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FOREWORD
Compared to other disciplines, theoretical computer science is a relatively

young field. Nevertheless, more than seventy years have already passed since
Alan Turing introduced formal definitions of a computer and an algorithm in
1936; for his fundamental contributions Turing is generally considered to be
the father of not only theoretical computer science, but also of artificial intelli-
gence. The late 1950s and the 1960s saw a great increase in the activities re-
lated to theoretical computer science, and this activity continues to the present
day. Many books have been written on this subject: texts suitable for a first
course as well as advanced monographs. The reader may well ask: Is another
introductory text really needed? The answer is a clear yes, because of the spe-
cial features of this book.

As the book’s title states, this text is written from the programmer’s per-
spective. Along with the printed book, Gopalakrishnan provides a suite of
Jupyter notebooks for dealing with automata and languages, packaged under
the name Jove. This, and the frequent relations the author establishes between
theoretical concepts and their applications should make the theory attractive
to software engineering students, as well as to the more mathematically ori-
ented computer science students.

Many texts on theoretical computer science begin with a preliminary chap-
ter on mathematical notions such as sets, relations and functions. In contrast
to this, the present book begins with a brief history of computer science, and
makes the case that automata and computability are at its very core. This
provides a much stronger motivation for the study of these theoretical topics
than do sets, relations and functions. Incidentally, the discrete mathematics
background is provided in the book, but as an appendix.

The book is very readable. New concepts are illustrated by numer-
ous examples and further clarified by sets of exercises, both theoretical and
programming-oriented. The students have an opportunity to verify their un-
derstanding by using Jove programs. Numerous footnotes, often humorous,
provide references to further reading in publications and websites.

The coverage of topics in theoretical computer science is quite comprehen-
sive. After the short history of computing, there is a gentle introduction to for-
mal languages and operations on them. Deterministic and non-deterministic
finite automata, regular expressions, context-free languages, pushdown au-
tomata, and Turing machines then follow. The book concludes with the much
more challenging concepts of undecidability, NP-completeness and lambda cal-
culus. Altogether, this is a very valuable up-to-date addition to the literature.

Janusz A. Brzozowski
University of Waterloo

Waterloo, Ontario, Canada
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PREFACE

This is a book on the central theoretical pillars of computer sci-
ence! We begin with the theory of syntax processing based on machines
and grammars and finish with a study of the absolute limits of computing,
asking questions such as “what can and cannot be algorithmically solved
using computers?” We assume that the reader already has basic working
knowledge of sets, relations, functions, and predicate logic (Appendix A
provides a refresher).

Half our educational material comes in the form of Jupyter notebooks
(software) that accompany this book (being called Jove).1 Jupyter is a

1 Jove is a synonym of Jupiter, the Roman
god of the sky. According to Wikipedia, the
Roman practice of swearing by Jove to wit-
ness an oath in law courts is the origin of
the expression “by Jove!”compendium of runnable code in Python2 documentation, and may also

2 Jupyter also supports other languages.
We use Python exclusively, but employing
only a very small subset that is quite easy
to learn.

include web references and Youtube videos.3 Jupyter notebooks are the

3 Many of our notebooks start with videos
that describe the rest of the notebook.

modern equivalent of Engineers’ Notebooks, and find use in real-world
projects of immense importance. For instance, some of the scientists
who successfully detected gravitational waves recently employed Jupyter
notebooks in their research to perform some of their calculations.4 Some

4 A 2017 Physics Nobel prize winning dis-
covery.

of my Jove notebooks employ Jupyter widgets that provide sliders and
pull-down menu selections to incrementally expand language construc-
tions, nondeterministic machine executions, etc. “By Jove,” please take
advantage of these interactive facilities!

I recommend that you first luxuriate by simply running the already
provided notebooks (especially those that begin with Youtube videos) and
execute their commands one by one. After that, try to peek into Ap-
pendix B that summarizes all of Jove’s functions, and imitate some of
my examples. Then, read the Python code that powers these notebooks. At
that point, you will have a firm grasp of the covered topics.

In Appendix B, we also provide an overview of how to use lambda func-
tions in Python. Jove’s Python functions are written largely using a sub-
set of Python based on functional programming. In our codes, we employ
recursion and also higher order functions such as map, reduce, fold, and
filter. Given that all modern programming languages (even C++) nowa-
days include some elements of functional programming, these are valu-
able concepts to carry with you beyond this course.

In the study of computability, it is common practice to define machines,
grammars and languages solely in mathematics.5 Unfortunately, such

5 In fact, imparting the requisite mathe-
matical maturity to understand such pre-
sentations is one of the goals of this
course.

definitions possess subtle nuances that can often stump students.6 Aug-

6 Not to mention automata-theory book
authors such as myself! A good example
is the notion of acceptance of a string by
a nondeterministic push-down automaton
(PDA, Section 12.2.1). By interacting with
a PDA using Jove, one can minutely study
the execution history and understand ev-
ery associated detail.

menting the definitions with actual runnable code can greatly facilitate
one’s ability to grasp such slippery topics.

Providing alternate definitions is also vastly safer practice in real life.
Mathematical definitions are like code that has never been run even once,7

7 Knuth once famously wrote, “Beware of
bugs in the above code; I have only
proved it correct, not tried it.”

and unfortunately can be incomplete or contain bugs.8 Having alternate
8 “Running” mathematical definitions
means examining them within a theorem-
prover—something that very few have the
time or skill-set to properly carry out.definitions increases the chances of spotting mistakes by noticing dis-

agreements.
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Book Highlights: This book serves “not just the standard fare of au-
tomata theory” but also topics that help with your overall CS education,
and also some that are more modern, and are transitioning to practice.

Part I of this book begins with a historical perspective in Chapter 1,
“What Machines Think.” Discussing the history of computer science is
supremely important because ours is an area that, despite providing the
society countless bounties, still struggles to safeguard the everyday cit-
izen from the perils of software bugs. In his Turing award lecture, Di-
jkstra’s closing paragraph goes as follows:9 We shall do a much better9 Google EWD340 to locate this article.

programming job, provided that we approach the task with a full appre-
ciation of its tremendous difficulty, provided that we stick to modest and
elegant programming languages, provided that we respect the intrinsic
limitations of the human mind and approach the task as Very Humble
Programmers.

In fact, it is very easy to feel humble, as Dijkstra espouses. Just
60 years ago, people did not know how to write even simple lexers and
parsers. They used crude methods that were so terrible to look at and
analyze, and were untrustworthy. The CS community conquered this
complexity through formal methods. Formal methods are central to all
advances in computer science. They include just about any method that
systematically guides us toward the construction of precision software
components.10 Viewed this way, the very first formal methods in com-10 By way of analogy, think of precision

machining. If one can build ball-bearings
with a tolerance of 0.1mm, they are per-
haps good for putting into bullock-cart
wheels, but not into automobile wheels.
If one can achieve micron-level precision,
one can put them into automobiles or
even jet-engine turbines. Initially, pre-
cision machining increases product costs
and does not immediately benefit the soci-
ety. But eventually, through mass produc-
tion, we curb the costs.

puter science indeed were the theory of regular expressions, context-free
grammars and recursively enumerable sets!

Some may think that syntax processing is “well-understood old stuff”—
but this is simply not true! Today, we are in a fast-changing world where
syntax processing is ever more important. Today’s markdown languages,
JSON files, web forms, and countless other tools all employ elements of
lexing and parsing. To design them robustly and reliably, one needs to
truly understand the subtle nuances of language processing. Bugs intro-
duced while reading-in and processing someone’s command inputs or web
forms are difficult to track down, and may cause severe loss of money and
may even threaten life (for example if one evaluates a formula gathered
through a web form pertaining to medical drug proportions).11 The for-11 Regular-expression processing bugs do

occur in the field. mal methods introduced in this course are thus very relevant to modern
software design.

We cover syntax-processing beginning in Chapter 2, “Defining Lan-
guages: Patterns in Sets of Strings” and Chapter 3, “Kleene Star: Basic
Method of Defining Repetitious Patterns.” Part II then takes over, dis-
cussing the crucially important topic of DFA over three chapters: “Ba-
sics of DFA” (Chapter 4), “Designing DFA” (Chapter 5), and “Operations
on DFA” (Chapter 6). Nondeterministic automata and regular expres-
sions are then discussed over three chapters: “Nondeterministic Finite
Automata” (Chapter 7), “Regular Expressions and NFA” (Chapter 8), and
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“NFA to RE Conversion” (Chapter 9).
Chapter 10 discusses “Derivative-Based Regular Expression Match-

ing.” This approach allows us to handle the complementation of regular
expressions without paying the exponential cost of determinization. This
is an elegant and important algorithm lost in the mist of time, but pub-
lications on this topic have appeared in top conferences even as recently
as 2016 [2]. Our presentation of derivative-based parsing rules also re-
sembles how one writes operational semantic definitions. This is another
example of how formal methods help quality conscious companies develop
specifications of complex pieces of software.

We provide plenty of material that increases the students’ understand-
ing of how lexers and parsers are used together in full applications. This
is achieved as follows. First, in Chapter 11 (“Context-Free Languages and
Grammars”) and Chapter 12 (“Pushdown Automata”), we cover context-
free grammars and parsing. Then we provide the definition of a sim-
ple lexer (based on regular expressions) and parser (based on context-free
grammars) using the widely used tool, “PLY.”12 Our first lexer/parser pair 12 PLY stands for “Python Lex and Yacc.”

Lex and Yacc were celebrated lexers and
parsers created in Bell Labs in the 1970s.
Written by Dr. David Beazley, PLY is
available from http://www.dabeaz.com/

ply/.

fits under half a page of Python code (Figure 10.4)! We then follow it up
with another lexer and parser that turn regular expressions into NFA
using PLY (again, in about a page, Figure 8.1).

We finally provide a more realistic lexer and parser for a markdown
language that we design (see Section B.1.5) for writing clear descriptions
of NFA, DFA, PDA, and Turing machines accompanied by comments.13 13 We call this markdown “automd” stand-

ing for “Automaton Markdown.”Chapter 13 discusses Turing machines. We make the study of Turing
machines (TM) enjoyable by equipping them with “fuel tanks” that users
can load with some number of “gallons” of fuel. This gives us a chance
to concretely talk about time-complexity (the amount of fuel consumed
before termination). This sets the stage for Part III that begins with In-
terplay between Formal Languages (Chapter 14) and proceeds to give you
a domino game in Chapter 15 (“Post Correspondence, and
Other Undecidability Proofs”) that you can play within Jove using the
PCP solver written by Ling Zhao. This deceptively simple game actu-
ally encompasses the essence of Turing undecidability—a fact that is at
the same time satisfying and bewildering! Chapter 16 introduces NP-
Completeness—a foundational aspect of anyone’s CS education.

Chapter 17 (“Binary Decision Diagrams as
Minimal DFA”) gives you the ability to play with the PBDD tool written
by Tyler Sorensen, launching it from within Jove. Chapter 18 (“Com-
putability Using Lambdas”) gives you the ability to play with lambda
calculus within Jove.

Exercises are included within chapters as well as towards their end.14 14 We number the exercises and theorems
the same as the section (or subsection)
containing them. This idea (proposed by
my late colleague Kris Sikorski) makes lo-
cating them easier, we hope.

Proofs of the stated theorems are either sketched or cited. A solution
manual for instructors will be made available as supplementary mate-
rial. Solutions to selected problems will be included as supplementary

http://www.dabeaz.com
http://www.dabeaz.com
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material on the book’s website https://bit.ly/Automata_Jove. Jove
notebooks will be kept updated on the github page of Jove, namely https:

//github.com/ganeshutah/Jove.
We provide many examples of formal methods and functional program-

ming. For example, we encourage you to construct DFA using two dis-
tinct approaches and check whether their minimized forms are isomor-
phic (Chapter 5). Equivalence checking is a powerful formal methods
idea, and is more comprehensive than “plain old testing.” During equiva-
lence checking, all behaviors are covered – not just those for which a user
might care to write tests for.

We present formal methods for Boolean reasoning using Binary De-
cision Diagrams (BDD, Chapter 17). Knuth calls BDDs one of the only
really fundamental data structures that came out in the last twenty-five
years. We show how BDDs and minimal DFA are, essentially, one and the
same. BDDs are routinely used by the hardware industry to detect and
eliminate serious bugs from microprocessors.

Most books on automata theory deal with Turing machines but do not
discuss lambda calculus. However, both these perspectives are crucially
important in computer science. Besides, ideas from functional program-
ming are powering many industries, increasing programmer productivity
and helping reduce bugs. Functional programming can be quickly and
elegantly introduced by demonstrating how to encode computability con-
cepts using lambdas. We provide a glimpse of the power of the lambda
notation by showing how familiar recursive functions such as factorial
and fibonacci can be written using lambdas and a fixpoint finder, namely
the “Y combinator.” Essentially, we provide a Jove notebook that tells you
how to “compute everything” using lambdas.

This is for those who love to code: Please make an attempt to not
just use Jove, but actually extend it! Please stick to the extremely simple
subset of Python that I’ve chosen, so that this material remains accessible
to the widest possible audience.

You may find my use of lambdas and higher order functions to be a
departure from simplicity—but in fact, they are there to make the code re-
semble mathematics a bit more, and also they help with lambda calculus.
Hence please don’t convert these codes to imperative for-loops (loops may
be more readily understood, but such a conversion can be a step back from
the intended pedagogy). To remain self-contained, I provide tutorials on
lambdas and higher order functions in Section B.2.

Last but not the least, this is largely a book on programming and in-
teracting with abstract machines. Section B.1 documents almost all the
Jove functions, as if Automata Theory is just “an advanced math library.”
That is the Programmer’s Perspective that the book’s title boasts.

http://github.com
http://github.com
https://bit.ly
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1
What Machines Think

Computers are everywhere and their power seldom ceases to amaze even
those deeply embedded within the field! Computers seem to do (or be
involved with) everything: from processing payroll to making telephone
calls and even brushing our teeth (hiding within electric toothbrushes).
They have also beaten humans at (the quiz show called) Jeopardy! One
may therefore ask in all honesty: “can computers do everything?!”

There are obviously things computers can’t do.1 But what all can they 1 Like screw up something as badly as hu-
mans alone can do!do, and what does “can do” mean in the context of a machine? Remember

that these questions were raised during the early part of the 20th cen-
tury when actual computers weren’t around; therefore, it isn’t clear what
answers flew around. It is quite possible that people relied on their im-
mediate experiences to provide answers—much the same way as people
imagined airplanes to be before the Wright brothers flew one.2 2 Some early models of airplanes actually

flapped their wings (imitating birds) and
invariably crashed (unlike most birds).

Coming back to the subject of computing, early computing successes
were marvels of engineering. Blaise Pascal created an impressive ma-
chine around 1642 to assist his father with his work (Page 1). According
to Wikipedia, Pascal conceived the idea while trying to help his father
in his job as a tax collector. Pascal’s calculators could add and subtract
two numbers directly and multiply and divide by repetition. About 200
years later, Babbage designed the Analytical Engine (trial design of 1837
shown in Figure 1.1). He even hired the first ever programmer—-Ada
Lovelace—who was introduced to Babbage when she was just 17 years of
age, and got “hooked onto computing!” 3 3 Ms. Lovelace described the first algo-

rithm to compute Bernoulli numbers us-
ing the Analytical Engine of Babbage.

At the turn of the 20th century, people started pondering the question
of the fundamental limits of computing. They began formulating this
question in terms of the types of problems in mathematics and logic that
can be “solved” using a machine. It wasn’t clear why there should be a
fundamental limit to the power of computers. After all, authors such as
Jules Verne were at this time writing science fiction pieces pertaining to
going to the moon in spaceships (even before planes arrived).
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1.1 Problems Without Algorithms

Figure 1.1: Babbage’s Analytical En-
gine. By Science Museum London
/ Science and Society Picture Library.
Reproduced under Creative Commons
Attribution-Share Alike 2.0 Generic li-
cense. http://creativecommons.org/

licenses/by-sa/2.0.

Figure 1.2: The website http:

//aturingmachine.com and the Youtube
Video https://youtu.be/E3keLeMwfHY

of a Mechanical Turing Machine by Mike
Davey. Please search for An Interview
with Mike Davey about his Homemade
Turing machine also.

One can always state problems without knowing how to solve them.
For instance, Fermat posed the problem of finding a,b, c that are natu-
ral numbers greater than 1 such that an+bn = cn for n > 2. This problem
remained open for over 300 years till 1995 when it was conclusively set-
tled by Andrew Wiles in the negative: no such a,b, c can exist [46]. Until
that year, one could have defined a procedure that could have searched
for every possible a,b, c in a systematic way for a given n (say 3). For
instance, the procedure could list all a,b, c that add up to 6, then list all
a,b, c that add up to 7, etc., till such an a,b, c, were found that satisfied
this equation. However, since 1995, thanks to the proof by Andrew Wiles
of a theorem called Fermat’s last theorem, we know that this procedure
would go on forever, not finding any a,b, c. In fact, we now have an algo-
rithm: just print “impossible to find such a,b, c” and halt.

In the same vein, people in the 20th century were in hot pursuit of
algorithms for pretty much every problem that can be posed in mathe-
matics! Most notable in this quest was a German mathematician named
David Hilbert who challenged the mathematics and logic community with
23 problems pertaining to logic, mathematics and computability. One of
Hilbert’s challenges was to prove the following:4

4 The distinction between a procedure and
an algorithm is taken up in Chapters 13
through 15. Basically, a procedure is any-
thing that is mechanizable, and it is also
an algorithm if it halts on all of its ex-
pected inputs. We already gave you an ex-
ample of these ideas in the context of Fer-
mat’s problem.

There should be an algorithm—a systematic and mechanical pro-
cedure that also terminates on any input—to decide the truth of
any logical statement in mathematics.

This was such a bold quest: Hilbert wanted any mathematical question
to be algorithmically solved (always halt with “here is the solution” or
“you can’t have a solution.”) A long line of famous mathematicians and
logicians that includes Gödel, Church, and Turing showed that this goal
was impossible to realize! They showed that many mathematical systems
are undecidable: there isn’t an algorithm to decide the truth or falsity of
statements made in them! They also showed that many logical systems
are incomplete: there are logical systems that are so powerful that one
cannot prove known truths in them.5

5 For a detailed discussion (that tends
to be rather technical), kindly see
https://plato.stanford.edu/entries/

goedel-incompleteness/. This, how-
ever, does not mean that humans cannot
guide the creation of useful proofs. See an
early paper that proves facts about a tool
that synthesizes logic circuits [1].

For concreteness, Hilbert’s tenth problem was to devise an al-
gorithm for finding solutions (over integers) for Diophantine
equations—equations of the form

3x2 −2xy− y2z−7= 0.

Another Diophantine equation is

x2 + y2 +1= 0.

It turns out that the former has the solution x = 1, y = 2, z = −2

http://aturingmachine.com
http://aturingmachine.com
https://plato.stanford.edu
http://creativecommons.org
https://plato.stanford.edu
https://youtu.be
http://creativecommons.org
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while the latter has no solution.

A series of results developed in the 1940s through 1970 by Julia Robin-
son.6 The joint work by Yuri Matiyasevich, Julia Robinson, Martin Davis, 6 We are using a system called Jupyter

to illustrate ideas underlying this book.
“Jupyter” stands for Julia and Python,
where the language Julia is named after
the same Julia Robinson who also helped
settle Hilbert’s 10th problem. She is con-
sidered one of the preeminent computa-
tional theory researchers.

and Hilary Putnam helped settle Hilbert’s 10th problem in the negative
through the so-called MRDP theorem (see a nice historical account at
[34]). Their work showed that alas, we cannot write a single computer
program that always halts and either prints out the solution for such an
equation (if one exists) or prints out that such a solution does not exist. A
third possibility is to be admitted in case the equation has no solution:
any such program must necessarily loop and never halt!

In this book, we shall be building some of the foundations toward ap-
preciating all this momentous work. Some of the later chapters will also
detail the topic of the fundamental limits of computing.

The vast majority of this book, however, discusses the serendipitous
outcomes of these early pursuits seeking the fundamental limits of com-
puting. In the end, these pursuits did help settle many open theoreti-
cal questions, but along the way, they spun off many fundamental ideas
that form the bedrock of modern Computer Science. Fundamental de-
velopments in this young field are led by a brand new community of re-
searchers who go by the name computer scientist (and not “mathemati-
cian” or “logician”).7 7 It is not a big stretch to say that your

iPhone exists due to the aforesaid scien-
tists, plus of course countless excellent en-
gineers who followed!1.2 How to Define a Computer?

Even to get started on Hilbert’s program, one had to clearly define “a
computer.” Remarkably, within a few decades of the early 20th century,
mathematicians managed to arrive at the definition of a computer (i.
e., an ultimate computing device). This work was spearheaded by many
famous scientists including Alan Turing of England as well as Alonzo
Church, Emil Post, Stephen Kleene and John von Neumann of the United
States.8 8 Turing as well as von Neumann were

also involved in the construction of some
of the early computers.

Alan Turing’s approach was to assume basic representations for num-
bers (in terms of 0’s and 1’s) and describe how one performs operations
on numbers. His recipe for expressing an algorithm went something like
this:

• At each step of the algorithm, if a character c (say 0) is read un-
der the Turing machine head (or “cursor”), change the character
to a different one (say 1). Then move the head one step left, one
step right, or stay at the same spot. Then advance to the next
step of the algorithm.

• The algorithm is deemed to have halted when it reaches one of
the previously selected “halting steps.” In that case, the compu-
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tation ends, leaving behind the contents of the tape as the final
result.

It was soon shown that anything that is mechanically computable can
be described in elementary terms such as this.9 See a modern Turing ma-

9 It does not matter how long it takes to
compute something; all that matters is
“can it be done at all, in a finite amount of
time?” For instance, in Mike Davey’s Tur-
ing machine, about 3 Turing machine op-
erations such as moving left or erasing can
be done in one second. Saving a megabyte
of data takes 870 of the 1000-foot tape
rolls shown in Figure 1.2.

chine detailed in Figure 1.2 and a cartoonist’s view of the historical mo-
ment in Figure 1.3. An excerpt from Sir John Dermot Turing’s book [44]
recounts a conversation between Aspray and Church [4]:

Aspray: Can you tell me something about his (Turing’s) personality?

Church: I did not have enough contact with him to know. He had the
reputation of being a loner and rather odd.

(Aspray notes in [19] “Of course, the same often was said of Church.”)

Figure 1.3: Prof. Geoff Draper’s imagi-
nation of how Alan stumbled upon his in-
vention. This is one of many cartoons do-
nated by Professor Draper for my 2006
book [21] (for all of Geoff ’s cartoons in-
cluded in that book, kindly see http://

draperg.cis.byuh.edu/cartoons).

Turing was not alone in the process of trying to define the concept
of computation. His contemporary, Church,10 meanwhile proposed the

10 Alonzo Church served as a PhD advisor
for Alan Turing at Princeton University in
1938.

Lambda Calculus. Another contemporary, Post, also proposed Semi-Thue
Systems around the same time. It was also shown around this time that
things written in the Lambda Calculus of Church or Semi-Thue Systems
of Post could also do no more and no less than a Turing machine!11 This

11 In this book, we shall adhere to Turing
machines as our notion of a computer (and
“computation”).

convergence12 was taken as further evidence that the notion of what is

12 Metaphorically, all “roads of thought”
lead to “the Rome of universal computabil-
ity.”

mechanically computable is unique. It also happens to be one of the most
fundamental of insights that humanity has achieved in terms of under-
standing what “computation” means.

Paraphrasing Prof. Phil Wadler (now of the University of Edinburgh),

“when researchers come up with the same powerful idea even
when starting from multiple alternative perspectives, the idea it-
self is fundamental—“existed out there all the time”, and happens
to have been discovered—not invented.”

Turing Machines Define a Computer

From a practical perspective, it is clear that a supercomputer is more
powerful than the computer in your cellphone. It may take a second to
do on a supercomputer what might take years to solve on your cellphone.
Yet (if you allow enough time and provide enough memory), anything
that can be solved on a supercomputer can be solved on your cellphone.
More specifically, the same types of problems can be solved on these ma-
chines.13 The reason we do not consider absolute time in our study of13 One can bail a swimming pool with a

teaspoon. computation is that it is an entirely ephemeral notion; computers keep
getting faster as well as different from each other all the time. However,
an entire area called complexity theory is in fact devoted to the study of
“how much time computations take.” We will be studying one of the most

http://draperg.cis.byuh.edu
http://draperg.cis.byuh.edu
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central of approaches for measuring complexity—namely, the notion of
NP-completeness—in Chapter 16.

1.3 Practical Application: Syntax Definition/Checking

One of the main applications of the material we are going to study in this
book is in defining program syntax and in checking adherence to program
syntax definitions.

Beginning in the late 1950s, computer scientists began seeking practi-
cal ways of writing computer programs. They began developing rich and
expressive syntactic constructs, making programs easier to create as well
as readable. As soon as programming languages having formal syntactic
rules were created, it became clear that one had to parse these programs
(i.e., check for syntactic errors).14 Now, parsing is the act of checking 14 If there are no syntactic errors, the code

generator would typically be called next to
generate the object (machine) code.

for “allowed patterns,” and flagging errors when disallowed patterns are
seen. For instance,
• The identifier of a program variable is comprised of letters followed by

digits or special characters such as _; for example, Head1_ptr.
• Multiple variables can be declared in one line, separated by commas:

int a, b, c, d, e;

• A real number in standard fractional form has an optional sign fol-
lowed by the whole part, a period, and the fractional part; for example,
-1.03.

• A nested block is a collection of matching braces with things between
braces. Matched braces themselves are as follows: { }, {{ }}, {{{ }}}.

• A prototype declaration and a function definition match as follows (ex-
ample):

char func(int, float);

char func(int a, float b) { body }

As soon as one defines a syntax, one has to entertain the notion of
syntactic errors. A compiler relegates the low-level work of checking for
syntactic errors in the declaration of identifiers and numbers to what is
called the scanner, which is nothing but a highly simplified parser. The
results of scanning (when successful) are then fed to the main parser
which checks for the overall program well-formedness, and generates
code.
As an example, a scanner turns something like
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int My_var1, My_Var2, My_Var3;

int My_var4 = -1.03;

int main(){{}}

into (respectively) the following simpler patterns;15 a parser must now15 It stashes away information regarding
which exact identifier is being declared,
which keyword is being processed, etc., in
a data structure called a symbol table for
later reference.

recognize these patterns as being legal:

keyword id, id, id;

keyword id = number;

keyword keyword lpar rpar lbrace lbrace rbrace rbrace

It is now clear that
• A scanner must reject a number of the form 30.-1 and accept a num-

ber of the form -1.03;
• A parser must reject a variable declaration statement of the form

keyword ; id id id„

and must accept something of the form
keyword id, id, id;

• There are usually no a priori limits on the lengths of identifiers or
numbers, nor limits on how many declarations one can have, or even
the level of nesting allowed using braces. Thus,
-12222244343434343.4343434343434343566689991

must be accepted as a legitimate number, and
{{{{{{{{}}}}}}}}

must be allowed to be a legitimate nested-brace structure.
In fact, you can check that the following is a syntactically correct C
program:

int main(){{{{{{{{}}}}}}}}

whereas if you omitted one right-brace, you will get a syntactic error,
essentially saying this:

error: expected ’}’

note: to match this ’{’

int main(){{{{{{{{}}}}}}}

^

1 error generated.

• Even if a system likes to impose limits, it is best to design scanners
and parsers as if they had no such limits.16

16 This is akin to how we define in-
finite sets such as integers, but in
practice may not go beyond a cer-
tain size. The known universe it-
self has only about 1082 atoms, accord-
ing to https://www.universetoday.com/
36302/atoms-in-the-universe/.

https://www.universetoday.com
https://www.universetoday.com


WHAT MACHINES THINK 9

Pattern Classes in Program Syntax

From the aforesaid examples, we can see four classes of patterns arising
in programming languages. Parsers must reckon with these patterns and
declare them to be legal or illegal, as the case may be:

Regular Patterns: We introduce the notion of regular patterns through
examples:
• Finite and fixed-size patterns arise in programming. For instance,

keyword main is just four letters in that order.
• These days, we see password rules: “Must be between four and 12

characters in length, with at least one upper-case and one lower-case
and one special character and one number.” Even these are finite and
fixed-size patterns.

• Identifiers in programming languages consist of a letter followed by
one or more letters, digits, or special characters. All identifiers are of
fixed length (they can’t be empty, but it might be a billion characters
long). We classify them under finite but unbounded.

• We have other interesting recurring patterns as in keyword id, id,

id; The pattern is
“keyword followed by one or more ID+Comma pairs, ending with ; ”
These are also finite but unbounded. The structure of these patterns
is
– a single keyword, followed by
– a finite (but unbounded) number of ID+Comma pairs, and
– terminated by a single ;

• Still another regular pattern that typifies repetition is

01001010010100101001....

Notice that this is a rather boring alternation of 01 and 001.

Context-Free Patterns: We introduce context-free patterns through
examples:
• We have the properly nested pattern, which is context-free:

{{{{{{{{}}}}}}}}

There are places where we have other variants too; for instance
((()))((())())

This is a pattern of perfectly nested parentheses, and has the following
properties:
– The same number of left parentheses as right parentheses, and this

is again a finite but unbounded number;
– “Proper nesting,” i.e., when we sweep the parentheses left-to-right,

then
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* at every intermediate point, the number of left parentheses ’(’

is greater than or equal to the number of right parentheses ’)’.

* At the end of the string, we will have an equal number of paren-
theses of both kinds.

• Yet another context-free pattern—that actually resembles proper nesting—
is:

010010001000010000010000001100000010000010000100010010

Notice that this is a palindrome.1717 Palindromes read the same left-to-right
and right-to-left. An English palindrome
courtesy of a former professor of mine, V.
Rajaraman, is ABLE WAS I ERE I SAW
ELBA. Can you find the midpoint of the
palindrome given here? Hint: look at the
number of 0’s between the 1’s.

Context-Sensitive Patterns: We now introduce context-sensitive pat-
terns through examples:
• The pattern contained in function prototypes is context sensitive:

– A finite but unbounded listing of things in some order, appearing in
the argument list (focus on int and float);

char func(int, float);

– This is then followed by the same listing of things in the actual
function declaration (again focus on int and float):

char func(int a, float b) { body }

– Yet another context-sensitive pattern is

010010001000010000010000001010010001000010000010000001

Note that this is not a palindrome, but rather, some odd-looking
pattern of 0’s and 1’s going up to some length, which is then followed
by a copy of the same pattern without any reversal.

Recursively Enumerable Patterns: The next natural set of patterns
defined in computer science corresponds to the notion of computation it-
self.18 It is too early in this book to be telling you what this class of

18 The term “recursively enumerable” was
coined in an era when actual computers
weren’t around. It means computable—
and not so much whether a function calls
itself (colloquial usage of the term “recur-
sion.”)

Also, some of you may know that
there are other pattern classes such as
recursive sets, which are a special case
of recursively enumerable. The Chom-
sky hierarchy (discussed on Page 12) of-
fers four grammars that match these pat-
tern classes, and so we limit our current
discussions to these four pattern classes. patterns is, other than through some examples. We shall present two

examples (merely for the sake of completeness) and then move on, re-
visiting this issue much later in this book.

Consider the familiar sorting algorithm—any sorting algorithm at all.
We know that given an input array, such a sorting algorithm produces an
output array where all the elements in the input array are present but
(say) in ascending order. Now, think of this as a pattern (A,B) where A
is the input array (written out according to some conventions in binary)
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and B is the output array. Well, we can consider a collection of such (A,B)
pairs as defining one specific example of a recursively enumerable pattern
class.

A more interesting example of a recursively enumerable pattern class
is this: The set of all (M,w) pairs such that M is the text of a program and
w is an input on which program M can be run such that M when run on
w will not infinitely loop. These are the kinds of recursively enumerable
sets that we shall actually be studying later. One interesting fact is that if
we write another program, say P, that attempts to pick out exactly those
(M,w) pairs where M won’t loop on w, then we will find that even the
best such “P” we write has this behavior:
• When given a specific (M1,w1) pair where M1 won’t go into a loop19 on

19 The notion of whether M1 loops on w1 is
well-defined, and has a Boolean answer;
either it would infinitely loop or it won’t.
The issue we are facing is can we write a
computer program that discovers what the
actual answer is?

w1, program P would actually print “yes, it won’t loop” and halt.
• For a general (M1,w1) pair where M1 loops on w1, P itself will go into

a loop (in the process of its checking). You might build special-case
checks into P such as Check for M1 being a particular program such
as “while(1);”. However, in general, you can’t “parse out” all the loop-
ing programs. Your best bet to program P that finds out whether M1

infinitely loops on w1 is to have P run M1 on w1! Well, you know that
such a P will loop in the case that M1 loops on w1.

Recursively enumerable sets contain complex patterns that are in-
timately tied to computations carried out by Turing machines (or
devices equivalent to them). Contrast these two statements:
• The set of all (M,w) pairs where M is a program and w is an

input on which M can be run.
• The same set of (M,w) pairs such that M when run on w will

not loop.
The “such that” part adds a detail directly tied to computations,
and dramatically jacks up the richness of the pattern class. With-
out that part, we merely have the superficial structure of pro-
grams and inputs—not what they can do when “executed.” For
this reason, recursively enumerable sets are also known as Turing-
recognizable sets.

1.4 Simplified Turing Machines as Parsers

In the 1950s and 1960s, scientists working on practical aspects of com-
puter science ended up developing three simplified versions of Turing
machines:
1. Finite automata (FA) are machines defined by Rabin and Scott

around 1957 [40]. These are machines that can help parse regular
languages.

2. Pushdown automata (PDA) defined primarily by Ginsburg [20]
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and Greibach [23] in the early 1960s; these are machines that
can help parse context-free languages. Pushdown automata can be
thought of as finite automata augmented with a single unbounded
stack. As one can imagine, the stack helps match perfectly nested
parentheses using an obvious algorithm.20

20 Push each left parenthesis arriving from
the input stream onto the stack. When-
ever a right parenthesis arrives, pop a left
parenthesis off of the stack to match it. If
the stack is empty in the end, and was
not found empty when a right parenthe-
sis arrives, then we have perfectly nesting
parentheses. 3. Linear bounded automata (LBA) defined by Kuroda [30] and oth-

ers, also in the early 1960s; these are machines that can parse
context sensitive languages.

Note that Turing machines are the ones that define the structure of re-
cursively enumerable languages.
What Programming Restrictions are Modeled by TM Simplifica-
tions? The aforesaid Turing machine simplifications directly map to re-
strictions in programming. We discuss this issue, illustrating it on C.
• Suppose you are asked to program in the C programming language

within function main() where you are only allowed to declare a finite
number of finite variables (variables of finite type such as a bit or a
char that can hold only a finite object). You are not allowed to allocate
any heap storage or engage in any recursive calls of functions. While
this sounds limiting, this is exactly the power of finite automata that
help parse regular languages—very much relevant in practice.

• Now suppose you are given a little bit more freedom and allowed to
employ a collection of functions each of which can allocate only a finite
number of finite variables—but the functions can call each other recur-
sively. Such a programming language gives you the power to describe
push-down automata, with the recursion stack simulating the single
stack of a push-down automaton.21

21 It can be shown that if instead of a
stack we allow an unbounded queue to
be implemented and accessed, we will
straightaway obtain the power of a Tur-
ing machine. One can call these machines
“PQA” standing for push-down queue au-
tomata. Even having two stacks instead
of one gives us the power of a Turing ma-
chine! So the single stack assumption is
crucial to be able to limit the program-
ming power to that of a push-down au-
tomaton. Also, to remain as a PDA (and
not become more powerful) you cannot ac-
cess the stack in an undisciplined manner
(such as reaching into the stack and exam-
ining the items). Instead, you must em-
ploy the push and pop operations.

• Now if we are allowed unbounded memory that can be accessed more
freely (e.g., heap allocated memory or arrays with no a priori bounds),
then programs in such programming languages attain the power of
Turing machines.

• Linear bounded automata can be arrived at by limiting the manner
in which we access this unbounded memory. Specifically, we snip the
tape of the Turing machine beyond the portion on which the initial in-
put is written. This “truncated-tape Turing machine” is what a linear
bounded automaton is.

In summary, the three machine types defined earlier – finite automata,
push-down automata and Turing machines – can be arrived at simply by
limiting one’s ability to program in specific ways. These limitations are
all related to how memory can be allocated or accessed.

Machines, Patterns, and Chomsky’s Grammars

In a completely disconnected thread of work, Chomsky [16] was working
on the topic of formal grammars. These grammars were stratified into
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four types of grammars by Chomsky (called Type-0, Type-1, Type-2, and
Type-3). These grammars correspond to the kinds of patterns/languages
recognized by FA, PDA, LBA, and TM!22 Thus, it was firmly established 22 Recall that Turing machines were dis-

covered in the 1930s, finite automata in
the late 1950s, and the other machine
types in the 1960s.

that formal language machines, patterns and grammars were not isolated
ideas, but facets of something more fundamental and deeper. We will be
revisiting the (so-called) Chomsky hierarchy in Chapter 13.

1.5 Automata and Computability for Lifelong Learning

Automata and computability are essential for your lifelong learning as a
computer scientist.

For instance, it is important to know the theory of deterministic finite-
state automata (DFA) well before you can appreciate the topic of Hidden
Markov Models (HMM) in Machine Learning. Almost all speech recog-
nition systems and word-completion systems in cellphones are HMMs,
which are nothing but DFA with their state transitions governed by prob-
ability values.

You may not be a machine learning fan but a computer networking
fan. Even then, “you can’t escape DFA!” You might want to write a deep
packet inspection facility to detect malware flying over the internet. Well,
you won’t be able to do this effectively unless you know the theory of DFA
as well as efficient implementation methods thereof [33].

You may neither be a machine learning person nor a networking per-
son, but merely interested in processing HTML documents efficiently.
Even in this endeavor, you will need to know the topics of this book rather
well, in order to handle the complex syntax-spaces that need to be cor-
rectly handled during parsing.

The Birthing Struggles of Computer Science The creation of comput-
ers that enjoy their present-day power and prominence did not happen
overnight.
• Before we learned to incorporate operator precedence rules into gram-

mars, various ad hoc parsing methods were in use; these were quite
dreadful and impossible to reliably understand. Around 1962, Knuth
wrote a paper [27] pointing out how early compilers used to replace
each + with a )))+((( and each * with a ))*((, and added enough
compensating parentheses. According to Knuth, this scheme “seemed
to work quite miraculously” (clearly, this is too crude and ad-hoc, and
runs into trouble often).

• In the late 1960s, a spacecraft sent to Venus was allegedly lost [24]
because of a period typed in place of a comma (see §11.8).23 23 We use ‘§’ to mean “Section.”

• Attempts to parallelize finite automata appear even in recent presti-
gious conference papers [36].

In short, there isn’t a better time in computer science to be studying Mod-
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els of Computation. We in fact plan to make your journey ultra pleasant
by taking a hands-on approach through the introduction of the Jove soft-
ware.



2
Defining Languages: Patterns in Sets
of Strings

Chapter Gist: We begin with how strings are formed from
symbols over an alphabet (§2.1), and how languages (sets of
strings) can be defined and operated upon (§2.2). We assume ba-
sic knowledge about sets (see §A.1 for a refresher). We denote
whole numbers by Nat (usually written N = {0,1,2, . . .}) and pos-
itive and negative whole numbers by Int (usually written Z =
{0,1,−1,2,−2,3,−3, . . .}).

2.1 Symbol, Alphabet, String, Language

Four notions are basic to our study of computations: Symbol, Alphabet,
String, and Language.

2.1.1 Symbol

Symbols are things with which humans and machines communicate with
other humans or machines. They are taken to be primitives in each con-
text. In a very general sense, examples of symbols include English char-
acters, entire English words (when digging deeper into the characters in
the word is irrelevant in a context), musical symbols, flashes of light, or
even smoke signals. We hereafter require symbols to be strings of
length 1, i.e., single characters such as a, b, 0, or 1. In our Python encod-
ings in Jove, strings of unit length will be regarded as symbols.1 1 The manner in which we quote a string

does not matter; thus, ’a’ and "a" mean
the same.

2.1.2 Alphabet

An alphabet is a finite and non-empty set of symbols. We will use Σ to
denote an alphabet. In each context, we will pick an alphabet and then
stick with it (i.e., we usually do not change the alphabet in the middle of
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a construction). Here are examples of alphabets:
• Σ= {0,1} in mathematics.

In Python, this alphabet will be written {"0","1"}

• Σ= {a} in mathematics.
In Python, this alphabet will be written {"a"}

• Σ= {a} is an example of a singleton alphabet.

An alphabet is like your entire keyboard, and each symbol is like
one key.

2.1.3 String or Word

A string or word is a finitely long and possibly empty sequence of sym-
bols.2 Strings are read left-to-right.3 An empty string is denoted ε in2 In this book, we never deal with infi-

nite strings. All the machines we build
operate on finite strings. In many re-
search areas (especially Formal Methods),
automata over infinite words are impor-
tant; one popular class of such a machine
is that of Büchi automata.

3 Unlike in languages such as Arabic
where strings may be read right-to-left.

mathematics. In Python, we express an empty string as either "" (open-
ing and closing double-quotes) or as ” (opening and closing single-quotes).
By definition, the length of the empty string ε is 0.

A string is said to be “over” an alphabet. Thus the string “ateAnAp-
ple” consists of eight distinct symbols, namely {a, t, e, A,n, p, l}.
This string is over an alphabet that includes these eight charac-
ters. Any string could be considered to be over a larger alphabet
than the set of characters present in it; thus, "dad" could be viewed
to be over Σ = {a,b, c,d}. This is because the user may not choose
to press some of the keys. But all the symbols in a string must be
present in the alphabet (or, your keyboard). Note: Instead of say-
ing “string s is over alphabet Σ,” we may instead say “alphabet Σ
underlies string s.”

We concatenate two strings to obtain a new string. Concatenation is
expressed through juxtaposition. For example, ab concatenated with cde
is written ab cde and results in string abcde. In Python, "ab" + "cde"

denotes string concatenation, resulting in "abcde".

Exercise 2.1.3, Language Operations
1. As per our definitions, can Nat be an alphabet? Why or why not?
2. Consider the string "Hello there!". What are the symbols present

in this string, and what is the smallest alphabet underlying this
string?

3. Are all palindromes the concatenation of a string with its reverse?
If not, why not? �
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2.1.4 Various Notions of Zero and One

In mathematics, the notion of Zero and One (or “Unit”) are fundamental.
The basic idea is that when you have an operator resembling “multiplica-
tion,” then:
• multiplication of x by Zero yields Zero for any x, while
• multiplication of x by One yields x.
In this book, we shall help you see what the Zero is and what the One is
for various situations (i.e., different algebraic systems). This will serve
you as a powerful memory aid for many language-theoretic rules that are
otherwise difficult to intuitively understand. In almost all our presenta-
tions, we will show you how Zero and One work for numbers, and then
contrast it with how they “ought to work” for language-theoretic ideas.

Zero and One for Nat, Int, and Real: We are all familiar with the
following over Nat, Int, and Real: 0×65= 0; 65×0= 0 (multiplication is
commutative); 1×65 = 65; −65×1 = −65; 0.0×0.557 = 0.0; 0.557×1.0 =
0.557; π×1=π; and 0.0×π= 0.0. We state these obvious facts to motivate
similar thinking for strings and languages.
• One for string concatenation: If string concatenation is viewed as

multiplication, then ε must be the One element, because:
– εab = abε= ab
– In Python, "" + "ab" = "ab" + "" = "ab".

• Zero for concatenation: There is no Zero for string concatenation
(no “Zero string” such that when any string is concatenated with it, we
get back the Zero string).

Exponentiation: Now that we are viewing concatenation as multipli-
cation, and since it is quite natural to view repeated multiplication as
exponentiation, we will introduce the idea of exponentiation into the al-
gebra of strings, as follows:
• For a symbol a, we have a2 = aa, a3 = aaa, etc.
• For a string ab, we have (ab)2 = abab, and (ab)3 = ababab.
• As another example, (abacaea)2 = abacaeaabacaea.
• In Python, we can write these as follows:

– "a" * 2 = "aa"

– "a" * 3 = "aaa"

– "ab" * 2 = "abab"

– "ab" * 3 = "ababab"

– "abacaea" * 2 = "abacaeaabacaea"

Exponentiation by Zero: We know that for any real number x, we
have x0 = 1. This is because we want to support a recursive definition for
exponentiation. For instance,
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• xn = x× xn−1

But, as in all good recursive definitions, we must specify the basis case.
Thus, we fix
• x0 = 1.
This way, we can calculate things like 43:
• 43 = 4×42;

= 4×4×41;
= 4×4×4×40;
= 4×4×4×1;
= 64.

In other words, picking x0 to be 1 is crucial for a recursive definition of
exponentiation to work out. In the same vein, exponentiation of a string
0 times must yield the unit for string concatenation, which is ε. Let us
check this out:
• s0 = ε (exponentiating s 0 times yields the unit of concatenation for

strings, namely ε)
• sn = ssn−1 (“s concatenated with an n−1-fold repetition of s”);
• Thus, for string a,

– a3 = aa2;
= aaa1;
= aaaa0;
= aaaε;
= aaa.

Clearly, this notion works out smoothly for the string algebraic system
also.

Exercise 2.1.4, Zero, One, Exp
1. Consider a string s = abacaca. Now consider the string exponen-

tiation s4. How many a’s are there in s4? How about b’s, c’s and
d’s?

2. Let Nat be regarded as the universal set in some domain of dis-
course. Now consider subsets of Nat, and let us view set inter-
section of such sets as “multiplication.” In that case, what is the
One element of this multiplication operator? What is the Zero el-
ement? Recall that for any s ⊆ Nat, these One and Zero elements
must satisfy:

(a) s∩One = s
(b) s∩Zero = Zero �

2.2 Language

A language is a possibly empty and possibly infinite set of strings (each
string is finite).
Two examples:
• EmptyLang =;
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In Python, EmptyLang = set({}) (or even set())
• M ylang = {ε,aa,abc}

In Python, MyLang = {"", "aa", "abc"}

• Using the notation of set builder, we can describe languages more con-
veniently.

• Example: Let us specify all strings of “mindless repetitions” of the 01
pattern:4 4 Note that ( and ) are not part of our al-

phabet; they are used to group 01 for the
purpose of applying the exponent i.L01Rep = {(01)i : i ≥ 0}

L01Rep = {ε,01,0101,010101,01010101, . . .}
• As another example:

La_lt_b = {aib j : i, j ≥ 0,and i < j}

We list some elements: La_lt_b =
{b,abb,aabbb,abbb,aabbbbb,bbbb,bbbbb, . . . ,a5b55, . . .}

Exercise 2.2, Languages
1. Why is ε not a member of La_lt_b?
2. Which inequality in the definition of La_lt_b would you alter in

order to induce ε into this language? �
Convention: By saying i, j ≥ 0 we will tacitly assume that i and j are
natural numbers. Since for every natural number p there is a natural
number q > p, we can easily conclude that La_lt_b is infinite.

Finite Approximations of Infinite Languages in Python: Note that
most languages discussed in this book are infinite, and hence cannot be
printed out in their entirety. Thus, when we study these languages in
Python using Jove, we approximate these languages by printing out all
the strings under a given length. This gives a rough idea of what the
language is about, without seeing all of its content.5 5 Similar to how we write down π =

3.1415926 even though that is only an ap-
proximation of π.

Let us employ the set builder notation in Python and define a finite
approximation of the La_lt_b. We will call it La_lt_b_9 to capture the
fact that this language will include all strings of length 9 and under. Note
that La_lt_b_9 is being defined below using Python’s set comprehension
operation.

Mylang = {’’, ’aa’, ’abc’} # a language over Sigma = {’a’,’b’,’c’}

La_lt_b_9 = { "a"*i + "b"*j

for i in range(10) for j in range(10) if i < j }

>>> La_lt_b_9 # Approximated to <= 9 i’s and j’s
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{’aaaaaabbbbbbbbb’, ’abbbbb’, ’aaabbbbbbbb’, ’aabbbbb’, ’aabbb’,

’aaaabbbbbbbbb’, ’bbbbbbbb’, ’aaabbbbbbbbb’, ’aaabbbbbbb’,

’aaabbbbb’, ’bbbbbbb’, ’abb’, ’aaaaaaaabbbbbbbbb’, ’abbbbbb’,

’aaaabbbbbb’, ’bbb’, ’aaaabbbbbbb’, ’aabbbbbbb’, ’aaaabbbbb’,

’aaaaabbbbbbbbb’, ’aabbbbbbbbb’, ’abbbbbbbbb’, ’aaaaaabbbbbbbb’,

’abbb’, ’bb’, ’aaaaaabbbbbbb’, ’abbbbbbb’, ’aaaaaaabbbbbbbb’,

’aabbbbbb’, ’aaaaabbbbbbbb’, ’aaaaabbbbbbb’, ’bbbbbbbbb’, ’bbbbb’,

’aaabbbb’, ’b’, ’abbbb’, ’abbbbbbbb’, ’bbbbbb’, ’bbbb’, ’aaabbbbbb’,

’aaaabbbbbbbb’, ’aaaaabbbbbb’, ’aabbbbbbbb’, ’aaaaaaabbbbbbbbb’,

’aabbbb’}

Exercise 2.2, Languages (Python)
1. Write a one-line list comprehension in Python to generate the set

of all substrings of s="abc". You can assume that s="abc" is a
statement issued prior to your set comprehension.

2. Write down a one-line set comprehension in Python to generate a
set of strings of the following form:66 Your printout may list the different

lengths in a “strange” order, but as you re-
call, the order within sets does not matter.

{’’, ’((((()))))’, ’(((())))’, ’()’, ’((()))’, ’(())’}

We want this set to include all strings consisting of n left paren-
theses followed by n right parentheses for 0≤ n ≤ 5. Note that for
n = 0, we are generating ε (or ’’ in Python).

3. Is this true in Python for two strings p and q?7 Explain! Argue (in7 Notice that str[::-1] is an idiom to re-
verse string str. For details, please con-
sult any Python tutorial that discusses the
topic of strings adequately.

one paragraph) why this works for any two strings p and q.
(p+q)[::-1] == (q[::-1] + p[::-1])

4. In a sentence or two, describe the contents of L1, L2, and L3 in
English.

L1 = { (n)n : n ≥ 0 }

L2 = { w : w is a string of balanced parentheses}

L3 = {w : w has an equal number of parentheses}.

Note that the alphabet consists of the two symbols ( and ). By
“balanced parentheses,” we mean that in any string over ( and
), every occurrence of a right parenthesis must be matched by a
left parenthesis that appears earlier in the string. In your answer
you should also mention all possible language inclusions that exist
among L1,L2 and L3 (i.e., if Lx ⊂ L y for x, y ∈ {1,2,3}, mention that
in your answer). �

2.2.1 Language Concatenation

We begin with the notion of Language Concatenation. It is defined as
follows. For two languages L1 and L2, their concatenation, written L1L2,
is
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L1L2 = {xy : x ∈ L1 ∧ y ∈ L2}

Let us use Python to illustrate this idea:

def cat(L1,L2):

"""Concatenation of two languages.

If A = set([’ab’, ’bc’]) is one language,

and B = set([’11’, ’ab’, ’22’]) is another language,

then cat(A,B) returns set([’abab’, ’bc22’, ’ab11’, ’ab22’,

’bcab’, ’bc11’])

"""

return set({x+y for x in L1 for y in L2})

2.2.2 The Zero and One for Language Concatenation

Viewing language concatenation as multiplication, what is the Zero (L
concatenated with it gives back Zero) and One (L concatenated with it
gives back L)?

Zero of a Language for Language Concatenation: It so turns out
that the empty set (empty language) ; is the Zero of language concate-
nation. This is because
• The language concatenation ;L as well as L; yields ;. Here is why:

– Look at the definition of concatenation:

L1L2 = {xy : x ∈ L1 ∧ y ∈ L2}

– Now, if L1 is ; or L2 is ;, the result is ; (we cannot “find an x ∈;”).

One of a Language for Language Concatenation: It so turns out
that the set {ε} is the One of language concatenation. This is because the
language concatenation {ε}L as well as L{ε} gives back L.

Exercise 2.2.2, Zero and One for Concat
1. What is the difference between {ε} and {;}? Which of these is a

language over the alphabet {2,3}?
2. Prove that {ε} is indeed the One element for language concate-

nation by showing that it left-multiplies or right-multiplies any
language L to give back L. �

2.2.3 Zero and One of Language Concatenation in Python

The aforesaid ideas are now more crisply introduced, also providing Python
encodings.
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• Empty Language or “Zero” of Language Concatenation: ; or {}
We call it the “zero” language because it is like the 0-element for con-
catenation.

def Phi():

"""This is the ZERO language for concatenation

(concatenation is viewed as multiplication)

"""

return set() # Don’t write it as {} because

# this is ambiguous - dict or set?

• Unit Language, or “One” of Language Concatenation: The Unit lan-
guage is {ε}.

def Unit():

"""This is the UNIT language for concatenation,

when concatenation is viewed as multiplication.

"""

return {""} # Set with epsilon

2.2.4 Exponentiation of a Language

We now proceed as before, and define the exponentiation of a language,
which simply means “repeated concatenation” of a language.

Language Exponentiation:
• We have the required basis case:

L0 = {ε} , the Unit language
• We also have the general recursive case:

Ln = LLn−1

Hugely important observation: We observe that L0 is the unit lan-
guage {ε}. Note that this Unit language is generated by the Python func-
tion Unit().

• This assertion is true of any language L—even for empty language ;.
• Note that the Zero language ; is generated by the Python function

Phi().

• Thus we have ;0 = {ε}
The zeroth exponent of the empty language (zero language) is the unit
language.8

8 How do we read and unravel this? Here
is how. You may protest “but, but..” 00

is undefined in mathematics whereas we
can take the zeroth exponent of the Zero
language and get back the One language??

Fear not! That is fine. We are not tak-
ing number 0 raised to number 0, but only
Language Zero raised to Number Zero.
This does not get into the technical rea-
sons as to why 00 is undefined in mathe-
matics.

Why is 00 undefined in mathematics?
Consider a series that converges toward
0. If you let it converge to 0 and then ex-
ponentiate, you will be tempted to say “it
must be 0.” If you take the intermediate
series elements and raise it to 0, you will
be tempted to say “it must be 1.” It can’t
be both! This is well-explained in Prof. Pe-
ter Alfeld’s page http://www.math.utah.

edu/~pa/math/0to0.html.

http://www.math.utah.edu
http://www.math.utah.edu
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2.2.5 Python Encoding of Language Exponentiation

def exp(L,n):

"""Exponentiate a language.

If A = set([’ab’, ’bc’]) is a language, then

exp(A,2) --> set([’abab’, ’bcab’, ’bcbc’, ’abbc’])

"""

return Unit() if n == 0 else cat(L, exp(L, n-1))

Exercise 2.2.5, Languages (review)
It is crucial that you do the following exercises before you move onto the
next chapter.
1. Suppose Σ = {0,1}—commonly called “the alphabet” is treated as

a language. All alphabets are special cases of languages; there is
nothing surprising here! The alphabet Σ = {0,1} is a language of
two strings, each of length 1. Now, write out the contents of the
following language exponents in their entirety. To avoid confusion,
we have written out the answer for one case:

(a) Σ2 = {00,01,10,11}
(b) Σ0 =?
(c) Σ1 =?
(d) Σ3 =?

2. Suppose a language M = {0,10} is given. What are the following
language exponents? We work out one case in detail for you.

(a) M2 = {00,010,100,1010}. Here is the explanation:
• M2 = MM
• This means we must select two random strings from M

(repetitions allowed) and concatenate them.
• The random selections can yield

– 0 and 0, whose concatenation is 00;
– 0 and 10, whose concatenation is 010;
– 10 and 0, whose concatenation is 100;
– 10 and 10, whose concatenation is 1010.

(b) M0 =?
(c) M1 =?
(d) M3 =?

3. On Page 20, we defined three languages L1, L2, and L3. Answer
these questions with respect to these languages.

(a) List the three shortest strings in L3
1.

(b) List a string of length 6 in L2 that is not in Ln
1 for any n.

(c) What is the shortest string common to L0
1, L0

2, and L0
3, and

why? �
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2.2.6 Union and Intersection of Languages

Language union and intersection are nothing but set union and inter-
section:

L1 ∪L2 = {x : x ∈ L1 ∨ x ∈ L2}

L1 ∩L2 = {x : x ∈ L1 ∧ x ∈ L2}

def lunion(L1,L2):

"""Return the language union of L1 and L2."""

return L1 | L2

def lint(L1,L2):

"""Return the language intersection of L1 and L2."""

return L1 & L2

Notes: (1) Language complementation is defined only in Chapter 3, as
we need to define the notion of a universal set over an alphabet before we
can perform complementation. (2) One may consult §B.1.1 to see all the
Jove functions corresponding to language operations.

Exercise 2.2.6, Languages (identities)
1. On Page 20, we defined three languages L1, L2, and L3. Answer

these questions with respect to these languages.
(a) Does L1 ∪L2 match any of these three languages? Which

one, why?
(b) Repeat for L1 ∪L3 and L1 ∩L2.

2. (This question can be answered with the hints given below, even
though we are introducing “star” officially only in the next chap-
ter.) Let us define a function star with the following definition:

(a) star(L,0)= L0

(b) star(L,1)= L0 ∪L1

(c) star(L,2)= L0 ∪L1 ∪L2

Now write down the contents of star(L,n) for various L and n.
Again, to avoid confusion, we have written out the answer for
some number of cases:

(a) star({0,1},2)= {ε,0,1,00,01,10,11}
(b) star({0,1},0)=?
(c) star({0,1},1)=?
(d) star({0,1},3)=?
(e) star({0,10},2)= {ε,0,10,00,010,100,1010}
(f) star({0,10},0)=?
(g) star({0,10},1)=?
(h) star({0,10},3)=?
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(i) star({0,1,00,ε},2)= {ε,0,1,00,01,000,10,11,100,001,0000}
(j) How many elements are there in star({0,1},n)? Explain

your answer.
(k) Suppose we define

star({0,1})= star({0,1},∞)

That is, when we drop the second argument of the over-
loaded star function, we assume that its meaning is the
same as the star function of two arguments where the sec-
ond argument is set to ∞.
Question: How would you describe one random string in
star({0,1})?
Think of a general way of characterizing it; here is a start:
An arbitrary string that is finite/infinite and each symbol
in the string is a . . .. �

2.3 Useful Results, Slippery Roads

We now discuss many situations that trip up new students on
these topics. It is crucial that you study these situations. To
help you think through these items, we present them as exercises.

Exercise 2.3, Slippery concepts
1. Show that LE is the set of even-length strings over alphabet {0}.

LE = {02i : i ≥ 0}
2. Show that LE = {(00)i : i ≥ 0} (the parentheses are used to group

the two 0’s and are not part of the alphabet).
3. Let LO = {02i+1 : i ≥ 0}. Show that {0}∗ = LO ∪LE .
4. Describe this language in English:

Eq01 = {0n1n : n ≥ 0}
5. Which of the following languages is Eq01 equal to, and why/why

not:
(a) L1 = {0i1i : i ≥ 0}
(b) L2 = {0n : n ≥ 0} {1n : n ≥ 0}
(c) L3 = {00i11i : i ≥ 0} (the exponentiations apply to only the

single 0 and the single 1 respectively)
(d) L4 = {00i11i : i > 0}
(e) L5 = {00i11i : i ≥ 0}∪ {ε}
(f) L6 = {0i1 j : i, j ≥ 0, and (i = j)}

6. Consider the language
L7 = {0i1 j : i, j ≥ 0}

Is it true that
L7 = {0i : i ≥ 0} {1i : i ≥ 0}?
Explain, providing reasons.
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7. Someone proposes that the complement of L6 (written L6) is de-
fined as follows.99 Chapter 3 is where we “officially” define

language complementation. L8 = {0i1 j : i, j ≥ 0, and (i 6= j)}.
Assume that the alphabet is Σ= {0,1}.

(a) If true, argue why.
(b) If not true, list four strings in L6 that are not in L8.
(c) Describe all the strings in L6 −L8 (set subtraction of L8

from L6), dividing them up into conveniently specifiable
classes (explain each class first in English, and then using
set comprehensions).

(d) Are there strings in L8 that are not in L6? Explain. �



3
Kleene Star: Basic Method of Defin-
ing Repetitious Patterns

Chapter Gist: We begin with star, one of the most important of
language operators (§3.1). Using star, we define the universal set
of finite strings (§3.2) and then language complementation with
respect to the universal set (§3.3). This is followed by other oper-
ators, namely symmetric difference, reverse, and homomorphism
(§3.4). We introduce two ways of enumerating strings from a lan-
guage, namely lexicographic and numeric orders (§3.6).

3.1 Three Ways to Describe Star

Given any language L, there is an operator called star (written L∗) that
obtains a new language derived from L. Called the “star of L,” this lan-
guage amounts to the repeated selection of strings from L followed by
concatenation.1 Star is an extremely important language builder, and 1 Also known as the Kleene-star in honor

of the mathematician Stephen Kleene.most of this chapter is devoted to its deep study. After we present star,
we also introduce a few additional language operators in this chapter.

We present three ways, all equivalent, to define star:2 2 Your experience solving the exercise on
Page 24 will come in handy for you now! It
is the same star operator mentioned there.Definition 3.1:

Star, Definition 1: L∗ = L0 ∪L1 ∪L2 ∪ . . .

Star, Definition 2: L∗ =
∞⋃

i=0
Li

Star, Definition 3: L∗ = {x : ∃k ∈ Nat, x ∈ Lk}

Definition 2 is just a compact way of denoting Definition 1. Definition 3
says
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Choose some k from Nat. Then, one string you may choose to
include in L∗ is a member x of Lk. Include all such x.

The role(s) of the Star operator

In our studies, star serves two (related) purposes that are now elaborated:
Capture the notion of zero or more repetitions: From Definition 1,
we can see that star helps perform concatenations of a language L with
itself. That is, we can make i ∈ Nat random selections of strings from L
(repetitions allowed) and concatenate those strings.
Define the universal language: Suppose we have a keyboard with one
key, say 1, and we are asked to tap it a finite number of times. We would
generate all these strings: {ε,1,11,111,1111, . . . , }. This set would contain
string 1k for any k ≥ 0. We can consider this to be a universal language
generated for the alphabet Σ = {1}. This language is nothing but {1}∗

according to the definitions of Star just now introduced.
If we had two keys, i.e. Σ= {0,1},3 we would generate3 Please note that Sigma∗ is not the same

as the language N plicate defined as fol-
lows:

N plicate = {ai : a ∈Σ, i ≥ 0}
Reason: In N plicate, we pick an a ∈

Σ and i ∈ Nat, and then repeat that a i
times. Thus, N plicate has 00000, 1111,
etc., but not even 01 or 10. In Σ∗, star
allows you to change the selection of a
at every step, and so 01, 010100, etc. are
present in it.

Sigma∗ = {ε,0,1,00,01,10,11,000,001,010, . . . ,111, . . . , }

.

Σ∗ is the universal language over the alphabet Σ.

3.2 Additional Definitions and Properties of Star

Let us define the notion of “star upto n” (written L∗
n) as follows:

L∗
n = Ln ∪ L∗

n−1

with
L∗

0 = {ε}

The following Python function encodes L∗
n in Jove.44 Keep in mind that Python may list

strings in an order that depends on its in-
ternal implementation details.

def star(L,n):

"""Star a language, bounding the iteration to the given n.

If A = set([’ab’, ’bc’]) is a language, then

star(A,2) --> set([’abab’, ’bcbc’, ’ab’, ’abbc’, ’’,

’bc’, ’bcab’]).

"""

return Unit() if n == 0 else lunion(exp(L,n), star(L,n-1))

Unfortunately, L∗ = L∗∞ cannot be5 computed using Python, as it requires5 At least straightforwardly...
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modeling the notion of an infinite exponent of a language.

Hugely important observation: We observe (once again) that
L0 is {ε} for any language L. Now, since L∗ = L0 ∪ . . ., we have
these facts:
• ε ∈ L∗ for any language L.
• In particular

ε ∈;∗

because ; is also a language (it is the Zero language).
• But note that ;1 =;, and so ;i =; for all i ≥ 1.
• Thus, we can assert

;∗ = {ε}

• Thus we have
;∗ = {ε}
or in other words,
The star of the empty language (zero language) is the unit lan-
guage.

Generating All Strings Over an Alphabet via Star: A moment’s
reflection should convince you that using star, one can generate all pos-
sible strings over an alphabet. Let us see this explicitly through some
experiments:

>>> Sig01 = {’0’,’1’} # Initialize the alphabet

>>> star(Sig01,0)

{’’}

>>> star(Sig01,1)

{’’, ’0’, ’1’}

>>> star(Sig01,2)

{’’, ’0’, ’00’, ’01’, ’1’, ’10’, ’11’}

>>> star(Sig01,3)

{’’, ’0’, ’00’, ’000’, ’001’, ’01’, ’010’, ’011’, ’1’, ’10’,

’100’, ’101’, ’11’, ’110’, ’111’}

Observe that with respect to the alphabet Sig01 defined to be {’0’,’1’},
each invocation of star with n as the second argument generates all pos-
sible strings over the alphahet {0,1} of length up to n. The mathematical
definition of Star corresponds to setting n to infinity.

{0,1}∗ contains all possible finite-length strings over 0 and 1.

Two more examples to drive the point home:
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1. Consider a language L = {10,01,100} and let’s define M = L∗. Again,
it is easy to see that M is a union of Li for various i, and so each
string in M is finite (obtained by concatenating L with itself a fi-
nite number of times). However, M itself is an infinite set because
there is no upper limit to the length of strings within M. In other
words, for every string s ∈ M, there is a longer string s

′ ∈ M.
2. Finally, consider language N = M∗ = L∗∗ . Now, N consists of

strings from M i for various i. Since every string in M is finite,
strings in M i are also finite. Thus even N has only finitely long
strings.

Here are additional fun facts (some are in the exercise below):

L∗ = L∗∗ for any language L (proved in §3.5.1).

Exercise 3.2, Star properties
1. Describe the language below by listing six different strings from it.

Pick as many different kinds of strings—i.e., avoid obtaining the
next string simply by putting parenthesis around your previous
selection:

L2 = {w : w ∈ { ( , ) }∗, and w is well parenthesized}

2. Consider the language
L7 = {0i1 j : i, j ≥ 0}

Is it true that
L7 = {0}∗ {1}∗?
Explain, providing reasons.

3. There are exactly two languages (call them L1 and L2) over any66 Recall that alphabets cannot be empty.

alphabet Σ such that their stars are finite. Which are these lan-
guages?

4. Let our alphabet be Σ= {0,1}. Let wR be the reverse of a string w.
Consider these languages:
LP0 = {w : w ∈Σ∗}
LP1 = {wwR : w ∈Σ∗}
LP2 = {wawR : a ∈ ({ε}∪Σ), w ∈Σ∗}
LP3 = {wawR : a ∈Σ, w ∈Σ∗}
Lww = {ww : w ∈Σ∗}

(a) Which language (LP1 through LP3) denotes the set of all
palindromes over Σ?

(b) Which of these languages are regular? context-free? context-
sensitive? Explain at a high level, using the intuitions pre-
sented in Chapter 1 (no formal proofs are necessary).77 Have a dialog with your instructor or TA

and obtain some hints. 5. Let us define these languages, where ( and ) are meta symbols (for
grouping) and not part of the alphabet:

LE = {(00)i : i ≥ 0}
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and
LO = {0(00)i : i ≥ 0}

Let LP2 be as in Question 4. Answer these questions:
(a) Is LE ∪LO = {0}∗? Explain.
(b) Is L = LL true for any of the above languages taking the

place of L? Explain.
(c) Is L = L∗ true for any of the above languages taking the

place of L? Explain.
(d) Is LOLO = LE? If so, explain. If not:

i. What is (LOLO)−LE?
ii. What is LE − (LOLO)?

(e) Is L∗
E = {0}∗? Explain.

(f) Is L∗
O = {0}∗? Explain.

6. Write a proof outline for why L∗ = L∗∗ . Your approach should be
as follows:
• We have to argue language equality of the form A = B.
• Since languages are sets, this boils down to showing A ⊆ B and

B ⊆ A.
• Argue this through extensionality; e.g., for A ⊆ B, pick an x ∈ A

and argue that x ∈ B follows. �

3.3 Language Complementation

Languages are sets, and therefore language complementation is sub-
traction of the language from the universal language over an alphabet.
We already defined the notion of all strings formable over a certain al-
phabet, namely Σ∗, and referred to it as the universal language for a
given Σ.

Thus, the complement of a language L is

L = {x : x ∈ (Σ∗−L)}

which is all the strings typeable on a keyboard with keys in Σ that
do not fall within L.

Given that complement involves star, we must finitely approximate com-
plement before we can express it directly in Jove:

def lcomplem(L, alph, n):

"""Complement L relative to alphabet alph. alph is also

given as a set of strings. We subtract from the "star

up to n" of the alphabet alph, the language L.

"""

return lminus(star(alph, n), L)



32 AUTOMATA , COMPUTABILITY: PROGRAMMER ’S PERSPECTIVE

3.4 Other Language Operations

There are many more useful language operations, and we now discuss
them at a high level.

3.4.1 Symmetric Difference, Subtraction

Given the definition for complementation, we can now define the sym-
metric difference of two languages:

(L1 −L2)∪ (L2 −L1)

where L1−L2 is defined to be L1∩L2 and L2−L1 is defined to be L2∩L1.
Language subtraction can also be defined as

L1 −L2 = {x : x ∈ L1 ∧ x ∉ L2}

These definitions can be compactly written in Python as shown below:

... return L1 ^ L2 # for symmetric difference

... return L1 - L2 # for subtraction

Exercise 3.4.1, Language puzzles
1. Let Leqabc be the subset of {a,b, c}∗ where each s ∈ Leqabc has

the same number of a, b, and c. Let Las = {a}∗, Lbs = {b}∗, and
Lcs = {c}∗.

(a) Describe the language Lx = Leqabc ∩ (LasLbsLcs) in En-
glish.

(b) Describe Lx through set comprehension.
(c) Describe L y = Leqabc ∩ (LcsLasLcsLbsLcs) in English. �

3.4.2 Reverse of a Language

Reversing a language reverses every string in the language. rev(L) =
{rev(s) : s ∈ L}

# In Python, there isn’t direct support for reversing a string.

# The backward selection method implemented by S[::-1] is what

# many recommend. This leaves the start and stride empty, and

# specifies the direction to be going backwards.

# Another method is "".join(reversed(s)) to reverse s
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def revs(S):

"""Reverse a string.

revs(’ab’) --> ’ba’

"""

return S[::-1]

def revl(L):

"""Reverse a language.

revl(set([’ab’, ’bc’])) --> set([’cb’, ’ba’])

"""

return set(map(lambda x: revs(x), L))

3.5 String/Language Homomorphisms

Sometimes we want to change the strings in a language in simple ways.
Imagine wanting to mildly obfuscate messages: instead of sending Hello

there, you’d send Ifmmp!uifsf by shifting all letters by one position in
their ASCII encodings. Now, given a homomorphism from Σ∗ to codomain
Γ∗, it can be applied to a language L ⊆Σ∗ to produce a language G ⊆ Γ∗.
Language G is defined in the obvious manner: “apply the homomorphism
to every string in the language”. Here, h is overloaded in its use, and
becomes the language homomorphism function h(L)= {h(x) : x ∈ L}.

These can be accomplished through functions shomo and lhomo (lan-
guage homomorphism) below:

def shomo(S,f):

"""String homomorphism wrt lambda f.

Suppose hm = lambda x: chr( (ord(x)+1) % 256 )

Then shomo("abcd",hm) --> ’bcde’

"""

return "".join(map(f,S))

def lhomo(L,f):

"""Language homomorphism wrt lambda f.

Suppose rot13 = lambda x: chr( (ord(x)+13) % 256 )

Then lhomo("Hello there", rot13) --> ’Uryy|-\x81ur\x7fr’

"""

return set(map(lambda S: shomo(S,f), L))

Basically, we are mapping a lambda over the given string. This lambda
takes the ordinal position of x, adds 1 (modulo 256), and then projects it
back to the character value. This is an example of a homomorphism.
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In general, string homomorphisms are string-to-string mappings. Given
a string belonging to Σ∗ (a “string over Σ∗”), a function h from domain Σ∗

to codomain Γ∗ (i.e., strings over alphabet Σ to strings over alphabet Γ)
is called a string homomorphism if it respects two conditions:

• h(ε) = ε. This means that the empty string must be mapped to the
empty string.

• h(xy)= h(x)h(y). This means that if you arbitrarily pull apart a string
xy into two pieces x and y (e.g., if xy = "Hello there", x could be "Hell"
and y could be "o there"), apply the homomorphisms separately to x
and y and put the results back through concatenation, you will get the
same results as applying the homomorphism to the entire string. In
our example,

– h applied to "Hell" returns "Ifmm"
– h applied to "o there" returns "p!uifsf"
– Concatenating "Ifmm" and "p!uifsf" obtains "Ifmmp!uifsf"—the same

as applying it to the non-pulled-apart "Hello there".

Crux of homomorphisms: The only reason why homomorphisms may
not work in the manner illustrated with "Hell" and "o there" is if there are
special-case rules. Suppose h were a strange function defined as follows:
• h("Hel") = "ooo"
• h("Hell") = "Ifmm"
• h("l") = "z"
• Then, the concatenation of h("Hel") and h("l") gives "oooz" whereas

h("Hell") gives "Ifmm".
This is because homomorphisms are string-to-string mappings where the
strings could be of length more than one. When defining such homomor-
phisms for strings of length above 1, one must take care not to “conflict”
in mappings. We can observe this conflict above: "Hel" is mapped to "ooo"
while "Hell" is mapped to "Ifmm" which does not respect the fact that
mapping the first three characters is done disregarding how the mapping
over the first four characters proceeds.

In contrast, mappings defined over strings of length 1 (i.e., charac-
ters) are guaranteed to be homomorphisms, as in the homos function illus-
trated above. This is because there can’t be such conflicts on substrings.88 Single characters don’t have substrings

other than themselves or ε; and generally
one does not map ε to other than ε.

Here are some additional examples:
• Suppose you provide a keyboard with two keys (say 0 and 1) to some-

one, but are interested only in listening to the “tap” “tap” sound. You
can then map both 0 and 1 to t (for tap). This is a homomorphism, and
helps forget what is being typed (as if you are listening to the person
from the adjacent room).

• Another handy homomorphism is when 0 is changed to a and 1 to b.
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This is another simple homomorphism that maps strings over alpha-
bet {0,1} to strings over alphabet {a,b}.

Exercise 3.5, Homomorphism
1. Is string reversal a homomorphism? Explain your answer.
2. Assume Σ{a . . . z}. Define a function f that maps a to d, b to e,

. . ., w to z, and then x to a, y to b, z to c, etc. (every character is
mapped two higher, in a modulo fashion). The same function also
maps ab to c. Is f a homomorphism? Explain your answer.

�

3.5.1 Taking Star Repeatedly

Theorem 3.5.1: For any language L, L∗∗ = L∗.

Proof: Consider Definition 3 for Star on Page 27, repeated below for
convenience:

L∗ = {x : x ∈ Lk for some k ∈ Nat}.

Using this definition, we can define L∗∗ :

L∗∗ = {x : x ∈ L∗k
for some k ∈ Nat}.

So now, what is L∗k? Let us use • to denote concatenation. Then, it
is an k-ary concatenation (for some k ∈ Nat) that can be expressed as
L∗k = L1 •L2 • . . .Lk

where each L i in this concatenation expression is {x : x ∈ Lm for some m ∈
Nat}

Proof that every x ∈ L∗ is also in L∗∗ : A string x is in L∗ if x is in Lk

for some k ∈ Nat. Such an x is also in L∗∗ because we can take the m in
the definition of L1 to be k and the rest of the m’s in the definitions of L2

through Lm to be 0. Then we will satisfy the equality k = k+0+0+ . . .+0.

Proof that every x ∈ L∗∗ is also in L∗: Now let x ∈ L∗∗ by picking
m = m1, m = m2, etc, up to m = mk in the definitions of L1, L2, . . ., Lm.
Now we see that we can choose a k equal to m1 +m2 + . . .+mk, and for
this k, x ∈ Lk.9 � 9 See supplementary notes at https://

bit.ly/Automata_Jove under StarStar
for a more detailed proof.

3.6 Enumerating Strings in a Language

There are two popular ways of listing the strings in a language, namely
• according to the lexicographic order, and
• according to the numeric order.

https://bit.ly
https://bit.ly
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Lexicographic order follows standard dictionary order. In it, pig
comes before poblano, but pig comes after pago.

