, developing beliefs, and acting as if it believes it is conscious (viz.
§2.1.2.8). Section 4.2.7 will discuss the relationship of the Hard Problem
to the TalaMind approach.

Aleksander and Morton’s five axioms may be taken as theoretical
requirements for the TalaMind architecture to demonstrate aspects of
consciousness, discussed further in §§3.7.6 and 4.2.7, though this thesis
intentionally omits discussion of emotion in relation to consciousness
and does not focus on attention in recall; these are topics for future
research. In addition, reflective observation is included in the list of
theoretical requirements for TalaMind to demonstrate consciousness,
which seems to be implicit in Aleksander’s discussions.

Aleksander and Morton (2007) discuss “depictive architectures” to
satisfy these axioms, focusing on the kernel architecture proposed by
Aleksander (2005). They define a depiction as “a state in a system S that
represents as accurately as required by the purposes of S the world,
from a virtual point of view within S” and describe kernel architectures
in terms of neural state machines. This is analogous to the TalaMind
approach, which §3.7.6 discusses at the linguistic concept level, while
depictive architectures are discussed at the associative concept level
(viz. Figure 1-1).

Aleksander (1996, 2001) accepts Searle’s arguments against symbolic
Al and does not appear to allow his approach to go beyond the
associative level of concept processing. This thesis leverages
Géardenfors” (1995) discussion of three levels of inductive inference
(8§1.5) and does not accept Searle’s arguments, in agreement with
Chalmers as well as with many Al researchers (viz. §4.2.4).

Sun (1997 et seq.) describes research on learning and artificial
consciousness, representing explicit knowledge via symbolic rules and
implicit knowledge via neural networks. Symbolic rules can be
extracted from neural networks and selected via hypothesis testing, to
support learning. He gives experimental results on performance of the

54



Relation of Thesis Approach to Previous Research

approach in learning tasks such as the Tower of Hanoi, artificial
grammar learning, process control, and minefield navigation.

Chella et al. (1997 et seq.) discuss the integration of three levels of
concept representation to support artificial consciousness, including
symbolic concepts expressed as semantic networks and cognitive
concepts represented via conceptual spaces (Gardenfors, 2000), with
expectations at the linguistic level helping to guide recognition at lower
levels. This is consistent with the TalaMind approach.

Rosenthal’s (2005) theory of consciousness in terms of “higher-order
thoughts” is synergistic with the TalaMind approach, though he
discounts the value of using natural language as a representation for
internal thoughts, claiming human thoughts usually do not need to
address fine distinctions in meaning that are intrinsic in natural
language. The use of natural language syntax in the Tala conceptual
language greatly facilitates expression of higher-order thoughts, since it
allows Tala conceptual sentences to include other sentences, nested to
an arbitrary degree. The use of the reserved variable ?self in TalaMind
appears equivalent to Rosenthal’s discussion of the need for a first-
person indexical in higher-order thoughts. Investigation of Rosenthal’s
theory within the TalaMind approach would be an interesting topic for
future work.

2.3.5 Approaches to Reflection and Self-Programming

Another perspective on artificial intelligence, related to artificial
consciousness, is given by research on the topics of reflective and self-
programming systems. It is an old, but as yet unrealized and still largely
unexplored idea that computer programs should be able to extend and
modify themselves, to achieve human-level Al

In this thesis, self-programming is proposed by the intelligence
kernel hypothesis (§1.4.1), which is a variant of Newell and Simon’s
(1976) Physical Symbol System Hypothesis (§1.4.4). Other authors have
proposed similar ideas: Schmidhuber (1987 et seq.) investigated self-
referential, self-improving systems. Nilsson (2005) % proposed that
human-level Al may need to be developed as a “core” system able to
extend itself when immersed in an appropriate environment, and wrote

