

Computational Thinking

The MIT Press Essential Knowledge Series
A complete list of the titles in this series appears at the back of this book.

Computational Thinking

Peter J. Denning and Matti Tedre

The MIT Press | Cambridge, Massachusetts | London, England

© 2019 The Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in Chaparral Pro by Toppan Best-set Premedia Limited. Printed and bound in the
United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Denning, Peter J., 1942- author. | Tedre, Matti, author.

Title: Computational thinking / Peter J. Denning and Matti Tedre.

Description: Cambridge, MA : The MIT Press, 2019. | Series: The MIT press essential knowledge
series | Includes bibliographical references and index.

Identifiers: LCCN 2018044011 | ISBN 9780262536561 (pbk. : alk. paper)

Subjects: LCSH: Computer algorithms—Popular works. | Computer logic—Popular works. |
Electronic data processing—Social aspects—Popular works.

Classification: LCC QA76.9.L63 D46 2019 | DDC 005.1—dc23 LC record available at
https://lccn.loc.gov/2018044011

10 9 8 7 6 5 4 3 2 1

https://lccn.loc.gov/2018044011

Contents

Series Foreword
Preface
Acknowledgments

1 What Is Computational Thinking?

2 Computational Methods

3 Computing Machines

4 Computer Science

5 Software Engineering

6 Designing for Humans

7 Computational Science

8 Teaching Computational Thinking for All

9 Future Computation

Epilogue: Lessons Learned

Glossary
Notes
References and Further Reading
Index

Series Foreword

The MIT Press Essential Knowledge series offers accessible, concise,
beautifully produced pocket-size books on topics of current interest. Written
by leading thinkers, the books in this series deliver expert overviews of
subjects that range from the cultural and the historical to the scientific and
the technical.

In today’s era of instant information gratification, we have ready access
to opinions, rationalizations, and superficial descriptions. Much harder to
come by is the foundational knowledge that informs a principled
understanding of the world. Essential Knowledge books fill that need.
Synthesizing specialized subject matter for nonspecialists and engaging
critical topics through fundamentals, each of these compact volumes offers
readers a point of access to complex ideas.

Bruce Tidor

Professor of Biological Engineering and Computer Science

Massachusetts Institute of Technology

Preface

A computer revolution is in full swing. The invasion of computing into
every part of our lives has brought enormous benefits including email,
internet, World Wide Web, Amazon’s e-commerce, Kahn Academy, Uber’s
taxi hailing, Google’s maps, trip navigators, smartphones, real-time
translators, and apps by the millions. At the same time it has also brought
enormous concerns including possible loss of jobs to automation, mass
surveillance, collapse of critical infrastructure, cyber war, mass sales of
personal data, invasions of advertising, loss of privacy, polarization of
politics, loss of civility and respectful listening, and exacerbated income
inequality.

A lot of people are having trouble coming to grips with all this. Can they
reap the benefits without the downside costs? Can they lead a meaningful
life if computerization suddenly threatens to obsolete a lifetime of learning?
What should their children learn about computing to enable them to move
and prosper in the new world?

Computational thinking is a new term that has recently entered public
discourse as people struggle with these questions. It holds the hope that we
can think clearly about the powers and dangers of mass computing, and that
we can learn to design computers, software, and networks to maximize the
benefits and minimize the risks. Parents are already amazed at how facile
their children seem to be in the digital world. Is computational thinking the
recipe for giving our children a proper education in this world?

We designed this book to be an edifying conversation to help you
understand what computational thinking is so that you will be in a better
position to answer these questions for yourself.

The first thing to understand is that a substantial part of daily discourse is
shaped by the wide adoption of computers. This is nothing new; our
ancestors’ ways of thinking about the world were shaped by the
technologies of previous revolutions. In the industrial age, for example,
people regularly used expressions like

“He blew a gasket,”

“I’m humming on all pistons,”
“It’s a high pressure environment,” and
“I had to blow off steam.”

Today we hear expressions like
“My DNA programs me to do it this way,”
“Our laws are algorithms for running our society,”
“My brain is hardware and my mind software,” and
“My brain crashed, I need to reboot.”

Just as in the industrial age, the new idioms of the computer age reveal
more about our popular culture than they do about the technology.

Like the Greek god Janus, computational thinking has two faces, one that
looks behind and explains all that has happened, and one that looks ahead to
what can be designed. We invoke both faces when we want to get
computers to do jobs for us. On the back-facing side, we need to understand
the mechanics of how computers work, how they are controlled by
algorithms, how we can express algorithms in a programming language,
and how we can combine many software modules into working systems. On
the forward-facing side, we need sensibilities to understand the context in
which users of our software are working. We want our software to be
valuable to them and not to cause harm to them or their environment. Thus,
computational thinking guides us to understand the technology available to
us and to design software to do a job or solve a problem.

Computational thinking is not only something programmers must know,
but it is also a thinking tool for understanding our technology-infused social
world. It increases our awareness of how our everyday digital tools work,
grounds our cyber ethics, and improves our resilience against various
threats such as algorithm-driven attempts to guide our behavior, personally
tailored fake news, viral powers of social media, and massive, data-
intensive analysis of our movements. What is more, computational thinking
has irrevocably changed the tools, methods, and epistemology of science.
Learning CT has many benefits beyond programming.

If you try to understand what computational thinking is from media
accounts, you will hear a story of problem solving with algorithms, along

with the ability to think at the many levels of abstraction needed to solve
problems. The story is flavored with images of joyous children having fun
programming and playing games in which they simulate algorithms. Indeed,
our teachers have learned much about computational thinking from teaching
computing to children, and they have developed superb ways of teaching
fundamental computing insights to newcomers. In this book, we call this
“CT for beginners.”

But the K–12 education insights and debates barely scratch the surface of
computational thinking. At the more advanced levels, computational
thinking concerns the design of hardware, networks, storage systems,
operating systems, and the cloud. Its historical predecessors have organized
human teams to do large computations, organized production lines in
manufacturing, guided lawmakers, and specified the rules of bureaucracies.
It has developed styles attuned to major areas where computing plays a
critical role, such as artificial intelligence, large data analytics, software
engineering, and computational science. We will show you all this by
examining the kinds of computational thinking needed to deal with these
different dimensions of computing. A much more advanced kind of
computational thinking is needed to deal with these areas. We call it “CT
for professionals.”

Computational thinking is sometimes portrayed as a universal approach
to problem solving. Take a few programming courses, the story in the
popular media goes, and you will be able to solve problems in any field.
Would that this were true! Your ability to solve a problem for someone
depends on your understanding of their context in which the problem exists.
For instance, you cannot build simulations of aircraft in flight without
understanding fluid dynamics. You cannot program searches through
genome databases without understanding the biology of the genome and the
methods of collecting the data. Computational thinking is powerful, but not
universal.

Computational thinking illuminates a fundamental difference in the ways
that humans and machines process information. Machines can process
information at billions or trillions of calculations per second, whereas
humans do well at one calculation per second. Machines process with no
understanding of the data they are processing, whereas humans do and can
correct errors on the fly. Machines can transform a mistake in an algorithm

into a costly disaster before any human has a chance to react. Thinkers in
the philosophy of mind, neuropsychology, cognitive science, and artificial
intelligence have studied these differences and shown us how
fundamentally dissimilar they are. Although some human tasks like
searching and sorting can be eased by applying algorithms to them, most
computational thinking in the big picture is concerned with machine
computation.

Think for a moment about the speed issue. A typical computer can, in 1
second, perform a billion calculations and draw a complex image on the
screen. A human would need 100 years to carry out the same steps at
human speed. Humans obviously draw pictures much faster than that, but
machine designers have yet to imitate that human capacity. If humans had
no help from computers, we would have no real time graphics. Nearly
everything we see software doing is made possible by the incredible speeds
of computers. These machines, not humans executing algorithms on their
own, are the reason for the computer revolution. Computing machines do
the humanly impossible.

While this may send a thrill up your neck, it ought also to send a shiver
down your spine. Modern aircraft are controlled by networks of computers
performing billions of calculations per second. A mistake in an algorithm
can cause the control system to send the aircraft into a death spiral long
before the human pilot can react. Early Apollo missions and more recent
Mars missions were aborted and lost due to errors in their software.
Mistakes in algorithms can be deadly and costly. How can we know that the
algorithms running critical systems can be trusted to work properly,
bringing benefits and low risk of harm? We need clear thinking to help us
find our way through this maze of complexity. This requires an advanced
form of CT that is not learned from children’s simulation games. “CT for
professionals” is deadly serious.

Our account of CT in this book encompasses all the flavors of CT from
beginners to professionals, and in major subfields such as software
engineering and computational science. We aim to describe CT in all its
richness, breadth, and depth. We want to celebrate the work of expert
professionals who take on the hard challenges of getting complex systems
to perform reliably and safely, and the kinds of thinking they bring that
enables them to have achieved such a good track record. We also want to

celebrate the work of expert educators who are working to ease the first
steps into computational thinking in K–12 schools and lay the foundation to
provide everyone the means for coping in the digital world. Those two,
basic CT for beginners and advanced CT for professionals, work together to
produce a rich tapestry of computational thought.

Peter J. Denning
Salinas, California, August 2018

Matti Tedre
Joensuu, Finland, August 2018

Acknowledgments

Peter: Many thanks to Dorothy Denning, my wife, who listened to my
many speeches about computing for nearly 50 years and kept me channeled
in productive directions. Much appreciation to my friend Fernando Flores,
for teaching me how to read history for the concerns that emerge from it
and thus discern different stages of computational thinking over the
centuries. To the founders of computing and computing education whom I
met through ACM, including Eckert, Mauchly, Perlis, Newell, Simon,
Forsythe, Conte, Wilkes, Hamming, Knuth, and Dijkstra. To my teachers at
MIT who turned this electrical engineer into one of the first holders of a
computer science degree, especially Fano, Corbato, Dennis, Saltzer, Scherr,
and Zadeh. To my many colleagues in computer science and engineering
over the years, too numerous to mention by name here, who engaged me in
edifying conversations about computing.

Matti: I am grateful to all those who have helped me develop my own
computational thinking: my old teachers, mentors, and past and present
colleagues from all walks of research. I feel privileged to have gained a
wealth of computing insights from working in universities in six countries
on three continents. I am also thankful to my friends and colleagues from
the field of history and philosophy of computer science—too many to be
listed here. I wish to especially thank Maarten Bullynck, Edgar Daylight,
Liesbeth De Mol, Lauri Malmi, John Pajunen, Giuseppe Primiero, and
Simon (as well as ANR PROGRAMme ANR-17-CE38-0003-01 partners)
for inspiring conversations, feedback, and collaboration on material directly
related to this book. My work was partially supported by the Association of
Finnish Non-fiction Writers.

Acknowledgment of prior publishers: Parts of chapter 5 are adapted from
the following sources: Great Principles of Computing by Peter Denning and
Craig Martell (MIT Press, 2015); “The Forgotten Engineer” by Peter

Denning (Communications of the ACM 60, 12 [December 2017]: 20–23),
and “Computing as Engineering” by Matti Tedre (Journal of Universal
Computer Science 15, 8: 1642–1658). Parts of chapter 6 are adapted from:
“Software Quality” by Peter Denning (Communications of the ACM 59, 9
[September 2016]: 23–25; “Design Thinking” by Peter Denning
(Communications of the ACM 56, 12 [December 2013]: 29–31; and Great
Principles of Computing. Parts of chapter 7 have been adapted from
“Computational Thinking in Science” by Peter Denning (American Scientist
105 [January–February 2017): 13–17.

1

What Is Computational Thinking?

An algorithm is a set of rules for getting a specific output from a specific input. Each
step must be so precisely defined that it can be translated into computer language and
executed by machine.

—Donald Knuth (1977)

What is a computer? Most people will answer it is an electronic black box
that does amazing things by collecting, storing, retrieving, and transforming
data. Almost all our devices and gadgets are computers: phones, tablets,
desktops, web pages, watches, navigators, thermometers, medical devices,
clocks, televisions, DVD players, WiFi networks. Our services are software
—bookstores, retail stores, banks, transportation, Uber, hotel reservations,
Airbnb, filmmaking, entertainment, Dropbox, online courses, Google
searches—and almost all run by unseen computers across an unseen
worldwide network called “the cloud.” Computers have brought enormous
benefits—new jobs, access to information, economic development, national
defense, improvements in health, and much more. They have brought, as
well, worrying concerns—job losses, globalization, privacy, surveillance,
and more. It looks like everything that can be digitized is being digitized
and computers are everywhere storing and transforming that information. A
computer revolution is truly upon us.

How shall we think about all this? What do we need to understand about
computers? What must we do to put a computer to work for us? How do
computers shape the way we see the world? What new do we see? What is
the role of programming? What are computers not good for?

The Power and Value of Computation
Computational thinking (here abbreviated CT) offers some answers to these
questions. Much of CT is specifically oriented on figuring out how to get a
computer to do a job for us—how to control a complex electronic device to
do a job reliably without causing damage or harm. Algorithms are the
procedures that specify how the computer should do a job. Although
humans can carry out algorithms, they cannot do so nearly as fast as a
machine; modern computers can do a trillion steps in the time it takes a
human to do one step. The magic is nothing more than a machine executing
large numbers of very simple computations very fast. Programs are the
bridge: algorithms encoded in special-purpose languages that translate to
machine instructions that control a computer.

But CT reaches further than automation. Information and computational
processes have become a way of understanding natural and social
phenomena. Much of CT today is oriented toward learning how the world
works. A growing number of biologists, physicists, chemists, and other
scientists are looking at their subject matter through a computational lens;
professionals in the arts, humanities, and social sciences are joining in.
Computer simulation enables previously impossible virtual experiments.
The “information interpretation” of the world offers conceptual and
empirical tools that no other approach does.

CT also advises us about jobs that computers cannot do in any reasonable
amount of time. Or at all—some jobs are impossible for computers. Many
social, political, and economic problems are beyond the pale of computers.
By understanding the limits of computing, we can avoid the trap of looking
to computing technology to solve such problems.

Obviously, designing a program or a machine to do so much in such a
short time is a daunting design task that demands its own way of thinking if
we are to have any confidence that the machine does the job without error.
Indeed, understanding users, and designing systems specifically for them,
turns out to be one of the great challenges of modern computing. Design is
one of the central concerns of CT.

Defining Computational Thinking
Computational thinking has become a buzzword with a multitude of
definitions. We have distilled the spirit of the multitude into this definition
used throughout this book:

Computational thinking is the mental skills and practices for

• designing computations that get computers to do jobs for us, and
• explaining and interpreting the world as a complex of information

processes.

The design aspect reflects the engineering tradition of computing in
which people build methods and machines to help other people. The
explanation aspect reflects the science tradition of computing in which
people seek to understand how computation works and how it shows up in
the world. Design features immersion in the community being helped,
explanation features being a dispassionate external observer. In principle, it
is possible to design computations without explaining them, or explain
computations without designing them. In practice, these two aspects go
hand in hand.

Computations are complex series of numerical calculations and symbol
manipulations. Examples of numerical calculations are the basic arithmetic
operations (add, subtract, multiply, divide) and the basic trigonometric
functions (sine, cosine, and tangent). Examples of symbolic manipulations
are logical comparison of numbers or symbols, decisions of what
instructions to do next, or substitutions of one string of letters and numbers
for another. Amazing computations can be carried out when trillions of such
simple operations are arranged in the proper order—for example,
forecasting tomorrow’s weather, deciding where to drill for oil, designing
the wings of an aircraft with enough lift to fly, finding which physical
places are most likely to be visited by a person, calling for a taxi, or
figuring out which two people would make a great couple.

Computers are agents that carry out the operations of a computation.
They follow programs of instructions for doing arithmetic and logic
operations. Computers can be humans or machines. Humans can follow

programs, but are nowhere near as fast or as error-free as machines.
Machines can perform computational feats well beyond human capabilities.

We use the word “job” to refer to any task that someone considers
valuable. Today many people look to computers (actually, computations
performed by computers) to get jobs done. They seek automation of jobs
that could not be done without the aid of a machine. Computers are now
getting good enough at some routine jobs so that loss of employment to
automation has become an important social concern.

We do not equate “doing a job” with automation. Well-defined, routine
jobs can be automated, but ill-defined jobs such as “meeting a concern”
cannot. CT can help with jobs that cannot be automated. In the design
chapter we will discuss the kind of CT that does this.

There is clearly a special thinking skill required to successfully design
programs and machines capable of enormous computations and to
understand natural information processes through computation. This skill—
computational thinking, or CT—is not a set of concepts for programming.
Instead, CT comprises ways of thinking and practicing that are sharpened
and honed through practice. CT is a very rich skill set: at the end of this
chapter we outline the six dimensions of computational thinking that you
will encounter in this book: machines, methods, computing education,
software engineering, design, and computational science.

Wishful Thinking
In our enthusiasm for computational thinking, we need to be careful to
avoid wishful thinking. Perhaps the first and most common wish is that we
can get computers to do any job we can conceive of. This wish cannot be
realized because there are many jobs that are impossible for computers. For
example, there is no algorithm that will inspect another algorithm and tell
us whether it terminates or loops forever. Every programming student longs
for such an algorithm to help with debugging. It was logically impossible in
1936 when Alan Turing proved it so, and it is still impossible today.

Even if we stick to logically possible jobs, there are many that cannot be
done in a reasonable time—they are intractable. One famous example is the
traveling salesman problem, which is to find the shortest tour on a map of a
country that visits each city just once. An algorithm to compute this would
be of great value in the package delivery industry. The simplest way to find
the shortest tour is to enumerate all possible tours and select the shortest.
For a small set of 100 cities, this would take 10130 years on the world’s
fastest supercomputer. For comparison the age of the universe is on the
order of 1010 years. Even the “simplest way” can be impossible! Algorithms
analysts have identified thousands of common problems that are intractable
in this way.

The picture gets even more confusing because in most cases there are fast
algorithms to find an approximate answer. They are called heuristics. Take,
for example, the problem of finding the shortest tour connecting all 24,978
cities in Sweden. The enumeration algorithm for the traveling salesman
problem would take on the order of 10100,000 years! But in 2004 a team at the
University of Waterloo using heuristics for optimization found a shortest
tour and proved it to be correct. Their solution used 85 years of processing
time spread over a cluster of machines that took several months to complete
the job.

Computational thinkers need to develop enough experience and skill to
know when jobs are impossible or intractable, and look for good heuristics
to solve them.

A second example of wishful thinking is to believe that learning how to
program in a computer science course or a coding-intensive workshop will

enable you to solve problems in any field that uses computation. No, you
will need to learn something about the other field too. For example, even if
you have studied search algorithms in a programming course, you are not
likely to be able to be useful to a genomics project until you have learned
genome biology and the significance of biological data.

A third example of wishful thinking is to believe that computers are not
essential to CT—that we can think about how to solve problems with
algorithms and not be concerned with the computers that run the
algorithms. But this is not so. When a computer does not have sufficient
memory to hold all your data, you will seek ways to divide your problem
into subsets that will fit. When a single processor does not have sufficient
processing power, you will seek a computer with multiple parallel
processors and algorithms that divide the computation among them. When
the computer is too slow, you will look inside to find a bottlenecked
component and either upgrade it or find a new algorithm that does not use
that component. Even if your computer has sufficient memory, adequate
processing power, and no bottlenecks, other aspects can limit your problem-
solving progress, notably the speed of the internal clock, which paces the
machine to perform computational steps in an orderly and predictable way.
But some new machines, notably quantum computers and neural nets, have
no clocks: How shall we think about programming them?

A fourth example of wishful thinking is to believe the computer is smart.
If you are imprecise in translating human steps into program steps, your
computation will contain errors that could cause disasters. Computers are
incredibly dumb. They perform mindless, mechanical steps extremely fast
but they have no understanding of what the steps mean. The only errors
they can correct are the ones you anticipate and provide with corrective
algorithms. You are the source of the intelligence; the computer amplifies
your intelligence but has none of its own.

We advise you to approach CT with humility. It is a learned skill. Our
brains do not naturally think computationally. Keep your perspective on the
capabilities of computers and algorithms to do jobs, on the need to learn
something about the application domain you want to design for, on the
dependency of computation on computers, and the abject lack of
intelligence in the machine.

Emergence of CT over Millennia
It might seem that CT is a product of the electronic computer age that began
in the 1940s. Well, not really. Before the modern computer age there was a
profession of mathematically trained experts who performed complex
calculations as teams. They were called “computers.” They were by no
means the first: the term “computer,” meaning “one who computes,” dates
back to the early 1600s. The first electronic computing machines were
called automatic computers to distinguish them from the human variety.
Human computers and, even more so, the leaders of human computing
teams, obviously engaged in computational thinking. So, many aspects of
CT existed before electronic computers. Well before.

Primitive forms of CT as methods of calculation were recorded from
around 1800 to 1600 BCE among the Babylonians, who wrote down
general procedures for solving mathematical problems. Their rule-following
procedures have features that we, from today’s perspective, would label as
forms of CT. Similarly, the Egyptian engineers who built the pyramids
beginning around 2700 BCE obviously knew a lot about geometry and were
able to calculate the dimensions and angles of stones for each part of the
pyramid and of the leverage of ropes, pulleys, and rollers to move the
stones into position. Computing is an ancient human practice.

Over the ages since ancient times, mathematicians sought to spell out
procedures for ever more advanced calculations, moving beyond calculating
merchant transactions and the geometry of structures, to trigonometry,
astronomic predictions, celestial navigation, solving algebraic equations,
and eventually computing with the calculus of Newton and Leibniz. By
formalizing computing procedures, mathematicians made their expertise
available to non-experts who simply had to follow directions of carrying out
simple arithmetic operations in the proper order. A special class of those
directions is today called an algorithm—a key concept in modern
computing. The term “algorithm” comes to us from the Persian
mathematician Muhammad ibn Mūsā al-Khwārizmī who, around 800 CE,
discussed how to formulate mathematical procedures and gave examples
such as finding the greatest common divisor of a set of numbers.

We humans have a penchant for automating routine procedures. So it has
been for computational procedures: inventors sought machines that would
automate computation for the purposes of greater speed and fewer errors.
Building machines to carry out these procedures turned out to be much
harder than specifying the procedures. Pascal designed and built an
arithmetic machine in the 1600s that was able to add and subtract. It could
multiply only in the hands of a human operator who understood repeated
addition. It could not do division. Napier invented the logarithm, which
became the principle of the slide rule—an aid for calculation that continued
well into the second half of the 1900s. It could not add or subtract. In 1819
Babbage designed a machine of gears, shafts, and wheels that could
calculate tables of arithmetic numbers such as logarithms. In the 1890 US
census, Hollerith’s punched card machines tabulated large amounts of data
and, after its founding in 1924, IBM became wealthy from selling
tabulating machines. In the 1920s engineers designed analog computers to
calculate continuous functions by simulating them with circuits and gears.
Designers of mechanical analog and digital computers were obviously
computational thinkers. But even the analog computer idea is ancient,
dating back to the Greek orrery, a mechanical device used to calculate
planetary positions in 100 BCE.

Computing throughout the ages required computational thinking to
design computational procedures and machines to automate them. The long
quest for computing machines was driven not only by the need to speed up
computation, but to eliminate human errors, which were common when
easily bored or distracted humans performed many repetitive calculations.
The designers believed automated machines would overcome the sources of
error in calculations. Today we know better: while machines have
eliminated some kinds of error, a whole horizon of new errors has appeared.
Computing machines have become so complex that we do not know how
much trust we can place on them.

Seeds of computational thinking advanced in sophistication over those
many centuries. But only when the electronic computer became an industry
in the 1950s did computer designers and programmers find an impetus to
develop CT as a professional concern. These professionals gravitated to
software because they could easily alter a machine’s function by
reprogramming the software. The emerging computing industry sought
programmers and engineers schooled in computational thinking and

practice. Educators inquired into how to teach them. The computer science
(CS) field that emerged by 1960 inherited the responsibility for defining
and teaching CT.

Throughout this book, we present many examples from the history of
computing to illustrate the needs to which CT responded, the new
possibilities for actions CT enabled, and the dramatic mind shifts CT
caused in how we see automation, science, and the world. Although CT as a
way of thinking has existed for thousands of years, the term “computational
thinking” is relatively new: the first occurrence we are aware of is from
1980.

Emergence of Education Movement for CT in K–12 Schools
The first computer science (CS) department was founded at Purdue in 1962.
Academic computer science matured along a bumpy and challenging path.
Many universities were initially skeptical whether the new field was really
new or scholarly enough; it looked rather like a branch of electrical
engineering or applied mathematics. Many computer science departments
were formed only after pitched political battles in their universities. Despite
the political difficulties, the growth was steady. By 1980 there were about
120 CS departments in the US alone. Today all major and many smaller
universities have one.

During the first 40 years, most of the concerns of practitioners in
computing were focused on getting the technology to work. Everything we
today consider a core technology had to be invented, designed, tested, and
retested—take, for example, programming languages, operating systems,
networks, graphics, databases, robotics, and artificial intelligence. One of
the central elements of CT, designing reliable computing technologies,
became a standard during those times.

In the 1980s, computing experienced a dramatic opening as scientists in
all fields brought computation and computational thinking into mainstream
science. At first, they used computation to simulate existing theoretical
models or numerically tabulate and analyze data from experiments. But
they soon discovered that thinking in terms of computation opened a door
to a whole new way of organizing scientific investigation—CT led to Nobel
Prizes for discoveries that had previously eluded scientists. Many declared
computation a third pillar of science, alongside theory and experiment. CT
was extended to designing computations throughout science, especially in
response to “grand challenge” questions posed by leaders in the different
fields. Every field of science eventually declared it had a computational
branch, such as computational physics, bioinformatics, computational
chemistry, digital humanities, or computational sociology.

Computer scientists had mixed reactions to these developments.
Remembering their battle scars from forming departments, some were quite
sensitive to the public image of computer science and wanted to control it.
Some regarded the computational science movement as a means to hijack

computer science by scientists who had previously expressed skepticism
about computer science. As a result, computer scientists had a strong
motivation to help the public understand the technology and theory of
computing. Computer science educators worked with K–12 educators to
define computer literacy courses, but these were not very popular. Around
the year 2000 some educators proposed a more sophisticated approach they
called “fluency with information technology”; high school teachers adopted
a popular textbook in that area. Even with the success of the fluency
approach, few high schools adopted a computer course. Computer science
educators continued to seek ways to penetrate K–12 school systems and
expose every student to computing.

A turning point came in 2006 when Jeannette Wing, then starting as an
assistant director at the US National Science Foundation (NSF),
reformulated the quest from fluency to computational thinking. She
proposed that CT was a style of thinking that everyone needed to learn in
the computing age. At the NSF she mobilized significant resources to train
teachers, upgrade the Advanced Placement test, design new “CS principles”
first-courses for colleges, define CT for the K–12 education sector, and
issue curriculum recommendations for K–12 schools. This “CS for all”
movement has achieved much greater penetration of computing into K–12
schools than any of its predecessors.

The definitions of CT that have emerged from the post-2006 CT
movement have moved conspicuously into the public view. But many
public definitions, especially as interpreted to us by policymakers, are quite
narrow compared to the notions of CT developed over the earlier centuries
of computing. Mainstream media occasionally give a misinformed view of
the scope and influence of computing. They have led people unfamiliar
with computing to make inflated claims about the power of CT that will
mislead students and others into making promises about computers they
cannot deliver.