Despite its simplicity, there is a huge problem with the lexicographic
listing order when applied to many infinite sets: one may never get to list
certain strings at all! As an example, if you are asked to list the contents
of {a,b}∗ lexicographically, you would go

ε,a,aa,aaa, . . . .

You see, you’ll never list b, bb, etc!
Here is where the notion of enumeration enters into the picture. Ba-

sically, enumeration is the same as listing, but with the guarantee of
getting to every string after a finite amount of other strings. Here is an
enumeration of {a,b}∗:

ε,
a,b,
aa,ab,ba,bb,
aaa,aab,aba,abb,baa,bab,bba,bbb,
aaaa, . . .
In numeric ordering, we exhaust each length group before we go to

the next length group. Within each length group, we follow the lexico-
graphic ordering. Thus, pig comes before poblano. However, pago also
comes after pig in numeric order. This is because we must list pig and
all length-group 3 strings before we come to length-group 4 where pago

belongs.

Formal definition of Lexicographic

Here is a formal definition of lexicographic order.

Formally, two strings s and t are in lexicographic order s ≤ t if
s[i] == t[i] holds up to a point, and we find s[i+1] ≤ t[i+1]. (We
don’t care what holds beyond i+1.)

We can write a Python function to help us understand lexicographic
ordering. For two strings s and t, let predicate lexlt (“lexicographically
less than”) be defined as follows:
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def lexlt(s, t):

if (s==""):

return True

if (t==""):

return False

if (s[0] < t[0]):

return True

return (s[0] == t[0]) & lexlt((s[1::], t[1::]))

The following exercise helps you explore the use of lexlt.

Exercise 3.6, Lexicographic order
Given the following languages

L1 = {"abacus", "bandana", "pig", "cat", "dodo", "zulu", "physics"}

L2 = {"dog", "zebra", "zzxyz", "pimento"}

Define a function that lists all those pairs (a,b) from the Cartesian
product of L1 and L2 such that a is lexicographically before b. Hint: form
the Cartesian product using Python’s built-in operator product, and then
use lexlt to implement the filter operation over that list. �

Exercise 3.6, Numeric order
1. Generate the first ten strings over the alphabet {0,1} in numeric

order.
2. Arrange the above collection of strings in lexicographic order. Pro-

duce a printout showing the numeric and the lexicographic orders.
�

Coding-up a numeric order generator

Figure 3.1 has one implementation of nthnumeric for an alphabet of size
2.
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from math import floor, log, pow

def nthnumeric(N, Sigma={’a’,’b’}):

"""Assume Sigma is a 2-sized list/set of chars

(default {’a’,’b’}). Produce the Nth string in numeric

order, where N >= 0.

Idea : Given N, get b = floor(log_2(N+1)) - need that

many places; what to fill in the places is the binary

code for N - (2^b - 1) with 0 as Sigma[0] and 1 as Sigma[1].

"""

if (type(Sigma)==set):

S = list(Sigma)

else:

assert(type(Sigma)==list

), "Expected to be given set/list for arg2 of nthnumeric."

S = Sigma

assert(len(Sigma)==2

),"Expected to be given a Sigma of length 2."

if(N==0):

return ’’

else:

width = floor(log(N+1, 2))

tofill = int(N - pow(2, width) + 1)

relevant_binstr = bin(tofill)[2::] # strip the 0b

# in the leading string

len_to_makeup = width - len(relevant_binstr)

return (S[0]*len_to_makeup +

shomo(relevant_binstr,

lambda x: S[1] if x==’1’ else S[0]))

Here are some tests using nthnumeric for the alphabet {a,b}:

>>> nthnumeric(0)

’’

>>> nthnumeric(1)

’a’

>>> nthnumeric(5)

’ba’

>>> [nthnumeric(i) for i in range(16)]

[’’, ’a’, ’b’, ’aa’, ’ab’, ’ba’, ’bb’, ’aaa’,

’aab’, ’aba’, ’abb’, ’baa’, ’bab’, ’bba’, ’bbb’, ’aaaa’]

Figure 3.1: Code for nthnumeric for |Σ |=
2.
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(Images Courtesy of Mission Restaurant, Supply Inc.)

The diagram at the top is a hypothetical finite-state automaton. It takes ‘$1’ or
‘$2’ and delivers an M&M (‘mnm’) or ‘coke.’ A ‘smush’ed mnm package is “liberated”
(nondeterministically) by a ‘kick’ input, and ‘plop’s to the output tray when successful.
Attempts to underpay are rejected with a ‘buzz.’ We don’t distinguish between inputs
(e.g., ‘kick’) and outputs (e.g., ‘plink’) in this example.
You can obtain a pushdown automaton by adding one stack (left plate-stacker,
above) to a finite automaton. You can obtain a Turing machine by adding one infi-
nite tape (Figure 1.2). An infinite tape can be simulated (details in Chapter 13) using
two stacks, as shown in the right-hand side plate-stacker.
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4
Basics of DFA

Chapter Gist: DFA are centrally important to computing theory
and practice (§4.1). We first present them through examples (§4.2)
and then formally (§4.3). We define the language of a DFA (§4.4)
and DFA acceptance (§4.5). The (so called) Pumping Lemma is
presented (§4.6), with how to use this lemma to prove a language
to be non-regular (§4.7). We discuss common pitfalls in the use
of the Pumping Lemma (§4.8). One can ameliorate proof effort by
subjecting the given languages to regularity-preserving transfor-
mations (§4.9).

4.1 DFA Everywhere

Finite-state machines are crucially important to theoretical computer sci-
ence, as well as computing practice. They are employed within compilers
for checking the syntax of programs, and extracting primitive quanti-
ties such as numbers and strings (collectively called tokens) for further
processing. Such finite-state machines are called lexers or scanners, and
their correctness is crucial to the overall correctness of any compiler.

Finite-state machines are the ones that cycle traffic lights through var-
ious stages, sensing the arrival of vehicles and detecting the pressing of
pedestrian crossing buttons. They are even “embedded” inside a human
pilot’s head, governing her actions. Actions of airplane control panels
are also governed by finite-state machine components. These two finite-
state machines (one governing the pilot’s thought processes and the other
underlying the control panel) must mesh. If any discord arises between
these finite-state machines, the pilot may end up exerting the wrong con-
trol action at the wrong moment, leading to potential disasters. This
state of a pilot’s mind is called mode confusion. It is the responsibility of
airplane control panel designers to minimize the chances that such mode
confusion arises.
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Finite-state machines are involved in deep content inspection hard-
ware deployed over the internet to look for malware in transit. Finite-
state machines in such hardware units look for specific patterns within
the bit-streams in flight. Suspicious packets are set aside for further
scanning by anti-virus software.

Real-world finite-state machines must be modeled and designed cor-
rectly, and they must also be capable of processing information at an ade-
quately fast rate. If finite-state machines that handle front-end informa-
tion processing within the internet turn out to be too slow, hackers can
perform denial of service attacks. Such malicious users simply bombard
these front-end finite-state machines with meaningless requests, thus ef-
fectively choking them. This can prevent their services from becoming
available to well-intentioned users.
The finite-state machines that one encounters in life are often variations
of the basic type studied in this book; they include: (1) Mealy machines
that consume inputs and produce outputs at each transition; (2) com-
municating finite-state machines that exchange messages; (3) Unified
Modeling Language diagrams used in software engineering; (4) semantic
rules to specify program behaviors; and (5) Büchi automata that model in-
finitary behaviors.1 Deterministic finite automata (DFA) studied in this

1 An example of an infinitary bad behav-
ior is the following: suppose you try to
summon an elevator by pressing its call
button; will the elevator actually come
to your service, or infinitely-often go past
your floor without stopping for you?

chapter and non-deterministic finite automata2 studied in later chapters

2 The kick given to the vending machine
illustrated at the beginning of Part II has
a non-deterministic effect, as the machine
can go to one of two states following it:
ATMPT or DISP1.

capture the essence of these practical machine types.

4.2 Elements of a DFA

IF A
0
0

Figure 4.1: A DFA over alphabet {0} to rec-
ognize an even number of 0’s. Notice that
we do not need to keep a count of 0’s, but
only their parity (whether or not the count
is even), and so two states suffice.

{’Q’: {’A’, ’IF’},

’Sigma’: {’0’},

’Delta’: {(’A’, ’0’): ’IF’,

(’IF’, ’0’): ’A’},

’q0’: ’IF’,

’F’: {’IF’}}

Figure 4.2: DFA of Figure 4.1 in Python

I

A
0
1

0

F

1
0
1

Figure 4.3: This DFA seems to accept all
strings ending in a 1. Does it? See Exer-
cise 2 and strengthen the condition on the
language accepted.

Figure 4.1 describes our first example of a DFA that is assumed to have
an alphabet {0}. This figure presents a directed graph with two types
of nodes, one with a single circle and another with a double circle. These
nodes are called states, with the double circled states called final states,
with the others being non-final states. States are connected via labeled
edges to other states. These arrows are state transitions or “jumps” the
DFA can make. There is always one state (called the initial state) that
has an arrow coming “from the air” poking at it; such an arrow is trying
to say “start here!” In our example, it is the state named IF. Initial states
can also be final states, as is the case here.

We will adhere to certain naming conventions for states (with only
some rare exceptions). We will name all initial-only states with names
that begin with an “I” or an “i.” We will name all final-only states with
names that begin with an “F” or an “f.” States that are initial and final
will be given names starting with “IF.”

We now present another example DFA in Figure 4.3. This DFA has
distinct initial and final states named I and F. In general, a DFA may not
have a final state at all. It may also have many final states; in fact, all its
states could be final states! A DFA always has a single initial state.
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DFA are used to describe (or specify) languages of interest. More
specifically, a DFA describes exactly the language (set of strings) L where
each string w ∈ L describes a path from the initial state to one of the final
states (i.e., the ith edge in such a path will be labeled by the ith symbol
of string w). Such a string w is said to be accepted by the DFA. The set
of strings accepted by a DFA is the language recognized by it.

In a typical DFA, there will be multiple paths (even an infinite number
of paths) that start from the initial state and end in one of the final states.
For a DFA without a final state, no such path exists, and so the language
of such a DFA is ;, the empty set. A DFA with an initial state that is
also final has a path of length 0 to its final state, and so its language
includes ε. For example, the DFA in Figure 4.1 describes the language
ε,00,0000, . . ., or in general (00)i for i being even.

The DFA of Figure 4.3 seems to accept all strings that end with a 1.
Does it? See Exercise 4.2.2 below.

Exercise 4.2, DFA basics
1. Draw a DFA to recognize the set of strings over {0,1} that have

an even number of 0’s and any number of 1s. (Difference with the
DFA in Figure 4.1: that DFA does not have 1 in its alphabet.)

2. Accurately describe the language of the DFA of Figure 4.3. Does
there exist a 2-state DFA with this language? �

{’Q’: {’A’, ’F’, ’I’},

’Sigma’: {’0’, ’1’},

’Delta’: {(’A’, ’0’): ’I’,

(’A’, ’1’): ’I’,

(’F’, ’0’): ’I’,

(’F’, ’1’): ’I’,

(’I’, ’0’): ’A’,

(’I’, ’1’): ’F’},

’q0’: ’I’,

’F’: {’F’}}

Figure 4.4: DFA of Figure 4.3 in Python

State Input Next State
I 0 A
I 1 F
A 0 I
A 1 I
F 0 I
F 1 I

Figure 4.5: State table for the DFA of Fig-
ure 4.3

4.3 Formal Structure of DFA

Formally, a deterministic finite-state automaton D is described by five
items presented as a tuple, (Q,Σ,δ, q0,F) (see a Python rendering of this
five-tuple in Figures 4.2 and 4.4), where:
• Q is a finite nonempty set of states,
• Σ is a finite nonempty alphabet,
• δ : Q×Σ→Q is a total transition function,
• q0 ∈Q is the initial state, and
• F ⊆Q is a finite, possibly empty set of final (or accepting) states. These

are shown as double-circled nodes in the graph of a DFA.
The transition function δ is also sometimes depicted as a state table (one
example appears in Figure 4.5).

In mathematics, all functions are “total” in that each function maps
its entire domain into its range, which is a subset of its codomain. We
stress the notion of total functions here, because it is often convenient to
define a DFA partially and then “totalize it”—i.e., fill all its uninteresting
mappings automatically.

IF
A

BH
10

0
1

0

1

Figure 4.6: The DFA of Figure 4.1 whose
alphabet has been expanded to now also
have 1; we then “totalize” this DFA by
sending it crashing to the “BH” (black-
hole) state whenever a 1 is input.

To illustrate this point, let us change the DFA in Figure 4.1 by expand-
ing its alphabet from {0} to {0,1} (adding one more key “1” to the DFA’s
Python Delta function). The language to be recognized must still be all
even-length 0’s with no 1’s allowed! (Contrast this with the DFA of Exer-
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cise 1 where we allowed any number of 1’s.) The question now is “what
will happen if someone types the 1 key? Well, we want the DFA to crash
and go into a “black hole state” (BH) from which it never gets out.3 We

3 Black-hole states can also be called
Roach-Motel or RM states. You can check
in to such a motel; you can’t check out!
Often they are also called sink states or
empty states—the latter term arising from
the fact that such states have an empty
language, in the sense that if one were to
start from these states, there would be no
paths that lead to a final state.

accomplish totalization through the construction in Figure 4.6 where all
user-unspecified moves are “sent to the black hole.”

A DFA can be viewed as a “goto-based” program. The states of a DFA
are labels, and the transitions are “goto” statements executed when spe-
cific inputs are read. You may say “Eeew, goto?! My instructor said not to
use goto!” Well, DFA programs are low-level programs—much like assem-
bly language programs. At this level, gotos are the primary mechanism
for control flow.

4.4 The Language of a DFA

We now define some of the important notions underlying DFA:

The language of a DFA is the set of all strings accepted by it. We
say that the DFA recognizes this language. When a DFA recognizes
language L, it accepts all the strings within L. Notice that the word
accept is reserved for (single) strings and the word recognize
is reserved for languages (which are sets of strings). A regular
language over alphabet Σ is the language of some DFA with
this alphabet.

Note: Classically, regular languages were defined inductively through
regular expressions (or regular operators)—namely, union, concatena-
tion, and star. It was Kleene’s theorem that established the connection
between regular sets and finite automata.

4.4.1 DFA as String Classifers
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Figure 4.7: A DFA to recognize strings
over {0,1} with the number of 0s being a
multiple of 3

{ ’Q’: {’A’, ’IF’, ’B’},

’Sigma’: {’0’, ’1’},

’Delta’: { (’IF’, ’0’): ’A’,

(’IF’, ’1’): ’IF’,

(’A’, ’0’): ’B’,

(’A’, ’1’): ’A’,

(’B’, ’0’): ’IF’,

(’B’, ’1’): ’B’ },

’q0’: ’IF’,

’F’: {’IF’} }

Figure 4.8: DFA of Figure 4.7 in Python

The main purpose of almost all “machines” we define in this book is
to partition Σ∗, the universal language over Σ, into accepted strings and
rejected strings. Viewed this way, each DFA is a string classifier. View-
ing a fresh example – that given in Figure 4.7 (with Python encoding in
Figure 4.8), this is a DFA that accepts all strings that contain multiples
of 000 interspersed with an arbitrary number of 1’s. It rejects all other
strings. Using set comprehension, this language can be specified as

L3Z = {w | w ∈ {0,1}∗ and (#0(w)) % 3= 0}

where #0 is a function that returns the number of zeros in its argument
string, and % denotes Python’s modulus (mod) operator.
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4.4.2 Basics of Designing a DFA

In this chapter, we present some simple approaches to building a DFA.
Chapter 5 covers these ideas in more depth.

One way of designing a DFA is by treating it as a program that has
only two constructs: (1) test the input symbol to match one of the symbols
in the alphabet, (2) upon a match, go to a target state. Here is how the
DFA of Figure 4.7 could have been designed:
• Write down a few strings that are accepted and some that are rejected.

For example:
– Accept ε, 000, and in fact, any repetition of 000’s interspersed with

an arbitrary number of 1’s.
– Reject all other strings.

• Since ε is accepted, make the initial state also a final state.
• Name each state according to our naming convention.
• Make sure that each state responds to all the symbols in the alphabet.

4.5 Formal Definition of DFA Language Acceptance

To define the notion of DFA acceptance we define three functions:
1. A function δ that, given a DFA D, a state q, and an input symbol

a ∈ Σ determines what the next state is. That is, δ(D, q,a) is the
next state in Q attained by marching D on symbol a when D is at
state q.

2. A function δ̂ that, given a DFA D, a state q, and an input string
w, tells which next state the DFA falls into after processing every
character within w (if any). If w is of the form ax, this function is
defined by

δ̂(D, q,ax)= δ̂(D,δ(D, q,a), x)

and if w = ε, it is defined by

δ̂(D, q,ε)= q.

3. A predicate accepts(D, q,w) that is true exactly when δ̂(D, q,w)
falls within F (the set of final states of D).

There are two natural cases in δ̂ (Figure 4.9) reflected within run_dfa_h:

• (Case 1 when w is empty): return q, the current state.

• (Case 2 when w is non-empty): return the result of applying run_dfa_h
with respect to DFA D on string w[1:] (the rest of the string), when
the DFA starts from the state step_dfa(D, q, w[0]). This is the
recursive case of run_dfa_h(D, w, q).

Thus, a DFA accepts w exactly when δ̂(D, q0,w) ∈ F.
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def step_dfa(D, q, a):

"""Run DFA D from state q on character a.

"""

assert(a in D["Sigma"])

assert(q in D["Q"])

return D["Delta"][(q,a)]

def run_dfa(D, w):

"""In : D (consistent DFA)

w (string over D’s sigma, including "")

Out: next state of D["q0"] via string w.

"""

curstate = D["q0"]

if w=="":

return curstate

else:

return run_dfa_h(D, w[1:], step_dfa(D,curstate,w[0]))

def run_dfa_h(D, w, q):

"""Helper for run_dfa. Compute the next state attained

by w running on D starting from state q.

"""

if w=="":

return q

else:

return run_dfa_h(D, w[1:], step_dfa(D, q, w[0]))

def accepts_dfa(D, w):

""" Checks for DFA acceptance. Input : DFA D, string w.

Output : Boolean (True|False).

"""

return run_dfa(D, w) in D["F"]

Figure 4.9: Functions to step a DFA
on a single character q via δ (function
step_dfa), run it on a string w via δ̂ (func-
tion run_dfa), and check for acceptance
via δ̂(q0, x) ∈ F (function accepts).
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Reading Suggestions for Code

This book provides all the code to work with DFA using Jove (except the
Jupyter notebooks underlying Jove often have more detailed codes). Here
is the general approach we recommend to understand the code in this
book:

• Always strive to understand the code enough to drive it—much
like you would understand a car enough to drive it. (There
will always be occasions where we will push you to understand
more, but we also hope you are naturally curious and would love
to learn how to write/improve such code.)

• All important functions for each machine-type are pro-
vided in files named Def_.. (for instance, Def_DFA.ipynb,
Def_NFA.ipynb, etc.). A list of these functions is included at
the end of each Def_.. file, and one can always find out more
about any function foo by typing help(foo) in Python.

4.6 “Lasso” Shape of DFA and the Pumping Lemma
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Figure 4.10: A “lasso” shape of a DFA over
Σ= {a}

DFA often look like a “lasso”: they start at a state, optionally go forward
a few steps, and then curl around (see Figure 4.1). In Figure 4.10, a
DFA that accepts a single a or three or more a’s, the lasso shape is more
apparent. In Figure 4.7 (repeated in Figure 4.11 for your convenience),
the alphabet isn’t singleton (it is Σ= {0,1}), and so the DFA must respond
to both 0 and 1 at every state. Nevertheless, the DFA must “curl around”
(revisit an already existing state); i.e., it can’t go on sprouting new states
and transitions leading to them. So while not exactly a lasso, DFA still
have cyclic paths in them. This fact is exploited in the so called Pumping
Lemma—the topic of this section.

Notice also that when you take a string w accepted by a DFA that is at
least as long as the number of states in the DFA, it will imply that there
exists a piece of w that can be repeated to yield another string that is also
in the language of the DFA. For example, 0100 is in the language of the
DFA of Figure 4.11 (we named this language L3Z). We can view w as the
concatenation of three strings x, y, z where y is non-empty. We can now
see that xyi z is also in L3Z for i ≥ 0.
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Figure 4.11: The DFA of Figure 4.7 re-
peated for easy reference

For instance, let us start out with the observation that 0100 ∈ L3Z .
Now, 0100 is longer than the number of states of this DFA. We can now
view 0100 as xyz where x = 0, y = 1, and z = 00. Now we can see that
xyi z ∈ L3Z for i ≥ 0. That is,
• For i = 0, 000 ∈ L3Z . This avoids taking the 1-loop at state A.
• For i = 1, 0100 ∈ L3Z . This is how we started out! This is where we

take the 1-loop at A exactly once.
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• For i = 2, we have 01100 ∈ L3Z . This is where we take the 1-loop at A
twice.

This property is called the Pumping Lemma, and is fully described in
§4.6.1.

Exercise 4.6, DFA Lasso
1. Argue that DFA over singleton alphabets must always have a

lasso shape similar to that in Figure 4.10: after going forward
a few steps, the DFA must transition back to one of the earlier
states.

2. Argue that for a DFA D that recognizes language L, there are an
infinite number of other DFA that also recognize L. �

4.6.1 General Statement of the Pumping Lemma

Recall that for any language L that wants to call itself a regular language,
there must exist a DFA DL of N states whose language is L. Further-
more, for any string w ∈ L(DL) such that w is at least of length N, it must
describe a lasso (a “pump”) in DL. We must be able to take this “pump”
as many times as we wish, or skip the pump entirely—these too must be
legal paths in the DFA.

Figure 4.12: The Pumping Lemma il-
lustrated on an N-state DFA. The input
string of length M ≥ N revisits state sp ,
“embossing” a state visitation number vp
the first time, and vp+k the second time.
Thus, |y| = k in this case, and is greater
than 0.

Input of length M which is at least N

…….
States

Visitation
Numbers

I = s1 s2 sp

v1 v2

sp

vp vp+k vM+1

sF = F

Figure 4.12 illustrates all these statements:
• This figure depicts the journey of a string w through the N-state DFA

DL starting from the initial state of s1, ending with a final state which,
for convenience, we call sF . Thus, according to this diagram, some
number of states s1, s2, etc. were touched during string w’s traversal.

• Notice that this journey touches some state sp for the first time, and
afterwards, touches state sp again. This is the lasso (or pump, or loop).

• To make these concepts more specific as well as visual, we imagine
embossing visitation numbers v1, v2, . . ., vM+1 when we visit states.44 We have a rubber-stamping device, and

go “click,” stamping a state’s visitation
number on it when we arrive at it.

Given that we are taking a string of length M ≥ N, we can emboss
vM+1 such visitation numbers (one per step along the path taken by
the string w of length M).

• Notice that we embossed vp when we first encountered sp. Then, after
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taking k more steps, we visited state sp again, now embossing it with
vp+k. Any state that has been embossed twice carries a pump. Also,
there can be multiple such pumps anywhere along the journey. How-
ever, in order to state a simple and crisp argument, we choose to focus
on the first pump carried by state sp between visitation numbers vp

and vp+k. This means that we executed a lasso of length k > 0 at this
state.

• Now, if this journey exists in this DFA, two other types of journeys also
exist:
– One journey where, after embossing vp onto sp, we don’t take that

path which revisits sp. We take the “other path” that takes us to-
ward state sF directly. This is called pumping down. This journey
is associated with a different string than w—one which takes the
pump away from w.

– Another journey where, after embossing vp onto sp, we take that
pump again (and perhaps again, and again, . . .) and after some time,
we take the path toward sF . This is called pumping up, and is
associated with a different string than w—one that splices in copies
of the pump into w.

• Thus, if the normal single revisitation occurs (i.e., embossing vp and
then vp+k onto sp), then the pump-down journey (one such) and pump-
up journeys (as many as we wish) also exist in the same DFA DL. This
DFA is forced to admit all these strings also into its language!

Theorem 4.6.1 : Pumping Lemma for Regular Languages.
• IF L is regular, then that IMPLIES
• There is a natural number N such that
• for any string w ∈ L where w is at least of length N,
• we must be able to read out w as xyz
• where y is non-empty (x and z could be empty)
• and xy is confined to the first N steps of w
• and furthermore, for all i ≥ 0, xyi z ∈ L must be true.

Proof Sketch: One can trace out the state-repeating path of w leading
to a final state. The first loop would be found within the first N symbols
of w.5 The x is the prefix that first visits the repeating state, y is the non- 5 Here, N stands for the number of states

of the DFA.empty path that second visits the repeating state, and z is the remainder
of w. In such a situation, one may either skip the y loop or take it more
than once before journeying towards the final state. �

The reason that a string w must curl around follows from the pigeon-
hole principle,6 as follows: if there are M ≥ N transitions (arrows), there

6 The pigeonhole principle is discussed
in https://en.wikipedia.org/wiki/

Pigeonhole_principle, and asserts
that with N > 0 pigeonholes housing
N +1 pigeons, there must be at least one
pigeonhole that houses more than one
pigeon.

must be some state sp that repeats, and gets “re-embossed.”7 We call the
string that takes us for the first time to sp as x, the string that is involved
in visiting sp a second time as y, and the remainder of the string taking

https://en.wikipedia.org
https://en.wikipedia.org
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us to sF as z. Note that this forces xy to be situated within the first N
steps, as it is the first pump that we choose to focus on.7 To explain the M = N case, view states

as being similar to duck fingers (or digits)
and transitions that connect states being
like webs between the digits. Thus, in an
N-state DFA, there is at most a journey of
length N −1 that does not call for states
to repeat. The moment the journey has
length N, some state must repeat.

This allows us to conclude that xy0z (the pump down case) also takes
us to sF (i.e., xy0z ∈ L, or simplifying, xz ∈ L). Likewise, xyyz ∈ L (pump
up once), xyyyz ∈ L (pump up twice), etc., are also true. In short, xyi z ∈ L
for all i.

When solving problems, it is strongly encouraged that you focus first
on picking the y element that describes the pump. The choice of x and
z will then be almost automatic: x is anything that precedes y, and z
is “the rest of the string” after xy. There are no constraints on x and z
themselves (they could be empty).

4.7 Proving a Language to Be Non-Regular

The Pumping Lemma that we’ve stated in §4.6.1 has a one-way implica-
tion.8 It can be written as:8 There are versions of the Pump-

ing Lemma that are of the form
“Regular(L) ⇔ Condition” that we
don’t address in this book. You can
read about Jaffe’s version of the if and
only if Pumping Lemma and its proof at
https://dl.acm.org/citation.cfm?id=

990528.

Regular(L)⇒ Cond(L)

where we call Cond the pumping condition, and it is the condition
(stated over multiple lines) coming after the implication “IMPLIES,”
above. Given all this, we offer this strong advice:

Never use the Pumping Lemma that we have stated above for
proving something is regular (because it is only a “one way” im-
plication). Use it only to disprove that something is regular.

We will be using the contrapositive form of the Pumping Lemma to
prove that a given language is not regular:

¬Cond(L)⇒¬Reg(L).

We will achieve our goal by showing Cond(L) is false (or, equivalently,
¬Cond(L) is true). In more detail, here is how we proceed. Suppose that
we are handed a suspicious language Ls and are asked to prove that this
language is not regular. Before we apply the Pumping Lemma, we will
spend some time and see if strings in Ls can be recognized by a finite
memory device. For example, as illustrated in Figure 4.1, we will check
whether we can summarize the information to be processed in terms of
an even number of bits seen so far (instead of actually keeping counts).
When we become reasonably convinced that Ls is non-regular, we will
embark on showing that Cond(L) is false.

Note: We have tried teaching the Pumping Lemma as a proof by
contradiction. This approach lets you assume that the language
is regular, and derive a contradiction. However, given that most

https://dl.acm.org
https://dl.acm.org
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of the languages we consider in our exercises are non-regular, it
is better (and more direct) to begin with the assumption that the
pumping condition (namely Cond(L)) is false. This makes the
proof much more goal-directed right from the beginning. This ap-
proach also turns into a “recipe” that can be taught more reliably,
in our experience.

Example Use of the Pumping Lemma: Let us proceed methodically to
see an actual example involving the Pumping Lemma.9 Suppose you 9 See supplementary material at

https://bit.ly/Automata_Jove under
PainlessPL for a rigorous presentation
of the Pumping Lemma, as well as more
intuitions.

walk into your office one fine morning and find a note left on your desk
by someone claiming that the language L01 is regular, where

L01 = { 0i1i : i ≥ 0 }

Your intuition tells you that unless we can count the number of 0’s, we
cannot later check it against the number of 1’s.10 So now you are doubly 10 Also, checking the date on the calendar,

you see “April 1, 2017,” making you think
about the note even more...

sure that what you must do is show that Cond(L) is false, thus showing
¬Reg(L). Let us rewrite the Pumping Condition Cond(L) once, and then
keep its negated form handy.
Cond(L)=

• There is N ∈ Nat such that
• for any string w ∈ L where w is at least of length N,
• there exists a split of w as xyz,
• where y is non-empty (x and z could be empty),
• and the length of xy is ≤ N
• and furthermore, for all i ≥ 0, xyi z ∈ L must be true.

¬Cond(L)=
• For any N ∈ Nat,
• for some string w ∈ L where w is at least of length N,
• for all splits of w as xyz,
• where y is non-empty (x and z could be empty),
• and the length of xy is ≤ N
• there exists i such that xyi z ∉ L.

4.7.1 Why All Splits of x, y, z?

By showing ¬Cond(L), we are showing that the pumping condition can-
not hold for any DFA that someone might propose. Given that all reg-
ular languages are required to imply (abide by) the pumping condition,
this will then prove that no DFA whatsoever can exist. Given that we are
interested in ruling out any DFA at all, we cannot assume a particular
location for the pump y. This forces us to consider all splits. �

https://bit.ly
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Showing that L01 is not regular: To show that L01 is not regular, let us
make ¬Cond(L01) (below) true.

• For any N ∈ Nat,
• for some string w ∈ L01 where w is at least of length N,
• for all splits of w as xyz (view w = xyz),
• where y is non-empty (x and z could be empty),
• and the length of xy is ≤ N
• there exists i such that xyi z ∉ L01.

Here is how we can achieve this goal:
• Pick w = 0N1N which is in L01.
• Now, split w into three pieces x, y and z (i.e., w = xyz) where xy is of

length ≤ N. This forces all possible y’s to consist only of 0’s.
• Now,

– pumping down results in a string with fewer 0’s than 1’s
– and pumping up results in a string with more 0’s than 1’s

• Thus there exists i = 0 (pumping down) or i ≥ 2 (pumping up) where
the new string is not in L01.

This makes the pumping condition false, and hence ¬Reg(L01) is estab-
lished.

Caveat: There are cases when one applies the Pumping Lemma sys-
tematically to a given non-regular language, and still fails to derive that
Cond(L) is false. Can we then conclude that the language is regular? The
answer is no! There are cases where the Pumping Lemma we introduce
is not powerful enough, and therefore we cannot derive that Cond(L) is
false. §4.8 has some examples.

Exercise 4.7.1, Regular or not?
1. Show that the language of evenly matched braces is not regular.

This language
Lbr = { {i }i : i ≥ 0 }

2. Show that
L01 = { 0i1 j : i, j ≥ 0 }

is regular (you show something regular by building a DFA).
3. Show that

Lcat = { 0i : i ≥ 0 } { 1i : i ≥ 0 }

is regular. Notice that Lcat is the concatenation of two languages.
�

4.8 Grossly Abusing the Pumping Lemma

For someone wielding a hammer, every problem looks like a nail. The
Pumping Lemma we presented to you is your hammer, but not every
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non-regular language is your nail. That is, only if you draw a con-
tradiction can you claim that a language is non-regular. To make
matters worse, for some non-regular languages, you may never derive a
contradiction.11 11 This is because what we gave you was a

rubber hammer, i. e., a form of the Pump-
ing Lemma that sometimes (often enough)
works and helps prove the pumping con-
dition to be false. However, we could
easily have given you a wooden hammer
(“more general Pumping Lemma;” see Ex-
ercise 2), or even a vanadium-steel ham-
mer (the complete Pumping Lemma of
which several kinds exist; either Jaffe’s
Pumping Lemma mentioned on Page 50 or
Stanat and Weiss’s Pumping Lemma [43]).
With the complete Pumping Lemma in
hand, you can “knock off” any language.

4.8.1 Inability to Prove with this Pumping Lemma

(This is from Sipser’s book “Introduction to the Theory of Computation”):
Consider the language

L i f = {aib j ck : i, j,k ≥ 0 ∧ if i = 3 then j = k}

In this language, strings such as aaabbcc, aaabbbccc,
aaabbbbbbcccccc, aaa, aabbbccc and abbcc are allowed to exist, be-
cause whenever there are three a’s, the number of b’s and c’s are the
same (even 0 b’s and 0 c’s are considered).
However, strings such as aaabcc,aaabbbcc,aaabbbbbbccbbccc,aaab
are not allowed to exist. This is because we can’t have unequal b’s and
c’s when there are three a’s.
Now, if we claim that L i f is regular,
• There must be an N-state DFA for it.
• It is easy to see that L i f is infinite. Thus, there are strings of any finite

length in it.
• Thus if we choose a string w length ≥ N, there must be one DFA-state

repeating (“lasso”).
• Choose a string w = aaa bN cN (blanks inserted for clarity). This is a

string of length 2N+3, which is fine for our purposes: it definitely has
many places that it has loops (“lassos”).

• We don’t know where, while accepting the string, our DFA “curls” into
a lasso. In fact, when we chug along and consume the three a’s and
then embark on consuming the N b’s, we would be curling around (as
we would have traversed at least N symbols).
– If it curls while processing the b’s, we can “pump” the b’s to increase

or decrease the b-count, making it unequal to the c-count. This
pump takes us outside the language L i f . So the pumping condition
Cond is being falsified for this xyz split.

– If it curls around while straddling some a’s and some b’s, we can
pump and produce “mangled” patterns where some a’s appear, then
some b’s, then some a’s, then some b’s, which takes us outside L i f .
Even here, the pumping condition Cond is being falsified.

– If it curls around while straddling some b’s and some c’s, we can
pump and produce “mangled” patterns where some b’s appear, then
some c’s, then some b’s, then some c’s, which takes us outside L i f .
Even here, the pumping condition Cond is being falsified.12

12 We don’t need to consider the case of
processing just the N c’s, as this falls out-
side the scope of the first N positions.– However, if it curls around within the a’s, we can pump this loop
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to create more a’s or less a’s. This however does not take the
so-pumped w outside L i f . Thus we fail to prove for all xyz splits!

– The non-existence of a DFA for L i f must be argued no matter what
this DFA is. This is what forces us to consider all xyz splits. Short
of it, we cannot prove that L i f is not regular.1313 By way of analogy, if one tries proving

x 6= x2 for all x, one cannot stop with x = 2
or x = 3 where this inequality holds, and
conclude that ∀x : (x 6= x2). One has to
consider all x. But for x = 0 and x = 1,
we cannot make the inequality hold. This
tells us that this inequality does not hold
for all x. We get the same kind of a “proof”
if we were to conveniently pick x, y, z for
which “the proof works.” It still does not
rule out all possible DFA.

Exercise 3 asks you to prove that L i f is not regular using the more gen-
eral Pumping Lemma you define in Exercise 2.

4.9 Regularity-Preserving Transformations Aid Proofs

In Chapter 7 we will demonstrate that the reverse of a DFA can be ex-
pressed as a language-equivalent NFA. By the end of Chapter 10, we will
have shown that DFA, NFA, and RE are all equally powerful; that is, all
and only regular languages are expressible using them. Thus, the reverse
of a DFA has a regular language, as well.

But now, suppose we take L i f and assume it is regular. Then clearly,
the reverse of L i f (call it L i f rev) must be regular. But suppose we suc-
cessfully pump and show that L i f rev is not regular. Then, we will have
shown that L i f is also non-regular.

What is L i f rev ? It is

L i f rev = {ckb jai : i, j,k ≥ 0 ∧ if i = 3 then j = k}

Now, this language is interesting. Suppose this language is regular.
That then means that this language has an N-state DFA whose language
exactly matches L i f rev. But now if we consider the string

cN bN a3

We can observe these:
• We can definitely claim that there is a loop within cN

• So we can pump it
• But pumping this loop gives us a string that is outside L i f rev

• Thus, this can’t be a regular language, because we will end up accept-
ing strings even outside of the specification of L i f rev. Thus,
– Either a DFA that exactly filters out strings from L i f rev cannot ex-

ist, or
– The closest a DFA exists for L i f rev is one that accepts a language

other than L i f rev.
• Thus, a DFA for exactly L i f cannot exist.

Exercise 4.9, Regularity Preserving
1. Consider the language

L i f abc = {aib j ckdl : i, j,k, l ≥ 0 ∧ if i = 3 then j = k else k = l}

(a) Show that this language is not regular. Note again that
our Pumping Lemma does not work directly on L i f abc.



BASICS OF DFA 55

(b) However, if you reverse L i f abc to obtain L i f abcrev, you can
indeed argue through the cases. Please try this and report
your experience.

2. On Page 49, we stated

However, in order to state a simple and crisp argument, we choose
to focus on the first pump carried by state sp between visitation
numbers vp and vp+k.

One can define a more general Pumping Lemma that allows you
to pick an xyz split of any segment of length N of the given string
w. The reason we avoid introducing this Pumping Lemma is for
simplicity of exposition. Try to state this more general Pump-
ing Lemma by situating the xyz split after an arbitrary initial
segment h (“head”) and allowing for an arbitrary final segment t
(“tail”).
Thus, we will have w = hmt where m (“middle”) is a segment of
length N, and furthermore, m is split into xyz in all possible ways.

3. Prove using the more general Pumping Lemma of Exercise 2 that
L i f is not regular.

4. In order to reliably use the Pumping Lemma, one must define it
in predicate logic. Below, we define the Pumping Lemma in this
fashion where one can clearly see where the Pumping condition
Cond lies.
Reg(L)⇒

∃N ∈ Nat :
∀w ∈ L : [ |w| ≥ N

⇒
∃x, y, z ∈Σ∗ :

w = xyz
∧ |xy| ≤ N
∧ y 6= ε

∧ ∀i ≥ 0 : xyi z ∈ L ].
State the negated condition in predicate logic, and then relate it
to the recipe stated in English on Page 52 (the bulleted list under
“Showing that L01 is not regular”).

5. If you are given a “lineup” of languages, can you pick out those
which are regular and those which are probably not? It is good to
check your ability to do so: Here are some of the languages given
in the Pumping Lemma tutor of the JFLAP tool.14 For those that 14 http://www.jflap.org

are regular, develop a DFA. For those that are not regular, write a
proof showing that to be the case.

(a) L1 = {0i1i : i ≥ 0}
(b) L2 = {w ∈ {a,b}∗ : #a(w)< #b(w)}
(c) L3 = {(ab)nak : n > k, k ≥ 0}
(d) L4 = {anbk cn+k : n,k ≥ 0}

http://www.jflap.org


56 AUTOMATA , COMPUTABILITY: PROGRAMMER ’S PERSPECTIVE

(e) L5 = {anbl ck : n > 5, l > 3, k ≤ l}
(f) L6 = {an : even(n)}
(g) L7 = {anbk : odd(n) or even(k)}
(h) L8 = {bba(ba)nan−1 : n ≥ 0}
(i) L9 = {b5w : w ∈ {a,b}∗, 2#a(w)= 3#b(w)}
(j) L10 = {b5w : w ∈ {a,b}∗, (2#a(w)+5#b(w)) mod 3= 0}

(k) L11 = {bk(ab)n(ba)n : k ≥ 4, n ≥ 1}
(l) L12 = {(ab)2n : n ≥ 1}

(m) L13 = {aib j ck : if (i = 3) then ( j = k)} �



5
Designing DFA

Chapter Gist: DFA design is really low level programming;
hence, subtle mistakes are quite likely. It is important to avoid
them through best practices, clearly understanding the language
for which a DFA is to be developed, and double-checking our DFA
designs (§5.1). We must check that the DFA accepts all strings in
L, and none outside of L (§5.1.2). We illustrate these ideas in ac-
tion (§5.2) and present a markdown language that makes us treat
DFA design like assembly language programming through the use
of clear state-names and comments to describe states and transi-
tions (§5.3).

5.1 Understanding the Language to Be Realized

Languages must be ideally specified using any combination of these ap-
proaches: (1) A precise English description; (2) a clear set builder (com-
prehension) description; (3) through a sufficient number of positive exam-
ples (strings in L) and negative examples (strings outside L); and (4) de-
scriptions that take different perspectives.

Set comprehensions can be difficult to arrive at, and can be very dif-
ficult to understand. Examples are foolproof, but seldom complete. All
these methods are prone to mistakes, but if two methods agree, we can
be surer (if not, we can debug more easily).

5.1.1 The Language of Equal Changes

Suppose you are asked to design a DFA over the alphabet Σ = {0,1} for
language Leqc where every string in Leqc undergoes an equal number of
0-to-1 and 1-to-0 changes.
English: The above sentence happens to be a technically precise English
description.
Set Builder (Comprehension): The following comprehension is a good
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first attempt:

Leqc = { s : s ∈ {0,1}∗ has the same number of 0→ 1 and 1→ 0 changes }

The predicate within this set comprehension is written out in English
to enhance readability.1 Let us now expand the predicate a little:1 A mathematical rendering would include

defining a predicate eq10(s) to capture 1→
0 changes in s and a similar predicate
eq01(s). Then the predicate would read
(eq10(s)∧eq01(s)).

• Without loss of generality, assume that the first character is 0. Sup-
pose a series of 0’s follow.

• As soon as a band of one or more 1’s appear, we see a 0 → 1 change
occur. We must “restore order” by ensuring that a band of one or more
0’s comes later.

Examples:
1. Positive: 010, 10101, etc.
2. Negative: 0111, 10100, etc.
The reasoning thus far is not systematic, as we have inadvertently left
out ε! It is always recommended that you perform a numeric order enu-
meration of all strings from Σ∗ and admit all such strings up to a certain
convenient length.2 Here are those “small instances,” by adding which2 As Bob Kurshan, famous formal meth-

ods researcher, once told me: “If you can-
not get the small sizes right, how do you
expect all large cases to be handled cor-
rectly?”

we have a more well-rounded set of examples:
1. ε vacuously satisfies the predicate by having no symbol at all!
2. Likewise, a single 0 and a single 1 also have an equal number

(meaning zero) changes.
A completely different way of specifying Leqc: After writing this
many specifications, one often has a “light-bulb moment”:

Hey, this language is nothing but all strings over {0,1} that begin
and end with the same symbol. [Not quite!]

Well, this specification does take a different approach (and is nearly
right; see Exercise 5.1.1.1).

Exercise 5.1.1, equal-change DFA
1. What is missing from this alternate definition?
2. Design a DFA for Leqc and argue that it correctly includes all pos-

itive examples and correctly excludes all negative examples. �

5.1.2 Best Practices to Correct DFA Design and Verification

It is worth repeating that DFA-programming is very similar to assembly-
language programming, and as such we must thoroughly document DFA
descriptions. Just leaving behind the drawing of a DFA without any docu-
mentation is insufficient (except for the simplest of DFA). We recommend
a few additional tips to produce well-documented DFA:

• Make sure that the state names are mnemonic. Thus instead of calling
a state “Foo,” you might name it F010 to reveal the purpose of the
state:
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– it is a final state (begins with “F”)

– it is a state that is entered immediately after seeing a “010”.

• Having named states mnemonically, ensure that the transitions pre-
serve the mnemonic significance. Thus,

– F010 upon seeing a ‘0’ may transition to S001, where ‘S’ says “non-
final” and “001” is a right-shift of “010” with the newly arriving ‘0’
prepended.3 3 It might also transition to F001, if de-

manded by the logic of the problem. Here,
we are simply giving generic examples.• Use a markdown notation that permits line-by-line comments. We have

developed a convenient markdown language for this purpose. §5.3 in-
troduces this notation and provides a detailed example.

Minimal DFA are unique for a given regular language—this is the Myhill-
Nerode theorem, which is discussed in Chapter 6. Using this theorem,
one can design DFA D1 and D2 taking two different perspectives. If they
match state-for-state and transition-for-transition,4 one can be quite sure

4 One can place the printouts on top of
each other and “hold them to light” to find
that they match up. The only possible dif-
ference will be in the state names. Please
use Appendix B to locate and read the def-
inition of iso_dfa.

that D1 and D2 have the same language. In fact, the DFA isomorphism
test supported by function iso_dfa produces an error trace that helps
you debug, in case two DFA happen to be non-isomorphic.5 5 Such error-trace generation is very rem-

iniscent of how model-checkers (central
tools in Formal verification) give user-
feedback. Also, NFA are generally eas-
ier to specify than DFA, so in Chapter 7,
you will learn how to convert an NFA to a
DFA automatically. You will learn a simi-
lar method in Chapter 9, but starting from
a regular expression (which are again very
often much easier to arrive at).

5.2 Examples of Designing DFA

5.2.1 The Language of Blocks of 3

Suppose you are asked to design a DFA over the alphabet Σ = {0,1} for
language Lb3 described using set comprehension (and some English) as
follows:

Lb3 = { x : Every contiguous block of 3 bits in x must have exactly two 1s }

Here are positive examples:
1. ε is included, as it does not have a block of 3 contiguous bits.6 6 Well, we are learning fast about vacuous

cases!2. 0,1,00,01,10,11 are included for the same reason (vacuous cases
again).7 7 You should ask “where is my vacuum

cleaner?!” You should try and pick up all
these vacuous cases early!

3. The actual (non-vacuous) cases of strings included are 011, 101,
1011, etc.

Here are negative examples:
1. Notice that 110011 is not included because not every contiguous

block of three bits satisfies the condition:
(a) you have to imagine a window of size 3 being dragged over

this string, as illustrated:
110 011, 1 100 11, 11 001 1, 110 011

(b) when the window contains 110 or 011, the condition is met,
but when the window contains 100 or 001, the condition is
violated.
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Exercise 5.2.1, Block-of-3 DFA
1. Design a DFA for Lb3, describing its design clearly in a few sen-

tences.
2. Now design a DFA for the complement of Lb3. Was this easier to

design? Justify your answer briefly. (Note: Often, the complement
of a condition is easier to specify.)

3. What is the approach to obtaining the desired DFA from the com-
plement DFA? �?

5.2.2 DFA for “Ends with 0101”

State to New State

S
0−→ S0

S
1−→ S

S0
0−→ S0

S0
1−→ S01

S01
0−→ S010

S01
1−→ S

S010
0−→ S0

S010
1−→ S0101

S0101
0−→ S010

S0101
1−→ S

Figure 5.1: Pseudo-code for a DFA for
“ends in 0101”

In Figure 5.1, we design a DFA over Σ = {0,1} that recognizes the lan-
guage of all strings in {0,1}∗ that end in 0101. Here are the recommended
steps in designing this language (call it LE0101):
• Make sure that the language appears to be regular, i.e., passes the

cursory finite-memory property. In this case, it appears that we need
to remember only the last four input bits seen so far.

• List a few strings in the language and a few that aren’t, to gain further
insights:
– 0101 ∈ LE0101; also 010101 ∈ LE0101

– 0 ∉ LE0101; also 101 ∉ LE0101

• Use the state name as a carrier of the history of the last few relevant
bits (sometimes four bits, but often much shorter). We do not need to
keep all four bits all the time. For instance, upon seeing a 0 from state
S0, we jump to state S0 and not S00, as seeing two 0’s is tantamount
to seeing only one 0 (as far as accepting a 0101 goes).

• Likewise, from state S0101, if we see a 0, we go back to S010, while if
we see a 1, we fall back to state S (no advantage gained with respect
to ending in 0101). Thus, a state name S1011 is not introduced.

• We start with state S. For each state name we introduce, we consider
the 0 input case first, and then the 1 input case (as in Figure 5.1).
This way, we won’t accidentally forget a case (the δ function must be
specified for each state and input).

• We introduce state names on demand; in this DFA, we get away explic-
itly representing only five (of the total) 16 possible states. (The num-
ber 16 comes from the number of arrangements of four bits.) When no
more state names are deemed necessary, we stop our construction. We
obtain the DFA in Figure 5.2.
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Figure 5.2: A DFA for “ends in 0101”
5.2.3 DFA for “MSB/LSB-first Binary Number is Divisible by 3”

Positionally weighted binary words have a most significant bit (MSB) and
a least significant bit (LSB). Let us define what we mean by the “MSB-
First” scenario. The scenario presented by this design challenge is that
bits are revealed to us from the MSB toward the LSB. Thus, we might
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see a progress of bits as follows, given that you typed in 1, then 0, then 0,
then 1, then 0, and finally 1.

ε→ 1→ 10→ 100→ 1001→ 10010→ 100101→ . . .

We interpret the number described so far in unsigned binary (treating ε

as 0). For this sequence, we obtain these “numbers so far”

0→ 1→ 2→ 4→ 9→ 18→ 37. . .

and clearly, these numbers are evenly divisible by 3 (or not) as shown by
the Boolean truth values

1→ 0→ 0→ 0→ 1→ 1→ 0. . .

The task for you is to build a DFA that is in a final state exactly when
the sequence seen so far represents an “evenly divisible by 3” situation
as per these Boolean truth values. Thus, after seeing 100, the DFA must
be in a non-final state and after seeing 1001, it must be in a final state.
Similar to the DFA for “Ends with 0101,” a moment’s reflection reveals
that what we have to record is the remainder and not the whole number,
thus convincing us that a DFA is possible. The following recurrence will
aid you in constructing the state evolution: a “number so far,” i.e., N, will
become 2N +b. Also, N starts out at 0.

SN
b−→S2N+b

Here, b is the new incoming LSB. When that bit arrives, it pushes the
bits seen so far to the left by one position.
Since only the modulus (remainder after division, denoted by % in Python)
is to be remembered, we can write the following transition recipe:

SN%3
b−→S(2N+b)%3

The general approach we are following is to generate states for the possi-
ble input bits recursively until no new states are generated. More specif-
ically: (1) do the mod calculations “in your head” and arrive at the state
names, or (better approach) (2) exploit properties of mod given in Fig-
ure 5.3 and arrive at the state names.

(a+b)%N = (a%N +b%N)%N
(a ·b)%N = (a%N ·b%N)%N

Figure 5.3: Rules of the mod operator, %.
These rules allow you to reduce “the num-
ber so far,” namely N, to “the number after
a calculation, modulo N.” In our general
rule stated in the main body of the text,
observe that N becomes (2N + b)%3. The
rules for the mod operator, %, tells us that
(2N +b)%3 can be simplified to ((2N)%3+
b%3)%3. But since b is a bit, b%3 is noth-
ing but b. Now, working on (2N)%3, we
can simplify it to ((2%3) · (N%3))%3. No-
tice that (2%3) is simply 2. Thus we can
indeed simplify (2N + b)%3 to (2 · (N%3)+
b)%3. Now, given that we are maintain-
ing (N%3) in the state name, we can di-
rectly work with the number coming af-
ter “S,” and process it using the equation
(2 · (N%3)+ b)%3. This is what we have
been doing “in our head.”

DFA FOR THE “LSB-FIRST” SCENARIO: The case for LSB-First arrival
is even more interesting, and relies upon more ideas to be turned into a
DFA-based language recognition problem. Let us say that you still type
in the same bits in the same order; i.e., 1, then 0, then 0, then 1, then 0,
and finally 1. However, the interpretation differs as shown below:

ε→ 1→ 01→ 001→ 1001→ 01001→ 101001→ . . .
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Each new bit lands left-most, thus attaining growing weight as we enter
more. The “number so far” stays the same. The recurrence must now
keep the weight growing:

S(2k , N)
b−→S(2k+1, N+2k ·b)

In other words, we keep an ordered pair (2k, N) within the state. When a
bit b arrives, it is weighted by 2k and added to N. The weight itself is now
adjusted up to 2k+1, essentially preparing for the arrival of the next b bit
(that must be weighted higher). This can also be finite-state encoded, as
we do not need to know the exact values of N +2k · b—only whether it is
evenly divisible by 3. See Exercise 5.2.4.2 on Page 62.

5.2.4 DFA for “Third-last bit is a 1”

State to New State

I
0−→ S0

I
1−→ S1

S0
0−→ S00

S0
1−→ S01

S1
0−→ S10

S1
1−→ S11

S00
0−→ S000

S00
1−→ S001

S01
0−→ S010

S01
1−→ S011

S10
0−→ F100

S10
1−→ F101

S11
0−→ F110

S11
1−→ F111

S000
0−→ S000

S000
1−→ S001

S001
0−→ S010

S001
1−→ S011

S010
0−→ F100

S010
1−→ F101

S011
0−→ F110

S011
1−→ F111

F100
0−→ S000

F100
1−→ S001

F101
0−→ S010

F101
1−→ S011

F110
0−→ F100

F110
1−→ F101

F111
0−→ F110

F111
1−→ F111

Figure 5.4: Pseudo-code for a DFA that
recognizes the language “third-last is a 1.”

Suppose we have to design a DFA which is in a final state whenever the
third-last bit you typed is a 1. The concept of the last bit is clear; second
last is otherwise known as penultimate, and third-last is the one before
that. Suppose you typed in bits as follows: 1, then 0, then 0, then 1, then
0, then 0 and finally 1. We now mark the third-last in the sequence below
with an underline:

ε→ 1→ 10→ 100→ 1001→ 10010→ 100100→ 1001001→ . . .

The DFA we design must be in a final state whenever the underline is
under a 1. Figure 5.4 shows the design of this DFA following the state
history idea; here, I is the initial state, and any state with name begin-
ning with F is a final state. Notice however an exponential blow-up in
the number of states needed (see Figure 5.5). In particular, the DFA for
“third-last bit is 1” maintains 15 states. If we were to build a DFA for
fourth-last is a 1, we can show that we will need to maintain 31 states.8

8 Proof idea: Suppose we don’t maintain
all the bit combinations shown here up
to (and including) all 3-bit combinations.
Then, for the next N bit arrivals, we will
not have enough information in our hands
to know whether to be in a final state or
not.

This example shows that DFAs can be exponentially sized—a big nui-
sance that will send us on a quest for better automata representations in
the next chapter.

Exercise 5.2.4, DFA exp blowup
1. Prove that the exponential blow-up is unavoidable for the DFA

implementing the language “Nth last bit is a 1” (LNthlast1). This
language is

LNthlast1 = {x1y : x ∈ {0,1}∗ ∧ y ∈ {0,1}(N−1)}

Here, we refer to N as the “look-back” of this language.
2. Follow the approach described on Page 61 and design a DFA that

enters a final state exactly when the magnitude of the number
seen so far (arriving LSB-first) is evenly divisible by 5. �
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Figure 5.5: DFA drawing for ‘second-
last is 1’ (above), and for comparison (to
show the exponential growth), we include
‘third-last is 1’ also (below). Mind you,
these are minimal DFA!
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5.3 Automd: A Markdown Language for All Machines

We have designed for your convenience a language called Automd that can
accept a simple textual input file and produce beautiful DFA drawings,
plus formal descriptions of the kind shown in Figure 4.2 automatically!99 The function md2mc in Jove (§B.1.5) is

the one that converts the markdown syn-
tax for DFA, NFA, PDA or TMs into the
internal representation (dict) used by Jove
(we call the internal representation “ma-
chine” or “mc”; hence the name “md2mc”).

This way, you can step and run DFA as soon as you finish entering things
into your markdown.

We will provide a fresh example – “second-last is a 1” – and its com-
plete creation + execution within Jove.

5.3.1 Markdown for DFA

Figure 5.6 shows the markdown input for the language “second-last is
1” while Figure 5.5 presents the drawing automatically generated. Even
this DFA has an exponential number of states with respect to 2, but is
half as big to easily illustrate our basic ideas.

Exercise 5.3.1, DFA Jove design
1. Enter the ‘third-last is 1’ language and carry out all the steps il-

lustrated in this section for the ‘second-last is 1’ language.
2. For all the DFA you have been asked to design in this chapter, en-

ter them using the markdown syntax of Jove. Then run them un-
der Jove by emulating the examples provided in file Drive_DFA.ipynb.
Demonstrate that the functions step_dfa, run_dfa and accepts_dfa

work as described in Chapter 4. In your tests, feed as input the
first 10 strings as per the numeric order (defined in Chapter 3) by
using function nthnumeric(N).
Here is how I carried out the same tests for the ‘second-last is 1’
DFA presented in Figure 5.5:

tests = [ nthnumeric(i, [’0’,’1’]) for i in range(12) ]

for t in tests:

if accepts_dfa(secondLastIs1, t):

print("This DFA accepts ", t)

else:

print("This DFA rejects ", t)

# Test Results

This DFA rejects

This DFA rejects 0

This DFA rejects 1

This DFA rejects 00

This DFA rejects 01

This DFA accepts 10

This DFA accepts 11

This DFA rejects 000
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Figure 5.6: DFA Markdown input for
“second-last is 1.” Notice that merely by
typing the contents of this figure into Jove,
we can generate a DFA (it could also be
read by our tools from a file). While the in-
formation in this description is essentially
the same as expressed in Figure 5.4, we do
allow documentation strings (comments)
that begin at !! and end at the end-of-
line. The particular command we have im-
plemented to achieve this markdown pro-
cessing is called md2mc(...), i. e., “mark-
down to machine” where “machine” is
one of DFA, NFA, PDA, or TM. We will
later introduce all details of how this lan-
guage is parsed and how the various types
of machines are built. A study of our
markdown parser implemented within the
md2mc command will be another practical
example of how we use the theory intro-
duced in this book to build practical tools
(in this case, a mini-compiler).

!!------------------------------------------------------------

!! This DFA looks for patterns of the form ....1.

!! i.e., the second-last (counting from the end-point) is a 1

!!

!! DFA find such patterns "very stressful to handle",

!! as they are kept guessing in the form of ‘are we there yet?’,

!! ’are we seeing the second-last’ ?

!! They must keep all the failure options at hand. Even after

!! a ’fleeting glimpse’ of the second-last, more inputs can

!! come barreling in to make that "lucky 1" a non-second-last.

!!

!! We take 7 states in the DFA solution.

!!------------------------------------------------------------

DFA

!!------------------------------------------------------------

!! State : In -> ToState !! Comment

!!------------------------------------------------------------

I : 0 -> S0 !! Enter at init state I

I : 1 -> S1 !! Record bit seen in state letter

!! i.e., S0 means "state after seeing a 0"

S0 : 0 -> S00 !! continue recording input seen

S0 : 1 -> S01 !! in state-letter. This is a problem-specific

!! way of compressing the input seen so far.

S1 : 0 -> F10 !! We now have a "second last" available!

S1 : 1 -> F11 !! Both F10 and F11 are "F" (final)

S00 : 0 -> S00 !! History of things seen is still 00

S00 : 1 -> S01 !! Remember 01 in the state

S01 : 0 -> F10 !! We again have a second-last of 1

S01 : 1 -> F11 !! We are in F11 because of 11 being last seen

F10 : 0 -> S00 !! The second-last 1 gets pushed out

F10 : 1 -> S01 !! The second-last 1 gets pushed out here too

F11 : 0 -> F10 !! Still we have a second-last 1

F11 : 1 -> F11 !! Stay in F11, as last two seen are 11

!!------------------------------------------------------------
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This DFA rejects 001

This DFA accepts 010

This DFA accepts 011

This DFA rejects 100

�



6
Operations on DFA

Chapter Gist: It is often easier to build a DFA for the complement
of the desired language, and then apply the complementation al-
gorithm to obtain the desired DFA (§6.1). Sometimes we can ex-
press the desired language L as L = L1 ∪L2 where the DFA for L1

and L2 are easier to obtain; at other times, L = L1 ∩L2 would be
the recommended decomposition. (§6.2). DFA minimization and
the Myhill-Nerode theorem about the uniqueness of minimal DFA
are key results (§6.4), and we also present the key fixpoint algo-
rithm used during minimization (§6.4.2). With these operations,
we design a number of DFA (§6.5), checking minimal DFA obtained
through two perspectives for agreement via isomorphism (§6.5.1).
DeMorgan’s law (§6.5.2) often eases DFA construction.

6.1 Complementation of DFA

Complementation is achieved by swapping final and non-final states.
We must however totalize the given DFA before we begin our work. This
is because the ‘black-hole’ states of the original DFA (states that you can
enter but not leave, and are non-accepting states) will now become ‘white-
hole’ states (states that you can enter but not leave, and are accepting
states).1 The Jove code for the complementation algorithm is provided in

1 White-hole states can also be called
‘heavenly states’; you enter, but do not
leave, but have a great time, as it is a final
or accepting-state.

Figure 6.1.

def comp_dfa(D):

"""In : D (DFA)

Out: D’s complement

Method: Swap final/non-final

states

"""

Dt = totalize_dfa(D)

return mk_dfa(Dt["Q"],

Dt["Sigma"],

Dt["Delta"],

Dt["q0"],

Dt["Q"]-D["F"])

Figure 6.1: DFA Complementation algo-
rithm6.2 Union and Intersection of DFA

The formal constructions for DFA union and DFA intersection are
given below, and the code for union/intersection is in Figure 6.2.
• Given DFAs D1 = (Q1,Σ,δ1, q1

0,F1) and D2 = (Q2,Σ,δ2, q2
0,F2)

• Output (Q1 ×Q2,Σ,δ, (q1
0, q2

0),F)
• Here, δ((q1, q2),a)= (δ1(q1,a),δ2(q2,a))
• The final states are defined as follows:
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– For union, F = (F1 ×Q2)∪ (Q1 ×F2)
– For intersection, F = F1 ×F2.

Notice how we tie together the states of the DFA into a pair and step each
part of the pair as per the δ function of the appropriate DFA.2 The final2 Ganging two DFA is like treating them

as two work-horses and tying them to a
common yoke.

states for union are defined as ordered pairs where at least one of the DFA
is in a final state; final states for intersection are defined as ordered pairs
where both DFA are in a final state. Jove provides more error-checking
and also handles the case of the DFA alphabets being different.
The following code pretty much implements the math behind the union
operation. Notice the call pruneUnreach that removes unreachable con-
figurations. Its need will become apparent if you carry out Exercise 6.2
using Jove.

Figure 6.2: Union algorithm (Intersection
is similar, and is left as an exercise; it is
just a one-line change!) def union_dfa(D1in, D2in):

"""In : D1in

D2in

Out: DFA for language union of D1in, D2in

"""

D1 = totalize_dfa(D1in)

D2 = totalize_dfa(D2in)

# The states can be anything in the Cartesian product

Q = set(product(D1["Q"], D2["Q"]))

# Accept if one of the DFAs accepts

F = (set(product(D1["F"], D2["Q"])) |

set(product(D1["Q"], D2["F"])))

# Start a lock-step march from the respective q0

q0 = (D1["q0"], D2["q0"])

# The transition function attempts to march both

# DFAs in lock-step per their own transition functions

Delta = { ((q1,q2),ch) : (q1p, q2p)

for q1 in D1["Q"] for q1p in D1["Q"]

for q2 in D2["Q"] for q2p in D2["Q"]

for ch in D1["Sigma"]

if D1["Delta"][(q1,ch)] == q1p and

D2["Delta"][(q2,ch)] == q2p }

return pruneUnreach(

mk_dfa(Q, D1["Sigma"], Delta, q0, F))

Exercise 6.2, DFA Jove, ∪,∩
1. Take the DFA of Figure 4.7, calling it D. Obtain its complement,

calling it Dc. Obtain the union of D and Dc without the pruneUnreach
call. Print the resulting DFA. Is this still a DFA? (Hint: DFA are
allowed to have disconnected states. However, these are annoying
and many algorithms do not allow disconnected states; hence we
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prune unreachable states using the algorithm in Figure 6.3.)
2. Describe the algorithm implemented by pruneUnreach in Jove. Its

code is in Figure 6.3. �

def pruneUnreach(D):

"""In : D (consistent DFA)

Out: Consistent DFA.

Given a consistent (and total) DFA D, returns a new

(consistent) DFA with unreachable states in D removed.

Transitions from each unreachable state are also removed.

Reachable states are those that can be reached in

|D["Q"]| - 1 steps or less.

"""

Nsteps = len(D["Q"]) - 1 # Search this far

Frontier = set({D["q0"]}) # BFS frontier

AccumF = Frontier # Used to accumulate Frontier changes

for n in range(Nsteps):

for q in Frontier:

for ch in D["Sigma"]:

AccumF = AccumF | set({step_dfa(D, q, ch)})

Frontier = AccumF

newQ = Frontier

newF = D["F"] & Frontier

newDelta = dict({ ((q,ch),qp)

for ((q,ch),qp) in fn_trans(D["Delta"])

if q in Frontier })

return mk_dfa(Frontier, D["Sigma"], newDelta, D["q0"], newF)

Figure 6.3: Algorithm for pruneUnreach
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def langeq_dfa(D1, D2, gen_counterex=False):

"""Check whether D1, D2 are lang. eqlt. gen_counterex is a flag

that triggers the printing of a counter-example. Two DFAs are

language-equivalent if they accept the same set of strings.

We determine this through a joint depth-first walk."""

if D1["Sigma"] != D2["Sigma"]:

print("Error: the DFA cannot be compared...")

else:

(eqStatus,

cex_path) = h_langeq_dfa

(D1["q0"], D1, D2["q0"], D2, Visited=[])

if not eqStatus:

if gen_counterex:

print("The DFA are NOT language equivalent!")

print("Path leading to counterexample is: ")

print(cex_path)

return eqStatus # True or False

def same_status(q1, D1, q2, D2):

"""Check if q1,q2 are accepting/non-accepting wrt D1/D2."""

return (q1 in D1["F"]) == (q2 in D2["F"])

def h_langeq_dfa(q1, D1, q2, D2, Visited):

"""If (q1,q2) is in Visited, no screw-up so far, so continue.

Else if they agree in status, recursively check for all reachable

configurations (a DFS in recursion). Else, return (False, Visited)

Visited is the counter-example."""

if (q1,q2) in Visited:

return (True, Visited)

else:

extVisited = Visited + [(q1,q2)]

if not same_status(q1,D1,q2,D2):

return (False, extVisited)

else:

l_nxt_status = list (

map(lambda symb:

h_langeq_dfa(D1["Delta"][(q1,symb)], D1,

D2["Delta"][(q2,symb)], D2,

extVisited), D1["Sigma"]) )

l_rejects = list(filter(lambda x: x[0]==False, l_nxt_status))

if l_rejects==[]:

return (True, extVisited)

else: # This is the first offending (status,cex)

return l_rejects[0]

Figure 6.4: Algorithm for DFA Language
Equivalence
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def iso_dfa(D1,D2):

"""Given consistent + total DFA

D1 and D2, they are isomorphic

* If they have the same number

of states,

* and are language-equivalent

"""

return(len(D1["Q"]) == len(D2["Q"])

and

langeq_dfa(D1, D2))

Figure 6.5: Algorithm for DFA Isomor-
phism

6.3 Language Equivalence and Isomorphism

Figure 6.4 defines function langeq_dfa that checks for DFA language
equivalence, while Figure 6.5 defines function iso_dfa that checks for
DFA isomorphism (both functions assume alphabet agreement).

A natural way to check whether two DFAs are language equivalent is
to lock-step march them, feeding all sequences of inputs (achieved by a
concurrent depth-first search). So long as the DFAs “track each other” —
meaning that upon seeing every string possible, they both are in an ac-
cepting state or in a non-accepting state — they are language equivalent.
This process will converge. Can you argue why? (Hint: In the limit, we
will have visited all the states in the Cartesian product of the states of
the DFA.) Let us walk through the code:
• After checking whether the alphabets agree, call helper h_langeq_dfa

which returns the language equality status eqStatus and a possible
counter-example path cex_path. If there is a mismatch (i.e., a string
is accepted by one DFA and the same string is rejected by the second
DFA), then cex_path is a list of pairs of states of DFAs D1 and D2 end-
ing in a state pair (q1,q2) where the predicate same_status emerges
false (one of these states is accepting and the other is not).

• h_langeq_dfa keeps a list of already visited state pairs (Visited); if
the current state pair is in there, then there is no point chasing down
this pair of DFA states. Just return True.

• Otherwise add (q1,q2) to the visited set. If (q1,q2) don’t have the
same status, return False.

• Otherwise, obtain the list of statuses of the next states attainable from
(q1,q2). This is achieved by recursively mapping h_langeq_dfa on
the next states attained (see the expression D["Delta"][(q1,symb)]

for instance).
• Then employ the filter function to check for any lurking mismatches

(False) in the list of statuses. If a mismatch is found, return the reject
status plus the counterexample path.

The use of higher-order programming using map and filter makes the
code elegant to read.3 3 In all the code written for pedagogy, one

emphasizes clarity over efficiency, even
though higher-order functions can indeed
be efficient in modern implementations.

To summarize this section,

Two DFA are isomorphic if and only if they are language equiva-
lent and have the same number of states.
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6.4 DFA Minimization and Myhill-Nerode Theorem

We minimize a DFA based on a simple idea. Suppose you are given
a magical stethoscope called “the language stethoscope.” You can touch
any state x of a DFA D = (Q,Σ,δ, q0,F) with it, and you will “hear” the
language of state x. This language is defined to be the set of strings that
take x to a state within F via δ̂.4 Now if you touch this stethoscope on q0,4 A game of pretense in which you pretend

that x is the DFA’s initial state. you will “hear” the language of the DFA.5 Given this setup, two states p
5 Its heart...

and q are indistinguishable if they have the same language. (Exercise:
identify all indistinguishable pairs of states in Figure 6.7.)

A DFA is then said to be minimal if no two distinct states qi and q j are
indistinguishable. The algorithm we are to present implements this idea
using dynamic programming. Here is an important property of minimal
DFA:

bloated_dfa = md2mc(’’’

DFA

IS1 : a -> FS2

IS1 : b -> FS3

FS2 : a -> S4

FS2 : b -> S5

FS3 : a -> S5

FS3 : b -> S4

S4 : a | b -> FS6

S5 : a | b -> FS6

FS6 : a | b -> FS6’’’)

dotObj_dfa(bloated_dfa)

Figure 6.6: Markdown for a bloated DFA

Theorem 6.4: If D1 and D2 are two minimal DFA for the same
regular language L, then D1 and D2 are isomorphic.

For a proof, see [26].
Intuitively, we can print D1 and D2, hold one printout on top of the
other, and observe a state-for-state and transition-for-transition match.
More formally, D1 and D2 are isomorphic (as tested by the Jove predicate
iso_dfa) if:
• We can put the set of states Q(D1) and the set of states Q(D2) into a

bijective (1-1, onto) mapping under some function f such that a pair
of states coupled by this bijection are either both final states or both
non-final states.

• q0(D1) and q0(D2) are linked by this bijection f .
• For every pair of states q1 and q2 that are linked by this bijection f ,

for all symbols c ∈ Σ, δ1(q1, c) and δ2(q2, c) are also linked under this
bijection.

6.4.1 Fully Worked-out Example of DFA Minimization

Consider the example in Figure 6.7 (automatically generated from the
markdown in Figure 6.6). We have to test all pairs of states in the DFA
using our language stethoscope. There are

(6
2
)

= 15 state pairs so we will
employ a data structure, a ‘frame,’ that allows us to easily compare them.
The algorithm, going frame by frame, is presented in Figure 6.7 (bottom).
• Frame-0 (marked Initial): Our frame design allows us to “clash” all

combinations of states taken two at a time. We put a -1 against each
pair of states to denote that they have not been found distinguishable
yet. Thus, in Frame-0, all combinations carry a -1.
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• Frame-1 (marked 0-distinguishable): We now put a 0 where a pair of
states is 0-distinguishable. This means the states are distinguishable
after consuming a string of length 0 (i.e., ε) – that is, one state is a final
state and the other is a non-final state. Thus, all pairs in the Cartesian
product of the set of states {IS1,S4,S5} and {FS2,FS3,FS6} are marked
0-distinguishable, since exactly one of the members of these pairs is
a final state and the other is a non-final. Thus, we see nine entries
having “0” in them.

• Frame-2 (marked 1-distinguishable): We now put a 1 where a pair of
states is 1-distinguishable. This means the states are distinguishable
after consuming a string of length 1 (a single symbol). This is only pos-
sible if one state transitions to a final state and the other transitions
to a non-final state after consuming a symbol. State pairs (FS6,FS2)
and (FS6,FS3) are of this kind.
Take (FS6,FS2) as an example. While both FS6 and FS2 are final
states (and hence are 0-indistinguishable), after consuming an ‘a’, FS6
stays at FS6, while FS2 goes to S4. We already know that (FS6,S4) are
0-distinguishable (we can say that ‘a’ helps pull apart FS6 and FS2).
– Just one way to force distinguishability suffices. In our example,

even ‘b’ helps pull apart (FS6,FS2).
– (FS6,FS3) get pulled apart similarly.
– General rule: Let us say that (prep, preq) are of unknown dis-

tinguishability status. Suppose p = δ(D, prep, c), q = δ(D, preq, c),
and we already know that (p, q) are k-distinguishable. Then we can
declare that (prep, preq) are k+1-distinguishable.

• Applying our general rule, we mark state pairs (S5,IS1) and (S4,IS1)
to be 2-distinguishable. Let us explain this for the (S5,IS1) case (the
(S4,IS1) case is left as an exercise).
Notice that after consuming an ‘a’, S5 ends up at FS6 while IS1 ends
up at FS2, and (FS6, FS2) are already marked 1-distinguishable. Thus,
we mark (S5, IS1) as being 2-distinguishable.

• Another way to see things is this. After seeing an ‘aa’, S5 ends up at
FS6 while IS1 ends up at S4. Since FS6 and S4 are 0-distinguishable,
S5 and IS1 are 2-distinguishable.6

6 We avoid going from Frame 3 back to
Frame 1, as we will then be forced to con-
sider all strings of length 2, which are
quite numerous. We always end up consid-
ering single symbols and manage to ex-
tend the distinguishability relation with
respect to a prior frame.

• Thus from Frame-3 which captures 2-distinguishability, we try to gen-
erate Frame-4 (which captures 3-distinguishability). Alas, no more
such distinctions can be established. In other words, Frame-4, if built,
would emerge identical to Frame-3. (We denote this by writing “Frame-
3 = Frame-4” on top of the 2-distinguishability case.) Thus the algo-
rithm terminates. At this point, all the state pairs that could not be
distinguished in any manner (i.e. still carry a “-1” against them) are
considered to be equivalent (≡). Now suppose there are states s1, s2

and s3 such that s1 ≡ s2 at this stage, and s3 ≡ s3 at this stage, we can
claim that s1 ≡ s3. That is, {s1, s2, s3} belong to one equivalence class.7

7 Equivalence classes are reviewed in Ap-
pendix A.
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IS1 FS2_FS3a
b

S4_S5 FS6a
b

a
b

a
b

Frame-0 Frame-1 Frame-2 Frame-3 = Frame-4

(Initial) (0-distinguishable) (1-distinguishable) (2-distinguishable)

-------------------- ------------------- ------------------- --------------------

FS2 -1 FS2 0 FS2 0 FS2 0

FS3 -1 -1 FS3 0 -1 FS3 0 -1 FS3 0 -1

S4 -1 -1 -1 S4 -1 0 0 S4 -1 0 0 S4 2 0 0

S5 -1 -1 -1 -1 S5 -1 0 0 -1 S5 -1 0 0 -1 S5 2 0 0 -1

FS6 -1 -1 -1 -1 -1 FS6 0 -1 -1 0 0 FS6 0 1 1 0 0 FS6 0 1 1 0 0

IS1 FS2 FS3 S4 S5 IS1 FS2 FS3 S4 S5 IS1 FS2 FS3 S4 S5 IS1 FS2 FS3 S4 S5

Figure 6.7: Schematic for the bloated DFA
of Figure 6.6 (top), its minimized version
(middle), and the frames generated during
DFA minimization (bottom) are all shown.

Brief summary of minimization:
Consider the pair (S5, IS1) which starts
out at -1, and becomes 2 in Frame-3. This
is because S5 ends up at FS6 after consum-
ing an ‘a’ while IS1 ends up at FS2 after
an ‘a’. Given that (FS6, FS2) has been
determined to be 1-distinguishable, (S5,
IS1) becomes 2-distinguishable.

State pairs that remain at -1 are in-
distinguishable, and must be merged into
equivalence classes. One such equiva-
lence class, namely (FS2,FS3), results in
state FS2_FS3. Another equivalence class,
namely (S4,S5), results in state S4_S5.
The minimized machine now has these
state names.
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• At this point, we need to merge equivalence classes, as we now detail.
– We established in the end that (FS2,FS3) and (S4,S5) are indistin-

guishable: they are still left with the initial “-1”. Thus

* (FS2,FS3) forms a single equivalence class.