3 Nilsson cited a private communication from Ben Wegbreit, ca.
1998, and the 1999 version of McCarthy’s The well-designed child, cited
here as McCarthy (2008).
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that similar approaches were suggested by Wegbreit, Brooks (1997),
McCarthy, and Hawkins and Blakeslee (2004). Yudkowsky (2007)
proposed creating “seed Al” systems that could understand and
improve themselves recursively. In 2011, papers by Goertzel, Hall,
Leijnen, Pissanetzky, Skaba, and Wang were presented at a workshop
on self-programming in AGI systems. Thorisson (2012) discusses a
“constructivist AI” approach toward developing self-organizing
architectures and self-generated code. Coincidentally, the prototype
TalaMind demonstration system illustrates some of the architectural
principles Thorisson advocates (e.g. temporal grounding, self-modeling,
and pan-architectural pattern-matching), at least to a limited degree
(885.4.14,5.4.9,5.5.3).

Doyle (1980) discussed how a system could defeasibly perform
causal and purposive reasoning to reflectively modify its actions and
reasoning. He described a conceptual language based on a variant of
predicate calculus, in which theories could refer to theories as objects,
and in which some concepts could be interpreted as programs. Doyle
noted that the use of predicate calculus was not essential, but did not
discuss a language of thought based on the syntax of a natural
language. His thesis did not include a prototype demonstration, though
elements of the approach were partially implemented by himself and
others. He expected the approach would require much larger computers
than those available in 1980. The TalaMind approach is compatible with
Doyle’s thesis. The following chapters explore similar ideas to a limited
extent, as a subset of the TalaMind architecture.

Smith (1982) studied “how a computational system can be
constructed to reason effectively and consequentially about its own
inference processes.”? Though he focused on a limited aspect of this
problem (procedural reflection, allowing programs to access and
manipulate descriptions of their operations and structures), he gave
remarks relevant to human-level Al He stated the following “Knowledge
Representation Hypothesis” as descriptive of most Al research at the time:

“Any mechanically embodied intelligent process will be
comprised of structural ingredients that a) we as external
observers naturally take to represent a propositional account of

% Quotations in this section from Smith (1982) are used with
permission of Brian C. Smith and MIT Press.
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the knowledge that the overall process exhibits, and b)
independent of such external semantical attribution, play a
formal but causal and essential role in engendering the behavior
that manifests that knowledge.”

This may be considered as a variant of PSSH (§1.4.4), and describes
much Al research up to the present. It is consistent with Hypothesis I of
this thesis, to the extent that concepts are considered as symbolic
structures (expressions) that represent knowledge. Though in the
TalaMind approach, conceptual structures may also represent
questions, hypotheses, procedures, etc., each of these may be considered
a form of knowledge. Thus, a question may be considered as a
statement that something is not known.

Smith provided the following “Reflection Hypothesis” as a statement
guiding his research into self-reflective systems:

“In as much as a computational process can be constructed to
reason about an external world in virtue of comprising an
ingredient process (interpreter) formally manipulating
representations of that world, so too a computational process
could be made to reason about itself in virtue of comprising an
ingredient process (interpreter) manipulating representations of
its own operations and structures.”

This is also consistent with PSSH, and with Hypothesis I of this thesis.
Thus, Hypothesis I may be seen as combining Smith’s two hypotheses
into a single statement.

Smith gave general remarks about reflection and representation,
which are consistent with the TalaMind approach and architecture.
More specifically, he wrote:

“The successful development of a general reflective calculus
based on the knowledge representation hypothesis will depend
on the prior solution of three problems:

1. The provision of a computationally tractable and
epistemologically adequate descriptive language,

2. The formulation of a unified theory of computation and
representation, and

3. The demonstration of how a computational system can
reason effectively and consequentially about its own
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inference processes.”

Smith did not pursue the first problem, “in part because it is so ill-
constrained.” This thesis adopts Hypothesis II, within the TalaMind
architecture, to investigate the first problem.

Regarding the second problem, Smith wrote that “every
representation system proposed to date exemplifies what we may call a
dual-calculus approach: a procedural calculus...is conjoined with a
declarative formalism (an encoding of predicate logic, frames, etc.).” He
suggested “this dual-calculus style is unnecessary and indicative of
serious shortcomings in our conception of the representational
endeavor.” However, he wrote “this issue too will be largely ignored”
in his thesis.