Our Objectives in This Book
Our objective in this book is to lay out the magnificent fullness of
computational thinking and its precepts about computation and to dispel
misunderstandings about the strengths and limits of computing.

Computational thinking evolved from ancient origins over 4,500 years
ago to its present, highly developed, professional state. The long quest for
computing machines throughout the ages was driven not only by the need to
speed up computation, but also to eliminate human errors, which were
common when easily bored or distracted humans performed many repetitive
calculations. A special thinking skill evolved to accomplish this.

The development of computational thinking opened six important
dimensions that are characteristic of CT today.

• Methods. Mathematicians and engineers developed methods for
computing and reasoning that non-experts could put to work
simply by following directions.

• Machines. Inventors looked for machines to automate
computational procedures for the purpose of greater speed of
calculation and reduction of human errors in carrying out
computations. This led eventually to the invention of the digital
electronic computer that harnesses the movement of electrons in
circuits to carry out computations.

• Computing Education. University educators formed computer
science to study and codify computation and its ways of thinking
and practicing for institutions, businesses, science, and
engineering.

• Software Engineering. Software developers formed software
engineering to overcome rampant problems with errors and
unreliability in software, especially large software systems such
as major applications and operating systems.

• Design. Designers bring sensibilities and responsiveness to
concerns, interests, practices, and history in user communities.

• Computational Science. Scientists formed computational science
to bring computing into science, not only to support the traditions

of theory and experiment, but also to offer revolutionary new
ways of interpreting natural processes and conducting scientific
investigations.

These six dimensions are like different windows looking at CT. Each
window offers a particular angle of looking. Some aspects of CT may be
visible through two windows, but each in a different light.

In the next six chapters we will examine CT in relation to each dimension
above. We round out with a semifinal chapter on CT in modern general
education and a concluding chapter about the future of CT.

Chapter 2: CT related to algorithmic procedures to automate
processes

Chapter 3: CT related to computing machinery
Chapter 4: CT related to the theory of computing and academic

discipline
Chapter 5: CT related to building large software systems
Chapter 6: CT related to designing for humans
Chapter 7: CT related to all the sciences
Chapter 8: Teaching CT for all
Chapter 9: The future of CT

We offer our stories of these dimensions to show you the power of CT
and the ways in which it might help you in your work with computers and
computation.

Computational thinking evolved from ancient origins over 4,500
years ago to its present, highly developed, professional state. The
long quest for computing machines was driven not only by the
need for speed, but also to eliminate human errors.

2

Computational Methods

If controversies were to arise, there would be no more need of disputation between two
philosophers than between two accountants. For it would suffice to take their pencils in
their hands, to sit down to their slates, and to say to each other (with a friend as witness
if they liked): Let us calculate.

—Leibniz, in Russell’s translation (1937)

When Peter was age 10, his twinkly-eyed math teacher told him he could
read minds. “How could you do that?” Peter asked. The teacher said, “Here,
I’ll show you. Think of a number. Double it. Add 8. Divide by 2. Subtract
your original number. Now concentrate hard on the answer. ... There, I see
it. The answer is 4.” Peter was so astonished he insisted that the teacher
show him how to do this. “Well,” said the teacher, “it’s just math. Let’s say
X is your number. Then I got you to calculate the expression (2X+8)÷2–X =
4. Your initial number was subtracted out. The answer is always half the
number I told you to add.” Peter had many fine moments reading the minds
of his family and friends with this method. He also got hooked on
mathematics and computing.

This is one of many mathematical methods handed down over many
generations. Methods like this are behind a pack of “automatic tricks” used
by magicians, where the trickster leads the subject through a series of steps
to an answer known to the trickster and believed by the subject to be a
secret. The sleights of mind to accomplish this are in the math steps known
to the trickster but not the subject. They work for any trickster who follows
the directions, even if the trickster has no idea why the directions work.

Many other methods with a more serious purpose were handed down
through the ages. One of the earliest methods, taught to many
schoolchildren today, comes from the Greek mathematician Euclid around
300 BCE. He gave a method to find the greatest common divisor (GCD) of
two numbers, which is the largest integer that divides both numbers. Euclid
found a clever reduction rule by noticing that the GCD of two numbers
divides their difference. He repeatedly replaced the larger number with their
difference, until both were the same. For example, GCD(48,18) =

GCD(30,18) = GCD(12,18) = GCD(12,6) = GCD(6,6) = 6. This method
was used to reduce fractions. Today it is among the basic methods
underlying cryptography.

Another famous method dating back to the Greeks was the Sieve of
Eratosthenes, used to find all the prime numbers up to a limit. This method
begins with a list of all the integers from 2 to the limit. It then crosses out
all the multiples of 2, then all multiples of 3, then of 5, and so on. After
each round of elimination, a new prime will be revealed; the next round
crosses out all its multiples. This is a very efficient method to find small
primes and has been adapted to finding large primes for keys in modern
cryptographic systems.

The Greeks were also interested in calculating the areas of shapes. They
did so by finding ways to tile the shapes with simple forms such as squares
or triangles, and then successively reducing the dimensions of the forms
until the original shape is almost completely filled with them. This method,
first recorded in the period 400–350 BCE, was a precursor to better
methods introduced in the modern calculus two thousand years later.

Many mathematicians used such methods to construct infinite series of
simple terms that converged to some limit. Math books are filled with tables
of series; mathematicians used them to replace long series with closed
forms. One such example is the series , which gives a way to calculate the
value of π, with greater precision when more terms are included.

The calculus, proposed independently by Newton and Leibniz around
1680, perfected the idea of approximating objects and curves by
calculations over infinite series. The idea was to represent geometric forms
and continuous curves with very small components that interacted locally—
for example, fill the form with small boxes or model the curve as a series of
tiny segments bound to their immediate neighbors with attractive forces.
Then find a larger quantity such as area or length by adding the
components. When the size of the components was allowed to approach
zero, the expressions from these infinite sums would be exact. The rule of
local interaction was represented as a derivative and the summation as an
integral. Motivated by calculus, mathematicians evaluated functions by
dividing time and space into small increments enumerated as a “grid” and
iteratively calculated the value of a function at each grid point. This
approach was a boon to physics, in which many mathematical models of

physical phenomena were expressed as differential equations computable
on finite grids.

Another famous mathematical method was the Gaussian elimination for
solving systems of linear equations. Gauss worked with this method in the
mid-1800s, although Chinese mathematicians knew it in 179 BCE. Very
efficient forms of this algorithm are used in modern graphics displays to
render three-dimensional objects in real time.

These few examples illustrate the richness and utility of the treasure trove
of methods bequeathed to us over many centuries.

We can conclude from examining these methods that many were quite
sophisticated. Their purpose was to capture, as a set of steps, what needed
to be done in a complex calculation. Initially those steps were carried out by
mathematicians, but with enough refinements a method could actually be
used by anyone who could follow the directions. An important but subtle
point is that the steps of the method had to be unambiguous. The less the
ambiguity, the more trustworthy the method was in the hands of non-
experts. It was a practice to reduce ambiguity by replacing fuzzy steps with
precise chains of arithmetic and logic operations.

Beginning around 1650, some mathematicians started to look for
machines to carry out the basic operations of common methods. Some
methods were too complex to be easily remembered. Some methods needed
to be iterated many times, and it was difficult for easily distracted human
beings to complete them without errors. The machines would allow for
much faster computation and fewer errors.

To build machines, mathematicians and inventors had to devise methods,
such as the positioning of wheels and gears, to represent numbers with
physical quantities. They also had to devise representations for logic steps
such as a conditional jump or a loop. Today, representations of data and
logic steps are important core elements of computational thinking. In the
rest of this chapter we describe these aspects in more depth.

The Quest to Eliminate Intuition
The computational methods that evolved in the history of mathematics were
intended to help builders, engineers, merchants, and scientists to calculate
numbers. Ancient merchants invented number systems, accounting systems,
and tools like the abacus to keep track of their businesses. Ancient
engineers invented ways to build weapons of war and civilian structures of
peace. All sought reliable methods of dealing with calculations involving
large quantities of numbers so that their artifacts worked as intended and
were dependable.

Their methods were handed down through apprenticeships and were
worked mainly by experts. The experts developed rules-of-thumb,
heuristics, learned hunches, and other intuitions that enabled them to solve
problems that the uninitiated could not solve at all. The modern term
“intuition” describes the expert’s action of rapidly articulating a solution,
based on extensive experience with similar situations. Intuition enables
experts to find the essential core of the problem, skip unnecessary steps in
solving it, and switch between solution approaches. Intuition is a
manifestation of expertise and an enabler of new findings.

It might seem paradoxical then that throughout the ages much work in
mathematics and logic has aimed at eliminating intuition from routine
calculation and logical inference. Routine computing tasks were required to
be as simple and “mechanical” as possible in order to always yield the same
results regardless of who did the calculations. Mathematicians throughout
history have sought to capture expertise into step-by-step procedures
someone could follow with little training. Eliminating intuition from routine
jobs did not mean eliminating experts, but rather making their expertise
available to a large number of non-expert people.

The modern ideas of symbolic information representation, symbol
processing, unambiguous computational steps, basic arithmetic, algorithms,
synchronization of computations, and systematic error checking are all
inheritances from those many centuries. By showing how mechanization of
calculations has been a key feature in numerous developments of
computational methods, our aim is to reveal how many computational
thinking skills have been an integral part of many other kinds of thinking

long before modern computing. Many features and practices of
computational thinking support the designing of computations in many
fields, not just in today’s computer science.

Numerical Representations and Numerical Methods
Computational thinking, like much of modern science, relies on a process of
representing things in the world in numbers or other symbols. A
representation is an arrangement of symbols in an agreed format; each
representation stands for something. We frequently use numbers to
represent quantities such as census data on populations, business accounting
ledgers, or engineering measurements. But numbers are not the only kinds
of representation. Scientists and engineers represent phenomena with
equations, such as a linear algebraic matrix for rotating an object or a
differential equation for planetary motion. They also represent objects with
mechanical artifacts such as models of buildings, wind tunnels, or planetary
orreries. Numbers, equations, and models underpin the scientific ideals of
measurement, experimentation, and reproducibility of results. In the
computing age, representations with non-numeric symbols have become
ubiquitous—for example, a Java language program, a bitmap of an image,
or a soundtrack of music. Today we use the term digitization for the process
of encoding almost any information in the form of data representations that
can be processed by computers.

It might seem paradoxical that throughout the ages much work in
mathematics and logic has aimed at eliminating intuition from
routine calculation and logical inference. Eliminating intuition
from routine jobs did not mean eliminating experts, but rather
making their expertise available to a large number of non-expert
people.

Some skeptics did not trust these computational methods because
numerical calculations were too susceptible to tiny errors in the precision of
parameters and variables of the computation. This led the designers of
methods to find constraints to keep accumulating errors within acceptable
bounds. Today’s computing machines have the same problems because the
machines have limited precision (such as 32 or 64 bits) and round-off errors
could accumulate in poorly designed algorithms. The calculus was a

breakthrough because it allowed designers systematic ways to limit errors
in their finite-difference calculations.

Decomposing Computing Tasks
During the time leading up to World War II, the US Army developed ever
more sophisticated artillery that could fire shells over several miles.
Gunners needed to know how to aim their artillery given the range, the
difference of elevation, and the winds. The Army commissioned teams of
human computers to work out firing tables for these guns. The gunners
simply looked up the proper angle and direction to aim their guns, given
their measurements of range, elevations, and winds.

One of the most well known of these teams comprised women working at
Aberdeen Proving Grounds around 1940. They organized into assembly
lines, each one doing a different stage of computation, until they compiled
the firing tables. For tools they used mechanical calculators that do basic
arithmetic (add, subtract, multiply, divide). They followed programs (i.e.,
sets of procedures) that managers established to divide the work and to
govern which intermediate calculations moved from one human computer
to the next. As trained mathematicians, the human computers were able to
spot errors in their computations and thus keep the firing tables error free.

Today’s computational thinking follows a similar pattern learned from
those days:

• Break the entire computation into pieces that could be done by
separate, interacting computers.

• Arrange the computers to optimize their communication and
messaging patterns—for example into an assembly line or as a
massive parallel fan-out and join.

• Include error checks into their methods so that recipients could
verify that their inputs and outputs were correct.

Modern software designers are familiar with these principles under the
following names: distributed computing, parallelization, and error checking.
But those practices were not originally developed for machines—they were
developed for human computers.

The US Army wanted to perform these computations at much larger
scales and much faster than human teams could at Aberdeen, so it

commissioned the electronic computer project ENIAC at University of
Pennsylvania to do this. The designers of ENIAC faced huge challenges,
such as learning how to build reliable electronic circuits to carry out the
same computations much faster, and learning how to design the control
programs and algorithms to prevent errors from accumulating in the
computations. The method of decomposition of the task into unambiguous
steps that passed data between them moved from being a management
principle at Aberdeen into a design principle for automatic computers.

Concern over errors grew as machines became larger and more complex.
Today in computer science we still teach this old wisdom: errors can happen
at any stage of the computing process, including describing the problem,
preparing the formulas, setting the constants, communicating data,
recording and retrieving the data, carrying out the prescribed steps, or
displaying the results.

Rules for Reasoning
Designing computations around unambiguous steps is not enough to give
confidence that computations are free from errors. The steps must be strung
together to follow a plan. At any stage in the computation the plan must tell
us unambiguously what the next step is. Deciding what the next step is
should be an exercise in logic.

A long-established branch of mathematics and philosophy has been
concerned with logic. Can we provide the means to develop long chains of
reasoning to solve problems and to verify that a given chain of reasoning is
valid? As their counterparts in calculation, logicians sought ways to
formalize and automate reasoning. Philosophers such as René Descartes
and Gottfried Leibniz in the 1600s sought a language that would completely
formalize human inference and reduce misunderstandings. Their goal was
to establish a standard way to express concepts and rules of inference to
definitively establish the truth or falsity of statements. According to their
vision, such a “language of thought” would bring an end to disagreements
in all domains, because every debate could be resolved through pure logic.

Progress toward this dream was slow. A breakthrough came in the 1800s.
George Boole (1815–1864) was fascinated by how well-formulated,
mathematical symbol systems were able to provide results for problems
nearly automatically once the correct values were set in the formula.1 In his
book, Laws of Thought (1854), he presented “an algebra of thought”
paralleling the algebra of numbers. His logic included variables whose
values could be either true or false. He could form logical expressions,
which were formulas of variables connected by operators such as and, or,
and not. Nearly nine decades later (1937), Claude Shannon showed how
Boole’s algebra could describe the function of relay circuits in telephone
systems and other electrical circuits. Boolean algebra was perfected for
electronic circuit design in the 1950s, where it provided a means to find the
smallest circuit for a given logic function and a means to design the circuit
to avoid race conditions, which are ambiguous outputs caused by signals
changing at different speeds in different parts of the circuit. Boolean algebra
became a fixture of computer circuit design.

https://calibre-pdf-anchor.a/#a403

Despite its merits, Boole’s algebra of logic had some serious limitations.
Sentences that refer to sets, such as “everybody with a gray hair,” while
perfectly understandable in natural language, could not be expressed in
Boolean logic. There was no way to generate a list of entities satisfying a
formula; the concepts of “everybody” and “somebody” had no clear
meaning. There were no rules for the important quantifiers all and some.

Gottlob Frege (1848–1925) presented a new system of logical inference,
“language for pure thought” (1879), which today is called predicate logic. It
included new quantifiers for all and some and closed gaps in Boolean logic.
Frege’s system also presented mechanical rules for symbol processing that
could be followed without appealing to human intuition. Frege’s predicate
logic resembles a programming language in that it provides an artificial,
formal language that presents unambiguous, deterministic, and mechanical
rules for symbol processing.

In the early 1900s it looked like the vision for a formal language of
thought was about to be fulfilled. The merger of mathematics and logic
gave rise to Russell and Whitehead’s magnum opus Principia Mathematica
(1910) and to logical empiricism in the sciences. But one element was still
missing to achieve the dream: a method for definitively deciding whether a
statement in predicate logic was true or false. The question for whether such
a method exists became known as the “decision problem.” By the 1920s, it
was taken as one of the major challenges in mathematics. Most
mathematical logicians believed that a method existed, but no one could
find it.

Mechanizing Computation
In 1935, a young Cambridge mathematics student was introduced to the
decision problem. He became fascinated by the words a lecturer used to
pose it: Was there a mechanical process for deciding, in a finite number of
steps, whether a proposition in predicate logic is true or false? That student,
Alan Turing (1912–1954), decided to develop a thoroughly mechanistic
model of computing so that he could investigate the decision problem.

Turing started with the idea that, when calculating numbers, a human
computer writes down a series of symbols on the paper. He represented the
paper as a linear sequence of boxes each holding a single symbol. In
calculating, the person moves attention from the current box to either of its
nearest neighbors, possibly changing the symbol in the box. He assumed
that the mind of the person doing the calculation was in one of a finite
number of states, and that each of these basic moves on the paper was
generated by a transition from the current state to a specified next state.
This process continues until the calculation is complete. Turing took these
basic actions—when in a given state, move left or right one box, read
symbol at the current box, change the symbol in the current box, and move
to the next state—as the basic mechanics of carrying out a computation.
Clearly a machine could do these steps and keep track of the states. He
noted that this machine modeled steps in calculating numbers or evaluating
logic functions. After demonstrating how such a machine would work,
Turing showed that there is one such machine that can simulate all others—
implying that the machine model is a universal way to represent all
calculations and proofs. He then proved that no machine could solve the
decision problem because the very existence of a machine that could do so
led to a logical paradox. This tour-de-force eventually made him famous for
his “Turing machine” and its implications for computation.

A few years later, the electronic digital computer provided the means to
automate calculation and proof—finally realizing, at least to some extent,
the visions of mechanizing calculation and reasoning. Automation was the
key to all these developments. To emphasize this, Turing called his
machines a-machines, with “a” meaning “automatic.” Similarly, the
engineers designing the first electronic computers in the 1940s, such as

UNIVAC and BINAC, gave them names ending in “-AC” meaning
“automatic computer.” Through the 1980s, computer science itself was
often characterized as the science of automation. The key aspect of
automation demands that a machine do the work without human
intervention. The automatic computer is the ultimate realization of the old
dream of making calculation available for the masses without requiring
them to be experts in doing calculations.

Another key aspect of automation is recognizing that automatic
computers cannot perform certain important tasks. Turing showed this when
he proved no a-machine could exist to solve the decision problem. His same
reasoning shows that problems of practical interest—such as determining
whether a given computer program will halt or instead enter an infinite
loop, or whether a given program contains a computer virus—cannot be
solved by any machine. For this reason, a large segment of CT is concerned
with how to provide partial solutions to problems that cannot be solved by
automatic computers.

The automatic computer and the understandings of its limitations would
not have been implemented without the merger of calculation and logic. It
is no wonder many people consider logical thinking an essential element of
computational thinking.

Computational Thinking Insights Come from Many Fields
It should be clear from this discussion of the origins of computational
thinking that CT is not about how computer scientists think. Modern
computer science is the last 1 percent of the historical timeline of
computational thinking. Computer scientists inherited and then perfected
computational thinking from a long line of mathematicians, natural
philosophers, scientists, and engineers all interested in performing large
calculations and complex inferences without error. CT is a feature of many
fields, not only computing.

Logicians wished to create formal systems where one could start from the
premises and, by following chains of substitutions within a formal system
of rules, would always arrive at the same conclusions. The logical insights
of Boole and Shannon—that a few logical operations can express the truth
values of all propositional logic as well as the logical design of digital
circuits—were driven by an old quest to banish all human emotion and
judgment from logical inference. These insights are counted today as the
first principles of computing. Frege’s logical insight—predicate logic—
presented a more powerful system of inference having many similarities
with modern programming languages. Turing’s insight into the essential
features of automatic processing—that five actions and a finite number of
states are enough for any computation—came from mathematical logic.

Other basic insights of computational thinking arose from science and
engineering. Among the most important is the realization that most
computations in science and technology require unimaginably long
calculations that are well beyond the capabilities of a human team. The
designers of computational methods to solve practical problems are
obsessively concerned with controlling and limiting errors by making the
computational steps simple and unambiguous and their connective logic
unimpeachable.

The computer of today is the machine many sought throughout the ages
to automate calculation and free it from the frailties of humans and the need
for their intervention and judgment. Modern computing researchers and
professionals embody this long history and excel at automating
computations using the best methods available. However, as we will see in

the next chapter, the wish of building real systems for very large, error-free
computations has been exceedingly difficult to achieve.

The computer of today is the machine many sought throughout
the ages to automate calculation and free it from the frailties of
humans and the need for their intervention and judgment.

3

Computing Machines

The intolerable labour and fatiguing monotony of a continued repetition of similar
arithmetical calculations, first excited the desire, and afterwards suggested the idea, of a
machine, which, by the aid of gravity or any other moving power, should become a
substitute for one of the lowest operations of human intellect.

—Charles Babbage (July 3, 1822, letter to Humphry Davy)

Now we will look at the evolution of computing machines and the
dimension of computational thinking needed to design and understand
them. The primary practical motivation for building computing machines
was always to speed up computation and eliminate the errors inherent in
human computing.

People have always been fascinated by the idea of building devices that
automated aspects of human behavior or human thinking. For millennia,
craftsmen built automata for art and amusement, such as animated animal
figures, music boxes, player pianos, and human-like figurines mimicking
people’s behavior. The Mechanical Turk, a chess-playing automaton,
created a sensation in 1770 because it seemed to mechanize chess play, then
considered a high-order mental skill. It was later revealed to be an elaborate
hoax. But it titillated the curiosity of inventors who wondered if they could
really build a chess-playing machine. Some philosophers believed that
automata for calculation, another revered human mental skill, might be
more feasible because the rules of basic arithmetic were much clearer and
simpler than the rules and strategies of chess.

The Rise of Computing Machines
When experts can codify, as procedural steps, what they know about
calculation and reasoning, their knowledge becomes useful to many non-
experts, who can obtain the results without error simply by following
directions. But no matter how precise the procedure, human operators are
prone to making mistakes. They are forgetful, they do not fully understand
every computational operation, they are easily distracted, and they are
quickly bored by a long routine calculation. No matter how simple and
unambiguous the steps, human computers make mistakes. A lot of them.
One study of 40 volumes of old mathematical tables found 3,700 errors, and
another found 40 errors on just one page.

For this reason, inventors through the ages sought computing machines
and aids for calculation that would allow humans to complete longer
computations with fewer errors. This was a slow process. The slide rule was
invented around 1620. By sliding sticks marked with logarithmic scales past
each other, it implemented the method of multiplication based on summing
logarithms. But the slide rule could not add or subtract. Blaise Pascal
designed a calculator in 1642; it could add and subtract, but could not
multiply or divide. Attempts by others to extend Pascal’s design to permit
multiplication failed.

The slide rule found its home among engineers and the arithmetic
calculator among mathematicians and accountants. Over the following
centuries, these kinds of machines were gradually improved. By the 1930s,
Keuffel and Esser Company was the primary supplier of log-trig slide rules
and Marchant was the primary supplier of mechanical calculators that did
all four arithmetic operations. Many slide-rule and mechanical calculator
companies were swept away by the avalanche of change unleashed by the
electronic computer revolution in the 1950s. New companies such as
Hewlett-Packard and Texas Instruments started to produce all-electronic
desktop calculators that could perform all slide-rule and arithmetic
functions. The coup de grâce came in 1972 with the HP-35 programmable
handheld calculator, which replaced the slide-rule on the engineer’s belt.

Despite their popularity, the slide rule and calculating machine had two
serious limitations. First, they could not perform long chains of

calculations; human operators had to do that. Second, these tools could only
be used for a single purpose. The electronic digital computer overcame
these limitations with a radical idea: software stored internally in the
machine’s memory. Software could perform long calculations and could
easily be adjusted to change the operation of the underlying machine.

Precursors to the idea of software originated well before the electronic
computing age. In the early 1700s, French textile weavers experimented
with machines that could weave complex patterns using an automatic loom.
One of the more well known of these machines was the Jacquard loom,
which was controlled by long chains of punched cards; a hole in a card let a
hook through, lifting a thread that became part of a single line of the weave.
Jacquard’s automatic loom revolutionized textile weaving. Jacquard’s cards
were a form of external, changeable software that controlled the operation
of the loom.

The idea of controlling machines with punched cards appealed to
Herman Hollerith, who designed a machine to tabulate the data from the
1890 US Census. He recorded each citizen’s data as a pattern of holes
punched in a card, representing characteristics such as sex, address, and
ethnic origin. The tabulating machine selected out cards meeting given
characteristics and tallied statistics for the selected group of citizens. With
Hollerith’s machine, the Census Bureau completed its analysis of 63 million
records in one year, far faster and cheaper than any previous census. In the
following years, the same technology was adopted for myriad data
processing tasks: keeping track of health of tens of thousands of soldiers,
agricultural censuses, rail freight waybills, and so on.

Before seeing where tabulating machines led, we would like to back up
50 years to the significant development by Charles Babbage and Ada
Lovelace: the general-purpose computer.

The Babbage Machines
Charles Babbage designed two significant computing machines in his long
career. His Difference Engine (ca. 1820) automated the calculation of
mathematical tables such as tables of logarithms or sines. His Analytical
Engine (ca. 1840) was a general-purpose computer capable of any
computable function.

In Babbage’s day, experts prepared books of tables of important functions
such as the logarithms of all six-digit numbers. These tables were
commonly used for mathematical calculations; for example, one could
multiply two numbers by looking up and adding their logarithms. These
tables were computed by hand using difference formulas that calculated
each line of the table from the previous line. Babbage knew that these hand-
computed books contained many errors, and those errors sometimes led to
serious consequences. For example, he argued that errors in the navigation
tables used by the British Navy caused shipwrecks. He wished to eliminate
the errors by replacing humans with machinery that does not get tired,
bored, or distracted. He conceived of a machine that he called Difference
Engine to calculate and print tables of numbers. Intrigued, the British
government gave him funds to develop it.

Babbage spent the better part of the next 20 years trying to build his
machine. It was a much bigger challenge than he thought: the mechanical
engineering methods of the day were not able to produce thousands of gears
and levers with the precision needed to avoid skipping or jamming. In the
1830s he conceived of a new design called the Analytical Engine, which
would need fewer parts and would be more powerful—capable of
calculating any mathematical function. But by that time, the government
distrusted him over his failure to deliver a Difference Engine and refused to
back his Analytical Engine project. He pursued that project with scraps of
funding until his death in 1871, but never completed it. His visionary ideas
lay dormant for the next 80 years.

The Analytical Engine took instructions from punched cards, an idea
from Jacquard’s loom. The punched cards contained a program that would
instruct the machine to automatically compute a mathematical function. It
was able to decide what to do based on earlier results (selection) and repeat

parts of its program (looping). It had separate units for separate functions of
the machine: input, processing, memory, and output. It composed machine
instructions from microprograms.