* (S4,S5) forms another equivalence class.

* Whenever two equivalence classes overlap, we can merge them.
Thus, if (FS2,FS3) and say (FS3,Y) were to be two equivalence
classes for some state Y, we would have ended up creating a “su-
per equivalence class” (FS2,FS3,Y). But there is no such state
“Y”. So, in this example, the process of merging equivalence classes
stops.8 8 Each equivalence class is like a drop of

water, and when two equivalence classes
touch, they coalesce. An equivalence class
containing a pair (a,b) “touches” another
equivalence class containing (b, c), and
the super-equivalence class now includes
(a,b), (b, c), and (a, c).

* Thus we can introduce a new state, say “FS2_FS3” modeling the
equivalence class (FS2,FS3) and yet another new state S4_S5
modeling (S4,S5).

Figure 6.7 (Page 74) presents the results of the minimization (our al-
gorithm employs a simple heuristic to rename equivalence classes).

6.4.2 Salient Code Excerpts

We now present our algorithm which is a fixed-point computation. The
DFA minimization algorithm is included in Jove in module Def_DFA.ipynb
and illustrated on interesting examples in Drive_DFA.ipynb.
• We set a changed flag False upon entry to the loop, setting it True and

break out whenever a change occurs.
• The hash-table maintains state-pairs as keys and the values are the

distinguishability distances.
• You can see that ns0 and ns1 are the next states attained after each

character c is applied to the current states s0 and s1.
• If the states are the same, obviously they are indistinguishable; so we

continue.
• When an entry is at -1, we set the distinguishability distance based on

the distance of the (ns0,ns1) pair plus 1.
• We check whether (ns1,ns0) is in the hash-table; if so, it serves as

a proxy for (ns0,ns1). This step is needed because we store only the
lower triangle of the matrix.

• That is it! When the hash-table ceases to change, we exit and return
ht.
We call this a fixed-point computation because that is the standard

name for applying a function f to something, and then applying f again,
and so on, till nothing changes.9 For instance, 1 is a fixed-point of the

9 If you xerox your face on a copier, and
then xerox the xerox, and xerox the xerox
of the xerox, . . ., very soon the image will
fuzz up to a point—becoming one fixed-
point of the copier.

factorial ( f ac) function because f ac(1)= 1; so is 2.
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def fixptDist(D, ht):

"""In : D (consistent DFA)

ht (hash-table of distinguishability pair distances)

Out: ht that has attained a fixpoint in distinguishability.

Determine the min. distinguishability distances, going frame

by frame. Fixpoint attained when ht ceases to change.

"""

changed = True

while changed:

changed = False

for kv in ht.items():

s0 = kv[0][0]

s1 = kv[0][1]

for c in D["Sigma"]:

ns0 = D["Delta"][(s0,c)]

ns1 = D["Delta"][(s1,c)]

#

# Distinguishable state pairs carry

# "distinguishability distance" in the ht

if ns0 == ns1:

continue

if (ns0, ns1) in ht:

# s0,s1 are distinguishable

if ht[(s0,s1)] == -1 and ht[(ns0, ns1)] >= 0:

# acquire one more than the

# dist. number of (ns0,ns1)

ht[(s0,s1)] = ht[(ns0, ns1)] + 1

changed = True

break

else:

# ht stores only (ns0,ns1);

# so check the other way

if (ns1, ns0) in ht:

if ht[(s0,s1)] == -1 and ht[(ns1, ns0)] >= 0:

ht[(s0,s1)] = ht[(ns1, ns0)] + 1

changed = True

break

else:

print("ht doesn’t cover all reqd state combos.")

return ht

6.5 Examples of Language Design and Manipulation

We now present examples that we highly recommend that you experiment
with using Jove.
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6.5.1 Use of Union, Minimization, and Language
Equivalence

Here are the specific commands we can use to conduct these experiments:
• Create a DFA for L1, a language over {0,1} that has an odd number of

1s. The following Jove command for our markdown language accom-
plishes this construction:

dfaOdd1s = md2mc(’’’

DFA

I : 0 -> I

I : 1 -> F

F : 0 -> F

F : 1 -> I

’’’)

I

0

F1
1

0

Figure 6.8: DFA for L1, which corresponds
to dfaOdd1s

• Define the DFA for our second language of interest, say L2 (also over
{0,1}) which is “ends in 0101:”

ends0101 = md2mc(’’’

DFA

I : 0 -> S0

I : 1 -> I

S0 : 0 -> S0

S0 : 1 -> S01

S01 : 0 -> S010

S01 : 1 -> I

S010 : 0 -> S0

S010 : 1 -> F0101

F0101 : 0 -> S010

F0101 : 1 -> I

’’’)

• Obtain the union of L = (L1 ∪L2) using
odd1sORends0101 = union_dfa(dfaOdd1s,ends0101)

• Minimize L to obtain Lmin

Minodd1sORends0101 = min_dfa(odd1sORends0101)

• Check if the machines for L and Lmin, are isomorphic, using
iso_dfa(odd1sORends0101, Minodd1sORends0101). The answer is
False

• Check if the machines for L and Lmin are language equivalent using
langeq_dfa(odd1sORends0101, Minodd1sORends0101). The answer
is True. Thus, the minimization did reduce the DFA size. But the
unminimized machine also has the same language.
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I

S0

0

S01

101

1 S0100

0

F01011

1

0

Figure 6.9: DFA for L2, which corresponds
to ends0101
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Figure 6.10: Minimized Intersection for
“odd 1s” and “ends in 0101”

6.5.2 Use of DeMorgan’s Law

Next, suppose we are interested in obtaining the intersection of L1 and
L2. We first obtain it directly, and then later obtain it also using DeMor-
gan’s law, as shown below.:
• Obtain the intersection, i.e., L1 ∩L2, directly using

odd1sANDends0101 = intersect_dfa(dfaOdd1s,ends0101)

• Minimize the intersection using
Minodd1sANDends0101 = min_dfa(odd1sANDends0101)

• Complement the first DFA, i.e. obtain L1, via
CdfaOdd1s = comp_dfa(dfaOdd1s)

• Complement the second DFA, i.e. obtain L2, via
Cends0101 = comp_dfa(ends0101)

• Obtain the complement of their union, i.e., obtain

(L1 ∪L2)

using
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C_CdfaOdd1sORCends0101 =

comp_dfa(union_dfa(CdfaOdd1s, Cends0101))

• Minimize it using
MinC_CdfaOdd1sORCends0101 = min_dfa(C_CdfaOdd1sORCends0101)

• Check for isomorphism using
iso_dfa(MinC_CdfaOdd1sORCends0101, Minodd1sANDends0101) and
the answer is True.10 10 One can obtain the drawings of these

DFA, place them one on top of the other,
and “hold them to light.” The state
names and the transition names must
then match up.

This demonstrates that DeMorgan’s law indeed works for DFA, and this
can be checked through isomorphism because minimal DFA for a given
regular language are isomorphic. It should be quite apparent that with-
out these tools, it would be quite tedious and error-prone to obtain a DFA
such as in Figure 6.10—the intersection of the DFAs in Figure 6.8 and
6.9. We will have more occasions to present cases where the complement
of a language is much easier (and more reliable) to specify than the de-
sired language itself.

Exercise 6.5.2, DFA, DeMorgan’s Law
1. Argue that if langeq_dfa(D1,D2) holds but iso_dfa(D1,D2) does

not hold, then the bijection mentioned under the Myhill-Nerode
theorem does not exist.

2. Attempt to directly design a DFA that accepts exactly the strings
that contain an odd number of 1s and end in 0101. Proceed by
trying to write a markdown description directly or draw the DFA
on paper and convert it to a markdown.

3. Step through Figure 6.10 (call it DFA D) and make sure that the
language is indeed the intersection of these two languages. Write
down three positive examples handled by D and three negative ex-
amples avoided by D. Now, using our tools, check for the existence
of a negative string in D with respect to “ends in 0101” as follows:
• Obtain the complement of “ends in 0101”.
• Intersect with D and make sure that the intersection is empty.
• As extra practice, minimize this intersection; what must it emerge

as (a specific kind of DFA; describe that in a sentence)?
4. Design a DFA for recognizing the language of all strings over Σ=

{a,b} that contain an odd number of a’s (call it Doa). Next obtain
Deb, a DFA that recognizes strings with an even number of b’s.
From Doa and Deb, show how to obtain a DFA for Dea∪Dob using
DeMorgan’s Law. Show all the steps using Jove.
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5. Minimize the DFA “blimp” described in the markdown below, by
hand. Next, enter it into Jove and obtain the minimal DFA. Con-
firm that these minimal DFA are isomorphic (if not, locate and
correct errors). �

blimp = md2mc(’’’

DFA

I1 : a -> F2

I1 : b -> F3

F2 : a -> S8

F2 : b -> S5

F3 : a -> S7

F3 : b -> S4

S4 : a | b -> F6

S5 : a | b -> F6

F6 : a | b -> F6

S7 : a | b -> F6

S8 : a -> F6

S8 : b -> F9

F9 : a -> F9

F9 : b -> F6

’’’)



7
Nondeterministic Finite Automata

Chapter Gist: We begin by introducing the key concept of nonde-
terminism through nondeterministic finite automata (NFA, §7.1).
NFA can be exponentially more succinct than DFA. One can also
view NFA as modeling parallel search in which each forked behav-
ior pursues one search option. We formally define NFA (§7.2) and
present how the language of an NFA can be intuitively understood
(§7.3). This intuition is made crisp by the idea of Eclosure (§7.4).
Subset construction, the centrally important algorithm to convert
an NFA to a DFA then follows (§7.5). A clever DFA minimization
algorithm due to Brzozowski is to simply reverse the given DFA,
determinize it, then reverse it, and determinize it again (§7.6)!
A complete illustration of this “unbelievable algorithm” follows
(§7.7).

7.1 Overview of NFA
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Figure 7.1: An NFA to recognize
“third-last is 1”. A regular expres-
sion (RE) describing these NFA is
(0+1)*1(0+1)(0+1), as we shall see in
Chapter 8. If you revisit this chapter after
reading Chapter 8, you will gain added
insights.

Figure 7.1 is an NFA. Two things stand out: (1) On an input of ‘1’, control
can move from state I back to itself or to state S0. (2) There are states
without any moves out of them, such as F. In fact, with NFA, there is
no requirement that we equip each state with one move per symbol in its
alphabet. Here is how to read this diagram, and “execute” its steps.
• When the NFA is “started”, we place one token at state I, indicating

where the control-flow is.
• When a ‘0’ input is supplied, the token goes back to I.
• When a ‘1’ is supplied, the token splits (also referred to as “forks” or

“clones”) into two, with one copy ending up at I and the other at S0.
Now, one token continues execution from I while the other executes
from S0.

• The ability to fork models the act of guessing:
– The token that stays back at I on input ‘1’ is saying hmm, this ‘1’

isn’t the third-last character in the string.
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– The token that goes to state S0 says yes, this is indeed the “lucky
1”: the third-last character in the string.

St7 0
St3

1

St1

1
St5

0

St0

1
St4

0

St6

0

St2
1

0

1

1

0

0
1

1
0

Figure 7.2: DFA for the third-last bit be-
ing a 1

I  0  1 

S0

  ''

S1

1

S2

 0  1 

F

 0  1 

Figure 7.3: A variant of the NFA of Fig-
ure 7.1 with an Epsilon (ε). Note: We use
” to denote ε in our PDF diagrams and our
Python code.

• When a token reaches state F, that forked copy accepts—and hence the
whole NFA is deemed to have accepted the input so far.
– Thus, if a ‘111’ is typed, you will find one token at state F, another at

state S1, yet another at S0, and finally one token at I. This “laggard”
of a token at I is the most pessimistic of tokens, saying no, I’ve not
yet seen the third-last 1.

– When a ‘1111’ is typed, the token sitting at F has nowhere to go; it
“falls out of the diagram.” But the token at S1 now lands at F, thus
accepting the string so far (there is a third-last 1 now).

• Thus, if any token reaches a final state, the NFA accepts the input that
has propelled that token so far.

Reasons for why NFA are Succinct: One can notice that the pattern
recognized by this NFA quite clearly stands out; in fact, its “tail” leading
to F focuses on the “third last is 1” pattern of interest. Everything else
(the self-loop at “I”) is waiting for this pattern to eventually appear. In
contrast, the DFA that recognizes this language in Figure 7.2 (also shown
in Figure 5.4) seems to “go all over the place.”

If we generalize our “third-last is a 1” language to “Nth last is a 1,”
any DFA implementing it will grow exponentially with N (refer to Exer-
cise Exercise 5.2.4 on Page 62, where N was defined to be the look-back).
However, the NFA for this language will be linearly sized as a function
of the look-back—essentially placing the point at which the “magical 1-
transition” is taken N steps before the final state F. This example illus-
trates that NFA are in general much more compact than DFA.

We will demonstrate in this chapter that every NFA can be converted
to a language-equivalent DFA. Moreover, every DFA is also an NFA.
Thus, NFA do not end up specifying anything other than regular lan-
guages, showing that “they are equally powerful.” With NFA, users are
the winners: they have less to write, and still end up implying a much
bigger DFA that they did not have to specify laboriously. Since DFA are a
special case of NFA, it is also clear that an NFA need not be larger than
the equivalent minimal DFA.
Is the use of ε in an NFA essential? To discuss this point, consider
Figure 7.3 which is also an NFA. Its first transition is labeled with ’’

which is how we type ε in ASCII syntax. Labeling a transition with ε

allows the NFA to take the transition without consuming an input.
Note that an NFA’s alphabet does not include ε, as detailed in §7.2.

The question of whether or not to employ an ε in an NFA is up to the
“programmer” (designer) of an NFA. The use of ε is strictly not necessary,
but often makes the design simpler and/or clearer. In our current exam-
ple, we can cleanly partition the two cases, without altering the remaining
inputs:
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• Stay back at I.
• Commit to the case of seeing a ‘1’ in state S0.

7.2 Formal Description of NFA

Let Σε stand for (Σ∪{ε}). An NFA N is a structure (Q,Σ,δ,Q0,F), where:
• Q is a finite non-empty set of states (as with DFA);
• Σ is a finite non-empty alphabet (as with DFA);
• δ : Q ×Σε → P (Q), is a transition function. An NFA’s δ function takes

a state in Q and a symbol or ε and returns a set of states (which is
a member of P (Q), the Powerset of Q). See Figure 7.4 for the state
transition table ’δ’ for the example NFA.

• Q0 ⊆Q is a set of initial states; and
• F ⊆Q, is a finite, possibly empty set of final states.

Let us briefly contrast NFA and DFA:
• NFA allow ε transitions from any state to a set of next states.1

1 Note that ε self-loops are useless.

• NFA allow one character c ∈Σ to transition to a set of next states.
• The set of next states targeted can have a cardinality of one or more.
• An NFA transition leading to an empty set of states is never explicitly

drawn out. For instance, a ‘0’ move from state S0 in Figure 7.3 is
not drawn. During NFA to DFA conversion, such “missing” moves are
automatically considered to be landing in an empty set of states.

Notice that NFA can start from a set of states and not just a single state.2

2 A majority of the books in this area
model NFA with a single initial state
q0, while the book “Automata and Com-
putability” by Dexter Kozen requires NFA
to have a set of initial states Q0. We
follow Kozen’s convention for one crucial
reason: it ensures that the DFA min-
imization algorithm by Brzozowski
yields minimal DFA (discussed later in
this chapter). Most of our examples may
have a singleton set of initial states, how-
ever.

State
Next state
upon inputs

0 1 ε

I {I} {I} {S0}
S0 {} {S1} {}
S1 {S2} {S2} {}
S2 {F} {F} {}
F {} {} {}

{’Q’ : {’F’, ’I’,

’S0’,’S1’,’S2’},

’Sigma’: {’0’, ’1’},

’Delta’:

{(’I’, ’0’) : {’I’},

(’I’, ’1’) : {’I’},

(’I’, ’’) : {’S0’},

(’S0’, ’1’) : {’S1’},

(’S1’, ’0’) : {’S2’},

(’S1’, ’1’) : {’S2’},

(’S2’, ’0’) : {’F’},

(’S2’, ’1’) : {’F’}},

’q0’: {’I’},

’F’ : {’F’}}

Figure 7.4: The transition table δ for the
NFA of Figure 7.3. Our Python encoding
for NFA is also shown in this figure.

Figure 7.4 provides the transition function δ for our example NFA of Fig-
ure 7.3, as well as our Python encoding thereof. As with DFA, we allow a
simple markdown language in Jove that allows NFA to be specified much
more conveniently. Here is all you have to type into Jove to produce this
NFA’s transition function given in Figure 7.4:

thirdlast1_b = md2mc(’’’

NFA

!!----------------------------------------------------------

!! This NFA looks for patterns of the form ....1..

!!----------------------------------------------------------

I : 0 | 1 -> I !! On input 0 or 1, stay at I

I : ’’ -> S0 !! Commit to state S0 nondeterministically

S0: 1 -> S1 !! This is speculated to be the third-last 1

S1: 0 | 1 -> S2 !! The second-last character could be 0 or 1

S2: 0 | 1 -> F !! The last character could be 0 or 1

’’’)

dotObj_nfa(thirdlast1_b) # Draws the NFA thirdlast1_b



84 AUTOMATA , COMPUTABILITY: PROGRAMMER ’S PERSPECTIVE

7.3 Language of an NFA: Example Driven

We first describe informally how the NFA in Figure 7.5 (reproduced from
Figure 7.1 to avoid page-flipping) works on test input 100 and then 1000.
We then highlight the essential differences with how the NFA of Fig-
ure 7.3 works.33 See supplementary material at https:

//bit.ly/Automata_Jove under NonDet-
InCS for additional intuitions about NFA,
including how it helps during formal veri-
fication through model checking.

7.3.1 Simulations of the NFA of Figure 7.5

Imagine there is a token of control flow at state I. Let us feed our NFA the
input ‘100’. Let us also keep track of where all the tokens are after each
input symbol arrives.

� ��� ���

��

���

��

��� ���

�

��� ���

Figure 7.5: NFA reproduced from Fig-
ure 7.1

The first 1 sends one copy of the token back to I while another copy is
sent to S0. Thus, the tokens are now present in the set of states {I,S0}.
The next input symbol of 0 moves the token in state I back to the set of
states {I} while it moves the token at S0 along to the set of states {S1}.
Thus, the tokens are now at the set of states {I,S1}. The next 0 results in
the tokens being at {I,F}. Given that the entire string has been consumed
and one token has reached F (the intersection of {I,F} with the final set of
states is non-empty), we conclude that the NFA has accepted ‘100’. The
sequence of transitions between sets of states is the following:

{I}
1−→{I,S0}

0−→{I,S1}
0−→{I,F}

When we simulate this NFA on input ‘1000’, an additional 0 comes
in to confront the state {I,F}. In this situation, the token at F “falls off
the diagram” (i.e., the transition takes us to ;, the empty set of states),
while the token at I transitions to {I}. Thus, the machine ends up in state
{I}∪;, which is {I}. Since the intersection of {I} with the set of final states
of the NFA is empty, (i.e., “no tokens have reached a final state”), the
input 1000 is rejected. The full sequence of transitions between sets of
states is shown below:

{I}
1−→{I,S0}

0−→{I,S1}
0−→{I,F}

0−→{I}

Let us look at one more example: an input of ‘111’:

{I}
1−→{I,S0}

1−→{I,S0,S1}
1−→{I,S0,S1,F}

The set of states reached after consuming this input is {I,S0,S1,F}.
Observation: NFA Consider Multiple Scenarios in Parallel: From §7.3.1,
it must be clear that NFA states are designed to be members of the pow-
erset of Q. When an NFA receives an input symbol, it “hedges its bet”
on a number of states, hoping that one of them will be able to accept the
remainder of the (unseen) input. Once one understands this process of
designing an NFA, one can indeed arrive at compact solutions to many

http://bit.ly
http://bit.ly
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a language design challenge. This approach also tells us how to convert
NFA to DFA: we essentially design a DFA whose states are members of
the powerset of NFA states.

7.3.2 Simulations of the NFA of Figure 7.3

The main feature of this NFA (reproduced in Figure 7.6) is the ε move.
This is a “silent” move that can be taken any time. Thus, as soon as we
put a token at I, a copy “oozes” into state S0. This activity of oozing is
called Eclosure or ε-closure.4 Thus, the sequence of states that this NFA

4 Imagine high voltage being applied to
state I, with the ε-labeled (”) edges serv-
ing as diodes that conduct one way. Then
Eclosure puts tokens at all states that one
can touch and get electrocuted. The high
voltage leaks from I to S0. But a token
that is merely at S0 does not leak back
into I (the diode-like behavior we alluded
to). Now if you have multiple ε edges that
form a path, then the high voltage can tra-
verse as far as possible along these paths.

will traverse includes an Eclosure step at every point. The simulation
sequence for input ‘100’ is the following:

{I,S0}
1−→{I,S0,S1}

0−→{I,S0,S2}
0−→{I,S0,F}

I  0  1 

S0

  ''

S1

1

S2

 0  1 

F

 0  1 

Figure 7.6: NFA reproduced from Fig-
ure 7.3

Even though the initial state is merely I, the Eclosure step will put a
token at {I,S0}. Now comes the interesting detail:
• The token at {I} will, upon seeing a 1, go to the set of states {I}. It will

immediately Eclose itself into {I,S0}.
• The token at {S0} will, upon processing a 1, go to the set of states {S1}.

Here, the Eclosure step doesn’t add any states because there aren’t
any ’’ (ε) edges going out of S1.

• Thus, we take the union of {I,S0} and {S1} to obtain the set of states
{I,S0,S1} in our simulation.

In a nutshell, here is how the simulation proceeds.
• Begin the NFA’s simulation at a set of states S obtained by taking the

Eclosure of the initial state of the NFA.
• At each step of the simulation, we take the current set of states S that

the NFA is situated in. The simulation seeks to discover the set of
states the NFA will be in after processing a symbol x ∈Σ. For this, we
consider each state s ∈ S and advance s with respect to x to obtain a set
of states sx. (Observe that sx will equal δ(s, x).) We take the Eclosure
of sx, denoted by Eclosure(sx). We do this for each state s ∈ S for input
x, and take a set union of the Eclosure(sx) states. The resulting set
of states is where the NFA will be in after processing input x at its
beginning set of states S.

7.4 Language of an NFA: via Eclosure

In §7.3.1 and §7.3.2, we provided many scenarios of NFA accepting as
well as rejecting specific inputs. We illustrated why strings ‘100’ and
‘111’ were accepted, while ‘1000’ was rejected. Do these scenarios fully
define the notion of the language of an NFA? Of course they don’t—these
are just a few of the many possible inputs!

Do you recall how, in §4.5, we defined the notion of a DFA accepting a
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string x? We seek a similar rigorous (mathematical) definition for NFA.
Unfortunately, the corresponding definition for an NFA is not going to be
that straightforward, and you may wish to skip over to the next section
during your first read; but do come back and read these definitions.5

5 Dear student, you are encouraged to
read the accepts_nfa function in the
Jove code. To understand this function,
you must understand the run_nfa func-
tion which, in turn, depends on functions
Eclosure and ec_step_nfa. While these
Python programs also provide a complete
description of NFA language acceptance,
they are a bit too detailed! This sec-
tion’s mathematical definition provides a
complete and yet far more succinct defini-
tion. (Of course, the code is also not that
bloated, and is written in a functional/re-
cursive style—much like these mathemat-
ical definitions!)

7.4.1 Defining Eclosure

Let us first formally define Eclosure as a function that, when applied to a
state q, returns the set of states that can be reached from q by traversing
only ε edges.6 Then,

6 That is, we apply a live wire to q and re-
turn the set of “all the high voltage states
that are dangerous to touch.”

• Let us introduce some notation, suggesting transitive closure along ε

edges. Our notation suggests treating
ε→ as a post-fix operator. Since

we are applying ∗ to this operator, it suggests “zero or more applica-
tions.”

Eclosure(q)= q
ε

→∗.

• Now, let us define Eclosure(Q) for a set of states Q by taking the set
unions of Eclosure(q) for every q ∈Q:

Eclosure(Q)=∪q∈Q Eclosure(q).

7.4.2 Definition of δ and δ̂

Now we embark on defining two functions: (1) the one-step next state
function δ that moves a state (or a set of states) upon seeing a single
character a ∈Σ, and (2) the multi-step next state function δ̂ that moves a
state (or a set of states) upon seeing a string x ∈Σ∗.
• We make δ and δ̂ work over a set of states Q by basically applying

them at every q ∈Q and taking the union of the results:
δ(Q,a)=∪q∈Q δ(q,a)
δ̂(Q, x)=∪q∈Q δ̂(q, x)

• Now we define δ̂(q, x), the string transfer function for state q and
string x inductively as follows:

δ̂(q,ε)= Eclosure(q).
For a ∈Σ and x ∈Σ∗,
δ̂(q,ax)=∪q1∈Q1 δ̂(q1, x), where we have
Q1= Eclosure(δ(Eclosure(q),a))

• That is, Eclose q, then apply δ and Eclose again.
• The language of an NFA N is

L (N)= {w : δ̂(q0,w)∩F 6= ;}.
This means the following:
– Discover all strings w such that δ̂(q0,w) has a non-empty intersec-

tion with F.
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– All such strings are accepted by the given NFA.

7.5 NFA to DFA Conversion through Subset Construction

The NFA to DFA conversion algorithm follows pretty much all the steps
in defining the language of an NFA given in §7.4. We now demonstrate
the specific steps with the help of the NFA in Figure 7.7 (top):
• Obtain the Eclosure of the initial state I, resulting in the set of states

{I,A,B,C,G}.
• Fire ‘0’ from each of the aforesaid states, and Eclose the resulting sets

of states to obtain {E,A,B,C,G} as follows:
– States I, A, B, and G yield the empty set (;) of states;
– State C yields the set of states {E}. We then perform Eclosure on

{E} obtain {E,A,B,C,G}. Now, taking the set union with ; obtained
in the earlier step still leaves us with {E,A,B,C,G}.

– State {E,A,B,C,G} is a new (as yet unexpanded) state of the DFA.
• Repeat, by firing ‘1’ from {I,A,B,C,G} to obtain {D,A,B,C,G,F}. Again

this is a new state.
• Since these are new states, repeat the ‘0’ and ‘1’ firings from {E,A,B,C,G}

and {D,A,B,C,G,F}. They yield only states previously generated, but
introduce new transitions. This results in the DFA of Figure 7.7 (bot-
tom).
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{I,A,B,C,G}

{E,A,B,C,G}  0 

{D,A,B,C,G,F}

 1 

 0 

 1 

 0 

 1 

Figure 7.7: (Top) An NFA for “ends in
1”; (Bottom) DFA obtained through subset
construction.

Algorithm for Subset Construction:

• Input: An NFA N = (Q,Σ,δ,Q0,F)
• Output: A language-equivalent DFA D
• Method: Subset Construction

– Add the Eclosure of the initial state of the NFA as an unex-
panded state of the DFA D being built. This would also be
the initial state of the DFA being built.
Repeat

Choose a state S of D that has not been expanded
Expand(S)

Until there are no more unexpanded states in D
– Expand(S):

Mark S as expanded;
If S∩F 6= ;, record S to be a final state of the DFA
For each symbol c in Σ

For each state s ∈ S do
Let sc = δ(s, c);

Let Sc = Eclosure( (∪s∈S sc) );
If Sc isn’t present in D, add it as an unexpanded state;
Add S

c→Sc to D’s transition
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The states of the resulting DFA are subsets of the given NFA’s states.
While it is possible to generate every such subset – i.e., the DFA states
could be the powerset of the NFA states – in practice, this rarely hap-
pens. It is, however, guaranteed to happen for the NFA of Figures 7.1
and 7.3. Thus, these NFA, when converted to a DFA, end up yielding an
exponential number of states with respect to the given NFA states.

Theorem 7.5: A language L is regular if and only if L has an NFA
recognizing it.

Proof, (Only if): A language is regular if there is a DFA describing it.
Now every DFA is also an NFA.
Proof, (If): If a language is described by an NFA, we can obtain a DFA
that is language-equivalent through the subset construction algorithm.
Hence the language is also regular.77 The fact that subset construction yields a

language-equivalent DFA of course merits
a proof. This can be argued at a high level
by tracing the accepting paths in the DFA
generated out of an NFA and relating it to
corresponding paths in the NFA.

Exercise 7.5, NFA to DFA
1. Design an NFA for the language of all strings over alphabet {0,1}

that contain a “0101” somewhere. Use Jove’s markdown syntax to
capture your design. Next,

(a) Simulate this NFA using the accepts_nfa function on the
first 20 strings in numeric order, showing that it works.

(b) Next, apply subset conversion by hand, and convert this
NFA to an equivalent DFA. Capture this DFA using Jove’s
markdown.

(c) Now, invoke the nfa2dfa function that automatically con-
verts your NFA to a DFA.

(d) Show that these two DFA are language-equivalent using
the langeq_dfa function.

2. Consider the “blocks of 3” language described in §5.2.1. Suppose
you want to arrive at an NFA for the complement of this language,
which means you have to negate this sentence.

For each block of words B
IF B has 3 symbols
THEN B has exactly two 1s.

This negation is
There exists a block of words B such that
B has 3 symbols
AND B violates the condition “has exactly two 1s”.

(a) Argue that the above negation is correct.
(b) Describe the NFA for this negated language using Jove’s

markdown. Convert this NFA to a DFA, and finally com-
plement it and minimize it, thus producing a DFA for the
“blocks of 3” language.

(c) For testing your constructions, design an NFA for the set of
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strings that must not be in this DFA’s language, and then
show (using Jove) that your DFA does not contain any of
these strings.

3. Suppose we are given a DFA D = (Q,Σ,δ,Q0,F), and we are asked
to design an NFA N such that it recognizes the middle-third of ev-
ery string recognized by D. More formally, we want the language
of the NFA N, L (N), to be

L (N)= {y : ∃x, y, z ∈Σ∗ : len(x)= len(y)= len(z)∧ xyz ∈L (D)}

Of course, for every string in L (D) whose length is not divisible by
3, there will be no corresponding “middle-third” string contributed
to N.
Build the NFA using the mk_nfa call provided within Def_NFA, and
then produce the minimized DFA using Jove’s suite of functions.
Hint:
The idea is to imagine keeping a nondeterministically chosen mile-
post a third of the way and another nondeterministically chosen
milepost two-thirds of the way. Model the NFA state as Q5 (the Q
being the set of states of the DFA), i.e., Q×Q×Q×Q×Q. Let the
initial state be (q0, q1, q1, q2, q2). It is as if we placed one mile-post
token at some state q1, another at q2, and let a token from q0 seek
the one at q1, let another token at q1 seek q2, and a final token at
q2 seek q f , a state in F. We move three tokens with “equal veloc-
ities,” and if/when they manage to hit a “magical configuration,”
we have found our middle-third string.
More specifically, the idea is then to consider the following types
of state transitions (notice that the second and fourth components
of the state tuple stay put, serving as fixed mileposts):

(q0, q1, q1, q2, q2) →
(q01, q1, q12, q2, q21) →
(q02, q1, q12, q2, q22) →
(q03, q1, q13, q2, q23) →
. . .
(q1, q1, q2, q2, q f )

In this scenario, the last state is our “magical configuration.”

Putting these ideas to work, we write down the following compo-
nents of our NFA:

QN =Q5

ΣN =Σ
QN

0 = {(q0, q1, q1, q2, q2) : q1, q2 ∈ Q} (i.e., start the NFA from
the set of these initial states).
FN = {(q1, q1, q2, q2, q f ) : q f ∈ F}.
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δN ((qa, q1, qb, q2, qc), y)=
{(δ(qa, c1), q1,δ(qb, y), q2,δ(qc, c2)) : c1, c2 ∈Σ}

One can see how only the middle token “listens to y”; the other
two tokens chaotically wander. They seek to find the “magical
configuration” in all possible ways. Try animating this on a piece
of paper using colored beads in place of tokens. �

7.6 Brzozowski’s DFA Minimization Algorithm

In 1962, Janusz Brzozowski came up with an elegant DFA minimization
algorithm [13]. Its Jove code will take your breath away:

def min_dfa_brz(D):

"""Minimize a DFA as per Brzozowski’s algorithm.

"""

return nfa2dfa(rev_dfa(nfa2dfa(rev_dfa(D))))

That is it! To minimize a DFA:
• Reverse the DFA to obtain an NFA. Reversing a DFA captures the

reversal of the language of the original DFA. To reverse the DFA:
– Take the final states of the original DFA as the initial set of states

of an NFA,
– Take the initial state of the original DFA as the only final state of

the NFA, and
– Reverse all the transitions.

• Then determinize the resulting NFA to obtain a DFA. Here, deter-
minize means perform the subset construction (nfa2dfa). Brzozowski
proved that at this point, we have a minimal DFA for the reverse of the
original DFA. But we want a minimal DFA for the given DFA. What do
we do? Simple! Do it again!

• So, reverse the DFA just obtained (min DFA of the reverse) and deter-
minize it again!

7.6.1 Reversal of a DFA Yields an NFA

Reversal of a DFA also has an elegant piece of Jove code:
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def rev_dfa(D):

"""In : D = a partially consistent DFA w/o unreachable states.

Out: A consistent NFA whose lang. is D’s lang. reversed.

"""

NDict = { (q,ch) : inSets(D,q,ch)

for q in D["Q"]

for ch in D["Sigma"] }

return mk_nfa(D["Q"], D["Sigma"], NDict, D["F"], {D["q0"]})

def inSets(D,trg,ch):

"""Return all those states from which there are moves

to a given target state trg through character ch.

---

In : D = partially consistent dfa,

trg = a target state in D["q"]

ch = a member of D["Sigma"]

Out: a set of states. { q s.t. Delta[q,ch] == trg }

"""

return { q for q in D["Q"] if D["Delta"][(q,ch)] == trg }

That is it! Here is how the code works:
• We form a dictionary called NDict that forms the NFA’s transition

function directly!
• The NFA transition function takes a (q,ch) and jumps to all the states

that have sent a transition into q. This is computed by inSets as fol-
lows
– We view each state of the DFA as a “target” (trg), and determine the

set (call it Shooters ) of all those DFA states q from which “arrows
labeled by character ch are being shot” to hit trg. When we form an
NFA by reversing the DFA, arrows turn around! It is now the target
that now emits arrows labeled by ch hitting the set of Shooters.

Exercise 7.6.1, Brzozowski’s DFA minimization
1. Apply Brzozowski’s minimization algorithm by hand to the DFA

of Figure 6.6.
2. Can you argue that just carrying out the reversal followed by de-

terminization obtains the minimal DFA of the original DFA’s re-
verse? (It is worth studying Brzozowski’s proof here.) Just get the
general idea of this proof, if not the whole proof.

3. Using Jove, run the two minimization algorithms on “blimp” (the
topmost DFA in Figure 7.8), showing that the minimal DFA ob-
tained are isomorphic.

�
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7.7 A Complete Illustration of Brzozowski’s Minimization

Let’s start with “blimp,” a bloated DFA introduced in Exercise 5 on Page 80.
The full minimization sequence using Brzozowski’s method is illustrated
in Figure 7.8 and explained in its caption.
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Figure 7.8: (1) We start with a DFA called
“blimp,” the first (topmost) diagram here.
The steps are as follows: (2) We first re-
verse blimp and obtain the second dia-
gram called rblimp. Notice that the final
state of rblimp is I1 (blimp’s initial state).
Also the set of initial states of rblimp is
{F2,F3,F6,F9} which are the final states
of blimp. (3) We then determinize rblimp
to obtain a DFA which we call drblimp
(the third diagram from the top). We can
already see that the diagram has gotten
quite minimized. (4) Next, we reverse dr-
blimp to obtain rdrblimp which is the NFA
(fourth from top). Again we see a rever-
sal of flows, and an NFA with multiple ini-
tial states. (5) We finally determinize NFA
rdrblimp to obtain the final DFA. Notice
that this language is its own reverse (the
third and fifth diagram are isomorphic).
This is often not the case.
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8
Regular Expressions and NFA

Chapter Gist: In a sense, regular expressions provide the expres-
sion syntax for typing in NFA into a computer (§8.1). We present
RE to NFA conversion through the interactive use of the re2nfa

function (§8.2) and then solve a non-trivial language design prob-
lem (§8.3). Getting regular expressions wrong can open up secu-
rity holes; one must employ good checkers (§8.4). We present a
mini-compiler that parses REs and emits NFA (§8.5). We design
an error-correcting DFA using two approaches and confirm its cor-
rectness through the isomorphism check of the generated minimal
DFA (§8.6, §8.7). A cool application of regular expressions is to
calculate what postage values one can attain using given stamp
values (§8.8); a related problem is the McNugget number.

8.1 Regular Expressions

User syntax Mathematical Syntax Language Denoted
” ε {ε}
1 1 {1}
a a {a}
aa aa {a}{a}= {aa}
a+b a+b {a}∪ {b}= {a,b}
(a+b)(a+c) (a+b)(a+ c) {a,b}{a, c}= {aa,ac,ba,bc}
(ab)+(ac) (ab)+ (ac) {ab}∪ {ac}
a* a∗ {a}∗

nothing ; {}
Regular expressions define an expression language to denote regular

languages much like expressions over numbers such as 0, (3+4)*5, or
(x+4)*y denote numbers. Regular expressions are either primitive ones
(such as a string of length 1) or simple regular expressions that are glued
together through union, concatenation, and star. In the table above, we
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present examples of the user-level syntax (for Jove users), mathematical
syntax, and the regular language denoted. (Note: We suppress quotes
around strings of length 1.)

We will now detail some of the entries of this table. Entry ’’ denotes
the unit language {ε}. A single character a denotes the language {a}.
Concatentation, plus (+), and star (*) are used to denote corresponding
language operations. That is it!1

1 We do not include other regular expres-
sion operators, as all regular languages
are definable using just these three opera-
tors. Also there is one more primitive reg-
ular expression, namely ;, that denotes
the empty language. We do not provide
a user-level syntax for ; till Chapter 10,
where it is needed to specify derivative-
based pattern matching (till then, we do
not need this primitive regular expres-
sion). The General Syntax for Regular Expressions (RE): REs can be de-

fined over an alphabet Σ as follows:
1. ε is a RE denoting the regular language {ε};

2. a ∈Σ is a RE denoting the regular language {a};

3. if r is a RE, so is r∗ as well as (r); the former denotes the regular
language (L (r))∗ and the latter2 denotes L (r), the language of r;2 The reason why we introduce (r) as a sep-

arate category is to group regular expres-
sions for readability, and also to prevent
∗ from binding too tightly. For example,
(a+b)* and a+b* are not the same, as in
the latter, * binds to b, whereas in the for-
mer, * applies to the whole RE.

4. if r1 and r2 are REs, so are r1 + r2, and r1r2. These expressions
denote (L (r1))∪ (L (r2)) and (L (r1))(L (r2)) respectively.3

3 Please note that concatenation (r1r2)
has higher precedence than summation
(r1 + r2). Thus, you must read regular ex-
pression ab+c as (ab)+c. Also, concatena-
tion and summation are associative; thus,
abc = (ab)c = a(bc), and likewise, a+ b+
c = (a+b)+ c = a+ (b+ c).

The core of this chapter deals with algorithms that convert regular ex-
pressions to NFA. We will also touch upon how regular expressions play
a pivotal role in building compiler scanners (otherwise known as lexical
analyzers). §8.4 covers some of the dangers of employing regular expres-
sions without due precautions.

8.2 RE to NFA Conversion: Examples, Algorithm Sketch

We now list each of the REs handled by Jove and the corresponding NFA
generated. A sketch of the underlying conversion algorithm is then pre-
sented.
• The NFA for RE ε (’’) is obtained by typing:

dotObj_nfa(re2nfa("”")), resulting in the following NFA that has
language {ε} ( the unit language):

St1

• The NFA for RE a is obtained by typing:
dotObj_nfa(re2nfa("a")), resulting in an NFA that has language
{a}:
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St1 St2a

• The NFA for RE ab is obtained by typing:
dotObj_nfa(re2nfa("ab")), resulting in an NFA that has language
{ab} (built by concatenating an NFA for a with an NFA for b.

��� ��� ���
�

���
���

• The NFA for (a+b) is obtained by typing:
dotObj_nfa(re2nfa("a+b")), resulting in an NFA that has language
{a,b} (built by taking the union of an NFA for a with an NFA for b.
Given that our NFA can start from a set of initial states Q0, we can
“leave the input states unconnected” as in the figure that follows.

St3

St1

St4b

St2
a

• In general, the algorithm for concatenation is: (1) put an epsilon-edge
from every final state of the first NFA to every initial state of the sec-
ond NFA, (2) make the final states of the first NFA non-final. This is
illustrated by RE (a+b)(a+b) whose NFA is shown below:
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• The NFA for a∗ is obtained by typing:
dotObj_nfa(re2nfa("a*")), resulting in an NFA that has language
{a}∗. This is obtained by taking an NFA for a and modifying it as fol-
lows: (1) introduce the NFA for a (between states St1 and St2 here),
but make the final states of this NFA non-final; (2) introduce a new ini-
tial+final state (St3 here); (3) transition from the original final states
of the NFA to this new initial+final state (St3); (4) transition from the
new initial+final state (St3) to all the initial states of the NFA.

���

���

���
�

��

��

• To see how the star construction generalizes, let us obtain an NFA for
the RE (a+b)∗. This is obtained as follows.
dotObj_nfa(re2nfa("(a+b)*")), resulting in an NFA that has lan-
guage {a,b}∗. We can see that the star procedure described above is
followed: the NFA for (a+ b) has been inserted into the “star recipe”
(involving states St1 through St4).4

4 Notice that we turn states St2 and St4

into non-final states. While the semantics
of star would not be affected if we had left
states St2 and St4 as final, further con-
structions (especially by hand) could turn
erroneous. For instance, if we are asked to
perform a subsequent concatenation such
as (a+b)*c, we would be required to con-
nect all final states of (a+b)* to the start
state of c, and render the final states of
(a+b)* non-final. After this construction,
only the final state of the concatenated RE
c (turned into its own NFA) would be a fi-
nal state. However, if we had accidentally
left behind St2 and St4 as final states, we
would have an incorrect construction that
allows acceptance even before seeing a c.
So the act of limiting the set of final states
to the new initial+final state—in this case
St5—is to safeguard against this inadver-
tent mistake.
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• Finally, to see how three operations—plus, concatenation, and star—
come together, let us build an NFA for (a+b)(a+b)∗ by typing
dotObj_nfa(re2nfa("(a+b)(a+b)*"))
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Exercise 8.2, NFA Operations
1. Write down two strings in the symmetric difference of the regular

languages denoted by (0* 1 (1 0*)*) and (0* 1 (0* 1)*).
2. Build NFA for the following REs by hand (here, ’’ is ε). Do not

hand-simplify the RE or the NFA obtained.
(a) (”+a)*(b+cd)*. Here is the recommended approach:

• Build an NFA for (”+a) by building NFA for ” and a,
and applying the procedure for + (union).

• Build an NFA for (b+cd).
• Obtain their stars separately.
• Apply the concatenation procedure on the resulting NFA.

3. Verify your overall construction by comparing the NFA you ob-
tained against the original RE through Jove’s conversion pipeline
(convert them both to a minimal DFA and then check for isomor-
phism). �
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8.3 A More Extensive Example

With the syntax of regular expressions at hand, a user can, with some
practice, begin designing regular languages systematically. As an exam-
ple, suppose someone wants to develop a regular expression for the lan-
guage over {0,1} that has either an odd number of 1’s or exactly three 0’s.
Here is how to design this RE, with steps indicated:
• Focus on the salient pattern:

– One pattern is “odd 1’s”

* Odd 1’s can be generated by adding ‘11’s to a ‘1’.

* Thus the basic pattern is 1(11)*, as it describes a 1 followed by
zero or more (11)s.

* However, 0’s can be present anywhere in this pattern.

* Thus, this RE can be generalized to 0* 1 0* (1 0* 1 0*)*
– The other pattern is “exactly three 0s”.

* This is again easily obtained as 1* 0 1* 0 1* 0 1*
• Obtain the final pattern:

– Now that we have the constituents worked out, the full RE is
0* 1 0* (1 0* 1 0*)* + 1* 0 1* 0 1* 0 1*

• Test out using Jove: Given we have the power of Jove, we can “by Jove”
obtain an NFA and then a minimized DFA.

• The NFA is obtained through
dotObj_nfa(re2nfa("0*10*(10*10*)* + 1*01*01*01*"))
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• Clearly, this NFA is meant for consumption by computers, and not
humans. Yet, one can see RE idioms present in it. To obtain a human-
readable machine, we turn this NFA into a minimal DFA which is
clearly readable! One can trace paths leading to final states and study
this rather fun shape (coming next) that encodes “odd 1’s” or “three
0’s.”
dotObj_dfa(min_dfa(nfa2dfa(re2nfa("0*10*(10*10*)*+1*01*01*01*"))))
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So far, we have described how to convert RE to NFA, and also NFA to
DFA. In Chapter 9, we will describe an algorithm to convert NFA to RE.
Given all this, we have the following theorem.

Theorem 8.3: The class of languages defined by DFA, NFA, and
RE are all regular sets.

8.4 Regular Expressions: Ubiquitous, yet Error-Prone

Regular expressions pack a considerable punch in small syntactic con-
fines. This makes them quite suitable for use in various settings—in
parsing user web-forms, rejecting malformed command-line inputs, de-
tecting malware within internet packets, etc. etc. Unfortunately, casually
staring at regular expressions, or running a few test cases is not a suf-
ficient check for some of the dangers that innocuous regular expressions
might be hiding. Because of their cryptic nature, it can become impos-
sible to fathom all the strings denoted by a regular expression; perhaps
there are unintended strings lurking within the language defined by a
regular expression. Simple typos can also change the meaning of regular
expressions. For instance, a reader may want to puzzle over the exact
difference between these two REs:
1. (0* 1 (1 0*)*)

2. (0* 1 (0* 1))*
Real-world regular expressions, as supported in real programming lan-
guages, allow even more rules of composition.
• They allow character-classes to be matched; for instance [a-z] means

any of the characters in the range a through z.
• They allow negation; for instance, [^a-z] means anything but a char-

acter in the range a-z.
• They even allow fancy concepts such as negative lookahead. For in-

stance, to express all the characters in the range A-Z except for S, P,
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Q, and R, one has to write, in Python, a construct using negative looka-
head:

(?![SPQR])[A-Z]

• However, in other settings such as Microsoft’s .NET, such negations
are supported more readily. There are online tools that can help debug
Python regular expressions, and their use is highly recommended.55 http://www.pyregex.com/ is one such.

I had to devise the Python version of this
RE through much trial and error. It is not
easy to perform the negation of more com-
plex patterns!

When we require such complex regular expressions to be developed
by ordinary users, dangerous bugs can be quite easily introduced. For
example, consider a Perl program that employs a carelessly written RE
matching test:66 Mentioned at the webpage

https://cwe.mitre.org/data/

definitions/185.html.
$phone = GetPhoneNumber();

if ($phone =~ /\d+-\d+/) {

# looks like it only has hyphens and digits

system("lookup-phone $phone"); #$ Executes given string; oops !!

}

else { error("malformed number!"); }

The website goes on to say:

An attacker could provide an argument such as: "; /bin/rm * ; echo 123-

456". This would pass the check, since "123-456" is sufficient to match the

"\d+-\d+" portion of the regular expression.

What really can happen is this: Perl’s =~ operator asks if the pattern
“some digits followed by a dash followed by more digits” (specified by
Perl’s regular-expression syntax)7 appears somewhere in the user input.7 Here, the “back-slash followed by d”

means “one digit” in Perl’s RE syntax.
Now, following something with a + means
“one or more.” It is like Kleene-star, except
the latter specifies “zero or more.”

It does! However, because of the supplied input string, the exact com-
mand executed becomes

lookup-phone; /bin/rm * ; echo 123-456

which executes lookup-phone without any argument. Most likely, this
would complain saying “no phone number given.” The next piece is /bin/rm

* which removes all of a user’s files! Finally, it echoes 123-456 which is
not terribly interesting to anyone (but was the “decoy” pattern present in
the input that caused the pattern-match to succeed.) The website gives
good advice on the use of REs:

Regular expressions can become error prone when defining a complex

language even for those experienced in writing grammars. Determine

if several smaller regular expressions simplify one large regular expres-

sion. Also, subject the regular expression to thorough testing techniques

such as equivalence partitioning, boundary value analysis, and robust-

ness. Even after testing and a reasonable confidence level is achieved, a

https://cwe.mitre.org
http://www.pyregex.com
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regular expression may not be foolproof. If an exploit is allowed to slip

through, then record the exploit and refactor the regular expression.

By focusing on a very simple regular expression syntax, we hope to drive
the main conceptual points across much more easily. Practical languages
such as Perl, Python, C# and Javascript all have regular expressions that
are individually much more complex than the RE syntax we study, and
(unfortunately) subtly different from each other. However, by acquiring a
firm grounding on this topic through examples in Jove’s RE syntax, you
may have a leg up when it comes to studying real-world REs.

8.5 Anatomy of the RE to NFA Converter

It is clear that behind the scenes, function re2nfa is a miniature compiler.
It dissects the inner structure of a given regular expression and first pro-
duces NFA for the elementary expressions, and then assembles them us-
ing the procedure described thus far. We will now go through salient ex-
cerpts from the module Def_RE2NFA (which the reader may kindly study
and exercise).
• This mini-compiler consists of a lexer (the lex() call in Figure 8.1) and

a parser (the yacc()). The lexer is automatically generated, and is a
DFA that is implemented based on how the user specifies the structure
of the so-called tokens—meaningful units of information for the parser.

• The tokens input by our parser are listed at the top. As one example,
the construct r’[a-zA-Z0-9]’ specifies that a single string processed
as an RE symbol is
– Any character in the a-z range
– Any character in the A-Z range
– Any digit in the 0-9 range
In a sense, this is a taste of what real-world regular expressions look.

• The parsing rules are the subject of later chapters. But one can see the
following useful facts:
– We define the parsing rule p_expression_plus which is how REs

are connected with a PLUS operator. We essentially obtain two little
NFA via t[1] and t[3], and “glue them together” using function
mk_plus_nfa.

– One can see that this function essentially follows the recipe given
earlier for the + operator. Specifically,

* The states are unioned
Q = N1["Q"] | N2["Q"]

* The alphabets are unioned
Sigma = N1["Sigma"] | N2["Sigma"]

* The starting states are unioned
N1["Q0"] | N2["Q0"]
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* The final state could be that of either NFA (hence unioned)
N1["F"] | N2["F"]

* The transition relation is delta_accum which takes all the moves
from both machines and unions them (the delta_accum.update()
calls).
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Figure 8.1: Salient Excerpts of the RE to
NFA Compiler

#-- The tokens that constitute an RE are these

tokens = (’EPS’,’STR’,’LPAREN’,’RPAREN’,’PLUS’,’STAR’)

#-- The token definitions in terms of raw strings

t_PLUS = r’\+’

t_STAR = r’\*’

t_LPAREN = r’\(’

t_RPAREN = r’\)’

t_EPS = r’\’\’|\"\"’ # Epsilons are fed as ’’ or ""

t_STR = r’[a-zA-Z0-9]’

#--- Here are the parsing rules for REs; each returns NFA as "code"

precedence = ( (’left’,’PLUS’), (’left’,’STAR’), )

def p_expression_plus(t):

’’’expression : expression PLUS catexp’’’

t[0] = mk_plus_nfa(t[1], t[3]) # Union of two NFAs returned

def mk_plus_nfa(N1, N2):

"""Given two NFAs, return their union."""

delta_accum = dict({})

delta_accum.update(N1["Delta"])

delta_accum.update(N2["Delta"]) # Accumulate the transitions

return mk_nfa(Q = N1["Q"] | N2["Q"],

Sigma = N1["Sigma"] | N2["Sigma"],

Delta = delta_accum,

Q0 = N1["Q0"] | N2["Q0"],

F = N1["F"] | N2["F"])

... other parsing rules omitted ...

def re2nfa(s, stno = 0):

"""Given a string s representing an RE and an optional

state number stno (default 0), generate an NFA that

is language equivalent to the RE"""

ResetStNum() # State name generator counter reset

relexer = lex() # Build the lexer

reparser = yacc() # Build the parser

myparsednfa = reparser.parse(s, lexer=relexer) # Feed lexer

return myparsednfa
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8.6 Example: Designing an Error-Correcting DFA

Given two bit-strings (over {0,1}) of equal length, they are at a Hamming
distance of k if there are exactly k positions where the strings differ. For
example, 0101 and 1111 are at a Hamming distance of 2, as are 0101 and
0110. Two strings are within a Hamming distance of k if the Hamming
distance between them is at most k. This notion is useful in defining “how
corrupted” a string is compared to an “ideal string.”

Now, given a regular language L, how can we design a DFA that rec-
ognizes all strings that are within a Hamming distance of k? We present
two approaches to specify such languages, one using regular expressions,
and the other using NFA. Following this, we will convert both descrip-
tions to a minimal DFA and invoke the isomorphism test to see that the
two independent thought processes lead to the same minimal DFA—thus
greatly diminishing the chances of having made a mistake. For concrete-
ness, our target language L is the following over Σ= {0,1}, and k = 2:

L = {x | x has an occurrence of 0101 in it}

8.6.1 Error-correcting RE for “within Hamming Distance of 2”

Following the approach of RE design, we know that the pattern of interest
is 0101 and the pattern before/after does not matter.

The RE for L is therefore (0+1)*0101(0+1)*

To arrive at an RE for “within a Hamming distance of 2,” we consider
all possible ways of “dinging” the 0101 pattern: there must be

(4
2
)= 6 such

patterns, where a ? represents a 0 or a 1.
• ??01

• ?1?1

• ?10?

• 0??1

• 0?0?

• 01??

We know how to model ?—simply use (0+1). Thus, the full RE for the
“within 2 Hamming distance” is provided over multiple lines for clarity:

(0+1)*
( (0+1)(0+1)01

+ (0+1)1(0+1)1

+ (0+1)10(0+1)

+ 0(0+1)(0+1)1

+ 0(0+1)0(0+1)

+ 01(0+1)(0+1)

) (0+1)*
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The minimal DFA for the above RE is obtained using these Jove com-
mands:

h2_0101_re = ("(0+1)* ( (0+1)(0+1)01 +" +

" (0+1)1(0+1)1 +" +

" (0+1)10(0+1) +" +

" 0(0+1)(0+1)1 +" +

" 0(0+1)0(0+1) +" +

" 01(0+1)(0+1) )" +

"(0+1)*")

minD_h2_0101_re = min_dfa(nfa2dfa(re2nfa(h2_0101_re)))

dotObj_dfa(minD_h2_0101_re)

The minimal DFA is given in Figure 8.2.

St31
St21

St27

1

St120

St4
1

St39

0

St33

0
1

St13
0

1
1

0

0 St32
1

0
10

1

0
1

Figure 8.2: Minimal DFA generated
through the RE-based approach

Exercise 8.6.1, RE, Error Correction
1. There are overlaps between the following two regular expressions

used in defining h2_0101_re: (0+1)(0+1)01 and (0+1)1(0+1)1

(both their languages contain the string 0101). Argue that such
overlaps do not matter.

2. Is the error-free occurrence of 0101 included in h2_0101_re? If so,
how many times does it get included?

3. Given the regular expression language so far, can you think of a
way to directly and compactly express the following regular lan-
guage:

The set of all bit-strings that do not contain a 0101

If not, state why this pattern is difficult to express. Hint: While
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one can easily complement DFA, there aren’t easy methods for
complementing an NFA or RE directly. �

8.6.2 NFA-based Design of “within Hamming Distance of 2”

Now that we have obtained one minimal DFA using RE, let us explore a
design approach using NFA. The idea is simple: whenever we are “sup-
posed” to make a move on a 0 (let us say) and a 1 comes, instead, we
“silently” error-correct the 1 to a 0—but remember in the state name that
we have suffered one “ding.” We allow two “layers” of state names of this
kind, after which we provide no more reprieve. We invoke the markup
language of Jove and do the design directly in it (Figure 8.3) and obtain
the NFA in Figure 8.4.

This results in an NFA which is much more tedious to obtain than the
RE we designed on Page 107. However, human effort-wise, arriving at
this NFA design is not that difficult (compared to manually deriving a
DFA or a minimal DFA directly from the problem statement).

8.7 Minimal DFA and Isomorphism

We obtain the minimal DFA based on the NFA-based approach shown in
Figure 8.5.

We finally administer the test iso_dfa(minD_h2_0101_re,

minD_h2_0101_nfa), which yields True.

This finishes the design using two distinct approaches and a confirmation
that the results agree.
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Figure 8.3: Design of an Error-Correcting
NFA

h2_0101_nfa = md2mc(’’’NFA

!!-----------------------------------------------------------

!! We are supposed to process (0+1)*0101(0+1)* with up to two

!! "dings" allowed. Approach: Silently error-correct, but

!! remember each "ding" in a new state name. After two dings,

!! do not error-correct anymore

!!-----------------------------------------------------------

!!-- Pattern for (0+1)* : no error-correction needed here :-)

I : 0 | 1 -> I

!!-- Now comes the opportunity to exit I via 0101

!!-- The state names are A,B,C,D with ding-count

!!-- Thus A0 is A with 0 dings, C2 is C with 2 dings

!!-- Ding-less traversal -- how lucky!

I : 0 -> A0

A0 : 1 -> B0

B0 : 0 -> C0

C0 : 1 -> F

F : 0 | 1 -> F !!-- Phew, finally at F

!!-- First ding in any of these cases

I : 1 -> A1

A0 : 0 -> B1

B0 : 1 -> C1

C0 : 0 -> F !!-- ding-recording unnecessary; just goto F

!!-- Second ding in any of these cases

A1 : 0 -> B2

B1 : 1 -> C2

C1 : 0 -> F !!-- ding-recording unnecessary; just goto F

!!-- No more dings allowed!

B2 : 0 -> C2

C2 : 1 -> F

!!-- Allow one-dingers to finish fine

A1 : 1 -> B1

B1 : 0 -> C1

C1 : 1 -> F

’’’)

minD_h2_0101_nfa = min_dfa(nfa2dfa(h2_0101_nfa))

dotObj_dfa(minD_h2_0101_nfa)
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Figure 8.4: NFA obtained through the
markdown approach
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Figure 8.5: Minimized DFA obtained
through the NFA-based Approach
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8.8 DFA Ultimate Periodicity to Solve the Postage Stamp
Problem

Suppose you are given an unlimited supply of 3 cent and 5 cent postage
stamps, and asked what is the largest denomination of postage that you
cannot make using these stamps? By trial and error at first, you would
proceed as follows: I can make 3, but not 4 and 7. Then all denominations
above 7 can be made. So the answer is 7. Suppose you are asked to solve
it for stamps that are 29 cents and 53 cents. Well, trial and error becomes
tedious.

There is a formula to solve this problem discovered by a mathemati-
cian named Sylvester in 1884. For two relatively prime numbers p and
q,8 the largest natural number that cannot be expressed as a linear com-

8 Two natural numbers p and q are said to
be relatively prime if their greatest com-
mon divisor is 1.

bination of the form a · p+ b · q for natural numbers a and b is called the
Frobenius number,9 and denoted by Fr(p, q). It is given by the formula 9 There is also the related problem

of the Chicken McNugget number,
http://mathworld.wolfram.com/

McNuggetNumber.html.
Fr(p, q)= pq− p− q

Applying this formula to 3 and 5, we indeed get 3 ·5−3−5= 7. Applying
it to 29 and 53, we get 1455.10

10 For an excellent discussion of the
number of amazing ramifications of
the Frobenius number problem and its
variants, as well as a proof of Sylvester’s
result, see the excellent talk slides The
Frobenius problem and its generaliza-
tions by Jeffrey O. Shallit. https://cs.

uwaterloo.ca/~shallit/talks.html.
Also see Wikipedia for the “Coin Problem.”

Exercise 8.8, Sylvester’s formula
1. Consider two numbers p and q that are not relatively prime, say 3

and 6 whose GCD is 3. Does there exist (in Nat) a largest number
that cannot be expressed as a linear combination of 3 and 6?

2. What does your answer to the previous question tell you about
why Sylvester’s formula is applicable only to relatively prime num-
bers? Hint: if p and q have gcd(p, q)> 1, and say p > q, then what
is the minimum “step size” in the series p, p+ q, p+2q, . . .? �

8.8.1 Ultimately periodic sets and lengths of members of a regular
language

The postage stamp problem closely relates to the notion of ultimately pe-
riodic sets of natural numbers.

An ultimately periodic set S is a subset of Nat where there exists
a bound b ∈ Nat and a period p ∈ Nat such that for all x > b, x ∈ S
if and only if (x+ p) ∈ S.

Here are interesting examples of ultimately periodic sets:
• S = {3,5,8,9,10,11,12,13, . . .} is ultimately periodic.

– We can choose p = 1 and b = 7 and find that

x ∈ S ⇔ (x+ p) ∈ S

• S = {3,5,11} is ultimately periodic. This is because we can choose b =

https://cs.uwaterloo.ca
http://mathworld.wolfram.com
https://cs.uwaterloo.ca
http://mathworld.wolfram.com
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11, and then there are no numbers above b in the set, and thus the
ultimate periodicity condition is vacuously satisfied.1111 As mentioned in Chapter 5, we do need

a “vacuum cleaner” to avoid being trapped
by such vacuous cases we might overlook.

The reason why ultimately periodic sets matter is this:

Theorem 8.8.1: The set of lengths of strings in any regular lan-
guage is ultimately periodic.

Proof sketch: If we take any DFA and convert all its symbols to the
same symbol (thus obtaining an NFA) and then convert this NFA to a
DFA and minimize the DFA, we will always obtain a single lasso that
characterizes an ultimately periodic set. We will demonstrate this result
in §8.8.5 using Jove.

8.8.2 Stamp Problem and Ultimate Periodicity via Jove

Automata theory – especially as mechanized by Jove – provides a very
convenient medium through which to study these results. Let us revisit
the question concerning 3 and 5 cent stamps raised at the beginning of
§8.8. Suppose we represent a 3 cent stamp by the string 111, and a 5
cent stamp by 11111. Then a sequence of 3 and 5 cent stamps has as
many 1’s as there are 1’s in the regular expression (111+ 11111)∗. Let
us build a minimal DFA for this RE.12 Given that this is an RE, a DFA12 We do allow 0 cents of postage, thus jus-

tifying why we employ (111+11111)∗. If
non-zero postage is desired, change this
RE to (111+11111)+—where the “Kleene-
plus” operator denotes one or more repeti-
tions.

must exist, and this DFA accepts all and only those strings that contain
3a+5b 1’s (we call this DFA “sylv_3_5” in honor of Sylvester’s formula).
See Figure 8.6 for this DFA:

sylv_3_5 = dotObj_dfa(min_dfa(nfa2dfa(re2nfa("(111+11111)*"))))

St11 St7 St101 St91 St5 St31 St6 St81St4 1

1

1 11

Figure 8.6: Sylvester’s formula for p, q =
3,5 “solved” via this minimal DFA that ac-
cepts all strings of length > 7. In general,
given relatively prime numbers, such DFA
will always have a lasso shape, with a
“lasso” of size 1 at their last state (which
will be final, and in fact, a white-hole or
heavenly §6.1). The Frobenius number
will then be the number of states minus
2, i. e. | Q | −2. This is because there are
| Q | −2 transitions before the final transi-
tion that first reaches the final state.

Given the shape of this DFA, one can obtain Fr(p, q) by taking the num-
ber of states of this DFA and subtracting 2 from it (subtract 1 to count
the number of steps between the states, and subtract an additional 1 be-
cause only the penultimate step represents the last number that cannot
be represented):
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len(sylv_3_5["Q"]) - 1 - 1 = 7

8.8.3 Applying to numbers that are not relatively prime

Let us go ahead and obtain the minimal DFA for the regular expression
(111+111111)∗. This corresponds to all denominations that can be ob-
tained using 3 and 6 cent stamps. Since their GCD is 3, there are an
infinite number of “gaps” that cannot be realized (any even number not
divisible by 3), and therefore Sylvester’s formula does not apply. The min-
imal DFA is as shown in Figure 8.7.

St5

St2

St41
1

1

Figure 8.7: With 3 and 6 cent stamps,
there isn’t a largest number above which
all denominations can be realized. The
minimal DFA is still a lasso, but the lasso
size is above 1 with a non-accepting state
in the lasso—showing the infinite number
of gaps of unrealizable numbers.

8.8.4 Solving for three stamps

If we have three relatively prime numbers (3, 5 and 7 for example), there
isn’t a (known) closed form formula that gives us the Frobenius number of
three relatively prime numbers. However we can still use minimal DFA
to solve such problems (see Figure 8.8):

stamp_3_5_7 = min_dfa(nfa2dfa(re2nfa("(111+11111+1111111)*")))

St2 St4 St31 St11 St91St0 11

1

1

Figure 8.8: The Frobenius number for
three relatively prime numbers can be cal-
culated using the minimal automaton ap-
proach. Using stamps 3,5,7, all denomi-
nations above 4 can be realized (number
of states minus 2)

8.8.5 Lengths of strings accepted by DFA

Consider the DFA “blimp” defined in Figure 7.8. In order to determine the
lengths of strings of this DFA, first apply a homomorphism that changes
all instances of a ‘b’ to an ‘a’ (see Figure 8.9, top):

blimpnfa = apply_h_dfa(blimp, lambda x: ’a’)

This NFA can now be converted to a DFA and minimized. These steps
preserve the lengths of strings in the language (Figure 8.9, bottom) demon-
strating the theorem pertaining to the lengths of strings in a regular lan-
guage.
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dotObj_dfa(min_dfa(nfa2dfa(blimpnfa)))

Exercise 8.8.5, Postage Stamp
1. Determine the Frobenius number

(a) For p, q = 5,11 using Sylvester’s formula
(b) For p, q = 5,11 as well as for p, q, r = 5,7,11 using the min-

imal automaton approach (use Jove).
2. Write a proof that the lengths of strings in any regular set form

an ultimately periodic set. �

I1
F3a

F2

a

S5 F6a

S8

a

F9

a

S4

a
S7

a

a

a
a

a
a

a

a

St3 St2a St0 St1aa

a

Figure 8.9: DFA “blimp” subject to a ho-
momorphism that changes all b to an
a. The minimized DFA (shown below)
demonstrates Theorem 8.8.1 (“Lengths of
strings in a regular language”). In this ex-
ample, the lengths of strings in the DFA
‘Blimp’ are 1, 3, and all numbers above
3. Thus, the parameters b and p men-
tioned in the definition of ultimate period-
icity take on values b = 2 and p = 1. While
this is only a demonstration, it can be eas-
ily converted into a rigorous proof.



9
NFA to RE Conversion

Chapter Gist: We describe how NFA can be converted to equiva-
lent RE (§9.1), illustrating it on a pedagogical example that clearly
shows how the RE size growth can be exponential (§9.2). A non-
trivial NFA example with plenty of loops is then examined (§9.3).
We check the conversion by converting the obtained RE back to
an NFA and then a minimal DFA, and check it for isomorphism
against the minimal DFA obtained from the given NFA (§9.4).
These conversions demonstrate that DFA, NFA and RE are equiv-
alent (§9.5).

9.1 NFA to RE Conversion Algorithm

An NFA accepts a string x ∈ Σ∗ if there exists a path labeled by x from
one of its initial states of the NFA to one of its final states.1 Express- 1 All ε substrings within s can be ignored.

ing each such path using a regular expression, and taking a union (sum)
of these REs immediately gives us an algorithm to convert any NFA to
a language-equivalent RE. The loops along each path will be expressed
through a suitable Kleene-star-based RE. This procedure can be imple-
mented by systematically building up the RE for each path as follows:

• Preprocess the given NFA by introducing a new initial state called
Real_I and a new final state called Real_F.2 Introduce ε-labeled tran- 2 These will serve as the states to “stand

on” while state deletion (described mo-
mentarily) is in progress.

sitions from Real_I to all the states of Q0, the initial set of states of
the given NFA. Also introduce ε-labeled transitions from each state in
F to Real_F, and make states in F non-final. The NFA so obtained
is called a Generalized NFA or GNFA. Clearly, this GNFA (“G”) has
the same language that the given NFA (“N”) has; it differs from N only
in these respects:
– Its initial set of states is {Real_I} and its set of final states is {Real_F}.
– The transition relation of G includes all the members of N ’s transi-

tion relation plus the new ε-labeled edges mentioned above.
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• While there are states in the GNFA G other than Real_I or Real_F,
pick one such state s, and delete it. However, account for all the paths
supported by s by introducing substitute edges that bypass state s
(whenever two parallel edges labeled with regular expressions r1 and
r2 go from state A to state B, one should ideally replace this edge with
a single edge labeled with (r1 + r2)).

• Do this till the GNFA only has two states left (which would be Real_I

and Real_F). The desired regular expression would then be labeling
the path connecting Real_I and Real_F.

We will present this algorithm implemented in Def_NFA2RE in this chap-
ter on an example NFA. We also provide you with markdowns to permit
experimentation using Jove. In one of the examples we provide (specifi-
cally the one in Figure 9.2), un-commenting a single line can quite dra-
matically increase the size of the RE generated. In fact, an exponential
blow-up is waiting to occur during NFA to RE conversion. This is because
in the worst case, there can be O(2N ) paths in a graph of size N.

9.2 Illustration on Pedagogical Example

Consider the NFA in Figure 9.1 that can start from a set of three initial
states, and we are asked to eliminate state X:

# Let this NFA be specified via

# our markdown as follows:

nfaExer = md2mc(’’’NFA

I1 : a -> X

I2 : b -> X

I3 : c -> X

X : p | q -> X

X : m -> F1

X : n -> F2

’’’)

# First form the Dot Object...

DO_nfaExer \

= dotObj_nfa(nfaExer)

# Check things by displaying

DO_nfaExer

# Form a GNFA out of the NFA

gnfaExer = mk_gnfa(nfaExer)

# Form a Dot Object

DO_gnfaExer \

= dotObj_gnfa(gnfaExer)

# Check things by displaying

DO_gnfaExer

# Now invoke del_gnfa_states

# First argument is the GNFA

# of our exercise, gnfaExer

# The second arg (optional)

# is the deletion order of

# the states. If omitted,

# the tool picks the order

# (makes a HUGE difference).

(G, DO, RE) = \

del_gnfa_states(

gnfaExer,

DelList=["X", "I1",

"I2","I3",

"F1","F2"])

# Display DO[0] through DO[6]

# G is the final GNFA returned

# RE is the final RE compiled

Figure 9.1: NFA to RE example

I3

I2

I1

X

c p
q

F2n

F1

m
b

a

We first form a GNFA out of the given NFA using the procedure described
earlier:



NFA TO RE CONVERSION 117

Real_I

F2

Real_F
''

I3

X

c

I2 b

I1

a F1
''

n

m

p
q

''

''

''

In preparing to eliminate X, we see that there are three paths going into
X and two going out. Thus, six substitute paths must be introduced, going
from I1, I2, and I3 to F1 and F2. We can achieve a specified order of elim-
ination by invoking del_gnfa_states with the first argument being (of
course) the GNFA to be processed, and a second argument called DelList

which specifies the order of state elimination. We list state X first in this
list, thus ensuring its elimination first:
We see two kinds of transformations taking place:
• The two alternatives, namely p and q get merged into one regular ex-

pression (p+q).
• Each of the six new paths now has an incoming piece, an outgoing

piece, and a self-piece. For instance, I1 to F1 is labeled by (a (p+q)*
m) where
– a is the incoming piece, namely the I1 to X label,
– m is the outgoing piece, namely the X to F1 label,
– (p+q)* is the self-piece. This self-loop is, naturally, Kleene-starred,

as it can be taken any number of times.
Referring to Figure 9.1, the result of eliminating state X is DO[1] shown
below (the original NFA being DO[0]):

Real_I I1

F2(a (((p + q))* n))

F1(a (((p + q))* m))

Real_F
''

I3 (c (((p + q))* n))

(c (((p + q))* m))

''

I2

(b (((p + q))* n))

(b (((p + q))* m))
''

''

''
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Exercise 9.2, NFA to RE
1. Try two other orders: (1) Delete all Ii states first, then all Fj

states, and finally the X state. (2) Try the tool-default order. Con-
trast the size of the final REs obtained using these approaches to
deleting the X state first. Which results in the smallest final RE
and why?

2. Call the X state a “busy” state (many input, output and even self-
loop edges). Heuristically, is it better to eliminate busy states first,
or busy states last? Why?

3. How can we ensure that all the REs obtained through various
elimination orders are language-equivalent? �

9.3 Illustration on Non-trivial Example

The example NFA we shall convert to an RE is described in Figure 9.2.

nfaEx = md2mc(’’’NFA

I : ’’ -> B

I : a -> A

!!-- reader: please try

!!-- uncommenting this

!!-- line: A : b -> I

A : q -> F

A : r -> B

B : s -> B

B : p -> F

F : t -> A

’’’)

DO_nfaEx = dotObj_nfa(nfaEx)

DO_nfaEx

Figure 9.2: NFA to be Converted to an RE

• The given NFA

I

A

B

r

Fq

s pa

''

t

• The GNFA after introducing a new initial and final state is shown
below

Real_I I''

F
A

t Real_F''

a

B

''

q

r ps

GNFA_nfaEx = mk_gnfa(nfaEx)

• We are going to employ a function del_gnfa_states (Figure 9.3) that
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not only does the deletion of states as described above, but also returns
valuable intermediate information to look at. It also captures the reg-
ular expression generated from the given NFA (this RE can be fed back
into our conversion pipeline as we shall illustrate).

help(del_gnfa_states)

...

Return a triple

(Gfinal, dotObj_List,

final_re_str), where

Gfinal: The final GNFA

dotObj_List: Intermediate GNFA

(Gfinal, do_list, final_re)

= del_gnfa_states(GNFA_nfaEx)

**** Eliminating state F ****

**** Eliminating state I ****

**** Eliminating state B ****

**** Eliminating state A ****

Figure 9.3: The del_gnfa_states Func-
tion

NFA to RE Conversion Steps

• The GNFA is

Real_I I''

F
A

t Real_F''

a

B

''

q

r ps

• After eliminating state F, we have the following GNFA:

Real_I I''

A

(q t)

B

r
Real_F

q

(p t)

s
pa

''

Notice that state F supports several paths through it, and here are the
substitute paths introduced:
– A path from A to Real_F. This must now be labeled by the concate-

nation of q and ”, which is q.
– A path from A back to itself, labeled by (q t), the concatenation of

the edge-label q and edge-label t.
– A path from B to Real_F. This must now be labeled by the concate-

nation of p and ”, which is p.
– A path from B to A. This must now be labeled by the concatenation

of p and t, which is (p t).
– In general, if the eliminated state has m inputs and n out-

puts, there will be m ·n substitute paths. In our case, we have
2 ·2= 4 new paths.

• After Eliminating I, the GNFA changes in a simple way. There are
only two paths supported by I, namely Real_I to B and Real_I to A.
One can see the concatenation of the edge labels labeling these paths:
– Real_I to B is labeled with the concatenation of ” and ”, which is ”
– Real_I to A is labeled with the concatenation of ” and a which is ‘a’
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Real_I

B''

Aa

s

(p t)
Real_F

p

r

(q t)
q

• B is a “very busy” state, and we are going to eliminate it now.
– B has an input from state Real_I labeled by ”

– B has an input from A labeled by r

– B has an output to state A labeled by (p t)

– B has an output to state Real_F labeled by p

– B has a self-loop labeled by s.
– The general rule to apply is this:

* If a state being eliminated has an input labeled by P, a self loop
labeled by Q and an output labeled by R, then the substitute path
to introduce is P(Q*)R.

– Following this rule, we can see this instance:

* There is an r label from A to B

* There is a self-loop of s at B

* There is an output from B via p to Real_F

* Thus, there must now be a new path directly from A to Real_F

labeled by r(s*) p.
– We however notice that there was already an edge from A to Real_F

labeled with q. When this happens, we have another rule:

* If two edges run from P to Q labeled by x and y, one can
introduce a single edge from P to Q labeled by (x+y).

By applying this rule, the final label from A to Real_F is
((r(s*) p) + q)

– The reader is invited to figure out all remaining edges introduced,
and which rules were applied.