In developing Hypotheses I and II within the TalaMind architecture,
this thesis investigates a unified approach to the second problem: The
Tala conceptual language provides a representation for both declarative
and procedural knowledge, based on the syntax of a natural language.

Smith’s thesis focused on the third problem he identified, discussing
a limited aspect of this problem. He translated the higher-level problem
of how a system could reason about its inference processes into a lower-
level problem, i.e. how a programming language could support
procedural reflection, allowing programs to access and manipulate
descriptions of their operations and control structures, dynamically
affecting their interpretation at runtime. This implicitly connects
procedural reflection with a form of self-programming. Smith showed
how procedural reflection could be incorporated into a variant of Lisp,
to support continuations with a variable number of arguments, improve
support of macros, etc. Coven (1991) gave further discussion of
reflection within functional programming languages, toward support of
systems that could in principle reflect on their own reasoning processes
and learning algorithms.

Effective reflection and self-programming in human-level Al require
computers to have what Smith called “semantic originality” (in other
literature called “original intentionality”), i.e. to be able to attribute
meaning to symbols and processes independently of human
observation. Smith (1982) noted that computers could not yet attribute
meaning to what they do, but suggested the possibility they could do so
in principle. Haugeland (1985) discussed the topic and its philosophical
history at some length, and left open the possibility that computers
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could in principle attribute meaning. Dretske (1985) discussed
requirements for computers to ascribe meaning. Dennett (1987) argued
that humans have no greater semantic originality than computers do in
principle, because we are biomolecular machines constructed by
evolution. Searle (1992) argued that computers cannot in principle
attribute semantics — Chalmers (1996) refutes Searle’s argument. Section
3.7.2.2 discusses how Tala agents can have semantic originality.

2.3.6  Johnson-Laird’s Mental Models

Johnson-Laird (1983 et seq.) gives an insightful discussion of many
topics relevant to the TalaMind thesis. His 1983 book (here referenced as
“MM”) discussed three major forms of mental representations, which he
called mental models, images, and propositional representations. His
theory of mental models continues to be a topic of active research.

Mental models are structural representations of situations, events,
and processes in the world.? An image is a mental perception of a
model from a point of view. Propositional representations are mental
representations that correspond most broadly to expressions in natural
language (MM, p.165).

MM (pp.410-429) notes that mental models can have different forms
and purposes. Broadly, mental models are “iconic” — their structures
correspond to structures of situations they represent. Beyond that,
mental models may be more or less elaborate, depending on what needs
to be represented - a typology includes simple relations, spatial,
temporal, kinematic, and dynamic models. Mental models can support
spatial-temporal reasoning, which has been previously noted as an
important topic for future research to develop human-level Al, outside
the scope of this thesis.

The mental models theory stipulates that natural language
expressions are represented by propositions in a mental language,
which are mapped into mental models (MM, p.165). Johnson-Laird
refers to the mental language as a “propositional language,” though his
discussion throughout MM shows clearly that the language exceeds the
semantics of ordinary propositional logic, and even first-order logic. He
found that no theory of syllogistic inference satisfies descriptive and

% Johnson-Laird notes that K. J. W. Craik hypothesized the mind
creates such models. Craik (1943, p.83) discussed a “thought-model”
that parallels external reality to predict alternative possible events.
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explanatory criteria for mental models (MM, p.93).

It seems clear that the TalaMind approach and Tala language (using
English as a natural language of thought) are compatible with a mental
models approach, which would use iconic mental models of real and
imaginary worlds to represent the semantics of Tala expressions (cf.
MM, 155-156). Some further references to this are given in §3.6.7.1,
§3.6.7.5, and §3.6.7.6.

In discussing how people reason, Johnson-Laird (MM, p.29) found
there was no convincing evidence to say that people use any particular
logic that corresponds to a formal, mathematical logic. Rather, he
showed there are cases where the content of a problem or the way in
which it is expressed affects how well people reason about it. In
building mental models, people find it easier to represent what is true
rather than what is false, which can lead to predictable errors in
reasoning. Psychological testing has confirmed such predictions,
supporting the theory of mental models (Johnson-Laird, 2010).