Babbage collaborated with a gifted English mathematician, Ada
Lovelace, who designed algorithms for the Analytical Engine. One of her
example programs calculated a sequence of rational numbers called
Bernoulli numbers. Babbage and Lovelace are often regarded as the first
programmers. What is more, Lovelace saw Babbage’s machine as more
than a number calculator; for her it was a processor of any information that
can be encoded in symbols. She called the study of such programs “the
science of operations.” Her insight that computing machines can calculate
not only over numbers, but over symbols that can stand for anything in the
world, anticipated by a hundred years a key tenet of the modern computer
age. Lovelace saw the computer as an information machine.

The vision of both Babbage and Lovelace was groundbreaking. Their
designs introduced many ideas today considered as features that distinguish
computational thinking from other kinds of thinking. Besides representing
programs in a changeable external medium, the Analytical Engine
embodied many aspects of modern computers: digital representation of
data, programming, machine-executable algorithms, control structures for
choosing cases and looping, arithmetic-logic unit, and microprogramming
to break machine instructions into low-level logic gate operations.
Ironically, some central insights of the computer age were born in the age of
steam.

The Stored-Program Computer
Babbage’s logical designs for his computer could not be realized on the
era’s technology, but many decades later, the dawning age of electronics
opened up new possibilities. The period from the late 1930s was one of
intense experimentation to build computing machines. Konrad Zuse built a
computer in Germany in 1938, but the German government did not take it
seriously and it made little impact. Howard Aiken, in partnership with IBM
and sponsored by the US Navy, built the Mark I at Harvard in 1944. It was
an electromechanical computer that straddled the mechanical world
governed by Newton’s laws of motion and the light-speed world governed
by Maxwell’s laws of electromagnetism. Its programs and input data were
stored externally on punched paper tapes.

At the Moore School of Electrical Engineering at the University of
Pennsylvania, John Mauchly and Presper Eckert—with support from the
US Army—designed what is perhaps the most famous among the first
electronic computers. Their ENIAC machine went into operation in 1945
and was used to calculate artillery-firing tables and explore the feasibility of
the thermonuclear weapon. The ENIAC (Electronic Numerical Integrator
and Computer) took its program from an external wire patch board;
programming it was tedious. The ENIAC machine was very influential as a
proof-of-concept of fully electronic computing: it worked, it was fast, and it
inspired better machines soon after. Its engineers founded Univac, the first
commercial company to offer an electronic computer.

In 1945, the ENIAC team, joined by John von Neumann, met to design a
better machine based on their experience. Aside from the ENIAC being
difficult to program, its memory was limited, and it used many thousands of
vacuum tubes (18,000 of them) that gradually wore out. For their new
design, the team separated the machine into three main subsystems: the
central processing unit (CPU) for performing the arithmetic and logical
operations, the memory for storage, and the input-output (I/O) unit for
communicating with the external world. To speed up the computer, they
designed a CPU that took its instructions from memory, not external
punched cards or tapes, thus initiating the “stored program computer” idea.
By a quirk of history, this way of organizing a machine became known as

the “von Neumann architecture” because von Neumann took the notes on
their meetings and distributed them. He claimed to be the note taker, not the
designer. The von Neumann architecture emerged as a consensus, the plan
for almost all commercial computers from that time to the present. The
notion that a CPU traces out an instruction sequence among instructions
stored in memory has become a central tenet of computational thinking.

Computational Thinking and Machines
Let us now examine the various precepts of computational thinking that
these early machines and their operating systems gave us.

Digital Representations with Signals and Binary Codes
To be processable, data must be represented as signals in the machine or as
measurable disturbances in the structure of storage media. There is no
information without representation. Arithmetic operations such as add and
subtract must be represented as rules for transforming signals. One early
way to represent a decimal digit was a ring of 10 dual-triode vacuum tubes
simulating a 10-position wheel. This scheme was much more expensive
than a 4-tube binary representation of the same digit. Proposals to represent
decimal digits with 10 distinct voltages were dismissed because of the
complexity of the circuits. Engineers quickly settled on using binary codes
to represent numbers because binary-coded arithmetic used many fewer
components than decimal-coded arithmetic, and because circuits to
distinguish two voltage values were much more reliable than circuits to
distinguish more than two values. Moreover, storage could easily be built
from available two-state technology such as acoustic delay lines, magnetic
cores, flip-flop circuits, or phosphor patches on a cathode-ray screen. The
decision to abandon decimal arithmetic and use binary codes for everything
in the computer led to very simple, much more reliable circuits and storage
media. The term “bit” came into standard use as shorthand for “binary
digit.” Today no one can think about contemporary computers without
thinking about binary representations.

It is important to keep in mind that internally the computer does not
process numbers and symbols. Computer circuits deal only with voltages,
currents, switches, and malleable materials. The patterns of zeroes and ones
are abstractions invented by the designers to describe what their circuits do.
Because not every binary code is a valid description of a circuit, symbol, or
number, the designers invented syntax rules that distinguished valid codes
from invalid ones. Although the machine cannot understand what patterns

mean, it can distinguish allowable patterns from others by applying the
syntax rules.

We cannot overemphasize the importance of physical forms in computers
—such as signals in circuits or magnetic patches on disks—for without
these physical effects we could not build a computer. Although computer
programs appear to be abstractions, they cannot work without the machines
harnessing physical phenomena to represent and process binary numbers.
For this reason, it is safe to say that every dataset, every program, and every
logic circuit layout is a “strategic arrangement of stuff.”

Boolean Algebra and Circuit Design
Because of Claude Shannon’s insight that George Boole’s logic precisely
described electronic switching circuits, today we cannot think about
computers without thinking about Boolean algebra. Boolean algebra helps
us understand how the hardware implements the machine instructions
generated by a compiler. But Boolean algebra is an abstraction. Sometimes
it hides physical race conditions caused by multiple signals following
different paths to the same output; race conditions can cause errors by
causing the circuits to deviate from their Boolean formulas. This confounds
programmers who are only aware of the abstractions and not the circuitry,
and for that reason cannot find the errors by studying their programs.

The Clocked CPU Cycle for Basic Computational Steps
The physical structure of computers consists of registers, which store bit
patterns, and logic circuits, which compute functions of the data in the
registers. It takes time for these logic circuits to propagate signals from their
input registers to their output registers. If new inputs are provided before
the circuits settle, the outputs are likely to be misinterpreted by subsequent
circuits. Engineers solved this problem by adding clocks to computers. At
each clock tick the output of a logic circuit is stored in its registers. The
interval between ticks is long enough to guarantee that the circuit is
completely settled before its output is stored. Computers of the von
Neumann architecture cannot function without a clock. Today computers
are rated by their clock speeds—for example, a “3.8 GHz processor” is one
whose clock ticks 3.8 billion times a second.

The existence of clocks gives a precise physical interpretation to the
“algorithmic steps” in the digital realm. Every algorithmic step must be
completed before the next step is attempted. The machine supports this by
guaranteeing each instruction will be correctly finished before the next
instruction is attempted. (There are a few types of computers that do not use
clocks, but they will not be discussed here.) Clocks are essential to support
our notion of computational steps and guarantee that the computer performs
them reliably.

Control Flow
From the time of Babbage and Lovelace, programmers have realized that
the machine must be able to decide which instructions are next. They do not
always follow a linear sequence. In the von Neumann architecture, the
address of the next instruction is stored in a CPU register called the
program counter (PC), which is updated after each instruction. The default
is to execute the next instruction in sequence (PC set to PC+1). One
common deviation from linearity is to branch to another instruction at a
different memory location, say X. The decision to branch is governed by a
condition C (such as “is A equal to B?”) and the jump from one part of the
program to another part is implemented by an instruction that says “if C
then set PC to X.” This method of controlling the program counter so that
the program execution jumps to a different part of the code is manifested in
computational thinking as the if-then-else construct in programming
languages.

Loops: Small Programs Making Big Computations
If all our programs were nothing more than decision trees of instruction
sequences each selected by if-then-else, they could never generate
computations longer than the number of instructions in the program. The
loop allows us to design computations that are much longer than the size of
the program. A loop is a sequence of instructions that are repeated over and
over until a stopping condition is satisfied. A loop can be implemented with
an if-then-else that branches back to the loop’s start when the stopping
condition is false. A common programming error is a faulty stopping
condition that does not exit the loop. That behavior is called an “infinite
loop.”

Alan Turing proved that there is no algorithm for inspecting a program to
determine if any of its loops is infinite. This makes debugging a challenging
problem that cannot be automated. Programmers spend a great deal of time
looking for mistakes in their programs.

Some programs are built on purpose to loop forever. This is very
common in service processes on the Web. The service process waits at a
homing position for an incoming request; it then executes code to fulfill the
request and returns to its homing position. While this facilitates designing
service processes, it does not remove the challenge of proving that the
service process always returns to its homing position.

The Address-Contents Distinction
Stored-program computing machines introduced a distinction between an
address (a name) and a value (associated with the name). In a program, a
variable X names a memory location holding a value. In classical algebra,
X is an unknown value. In a program, the statement “X=3” means “store the
value 3 in the memory location named X.” Contrast this with the meaning
of “X=3” in classical algebra, which is “the unknown X has the value 3.” In
a program, “X=3” is a command; in algebra it is a fact. This distinction is
part of our computational thinking. Novice programmers who do not make
this distinction often draft programs that do not work.

Subprograms
By the late 1940s, designers of computers realized that a common practice
of programmers would be to write code for standard functions that could be
invoked from anywhere in their programs. For example, an expert
programmer could write code for a SORT function that anybody else can
use to arrange a list of numbers in ascending order. To enable the efficient
invocation of such subprograms, the designers included a new kind of
branch instruction in their machines. An instruction “CALL X” would
remember the current value of the program counter (PC) and then set PC to
X, thereby transferring control to the subprogram stored in memory at
location X. On completion, the subprogram would execute a “RETURN”
instruction that restored the remembered PC value, enabling the original
program to resume operation from the point of call.

The idea of subprograms has become an important principle of
computational thinking. Hardware designers have given us efficient
implementations. Subprograms appear in programming languages as
“subroutines,” “functions,” and “procedures.” It is taken for granted today
that programs are divided into modules implemented as subprograms.

Universal Machines
In 1936, Alan Turing introduced the idea of a universal machine—a
computer that could simulate any other computer, given the program of the
other computer. The universal machine itself was not very complicated.
This idea was implicit in the designs of machines dating back to Babbage’s
Analytical Engine: designers build one base machine that can run many
programs. The base machine is an example of a universal machine. Today
this is taken for granted: software designers assume that compilers and
operating systems will make their software work on a basic underlying
universal machine.

Sometimes people equate the idea of a universal machine with a stored
program computer. They are not the same. Babbage’s Analytical Engine
was a universal machine whose programs were external decks of punched
cards. The ENIAC was a universal machine whose programs were external
patch boards. After 1945, computers were universal machines that stored
their programs in internal memory.

The stored program computer makes it possible to switch the
interpretation of a set of bits in memory between data and instruction. The
very same patterns in the computer memory can be bits that represent things
(data), as well as bits that do things (instructions). A compiler, for example,
generates machine code as output data; the CPU can immediately interpret
those data as executable instructions. Some early machines allowed
programs to modify their own code to achieve greater efficiency. But most
operating systems prohibited this by making machine code read-only: that
allows the sharing but not the changing of code. The older idea of self-
modifying programs is far from dead: malware today constantly modifies
its own code to escape detection by antivirus software.

Fault Tolerance and Data Protection

Logic circuits regularly experience errors from physical causes. For
example, the state of a component might be unpredictable if conflicting
signals arrive at the same time, or if the clock is too fast to allow some
components to settle into new states, or if components deteriorate and fail
over time. Circuit engineers spend a lot of time on fault tolerance. They
have generally done a good job because hardware is sufficiently reliable
that users do not worry about errors in the hardware.

In the 1950s design engineers began to think about multiple-access
computers that would be shared within a user community. Correspondingly,
CT expanded from single-user computations to multi-user computations.
Multi-user systems had to guarantee that no user could access another’s
data without explicit permission. This setup would provide the significant
benefit of allowing users to share programs and data and would reduce the
cost per user by spreading costs across many users. Designers of the first
operating systems achieved this by isolating each executing program in a
private region of memory defined by a base address and length. The base-
length numbers were placed in a CPU register so that all memory accesses
from the CPU were confined to the defined region of memory. This idea of
partitioning memory and setting up the hardware so that it was impossible
for a CPU to access outside its private memory was crucial for data
protection. It not only protected user programs from each other; it could be
used to protect users from untrusted software, which could be confined into
its own memory region.

Users of machines and networks today are aware they are sharing their
machines and networks with many others. They assume that the operating
systems and networks are enforcing the isolation principle by keeping the
executing programs in private memory regions. When they download new
software they do not trust, they expect their operating system to isolate the
new software in a memory region called a “sandbox.”

Although it has been in our computational thinking for a long time that
operating systems isolate programs, many computer chips designed in the
1980s dropped out the memory bound checks in order to achieve greater
speed. Many security specialists are now regretting this omission. New
generations of hardware may once again enforce the security checks that
CT experience leads users to believe are present.

Beyond the von Neumann Architecture
One of the popular modern definitions of computational thinking is
“formulating problems so that their solutions can be expressed as
computational steps carried out by a machine.” This definition is closely
tied to the framework of the von Neumann architecture. In effect, the
definition is a generalization of the operation of the CPU in a von Neumann
machine.

After half a century, the von Neumann architecture has been approaching
its limits. There are two main reasons. One is that the underlying chip
technology, which has been doubling its component count every two years
according to Moore’s law, can no longer absorb the continuous reductions
in component size. Soon components will be so small they cannot comprise
enough atoms to allow them to function properly. The impending end of
Moore’s law has motivated extensive research into alternative architectures.

The other reason is that the separation of processor and memory in von
Neumann architecture creates massive data traffic between processor and
memory. One technology invented to lessen the processor-memory
bottleneck is the cache, which retains data in the CPU rather than returning
it to memory. Another technology intersperses processor and memory in a
cellular array to spread the data load among many smaller processor-
memory channels. A third technology is special purpose chips—ones that
do a particular job exceptionally well but are not general-purpose
computers themselves. An example is the graphics processing units (GPUs)
now permeating every computer with a graphics display. Special purpose
processors are themselves the subject of extensive research.

Two new categories of computer architecture have been getting special
attention. Both are potential disruptors of today’s computational thinking.
One is the neural network, which has been the powerhouse behind recent
advances in artificial intelligence. A neural network maps large bit patterns
(for example, the bits of a photograph) into other bit patterns (for example,
labeled faces in the photograph). The input signals travel through multiple
layers where they are combined according to assigned weights. An external
algorithm trains the network by presenting it with a large number of input-
output pairs and assigning the internal weights so that the network properly

maps each input to its corresponding output. Training a network is
computationally intensive, taking anywhere from many hours to several
days. A trained network is very fast, giving its output almost instantly after
the input is presented. Graphics-processing chips have been successful in
achieving fast response of a trained neural network. Although machines
capable of only pattern matching and recognition are not general-purpose
(universal) computers, they have produced amazing advances in automating
some human cognitive tasks, such as recognizing faces. However, there is
no mechanism for verifying that a neural network will give the proper
output when presented with an input not in its training set. It is very jarring
to our computational thinking to be unable to “explain” how a
computational network generated its conclusion.

The invention of the fully-electronic stored program computer
changed the very concept of computing and created a fresh world
of computational concepts that had few counterparts or
precursors. The concepts, practices, and skills for designing
programs and computers quickly diverged from mathematics and
logic. It was a profound change.

The other computer architecture getting special attention uses quantum
mechanical effects to process data. These quantum machines represent bits
with electron spins and connections with quantum effects such as
entanglement. Quantum computers can perform some computations much
faster than von Neumann computers. One such computation is factoring a
large composite number into its two constituent primes. The intractability of
factoring on von Neumann architectures has been the principle behind the
security of the RSA cryptosystem, which is currently the most secure
cryptosystem in wide use. Quantum computers threaten to break its
security. Because their operation is nothing at all like that of the von
Neumann computers, most people trained in computer science rather than
physics find it very difficult to understand the operation of these machines
or how to program them.

These two examples illustrate how each kind of machine has an
associated style of computational thinking and is quite good at particular
kinds of problems. A person with advanced knowledge in CT would be

familiar with these architectures and, as part of the design process, would
select the best architecture for solving the problem. At the same time,
particular machine types can also induce a kind of “blindness”—for
example, designers schooled in the basic von Neumann architecture think in
terms of instructions and have trouble understanding how a quantum
computer works.

Until the 1940s, computing was seen largely as an intellectual task of
humans and a branch of mathematics and logic. The invention of the fully
electronic stored program computer changed the very concept of
computing, and it created a fresh world of computational concepts that had
few counterparts or precursors. The concepts, practices, and skills for
designing programs and computers quickly diverged from mathematics and
logic. It was a profound change.

And until the 1940s, computational thinking was embedded in the tacit
knowledge and state-of-the-art practices of many different fields, including
mathematics, logic, engineering, and natural sciences. After the 1940s,
computational thinking started to become the centerpiece of the new
profession that designed information machines to do jobs humans never
thought were possible.

4

Computer Science

The question “What can be automated?” is one of the most inspiring philosophical and
practical questions of contemporary civilization.

—George Forsythe (1969)

In the 1950s academics started to advocate for the formation of computer
science programs in universities to meet a rising hunger for learning the
new technology. Many precepts of CT were refined and perfected in
computer science departments since that time. We turn now to the story of
how CT developed in the universities.

Before we begin, we would like to point out a few key aspects of the
academic environment in which CT developed. First and foremost,
computing is a technical field blending engineering, science, and
mathematics. Most computing students come to university to learn a
profession of software and hardware designers, not to obtain a general
education. Employers also come to university to recruit graduates for jobs.
Thus, the CT that evolved along with academic computing has always had a
strong component around design and has been strongly influenced by what
employers say they need.

But that is not all. Universities are organized into a set of departments by
discipline and a scattering of cross-disciplinary institutes and centers. The
departments fiercely protect their identities, budgets, and space. Because
their budgets depend on students enrolled, they are protective of their
enrollments. And because enrollments depend on reputation and reputation
on research productivity, university departments are protective of their
research domains.

Another important shaping aspect of academia is the practice of seeking
consensus on all decisions. Everybody wants a say, whether it is hiring a
new person, awarding tenure, deciding what courses will be offered,
approving possibly overlapping courses proposed by other departments, or
approving the formation of new programs or departments.

This is the atmosphere in which new CS departments and academic
computational thinking were formed. The founders worried about
curriculum and industry demand in the context of a set of consensus-
seeking departments fiercely guarding their prerogatives, always concerned
with public image and identities.

The new departments proposed by the founders were split off from their
existing departments. Their home departments often did not support the
split because they would lose students, budget, and identity. The founders
encountered a lot of resistance from other departments that did not deem a
new department focused on computer technology to be legitimately science
or engineering, or see that it would provide a unique intellectual
perspective. Forging a consensus favoring formation of a new department
was a challenge. Thus, the founders spent a good deal of time debating
about the substance of computing, why it was different and new, and how it
would benefit the other fields. They built a good case and were successful.
Slowly the number of computer science departments grew, from 1 in 1962
to around 120 in 1980 in the US alone. Eventually in the late 1990s
computer science took off as people finally realized the computing
revolution is real. Today nearly every university has a computer science
department.

Computer science departments are found in schools of science,
engineering, and even business. Why so many homes? The answer echoes
those early political fights: the new departments were established in the
schools that were most welcoming. Because most of the departments were
in schools of science and engineering, by the 1980s, computer scientists
were labeling their field “CS&E.” That mouthful was simplified in the
1990s as “computing” became a popular shorthand for CS&E and its
European counterpart “informatics.” In the 1990s some universities went
further and established separate schools of computing, a movement that
continues to grow today. What a turnaround!

Two academic computer societies were formed in the early days: the
IEEE-CS (Institute of Electrical and Electronics Engineers Computer
Society) in 1946, and the ACM (Association for Computing Machinery) in
1947. Because of their diligence to develop and promote curriculum
recommendations, there are a series of snapshots of the computing
curriculum at regular intervals—1968, 1978, 1989, 1991, 2001, and 2013.

These snapshots show how the concerted efforts of computing pioneers to
articulate a unique identity for computer science led them to recognize
computational thinking as a distinguishing aspect from the beginning. In
hindsight, we can discern four eras describing how universities thought
about computing and how those views of computational thinking changed:

Phenomena surrounding computers (1950s–1970s)
Programming as art and science (1970s)
Computing as automation (1980s)
Computing as pervasive information processes (1990s to present)

We will discuss these eras in following sections.
These four stages of CT development in the universities were strongly

shaped by the initial resistance to computer science from other fields:
academic computer scientists spent a lot of effort clarifying and justifying
their field. But computer science was not always the receiver of resistance.
There were two important instances when computer science was the giver.
One was the computational science movement in the 1980s, which was
eschewed by many computer scientists. A common reaction to an
announcement by the physics or biology department that they were setting
up a computational science branch would be a howl of protest that those
departments were impinging on the territory of computing. Some computer
scientists believed that physics and biology, having now recognized the
importance of computing, were trying to hijack the field they once
vociferously opposed. Eventually computer scientists got over this and now
work collaboratively with computational sciences. We will talk about
computational science in chapter 7.

A similar process happened with software engineering. The computing
departments that viewed themselves as science were not receptive to the
practices of teaching and doing projects common in engineering. Software
engineering had trouble gaining a foothold in those departments. There was
an ongoing debate in computer science for a long time about whether
software engineering is part of computer science or should be its own
department. We will talk about that in chapter 5.

Phenomena Surrounding Computers
The developers of early automatic computers realized quickly that the new
machines required a way of thinking and designing that differed from
anything already existing in science or engineering. The ACM and IEEE
started journals for the young field in the early 1950s. The Moore School,
home of the ENIAC project, was an early starter of computing education in
1946 with a two-month intensive course on “theory and techniques for
design of electronic digital computers.” In the 1950s the Moore School
offered a multi-discipline degree in computing that included numerical
analysis, programming, and programming language design. Other schools
started their own programs.

These early efforts to establish computing as an academic discipline were
slow to gain traction. The impediment was more than a cautionary
hesitancy to see if computers were here to stay; it was a deep doubt about
whether computing had academic substance beyond mathematics, electrical
engineering, and physics. Outsiders typically saw the computing field of the
1950s as an impenetrable and anarchistic thicket of idiosyncratic
technology tricks. What is more, the different perspectives to thinking about
computing were disunited: those who designed computing machines were
mostly unaware of important developments in the theory of computing such
as Turing on computable numbers, Church on lambda calculus, Post on
string manipulation, Kleene on regular expressions, Rabin and Scott on
nondeterministic machines, and Chomsky on the relation between
grammars and classes of automata.1

Academics who proposed full-fledged computer science departments or
programs in research universities met stiff resistance. Many critics did not
believe in the value of computing’s new ways: common objections included
lack of unique intellectual content and lack of adequate theoretical basis.
Purists argued that computers were human-made artifacts and not natural
occurrences, and thus their study could not be counted among the noble
natural sciences. On top of all that, many doubted whether computing
would last. Until there was a consensus among many departments, no one
could found a computer science department.

https://calibre-pdf-anchor.a/#a405

This tide began to change in 1962, when Purdue established the first
computer science department and Stanford followed soon thereafter. Over
the next two decades the number of departments grew slowly but steadily to
well over a hundred just in the US. Even so, many academics continued to
question whether computer science was a legitimate field of science or
engineering.

A major shift in the question about the legitimacy of computing
happened in 1967, when three well-recognized computer scientists—Allen
Newell, Alan Perlis, and Herbert Simon—published a famous letter in
Science addressing the question. They wrote: “Wherever there are
phenomena, there can be a science to describe and explain those
phenomena. Thus, ... botany is the study of plants, ... zoology is the study of
animals, astronomy the study of stars, and so on. Phenomena breed
sciences. ... There are computers. Ergo, computer science is the study of
computers. The phenomena surrounding computers are varied, complex,
rich.”2 From this basis they quickly dismissed six objections, including the
one that computers are human-made and are therefore not legitimate objects
of a science. Herb Simon, a Nobel laureate in economics, so objected to the
notion that there could be no science surrounding human-made objects that
he wrote a now-classic book titled Sciences of the Artificial refuting this
idea.3 He gave an example from time-sharing systems (computers that allow
many simultaneous users): The early development of time-sharing systems
could not have been guided by theory as there was none, and most
predictions about how time-sharing systems would behave were
astonishingly inaccurate. It was not possible to develop a theory of time-
sharing systems without actually building those systems; after they were
built, empirical research on their behavior led to a rich theoretical base
about them. In other words, CT could not approach problems from one
direction only—the engineering aspects and scientific-mathematical aspects
of computing evolved in a synergistic way to yield a science that was not
purely a natural science.

The notion of computing as the study of phenomena surrounding
computers quickly gained traction, and by the end of the 1960s was taken as
the definition of computing. A view of the field’s uniqueness started to form
around that notion. The term “algorithmic thinking” was used to describe
the most obvious aspect of new kind of thinking. The field’s unique aims,

https://calibre-pdf-anchor.a/#a406
https://calibre-pdf-anchor.a/#a407

typical problems, methods of solving those problems, and kinds of solutions
were the basis of CT.

The computing pioneers expanded computational thinking beyond what
they inherited from the long history of computation. They focused on the
construction principles of programs, computing machines, and operating
systems. They worked out a large number of computing concepts that are
today taken for granted, including named variables, control structures, data
structures, data types, formal programming languages, subroutines,
compilers, input-output protocols, instruction pipelines, interrupt systems,
computing processes, memory hierarchies, caches, virtual memory,
peripherals, and interfaces. Programming methodology and computer
systems architecture were main drivers in the development of
computational thinking. By 1970, most computer scientists said that
computing’s characteristic ways of thinking and practicing—which today
are called computational thinking—embrace all the knowledge and skills
relating to computers.

Computational thinking divided early into a hardware flavor and a
software flavor. The hardware flavor was followed by computer engineers
in the engineering school; the software flavor by software designers and
computing theorists in the science school.

Programming as Art and Science
The 1960s were a maturing period for computing that produced
considerable richness in the ways computer scientists thought about their
work and their field. The subfield of operating systems was born in the
early 1960s to bring cheap, interactive computing to large user communities
—CT acquired a systems attitude. The subfield of software engineering was
born in the late 1960s from a concern that existing models of programming
were incapable of developing reliable and dependable production software
—CT acquired an engineering attitude. The subfield of networking was
born in 1967 when the ARPANET project was started—CT acquired a
networking attitude.

With a solid, reliable technology base in place, the field’s attention
shifted to programs and programming. Many programming languages came
into existence along with standard ways of programming. A huge interest in
formal verification of programs welled up, seeking a theory-based way to
demonstrate that programs were reliable and correct. A similar interest in
computational complexity also welled up, seeking analytical ways to assess
just how much computational work the different algorithms required.

Computer programs are expressions of algorithms in a formal language
that, when compiled to machine-executable form, control the actions of a
machine. Programs are central to nearly all of computing: Most
professionals and researchers in computing work in some way or another
with programs. On the first stored-program computers of the 1940s,
programming was done in assembly languages that converted short
abbreviated codes for instructions line-by-line to machine code that
computers can run. For example, the instruction “ADD R1,R2,R3” would
place the sum of registers R1 and R2 into register R3. That instruction was
converted to machine code by substituting binary codes for ADD, R1, R2,
and R3. Writing programs in assembly language was very tedious and error-
prone.