• Thus, after Eliminating B, we have this GNFA:

Real_I

Aa

(((s)* (p t)) + a) Real_F
((s)* p)

(q t)
((r ((s)* (p t))) + (q t))

q

((r ((s)* p)) + q)
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• Finally, after Eliminating A, we have the following GNFA:

Real_I Real_F((s)* p)
(((a + (((s)* (p t)) + a)) ((((q t) + ((r ((s)* (p t))) + (q t))))* (q + ((r ((s)* p)) + q)))) + ((s)* p))

• We can see that the derived RE is a sum of the REs written on the two
paths in this figure. It is given below:
( ((s)* p)

+

( ( (a + (((s)* (p t)) + a))

( (( (q t) + ((r ((s)* (p t))) + (q t)) ))*
(q + ((r ((s)* p)) + q))

+ ((s)* p) ))))

9.4 Checking the Conversion

We will provide salient excerpts from the code of del_gnfa_states. Given
its complexity, one should constantly be vigilant against introducing bugs.
A good way to check that things are correct should be familiar by now:
• Convert the generated RE back to a minimal DFA:

re_mindfa = min_dfa(nfa2dfa(re2nfa(final_re)))

This results in the following minimal DFA:

{'B', 'I'}

{'B'}

s

{'F'}

ps

{'A'}

a

p

r

q
t

• Convert the original NFA to a min DFA:

dir_mindfa = min_dfa(nfa2dfa(nfaEx))

This results in the following minimal DFA:



122 AUTOMATA , COMPUTABILITY: PROGRAMMER ’S PERSPECTIVE

St3

St0

s

St2

ps

St6

a

p

r

q
t

• Check that these DFA are isomorphic:

iso_dfa(re_mindfa,dir_mindfa)

True

Indeed, these DFA are isomorphic. This strongly minimizes the chance of
our conversions being buggy.

9.5 DFA, NFA, and RE Are Equally Powerful

With this demonstration, not only did we illustrate practical uses of our
tool, but we ended up showing that NFA, DFA, and RE are all equally
powerful, and describe exactly the family of regular languages.
In more detail:
• RE can be converted to NFA (Chapter 8, re2nfa)
• NFA can be converted to DFA (Chapter 7, nfa2dfa)
• DFA can be minimized, and the minimal form is unique for a regular

language:
– Chapter 6 for the classical algorithm, min_dfa
– Chapter 7 for Brzozowski’s algorithm, min_dfa_brz

• In this chapter, we present two algorithms:
– NFA can be converted to RE, with the whole conversion chain ex-

tracted for study:

* Function mk_gnfa to preprocess NFA into “generalized NFA” be-
fore we delete NFA states one by one.

* Function del_gnfa_states is the actual process of deleting NFA
states one by one and producing substitute paths labeled by RE

* Two support functions:
· mk_gnfa_from_D (in case you want to turn a DFA into a GNFA

before the conversion pipeline kicks in)
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Exercise 9.5, nfa2re: RE Size
1. By hand, convert the NFA of Figure 7.7(a) into a regular expres-

sion, clearly discussing how each state is eliminated. The order of
state elimination you must follow is I, A, B, C, D, E, G, F.

2. How large can the extracted REs get? Hint: Consider an NFA
with a series of states A1, A2, . . ., An and two paths between any
Ai and Aj. How many total paths are there as a function of n?

3. Take the suggestion of uncommenting the single line in Figure 9.2
and redo the conversion using Jove. What is the size of the new
RE? Explain the size increase.

4. Construct an NFA of N states such that converting it to an RE
using our algorithm will result in an exponentially sized RE. �

9.6 Implementation of NFA to RE

The implementation of NFA to RE conversion in Jove is in Def_NFA2RE,
and salient excerpts from this Jupyter module are now described in Fig-
ures 9.4 and 9.5. The basic algorithm is to execute a double-nested for

loop while there are states left to delete. In this double-nested for, ev-
ery p and q states are considered with respect to the state qdel to be
deleted, and the helper del_one_gnfa_state is called. There are plenty
of corner-cases!

9.7 Closure Results Pertaining to Regular Languages

We now summarize all the closure results pertaining to NFA, DFA, and
RE:

Theorem 9.7: NFA, DFA and RE are all closed under union, con-
catenation, star, complementation, reversal, and homomorphism.
The general idea is that we have introdued conversions between
NFA, DFA, and RE, and therefore one can perform any operation
on one representation (say an NFA) and then convert it another
representation (say an RE). Here is a slightly more detailed proof
sketch:
1. DFA complementation was described in §6.1. Algorithms

for union and intersection of DFA were described in §6.2.
2. The star of a DFA can be achieved the same way as star of

REs and NFA were described in §8.2.
3. NFA and REs don’t have a direct algorithm for intersection

or complementation. In fact, swapping final and non-final
states of an NFA does not result in the complementation
of an NFA. You can easily verify it on an NFA that starts
from an initial state and branches on an input a to two
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def del_gnfa_states(Gin, DelList=[]):

"""Given a GNFA Gin with no unreachable states, delete all states but Real_I or Real_F.

Return a triple (Gfinal, dotObj_List, final_re_str)."""

G = copy.deepcopy(Gin) # Preserve the given GNFA

if DelList==[]: # User hasn’t provided a preferred order

StatesLeft = list(G["Q"]) # ... so, form internal order of deletion from G["Q"]

else: # User HAS provided a preferred order of deletion

StatesLeft = DelList + ["Real_I", "Real_F"] # Tack-on these states to the user-given list

dotObj_List = [ dotObj_gnfa(G) ] # Preserve the list of intermediate GNFAs for viewing later

while len(StatesLeft) > 2: # Continue so long as there is a state other than Real_I, Real_F

(qdel, StatesLeft) = choose_state_to_del(G, StatesLeft) # Choose state to del. ; upd. StatesLeft

print("**** Eliminating state " + qdel + " ****")

New_Edges = dict() # Brand new edges (ALL new paths supported by qdel) kept as a dict

for p in StatesLeft:

for q in StatesLeft:

new_p_q_label = del_one_gnfa_state(G, p, qdel, q) # Workhorse to delete ONE state

if new_p_q_label != "NOPATH": # There is a p-qdel->q path

old_p_q_labels = Edges_Exist_Via(G, p, q) # Exist p-qdel->q edges?

if old_p_q_labels != "NOEDGE": # There are.

combined_label = form_alt_RE( [new_p_q_label] + old_p_q_labels )

New_Edges.update( { (p, combined_label) : {q} } )

else: # Only new_p_q_label needs to be added

New_Edges.update( { (p, new_p_q_label) : {q} } )

G["Q"] = set(StatesLeft) # Fix G by adjusting its Q

Surviving_Edges = [] # These edges don’t get nuked

for ((q,symb), States) in G["Delta"].items():

if (q != qdel): # (1) Removing all mappings out of qdel

Surviving_Edges += [ ((q,symb), States - { qdel }) ] # (2) Remove from images

G["Delta"] = dict( Surviving_Edges )

G["Delta"].update( New_Edges ) # Now bring in the brand new edges

dotObj_List += [ dotObj_gnfa( gnfa_w_REStr(G) ) ] # Convert REs to strings in dot objects

G["Sigma"] = { edgelab for ((p,edgelab), q) in G["Delta"].items() } # Form the GNFA’s ‘‘Sigma’’

final_re = form_alt_RE(Edges_Exist_Via(G, "Real_I", "Real_F")) # RE from Real_I to Real_F

final_re_str = RE2Str(final_re) # String form of RE

Gfinal = {"Q": {"Real_I","Real_F"}, "Sigma":{final_re},"Delta":{("Real_I", final_re):{"Real_F"}},

"Q0": { "Real_I" }, "F" : { "Real_F" }}

return (Gfinal, dotObj_List, final_re_str)

Figure 9.4: Implementation of
del_gnfa_states.
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def del_one_gnfa_state(G, p, qdel, q):

"""Delete state qdel if path p--qdel-->q exists. Return "NOPATH" if no such path.

Else return new direct edge label p--new_label-->q (new_label will be a single RE)."""

p_qdel_edges = Edges_Exist_Via(G, p, qdel)

qdel_q_edges = Edges_Exist_Via(G, qdel, q)

if (p_qdel_edges == "NOEDGE" or qdel_q_edges == "NOEDGE"):

return "NOPATH"

else:

p_qdel_RE = form_alt_RE(p_qdel_edges)

qdel_q_RE = form_alt_RE(qdel_q_edges)

qdel_qdel_edges = Edges_Exist_Via(G, qdel, qdel)

if qdel_qdel_edges == "NOEDGE":

return form_concat_RE(p_qdel_RE, qdel_q_RE)

else:

qdel_qdel_RE = form_alt_RE(qdel_qdel_edges)

return form_concat_RE(p_qdel_RE, form_concat_RE(form_kleene_RE(qdel_qdel_RE), qdel_q_RE))

Figure 9.5: Implementation of
del_one_gnfa_state. This helper is
rather clean. First, we check whether
edges exist via qdel, starting from
p and ending in q. If none, we return
"NOPATH". Else, we grab all the p to qdel
edges, fuse them via a form_alt_RE call.
Likewise, we grab all the qdel to q edges,
fuse them via a form_alt_RE call. Next,
we check for a self-loop to be present.
The result could be "NOEDGE" in which
case we concatenate the previous two
REs. Else we stick in a form_kleene_RE

call in the middle to finish the story of
input (sel f )∗ output.

states, say A (a non-final state) and F (a final state). In
this case, swapping the final and non-final status of A and
F still leaves a in the language of the NFA. However, you
can convert them to a DFA, perform intersection or comple-
mentation, and re-obtain an NFA or an RE.

4. Reversal of a DFA was explained in §7.6.1. The same pro-
cedure also works for an NFA.

5. Concatenation of two DFA can be performed by treating
them as NFA. The result will be an NFA which can be con-
verted back to a DFA.

6. A homomorphism can be applied to a DFA, and this may
result in an NFA. For NFA and RE, homomorphisms are
straightforward to carry out.
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10
Derivative-Based Regular Expression
Matching

Chapter Gist: RE derivatives are based on the idea that REs
themselves may be treated as states (§10.1). One can then sys-
tematically compute target REs as the result of applying the tran-
sition function δ to the source REs (§10.2.1). The derivation of a
sequence of REs may be stopped as soon as one RE is found nul-
lable (contains ε in its language, §10.2.2). The RE syntax can be
extended to have negation; then one can pattern-match a given
string against such an RE without first doing an NFA to DFA con-
version (§10.3). The code presents yet another tiny RE to AST
compiler and a pattern-matcher.

10.1 Introduction to RE Derivatives

A finite automaton chugs along, consuming symbol after symbol from its
input string till the string is exhausted. At this point when the automa-
ton finds itself in a final state, the string is deemed accepted. In 1964
(a few years after DFA and NFA were introduced by Rabin and Scott),
Brzozowski [14] came up with a similar idea except this time a regular
expression (RegExp) chugs along, eating a string and also morphing itself
into new regular expressions! A DFA does not need to morph after eating
a character, as it can put itself in the “next state.” A regular expression
has no “internal state,” and so it must morph into another regular expres-
sion, reflecting the equivalent of a new state.

�

�

������

Figure 10.1: A DFA to recognize an even
number of 0’s. The regular expression
modeling its language is (00)∗.

The idea is simple. Consider Figure 10.1, a reproduction of Figure 4.1
for your convenience. After “eating a 0 in state A,” the DFA goes to state
B. Now consider the regular expression modeling this DFA: clearly, it is
(00)∗. We can rewrite this regular expression into ε+00(00)∗ to explicate
the two cases hidden within (00)∗. Now, when presented with 0, the
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regular expression must abandon the ε case, and pursue the 00(00)∗ case.
This component of the regular expression “eats” a 0 and evolves itself into
0(00)∗. We can depict the whole cyclic walk of RE (00)∗ as follows:

(00)∗ = (ε+00(00)∗)
0−→0(00)∗

0−→(00)∗.

This was Brzozowski’s insight! In a nutshell, the derivative of (00)∗ with
respect to 0 is 0(00)∗. In this chapter, we will employ the notation E

c−→ . . .
to denote “E derives via c.”

In addition to their mathematical beauty, derivatives are capable of
handling operators such as negation and intersection, which we did not
include in our regular expression syntax of Chapter 8. With derivatives,
handling these “troublesome” operators is easy: a regular expression har-
boring such operators simply evolves itself into new regular expressions
(possibly harboring the same operators). Thus, we never have to “expand
out” the negation. If we take the DFA route to handle negation (for in-
stance), we would have to convert the regular expression into an NFA,
convert the NFA into a DFA, and then complement the resulting DFA.
You should recall from Chapter 4 that NFA to DFA conversion can often
result in an exponentially sized DFA (with respect to the size of the NFA).
The derivatives approach avoids this blow-up. Additionally, derivatives
help introduce the idea of rewrite rules or transition systems (Figure 10.2)
which are widely used for specifying software systems.

In this chapter, we shall introduce a derivative-based pattern match-
ing routine that matches a given string against a given regular expres-
sion. In this test, think of the given string as “steering” the given regular
expression by taking derivatives character by character. When all the
characters are consumed, the regular expression must end up being nul-
lable, i.e., it must denote a language that contains ε. If so, the string is
accepted; else, it is not.

In more detail, let us start from the regular expression r0 and input
string w0, and ask the question whether r0 matches string w0. To check
this, we start with r = r0 and w = w0 and execute the following steps:
1. If w is ε, then we have reached the end of the input string (no

more steering is necessary). All we now need to check is whether
the language itself contains ε, and if so, we can declare accep-
tance. Checking whether the language denoted by r contains ε

is achieved by subjecting r to the nullability test that checks
whether (the language of) regular expression r contains ε.

2. Otherwise, let w = cw1 where c ∈ Σ and w1 is the “rest of w” that
is yet to be consumed. We obtain the derivative of r with respect
to c yielding r1 (i.e., r

c−→r1). Here, r1 models what r must morph
itself into after seeing the input symbol c. So now the problem at
hand (whether r matches w) reduces to whether r1 matches w1.
To check this, we set r = r1 and w = w1, and repeat all the steps.
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Note: we can stop and declare “no match” whenever r’s derivative
turns out to be ; (the empty RegExp).
The nullability test returns True if ε ∈ r (i.e., the language of r). This

means that after a string w has been consumed, we are “left with” ε,
coming “after the w” (so to speak), which is matched by a nullable RE r.

EXAMPLE-1: The following derivation shows that w = w0 = 00 is matched
by r = r0 = (00)∗:

(00)∗
0−→0(00)∗

0−→(00)∗,

and since w is fully consumed and r2 = (00)∗ is nullable, we accept w = 00.
On the other hand, w = 0 is not matched by (00)∗:

(00)∗
0−→0(00)∗

and since w is fully consumed but 0(00)∗ is not nullable, we reject 0.

EXAMPLE-2: The following derivation shows that w = ab is matched by
r = c+ (a+b)(a+b):

(c+ (a+b)(a+b))
a−→(a+b)

b−→ε

and since w is fully consumed and (clearly) ε is nullable, we accept ab.
On the other hand, cc is not matched by c+ (a+b)(a+b):

(c+ (a+b)(a+b))
c−→ε

c−→;

and clearly ; is not nullable. Notice that we “derive” ; from ε for any
character c.

10.2 Definitions

10.2.1 Derivative Rules

We now define derivatives through a collection of nine rules, where the
“Precondition” column lists the preconditions (could be empty), and the
“Derivation” column lists the derivation being defined.

We now explain each case in greater detail:

(Rule 1) Derivation c
c−→ε: If we try to steer the regular expression c us-

ing character c, character c gets “eaten” by this regular expression,
morphing it to ε (“all gone”).

(Rule 2) Derivation c
d−→;: This is when regular expression c tries to “eat”

incoming character d; the result is a “choke,” as d 6= c. The regular ex-
pression morphs (gags) itself into ;.
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Rule Precondition Derivation Explanation

1 None c
c−→ε RegExp c matches input c, leaving behind ε.

2 c 6= d c
d−→; RegExp c doesn’t match input d; ; signifies blockage.

3 None ε
c−→; RegExp ε doesn’t match character c; ; signifies blockage.

4 None ; c−→; RegExp ; does not match character c.

5 E
c−→E1c E∗ c−→E1cE∗ Expand E∗ as EE∗; obtain (E1cE∗) as the derivative.

6 E
c−→E1c !E

c−→!E1c

Derivative of the non-negated form
(with negation outside) suffices.

7

E1
c−→E1c,

E2
c−→E2c (E1 +E2)

c−→E1c +E2c

The derivation can proceed via
either “arm” of the alternative.

8

nullable(E1),

E1
c−→E1c,

E2
c−→E2c (E1E2)

c−→((E1cE2)+E2c) If E1 is nullable, then E2 might consume c.

9

¬nullable(E1),

E1
c−→E1c (E1E2)

c−→(E1cE2) Since E1 is not nullable, c must be expanded via E1.

Figure 10.2: Derivative Rules
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(Rule 3) Derivation ε
c−→;: Forcing regular expression ε to “eat” charac-

ter c is futile; the regular expression morphs itself to ;.

(Rule 4) Derivation ; c−→;: Forcing regular expression ; to “eat” charac-
ter c is even more futile; the regular expression morphs itself to ;, as
it was to begin with.

(Rule 5) Derivation E∗ c−→E1cE∗: Here, we are forcing E∗ to consume c.
Now we know that E∗ hides two cases inside it. First, the star of
anything contains ε. But since an actual character c has to be eaten,
this case is not of interest. The other case is that any E∗ can open
itself as EE∗. This case is of interest! The first E that reveals itself
now has to eat c. Suppose E derives E1c by eating c. Then we know
what E∗ likes to morph itself into: (E1cE∗), i.e., let the first E that
shows up eat c and keep an E∗ “in reserve.”

(Rule 6) Derivation !E
c−→!E1c: If we force regular expression !E to eat

character c, it is just easy to force E to eat c while keeping a negation
operator outside. This works because when E becomes nullable, !E
won’t be, and vice-versa. Thus we ignore the negation in calculating
the derivative, but “keep the negation waiting outside” for the final
nullability check. Since nullability is the “final stop” in determining
acceptance, this approach works out fine. This can be established by
induction on the length of a string w ∈ Σ∗ based on the notion of a
string derivative E

w−→E1w (extending the notion of a single-character
derivative we have defined).

For illustration, let us consider two examples:

Is ac ∈ L(!(ab))?

• Determine this answer through derivatives:

!(ab)
a−→!b

c−→!;
• Explanation:

– We obtain !(ab)
a−→!b through the derivative rule for negation

(Rule 6) just now introduced.
– We obtain !b

c−→!; again through Rule 6.
• ; is not nullable (see §10.2.2).
• Thus !; is nullable (see §10.2.2).
• Thus, ac ∈ L(!(ab)).

Is ab ∈ L(!(ab))?

• Determine this answer through derivatives:

!(ab)
a−→!b

b−→!ε
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• Explanation:
– We obtain !(ab)

a−→!b through the derivative rule for negation
(Rule 6) just now introduced.

– We obtain !b
b−→!ε again through Rule 6.

• ε is nullable (see §10.2.2).
• Thus !ε is not nullable (see §10.2.2).
• Thus, ab ∉ L(!(ab)).

(Rule 7) Derivation (E1 +E2)
c−→E1c +E2c: Given the task of regular ex-

pression (E1 +E2) having to eat c, either expression may want to eat
c, and thus they morph into E1c and E2c respectively. This explains
the derivative for this case.

(Rule 8) Derivation (E1E2)
c−→((E1cE2)+E2c): This is a situation of a con-

catenation expression (E1E2) wanting to eat c. We are considering the
case that E1 is nullable.

If E1 is nullable in a concatenation E1E2, then we know that E1 might
become ε, thus “exposing E2 through itself.” On the other hand, nul-
lable only means “contains ε” (i.e., E1 may very well harbor other non-ε
matches). That is, E1 might as well have a c derivative that reflects
E1 eating c.

We therefore have two cases: (1) E1 “exposing E2 through itself”1 (by1 E1 becomes transparent like clear glass,
thus anyone staring at the concatenation
E1E2 sees E2.

exercising the ε option), allowing E2 to process c; and (2) also E1 being
able to process c (with E2 waiting in reserve after E1c). This explains
the derivative obtained for this case.

(Rule 9) Derivation (E1E2)
c−→(E1cE2): This is a situation of a concatena-

tion expression (E1E2) wanting to eat c. We are considering the case
that E1 is not nullable. We then have only one case: E1 being able to
process c (with E2 being the regular expression available after E1c).
This explains the derivative obtained for this case.

Brzozowski proved that every regular expression has only a finite num-
ber of dissimilar derivatives.2 This means that the process of obtaining2 Two regular expressions R1 and R2 are

similar if one of them can be transformed
to the other using three identities: Idem-
potence (R +R = R), commutativity (R1 +
R2 = R2 + R1), and associativity ((R1 +
R2)+R3 = R1+(R2+R3)). Two regular ex-
pressions R1 and R2 are dissimilar if they
are not similar.

derivatives always terminates.

10.2.2 Nullability Rules

The nullability check can easily be turned into a predicate test:

Nullability of c: Regular expression c is not nullable.

Nullability of ;: Regular expression ; is not nullable.

Nullability of ε: Regular expression ε is nullable.

Nullability of E∗: Regular expression E∗ is nullable.



DERIVATIVE-BASED REGULAR EXPRESSION MATCHING 133

Figure 10.3: A RegExp Scanner and
Matcher. Exercise 1 asks you to extend
this implementation to cover negation and
conjunction.

#!/usr/bin/env python

from rederivparse import *
def opr(E): return E[0]

def arg1(E): return E[1][0]

def arg2(E): return E[1][1]

def arg(E): return E[1]

def nullable(E):

if (opr(E) == "str"):

return False

elif (opr(E) == "@"): # ’@’ is how I represent Epsilon

return True

elif (opr(E) == "mty"): # ’mty’ is how I represent an empty RE

return False

elif (opr(E) == "*"):

return True

elif (opr(E) == ’+’):

return nullable(arg1(E)) or nullable(arg2(E))

elif (opr(E) == ’.’):

return nullable(arg1(E)) and nullable(arg2(E))

else:

return "???"

def dv(c, E):

if (opr(E) == "str"):

if (arg(E) == c):

return ("@", "@") # Return derivative "@"; since dv must

else: # return pairs, ("@","@") is returned

return ("mty", "mty") # Ditto. Make pair ("mty","mty")

elif (opr(E) == "@"):

return ("mty", "mty")

elif (opr(E) == "mty"):

return ("mty", "mty")

elif (opr(E) == "*"):

return (".", (dv(c, arg(E)), E))

elif (opr(E) == "!"):

return ("!", dv(c, arg(E)))

elif (opr(E) == ’+’):

return ("+", (dv(c, arg1(E)), dv(c, arg2(E))))

elif (opr(E) == ’.’):

if nullable(arg1(E)):

return \

("+", ( (’.’, (dv(c,arg1(E)), arg2(E))), dv(c, arg2(E)) ))

else:

return (’.’, (dv(c,arg1(E)), arg2(E)))

else:

return "???"

def matches(w, E):

if w=="":

return nullable(E)

else:

return matches(w[1:], dv(w[0], E))

if __name__ == "__main__":

print(’ matches("aa", re2ast("!((aaa)*)")) = ’,\

matches("aa", re2ast("!((aaa)*)")))

re4 = ’(a+b)*b(a+b)(a+b)(a+b)’

nre4 = ’!((a+b)*b(a+b)(a+b)(a+b))’

print(’ matches("aabaa", re2ast(re4)) = ’, \

matches("aabaa", re2ast(re4)))

print(’ matches("aabaa", re2ast(nre4)) = ’, \

matches("aabaa", re2ast(nre4)))
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Nullability of !E: Regular expression !E is nullable exactly when E is
not.

Nullability of E1 +E2: Regular expression E1 + E2 is nullable if either
expression is nullable.

Nullability of E1E2: Regular expression E1E2 is nullable if both expres-
sions are nullable.

10.3 Implementation of Derivative-Based String Matching

Figure 10.3 takes regular expressions (presented as an abstract syn-
tax tree or AST) and implements the pattern matcher. Function nullable

implements the nullability predicate described in §10.2.2, and function dv

implements the derivative rules defined in §10.2, Figure 10.2 for deriva-
tives. Note that we use @ to represent ε and mty to represent the empty
RE, namely ;. Given that the dv function is designed to return pairs,
we return ("@","@") in lieu of merely "@", in case the derivative results
in "@" (the same approach is taken, returning ("mty","mty") instead of
"mty"). This way, the opr function (which expects a pair to be given to
it) will work uniformly for all derivatives. Finally, function matches(w,

E) checks whether E is nullable when w = ε; else it recursively tries to
match the rest of the input string w with the derivative of E with respect
to w[0], the first character of w.

The code in Figure 10.4 derives an abstract syntax tree from a string
representing a regular expression (that is easier for a human to type-
in). The tests at the end of this figure reveal the ASTs created for a few
sample regular expressions.33 See supplementary material for addi-

tional hands-on activity on derivative-
based pattern matching at https://bit.
ly/Automata_Jove under Derivative.

Exercise 10.3, RE derivatives
1. Extend your RegExp matcher and the re2ast parser to cover the

negation (!) and conjunction (&) operators. These (respectively)
negate and intersect regular expressions. Reading [35] can help
you in this endeavor.

2. (Optional) Implement the RegExp to DFA generation algorithm
described in [37]. �

Theorem 10.3: The function matches in Figure 10.3 matches the
regular expression E against the string w exactly when w ∈ L(E).

Proof Sketch: By induction, and appealing to the derivative rules of
Figure 10.2 and nullability definition given in §10.2.2. �

10.3.1 Derivatives: Closing Thoughts

The idea of using derivatives for regular expression matching goes through
a fairly elegant syntax-directed process, and is pedagogically appealing,

https://bit.ly
https://bit.ly
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Figure 10.4: A RegExp to AST Compiler.
Extend suitably to cover negation imple-
mented via ! and conjunction imple-
mented via & as required by Exercise 1.

from lex import lex

from yacc import yacc

tokens = (’EPS’,’STR’,’LPAREN’,’RPAREN’,’PLUS’,’STAR’, ’NOT’, ’AND’)

#--- Tokens

t_PLUS = r’\+’

t_AND = r’\&’

t_STAR = r’\*’

t_LPAREN = r’\(’

t_RPAREN = r’\)’

t_EPS = r’\@’

t_STR = r’[a-zA-Z0-9]’

t_NOT = r’\!’

t_ignore = " \t" # Ignored characters

def t_newline(t):

r’\n+’

t.lexer.lineno += t.value.count("\n")

def t_error(t):

print("Illegal character ’%s’" % t.value[0])

t.lexer.skip(1)

#--- RegExp Parsing rules

precedence = ((’left’,’PLUS’), (’left’,’STAR’), (’right’,’NOT’))

def p_expression_plus(t):

’’’expression : expression PLUS catexp’’’

t[0] = (’+’, (t[1], t[3]))

def p_expression_plus_id(t):

’’’expression : catexp’’’

t[0] = t[1]

def p_expression_cat(t):

’’’catexp : catexp ordyexp’’’

t[0] = (’.’, (t[1], t[2]))

def p_expression_cat_id(t):

’’’catexp : ordyexp’’’

t[0] = t[1]

def p_expression_ordy_star(t):

’ordyexp : ordyexp STAR’

t[0] = (’*’, t[1])

def p_expression_ordy_paren(t):

’ordyexp : LPAREN expression RPAREN’

t[0] = t[2]

def p_expression_ordy_eps(t):

’ordyexp : EPS’

t[0] = (’@’, ’@’)

def p_expression_ordy_str(t):

’ordyexp : STR’

t[0] = (’str’, t[1])

def p_error(t):

print("Syntax error at ’%s’" % t.value)

def re2ast(s):

"""Convert a RegExp string to an abstract syntax-tree"""

mylexer = lex()

myparser = yacc()

myparseRETree = myparser.parse(s, lexer = mylexer)

return myparseRETree

>>> re2ast("!((aaa)*)")

(’!’, (’*’, (’.’, ((’.’, ((’str’,’a’), (’str’,’a’))), (’str’,’a’)))))

>>> re4 = ’(a+b)*b(a+b)(a+b)(a+b)’

>>> re2ast(re4)

(’.’, ((’.’, ((’.’, ((’.’, ((’*’, (’+’, ((’str’, ’a’), (’str’, ’b’)))),

(’str’, ’b’))), (’+’, ((’str’, ’a’), (’str’, ’b’))))),

(’+’,((’str’,’a’), (’str’,’b’))))), (’+’,((’str’,’a’), (’str’,’b’)))))
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especially given how straightforward it is to implement negation and in-
tersection. In particular, negation does not rely on NFA determinization
that can cause an exponential blowup of the number of states. This pro-
cess also can be used to obtain DFA directly from regular expressions
by taking the derived regular expressions as the names of states (Exer-
cise 2). This process requires the use of “smart constructors” to do effi-
ciently so that we are able to inexpensively determine when a previously
generated regular expression is being re-generated through an alternate
path (not detecting this duplication increases the number of DFA states).
Last but not least, derivatives have also been shown to be a practical idea
for context-free parsing [2].



11
Context-Free Languages
and Grammars

Chapter Gist: We present context-free languages through sev-
eral examples including the familiar “nested parentheses lan-
guage” and also examples from HTML and C++ (§11.1). We intro-
duce context-free grammars and parse trees (§11.2) and then re-
emphasize how to check that you have specified the correct gram-
mar by ensuring consistency and completeness. We present one
example grammar design, argue its consistency by induction, and
employ the “hill-valley plot” to argue completeness (§11.4). We in-
troduce the notion of ambiguity, show why it is bad, provide ideas
to disambiguate (§11.5), and show when we cannot do so because
the language itself is inherently ambiguous (§11.6). We show how
to express DFA using CFGs, discuss linearity, and why purely lin-
ear grammars are DFAs in disguise (§11.7). Before CFG-based
parsing was invented, compilers were inscrutably complex, and
syntax errors had catastrophic results (§11.8). A Pumping Lemma
for CFLs is presented (§11.9) and illustrated. While a language
may not be context-free, its complement can be; we present a neat
construction (§11.10).

11.1 Context-Free Language Examples

Consider the set of strings s over parentheses, ( and ), such that it has an
equal number of parentheses, but in every prefix of s,1 the number of left 1 “Every prefix of s” means “when you

sweep along from left-to-right.” As we
sweep left-to-right, we are never at a point
where the number of ) so far exceeds the
number of (. This is a canonical exam-
ple of a context-free language, and is often
called the Dyck language.

parentheses is greater than or equal to the number of right parentheses.
Examples include (()), (()(())), ()(), and ε. This is our first example of a
context-free language:

LD yck = { s ∈ {(, )}∗ : #((s)= #)(s) and in every prefix of s ,#( ≥ #) }
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In addition to parentheses, one could also have other elements that serve
to open and close contexts, for instance begin/end blocks, HTML tags
that open/close HTML sections, mixtures of bracket types, etc. This pat-
tern exists in arithmetic expressions and generalized bracketing with
multiple bracket types:

(3 + -4 * (5 + 6 * 7 + 8 * 9 - 4))

{{ ( [[ { [ (( )) ] } ]] ) }}

Take a look at the nesting structures found in HTML (left) and C++
(right), that are similar to the generalized bracketing:

<!DOCTYPE html> int main() {

<html>

<body> try { std::vector<int> vec{3,4,3,1}; ...

<h1> Heading }

</h1> catch ( ... ) {

<p> Paragraph ...

</p> }

</body> }

</html>

The study of context-free parsing helps us detect (and discard) syntac-
tically malformed HTML/C++ programs; for those meeting the syntactic
rules, we proceed to take semantic actions (e.g., draw a webpage or gen-
erate code to run the C++ program).

11.2 Context-Free Grammars and Parse Trees

We need a mechanism to specify these “nested bracketing” patterns. By
now, we know that regular expressions will not do.2 Taking a look at2 Why? Think of a very deep nest (. . .).

the generalized bracketing structure, it is clear that a recursive program
will do3 or a stack-based mechanism will do.4 This chapter is about the3 Match an outer pair of parentheses, and

recursively match inner nested matching
structures.

4 Push each “left” on the stack; when a
“right” arrives, match with the stack-top.

recursive mechanism known as context-free grammars, while Chapter 12
is about the stack-based mechanism known as pushdown automata.
To see how natural a notation context-free grammars are, let us define
the Dyck language in English. Here are the cases to consider:
• ε is in LD yck

• If S is in LD yck, so is (S). This covers cases such as (())
• If S is in LD yck, so is SS. This covers cases such as ()()
• Nothing else is in LD yck

Translating these cases into a convenient syntactic notation, we have a
context-free grammar for LD yck.5

5 We employ ” to denote ε in the ASCII
syntax.
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S -> ’’ | (S) | SS

11.2.1 Elements of Context-Free Grammars

A context-free grammar is a four-tuple (N,Σ,S,P), where
• N is a set of nonterminals. In LD yck, S is the only nonterminal.
• Σ is a set of terminals. In LD yck, the terminals are ( and ). The name

“terminals” suggests places when the recursion of the context-free pro-
duction rules terminates. ε itself can be viewed as a terminal, although
strictly speaking, it is not. When we define P below, we will allow the
right-hand sides of production rules to contain {(N ∪Σ)∗. From that
point of view, ε (ASCII ’’) is an empty string of terminals.

• S is the start symbol which is one of the nonterminals. In our exam-
ple, the start symbol is S.

• P is a set of production rules which are of the form:
– N → {(N ∪Σ)∗, and read “N derives a string of other N and Σ items.”

Such strings are called sentential forms. A terminal-only string
is called a sentence.

* Examples of sentential forms: (S), and (S)()(())SS

* Examples of sentences: ”, (), and ((()))()

– As a shorthand, one can write multiple right-hand sides separated
by vertical bars ‘|’ as we already did. However in actuality, we have
three production rules in our example (written without the vertical
bar), namely:

S -> ”

S -> SS

S -> (S)

11.2.2 Parse Trees, Language of a CFG

Parse trees are trees that depict how the start symbol of a context-free
grammar (CFG) can be elaborated to yield any specific string in the lan-
guage denoted by the CFG. As an example, consider the string s of bal-
anced parentheses where s =((())())(), and the following CFG:

S -> ’’ | (S) | SS

We can demonstrate that string s is in the language of LD yck by con-
structing a derivation sequence that ends with s. One can also achieve
the same end by constructing the parse tree for this string (illustrated
in Figure 11.1). Here is how we can write the derivation sequence6 for

6 A former professor of mine, Dr. Ke-
shav Nori, used to call this “skyhook
skyscraper construction,” meaning you
build a skyscraper by starting with the
start symbol S held with a skyhook, and
work toward the foundation.

((())())():
• Start with the start symbol, which is S.



140 AUTOMATA , COMPUTABILITY: PROGRAMMER ’S PERSPECTIVE

• Apply one of the production rules, which rewrites S to a sentential
form. A sentential form is a string over (N ∪Σ). In our case, we choose
to rewrite S to SS because we observe that
– the string of interest, i.e. ((())())() is a concatenation of two

instances of S, namely ((())()), and (), both of which are in the
Dyck language. We notate this by S => SS

• Observe that the root node of the parse-tree in Figure 11.1 has two
S-children. Thus, the first derivation in the construction of the parse
tree is S => SS

• We now see that the best rule to apply is S -> (S), as we must account
for the leftmost ( and its matching parenthesis. The sentential form
we obtain is now shown by building the derivation:
SS => (S)S, where the leftmost S yields (S), as can also be seen from
the parse tree.

S

S

( S

S

( S

( ε )

)

S

( ε )

)

S

( ε )

Figure 11.1: Parse Tree for string
((())())() that belongs to the Dyck Lan-
guage. This sentence can be read off the
parse tree by scanning the leaves left to
right (the left-most leaf is of course left-
most in the tree order—not its geometric
position in the drawing).

• Building the derivation sequence in this manner, the whole derivation
sequence now is as follows, ending in sentence ((())())():

S => SS => (S)S => (SS)S => ((S)S)S =>
(((S))S)S => (((”))S)S => ((())S)S => ((())(S))S =>
((())(”))S => ((())())S => ((())())(S) => ((())())(”) =>
((())())()

The language of a context-free grammar (CFG) G is exactly
all those sentences that can be obtained by constructing a deriva-
tion sequence. In mathematical notation, L(G) = { w : S ⇒∗ w }.
The language of a CFG is called a context-free language.

Regular languages are characterized by the “lasso shapes” (§4.6) and ul-
timate periodicity (§8.8). In contrast, context-free languages are charac-
terized by the tree shape.

11.3 Avoiding Mistakes in Designing CFGs

It is important to keep in mind that context-free grammars are very often
easy to write, but also quite error-prone. Consider these mistakes:
1. What happens if one provides no basis case for the inductive spec-

ification (no termination condition for the recursive specification)?

S -> (S) | SS # This grammar is incorrect!

Answer: This grammar denotes the empty language ;. This can
be seen by studying how CFG rules help populate the associated
CFL:
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(a) Start by assuming that all right-hand side nonterminals
denote the empty language ;.

(b) Now, include the strings generated by the sentences present
in the right-hand sides of productions.
• In our correct grammar, we would include ’’ (or ε) be-

cause that is the basis case (and a sentence). In our er-
roneous grammar, we would include nothing (i.e., ;) as
there are no sentences on production right-hand sides.

(c) Now, since (S) is in our grammar’s right-hand side, in the
correct grammar, we can extend the language generated so
far to (ε). This simplifies to ().
• In the erroneous grammar, we cannot so extend. That

is, we might generate “(;)”, but because of the ; that
is stuck in the middle, this language concatenation also
yields ;; thus, we do not make any progress.

(d) Thus, in general, only grammars that include at least one
basis case can seed initial strings into the language, and
then help build new strings around them. Here is how this
approach proceeds with the correct grammar:
i. Since () is inferred, we can apply the (S) rule and

infer that (()) is in the language. Then we can
infer ((())), (((()))), etc.

ii. Also, since () is inferred, we can apply the SS rule
and infer that ()() is in the language. Then we can
infer ()()(), (())()(), ((()))()(), etc.

iii. Keep applying the context-free grammar rules, and
in the limit, all and only those strings you mean
to include are in the language.

11.3.1 Completeness and Consistency

In general, context-free grammars must be shown to be complete (i.e.,
they can infer all the strings intended to be in the language) and consis-
tent (i.e., they do not infer what is not in the intended language). Not
having a sentence on the right-hand side of any production rule is an
extreme form of incompleteness. Other less severe forms of incomplete-
ness are possible. For example, the following production rules omit the SS
sentential form on the right-hand side of the production rules. These pro-
ductions are consistent, but incomplete with respect to LD yck (Exercise:
list two strings that are omitted, please):

S -> ’’ | (S) # Incomplete (and hence incorrect)

Inconsistency results if the sentential form )S( is added to the right-hand
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side (Exercise: list two erroneous strings, please):

S -> ’’ | (S) | )S( | SS # Inconsistent (and hence incorrect)

11.4 The Design of CFG, and the Hill/Valley Plot
for Arguing Consistency and Completeness

In Chapter 5, we spent quite some time elaborating how to design DFA.
In the same manner, there are many steps one can follow to obtain the
desired context-free grammar for a context-free language.7

7 It should be clear that there are an in-
finite number of CFGs one can come up
with even for one single CFL. For exam-
ple, for the language ;, one can come up
with the production rule S -> S or two
production rules S -> A and A -> S.

The basic goal of designing a CFG is to come up with an elegant set of
rules that are intuitively correct, and (upon being challenged) rigorously
shown to be consistent and complete. Many such proofs can be elegantly
structured around a rather nice picture which we call the “hill/valley”
plot.8

8 In §11.5, we will discuss another cru-
cial requirement that virtually all CFGs
need to abide by in practice—namely
being unambiguous— if at all possible.
For most languages—except for those
that are inherently ambiguous languages
(§11.6), there always exists an unambigu-
ous grammar.

Example: For our illustration, consider a different language, namely
Leqab, which is exactly the set of all strings that contain an equal number
of a’s and b’s. We can derive a CFG for it by growing the language
inside-out.9 More specifically,

9 We will often observe that many CFGs
can be quite naturally designed using this
paradigm of growing a language “inside
out.” CFGs often treat a CFL as an onion,
building nice layers around a wispy-thin
core. It often is a double- or multi-cored
onion.

• ε is in the language, and therefore we must include a production of the
form S -> ”

• Now, we set up the pattern aSbS, and think inductively in our minds;
we also indicate the questions that naturally arise:
– If S is consistent, then placing an equal amount of a’s and b’s keeps

it consistent.
– But do we settle for aSb or aSbS? We choose the latter, as it does not

force a b-ending.
– Do we include bSaS? We feel it is necessary, to avoid an a-only end-

ing.
– Do we throw in an SS case? While doing so won’t cause inconsis-

tency, it may be unnecessary for completeness (see below).
Let us assume we don’t need the SS case, and present the CFG designed
thus far:

S -> ’’ | aSbS | bSaS

We now prove that this CFG is consistent, and the SS production is not
necessary (the CFG is complete with respect to Leqab even without this
production rule).
Consistency: By induction, make sure that the right-hand sides of pro-

ductions are consistent.
• We have ’’ that is consistent (zero a’s and b’s)
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Figure 11.2: Completeness via Induction
Over Hill/Valley Plots
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• If all instances of S on the right-hand side are consistent, then aSbS

is consistent (it adds one a and one b), and so is bSaS
• Given all cases on the right-hand side are consistent, the grammar

is consistent with respect to Leqab.10 10 Please keep in mind that a grammar
that generates nothing at all is always
consistent. This is like making no mis-
takes at all by choosing to do nothing at
all. Therefore, while consistency is im-
portant, without completeness, we don’t
have something that covers all the desired
cases.

Completeness: Draw the “hill/valley” plot as in Figure 11.2. This plot
presents a good way to visualize how the a-count grows and how the
b-count helps offset it:
• The string may begin with a bunch of a’s. We show positive growth

when a’s arrive.
• Then some b’s arrive, reducing the excess a count.
• Now, b’s may come as a barrage, sending the count negative.
• The diagram can oscillate about the X-axis till it comes to rest at

the X-axis.

Having a good visualization of the language in question is very
helpful in arriving at a proof of completeness.

Proof of CFG Completeness

We assume by induction that all consistent strings of length ≤ n are
“covered” by our rules—that is, such strings can all be derived by the
given set of productions.11 Our goal is to now show that longer strings

11 Thus, we show a little parse tree riding
above the hills and valleys in Figure 11.2,
and in this parse tree, assume that the
two occurrences of S are able to derive the
pieces under them.

See supplementary material at
https://bit.ly/Automata_Jove under
HillValley for a CFG whose design is
actually made possible by a proof! That
is, we will present a language, and ask
you to design the CFG. It turns out that
by trying to apply the hill/valley proof
methodology, you can actually obtain the
CFG! Any ad hoc attempt to obtain the
CFG will prove difficult, and may contain
errors.

can also be derived. Now consider a string s of length n+2 (the next
feasible length).
• We know that s may involve a “zero-crossing” (X-axis crossing) in

the hill-valley plot; it may, however, not have such a crossing. We
consider the case with zero-crossing now.

• Such a string can begin with an a, and then, at the point of the
immediate next zero-crossing, it must have a b.

• After the zero-crossing, the string may ride below the X-axis and
come back to rest at the X-axis in the end.

https://bit.ly
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• By induction, if you leave out the a and b just now mentioned, the
remainder of the string is ≤ n in length and is consistent (equal a’s
and b’s).

• This allows us to invoke the induction hypothesis and imagine a
derivation from S in two places, as depicted in the figure.

• Now, the whole string can be derived by introducing one more S

node, and writing the whole string as aSbS, as shown.
• Completeness is proven by considering the bSaS case, and also the

case with no zero-crossings.

Our proof now shows that the SS production is not necessary. Such
grammar simplifications are important to carry out (of course,
when we are absolutely sure).

Exercise 11.4, CFL completeness
1. Write a proof of completeness when no zero-crossings are involved

in the hill-valley plot just mentioned.
2. Write down a context-free grammar for the language La1b2 which

is exactly all those strings over {a,b}∗ in which there are two b’s
for each occurrence of an a.

3. Argue that this context-free grammar is consistent.
4. Argue completeness as follows (only some of the cases are requested):

• Draw a hill/valley plot in which you plot the string beginning
with an a. For every a, imagine rising two steps, and for every
b, falling one step.

• Now consider the case of no zero-crossings. Argue complete-
ness for this case. Hint: if we start with an a, we go up twice.
How is it that we can land back on the X-axis without any zero-
crossings (i.e. what must such a string end with)?

• Now consider exactly one zero-crossing, and write the proof of
completeness. �

11.5 Ambiguous Grammars, and Disambiguation

In everyday life, ambiguity leads to confusion;12 with computers, it can

12 Consider these ambiguous utterances:
(1) “Time flies” (time goes fast, or a fly-
race?); (2) “Fruit flies like a banana”
(fruits can fly? bananas have wings? fruit-
flies like bananas?); or (3) “Our mothers
bore us” (I love my mom, and she did bear
me, but she did not bore me when she bore
me!)

result in unintended code being generated.
To illustrate this, we consider the task of parsing expressions. Let us

arrive at a CFG for a simple expression language based on these details:
• Arithmetic expressions involving numbers 1, 2 and 3 are to be handled,
• The operators + and *, the unary minus operator ∼, and parentheses

for grouping expressions must be supported.
You may begin your design by saying these words:
• An expression is either the number 2 or the number 3
• or, it may be the unary minus of an expression
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• or, it may be two expressions added or multiplied
• or, it may be a parenthetic expression.
A CFG naturally follows (call this CfgExp1):

E -> 1 | 2 | 3 | ~E | E+E | E*E | (E)

E

E

1

+ E

2 * 3

E

E

1 + 2

* E

3

Figure 11.3: Two parses for the same ex-
pression (if more than one parse exists for
any given string, then the grammar is
ambiguous). The language is likely not
inherently ambiguous.

We observe these facts:
• E is the only nonterminal.
• Σ consists of 1, 2, 3, ~, +, *, ( and ).13

13 In practice, we will not have each num-
ber appearing as a separate terminal.
Compilers employ a scanner that produces
tokens which are treated as terminals; in
this example, there will be a token called
number that will be the single terminal
representing all numbers. As you can
imagine (and will see further in Chap-
ter 12), scanners are realized using finite
automata.

• S is the start symbol.
• P is a set of seven elementary production rules.
Alas, given an expression 1+2*3, we can obtain two distinct parse trees
as shown in Figure 11.3.

A context-free grammar is ambiguous if it admits two distinct
parse trees for some string s ∈Σ∗.

Clearly, you know which tree to expect a compiler to be generating
inside: the expected answer is 7 and not 9. However, the incorrect parse
tree where + got higher precedence resulted in the wrong answer. Clearly,
we must prevent such things from occurring within a compiler, the prac-
tical solution for which is discussed next.

11.5.1 Disambiguation

Disambiguation is the process by which one changes the grammar to
force specific parse trees to be built—without changing the language ac-
cepted. Disambiguation proceeds by layering the grammar so that a non-
terminal at the higher layer is forced to call a nonterminal at the lower
layer. The nonterminal at the lower layer “packages up” some parses and
it is only around these packages that higher level nonterminals can erect
their parse-tree structures. Given all this, we know that
• ‘*’ must be pushed to the lower layer, so that it gets processed before

‘+’ (which lives in the higher layer).
• Similarly, the unary minus ‘~’ and parenthesization must be situated

within the lower layers.
• We denote expressions by E, and introduce the notion of a term (denoted

by T) and factor (denoted by F) where E rides high in the hierarchy, T
rides below it, and F rides at the lowest level.
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Following these principles, the grammar can be changed to the following
(call this CfgExp2):

E -> E+T | T

T -> T*F | F

F -> 1 | 2 | 3 | ~F | (E)

As you can see, there are certain production rules that must be involved
to process specific operators. For instance, processing a ‘+’ involves the
use of the E+T production rule. Now, the operator ‘+’ has lower precedence
than a ‘*’. Thus, when we have an expression involving a ‘+’ and a ‘*’, the
processing of the ‘*’ gets pushed into the lower layers.

Exercise 11.5.1, Parse trees
1. Argue that only the correct parse tree results by applying gram-

mar CfgExp2 to the sentences associated with the parse trees
shown in Figure 11.3.

2. Develop all parse trees for the sentence 1+∼ 2∗3 using CfgExp1
and CfgExp2. Write down all possible answers produced by em-
ploying these grammars.

3. Argue that CfgExp1 and CfgExp2 denote the same context-free
language. Your argument can be a narrative in English. �

Figure 11.4: Even this large expression
has a unique parse under CfgExp2. Any
guesses on how many parses would exist
with CfgExp1? What answer is obtained
under CfgExp2? List another answer that
would have been returned under CfgExp1.

E

E

T

T

T

F

1

* F

2

* F

∼ F

3

+ T

T

F

∼ F
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2

* F

∼ F

3
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11.5.2 Disambiguation Is Crucial!

With disambiguation in place, even the expression

1∗2∗∼ 3+∼∼ 2∗∼ 3

gets parsed as if the user parenthesized so:

((1∗2)∗ (∼ 3))+ (((∼ (∼ 2))∗ (∼ 3)))

It emerges to have exactly one parse under CfgExp2, as Figure 11.4 demon-
strates by way of example.

11.5.3 Impossibility Results

In Part III of the book (Concepts), we will show two rather stunning un-
decidability results about CFGs:
• It is impossible to have an algorithm that, given a CFG, always halts

(as all algorithms must do eventually) and prints “yes this CFG is am-
biguous” or “no this CFG is unambiguous.”

• It is impossible to have an algorithm that, given two CFGs, always
halts and prints “yes these CFGs are language-equivalent” or “no these
CFGs have a different language.”

It is clear that we have left the comfortable territory of finite automata
where similar questions could be algorithmically settled!

11.6 Inherently Ambiguous Languages

There are languages for which every CFG is ambiguous; they are called
inherently ambiguous languages. Here is one such language:

LabORbc = { aib j ck : (i = j) or ( j = k) }

We can learn many valuable skills by developing a CFG for LabORbc.
Again we follow the “inside-out” approach.
1. Invent nonterminal names much like you would invent function

names while programming:
• Let Mab stand for “matches a and b”, and likewise Mbc

• Let Cs stand for “zero or more c”, and likewise As

• Then we can write this CFG fragment below

S -> Mab Cs | As Mbc

2. Now invent an idiom to grow matched a’s and b’s inside-out:

Mab -> a Mab b | ”
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It is easy to see that if you pump on this production, you will get
the “onion-esque” growth:

a Mab b

aa Mab bb

aaa Mab bbb

...

aaaaaaaaa Mab bbbbbbbbb

aaaaaaaaa ” bbbbbbbbb (“poof”, the Mab disappears)
aaaaaaaaabbbbbbbbb

3. Develop an idiom for As

As -> a As | ”

It is easy to see that if you pump on this production, you will get
the “lasso-esque” growth:

a As

aa As

aaa As

...

aaaaaaaaa As

aaaaaaaaa ” (“poof”, the As disappears)
aaaaaaaa

(Observing the lasso-esque growth, we have actually discovered an
idiom for describing DFA using CFG—something we wil pursue in
§11.7.)

4. Thus, the final CFG (call it CFGabORbc) for LabORbc is

S -> Mab Cs | As Mbc
Mab -> a Mab b | ”
Mbc -> b Mbc c | ”
As -> a As | ”
Cs -> c Cs | ”

Exercise 11.6, Ambiguous parses
1. Parse aaabbbccc using CFGabORbc in all possible ways.

(Comment: This question at least helps see why LabORbc is in-
herently ambiguous. The proof that LabORbc is inherently am-
biguous is much more elaborate. We must not merely consider
CFGabORbc, but all possible CFGs must be considered in such a
proof, and all must be shown to result in ambiguity.)

2. Develop a CFG for the language that takes a string w from {0,1}∗,
mirrors it to obtain wR (reversal of w), and then concatenates w
and wR . Use the “onion approach.”
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LwwR = { wwR : w ∈ {0,1}∗ }

Comment: In Chapter 12, we will show that any PDA implement-
ing LwwR will be nondeterministic, even though the CFG you ob-
tain is not ambiguous. Thus, ambiguity of a grammar implies
nondeterminism on the part of the PDA, as we shall see in
the next chapter.

�

11.7 Expressing DFA via CFGs

IF

S10

0

F1 1

S01

1

F0 00

1

1

0

0

1

Figure 11.5: DFA for equal changes, or
“begins and ends with the same” (we in-
clude ε in the language). Recall that state
names starting with I are initial states, IF
are initial and final, and other starting let-
ters connote neither initial nor final. We
will retain the same state names when we
define CFG productions as well. You’ll no-
tice that F and IF nonterminals will have ε
productions, as they are accepting states.

Observing the lasso-esque pattern in §11.6, we have the beginnings of
how to encode DFA using context-free grammars. For definiteness, con-
sider the DFA for Leqc from Chapter 5 shown in Figure 11.5. Clearly,
states such as S01 can be encoded using the lasso pattern, as it spins on
itself. Let us now describe a complete procedure that handles many more
details not yet mentioned; in the process, we will also be converting this
DFA into a CFG:
• We must begin in state IF, and that must be the grammar starting

symbol also (name it the same, for convenience). Thus we have

IF -> ...

• When in state IF, we must accept without any further ado. Thus, we
include this production:

IF -> ”

• When in state IF, we must transition to F0 or F1 as shown:

IF -> 0 F0 | 1 F1

• Now, F0 and F1 must also accept without further ado:

F0 -> ”
F1 -> ”

• F0 and F1 have loops, as well; they also can move to states S01 and S10

when (respectively) 1 (0) arrive:

F0 -> 0 F0 | ” | 1 S01
F1 -> 1 F1 | ” | 0 S10

• State S01 must not have the option to accept. It either stays at S01

(when 1 comes) without accepting, or moves to F0 when 0 comes (like-
wise for S10):
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S01 -> 1 S01 | 0 F0
S10 -> 0 S10 | 1 F1

• This finishes the construction! The whole CFG (call it BESameCFG)
is now shown:

IF -> ” | 0 F0 | 1 F1
F0 -> ” | 0 F0 | 1 S01
F1 -> ” | 1 F1 | 0 S10
S01 -> 1 S01 | 0 F0
S10 -> 0 S10 | 1 F1

We now notice an interesting syntactic property of the grammar BE-
SameCFG:

All its productions have exactly one nonterminal on the right-hand
side, and this appears at the very end. Such grammars are purely
right-linear (§11.7.1).

We now elaborate on such syntactic properties in the following section on
linearity.

11.7.1 Purely Right Linear Grammars

If we have an equation y = x for x, y ∈ Real, we say y is a linear function
of x; when we have y = x2, we say y is nonlinear. This is because two x’s
are multiplied. By way of analogy (at least for the nomenclature):
• When two nonterminals appear on the right-hand side of a single pro-

duction rule, we call it a nonlinear production rule.
• If zero or one nonterminals appear, we call it a linear production rule.

As a special case:
– If the single nonterminal (if any) appears as the last item of a sen-

tential form, we call it right linear.
– If the single nonterminal (if any) appears as the first item of a sen-

tential form, we call it left linear.
– If no nonterminal appears at all, we can regard it either as right-

linear or left-linear.
Now, if all production rules of a grammar are right-linear, we call it a
purely right-linear grammar. It turns out that BESameCFG was
purely right-linear. Here is a theorem.

Theorem 11.7.1: A CFG that is purely right-linear describes a
regular language.

Proof Sketch: Observe that such grammars can be turned into a DFA.
�
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Please bear in mind that
• All regular languages are also context-free. This is because we can

write a context-free grammar for any regular language.
• There are some context-free languages that are not regular:

– The Dyck language is context-free but not regular—because we can
apply the Pumping Lemma for regular languages and show that
this language is not regular.

11.7.2 Closure, Purely Left Linear, and Mixed Linearity

Theorem 11.7.2(a): Context-free languages are closed under
union, Kleene-star, and reversal, but not intersection or comple-
mentation.

Proof Sketch: For union, Kleene-star and reversal, see the construc-
tions discussed below. For “but not complementation,” see §11.10. Inter-
section follows from DeMorgan’s law.

Constructions for Union, Star, and Reversal of a CFG:
• Union: Given two CFGs with start symbols S1 and S2, a new CFG for

the union can be created by simply introducing one new production:

S -> S1 | S2

• Kleene-star: Given a CFG with start-symbol S, design a new CFG for
the Kleene-star by introducing one new production:

Star -> S Star | ”

• Reversal:14

14 In his book Programming Pearls [8], Jon
Bentley demonstrates how to reverse a
list AB: reverse A alone, then reverse B
alone, then reverse the whole. That is,
(AB)r = (Br Ar). It is amply illustrated by
our beloved canine friends below that per-
form a reversal as an ensemble by (1) first
reversing individually, and (2) then re-
versing their places.

The proof idea is to reverse each context-free production. We illustrate
it on our example CFG BESameCFG. By reversing each production
rule of that CFG, we obtain the following CFG whose language is the
reverse of the language of BESameCFG:

IFr -> ” | F0r 0 | F1r 1
F0r -> ” | F0r 0 | S01r 1
F1r -> ” | F1r 1 | S10r 0
S01r -> S01r 1 | F0r 0
S10r -> S10r 0 | F1r 1

Let us call the above CFG BESameCFGRev.

We can see that BESameCFGRev is purely left linear, in the sense that
the right-hand sides of each one of its production rules contains at most
only one nonterminal, which occurs leftmost. We know that the lan-
guage of BESameCFG is regular; thus, the language of BESameCF-
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GRev must also be regular.15 We have the following theorem:

15 Reader: Why?

Theorem 11.7.2(b): A CFG that is purely left-linear describes a
regular language.

Proof Sketch: By reversing this CFG, we obtain a right-linear grammar.
�

Mixed Linearity Need Not be Regular

By employing mixed linearity, we can do things that obfuscate the struc-
ture of the CFG. More specifically, consider this grammar MiniDyck
which denotes a non-regular language:1616 Reader: Why is this language non-

regular?

S -> ” | (S)

We can transform the above CFG without changing its language, obtain-
ing three productions as shown below. The second production is right-
linear, while the third production is left-linear (the first production can
be considered to be either right-linear or left-linear).

S -> ”
S -> (A
A -> S)

The main take-away observation is that by mixing linearity, we can ex-
press a non-regular context-free language. The intuitive idea is that pro-
duction rules that have a mixed linear structure can situate nonterminals
in the middle of non-empty strings of terminals. Thus, when these non-
terminals “in the middle” recurse, they force us to count and tally the
terminal strings surrounding them.

11.8 Historical Importance of the Theory of Parsing

All the things you studied in this chapter were not obvious to the com-
puter scientists of the 1960s. In an early article on compiler construction,
Donald Knuth mentions many crude rules that compiler writers had de-
vised; for instance:
• They replaced every + by ")))+(((" and every * by "))*(("
• They introduced enough compensating parentheses to fix up the ex-

pression. The sequence of processing steps might have been:
– 1 + 2 * 3

– 1 ))) + ((( 2 )) * (( 3

– ((( 1 ))) + ((( 2 )) * (( 3 ))) , and voilà!, the multiply got
higher precedence assigned.
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• To paraphrase Knuth a bit, “by sheer magic” the expressions emerged
with the right precedences. But proving this (or being sure about this
for all expressions) was a nightmare.

Clearly, we cannot leave important things such as operator precedence to
chance; they must rest on firm theoretical grounds.

Avoid Brittle Syntax: Lost Space Craft to Venus

One must also develop robust CFGs where “innocuous” syntax errors
such as a single forgotten comma must not turn the program into an-
other syntactically legal program with a totally different meaning. Un-
fortunately, long ago, such brittle syntaxes were in vogue. There is this
story of a spacecraft [24] called Mariner 1 launched to Venus in the 1960s
which was supposed to have the following lines of code in Fortran:

DO 5 K=1,3

...body of DO...

5 CONTINUE

Unfortunately, the programmer typed a period “.” in place of the comma,
turning the statement into:

DO5K = 1.3

...body of DO...

5 CONTINUE

In the inadvertently altered program, the loop body will be executed
exactly once, which changes the program’s logic. Instead of perform-
ing three iterations of the loop, an accidentally introduced new variable
“DO5K” gets assigned the fraction 1.3, with the CONTINUE statement (with
or without a label) serving as a no-op. The spacecraft wasn’t heard from
ever since...17 17 It may still be “in a coma,” or “frantically

looking for a missing comma.”

11.8.1 Combating Inherent Ambiguity

There are many reasons why the existence of inherently ambiguous lan-
guages should/could upset you:
• That means every compiler can potentially produce two answers for

the same input. Fortunately,
– Most common computer languages (and also scripting languages)

are not inherently ambiguous languages.
– One can always throw in a sufficient number of keywords and “sugar”

the language to make it unambiguous.18 18 The parser can “sink its teeth” into
these keywords and parse unambiguously.• More fundamentally, we will show (in Chapter 12) that every CFG can
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be converted to a pushdown automaton (PDA).
– This means that any PDA that is associated with a CFG that we

come up with for an inherently ambiguous language is going to be
nondeterministic.

– This means it is impossible to find a deterministic PDA that serves
as the parser for an inherently ambiguous language.

– This means that the families of NPDA (nondeterministic PDA) and
of DPDA (deterministic PDA) are distinct!

• Another reason to wistfully reflect on the territory of finite automata
we have left behind—where, for every NFA, there is an equivalent
DFA!

11.9 A Pumping Lemma for CFLs

Consider some of the languages studied in the exercises on Page 30 in §3.2
(reproduced below), and also some new languages. Let Σ = {0,1}. Which
of these are regular, which are context-free, and which are neither?
1. LP0 = {w : w ∈Σ∗}
2. LP1 = {wwR : w ∈Σ∗}
3. LP2 = {wawR : a ∈ ({ε}∪Σ), w ∈Σ∗}
4. Leq01 = {0n1n : n ≥ 0}
5. Lww = {ww : w ∈Σ∗}
6. Lw#w = {w#w : w ∈Σ∗}, where # is a separator.
7. Leq010 = {0n1n0n : n ≥ 0}
8. Leq012 = {0n1n2n : n ≥ 0}
It should be clear that all but LP0 are non-regular.1919 As an exercise, you may wish to stop and

prove, using the Pumping Lemma, that all
but LP0 are non-regular.

The new question now is which of these languages are context-free? It
should be clear how to write context-free productions for all languages
till Lww. However, for Lww, Leq010, and Leq012, attempts made are guar-
anteed to fail.20 We prove this using a Pumping Lemma for context-free20 You might try for a little while and fail.

You might also try to “grow these lan-
guages inside-out” and fail. There is how-
ever a better approach.

languages. To derive such a lemma, consider again a “very long string”
w ∈ L(G). It is easy to observe this: very long strings in a CFL require
very tall parse trees! For example, consider the CFG:

S -> ( S ) | T | ’’

T -> [ T ] | T T | ’’

Here is an example derivation:

S => (S) => (( T )) => (( [ T ] )) => (( [ ] ))

^ ^

Occurrence-1 Occurrence-2

Use T => [T] Use T => ’’
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Height |V| + 1
max. branching factor = b
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Figure 11.6: Depiction of a parse tree for
the CFL Pumping Lemma. The upper
drawing shows a very long path that re-
peats a nonterminal, with the lowest two
repetitions occurring at V_2 and V_1 (sim-
ilar to Occurrence-1 and Occurrence-2

as in the text). With respect to this draw-
ing: (i) the middle drawing indicates what
happens if the derivation for V_2 is ap-
plied in lieu of that of V_1, and (ii) the bot-
tom drawing depicts what happens if the
derivation for V_2 is replaced by that for
V_1, which, in turn, contains a derivation
for V_2. In our example, from the fact that
(([])) exists, we can infer that (([i]i)) exists
for i ≥ 0. Thus, v = [ and y=], while x = ε.

In order to conveniently capture the
conditions mentioned so far, it is good to
resort to parse trees. Consider a CFG
with |V | nonterminals, and with the right-
hand side of each rule containing at most
b syntactic elements (terminals or non-
terminals). Consider a b-ary tree built
up to height |V | + 1, as shown in Fig-
ure 11.6. The string yielded on the fron-
tier of the tree is w = uvxyz. The CFL
Pumping Lemma can now be applied to
deduce “pumped” strings as discussed un-
der Theorem 11.9.

At Occurrence-1, we use the derivation T => [ T ] and at Occurrence-2,
we use T => ”.
There are two alternatives illustrated below:
1. Employ T => [ T ] even at Occurrence-2, and use T => ” only in

the last phase, or
2. Employ T => ” at the beginning itself!

S => (S) => (( T )) => (( [ T ] )) => (( [[ T ]] )) => (( [[ ]] ))

^ ^ ^

Occurrence-1 Occurrence-2 Here,

Use T => [T] Use T => [T] use T => ’’

S => (S) => (( T )) => (( ))

^

Here, use T => ’’
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Given that this We infer that this OR, this

derivation exists: derivation exists: derivation exists:

================== ================== ==================

S => (S) S => (S) S => (S)

=> (( T )) => (( T )) => (( T ))

=> (( [ T ] )) => (( [ T ] )) => (( ))

=> (( [ ] )) => (( [[ T ]] ))

=> (( [[[ T ]]] ))

=> ...

=> (( [[[[[[[[[ T ]]]]]]]]] ))

=> (( [[[[[[[[[ ]]]]]]]]] ))

Theorem 11.9: Given any CFG G = (N,Σ,P,S), there exists a
number N such that given a string w in L(G) such that |w| ≥ N,
we can split w into w = uvxyz such that |vy| > 0, |vxy| ≤ N, and for
every i ≥ 0, uvixyi z ∈ L(G).

Proof Sketch: If there are two such parse trees for w, pick the one that
has the fewest number of nodes. Now, if we grow the parse tree to height
|V |+1 (counting |V | interior nodes and one leaf node), we are guaranteed
to force a nonterminal to repeat along some path from the root to some
leaf of the parse tree. The string w = uvxyz is, in this case, of length
b|V |+1 (called N, the pumping constant, hereafter). Put another way,
as soon as we select a string w = uvxyz in L(G), the parse tree for w
would have a path from the root to some leaf that repeats a nonterminal.

Let V be the nonterminal that repeats. Call the higher occurrence V1

and the lower occurrence V2 (note that V2 is contained within the parse
tree rooted at V1, as shown in Figure 11.6). If there are multiple instances
of V that repeat, pick the lowest two instances, calling them V1 and V2,
respectively. Now, the following facts hold true:

• |vxy| ≤ N; if not, we would find two other nonterminals that exist lower
in the parse tree than V1 and V2, thus violating the condition that V1

and V2 are the lowest two repeating instances of V .

• |vy| ≥ 1; if not, we will have w = uxz, for which a shorter parse tree
exists, namely the one where we directly employ V2. That is, if |vy| = 0,
then vy= ε, thus implying that uvxyz = uxz, and to generate that, we
don’t need to involve a parse tree containing both V1 and V2 (we can
simply use V2 at the higher position of V and be done).

• Now, by pumping v and y, we can obtain any desired degree of repeti-
tions of v and y. By pumping down, this situation would imply uxz ∈
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L(G), and by pumping up, this situation would imply uvixyi z ∈ L(G)
for i > 1.21 21 For more details, see [42] from which we

adapt our proof.
See supplementary material at

https://bit.ly/Automata_Jove under
CFLPL which contains a detailed pre-
sentation of this proof, plus additional
illustrations.

11.9.1 Application of the CFL Pumping Lemma

We can apply this Pumping Lemma for CFGs in the same manner as we
did for regular sets. For example, let us sketch that Lww is not context-
free:
• Suppose Lww were a CFL.
• Then the CFL Pumping Lemma would apply.
• Let N be the pumping length associated with a CFG of this language.
• Consider the string 0N1N0N1N which is in Lww.
• The segments v and y of the Pumping Lemma are contained within

the first 0N1N block, in the middle 1N0N block or in the last 0N1N

block, and in each of these cases, they could also have fallen entirely
within a 0N block or a 1N block.

• In each case, by pumping up or down, we will then obtain a string that
is not within Lww. �

Exercise 11.9.1, CFL Pumping Lemma
1. Prove that Leq012 is not context-free.
2. Prove that Leq010 is not context-free.
3. Prove that CFLs are not closed under intersection. Specifi-

cally, show this:
(a) Leq01Not2 = {0m1m2n : m,n ≥ 0} is a CFL
(b) LeqNot012 = {0n1m2m : m,n ≥ 0} is a CFL
(c) Show that Leq01Not2 ∩ LeqNot012 is not context-free

4. Argue why this is true:

Given that CFLs are closed under union, if they are closed
under complementation, then they would be closed under
intersection. This immediately leads to a contradiction.
Thus CFLs are not closed under complementation. �

11.10 The Complement of a Non-CFL Can Be a CFL

Even though we showed (in §11.9.1) that Lww is not a CFG, we can now
show that its complement (call it Lwwbar) is context-free (we adapt this
argument from [28]).
Any string in Lwwbar is one of these types:
• It is of an odd length
• Or it is of an even length, i.e. of the form w1w2

– where | w1 |=| w2 |, but
– when we scan w1 and w2 using two “cursors,” left to right

* There will be a point where they differ (see illustration below)

https://bit.ly
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What w1, w2, and w1w2 look like:

w1 : ~~~p~~~ O ~~~~~~q~~~~~~

w2 : ~~~p~~~ X ~~~~~~q~~~~~~

w1 w2 : ~~~p~~~ O ~~~~~~q~~~~~~ ~~~p~~~ X ~~~~~~q~~~~~~

In other words, there would be some prefix called p that may or may not
stay the same in both strings, but then w1 has a O while w2 has an X.
Then there would be a suffix called q that, again, may or may not stay
the same. Let us assume that both w1 and w2 are over {0,1}∗ and build a
CFG to describe such w1w2 patterns, plus all odd-length patterns.

11.10.1 Growing “Inside-Out”

Unfortunately, the w1 w2 string does not show any signs of being grow-
able inside-out. However, a slight transformation will allow us to render
it into a shape which immediately suggests “inside-out” growth:

Instead of viewing w1 w2 as

~~~p~~~ O ~~~~~~q~~~~~~ ~~~p~~~ X ~~~~~~q~~~~~~

View w1 w2 as:

~~~p~~~ O ~~~p~~~ ~~~~~~q~~~~~~ X ~~~~~~q~~~~~~

This is a fine rearrangement because the substrings marked “p” and “q”
are arbitrary strings over 0 and 1, and so qp = pq! We now hope that you
see how you can write such strings via a CFG. We will give a start and let
you finish in an exercise. All the CFG rules you have to finish are elided.
Let O be realized as 0 and X as 1.

WWBar -> Oddlen | EvenlenXO

EvenLenXO -> GrowOMiddle GrowXMiddle

| GrowXMiddle GrowOMiddle

GrowOMiddle -> B GrowOMiddle B | 0

B -> 0 | 1

Exercise 11.10.1, CFG design
In all of the following questions, #c(w) denotes the number of occurrences
of character c in w.
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1. Finish the specification of WWBar, a context-free grammar for Lwwbar.
Hints:
• Express a CFG for Oddlen
• Write a CFG for GrowXMiddle

2. Test the grammar out by generating at least eight strings using
it. Show the derivation sequences used.

3. Develop a CFG for the language of strings over Σ = {0,1} where
the number of 1’s is strictly greater than the number of 0’s. Hint:
Draw “hill/valley” plots covering various sub-cases that arise in
such strings. Specifically, rise one step for every 1 and fall one
step for every 0. All such plots then end up above the X axis. Cut-
up such plots into chunks and develop a grammar covering the
sequence of all such chunks.

4. Here is a proof that attempts to show that the language Leq01 =
{0n1n : n ≥ 0} is not context-free:

(a) Assume there is a CFG with |V | productions for this lan-
guage.

(b) Choose N = 2|V |+1 as in the CFL Pumping Lemma
(c) Consider the string 0N1N ∈ Leq01

(d) Consider the band of 0’s in 0N . It harbors a pump vxy
which is surely less than or equal to N in length.

(e) By pumping, we make the number of 0’s differ from the
number of 1’s. Hence the language is not context-free.

Find the flaw in the proof and propose a CFG for this language.
5. Argue that this language is a CFL by building a CFG for it. An-

swer for both cases of ‘OP’ listed below:

Labcd = {aib j ckdl : i, j,k, l ≥ 0 and ((i = j) OP (k = l))}

(a) (Case 1) OP is AND
(b) (Case 2) OP is OR

6. Show that Lacbd is not context-free if OP is AND but is context-
free if OP is OR:

Lacbd = {ai ckb jdl : i, j,k, l ≥ 0 and ((i = j) OP (k = l))}

7. Someone proposes the following CFG for the language

Labcd = {w : w ∈ {a,b, c,d}∗ and #a(w)= #b(w) and #c(w)= #d(w)}

S -> a S b S | b S a S | ’’ | T

T -> c T d T | d T c T | ’’ | S

(a) Find one string in this CFG’s language that is not in Labcd .
(b) Show that Labcd is not context-free. �
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12
Pushdown Automata

Chapter Gist: Pushdown Automata (PDA) receive an elaborate
informal introduction (§12.1) followed by a formal one (§12.2). We
explore a PDA for LD yck using Jove (§12.3), and follow this with
in-depth descriptions of many curious executions of PDA on made-
up examples (§12.4). These include stack-limited executions, and a
discussion of preventing infinite-looping in Jove (§12.4.1). We then
present more practical examples in the Automd markdown nota-
tion (§12.5). We discuss CFG to PDA conversion, including non-
deterministic executions of PDA derived from ambiguous CFGs
(§12.6). This book presents you with the opportunity to study three
parsers, summarized in §12.7.

12.1 Pushdown Automaton Basics

Input

Stack

finite
state
control

Figure 12.1: A Pushdown Automaton
shown with its input string and its stack.
The input of a PDA is read left-to-right
once. A PDA cannot rewind its read posi-
tion back to an earlier point in the string
and re-read an input. This is the same as
with NFA. (Turing machines—discussed
in Chapter 13—on the other hand have
the ability to re-read their input tape.)
The stack can be pushed into and popped
from during each transition. We depict
the PDA as having two “eyes” that can be
moved independently (we have shown im-
ages of the actual eyes of a fiddler crab
that are mounted on long stems, and can
be moved independently).

Pushdown automata (PDA) are machines that recognize the structure in
the input string with the aid of a finite-state control mechanism whose ac-
tions are governed by the string as well as the contents of an unbounded
stack. The stack contents are created by the PDA itself, and includes in-
formation gathered from the input seen so far and also symbols that the
PDA itself puts into the stack (to “remember” or “mark” important junc-
tures).1 As a simple example, in order to recognize strings from LD yck, 1 We arrange it so that when the PDA is

“switched on,” the stack already contains
#, the bottom of the stack marker. This
pre-arranged symbol is, strictly speaking,
not pushed in by the PDA; all others are
pushed in by the PDA. Things pushed into
the stack may come from the input alpha-
bet Σ or the stack alphabet Γ. Note that
Σ⊂Γ because # is not allowed in Σ.

a PDA can use the stack to store left parentheses, ‘(’. When right paren-
theses, ‘)’, arrive in the input stream, the PDA can pop the stored left
parentheses and match against them.

A PDA (Figure 12.1) always starts from a single initial state with input
consisting of a string over Σ∗ to be processed on the “input tape”. PDA
transitions are governed by a somewhat complex edge-label type that
has the following structure:

oneInChrOrEps , oneStackSymOrEps ; stringOfStackSyms
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A PDA can, during any one of its transitions, read a single input sym-
bol (as with an NFA or a DFA), if any are available to be read. A PDA
can also ignore the input during a transition that specifies ε in the in-
put position (as with an NFA). For these reasons, we call the part of the
edge-label before the comma oneInChrOrEps.

Symbols from the input stream are read left-to-right. Each read ad-
vances the read position.2 A PDA cannot go back and read an input it2 The “input eye” moves over to stare at

the next input cell. has already read (all these are similar to an NFA or a DFA).
In addition to the input stream, a PDA can also read a single stack

symbol during any one of its transitions. Stack symbols come from the
alphabet Γ which is a superset of Σ. In fact, it is a proper superset in that
Γ always contains one special symbol, namely #, that is never allowed
within Σ. Symbol # has the significance of being a bottom-of-the-stack
marker. To reflect these cases, we call the part of the edge-label after
the comma but before the semicolon oneStackSymOrEps or ‘stack-read
position’ for short.

When a PDA starts, its stack contains just the symbol #, signifying
that its stack is empty.3 During any transition, the PDA’s stack can3 With the bottom-of-the-stack marker

saying “please do not look beyond me.” also be ignored by a transition that specifies ε in the stack-read posi-
tion. Only the symbol at the top of the stack can ever be read. Reading
the stack top “pops” that symbol. It is not possible to read the stack top
without popping it.4 A PDA transition may also push a string of (zero or4 The “stack eye” of a PDA always winds

up staring at the top of the stack. more) stack symbols during each transition.5 This string is denoted by
5 We often say “stack this stack-string,
which comes from Γ∗.” the component stringOfStackSyms.