Of course, there is a downside to building Al systems that match
results of psychological tests by recreating human errors in logic: We
don’t want to use or rely on systems that can make logical errors. So
there are reasons why we should not be solely guided by matching
human cognition.

A TalaMind system could have a design for mental models that
would not have the potential for logical errors, given consistent
premises. It could also be designed to simulate and predict typical
errors in human reasoning, using the human-like mental models
studied by Johnson-Laird. In principle, this capability could help a
TalaMind system identify when problem statements may be confusing
to people, and help the system restate problems to avoid confusion.

Johnson-Laird (MM, pp.426-427) notes that mental models can be
“meta-linguistic,” i.e. contain tokens representing linguistic expressions,
and that mental models can be embedded within mental models (MM,
pp-430-433). The TalaMind approach also allows inclusion of natural
language expressions (represented by Tala structures) within mental
models (contexts), to represent what actors within a model may think or
say, and nested contexts to represent what an actor may think or
perceive other actors think or perceive (i.e. ‘theory of mind’ capability).

Johnson-Laird (MM, pp.448-477) discussed how a system could have
a form of consciousness that (it appears) would support the axioms of
artificial consciousness proposed by Aleksander and Morton (§2.3.4,
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§3.7.6). Johnson-Laird reasoned that such a system would need to be a
parallel processing system, and that a form of self-awareness could
result from the system’s being able to recursively represent mental
models within mental models and to have a higher-level model of its
operating system. % These features would also be possible in the
TalaMind approach.

2.3.7 Research on Natural Logic

Natural logic research® has studied how natural language syntax can
be analyzed directly to support logically valid reasoning. It is an
exception allowed by §1.2’s statement that almost all Al research on
natural language understanding has attempted to translate natural
language into a formal language and perform reasoning with
expressions in the formal language. It does not appear that natural logic
research has studied use of natural language syntax in a language of
thought for an Al system.

2.3.7.1 Natural Logic According to Lakoff

Lakoff (1970) defined a “natural logic” as a logic that would account
for inferences made in natural language, and in which non-synonymous
sentences would have different logical forms. (This is a summary of five
goals he stated for natural logic.) He argued such a logic would need to
satisfy a “generative semantics” hypothesis that grammatical rules
relate sentence surface forms to logical forms represented using phrase
structure trees. Thus, he argued for an approach consistent with
Hypothesis II of this thesis, and consistent with the design of the Tala
mentalese, which were developed without recalling his paper.

Lakoff wrote that words used in logical forms need additional
axioms or “meaning postulates” to characterize their interrelationships
and provide models in terms of which logical forms can represent
meanings. This corresponds to the ability of words and expressions at
the TalaMind linguistic level to refer to concepts and encyclopedic

% Johnson-Laird (MM, pp.471-477) argued that no Turing machine
could be conscious, because consciousness requires a parallel algorithm.
Yet he appeared to allow that a sufficiently fast parallel processing
system running the right algorithm could be conscious.

38 Distinct from ‘natural deduction’, a proof-theory approach to logic
(Prawitz, 1965).
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knowledge at the archetype level, or to perceptions at the associative
level of Figure 1-1.

However, there are several points of difference between Lakoff
(1970) and this thesis. For instance, Lakoff’s arguments were based on a
linguistic analysis of grammaticality and logical sense or nonsense for
various English sentences. In contrast, per §3.4.1 the Tala syntax is not
limited to expressions people might consider perfectly grammatical
English. Per §1.2, this thesis advances Hypothesis II from a strategic
perspective, not based on arguments about natural language
grammaticality and logical sense or nonsense.