Programming languages were invented to provide precise higher-level
expressions of what the programmer wanted, which could then be
unambiguously translated by a compiler to machine code. This greatly
simplified the job of programming, making it much more productive and

much less error-prone. The first widely adopted programming languages
introduced a plethora of new CT concepts that had few or no counterparts in
other intellectual traditions.

Most programming languages were aimed at helping automate important
jobs such as analyzing scientific data and evaluating mathematical models
(FORTRAN in 1957), making logical deductions (LISP in 1958), or
tracking business inventories and maintaining customer databases (COBOL
in 1959). A few languages aimed at allowing people to communicate
precise specifications of algorithms that could be incorporated into other
languages. The ALGOL language (1958) was developed from this
perspective.

The idea that languages cater to particular ways of thinking about
problems came to be called “programming paradigms.” For example,
imperative programming saw programs as series of modules (called
“procedures”) whose instructions commanded the machine. FORTRAN,
COBOL, and ALGOL all fit this category. Object-oriented programming
treated programs as collections of relatively self-sufficient units, “objects,”
that interact with each other and with the outside world by exchanging
messages. Later languages such as Smalltalk and Java fit this category.
Functional programming treated programs as sets of mathematical functions
that generate output data from input data. LISP is an example.

These programming paradigms were seen in the 1970s as different styles
of algorithmic thinking. They all sought programs that are clear expressions
for humans to read and perform correctly and efficiently when compiled
and executed. Donald Knuth, in his major works The Art of Computer
Programming and Literate Programming, and Edsger Dijkstra in his work
on structured programming, epitomized the idea that computing is about
algorithms in this sense. By 1980, most computer scientists said that
computational thinking is a set of skills and knowledge related to
algorithms and software development.

But things got tricky when the proponents of algorithmic thinking had to
describe what algorithmic thinking was and how it differed from other
kinds of thinking. Knuth compared the reasoning patterns in mathematics
textbooks and computing textbooks, identifying typical patterns in both.4

He concluded that algorithmic thinking differed from mathematical thinking
in several aspects: by the ways in which it reduces complex problems to

https://calibre-pdf-anchor.a/#a408

interconnected simple ones, emphasizes information structures, pays
attention to how actions alter the states of data, and formulates symbolic
representations of reality. In his own studies, Dijkstra differentiated
computer scientists from mathematicians by their capacity for expressing
algorithms in natural as well as formal languages, for devising notations
that simplified the computations, for mastering complexity, for shifting
between abstraction levels, and for inventing concepts, objects, notations,
and theories when necessary.5

Today’s descriptions of the mental tools of CT are typically much less
mathematical in their orientation than were many early descriptions of
algorithmic thinking. Over time, many have argued that programming and
algorithmic thinking are as important as reading, writing, and arithmetic—
the traditional three Rs of education—but the proposal to add them (as a
new combined “R”) to that list has yet to be accepted. Computing’s leaders
have a long history of disagreement on this point. Some computing pioneers
considered computing’s ways of thinking to be a generic tool for everyone,
on a par with mathematics and language.6 Others considered algorithmic
thinking to be a rather rare, innate ability—present with about one person in
fifty.7 The former view has more support among educators because it
embraces the idea that everyone can learn computational thinking: CT is a
skill to be learned and not an ability that one is born with.8

The programming and algorithms view of computing spawned new
additions to the CT toolbox. The engineering-technology side provided
compilers (for converting human-readable programs to executable machine
codes), parsing methods (for breaking programming language statements
into components), code optimization, operating systems, and empirical
testing and debugging methods (for finding errors in programs). The math-
science side provided a host of methods for algorithms analysis such as O-
notation for estimating the efficiency of algorithms, different models of
computation, and proofs of program correctness. By the late 1970s it was
clear that computing moved on an intellectual trajectory with concepts,
concerns, and skills very different from other academic disciplines.

https://calibre-pdf-anchor.a/#a409
https://calibre-pdf-anchor.a/#a410
https://calibre-pdf-anchor.a/#a411
https://calibre-pdf-anchor.a/#a412

Computing as Automation
Despite all its richness, the view of computing as the study and design of
algorithms was seen as too narrow. By the late 1970s, there were many
other questions under investigation. How do you design a new
programming language? How do you increase programmer productivity?
How do you design a secure operating system? How do you design fault-
tolerant software systems and machines? How do you transmit data reliably
over a packet network? How do you protect systems against data theft by
intruders or malware? How do you find the bottlenecks of a computer
system or network? How do you find the response time of a system? How
do you get a system to do work previously done by human operators? The
study of algorithms focused on individual algorithms but rarely on their
interactions with humans or the effects of their computations on other users
of systems and networks. It could hardly provide complete answers to these
questions.

The idea emerged that the common factor in all these questions, and the
soul of computational thinking, was that computing enabled automation in
many fields. Automation generally meant one of two things: the control of
processes by mechanical means with minimal human intervention, or the
carrying out of a process by a machine. Many wanted to return to the 1960s
notion that automation was the ultimate purpose of computers and among
the most intriguing questions of the modern age. Automation seemed to be
the common factor among all of computer science, and CT seemed to be
about making automation efficient.

In 1978 the US National Science Foundation launched a comprehensive
project to map what is essential in computing. It was called the “Computer
Science and Engineering Research Study” (COSERS). In 1980 they
released What Can Be Automated?, a thousand-page tome that examined
numerous aspects of computing and its applications from the standpoint of
efficient automation.9 That study answered many of the questions above,
and for many years, the COSERS report offered the most complete picture
of computing and the era’s computational thinking. It is still a very relevant
resource for anyone who wants an overview, written by famous computing
pioneers, of many central themes, problems, and questions in computing.

https://calibre-pdf-anchor.a/#a413

Well into the 1990s, the computing-as-automation idea was adopted in
books, research reports, and influential policy documents as the
“fundamental question underlying computing.” This idea resonated well
with the history of computational thinking: As we discussed in the previous
chapters, automatic computing realized the dream of applied
mathematicians and engineers to calculate rapidly and correctly without
relying on human intuition and judgment. Theoreticians such Alan Turing
were fascinated by the idea of mechanizing computing. Practitioners saw
their programs as automations of tasks. By 1990, “What can be
automated?” became a popular slogan in explanations of computing to
outsiders and a carrying theme of computational thinking.

Ironically, the question of “what can be automated” led to the undoing of
the automation interpretation because the boundary between what can and
cannot be automated is ambiguous. What was previously impossible to
automate might now be possible thanks to new algorithms or faster
hardware. By the 1970s, computer scientists had developed a rich theory of
computational complexity, which classified problems according to how
many computational steps algorithms solving them needed. For example,
searching an unordered list of N items for a specific item takes time
proportional to N steps. Sorting a list of N items into ascending order is
more complex: it takes time on order of N2 steps by some algorithms and on
order of N log N steps by the best algorithms. Printing a list of all subsets of
N items takes time proportional to 2N. The search problem is of “linear
difficulty,” the sorting problem is of “quadratic difficulty,” and the printing
problem is of “exponential difficulty.” Search is fast, enumeration is slow;
computational complexity theorists call the former “easy” and the latter
“hard.”

To see how vast the difference is between easy and hard problems,
imagine that we have a computer that can do 1 billion (109) instructions per
second. To search a list of 100 items would take 100 instructions or 0.1
microseconds. To enumerate and print all the subsets of 100 items would
take 2100 instructions, a process that would take around 1014 years. That is
10,000 times longer than the age of the universe, which is very roughly
around 1010 years old. Even though we can write an algorithm to do that,
there is no computer that could complete the job in a reasonable amount of
time. Translating this to automation, an algorithm to automate something
might take an impossibly long time. Not everything for which we have an

algorithm is automatable in practice. Over time, new generations of more
powerful machines enable the automation of previously intractable tasks.

Heuristic algorithms make the question of computational hardness even
more interesting. The famous knapsack problem asks us to pack a subset of
items into a weight-limited knapsack to maximize the value of items
packed. The algorithm for doing this is similar to the enumeration problem
and would take an impossibly long time for most knapsacks. But we have a
rule-of-thumb (a “heuristic”) that says “rate each item with its value-weight
ratio, and then pack in order of decreasing ratios until the knapsack is full.”
This rule of thumb packs very good knapsacks fast, but not necessarily the
best. Many hard problems are like this. There are fast heuristic algorithms
that do a good job but not necessarily the best. We can automate them only
if we find a good heuristic algorithm.

The early findings about what things cannot be done in computing, either
because they are impossible or just too long, led to pessimism about
whether computing could help with most practical problems.10 Today the
mood is much more optimistic. A skilled computational thinker uses a
sophisticated understanding of computational complexity, logic, and
optimization methods to design good heuristic algorithms.

Although all parts of computing contribute to automation, the field of
artificial intelligence (AI) has emerged as a focal point in computing for
automating human cognitive tasks and other human work. The CT toolbox
accumulated heuristic methods for searching solution spaces of games, for
deducing conclusions from given information, and for machine-learning
methods that find problem solutions by generalizing from examples.

https://calibre-pdf-anchor.a/#a414

Computing as Pervasive Information Processes
The spread of computing into many fields in the 1990s was another factor
in the disintegration of the automation consensus of computational thinking
in the academic world. Scientists who ran simulations or evaluated
mathematical models were clearly thinking computationally but their
interest was not about automating human tasks. A computational
interpretation of the universe started to gain a foothold in sciences (see the
next section, “The Universe as a Computer”). The nail went into the
automation coffin when scientists from other fields started saying around
2000 that they worked with naturally occurring information processes.
Biologists, for example, said that the natural process of DNA transcription
was computational. There was nothing to automate; instead they wanted to
understand and then modify the process.

Biology is not alone. Cognitive scientists see many brain processes as
computational. Chemists see many chemical processes as computational
and have designed new materials by computing the reactions that yield
them. Drug companies use simulations and search, instead of tedious lab
experiments, to find new compounds to treat diseases. Physicists see
quantum mechanics as a way to explain all particles and forces as
information processes. The list goes on. What is more, many new
innovations like blogging, image recognition, encryption, machine learning,
natural language processing, and blockchains are all innovations made
possible by computing. But none of the above was an automation of any
existing process—each created an altogether new process.

What a radical change from the days of Newell, Perlis, and Simon! Then
the very idea of computer science was attacked because it did not study
natural processes. Today much of computing is directly relevant to
understanding natural processes.

The Universe as a Computer
Some researchers say there is another stage of evolution beyond this: the
idea that the universe is itself a computer. Everything we think we see, and
everything we think, is computed by a natural process. Instead of using
computation to understand nature, they say, we will eventually accept that
everything in nature is computation. In that case, CT is not just another skill
to be learned, it is the natural behavior of the brain.

Computer science’s self-story as the field that studies automation
faded by the turn of the century. The nail went into the
automation coffin when scientists from other fields started saying
that they worked with naturally occurring information processes.

Hollywood screenwriters love this story line. They have taken it into
popular science-fiction movies based on the notion that everything we think
we see is produced for us by a computer simulation, and indeed every
thought we think we have is an illusion given by a computation. It might be
an engaging story, but there is little evidence to support it.

This claim is a generalization of a distinction familiar in artificial
intelligence. Strong AI refers to the belief that suitably programmed
machines can be literally intelligent. Weak AI refers to the belief that,
through smart programming, machines can simulate mental activities so
well they appear intelligent without being intelligent. For example, virtual
assistants like Siri and Alexa are weak AI because they do a good job at
recognizing common commands and acting on them without
“understanding” them.

The pursuit for strong AI dominated the AI agenda from the founding of
the AI field in 1950 until the late 1990s. It produced very little insight into
intelligence and no machines came close to anything that could be
considered intelligent in the same way humans are intelligent. The pursuit
for specialized, weak AI applications rose to ascendance beginning in the
1990s and is responsible for the amazing innovations with neural networks
and big data analysis.

Similar to the weak-strong distinction in AI, the “strong” computational
view of the universe holds that the universe itself, along with every living
being, is a digital computer. Every dimension of space and time is discrete
and every movement of matter or energy is a computation. In contrast, the
“weak” computational view of the universe does not claim that the world
computes, but only that computational interpretations of the world are very
useful for studying phenomena: we can model, simulate, and study the
world using computation.

The strong computational view is highly speculative, and while it has
some passionate proponents, it faces numerous problems both empirical and
philosophical. Its rise is understandable as a continuation of the ongoing
quest to understand the world through the latest available technology. For
instance, in the Age of Enlightenment, the world was compared to the
clockwork. The brain has successively been compared to the mill, the
telegraph system, hydraulic systems, electromagnetic systems, and the
computer. The newest stage in this progression is to interpret the world is
not a classical computer but a quantum computer.

5

Software Engineering

Software engineering is the part of computer science that is too difficult for the
computer scientist.

—Fritz Bauer (1971)

At 9:10 p.m. on July 22, 1962, access arms retracted from the 33-meter-tall
Mariner I rocket that stood on the launch pad in Cape Canaveral. On top sat
a hexagonal magnesium frame packed with high-tech electronics for
gathering, analyzing, computing, and communicating scientific data, and an
operating system to keep all the systems alive. Destined for Venus, Mariner
I was the first of a series of 10 interplanetary NASA probes to do flyby
surveys of Mars, Mercury, and Venus. It was the first flyby of another
planet in history. Years of work by thousands of people planning,
calculating, designing, testing, and building the vessel culminated at that
moment. Mariner I was also aiming to get the US ahead of the Soviet Union
in the space race. Ten minutes and dozens of checks later the flight control
gave a go for final countdown.

Seconds after the rocket fired off toward a new world, monitoring
equipment started to indicate problems. The rocket’s system for tracking
and sending velocity data did not work correctly. The ground control
computers were supposed to take over—usually no big deal, as that is what
backup systems are for. But somewhere in the long time it took to develop
the computer system, someone had missed a tiny punctuation detail in the
program, which led the computer to base its decisions on raw data instead
of data smoothed over a time window. That error led the rocket to
overcompensate for minor perturbations in its trajectory, steering it
uncontrollably toward inhabited areas and shipping lanes. At 293 seconds
after the liftoff, ground control had no choice but to send a destruct
command to the vehicle. Tons of metal, high-tech electronics, and rocket
fuel rained down into the Atlantic Ocean.

Initial reports of what caused the massively publicized failure were out
within a week, mostly citing that small mistake in the computer program.

The New York Times headline was, “For Want of Hyphen Venus Rocket Is
Lost.” That sobering moment pushed the concept of programming error into
the public consciousness. Many people’s eyes opened to the potentially
disastrous consequences of software failure. By the end of the 1960s,
reports of software problems were commonplace. Software errors impaired
reliability, undercut productivity, and sometimes posed serious dangers.

Software developers realized that the era’s computational thinking was
not capable of delivering reliable and dependable software. Most CT was
about thinking in the small—practices and thinking tools for single
programmers. There was nothing in CT for thinking in the large—practices
and thinking tools for teams of programmers developing large-scale
production systems with long life spans and large user bases. Here in this
chapter we investigate the important shift of scale in computational thinking
and the difficulties it caused.

Software Crises
The early years of the stored-program computer were a triumph of
computer engineering. Hardware development, from the “computing super-
brain” to the “awesome thinking machine,” made the headlines. The press
featured room-sized reckoning behemoths weighing tens of tons that
operated a thousand times faster than the previous computing machinery
and, most importantly, could calculate thousands of times faster than the
world’s best mathematicians. Mathematics and logic were celebrated as the
feature that distinguished humans from beasts—and now machines could do
both.

The early enthusiasm for computers soon moved beyond “makin’
numbers”—as one computing pioneer called scientific computing—to
processing data in symbols that can stand for any information at all.
Magazines and newspapers gave examples of computers doing tasks that
were previously seen as the sole province of humans: one group
programmed the computer to play checkers, another chess, another to
automatically prove theorems in the monumental Principia Mathematica,
and another built a mechanical mouse that searched its way through a maze.
The uses of computers in business, science, and engineering applications
multiplied each year. All these advances came from software. The computer
revolution began with hardware, but soon became a revolution of software.

The size and complexity of computer programs grew rapidly. Dark
clouds began to hover over software development. Developers were
becoming painfully aware of great difficulties in their ability to make
production-quality software—software that was dependable, reliable,
usable, safe, and secure. The intellectual and management tools developed
up to that time were not powerful enough to build such software.
Developers began to speak of a “software crisis.”

In two famous meetings sponsored by NATO in 1968 and 1969, software
developers turned to engineering for a solution to the frequent and
sometimes catastrophic failures of software. The movement was labeled
“software engineering.” Engineering had long traditions for consistently
producing reliable systems. It was rare for bridges to fall, planes to crash, or
infrastructure to fail massively. Software engineers rapidly began to import

and develop engineering ways into software development and software
product management.

An early focus in software engineering was the design of “abstractions,”
which are simplified models of something complicated with a simple
interface. Good abstractions hide the details of the machinery implementing
them, allowing programmers to debug them without having to dig into the
details of underlying machines. For example, a file is presented as a
container of a string of bits with two operations, read and write; its
complicated implementation as records scattered across a hard disk is
completely hidden. Designing hierarchies of abstractions is seen as the only
way to master the enormous complexity of software. Finding good
abstractions is an essential design skill for programmers and software
engineers. Programming languages that allow programmers to express their
abstractions are essential.1

In his classic book The Mythical Man-Month (1975), the software
pioneer Fred Brooks noted two dimensions for transforming programs into
production systems. One was the generalization of a single software
program to a system of interacting programs. The other was the addition of
structures and components that provided guarantees to make the software
reliable. His rule of thumb was that movement in either dimension tripled
the effort. Movement in both dimensions was needed to achieve reliable
production systems—a total of nine times the effort of creating a single
program.

Software developers, having become aware of such a wide gap between
basic programming and production systems, had to find new practices of
CT to close it. They developed a trove of new forms of CT: new practices
for decomposition, complexity, information structures, causality, closing
semantic gaps, data abstraction, data structures, encapsulation, information
hiding, recursion, project management, and software life cycles. Aspects of
theoretical computer science, notably complexity theory and automatic
theorem proving, became helpful in this arena.

The movement described by Brooks can be characterized as moving from
computational thinking in the small (designing and writing single programs)
to computational thinking in the large (designing software systems and
managing the software projects that build them from design and into
production and maintenance).

https://calibre-pdf-anchor.a/#a416

Science and Engineering in Computing
A scientific revolution began in the mid-1500s. For much of the time since,
there was little practical difference between science and engineering;
scientists look for principles of phenomena and engineers built technologies
that exploited the phenomena. Many scientists were engineers and many
engineers were scientists. The sharp distinction we see today between
science and engineering is recent.2 The distinction was introduced in the
late 1940s when Vannevar Bush advocated the establishment of the US
National Science Foundation for government support of basic research.
Since that time, academic programs have come to define engineering as the
“application of science and mathematics to solve problems of use to
people”—in effect defining engineering as a subset of science. This
definition hides the unique contributions engineering can make to software.
It obscures the need for interaction between the science and engineering
sides of computing to make software reliable.

We have found three distinctions between engineering and science
particularly helpful to understand the contributions each can make to
software production. The first concerns the nature of their work. Engineers
design and build technologies that serve useful purposes, whereas scientists
search for laws explaining and predicting phenomena. Design is among the
most commonly used words of engineering, whereas it is uncommon in
science. Design in engineering is a process of finding practical, safe, cost-
effective implementations. Scientists concentrate on finding and validating
recurrences, engineers on listening to clients and proposing technologies of
value to them.

The second main distinction is how scientists and engineers regard
knowledge. Scientists treat knowledge as data and information that have
been organized into a “body of knowledge,” which is then available for
anyone to use. The scientific method for creating knowledge is a process of
standard, disinterested observers gathering and weighing evidence in
support of claims that might be added to the body. Engineers treat
knowledge as skillful practices that enable design and building of tools and
technologies. Engineers are not outside observers; they are immersed in the
communities of use. They embody practices for building, maintaining, and

https://calibre-pdf-anchor.a/#a417

repairing technologies; attending to reliability, dependability, and safety in
the context of use; and following engineering standards and codes of ethics.

The third main distinction concerns the role of abstractions and models.
Science emphasizes models, and engineering emphasizes machines and
artifacts. There is a fundamental distinction between modeling machines
and building them. Abstractions are useful for what they leave out.
Machines are useful for what they leave in. Hardware and software are
interchangeable to the theorist, but not to the engineer.

The familiar phrase “the devil is in the details” is an engineer’s motto.
Engineers must get the details right for systems to work. Scientists want to
eliminate the details so that the recurrences stand out.

These differences explain why it has been hard to design software
engineering education that actually produces capable software developers.
Many software engineering groups are in computer science departments
that emphasize the science over engineering. The same balancing problem
haunts computational thinking, too: when one or the other worldview
dominates, the synergies are lost.

Computational Thinking in the Small
A computing pioneer who worked with one of the first computers wrote in
his memoir that he still remembered the day when he suddenly realized he
would be spending most of the rest of his life looking for mistakes in his
own programs.3 In the 1950s, everyone came to believe this—it was very
hard to write programs that worked correctly. Programming was unexplored
territory to everyone. Initially, all the first programmers could do was
borrow ideas and techniques from other fields and use their ingenuity to get
programs to work. Nothing seemed to help avoid making errors while
programming. What was earlier envisaged to be a straightforward
translation of high-level algorithmic plans to machine instructions was
found to be a complex of challenges from incomplete problem
specifications, machine idiosyncrasies, poor performance, memory
limitations, and debugging. Getting computers work turned out to be an
endless cycle of accommodations to surprises and obstacles.

As a result, programming in the 1950s developed an aura of mystique.
Programming language pioneers remembered that aura vividly in their
memoirs. One wrote that programming in the 1950s was “a black art, a
private arcane matter involving only a programmer, a problem, a computer,
and perhaps a small library of subroutines. ... Programmers started to regard
themselves as members of a priesthood guarding skills and mysteries far too
complex for ordinary mortals.” Another described later how the
programmers of the 1950s loved their obscure codes and tricks.4 Yet another
wrote that it took until the 1960s before programming started to evolve
from a craft to a science. He marveled at how, despite their “primitive” way
of thinking about programming, programmers of the 1950s were able to
create so many useful programs.5 Computational thinking of the early
computer era was rich but fragmented, and focused on making single
programs work on specific machinery.

Many pioneers of computing worked to make the programmer’s job
easier and less error-prone. They did this by developing and refining
programming methodology and programming languages, and by designing
sophisticated operating systems. Their innovations began with structural
principles for modularity in the machines of the 1950s, which led to

https://calibre-pdf-anchor.a/#a418
https://calibre-pdf-anchor.a/#a419
https://calibre-pdf-anchor.a/#a420

computational thinkers starting to increasingly think in terms of
subroutines, macros that abbreviated often-used pieces of code, separately
compiled modules, linkers that combine compiled modules into full
programs, libraries of ready-to-run executable modules, and version control
systems that tracked all the software modules built and modified by a team.
All these tools helped manage program complexity and reduce errors.

As they gained familiarity with the practices of programming, language
designers developed higher-level languages, such as FORTRAN and
COBOL around 1958. These languages enabled programmers to express
algorithmic statements that were automatically translated by compiler into
machine code; they relieved programmers of the burden of direct machine
code programming. When they saw that programmers often started by
designing the data structures and then a small set of subroutines that
performed operations on the structures, language designers enunciated the
practice of data abstraction. Data abstraction matured into object-oriented
programming languages. Data abstraction has become another key feature
of CT: it hides internal mechanisms of program components, while allowing
the use of those components through well-defined interfaces. With data
abstraction, programmers can focus more easily on what the components do
rather than how they do it.

Operating systems designers contributed a raft of important precepts to
CT during that same era. Operating systems allow many users to share a
single machine by scheduling resources, resolving conflicts, allocating
memory among user programs, and multiplexing computing jobs on the
processors. Operating systems designers introduced the idea of a system
being a “society of cooperating processes,” where a process is an
independently executing program in private memory that cannot be
accessed by other processes, and where each process stands by to perform a
specific service when requested. Operating systems designers invented
virtual memory to automate data transfers between memory levels, file
systems to store and protect user data, and interprocess messaging systems
to exchange data and requests. They invented kernels to provide a
professionally built and highly trusted set of programs for all basic
operating system functions. Kernels isolated processes and prevented errors
in any one from affecting any other.

Today’s CT inherits many precepts for programming methodology
including modularity, abstraction, information hiding, hierarchical
composition, recursion, design patterns, managing digital objects,
visualization, verification, and debugging. These conceptual tools require
great skill and experience at design. Design has emerged as one of the
major areas of development in computing; we will discuss it in depth in
chapter 6. CT precepts on languages, methodology, and operating systems
all aid productivity and confine or eliminate errors.

Many of those practices became so ingrained in CT that for decades
computational problem-solvers have considered them to be basic building
blocks of CT. These engineering developments complemented the
mathematical side of programming, which in those days focused on
structuring programs to facilitate formal proof of their correctness and
practices such as the use of recursion.

Software Development Drifts into a Crisis
With all these advances in CT, why did a software crisis develop? In the
1950s computing, the machine was the product. Software—as the control
programs for the machines—was not something to be packaged and sold.
Most programmers focused on programs for their personal or immediate
workgroup use, but not on programs to use outside their organization. The
computational thinking tools for “programming in the small” supported
personal use well, but not large-scale development of complex software
products.

A software industry began to evolve from a few software contractors in
the 1950s to corporate software developers in the 1960s, and then to mass-
market software in the 1970s and beyond. In each of these decades, the
revenues of the software industry grew tenfold.

In the 1960s software developers found that selling software was no
gravy train. More and more software projects ended up late, over budget,
bug-ridden to a point of being useless, or never delivered at all. Post-
delivery software maintenance, improvement, and bug fixing were costly,
difficult, and sometimes infeasible. Software systems frequently contained
lurking bugs that made their applications unsafe for humans or caused
expensive failures such as the loss of the Mariner spacecraft.

Software developers who had little familiarity with the target domain
often caused large gaps between customer needs and the functions of
computational systems. Software developers found that the known
principles of design were not up to the task of providing dependable,
reliable, usable, safe, and secure software—known as the DRUSS
objectives. Professional programmers realized that their computational-
thinking skills did not scale up well: something was qualitatively different
about a program written by a single programmer and a system that required
a team of 300 programmers.

Software companies tried to minimize these problems in two ways. One
was to hire highly skilled programmers who could produce many times
more code per day with significantly fewer errors than entry-level
programmers. Salaries for good programmers shot up: software developers
became one of the highest-paid professions in the US.

The other way was to abdicate liability for errors. Software companies
adopted a “non-warranty”—licensing the software to a user only after the
user agreed that the company would not be liable for damages caused by
errors in the code. This policy contributed strongly to public disillusionment
with the computer revolution.

Leading software developers admitted that their tools for programming in
the small were simply not up to programming in the large. They had passed
the limits of reliable software construction. A number of leading software
industry figures, academics, and software developers declared a software
crisis and organized the 1968–1969 NATO conferences to address it.

Computational Thinking in the Large
What happens when we go from single programs with single users to
systems of many programs with many users? The skills and competences
required to write a program of a thousand lines of code are different from
those to build software of a million lines of code. The main reason is that
large software systems have to be built by teams. Software developers had
to learn how to organize and manage teams for successful software
development.