Example PDA for LD yck: A PDA for the Dyck language is given in
Figure 12.2. The markdown description of this very PDA is also given
below. We now walk through this example PDA.

pdaDyck = md2mc(’’’PDA

IF : (, # ; (# -> A !! Push ( when stack top has #

A : (, ( ; (( -> A !! Push later-arriving ( if stack top is (

A : ), ( ; ’’ -> A !! Cancel ) and most recent (. Push nothing

A : ’’,# ; # -> IF !! When all ( ... ) match, accept. Head back

!! to state IF (ready to roll again!)’’’)

DOpdaDyck = dotObj_pda(pdaDyck, FuseEdges=True)

DOpdaDyck # Draws the PDA

IF A

(, ( ; (( 
 ), ( ; ''

'', # ; #
(, # ; (#

Figure 12.2: A PDA for the Dyck language

oneInChrOrEps: This position in a transition could be ε (shown as ’’,
as in the A-to-IF transition), or non-ε. In our example, the first non-ε
case is the ‘(’ annotation labeling the IF-to-A transition. Another non-ε
annotation is the ‘(’ annotation labeling the A-to-A transition. The third
non-ε annotation is the ‘)’ annotation labeling the A-to-A transition.
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In the A-to-IF transition, even with an actual input string present,
a PDA taking such a transition must ignore the input, given that the
oneInChrOrEps position is ’’ (ε). When non-ε labels are involved (e.g.,
when a ‘(’ or ‘)’ is mentioned), taking those transitions means actually
reading those input symbols, and advancing the “input eye”.
oneStackSymOrEps: If this position in a particular transition is ’’,
the PDA ignores the stack string when this transition is taken. (No such
transitions are present in our example PDA.) However, a single charac-
ter might be mentioned in this position (in our example, both the A-to-A
transitions mention a ‘(’ while the A to IF transition mentions a ‘#’). In
any of these cases, the PDA must be able to read this character from the
top of the stack in order for the transition to be taken. Thus, in our exam-
ple, the A-to-A transitions depend on the stack top being a ‘(’, while the
IF-to-A and A-to-IF transitions depend on this position being a ‘#’. Dur-
ing a transition governed by a non-ε entry sitting at the stack top, the
stack top must be popped when the top-of-the-stack is read. The “stack
eye” is then left staring at the new top-of-the-stack.
stringOfStackSyms: In our example PDA, there is one A-to-A transi-
tion with ε serving as the stringOfStackSyms entry (see the ’’ annota-
tion). The other A-to-A transition carries the annotation ‘((’. In addition,
there is an IF-to-A transition with annotation ‘(#’, and finally an A-to-IF
transition with annotation ‘#’. The important thing to note is that the
contents of this position do not influence whether the PDA takes its transi-
tion or not.6 It only specifies what gets pushed onto the stack during the 6 We use the ; as a separator to denote

that what follows it is after the PDA has
made a decision to transition. We will em-
ploy such a semicolon also in Chapter 13
on Turing machines.

transition.
Suppose the string stringOfStackSyms on a particular transition is of

the form abcd. Then, when that transition is taken, string abcd is pushed
onto the stack, where a ends up top-most on the stack, with b below a, c
below b, and finally d below all of them. If stringOfStackSyms were to
be ε (’’), then nothing gets pushed.

Thus, in our example, the stack strings pushed are one of ‘((’ (during
an A-to-A transition), ‘(#’ (during an IF-to-A transition), or a ‘#’ (during
an A-to-IF transition). Now, pushing the string ‘(#’ during an IF-to-A
transition means:
• Push ‘#’ first;
• Then push ‘(’, which now sits at the top of the stack.

Simulation of a PDA for LD yck

We now present a PDA for LD yck and describe its overall operation (see
Figure 12.2). Jove’s markdown allows us to easily input such a PDA. At
the end of this markdown, we see that we are evaluating the dot object
expression DOpdaDyck; this produces the PDA drawing of Figure 12.2 in
the Jupyter console.7 This PDA starts in state IF, and thus accepts ε

7 FuseEdges combines multiple transition
labels into one, stacking them. To catch
mistakes, it is good to see the full PDA
drawn without FuseEdges first, making
sure that all the intended edges are
present, and then invoke FuseEdges.
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(without reading any input). It can move from IF to A by reading ‘(’
from the input and popping ‘#’ from the top of the stack. However the
stack is quickly restored to have ‘(#’ in it. Thus, the PDA remembers
the ‘(’ that came in, after restoring the ‘#’ below it. It stays in state A

so long as ‘(’ keep coming in the input stream (all these are stacked).88 We momentarily lose ‘(’ on top of the
stack; but in a femtosecond or less, the
PDA pushes back ‘((’, thus recording one
new ‘(’.

When a ‘)’ comes, the PDA throws away one ‘(’ from the top of the stack,
never restoring it (essentially tallying the left and right parentheses).
Now when ‘#’ peeps from the top of the stack, the PDA restores this ‘#’
and attains state IF, satisfied that the counts of the parentheses have
matched.9

9 It may find itself getting kicked back to
state A for “another tour of duty” when an-
other ’(’ comes in.

Before we detail PDAs, it is helpful to mention some high level facts
and also remind the reader that context-free grammars can be converted
to push-down automata, and vice versa. We will illustrate CFG to PDA
conversion in this chapter. PDA to CFG conversion will be briefly men-
tioned in Part III of this book, at a high level.

Also, there are two types of PDA: final-state acceptor and empty-
stack acceptor. Any final-state acceptor PDA can be converted to an
empty-stack acceptor PDA, and vice versa. Most PDA we discuss are
final-state acceptors. Empty-stack acceptor PDA matter because they are
particularly amenable to being converted into CFGs.1010 Less painfully so...

Final-state acceptors and empty-stack acceptors differ only in one
way: the manner in which the acceptance of an input string is de-
fined. Otherwise, all the definitions in this chapter apply equally
to both types of PDA.

12.2 Formal Description of PDA

Pushdown Automata are structures1111 Most books (unnecessarily) differ on
their definition of a PDA. We surveyed a
wide array, finally settling on the one in
Sipser’s book, as it greatly reduces user
burden. We also make things more conve-
nient by preloading # on top of the stack.

(Q,Σ,Γ,∆, q0, z0,F)

where
• Q is a finite non-empty set of states,
• Σ is a finite non-empty input alphabet,
• Γ is a finite non-empty stack alphabet (subsumes Σ),
• ∆ is a transition function (see details below),
• q0 is the starting state,
• z0 is the initial stack’s lone contents (for us, it is #), and
• F is the final set of states.
∆’s signature reflects how it can optionally consume an input symbol or
pop a stack symbol, but nondeterministically select a pair consisting
of a next state to attain and a string to be pushed onto the stack:
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(Q× (Σ∪ {ε})× (Γ∪ {ε})) → P (Q×Γ∗)

12.2.1 Acceptance, Deterministic PDA

Now we define PDA acceptance:
• An instantaneous description (ID) is a triple:

(controlState, remainingInput, currentStack).
• A finite sequence of IDs where the first ID starts at controlState q0 and

each following ID is obtained by applying PDA’s transition function ∆
is a computation.

• A computation is driven by string s if it starts with an ID having re-
mainingInput s, and ends with an ID with remainingInput ε.12 12 Input is “all gone.”

• A final-state acceptor PDA accepts an input string s when a computa-
tion driven by s ends in an ID (q f ,ε, g) for some q f ∈ F and for some
g ∈ Γ∗. That is, the control reaches a final state and the input is “all
gone.” (The ending stack does not matter.)

• An empty-stack acceptor PDA accepts an input string s when a compu-
tation driven by s ends in an ID (qany,ε,ε) for qany ∈Q (ending control
state does not matter). The input and stack are “all gone.”13

13 An optional parameter ACCEPT_S pro-
vided to Jove’s explore_pda command se-
lects the accept by empty stack policy. Oth-
erwise, by default, Jove sticks with the ac-
cept by final state policy. In a sense, start-
ing a Jove PDA with # on its stack is an
“insurance policy” that it won’t just accept
by finding the starting stack to be empty.
This helps keep your usage of Jove less
error-prone.

A Note on Deterministic PDA: A PDA is considered deterministic if it
has exactly one enabled action whenever it enters any state. This high-
level definition is sufficient for our purposes. The topic is a bit more elab-
orate than we have room to adequately discuss. Excellent descriptions of
this topic may be found in many books (e.g., Kozen’s book “Automata and
Computability.”)

In this book, we discuss only nondeterministic PDA. In fact, when
we discuss Figures 12.12 and 12.13, you will understand why non-
determinism is essential for applications such as parsing based on
arbitrary CFGs.

12.3 Exploring the PDA for LD yck Using Jove

We can simulate PDA on input strings through the explore_pda func-
tion as shown below. We then witness a computation consisting of IDs
connected by transition arrows ->. For better understanding, we add
comments that begin with #... in the printouts that follow:
Run-1:

explore_pda("", pdaDyck)
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String accepted by your PDA in 1 ways :-)

Here are the ways:

Final state (’IF’, ’’, ’#’) #... the starting state accepts

Reached as follows: #... (notice # on initial stack)

-> (’IF’, ’’, ’#’) .

Run-2:

explore_pda("()", pdaDyck)

String () accepted by your PDA in 1 ways :-)

Here are the ways:

Final state (’IF’, ’’, ’#’)

Reached as follows:

-> (’IF’, ’()’, ’#’) #... Starting ID

-> (’A’, ’)’, ’(#’) #... Consume (, push (, goto A

-> (’A’, ’’, ’#’) #... Tally with ), pop (

-> (’IF’, ’’, ’#’) . #... Accept

Run-3:
IF A

(, ( ; (( 
 ), ( ; ''

'', # ; #
(, # ; (#

Figure 12.3: A PDA for the Dyck language
(repeated for your convenience)

Finally, the input ()()(()) shows the sequence of push/pop actions and
input actions. See Figure 12.3 (reproduced for your convenience).

explore_pda("()()(())", pdaDyck)

String ()()(()) accepted by your PDA in 1 ways :-)

Here are the ways:

Final state (’IF’, ’’, ’#’)

Reached as follows:

-> (’IF’, ’()()(())’, ’#’)

-> (’A’, ’)()(())’, ’(#’)

-> (’A’, ’()(())’, ’#’)

-> (’IF’, ’()(())’, ’#’)

-> (’A’, ’)(())’, ’(#’)

-> (’A’, ’(())’, ’#’)

-> (’IF’, ’(())’, ’#’)

-> (’A’, ’())’, ’(#’)

-> (’A’, ’))’, ’((#’)

-> (’A’, ’)’, ’(#’)

-> (’A’, ’’, ’#’)

-> (’IF’, ’’, ’#’) .
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Run-4:
Finally, let us provide an input that must not be accepted:

explore_pda("()()(()", pdaDyck)

String ()()(() rejected by your PDA :-(

Visited states are:

{(’IF’, ’()()(()’, ’#’), (’A’, ’)(()’, ’(#’), (’A’, ’(()’, ’#’),

(’A’, ’()’, ’(#’), (’IF’, ’()(()’, ’#’), (’A’, ’’, ’(#’),

(’A’, ’)()(()’, ’(#’), (’A’, ’)’, ’((#’), (’IF’, ’(()’, ’#’),

(’A’, ’()(()’, ’#’)}

The printout shows that the PDA did go through many IDs, but found
none to be accepting.

12.4 PDA Behavior Through Examples

Given how elaborate PDA behaviors are, we now present a series of ex-
amples that introduces PDA through Jove simulations.

I

F

 a, b ; c

Figure 12.4: pda1, a simple PDA

Example: Consider pda1 (Figure 12.4) with its markdown description
and its execution on the input shown in the explore_pda command:

pda1 = md2mc(’’’PDA

I : a, b ; c -> F ’’’)

DOpda1 = dotObj_pda(pda1, FuseEdges=True)

DOpda1 # Draws the PDA

explore_pda("a", pda1)

String a rejected by your PDA :-(

Visited states are:

{(’I’, ’a’, ’#’)}

The PDA rejects the string (is “stuck” at the ID shown in the visited states
list above). The stack letter sought is ‘b’ whereas the stack-top has #.
Example: Consider pda2 (Figure 12.5) with its markdown description
and its execution on the input shown in the explore_pda command:

pda2 = md2mc(’’’PDA

I : a , b ; c -> F

I : ’’, ’’ ; d -> A

A : ’’, d ; ’’ -> F ’’’)

DOpda2 = dotObj_pda(pda2, FuseEdges=True)
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DOpda2 # Draws the PDA

explore_pda("a", pda2)

String a rejected by your PDA :-(

Visited states are:

{(’A’, ’a’, ’d#’), (’F’, ’a’, ’#’), (’I’, ’a’, ’#’)}

Even though the ID in Visited states includes (’F’, ’a’, ’#’), no-
tice that the input isn’t fully consumed (actually it was not consumed at
all), and so merely reaching a final state isn’t enough for acceptance.

I

A

 '', '' ; d   

F

   a, b ; c  

 '', d ; ''   

Figure 12.5: pda2, a bigger PDA

Example: Consider pda3 (Figure 12.6) with its markdown description
and its execution on the input shown in the explore_pda command:

pda3 = md2mc(’’’PDA

I : a , b ; c -> F

I : ’’, ’’ ; d -> A

A : a , d ; ’’ -> F ’’’)

DOpda3 = dotObj_pda(pda3, FuseEdges=True)

DOpda3 # Draws the PDA

explore_pda("a", pda3)

String a accepted by your PDA in 1 ways :-)

Here are the ways:

Final state (’F’, ’’, ’#’)

Reached as follows:

-> (’I’, ’a’, ’#’)

-> (’A’, ’a’, ’d#’)

-> (’F’, ’’, ’#’) .

Finally, we provide a path to acceptance. Notice how ’#’ is not popped
during the I to A move, and in addition, d gets pushed. This d enables the
move to F which consumes a, causing acceptance.

I

A

  '', '' ; d  

F

  a, b ; c  

  a, d ; ''  

Figure 12.6: pda3, a variant of pda2

Example: Consider pda4 (Figure 12.7) with its markdown description
and its execution on the input shown in the explore_pda command:

pda4 = md2mc(’’’PDA

I : a , # ; c -> F

I : ’’, ’’ ; d -> A

A : a , d ; ’’ -> F ’’’)

DOpda4 = dotObj_pda(pda4, FuseEdges=True)

DOpda4 # Draws the PDA
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explore_pda("a", pda4)

String a accepted by your PDA in 2 ways :-)

Here are the ways:

Final state (’F’, ’’, ’c’)

Reached as follows:

-> (’I’, ’a’, ’#’)

-> (’F’, ’’, ’c’) .

Final state (’F’, ’’, ’#’)

Reached as follows:

-> (’I’, ’a’, ’#’)

-> (’A’, ’a’, ’d#’)

-> (’F’, ’’, ’#’) .

Two paths to acceptance (two sequences of IDs) exist; essentially, state I

proves to be nondeterministic.

I

A

 '', '' ; d 

F

 a, # ; c 

 a, d ; '' 

Figure 12.7: pda4, a variant of pda3

Example: Consider pda5 (Figure 12.8) with its markdown description
and its execution on the input shown in the explore_pda command:

pda5 = md2mc(’’’PDA

I : a , # ; c -> F

I : ’’, ’’ ; d -> A

A : a , d ; ’’ -> F ’’’)

DOpda5 = dotObj_pda(pda5, FuseEdges=True)

DOpda5 # Draws the PDA

explore_pda("a", pda5)

String a accepted by your PDA in 2 ways :-)

Here are the ways:

Final state (’F’, ’’, ’c’)

Reached as follows:

-> (’I’, ’a’, ’#’)

-> (’F’, ’’, ’c’) .

Final state (’F’, ’’, ’#’)

Reached as follows:

-> (’I’, ’a’, ’#’)

-> (’A’, ’a’, ’d#’)

-> (’F’, ’’, ’#’) .

I

A

  '', '' ; d  

F

  a, # ; c    '', '' ; ''  

  a, d ; ''  

Figure 12.8: pda5, a variant of pda4

This PDA introduces a self-loop at A. Our PDA simulator in Jove is smart
not to enter an infinite loop here. It still does not record additional ac-
cepting paths, as the self-loop is essentially ignored.
Example: Consider pda6 (Figure 12.9) with its markdown description
and its execution on the input shown in the explore_pda command:
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I

C

'', z ; ''

F

'', # ; ''
a, d ; ''

A'', '' ; d

a, # ; c

B '', z ; ''
'', z ; '''', '' ; z

a, d ; ''

Figure 12.9: pda6, a non-trivial (made-up)
PDA

pda6 = md2mc(’’’PDA

I : a, # ; c -> F

I : ’’, ’’; d -> A

A : ’’, ’’; z -> A

A : ’’, z ; ’’ -> B

B : ’’, z ; ’’ -> C

C : ’’, z ; ’’ -> C

C : ’’, # ; ’’ | a, d; ’’ -> F # Two paths from C to F

A : a, d ; ’’ -> F ’’’)

DOpda6 = dotObj_pda(pda6, FuseEdges=True)

DOpda6 # Draws the PDA

The initial explore_pda("a", pda6) command only gave two accepting
paths—really baffling, right?14 Given that this does not “seem right,” the

14 See Figure 12.9 reproduced for your con-
venience. (1) There is a direct I to F path
which can accept an a, and the stack con-
dition matches. (2) Then, there is an A to F
path seeking d on top of the stack, but the
I to A transition puts d on top of the stack
to enable it. (3) Finally, the I,A,B,C,F has
the potential to push a d and then some
number of zs, but this path can also re-
move two ds, thus exposing the d on top of
the stack.

user can invoke the “chatty” option, whereupon more information gets
printed, as shown below:

terminal_id_path =

[((’A’, ’a’, ’zd#’), [(’I’, ’a’, ’#’), (’A’, ’a’, ’d#’)])]

final_id_path =

[((’F’, ’’, ’c’), [(’I’, ’a’, ’#’)]),

((’F’, ’’, ’#’), [(’I’, ’a’, ’#’), (’A’, ’a’, ’d#’)])]

visited_ids =

{(’A’, ’a’, ’d#’),(’F’, ’’, ’#’),(’I’, ’a’, ’#’),(’F’, ’’, ’c’)}

String a accepted by your PDA in 2 ways :-)

Here are the ways:

Final state (’F’, ’’, ’c’)

Reached as follows:

-> (’I’, ’a’, ’#’)
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-> (’F’, ’’, ’c’) .

Final state (’F’, ’’, ’#’)

Reached as follows:

-> (’I’, ’a’, ’#’)

-> (’A’, ’a’, ’d#’)

-> (’F’, ’’, ’#’) .

• The terminal_id_path list is all the IDs from which the PDA has no
transition enabled. Not only is the terminal ID (’A’, ’a’, ’zd#’)

printed, but the path leading to this ID is also printed (namely, as a
list [(’I’, ’a’, ’#’), (’A’, ’a’, ’d#’)]). This helps debug the
situation.

• The final_id_path similarly prints the final ID together with the
path leading to it.

• The visited_ids is a set of IDs that were visited (this is stored to help
the PDA avoid looping).

We observe that the stack component of the ID did not grow very much.

12.4.1 Rerunning pda6 with Larger Stack Allowed

We can invoke the explore_pda command with an additional option called
STKMAX shown:

explore_pda("a", pda6, STKMAX = 3, chatty=True)

Here is what is going on. What we are doing in Jove is allowing the PDA
to explore all the nondeterministic options in a breadth-first manner. Un-
fortunately, the PDA language is quite unrestricted. See state A which,
without reading the input or stack, keeps pushing z onto the stack! In
general, a PDA may do many “dangerous-looking” things with its stack:
• It may push a large number of symbols in a loop.
• It may decode delicate combinations of stack contents by sequentially

looking for a collection of items to be on the stack.
Thus, a naïvely written PDA simulator can easily go into an in-
finite loop! However, you may complain saying that “the acceptance
problem for PDA is decidable” (something that will be proven in Part
III of our book). This basically says that15 15 The proof for this theorem will proceed

as follows (see Part III for details). Obtain
the string and represent it as a DFA. In-
tersect this DFA with the given PDA. See
if the resulting PDA’s language is empty
or not.

There is an algorithm that, given a PDA and an input, can print,
in a finite amount of time “yes, this PDA will accept this input” or
“no, this PDA won’t accept this input.”

Thus, it should be possible to tell whether an NPDA simulation will
engage in an infinite non-accepting run (sequence of IDs that does not
include the accept by final state or accept by final stack condition), or
not. However, the key difficulty in writing a simulation tool that aims for
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simplicity is that there isn’t an easily implemented localize check at a state
to detect whether a PDA is going to loop when a certain path is pursued.

Thus, the following practical solution is adopted in Jove:1616 An approach that maintains actual con-
texts (and avoids the STKMAX-based ap-
proach) is described in [7]. In this pa-
per, Ball and Rajamani consider the prob-
lem of computing whether a statement la-
bel is reachable within (so called) Boolean
programs. Boolean programs are C pro-
grams that employ a collection of mutu-
ally recursive functions, with the restric-
tion that each function can employ only a
finite number of finite variables in its local
scope. Also, only a finite number of finite
variables are permitted to be globals. It
turns out that such programs are formally
equivalent to nondeterministic PDA, and
statement label reachability is equivalent
to PDA-acceptance.

Ball and Rajamani’s work was em-
ployed by Microsoft to check for (and ac-
tually find) deep-seated bugs in Windows
device drivers by checking the driver code
against a set of rules that define what
it means for a device driver to prop-
erly interact with the Windows operat-
ing system kernel. This work won Ball
and Rajamani the prestigious 2011 CAV
(Computer-Aided Verification) Award in
July 2011, and is detailed in [6].

As a practical solution, Jove stores visited IDs. It also allows users
to specify a constant called STKMAX. Jove then simulates till one
of the newly generated IDs contains a stack string that is STK-
MAX longer than the stored ID’s stack string. When that happens,
simulation is cut off.

The printout below shows that with STKMAX = 3, Jove indeed explores
many more IDs, and finds three different ways to accept an a input.

terminal_id_path =

[((’A’, ’a’, ’zzzd#’),

[(’I’, ’a’, ’#’),(’A’, ’a’, ’d#’),(’A’, ’a’, ’zd#’),(’A’, ’a’, ’zzd#’)]),

((’F’, ’’, ’#’),[(’I’, ’a’, ’#’),(’A’, ’a’, ’d#’), (’A’, ’a’, ’zd#’),

(’A’, ’a’, ’zzd#’), (’B’, ’a’, ’zd#’), (’C’, ’a’, ’d#’)])]

final_id_path =

[((’F’, ’’, ’c’),[(’I’, ’a’, ’#’)]),

((’F’, ’’, ’#’),[(’I’, ’a’, ’#’),(’A’, ’a’, ’d#’)]),

((’F’, ’’, ’#’),[(’I’, ’a’, ’#’),(’A’, ’a’, ’d#’), (’A’, ’a’, ’zd#’),

(’A’, ’a’, ’zzd#’),(’B’, ’a’, ’zd#’),(’C’, ’a’, ’d#’)])]

visited_ids = {(’B’, ’a’, ’d#’), (’A’, ’a’, ’zd#’), (’F’, ’’, ’c’),

(’B’, ’a’, ’zd#’), (’A’, ’a’, ’d#’), (’C’, ’a’, ’d#’),

(’F’, ’’, ’#’), (’A’, ’a’, ’zzd#’), (’I’, ’a’, ’#’)}

String a accepted by your PDA in 3 ways :-)

Here are the ways:

Final state (’F’, ’’, ’c’)

Reached as follows:

-> (’I’, ’a’, ’#’)

-> (’F’, ’’, ’c’) .

Final state (’F’, ’’, ’#’)

Reached as follows:

-> (’I’, ’a’, ’#’)

-> (’A’, ’a’, ’d#’)

-> (’F’, ’’, ’#’) .

Final state (’F’, ’’, ’#’)

Reached as follows:

-> (’I’, ’a’, ’#’)

-> (’A’, ’a’, ’d#’)

-> (’A’, ’a’, ’zd#’)

-> (’A’, ’a’, ’zzd#’)

-> (’B’, ’a’, ’zd#’)

-> (’C’, ’a’, ’d#’)

-> (’F’, ’’, ’#’) .
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Exercises

1. Briefly explain the first two accepting runs.
2. In detail, explain the last accepting run of this PDA, describing

how each ID evolves into the next ID.

12.5 Toward More Practical PDA

Given a tool such as Jove, it is fun to solve design challenges and under-
stand PDA behavior. Let us develop a PDA for the language (example
from Sipser’s book):

LabORac = { aib j ck : i, j,k ≥ 0, and (i = j) or (i = k) }

PDA design is very low-level programming, and highly error-
prone. Unless you adopt good practices laying out your PDA code
and commenting every line, your code will be inscrutable, and no-
body will be able to debug it for you.

Our Jove markdown notation encourages a convenient syntax that en-
courages comments. If you write this much in this notation, you imme-
diately obtain the PDA diagram and can begin its simulation. Thus, you
get the benefit of a text syntax and automatic (neat) layout generation:

f27sip = md2mc(’’’

PDA

!!--------------------------------------------------------------------------

!! This is a PDA adapted from Sipser’s book. It either matches a’s and b’s,

!! ignoring c’s; or matches a’s and c’s, ignoring b’s in the middle.

!! Thus, the language is a^m b^m c^n union a^m b^n c^m.

!!---------------------------------------------------------------------------

iq2 : a , ’’ ; a -> iq2 !! Stack a’s.

iq2 : ’’ , ’’ ; ’’ -> q3,q5 !! Split non-det for a^m b^m c^n (q3)

!! or a^m b^n c^m (q5).

q3 : b , a ; ’’ -> q3 !! Match b’s against a’s.

q3 : ’’ , # ; ’’ -> fq4 !! Hope for acceptance when # surfaces.

fq4 : c , ’’ ; ’’ -> fq4 !! Be happy so long as c’s come.

!! Will choke and reject if anything

!! other than c’s come.

q5 : b , ’’ ; ’’ -> q5 !! Here, we are going to punt over b’s, and

q5 : ’’ , ’’ ; ’’ -> q6 !! entertain c’s matches against a’s.

q6 : c , a ; ’’ -> q6 !! OK to match so long as c’s keep coming

q6 : ’’ , # ; ’’ -> fq7 !! when # surfaces, be ready to accept in

!! state fq7. Anything else causes rejection.

!!---------------------------------------------------------------------------

’’’)

DOf27sip = dotObj_pda(f27sip, FuseEdges=True)

DOf27sip
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explore_pda("aaabbbccc", f27sip)

String aaabbbccc accepted by your PDA in 2 ways :-)

Here are the ways:

Final state (’fq4’, ’’, ’’)

Reached as follows:

-> (’iq2’, ’aaabbbccc’, ’#’)

-> (’iq2’, ’aabbbccc’, ’a#’)

-> (’iq2’, ’abbbccc’, ’aa#’)

-> (’iq2’, ’bbbccc’, ’aaa#’)

-> (’q3’, ’bbbccc’, ’aaa#’)

-> (’q3’, ’bbccc’, ’aa#’)

-> (’q3’, ’bccc’, ’a#’)

-> (’q3’, ’ccc’, ’#’)

-> (’fq4’, ’ccc’, ’’)

-> (’fq4’, ’cc’, ’’)

-> (’fq4’, ’c’, ’’)

-> (’fq4’, ’’, ’’) .

Final state (’fq7’, ’’, ’’)

Reached as follows:

-> (’iq2’, ’aaabbbccc’, ’#’)

-> (’iq2’, ’aabbbccc’, ’a#’)

-> (’iq2’, ’abbbccc’, ’aa#’)

-> (’iq2’, ’bbbccc’, ’aaa#’)

-> (’q5’, ’bbbccc’, ’aaa#’)

-> (’q5’, ’bbccc’, ’aaa#’)

-> (’q5’, ’bccc’, ’aaa#’)

-> (’q5’, ’ccc’, ’aaa#’)

-> (’q6’, ’ccc’, ’aaa#’)

-> (’q6’, ’cc’, ’aa#’)

-> (’q6’, ’c’, ’a#’)

-> (’q6’, ’’, ’#’)

-> (’fq7’, ’’, ’’) .

Figure 12.10: PDA for aib j ck where (i =
j) or (i = k). With equal counts of a,

b, and c in the input, the PDA’s nonde-
terminism results in two accepting paths,
one that “explains” acceptance by tallying
a’s against b’s, while the other “explains”
acceptance by tallying a’s against c’s.

iq2

q6

c, a ; ''

fq7'', # ; ''

a, '' ; a q3'', '' ; ''

q5

'', '' ; ''

b, a ; ''

fq4'', # ; ''

'', '' ; ''

b, '' ; ''

c, '' ; ''
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12.6 CFG to PDA Conversion

pdaEamb = md2mc(’’’PDA !! Encodes E -> E*E | E+E | ~E | (E) | 2 | 3

I : ’’, # ; E# -> M !! Must parse E, so E goes on stack

M : ’’, E ; ~E -> M !! Maybe this E will evolve to ~E

M : ’’, E ; E+E -> M !! .. or E+E (wish me luck!)

M : ’’, E ; E*E -> M !! .. or E*E

M : ’’, E ; (E) -> M !! .. or (E)

M : ’’, E ; 2 -> M !! .. or 2

M : ’’, E ; 3 -> M !! .. or 3

M : ~, ~ ; ’’ -> M !! If stack top matches input, match!

M : 2, 2 ; ’’ -> M !! Another terminal match ..

M : 3, 3 ; ’’ -> M !! ..

M : (, ( ; ’’ -> M !! ..

M : ), ) ; ’’ -> M !! ..

M : +, + ; ’’ -> M !! ..

M : *, * ; ’’ -> M !! .. till all terminal matches done.

M : ’’, # ; # -> F !! .. Input drained; parse is a success!

’’’)

DOpdaEamb = dotObj_pda(pdaEamb, FuseEdges=True)

DOpdaEamb # Draws the PDA

Figure 12.11: Markdown for the PDA of
Figure 12.12

There is a very direct way to employ PDA to serve as parsing “engines.”
For illustration, see pdaEamb with its markdown description given in Fig-
ure 12.11 and transition graph in Figure 12.12. The CFG that is being
converted is the following ambiguous grammar:

E -> E*E | E+E | ~E | (E) | 2 | 3

Here are the steps in the conversion algorithm.17 17 See supplementary material at
https://bit.ly/Automata_Jove under
PDA2CFG for an algorithm to convert
PDA to CFG, which is much more
involved, but an elegant example of
recursive functional programming. This
material is included from my 2006
book [21].

Input: A context-free grammar G with starting symbol S and production
rules of the form

L → R1R2 . . .Rn

where L is a nonterminal and Ri are either terminals or nonterminal.
Output: A PDA whose language is L(G).
Method: Execute the following steps to build the desired PDA.

1. Create a 3-state PDA that starts at state I, ends in final state
F, and has a middle state M (see Figure 12.12).

https://bit.ly
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I M'', # ; E#

3, 3 ; ''
~, ~ ; ''

'', E ; ~E
'', E ; E+E
'', E ; (E)

(, ( ; ''
*, * ; ''
'', E ; 3
'', E ; 2
+, + ; ''

'', E ; E*E
2, 2 ; ''
), ) ; ''

F'', # ; #

Figure 12.12: pdaEamb, a PDA embody-
ing ambiguous parses.

2. Label the I to M transition with the edge label

′′,#;S#

This is a transition taken without reading any input. It basi-
cally puts S on top of the PDA stack. Here, S is the current
parsing goal or simply “goal.”
Example: In Figure 12.12, we have a transition labeling the I
to M move:

′′,#;E#

This is because E is the starting symbol of this grammar.
3. The overall algorithm is geared toward removing a goal from

the top of the stack and replacing it with its subgoals. To achieve
this, we simply go by the CFG production rules. In general,
each CFG production rule is of the form

L → R1R2 . . .Rn

One can read this rule as follows:
(a) To parse L (the current goal), it is sufficient to parse

R1R2 . . .Rn in that order.
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(b) Thus, whenever L is on top of the stack, one can replace
the top of the stack with the string of subgoals

R1R2 . . .Rn

with R1 being on top of the stack. Thus, we must intro-
duce a PDA transition from M to M with edge label

′′,L;R1R2 . . .Rn

This will help pop L and introduce the right-hand side
of the CFG rule as the subgoals.18 18 A special case of this rule occurs when

we have the rule L → ε, in which case we
pop L but introduce nothing on top of the
stack. The corresponding PDA move will
be ′′,L;′′.

Example: In our current example, from Figure 12.11, we
know that we have a CFG rule of the form

E→E∗E

Hence we add a transition going from M to M labeled by

′′,E;E∗E

4. For each terminal τ of the grammar, introduce a CFG transition
from M to M of the form

τ,τ;′′

This says that if the current parsing goal is τ, there is nothing
one can do to decompose τ further (there are no rules associated
with it). In fact, one must see τ in the input. This justifies the
fact that we have such M to M transitions per terminal.
Example: In our example, given that 2 is a terminal, we must
have a transition from M to M labeled by the edge label:

2,2;′′

5. Finally, when the entire parsing is achieved, there will be no
more parsing goals on top of the stack. Thus, state M must
transition to state F when # is on top of the stack. Thus, we
add a transition labeled by

′′,#;#

from state M to state F.
This PDA starts out with E on top of the stack. It then behaves in

a highly chaotic manner, trying to parse using every possible right-hand
side of the grammar. This PDA will eventually produce a sequence of
goal-to-subgoal replacements such that the relevant terminals appear on
top of the stack. Whenever any terminal appears on top of the stack,
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the PDA will consume an input token. In our current example, for the
input expression 3+2*3, two non-deterministic evolutions are possible, as
demonstrated by the following two ambiguous parses:

String 3+2*3 accepted by your PDA in 2 ways :-)

Here are the ways:

Final state (’F’, ’’, ’#’)

Reached as follows:

-> (’I’, ’3+2*3’, ’#’)

-> (’M’, ’3+2*3’, ’E#’)

-> (’M’, ’3+2*3’, ’E*E#’)

-> (’M’, ’3+2*3’, ’E+E*E#’)

-> (’M’, ’3+2*3’, ’3+E*E#’)

-> (’M’, ’+2*3’, ’+E*E#’)

-> (’M’, ’2*3’, ’E*E#’)

-> (’M’, ’2*3’, ’2*E#’)

-> (’M’, ’*3’, ’*E#’)

-> (’M’, ’3’, ’E#’)

-> (’M’, ’3’, ’3#’)

-> (’M’, ’’, ’#’)

-> (’F’, ’’, ’#’) .

Final state (’F’, ’’, ’#’)

Reached as follows:

-> (’I’, ’3+2*3’, ’#’)

-> (’M’, ’3+2*3’, ’E#’)

-> (’M’, ’3+2*3’, ’E+E#’)

-> (’M’, ’3+2*3’, ’3+E#’)

-> (’M’, ’+2*3’, ’+E#’)

-> (’M’, ’2*3’, ’E#’)

-> (’M’, ’2*3’, ’E*E#’)

-> (’M’, ’2*3’, ’2*E#’)

-> (’M’, ’*3’, ’*E#’)

-> (’M’, ’3’, ’E#’)

-> (’M’, ’3’, ’3#’)

-> (’M’, ’’, ’#’)