Lakoff (1970) did not discuss many of the topics related to the design
of Tala and the TalaMind approach to be discussed in Chapters 3, 5, and
6. His paper was concerned with issues related to human logic and
natural language, not with artificial intelligence. Indeed, as §2.3.2 notes,
Lakoff has been very skeptical about the prospects for human-level AL
It is not clear he would agree the TalaMind approach can succeed, even
though it incorporates ideas from cognitive linguistics, supports
embodiment, etc. Lakoff (1970) was also very cautious about prospects
for developing a natural logic comprehensive for English grammar,
suggesting this would take centuries, if possible at all. However, §5.3
notes that a comprehensive syntax for English is not required for
TalaMind’s success.

Likewise, this thesis need not fully subscribe to the generative
semantics hypothesis, nor to other hypotheses in Lakoff’s 1970 paper.
Though Tala has a generative grammar, it also supports composable
constructions that can transform Tala sentences, effectively extending
the grammar. And per §3.2.1 the TalaMind approach is open to use of
formal languages such as predicate calculus and conceptual graphs to
support understanding natural language and logical reasoning in
general. TalaMind does not require that the only logical forms used to
represent semantics be phrase structure trees.

2.3.7.2 Monotonicity-Based Natural Logic

Van Benthem (2008) gives an overview of the history of natural logic
research. He describes the theoretical background starting with
Montague’s (1973) analysis of natural language quantifiers. This was
followed by analysis of generalized quantifiers (Barwise & Cooper,
1981); analysis of monotonicity for generalized quantifiers (van
Benthem, 1986 et seq.; Sanchez-Valencia, 1991); and more recently,
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analysis of semantic relations for containment and exclusion
(MacCartney & Manning, 2008 et seq.), to give a few highlights of this
research. Systems leveraging these theoretical analyses will here be
called monotonicity-based natural logic systems.

Such systems can compute many entailments of natural language
sentences by analyzing parse trees for natural language sentences.
Monotonicity-based natural logic has been somewhat successful, in
comparison with other approaches to natural language understanding.
MacCartney (2009) reports that a natural logic system called NatLog
achieved 70% accuracy (and 89% precision) on a subset of the FraCaS
test suite®containing 183 single-premise natural language entailment
problems. On the RTE3 test suite* of 800 problems, NatLog achieved
59% accuracy and 70% precision. In comparison, MacCartney notes that
a system based on first-order logic (Bos & Markert, 2006) achieved 76%
precision on the RTE2 test suite*! but could only answer about 4% of the
problems. NatLog achieved 70% precision answering about 25% of the
RTE2 problems.

However, monotonicity-based natural logic has had several
limitations. MacCartney (2009) writes that NatLog cannot combine
information from multiple premises, and this is a limitation for all other
natural logic systems of which he is aware.® Because NatLog has a
weaker proof theory than first-order logic, it cannot perform some
inferences, such as those involving De Morgan’s laws for quantifiers,
e.g. “Not all x is y <> Some x is not y.” MacCartney and Manning (2008)
note that many types of inference are not addressed by natural logic,
listing examples such as paraphrase, verb alteration, relation extraction,
and commonsense reasoning.

In contrast, the TalaMind approach does not have these limitations,

% Viz. Cooper et al. (1996).

40 Viz. Giampiccolo et al. (2007).

41 Viz. Bar-Haim et al. (2006).

21t does not appear that supporting multiple premises is impossible
in principle for monotonicity-based natural logic. Thus, van Benthem
(2008) gives an example involving multiple premises to illustrate how
anaphora resolution can be important for monotonicity inferences.
MacCartney (2009) notes multiple premises can be supported if
combined in a single sentence.
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though it could also be considered a kind of natural logic since it
involves reasoning directly with natural language syntax. In the
TalaMind approach, Tala sentences can use pattern-matching to
perform inference with multiple premises; perform translations
supporting De Morgan’s laws for quantifiers; support paraphrase, verb
alteration, and relation extraction; and perform commonsense
reasoning, if supported by encyclopedic knowledge (§3.6.7.4) in the
TalaMind architecture. (Schubert [2013] discusses how natural logic-like
inference can be performed by a formal logic system, EL/EPILOG, also
without such limitations.)