Fred Brooks was the manager of a team of 300 programmers who built
the IBM 360 operating system in the 1960s. Their system eventually grew
to a massive 10 million lines of code. In his book, The Mythical Man-Month
(1975), Brooks documented his experience in detail and gave rules of
thumb of CT for organizing and designing large systems. One of his famous
observations is that time and people do not trade off equally: a team of 12
programmers cannot complete in a month a job that took a single
programmer 12 months. Another is that the structure of the software winds
up resembling the organization that built it. Brooks concluded that
managing the team was a greater challenge than the technology problems
the team had to solve.

Although the attendees at the NATO conferences agreed that there was a
major “software problem” and that engineering principles might help, they
had little agreement on what kind of engineering would do the job. The
traditional engineers looked to fault tolerant design, systems thinking, and
project management. Theoretically oriented computer scientists looked to
mathematical proof (formal verification) to establish that software met its
specifications without error and introduced methods such as structured
programming and algorithms analysis to facilitate understanding and proofs
of programs.

Neither approach made much of a dent in the software problem.
Traditional systems engineering did not work well because of a crucial
difference between software and large physical systems, such as bridges,
buildings, planes, and ships: an error in a single bit of code can cause
catastrophic failure such as the crash of a rocket whereas the loss of a
minute sliver of material might degrade a large system but would not crash

it. Mathematical proof did not work well because it was too difficult for
large systems, it said nothing about human aspects such as usability, and it
did not address problems in the hardware such as component failures or
noise corrupting signals. The software pioneers Brian Randell and Fred
Brooks were among the most prescient in saying why software systems are
so much harder. Randell said the problem was not programming per se but
“multi-person development of multi-version programs.” Brooks, in his 1975
book, said that productizing a program by turning it into a system that could
be used safely and reliably by non-programmers was far more challenging
than writing the program in the first place.

Design Principles, Patterns, and Hints
Skillful design can make enormous improvements in the size and
complexity of software. Operating systems are a good example. Modern
operating systems such as Windows 10, MacOS X, or Linux approach 100
million lines of code. It is a triumph of software engineering to produce
such systems with very good reliability. All these systems contain a
“kernel,” the set of software functions for very basic operations in the
system such as starting execution of a program, exchanging messages
between programs, or reading files. The functions of kernels have changed
little since the 1970s but kernel sizes have exploded from around 20
thousand instructions in early systems to 20 million today—a factor of
1000. The increased size has increased vulnerability to attacks. Nicklaus
Wirth attributes this to waste of cheap resources—processor cycles and
storage bits. He wrote:

This waste has become ever-present and represents a grave
lack of sense for quality. Inefficiency of programs is easily
covered up by obtaining faster processors, and poor data
design by the use of larger storage devices. But their side
effect is a decrease of quality—of reliability, robustness, and
ease of use. Good, careful design is time consuming, costly.
But it is still cheaper than unreliable, difficult software,
when the cost of “maintenance” is factored in. The trend is
disquieting, and so is the complacency of customers. (Wirth
2008)

The goals of programming in the large were summarized as the five
DRUSS objectives – dependable, reliable, usable, safe, and secure. To
achieve these goals software developers work with three kinds of
computational thinking practices: design principles, patterns, and hints.

Design principles are descriptions of skills and strategies that developers
follow when making design decisions. The principles guide them toward
designs that meet the five DRUSS objectives.

Design patterns are descriptions of common situations a programmer is
likely to encounter. They offer guidance on how to structure the program, or
on the process of writing it, for best results.

Design hints are rules of thumb or morsels of advice, most useful to those
with advanced skills at systems development.

Principles
The classic paper by Jerome Saltzer and Michael Schroeder about
information protection is an excellent example of design principles (see
table 5.1).6 Design principles are ways of thinking about the total system of
software components, in order to achieve the DRUSS objectives and reduce
compromise of sensitive information. The principles are embodied in the
skills and ways of thinking that system developers acquire over time from
building complex computing systems. They apply to any large system that
accommodates many users and service processes.

Table 5.1 Information Protection Principles of Saltzer and Schroeder

Principle Directive

Economy of
mechanism Keep the design simple and small.

Fail-safe
defaults

Deny access by default; grant access only by explicit
permission.

Complete
mediation Check every access to every object.

Open design Do not depend on attackers being ignorant of the
design.

Separation of
privilege

Grant access based on more than one piece of
information.

https://calibre-pdf-anchor.a/#a421

Principle Directive

Least privilege Force every process to operate with the minimum
privileges needed for its task.

Least common
mechanism

Make shared state information inaccessible to
individual processes, lest one corrupt it.

Psychological
acceptability

Protection should be easy to use, at least as easy as
not using it.

Patterns
In the early 1990s a group of programmers founded the “software pattern
community” movement, inspired by the design-pattern idea of building
architect Christopher Alexander.7 Their idea was that if they could describe
a common pattern of software use that has been solved by skilled
programmers, they could distill the pattern’s essence so that other
programmers can imitate it. A software pattern characterizes a large number
of situations a programmer is likely to encounter and offers guidance on
how to structure the program to best fit the pattern.8 The number of
recognized patterns runs in dozens. Examples are the singleton pattern,
which limits the number of instances of an object to one, and the iterator
pattern, which implements sequential access to data elements. The pattern
community appeals to a sense of empiricism because its members are
relentless about testing ideas with potential users and learning from the
feedback.

Hints
Butler Lampson, a superb and accomplished designer, summarized a
number of guidelines for advanced designers of operating systems.9 He
said: “Designing a computer system is very different from designing an
algorithm. The external interface is less precisely defined, more complex,
and more subject to change. The system has much more internal structure
and hence many internal interfaces. And the measure of success is unclear.”

https://calibre-pdf-anchor.a/#a422
https://calibre-pdf-anchor.a/#a423
https://calibre-pdf-anchor.a/#a424

He said the less skilled designers often flounder in seas of possibilities, not
knowing how a current choice will affect future choices of the performance
of the system. He called his statements “design hints” because they are
judgments skilled designers learn to make over time; they emphasize the
considerable art in designing. In table 5.2 we list Lampson’s hints for three
dimensions of system development (rows) and major aspects of the DRUSS
objectives (columns). Though they may appear as generalities, they are
quite meaningful in shaping the CT skills of advanced designers.

Table 5.2 Lampson’s Design Hints

Correctness & Fit Speed Fault
Tolerance

Use cases Separate normal and
worst cases

Safety first
Shed load
End-to-end

End-to-end

Interface

Keep it simple
Do one thing well
Don’t generalize
Get it right
Don’t hide power
Use procedure
arguments
Leave it to the client
Keep interface stable
Keep a place to
stand

Make it fast
Split resources
Static analysis
Dynamic
translation

End-to-end
Log updates
Make
actions
atomic

Correctness & Fit Speed Fault
Tolerance

Implementation

Plan to throw one
away
Keep secrets
Reuse a good idea
Divide and conquer

Cache answers
Use hints
Use brute
force
Compute in
background
Batch
processing

Make
actions
atomic
Use hints

Design Principles for Software
The software engineering literature records a large number of design
principles that have been widely studied and found to be strongly
supportive of good design. The very best of these principles have been
encoded as structures that appear in languages, application programs, and
operating systems. They are mentioned frequently in discussions of CT and
their roots lie in many different intellectual traditions described in earlier
chapters of this book. They are in three main categories:

Hierarchical aggregation
Virtual machines
Clients-servers

These structures are intended as tools to help with recurrent patterns that
designers encounter.

Hierarchical Aggregation
Hierarchical aggregation means that objects (identifiable software and
hardware components) consist of groups of smaller objects connected by
well-defined interfaces. You can interact with an object as a unity through
its interface and not be concerned with its individual parts. When you do
look inside, you need not be concerned with what is going on in the external
environment. Thus, there is a hierarchy with smaller aggregates making up
larger aggregates. Aggregates at every level of the hierarchy are insulated
from lower- and higher-level details.

There is a long list of aspects of hierarchical modularity. Decomposition
means to subdivide a large system into smaller, manageable components.
Modularity is a process of implementing the components as modules that
can be designed separately, compiled separately, stored separately, and then
assembled into the full system. The modules interact across precisely
defined interfaces. Modules can be stored in libraries and reused for other
purposes. Abstraction means to define a simplified version of something
and to state the operations (functions) that apply to it. Levels are a structural
form in which peer components share a common interface.10 Information

https://calibre-pdf-anchor.a/#a425

hiding conceals the details of an implementation from users, protecting
users against errors caused by changes in the details and protecting the
module from errors caused by external changes. Encapsulation goes further,
by shielding anything outside an untrusted module from errors within the
module.

The object concept is an advanced form of encapsulation; it originated
with a programming practice called “data abstraction” in the 1960s and
evolved into over a hundred sophisticated object-oriented languages today.
An object is an abstract entity that can be viewed and altered only through a
defined set of operations. Its internal structure and state are hidden. For
example, a file appears to users as a container of a sequence of bits and can
be acted on only with the open, close, read, or write operations; its hidden
internal structure is a set of records scattered across a disk. The disk
structure of a file is irrelevant to users and hence hidden from them. A class
of objects is a set of objects with the same interface; the classes are
organized into a hierarchy of their own. Novice programmers often find
objects confusing because they do not yet understand abstract machines,
information hiding, and synchronization.

Virtual Machines
A virtual machine is a simulation of one computer by another. Alan
Turing’s universal machine was the first example. Today the term virtual
machine is used in a number of ways. First, it means the simulation of any
abstract computing machine; it is the platform on which computations can
run.

Second, virtual machines are simulations of hardware computers. The
virtual machine has subroutines that carry out the effect of the machine
instructions on the hardware computer. This idea came into practice in the
late 1950s when a second generation of computers began to replace the first
generation. The new computers had to run all the software written for
previous versions of the computer. Accordingly, manufacturers provided an
“emulation mode” in which the new computer could simulate the
instructions of the older computer it replaced. The emulation mode has
matured in the form of VMware and Hyper-V, which simulate entire
computers running their own operating systems. The ubiquitous Java
Virtual Machines (JVM) emulate Java on any commercial machine by

executing the Java “byte code” produced by Java compilers, allowing great
portability of Java programs.

Third, virtual machines are simulations of a host machine within separate
memory partitions of the host machine. This is the organizing principle of
the IBM VM 370 and later operating systems. The IBM virtual machine is a
complete simulation of an IBM mainframe, identical in every way to the
original except that it has a reduced main memory. This approach allows the
virtual machine to run at nearly the same speed as the real machine; there is
no significant performance loss.

Fourth, a virtual machine is a standard environment for implementing
any program within an operating system. This idea was pioneered in the
Multics system at MIT (1968) and the UNIX system at Bell Labs (1972).
These operating systems featured many “processes,” each a program in
execution on a virtual machine. The virtual machine was simply a standard
template for providing input and output to a running program and
connecting with any submachines it may have spawned. Every user
program would be embedded into the standard virtual machine for
execution.

Clients and Servers
The client server model is a conceptually simple way to organize
interactions between processes in a distributed (networked) computing
system. A server is a process dedicated to performing a particular service on
request. A client is another process that makes requests. Clients and servers
are usually (but not always) on different hosts in a network. Their requests
and responses are passed as messages through the network. For example, a
network file server stores all the files of the network’s users; client
processes on user workstations send it requests to read and write files. An
authentication server interacts with the login client on a user’s workstation
to process the user’s credentials during login. A web server interacts with
client browsers to send them web pages.

Although the client server idea is simple, its implementations are often
far from simple. Designers must master many subtle details to get
communications, error control, and synchronization working correctly.

No Silver Bullet
In 1987, Frederick Brooks wrote “No Silver Bullet,” a famous assessment
of progress in software engineering since 1968. His conclusions held
important lessons for CT. He said that two main complexity factors affect
our ability to produce reliable software. The limitations of the technology
are the first factor, but they can be overcome by improved technologies,
such as high-level programming languages, interactive program
development environments, visualization of control and data flow, faster
hardware, and better operating systems.

The second factor is our own mental ability to comprehend the essence of
complex problems. Coping with complexity is intrinsic to software design
and construction and will never go away. The design problem, Brooks said,
is mostly conceptual—getting an intellectual grasp on the functions of the
system to provide and organize a simple and elegant design.

To address it, we need to grow large systems in relatively easy
increments, reuse existing software as much as possible, and make more use
of rapid prototyping to gain early feedback before technical decisions are
locked. Most of all, Brooks said, we need to “cultivate great designers.” He
saw coping with complexity as an essential skill requiring great mastery.
Brooks famously wrote that there is “no silver bullet” that will kill the
werewolf of complexity in software development.

The “software problem” articulated in the NATO conferences was mostly
concerned with programmer productivity and the chronic problem of errors
causing unreliable programs. Since those days new developments have
added to the complexities of software design. These include:

The main factor impeding reliable software is our own mental
ability to comprehend the essence of complex problems. Coping
with complexity is intrinsic to software design and construction
and will never go away.

Malware and intruders: Criminals and hackers intentionally hunt for
bugs in complex programs and exploit them for theft of data, destruction of

data, and even ransoms to unlock purposely encrypted data.
Fault tolerance: Even if the software has been proved to be correct, the

proof depends on assumptions that the underlying hardware always works
as intended. Hardware itself is now so complex that proving it correct is a
major challenge of its own. Many hardware bugs have been detected in
supposedly well-tested chips. Not only that, but hardware can wear out and
start malfunctioning because of component failures or because unexpected
events in the world throw it into unstable states. Hardware engineers have
increasingly been concerned with fault tolerance, that is, designs that
tolerate such faults—for example, a system that shuts itself down rather
than perform a critical operation incorrectly. This kind of hardware fault
tolerance, which involves extra circuits that monitor each other, cannot be
done with any software structure. Software correctness proofs are not
sufficient for correct operation.

Secure hardware: Most attacks on computer systems occur at the lowest
levels of the kernel and network where efficient dynamic monitoring is
most difficult to do. In the 1960s there was considerable interest in
hardware design that would facilitate information protection by limiting the
spread of errors and blocking software attempts to circumvent permissions.
Highly advanced architectures were designed that enabled encapsulation of
untrusted programs and severely limited error propagation.

Unfortunately, these advances were lost in the “RISC revolution” of the
1980s. To build faster CPUs, computer designers eliminated hundreds of
instructions from CPUs, reducing them to highly simplified, very fast chips.
They called the new generation of chips Reduced Instruction Set Computers
(RISC). The reductions eliminated the hardware extensions for
encapsulating and monitoring software.

Today, security experts want to reinstate the extra hardware monitoring to
block the low-level attacks by malware and intruders. Secure hardware is
making a comeback. A complicating factor is the fact that many companies
outsource production of their chips, making it possible for third parties to
insert backdoors into the hardware that allow intruders easy access to the
system.

Machine learning algorithms: The recent explosion of artificial
intelligence (AI) is due primarily to rapid growth in neural network
technologies. When the training process of a neural network is done, no one

knows why the internal connection weights are what they are or how to
prove the network is correct for untrained inputs. Similarly, there are no
hardware monitors to detect when a neural network is about to go bad. This
has been called the fragility problem: To what extent can we trust the AI to
do the right thing when presented with inputs outside its training data?

Safety: Many software systems are used in safety critical applications,
where an error in the software can cause catastrophic loss of life or
property.

Mass production of diverse software applications: Today’s mobile
apps, games, desktop widgets, and network-based systems have little in
common with the software of the 1960s and 1970s. There was little
outsourcing of software development to trusted third parties. There were no
large networks of application developers selling through app stores before
the early 2000s; the Apple and Android stores now offer millions of apps.

Computational thinking is being constantly challenged to grow and deal
with these contemporary problems.

6

Designing for Humans

Descriptions of software entities that abstract away their complexity often abstract away
their essence. Good judgment comes from experience, and experience comes from bad
judgment.

—Frederick Brooks (1986)

We are searching for some kind of harmony between two intangibles: a form which we
have not yet designed and a context which we cannot properly describe. Making
simulations of what you’re going to build is tremendously useful if you can get
feedback from them that will tell you where you’ve gone wrong and what you can do
about it.

— Christopher Alexander (1964)

Among computing’s early pioneers, George Forsythe was one of the first to
advocate that computing deals primarily with issues related to design:
design of computers and systems, design of languages for processors and
algorithms, and design of methods for representing and processing
information.1 Software engineers were among the first within computing to
explicitly treat design as an essential part of the discipline’s practice. For
software engineers, design meant planning and construction of software
products and systems that met their specifications and were safe and
reliable. Design also meant creating tools to support software construction
including related languages, editors, voice command and graphical
interfaces, project management practices, version control systems, and
development environments.2 The recent proliferation of useful applications
through commercial “app stores” has brought a lot of people who are not
formally trained in software engineering into software design.

But there is more to design than building systems. Design is familiar in
many fields including fashion, products, and architecture. It is a process of
creating and shaping artifacts that address human concerns. In software, for
example, design means crafting software that does jobs users want done.
Software designers do far more than build to meet functional specifications.
They intentionally support practices, worlds, contexts, and identities of the
software’s users. The famous success of the iPhone is attributed not only to

https://calibre-pdf-anchor.a/#a428
https://calibre-pdf-anchor.a/#a429

its considerable technical prowess, but also to the identities and fashion
statements iPhone users project. There have also been notorious failures
attributed to poor design that promoted unsafe use of systems, such as
aircraft panel displays that did not show the most needed information in
emergencies.3

We discussed in chapter 5 how software engineers have accumulated
much practical wisdom that is expressed with design principles, patterns,
and hints, all in pursuit of the DRUSS (dependable, reliable, usable, safe,
and secure) objectives. But design concerns go much further than just
improving the software construction process.

Despite the successes of software engineering, software project failures
and accidents continue to accumulate. Academics continue to struggle with
software engineering curricula that can graduate professional software
developers who can lead projects to completion without failure. David
Parnas, a famous software pioneer, says that this academic quest is doomed
in many departments because most curriculum attempts have tried to
identify and teach a “software engineering body of knowledge” rather than
the capabilities of proficient professional software designers.4 Computing
students are taught structural rules for software but not the design skills
required to achieve good software. Table 6.1 summarizes the capabilities
Parnas believes are the most important. All these capabilities are oriented
toward the user communities and are not restricted to formal aspects of
software development process. Design CT guides us to ways of building
computing systems whose behaviors are useful and meaningful in their user
communities.

Design is familiar in many fields including fashion, products, and
architecture. It is a process of creating and shaping artifacts that
address human concerns. In software, design means crafting
software that does jobs users want done.

Table 6.1 Capabilities of Software Developers
• Design human-computer interfaces
• Design and maintain multi-version, reusable software
• Ensure that software products meet quality and security standards

https://calibre-pdf-anchor.a/#a430
https://calibre-pdf-anchor.a/#a431

• Create and use models in system development
• Specify, predict, analyze, and evaluate performance
• Be disciplined in development and maintenance
• Use metrics in system development
• Manage complex projects

What Is Design?
Many software developers have turned to design for new thinking that
would lead away from the software morass. The long history of design in
computing has left many questions open for the designers: What is the
difference between software engineering and design? Why has it taken 50
years for the early declarations on design to become a prominent concern?
How important is design to CT?

The software engineering approach to design is a semiformal
methodology to craft a set of modules and interfaces to achieve a stated
functional purpose. The purpose is captured in a set of requirements, each a
specific, testable statement. A traditional engineering process moves from
requirements to a working, delivered system:

Requirements
Formal specifications
System construction
Acceptance testing
Delivery to the customer

Software engineers can carry out this process in private, bypassing any
interaction with the users in between the requirement and delivery stages.
The process is attuned to the early notions in computing that software is
machine-executable code for algorithms that meet given functional
specifications, and that programmers need quiet time to get things right.

But experience has shown that the traditional engineering process is
prone to break down with complex systems. Roughly a third of software
projects deliver on time and within budget, another third deliver late or over
budget, and the remainder never deliver. One of the biggest challenges is
the sheer number of modules and interfaces that must be designed,
programmed, tracked, and tested—modern operating systems, for example,
consist of hundreds of thousands of modules. Another big challenge is
getting the requirements right: many software projects meet their formal
requirements only to be judged deficient by their customers. From the
engineer’s standpoint, a necessary requirement was left out. From the user’s

standpoint, the missing requirement was obvious to any member of the
community. The disconnect is that something obvious to the community
may not be obvious to the engineer, who was not aware of an issue that was
part of unstated user context.

The software engineering approach to design is a semi-formal
methodology to craft a set of modules and interfaces to achieve a
stated functional purpose. The design approach focuses on the
virtual world created by the software, the practices that engage
users in that world, and the user concerns addressed by that
world.

Engineers responded to these breakdowns by trying to improve the
construction process. They developed sophisticated interview methods to
elicit requirements from customers and thus minimize the risk that an
important requirement was left out. They codified “design patterns”
followed by successful designers, so that less experienced designers could
avoid mistakes. They introduced “agile methods” for project management
that explicitly involved customers through all stages of the engineering
project. Agile product management often features many, rapidly iterated
prototypes under constant review by teams that include customer
representatives.

These process improvements slowed but did not stem the tide of system
failures. Some designers advocated a radical shift of thinking. Terry
Winograd, a pioneer in artificial intelligence and design, characterized the
shift in this way:5

The education of computer professionals has often
concentrated on the understanding of computational
mechanisms, and on engineering methods that are intended
to ensure that the mechanisms behave as the programmer
intends. The focus is on the objects being designed: the
hardware and software. The primary concern is to implement
a specified functionality efficiently. When software
engineers or programmers say that a piece of software
works, they typically mean that it is robust, is reliable, and

https://calibre-pdf-anchor.a/#a432

meets its functional specification. These concerns are indeed
important. Any designer who ignores them does so at the
risk of disaster.

But this inward-looking perspective, with its focus on
function and construction, is one-sided. To design software
that really works, we need to move from a constructor’s-eye
view to a designer’s-eye view, taking the system, the users,
and the context all together as a starting point. When a
designer says that something works (for example, a layout
for a book cover or a design for a housing complex), the
term reflects a broader meaning. Good design produces an
object that works for people in a context of values and needs,
to produce quality results and a satisfying experience.

Winograd and others introduced the term virtual world for the focus of
software design. Software creates a world—a context in which a user of the
software perceives, acts, and responds to experiences. A user who enters the
world and behaves according to its rules and logic is called an inhabitant
because the world seems real during the time the user is in it. The key point
is that the virtual world is not a mental construct of user or designer, it is an
experience that seems real.

Online games are examples of virtual worlds. In them the players defeat
monsters, seek out treasures, earn achievements for quests, and advance in
level and experience. Many players say that the world of the game is as real
as the everyday world when they are in it. These games create a world by
having a definite purpose, a playing field and equipment, norms and values,
rules for allowable and unallowable behavior, and strategies for winning or
advancing. But the idea of creating a world is not limited to entertainment
games. Today’s social networks, and services such as Uber, Airbnb, and
eBay, all look like multi-player games, where the possibilities available to
you as a player evolve and shift according to the choices and actions of
others. Even single-user software such as spreadsheets, word processors,
and drawing programs all create worlds of their own in which there is a
well-defined playing field and a set of basic rules and strategies for all to
follow.

Since 2005, when Apple introduced the App Store and made iPhones
infinitely customizable as users downloaded apps (applications) that suited
them, there has been an explosion of software development of apps. The
Apple and Android online app stores combined offer more than 6 million
apps. Software has become a market commodity. Only the apps judged by
their many customers as “high quality” make it in this market.

Software Quality and Satisfaction
In the 1970s, software engineers sought to make software quality
measurable, on the time-honored premise that we get more of what we
measure. They devised models for measuring software quality. Their
models eventually became a standard of the ISO (International Standards
Organization), and a central building block of computational thinking in
software engineering. The ISO standards list 20 measurable factors to
assess overall quality of a software system:

correctness
reliability
integrity
usability
efficiency
maintainability
testability
interoperability
flexibility
reusability
portability
clarity
modifiability
documentation
resilience
understandability
validity
functionality
generality
economy

These measures were all intended to be objectively measurable properties
of the software. It is very hard to design a software system that scores high
on all 20 factors. Two of the five traditional DRUSS objectives—security
and safety—are not on this list because no one knew how to measure

software for these aspects. No one said that quality is simple and
straightforward.

The new and burgeoning market for apps has brought attention to quality
as an assessment of users rather than as a property of the software. Quality
is in the eye of the beholder. Much more attention is paid to design in the
sense that Winograd has defined it. How do users assess quality—and, by
implication, good design? Table 6.2 presents six distinct levels of
satisfaction in the user’s experience.6

Each level on the software quality ladder involves a skill level of
computational thinking. The lowest levels are undisciplined use of CT; the
highest levels are disciplined CT to design for customer practices,
breakdowns, and evolving concerns. The higher the level, the more
professional and advanced aspects of CT are involved. Ascending the
ladder, CT skill extends its sensibilities from formal requirements to
customer concerns and futures; the level of customer satisfaction rises.

Level −1: No Trust
Customers do not trust the software. It may be buggy, crash their systems,
hold their data for ransom, or carry malware. One might think customers
would avoid untrusted software. But instead they do often use untrusted
software—often after being lured by fraudulent pitches, phishing, visits to
compromised websites, overwhelming desires for convenience, and the like.
Programs at this level are often cobbled together without serious thought to
the DRUSS objectives and many are aimed at exploiting customer
weaknesses.

Table 6.2 Levels of Software Quality and Satisfaction Assessments

Quality Level Skill level of CT

4 Software delights
Design software to anticipate evolution of
customer practices and concerns after using the
software

https://calibre-pdf-anchor.a/#a433

Quality Level Skill level of CT

3
Software produces
no negative
consequences

Design software to avoid potential customer
breakdowns

2 Software fits
environment

Design software to align seamlessly with
customer practices and social norms

1
Software fulfills
all basic promises

Design software to meet all customer
requirements via disciplined use of
programming and software engineering CT

0

Some trust,
begrudging use,
cynical
satisfaction

Design software with indifference toward the
customer, modest CT discipline

–
1 No trusts Exploit the customer, little CT discipline

Level 0: Cynical Satisfaction
Many customers trust some but not all the claims made by the software
maker—enough to be cynically willing to use it. Much software is released
with bugs and security vulnerabilities, which the developers fix only after
hearing customer complaints and bug reports. User forums are rife with
stories about how the software has failed them and with requests for
workarounds and fixes; representatives of the developers are usually
nowhere to be seen in these forums.

Using some intermediate CT practices, developers get their software
working despite design flaws and holes that demand workarounds. The
developers may tolerate their disorganized and haphazard development
environment because they are under strong pressure to get something
workable to market before the competition, they believe that customers will

tolerate many bugs, and they evade liability with no-responsibility license
agreements customers must sign to unlock software. This approach is
common in the software industry. It is coming under fire because the many
bugs are also security vulnerabilities. Cynical customers have no loyalty
and will desert to another producer who makes a better offer.

Level 1: Software Fulfills All Basic Promises
The customer assesses that the producer has delivered exactly what was
promised and agreed to. This level of basic integrity relies on more
advanced programming and software engineering CT. The ISO standard
addresses this level well. Software developers at this level are often
standards-oriented and their practices are aimed at producing consistent,
reliable products.