-> (’F’, ’’, ’#’) .

~~~

explore_pda("3+2*3+2*3", pdaEamb, STKMAX=7)

String 3+2*3+2*3 accepted by your PDA in 13 ways :-)

...
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We see that even some short strings have dozens of parses! Clearly,
disambiguated grammars will only have single parses, as now discussed.

12.6.1 Disambiguation

I M'', # ; E#

3, 3 ; ''
~, ~ ; ''

'', F ; (E)
'', F ; 2
'', F ; 3
'', E ; T
(, ( ; ''
*, * ; ''

'', F ; ~F
'', E ; E+T
'', T ; T*F

+, + ; ''
'', T ; F
2, 2 ; ''
), ) ; ''

F'', # ; #

Figure 12.13: pdaE, a PDA that uses the
disambiguated grammar. Notice that even
here, we pretty much turn each produc-
tion rule into an edge-label of the M to M
transition of the PDA.

The PDA of Figure 12.13 uses the disambiguated layered CFG of Chap-
ter 11. It produces a single parse even for a long string. It also runs fast,
even with a high STKMAX such as 10 (for example), as the layered gram-
mar forces the required precedence, thus avoiding ambiguity. Employing
the earlier ambiguous grammar with a STKMAX of seven (7) gives rise to
36 parses! There is even a perceptible delay – beware that a STKMAX of 8
will take extraordinarily long.19 19 We went and had coffee, and when we

came back, we got 36 parses. So that is
the total number of parses, indeed! We did
not dare try a longer string.

explore_pda("3*2*~3+~~3*~3", pdaE, STKMAX=10)

String 3*2*~3+~~3*~3 accepted by your PDA in 1 ways :-)

...can push to longer inputs or STKMAX w/o worries...

explore_pda("3*2*~3+~~3*~3", pdaEamb, STKMAX=7)

String 3*2*~3+~~3*~3 accepted by your PDA in 36 ways :-)

...this took about a dozen seconds...

explore_pda("3*2*~3+~~3*~3", pdaEamb, STKMAX=8)

String 3*2*~3+~~3*~3 accepted by your PDA in 36 ways :-)

...this took time for a coffee; do not go higher STKMAX...
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Exercise 12.6.1, PDA Design
1. Develop a final-state acceptor PDA from scratch (i.e., not using

the CFG to PDA conversion) for the language La1b2 introduced in
Exercise 2 on Page 144. (This is the set of strings with two b’s for
every a.)

2. Develop an empty-stack acceptor PDA from scratch (i.e., not using
the CFG to PDA conversion) for the language La1b2.

3. Directly translate the CFG for Leqab presented in §11.3 into a
PDA. Parse the first 10 strings in numeric order over a and b,
thus checking that the parses are correct.

4. Now add the SS production to the CFGs, and reflect that in an
extra transition of the PDA. Observe that no additional strings are
being accepted. Observe the computations generated and argue
why SS does not seem to be playing a role. (If it played a role in
the PDA’s actions, demonstrate that for the same string, the PDA
without the SS production also ended up discovering an equivalent
parse – with respect to keeping the counts.)

5. Develop a PDA for the language of odd length strings over {0,1}
with a zero in the middle. Hint: argue whether nondeterminism is
essential to solve this problem. Then design your PDA accordingly.

6. Consider the language

Labc = {w | w ∈ {a,b, c}∗ and #a(w)= #b(w)= #c(w)}

(a) Argue that the intersection of a PDA and a DFA is a PDA.
Hint: Provide a product construction algorithm in pseudo-
code form, very similar to the DFA product construction
presented in §6.2. Specifically, move the PDA and the DFA
from their current pair of control states to their next pair of
control states if the PDA and DFA move on the same input
symbol. When the PDA takes ε moves, do not move the
DFA; keep it rooted at its current control state – until the
PDA comes to a control state where it moves on an input
symbol. The stack is updated as per the PDA actions.

(b) Let us (for the moment) pretend that there is a PDA for
Labc. Now, write down the language you will get as a result
of the operation

Labc ∩ a∗b∗c∗

Based on our pretend position, there must be a PDA for the
language resulting from this intersection.

(c) Using the CFL Pumping Lemma, argue that the language
resulting from this intersection is not context-free.

(d) Hence argue that Labc cannot have a PDA (our pretension
is incorrect).
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7. Argue that this language is a CFL by building a PDA for it. An-
swer for both cases of ‘OP’ listed below:

Labcd = {aib j ckdl : i, j,k, l ≥ 0 and ((i = j) OP (k = l))}

(a) (Case 1) OP is AND
(b) (Case 2) OP is OR

8. (a) Design a context-free grammar for the language of strings
over {a,b, c} where the number of a’s equals twice the number
of b’s plus the number of c’s.

{
w ∈ {a,b, c}∗ : #a = 2#b +#c

}
(b) Then convert this CFG into a PDA using the direct CFG to

PDA conversion method (done by hand). Administer a suffi-
cient number of tests using Jove to test this PDA out.

(c) Now design a PDA for this language directly (without resort-
ing to this conversion). Compare the PDAs in terms of their
ease, as well as recognition times (try and feed longer strings
and estimate which PDA runs faster). Explain the reasons for
any noticed differences between the speeds of these PDA. �

12.7 Practical Knowledge Imparted by Jove: Three Parsers

By experimenting with Jove and reading its code, you will emerge well
prepared to take many central CS courses such as Compilers. In particu-
lar, we offer you the opportunity to study three parsers.

The first parser is in §8.5 where we detailed the regular expression
compiler that includes a scanner (lexer) for tokens, and a parser that rec-
ognizes regular expressions. The “code” emitted by this parser consists
of NFA representations. The start symbol is expression (the first p_..
function), and one can see an uncanny resemblance to the disambiguated
expression grammar introduced in §11.5. Disambiguation is crucial for
regular expressions, as RE concatenation has higher precedence than
RE union (+). The parser generator PLY assigns STAR higher precedence
(listed later) and both PLUS and STAR are left associative as well.

The second parser is within a mini-compiler and converts a simple
regular-expression syntax (§10.3). The “code” emitted by this compiler
consists of NFA representations. Perhaps this is the simpler parser to
first study, as the whole mini-compiler fits within a page.

The third parser is within module Def_md2mc where we parse our
entire markdown language and generate DFA, NFA, PDA or Turing ma-
chine representations. This parser is characterized by many more fea-
tures than present in the other two parsers just mentioned:
• It filters out comments.
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• It keeps track of line numbers, and upon a syntax error, it at least
prints the offending line number. It then does a best-effort resetting of
line numbers for your next round of experimentation.

• The grammar for DFA, NFA, PDA and Turing machines differ slightly.
This is a practical reality, and requires thoughtful handling:
– One option would have been to have four distinct families of pro-

duction rules, and to generate code under all those productions.
The advantage would be that the production rules only generate
code pertinent to each machine type. A huge disadvantage would
be having four times the number of rules.

– We opted for fusing the rules into very similar subgroups and only
made localized differences. While the semantic attribute handling
becomes a little more involved (some attributes such as stack sym-
bol are not relevant except for PDA), the vast reduction in the num-
ber of parser rules, and the associated parser-generator headaches
makes this version more maintainable.

Textual Syntax: Importance in CS

In conclusion, despite the explosion of input and output devices, computer
science continues to rely on text scanning and parsing to support the
vast number of programming languages, scripting languages and data
handling languages. Text still rules supreme, and correct plus efficient
text handling for very large alphabets continues to be cutting-edge CS
research that also immediately ties into practice.



13
Turing Machines

Chapter Gist: We begin with a very brief historical account of
Turing machines §13.1. A few universal computing devices (equiv-
alent in power to Turing machines) are discussed (§13.2), including
how one simulates a TM using two stacks and finite-state control.
We then present a formal definition of TMs (§13.3), a few simple
TM examples (§13.4), examples of medium complexity (§13.5), and
finally a nontrivial TM that implements the famous “3x+1 func-
tion” (§13.6). We then present the Chomsky hierarchy (§13.7) that
ties together machines, languages, and grammars. A formal notion
of a TM’s ID finishes this chapter (§13.8).

13.1 Brief History of Turing Machines

In the early part of the 20th century, scores of scientists, notably Kurt
Gödel, Alonzo Church and Alan Turing, attempted to define the limits
of effective computability. In the words of Turing himself [45] (and also
summarized in Andrew Hodges’ biography on Turing [25]), the notion of
computation was described as follows:

Computing is normally done by writing certain symbols on paper. We
may suppose this paper is divided into squares like a child’s arithmetic
book. In elementary arithmetic the two-dimensional character of the pa-
per is sometimes used. But such a use is always avoidable, and I think
that it will be agreed that the two-dimensional character of paper is no
essential of computation. I assume then that the computation is carried
out on one-dimensional paper, i.e., on a tape divided into squares. I shall
also suppose that the number of symbols which may be printed is finite . . .
The behavior of the [human] computer at any moment is determined by
the symbols which he is observing, and his state of mind at that moment.

The historic term for the underlying quest that scientists of Turing’s
era were engaged in was known as Entscheidungsproblem (meaning “the
decision problem” in German). They were trying to settle one of Hilbert’s
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challenges (Chapter 1), namely:

Prove that there is an algorithm—a systematic and mechanical
procedure (see Page 4 for a discussion) that terminates on any
input—to decide the truth of any logical statement in mathemat-
ics.

Gödel settled this challenge in the negative by showing that suffi-
ciently expressive mathematical logical systems that are powerful enough
to encode statements in mathematics contain true sentences whose proof
cannot be demonstrated within the same logical system.11 A related fact is that because of the ex-

pressiveness of these logics, one can write
a formula φ in these logics that asserts
that φ (i. e., itself) is false.

In related developments, Turing proved that the formalism of his ma-
chines is sufficiently general to encode any mechanizable computational
procedure (hereafter “procedure”). Turing also proposed the notion of
universal Turing machines capable of simulating the workings of other
Turing machines.2

2 Universal Turing machines are nothing
but computers that can simulate other
computers as well as their program exe-
cutions. One would nowadays call them
interpreters or virtual machines.

Now, given that Turing machines are powerful enough to encode any
procedure, it is tempting to imagine a single Turing machine algorithm
(call it H, standing for Halting decider) that, given any Turing machine
M with its input w, can decide whether M when run on w will halt.3 In3 This is the grader’s dilemma: will a

student-submitted program P run on an
input i halt, or go into an infinite loop?
There is no way for the TA to find out other
than to take a chance and run P on input
i!

Chapter 15, we will prove that a Turing machine such as H cannot exist,
or in other words, the halting problem of Turing machines is undecidable.

Alonzo Church and Alan Turing are both credited with stating em-
phatically that all prevalent notions of universal computability in exis-
tence at that time and shown equivalent together defined the fundamen-
tal limit of effective computability. Their hypothesis nowadays goes by
the name Church-Turing thesis. Church accepted that Turing’s defini-
tion gave a compelling, intuitive reason for why his thesis was true. This
situation has not changed since the late 1930s. Meanwhile hundreds of
universal computing machines have been proposed and proven to be uni-
versal.4

4 Turing, as a scientist and a person, con-
tinues to evoke a deep sense of mys-
tique, often overshadowing other lumi-
naries in the pantheon of computability
theory. His central role in cracking the
Enigma code that ultimately led to the Al-
lied victory against the Nazis is widely
acknowledged [44]. Turing is obviously
more of a “celluloid celebrity,” and was em-
inently portrayed in the highly acclaimed
2014 movie ‘The Imitation Game’ by ac-
tor Benedict Cumberbatch. This movie
provides another glimpse into Turing’s life
and his sufferings at the hands of an intol-
erant society.

13.2 Universal Computing Devices

Universal computing formalisms such as Turing machines mainly serve
as vehicles for writing proofs. For example, in Chapter 11, we stated that
the problem of checking whether two context-free grammars are equiva-
lent is not algorithmically solvable. Such proofs are formulated in terms
of decision problems with respect to Turing machines. Nobody would at-
tempt to write such proofs in terms of practical computers.5 On the other

5 Computers such as the MacBook Pro on
which I’m typing this book. A MacBook
may be a quadrillion times faster than the
best Turing machine one can build. Yet,
what is inherently undecidable remains
undecidable despite this speed advantage.
Put another way, a MacBook Pro can’t
“compute itself out of an infinite loop” just
because it is fast!

hand, if something is algorithmically solvable and represents a useful
algorithm, one would anyhow use a real computer to run the algorithm
fast.
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The Long List of Universal Computers

A long list of computational devices have been shown to be (or can be
argued to be) universal; here are a few examples:6 6 These are often called “Turing-complete”

devices.• Deterministic or nondeterministic finite-state control equipped with a
doubly infinite tape, a singly infinite tape, or multiple infinite tapes.7 7 Both deterministic and nondeterministic

Turing machines have the same computa-
tional power; however, their time complex-
ities are in different classes; see Chap-
ter 16.

• Finite-state control equipped with two unbounded stacks (one can
simulate an infinite tape using two stacks).

• Finite-state control equipped with one unbounded FIFO queue (one
can simulate a tape by “rotating the queue contents around”).

• Finite-state control equipped with two infinite unbounded counters
that can be incremented, decremented, cleared, copied one into the
other, and exchanged.

• Mike Davey’s mechanical Turing machine from Chapter 1.8 8 Mr. Davey estimates taking “only” 870
of the 1000-foot tape rolls shown in Fig-
ure 1.2 to store a megabyte of data.

• Any one of these actual computers (all assumed to have infinite mem-
ory): one-instruction computers (search for “One instruction set com-
puter” on Wikipedia); the computer inside a Furbee doll; world’s fastest
computer that can perform 1018 operations a second.

The above list includes actual computers as well as conceptual devices.
We will not have the occasion to prove in detail why these mechanisms
are equivalent to a Turing machine. The basic idea is to argue that given
any of the above mechanisms, one can simulate the actions of a Turing
machine using them. Let us illustrate this idea by example: given two
unbounded stacks and a finite-state controller, how to mimic the actions
of a real Turing machine.

User input
..blank cells.. ..blank cells..

finite
state

control

Figure 13.1: A Turing machine shown
with its input string on a doubly-infinite
tape. This is the type of TMs we shall be
studying.

Simulating an Infinite TM Tape using Two Unbounded Stacks

Let the stack pair be denoted by the pair of strings L and R where L is
a stack facing right, and R is a stack facing left. Pictorially, let L = [ab)
with b being on top and R = (qp] with q being on top, and the whole tape
then looks like [ab)(qp]. We maintained the invariant that the Turing
machine is always looking at the top of the righthand-side stack, i.e. q in
this example. Then, the following simulations can be carried out:
• Writing x on the current tape cell and moving right: This results in a

transition of the following form:

[ab)(qp]−→ [abx)(p]

This is achieved by pushing x on L and popping R.
• Writing x on the current tape cell and moving left: This results in a

transition of the following form:

[ab)(qp]−→ [a)(bxp]

This is achieved by capturing L’s top (which is b), popping L, then
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pushing x and b onto R.
• Writing x and staying in the same position: This results in the transi-

tion

[ab)(qp]−→ [ab)(xp]

This is achieved by popping R and pushing x onto R.
Thus, we can see that two unbounded stacks can simulate an infinite
tape. The TMs we employ are the ones with exactly one doubly-infinite
tape (Figure 13.1).

Exercise 13.2, Turing Machine Simulation
1. Write a simulation of a Turing machine’s infinite tape if you only

have an infinite FIFO queue. Imagine that we have access to the
head and tail of this queue, and can perform the operations en-
queue(Q,x) which adds x to the tail of Q, dequeue(Q) that removes
the head element of Q, and front(Q) that does not modify Q but
returns the element at its front.

2. Simulate the actions of a multi-tape Turing machine on a Turing
machine with a singly infinite tape. Hint: For k tapes in the multi-
tape TM, arrange the tape of the singly infinite tape TM by inter-
leaving the tapes of the multi-tape TM. For example, if the multi-
tape TM has tape contents a1b1c1d1 on Tape-1 and a2b2c2d2 on
Tape-2, arrange the tape of the singly infinite tape TM to contain
a1a2b1b2c1c2d1d2. Now, each action of the multi-tape TM could
have affected its tapes differently (say write x1 and move right;
write x2 and move left). Simulate these actions suitably on a sin-
gle tape. �

We now turn our attention to the study of Turing machines that have
exactly one doubly-infinite tape, as realized in Jove.

13.3 Formal Definition of Turing Machines

Turing Machines are structures (Q,Σ,Γ,∆, q0,B,F) where
• Q is a finite non-empty set of states (“program locations or labels”).
• Σ is a finite non-empty input alphabet.
• Γ is a finite non-empty tape alphabet. Γ is a proper superset of Σ, as

we allow the blank tape cell in Γ−Σ, helping to model unwritten parts
of the tape.

• q0 ∈Q is the (unique) start state of the Turing machine.
• Generically, “B” represents the ‘blank’ tape cell. In Jove, we use ‘.’

(period) for blanks, so that they stand out in Jove simulations.
• F ⊆Q is the set of final (accepting) states.
• Computations are set up by writing the user-given input on the tape.

To feed ε as input to a TM, leave the tape entirely blank.
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• Given that we are using a doubly infinite tape, we situate the user-
given input under the TM head, and spreading right (details to be
provided momentarily, when we describe instantaneous descriptions,
or ID). To the left of the head, we arrange for an infinite sequence of
blanks.9 9 In Jove, we of course don’t allocate an in-

finite tape to begin with. We employ a fini-
tary tape, and allocate blanks on demand,
as follows: when a TM is about to “step
off” its finitary tape, we allocate 8 more
cells! This is like demand-paging in Oper-
ating Systems (imagine a marathon run-
ner being given a meter of turf initially,
with additional turf added as and when
necessary).

Another feature of Jove’s TMs is that
they come with a fuel tank with finite ca-
pacity. We initially top-up the tank, and
let the TM run till it runs out of fuel. This
is to prevent truly “runaway” simulations
that can easily infinitely loop.

• Nondeterministic TMs in Jove convey the fuel equally to all the non-
deterministic threads being spawned. Thus, a simulation proceeds till
(at least) the point at which all threads run out of fuel. Using this
notion, we can naturally as well as rigorously define notions such as
non-deterministic runtime.10

10 Essentially, non-deterministic time
(Chapter 16) gives a bound on the number
of steps taken by any computational path.

• For a deterministic TM, ∆ is a transition function that takes a control
state, and the current tape symbol being scanned, and generates a
single replacement triple of a tape symbol, a next control state, and a
head direction. More specifically, the signature of ∆ is:

∆ : Q×Γ→Q×Γ× {L,R,S}

For a nondeterministic TM, it generates a set of such triples, and
has the following signature (here, P is the powerset operator):

∆ : Q×Γ→P (Q×Γ× {L,R,S})

• We will be dealing with nondeterministic Turing machines, in general.
However, Jove’s language is versatile enough to model both types of
transitions for the same machine. A concrete example coming from
Figure 13.13 is as follows:
– A line of the form

q5 : Y ; 3, R -> q11

means that this TM, in state q5, can see if Y is under the tape head.
If so, it replaces Y by 3, and moves its head right, and transitions to
state q11.

– A line of the form

q10 : 1;Y,L | .;.,L | 0;X,L -> q8

means that this TM, in state q10, has multiple options.

* If it sees a 1 under the tape head, it replaces it with a Y and
moves left.

* If it sees a blank (.), it replaces it with a blank itself, and moves
left.

* If it sees a 0, it replaces it with an X and moves left.
• A TM is “stuck” if it cannot fire any transition from a given (q, i) pair

where q ∈Q and i ∈Γ. Such a TM is said to have halted. Furthermore,
– If q ∈ F, it is said to have accepted its input.
– Otherwise (q ∈ (Q \ F)), it has rejected its input.
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• All that is required for an input i to be accepted or rejected is:
– The TM starts in configuration (q0, i).
– Later, the TM is found to have halted.
Typically, in the interim, the TM will read its input, or at least “take
a nibble at it.” It is also allowed to re-read its input any number of
times. However, it is not necessary for it to have read even one
single character of the input string.1111 This definition makes sense for a Tur-

ing machine simply because it is impossi-
ble to definitively establish whether a TM
engaged in a big loop or random zig-zag
motion on its tape (also termed “looping”)
will ever return to read any of (or any
more of) its input. Thus, insisting that a
TM read its input exactly once (and that
too fully) seems pointless. Also, “read”
could be a vacuous term: any TM can be,
when “switched on,” made to read its in-
put exactly once, and copy it onto a vacant
spot of its tape. After that, the TM may
behave like a “normal” TM—taking occa-
sional nibbles at the copied-over input or
ignoring it totally.

Clearly, this is a major difference with respect to NFA, DFA, and PDA
where: (1) the input must be fully read before the accept or reject
status can be declared; (2) the input is always scanned left-to-right
and that too exactly once.

• The instantaneous description (ID)12 of a TM is the (q,h, i) triple, with

12 A more formal version of IDs is dis-
cussed in §13.8.

h being the index into the input i (head position).13

13 In Jove, we also keep the remaining fuel
in the ID, making it (q,h, i, f ).

• Accepting computations start from an ID (q0,0,w) where q0 ∈Q, w
is the input, and the head initially is staring at the leftmost cell of the
input, namely w[0]. TMs begin with an infinite number of blank (.)
cells to the left and right of w.14 Accepting computations end in an ID

14 In Jove, users can simply enclose w in-
side a string and submit. It is not neces-
sary to pad blanks! As said earlier, Jove
will allocate blanks as/when necessary.

(q f ,h, g) where q f ∈ F, g ∈Γ∗, and h ∈ Nat is some head position.

The language of a Turing machine—whether it be deterministic or
not—is the set of strings accepted by it. More specifically for a non-
deterministic Turing machine, its language is the set of all strings
that result in an accepting computation along some nondetermin-
istic computational path.

Each transition in a TM-diagram (e.g., Figure 13.10) has edge-labels:

oneInChrOrBlnk ; oneOutChrOrBlnk , headMoveSpec

where oneInChrOrBlnk and oneOutChrOrBlnk are a single character from
Γ (or the blank symbol ‘.’), and the headMoveSpec is one of S (same), L (go
left), or R (go right). We now present several example TMs.
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13.4 Examples of Simple TMs

We begin with two example TMs, one that simply flips the bits on the
input tape (§13.4.1) and another that checks whether the tape contains
the pattern “101” (§13.4.2).

13.4.1 A Simple DTM that Flips Bits

I

1 ; 0,R
0 ; 1,R

F. ; .,S

Allocating 8 tape cells to

the RIGHT!

Detailing the halted configs

now.

Accepted at

(’F’, 6, ’101100........’, 93)

via ..

->(’I’, 0, ’010011’, 100)

->(’I’, 1, ’110011’, 99)

->(’I’, 2, ’100011’, 98)

->(’I’, 3, ’101011’, 97)

->(’I’, 4, ’101111’, 96)

->(’I’, 5, ’101101’, 95)

->(’I’, 6, ’101100’, 94)

->(’F’, 6, ’101100...’, 93)

Figure 13.2: A TM called Flipper that flips
a given bit sequence. It starts at state I
with the head position being 0. It is star-
ing at the left end of the string 010011. It
has initially a fuel tank with 100 thimbles
of fuel.
Governed by the I to I move that asks it to
flip a 0 to a 1, this TM then takes a step
to the right, and the string is now 110011.
Notice that the head position is now 1 and
the remaining fuel is 99 thimbles. So it is
now staring at 110011[1], i. e. 1.
Governed by the I to I move that asks it to
flip a 1 to a 0, this TM then takes a step
to the right, and the string is now 100011.
Notice that the head position is now 2, and
the remaining fuel is 98 thimbles. So it is
now staring at 100011[2], i. e. 0.
This process continues till the TM’s head
position becomes 6. At this point, the TM
sees a blank, and executes the I to F move.
The blank is replaced by another blank,
and the head position is S (same). The ma-
chine gets stuck at state F, which causes it
to accept the input.

Our first example Turing machine starts in state I and stays in this
state so long as it encounters a 0 or a 1 (see the state transition diagram
of Figure 13.2). After inverting this bit, the TM’s head goes one step
right on the tape; the TM then resumes its work. When in state I if it
encounters a blank (‘.’), the TM enters state F where it gets stuck. A run
of this TM (call it Flipper) is also shown. Please answer the questions in
the exercises below to learn more about machine Flipper.

Exercise 13.4.1, Flipper TM
1. How do we initialize the tape of Flipper to contain ε?
2. What is the language of Flipper? �

13.4.2 TMs that check if a string contains 101

While Flipper illustrated some of the mechanics of specifying Turing ma-
chines, it did not emphasize why algorithms stated in terms of Turing
machines matter. We shall now present such details – specifically the no-
tion of a deterministic algorithm versus a nondeterministic algorithm –
with the help of a very simple example. A few salient observations will
be pointed out: (1) Nondeterministic Turing machines will often be far
more succinct and easy to specify; (2) String s is in the language of an
NDTM if it results in at least one nondeterministic accepting computa-
tion.
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I StuckNo1beg

StuckNo0Aft1

Got10Sk1

StuckNo1end
. ; .,R0 ; A,R

Found101

1 ; B,R

Got1Sk0 . ; .,R

0 ; A,R

1 ; B,R

. ; .,R

1 ; B,R

0 ; A,R

Figure 13.3: Transition diagram for a
DTM that looks for 101 within given w.

!! Sweep, starting at the beginning, looking for 101

whas101DTM = md2mc(’’’TM

I : 1; B, R -> Got1Seek0 !! Partial success; climb to next stage

I : 0; A, R -> I !! Continue hunting for 1

I : .; ., R -> StuckNo1beg !! Ran off end; REJECT

Got1Seek0 : 0; A, R -> Got10Seek1 !! More success; climb onto next state

Got1Seek0 : 1; B, R -> Got1Seek0 !! Didn’t find 0, but starts with 1; so Seek0

Got1Seek0 : .; ., R -> StuckNo0Aft1 !! Ran off end w/o finding 0; so REJECT

Got10Seek1 : 1; B, R -> Found101 !! Successfully found 101. ACCEPT!

Got10Seek1 : 0; A, R -> I !! Failure finding 1; start over

Got10Seek1 : .; ., R -> StuckNo1end !! Ran off end; so REJECT

’’’)

Figure 13.4: Markdown for a DTM that
looks for 101 within given w.
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I

TryMyLuck Got1Sk01 ; Q,R Got10Sk1 Found1011 ; Q,R0 ; P,R
0 ; 0,S 
 1 ; 1,S

1 ; B,R 
 0 ; A,R

Reject

. ; .,R

Figure 13.5: Transition diagram for an
NDTM that looks for 101 within given w.

!! Choose a spot at random

!! Check for 101 to be there

whas101NDTM = md2mc(’’’TM

I : 0; A, R | 1; B, R -> I

I : 0; 0, S -> TryMyLuck

I : 1; 1, S -> TryMyLuck

I : .; ., R -> Reject

TryMyLuck: 1; Q, R -> Got1Sk0

Got1Sk0 : 0; P, R -> Got10Sk1

Got10Sk1 : 1; Q, R -> Found101

’’’)

Figure 13.6: Markdown for an NDTM that
looks for 101 within given w.

Figure 13.3 presents the DTM for this problem. The algorithm is ex-
plained in Figure 13.4, and consists of starting from state I, seeking 1

first, then the 0 coming after the 1 to get to 10, and finally the last 1 bit.
Bit 0 is converted to an A and 1 is converted to an B so that the user may
see the extent of the tape moved over before the first 101 is located. Any
failure to finish this pattern results in the machine running off the end,
and rejecting. A typical accepting run is shown in Figure 13.7.

Detailing the halted configs.

Accepted at

(’Found101’, 5, ’AABAB01’, 5)

via ..

->(’I’, 0, ’0010101’, 10)

->(’I’, 1, ’A010101’, 9)

->(’I’, 2, ’AA10101’, 8)

->(’Got1Sk0’, 3,’AAB0101’,7)

->(’Got10Sk1’,4,’AABA101’,6)

->(’Found101’,5,’AABAB01’,5)

Figure 13.7: Accepting run of the DTM for
the problem of checking whether 101 oc-
curs in input w.

The nondeterministic algorithm in Figure 13.5 is explained in Fig-
ure 13.6, and banks on taking a chance: it keeps converting 0 to an A

and 1 to a B, moving right (these conversions are to leave a trail of opera-
tion behind on the tape).

Boom! The NDTM suddenly decides to take a transition to the TryMyLuck
state! There, it expects to see a 101 pattern. If this sequence is seen, the
machine accepts. All wrong guesses “get killed,” making the machine re-
ject. The full computational history of running this machine on input
0010101 is shown in Figure 13.8. This example underscores the inherent
ease of specifying a machine that adopts a nondeterministic algorithm.
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explore_tm(whas101NDTM, "0010101", 10)

...tape allocation suppressed...

Detailing the halted configs now.

Rejected at (’TryMyLuck’, 0, ’0010101’, 9)

via ..

->(’I’, 0, ’0010101’, 10)

->(’TryMyLuck’, 0, ’0010101’, 9)

Rejected at (’TryMyLuck’, 1, ’A010101’, 8) Rejected at (’TryMyLuck’, 5, ’AABAB01’, 4)

via .. via ..

->(’I’, 0, ’0010101’, 10) ->(’I’, 0, ’0010101’, 10)

->(’I’, 1, ’A010101’, 9) ->(’I’, 1, ’A010101’, 9)

->(’TryMyLuck’, 1, ’A010101’, 8) ->(’I’, 2, ’AA10101’, 8)

Accepted at (’Found101’, 4, ’AAQPQ01’, 4) ->(’I’, 3, ’AAB0101’, 7)

via .. ->(’I’, 4, ’AABA101’, 6)

->(’I’, 0, ’0010101’, 10) ->(’I’, 5, ’AABAB01’, 5)

->(’I’, 1, ’A010101’, 9) ->(’TryMyLuck’, 5, ’AABAB01’, 4)

->(’I’, 2, ’AA10101’, 8) Rejected at (’Got1Sk0’, 7, ’AABABAQ’, 2)

->(’TryMyLuck’, 2, ’AA10101’, 7) via ..

->(’Got1Sk0’, 3, ’AAQ0101’, 6) ->(’I’, 0, ’0010101’, 10)

->(’Got10Sk1’, 4, ’AAQP101’, 5) ->(’I’, 1, ’A010101’, 9)

->(’Found101’, 4, ’AAQPQ01’, 4) ->(’I’, 2, ’AA10101’, 8)

Rejected at (’TryMyLuck’, 3, ’AAB0101’, 6) ->(’I’, 3, ’AAB0101’, 7)

via .. ->(’I’, 4, ’AABA101’, 6)

->(’I’, 0, ’0010101’, 10) ->(’I’, 5, ’AABAB01’, 5)

->(’I’, 1, ’A010101’, 9) ->(’I’, 6, ’AABABA1’, 4)

->(’I’, 2, ’AA10101’, 8) ->(’TryMyLuck’, 6, ’AABABA1’, 3)

->(’I’, 3, ’AAB0101’, 7) ->(’Got1Sk0’, 7, ’AABABAQ’, 2)

->(’TryMyLuck’, 3, ’AAB0101’, 6) Rejected at (’Reject’, 7, ’AABABAB........’, 2)

Accepted at (’Found101’, 6, ’AABAQPQ’, 2) via ..

via .. ->(’I’, 0, ’0010101’, 10)

->(’I’, 0, ’0010101’, 10) ->(’I’, 1, ’A010101’, 9)

->(’I’, 1, ’A010101’, 9) ->(’I’, 2, ’AA10101’, 8)

->(’I’, 2, ’AA10101’, 8) ->(’I’, 3, ’AAB0101’, 7)

->(’I’, 3, ’AAB0101’, 7) ->(’I’, 4, ’AABA101’, 6)

->(’I’, 4, ’AABA101’, 6) ->(’I’, 5, ’AABAB01’, 5)

->(’TryMyLuck’, 4, ’AABA101’, 5) ->(’I’, 6, ’AABABA1’, 4)

->(’Got1Sk0’, 5, ’AABAQ01’, 4) ->(’I’, 7, ’AABABAB’, 3)

->(’Got10Sk1’, 6, ’AABAQP1’, 3) ->(’Reject’, 7, ’AABABAB........’, 2)

->(’Found101’, 6, ’AABAQPQ’, 2)

Figure 13.8: Run of the NDTM for 101 ∈
w with 10 units of fuel. Notice the full
nondeterministic computational tree gen-
erated. Two accepting runs are obtained.
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13.5 A DTM for w#w and an NDTM for ww

We will now build Turing machines that recognize patterns in which a
string w ∈ {0,1}∗ is followed by an identical w. To simplify our DTM, we
will design it to recognize strings of the form w#w.15 It must be clear to 15 The reader is invited to design a DTM

that does not employ such a separa-
tor. DTMs and NDTMs are equivalent in
power, and this proof involves simulating
nondeterminism somehow, say using mul-
tiple threads, as in §13.5.3. However, for
strings of the form ww, a direct determin-
istic algorithm can be employed (without
simulating nondeterminism). One can es-
timate its complexity and compare it with
the complexity of the NDTM simulation.
See Exercises 13.5.3.

the reader that the language of strings of the form w#w or ww cannot be
recognized by DFA or PDA.16

16 Why in each case? Also if w ∈ {0}∗, how
does this result change?

13.5.1 A DTM Recognizing w#w

The TM presented via the markdown in Figure 13.9 can be converted to
the drawing in Figure 13.10 and run as shown in the same figure. This
TM recognizes the language w#w for w ∈ {0,1}∗. In §11.9, an exercise
asks you to show that this language is not context-free, via the Context-
Free Language Pumping Lemma. However, this language can be easily
recognized by a Turing machine.17 The commands to create and run this

17 It is context-sensitive, and so, it can be
recognized by a linear bounded automaton
as well.

TM are now presented:

wpw_tm = md2mc(src=’File’, fname="tmfiles/wpw.tm")

DOwpw = dotObj_tm(wpw_tm, FuseEdges = True)

DOwpw # This draws the TM transition diagram

# Run the TM on input shown (fuel given = 120 thimbles)

explore_tm(wpw_tm, "001#001", 120)

13.5.2 A Nondeterministic TM Recognizing ww

If the input has no middle marker, i.e. the entire input given is ww, can
we process it using a deterministic TM? The answer is of course yes: given
that the TM is a universal device, it is possible to find the halfway point
in string ww through search, and then match around it.

We will however employ the power of nondeterminism to guess a plau-
sible midpoint and then match around that midpoint; doing so helps il-
lustrate NDTMs, and also makes the coding much easier. There are four
incorrect markings of the “winged” midpoint that fail, as can be seen in
detail through a Jove simulation (excerpts provided in Figure 13.11, with
markdown provided with comments in Figure 13.13).

The accepting computational history is 25 steps long, while the reject-
ing histories consume far less fuel before biting the dust. It can be seen
that when a nondeterministic path split is about to happen, the currently
remaining fuel is equally split.

explore_tm(wwndtm_md, "001001", 170)
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13.5.3 Nondeterminism does not increase a TM’s
Expressive Power

It can be shown that the presence of nondeterminism does not add any
expressive power to a TM. One can design a DTM with a few extra tapes
that store the nondeterministic options, and explores them one by one,
systematically:
• Imagine writing a multi-threaded version of an NDTM where each

separate thread is one nondeterministic choice, and the NDTM accepts
if/when one of the threads accepts.

• The DTM simulation simulates the threads in a breadth-first manner.
It steps each thread forward one step, taking a round-robin scheduling
approach. That is, the simulation must not be “fixated” on “finishing
one thread” before moving on to another thread.18

18 If we are fixated on one thread and
that thread goes into an infinite loop, we
would never discover the fact that another
(nondeterministic) thread might have ac-
cepted. An NDTM simulation on a DTM
can be abandoned as soon as one of the
threads accepts (this can help avoid infi-
nite loops hidden in some threads). For
this benefit to be accrued, a fair schedul-
ing approach (e.g., round-robin) must be
taken.

Jove’s step_tm function is given in Figure 13.12. Simulating a Turing
machine is basically quite simple: take the current ID and calculate the
next set of IDs using the TM’s Delta function. The additional details are
to maintain a computational path, allocate tape when we “step beyond”
the current tape, and also decrement the fuel per nondeterministic path.

Exercise 13.5.3, DTM design
1. Design a DTM to recognize {ww | w ∈ {0,1}} using an O(N2) de-

terministic algorithm. Proceed by writing pseudo-code and then
convert it into a TM program. Enter it in Jove, simulate, and
demonstrate that your algorithm works on a sufficient number of
interesting test cases.
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TM !! This is a DTM for recognizing strings of the form w#w where w is in {0,1}*.

Iq0: 0 ; X , R -> q1 !! Convert 0s to Xs. Matching 0s are then

!! sought to the right of the #

Iq0: 1 ; Y , R -> q7 !! Convert 1s to Ys. Matching 1s then

!! sought to the right of the #

Iq : # ; # , R -> q5 !! OR we see # right away, then accept

!! right away, as we then have eps#eps

q5 : X ; X,R | Y ; Y,R -> q5 !! In q5, we skip over X and Y

!! (eq. num of X,Y lie to the left of #)

q5 : . ; . , R -> Fq6 !! Accept when we see a blank (.)

q1 : 0 ; 0,R | 1 ; 1,R -> q1 !! In q1, skip over remaining 0/1

q1 : # ; # , R -> q2 !! But upon seeing #, look for matching 0

q2 : X ; X,R | Y ; Y,R -> q2 !! All X,Y are "spent stuff" to skip over

q2 : 0 ; X , L -> q3 !! When we find a matching 0, turn that to

!! an X, and sweep left to do the next pass

q3 : X ; X,L | Y ; Y,L -> q3 !! In q3, we move over all past X, Y

q3 : # ; # , L -> q4 !! but when we reach the middle marker,

!! we know that the next action is to seek

!! the next unprocessed 0 or 1

q4 : 0 ; 0,L | 1 ; 1,L -> q4 !! In q4, wait till we hit the leftmost 0/1

q4 : X ; X,R | Y ; Y,R -> Iq0 !! When we hit X,Y, we know that we’ve

!! found the leftmost 0/1. Begin another pass.

q7 : 0 ; 0,R | 1 ; 1,R -> q7 !! q7 is similar to q1

q7 : # ; # , R -> q8 !! and q8 is similar to q2

q8 : X ; X,R | Y ; Y,R -> q8

q8 : 1 ; Y , L -> q3

Figure 13.9: The DTM for w#w in Jove’s
markdown notation. Detailed comments
help others understand TM code. In this
sense, textual input can prove superior to
TM diagrams beyond a certain size. TM
and PDA programming is lower level than
assembly programming, and so extreme
clarity of expression plus clear comments
are essential.
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Iq0

q7

1 ; Y,R

q10 ; X,R

q5

# ; #,R

q8

X ; X,R
Y ; Y,R

q3

1 ; Y,L

# ; #,R

0 ; 0,R
1 ; 1,R

q4

X ; X,R
Y ; Y,R

0 ; 0,L
1 ; 1,L

# ; #,L

X ; X,L
Y ; Y,L

0 ; 0,R
1 ; 1,R

q2# ; #,R

X ; X,R
Y ; Y,R

Fq6. ; .,R

0 ; X,L

X ; X,R
Y ; Y,R

Allocating 8 tape cells to the RIGHT!

Detailing the halted configs now.

Accepted at (’Fq6’, 8, ’XXY#XXY........’, 88) ... via ..

->(’Iq0’, 0, ’001#001’, 120) ->(’q1’, 3, ’XX1#X01’, 109) ->(’q8’, 5, ’XXY#XX1’, 99)

->(’q1’, 1, ’X01#001’, 119) ->(’q2’, 4, ’XX1#X01’, 108) ->(’q8’, 6, ’XXY#XX1’, 98)

->(’q1’, 2, ’X01#001’, 118) ->(’q2’, 5, ’XX1#X01’, 107) ->(’q3’, 5, ’XXY#XXY’, 97)

->(’q1’, 3, ’X01#001’, 117) ->(’q3’, 4, ’XX1#XX1’, 106) ->(’q3’, 4, ’XXY#XXY’, 96)

->(’q2’, 4, ’X01#001’, 116) ->(’q3’, 3, ’XX1#XX1’, 105) ->(’q3’, 3, ’XXY#XXY’, 95)

->(’q3’, 3, ’X01#X01’, 115) ->(’q4’, 2, ’XX1#XX1’, 104) ->(’q4’, 2, ’XXY#XXY’, 94)

->(’q4’, 2, ’X01#X01’, 114) ->(’q4’, 1, ’XX1#XX1’, 103) ->(’Iq0’, 3, ’XXY#XXY’, 93)

->(’q4’, 1, ’X01#X01’, 113) ->(’Iq0’, 2, ’XX1#XX1’, 102) ->(’q5’, 4, ’XXY#XXY’, 92)

->(’q4’, 0, ’X01#X01’, 112) ->(’q7’, 3, ’XXY#XX1’, 101) ->(’q5’, 5, ’XXY#XXY’, 91)

->(’Iq0’, 1, ’X01#X01’, 111) ->(’q8’, 4, ’XXY#XX1’, 100) ->(’q5’, 6, ’XXY#XXY’, 90)

->(’q1’, 2, ’XX1#X01’, 110) ->(’q5’, 7, ’XXY#XXY’, 89)

-> (’Fq6’, 8, ’XXY#XXY........’, 88)

Figure 13.10: Run of the w#w string on
the DTM shown results in acceptance at
state Fq6, with 88 thimbles of fuel left.
While in state q5, the machine allocates
tape cells (the “...”), finds the blank being
sought, and accepts in state Fq6.
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Iq0

q11

q9

1 ; Y,L
0 ; X,L
. ; .,L

q5 Y ; 3,R

0 ; 0,R
1 ; 1,R
3 ; 3,R
2 ; 2,R

q14

0 ; 0,R
1 ; 1,R

q2
0 ; X,L
1 ; Y,L q3

1 ; Q,R

q7Y ; Y,R

q4

0 ; P,R

q6X ; X,R

q12

3 ; 3,R
2 ; 2,R

0 ; 0,S
1 ; 1,S

Fq1

. ; .,R

0 ; 0,R
1 ; 1,R
3 ; 3,R
2 ; 2,R q10X ; 2,R

q8

P ; P,R

2 ; 2,L
3 ; 3,L
0 ; 0,L
1 ; 1,L

1 ; Y,L
0 ; X,L
. ; .,L

3 ; 3,R
2 ; 2,R

Fq13. ; .,R

Q ; Q,R

2 ; 2,L
3 ; 3,L
0 ; 0,L
1 ; 1,L

. ; .,R

0 ; 0,L
1 ; 1,L

Accepted at (’Fq13’, 13, ’........PQ23........’, 76) via ..

->(’Iq0’, 0, ’0101’, 100) ->(’q8’, 8, ’........P12Y’, 87)

->(’q14’, 0, ’0101’, 99) ->(’q3’, 9, ’........P12Y’, 86)

->(’q14’, 1, ’0101’, 98) ->(’q5’, 10, ’........PQ2Y’, 85)

->(’q14’, 2, ’0101’, 97) ->(’q5’, 11, ’........PQ2Y’, 84)

->(’q2’, 1, ’01X1’, 96) ->(’q11’, 12, ’........PQ23’, 83)

->(’q2’, 0, ’01X1’, 95) ->(’q9’, 11, ’........PQ23........’, 82)

->(’q2’, 7, ’........01X1’, 94) ->(’q9’, 10, ’........PQ23........’, 81)

->(’q3’, 8, ’........01X1’, 93) ->(’q9’, 9, ’........PQ23........’, 80)

->(’q4’, 9, ’........P1X1’, 92) ->(’q3’, 10, ’........PQ23........’, 79)

->(’q4’, 10, ’........P1X1’, 91) ->(’q12’, 11, ’........PQ23........’, 78)

->(’q10’, 11, ’........P121’, 90) ->(’q12’, 12, ’........PQ23........’, 77)

->(’q8’, 10, ’........P12Y’, 89) ->(’Fq13’, 13, ’........PQ23........’, 76)

->(’q8’, 9, ’........P12Y’, 88)

Rejected at (’q14’, 4, ’0101’, 95) Rejected at (’q4’, 9, ’........PY01’, 94)

Rejected at (’q4’, 11, ’........P10Y’, 88) Rejected at (’q6’, 9, ’........X101’, 96)

Figure 13.11: Simulation of ww on the
NDTM shown.
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TAPE_ALLOC_SIZE = 8

def step_tm(T, q_hi_tape_fuel, path, haltList):

"""Given a TM (T), an ID (q,hi,tape,fuel) where q is the current state, hi is the head index,

tape is the current tape (string) and fuel is the number of steps that the TM is eligible

to execute, and given a computational path executed so far, return the new set of IDs and

extend the computations along each nondeterministic path.

"""

(q, hi, tape, fuel) = q_hi_tape_fuel

extpath = path + [q_hi_tape_fuel]

nl_id_path = []

if (hi == len(tape)): # Going beyond end of allocated tape; allocate more!

print("Allocating ", TAPE_ALLOC_SIZE, " tape cells to the RIGHT!")

tape = tape + T["B"]*TAPE_ALLOC_SIZE

if (q, tape[hi]) not in T["Delta"]: # No move on (q, tape[hi]), so record ID+path in haltList; return

return (nl_id_path, haltList + [(q_hi_tape_fuel, path)])

l_nq_ng_dirn = T["Delta"][(q, tape[hi])]

for nq_ng_dirn in l_nq_ng_dirn:

(nq, ng, dirn) = nq_ng_dirn # Head attempts to move to the left of the left-end

if (hi==0) and (dirn=="L"):

print("Allocating ", TAPE_ALLOC_SIZE, " tape cells to the LEFT!")

ntape = T["B"]*TAPE_ALLOC_SIZE + ng + tape[1:]

nhi = TAPE_ALLOC_SIZE - 1 # Do the left move too!

else:

ntape = tape[0:hi] + ng + tape[hi+1:len(tape)]

nhi = (hi+1 if dirn=="R"

else ((hi-1) if dirn=="L"

else (hi if dirn=="S"

else print("Illegal direction!"))))

if (fuel > 0):

nl_id_path += [((nq, nhi, ntape, fuel-1), extpath)]

return (nl_id_path, haltList)

Figure 13.12: Function step_tm
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TM !! This is a TM for ww processing. Guesses midpoint using nondet.

Iq0 : 0 ; 0 , S -> q14 !! This simulates the TM taking a guess

Iq0 : 1 ; 1 , S -> q14 !! that it hasn’t seen the midpoint. It moves to q14

Iq0 : . ; . , R -> Fq1 !! Yay! shortest acceptance is for eps eps, i.e., facing a sea of

!! blanks that encodes an epsilon followed by another epsilon.

q14 : 0 ; 0 , R -> q14 !! The TM skips over 0s or 1s for a while, and then chooses a cell,

q14 : 0 ; X , L -> q2 !! declaring it the midpoint, or more specifically FIRST CHARACTER PAST MIDPOINT

!! by marking it ’X’ and then moves to q2 (to march around the chosen midpoint).

q14 : 1 ; 1 , R -> q14 !! Similar actions as with 0 in state q14, except that it "dings" the

q14 : 1 ; Y , L -> q2 !! "1" with a "Y" to mark it the FIRST CHARACTER PAST MIDPOINT.

!!-- Then we march around it. While the separate use of "X" and "Y" may not be necessary, it

!!-- improves understandability when you finally see the result of TM executions.

q2 : 0 ; 0 , L -> q2 !! The TM is now winding back, seeking the

q2 : 1 ; 1 , L -> q2 !! left-end of the tape till it hits a ’.’ (blank).

q2 : . ; . , R -> q3 !! When that happens, the TM goes to state q3 to begin its work of "matching around."

!! Below, we describe the q3,q5,q11,q9,q3 loop well (The loop q3,q4,q10,q8,q3 is similar).

q3 : X ; X , R -> q6 !! This state is a stuck state (no progress)

!! We came to q3 because we dinged a 0->X or a 1->Y while in q14; so its matching

!! "partner" 0 or 1 must be found to the left. Unfortunately, we are finding an

!! X or a Y. Thus, no "match around the middle" is likely to happen.

q3 : Y ; Y , R -> q7 !! This state is ALSO a stuck state for similar reasons as described at q3 : X ; X ...

!! Description of the q3,q5,q11,q9,q3 loop :

!! Upon seeing a 1, change to Q. Then MUST see a matching Y, then change to 3, and go right,

!! and to state q5. We do this because ’Y’ represents what was ’1’ and got marked as "midpoint"

q3 : 1 ; Q , R -> q5

!!-- What will happen in q5,q11,q9,q3 --

!! So we have to get past this assumed midpoint and choose the next "one past midpoint that

!! has not been seen so far". We enter q11 to then ding a matching 0 to X or 1 to Y, moving left.

!! A blank sends us leftwards, as well.

!! We sweep left till we hit a Q. We MUST see a Q because we entered "this lobe" by dinging a 1->Q.

!! The process repeats from state q3.

q5 : 0;0,R | 1;1,R | 2;2,R | 3;3,R -> q5 !! punt the 0/1/2/3; we need a "Y".

q5 : Y ; 3, R -> q11 !! ah-ha, got a Y. Ding to 3, seek 0/1/.

q11 : 1;Y,L | .;.,L | 0;X,L -> q9 !! phew! got to sweep left now!

q9 : 0;0,L | 1;1,L | 2;2,L | 3;3,L -> q9 !! whee! going left!

q9 : Q ; Q , R -> q3 !! Boiinggg - now gonna go right!

!! Description of the q3,q4,q10,q8,q3 loop :

q3 : 0 ; P , R -> q4 !! This is similar to q3 : 1 ; Q , R -> q5 above

q4 : 0;0,R | 1;1,R | 2;2,R | 3;3,R -> q4 !! punt the 0/1/2/3; we need an "X".

q4 : X ; 2, R -> q10 !! ah-ha, got an X. Ding to 2, seek 0/1/.

q10 : 1;Y,L | .;.,L | 0;X,L -> q8 !! phew! got to sweep left now!

q8 : 0;0,L | 1;1,L | 2;2,L | 3;3,L -> q8 !! whee! going left!

q8 : P ; P , R -> q3 !! Boiinggg - now gonna go right!

!! Seeing every sign of acceptance. We are seeing piles of 2 and 3. ALSO did not get stuck in

!! q6 or q7. That means all the matches went fine.

q3 : 2;2,R | 3;3,R -> q12

q12 : 2 ; 2 , R | 3 ; 3 , R -> q12 !! Skip over piles of past 2s and 3s

q12 : . ; . , R -> Fq13!! ** Yay, acceptance when we hit a blank! **

Figure 13.13: Markdown for our NDTM
that recognizes ww, w ∈ {0,1}∗.
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13.6 Example: A TM that Works on the Collatz Problem

The following function tep1 was proposed by German mathematician
Lothar Collatz in 1937:

def tep1(x):

if (x==1):

return 1

elif (x%2 == 0):

return tep1(x/2)

else:

return tep1(3*x+1)

>>> tep1(3)

1

>>> tep1(191)

1

>>> tep1(19192949297080)

1

>>> tep1(191929492970809272397923472398492839482)

1

>>> tep1(191929492970809272397923472398492839482938492)

1

No matter what we feed it, tep1 seems to halt (returning 1).19 Un-

19 A crowdsourced attempt to find a
counterexample is underway. You may
contribute to this effort by donating idle
cycles of your own machine, by visit-
ing http://www.ericr.nl/wondrous/

search.html.

fortunately, it is open whether this holds true for all natural numbers.20

20 One website has claimed that this is re-
lated to the undecidability of the Halt-
ing problem studied in Part III. This is
not true. tep1 just happens to be a
curious function. One can couch many
conjectures—even Goldbach’s conjecture
that every integer above 2 can be ex-
pressed as the sum of two primes—as such
a program, and make the program’s halt-
ing conditional on a violation of the conjec-
ture.

We present a TM for the Collatz problem and its simulation on input 6 in
binary (i.e., 0110) in Figure 13.14.

See additional examples in our Jove distribution including a TM that
doubles a number given in decimal and a TM that carries out binary
addition.

13.6.1 Markdown for the Collatz Problem TM with
Comments

Our Automd-style markdown description21 of the coding of the Collatz21 We convert such markdowns to internal
formats (“machines”) through the md2mc
command (§B.1.5).

problem appears in Figure 13.15. This description embodies very good
TM coding practices (meaningful state names and well-placed comments).

http://www.ericr.nl
http://www.ericr.nl
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i_start

goto_lsb

0 ; 0,R
1 ; 1,R branch

. ; .,L

error

00_fma

. ; .,R

0 ; 0,L

01_fma 1 ; 1,L
1 ; 1,R

. ; .,S

0 ; .,R

0 ; .,L

check_n_eq_11 ; 1,L
0 ; 0,R
1 ; 1,R

f_halt. ; .,R 10_fma

1 ; 1,L

0 ; 0,L
. ; 0,L

. ; 1,R

0 ; 1,L

1 ; 0,L

# Will loop if the Collatz ("3x+1") program will ever loop!

explore_tm(collatz_tm, "0110", 100)

Allocating 8 tape cells to the RIGHT!

Allocating 8 tape cells to the LEFT!

Detailing the halted configs now.

Accepted at (’f_halt’, 5, ’.....1..............’, 65)

via ..

->(’i_start’, 0, ’0110’, 100) ->(’01_fma’, 9, ’.......101..........’, 81)

->(’i_start’, 1, ’.110’, 99) ->(’10_fma’, 8, ’.......100..........’, 80)

->(’goto_lsb’, 2, ’.110’, 98) ->(’01_fma’, 7, ’.......100..........’, 79)

->(’goto_lsb’, 3, ’.110’, 97) ->(’10_fma’, 6, ’.......000..........’, 78)

->(’goto_lsb’, 4, ’.110’, 96) ->(’01_fma’, 5, ’......0000..........’, 77)

->(’branch’, 3, ’.110........’, 95) ->(’goto_lsb’, 6, ’.....10000..........’, 76)

->(’branch’, 2, ’.11.........’, 94) ->(’goto_lsb’, 7, ’.....10000..........’, 75)

->(’check_n_eq_1’, 1, ’.11.........’, 93) ->(’goto_lsb’, 8, ’.....10000..........’, 74)

->(’01_fma’, 2, ’.11.........’, 92) ->(’goto_lsb’, 9, ’.....10000..........’, 73)

->(’10_fma’, 1, ’.10.........’, 91) ->(’goto_lsb’, 10, ’.....10000..........’, 72)

->(’10_fma’, 0, ’.10.........’, 90) ->(’branch’, 9, ’.....10000..........’, 71)

->(’01_fma’, 7, ’........010.........’, 89) ->(’branch’, 8, ’.....1000...........’, 70)

->(’goto_lsb’, 8, ’.......1010.........’, 88) ->(’branch’, 7, ’.....100............’, 69)

->(’goto_lsb’, 9, ’.......1010.........’, 87) ->(’branch’, 6, ’.....10.............’, 68)

->(’goto_lsb’, 10, ’.......1010.........’, 86) ->(’branch’, 5, ’.....1..............’, 67)

->(’goto_lsb’, 11, ’.......1010.........’, 85) ->(’check_n_eq_1’, 4, ’.....1..............’, 66)

->(’branch’, 10, ’.......1010.........’, 84) ->(’f_halt’, 5, ’.....1..............’, 65)

->(’branch’, 9, ’.......101..........’, 83)

->(’check_n_eq_1’, 8, ’.......101..........’, 82)

Figure 13.14: A simulation of the Collatz
conjecture using a DTM
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TM !!

i_start : 0; ., R -> i_start !! erase this zero and try to find more

i_start : 1; 1, R -> goto_lsb !! we have a proper number, go to the lsb

i_start : .; ., S -> error !! error on no input or input == 0

goto_lsb : 0; 0,R | 1; 1,R -> goto_lsb !! scan off the right edge of the number

goto_lsb : .; .,L -> branch !! take a step back to be on the lsb and start branch

branch : 0; .,L -> branch !! number is even, divide by two and re-branch

branch : 1; 1,L -> check_n_eq_1 !! number is odd, check if it is 1

check_n_eq_1 : 0; 0,R | 1; 1,R -> 01_fma !! number wasn’t 1, goto 3n+1

check_n_eq_1 : .; .,R -> f_halt !! number was 1, halt

!! carrying 0 we see a 0 so write 0 and carry 0 forward

00_fma : 0; 0,L -> 00_fma

!! carrying 0 we see a 1 (times 3 is 11) so write 1 and carry 1 forward

00_fma : 1; 1,L -> 01_fma

!! reached the end of the number, go back to the start

00_fma : .; .,R -> goto_lsb

!! carrying 1 we see a 0 so write 1 and carry 0 forward

01_fma : 0; 1,L -> 00_fma

!! carrying 1 we see a 1 (times 3 is 11, plus our carry is 100) so write 0 and carry 10 forward

01_fma : 1; 0,L -> 10_fma

!! reached the end of the number, write our 1 and go back to the start

01_fma : .; 1,R -> goto_lsb

!! carrying 10 we see a 0, so write 0 and carry 1 forward

10_fma : 0; 0,L -> 01_fma

!! carrying 10 we see a 1 (times 3 is 11, plus our carry is 101), so write 1 and carry 10 forward

10_fma : 1; 1,L -> 10_fma

!! reached the end of the number, write a 0 from our 10 and carry 1

10_fma : .; 0,L -> 01_fma

Figure 13.15: Markdown for TM that en-
codes the Collatz problem
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13.7 The Chomsky Hierarchy

Machines Languages Nature of Grammar

DFA/NFA Regular
Purely left-/right- linear
productions

DPDA
Deterministic
CFL

Each LHS has one nonterminal.
The productions are deterministic.

NPDA
(or “PDA”) CFL

Each LHS has only
one nonterminal.

LBA
Context Sensitive
Languages

LHS may have length > 1, but
| LHS| ≤ |RHS|, ignoring ε productions.

DTM/NDTM
Recursively
Enumerable

General grammars
(|LHS| ≥ |RHS| allowed).

Figure 13.16: Situation of TMs in the
Chomsky Hierarchy.We will now define a crucially important notion called the Chomsky

hierarchy in §1.3 (see Figure 13.16; this notion was alluded to in Chap-
ter 1). We now discuss all the machines we have studied so far as well
as their grammars in one unified setting.22 Each language family first 22 As discussed in Chapter 11 (§11.7), even

DFA can be captured using purely right-
linear (or purely left-linear) grammars.

discussed in Figure 13.16 is contained in all the language families later
discussed.23

23 In other words, every regular language
is a context-free language, a context sensi-
tive language, and a recursively enumer-
able (RE) language. Every CFL is a CSL
and an RE language. Finally, all CSLs are
RE languages.

Regular languages: Regular languages are characterized by DFA as
the machine type, and purely linear grammars. The presence of non-
determinism does not increase the expressive power.

Context-free languages: Context-free languages are characterized by
PDA as the machine type and context-free production rules as the
grammar. Each left-hand side of a production has exactly one non-
terminal. The deterministic counterparts of PDA and CFL are not
equivalent to their nondeterministic counterparts.24 24 There are inherently ambiguous lan-

guages that cannot be captured using
DPDA.

Context-sensitive languages: Context-sensitive languages are char-
acterized by the machine type Linear Bounded Automaton (LBA). Ba-
sically, LBA are Turing machines that are not allowed to write be-
yond the extent of the initial input.25 It has been an open question 25 They have a tape that is read-only be-

yond the extent of the user input.(for nearly six decades) whether the family of non-deterministic LBA
(NLBA) and deterministic LBA (DLBA) are equivalent.

As for production rules, context sensitive languages are based on
context sensitive grammar (CSG) production rules that allow more than
one item on the left-hand side. An example CSG production rule is:

a A d -> a a c d
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In this example, we are essentially allowing nonterminal A to be
replaced by the terminal sequence a c provided A is “surrounded” by
a and d (or, lives in the context of a and d). Context-free is a special
case of context sensitive where a nonterminal can be expanded regard-
less of “what surrounds it.” However, the catch with context sensitive
productions is that the length of the left-hand sides must stand in the
relation ≤ to the length of the right-hand side (ignoring ε productions).
Thus, the productions are never “contracting.”2626 It is easily seen that both linear produc-

tions and CFG productions satisfy this re-
striction, as they are special cases of con-
text sensitive languages.

Recursively Enumerable Languages: Last but not least, recursively
enumerable languages (RE)27 are characterized by Turing machines.

27 There are non-RE languages as well—
in fact, many of them! This is how the
argument goes: there are only ℵ0 RE lan-
guages, while there are ℵ1 languages. See
Appendix C for a proof.

The grammar associated with them is similar to CSLs, except we allow
both “expanding” and “contracting” productions in that there is no re-
quired length relation between the right-hand side and the left-hand
side. It is known that both the deterministic and nondeterministic
varieties of Turing machines are equally expressive.

13.7.1 Recursively Enumerable and Recursive Languages

A recursively enumerable language28 is the language of a (general)28 Abbreviated “RE language,” not to be
confused with “regular expressions” Turing machine. A recursive language is the language of a Turing

machine that is guaranteed to halt.
The idea of a language of a Turing machine “feels different” in that

TMs embody general-purpose computations.29 While regular languages29 It could mean the language of my
spreadsheet program or even the lan-
guage of the Obamacare website!

and context-free languages seemed to have a purpose behind them (scan-
ning and parsing), we now are in this territory of machines where we
can’t even tell whether the machine will read a given input fully. While
TMs can certainly be made to recognize the structure of their input string,
in a general setting, that is not the primary emphasis behind Turing ma-
chines. Part III (Concepts) will fully explain these results, but some re-
marks may put the reader at ease:
• In a formal sense, Turing machines define both a computer and a

computer program.30 Whether this reality adds to the innate under-

30 The tape, head, and finite-state control
mechanism are similar to the hardware of
a realistic computer. The particular finite-
state controller we design for a TM is sim-
ilar to an actual computer program.

standing of “a computer” and “a computer program” in the modern
context may be debatable.31 However, these important ideas must be

31 Some may protest, saying that this feels
like analyzing Mozart’s music in terms of
air-pressure waves.

defined mathematically (which is what TMs help with), and not taken
for granted.32 If tomorrow brings a different form of a “protoplasmic32 Some modesty is always in order, consid-

ering that the universe has been around
6,000 times longer than humans have
been around, and humans have been
around 20,000 times longer than the no-
tion of computation has been around.
“Taking things for granted” can lead to
pitfalls. Besides, if we have to tell a space
denizen what a computer is, he/she/it may
more readily understand if explained in
terms of a Turing machine!

computer,” then we may, most likely, be able to far more easily prove
whether it is Turing-equivalent—not whether it is MacBook Pro equiv-
alent.

• The real fun will begin when we study Turing machines more deeply in
Part III where we consider a TM examining another TM’s description
(given to it as the input string). Such studies—and the conclusions we
draw from them—are the only way we can prove (or disprove) whether
a computer can (or cannot) do something at all. For this purpose, the
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notion of a recursively enumerable language is central. We cannot
even begin to approach such questions without this concept.

13.8 An Alternate Notation for Instantaneous Descriptions

In this chapter, we explicitly recorded the control state, the head index,
and the input string as a triple (q,h, i) in discussing instantanoues de-
scriptions (ID). Sometimes, we also included the “remaining fuel” (in Jove
simulations).

For formal discussions in Chapter 16, this notation becomes rather
cumbersome (even after leaving out the “fuel” component). A more com-
pact notation is as follows:
• Denote the starting ID of a Turing machine starting in state q with

tape containing w as qw.
• For a Turing machine that has a ∈ Σ∗ to the left of the head, has its

head looking at the first symbol of b ∈Σ∗, and is in control state q, we
depict the ID as aqb.
– Example 1: The flipper TM in Figure 13.2 will have the following

march of IDs. We provide the Jove-style IDs and the formal notation
of IDs being introduced side by side:

(’I’, 0, ’010011’, 100) I010011
(’I’, 1, ’110011’, 99) 1I10011
...
(’I’, 6, ’101100’, 94) 10110I0
(’F’, 6, ’101100...’, 93) 101100F

– Example 2: The DTM that checks for whether 101 appears in the
input string (Figure 13.7) will have this cadence of IDs (here, we
separate the state names with quotes so that they stand out):

(’I’, 0, ’0010101’, 10) ′I ′0010101
(’I’, 1, ’A010101’, 9) A′I ′010101
(’I’, 2, ’AA10101’, 8) AA′I ′10101
(’Got1Sk0’, 3, ’AAB0101’, 7) AAB′Got1Sk0′0101
(’Got10Sk1’, 4, ’AABA101’, 6) AABA′Got10Sk1′101
(’Found101’, 5, ’AABAB01’, 5) AABAB′Found101′01

Exercise 13.8, DTM and NDTM design
1. Design a DTM to increment an unsigned binary number presented

little endian (which means least significant bit first or LSB). Specif-
ically, if the tape is blank, stop (the number is assumed to be un-
specified). Else, the left-most bit is the LSB. Increment it, and deal
with the carry appropriately. The result on the tape must be the
incremented number. Simulate it in Jove. Write an explanation of
why your DTM is correct. Here are some input/output behaviors:
• The input ’’ leaves the tape with a sea of blanks (as it was

before).



• The input ’00’ leaves the tape with ’10’ after acceptance.
• The input ’01’ leaves the tape with ’11’ after acceptance.
• The input ’10’ leaves the tape with ’01’ after acceptance.
• The input ’11’ leaves the tape with ’001’ after acceptance.

2. Design a DTM whose language is L1gt0, which is the set of strings
in which the number of 1’s is greater than the number of 0’s.

3. Design an NDTM that takes inputs of the form w1#w2 and checks
whether w1 is a substring of w2. A string s is a substring of an-
other string t exactly when one can find s beginning at some posi-
tion t[i] of t. For example, a, l, ap, le, and ppl are substrings of
apple. We define the empty string to be a substring of any given
string. You must truly take advantage of nondeterminism to sim-
plify your machine. (You must not end up designing a DTM that
will have to engage in more actions.)

4. Design an NDTM that takes inputs of the form w1#w2 and checks
whether w1 is a subsequence of w2. A string s is a subsequence
of another string t exactly when one can find s beginning at some
position u[i] of u, where u is obtained by deleting some of t’s char-
acters. For example, a and l are subsequences of apples. Also
ap, al, and ale are subsequences of apples. More specifically,
ale is found sitting in u where u=ales is obtained by deleting
both p’s and the s from apples. Then one finds ale sitting within
ales. We define the empty string to be a subsequence of any given
string. You must truly take advantage of nondeterminism to sim-
plify your machine. (You must not end up designing a DTM that
will have to engage in more actions.)

5. Suppose we are given a string w that consists of a finite number
of binary sequences separated by the hash-mark #. By maximal
sequence of 0’s and 1’s, we mean the entire sequence contained
within two hash marks (#). There is also one sequence appear-
ing at the end, after two hash marks (i.e., ##). We call the last
maximal sequence the output sequence. We call all other maxi-
mal sequences before the ‘##’ the list of input sequences.33 For33 Hereafter, we will leave out the word

maximal. instance,
• The input might be

1010 # 0100 # 101 # 11101 # 001 ## 101001

• Here, the input sequences are 1010, 0100, 101, 11101 and
001

• The output sequence is 101001
Task for you: Design an NDTM that determines whether some
concatenation of some number of input sequences (i.e., taken left
to right) matches the output sequence. In our example, we have
101 concatenated with 001 matching 101001 in the output. �
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Part III: Concepts

Alan Turing (left) and Alonzo Church (right)
From https://en.wikipedia.org/wiki/Alan_Turing

and https://en.wikipedia.org/wiki/Alonzo_Church respectively.

https://en.wikipedia.org
https://en.wikipedia.org
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14
Interplay between Formal Languages

Chapter Gist: We motivate the need to understand the funda-
mental limits of computing (§14.1). This is followed by two key
notions, recursive and recursively enumerable (RE), that are in-
troduced through examples (§14.2). More examples of recursive
and RE languages are presented (§14.3). A grand finale of lan-
guage containment and decidability results is presented with the
help of a multi-colored Venn diagram (§14.4). Additional high-level
proof sketches about RE and recursive languages finish this chap-
ter (§14.5).

14.1 Why Study Impossibility Results?

When somebody tells us all the features of a cool new machine, it is only
natural to ask what the new machine cannot do. For instance, every-
one knows that airplanes can fly, but they cannot fly into outer space (at
least not yet). Archimedes once famously said this about the simplest of
machines, namely a lever: “Give me a lever long enough and a fulcrum
strong enough, and then I can move the earth.”1 1 A claim that, we know, must be shifted to

the “can’t” category.In the same vein, when scientists confronted the computer – a new
machine in the 1930s – they of course first asked what it can do. You may
however recall from §1.1 that Hilbert and Gödel helped settle several
fundamental questions about the fundamental limits of computing—the
“can’t do” questions about computing. To study and settle this question
systematically, they had to formulate the problem in terms of formal lan-
guages (Figure 13.16). In this chapter, we elaborate on these fundamen-
tal concepts that underlie computability theory.

14.1.1 Definitions: Procedure and Algorithm

In order to define what can and cannot be done using a computer, we
must define two related terms: procedure and algorithm.
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A procedure is a mechanically realizable function that is defined
specific to solving a particular problem. A procedure typically
takes inputs and produces outputs. It is formally defined through
a Turing machine. An algorithm is a procedure that halts on all
inputs. It is in fact impossible to tell whether a procedure is simply
taking too long to run or is actually never going to halt.

We can now point out one thing (a very fundamental thing) that a com-
puter cannot do:

No computer can determine whether a procedure is an algorithm.

That is, given a Turing machine TP describing a procedure P, there
isn’t a checker Turing machine that can conclusively establish whether
TP will halt on all inputs. (If at all a Turing machine can so check, then
we must admit the possibility of this checker Turing machine going into
an infinite loop.) This fact can also be stated another way:

There isn’t an algorithm to check whether a given procedure is an
algorithm.

We will now formalize these ideas by identifying the formal language
families associated with Turing machines.

14.1.2 Formal Languages Associated with Turing Machines

Formal languages defined by Turing machines belong to the family of re-
cursively enumerable (RE) languages.2 Recursive languages are a proper2 Some authors also call this family Turing

recognizable (TR)—a term that we may oc-
casionally use.

subset of RE languages, and correspond to Turing machines that halt on
all inputs.3

3 Recursive languages are also called de-
cidable languages. Decidable languages
are almost always desirable too.

We have used the phrase family of languages a few times already in
this chapter. The term family also means set. However, in many con-
texts, it leads to smoother sentences. Instead of saying “x is contained in
set L which belongs to the set of recursive languages,” we prefer saying “x
is contained in set L which belongs to the family of recursive languages.”44 Technically, the word “family” in mathe-

matics is used when we don’t necessarily
want a “set-like behavior.” Thus (for some
reason), we may want to allow two distinct
members of a family to be identical; we
know that two distinct members of a set
aren’t identical.

In this section, we will consider various computable languages L and
describe procedures/algorithms to verify whether a string x is in L. De-
pending on what L is, we will be able to discuss the properties of various
formal languages. There is a fairly comprehensive diagram that captures
these languages (Figure 14.2); a quick glance at it may help now (this
diagram will be discussed in detail later).

14.1.3 Allaying Confusion: Language vs. Language Family

The containment of one specific formal language within another is a to-
tally different idea from the containment of one language family within
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another. For instance, the universal language Univ =Σ∗ is a regular lan-
guage. Now, given a context-free language Lc f l , it is certainly contained
within Univ. The same is true of any context-sensitive language, re-
cursive language, or recursively enumerable language: all are contained
within Univ. The following “spray paint analogy” may help.

Imagine Univ as a drawing obtained by spraying black paint uni-
formly on a white sheet of paper. Much like Univ contains every
possible finite string, a paper sprayed with black paint can contain
every imaginable sentence in English. The only catch is that such
sentences happen to be surrounded by other droplets of black ink,
and so you cannot pick out these sentences.
By leaving out strings from Univ, we can obtain interesting lan-
guages that highlight the structures we are after. Thus, leaving out
all strings that don’t look like 0n1n from Univ, we obtain the in-
teresting CFL that contains (all and only those) strings of the form
0n1n (call it L0n1n). In the same sense, if we pull out the droplets
“surrounding the sentences,” we will reveal those sentences that
remained invisible within the uniform spray.
In general, by leaving out stuff, we can create useful things, in-
cluding works of art. A block of wood contains every impressive
carving, if only we knew how to remove wood correctly.

Figure 14.2 is about the containment of language families and not lan-
guages. Here, Univ is just one point inside the innermost Venn diagram
set labeled Regular. A context-free language with strings of the form
0n1n is a point outside of Regular, but inside Context-free—and likewise
for all the other language families. This is why the language family inclu-
sions are the way depicted: less structure-endowed languages are points
within inner Venn diagram sets, and more feature-laden languages are
points within encompassing sets. The universal set of this Venn diagram
is the union of all intricate structures—including even non-RE sets.

14.2 One Example of a Recursive and an RE Language

We begin with one example of a recursive language in §14.2.1 and one
example of an RE language in §14.2.5. This will help us to set the stage
to show more of them, plus show intricate theorems that bridge between
them.

14.2.1 A Recursive Language

Consider language LEmptyDF A defined as follows:

LEmptyDF A = {x : x describes a DFA whose language is empty}
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This is a recursive language because we can define a TM T that reads
from its input tape the description of a DFA D, encoded as a string x in
the tape alphabet of the TM.5 The TM then runs an algorithm to check

5 String x could well be the markdown de-
scription of a DFA.

whether D’s language is empty.6 If so, it accepts x; else it rejects x. We
6 Can you think of an algorithm to check
whether a given DFA’s language is empty?
Hint: Think of the most general way to
characterize a DFA that does not have any
string in its language—not even ε.

take acceptance as an indicator of “yes” or “true,” and rejection as an indi-
cator of “no” or “false.” Given that such a TM algorithm can be designed,
we can conclude that LEmptyDF A is a recursive language.7 By saying

7 Hereafter, we will use D to denote a DFA
and 〈D〉 to denote its description. This ap-
plies to other entities too—for instance, a
Boolean function ϕ and its description 〈ϕ〉.

that LEmptyDF A is a recursive language, we mean checking for emptiness
of DFA is algorithmic.

(Definition of a Decider and Semi-Decider): A Turing machine that
correctly checks for the membership of a string x in a given lan-
guage L and halts, either printing “yes, x ∈ L” or “no, x ∉ L” is said
to be a decider for L. The algorithm implemented by such a TM
is said to be a decision procedure for membership of x in L.
Deciders have recursive languages, and represent algo-
rithms.

Keep in mind that we will not know a priori8 whether x ∈ L or not. When8 Say by hiring a soothsayer or asking an
oracle... the purveyor of a decider sells us a decider for L, we must take a chance

and run it on x. If the purveyor is honest, we will find that her decider
always halts and correctly answers whether or not x ∈ L.

14.2.2 Prerequisites to Defining the Notion of RE

Unfortunately, we cannot show you an RE language right away, unless we
adequately prepare you to receive one.9 Thus we begin with definitions,9 The shock may be too much.

starting with that of a semi-decider.

(Definition of a Semi-Decider): One of the coolest aspects of com-
puter science is that we can prove that for some problems, only
semi-deciders (or “semi-algorithms” or “half algorithms”) can ex-
ist! If you wish to take a chance with a semi-decider, you’d better
do this:
• Either patiently wait for the semi-decider to “come back;” or
• Have your fingers on “Control-C” to exit out of the semi-decider

and answer “MAYBE x ∈ L.”
This is because a semi-decider for membership of x in L is guar-
anteed to halt and print “yes, x ∈ L” only in case this assertion is
true. However the only way to find out is to take a chance!
Semi-deciders have recursively enumerable (and not recur-
sive) languages, and represent procedures.

We will use the word ‘procedure’ less often, as it is not as crisp or formal
as RE (semi-decider).
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14.2.3 Combining Semi-deciders for L and L

Ordinarily, when the purveyor of a semi-decider sells us a semi-decider
for L, we take a chance and run it on x, keeping one pair of fingers crossed,
and another pair of fingers on Control-C.10 However, suppose we can buy 10 If a purveyor sells us a decider when

we have proof that a decider cannot ex-
ist, then we can take the purveyor to court
and sue him! However, note that under
“some weather conditions,” a semi-decider
may print “no, x ∉ L” and halt. Thus, tak-
ing the person to court or not simply by
testing out a handful of cases is not a wise
idea, for, the purveyor may have “jimmied”
his semi-decider to return enough “no” an-
swers. In other words, prove before you
sue.

these two semi-deciders:
• A semi-decider for x ∈ L (say, SD1)
• A semi-decider for x ∈ L (say, SD2)
Then we can combine SD1 and SD2 to obtain a full decider for L as fol-
lows:
• If SD1 returns, then Control-C out of SD2 and answer “yes.”
• If SD2 returns, then Control-C out of SD1 and answer “no.”
The reader may verify that by swapping the above answers (yes for no,
and vice-versa), we obtain a decider for L. These arguments can be sum-
marized as the following theorem.

Theorem 14.2.3: If a language L and its complement L are both
RE, then L is recursive.

14.2.4 The “no wimp” Clause

In all these constructions, one must avoid deliberately creating a semi-
decider when it is possible to create a full decider. The designer must
strive to either come up with a decider or prove (or give strong reasons
for) why such a decider cannot exist.11 We call this the “no wimp” clause 11 This is like claiming that sorting is

O(2n) in an algorithms class which makes
one eligible for a failing grade. While
there are exponential sorting algorithms,
one always strives to do better.

because whenever someone says “L is RE,” the default meaning is that
“L is known to be not recursive.” This convention will be applied to the
exercises we shall entertain.

14.2.5 A Recursively Enumerable Language

Language LG1neG2 is recursively enumerable but not recursive
Consider language LG1neG2, defined as follows:

LG1neG2 = {〈G1,G2〉 : G1 and G2 are CFGs, and L(G1) 6= L(G2)}

This language consists of pairs of context-free grammars such that
these CFGs denote different context-free languages.12 Now we see a dis-

12 It is in fact interesting to note that our
classification is not based on the superfi-
cial structure of the production rules that
represent CFGs. In fact, the production
rules that represent CFGs syntactically
are regular languages: they consist of sim-
ple repetitions of productions, where the
productions themselves are repetitions of
nonterminals and terminals coming after
an arrow symbol. We are given the syn-
tactic representation of G1 and G2 but
then asked to consider L(G1) and L(G2)
in their full glory, checking whether these
languages are unequal.

tinct change in the kinds of questions being asked.

Instead of asking whether the syntax of the input meets certain
criteria, we now ask whether a parser (PDA) loaded with CFG
G1 will behave the same as a parser loaded with CFG G2 over all
parser inputs. A Turing machine is asked to classify these CFG
pairs based on their parsing behaviors on all inputs to a parser
based on these grammars.
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In a sense, this is the kind of change that awaits you at every turn in
the rest of this course. We will be describing machines using strings (or
pairs of strings), and will attempt to classify these strings into a language
based on the behaviors produced by the strings. We begin by sketching a
proof for the question at hand.
Why is LG1neG2 Recursively Enumerable? The first part is to show
that if L(G1) 6= L(G2), there is indeed a test for it. This test, when imple-
mented faithfully by a Turing machine, imparts to this TM the language
LG1neG2.
The test we present is perhaps not the prettiest of tests; but still it is a
mechanizable test that helps establish the existence of a semi-algorithm.
That is, if the grammars have different languages, the Turing machine
will accept such pairs and halt.
• Keep on enumerating strings from Σ∗ according to the numeric order

introduced in §3.6. This enumeration will make sure that every string
will be eventually enumerated.

• Parse each enumerated string using the CFG. If the CFGs indeed
have a different language, they must exhibit the difference on at least
one string. Thus, when that string is enumerated and parsed by the
parsers of G1 and G2, one parser will accept while the other will reject.
Voilà, the difference between the grammars will have been exhibited!

• All these activities can be carried out on a single Turing machine.

The Turing machine that implements the above tests has language
LG1neG2, and hence this language is RE.

Why is LG1neG2 not recursive? This is the more interesting part of the
overall question. We can’t quite answer this question in full depth yet.
Intuition: We just showed that LG1neG2 is RE. Suppose we have a semi-
decider for LG1eqG2. That is, we have a semi-decider that outputs “yes”
in case L(G1)= L(G2). Here is intuitively where the difficulty lies:
• We can tell that two grammars are different just by having one string

enumerated according to the numeric order where one parser accepts
while the other parser rejects.

• However, to tell that two grammars are equivalent requires examining
all strings in Σ∗, which is an activity that won’t terminate.

Note: This is only an indication that LG1eqG2 is likely not RE.
Actual High Level Proof: The actual proof roughly goes as follows.
• In Chapter 15, we will give a proof sketch for the fact that it is impos-

sible to tell whether, given a CFG, it has a universal language. That
is, whether the CFG describes a PDA whose language is Σ∗ cannot be
algorithmically checked merely by analyzing the CFG.13 That is, a de-13 Contrast this with LEmptyCFG which is

a language of CFGs with an empty lan-
guage; we will discuss this language in
§14.3.

cider (call it UnivCFG) to check whether a given CFG’s language is
universal cannot exist.
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• Well, the fact that telling whether CFGs have universal languages be-
ing undecidable itself merits a detailed proof; see [42] for details. How-
ever, given that proof, we can rigorously argue as follows:
– Suppose someone claims that there is an algorithm to check whether

two grammars have the same language using algorithm EqCFG.
That is, suppose EqCFG(G1,G2) will halt and emit “yes” exactly
when L(G1)= L(G2).

– Then we can do the following trick: ask the user for a grammar:
“May I please have your grammar – call it GUser; I will test for you
whether it has a universal language.”

* Behind the scenes, construct the Turing machine:
EqCFG(GUniv,GUser) where GUniv is a grammar for the univer-
sal language. Notice that the second argument is the user-given
grammar.

* If EqCFG determines that the grammars have the same lan-
guage, it is indirectly answering yes – GUser has a universal
language—this is known to be impossible.

– Hence, EqCFG cannot exist!

Claimed 
(but

impossible) 
decider for 
L_EqCFG

Decider for L_UnivCFG 

Grammar 
for 

universal 
language
G_Univ

G_User

Yes

No

Figure 14.1: Suppose EqCFG exists.
Then we can build the decider UnivCFG
through the construction shown. We as-
semble EqCFG inside a “box” where it is
fed two things: (1) the user-given CFG
(called GUser), and (2) some grammar
for the universal language, called GUniv.
Whenever the box EqCFG outputs “Yes,”
it means that the grammars fed to it are
language-equivalent. Due to our construc-
tion, it means that GUser has a universal
language. However, given the impossibil-
ity of realizing UnivCFG, we cannot real-
ize EqCFG either. This process is termed
mapping reduction, and is a formal reduc-
tion from UnivCFG to EqCFG, as will be
explained in Chapter 15.

See Figure 14.1 for a diagram illustrating this proof. We will draw such
“boxes within boxes” diagrams to explain reduction proofs. The notion of
reduction itself is explained in Chapter 15.

You Call These Proofs?!

One thing that disturbs many who study computability is that the proofs
often sound very hand-wavy! One almost always ends up using a com-
bination of English and pseudo-code. Early-day computability theory re-
searchers were in fact expected to write elaborate proofs. These days,
with so much programming knowledge going around, simply outlining a
proof at a high level will largely please even the staunchest of skeptics.14 14 Dear student, we are being nice to you

by at least once in your life allowing you
to write a proof in prose form.

Moreover, when in doubt, modern-day mechanical theorem provers can
easily be invoked to establish rigorous proofs. In this book, we will not
have the space (or the need) to go beyond arguments based on a combina-
tion of English and pseudo-code.

14.3 Other Examples of Recursive and RE Languages

We now present a collection of recursive and RE languages and then pro-
vide a recap of many results with the aid of Figure 14.2.
Language Lsat: As our second example of a recursive language, consider

Lsat = {〈ϕ〉 : ϕ is a Boolean formula that is satisfiable}

This is a recursive language because we can implement a Turing machine
that first reads 〈ϕ〉 and successfully parses it to reveal the Boolean for-
mula ϕ. It then invokes an algorithm to check whether ϕ is satisfiable.
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This algorithm can be designed with utmost emphasis on clarity and sim-
plicity even if doing so renders the algorithm highly inefficient. We are af-
ter all interested in decidability-related questions; the “Big O” complexity
does not matter. As an example, the input could be the formula p∧¬q∧r,
and the TM can discover the satisfying instance p = 1, q = 0, r = 1 through
an exponential enumeration of all Boolean combinations of p, q, r.1515 In a sense, undecidability is “harder”

than exponentiality. Therefore, in unde-
cidability proofs, using exponential sub-
procedures is totally fine (doing so does
not hide any lurking undecidability).

Language LEmptyCFG : As our third example of a recursive language,
consider

LEmptyCFG = {x : x is a CFG that denotes an empty CFL}

This is a recursive language because we can implement a TM that first
decodes 〈G〉 on its tape to be a syntactically legal context-free grammar G.
It then analyzes this CFG to see whether its language is empty.16 Given16 Let us use elementary productions

(without the vertical bars | as separators). a CFG, go through all its productions, and in each production, mark each
right-hand side terminal to be “reachable.” Then if any production’s right-
hand side is entirely reachable, then mark the left-hand side to be also
reachable. This process must terminate. Upon termination, if the start
symbol of the CFG is found marked, the language in question is non-
empty, because it can be used to expand into a terminal-only string (this
process is detailed in §14.5.2). The existence of this algorithm shows that
LEmptyCFG is indeed recursive.

It is clear that we now have begun discussing languages that look “more
computationally oriented” and “less parsing oriented.” That will be the
flavor of the rest of this book. However, this is a completely arbitrary
distinction, as formal languages and their classifications encompass all
types of procedures and algorithms.

14.3.1 RE Languages that are not Recursive

We now present a few additional important languages that are only RE
and not recursive. Many of the proofs (and proof outlines) will have to
wait till the next chapter. We begin with a hugely important language
called ATM

17 that we will study in the next chapter also.17 Its name tells you that it is your “money
language.” Define the language

ATM = {〈M,w〉 : M is a TM and w its input and M accepts w}

This is the language of pairs where M is a Turing machine description,
and w an input that this TM is to be fed during its simulation of M.

Theorem 14.3.1: ATM is RE.

Proof: Build a TM T that takes 〈M,w〉 and simulates M’s behavior on
w.18 In case 〈M,w〉 is in ATM , the execution of T will halt, as it will

18 This is quite similar to writing an in-
terpreter for Python that takes a given
Python program and runs it on a given in-
put.

discover (eventually) that M accepts w. When T detects this situation, it
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itself can go to its own accept state. If M’s simulation on w rejects, then
T can reject. Else (if M’s simulation on w loops), then T itself loops.19 19 This looping is fine because the exis-

tence of a T that loops when w ∉ L(M) does
not change the fact that T ’s language is in-
deed L(M) (T does halt and accept when
w ∈ L(M)).

The language of Turing machine T is ATM and so ATM is RE. �

14.3.2 Why is it called Recursively Enumerable?

There is a very good reason why we call recursively enumerable lan-
guages so. After all, we introduced the synonym of Turing-recognizable
early on, and that name might seem more appropriate.

Theorem 14.3.2(a): For every RE language L, there is a Turing
machine EnumL, that eventually (in a finite amount of time) enu-
merates every string w ∈ L.

Proof: Given that L is an RE language, there is a Turing machine T
whose language L is. This Turing machine can be run systematically on
all the strings listed according to numeric order from Σ∗. However, one
doesn’t just obtain the first numeric-ordered string from Σ∗, run T till
it halts in the accept state, and then proceed to run the next numeric-
ordered string. Doing so would be fatal, as T may get stuck in an infinite
loop on the first string. Instead:
• Run one step on the first string;
• Then list another numeric-ordered string;
• Run one (more) step on both strings;
• List one (more) string, and run one more step on all three strings;
• In this manner, list the ith string, and run one (more) step on all the i

strings listed so far; keep doing this for increasing i;
• If and when the TM T finds one of the listed strings being accepted, it

outputs that string on an “output tape.”
• This way, the output tape will gradually fill up with strings from the

language of T, which is L. �
This style of execution is called dovetailing.

Theorem 14.3.2(b): If an enumerator EL exists for a language,
then L is RE.

Proof: Suppose language L has an enumerator EnumL. Here is how a
semi-decider T that checks for membership of a string x within L can be
built. T first fires up EnumL and keeps comparing the strings emitted
by it against x. If x ∈ L, it is clear that EnumL will eventually list it and
the aforesaid comparison will eventually succeed. When this happens,
EnumL can print “Yes, x ∈ L” and halt.20 �

20 Otherwise, EnumL is likely to not halt,
and so won’t T, which again is totally fine.
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14.3.3 Alternate proof of ATM being RE

Theorem 14.3.3: ATM is RE.

Alternate Proof:
Approach: By building this enumerator for ATM :
• Keep listing pairs 〈A,B〉 of strings from Σ∗ on an “internal tape.”
• Keep checking whether A is a Turing machine description (e.g., our

markdown language for the TM has a parser; one can run this parser
and see if it accepts A). If so, A happens to be a Turing machine
description.

• Run Turing machine A on B, treating B as its input. Again, do not run
to completion; instead, engage in a dovetailed execution with all other
TMs and inputs meanwhile being enumerated internally.

• When the dovetailed simulation finds an 〈A,B〉 pair such that A ac-
cepts B, it lists the 〈A,B〉 pair on the output tape.

• This listing will produce every 〈M,w〉 such that M accepts w.
• The existence of this enumerator means that ATM is RE. �

14.3.4 Some More RE Languages

We now discuss a few more RE languages.

•Language HaltTM is RE but not recursive:
Define the language

HaltTM = {〈M,w〉 : M is a TM and w its input and M halts on w}

This language is closely related to ATM , the only difference being that the
TM that is simulating the actions of M on input w must accept if it is
the case that M’s simulation on w can halt (accept or reject). Chapter 15
will show that HaltTM is RE.

•Language LUnivCFG is RE but not recursive:
Define the language

LUnivCFG = {〈G〉 : G is a CFG and L(G) 6=Σ∗}

The decision problem is whether a given grammar G doesn’t have Σ∗ as
its language. Exercise 14.4.1.4 asks you to describe an enumerator for
LUnivCFG .

•Language LAmbCFG is RE but not recursive:
Define the language

LAmbCFG = {〈G〉 : G is an ambiguous CFG}

The input string is a CFG and a Turing machine T is asked to check
whether or not G’s grammar admits more than one parse on any input
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string w. If there is such an ambiguous parse on some w, T can accept. It
is clear that all such G can be systematically enumerated, i.e., LAmbCFG

is RE.

14.4 Summary of Decidability/Semi-Decidability Results

Union, Compl., Intersect,
Reverse, Cat, Star

Intersect,
Compl.

Context-free

Context-sensitive

Recursive

Recursively enumerable

Non Recursively enumerable

Union, 
Reversal,
Cat, Star

Union, Compl., Intersect,
Reverse, Cat, Star

Union, Compl., Intersect,
Reverse, Cat, Star

Compl.
Union, Cat, Star, 

Intersect, 
Reversal

Regular

Intersect

(1) Membership
string in L(G)

(2) Emptiness
of CFG

(3) Ambiguous 
CFGs

(4) L(G1) != L(G2)

Figure 14.2: Formal languages, set opera-
tions, and recursive/RE status of four CFG
questions.

Let us now summarize all the closure, decidability, and semi-decidability
results captured in Figure 14.2. We will first walk top-down on the right-
hand side of Figure 14.2. Then we will walk top-down on its left-hand
side.
Closure: Here are the closure results, most of which have been proven

in various prior chapters. (In other cases, we will point out that they
are new closure results.)
• Regular languages are closed under union, complementation, inter-

section, reversal, concatenation, and star.
• Context-free languages are closed under reversal, concatenation,

and star, but not intersection and complementation.
• The intersection of a regular language and a context-free language

is context-free.
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• Intersection and complementation of context-free languages are known
to yield context-sensitive languages.

• Context sensitive languages are closed under union, complementa-
tion, intersection, reversal, concatenation, and star.2121 This was never discussed thus far, so it

is just an extra piece of information for
you.

• Recursive languages are closed under union, complementation, in-
tersection, reversal, concatenation, and star.

• RE languages are closed under union, concatenation, star, intersec-
tion, and reversal.

• RE languages are not closed under complementation.
Decidability and Semi-Decidability: These are captured mostly on

the left-hand side of the figure.
• Membership of a string in L(G) (the language of a grammar) is de-

cidable (this simply says that parsers are deciders).
• Emptiness of a CFG is decidable (we have already proved this by

describing a decider).
• Ambiguity as well as grammar inequivalence are recursively enu-

merable but not recursive (this result was mentioned in §11.5.3).

14.4.1 Existence of Non-RE languages