The TalaMind approach is open to use of monotonicity-based
natural logic, as it is to formal logic methods. The success of
monotonicity-based natural logic supports the plausibility of
Hypothesis II. TalaMind may provide the “surfacy” natural logic sought
by van Benthem (2008).

2.4 Summary

This chapter discussed the relation of the TalaMind hypotheses to
previous research, and presented the approach of this thesis to verifying
whether a system achieves human-level Al This approach (design
inspection for support of higher-level mentalities) is different from
previous research focused on behavioristic comparisons, e.g. via the
Turing Test. It is also different from research that seeks to achieve
human-level Al through general methods without specifically
addressing higher-level mentalities. This chapter’s review of previous
research has not found an equivalent discussion of the TalaMind
hypotheses as a combined approach.
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A new, a vast, and a powerful language is developed
for the future use of analysis, in which to wield its
truths so that these may become of more speedy and
accurate practical application for the purposes of
mankind than the means hitherto in our possession
have rendered possible.

~ Ada Lovelace, Notes, 18434
oo
3.1 Overview
Chapter 1 presented three hypotheses to address the open question:
How could a system be designed to achieve human-level artificial intelligence?

This chapter will analyze theoretical questions for the hypotheses,
and discuss how a system could in principle be designed according to
the hypotheses, to achieve the higher-level mentalities of human-level
Al This discussion will use elements of the TalaMind architecture to
help answer theoretical questions, and discuss theoretical design issues
for elements of the architecture, focusing in particular on the Tala
conceptual language. (Appendix A gives a list of theoretical questions
considered in this chapter.)

Per §1.6, the analysis presented in this chapter cannot say completely
how the proposed architecture should be designed to achieve human-
level Al In general, it can only present theoretical discussions of
requirements, design, and feasibility for elements of the architecture.
Chapters 5 and 6 discuss what has been done relative to these elements
in a prototype demonstration system. Some elements of the design of
the prototype system will be used to illustrate the thesis approach, but
this chapter is not about the design of the demonstration system, per se.
It is about more general, theoretical issues, which would apply to any

* From Notes upon the Memoir by the Translator, written by Augusta
Ada King, Countess of Lovelace, for her translation of Sketch of the
Analytical Engine Invented by Charles Babbage written by Luigi Frederico
Menabrea of Turin, Officer of the Military Engineers, Bibliotheque
Universelle de Geneve, October, 1842, No. 82
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system built according to the TalaMind hypotheses.

For instance, one of the theoretical issues to be considered is how to
represent natural language syntax in a conceptual language based on
English. Another set of issues involves how to determine and represent
different interpretations and implications of a sentence in the conceptual
language. A related set of theoretical issues involves how to represent
contexts, and what types of contexts need to be represented in the
TalaMind architecture. For each of the higher-level mentalities, we shall
need to consider how it can be supported by the proposed architecture,
at least in principle theoretically. Such issues will be considered in this
chapter as constructive questions, with answers that comprise
theoretical arguments in favor of the thesis approach, while Chapter 4
will address theoretical objections to the approach.

3.2 Theoretical Requirements for TalaMind Architecture

This section considers theoretical questions about requirements
implied by the hypotheses presented in Chapter 1 for the Tala
conceptual language, conceptual framework and processes, to achieve
human-level AL

3.2.1 Conceptual Language

?  What is required for a conceptual language to serve as a
‘language of thought” for a system with human-level artificial
intelligence?

This thesis defines the term language of thought for an Al system as a
language of symbolic expressions comprising conceptual structures that
the system can develop or process. Arguably, a human-level Al system
must be able to develop and process conceptual structures that
correspond to any linguistically expressible thoughts that a human
being can have: If there were some such thoughts that a human being
could have, for which an artificial system could not develop and process
corresponding conceptual structures, then these thoughts would
comprise a realm of thinking beyond the capabilities of the artificial
system, and it would not have human-level Al Therefore it will be
taken as a general principle that for a conceptual language to serve as a
language of thought for a system with human-level Al it should
include expressions that can represent (correspond to) any human
linguistically expressible thought.