Level 2: Software Fits Environment
At this level, the design extends beyond meeting the stated requirements. It
aims to align the software with existing customer practices and it honors
cultural sensibilities and other social norms. The customer assesses that the
software is a seamless fit to the customer’s environment. The bank ATM is
a good example of this kind of alignment. The ATM implements familiar
bank transactions, enabling customers to use an ATM immediately without
having to learn anything special or new. The customer has the experience
that the software improves the customer’s ability to get work done and to
carry out important tasks.

Level 3: Software Produces No Negative Consequences
At this level, the designer has examined a range of possible ways that the
software could produce breakdowns for the customers and builds in
operating rules and checks to avoid them. After a period of use, customers
encounter no unforeseen problems causing disruption or losses. Customers
assess that the product’s design has been well thought out and that it
anticipates problems that were not apparent at the outset. The software does
not produce negative consequences that often arise on the lower quality
levels, such as vulnerabilities to hackers and malware, vulnerabilities to
user mistakes without the provision to cancel actions or back out to a

previous good state, interference with the organization’s practices, wasted
effort for only marginal productivity gains, and frustration with other
negative consequences to customers or their organizations.

At this level, designers may also include functions that the customer did
not ask for but that will spare future frustration. Continuous backup systems
are one example; the user can retrieve any previous version of a file and can
transfer an entire file system to a new computer quickly. Utilities that
rebuild damaged files or directories are another example. Still another
example are internal management controls that allow the designer to
continue to work with the customer after the software is installed in order to
modify the software in case negative consequences are discovered. These
actions—anticipation of breakdowns and availability of repair services after
delivery—are essential for a software producer to earn the user’s
satisfaction at this level. Programming and software engineering CT do not
orient software developers to this direction; design-oriented CT is required.

Level 4: Software Delights
At the highest level the software goes well beyond the customer’s
expectations and produces new, unexpected, sometimes surprising positive
effects. The user expresses great delight with the product and often
promotes it among others. The customer assesses that the producer
understands the customer’s world and contributes to the customer’s well-
being. Programming and software engineering CT cannot approach this
because delight cannot be stated as formal requirements.

Very few software systems have produced genuine delight. Some early
examples include the UNIX system, which was elegant and enabled
powerful operations with simple commands; the Apple Macintosh, which
brought a revolutionary, easy-to-use desktop with a bitmapped display; the
DEC VAX VMS, which was amazingly stable and retained previous
versions of files for fast recovery; VisiCalc, the first automated spreadsheet,
which made easy accounting available to anyone; Lotus 1-2-3, a successor
of VisiCalc, which enabled arbitrary formulas in cells and opened a new
programming paradigm; Microsoft Word, which made professional
document formatting easy and eventually banished most other word
processors from the market; and some smartphones, which provide a

reasonably secure environment to download apps that customize the device
to the user’s taste and identity.

Some smartphone apps have attained high delight ratings; for example,
many airlines, publishers, and newspapers offer apps that give direct access
to their content via a mobile device. Some apps give users access to
networks where data from many others are aggregated to give the user
something that saves a lot of time and anxiety. For example, Amazon
created the Kindle reader service that enables users to purchase ebooks
from the Amazon store and begin reading them instantly from any device
with a Kindle app. Google and Apple maps use location information from
smartphones to detect traffic congestion, overlay it on street maps, and
propose alternate routes around congested areas. Blizzard Entertainment
accumulated as many as 10 million subscribers to its World of Warcraft
online game because of its rich complexity, easy entry, and detailed
graphics. Uber allows users to hail rides whose drivers come to their exact
location within minutes. In each case customers found they could do
previously impossible things with the app than without, well beyond their
expectations.

The interesting thing about these examples is that many of them failed
important ISO metrics such as portability, speed, efficiency, or reliability.
Yet customers ignored those shortcomings and became avid and loyal
subscribers to the software developer.

Software developers are banking on new delights as artificial intelligence
technology matures. Many people are looking forward to driverless cars,
personal assistants that know your daily routines and overcome your
forgetfulness, and virtual reality tools that allow you to tour distant places,
train risk-free for a new skill or environment, or access new kinds of
entertainment. Computational thinking that takes design deep into the
organizational, human, and social aspects of computing have never been as
important as today.

But delight is ephemeral if based only on the software itself. Having
mastered the new environment, customers will expand horizons and expect
more. Few would find the original UNIX, Macintosh, VMS, VisiCalc, or
Word to be delightful today. Software producers now invest considerable
effort into knowing their customers and anticipating what will delight next.

The Design Way of Computational Thinking
The software engineering way of computational thinking emphasizes the
correct implementation of clearly stated functional requirements in
software. Its success measures are properties observable in the software or
its usage data.

The design way of computational thinking also emphasizes the
construction of virtual worlds in which users can inhabit and achieve some
purpose that is meaningful to them. Its success measures are assessments of
satisfaction and quality by users.

Software engineering CT is especially useful for large systems that must
perform reliably in safety critical environments. People want carefully
engineered air traffic control systems, nuclear plant control systems, and
Mars rovers. Design CT is especially useful for software that must fit
customer communities, facilitate adoption, and deliver great value. Design
CT does not abandon software engineering CT; it listens for opportunities to
include delightful functions customers have not yet asked for.

As we described earlier in this chapter, to characterize design CT we
have proposed six levels at which customers assess software quality and
satisfaction. Program correctness is essential but produces satisfaction only
at the first level. The highest level, delight, arises in the context of the
relationship between the customer and software developer. The delighted
customer will say that the developer has taken the trouble to understand the
customer’s work and business, is available to help with problems and to
seize opportunities, may share some risks on new ventures, and generally
cares for the customer. Software developers today look to designs and
services that produce genuine delight. When they succeed we witness new
waves of killer apps.

7

Computational Science

The sciences do not try to explain, they hardly even try to interpret, they mainly make
models.

—John von Neumann (1955)

Computational science refers to the branches of every scientific field that
specializes in using computation, such as computational physics,
bioinformatics, and digital humanities. Although numerical methods have
been a feature of science for centuries, simulation of complex systems was
rarely viable before computers. Scientists developed mathematical models,
usually expressed as sets of differential equations, but unless they could
find closed-form solutions to the equations, the complexity of the models
usually blocked them from any effective method to calculate the results.
Although computers slowly began to invade all fields of science in the
1950s, the supercomputers in the 1980s were a tipping point in mustering
the computing power to solve a rapidly increasing number of these
equations by simulation. This led to an explosion of simulation models in
science, some of which made discoveries that earned Nobel Prizes. By the
mid-1980s, many scientists were counting computer simulation as a new
way to do science, alongside the traditional ways of theory and experiment.

In the 1980s, scientists from many fields came together to formulate
“grand challenge problems”—problems for which their models gave
solutions that required massive computations. By extrapolating Moore’s law
on the doubling chip speed every two years, they were able to predict with
considerable accuracy when computation was going to yield solutions of
these challenges. For example, aeronautics engineers projected that by 1995
they could design a safe commercial airliner using simulation as a substitute
for wind tunnel testing—and the Boeing company achieved this with its 777
aircraft, which flew its first test flights in 1994.

Computer simulations got so good they could be used as experimental
platforms. With simulations, scientists were able to explore the behavior of
complex systems for which there were no analytical models. Simulations

also opened the door for a new way of exploring the inner workings of the
nature: by interpreting natural processes as information processes and
simulating them in order to understand how they work.

The computational turn of science and its new methods and tools were
widely adopted and the change was radical. Computational methods were
described as the most significant scientific paradigm shift since quantum
mechanics. The computational-science revolution ushered in a new wave of
computational thinking. But unlike the previous waves of CT—which were
initiated by computer scientists—scientists in other fields initiated the new
CT wave. Computational science became a major driving force in the
development of CT outside computing.

During the 1980s and the 1990s, computational thinking provided the
mental toolbox for the new computational sciences—co-developed across
many fields. In fields where natural phenomena could be interpreted as
information processes, CT became a must-have skill for researchers. In an
ironic twist, where previous scientists had argued that computing is not a
science because there are no natural information processes, the new
generation of computational scientists found information processes all over
nature. And like computer scientists of the 1950s and 1960s, computational
scientists learned CT from the practice of designing computations to
explore phenomena and solve problems in their fields.

In this chapter, we describe how computational thinking became central
to sciences, explain a number of CT practices in computational science, and
discuss the new ways in which computational scientists interpret their
subject matter. The electronic computing age brought some remarkable
advances to science in three aspects: simulation, information interpretation
of nature, and numerical methods.

Science and Computation: Old Friends
Science and computation have been old friends for centuries. Through most
of the history of science and technology, two sorts of scientist roles have
been common. One is the experimenter, who gathers data to explore and
isolate phenomena, describe recurrences, and reveal when a hypothesis
works and when it does not. The other is the theoretician, who designs
mathematical models to explain what is already known and uses the models
to make predictions about what is not known. The two roles were active in
the sciences well before computers came on the scene.

Both roles used computation. The experimenters produced data that had
to be analyzed, classified, and fit to known mathematically formulated laws.
The theoreticians used calculus to formulate mathematical models of
physical processes. In either case, they could not deal with very large
problems because the computations were too extensive and complex.

A third role emerged: scientists who saw new opportunities using
computers as simulators that neither the experimenters nor the theoreticians
used. The computing pioneers at the Moore School, home of the ENIAC,
argued early on that computer simulation could make any computer into a
laboratory. They saw the evaluation of models and the production of data
for analysis as a new frontier of science. Crossing that frontier required new
ways of incorporating modeling and simulation into research, as well as
new kinds of computational thinking directly relevant to science.

Large-scale modeling and simulation required significant upgrades to
mathematical software. Numerical analysts, a branch of early computer
scientists, were heavily involved in the quest to improve mathematical
software to efficiently calculate mathematical models on computers. They
were especially concerned with representing numbers and performing long
calculations in machines that could only offer finite precision; controlling
round-off errors and increasing computational speed were major concerns.

In the late 1980s, John Rice, a pioneer of mathematical software,
estimated that mathematical software had improved in performance by a
factor of 1012 since the 1950s. Of that improvement, 106 was due to faster
hardware and another 106 due to better algorithms. Moore’s law was only

part of the reason numerical methods got better. The ingenuity of the
numerical analysts did the rest.

The idea of using calculus to evaluate mathematical models must have
seemed obvious to the modelers because their equations were typically
differential equations. Many physical processes could be described by
relating the value of a function at a point to the values of the function at
neighboring points. For example, a modeler who knew that the rate of
change of function f(t) was another function g(t) could calculate the values
of f(t) in a series of small time steps of size Δt with the difference equation
f(t+Δt) = f(t) + g(t)Δt. The sequence of Δt-separated time points is a time-
series sample of the function. This idea is easily extended to functions over
space coordinates (x,y) by relating f(x,y) to f(x+Δx,y) and f(x,y+Δy) on a
two-dimensional grid. John von Neumann, the polymath who helped design
the first stored program computers, described algorithms for solving
systems of differential equations on discrete grids.

Because of the complexity of computations involved in these
simulations, high-performance supercomputers became very important in
the sciences. Only those computers had sufficient power to numerically
solve differential equations over complex grids. With supercomputers,
computational scientists cracked the grand challenge problems articulated
in the late 1980s.

For centuries, theory and experiment were the two modes of doing
science. Supercomputers changed this, opening a new approach to doing
science based on computational exploration and modeling. It was the most
significant scientific paradigm shift since quantum mechanics. The
computational science revolution ushered in a new wave of computational
thinking.

As computing invaded science, something unexpected happened. Instead
of computing becoming more like other sciences, other sciences became
more like computing. Scientists who used computers found themselves
thinking differently—computationally—and routinely designing new ways
to advance science. By simulating air flows around a wing with the Navier-
Stokes equation discretized to a grid surrounding an aircraft, aeronautical
engineers eliminated the need for wind tunnels and many test flights.
Astronomers simulated the collisions of galaxies. Macroeconomists
simulated scenarios in national and global economies. Chemists simulated

the deterioration of space probe heat shields on entering an atmosphere.
Simulation allowed scientists to reach where theory and experiment could
not. It became a new way of doing science. Scientists became
computational explorers as well as experimenters and theoreticians.

Just as numerical analysis enabled better simulation, better simulation
enabled another new scientific paradigm: information process interpretation
of phenomena in the world. Much can be learned about a physical process
by interpreting it as an information process and simulating the information
process on a computer. For example, it has become a mainstay of modern
biology, notably with sequencing and editing genes.1 For the quantities
modeled, the real process behaves as if it were an information process. The
simulation and interpretive approaches are often combined, as when the
information process provides a simulation for the physical process it
models.

For centuries, theory and experiment were the two modes of
doing science. Supercomputers changed this, opening a new
approach to doing science based on computational exploration
and modeling. It was the most significant scientific paradigm shift
since quantum mechanics. The computational science revolution
ushered in a new wave of computational thinking.

The term “computational science” and its associated term “computational
thinking” came into use during the 1980s. In 1982, Kenneth Wilson
received a Nobel Prize in physics for developing computational models that
produced startling new discoveries about phase changes in materials. He
designed computational methods to evaluate the equations of
renormalization groups, which he used to observe how a material changes
phase, such as the direction of the magnetic force in a ferrimagnet. He
launched a campaign to win recognition and respect for computational
science. He argued that all scientific disciplines had “grand challenge”
problems that would yield to massive computation.2 He and other
visionaries used the term “computational science” for the emerging
branches of science that made computation their primary method. Many of
them saw computation as a new paradigm of science, complementing the
traditional paradigms of theory and experiment. Convinced by the benefits

https://calibre-pdf-anchor.a/#a435
https://calibre-pdf-anchor.a/#a436

computational thinking would bring to science, they launched a political
movement to secure funding for computational science research,
culminating in the High Performance Computing Act (HPCA) passed in
1991 by the US Congress, and bringing computational thinking in science
into public view.

It is noteworthy that computational science and computational thinking in
science emerged from within the scientific fields—they were not imported
from computer science. In fact, computer scientists were slow to join the
movement. Whereas numerical analysts often felt like outcasts from
mathematics in the 1950s, and outcasts from computing in the 1970s, they
were natural participants in computational science. Fortunately, this mood
did not last; numerical analysts are important members of the computing
field.

Computation has proved so productive for advancement of science and
for engineering that virtually every field of science and engineering has
developed a “computational” branch. In many fields the computational
branch has grown to be critical for the field. For example, biology is seen as
an information science.3 Chemists design molecules and simulate them to
find out how they would fare under real conditions. Pharmaceutical
companies test molecules by simulation to learn if they would be effective
against certain diseases. Computational methods are spreading into
traditionally non-experimental fields, such as humanities and social
sciences. This trend will continue. Computation will invade deeper into
every field.

Because CT has advanced science—by providing better methods of
numerical analysis, advanced simulations, and the information
interpretation of physical processes—many people will decide to learn the
skills required of computational designers and thinkers.

https://calibre-pdf-anchor.a/#a437

Computational Thinking in Science
Computational thinking in science has two aspects. First, mental skills
facilitate the design of computational models for natural processes and for
methods of evaluating models. The phrase “modeling and simulation”
comes up frequently for this aspect of CT in science. Computing
terminology gained favor among computational scientists because it
distinguished the new computational methods of conducting science from
the traditional methods of theory and experiment.

The second aspect of CT in science is a skill of interpreting the world in
terms of information processes. Instead of asking computing’s question—
Can an information process be efficiently automated?—computational
scientists ask: Can a simulated information process replicate a real process?
What kind of information process creates an observed phenomenon? What
computational mechanism is behind an observed process? For instance,
many biologists study DNA and protein interactions in terms of information
processes with the hope of designing future DNA that heals diseases and
lengthens life. Physicists hope that by interpreting physics as information
processes, they can learn about hard-to-detect particles from simulations of
particles.

We see then that CT in computational science has a different orientation
from CT in computer science. Much of computational science is concerned
with using modeling and simulation to explore phenomena, test hypotheses,
and make predictions in its respective fields. Much of computer science is
concerned with designing algorithms to solve problems. Scientists and
engineers who design simulations are often not formulating problem
statements; they are investigating the behaviors of phenomena. Computing
people are often not using simulations to understand how nature works;
they are designing software to do jobs for users.

Computing people and scientists looking to collaborate ought to keep this
distinction in mind. The collaboration will work better if the computer
people develop an understanding of the science domain, and the scientists
an understanding of the computing domain. For example, one of us (Peter)
personally witnessed a disconnect between computational and computer
scientists in the 1980s. A team of PhD computational fluid dynamics

scientists invited PhD computer scientists to join them, only to discover that
the computer scientists did not understand enough fluid dynamics to be
useful. They were not able to think computational fluid dynamics with the
same facility as the fluid dynamicists. The fluid dynamics scientists wound
up treating the computer scientists like programmers rather than peers,
much to the chagrin of the computer scientists.

Computational Models
The term “computational model” can also be a source of misunderstanding.
To a scientist, computational models are sets of equations, often differential
equations, that describe a physical process; the equations can be used
computationally to generate numerical data about the process. Simulations
are often the algorithms that do this. In contrast, a computational model in
computing means an abstract machine that runs programs written in a
programming language. The Turing machine is frequently cited in
computing as the fundamental theoretical model of all computation, even
though it is too primitive to be useful for most purposes.

Scientists routinely use abstract machines in the computing sense because
every one of the familiar programming languages is associated with an
abstract machine. For example, the FORTRAN language presents an
abstract machine that is particularly good at evaluating mathematical
expressions. The Java language presents an abstract machine that hosts a
large number of autonomous “objects” that concurrently send and receive
messages from each other. The C++ language also has objects but is closer
to the actual machine and thus gives more efficient executable code.

The computational models in computational science are realized as
abstract machines that bring a replica of a natural information process to
life. The simulations are the executions of programs that implement those
abstract machines.

Modeling and Simulation
Computational science has a rich trove of methods for modeling,
simulating, and interpreting natural processes. We will consider five
examples that illustrate the range and we will point out some key CT
features of the models and the simulations.

Mandelbrot Set
Many simulations walk through all the points on a grid, computing a
function at each point, and then visualizing the result by assigning colors to
the numbers on the grid points. The Mandelbrot set is a good example of a
computation that reveals behaviors no one suspected by inspecting the
equations. In the Mandelbrot visualization, for each point on a grid, the
computer calculates a series of values based on a simple equation over
complex numbers, and assigns colors to those points: if the calculated series
converges (stays within some limits), color the point black, and if the series
diverges, color it blue or yellow. Now repeat this for all points on the grid.4

When each point’s color is assigned to a pixel, the Mandelbrot set
appears on a graphics screen. No one suspected that such a simple
computation would yield such a beautiful, mysterious object (see the figure
below). One can select a small square anywhere on the graphic, zoom in on
it, cover it with a grid and calculate all its grid-point colors—and see more
copies of the Mandelbrot set appear at smaller scales. Each new zoom
reveals more sets. It never ends. Mandelbrot called this self-replicating
behavior at all scales “fractals.”

https://calibre-pdf-anchor.a/#a438

The fractal idea (self-similarity at different scales of measurement) was
the key to Ken Wilson’s renormalization group algorithms that yielded new
discoveries in physics when simulated on a supercomputer, and it won him
a Nobel Prize. The fractal idea is used in visualization systems to compute
realistic graphic images, such as trees or horizons, rapidly.

Telephone Engineers
When the first telephone exchanges were designed in the early 1900s,
telephone engineers confronted a serious design issue. In a town of K
customers, there are potentially K2 connections. Guaranteeing every
customer could connect to any other customer at any time they desired
would be hopelessly complex and expensive, especially since most of the
time most of the customers are not talking at all. To control the complexity
and cost, engineers decided to build switches that would handle up to N
calls at once (N is substantially less than K). This of course brings a risk
that a customer cannot get a dial tone if the exchange is already carrying N
calls. The design question was how to choose N so that the probability of
encountering the busy signal is small, for example 0.001. A random walk
computational model yields an answer. The model has states n = 0, 1, 2, ... ,
N representing the number of calls in progress up to a maximum of N, here
N = 10. Requests to initiate new calls are occurring randomly at rate λ.
Individual callers hang up randomly at rate μ. Each new-call arrival

increases the state by 1 and each hang-up decreases it by 1. The state
diagram in the figure below represents the movement through the possible
states. Telephone engineers define p(n) the fraction of time the system is in
state n and can prove a difference equation p(n) = (λ/nμ)p(n–1). They
calculate all the probabilities by guessing p(0), calculating each p(n) from
its predecessor p(n-1), and then normalizing so that the sum of all p(n) is 1.
Then they find the largest N so that p(N) is below the target threshold. For
example, if they find p(N) = 0.001 when N = 10, they predict that a new
caller has a chance 0.001 of not getting a dial tone when the exchange
capacity is 10 calls.

A key idea here was modeling the physical process with a state space
representing all the possible states of the system, connected by transitions
representing the random rates of flow between pairs of states. By invoking a
flow balance principle—total flow into a state equals total flow out—
engineers got a set of equations relating the proportions of time p(s) each
state s is occupied. They can then calculate the values of p(s) by applying
the equations. This form of modeling is very common in queueing theory
and system performance evaluation because all the measures of interest,
such as throughput, response time, and overflow probabilities, are easy to
calculate from the p(s).

Doctor’s Waiting Room
Engineers have also used state space models to build controllers of systems.
In this example (see the figure below), a doctor wishes to build an
electronic controller for her office, which consists of a four-person waiting
room and a one-person treatment room. Patients enter the waiting room and
sit down. As soon as the doctor is free, she calls the next patient into the
treatment room. When done, the patient departs by a separate door. The
doctor wants an indicator lamp to glow in the treatment room when patients
are waiting, and another to glow in the waiting room when she is busy
treating someone. The engineer designing the controller uses a
computational model with states (n,t) where n = 0,1,2,3,4 is the number in

the waiting room and t = 0,1 is the number in the treatment room. The
controller implements the state diagram above. The indicator lamp in the
treatment room glows whenever n > 0, and the lamp in the waiting room
whenever t > 0. State transitions occur at three events: patient arrival (a),
patient departure (d), and patient called by the doctor (c). Sensors located in
the three office doors signal these events.

In this case the model is not used to evaluate probabilities of state
occupancies, but to plan the states and transitions of an electronic circuit. It
is of course possible to interpret the state diagram as in the previous
example, where a, b, and c are flow rates between the states.

Aircraft Simulation
Aeronautics engineers use simulations from computational fluid dynamics
to model airflows around proposed aircraft. They have become so good at
this that they can test new aircraft designs without wind tunnels and space
shuttle designs without test flights. The first step is to build a 3-D mesh of
the space surrounding the aircraft (see the figure on the following page).
The spacing of the grid points is smaller near the fuselage where the
changes in air movement are greatest. Then the differential equations of
airflow are converted to difference equations on the mesh, and a
supercomputer grinds out the profiles of the flow field and forces on each
part of the aircraft over time. The numerical results are converted to shaded
images (as shown in the figure on the next page) to visualize where the
stresses on the aircraft are greatest.

This form of modeling is common in science. A physical process is
modeled as differential equations that relate the values of the process at a
point in space to the values of the process at close neighbors. The space in
which the process is to be studied is modeled with a mesh. The difference
equation is used to relate each mesh point value to its immediate neighbors.
A graphical display converts the field of values on the grid to a colored
picture. The whole mesh can be recomputed for the next time step, giving
an animated visualization.

Genetic Algorithms
Since the 1950s, various geneticists experimented with computer
simulations of biological evolution, studying how various traits are passed
on and how a population evolves to adapt to its circumstances. In 1975 John
Holland adapted the idea of these simulations as a general method for
finding near optimal solutions to complex problems in many domains. The
idea, depicted in the flow diagram in the figure below, is to develop a
population of candidate solutions to the problem, encoded as bit-strings.
Each bit-string is evaluated by a fitness function and the most-fit members
of the population are selected for reproduction by mutation and crossover.
A bit-string is modified by mutation when one or several of its bits are
randomly flipped. A pair of bit-strings are modified by crossover by
selecting a random breakpoint and exchanging the two tails of the strings.
This generates a new population. The process is iterated many times until
there are no further improvements in the most-fit individuals or until the
computational budget is exhausted. This process is surprisingly good at
finding near-optimal solutions to optimization problems whose direct
solutions would otherwise be intractable.

Grand Challenges and Wicked Problems
Computing has changed dramatically since the time when computational
modeling grew up. In the 1980s, the hosting system for grand-challenge
models was a supercomputer. Today the hosting system is the cloud—a
massively distributed system of data and processing resources around the
world. Commercial cloud services allow users to mobilize immense storage
and processing power they need just when they need it. In addition, users
are no longer constrained to deal with finite computations—those that start,
compute, deliver their output, and stop. Instead devices now tap endless
flows of data and processing power as needed and users count on the whole
thing to keep operating indefinitely. With so much cheap, massive
computing power, more people can be computational designers and tackle
grand-challenge problems.

Yet there are important limits to what all this computing power can do.
One limit is that most computational methods have a sharp focus—they are
very good at the particular task for which they were designed, but not for
seemingly similar tasks. That limit can often be overcome with a new
design that closes a gap in the old design. Facial recognition is an example.
A decade ago, methods of detecting and recognizing faces in images were
not very good—people had to look at the images themselves. Today, deep
learning (neural network) algorithms have been used to design very reliable
automated face recognizers, overcoming the earlier gap. These recognizers
are trained by showing them a large number of cases of labeled images. But
recognizers are “fragile” in the sense that no one knows how the machine
will do when presented with inputs outside the training sets. Overcoming
fragility has motivated computational scientists to look at machines that
learn without training sets. A recent example is a machine that learned to
play the board game Go by competing against other machines, eventually
becoming good enough to beat the world’s highest-ranked Go player in a
five-game match.

Self-learning machines have raised another concern: explainability.
Designers and users want to know how the machine reached its conclusion.
The idea that a machine can reach a conclusion makes sense when
algorithms are seen as step-by-step procedures because the result can be

explained by examining the steps followed. But when the algorithms are not
step-by-step procedures, as with face recognizers and Go, that is not
possible. All there is inside is an inscrutable, complex mass of connections.
It is really the same problem with fellow humans—how do we explain why
we do certain things? If asked directly, we may not know, and it certainly
cannot be figured out by dissecting our brains. Other ways are needed to
know when machines can be trusted and when not. Machine learning–
related computational thinking is still in its infancy.

Another limit to what can be done with computing power concerns the
many problems that cannot be solved at all with computation. We gave
examples in chapter 3, which are either not computational at all, or so
complex that they are forever beyond any computing power we can muster.
But complexity is not the only barrier. Another is that some problems are
inherently outside of science and technology and cannot be solved by
scientific and technological methods. A favorite category is “wicked
problems”—especially issues in the interactions of social communities and
technologies. They defy solution when factions have enough power to
defeat a proposal they dislike but not enough power to form a consensus.
Examples are many: Millions of “clean” cars collectively produce
unhealthy smog in dense cities. New information technology fosters the
growth of income inequality where designers reap much more bounty than
users. STEM education struggles to learn how to prepare students to face
great uncertainty about the future of work, societal safety nets, technology,
and climate change. The solutions to these problems are not scientific,
technical, or computational but will emerge from social cooperation among
the groups that now offer competing and conflicting approaches. Although
computational thinking can help by visualizing the large-scale effects of
individual actions, only social consensus and social action can resolve
wicked problems.