Why is every language not recursively enumerable at least? Here is a
summary of the proof presented in Appendix C:2222 There are mapping-reduction based

proofs in [42] that actually present some
of these non-RE languages—they are still
countable languages! Our supplementary
material at https://bit.ly/Automata_

Jove under nonRELang explains one of
these proofs.

• There are uncountably many languages (as many languages as there
are Real Numbers; this is denoted by the cardinal number ℵ1).

• There are only countably many Turing machines (as many TMs as
there are Natural Numbers; this is denoted by the cardinal number
ℵ0).

• Each RE language is the language of some TM.
• Thus, there must exist non-recursively enumerable languages.

Exercise 14.4.1, RE and Recursive
1. Describe a decider to check whether the language of a given DFA

D is infinite.
2. Describe a decider to check whether a linear bounded automaton

L working on an input w will go into an infinite loop.
3. Describe an enumerator for the language HaltTM similar to how

the enumerator for ATM was designed.
4. Describe an enumerator for the language LUnivCFG .
5. Describe a semi-decider for whether or not a grammar G1 has a

language that is not contained in the language of another gram-
mar G2. That is, we must be able to enumerate all such pairs
(G1,G2) such that L(G1) 6⊆ L(G2).

6. Suppose someone claims to have a decider for L(G1)⊆ L(G2). Demon-
strate how to build a reduction proof from UnivCFG. Draw a
diagram similar to Figure 14.1 explaining your proof.

https://bit.ly
https://bit.ly
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7. In §15.2.2, we will argue that LAmbCFG is not recursive. Assuming
this result, argue that LAmbCFG is not RE.

8. Elaborate on the results discussed in §14.4 in your own words
(a few sentences responding to the same proofs). In particular,
through discussions with others, develop an algorithm to decide
whether or not a given linear bounded automaton will loop on a
given input.

9. Write a proof sketch for the fact that the intersection of a regu-
lar language and a context sensitive language is context sensitive.
Hint: Given a PDA P and a DFA D, modify the DFA product con-
struction suitably to build a PDA modeling L(P)∩L(D). This can
be done as follows. Start the machines in their respective start
states. Whenever a non-ε input is to be processed, both the PDA
P and the DFA D must engage in this step. Build a product state-
space of the control states of the machines. The stack manipula-
tion part carries over from P ’s actions. �

14.5 RE and Recursive Sets: More High-Level Proof Sketches

Here are some more examples of high-level proof sketches pertaining to
RE and recursive sets.

14.5.1 Language of DFA D where L(D)=Σ∗ is Recursive

Consider the language of DFA descriptions 〈D〉 such that the described
DFA D has a universal language:

LUnivDF A = {〈D〉 : D is a DFA and L(D)=Σ∗}

We write 〈D〉 with the angle brackets highlighting that the set consists
of strings representing (encoding) DFA. For instance, 〈D〉 could be Jove
programs of DFA! So in a sense, LUnivDF A is the set of Jove descriptions
that describe DFA with universal languages.

To show that a language is recursive, we must present a Turing ma-
chine that decides and halts regardless of the input presented. Here is
the algorithm that this TM can follow:
• Examine the input to see if it encodes a DFA as per the encoding con-

ventions agreed upon. Reject if the input does not encode a DFA.
• If the input encodes a DFA, then minimize it to see if it has a single

accepting state that transitions back to itself upon every symbol in Σ.
If so, halt with “Accept” as the outcome. Else, halt with “Reject” as the
outcome.
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14.5.2 Language of CFG G where L(G)=; is Recursive

Consider
LEmptyCFG = {〈G〉 : G is a CFG and L(G)=;}

• Examine the input to see if it encodes a CFG as per the encoding con-
ventions agreed upon. Reject if the input does not encode a CFG.

• If the input encodes a CFG, then apply a bottom-up marking process
that discovers whether the CFG generates some string or not. If so
(the language is not empty), halt with “Reject” as the outcome. Else,
halt with “Accept” as the outcome.

Determining whether L(G) = ;: The bottom-up procedure to deter-
mine whether a CFG generates a string or not is now described. For
simplicity, assume that the CFG production rules are of the form

L → R1R2 . . .Rn

and not compound rules such as

L → R1R2 . . .Rn | R1
1R1

1 . . .R1
n

where multiple right-hand sides are associated with a single L.
• Initially, set the status of all nonterminals as non-generating. A gener-

ating nonterminal can generate a string over Σ∗. The algorithm below
will discover all the nonterminals that are generating.

• For each production rule i of the form

Li → R i
1R i

2 . . .R i
n

where all of R i
1,R i

2, . . . ,R i
n are terminals, mark the left-hand side non-

terminals, indicating that they are generating. Examples of generat-
ing nonterminals discovered in this step are, for example, going to be
nonterminals such as P in the rule below

P → ab

Here, a and b are terminals. It is clear than P can generate string ab.
It also includes nonterminals such as P where there is a production

P → ′′

Here, the string of terminals on the rule’s right-hand side is the empty
string, that P can generate.

• Now locate all the rules where the right-hand sides are either gener-
ating nonterminals or terminal strings. Mark the left-hand side non-
terminals as generating. This rule can induct more nonterminals into
the generating category.

• Repeat scanning through the production rules until no more rule left-
hand sides are classified as generating.
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• If the start symbol S is generating, the language of the grammar is not
empty. Else, the language of the grammar is empty.

Example: Let us further illustrate this algorithm on the grammar be-
low, where a, b, c, d, e and f are terminals.

R1: S -> a B

R2: S -> a C

R3: B -> b B

R4: B -> c C

R5: C -> d D

R6: C -> ’’

R7: D -> e f

• Rule R6 indicates that C is generating, since it can be reduced to ”

• Rule R2 indicates that S is generating, since C is generating, and a is a
terminal.

• Since S is generating, the language of S is non-empty.
While not needed for our proof anymore, we can also make additional
inferences; here are some of them:
• Rule R7 indicates that D is generating, since e and f are generating.
• R5 indicates that C is generating, since d is a terminal, and D is gener-

ating.
• R4 indicates that B is generating, since c is a terminal, and C is gener-

ating.
• R3 indicates that B (on the left-hand side) is generating, since b is a

terminal, and B (on the right-hand side) is generating.
In the modified grammar below, we cannot conclude that S is generating,
and hence the language of this grammar is empty:

R1: S -> a B

R2: S -> a C

R3: B -> b B

R4: B -> c C

R5: C -> d D

R6: D -> e C

Here, all the right-hand sides are nonterminals that have, as yet, not
been shown to be generating. Hence, none of the left-hand sides – includ-
ing S – can be shown to be generating.

14.5.3 Language of LBA that halt on input w is Recursive

Let us write a high level proof sketch for the proposition that the lan-
guage 〈L,w〉 of pairs where L is a linear bounded automaton (LBA) and
w is an input string is recursive. More formally, the language in question
is
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LBAHaltL,w = {〈L,w〉 : L is an LBA and Lhalts on w}

Recall that an LBA is a Turing machine where the tape can be modified
only where the initial input was laid out. Let us denote the instantaneous
description (ID) of the LBA using the tuple notation (q,hi,w) where q is
the control state, hi is the head index, and w is the tape contents. Thus,
w[hi] is the character under the LBA’s “head.”

Let us assume that an LBA of |Q| states is started with hi = 0 and
the input string is w. Since the head can only go through the extent of
w and make changes, we can easily calculate the number of IDs possible.
Specifically,
• There are |Q| values possible for the first position of the ID.
• There are |w| different head indices possible.
• If there are |Γ| tape symbols possible, and given that the input alpha-

bet Σ is a proper subset of Γ, the total number of tapes possible is
upper-bounded by |Γ||w|. This assumes that all combinations of tape
symbols of length |w| are possible.

• Thus, the total number of distinct IDs is upper-bounded by

StepsLBA = |Q| · |w| · |Γ||w|

• Thus, after starting an LBA, if it has not halted within StepsLBA

steps, then we can assert that it will never halt.
Thus, the language LBAHaltL,w is recursive. Basically, develop a TM
that simulates LBA L on w. If this simulation hasn’t halted for StepsLBA

steps, then the TM halts with “Reject” as the outcome. Else, it halts with
“Accept” as the outcome.

14.5.4 Language of Turing machines whose first output is ‘3’

Consider the language of pairs 〈T,w〉 where 〈T〉 is a TM description and
w is the input on which T is run. Let us consider the language

Tw,3 = {〈T,w〉 : T is a TM and w its input, and Tprints 3 as its first output.}

We claim that Tw,3 is RE.
A semi-algorithm (or enumeration procedure) that enumerates the mem-
bers of Tw,3 is the following:
• One can code-up a single Turing machine T such that T keeps enu-

merating TM descriptions one after the other on one of its tapes. Let
these TMs be T1, T2, . . ., Ti, . . ..

• Let the current list of TMs generated be T1, T2, . . ., Ti. Run all these
TMs on input w for one step. Then generate one more TM and add it
to the current list of TMs. The list now becomes T1, T2, . . ., Ti, Ti+1.
Run this extended list of TMs on input w for one additional step.
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• Keep this process going. Thus, the earlier-listed TMs will have run
more steps than the later-listed TMs. However, eventually, every TM
listed will receive any number of steps of execution, running on w.

• If/when a TM T j prints ‘3’, enumerate the pair 〈T j,w〉 on an output
tape. This way, we will have an enumerator for Tw,3. The existence of
this enumerator tells us that Tw,3 is RE.



http://taylorandfrancis.com


15
Post Correspondence, and
Other Undecidability Proofs

Chapter Gist: We begin with Post Correspondence, a “one-stop-
shopping” for decidability arguments (§15.1). We sketch a proof of
the undecidability of PCP (§15.2). Next, we show the undecidabil-
ity of the acceptance problem (§15.3) and the halting problem via
reduction (§15.4). The general idea of mapping reductions is our
grand finale (§15.5).

15.1 Post Correspondence: “Drosophila” for Decidability

The Post Correspondence Problem (PCP, Figure 15.1) is like the common
fruit fly (Drosophila melanogaster, Figure 15.2) for setting up decidability
arguments. Fruit flies are very widely used for research in biology and
medicine, as they share with humans about 75% of the genes that cause
diseases, so scientists can learn about human genetics by studying fruit
fly genetics. Similarly, the Post Correspondence Problem (PCP) is the
“Drosophila of computability.” Since its presentation by Emil L. Post in
1946, the undecidability of many important problems in computer science
has been shown by formally connecting these problems to PCP through
mapping reductions (covered in §15.4 and §15.5).
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Figure 15.1: A PCP instance and one of
its solutions. PCP helps show the unde-
cidability of important problems such as
grammar ambiguity, validity of first order
logic sentences, and context-sensitive data
dependence analysis.

Figure 15.2: Drosophila melanogaster
(Image courtesy of pixabay.com)

PCP itself is a fun puzzle to “administer to your friends” regardless of
their age. As one example, consider the four dominoes on the top row, and
assume access to a copying machine1 (Figure 15.1). Each domino carries 1 That can make identical copies of any

domino.a non-empty string of 0’s and 1’s on the top and bottom half.2 Your friend
2 The nonemptiness condition is not
strictly required, but does not change the
problem, and is required by many PCP
solvers. For dealing with ε, see Exercise 2.

must find a solution (one being the six dominoes shown as the bottom
row) where each solution domino is either the original domino or a copy
thereof3 such that when you scan the top row of the solution dominoes,

3 Domino 4 is copied once.
you get the same string (1 01 01 1 011) as when you scan the bottom row
of the solution dominoes (101 0 1 101 1). You are allowed to ignore any

http://www.pixabay.com


228 AUTOMATA , COMPUTABILITY: PROGRAMMER ’S PERSPECTIVE

number (but not all) of the dominoes.
A PCP instance is the sequence of dominoes given as input.4 Each

4 We use a sequence for the input because
then we know the index (rank) of each
domino, and can write out our solution as
a sequence of these indices.

“domino” can be viewed as a pair of bit-strings. The instance given in Fig-
ure 15.1 can be viewed as the sequence5 [(01,1), (011,1), (01,0), (1,101)]. A5 We can also write down the instance as

[1,2,3,4] where each index serves as a
shorthand for the actual domino at that
position.

solution is also a sequence of dominoes or their copies. A solution for
the instance in Figure 15.1 is [(1,101), (01,0), (01,1), (1,101), (011,1)]. A
solution can also be written out as a sequence (of length 5) of indices of
tiles: [4,3,1,4,2].

Figure 15.3: The PCP instance whose op-
timal (minimal length) solution is 206.
With “just four tiles,” your friend may
think that she can do it in a jiffy. See
how many copies must be made and the
specific clever arrangement that must be
discovered! To make matters worse, there
are no algorithms to solve the PCP. None!
This means your friend may infinitely loop
(taking some time off to unfriend you).

The length of a solution can be artificially bloated; thus,
4,3,1,4,2,4,3,1,4,2 is also a solution, as the top and bottom rows will still
read the same—but this solution is of length 10. An optimal solution is
one where the solution sequence is the shortest.6

6 The optimal solution need not be unique:
for the PCP instance [(0,0), (1,1)], the opti-
mal solution can be either [(0,0)] or [(1,1)].

A key observation is that in general, the optimal solution of PCP in-
stances can be very long. For instance, for the instance of length four
(4) in Figure 15.3, the optimal solution is of length 206. This solution
was produced by the excellent PCP-solver written by Ling Zhao [47], that
we have integrated into Jove (see §B.1.8 for usage details).
Why is the PCP of interest? More than this “explode in your face” be-
havior (which makes PCP a rather cruel puzzle7), PCP instances have

7 In a sense, the explosive growth of op-
timal solution lengths is an indication of
PCP’s undecidable nature.
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the ability to simulate ATM . In other words, given an M and w, one can
manufacture a PCP instance PCPM,w such that solving this PCP puzzle
is tantamount to answering whether M accepts w! Due to this fact, many
theoretical and practical problems have been shown to be undecidable
by reduction from the PCP. PCP proves to be a much more convenient
starting point for these mapping reduction arguments than ATM .

More specifically, the set of all PCP instances that have a solution
is RE but not recursive. If the optimal solutions were to be bounded
in length by a function f (n) of the instance length n, one could simply
search for all PCP instances of length f (n) or less, and reach a decision.
Unfortunately, such a bound f (n) does not exist.

15.2 Proof Sketch of the Undecidability of PCP

Given any alphabet Σ such that |Σ| > 1, consider the tile alphabet T ⊆
Σ+×Σ+. Now consider the language

PCP = {S : S is a finite sequence of elements over T that has a solution}.

Theorem 15.2: The language PCP is not recursive (not decidable).

Proof Sketch: We will employ mapping reduction from ATM but with
a slight twist. Given an M and w, we will manufacture a PCP instance
PCPM,w such that solving this PCP puzzle is tantamount to not just an-
swering whether M accepts w (decision of ATM) but actually showing
how M accepts w. This is called the computational history method. The
details of the construction are found in standard textbooks: our construc-
tion exactly follows that given in [42]; we take a simple Turing machine
and its accepting computational history, which is a sequence of instanta-
neous descriptions (ID, §13.3). In particular, we take the history I01 ->

1J1 -> F10 given in Figure 15.4 and walk you through the construction
step by step. In this figure, the first two tiles named T1 and T2 are (*#,

*#*i*0*1*#*) and (*i*0, 1*j*) respectively. To explain our notations bet-
ter, let us take tile T2 as an example. In Figure 15.4, we present tile T2 as
[*I*0]
[1*J*] with square brackets added and placed one above the other to ap-
pear like a domino. As per the notation of “pair of bit strings” introduced
on Page 228, this tile would be (*I*0, 1*J*). In essence, the tile is (I0, 1J)
representing the change of the ID I01 to 1J1 when viewed through a 2x2
“peephole” (elaborated in §15.2.1). The purpose of the decorators * and
# is to make sure that the tiles fit exactly when describing an accepting
computational history.8

8 The details of these decorators is given
in [42] and we don’t elaborate how the dec-
orators help the tiles fit.
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Figure 15.4: Conversion of a simple ac-
cepting computational history of a TM to
a PCP solution.

I J0 ; 1,R F1 ; 0,L

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

----------- ----- --- --- ------- --- ----- --- --- ----- --- ------- ----

[*# ][*I*0][*1][*#][*1*J*1][*#][*F*1][*0][*#][*F*0][*#][*F*#*#][*<>]

[*#*I*0*1*#*][1*J*][1*][#*][F*1*0*][#*][F* ][0*][#*][F* ][#*][#* ][<> ]

15.2.1 Tile Construction Basics

Given a Turing machine M, we systematically go through the transition
function δ of M as well as the elements of its tape alphabet, Γ, and gen-
erate a finite set of tiles, TilesM . These tiles help describe how a TM
actually moves from state to state, seeing the tape only under the head,
and affecting the tape through a small peephole around its current head.
All possible TM tape evolutions are captured in the tiles that model ac-
tivities within peepholes. Basically, the peephole is of size 2 for a right
move of the TM, and of size 3 for a left move of the TM. The intuition
here is that by seeing a small region around a TM’s head, one can fully
determine the new state around the head of the TM after a transition. In
our example, tile (*I*0,1*J*) represents a move in which the TM is in
state I, sees a 0, and then moves right after changing the 0 to a 1 while
also attaining state J. In a sense, we are precomputing all one-step right
moves and one-step left moves as see through peepholes and encoding
them into the tiles. For our example accepting computational history, we
manufacture all the tiles mentioned in Figure 15.4.

All accepting computational histories start with a specific instanta-
neous description in which the entire initial input is present, and the TM
head is “looking at” the first symbol of the given input string. In our
example, this ID is I01. This tile must be the first tile of any solution,
and to accomplish that, we employ the starting tile (*#,*#*I*0*1*#*).
The added “decorations” surrounding I01 result in the bottom of the tile
actually being [*#*I*0*1*#*], and the purpose of these decorations is
to ensure that this beginning tile also can be the first tile of any PCP
solution.

In this very simple example we are dealing with, Figure 15.4 presents
the solution obtained by just lining up the tiles. In general, a hypothet-
ical decider of PCP will have to try much harder and try any possible
accepting computational history at all.9

9 Given Theorem 15.2, we know that a de-
cider for PCP cannot exist, meaning that
any program we write must admit the pos-
sibiity of going into an infinite loop.

In general, given a pair 〈M,w〉 that belongs to ATM , we follow the
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construction outlined so far and obtain a (possibly gigantic) set of PCP
tiles, say BigPuzzle. Now, if M were to accept w, the acceptance ought to
be describable as a solution to BigPuzzle.10 For the TM to accept the given 10 ...for which you may need a BigXMasVa-

cation.input, the last few tiles allowed in the computing history must contain
accepting configurations of the TM. In our example, the last few tiles
contain the final state name F, and include a few “decorated tiles” that
contain F10. However, we know by now that BigPuzzle can’t be solved.11 11 ...and no manufacturer’s refunds are

possible.The upshot of the construction just described is that if there is an algo-
rithm for solving PCPM,w, there would then be a decider for the language
ATM . Given that there cannot be a decider for ATM (proved in §15.3),
there is no algorithm to solve the PCP puzzle PCPM,w. This establishes
Theorem 15.2.

15.2.2 Proving Grammar Ambiguity by Reduction from PCP Claimed 
(but 

impossible)
decider for 

L_Amb 
(CFG 

ambiguity)

Decider for L_PCP 

PCP 
Instance to 

CFG 
“gadget”

PCP 
Instance Yes

No

Figure 15.5: Mapping reduction from PCP
to Grammar Ambiguity

PCP is hugely important as a stepping stone to proving many important
practical problems to be undecidable (non-recursive). For instance, one
can perform a mapping reduction from PCP instance P to a context-free
grammar GP in such a way that the ability to algorithmically decide the
ambiguity of CFGs would make PCP decidable. Here are some more de-
tails of this construction (Exercise 5 will ask you to further elaborate this
construction, with many hints provided):
• Given any PCP instance P, we obtain GP through mapping reduction

(see Figure 15.5). In this figure, the term gadget is used in a technical
sense. It is the function that transforms an instance of PCP to an
instance of a grammar whose ambiguity is checked by the “inner box.”

• Hence, the algorithm to check for ambiguity must also apply to GP .
However, the construction of GP would have ensured that the check of
GP ’s ambiguity would allow us to extract a solution to P.

• However, since P is any arbitrary PCP instance, and solving PCP is
shown undecidable, we cannot have a decider for CFG ambiguity ei-
ther.

In the same manner, PCP serves as a stepping stone for many more prob-
lems. Here are three:
• the validity of predicate logic formulae is undecidable.
• checking whether variables in a program alias is undecidable [41].
• many language containment questions for concurrent languages with

synchronizations [38] are undecidable.
In all these cases, we are erecting mapping reductions from PCP to one
of these problems.

15.2.3 PCP in Jove

We have included Jove notebooks to invoke Zhao’s PCP solver from the
comforts of Python. §B.1.8 provides details. This Jove-based interface
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allows you to see the solution both as an arrangement of tiles and as a
listing of tiles presented as a sequence.

Exercise 15.2.3, PCP Solver in Jove
1. Using the PCP solver in Jove, determine the optimal solution length

for the PCP instance

[(100,1), (0,100), (1,0)]

2. Suppose someone wants to allow tiles of the form 〈w,ε〉 where w ∈
Σ+ and Σ = {0,1}. What are four ways in which you can modify
such a tile to meet the nonemptiness condition? Show one of these
ways in detail by detailing the new tile you would create in lieu of
〈w,ε〉. Now explain the other three ways in words.

3. First, modify the PCP instance

[(01,1), (01,ε), (01,0), (1,101)]

to have all non-empty strings at the top and bottom of every tile
(see Exercise 2). Then determine a solution of length 2 for the
modified PCP instance. After that, determine a solution of length
3 for the modified PCP instance.

4. Answer the following questions with respect to the unary PCP in-
stance:

(a) Using Jove, solve the following unary PCP instance (i.e.,
where the alphabet is a singleton, namely {0}):

[(000,00), (0,0000), (0000,000), (0,0000), (000000,0)]

(b) Argue that the unary PCP problem — PCP over a singleton
alphabet (|Σ| = 1) — is decidable. Do it in two stages:
i. Suppose for all tiles Ti in the unary PCP instance

we have len(Ti[0])< len(Ti[1]) or len(Ti[0])> len(Ti[1]).
Then what can you say about the unary PCP in-
stance’s solutions?

ii. Suppose the above condition does not hold; that is,
there are two distinct tiles T j and Tk in the in-
stance with len(T j[0])< len(T j[1]) and len(Tk[0])>
len(Tk[1]). Then what can you say about the unary
PCP instance’s solutions?

5. Here is how we can build a mapping reduction from PCP to CFG
grammar ambiguity; please fill in missing steps (if any) and argue
that the mapping reduction actually works (achieves its purpose).
Let

A = w1,w2, . . . ,wn
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and

B = x1, x2, . . . , xn

be two lists of words over a finite alphabet Σ. Let a1,a2, . . . ,an be
symbols that do not appear in any of the wi or xi. Let G be a CFG

({S,SA ,SB}, Σ∪ {a1, . . . ,an}, P, S),

where P contains the productions

S → SA ,

S → SB,

For 1≤ i ≤ n, SA → wiSAai,

For 1≤ i ≤ n, SA → wiai,

For 1≤ i ≤ n, SB → xiSBai, and

For 1≤ i ≤ n, SB → xiai.

Now, argue that G is ambiguous if and only if the PCP instance
(A,B) has a solution (thus, we may view the process of going from
(A,B) to G as a mapping reduction). �

15.3 Undecidability of the Acceptance Problem

Theorem 15.3: ATM is undecidable.

Proof: We prove this set to be undecidable through contradiction.
• Suppose there exists a decider A for ATM . A expects to be given a

Turing machine M and a string w. Notice that “giving a Turing ma-
chine to A” means “giving it a character string representing a Turing
machine program.” Hence, in reality, we will be feeding A the pair
〈M,w〉.

• Build a program called D as follows:12

12 The mnemonic significance of D comes
from diagonalization—the proof-style be-
ing used here.

1. D takes a single argument M.
2. As its first step, D invokes A on 〈M, M〉. (Basically, we feed 〈M〉

as both arguments of A.)
3. If A(〈M, M〉) rejects, D(〈M〉) accepts.
4. If A(〈M, M〉) accepts, D(〈M〉) rejects.

• Now we can ask what D(〈D〉) will result in. (Feel free to leave out 〈. . .〉
when you write out this proof. These angle brackets are used mainly
to highlight textual descriptions of machines.)
– As per Step 1 above, the D(〈D〉) “call” turns into an A(〈D,D〉) call.

– Suppose A(〈D,D〉) rejects. In that case, as per Step 3 above,
D(〈D〉) accepts.
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– But, according to the advertised behavior of A — which is that it is
a decider for ATM — the fact that A(〈D,D〉) rejects means that D is
a Turing machine that does not accept 〈D〉, or that
D(〈D〉) rejects or loops! This is the first part of a two-part con-

tradiction that we will obtain.

– Suppose A(〈D,D〉) accepts. In that case, as per Step 4 above,
D(〈D〉) rejects.

– But, according to the advertised behavior of A — which is that it is
a decider for ATM — the fact that A(〈D,D〉) accepts means that D
is a Turing machine that accepts 〈D〉, or that
D(〈D〉) accepts! This is the second part of a two-part contra-

diction that we have obtained.
Therefore, we obtain a contradiction under all cases.13 This is tanta-13 This proof is very likely to cause huge

waves of confusions in students, especially
when it typically gets discussed close to
the end of the semester. I’ve added a fair
amount of supplementary tutorial ma-
terial at https://bit.ly/Automata_Jove
under Halting to help students.

mount to having proven False. It is the claim that a decider A for ATM

exists that allowed us to prove False. Thus, by the principle of proof by
contradiction, such a decider A cannot exist! �

15.4 Halting (HaltTM) is Undecidable

Figure 15.6: ATM to HaltTM Reduction.

Decider for A_TM

for
Decider

Halt_TM

Run
M on w

accept

reject

accept

reject

accept

reject

M

w

Theorem 15.4: HaltTM is undecidable.

Proof: (Basic idea): We perform a mapping reduction from ATM (Fig-
ure 15.6). We assume that all the inner components of this figure (namely
the OR-gate logic and the ability to run M on w) can be realized by pro-
gramming TMs. Crucially, we assume that DHaltTM exists. We can

https://bit.ly
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then build a decider for ATM (the whole outer box of Figure 15.6). How-
ever, in §15.3, we proved that DATM cannot exist. Hence, DHaltTM cannot
exist.

(More details): Let us study the construction in Figure 15.6 in some more
detail. Let

HaltTM = {〈M,w〉 : M is a Turing machine that halts on string w}.

Figure 15.6 shows HaltTM to be undecidable as follows:
• Suppose there is a decider for HaltTM called DHaltTM .
• Let’s now build a decider for ATM (call it DATM ). DATM ’s design will

be as follows:
– DATM will first feed M and w to DHaltTM , the claimed decider for

HaltTM .
– If DHaltTM goes to acceptDHaltTM

, DATM knows that it can safely
run M on w, which it does.

– If M goes to acceptM , DATM will go to acceptDATM
.

– If M goes to re jectM , or if DHaltTM goes to re jectDHaltTM
, DATM

will go to re jectDATM
.

Notice that we have labeled the accept and reject states of the two ma-
chines DHaltTM and DATM . After one becomes familiar with these kinds
of proofs, higher-level proof sketches are preferred. Here is such a higher-
level proof sketch:
• This decider accepts input 〈M,w〉 and runs Halt_decider (if it exists)

on it.
• If this run accepts, then we can safely (without the fear of looping) run

M on w, and return the accept/reject result that this run returns; else
return “reject.”

• To prevent ATM from existing (i.e., to avoid a contradiction), we must
prevent HaltTM from existing. �

Two observations that the reader can make after seeing many such proofs
(to follow) are the following:
• One cannot write statements of the form “if f (x) loops, then ...” in any

algorithm, because termination is not detectable. Of course, one can
write “if f (x) halts, then ... .” This asymmetry is quite fundamental,
and underlies all the results pertaining to halting / acceptance.

• One cannot examine the code (“program”) of a Turing machine and de-
cide what its language is. More precisely, one cannot build a classifier
program Q that, given access only to Turing machine programs Pm

(which encode Turing machines m), classify the m’s into two bins (say
“good” and “bad”) according to the language of m. Any such classifier
will have to classify all Turing machines as “good” or all as “bad,” or
itself be incapable of handling all Turing machine codes (i.e., not be
total). This result is known as Rice’s Theorem.14

14 For a lucid account of this theorem
and its proof, kindly see supplementary
material at https://bit.ly/Automata_

Jove under RicesTheorem or my 2006
book [21].

https://bit.ly
https://bit.ly
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15.5 Mapping Reductions

Our previous reduction proofs were proofs by contradiction: we assumed
the existence of a decider for a new problem, and using that decider,
created a decider for an old (already shown impossible-to-decide) prob-
lem. The mapping reductions idea is a way to formally approach the
same proofs, but has the additional property that it explicitly maps all
members of the “old and impossible” problem (modeled as a language)
to a carefully chosen subset of the new problem (also modeled as a lan-
guage).15

15 Look for supplementary material at
https://bit.ly/Automata_Jove under
MappingRed to illuminate mapping
reductions.

Definition 15.5: A computable function f : Σ∗ → Σ∗ is a mapping
reduction from A ⊆Σ∗ into B ⊆Σ∗ if for all x ∈Σ∗, x ∈ A ⇔ f (x) ∈ B.

By a computable function, we mean a function that can be implemented
via a Turing machine.16

16 Important link with Chapter 16: In
studying NP-Completeness, we will em-
ploy polynomial-time mapping reductions,
which are denoted by ≤P . A polynomial-
time mapping reduction ≤P is a mapping
reduction where the reduction function
f has polynomial-time asymptotic upper-
bound time complexity. Using the famil-
iar notation O (. . .) for asymptotic upper-
bounds, polynomial-time means O (nk) for
an input of length n, and k > 1.

Figure 15.7: Mapping reduction A ≤M B.
Notice that f maps points inside A to
points inside B. This mapping need not
be 1-1 nor onto. The only condition is that
f must map points outside of A to points
outside of B. Such a mapping arrow of f
is also shown (acting on a shaded circle
outside of A and producing a shaded cir-
cle outside of B). A mapping reduction of
this kind allows us to use a membership
decider in B to serve as a membership de-
cider in A as follows: (1) accept an input
x ∈ A; (2) check if f (x) ∈ B; (3) x ∈ A iff
f (x) ∈ B.

A BSigma*

f

f

f(A)

See Figure 15.7 which illustrates the general situation that A maps into a
subset denoted by f (A) of B, and members of A map into f (A) while non-
members of A map outside of B (that means they map outside of even
B− f (A)). Also note that A and B need not be disjoint sets, although they
often are. A mapping reduction can be (and usually is) a non-injection and
non-surjection; i.e., it can be many-to-one and not necessarily onto. It is
denoted by ≤m. By asserting A ≤m B, the existence of an f as described
above is also being asserted.
Typically mapping reductions are used as follows:
• Let A be a language known to be undecidable (“old” or “existing” lan-

guage).
• Let B be the language that must be shown to be undecidable (“new”

https://bit.ly
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language).
• Find a mapping reduction f from A into B.
• Now, if B has a decider DB, then we can decide membership in A as

follows:
– On input x, in order to check if x ∈ A, find out if DB( f (x)) accepts or

not. If it accepts, then x ∈ A, and if it rejects, then x ∉ A.

How a decider for A_TM is obtained:

Step 1: Here is the initial tape.

------------------------------------------------------------------

| M | w |

------------------------------------------------------------------

Step 2. Build M’ and put it on the tape

------------------------------------------------------------------

| M | w | ..build M’ that incorporates M here.. |

------------------------------------------------------------------

Step 3. Put w on the tape.

---------------------------------------------------------------------

| M | w | ..build M’ that incorporates M here.. | ..put w here.. |

---------------------------------------------------------------------

Step 4. Run Halt_TM_decider on M’ and w and return its decision

---------------------------------------------------------------------

| M | w | ..build M’ that incorporates M here.. | ..put w here.. |

---------------------------------------------------------------------

DHaltTM (M
′
,w)=


accepts ⇒ M

′
halts on w ⇒ M accepts w

re jects ⇒ M
′
doesn′t halt on w ⇒

M doesn’t
accept w

Figure 15.8: How the mapping reduction
from ATM to HaltTM works. If 〈M,w〉
is in ATM , then we see that M

′
halts on

w, or that 〈M′
,w〉 is in HaltTM . On the

other hand, if 〈M,w〉 is not in ATM , then
we see that M

′
does not halt on w, or that

〈M′
,w〉 is not in HaltTM .

Mapping Reduction from ATM to HaltTM We first illustrate mapping
reductions by taking A = ATM and B = HaltTM with respect to Fig-
ure 15.7. Function f takes a member of ATM , namely a pair 〈M,w〉,
as input, and prints out 〈M ′

,w〉 on the tape as its output. Function f , in
effect, generates the text of the program M

′
from the text of the program

M. Here is the makeup of M
′
:

• M
′
(x) =

– Run M on x.
– If the result is “accept,” then “accept”.
– If the result is “reject,” then loop.

Notice that the text of M
′

has “spliced” within itself a copy of the text
of program M that was input. Mapping reductions such as f illustrated
here need not “run” the program they manufacture; they simply accept
a program such as M, and a possible second input, such as w, and man-
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ufacture another program M
′

(and also copy over w) and then consider
their task done! The reason such a process turns out to be useful is for
the following reasons:

Suppose someone were to provide a decider for HaltTM . The
mapping reduction f then makes it possible to obtain a decider
for ATM . When given 〈M,w〉, this decider will obtain 〈M ′

,w〉 =
f (〈M,w〉), and then feed it to the decider for HaltTM .

We have to carefully argue that f is a mapping reduction. We will be
quite loose about the argument types of f (namely that it maps Σ∗ to
Σ∗); we will assume that any 〈M,w〉 pair can be thought to be a string,
and hence a member of a suitable Σ∗. The proof itself is depicted in Fig-
ure 15.8.

Figure 15.9: Mapping reduction from
ATM to ETM . If 〈M,w〉 is not in ATM ,
then L(M

′
) is empty. On the other hand,

if 〈M,w〉 is in ATM , then L(M
′
) is non-

empty. This achieves the mapping reduc-
tion.

M’(x) {

if x <> w then loop ; // could also goto reject_M’ here

Run M on w ;

If M accepts w, goto accept_M’ ;

If M rejects w, goto reject_M’ ; }

How a decider for E_TM is obtained:

Step 1: Build above M’ and put it on the tape

------------------------------------------------------------------

| M | w | ..build M’ that incorporates M and w here.. |

------------------------------------------------------------------

Step 2: Run E_TM_decider on M’ and return its decision

------------------------------------------------------------------

| M | w | ..build M’ that incorporates M and w here.. |

------------------------------------------------------------------

DeciderETM (M
′
)=

{
accepts ⇒ L(M

′
) is empty⇒ M does not accept w

re jects ⇒ L(M
′
) is not empty⇒ M accepts w

Mapping reduction From ATM to ETM We show that

ETM = {〈M〉 : M is a TM and L(M)=;.}

is undecidable through a mapping reduction that maps 〈M,w〉 into 〈M ′〉,
as explained in Figure 15.9. Basically, having a decider that can decide
whether the language of the machine M

′
is not empty gives us the ability

to decide ATM .

Mapping reduction from ATM to RegularTM Define

RegularTM = {〈M〉 : M is a TM whose language is regular.}
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Figure 15.10: Mapping reduction from
ATM to RegularTM . If 〈M,w〉 is in ATM ,
then L(M

′
) is regular. On the other hand,

if 〈M,w〉 is not in ATM , then L(M
′
) is not

regular. This achieves the mapping reduc-
tion.

M’(x) {

if x is of the form 0^n 1^n then goto accept_M’ ;

Run M on w ;

If M accepts w, goto accept_M’ ;

If M rejects w, goto reject_M’ ; }

DeciderRegularTM (M
′
)=



accepts ⇒ L(M
′
) is regular

⇒ Language isΣ∗

⇒ M accepts w

re jects ⇒ L(M
′
) is not regular

⇒ Language is 0n1n

⇒ M does not accept w

We can prove RegularTM to be undecidable by building the Turing ma-
chine M

′
via mapping reduction, as shown in Figure 15.10. Basically,

having a decider that can decide whether the language of the machine
M

′
is regular gives us the ability to decide ATM .

15.5.1 Undecidable problems are “ATM in disguise”

This chapter covered the Post Correspondence Problem and its signifi-
cance. We then formally defined the notion of mapping reduction. The
techniques discussed here lie at the core of the notion of “problem solv-
ing” in that they help identify which problems possess algorithms and
which do not.

A closing thought to summarize the proofs in this chapter is the slogan
that undecidable problems are ATM in disguise. We leave you with this
thought, hoping that it will provide you with useful intuitions.

Exercise 15.5.1, Mapping-Reduction Proofs
1. Draw the “boxes within boxes” style diagram (similar to Figure 15.5)

corresponding to the reduction argument presented in Figure 15.8.
2. Draw the “boxes within boxes” diagram corresponding to the re-

duction argument presented in Figure 15.9.
3. In §15.5, we described a mapping reduction from ATM to HaltTM

by producing a machine M
′

such that checking for the halting of
M

′
on input w is tantamount to checking whether the original

machine M accepts w. In the same vein, describe a mapping re-
duction from HaltTM to ATM by producing a machine M

′′
such

that checking whether M
′′

accepts w is tantamount to answering
whether M halts on w. Hint: Make a copy Mc of M, and modify
the accept or reject label (figure out which) of Mc suitably. Now,
amalgamate both machines M and Mc into one single machine
(call it Mcombined) such that essentially both machines get run.
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Now, checking that Mcombined accepts w must be tantamount to
answering whether M halts on w.

4. Draw the “boxes within boxes” diagram corresponding to the re-
duction argument presented in Figure 15.10.

5. Define

CFLTM = {〈M〉 : M is a TM whose language is context-free.}

Specify a mapping reduction from ATM to CFLTM . Please take
ideas from the construction in Figure 15.10. �



16
NP-Completeness

Chapter Gist: There are many important practical problems for
which no polynomial time (P) algorithms are known. These prob-
lems can, so far, only be solved in nondeterministic polynomial
time (NP), and currently this amounts to being intractable (ex-
ponential or worse). We define NP to be the class of polynomial
time verifiable problems, and NP-Complete to be the hardest of
all NP problems (§16.1). We present the role of NDTMs in formu-
lating the theory of NP-Completeness in precise terms (§16.2). We
take up the study of the Boolean satisfiability problem (SAT) given
it has the distinction of being the first NP-Complete (NPC) prob-
lem identified (§16.3). We explain why SAT matters in practice,
and also introduce a SAT-solver that can run within your own web
browser (§16.8). We begin with the simpler 2-SATpolynomial time
algorithm (§16.3.1). We describe a canonical problem called 3-SAT,
and describe its role in showing new problems to be NP-Complete
(§16.4). The idea of mapping reductions is central to this study,
and we show that 3-SAT itself can be shown to be NP-Complete
(§16.5). We show that the problem of finding k-cliques in a graph
is NP-Hard by presenting a mapping reduction from 3-SAT to it
(§16.6). We finish with some caveats and also a discussion of CoNP
and allied complexity classes (§16.7).

16.1 What Does NP-Complete Mean?

In the 1960s, computer scientists started noticing that many problems
defy polynomial time algorithms; all they could come up with were ex-
ponential (or worse) algorithms. Examples of these problems included
everyday scheduling problems such as the Traveling Salesperson Prob-
lem (TSP), one version of which is the following. Suppose you are asked
to start from Salt Lake City, UT, travel by road and visit all the 48 US
state capitals of the contiguous USA exactly once and return to Salt Lake
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City in 18 days or less.1 What is the optimal route you would take?2
1 We assume that there are fixed time
costs to go between any two capital cities.
For instance, the time it takes to go be-
tween Salt Lake City and Boise is as-
sumed to be fixed and known. It has been
estimated that it will take about 10 days
to do all 48 states without traffic and with-
out any stoppage. Our capital-to-capital
costs can be assumed to be such that the
18-day figure is met by some tours and not
met by others.
2 Studies have shown that bees solve the
traveling salesperson problem while cov-
ering a collection of flower patches opti-
mally.

Is there a better algorithm than computing the cost of all 48! such tours
and picking the one that finishes in 18 days or less? All algorithms so far
have been intractable (exponential or worse; an example is factorial).

However, scientists also noticed that given a claimed solution in the
form of a sequential listing of state capitals (a “tour”), they can indeed
easily check3 (in polynomial time) whether the cost is below 18 days.

3 We use the word check in the sense of
checking whether the claim is true for a
specific instance. For example, we can eas-
ily check that (3,4,5) form a Pythagorean
triple by checking the identity 32 + 42 =
52 to be true. We will use the term
verify to connote something deeper, such
as Fermat’s last theorem: there are no
Pythagorean triples of the form xn + yn =
zn for n above 2.

This evidence presented for checking (called a certificate) is compact
(i.e., polynomial in length), and one can simply go as per this sequence,
add up the costs and check if it is below 18 or not.4 So while the cost

4 In fact, if the certificate itself is exponen-
tially long, even reading in the certificate
will take an exponential amount of time.
In this case, the cost of checking cannot be
polynomial.

of solving might be intractable, the cost of checking claimed solutions is
polynomial. Scientists started calling this problem class of easy-to-check
and difficult-to-solve problems “NP.”

At this juncture, one might protest saying that the cost of checking
claimed solutions being polynomial time is not a worthwhile “consolation
prize.” The real goal, they might say, is to solve problems in polynomial
time and not merely check a given solution in polynomial time. They
might5 ask, “who will come up with a solution to check in the first place?!”

5 ...somewhat irately...

Unfortunately, in the world of algorithm design, one sometimes has to
be humble and be content with what’s available and feasible. In §16.1.1,
we will show that knowing that a problem is checkable in polynomial
time is a valuable piece of knowledge.6 Easy checkability has, in fact, a

6 ...and perhaps the best known computa-
tion that can actually be carried out in P-
time for many a problem. One has to keep
in mind that for many problems, even the
“easy checkability” in P-time has not been
proven. This would make one feel grateful
that at least easy checkability in P-time is
an option.

crucial role to play in being able to settle the P versus NP question one
day, showing that:
• Either it is impossible to have a polynomial time algorithm for a prob-

lem in NP that is currently intractable;
• Or all such problems have polynomial time algorithms (hence one can

stop bothering about NP)!7

7 Many scientists think that this is a
highly unlikely outcome.

There are actually many problems for which even the cost of checking
the solution appears to be intractable. Let us take the following variant of
the traveling salesperson problem: ‘show that there isn’t a tour where
the cost is ≤ 18 days.’ Here, to answer “yes,” it appears that one must
list every tour and show that each tour takes more than 18 days. Even
the certificate involved in this check case is exponentially long (i.e., the
sequence of all tours). This is not easily checkable (takes exponential
time).8 Thus, having easy checkability is really getting us somewhere.8 This is not a proof, but it already shows

that sometimes all certificates we manage
to come up with end up being long, causing
the checking cost to go up.

16.1.1 Grouping Problems: Solving One Implies Solving All

What researchers in complexity have done is to group9 problems into a9 Or “corral”

class of problems called NP, and then identify the hardest problems in this
class, which is the NP-Complete class. All problems in NP-Complete are
equally hard; the problems outside of NP-Complete (but inside NP) are
less hard. These aspects are illustrated in the Venn diagram of language



NP-COMPLETENESS 243

Figure 16.1: The language families P,
NP, and NPC. All these set inclusions are
likely to be proper.

NP

P

CoNPC NPC

CoNP

family inclusions in Figure 16.1 (for now, please ignore the families whose
names start with “Co”; they are discussed in §16.7). The key property that
one ensures (before calling a problem NP-Complete) is that if even one
problem in NP-Complete has a polynomial time algorithm, then all of NP
will have a polynomial time algorithm.10 This behavior will be ensured 10 ..and the “Co” families will also disap-

pear.in the process of showing a problem to be NP-Complete (§16.5.3). All we
will be left with (in this context) will be polynomial time algorithms.11 In 11 Clearly there will continue to be other

exponential algorithms; it is only the very
important NP class that will become equal
to P.

summary, with respect to the “consolation prize” discussion earlier:
• We group polynomial time checkable (synonymous with verifiable) prob-

lems into NP. Computer science research has been inducting problems
into the NP class beginning in the 1960s (detailed in §16.2).12 12 If one proves that one of these

NPC problems does not have a P-time
algorithm—the scenario that most scien-
tists believe is likely—they would have
solved one of the most important of open
problems in CS. They would also win
the $1 million prize money that the Clay
Mathematics Institute has set apart for
this challenge.

There is also another term lurking
around in this area called NP-hard. It
means at least as hard as NP—meaning
it could be even harder than NP. In fact,
some NP-hard problems are so hard that
they are actually undecidable! We cover
this topic in §16.7.

• Showing that an NPC problem can be solved in polynomial time will
collapse the entire class NP, and essentially turn it into the class P.

This chapter studies algorithms (not procedures) using TMs (i.e.,
these TMs will halt on all inputs). Also, given the introductory
nature of this chapter, we only study time complexity. Space com-
plexity is also studied using TMs.

16.1.2 Some Historical Notes

Let us understand the ideas thus far in the context of prime numbers.

Given a natural number of d digits, what is the algorithmic com-
plexity of checking whether it is a prime? Is this 21-digit number
prime: 147,573,952,589,676,412,927 ? (It equals 267 −1, the 67th
Mersenne number (M67); the nth Mersenne number, Mn, is 2n−1.)

In 1903, Frank Cole gave a lecture in which he performed the multi-
plication of 193,707,721 and 761,838,257,287 by hand on a chalkboard,
obtaining M67.13 Thus Cole was able to prove (over the course of one

13 He silently put down the chalk and
walked away to a thunderous applause.
https://en.wikipedia.org/wiki/

Frank_Nelson_Cole

lecture) that this number wasn’t a prime. Yet, to obtain the factors, he

https://en.wikipedia.org
https://en.wikipedia.org
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spent “three years of Sundays.” This anecdotal evidence itself shows that
proving that a number is composite (non-prime) can take very long, but
checking that it is composite does not. This problem happens to be in NP.

The largest known prime number has 23,249,425 digits;14 how hard14 At the time I wrote this sentence;
see https://en.wikipedia.org/wiki/

Prime_number.
would it be to prove that it is prime? Until the year 1977, there wasn’t a
definite algorithmic classification that applied to the entire set of primes.
In 1977, Pratt [39] proved that primality checking is an NP-problem,
meaning it still defied a polynomial solution, but for primes, the certificate—
a proof that a number is prime—is indeed succinct, and the proof can be
checked in P-time.

In 2002, Agrawal, Kayal and Saxena obtained a P-time algorithm [3]
(now called the “AKS algorithm”) for primality checking15 with complex-

15 One may prefer the term “primality
testing” also, in this context. In our sense,
it means the same as checking, as the an-
swer is produced for the given instance. ity roughly O(d12) where d is the number of digits in the number.16

16 https://en.wikipedia.org/wiki/

AKS_primality_test mentions the de-
tails including the notation Õ(log12(n))
where n is the number itself; thus log(n)
obtains the number of digits. It has been
improved to Õ(log6(n)). The notation Õ
stands for “soft O” and is explained in the
references; it ignores logarithmic terms.

Please note:
• Complexity classifications evolve with the state of human knowledge.
• While we can check whether a number is prime or composite in P-

time (thanks to the AKS algorithm), it does not mean that finding the
factors can be done in P-time.

Factorization is the key hard algorithm upon which cryptographic sys-
tems are built. We can easily check that a given number is factored
correctly (as evidenced by a certificate), but the hardness of generating
factors is still unknown—and appears to be hard. One wishes for such
algorithms to remain hard—or else today’s crytographic systems could be
rendered useless.17 See Cook’s discussions [18] on the importance of P17 Quantum computers have the ability

to factor numbers in polynomial time.
See a video tutorial on how this is
done by Vazhirani https://youtu.be/

YhjKWAMFBUU.

versus NP.

16.2 NPC Notions Defined Based on NDTMs

Let us consider the computation trees supplied with Figures 16.2 and
16.3 (repeated from Chapter 13) for the DTM and NDTM designed to rec-
ognize a ‘101’ in the input string. The DTM accepts 10101 by recognizing
the first 101 and rejects both 01 by going to state StuckNo0Aft1, and
rejects ε ("") by going to state StuckNo1beg.

The NDTM has six executions when fed 10101: it accepts both the
101’s and rejects upon badly chosen nondeterministic selections.

16.2.1 P-time

We define P-time with respect to the runtime of DTMs. The Turing ma-
chine model is robust in that it faithfully models not just the comput-
ing power but also the computational efficiency of realistic computers
within a polynomial factor. Anything realizable on a TM with polyno-
mial (O (nk)) complexity18 can be realized on a realistic computer with

18 If the complexity measure O (g(n)) is as-
cribed to a function f (n), it means that
there exists some k ∈ Nat such that f (n)<
C · g(n) for all n ≥ k, and C ∈ Nat being a
constant. This is the same “big Oh” one
studies in a basic course on algorithms.

complexity O (nk
′
) for perhaps k

′ < k.

https://youtu.be
https://en.wikipedia.org
https://en.wikipedia.org
https://youtu.be
https://en.wikipedia.org
https://en.wikipedia.org
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Figure 16.2: Transition diagram and com-
putation tree for a DTM that looks for 101
within given w.
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Figure 16.3: Transition diagram and com-
putation tree for an NDTM that looks for
101 within given w.
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Definition 16.2.1:
(a) For input w of length n, the execution time of a DTM is the
number of steps taken along its (only) computational path.
(b) If a DTM DL has O (nk) execution time, it is said to be a poly-
nomial time decider.
(c) P is the family of languages where for each language L ∈ P,
there is a polynomial time decider DL.

16.2.2 NP-time

NP-time is the upper bound of the computational cost across all the non-
deterministic computational paths.

Definition 16.2.2:
(a) For input w of length n, the execution time of an NDTM is
the maximum number of steps taken along any computational
path.
(b) If an NDTM NL has O (nk) execution time, it is said to be a
nondeterministic polynomial time decider.
(c) NP is the family of languages where for each language L ∈NP,
there is a nondeterministic polynomial time decider NL.

Across all the executions produced by the NDTM of Figure 16.3 on
input 10101, the maximum number of steps19 taken is 6.

19 For Jove TMs, it is the maximum
amount of fuel consumed along any path.
Note that it is very easy to be somewhat
mischievous and design an NDTM that
branches infinitely, but with each compu-
tational path taking a finite number of
steps (just put a . ; . , R transition from
Reject going back to Reject). Thanks to
this mischief, we can create a situation in
which there isn’t such a maximum. But
now, recall the “no wimp clause” we stated
in §14.2.4. We must avoid creating a semi-
decider when a decider is possible.

Just to drive this point home, imagine
that someone added a linear transition se-
quence of 106 steps after the Reject state,
with each transition labeled by . ; . , R.
This would bloat the execution length to
106! All these “definition destroying con-
structions” are immaterial! The kinds of
reasoning we will be engaged in will be of
the form “IF problem P with complexity x
can be solved, THEN via mapping reduc-
tions, we will show that a related prob-
lem Q can be solved with complexity y.”
In other words, we will be pursuing rel-
ative complexity measurements achieved
through mapping reductions.

16.2.3 NP Verifier

To ease the construction of proofs in this area, one likes to have two alter-
native definitions of NP. Definition 16.2.2 presented the so-called decider
view of NP. The other view is the verifier view of NP. This construction
also equates the notion of “a certificate” to internal NDTM decisions.

Definition 16.2.3: A nondeterministic polynomial time ver-
ifier is an NDTM that takes an input w along with a certificate
c (together packaged as 〈w, c〉) and makes a decision in NP time.
The purpose of such a verifier is to check w’s acceptance status by
exploiting the given certificate c.

We will provide an example of such a verifier in §16.2.4, and a proof
sketch that given an NP decider we can define an NP verifier (and vice-
versa) in §16.2.5.
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16.2.4 Examples of P-time and NP-time Deciders

In Figure 13.10, we presented a P-time decider for strings of the form
w#w where w ∈ {0,1}∗. This is also an NP-time decider because DTMs
are a special case of NDTMs. In Figure 13.11, we presented a decider for
strings of the form ww where w ∈ {0,1}∗. The fact that all the computa-
tional paths of this NDTM take only a polynomial amount of steps allows
us to state that this is indeed an NP-time decider.

To envisage an NP decider that is not in P, consider the Traveling
Salesperson problem. Here is the high-level code for an NDTM. (Note
that we don’t know whether there is a P-time decider for the TSP. Also,
from now on, we will not bother to present actual DTMs or NDTMs but
only present their high-level pseudo-code):

NP decider for TSP:
• Accept the US map and the costs between the states on the in-

put tape. Write SLC at the end of the given input.
• Starting from the start state (when we are in SLC), choose a

state capital that hasn’t been considered thus far (say state S1).
Write S1 at the end of the input tape.

• Pick another state S2 that hasn’t been considered. Again, write
S2 at the end of the input tape.

• Do this for all 47 other states.
• Call a verifier Turing machine that checks that the state se-

quence SLC S1 S2 . . .S47 SLC written at the end of the tape
meets the given cost criterion. Accept if so; Reject otherwise.

• This ND algorithm has cost NP-time because along any one
computational path, what happens is this:
– We choose a linear list of states
– We make a subroutine call to another TM—called a verifier

TM—that simply adds up the cost of the edges present in
SLC S1 S2 . . .S47 SLC

– This computational path will only involve a polynomial num-
ber of steps. �

16.2.5 Decider versus Verifier Views

The aforesaid algorithm to write an NP decider for TSP used the following
trick: it converted the given problem into two subproblems:
• Write a “certificate” at the end of the user-given input.
• The TM is made to decide based on the certificate by calling an “inner”

TM. We call this latter TM a verifier.
In general, an NP decider can be converted to an NP verifier, and vice-

versa. We now explain the process abstractly. Let L be a language and
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NL stand for the NDTM decider for L and VL for a P-time verifier for L.
Given NL, Obtain VL: The verifier VL that “we must output” is built as

follows. Given an NDTM NL that is an NP-time decider, ask for an
additional input c that is also of polynomial length with respect to the
input w that NL already expects. Use c to pick the nondeterministic
selections that NL makes at each juncture when NL is confronted with
nondeterminism. Now, given that no path of NL is longer than a poly-
nomial quantity, we can completely resolve the nondeterminism via c
and obtain VL, a verifier that now takes 〈w, c〉. When NL decides, VL

also reaches the same decision.20

20 Think of c as “rudder steering control”
on a boat in a vast lake. c is then a
sequence of steps “take the second turn;
then the first turn; then the fourth turn;
. . ..” VL simply allows us to input the
“guess” via c. Depending on the pur-
pose NL is supposed to achieve (i.e.
NP-decide membership in L), a suit-
able set of turn instructions can be
generated. Externally, it will appear as
if the “newly minted” VL is asking for help
(“Phone a friend” in “Who Wants to Be a
Millionaire”), but internally it is simply
doing “backseat driving” of NL .

Given VL, Obtain NL: The decider NL that “we must output” is built as
follows. Prepend VL ’s code with a phase that can be called the internal
certificate auto-generation phase in which the prepended code simply
writes out a c on the TM tape the end of w and then feeds 〈w, c〉 to VL.
The decision of VL is emitted as the decision of NL. 21

21 Again, depending on the language that
VL verifies membership into, aided by cer-
tificate c, one can always construct the
certificate auto-generation phase to force
the same decision “out of VL .” Externally
it will appear as if the “newly minted” NL
is being “smart” and deciding in NP-time.
But internally, it is actually coughing up
a certificate and feeding that to VL which
needs this crutch.

16.3 Introducing SAT Problems

The term Boolean satisfiability or SAT refers to the satisfiability of a
general Boolean expression. It suffices for us to study two special cases
of SAT:
• 2-SAT: the satisfiability of conjunctive normal form (CNF) Boolean for-

mulae with exactly two literals (a Boolean variable or its negation) per
clause.

• 3-SAT: the satisfiability of conjunctive normal form (CNF) Boolean for-
mulae with exactly three literals per clause.
The reason we study 2-SAT is that it has a beautiful P-time algorithm

due to Aspvall, Plass and Tarjan [5]. The reasons to study 3-SAT are sev-
eral, some of which are: (1) merely going from “2 to 3” shoots up the com-
plexity from P-time to NP-Complete. (2) it is the canonical NP-Complete
problem, by understanding which deeply, one tends to understand the
theory of NP-Completeness rather well. We now define the basic notions
surrounding 2-SAT and 3-SAT.

Definition 16.3: A variable or its negation is called a literal. A
Boolean formula in conjunctive normal form (CNF) is a conjunction
of clauses. It is a 2-CNF formula if it is a conjunction of 2-Clauses
and a 3-CNF formula if it is a conjunction of 3-Clauses. A 2-Clause
is a disjunction of two literals, and a 3-Clause is a disjunction of
three literals. A 2-Clause is equivalent to a conjunction of two
implications.

Notations and Examples: Let ! stand for NOT, . for AND, and + for
OR. Let → stand for implication (we use this notation to make this op-
erator look like a graph edge, as we will be building implication graphs).
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Let a through e be variables (they are also literals). Also !a through !e
are literals. We employ True or 1 interchangeably, but prefer the former
for strongly connected components (SCCs, see Figure 16.4 for a definition)
and the latter for literals. Similarly, we employ False or 0 interchange-
ably, but prefer the former for SCCs and the latter for literals. Here are
sample 2-CNF and 3-CNF formulae:

2-CNF: (a+b).(!a+c).(!b+e).(f+!f)
3-CNF: (a+b+c).(!a+b+b).(b+d+e).(a+ f+!f)

The 2-Clause (a+b) is equivalent to the conjunction of two implications:
• !a→ b
• !b→ a
This is because
• (a+b) is equivalent to !a→ b.
• (a+b) is equivalent to (b+a) which can be translated to !b→ a.
We cannot translate a 3-Clause in this manner.

Definition 16.8
L2sat = {〈φ〉 : φ is a 2-CNF formula that is satisfiable.}
L3sat = {〈φ〉 : φ is a 3-CNF formula that is satisfiable.}

Note: Some readers may wish to look at §16.8 and actually play
with a SAT solver to cultivate some familiarity with Boolean sat-
isfiability.

16.3.1 A Warmup: 2-SAT

The fact that a 2-Clause is equivalent to a conjunction of two implications
can be exploited in obtaining a P-time satisfiability checking algorithm.
Figure 16.4 shows an example 2-CNF formula.
Implication Graph: We can build the implication graph for the for-
mula F above, also shown in Figure 16.4. An implication graph is one
that treats each 2-CNF clause as two implications. More specifically, this
graph is obtained by modeling each 2-CNF clause of the form (p+q) as
the conjunction of two implications, namely !p → q and !q → p. We treat
each implication as a graph edge. As soon as we add all possible impli-
cation edges, we end up creating a graph with the following structural
properties:
• The implication graph ends up having groups of nodes and edges that

form maximal strongly connected components (maximal SCCs). In a
directed graph, a strongly connected component (SCC) is a collection
of nodes that are reachable from each other. A maximal SCC is one
that pulls in the maximum number of nodes into each SCC such that
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F = (a+b).(b+!c).(!b+!d).(b+d).(d+a)
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Figure 16.4: 2-CNF formula, and illustra-
tion of Aspvall et al’s 2-SAT algorithm.
Here, + stands for Boolean OR, . stands
for Boolean AND, and ! stands for Boolean
negation. The first directed graph above is
what we initially obtain after we convert
each disjunction such as (a+b) into a pair
of implication edges. The second directed
graph clusters groups of nodes and edges
into maximal strongly connected compo-
nents (maximal SCCs). In a directed
graph, a strongly connected component
(SCC) is a collection of nodes that are
reachable from each other. A maximal
SCC is one that pulls in the maximum
number of nodes into each SCC such that
they can all reach each other. In our exam-
ple, maximal SCCs (#2 and #3) can have at
most two nodes. All other maximal SCCs
only have one node each.

they can all reach each other. In Figure 16.4, we enclose all the
maximal SCCs within rectangular boxes.

• In our example, there are two maximal SCCs with two nodes each,
namely SCC #2 and SCC #3. All other maximal SCCs only have one
node each. Note that we cannot merge any of the maximal SCCs #0
through #5 and still have each remain a maximal SCC. For example,
we cannot merge SCC #2 and SCC #0 because whereas !b can reach !c,
!c does not reach !b.

• If any SCC includes a variable and its complement, the given formula
is not satisfiable. For example, suppose an SCC contains a literal p
and its negation !p. Then, such an SCC represents the conjunction
of !p → p and p → !p, which is not satisfiable. This is because !p → p
simplifies to p and p→ !p simplifies to !p, and their conjunction cannot
be satisfied. In our example, this situation does not arise, and
hence our formula is satisfiable.

• Given that a formula is satisfiable, we can order the SCCs into a par-
tial order, as also shown in Figure 16.4. This is a topological sort of
the SCCs.
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• If we do all these steps correctly, we will notice that for each
SCC, there is also a dual SCC. For example, SCC #2 and SCC #3 are
duals, with the negation signs in the literals flipped. Likewise, SCC
#4 and SCC #1 are duals, as are SCC#5 and SCC#0.

Obtaining the Satisfying Assignment: For a collection of maximal
SCCs that are situated in a partial order, we can proceed as follows in
order to find a satisfying assignment. Hereafter we use “SCC” to refer to
maximal SCCs.
• Consider the collection of SCCs “bottom-up” (or more precisely, as per

the reverse topological sort order).
• If an SCC is unmarked, mark it True. Immediately mark its dual

False.
• When we assign truth values to an SCC, all the literals in the SCC

obtain the same assignment as the SCC. In our example,
– we mark SCC #1 True, and hence mark SCC #4 False. This assigns

a= 1 and !a= 0.
– we mark SCC #0 True, and hence mark SCC #5 False. This assigns

!c= 1 and c= 0.
• In some cases, we have a choice of making an SCC True or False.

For example, SCC #3 containing b, !d and SCC #2 containing d, !b are
incomparable in a topological sort; so they can be assigned arbitrarily.

• Pick True for SCC #3 containing b, !d. Pick False for SCC #2 contain-
ing d, !b.

• Now we’ve assigned all SCCs. The final assignment obtained is:
!c= 1,c= 0,a= 1, !a= 0,b= 1, !d= 1,d= 0, !b= 0.

The following facts are true of this algorithm:
• An SCC assigned False only has False as predecessors.
• An SCC assigned True only has True as successors.
These facts are important in so far as they guarantee that the algorithm
will never introduce a contradiction.

16.3.2 2-SAT: Examples and Algorithm

We now illustrate our construction on two additional examples, the first
being satisfiable and the second unsatisfiable. These two examples are
quite related in that they consider Boolean combinations of two Boolean
variables, namely a and b.
In Figure 16.5, the graphs were obtained from the Boolean formula:

(a+b).(a+!b).(!a+b)

Given that the SCC #0 is encountered first in the reverse topological
sort, we can assign a= b= 1, which assigns for the dual graph !a=!b= 0.
In Figure 16.6, the graphs came from the Boolean formula
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!a

b

!b

a SCC #0SCC #1

a b!a !b

Figure 16.5: The implication graph
and the SCCs for the CNF formula
(a+b).(a+!b).(!a+b)

(a+b).(a+!b).(!a+b).(!a+!b).(!a+!b)

Now we have only one SCC within which all the nodes fall, and thus we
cannot obtain a satisfying instance for this Boolean formula.

a

b

!b

!a

SCC #0

a
b

!b
!a

Figure 16.6: This graph and the
SCCs are for the CNF formula
(a+b).(a+!b).(!a+b).(!a+!b)

2-SAT Algorithm Recap: To recap, the algorithm to determine 2-SAT
consists of the following steps:
• Obtain the implication graph.
• Divide the implication graph into maximal SCCs (“SCCs”).
• If any SCC contains a literal and its negation, exit with “UNSAT”.
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• Else, consider the SCCs according to the reverse topological sort order.
• For an SCC without any truth assignment, assign that SCC True.
• Immediately assign its dual SCC False.
• Move up the topological sort.
• For an SCC and its dual that are not ordered, pick the assignment

arbitrarily for one of the members of the dual; the other member nat-
urally receives an inverted assignment.

• Move up the order and complete assigning all SCCs.
• We revert to assigning the next unassigned SCC to be True, in case

there are still unmarked SCCs.
• In the end, output the assignment for all literals, by replicating the

truth assignment for the SCC as really being the corresponding truth
assignments for the literals in the SCC.

16.4 3-SAT and Its NP-Completeness

We could “pull off” an algorithm for 2-SAT (§16.3.2) only because of the
implication graph that underlies 2-SAT. Unfortunately, there is no poly-
nomial time algorithm for 3-SAT that we know of. The best-known result
is that it is NP-Complete. We now provide two equivalent definitions for
NP-completeness.

first proved
NPC

Problem Problems
subsequently
proved NPC

P time
Mapping
Reduction

P time
Mapping
Reduction

All of NP
Figure 16.7: Diagram illustrating how
NPC proofs are accomplished. The prob-
lem first proved NPC is 3-SAT. Defini-
tion 16.4(a) is illustrated by the “left fun-
nel” while Definition 16.4(b) is illustrated
by the “right funnel.” (The funnels serve
as a gentle reminder that mapping reduc-
tions need not be onto.)

Definition 16.4:(a) L is NPC if
(i) L is in NP, and
(ii) for every language X ∈NP, we have X ≤P L.
(Accomplishing (ii) alone means that L is NP-Hard.)
Definition 16.4:(b) L is NPC if
(i) L is in NP, and
(ii) for some other language L

′ ∈NPC, we have L
′ ≤P L.

(Accomplishing (ii) alone means that L is NP-Hard.)
The definitions are equivalent because if a language L

′
is NPC,
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then we have, for every X ∈ NP, X ≤P L
′
; then, given that L

′ ≤P

L, we have X ≤P L. This is because the composition of mapping
reductions is also a mapping reduction.

The P-time mapping reductions illustrated by the funnels in Figure 16.7
are the same mapping reductions defined in Definition 15.5, except the
function f in that definition is a deterministic polynomial-time (P)
reduction. In §16.6, we will concretely demonstrate how the “second fun-
nel” works by taking a 3-SAT formula and turning it into an undirected
graph.

Say one of the “problems subsequently proved NPC,” modeled by lan-
guage Lnew, ends up having a P-time algorithm Dnew.22 We can then22 Perhaps Lnew itself is the language of

graphs that have k-cliques. have a P-time algorithm for 3-SAT as follows:
• Input a 3-SAT instance φ modeled by language L3sat.
• Apply the second mapping reduction ≤P (of the second funnel) and

create an instance lnew of the problem modeled by Lnew.
• Apply Dnew on lnew. Because of ≤P being a mapping reduction, Dnew

accepts lnew if and only if φ is satisfiable.
• This gives us a P-time decider for L3sat.
• Via the “first funnel” we now have a P-time decision procedure for the

whole of NP. This will essentially eliminate NP and establish P=NP.

16.5 3-SAT Is NP-Complete

Figure 16.8: Proof of the Cook-Levin The-
orem

p a
b q

c p a
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Theorem 16.5: 3-SAT is NP-Complete. (This is known as the
Cook-Levin theorem, discovered independently by Cook [17] and
Levin [31].)

Proof: According to both Definition 16.4(a) and (b), we have to show
that 3-SAT is in NP. We will now show it using both the decider and the
verifier views.

16.5.1 3-SAT is in NP

We are given a 3-SAT instance—a 3-CNF formula φ. The NDTM pre-
sented below can easily extract the variables in w in polynomial time.
NP-decider: Build an NDTM that chooses a random assignment (0 or 1)

for each variable in φ. Check that this assignment satisfies φ. This
NDTM runs in NP time.

NP-verifier: The NDTM being built also asks for an actual variable as-
signment c (“certificate”) to follow φ on the tape. The NDTM then
checks whether φ(c) is true, accepting exactly when so.

16.5.2 Every Language in NP Reduces to 3-SAT

To show 3-SAT is NP-Hard, we have to go by Definition 16.4(a), as there is
no previous NP-Complete problem to reduce from. Every language in NP
has an associated NDTM that accepts or rejects in NP-time.23 The crux 23 Recall that this notion can be summa-

rized as reaching a decision in NP-time.of our proof is that given one of these NDTMs, one can devise a general
way to check for the acceptance of an input w by the NDTM using 3-SAT.

Let us focus our attention on the first reduction (funnel) of Figure 16.7.
Given an arbitrary NL and an arbitrary w ∈Σ∗, consider the computation
of NL on w starting from the instantaneous description ID0 = q0w. In
Figure 16.8, we portray this as the bottommost layer along the space/-
time diagram against ID0 where we use the notation for instantaneous
descriptions (IDs) introduced in §13.8.24

24 We assume that we are working with a
singly infinite tape with the tape extend-
ing in “space” to the right. One can sys-
tematically translate TMs that carry out
computations on doubly infinite tapes to
those that use singly infinite tapes with
only a polynomial increase in time.

When this NDTM computes, it checks the cell under its tape head,
changes this cell and moves right (an example is in the ID1 to ID2 march).
It can also move left if it is not walking off the left end of the tape (an ex-
ample is in the ID5 to ID6 march).25 It can be seen that all changes

25 We can prevent a TM from going to the
left of the leftmost cell of a singly infinite
tape. Again such a transformation takes
only a polynomial amount of extra cost.
We omit showing such steps for simplic-
ity to highlight our main reduction argu-
ments.

caused by the TM’s transition relation ∆ affect only a window of size 3 at
most. During the ID1 to ID2 march, an ID where the “head state” is p
and the tape symbol under the head is a changes to the head state be-
coming q, the head moving right and with the a changed to a b. During
the ID5 to ID6 march, an ID where the “head state” is p and the tape
symbol under the head is a changes to the head state becoming q, the
head moving left and with the a changed to a b. (The tape symbols c and
d capture enough “stuff” around the TM head.) In Figure 16.8, we show
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a march of ID1 through ID6, show ID i for generality, and the accepting
ID is shown as IDACC .

What you really have to imagine is not just one of the NDTM choices,
but all NDTM choices. Thus, imagine ID1 to encompass all possible
changes that ID0 could have been subject to, for all the nondeterministic
options of NL. In general, we assume that when going from layer IDi to
IDi+1, we imagine that the layer we draw for IDi+1 represents all possible
(nondeterministic) ways in which it could have been obtained from IDi.

Now, we know that we will “pile on” only a polynomial number of layers
in this manner before a decision is reached. The reason is of course that
NL is a TM with nondeterministic runtime being NP.
Here is how SAT enters the picture:
• We can capture the evolution from IDi to IDi+1 through a 3-CNF Boolean

formula of polynomial length φi. The construction of this formula is
described in many references [42] in this field, and we don’t repeat
that. Fortunately, this single formula can capture all the nondeter-
ministic evolutions from layer i to layer i+1 in one shot.

• We can also introduce formula φ0 to capture the constraints on ID0

and formula φACC to capture the constraints on the final ID containing
the accepting ID.

• Thus, the entire “pile of IDs” depicted in Figure 16.8 can be captured
by a formula:

Φ=φ0 ∧φ1 ∧ . . .φi ∧ . . .φACC

This formula encodes all the nondeterministic evolutions from start to
finish of the NDTM. All the NDTM paths are rolled into this single
formula.

• Thus, given any NDTM NL, we can synthesize a Boolean 3-CNF for-
mula Φ describing all the nondeterministic accepting computa-
tional histories of NL in one fell swoop. The formula Φ is polynomi-
ally sized and can be obtained at polynomial cost. Thus the existence of
the ≤P mapping reduction modeled by the “first funnel” of Figure 16.7
has been demonstrated. �

16.5.3 How P=NP is Obtained if 3-SAT ∈ P?

To acid-test our construction, we now offer an algorithm to decide any NL

in NP in deterministic polynomial time, if we are given a SAT-solver that
runs in polynomial time.2626 This is a magical SAT-solver that does

not exist; but should it exist, it will let us
collapse NP down to P.

• Input: An NDTM NL and input string w
• Output: A P-time decision if w ∈ L
• Method: Since we don’t know how long NL will run on input w before

a decision is reached (except the run is polynomially long for some
polynomial), we devise an incremental checking method:
– Start with Φ0 = φ0 ∧φACC , and call the P-time SAT solver to see if
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it reaches a decision, outputting this decision if so.
– If not, increase i step by step, generating

Φi =φ0 ∧φ1 ∧ . . .φi ∧φACC

and checking for a decision (accept/reject).
– The decision is guaranteed in polynomial time, and this algorithm

will only make a polynomial number of SAT-solver calls (before a
decision is reached), with each call involving a polynomially sized
formula, and each such call returning in polynomial time.27 � 27 That is, there isn’t a priori knowledge on

how much of the Φi formula to generate,
before a decision is guaranteed.

16.6 Show that Clique Is NPC: Reduction from 3-SAT

The language of interest is

Clique = {〈G,k〉 : G is an undirected graph having a k-clique}.

16.6.1 Clique is in NP

We will employ the verifier view. The NDTM being built, in addition to
receiving its input which is 〈G,k〉, also asks for a certificate in the form
of a list of k nodes. The NDTM then checks whether these k nodes are
pairwise connected, accepting exactly when so. This checking procedure
runs in polynomial time.

16.6.2 Some Language in NPC Reduces to Clique

� = (x1 + x1 + x2).(x1 + x1+!x2).(!x1+!x1 + x2).(!x1+!x1+!x2)

!x1 !x1 x2

!x1

!x1

!x2

x2x1x1

x1

x1

!x2

Figure 16.9: The Proof that Clique
is NPH using an example formula
ϕ = (x1+ x1+ x2).(x1+ x1+!x2).(!x1+!x1+
x2).(!x1+!x1+!x2). We never connect the
nodes within each clause “island” (there
are four such islands, each with three
nodes). Across each clause island, we
draw edges in all possible ways provided
we never connect a literal and its comple-
ment. For visual clarity, we show through
dark edges all the edges emanating from
the clause island for (x1+x1+!x2) going to
all other clause islands. We also show the
remaining edges, but using fainter lines.

To show Clique is NP-Hard, we can go by Definition 16.4(b), as we can
attempt to reduce 3-SAT to Clique. All we need to do is produce a Clique
graph(φ) given a 3-CNF formula φ with k clauses such that graph(φ)
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has a k-clique exactly when φ is satisfiable. The construction is illus-
trated in Figure 16.9. The basic idea is this:
• For each clause, draw an “island” of three nodes with the literals in the

clause labeling the nodes.
• Never introduce any edges within an island.
• Between two islands of three nodes each, connect pairwise all pairs of

literals that are compatible. Two literals are compatible if they are
not of the form x and !x. Compatible literals can be satisfied simulta-
neously.

Observe that the example formula φ considered is not satisfiable as it
basically is

ϕ= (x1+ x2).(x1+!x2).(!x1+ x2).(!x1+!x2)

where, for any chosen assignment of x1 or x2, one of the clauses will
be false. Correspondingly, we cannot find a 4-clique in this graph. The
existence of a 4-clique would mean that there are “compatible” literals
between all the clauses. That is, we could find a setting to make all these
literals true. But that would be a satisfying assignment for φ. �

16.7 Complexity Classes, Closing Caveats

Proving a language L ∈NP is often the easy part of an NP-Completeness
proof; yet, forgetting this part and merely showing L ∈NPH can not only
render your proof incomplete, it can also make it incorrect, as we discuss
in §16.7.1. In §16.7.2, we discuss a theorem that has been used in the
past by researchers to argue that a language may, after all, be in P.

16.7.1 NP-Hard Problems can be Undecidable (Pitfall in Proofs)

We will now show that the language of Diophantine equations is NP-
Hard. Diophantine, so-called, is the language of equations that have in-
teger roots, an example being 6x3z2 +3xy2 − x3 −10 = 0. In general, it is
the sum of products of powers of integer variables weighted by integer
constants.

This language was shown to be undecidable by Yuri Matijasević in a
very celebrated theorem [34].28 This is not a contradiction because NP-

28 One may be tempted to think that this
problem is in NP: why not provide the inte-
ger roots (the values of x, y, z in the above
equation) as a certificate and check that
the equation is satisfied? The flaw in this
argument lies in being unable to constrain
the size of the certificate to be polynomi-
ally bounded. In particular, the values of
the variables can grow without bound.

Hard only means at least as hard as NP (it could be harder, including
being undecidable). But claiming that Diophantine is NPC will be tan-
tamount to the claim that something undecidable is decidable!29 Thus,

29 Recall that all NPC problems are decid-
able.

in general, one must not leave an NPC proof unfinished by forgetting to
show that the language in question is in NP: it may, after all, not be in
NP!
We will now show30 that Diophantine ∈NPH.

30 This proof comes from Stephen Cook’s
lecture notes. Please read Cook’s bio
at https://amturing.acm.org/award_

winners/cook_n991950.cfm. He won
the 1982 ACM Turing Award “For his
advancement of our understanding of the
complexity of computation in a significant
and profound way. His seminal paper,
“The Complexity of Theorem Proving
Procedures,” presented at the 1971 ACM
SIGACT Symposium on the Theory of
Computing, laid the foundations for
the theory of NP-Completeness.

https://amturing.acm.org
https://amturing.acm.org
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Theorem 16.7.1: The language Diophantine is NPH:
Diophantine = {p : p is a polynomial with an integral root}.

Proof: We will show that 3-SAT ≤P Diophantine. This means that
given a 3-SAT instance

Φ=φ0 ∧φ1 ∧ . . .φi ∧φ(N−1)

we must produce a Diophantine equation f (Φ)= 0 such that this equation
is satisfied if and only if Φ is satisfiable. We now explain the design of f :
• Take any arbitrary clause φi = (l i0+ l i1+ l i2) of Φ. Function f turns φi

into the arithmetic expression

E i = (g(l i0)× g(l i1)× g(l i2))2

where the mapping g works on literals as follows (this is called the
literal gadget):
– If the argument to g is a variable x, then g(x) = (1− X ) where X ∈

Nat is an integer variable that we introduce in order to model x.31 31 We use the uppercase convention for
the integer variables that correspond to
Booleans.

– If the argument to g is a negated variable !x, then g(x) = X where
X ∈ Nat.

• Now, function f turns the whole formulaΦ into expression E =Σ(N−1)
i=0 E i.

• Example: Function f maps
Φ= (x+ y+ y) · (x+!y+!y) · (!x+ y+ y) · (!x+!y+!y) into this expression E
consisting of sums of squares of three-way products of expressions:
((1−X )× (1−Y )× (1−Y ))2+ ((1−X )×Y ×Y )2+ (X × (1−Y )× (1−Y ))2+
(X ×Y ×Y )2

To argue that this is a mapping reduction, we must show that Φ is
satisfied iff f (Φ)= 0 has integral roots.
Proof that f (Φ)= 0 is satisfiable iff Φ is satisfiable:
• (1) Φ is satisfiable: Then, there exists a variable assignment such

that every clause φ ofΦ has a literal that is true. Let φi = (l i0+l i1+l i2)
be an arbitrary clause. Without loss of generality, let l i1 = 1.
– If l i1 is an ordinary variable x, then g(x)= (1− X ), and we can turn

the situation “x = 1” into the corresponding integer assignment X =
1, making g(x)= 0.

– If l i1 is !x, then g(!x)= X , and we can turn the situation “x = 0” into
the corresponding integer assignment X = 0, making g(!x)= 0.

Thus, corresponding to this assignment l i1 = 1, expression E i = 0. This
is the case for every E i, and so E = 0, or that the equation f (Φ) = 0 is
satisfied.

• (2) f (Φ) = 0 is satisfiable: This means that each three-way product
term E i = f (φi) must individually be 0 (since we are squaring the
three-way products, we avoid the possibility of an E i and E j that are
non-zero and cancelling each other). This means that each three-way
product has one term being 0. There are two cases here:
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– This term is of the form X , where X = 0: It is clear that X originated
from a literal !x via the g mapping. We can choose the value x = 0,
thus satisfying the clause that !x came from.3232 We don’t care how we assign other vari-

ables that might be present in the same
clause.

– This term is of the form (1−X ), where X = 1: It is clear that (1−X )
originated from a literal x via the g mapping. We can choose the
value x = 1, thus satisfying the clause that !x came from.

This method allows us to create a satisfying instance for Φ from the
integer roots of f (Φ).

16.7.2 The CoNP and CoNPC Complexity Classes

Definition 16.7.2: A language L ∈CoNP if L is in NP.

Similarly, L is said to be CoNPC exactly when L is in NPC. Figure 16.1
depicts these additional language classes and their likely containments.
To illustrate these ideas, consider the following languages which are both
subsets of Nat. The language

Primes = { n : (n > 1) ∧ (∀p, q : (p× q = n) ⇒ (p = 1∨ q = 1)). }

The language Composites = Primes, where the complementation is with
respect to positive naturals. Composites is in NP because there exists a
P-time verifier for this language, given a certificate which is a pair of
natural numbers suggested to be factors. As pointed out in §16.1.2, Pratt
proves that Primes is also in NP; he shows this result by demonstrating
that there are polynomially long proofs for primes (given a prime p, a
polynomially long sequence of proof steps can serve to demonstrate that
p is such). Furthermore, he showed that such a proof for Primes can
be checked in polynomial time. Now, Composites is in CoNP because
Primes is in NP, and Primes is in CoNP because Composites is in NP.
The question now is: could either of these languages be NPC?

Theorem 16.7.2 shows that even if there exists one such language, then
NP and CoNP would become equal—a result thought to be highly unlikely.
As pointed out in §16.1.2, the AKS algorithm is proof that Primes is
in P (and hence Composites is also in P). Theorem 16.7.2 has helped
anticipate the direction in which some of the open problems in this area
could be resolved.

Theorem 16.7.2: ∃L : (L ∈NPC and L ∈CoNP) if and only if NP =
CoNP.

Proof:
• (⇒) To show that if L ∈NPC and L ∈CoNP then NP = CoNP.

– Assume L is NPC; therefore,

* L is in NP (Definition 16.4(a), Part 1)
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* Also, L is in CoNP, and thus L ∈NP (Definition 16.7.2).

* Thus L ≤P L (Definition 16.4(a), Part 2, the “every language” is
L).

– To show NP = CoNP, we will take an arbitrary L
′

in NP and show
that it is in CoNP. Then we will take an arbitrary L

′
in CoNP and

show that it is in NP.

* Consider an arbitrary L
′

in NP. Then L
′ ≤P L.

* From L
′ ≤P L, it follows that L′ ≤P L. Also L′ ≤P L ≤P L.33 33 These are basic properties of mapping

reductions. If A ≤P B then there is a
polynomial-time function f such that x ∈
A ⇔ f (x) ∈ B (definition of mapping re-
ductions). This also means that x ∈ A ⇔
f (x) ∈ B or that A ≤P B. Mapping reduc-
tions also compose: if x ∈ A ⇔ f (x) ∈ B, and
y ∈ B ⇔ g(y) ∈ C, then x ∈ A ⇔ g( f (x)) ∈ C.

* Now, since there is an NP decider for L, there is an NP decider
for L′ also, using the above mapping reduction chain. In other
words, L′ ∈NP, or L

′ is in CoNP. (∗)

* Now, consider an arbitrary L
′

in CoNP.

* This means that L′ is in NP. Since L is in NPC, we have L′ ≤P L.
From this we have L

′ ≤P L.

* Using the fact that L ≤P L, we have L
′ ≤P L ≤P L, or that there

is an NP decider for L
′
, or in other words L

′ ∈NP. (∗∗)

* From (∗) and (∗∗), NP = CoNP.
• (⇐) To show that if NP = CoNP, then there exists an L that is in NPC

and in CoNP. This is straightforward: consider any NPC language L;
it would be in CoNP because L is in NP and NP = CoNP. �

16.8 SAT in Practice

Thousands of verification, counting and optimization problems are cur-
rently being modeled in terms of Boolean satisfiability checking.34 These 34 https://en.wikipedia.org/wiki/

Boolean_satisfiability_probleminclude 3-SAT formulae generated during the formal verification of pro-
grams that are used in a number of safety-critical areas such as embed-
ded systems and computer security. Despite SAT being NP-complete,
heuristics invented over the last two decades have achieved several or-
ders of magnitude increase in the efficacy of SAT-solving [9]. SAT solvers
nowadays routinely deal with thousands of variables and clauses. Even
“hard instances” of SAT that involve more than 50 variables and 200
clauses are routinely solved by SAT solvers.35 35 These facts show us that the pursuit of

NP-Completeness with respect to 3-SAT
does not shut the door toward practical
uses of SAT. Solvers based on Integer Lin-
ear Programming (ILP) are employed in
literally tens of thousands of engineering
tasks even though ILP is NP-Complete.

A SAT solver: Thanks to the work of Mate Soos, you can invoke a SAT
solver called CryptoMiniSat in your web browser, with a SAT instance
already loaded in the DIMACS format [29]. This format is explained
in Figure 16.10 (along with a screenshot; the <-- are added notes for
clarity). By clicking the “Play” button on the top right of this browser
(near the legend “Ready”), you can invoke the CryptoMiniSat tool on the
SAT instance contained in your browser.

Note that SAT solvers, in general, take general CNF formulas that
have more than three literals per clause. These general CNF instances
can be translated into equisatisfiable 3-SAT formulae.

https://en.wikipedia.org
https://en.wikipedia.org
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Definition 16.8: A Boolean expression E1 is equisatisfiable with
E2 if E1 is satisfiable exactly when E2 is satisfiable. If E1 ≡ E2

(i.e., E1 → E2 and E2 → E1), then of course these expressions are
equisatisfiable. However, even if E1 6≡ E2, it is possible for these
expressions to be equisatisfiable. This fact is illustrated in the
callout below entitled Equisatisfiability without Equivalence.

Equisatisfiability without Equivalence: Given (a+b+c+d),
we can rewrite it into (a+b+!p).(p+c+d) which is equisatisfiable
to (a+b+c+d). That is, (a+b+c+d) is satisfiable if and only if
(a+b+!p).(p+c+d) is satisfiable. In this translation, we introduce
a fresh variable p to “bridge” clauses.
These formulae are not logically equivalent. Suppose some-
one claims otherwise, and claims that this is a tautology:
(a+b+c+d)≡ ((a+b+!p).(p+c+d)). It is clear that we can fal-
sify the implication (a+b+c+d) → ((a+b+!p).(p+c+d)) by pick-
ing a= b= 1, c= d= p= 0. Thus the formulae are not logically
equivalent. They are equisatisfiable: if a=b=0 and c=d=1, then
we can choose p=0; if a=b=1 and c=d=0, we can choose p=1. One
can work out other combinations suitably.
This idea of obtaining equisatisfiable 3-SAT formulae works
for any number of variables. Consider (a+b+c+d+e+ f).
We can rewrite it into the equisatisfiable formula
(a+b+!p).(p+c+!q).(q+d+!r).(r+e+ f). This way, a k-CNF
clause can be turned into (k−2) 3-CNF clauses.

Exercise 16.7.2, NP-Completeness
1. A SAT instance is given below in the DIMACS format.

(a) What is the CNF formula captured by this instance?
(b) By inspection, answer whether the instance is satisfiable,

and why.