Note that we are here making a distinction between thoughts and
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emotions or sensations. While it is important for a human-level Al
system to have some understanding of human emotions or sensations,
from the perspective of this thesis it is not required that a human-level
Al system be able to experience them (cf. §§2.1.2.9 and 2.2.3). A thought
or statement that someone has an emotion is of course different from
experiencing the emotion.

?  What is the relation of thoughts expressible in natural language
to the range of thoughts that need to be expressible in the Tala
conceptual language, to achieve human-level AI?

It follows from the preceding answer that the range of thoughts that
need to be expressible in the Tala conceptual language includes the
thoughts that can be expressed in natural language, since the thoughts a
human being can have include those expressible in natural language.

A human-level Al will need to represent other kinds of thoughts,
which cannot be easily expressed in natural language. Below the
linguistic conceptual level, the TalaMind architecture includes non-
linguistic levels of concept representation (Figure 1-1). The topic of
whether and how the linguistic level may support concepts not easily
expressible in natural language is discussed later. Here it is emphasized
that the range of thoughts expressible in natural language is extremely
broad, and includes statements about statements, and statements about
theories or models, to support meta-reasoning. This implies a language
of thought should be a language at a higher level than first-order logic
(cf. §2.3.1).

?  What properties must the Tala conceptual language have, to
represent concepts that can create and modify concepts, to
behave intelligently in an environment?

This question is motivated by considering Hypothesis 1 in
conjunction with the definition that Tala as a language of thought
provides linguistic representation of concepts that a TalaMind system
can develop or process.

There are many concepts that may be said to create and modify
concepts. A simple example is a rule of inference, which is a concept
that in effect creates a concept, given other concepts as premises. More
generally in accordance with Hypothesis I, this thesis will consider
concepts that describe processes for creating and modifying concepts.
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A conceptual language for a system with human-level Al must be
able to represent concepts that describe processes, since these are
important concepts that people use natural language to communicate in
describing how to perform actions, achieve goals, etc. Intelligent
systems need to be able to communicate and follow process descriptions
that include sequences of steps to perform, conditional performance of
steps, and conditional iteration of steps. Thus, Tala as a conceptual
language has an implied requirement to be as expressive in describing
processes as a universal programming language,* though there is no
requirement that it be a conventional programming language. Tala must
be able to represent concepts that describe how to perform at least
simple processes, with descriptions that are based very largely on the
syntax of a natural language. This thesis calls concepts that describe
how to perform processes ‘executable concepts’ or “xconcepts’.

Of course, people do more than just communicate and follow
process descriptions: We think about how to change and improve
processes, and communicate about this. Thus a conceptual language for
a system with human-level Al must be able to represent concepts that
describe how to modify processes, including in principle executable
concepts that describe how to modify executable concepts. Again by
Hypothesis 11, this should be based very largely on the syntax of a
natural language. The TalaMind demonstration system will illustrate
this ability, in a story simulation where a Tala agent reasons about how
to change its process for making bread.

Executing executable concepts requires an interpreter process, which
by the definition of conceptual processes in §1.5 is effectively a primitive
conceptual process in the TalaMind architecture. The set of conceptual
processes may be extended by defining executable concepts, but some
conceptual processes may also be defined or emergent at lower levels of
processing.

# To be universal (able to describe any process that could be
performed by a Turing machine) a programming language need
provide only three basic control structure mechanisms: 1) Sequential
execution of one statement followed by another; 2) Conditional
execution of one statement or another, based on the value of a Boolean
variable; 3) Iterative execution of statements, until a Boolean variable is
true (Bohm & Jacopini, 1966). Viz. §5.5.2.
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?  What other properties must the Tala conceptual language have
to support human-level artificial intelligence?

In addressing theoretical questions related to support for higher-
level mentalities, the following pages will identify other properties Tala
should have. As a starting point, these include the properties proposed
by McCarthy in 1955:

e Tala will enable a Tala agent to refer to itself and formulate
statements regarding its progress in solving problems.

¢ The Tala conceptual language will enable expression of rules of
conjecture, and the TalaMind architecture will support
hypothetical reasoning.

e Tala will be as concise as English, because its sentences will be
isomorphic to English sentences.