Computational thinking is a powerful force within science. It emphasizes
the “computational way” of doing science and makes its practitioners into
skilled computational designers (and thinkers) in their fields of science. It
brings forth new information interpretations in a diversity of disciplines.
Computational thinkers in sciences spend much of their time modeling
physical processes, designing solution methods for those processes, running
simulations, and visualizing the results.

8

Teaching Computational Thinking for All

My basic idea is that programming is the most powerful medium of developing the
sophisticated and rigorous thinking needed for mathematics, for grammar, for physics,
for statistics, and all the “hard” subjects. Maybe I would even include philosophy and
historical analysis. In short, I believe more than ever that programming should be a key
part of the intellectual development of people growing up.

—Seymour Papert (Papert, 2005)

Through the 1990s, CT education was mostly the purview of universities;
very little CT education was available elsewhere. Pre-college K–12 schools
had a scattering of computer courses; most focused on computer literacy
and a handful on programming. A tipping point came after 2000 when
many people saw how pervasive computing was in everyday work and
home life. Educators and policymakers began to agree that understanding
the mechanisms of digitalization is an important 21st-century skill.

The previously obscure notion of the algorithm entered everyday
conversation as people cited value they had received from algorithms on
their web searches, income tax preparation, online shopping, spreadsheets,
neatly formatted documents, display-ready presentations, and computerized
courses, and then later on smartphones, social networks, ride hailing, short-
term renting, dating, finding friends, and much more. It seemed that
understanding how it all works is central for coping in the modern world. It
was finally time to bring computing to the K–12 level of education.

Computing Education
Getting computing education to K–12 schools was a struggle of a whole
different order from getting computing education into universities.
Numerous pilot projects to introduce computers in schools foundered
because few teachers had any experience with computers and there was
little political support in school boards. By the 1980s, a sea change began as
more parents and teachers acquired home computers and came to see the
growing importance of computing in their own work. The “computer
literacy” courses introduced at that time were generally disappointing from
the CT perspective because they focused on the use of tools like word
processors and spreadsheets, not on programming.

Getting computing education to K-12 schools was a struggle of a
whole different order from getting computing education into
universities. Courses on computer literacy, later fluency, did not
take hold. A computational thinking movement started in 2006
that energized educators and school boards to bring computer
courses into all K-12 schools.

In the late 1990s, at the same time when the internet started to become a
household commodity, a new education movement favoring “fluency with
information technology” over literacy gained momentum and was
supported by a popular textbook of the same name. It was an attractive
notion that fluency with language and practices of computing would be a
powerful asset in the emerging digitalized world. Bringing computing
education to schools would enable children to become smart users of
computing technology and would introduce them to the limitations and
risks of algorithmic processes behind emerging functions such as online
purchasing, Internet searching, news services, communication, and later
social media. Despite its attraction, the fluency movement did not produce a
widespread change in computing education in K–12 schools.

Then, in 2006, Jeannette Wing proposed that computational thinking is
what everyone wants; not literacy or fluency.1 She struck a resonant chord.
In the next several years at the US National Science Foundation (NSF), she

https://calibre-pdf-anchor.a/#a440

mobilized $48 million in resources and convinced many people to bring
computer courses into all K–12 schools. Their major successes included
getting education organizations to issue definitions of CT and associated
curricula at different grade levels; training teachers in CS principles;
starting a new family of CS-principles introductory courses at universities;
and developing a new Advanced Placement curriculum and exam to
interface high schools to these new introductory courses. CT went
mainstream.

But as suggested above, this success was not easy. School boards in K–
12 institutions had a long history of reluctance to add a computing
curriculum in their schools. The CT movement brought a turn of mind to
many school boards. Without that movement, we would not be talking
about computational thinking in K–12 education at the scale we do it today.
In this chapter, we will interpret the progression of computing education as
a series of waves that started with the form of CT available in the 1950s
(algorithmizing and mathematical problem solving), moved to Papert’s
Mindstorms, then to literacy and fluency, and culminated most recently in a
modern version of CT designed for children in schools.

General-Purpose Thinking Tools?
Academic education for automatic computing machinery began in the late
1940s, when computing pioneers started educational programs on numerical
methods for computing on large-scale machines. These early efforts went
mainstream in the 1950s when the mass production of stored-program
computers created a demand for a large number of people who could
program them. After the early entry by private companies, university
educators started organizing conferences to discuss computing education in
the mid-1950s. By 1960, some 150 US universities offered some training in
computing. There was, however, no standard view on what people needed
to know about computing; individual programs depended on local
idiosyncrasies such as specific jobs, needs of businesses, personal agendas
of the faculty, research contracts, and other stakeholder interests.2

Already in those early days some computing educators described their
visions of computing as a thinking tool for learning—a tool to deal with
problems and questions in many fields besides computer science. Alan
Perlis, who founded the computer science department at Carnegie Mellon
University, was an outspoken advocate for this vision. He said that
computing would be automating processes in many fields, and people in
those fields would be “algorithmizing.” With this term, he referred to
mental skills for reasoning about problems and developing computational
solutions. George Forsythe cited Perlis in his 1958 address for the
Mathematical Association of America: “Whereas we think we know
something when we learn it, and are convinced we know it when we can
teach it, the fact is that we don’t really know it until we can code it for an
automatic computer!” A decade later, Forsythe echoed the claim that
computing provides general-purpose mental tools that would serve a person
for a lifetime. Both Perlis and Forsythe firmly believed that everyone in
every field will benefit from learning computing’s procedural ways of doing
things. They believed that computational models would be useful in all
fields.

The visions of computing education grew ever more ambitious about
what CT will be able to achieve. Marvin Minsky, a famous pioneer in
artificial intelligence, argued, in his 1969 Turing Award speech, that

https://calibre-pdf-anchor.a/#a441

computing would surpass mathematics in importance for early education.3

Donald Knuth, a pioneer in understanding algorithms, argued that teaching
a computer to do something forces precision and leads to deeper
understanding than traditional means of thinking.4 Another pioneer argued
that the modern successor to “the classical person” would be “Turing’s
person.”5 Two famous computing educators wrote that computing’s
procedural epistemology is creating a revolution in how people think and
express themselves.6 All this optimism about computing skills transferring
to general problem solving turned out to be premature, as we discuss next.

https://calibre-pdf-anchor.a/#a442
https://calibre-pdf-anchor.a/#a443
https://calibre-pdf-anchor.a/#a444
https://calibre-pdf-anchor.a/#a445

CT Is Not Easily Transferable
The first wave of bringing CT to K–12 schools focused on programming. In
the mid-1960s, some US high schools got DEC PDP-8 minicomputers and
enterprising teachers organized courses around them. Numerous initiatives
for using computers in schools over the 1960s and 1970s led to a few
notable innovations. For example, the Little Man Computer for teaching
machine languages and computers to students was introduced in 1965; one
of the early programming languages for children, Logo, was introduced in
1967; and the famous concept for Dynabook, a children’s portable
computer, was born in 1968. Although minicomputers and some
microcomputers were common in the late 1970s, educators, lacking
financial resources and political will, were unable to transform the pilot
courses into a large-scale rollout to schools.

The Logo programming language was a standout among the many
initiatives of the 1960s. It was not a stand-alone, general programming
language. It was a part of an integrated framework of pedagogical,
technological, and educational ideas designed by Seymour Papert based in
his deeply grounded understanding of how children learn. His 1980 book
Mindstorms, written after a decade of research and experimentation with
Logo, was a milestone for computing education and teaching computational
thinking. Papert coined the phrase “computational thinking” for the practice
of procedural thinking he taught to children. He argued that learning is most
effective when learners “construct knowledge”—they acquire practices
from being immersed in a world of practices. They build their knowledge
from practicing it rather than being told. The learning theory of
constructionism became very popular in education. Papert continued to
advocate self-directed learning, project learning, meaningful
representations, facilitation-based education, and the use of technology to
support learning in the classroom. His ideas influenced the Lego company
to design and market the children’s programmable bricks called Lego
Mindstorms.

Teaching fundamental computational thinking skills, such as
programming and computer modeling, is much harder than teaching
spreadsheets, word processing, and other application tools of computing.

Despite the popularity of constructionism, the central idea of Mindstorms—
the shift from “learning to program” to “programming to learn”—was hard
to market among teachers. How could we achieve universal teaching of
computational thinking without enough willing teachers? Could we rely on
a smaller set of interested teachers to teach everybody?

The hope that a small number of teachers could teach CT to everybody
was paired with the transfer hypothesis. The hypothesis is a belief that CT
is a metacognitive skill learned from programming; students who learn CT
in one domain became better problem-solvers in other domains, too. This
belief bolstered the position that teaching computing should be an essential
element of K–12 education. The most enthusiastic supporters of the
hypothesis made claims such as “the concept of procedure is the secret
educators have so long been seeking,” and “the pedagogic value of
algorithmic approach aids in the understanding of concepts of all kinds.”
They argued that teaching programming improves generic thinking skills
such as logical thinking and generally “sharpens the mind.” The transfer
hypothesis would indeed be important if it could be validated.

Critics of the transfer hypothesis referred to a research base in
developmental cognitive science, arguing that there was no evidence of
skill-transfer from programming to other subjects. Research with adults did
not support transfer of cognitive skills between domains. Programming
itself is a complex network of skills including mathematical abilities,
conditional reasoning, analogical reasoning, procedural thinking, temporal
reasoning, and memory capacity. It was not clear which parts of this
complex transferred or not. After much detailed investigation, education
researchers eventually concluded there is not enough evidence to accept the
transfer hypothesis. It was not compelling as a justification to teach
computing in K–12 schools.

Given that the transfer hypothesis does not work, schools needed more
teachers who understood CT and could teach it in different contexts. Few
teachers understood computers well enough to do this. Teaching a computer
literacy course might be within their reach, but that baby step would not
qualify them to teach CT. In the mid-2000s, when the US NSF began
supporting the training of more computing teachers, the shortage of
qualified teachers began to abate.

From Literacy to Fluency
The early advocates of algorithmic thinking would be appalled at many of
the “computer literacy” courses in the 1980s and 1990s, which focused on
how to use desktop applications, such as word processors, spreadsheets, and
sketchpads. Motivated students and teachers found these courses boring.
Literacy with desktop software was a far cry from their aspirations to
participate in and shape the computer revolution. The professional societies,
including ACM, IEEE-CS, and the British Computer Society, offered to
help K–12 educators develop computer courses with more depth, but got
little buy-in. In 1999, a US National Research Council commission upped
the ante, reframing the question from literacy to fluency. Fluency offered
capabilities, concepts, and skills essential for some levels of computational
thinking. The NRC initiative was paired with a textbook Fluency with
Information Technology that became quite popular among high school
teachers.

Many schools brought computing into their curricula for pragmatic
reasons as they responded to demands from parents and school boards.
They sought access to simulations and other teaching software, access to
basic programming, participation in the Internet revolution, learning 21st-
century skills, preparation for employment in STEM fields, broadened
social participation, and a new means for children to express individual
creativity.7 Educators and parents were disposed toward these goals because
they believed that learning programming teaches important skills no other
subject does, and because they did not want their children to be at a
disadvantage in a world increasingly dependent on skills with information
and communication technology.

In the 2000s, the entry of programming and computational design into
schools was also easier because of advances in programming methodology
and technology and changes in what entry-level programmers needed to
know. New languages such as Python were much easier to use and hid well
the underlying details of the operating system and hardware. Graphical,
drag-and-drop user interfaces were very successful. Powerful tools
automated significant parts of the programming process.

https://calibre-pdf-anchor.a/#a446

With all these advancements in programming languages, tools, and
methods, programming was accessible to more students and teachers than
ever before. There were more opportunities for becoming fluent in
computing. But even so, in 2010 many schools had no computer courses or
Advanced Placement curriculum in computing. Gaining fluency was not
powerful enough to be a driving force.

Computational Thinking Revived
Jeannette Wing’s 2006 essay on computational thinking launched a new
wave in the movement to provide computing courses for all students in K–
12 schools. The term computational thinking resonated and inspired action
where literacy and fluency had not. Wing mobilized significant resources at
the NSF to bring a large number of researchers into investigations of CT in
education, to train a large number of teachers for teaching CT, to mobilize
private organizations to produce K–12 curriculum recommendations for CT,
and to develop a new Advanced Placement curriculum and exam on
computing principles. Wing’s essay became one of the most cited in
computing education, a rallying point in a global movement to penetrate CT
into K–12 education.

Major organizations including CSTA (Computer Science Teachers
Association), the British CAS (Computing at School), Code.org, and the
Australian ACARA2 (Australian Curriculum, Assessment, and Reporting
Authority) developed and recommended curriculum frameworks for K–12
CT. These organizations promoted coding clubs, coding boot camps, and
the international movement called “Hour of Code.” CT became a key word
gathering hundreds of thousands of hits in news stories, blog postings, book
chapters, articles, research projects, and essays on computing education.

The rapid infusion of so many enthusiastic newcomers who were
unfamiliar with the long prior history of CT led to considerable confusion
about definitions and learning objectives of CT. Some invented new CT
frameworks for K–12 schools from scratch, imperfectly reinventing ideas
that had been discussed for decades, omitting important ideas, confusing
CT with the use of applications, and incorporating into their dogma some
serious misconceptions about computing and algorithms. This resulted in a
variety of tensions between different groups that used CT.8 Here are the
some of the most common points of contention, many of which can be
explained by differences between CT for beginners and CT for
professionals—basic CT in K–12 is surely different from advanced CT in
higher education—as well as different contexts of application:

http://code.org/
https://calibre-pdf-anchor.a/#a447

1. Whether CT is limited to thinking about the mechanics of
constructing algorithms—or includes thinking about machines,
computational science, software engineering, and design.

2. Whether CT is mostly about programming—or also encompasses
systems, networks, and architectures; or whether it is not really
about any of those.

3. Whether the definition, that CT is the formulation of algorithms
to solve problems, is too narrow a view of CT’s scope.

4. Whether algorithms are only those that fit the strict definition
from the theory of computing—or whether algorithms could also
be more loosely defined.

5. Whether algorithms necessarily include an abstract machine in
the background.

6. Whether algorithms are primarily directions for controlling
machines—or are primarily means of expressing procedures.

7. Whether using computational tools teaches CT.
8. Whether carrying out daily step-by-step procedures is a

manifestation of CT.
9. Whether CT is learned from practicing programming—or from

well-designed learning activities that use steps and rules.
10. Whether learning CT in the context of computing transfers to

problem-solving skills in other fields.
11. Whether CT is domain dependent—or is a meta-skill valid in all

domains.
12. Whether computational processes are found in nature—or

whether they are limited to algorithms and machines.
13. Whether information processing by computers differs from

information processing done by humans—and whether
“information processing agents” can include things such as
molecules, DNA, or quarks.

14. Whether students’ learning should be assessed from their
demonstrating skill at designing computations—or from their
knowledge of certain key concepts.

15. Whether satisfaction of customers with the job that software
does should be part of the assessment of software success.

16. Whether K–12 CT education has to stick with strict definitions
of computing—or could for pragmatic and pedagogical reasons

take some liberties.

We have expressed our stance on these questions at various points
throughout this book. We see CT as an old, rich human practice that has
been perfected in the modern age of the electronic computer. We see CT as
a mental discipline for thinking about designing computations of all kinds, a
skill at the advanced levels honed and improved through extensive practice
and experience. We see many different levels and styles of CT from basic
computing skills and insights to highly advanced, specialized ones. We see
that there are many good ways for teaching entry level CT. We see that
ultimately nearly all CT will boil down to machine-realizability. We see CT
as mostly domain dependent—for example, how you think about
computation in biology is different from physics, chemistry, or humanities.
We see as wishful the notion that CT is an innate human ability exercised
daily by using computational tools and performing routine everyday
procedures. We see the attempt to define algorithms as a set of possibly
ambiguous steps resolved by human computers as a misunderstanding of
computing.

We would like to point out one other movement to bring computing into
K–12 schools. Known as CS Unplugged,9 it seeks to teach computing
concepts and practices through games, magic tricks, and activities. It was
founded in the late 1990s by Tim Bell, Michael Fellows, and Ian Whitten. It
has gained a worldwide following and influenced the design of the ACM
K–12 and code.org curriculum recommendations.

In summary, we see plenty of room for a broad, pluralistic approach to
teaching computational thinking while remaining faithful to computing’s
well-honed disciplinary ways of thinking and practicing. Most of all, we
hope that all teachers of computing bring their students a good sense of the
richness and beauty of the many dimensions of computation.

https://calibre-pdf-anchor.a/#a448
http://code.org/

9

Future Computation

Technology is part of our civilization. Sometimes people talk about conflict between
humans and machines, and you can see that in a lot of science fiction. But the machines
we’re creating are not some invasion from Mars. We create these tools to expand our
own reach.

—Ray Kurzweil (2013)

Computational thinking is an ongoing quest to capture computing’s ways of
thinking and practicing. It is in never-ending flux, constantly renewing
itself. Although many of the central CT precepts are very old, evolution of
computing practice and technological state-of-the-art have affected how we
see CT and what is central to CT. For instance, ever-evolving software
development suites, new languages, and cloud services are shifting
computational design tasks away from lower-level programming operations
toward higher and higher levels of abstraction—thereby making computing
jobs more design-intensive. Traditional programming is losing its role as
the primary interface to computations; instead, domain-specific and
intelligent tools are enabling more and more users to harness the potential
of computers without programming them. CT expands well beyond
programming and software development.

We will discuss some of the forces that are shaping our world and their
likely effects on how we see computing and think about it. We will also
discuss some important questions that CT cannot help us with. CT has its
limits.

New Computational Models
One of the most obvious reasons why CT is changing is that computing
technologies are changing. Throughout the long reign of Moore’s law for
silicon chips, the basic architecture of chips in computers and mobile
devices has remained true to the von Neumann design from 1945—separate
memory and processing units, with a processor stepping through
instructions stored in memory. The notion of “computational steps” in the
modern definitions of CT comes from this design as well as from Alan
Turing’s definitions of computing.

But Moore’s law cannot be sustained because of the physics of silicon
and the nature of the chip-making process.1 For this reason, researchers
have been searching for new technologies that might supersede silicon-
based von Neumann architectures and continue the exponential growth rate
of information processing speed. Quantum computers, neural networks,
reversible computers, DNA computers, memristor computers, and a few
others are prime candidates. Each technology defines a new computational
model that is the target for designers.

Consider, for instance, the D-wave, a commercial quantum computer.2 It
is designed to solve a set of equations, well known in physics as the Ising
Model, which describe how certain systems settle into minimum energy
states. Programming a D-wave computer means to encode the problem as a
set of Ising equations and to input the coefficients into the machine;
execution means to let the machine settle into a minimum energy state
corresponding to the solution of the equations (a few microseconds);
readout consists of reading the qubits (quantum bits) of the machine and
interpreting them as the answer. There is no concept here of an “instruction
set” or of programming as “designing a sequence of steps.” Most computer
scientists, on being shown how to set up the D-wave machine for the first
time, experience a mind tilt—the process is nothing like the programming
process they have known all their professional lives.3 Trained physicists
have much less trouble understanding the machine. The current working
definition of CT—formulating a problem so that it can be solved as a series
of computational steps—fails to describe the computational thinking this
machine involves.

https://calibre-pdf-anchor.a/#a450
https://calibre-pdf-anchor.a/#a451
https://calibre-pdf-anchor.a/#a452

DNA computing is another technology being investigated. In 1994
researchers performed an experiment in which they encoded possible paths
in a map into strands of DNA, and then used the chemical methods of the
day to evolve the initial mixture into one where the majority of strands
represented the shortest tour of the map.4 Considerable progress has been
made with this technology. In 2016, another research team used the modern
CRISPR gene editing technique to insert an image into the DNA of a
bacterium. Computer scientists trained to think in terms of computational
steps have more trouble than molecular biologists understanding how DNA
computing works.

These examples illustrate CT has expanded beyond the idea of problem
solving with computational steps. Our broader definition—designing
computations that get computers to do jobs for us, as well as explaining and
interpreting the world as a complex of information processes—is closer to
the mark.

https://calibre-pdf-anchor.a/#a454

Design
The ongoing increase in the importance of design is another reason CT is
changing. Computational thinking is no longer confined to developing
programs and algorithms to solve computational problems. Only a small
portion of apps development, for example, is concerned with algorithms;
the bulk of the work focuses on design of systems to deal with the concerns
of a community. Design in this sense is an ongoing interaction between
designers and users, watching their reactions to prototype software,
evaluating what works and what does not work, and adapting the software
accordingly. This is a much broader view of design than the “blueprint,” the
“plan,” or the “setup of an experiment” views of early programming and
software engineering communities. It is a skill set that combines
sensibilities to moods and histories in communities with deep knowledge of
existing technologies and other useful components. Design requires
understanding humans in their communities as much as it requires
understanding technology.

One effect of new designs in computing has been the automation of many
cognitive tasks that as recently as a decade ago were considered out of
reach of computing machinery. This kind of automation is displacing
workers and has caused great concern that many current jobs could be
automated, putting many people out of work. The flip side of the coin,
however, is that the new technologies breed new problems that require new
designs—creating new jobs for designers.

Computational design is now a skill that you can have in any field
besides your primary disciplinary skills. You do not have to be a computer
scientist to be a computational designer. Computational design captures the
spirit of today’s computing revolution better than computational thinking
does. Past technology revolutions showed us that the new technologies
ultimately created more jobs than they displaced. The current computing
revolutions in machine learning and app development are producing new
jobs for designers while rendering obsolete some existing jobs by
automating them. To help smooth the transitions, governments should help
more with training and education programs so that displaced workers can
learn the design skills of the new jobs.

The new emphasis on design is rejuvenating the engineering aspect of
computing, which is much more sensitive to design than the science side is.
The engineering side brings to computational thinking concerns about
reliability, fault tolerance, architecture, and systems that are sidelined in the
theory- and algorithm-oriented definitions of CT. What is more, it brings to
CT human concerns, such as recognizing the social worlds that are
embracing computing, adopting a design into a community’s practice,
recognizing ethical issues brought forth by technology side effects, and
providing means that human judgment and care influence the actions of
machines.

Machine Learning
Neural networks, first articulated in the 1940s as possible models for
electronic computers, have become the main technology behind artificial
intelligence (AI) and data analytics today. The neural network was a
mathematical model in which a neuron “fired” when the combination of
signals from other neurons exceeded its built-in threshold; the “fired”
neuron entered an excited state that was then communicated to other
neurons. The motivation for imitating the brain was that automatic
computers might do human tasks better when built of similar components.
Of course, a circuit of these neuron models is nothing like a real brain. The
logic circuits of the first computers ran much faster than neural circuits.
Today the situation is different: we now know how to use cheap graphics
cards to speed up neural network calculations. IBM and Intel now market
chips that are even faster; they recognize that a new way of thinking is
needed to put their chips to best use and they offer courses in the operation
and use of their chips.

Early neural networks were small and easily confused when presented
with new inputs not in their training sets. Modern neural networks consist
of many layers, have much higher capacity, and are less easily confused.
Thanks to graphics processing chips, trained neural networks of many
layers respond to inputs almost instantaneously. Since layers, nodes, and
connection weights do not change after the network is trained, performance
does not depend on the data input. As neural network implementations
typically do not have loops, they run in a constant time with constant
memory spaces. That means that neural networks can be used in real-time
applications with deadlines much more reliably than traditional programs.

A big attraction of neural networks is that they are “trained” rather than
“programmed.” For example, we do not have very reliable algorithms for
face recognition, but neural networks can be trained to recognize given
faces quite reliably. These networks are often called “self-programmed”
because no programmer specifies the internal weights—although the
weight-adjusting algorithm used in training can be viewed as an automatic
programmer. For many problems, it is much easier to find or create suitable
training data than to write a rule-based program. As mentioned in previous

chapters, a big issue with neural networks is that there is no way to
“explain” how the network generated an output, as is possible with
traditional programs. Knowing the reasons behind a conclusion is important
in many application areas such as medical diagnosis; neural networks
confound that. CT has already had to adjust to include the tools used to
build and train neural networks. Bigger challenges lie ahead with assessing
the reliability and security of neural networks.

Another big attraction is that neural networks can be trained by having
them interact with other neural networks instead of given data sets. The
network for AlphaGo, which beat the world champion Go player in 2017,
was trained by having it play against another AlphaGo network; it learned
Go from play rather than from training on a large set of recorded Go games.
This way of training networks by letting them learn from each other has the
potential to be game changing.

Human-Computer Teaming
Garry Kasparov, the world champion chess grandmaster, was defeated in
1997 by IBM’s Deep Blue computer. That game marks a milestone in chess
because it was the first time a computer program beat a grandmaster.
Kasparov had played several previous matches against lesser computers,
winning them all.

Kasparov did not declare the game of chess dead. Instead, he invented a
new kind of chess, Advanced Chess. In Advanced Chess, the two players of
a match are each assisted by a computer. Before committing to the next
move, the human player consults the computer program to gain insights into
the possible effects of moves. The computer-assisted chess players played
better chess than when they played without computers, but also better chess
than computers alone played.

The notion that a human-computer team can always perform better than a
very good machine is controversial. There are reports of recent Advanced
Chess tournaments in which teams did poorly compared to matches
between computers without humans. In medicine, diagnosticians teamed
with computers do not always perform as well as the very best diagnostic
computer.

Still, human-computer teaming has attracted a lot of attention in artificial
intelligence research because it is capable of performing computations that
no human or computer could do alone. An early example of this was the
labeling of digital images with searchable keywords. Doing it by hand was
far too slow to be useful for labeling images online. In 2006, Luis von Ahn
of Carnegie Mellon University invented an online game where thousands of
pairs of humans labeled the images presented to them; if their keywords
matched, their labeled image went into the searchable database. The
“labeling function” implemented by these human-computer teams had been
thought to be non-computable. The human computer teams were more
powerful than computers.

Human-computer teaming requires a different kind of computational
thinking than traditional computer programming. We watch with great
interest how the controversy over whether teams can outperform machines
plays out in the future.

Technology Jumping
In 2006 Ray Kurzweil, a futurist and inventor of computing technologies,
prophesied that by 2030 we will be able to build a computer the size of the
brain, with the same number of neurons and connections as the brain.5 Such
a computer would, he envisioned, develop its own consciousness and
superintelligence. How such computers would treat humanity is an
unanswerable question. The best that can be said is that the new machines
would have such different concerns from ours that we cannot fathom how
they would treat us. That moment of their creation is called the singularity
because of the utter unpredictability of what lies after an artificial
intelligence develops consciousness.

Kurzweil arrived at his conclusion by extrapolating Moore’s law, the
prediction of Gordon Moore in 1965 that silicon chips would double in
capacity about every two years for the same price. The computer chip
industry has followed the law by doubling power every two years for over
half a century. In many ways Moore’s law is a triumph of computational
thinking because chip engineers needed to think hard to find ever better
ways to build computing circuits.

Kurzweil exploited the phenomenon of technology jumping in his
analysis. Since the beginning of the information age in the early 1900s, he
argued, the same doubling effect was observed in the technologies of the
day, for example punched card machines or vacuum tube machines. When
one technology could no longer produce the two-year doubling, another
took over. Moore’s law for silicon is actually the fifth wave of technologies
displaying two-year doubling. Kurzweil has confidently predicted that more
technology jumps will occur and sustain the trend, allowing him to predict
the processing power available by 2030 and beyond, and arrive at the
singularity.