(c) If it is not satisfiable, then what is the minimal number

of rows that must be deleted before the instance becomes
satisfiable? If these rows are not unique, list the first two
possible such omissions (of sets of rows), starting from the
top of the given listing.

(d) Check your answer using CryptoMiniSat.

c A SAT instance in DIMACS format

c Your task is to determine whether this instance is satisfiable

c

p cnf 5 32

1 2 3 4 5 0

1 2 3 4 -5 0
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1 2 3 -4 5 0

1 2 3 -4 -5 0

1 2 -3 4 5 0

1 2 -3 4 -5 0

1 2 -3 -4 5 0

1 2 -3 -4 -5 0

1 -2 3 4 5 0

1 -2 3 4 -5 0

1 -2 3 -4 5 0

1 -2 3 -4 -5 0

1 -2 -3 4 5 0

1 -2 -3 4 -5 0

1 -2 -3 -4 5 0

1 -2 -3 -4 -5 0

-1 2 3 4 5 0

-1 2 3 4 -5 0

-1 2 3 -4 5 0

-1 2 3 -4 -5 0

-1 2 -3 4 5 0

-1 2 -3 4 -5 0

-1 2 -3 -4 5 0

-1 2 -3 -4 -5 0

-1 -2 3 4 5 0

-1 -2 3 4 -5 0

-1 -2 3 -4 5 0

-1 -2 3 -4 -5 0

-1 -2 -3 4 5 0

-1 -2 -3 4 -5 0

-1 -2 -3 -4 5 0

-1 -2 -3 -4 -5 0

2. Consider the set of undirected graphs 〈G〉 with a set of nodes
N and a set of edges E ⊆ N × N such that we can two-color the
graph (meaning no two nodes connected by an edge have the same
color).36 36 For instance, a triangle graph G with

N = {a,b, c} and E = {(a,b), (b, c), (c,a)}
cannot be two-colored.

3. Using Aspvall’s algorithm explained in §16.3.2, check whether the
following 2-CNF formula is satisfiable. Detail the entire construc-
tion. Do not simplify the given formula (do your work on the given
formula). (!a+b) · (!b+c) · (!c+d) · (!d+a)

4. Check the satisfiability of the 2-CNF formula given in Exercise 3
using CryptoMiniSat.

5. Repeat Exercise 3 with (!d+a) replaced by the conjunction of two
clauses: (!d+!a) · (a+a)

6. Check the satisfiability of the 2-CNF formula given in Exercise 5
using CryptoMiniSat.

7. Suppose we write a program that traverses a “tape” of n cells,
numbered 1 through n. The program performs n traversals of
the tape, with the ith traversal sequentially examining elements
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i through n. What is the runtime of such a program in the Big-O
notation?

8. A Hamiltonian cycle in a graph with respect to a given node n is
a tour that begins at n and visits all other nodes exactly once, re-
turning to n. In a 5-clique, how many distinct Hamiltonian cycles
exist? How about in an n-clique?

9. Define the language Hal f Clique to be the set of input encodings
〈G〉 such that G is an undirected graph having a clique with at
least n/2 nodes, where n is the number of nodes in G. Show that
Hal f Clique is NPC. Hint: Mapping reduction from Clique.

10. The game of Sudoku has been shown to be in NPC. In practice,
one can encode and solve Sudoku using SAT solvers. This is also a
good way to understand the power of modern SAT solvers. Study
the Sudoku solver (MIT license) written by Nicholas Pilkington at
https://gist.github.com/nickponline/9c91fe65fef5b58ae1b0.
Test it on the instance provided as well as a few that you cre-
ate. Note: This solver will need Python2 (or you may adapt it for
Python3).

11. In [15], Cantin et al. prove that the problem of verifying memory
coherence is in NPC. Read and summarize this proof in about a
page, focusing on the construction of the mapping reduction.

12. Show that a 3-CNF formula

Φ=φ0 ∧φ1 ∧ . . .φi ∧φ(N−1)

is unsatisfiable if and only if for any variable assignment, there
is one clause φ j with all the literals true and another clause φk

with all the literals false.
Illustration: Consider

Φ= (x+ y+ y) · (x+!y+!y) · (!x+ y+ y) · (!x+!y+!y)

For any assignment (say x = 0, y = 1), we have one clause whose
literals are all true, and one clause whose literals are all false
(these are respectively (!x+ y+ y) and (x+!y+!y)). If we leave out
any one clause, that is not the case, as Φ becomes satisfiable. Now
finish the proof.

https://gist.github.com
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Figure 16.10: CryptoMiniSat, https://

msoos.github.io/cryptominisat_web/,
with DIMACS instance explained at the
top, and a screenshot at the bottom.

c CryptoMiniSat demo, NOT the full solver

c This is uum8.smt2-stp212.cnf from SAT Competition 2016

c It should solve in about 30 seconds

c You can edit ...

p cnf 1006 3359 <-- problem CNF with 1006 vars, 3359 clauses

2 -3 -159 -214 -374 0 <-- Clause (v2 + !v3 + !v159 + !v214 + !v374)

-2 374 0 <-- Clause (!v2 + v374)

...3354 CLAUSES OMITTED...

-681 -942 -950 0 <-- Each clause ends with 0

1006 0 <-- All clauses are implicitly conjoined

2 0 <-- This is the 3359th clause (last one)

UNSATISFIABLE <<-- Make last line "-2 0" to get SAT instantly!

https://msoos.github.io
https://msoos.github.io
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17
Binary Decision Diagrams as
Minimal DFA

Chapter Gist: We motivate the importance of efficient represen-
tation and manipulation of Boolean functions (§17.1). The Binary
Decision Diagram (BDD) data structure can be viewed as an opti-
mized representation of minimal DFA for Boolean function on-sets
(§17.2). For this idea to pay off in practice, the Boolean variables
must be ordered as per their semantic correlation (§17.3). We pro-
vide an intuitive overview of what BDD algorithms end up doing:
as if the full exponential tree is built and common subexpressions
shared (§17.4). We close off with a discussion of BDD sizes includ-
ing connections with NP-Completeness (§17.5).

17.1 Boolean Functions in Computing Theory and Practice

The representation and manipulation of Boolean functions is central to
computing theory and practice.

x1 x2 0 x 1
∧ x

2
x 1
∧¬

x 2
x 1 ¬x

1
∧ x

2
x 2 x 1
⊕ x

2
x 1
∨ x

2
¬(

x 1
∨ x

2
)

x 1
≡ x

2
¬x

2

x 2
→

x 1
¬x

1

x 1
→

x 2
¬(

x 1
∧ x

2
)

1

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure 17.1: All 2-input truth-tables

For pedagogical purposes, Boolean functions are commonly represented
using truth-tables. Figure 17.1 presents a gallery of all possible 2-input
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truth-tables. We fix the listing order of inputs x1 and x0 to be the stan-
dard binary counting order, namely 00, 01, 10, and 11. Each 2-input
Boolean function is then characterized by how we fill the output column—
we call this the personality of the Boolean function. For example, the per-
sonality listed under x1 ∧ x2 is 0001 while for x1 ⊕ x2, it is 0110. Given
that there are 222

(16) positions to fill (all combinations from 0000 to
1111), there are as many 2-input Boolean functions.

Realization
of 

function f
.
.
.

x1
x2

xN

f

Figure 17.2: An N-input Boolean function

Unfortunately, representing N-input Boolean functions (Figure 17.2)
using truth tables is impractical for larger N. For N = 64, we would have
a truth-table of 264 rows. Even to print that truth-table, we would need
about 46 billion tons of paper (assuming 80 truth-table rows are printed
per sheet of paper, with each sheet weighing five grams). The hardware
industry needs to routinely process Boolean functions with many more
inputs than 64. This is to support formal verification to detect bugs in
the design of critical components such as microprocessors. The first effi-
cient data structure that came to the rescue of the industry is the Binary
Decision Diagram (“BDD” for short).

BDDs were introduced in [11] by Randal Bryant. Knuth, one of the
giants of computer science, calls BDDs one of the only really fundamental
data structures that came out in the last twenty-five years. They were
instrumental in many of the advances in hardware verification up until
(roughly) the year 2000, since when Boolean satisfiability methods have
taken the front seat (with BDDs still continuing to play an important
role)1.1 Bryant’s paper is one of the most cited of

papers in Computer Science.

Figure 17.3: Each N-input gate is cap-
tured by its personality. Cartoon by Geoff
Draper.

As we will see shortly, BDDs are polynomially sized for many of the
Boolean functions that arise in practice. There are 22N

distinct Boolean
functions (listing all personalities of length 2N ). This is an astronomical
number: there are 256 3-input functions, 65,536 4-input functions, over
4 billion 5-input functions, and over 18 quintillion (billion billion) 6-input
functions.2 Out of these humongous numbers of Boolean functions, those

2 For comparison, a human lives about 3
billion seconds.

that arise in practice are a miniscule fraction, and out of these, many of
them tend to have polynomially sized BDDs. More discussions on this
topic appear in §17.5.

17.2 Boolean Functions as Minimal DFA of Their On-Sets

We are studying BDDs in our book because BDDs are nothing but a small
variant of minimal DFAs. In particular, BDDs are graph structures that
summarize a Boolean function’s on-sets (sets of inputs for which the func-
tion is true). The on-set of the And function is {11} while that for the Or

function is {01, 10, 11}. The on-set of a Boolean function can be treated as
a formal language. This language is {01, 10, 11} for an Or-gate and {11}
for an And-gate. We will now build minimal DFA for these sets.
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Minimal DFA and BDD for Xor: The minimal DFA and BDD for the Xor

function are now obtained.

L_XOR = "(01+10)" # The regexp for the on-set of the XOR function

dotObj_dfa(min_dfa(nfa2dfa(re2nfa(L_XOR))), STATENAME_MAXSIZE=4)

St1

St4

St3
0

St2

1

1

0

Figure 17.4: BDD for Xor

We can see that the minimal DFA3 for Xor accepts 01 and 10. The

3 In most of the DFA presented, we do not
show the moves to black-hole states.

BDD for Xor can be obtained using an online tool called PBDD4 that can

4 Built by Dr. Tyler Sorensen when he was
a BS/MS student working with this au-
thor.

be invoked as follows (it will open the BDD tool in a new browser tab):

import webbrowser

# This is the URL for our PBDD tool that can be opened on a new tab

url = ’http://formal.cs.utah.edu:8080/pbl/BDD.php’

webbrowser.open(url)

Type in the following commands and click “build BDD” to obtain the BDD
of Figure 17.4:

Var_Order : x1 x0

Main_Exp : x1 XOR x0

Basically, Main_Exp provides the Boolean function under study, and
Var_Order specifies that the on-set of this function must be built for the
language of two-bit words where x1 comes before x0, i.e., the “x1,x0”
words are in the on-set language. It can be seen that the BDD is very
similar to the minimal DFA if one focuses on all paths that lead to the “1”
node. The BDD also shows that the decoding goes on as per Var_Order:
x1 is decoded first, and then x0, as shown by the edge labels. It is ap-
parent that the “0” leaf node corresponds to the black-hole state.5 As one 5 A state from which we can’t get out, as

discussed in §4.3.
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example, the path 01 ends up in the 1 node (the function output is 1)
while the path 00 ends up in the 0 node (the function output is 0).

Minimal DFA and BDD for Or: The minimal DFA and BDD for the Or

function are now obtained.

L_OR = "(01+10+11)" # Regexp for the on-set of the OR function

dotObj_dfa(min_dfa(nfa2dfa(re2nfa(L_OR))), STATENAME_MAXSIZE=4)

St1

St4

St3

1

St2
0
1

0

1

Figure 17.5: BDD for Or

By entering these commands and clicking “build BDD,” one obtains the
Or BDD of Figure 17.5.

Var_Order : x1 x0

Main_Exp : x1 | x0

Again it can be seen that the BDD is very similar to the minimal DFA
if one focuses on all paths that lead to the “1” node. But there is one
crucial difference: When x1 is 1, the BDD directly jumps to the “1” node.
The minimal DFA on the other hand goes to state St2, but in that state,
regardless of whether a 0 or a 1 comes, the DFA jumps to the final
state St3. It is clear that we can simply drop all such parallel transitions
when interpreting the DFA moves as satisfying the function. In other
words, the second bit is a “don’t-care” and leads to state St3 no matter
what. That is, x1=1 ensures that the function output is a 1, ignoring x0.

Thus far, the advantage of minimal DFA (or BDD) over truth-tables
hasn’t been quite apparent. We now proceed to demonstrate that for
larger functions, with the right decoding order of the variables, BDDs
(and minimal DFA) can indeed be far more compact. On the other hand,
truth-tables are guaranteed to be exponential for any N-input Boolean
function.
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17.3 The Importance of Variable Ordering

  x2,x1,x0
 <

 y2,y1,y0

x2
x1

Outputx0

y2
y1
y0

Figure 17.6: The < comparator.

Let us do some more experiments, this time taking a more practical (and
non-trivial) function: that of a magnitude comparator for < (Figure 17.6).
Suppose there is a 6-input Boolean function modeling a magnitude com-
parator that compares the binary value coming in through input ports
x2,x1,x0 against the binary value coming through ports y2,y1,y0. The
function is "<" where "A < B" means the usual “less than” (<) compar-
ison. More specifically, we write "x2,x1,x0 < y2,y1,y0" and we interpret
the word x2,x1,x0 using the standard positional binary notation (likewise
also for y2,y1,y0). Here are some examples:
• 000 < 001: 0 is < 1 (0 is encoded in binary as 000 and 1 as 001)
• 010 < 110: 2 is < 6 (2 is encoded as 010 while 6 is encoded as 110)
• 110 < 111: 6 < 7

Let us now define a language of strings of length 6 representing the
values of x2,x1,x0,y2,y1,y0 written adjacently, such that for those x,y val-
ues, the function outputs a 1. Call this language L. For instance, L con-
tains 010101 because 010 is < 101 (i.e. 2 < 5). The reader may verify that
the full L language written out as a regular expression (called R below)
has 28 strings (out of the 26 = 64 possible length-6 strings):

R = "(000001+000011+000111+001011+001111+010011+010111+011111+\

100101+100111+101111+110111+000010+000101+000110+001010+001101+\

001110+010101+010110+011101+011110+100110+101110+000100+001100+\

010100+011100)"
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The minimal DFA for R using the method shown earlier is above, and
the BDD for it is in Figure 17.7 (for Var_Order being x2 x1 x0 y2 y1

y0). This DFA is in fact exponential in the x2,x1,x0 bits (those are the
first three bits to arrive at this machine, and the machine grows expo-
nentially with respect to these inputs). It must represent every x2,x1,x0
combination because the DFA does “not yet know” which y-bits are going
to arrive. It then collapses as soon as the y bits come in.

Figure 17.7: BDD for the magnitude com-
parator: bad input-variable order

The similarity of the DFA and BDD paths is apparent once again, with
the BDD directly jumping to the “0” or “1” node when a decision is made
(bypassing the don’t-care decodings that minimal DFA end up passing
through). However the ability to directly jump (bypassing the don’t-cares)
still cannot save the BDD from being exponentially big.

17.3.1 Finding a better input variable order

The main purpose of BDDs is to try and improve over truth-tables, and
for that to happen the correct variable order must be presented so that
“the Boolean function can decide as quickly as possible.” This suggests
that we pick the variable order to be x2,y2,x1,y1,x0,y0. This order makes
sense because (for example) as soon as we know that x2 is 1 and y2 is 0,
a decision can be made: < must be false. Likewise, if x2 is 0 and y2 is 1,
again the decision is made: < must be true. Only otherwise (when x2 =
y2) is it necessary to descend into the remaining bits. This manner of
keeping semantically correlated variables proximally in the BDD
(“quick decoding ability”) indeed shows up as a reduced minimal DFA size
(and also a reduced minimal BDD size) as we shall now demonstrate.
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Let us call the regular expression obtained by interleaving the input bits
“Rmix”:

Rmix="(000001+000111+001101+011111+110001+110111+111101+000101+\

000110+010111+011011+011101+011110+110101+110110+000100+010011+\

010101+010110+011001+011010+011100+110100+010001+010010+010100+\

011000+010000)"

Figure 17.8: BDD for the magnitude com-
parator: good input-variable order

The minimal DFA for Rmix is below, and the BDD for it is in Fig-
ure 17.8 (for Var_Order being x2 y2 x1 y1 x0 y0). Again, it is easy to
see that the BDD does not “trudge through” the redundant decodings.
For instance, in the DFA, state St8 is reached when x2 = 0, and then
when y2 = 1 is seen, a pathway of redundant decodings leading to the ac-
cept state is entered. Correspondingly, in the BDD, after seeing x2 = 0,
we reach a node which decodes y2, and if y2 = 1, the BDD jumps to the
“1” leaf node.
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1

St4
1

0
St640
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0
1
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0
1

St24 St3
1
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1

0
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1

1

0

17.3.2 Functions with linearly sized BDDs

As an example of a BDD that is in fact linearly sized, see Figure 17.9
showing the BDD for a 5-input Xor function. Given that the binary Xor

function is commutative and associative, we can obtain the 5-input Xor

by connecting the input variables in any order and without the use of
parentheses, as shown in the following PBDD commands (Var_Order does
not matter, so an arbitrary one can be specified):

Var_Order : a b c d e

Main_Exp : a XOR b XOR c XOR d XOR e

Notice that Xor’s parity-checking behavior is quite apparent from its
BDD. All paths from the root described by an even number of 1’s ends up
in the 0 leaf node, while paths described by an odd number of 1’s ends
up in the 1 leaf node. (Think of a train starting from the BDD’s root
node, wanting to head to one of two “leaf stations 0 and 1”; the train gets
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shunted between two tracks based on the bits that arrive.)

Figure 17.9: BDD for a 5-input Xor gate

How do BDDs avoid/hide the exponentiality of truth-tables? From Fig-
ure 17.8, we can see that there are cases where a BDD can skip over
several levels of decoding. After seeing y2 = 1, the BDD must consider x1,
while after seeing y2 = 0, it can directly jump over to the 0 node. This
is one way in which the exponentiality is avoided. However, the BDD
for a 5-input Xor (Figure 17.9) does not skip levels. Here, we exploit the
fact that in a directed graph with node sharings, even though there are
a polynomial number of nodes, there are an exponential number of paths
with each path spelling out a truth-table row. Even though the number
of paths is exponential, due to the node sharings, we “forget” which path
is taken to reach particular states. This helps us to represent BDDs such
as an N-input Xor with linear size.
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17.4 From Minimal DFA to BDD: Intuitive Presentation
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Figure 17.10: BDDs as Optimized “Deci-
sion Trees”

The uniqueness of minimal DFA for a given Boolean function (the
Myhill-Nerode theorem, §6.4) does in fact apply to BDDs as well. Fig-
ure 17.10 is an attempt to portray this connection conveniently. Notice
that the minimal DFA discussed so far were determined by regular ex-
pressions (two examples being “R” on Page 271 and “Rmix” on Page 273).
These regular expressions are, in turn, completely determined by the se-
quence of inputs that make up the on-sets.

Var_Order : x1 x2 x3 x4

Main_Exp : x1 & x2 & x3 & x4

Notice the leftmost graph (almost a full “decision tree” sans the leaf-
level nodes) in Figure 17.10. This is the minimal DFA for the four-input
And’s on-set (if one treats the 1 node as the accepting node and the 0 node
as the black-hole state).

The BDD construction algorithm does not build this graph, as do-
ing so would make the graph exponential. It instead builds the graph
incrementally, bottom up, sharing common subexpressions, and eliminat-
ing redundant decodings (see Bryant’s paper for details). For the sake of
clarity, we explain these steps now as if we are building the whole graph:
• Notice that all the x4 nodes except for the rightmost one have their
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left and right child point to the red double-rectangle 0 node.6 So we6 The last x4 node has one child being the
1 node. first collapse all these x4 nodes into a single x4 node whose left and

right children go to this 0 node. We leave the last x4 node alone as a
separate entity.

• We repeat the sharing of nodes, now pushing together the three left-
most x3 nodes into a single node. Again we have to leave the last x3

node as a separate entity.
• In the same vein, we cannot combine both x2 nodes, so we leave them

as separate entities. This obtains the diagram in the middle of Fig-
ure 17.10.

• We now observe that this diagram has redundant decodings. More
specifically,
– The leftmost x4 node has both children being 0. Thus, whether x4

is 0 or 1, the outcome will be 0. This is because node x4 lies under
the case where x1 is 0.

– Thus,

* We can simply eliminate the node x4, making the left and right
children of the leftmost x3 node point directly to 0.

* We can also make the left (0) child of the right-hand side x3 node
point directly to 0.

– Now we create a situation where the leftmost x3 node’s left and
right children point to 0. This causes the leftmost x2 node to point
directly to 0 (via its 0 and 1 children) and also the left child of the
right-hand side x2 node can also point to 0.

– Proceeding in this manner, we obtain the rightmost diagram of Fig-
ure 17.10.

The above steps do not destroy the canonicity of BDDs. Thus, much like
minimal DFA, BDDs are also unique (for a given function and variable
order).

Myhill-Nerode Theorem in BDD Construction: For a given Boolean func-
tion, the generated BDD graphs are isomorphic.7 This permits fast equal-7 Strictly speaking, “for a given variable

order” [12]. ity checking between two different Boolean functions. This is based on
the Myhill-Nerode theorem already discussed in §6.4.

Bryant proposed a hash-table based representation for BDDs in such
a way that isomorphic BDDs map into the same hash-table slot. This
way, one can perform Boolean function comparisons in constant time.
Also Bryant introduced the Apply operation that takes two BDDs and
combines them using a Boolean operator. This operator is polynomial
with respect to the sizes of the constituent BDDs. Thus if we can build
polynomially sized BDDs, Boolean reasoning using BDDs can be done in
polynomial time.
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17.5 On BDD Sizes

For many commonly occurring Boolean functions, the BDDs involved are
polynomially sized, and for these problems, Boolean reasoning becomes
polynomial-time. Heuristics help choose variable orders that often en-
sure polynomially sized BDDs. In Figure 17.8, we chose the heuristic of
clustering “closely related variables” in the variable order. Variants of
this heuristic are employed in practice.

BDDs exhibit another curious fact: their size tends to blow up dur-
ing BDD manipulations. Measures such as dynamic reordering of the
variables are often able to minimize many of these bloated BDDs. Such
sifting algorithms have been well studied in the literature.

From Chapter 16 we know that Boolean satisfiability is NP-Complete.
Thus, there shouldn’t be a way to get away with satisfiability check-
ing with a lower cost even by using BDDs. This is indeed clinched by
the result that discovering a good variable ordering for BDDs is NP-
Complete [10].

Exercise 17.5, BDDs
1. Using PBDD produce a BDD for a 4-input Nor function over vari-

ables x1 through x4. How does it compare with the BDD for the
4-input And function?

2. Using PBDD, produce a BDD for a five-input Xnor circuit (similar
to the 5-input Xor on the right-hand side of Figure 17.9). What are
the salient differences between these BDDs?

3. Draw a decision tree for a four-input Or gate with inputs x1, x2, x3

and x4. Then apply the steps suggested in Figure 17.10. Do you
obtain a linear-sized BDD at the end of the process? Check your
answer by typing in the expression for a four-input Or and using
PBDD.

4. Someone encodes the following PBDD file to model the situation:

# Implement A < B

# i.e. a2,a1,a0 < b2,b1,b0 where a2/b2 are the MSBs

Var_Order : a2, b2, a1, b1, a0, b0

Main_Exp : ~a2 & b2 | ~a1 & b1 | ~a0 & b0

(a) Is the above encoding correct? Argue by generating and
studying the BDD.

(b) If there is a flaw in the encoding of Main_Exp, fix the flaw,
regenerate the BDD, and argue that it now stands cor-
rected.
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18
Computability Using Lambdas

Chapter Gist: We begin with a historical perspective on the
Lambda calculus. (§18.1). Despite its origin as a theoretical vehi-
cle, Lambdas are now found in everyday programming languages
including C++ (§18.2). We present the three Lambda reduction
rules (§18.3). Then we show how to encode numbers (§18.4) and
Booleans (§18.5) in the Lambda calculus. Lambdas are ways to
define anonymous functions; doing this for recursive functions is
introduced (§18.6). A crucially important combinator called Y—a
fixpoint combinator—is introduced (§18.7). We illustrate the use of
Y in defining everyday recursive functions (§18.8), and close with
a general discussion of combinators (§18.9) including just two com-
binators, namely S and K, that prove to be universal.

18.1 The History of Lambda Calculus

The early part of the 20th century witnessed intense activity amongst
mathematicians and logicians engaged in a quest for universal comput-
ing mechanisms. Such a universal mechanism, namely Lambda Calcu-
lus, was proposed by Alonzo Church who presented it to the American
Mathematical Society in 1935 through his paper An Unsolvable Problem
of Elementary Number Theory. This paper showed that the lambda no-
tation is universal [22]. Given that Turing machines are also universal
(Chapter 13), it is natural to wonder which result came first, and what
the connections (if any) between these formulations are. Even though
Turing’s paper was written later (only around 1936), we now know that
these ideas originated contemporaneously. The historical account of Tur-
ing’s visit to Princeton [19] as well as the following quote from M.H.A.
Newman (Turing’s British mentor), support the independence of these
discoveries: I should mention that Turing’s work is entirely independent;
he has been working without any supervision or criticism from anyone.
Turing’s PhD dissertation was, in fact, finished at Princeton, with Church
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serving as his thesis advisor—another glimpse of these giants acknowl-
edging each other’s work.

In the modern setting, the lambda calculus often plays much more of a
practical role than Turing machines. Lambdas are central to functional
programming languages, and also have made a much-needed entry into
widely used languages such as Java and C++. Here is a C++ example
employing a lambda:

// Find the accountant whose salary meets a test

std::find_if(

emps.begin(), emps.end(),

[=](const accountant& a)

{ return a.salary() >= min_wage && a.salary() < limit; }

);

This lambda function is designed to search the emps array for some ac-
countant a whose salary meets the predicate test.

All this, however, does not mean that Turing machines are “inferior”
in any way. Turing machines are, in fact, much easier to understand,
program, and puzzle over.1 They are also mathematically rigorous, and

1 They also look like a “real machine,”
clanking away like an old typewriter, and
printing yards of tape.

play a foundational role in our study of computability as well as space
and time complexity.2

2 For instance, the extent of tape that a
Turing machine must pass its head over
is its space complexity. The number of
steps a Turing machine takes is its time
complexity. From this one can immedi-
ately conclude that the space-complexity
of a Turing machine can never be higher
than its time-complexity. Why? Simply
because tape (space) can be reused, while
time cannot be! Thus, if a Turing machine
writes over O(N2) tape, it must also spend
O(N2) time to do so (one tape cell per unit
of time). However, a Turing machine tak-
ing O(N2) time can very well do so by sim-
ulating a binary counter on the tape, and
this can be done in O(log(N)) space (this
is not the only way to implement an O(N2)
algorithm on a Turing machine).

In this chapter, we will provide a taste of the lambda notation in its
role as a universal computing formalism. We will employ a small subset
of Python to help the reader easily follow along.3

3 Our approach follows that taken by
Michael Gordon in his book Programming
Language Theory and Its Implementa-
tion. Mike Gordon, Fellow of the Royal
Society, was a humble giant who con-
tributed so much to computer science—
notably automated theorem proving by be-
ing behind the Higher Order Logic (HOL)
system. We miss Mike dearly; please read
about him at https://en.wikipedia.

org/wiki/Michael_J._C._Gordon.
Gordon’s book also provides a much

more detailed treatment of lambda calcu-
lus, discussing important theorems such
as the Church-Rosser theorem and the
Normalization Theorem. There are also
adaptations of the text from Gopalakrish-
nan’s Spring 2006 book Computation En-
gineering: Applied Automata Theory and
Logic.

18.2 Lambdas from a Programmer’s Perspective

The lambda notation is a way to describe functions without redundantly
attaching names to them. Consider someone naming the successor func-
tion Fred and describing it thus in C:

int Fred(x) { return x+1; }

The main criticism we would get is that we did not choose a meaningful
name. If we named the function succ and defined it as follows, then this
complaint might vanish:

int succ(x) { return x+1; }

However, there is an even more parsimonious way to describe this func-
tion in mathematics: just drop the name succ: it does not determine the
behavior of the function, and mathematicians do not like to have any ex-
cess baggage in their notation:

https://en.wikipedia.org
https://en.wikipedia.org
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function (x) { x+1; }

The lambda notation is a realization of such an idea: drop irrelevant
names and merely describe what the function takes in as well as returns,
using only a minimal number of characters and punctuation symbols. In
lambda calculus, the notation adopted is, therefore:

λx. x+1
Unfortunately, this approach runs into trouble when we are presented
with a recursively defined function such as this:

// Sum an arithmetic series. This function could carry a more

// serious name such as sumSeries or some such. It may not matter

// if we are going to get rid of the name of the function, as

// will be demonstrated shortly.

int Fred(x)

{ if (x <= 0) return 0;

else return x + Fred(x-1); }

We might call this function anything at all—but the point is that without
the “crutch” (a function name, say Fred in this case, or even foo if you
prefer that), it appears impossible to refer back to the function. The re-
cursive program shorn of the function name will look rather malformed:

function (x)

{ if (x <= 0) return 0;

else x + ???(x-1); }

where the ??? indicates our inability to refer back to the function that
is now devoid of its name. One can devise something like “self” for re-
ferring back to the same function. But then, the trouble only compounds:
how does one handle mutually recursive functions where, for instance,
function f might be defined in terms of function g, function g in terms of
h, and function h in terms of f ? If we strip all these names f , g,h from
the function headers and bodies, it would become rather confusing as to
which function is calling which other. While we can have many kludgy
ways of handling this situation,4 there is actually a rather ingenious way 4 Say, putting f , g,h on say lines 27, 38,

and 43, and referring to those line num-
bers...

to handle such situations without extending the lambda calculus a bit! In
other words, we can define any recursive program with no function names
attached to function definitions, and still be able to employ arbitrary re-
cursive structures.

This chapter is all about this idea of an anonymous function. We
proceed layer by layer by first defining the syntax and semantics of the
lambda calculus. We follow this with a discussion of how lambda reduc-
tion works, and then present how lambdas are a sufficient syntax to de-
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scribe “anything at all.” Our illustrations will not amount to a mathe-
matical proof; however, they will be pretty convincing (we hope) as to the
universality of the lambda calculus.

18.3 Syntax and Semantics of the Lambda Calculus

Computing using lambdas consists of reducing (or transforming) given
lambda expressions into other lambda expressions.5 To define lambda5 Such transforms of lambda expressions

do not always result in simpler expres-
sions. The expression can in fact grow in
size. We will nevertheless use the terms
reduction and transform interchangeably.

reduction properly, we now introduce the syntax of lambda expressions,
as well as its three basic reduction rules.

E → x A variable
| λx.E An abstraction
| (E1E2) An application
| (E) Parenthesization

Figure 18.1: Lambda Expression Syntax

Name Rule-Application Comments
Alpha λx.E[x]→λy.E[y] Renaming (assuming no name clash)
Beta (λx.E)E1 → E[E1/x] Call (assuming no capture)
Eta λx.(Ex)→ E Extensionality (assuming x is not free in E)

Figure 18.2: Lambda Reductions

Syntax: The syntax of lambda expressions is given in Figure 18.1. This
figure shows that a variable occurring by itself is a lambda expression. A
lambda abstraction models a function, and is a lambda expression (the x
in λx.E is the binding occurrence of x, with respect to uses of x within E).
An application (where we apply a function to its arguments) is a juxtapo-
sition of two lambda expressions, and is also a lambda expression. The
final rule allows parentheses to be added in order to enhance readability.

Figure 18.2 presents the three basic reduction rules of the lambda cal-
culus that go by the names of alpha, beta and eta, as now elaborated.
Alpha Reduction: This rule captures the fact that the formal parame-
ters of a function only have meaning within the function body. Thus, a
formal parameter x as in this illustration can be freely replaced with y.
The only caveat is that we must not clash with another y that is already
present within the body of the lambda expression, namely E. In most
typical uses of alpha reduction, we will choose y to be a “fresh” variable
name, thus avoiding name clashes.

Examples and non-examples:

• OK: λx.x
α→λy.y

• OK: λx. f x
α→λy. f y
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• Not OK: λx.λy.(+ x y)
α→ λy.λy.(+ y y) (the y we rename x to “clashes

with” (becomes captured by) the y in the inner abstraction).

Beta Reduction: The beta reduction rule is the workhorse of lambda
calculus, and models function calls. Lambda expressions are (typically)
applied to other lambda expressions, and transformed through the beta
rule as follows:

(λx.(x+1)) 3
β
→ (x+1)[3/x]= (3+1)= 4

where (x+1)[3/x] stands for substitute 3 in place of x in the expression
(x+1). Such a substitution yields (3+1), or 4 as the answer. Again, we
ensure that we do not have free occurrences of x within E1 (if there are,
we can rename before applying the beta reduction step).

Examples and non-examples:

• OK: (λx. f x) E
β
→ ( f x)[E/x]= ( f E)

• Not OK: (λx.(λy.(+ x y))) (pred y)
β
→ (λy.(+ x y)) [(pred y)/x]= (λy.(+ (pred y) y).

This is because the y coming in via (pred y) is presumably bound in
an outer scope, and should not be captured by the y in the inner scope.

Solution: Before the beta reduction is performed, rename (pred y) to
(pred z) (and also rename the binding occurrence of y in (pred y) to
z).

I = lambda c: c # Identity

ZERO = lambda b: lambda c: c # Number 0

S = lambda a: lambda b: lambda c: b(a(b)(c)) # Successor

Note that S(ZERO) reduces to lambda b: lambda c: b(c):

S(ZERO)

--> (lambda a: lambda b: lambda c: b(a(b)(c))) (ZERO) [ Definition of ‘‘S’’ ]

--> lambda b: lambda c: b(ZERO(b)(c)) [ Beta reduction: ZERO/a ]

--> lambda b: lambda c: b((lambda b: I)(b)(c)) [ Definition of ZERO ]

--> lambda b: lambda c: b(I(c)) [ Eta reduction: (lambda b: I)b = I ]

--> lambda b: lambda c: b((lambda c:c)(c)) [ Definition of I ]

--> lambda b: lambda c: b(c) [ Eta reduction: (lambda c: c)c = c ]

Similarly, S(S(ZERO)) reduces to lambda b: lambda c: b(b(c)):

Figure 18.3: Lambda as a universal nota-
tion: Church Numerals in Python.



284 AUTOMATA , COMPUTABILITY: PROGRAMMER ’S PERSPECTIVE

Eta Reduction: The eta reduction rule takes advantage of the fact that
the lambda expression (λx.(E x)) V can be replaced by (E V ) via the beta
rule, provided x is not free in E. A noteworthy aspect of the eta rule is
that it allows this simplification for any lambda expression V .

18.4 Illustration: Church Numerals in Python

We will now show how to represent and manipulate numbers just using
the lambda syntax. We assume that there is a number 0, and that every
natural number n is described as the nth successor of 0.6 Thus, 1 is the6 This encoding stems from an area called

Peano arithmetic. successor of 0 and 2 is the successor of the successor of 0—and so on. If
we employ S to denote successor and ZERO to define 0, we can write any
natural number as ZERO, S(ZERO), S(S(ZERO)), and in general, number n
as Sn(0) (n applications of the S). For a detailed illustration of these ideas,
please study the definitions in Figure 18.3 and the definition of two helper
functions, namely ChurchToNat and NatToChurch, in Figure 18.4. These
examples explain how ChurchToNat(S(ZERO)) manages to print 1.7

7 The identity function I takes an x and
returns x. We represent number 0 as
a lambda that takes one argument and
returns the identity function I. The rea-
son for this encoding will become clear
when we perform a few example reduc-
tions in Figure 18.4. The definition of ADD
and MULT are left for your exercises (with
hints).

This figure also introduces suitable definitions for addition (ADD) and
multiplication (MUL). Take the addition of a and b: one can view the pro-
cess as obtaining the ath successor of b.8 These ideas are captured in

8 or in fact, also as the bth successor of a.
the definitions in this figure. The reader may test these ideas out using
ready-made Jove notes that are provided.

Exercise 18.4, Church Numerals
1. Study the definition of ADD (the addition operator) and MULT (the

multiplication operator) of Figure 18.4 and explain how they seem
to be designed. Take the approach in Figure 18.3 to unravel their
working.

2. Demonstrate the ability to multiply 4 and 8, using NatToChurch

to generate the required Church numerals, and ChurchToNat to
print the answer.

18.5 Illustration: Booleans, Pairs, Other Functions

We now present Church encodings for Booleans, pairs, and other primi-
tive operators in Figure 18.5. The best way to understand the interplay
between these definitions is to do a few exercises that are included in
our Jove notebooks. Clearly, considerable ingenuity has been shown by
logicians of yesteryears, notably Alonzo Church himself.

Exercise 18.5, Booleans in Lambda
1. Take the Python pair (True,False) and convert it to a Church

pair with True and False turned into their Church-coded forms.
That is, translate (True,False) into PAIR(TRUE,FALSE) using
Church’s encodings. You may use the function BooleanToLambda
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ChurchToNat(S(ZERO))

--> S(ZERO)(increment)(0) [ Definition of churchToNat ]

--> (lambda b: lambda c: b(c)) (increment)(0) [ Definition of S and ZERO ]

--> (lambda c: increment(c)) (0) [ Beta reduction: increment/b ]

--> (increment(0)) [ Beta reduction: c/0 ]

--> 1

S(S(ZERO))

--> ..

--> lambda b: lambda c: b(b(c))

def increment(n):

"""Successor of a number."""

return n+1

def ChurchToNat(c):

"""Convert Church numeral to number."""

return c(increment)(0)

def NatToChurch(n):

"""Returns the Church numeral equivalent of a number."""

if n == 0:

return ZERO

else:

return S(NatToChurch(n-1))

>>> ChurchToNat(S(S(ZERO)))

2

>>> ChurchToNat(ADD (S(S(ZERO))) (S(S(S(ZERO)))))

5

ADD = lambda a: lambda b: a(S)(b) # Addition

MUL = lambda a: lambda b: lambda c: a((b)(c)) # Multiplication

Figure 18.4: How Church Numerals Work.
To represent n, apply function b n times
to argument c. To print the result using
ChurchToNat, set b to increment and c to
0.
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Figure 18.5: Booleans, Pairs, Other Func-
tions Encoded in the Church lambda nota-
tion. TRUE = lambda a: lambda b: a # Boolean true

FALSE = lambda a: lambda b: b # Boolean false

NOT = lambda a: a(FALSE)(TRUE) # Boolean negation

AND = lambda a: lambda b: a(b)(FALSE) # Conjunction

Z = lambda a: a(FALSE)(NOT)(FALSE) # Equal to zero test

PAIR = lambda x: lambda y: lambda f: f(x)(y) # Pair creator

FIRST = lambda p: p(TRUE) # Extracts first of pair

SECOND = lambda p: p(FALSE) # Extracts second of pair

def LambdaToBoolean(b):

"""Returns the literal boolean equivalent of

Church-coded boolean."""

return b(True)(False)

def BooleanToLambda(b):

"""Returns the Church encoded boolean of a literal

boolean."""

if(b):

return TRUE

else:

return FALSE
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and the definition of PAIR to achieve these conversions. Now Ap-
ply AND, and turn the result back to a Python Boolean and print
the same.

2. Repeat Exercise 1 except you are required to compute the OR of
the given two Python Booleans, implementing OR in “Church-land”
using DeMorgan’s Law. Apply OR, and turn the result back to a
Python Boolean and print the same (all using Jove).

18.6 Handling Recursion

Consider the recursively defined version of the standard factorial func-
tion which we call ‘fact’ below:

fact(n) = (1 if n==0 else n*fact(n-1))

We can rewrite the above definition into an equational form. The idea
is to introduce the parameter n explicitly into the right-hand side expres-
sion.

fact = lambda n: (1 if n==0 else n*fact(n-1))

Thus, fact(n), with n set to say 5 can now be equivalently modeled
as fact, with its right-hand side lambda’s parameter n set to 5. Now we
can read this definition of fact as if it were an equation. We can now
seek a function that, when substituted for fact on either side, solves this
equation.

We can now use the Beta rule of lambda calculus and write the above
equation as follows (note that we are using the Beta rule "backwards"):

fact = (lambda F. lambda n:(1 if n==0 else n*F(n-1))) fact

We can immediately see that this equation is now of the form

fact = (G fact)

where G happens to be:
(lambda F. lambda n: (1 if n==0 else n*F(n-1))).

Equations of this form are called fixpoint equations as now elaborated in

§18.7.
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18.7 Obtaining Fixpoints from Fixpoint Equations

Consider a fixpoint equation f = (G f). When such an equation is true,
we say that function f is a fixpoint of G. In a sense, if we “input” f into
function G, it outputs back function f. Many arithmetic functions (that
input numbers and return numbers) enjoy this property; for instance,
taking ! to mean factorial, we know that these equations are true:

• 1! = 1

• 2! = 2

• cos(0.73908)= 0.73908 (to the shown digits of accuracy)

In the lambda calculus setting, everything is a function—even “values”
(numbers) are functions. A number 2018 is a zero-ary function: it takes
nothing (zero arity) and yields itself (the number 2018).

We can now demonstrate that there is a standard way to extract the
fixpoint of any function with the help of a single lambda-definable func-
tion known as the Y combinator.9

9 We have been employing the term the fix-
point without batting an eyelid. While a
general discussion is beyond the scope of
these notes, we must say that in general,
for a G function, there could be multiple
fixpoints. Luckily for us, we are going to
be dealing with only total functions – that
is, recursive definitions where the func-
tion does not infinitely loop for any argu-
ment. For such functions, there is only one
fixpoint. Furthermore, we will introduce
two fixpoint finders, one being Y and the
other being Y e—the latter meant for ex-
perimental studies in Python.

18.7.1 Y : A Fixpoint Finder

A fixpoint combinator is a combinator E such that for any lambda expres-
sion G, the identity (EG) = G(EG) holds. There are an infinite number
of fixpoint combinators. We will first introduce the most popular of these
combinators, namely Y . We will then point out the reasons why Y can-
not be directly realized in Python (for the sake of experimental edifica-
tion), but then provide a variant that can indeed be experimented with in
Python.

18.7.2 The Y Combinator

Define combinator Y to be

Y = (λ f . (λx. f (x x)) (λx. f (x x)))

Let us show that Y is indeed a fixpoint combinator, by showing that for
any lambda expression G, (Y G) simplifies to G(Y G) as follows:

Simplified form Comments
= (λ f (λx. f (x x)) (λx. f (x x))) G

= (λx. G(x x)) (λx. G(x x))
Beta reduction with
f bound to G

=G((λx. G(x x)) (λx. G(x x)))
Beta reduction with
x bound to (λx. G(x x))

=G((Y G))
Notice that
(Y G)= (λx. G(x x)) (λx. G(x x))
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This derivation demonstrates that Y indeed fulfills its advertised role,
namely that of obtaining the fixpoint of any function G.10 In one sense, 10 You may cry “Hogwash! It does not ex-

tract and lay out something beautiful and
totally new for me to behold in front of my
eyes.” That is, it only seems to go through
these equations and re-emerge as (Y G).
This is fine, and in fact, these “rigmaroles”
are what makes lambda-based functional
programs run! The “recursion” you want
is cleverly arranged for you by the Y com-
binator making a self-replicated copy of
the function body whenever you want!

all we are saying is that the expression (Y G) is the fixpoint of G. Any
attempt to check this claim paints in front of your eyes the result

(Y G) = G(Y G)

as if to say “see I told you so!” Let us see how this “self-replicating trick”
actually simulates recursion.

18.7.3 Expression Recursion using Y

Let us recall our old friend – the recursively defined function Fred:

int Fred(x) // Sum an arithmetic series

{ if (x <= 0) return 0;

else return x + Fred(x-1); }

We now derive its “de-Freded form:”11 11 By “de-Fredding,” we mean “shaving off
the word Fred” from everywhere in this
expression.

• Let us write the function as an equation:

Fred = (λ f .λx. i f ((x <= 0), 0, x+ f (x−1))) Fred

• Notice that this is of the form

Fred =G Fred, i.e., Fred is a fixpoint of G12

12 We do have unique least fixpoints, and
Y is known to “find them.” For details,
please refer to Strachey’s book Denota-
tional Semantics. For this reason, here-
after we will use the term ‘the fixpoint’ in
our narrative.

where G is given by

G = (λ f .λx. i f ((x <= 0), 0, x+ f (x−1)))

• We can indeed “find” the fixpoint of G by “sending Y after G”.

Thus, we can write Fred = (Y G), with G defined as above, or in other
words

• Fred =Y (λ f .λx. i f ((x <= 0), 0, x+ f (x−1)))

• Notice that there is no Fred on the right-hand side! That is,
we managed to successfully define what is a recursive function (namely
Fred) without using the name Fred on the right-hand side.13 13 Mathematicians will now be found to be

executing somersaults of joy, as you just
attained notational parsimony by not us-
ing needless things like function names!

• Thus, to call this function on say 2, which should result in 2+1+0= 3,
we do this: (Fred 2). We now illustrate how this “call” works.
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Simplified form Comments

= (Y G)2
Put in the
definition for Fred

= (G(Y G)) 2

Exploit the fact that
(Y G) is a fixpoint
of G

= (λ f .λx.i f ((x ≤ 0), 0, x+ f (x−1))) (Y G) 2
Substitute in the
definition of G

= (λx. i f ((x ≤ 0), 0, x+ (Y G)(x−1))) 2
Beta reduction with
f bound to (Y G)

= i f ((2≤ 0), 0, 2+ (Y G)(2−1))
Beta reduction with
x bound to 2

= i f (False, 0, 2+ (Y G)(1)) Simplifications

= 2+ (Y G)(1) More simplifications

= 2+1+ (Y G)(0)
Doing the same
series of steps

= 2+1+0

Finally, the evaluation
stops, as
0≤ 0 is satisfied.

We observe that recursion is handled through “unraveling” using Y . In
fact, (Y G) becomes G(Y G), and the outermost G “goes to work,” keeping
the inner (Y G) “in reserve,” in case the conditional is not satisfied.

This ability of the Y combinator to make replicas of a function’s body
is indeed the uncanny insight obtained through the above exercise. We
don’t need to “point at” function definitions using arbitrary names such
as Fred. Thus in fact, we have arrived at a literal syntax for recursively
defined functions such as Fred. In our derivation, we saw that Fred =
(Y G) and G is defined by the lambda expression given above. Thus,
(Y G) is the literal syntax (“De-Freded form”) or irredundant name for
the function we are interested in.1414 An exercise in §18.8 asks you to model

mutual recursion by trying to simultane-
ously define a pair of functions in the same
manner using Y . Thus, even for a system
of mutually recursive definitions we can
find fixpoints.

18.7.4 Reason for an alternate fixpoint finder Ye

The brief answer for needing an alternate fixpoint finder for experimental
purposes using Python is simple:

Python is “Eager”.

To properly explain this term, we now spend time discussing eager
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versus lazy evaluation. When we apply a function f to an argument E,
written f (E), one could follow two approaches:

1. Evaluate E fully, obtaining some value (say v). Then apply f to v. This
is the eager evaluation approach – alternately known as call by value.

2. Do not evaluate E one bit. Instead, assuming that the formal param-
eter of f is x, substitute E for x everywhere within the body of f . This
is the non-eager evaluation approach, more properly termed lazy eval-
uation or call by name.15 15 Prof. Niklaus Wirth once said “In Eu-

rope, people call me Niklaus Wirth, but
in the US they sometimes call me Nickel’s
Worth. That is because in Europe they call
me by name while in the US, they call me
by value.”

Call by name has one uncanny property: in certain programs, it can
avoid nontermination (infinite looping). To see this, consider a function g
which takes three arguments, say x, y, and z. Let the definition of func-
tion g(x, y, z) be such that it first evaluates x, and then if found true, it
evaluates and returns y, ignoring z entirely. On the other hand, if x eval-
uates to false, g ignores y entirely and proceeds to evaluate z. Such a g
function will exhibit a difference between call by value (“eager”) and call
by name (“lazy”) when fed certain cleverly crafted arguments. In particu-
lar, if the call is g(True,0, Inf Loop()) (where Inf Loop() is a function call
of no arguments that simply goes into an infinite loop), we can observe
this behavior:
Lazy evaluation: Since the first argument of g is the constant True, we

can return the answer 0 under lazy evaluation, ignoring the infinite
loop entirely. Programming languages such as Haskell follow lazy
evaluation by default.

Eager evaluation: The function call g(True,0, Inf Loop()) will be fixated
on “grinding down” InfLoop() into a value v before it can proceed fur-
ther with g’s evaluation. Clearly, this results in the whole computation
looping infinitely (which is unnecessary). Virtually all programming
languages follow eager evaluation. This list includes C, C++, Java,
etc.—and of course Python also!

The fixpoint finder for eager evaluation: Given a programming language
that follows eager evaluation, all we need to do in our experiments with a
fixpoint finder is to employ a slight variant of a fixpoint finder which we
call Ye, defined as follows:16 16 Exercise 1 in §18.8 will ask you to show

that Ye is a fixpoint finder, while Exer-
cise 3 will ask you to find out why we need
to change our fixpoint combinator to Ye for
use within Python, which is an eager lan-
guage.

Ye = (λ f . (λx. (x x)) (λy. f (λv : ((y y) v))))

We will apply this fixpoint finder in our illustrations.

The notion of a “Pre” function: Functions similar to G appear every-
where in the study of recursion, and therefore it is handy to have a name
for it. We will call it the pre-function, standing for “the prelude” to ob-
taining the fixpoint. The G emanating out of the recursively defined Fred
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function can be called Pre-Fred, the G coming out of Fact can be called
Pre-Fact, etc.

18.8 Illustrating the Use of Fixpoint Combinators

At long last, Figure 18.6 presents the encoding of fixpoint combinators
in Python to define more familiar functions such as factorial and the nth
Fibonacci number. To simplify our work, we are not encoding numbers
using Church numerals, nor are we encoding Booleans using Church’s
encoding. While this is possible using ideas presented in §18.4 and §18.5,
we avoid doing so for the sake of readability (“one new idea at a time”).

Exercise 18.8, Y combinator
1. Show that Ye is a fixpoint combinator. Also, see Exercise 3.
2. Use the Ye combinator and define fact and sum starting from

prefact and presum. Demonstrate their operation on three ex-
amples (each).

3. Show why the use of the Y combinator used in §18.7.2 in place
of the eager Y combinator (which we call Ye) will cause Python
to loop. Show how Ye avoids this looping, by expanding out an
instance of Ye application using eager (call by value) reduction
rules. An astute reader might observe that the inner expression
of the λv. . . . form has λv : ((yy)v) which, by the eta rule, reduces to
yy. Thus, Ye is “Y in disguise.” Despite this, the extra abstraction
in λv : ((yy)v) has a profound effect on protecting the “runaway
evaluation” of Y f under call by value.

4. Show how to encode mutual recursion using the Ye combinator.
Use it to mutually recursively define two functions that are de-
fined in terms of each other. For definiteness, you may work on the
following example that defines fact through mutual recursion.1717 We obtained this simple variant of fact

simply to give you practice. Virtually no
one would employ such mutual recursion
in practice. fact1 = lambda n: (1 if n==0 else n*fact2(n-1))

fact2 = lambda n: (1 if n==0 else n*fact1(n-1))

Hint: Take the two functions, pair them up, and define this pair
through fixpoint finding.

5. Show that the set of all Y combinators is recursively enumerable.
Hint: Any fixpoint combinator E is a lambda expression which, for
any function variable G (variable G denoting a function) satisfies
the identity (EG)=G(EG). Take it from there.

18.9 Combinators

A lambda expression without free variables is called a combinator. Thus,
λx.x is a combinator while λx.y is not. Combinators are “ready-to-apply
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Figure 18.6: Use of the Ye Combinator
(Call By Value version of the standard Y .)

# For the ease of readability, we use don’t use

# Church numerals below.

# Ye -- eager Y combinator

Ye = lambda f:(lambda x:x(x))(lambda y:f(lambda v:y(y)(v)))

# Pre-Factorial: performs the product of

# a natural number, and all natural numbers less than it.

# We call it pre-factorial because we need to apply

# Ye to it to obtain the real factorial

prefact = lambda fact: lambda n:(1 if n==0 else n*fact(n-1))

# Pre-sum: sums all the natural numbers less than the given

# number

presum = lambda f: lambda n: (0 if n==0 else n+f(n-1))

# Pre-Fib: returns the nth number of the series defined by

# the following definitions

# * the first two numbers are 0 and 1

# * the next number is defined as the sum of the prior two

# numbers

prefib = lambda f: lambda n: 0 if n == 0

else (1 if n == 1 else f(n-1) + f(n-2))

>>> Ye(prefact)(5)

120

>>> Ye(presum)(10)

55

>>> Ye(prefib)(3)

2

>>> Ye(prefib)(6)

8
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functions” once all the arguments are known.
Combinators enjoy an important formal status in the theory of com-

putability. A system to model computable functions without the explicit
use of lambdas (and lambda-bound variables) was proposed by Moses
Schönfinkel in 1924. This work on Combinatory Logic predates even the
lambda calculus, and was lost in the mists of time—till discovered by
Haskell B. Curry in the 1930s.1818 It is sad that Schönfinkel himself did not

receive any recognition when he was alive,
and apparently died poor. After his death,
his papers were burned by his neighbors
to generate heat during winter.

Combinatory logic is universal. In fact, two operators S and K of the
combinatory logic are sufficient to express all computable functions.19

19 In contrast, it takes nature four nu-
cleotides (namely G, A, C, and T) to en-
code life through DNA. (I am not trying to
sound cocky as a computer scientist, nor
imply that we are superior to nature.)

These two combinators have very simple lambda definitions:
• S =λ f gx. ( f x)(gx). Notice that S is a combinator because all the vari-

ables in the lambda body (namely f , g, and x) are all present in its
lambda abstraction’s binding sites.

• K =λxy.x. Notice that K is also a combinator.
This again serves to prove that the lambda calculus is universal (since
we can represent all programs and data using S and K).

In some discussions, it is pointed out that the set of combinators {S,K , I}
are universal, where I = λx.x is the identity combinator. However, we do
not need I separately; it can be realized as SKK , as the following deriva-
tion shows:

Simplified form Comments

= (λ f g x. ( f x)(g x)) K K
Substitute definition
for S

= (λx. (K x)(K x))
Beta reduction, binding
f and g to K

= (λx. ((λz w. z) x) (K x))
Alpha-converted version for
first K (second K is left alone)

= (λx. (λw. x)(K x))
Beta reduction by
binding z to x

= (λx. x)
Beta reduction, binding w to
(K x) (Note that (K x) gets thrown away)

= I
The identity combinator
is denoted by I
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A
A Recap of Discrete Math

Chapter Gist: We review sets, including many standard infinite
sets (§A.1). Basics of mathematical logic are reviewed (§A.2) fol-
lowed by proof by contradiction and contrapositive (§A.3). Basic
notions and notations pertaining to functions and relations (§A.4,
§A.5) and trees (§A.6) then follow.

A.1 Sets

Finite sets such as S = {0,1,2,3} are assumed to be familiar. The cardi-
nality (or size) of this set, written | {0,1,2,3} |, or | S | is 4. The empty set
is written ; or {} and its cardinality is 0.

We use Nat to denote the set of counting numbers (nonnegative inte-
gers), i.e., Nat = {0,1,2, . . .}. We use Int to denote positive and negative
whole numbers and zero, i.e., Int = {0,1,−1,2,−2,3,−3, . . .}.1 Notice that 1 We aim for readability and choose Nat

and Int over their more traditional N and
Z respectively.

Nat and Int are infinite sets. For example, for every number n ∈ Nat,
there is a number above n that is also in Nat. Yet, every number in Nat
is finite. The cardinality of Nat (or Int) is itself not expressible as a mem-
ber of Nat (or Int).2 By contrast, the cardinality of S defined above is a 2 These infinite cardinalities are denoted

by ℵ0.member of Nat.
As another example of using these notations, let the set of even natural

numbers, Even = {0,2,4, . . .}. Observe that | Even | is not a member of
Nat. In Chapter C, we will prove that | Even | is the same as | Nat |.

There is also the set Real of real numbers. The cardinality of Real
is denoted by ℵ1, which has strictly higher cardinality than ℵ0. In other
words, there are “many more real numbers than natural numbers.” For a
proof, see Chapter C.

A.1.1 Set Builder

We will in general employ the following notation for describing sets:

S = {x : p(x)}
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This says that S is a set of x satisfying predicate p(x). For example:

Even = {n : n ∈ Nat and n is even}.

This can also be defined as

Even = {n ∈ Nat : n mod 2= 0}.

Another example of a set builder is

S = {x ∈Nat : x> 2 ∧ x< 8}.

The ‘∈ Nat’ may be omitted if clear from the context. S represents the set
{3,4,5,6,7}.

Observe that the set P defined below equals the set Nat itself;

P = {x ∈Nat : True},

while the set Q defined below equals the empty set

Q = {x ∈Nat : False}.

This is because all the elements of Nat pass the unconditional test of
True (for the case of defining P) while no element of Nat passes the un-
conditional test of False (for the case of defining Q).

A.1.2 Powerset

The set of all subsets of a set S is its powerset. The notation P (S) denotes
the powerset of set S.3 The powerset of the set {1,2} is {;, {1}, {2}, {1,2}}.3 Some books also use the notation 2S . We

shall stick with P (S). The powerset of ; is {;}, because the only subset of the empty set is itself,
and we have to exhibit the “set of all” such sets. The powerset of {;} is
{;, {;}}. Recall that ; and {} mean the same thing.

Observe that
S = {x : x ∈P ({1,2})∧ | x |> 0}

denotes the set of sets {{1}, {2}, {1,2}}.

Exercise

Consider this set S:

S = {(x, y) : even(x) ∧0≤ x < 5∧ y ∈P ({1,2})}.

1. What is the cardinality of S? How do you arrive at this answer
without explicitly listing all pairs that S contains?

2. S contains (2,;) and (4, {1}). Write down six more elements in S.
3. What is a formula to compute the cardinality of the powerset of a

set S that contains N elements? Test your formula on S = ;, {1},
and {1,2}.
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A.1.3 Complement

All sets studied in a particular setting come from a certain universal set
or “universe,” say U. Given such a universe U, the complement of a set S
is the set U −S, i.e., the set subtraction of S from U . For instance, the
complement of the set Even, the set of even natural numbers {0,2,4, . . .}
is the set Odd, the set of odd natural numbers {1,3,5, . . .}.

A.1.4 Equivalence Classes, Partitioning

Consider a nonempty set S (and for simplicity, if S is infinite, let its car-
dinality be ℵ0).4 A binary relation ≡ defined over a nonempty set S is 4 For more general definitions, the reader

may consider other books on Discrete
Mathematics.

called an equivalence relation if it is reflexive, symmetric, and transitive:
• Reflexive: For all a ∈ S, we have a ≡ a.
• Symmetric: For all a,b ∈ S, if we have a ≡ b, then b ≡ a
• Transitive: For all a,b, c ∈ S, if we have a ≡ b and b ≡ c, then we have

a ≡ c
Any equivalence relation ≡ over a set S can lead to the partitioning
of S into equivalence classes S1,S2, . . . such that Si and S j are pairwise
disjoint for i 6= j, and the union of all these sets is S. Intuitively, all
elements within a set Si are equivalent (≡), and all elements across two
sets Si and S j (i 6= j) are not equivalent.

As a quick example, if S = Nat, then for a,b ∈ Nat, we have an equiv-
alence relation ≡ defined by a%3= b%3. Under this equivalence relation,
elements {0,3,6,9, . . .} form one partition, {1,4,7,10, . . .} form another par-
tition, etc.

A.2 Mathematical Logic

We assume that you are familiar with the logical connectives ∧ (and), ∨
(or), ¬ (not), ⇒ (implication), and ⊕ (exclusive-or).

Predicates are Boolean formulae that are true or false. A Boolean vari-
able x or a Boolean expression x∧ y are predicates. For integers a and b,
an example predicate is a > (b+2). Two “extreme” predicates are True
and False.
We begin with some basic results:
DeMorgan’s Law: For Booleans a,b, c, we have

¬(a∧b∧ c)≡ (¬a∨¬b∨¬c)

Another equivalent statement of DeMorgan’s Law is:

¬(a∨b∨ c)≡ (¬a∧¬b∧¬c)

Contrapositive form: For Booleans a and b, the contrapositive law is

(a ⇒ b)≡ (¬b ⇒¬a)
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Quantifiers Forall and Exists: Forall (∀) is used to denote repeated con-
junction over the domain of quantification.

∀x ∈ Nat : P(x) ≡ P(0)∧P(1)∧P(2)∧ . . .

Similar results apply for other domains than Nat. Exists (∃) is used to
denote repeated disjunction over the domain of quantification.

∃x ∈ Nat : P(x) ≡ P(0)∨P(1)∨P(2)∨ . . .

Negating Forall: Using DeMorgan’s law and the definition of ∀ and ∃, we
can write

¬(∀x : P(x))≡∃x : ¬P(x)

Negating Exists: By a similar line of reasoning,

¬(∃x : P(x))≡∀x : ¬P(x)

Negating Implication: Given that a ⇒ b is equivalent to ¬a∨b, we have

neg(a ⇒ b))≡ (a∧¬b)

Thus, the implication a ⇒ b is falsified by making a true and b false.
Stacks around implication: Suppose we have a stack of conjuncts in the

antecedent of an implication and a stack of disjuncts in the consequent
of an implication, as in this formula:

(a∧b∧ c)⇒ (d∨ e∨ f )

We can transform this to either of the following formulae:
• (a∧b∧ c∧¬d)⇒ (e∨ f )
• (a∧b)⇒ (¬c∨¬d∨ e∨ f )

A.3 Proof Methods: Using Contrapositive, by Contradiction

First we illustrate proof using the contrapositive form. Suppose we are
given P ⇒ C where P is a premise and C a conclusion. Suppose we show
¬C. Then we can infer ¬P. Exercise 4 on Page 55 asks you to apply this
method to first show ¬Cond(L) and thus conclude ¬Reg(L).

Proof by contradiction is directly related to proof using the contraposi-
tive form. Suppose we start with an assertion P. We can then exploit any
theorem of the form P → C. Applying modus-ponens, we can derive C.
Suppose C can be simplified to False (this is what deriving a contradic-
tion means). Then we have P ⇒ False. The contrapositive form of this
formula is True ⇒¬P, or simply ¬P.
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A.4 Cartesian Product, Binary Relations, Functions

The Cartesian product of two sets A and B, written A ×B, is a set of
all ordered pairs 〈x, y〉 where x ∈ A and y ∈ B. If A or B is empty, the
resulting product is also empty. A binary relation with domain A and
codomain B is a subset of A×B.

A function f from A to B, written A → B, is a single-valued binary
relation. A function is applied to domain elements, written f (x), and
yields a y ∈ B. For being single-valued, the following equation must hold:

∀x ∈ A, ∀y1, y2 ∈ B : ( f (x)= y1 ∧ f (x)= y2)⇒ (y1 = y2)

A.5 Functions: Signature, Onto, Into, Total

Signatures are syntactic presentations of the domain and codomain of a
function. They describe the type of the function. A function f : A → B has
signature A → B, which means that A is the domain (dom( f )) and B is
the codomain of f (codom( f )).

The range of a function f (written rng( f )) is

{ y ∈ B : (∃x ∈ A : f (x)= y) }

which means all the points in B that f can “hit” across all values fed to f .
A function is onto if rng( f )= codom( f ); otherwise, it is an into function.

A function is said to be total if it is defined everywhere in domain
A.5 By default, all functions are assumed to be total, but for the ease of 5 For total functions, the range is guaran-

teed to be non-empty.manual specification, we may sometimes partially specify a function, and
then invoke a procedure to totalize it (provide a standard default mapping
at all the undefined domain points). The signatures of functions studied
in this book are briefly recapped here:

The transition function δ of a DFA (Page 43) has signature

δ : Q×Σ→Q

The transition function δ of an NFA (Page 83) has signature

δ : Q×Σε→P (Q)

The transition function ∆ of a PDA (Page 165) has signature

∆ : (Q× (Σ∪ {ε})× (Γ∪ {ε}))→P (Q×Γ∗)

The transition function ∆ of a DTM (Page 187) has signature

∆ : Q×Γ→Q×Γ× {L,R,S}

The transition function ∆ of an NDTM (Page 187) has signature

∆ : Q×Γ→P (Q×Γ× {L,R,S})
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A.6 Trees

We discuss trees in §11.9 and also in the context of parse-trees in Chap-
ter 11. Trees are graph data structures with nodes and edges beginning
with a single designated node called the root. The root itself could be also
a leaf of a tree; such a tree has height 0 and has no edges. Otherwise,
the tree has height n ≥ 1 where the root has one or more children. The
number of children the root has is its branching factor. The children are
themselves roots of disjoint trees (called subtrees) with height ≤ (n−1),
with at least one subtree having height n−1. For a tree of height n and a
branching factor b, it can have at most bn leaves.



B
Catalog of Jove Functions

Chapter Gist: §B.1 briefly explains Jove’s top-level functions. For
a fuller description, kindly download and play with Jove from
https://github.com/ganeshutah/Jove
§B.2 briefly covers lambdas—the only aspect of Python that we
choose to highlight. https://www.python-course.eu is an excellent
online resource for Python. Do check out its sections on recursive
programming, lambdas, and other topics. Also see supplementary
material at https://bit.ly/Automata_Jove under JoveCode for
any updates.

B.1 Jove’s Top-Level Functions

We now present Jove’s functions and their very brief documentation. For
all these functions, one may type help(function_name) to obtain a de-
tailed help message. We organize them with respect to the chapter for
which they are relevant, and the Jove files that are involved (definitions
and imports).

All Chapters

Here are handy printing and dot-generation-related utilities. For fur-
ther details including some of the less-used utilities, please poke into
Jove/notebooks/src/DotBashers.ipynb. The optional parameters are also
documented in this notebook.
• dotObj_dfa(D, dfaName=’do_’, STATENAME_MAXSIZE=20,

FuseEdges=False): Produces a dot object for a given DFA.
• dotObj_dfa_w_bh(D, dfaName=’do_’, STATENAME_MAXSIZE=20,

FuseEdges=False): Produces a dot object for a given DFA. Shows black-
hole states also.

• dotObj_nfa(N, nfaName=’NO_’, FuseEdges=False, visible_eps=False):
Produces a dot object for a given NFA.

https://bit.ly
https://www.python-course.eu
https://github.com
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• dotObj_gnfa(G, FuseEdges=False, visible_eps=False,
gnfa_name=’GO_’): Produces a dot object for a given GNFA.

• dotObj_pda(P, FuseEdges=False, visible_eps=False, pdaName=’PO_’):
Produces a dot object for a given PDA.

• dotObj_tm(T, FuseEdges=False, tmName=’TO_’): Produces a dot ob-
ject for a given TM.

A few conversion utilities to generate the dot source, save it in a file, and
generate PDF are listed below. Let “DO” be any dot object generated by
one of the calls above:
• DO.render(’/Users/ganesh/repos/atmm/book/CH17/DO.dot’): This will

generate DO.dot as a dot-string, and also produce a DO.dot.pdf file.

B.1.1 Chapters 2 and 3

These are the routines used in the “Defining Languages: Patterns in Sets
of Strings” and “Kleene Star: Basic Method of Defining Repetitious Pat-
terns” chapters. They are defined in jove/LangDef.py (so you can do
from jove.LangDef import *), as well as in
Jove/notebooks/module/Module2_LanguageOps.ipynb. An illustration
of nthnumeric is in Jove/notebooks/driver/Drive_DFA.ipynb

• lcat(L1,L2): Concatenates two languages.
• lcomplem(L,Sigma,n): Complements L with respect to Sigma∗ that is

limited to strings of length n or less.
• lexp(L,n): Exponentiate L to power n.
• lhomo(L,f): Apply the homomorphism f (a lambda) to the language L.
• lint(L1,L2): Intersect L1 and L2.
• lissubset(L1,L2): Is L1 a subset of L2?
• lissuperset(L1,L2): Is L1 a superset of L2?
• lminus(L1,L2): Subtract L2 from L1.
• lphi(): Empty language (“zero” of a language), namely ;.
• lrev(L): Reverse language L.
• lstar(L,n): Compute the star of L upto n.
• lsymdiff(L1,L2): Output (L1-L2) union (L2-L1).
• lunion(L1,L2): Union of L1 and L2.
• lunit(): The unit language {ε}.
• srev(s): Reverse a string s.
• shomo(s,f): Apply homomorphism f (a lambda) to string s.
• powset(S): Powerset of a given set S output as a list of lists.
• product(S1,S2): Cartesian product of sets S1 and S2.
• nthnumeric(N, Sigma=’a’,’b’): Produce the Nth string in the numeric

order enumeration of strings from an alphabet of size 2. This is handy
for exhaustive testing up to a certain finite approximation of Σ∗, as
illustrated in notebooks/driver/Drive_DFA.ipynb and also
notebooks/tutorial/Drive_DFA_Unit1.ipynb.
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B.1.2 Chapters 4 through 6

These are the routines used in Chapters “Basics of DFA” through “Opera-
tions on DFA”. They are defined in Def_DFA.ipynb in Jove/notebooks/src.
Also relevant is Drive_DFA.ipynb in Jove/notebooks/driver.
• mkp_dfa(Q, Sigma, Delta, q0, F): Check for partial consistency of the

given DFA traits. Make and return a DFA with a partial Delta.
• mk_dfa(Q, Sigma, Delta, q0, F): Check for structural consistency of

the given DFA traits. Make and return a DFA with a total Delta.
• totalize_dfa(D): Given a partially specified DFA, make it total.
• addtosigma_dfa(Din, addition): Expand Din’s Sigma using ’addition’.
• step_dfa(D, q, c): Next state of q via c.
• run_dfa(D, s): Next state of D["q0"] via string s.
• run_dfa_h(D, s, q): Next state of q via string s.
• accepts_dfa(D, s): True iff state after s-run is in D’s final.
• comp_dfa(D): Before we begin, make D total. Then flip the FINAL

and NON-FINAL states.
• union_dfa(D1in, D2in): DFA for language union of D1in, D2in.
• intersect_dfa(D1in, D2in): DFA for language intersection of D1in,

D2in.
• pruneUnreach(D): Given a consistent and total DFA D, returns a

new (consistent) DFA with unreachable states in D removed.
• iso_dfa(D1,D2): Check whether D1 and D2 are isomorphic.
• langeq_dfa(D1, D2, gen_counterex=False): Check whether D1 and

D2 are language-equivalent. gen_counterex triggers counter-example
generation.

• min_dfa(D, state_name_mode=’succinct’): Minimize the given DFA D,
naming the states as specified.

B.1.3 Chapters 7 through 9

These are the routines used in Chapters “Nondeterministic Finite Au-
tomata” through “NFA to RE Conversion”. They are defined in
Def_NFA.ipynb that is located at the file path Jove/notebooks/src. Also
relevant is Drive_NFA.ipynb in Jove/notebooks/driver.

For RE to NFA conversion via function re2nfa, take a look at
Def_RE2NFA.ipynb in Jove/notebooks/src and
Drive_AllRegularOps.ipynb in the directory path
Jove/notebooks/driver.
• mk_nfa(Q, Sigma, Delta, Q0, F): Check for structural consistency of

the given NFA traits. Make and return an NFA.
• totalize_nfa(N): Given a partially specified NFA, make it total by

transitioning to state set({}) wherever Delta has gaps.
• apply_h_dfa(D, h): Given a DFA D and a homomorphism h on Sigma*

(as a lambda from chars to chars) where Sigma is D’s alphabet, return
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an NFA with the homomorphism applied to D.
• step_nfa(N, q, c): The set of states reached via N’s Delta from q upon

c. EClosure is NOT performed.
• run_nfa(N, S, s, chatty=False): Return the set of states reached af-

ter processing string s from set of states S. ’chatty’ controls printout
verbosity.

• ec_step_nfa(N, S, c, chatty=False): Return Eclosure of all states reach-
able via character c from every state within S.

• Eclosure(N, S): Return Eclosure of the set of states S.
• accepts_nfa(N, s, chatty=False): True if N accepts s. Argument chatty

controls verbosity of printout.
• nfa2dfa(N, STATENAME_MAXSIZE=20): Return a consistent DFA

that is language-equivalent to N. You may supply an optional argu-
ment to shrink long state names (default for the ’shrink’ to step in now
is 20).

• re2nfa(s, stno = 0): Given a string s representing an RE and an op-
tional state number stno, generate an NFA that is language equivalent
to the RE.

• Implementation of re2nfa: The implementation of re2nfa involves
other “helper” functions which can also be used at the top level. They
are the following:
– mk_plus_nfa(N1, N2): Given two NFAs, return their union.
– mk_cat_nfa(N1, N2): Given two NFAs, return their concatenation.
– mk_star_nfa(N): Given an NFA, return its star.
– mk_eps_nfa(): An NFA with exactly one start+final state.
– mk_symbol_nfa(a): The NFA for a single character.

• rev_dfa(D): Return a consistent NFA whose language is D’s language
reversed.

• min_dfa_brz(D): Minimize a DFA using Brzozowski’s algorithm which
is (reverse; determinize; reverse; determinize).

• mk_gnfa(Nin): Return the GNFA corresponding to the given NFA.
• mk_gnfa_from_D(D): Given a DFA D, turn that into a GNFA by first

making the D into an equivalent N.
• dfa2nfa(D): Given a DFA D, make a language-equivalent NFA from

it.
• del_gnfa_states(Gin, DelList=[]): Given a GNFA Gin with no un-

reachable states, delete all its states except Real_I and Real_F.

B.1.4 Chapter 10

These are the routines used in Chapter “Derivative-Based Regular Ex-
pression Matching.” They are defined in Drive_rederiv.ipynb in
Jove/notebooks/driver. Also relevant is Def_rederiv.ipynb in
Jove/notebooks/src.
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• nullable(E): Given an RE E represented as an AST, this function de-
termines whether E is nullable.

• dv(c,E): Given a character c and an RE E represented as an AST, this
function computes the Brzozowski derivative of E with respect to c,
returning a new RE.

• matches(w,E): Given a word w and an RE E represented as an AST,
this function determines whether w is included in the language of E
(or in other words, RE E pattern-matches word w).

B.1.5 Chapter 11

These are the routines pertinent to Chapter “Context-Free Languages
and Grammars” which is on parsing. There are three parsers introduced
in this book:
• re2ast(s): This is the parser used in our illustration of RE derivatives.

This parser can be found in Def_rederiv.ipynb in
Jove/notebooks/src. Also take a look at Drive_rederiv.ipynb in
Jove/notebooks/driver, which uses this parser. This function turns
a regular expression (passed in as a string s) into an abstract syntax
tree, and returns the tree (encoded in Python).

• re2nfa(s, stno = 0): This is the parser used in converting regular ex-
pressions to NFA. This parser can be found in
Def_RE2NFA.ipynb in Jove/notebooks/src.
Also take a look at Drive_AllRegularOps.ipynb in
Jove/notebooks/driver, which uses this parser.

• md2mc(src="None", fname="None"): This is the parser used for our
markdown language Automd. md2mc converts a markdown source
to a machine (mc). This parser can be found in Def_md2mc.ipynb in
Jove/notebooks/src. Also take a look at Drive_md2mc.ipynb in
Jove/notebooks/driver, which uses this parser. Here are the ways
of using this parser:
– md2mc(): prompt for a filename and read the markdown descrip-

tion from the provided file name.
– md2mc(src=string): parse the given string, treating it as a mark-

down description.
– md2mc(src="File", fname=filename): read the markdown descrip-

tion from the provided file.

B.1.6 Chapter 12

These are the routines used in Chapter “Pushdown Automata”.
They are defined in Def_PDA.ipynb in Jove/notebooks/src.
Also relevant is Drive_PDA.ipynb and
Drive_PDA_Based_Parsing.ipynb in Jove/notebooks/driver.
• explore_pda(inp, P, acceptance = ’ACCEPT_F’, STKMAX=0,
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chatty=False): A handy routine to print the result of run_pda.
• run_pda(str, P, acceptance = ’ACCEPT_F’, STKMAX=0, chatty=False):

Helper for explore_pda.
• step_pda(q_inp_stk, path, pda): The results of stepping a PDA.

B.1.7 Chapter 13

These are the routines used in Chapter “Turing Machines”. They are
defined in Def_TM.ipynb in Jove/notebooks/src. Also relevant is
Drive_TM.ipynb in Jove/notebooks/driver.
• step_tm(T, q_hi_tape_fuel, path, haltList): Step a TM one step.
• run_tm(T, tape, fuel): Given a TM T and a tape, run the TM for fuel

steps (e.g., thimbles or gallons of gas in your tank), collecting all halt-
ing configurations.

• explore_tm(T, tape, nsteps): A handy routine to print the result of
run_tm.

B.1.8 Chapter 15

These are the routines used in Chapter “Post Correspondence, and
Other Undecidability Proofs” for illustrating the Post Correspondence
Problem (PCP). Credits go to Ling Zhao who contributed the original soft-
ware and the owner of this github page https://github.com/chrozz/

PCPSolver.git for posting it on github. To run the solver, first compile it
and create an executable called pcp.1 This executable can then be conve-

1 For your convenience, I’ll leave info on
the github path in README.md within
Jove/3rdparty.

niently invoked from Drive_pcp.ipynb defined in
Jove/notebooks/driver.
• pcp_solve(pcp_pairs, run=None, ni=False, di=None, depth=None,

tiles_per_row=15): The PCP solver takes these parameters:

– pcp_pairs: List of tuple pairs representing pcp ‘tiles’

– run: Number of runs to perform.

– ni: No iterative search.

– di: Depth increment.

– depth: Search depth.

– tiles_per_row: Number of tiles to show in single row together (use-
ful for creating more meaningful output).

• The above function calculates all the parameters needed by Zhao’s
solver, invokes it from Jove as a process, and returns the results.

B.1.9 Chapters 16 and 17

These are the routines used in Chapters “NP-Completeness” and “Binary
Decision Diagrams as

https://github.com
https://github.com
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Minimal DFA”. The material is present on the web at URL http://formal.

cs.utah.edu:8080/pbl/BDD.php.

B.1.10 Chapter 18

These are the routines used in Chapter “Computability Using Lambdas”.
They are defined in Drive_LambdaCalc.ipynb in Jove/notebooks/driver.
• I = lambda c: c The identity function.
• ZERO = lambda b: I Number 0.
• S = lambda a: lambda b: lambda c: b(a(b)(c)) The successor func-

tion.
• ADD = lambda a: lambda b: a(S)(b) The add function.
• MUL = lambda a: lambda b: lambda c: a((b)(c)) The multiplica-

tion function.
• increment(n) Increment n.
• ChurchToNat(c) Converts Church numerals to natural numbers in

Python.
• NatToChurch(n) Converts natural numbers in Python to Church nu-

merals.
• TRUE = lambda a: lambda b: a ‘True’ in lambda calculus.
• FALSE = lambda a: lambda b: b ‘False’ in lambda calculus.
• NOT = lambda a: a(FALSE)(TRUE) ‘not’ function in lambda calcu-

lus.
• AND = lambda a: lambda b: a(b)(FALSE) Boolean ‘and’ in lambda

calculus.
• OR = lambda a: lambda b: NOT(AND(NOT(a))(NOT(b))). Boolean

‘or’ in lambda calculus
• Z = lambda a: a(FALSE)(NOT)(FALSE) Zero-test of a given Church

numeral.
• PAIR = lambda x: lambda y: lambda f: f(x)(y) Pair builder.
• FIRST = lambda p: p(TRUE) Extracts the first of a pair.
• SECOND = lambda p: p(FALSE) Extracts the second of a pair.
• LambdaToBoolean(b) Turns a lambda calculus Boolean to a Python

Boolean.
• BooleanToLambda(b) Turns a Python Boolean to a lambda calculus

Boolean.
• Ye = lambda f: (lambda x: x(x))(lambda y: f(lambda v: y(y)(v)))

The eager fixpoint combinator.
• prefact = lambda fact: lambda n: (1 if n==0 else n*fact(n-1)) How

to obtain the functional expression underlying the factorial function.
• fact = Ye(prefact) How factorial itself is defined.

http://formal.cs.utah.edu:8080
http://formal.cs.utah.edu:8080
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B.2 Jove’s Use of Python, Including Lambda Basics

In Jove, we use three primary data types in Python: tuples, lists, and
dicts (dictionaries). To keep the subset of Python within reach of a wide
audience, we avoid the use of advanced features, including objects.

We employ the (mostly) side-effect free functional programming style
that Python encourages, and also encourage the use of recursion.2 Recur-2 With recursion, one plays a game of pre-

tense: one reduces a given problem to a
simpler problem, assuming that the sim-
pler problem has been solved and exists
“in some library”—but happens to be the
very function being coded! (I am indebted
to David S. Warren, Emeritus Professor at
Stony Brook University for this explana-
tion of recursion given in 1982.)

sion and induction are two faces of the same coin.3

3 L. Peter Deutsch once said “To iterate is
human; to recurse...divine!” Also, Mitchell
Wand, Professor at Northeastern Univer-
sity has authored a book with “Recursion
and Induction” in its title.

We first illustrate how functions can be defined through lambda ex-
pressions:

>>> lambda x: x+2

<function <lambda> at 0x1060f6d08>

>>> (lambda x: x+2)(3)

5

In the first example above, an anonymous function is evaluated via
Python’s interactive system. In the second example, this function is fed
3, yielding the value 5 as expected. One can also bind lambda functions
to variable names:

>>> G = lambda x: x+2

>>> G(3)

5

# This function G could have been defined as follows

# def G(x):

# return x+2

We now illustrate how lambda-defined functions can return functions
themselves as values: First, we define functions that return other func-
tions without the use of lambdas:

def G(x):

return x+2

def F(y):

return G

Next, using lambdas, one can define the same idea, where functions
return other functions:

lambda y: lambda x: x+y

This expression is to be parsed as follows



CATALOG OF JOVE FUNCTIONS 311

lambda y: (lambda x: x+y)

The above lambda expression can be read as follows. When we feed an
actual argument in place of y, we will obtain the function (lambda x: x+y)

as the result. Here are a few interactive commands that will help us clar-
ify these ideas.

>>> lambda y: lambda x: x+y

<function <lambda> at 0x10cd6cd08>

>>> (lambda y: lambda x: x+y) (33)

<function <lambda>.<locals>.<lambda> at 0x10cf2e268>

>>> ((lambda y: lambda x: x+y) (33)) (2)

35

Notice that the first definition lambda y: lambda x: x+y defines a
function that takes one argument and returns a function. By applying
this function to 33, we recover the inner-nested function. By feeding this
function 2, we finally obtain the answer of 35.

A nest of 1-argument functions of the kind illustrated here are ex-
amples of curried functions.4 For instance, we can render the addition 4 Named for Haskell B. Curry.

function + into the curried form by writing it as shown above

lambda y: lambda x: x+y

or perhaps as

lambda x: lambda y: x+y

We will now introduce lambdas taking multiple arguments. Consider
the following function defined using lambdas and bound to a variable
called abcd.

>>> abcd = lambda a,b: lambda c,d: (a+b)*(c+d)

>>> abcd(2,3)

<function <lambda>.<locals>.<lambda> at 0x10158b158>

>>> abcd(2,3)(4,5)

45

Observe that abcd(2,3) binds 2 to a and 3 to b, returning



312 AUTOMATA , COMPUTABILITY: PROGRAMMER ’S PERSPECTIVE

lambda c,d: (2+3)*(c+d)

which is the inner lambda that is specialized to carry out a multiplica-
tion of (c+d) using (2+3) (or 5). We see this fact by feeding (4,5) to
abcd(2,3). The result is (2+3)*(4+5) or 45.



C
There Are More Languages than RE
Languages

Chapter Gist: We will define a method to injectively (1-1) map
any tuple of Nat to a Nat (§C.1). We then state the Cantor-
Schröder-Bernstein (CSB) theorem that allows us to equate the
cardinalities of two infinite sets. Using the CSB theorem, we
can show that there are ℵ0 Turing machines (also that many C
programs, §C.2). We then present Cantor’s diagonalization proof
showing that there are ℵ1 languages (§C.3) but only ℵ0 recursively
enumerable (RE) languages. This will finish the proof that there
are (many more) non-RE languages than RE languages.

C.1 Gödel Hash

Gödel hash is a mechanism to injectively map any tuple of Nat into Nat.
It is based on this theorem:

Theorem C.1: Any natural number greater than 1 can be
uniquely expressed as a product of primes.

Proof: By induction (left to the reader).
Here are examples, where we express each natural number as an N-tuple
of exponents of primes (typed as lists below):
• 18= [1,2] Obtained as 21 ·32

• 22= [1,0,0,0,1] Obtained as 21 ·30 ·50 ·70 ·111

• 24= [3,1] Obtained as 23 ·31

• 256= [8] Obtained as 28

• 5402250= [1,2,3,4] Obtained as 21 ·32 ·53 ·74

• 75600= [4,3,2,1] Obtained as 24 ·33 ·52 ·71

The flipside of this result is that given a finite list over Nat, we can injec-
tively map it into Nat as follows (in a sense, we are computing the Gödel
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Hash of these tuples and mapping them to Nat):
• [1,2] maps to 18, and no other list other than [1,2] maps to 18 (i.e.,

injectively maps)
• [1,0,0,0,1] maps to 22
• [3,1] maps to 24
• [8] maps to 256
• [1,2,3,4] maps to 5402250
• [4,3,2,1] maps to 75600
We will use this hashing method in §C.2.11 It may surprise you to learn that this

method has been also found practical in
program analysis [32].

C.2 Cantor-Schröder-Bernstein (CSB) Theorem

The CSB theorem says that if there is an injective map from A into B
(not necessarily onto), and there is an injective map from B into A (not
necessarily onto), then there is a bijective map between A and B, i.e.,
these sets have the same cardinality.

• Illustration 1: Consider Even and Nat discussed in Ap-
pendix A. One way to injectively map Even to Nat is to divide
each even number by 2. One way to injectively map each mem-
ber of Nat to Even is to double the number. The existence of
these injective maps ensures that
| Even | = | Nat | = ℵ0.

• An injective map from Odd to Even is doubling. One injective
map from Even to Odd is double and add 1. Thus these two
sets also have cardinality ℵ0.

Theorem C.2: There are ℵ0 Turing machines, and the same num-
ber of C programs. Hence there are also ℵ0 RE languages (as each
such language is the language of some TM).

Proof: We will work out the proof for C programs (denote the set of C
programs by CP). The reader may find a similar trick for Turing ma-
chines.22 Build some simple TM and map 0 to it.

Then pad this TM once using some trick,
say by introducing k dummy states, and
map k to it. Detail this idea.

• Believe it or not, the shortest C program that is nonempty is main(){}.
Let 0 map to this program.

• The next longer, “weird but legal” C program is main(){;}. Let 1 map
to this program.

• Similarly 2, 3 and 4 map to main(){;;}, main(){;;;}, and main(){;;;;}.
• This is an injective map from Nat to CP.
• To find an injective map from CP to Nat, simply take the C program

to be a tuple of ASCII characters, one per character in the program.
Since ASCII characters can be encoded using integers from 0 to 255,
taking a Gödel Hash, we have an injective map from CP to Nat.
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• Hence, from the CSB theorem, | CP | = | Nat | = ℵ0.

C.3 Cantor’s Diagonalization Proof about Languages

We will now prove that the cardinality of all languages over Σ = {0,1} is
ℵ1.3 Strings from this alphabet can be listed in a total order according to 3 Please convince yourself that the entire

proof below will go through even if Σ= {0}.the numeric order (§3.6). Now, each language is a set of strings, and sets
can be represented by infinitely long bit-vectors (characteristic vectors).
Here are examples:
• Language {} 7→ 000. . . : no string from Σ∗ is included
• Language {ε} 7→ 100. . . : ε alone is included
• Language {0,110} 7→ 010000000000010000. . .: That is, from the nu-

meric order
ε,0,1,00,01,10,11,000,001,010,011,100,101,110,111,0000, . . .
The 1 bit picks out 0 and 110

• Language {(01)i | i ≥ 0} 7→ 00001000000000000000100. . .
The strings picked out are ε,01,0101,010101, . . .

Now, assume that we have a bijective map from Nat to languages that
looks like this:

0→ b00b01b02b03 . . .
1→ b10b11b12b13 . . .
. . .
n → bn0bn1bn2bn3 . . .
. . .

Here, b00, b01, . . ., bi j, . . . are all infinitely long bit sequences. Each row
above models one language through a suitable “on/off” combination of b-
bits.
Now consider the language denoted by the bit sequence

¬b00 ¬b11 ¬b22 ¬b33 . . . ¬b j j . . .

We call this the diagonal language. The diagonal language differs from
each language listed above at least in one string. For instance,
• If the jth language has the jth string in numeric order, then b j j would

be 1, and in our diagonal language, this string won’t be present (that is
what ¬b j j indicates). Of course if b j j = 0, the diagonal language would
contain the jth string in the numeric order.

• Thus, however we put languages into 1-1 correspondence with Nat,
one language won’t be listed in such a listing.

• Thus there isn’t a bijection that allows us to put Nat and languages
into correspondence. That is, they have different cardinalities.

• The cardinality of the set of languages is higher. This higher cardinal-
ity is ℵ1.
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• However, each RE language corresponds to a Turing machine, and
there are ℵ0 TMs (and this many RE languages).

• Thus there are (many) languages that are not RE.
This proof approach is called diagonalization because it relies on deriving
a contradiction based on a construction that first lists suitable candidates
and discovers a non-represented candidate along the diagonal of this con-
struction.

C.4 | Real | Is Higher than | Nat |
The diagonalization argument in §C.3 almost works. Observe that if we
put a “0.” before the bit-strings of this form:

b00b01b02b03 . . .
b10b11b12b13 . . .
we are able to represent Real numbers in the interval [0,1). Here are

examples:
0.5= 0.10 where 0 means repeat 0s infinitely
0.25= 0.010
0.3333= 0.010101

This 1-1 correspondence between bit-strings and Real numbers within
[0,1) almost works; there is one problem however. See these dual repre-
sentations of Real numbers:

0.5= 0.011
0.25= 0.0011

We cannot diagonalize and claim (by inverting the diagonal) that this
number isn’t present in the main listing. What if the diagonal is
0.1100
and we flip the diagonal to obtain
0.0011
which simply happens to be another representation for 0.25, which in
binary is 0.0100?

The fix is simple: consider listing not just any list
0.b00b01b02b03 . . .
0.b10b11b12b13 . . .
0.b20b21b22b23 . . .

but actually such a list interspersed with numbers that prevent an infi-
nite run of 1s along the diagonal. Here is one idea:

0.b00b01b02b03 . . .
0.1100
0.b10b11b12b13 . . .
0.11110
0.b20b21b22b23 . . .
0.1111110
This is just a permutation of the listing of numbers within [0,1) except
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0.1100, 0.11110, 0.1111110, etc., are placed interspersed. Now, flipping
the diagonal, we will never obtain the 1 along the complemented diago-
nal. This settles the “dual representation” difficulty alluded to above.
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