¢ The Tala conceptual language will enable expression of concepts
involving physical objects, events, etc.

e Tala will have the same extensibility as English, in allowing
other languages to be defined within it, and used as appropriate.

¢ The design of Tala will permit extensions to represent
mathematical expressions, and to support mathematical
arguments.

McCarthy (1980) proposed circumscription as a rule of conjecture to
address the qualification problem in representing commonsense
knowledge. This topic will be discussed below in connection with
representation of problem contexts (§3.6.7.11).

?  To what extent might a conceptual language need to go beyond
the syntax of a natural language?

People have invented other languages and notations to represent
concepts in some domains more concisely and clearly than is possible in
natural language. A simple example is any notation or diagram that
depicts a relationship that exists at certain points of an array, and not at
others. This may be the best way to concisely and precisely describe a
situation summarized by a sentence like “Five Englishmen talked with
seven Frenchmen”, if not every Englishman talked with every
Frenchman. In general, representation of spatial concepts is facilitated
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by maps, diagrams, and images — “One picture is worth a thousand
words”. Predicate calculus, conceptual graphs, and mathematical
notations are other examples of languages outside the syntax of natural
language, which could be worthwhile as alternatives or extensions for
the Tala conceptual language (viz. §4.2.2.3).

A conceptual language may need to go beyond the syntax of a
natural language by enabling semantic annotation of expressions (Bunt,
2007 et seq.) to support conceptual processing. Semantic annotation may
be supported within the conceptual language itself, or by integrating
other, formal languages for this purpose. This topic will be further
discussed below.

Natural language includes the ability to extend itself, since it
includes expressions of the form “X means Y”, where X and Y may be
words or syntactic forms. Thus, per Hypothesis III, Tala includes
grammatical constructions. In principle, Tala should have the same
extensibility as English, to support definition of new languages.

3.2.2  Conceptual Framework

?  What capabilities must the TalaMind conceptual framework
have to support achieving human-level Al, according to the
TalaMind hypotheses?

“

Section 1.5 defined a TalaMind conceptual framework as “an
information architecture for managing an extensible collection of
concepts, expressed in Tala”. The term ‘information architecture’ is used
as a general, technology-independent description. The TalaMind
approach does not prescribe any particular implementation
technologies. The term ‘managing’ means storing, retrieving, and if
necessary deleting concepts.

To support achieving human-level Al according to the TalaMind
hypotheses, the following are implied theoretical requirements for
capabilities to be provided by a conceptual framework:

*  Manage concepts representing current thoughts. Since Tala is the
language of thought in the TalaMind architecture (viz. §3.2.1),
the conceptual framework has an implied requirement to
support storing and retrieving thoughts represented as
sentences in Tala.

*  Manage concepts representing definitions of words. Since Tala as a
language of thought is based on the syntax of a natural
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language (English), its expressions use English words. The
conceptual framework has an implied requirement to support
storing and retrieving definitions of words, represented as
sentences in Tala. Section 3.6.1 discusses theoretical
requirements for the Tala lexicon. One such requirement is to be
integrated with encyclopedic knowledge, discussed below.

Manage executable concepts, for conceptual processing. Theoretical
requirements for executable concepts were discussed in §3.2.1.
Since the TalaMind architecture must support representing and
executing executable concepts, the conceptual framework has
an implied requirement to support storing and retrieving them.

Manage concepts for a perceived / projected reality. As discussed in
§2.2.3, a Tala agent must have concepts representing its
perceptions of the current state of its environment. Following
Jackendoff (1983), this set of concepts is called ‘projected (or
perceived) reality’. The conceptual framework has an implied
requirement to support storing and retrieving concepts
(percepts) from a projected / perceived reality. As discussed in
§1.5, this thesis stipulates that percepts at the linguistic level in
the TalaMind conceptual framework are represented as Tala
sentences, provided via a conceptual interface by lower levels of
conceptual processing that interact with the environment (viz.
Figure 1-1).

Manage concepts for an ‘event-memory