Technology jumping is a standard practice of the computing industry.
The adoption of a particular technology versus time almost always follows
an S-curve with exponential growth until an inflection point, after which the
growth slows down as the market saturates. Business leaders are sensitive
to inflection points because a competitor with a better, exponentially
growing technology can upend their businesses when their own growth

https://calibre-pdf-anchor.a/#a455

slows. They try to anticipate inflection points by developing new
technology in their research labs and jumping to it when their business
reaches the inflection point. They can then ride the new technology wave
during its exponential growth stage.

Although the singularity is a product of computing and computational
thinking, it cannot be addressed with computational thinking, and we
cannot improve our understanding of it through computational thinking.

The Whole World Is a Computer Hypothesis
Some scientists have argued that information is the basis of all physics.
Every particle and every interaction is the product of information flows and
exchanges at a more fundamental level than the smallest particles known. In
2002, Stephen Wolfram, a physicist and inventor of the Mathematica
program—a triumph of computational thinking in itself—published a big
book in support of this claim.6 In 2003, Nick Bostrom, a philosopher,
argued for a possibility that we are characters in a simulation run by a much
more intelligent species studying their ancestors. While other physicists see
some merit in the claim that all particles and interactions can be explained
with quantum mechanical probability waves, which are forms of
information, they regard the idea that our world is a digital simulation as
far-fetched.7

The whole-world-is-computer hypothesis appeals to those who believe
that computational thinking and computing are pervasive without limits.

https://calibre-pdf-anchor.a/#a456
https://calibre-pdf-anchor.a/#a457

Ideological Fights over What Should Be Taught
There is a never-ending debate on what should be taught in a computing
curriculum. There are two hot spots in the debate. One concerns the
selection of programming language and programming framework that
students should be introduced to. Should it be a language that is easy to
learn and has the least-confusing structure and syntax, such as Python? Or
should it be a language that is used by their future employers in industry,
such as Java or Javascript? What are the benefits of starting with a
framework that treats programs as sources of instructions for a machine
(known as an “imperative” framework) compared to one treating programs
as compositions of functions (known as a “functional” framework)? These
debates have been a staple of computing faculty meetings since the 1960s
and are not likely to abate in the years ahead.

The other hot spot is the tension between the ideals of science-
mathematics and of engineering-design. The science-mathematics ideal
teaches abstractions of things in the world and leaves it to the student to
apply the abstraction to the case at hand. The engineering-design ideal
focuses on all the details that a builder has to get right for the resulting
program to be safe and reliable. The science-math view has had the upper
hand for many years, but with the rise of design, the engineering view is
gaining new currency. In reality, both traditions are important for the
success of computing: the science and engineering sides need each other.

Reflection on the Emerging World
We write this book at the 50th anniversary of the first recommendations for
developing a computing curriculum made by the ACM (Association for
Computing Machinery), a society of computing professionals that we both
belong to. That curriculum and its subsequent specifications were shaped by
many factors noted in the previous chapters:

• Strong emphasis on technology development from the beginning.
• Wide resistance to forming computing departments from other

academic departments that did not accept computing as a
legitimate field.

• Developing a computing community network at the dawn of the
internet era.

• Being torn by intense debates over the roles of science, math, and
engineering in computing, manifested as struggles over how to
teach software engineering and information technology, and how
much to trust formal methods for software development.

• Coming to grips with the emergence of computational science and
now the penetration of computing into nearly every field of
human endeavor.

• The deaths and resurrections of artificial intelligence and its claims
about automation and the future of humanity.

This battle-hardened inheritance does not help us with many of the
pressing issues of the world emerging around us. The worldwide
connectivity we helped bring about through the Internet has brought many
benefits from shrinking the world and globalizing trade. But it has also
spawned conflicts between non-state organizations and traditional nations,
trade wars, protectionism, terrorism, widespread detachment, fake news,
misinformation and disinformation, political polarization, and considerable
unease and uncertainty about how to move in the world. Access to troves of
information via the Internet has begun to show us that knowledge does not
confer wisdom, and we long for wise leaders who have yet to appear. The
promise of respectful information society enabled by the Internet has turned
into polarized society enabled by social media. The world we encounter in

our daily lives is full of surprises, unexpected events, and contingencies that
not even our best learning machines and data analytics can help us with. We
are now finding that many resources including sea and air access are
contested among nations; we lack means to resolve the resulting disputes
and we worry that the resulting conflicts could trigger wars or economic
collapses. We see that collective human action affects the global
environment but have yet to find ways to protect our environment we will
bequeath to our children and grandchildren.

This leaves us with a big question: how shall we shape computing
education so that our graduates can develop the design sensibilities,
wisdom, and caring they will need to navigate in this world, of which they
will be citizens? Our current curriculum, chock full of courses covering the
2013 body of knowledge, is not up to this task.

A place to start would be to open up space in our crowded curriculum to
have conversations on big questions about the consequences of computing
throughout the world. These conversations need to be interdisciplinary and
intergenerational. Their purpose would not be to solve problems but think
together—to edify—to develop mutual understanding, appreciation, and
respect around these issues. Some examples of big questions ripe for
edifying conversations attending computational thinking are:

Our battle-hardened notions of computational thinking do not
help with many of the pressing issues of the world emerging
around us. Access to troves of information via the Internet has
begun to show us that knowledge does not confer wisdom.

• What cannot be automated? What should be automated? How far
can automation take us? Who gets to decide what is automated
and what is not?

• How can AI generate more jobs through automation than it
displaces?

• How can we help people whose jobs are displaced by software and
hardware we have designed?

• How do we cultivate good designers?
• How can we increase trust on decisions by neural networks when

given inputs outside their training sets?

• How will we discourage the development of an automated
surveillance society?

• What technological solutions can be found to the cybersecurity
problem?

• How do we make our world work when computers have been
embedded into almost all devices connected to the global
network?

• How does digital technology affect global politics, nationalism,
balance of trade, climate change, and other issues of
globalization?

• In what ways will blockchains and cryptocurrencies affect our
problems with trust in central authorities? Are they too expensive
to maintain?

• How do we protect societies that are deeply dependent on
computing from an attack on a critical component of
infrastructure, like the electric grid or the Internet?

• How do we prepare people to appreciate the difference between
wisdom and abundance of information?

• What are the social implications of brain-computer interfaces and
neural implants into our brains and bodies?

• What economic avalanches are possible because multiple,
interdependent technologies are dropping in cost exponentially?

We do not believe any of us has answers to any of these questions. But
we need to be having the conversations about them. In so doing we need to
embrace the mathematicians, scientists, sociologists, philosophers,
anthropologists, lawyers, engineers, and everyone else in our field. It is time
for us to think together about the design and impacts of our technology and
so shape our future with wisdom and understanding. It is time to give up the
old tensions that we inherited from times long past, and work together as
brothers and sisters, mothers and fathers, old and young on these big
questions.

Epilogue: Lessons Learned

In the research for this book, we learned a few lessons that are worth
summarizing here.

Lesson 1: CT is an addition, not a replacement.

Everyone thinks their own field’s ways of thinking (and practicing) are
valuable and worthy of learning in many other fields. Enthusiasts want to
spread the gospel of success to other disciplines. The list of “thinkings” to
be spread is long: computational thinking, logical thinking, economic
thinking, systems thinking, physics thinking, mathematical thinking,
engineering thinking, design thinking, computational thinking, and more.

Our conclusion is that computational thinking is often a welcome
addition to other fields, but not a replacement for their ways of thinking and
not a meta-skill for all fields.

Lesson 2: CT is an old, well studied, and diverse topic.

The term “computational thinking” (CT) became popular after the US
National Science Foundation included it in a funding call in 2007. For many
people it was the first time they heard arguments about the value of
computing in education. CT seemed to be a new invention, a breakthrough
portending a revolution in K–12 education. The truth is, human beings have
been doing CT for over 4500 years. It has been advocated for K–12
education since the 1960s.

Some of the first “CT for K–12” curriculum designers attempted to build
a “body of knowledge” for CT from scratch without being informed by the
long history of computational thinking, including similar attempts to bring
computing to schools. They unwittingly created some conceptual errors in
their claims about the capabilities and character of CT. We are concerned
because inflated expectations and conceptual problems can easily become a
part of the CT folklore, and it may take years to dispel them. We urge

computing educators to turn to the massive existing body of computing
education research to clean this up.

Lesson 3: The speed of computers is the main enabler of the computing
revolution.

Most of what software does for us is made possible by the
incomprehensible speed gap between computers and humans—billions to
trillions times faster. Even though humans can execute computational steps,
they could not carry out most of these computations in their lifetimes. The
machines can literally do the humanly impossible. While it is true that
humans can personally perform algorithms for some information processing
tasks, the revolutions of the computer age are not about where people can
perform algorithms in their own lives, but about what computers are able to
do for them.

Lesson 4: Advanced CT is domain dependent.

For advanced tasks, you need to understand the domain in which you want
to figure out how to get a computer to do a job for you. For example, an
expert programmer who knows nothing about quantum physics will have
little to offer to a team of physicists working on a quantum computer.
Similarly, working with the nature’s complex algorithms in biology requires
considerable understanding of biological processes. Algorithmic models in
chemistry require deep familiarity with the corresponding chemical
processes. Building an information system for a hospital requires extensive
understanding of the institutional, informational, and workflow processes in
the hospital context. Much of advanced computational thinking is context-
specific and tightly tied to the application domain.

Lesson 5: CT has changed the tools, methods, and epistemology of
science.

Computational thinking has fostered a revolution in science. Scientists in all
fields have found that CT is a new method of doing science, different from
the classic methods of theory and experiment. They came to this discovery

in the 1980s when they began using supercomputers to crack scientific
“grand challenges.” This was a profound paradigm shift that enabled many
new scientific discoveries. Each field developed its own strain of CT that
was not imported from computer science. Computer science CT has been
enriched by its collaboration with the computational sciences.

Lesson 6: The public face of CT is that of elementary CT.

CT is billed for K–12 curriculum purposes as a set of concepts and rules for
programming. But many professionals see CT as a design skill, and many
natural scientists see it as an advanced method of scientific interpretation.
Like all skills, you can be a beginner, advanced beginner, competent,
proficient, expert, or master. Many debates about what CT “really” is seem
to collapse different skill levels of CT within the same debate. For example,
K–12 teachers argue for curricula that are almost solely aimed at beginners
and that contain a small, teachable set of CT insights, practices, and skills.
Other advocates argue for CT as advanced, professional skills that require
many years of practice and experience. Failing to make the distinction leads
to conflicts—for example, the hype about how learning programming opens
career paths is silent about what professional computational designers do.
Education efforts are important on all levels from K–12 through university
and beyond.

Lesson 7: Beginner and professional CT together comprise a rich
tapestry of computational thought.

Educators in K–12 schools have developed an impressive “CT for
beginners”—insights and methods for teaching computing to newcomers.
Professional software systems designers and scientists have developed an
impressive “CT for professionals”—advanced methods for designing and
building complex software that works reliably and safely, and for
conducting scientific investigations. The synergy between these two aspects
of computational thinking has propelled the computer revolution.

Lesson 8: Change is an inseparable part of CT.

There has never been a consensus about what computational thinking
“really” is. There may never be a full consensus. During every decade in the
modern history of computing there would be different answers to questions
about the essence of computational thinking. Advances in computing keep
computational thinking in constant change. We should embrace the lack of a
fixed definition as a sign of the vitality of the field rather than our own
failure to understand an eternal truth.

Glossary

Abstraction

implifying complex phenomena by representing only their salient features,
while omitting or hiding details.

Algorithm

Description of a method to compute a function, or more broadly, to solve a
category of computational problems. All the steps are so precisely specified
that a machine can perform them.

Artificial intelligence (AI)

he subfield of computer science that investigates whether computers
powered by appropriate software can be intelligent (strong AI), or whether
computers can simulate human cognitive tasks with information processes
(weak AI).

Automation

Using machines to replace human controllers of physical processes (such as
chemical plants or manufacturing lines), to perform knowledge-work
processes (such as reviewing documents or processing invoices), or to build
a computer to perform a task, replacing humans who formerly performed
the task.

it and Byte

A bit is the smallest unit of information that distinguishes between something
being present (1) or not present (0). A byte is a set of 8 bits, allowing 128
possible combinations of 8 bits. Large enough combinations of bits can
stand for anything that can be represented by discrete values, such as
numbers, characters, patterns on a display, or colors.

oolean algebra

he set of expressions that can be formed from logic variables (each
representing a single true-false bit) combined with operators such as OR,
AND, and NOT. Boolean expressions are used in programming languages
to specify conditions under which a statement will be executed. They are
also used to describe the functions of logic circuits inside computers.

Central processing unit (CPU)

he hardware component of a computer that fetches and executes elementary
instructions such as ADD, SUBTRACT, GO-TO, and COMPARE, and
decides on what instructions are executed next. Other hardware components
of a computer include the memory (which stores all data and instructions)
and the input-output interface (which connects with the outside world).

Cloud, The

A worldwide network of storage systems and processing systems that can be
accessed from anywhere just when and as needed. Users who rent data
storage and processing time do not know where their data are physically
stored and processed.

Compiler

A software program that translates programs written in a high-level
programming language meant for humans into binary machine code meant
for the processor.

Computational complexity

A subfield of computer science that investigates the intrinsic difficulty of
solving problems. Difficulty is measured by the computational steps and
memory space needed. Some problems like searching a list for a name are
“easy” because they can be computed in time directly proportional to the
length of the list. Some problems like finding the shortest tour of a set of
cities are “hard” because in the worst case they require enumerating and
measuring all the possible tours, the time for which grows exponentially
fast as the number of cities and roads grows.

Computational model

he description of an abstract machine that performs algorithms—for
example, a conventional computer chip that executes machine instructions
one at a time, a neural network that recognizes faces in images, or a
quantum computer that cracks cryptographic codes. In science and
engineering, it also refers to a mathematical model of a physical process,
which can be simulated or evaluated by a computer.

Computer

An entity, human or machine, that can perform calculations and symbol
manipulations according to a set of precisely specified rules. From the
1600s to the 1930s, “computer” meant “a person who computes.” The first
electronic computers in the 1940s were called “automatic computers.” The
adjective “automatic” was dropped by the 1950s.

Data abstraction

A practice that originated with programmers in the 1960s to encapsulate a
complicated data structure behind a simple interface. Users could access the
data only through the interface; they could not directly access the memory
holding the data. The view of the data seen through the interface is much
simplified—hence the word abstraction. An example is a file, which looks
to a user as a container of a linear string of bits; the interface allows only
reading and writing. The actual file may be implemented as a set of blocks
scattered around the storage medium, all hidden from the user.

Decision problem

A famous problem from mathematical logic in the early 1900s. Given a
logical system consisting of axioms and rules for constructing proofs of
propositions, is there an algorithm that will decide whether a given
proposition is true? For a long time mathematicians believed there was such
a procedure, but could not find it. In the 1930s a number of mathematicians,
working independently from each other, formally defined the concept of
algorithm and showed that there is no general solution to the decision
problem.

Decomposition

reaking a complex thing down to simpler, smaller parts that are easier to
manage. In software, the parts become modules that are plugged together
via interfaces.

Digitization

he work of constructing a binary coded representation of an entity. The
representation could be processed by a computer. For example, the wave
form of speech can be sampled 20,000 times a second, each sample
producing a reading of the wave’s amplitude and encoding it as a 16-bit
value. The digitized speech can then be stored and processed on a computer.

DRUSS objectives

n software engineering, software systems that are dependable, reliable,
usable, safe, and secure.

ncapsulation

Using interfaces to hide inner mechanisms and internal information from
outside users in order to improve reusability, access restriction, protection
of information from user errors, and maintainability.

ractal

A term coined by mathematician Benoit Mandelbrot for sets that are self-
similar at different scales. For example, the coast line of a country looks
ragged in a satellite photo; it still looks ragged from a hang glider; and it
still looks ragged under an up-close view of a wave rippling over the sand.
Fractals have been used in graphics to draw complex objects from simple
forms that can be repeated at all scales.

Generalization

xtending a solution to a broader class of similar problems.

Graphics processing unit (GPU)

A chip included in a computer to run the graphical display. Modern GPUs can
hold 3D representations of objects and can rotate them to any angle or slide
them to any distance computationally, then project the resulting image on to
the 2D screen, all in real time.

Heuristics

rocedures for finding approximate solutions to computationally intractable
problems. For example, in chess we evaluate proposed moves by a point-
counting system for pieces lost; that is much less computing-intensive than
enumerating all possible future chessboards. Good heuristics give solutions
that are very good most of the time.

f-then-else construct

A form of statement in a programming language that selects between two or
more alternative paths in program code. For example, “if sum≥0 then color
sum-value black else color sum-value red” is used by accountants to
highlight negative numbers in red on their spreadsheets.

ntuition

An aspect of embodied expertise where the expert is able to know
immediately how to deal with a situation, based on extensive past
experience. The expert may know what to do but cannot explain why.

ogarithm

n mathematics, the logarithm of a given number is the exponent to which a
fixed base must be raised to produce that number. Thus, the log-base-2 of 8
is 3 because 23=8. Logarithms are useful for multiplying numbers since the
product of two numbers adds their exponents. Take, for example,
multiplying 8 by 16. Because 23×24 = 27, we can take the base-2 logs of the
two terms (here 3 and 4, respectively), add the logs (yielding 7), and raise
the base 2 to the power of the resulting log (here 27). Slide rules multiply by
adding the logs of the two multiplicands.

ogic circuits

he basic electronic circuits in a computer. They combine binary signals with
operations AND, OR, and NOT and store the results in registers, which are
processed by more logic circuits in the next clock cycle.

Machine code

he instructions of an algorithm encoded into binary codes that a computer
can recognize and execute.

Neural network

A form of circuit that takes a very large bit pattern as input (such as the 12
megapixels in a photograph) and produces an output (such as faces
recognized in the photo). The components of the network are designed to be
loosely similar to the neurons in the brain. The network learns by being
trained rather than being programmed.

Operating system

he control program that runs a computer system. It allows users to log in and
access their data, protects user data from being accessed by others without
permission, schedules the resources (CPU, disks, memory) among
competing users, and provides an environment in which users can run their
programs.

Qubits

he basic elements of a quantum computer. They are the quantum-world
analog of bits in a conventional computer, but they have a peculiar property
called superposition, which means they can be in the 0 and 1 states
simultaneously. Superposition significantly increases their representational
and computing power. They are represented by electron spins or magnetic
fields.

Race conditions

Many electronic circuits have multiple paths connecting an input to a
particular output. If a change of the input travels at different speeds over the
different paths, the value of the output can fluctuate randomly depending on

the order the signals arrive. That random fluctuation can cause malfunctions
in downstream circuits that use the output. Race conditions can also appear
in operating systems where two users attempt simultaneous access to a file
and the final value of the file depends on which one went last.

Registers

rocessor registers are the basic building blocks of storage within a CPU. A
register consists of a set of flip-flops, which are small circuits that can store
a 0 or 1. Thus, an 8-bit register is made of 8 flip-flops. The CPU
instructions combine values in registers and store their results in other
registers.

Representation

omputing relies heavily on one thing standing for (representing) something
else. Computations require information to be represented in a digital form,
such as two values of voltage in circuits or the presence or absence of
perturbations on materials. We use 0 and 1 to represent those physical
phenomena.

imulation

omputer simulations rely on computational models of phenomena to track
the behavior of those phenomena over time. The elements of a model are
theories, variables, equations, parameters, and other known features of the
phenomenon in order to faithfully characterize the modeled system.
Simulation uses these model elements to see how the system changes from
one time unit to the next.

ransfer hypothesis

he hypothesis that learning computational thinking in computer science
transfers to problem-solving ability in other fields. The hypothesis would
predict that a person who came to be a good problem solver in computer
science would be able to solve problems in physics with the same expertise.
There is little empirical evidence to support this hypothesis.

ruth values

he two allowed values “true” and “false” of a logic variable. When presented
in numbers, “0” is typically interpreted as false and either “1” or any
nonzero value as true.

uring test

A test proposed in 1950 by Alan Turing to settle the question of whether a
machine can think. A human observer carries on two text-based
conversations, one via a connection to a computer, the other a connection to
another human being. The observer does not know which is which. If the
observer is unable to definitely identify the human (or machine) over a long
period, the machine would be deemed intelligent.

Notes

Chapter 2

. Davis (2012).

Chapter 4

. Mahoney (2011);

. Newell, Perlis, and Simon (1967).

. Simon (1969).

. Knuth (1974, 1985).

. Dijkstra (1974).

. Forsythe (1968).

. Knuth (1985).

. Guzdial (2014)

. Arden (1980).
0. In his talk A Logical Revolution, Moshe Vardi describes the changing role and perceptions of logic
in the field of computing, including the 1980s gloominess over what computers cannot do.

Chapter 5

. Niklaus Wirth, software pioneer and the designer of the popular language Pascal, gives an excellent
account of the development of programming practices and their supporting languages (Wirth 2008).

. Stokes (1997).

. Wilkes, in Metropolis, Howlett, and Rota (1980).

. Wirth (2008).

. Dijkstra (1980).

. Saltzer and Schroeder (1975).

. Alexander (1979).

. Gamma et al. (1994).

. Lampson (1983).
0. The levels principle was first used by Edsger Dijkstra in 1968 to organize the software of an
operating system. It facilitated a correctness proof of the system because each level depended only on
its components and the correctness of the lower levels, but not the higher levels. The discipline of
designing a system as levels leads to much smaller and more easily verified systems.

Chapter 6

. Forsythe (1966).

. Grudin (1990).

. Leveson (1995).

. Parnas and Denning (2018).

. Winograd (1983).

. Denning (2016).

Chapter 7

. Baltimore (2001).

. Wilson (1989).

. Baltimore (2001).

. For the more mathematically inclined, the Mandelbrot set is the points in the complex plane at which
the series of values of a function converges. A complex number is represented as a+bi, where
i=sqrt(-1) and i2 = -1. The equation of the series is z(n+1) = z2(n)+c where z(n) and c are complex
numbers. Having chosen a value of c, compute a series of z(n)-values starting with z(0)=c. (You may
need to go to an algebra refresher for algorithms to multiply complex numbers.) If the z(n) sequence
converges (stays within a short radius of c for all n), color the chosen value of c black. If it diverges
color c blue or yellow. Now repeat this for all c points on a grid.

Chapter 8

. Wing (2006)

. Tedre, Simon, and Malmi (2018).

. Minsky (1970)

. Knuth (1974).

. Bolter (1984)

. Abelson and Sussman (1996)

. Guzdial (2015)

. Denning (2017).

. See http://csfieldguide.org.nz and http://csunplugged.org.

http://csfieldguide.org.nz/
http://csunplugged.org/

Chapter 9

. Denning and Lewis (2017).

. McGeoch (2014).

. See Walter Tichy’s interview with Catherine McGeoch, Ubiquity July 2017, for a worked example of
an Ising equation and its encoding into a form for the D-wave machine to solve,
https://ubiquity.acm.org/article.cfm?id=3084688.

. Adleman (1994).

. Kurzweil (2006).

. Wolfram (2002).

. In April 2016, Scientific American magazine reported on a symposium of physicists and philosophers
discussing the whole-world-is-computer hypothesis, giving the impression that they take more
delight in entertaining themselves with the hypothesis than in the hypothesis itself. See
https://www.scientificamerican.com/article/are-we-living-in-a-computer-simulation/.

https://ubiquity.acm.org/article.cfm?id=3084688
https://www.scientificamerican.com/article/are-we-living-in-a-computer-simulation/

References and Further Reading

Chapter 2

Davis, Martin. (2012). The Universal Computer: The Road from Leibniz to
Turing. CRC Press.

Grier, David A. (2005). When Computers Were Human. Princeton University
Press.

Hodges, Andrew. (1983). Alan Turing: The Enigma. Vintage Books.

riestley, Mark. (2011). A Science of Operations: Machines, Logic and the
Invention of Programming. Springer-Verlag.

Rapaport, William J. (2018). Philosophy of Computer Science. An online book
draft, https://cse.buffalo.edu/~rapaport/Papers/phics.pdf.

Williams, Michael R. (1997). A History of Computing Technology. 2nd
edition. IEEE Computer Society Press.

https://cse.buffalo.edu/~rapaport/Papers/phics.pdf

Chapter 3

Aspray, William, ed. (1990). Computing Before Computers. Iowa State
University Press.

ampbell-Kelly, Martin, and William Aspray. (2004). Computer: A History of
the Information Machine. 2nd edition. Westview Press.

eruzzi, Paul E. (2003). A History of Modern Computing. 2nd edition. MIT
Press.

ortada, J. W. (1993). Before the Computer: IBM, NCR, Burroughs, and
Remington Rand and the Industry They Created, 1865–1956. Princeton
University Press.

Williams, Michael R. (1997). A History of Computing Technology. 2nd
edition. IEEE Computer Society Press.

Chapter 4

Arden, Bruce W., ed. (1980). What Can Be Automated? Computer Science
and Engineering Research Study. MIT Press.

Daylight, Edgar G. (2012). The Dawn of Software Engineering: From Turing
to Dijkstra. Lonely Scholar.

Dijkstra, Edsger. W. (1974). Programming as a discipline of mathematical
nature. American Mathematical Monthly 81 (6): 608–612.

Knuth, Donald E. (1974). Computer science and its relation to mathematics.
American Mathematical Monthly 81 (April): 323–343.

Knuth, Donald E. (1985). Algorithmic thinking and mathematical thinking.
American Mathematical Monthly 92 (March): 170–181.

Mahoney, Michael Sean. (2011). Histories of Computing. Harvard University
Press.

Metropolis, N., J. Howlett, and Gian-Carlo Rota, eds. (1980). A History of
Computing in the Twentieth Century: A Collection of Essays with
Introductory Essay and Indexes. Academic Press.

Newell, Alan, Alan J. Perlis, and Herbert A. Simon. (1967). Computer
science. Science 157 (3795): 1373–1374.

imon, Herbert A. (1969). Sciences of the Artificial. MIT Press.

mith, Brian C. (1998). On the Origin of Objects. MIT Press.

Chapter 5

Alexander, Christopher. (1979). The Timeless Way of Building. Oxford
University Press.

rooks, Frederick P. Jr. (1975). The Mythical Man-Month. (20th anniversary
edition, 1995). Addison-Wesley.

rooks, Frederick P. Jr. (1987). No silver bullet: Essence and accidents of
software engineering. IEEE Computer 20 (4): 10–19.

ampbell-Kelly, Martin. (2003). From Airline Reservations to Sonic the
Hedgehog. MIT Press.

Denning, Peter. (2018). Interview with David Parnas. Communications of
ACM 61 (6) (June).

nsmenger, Nathan L. (2010). The Computer Boys Take Over: Computers,
Programmers, and the Politics of Technical Expertise. MIT Press.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. (1994).
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley.

Koen, Billy V. (2003). Discussion of the Method: Conducting the Engineer’s
Approach to Problem Solving. Oxford University Press.

ampson, Butler. (1983). Hints for computer system design. Proc. ACM
Symposium on Operating Systems Principles, 33–48.

Metropolis, N., J. Howlett, and Gian-Carlo Rota, eds. (1980). A History of
Computing in the Twentieth Century: A Collection of Essays with
Introductory Essay and Indexes. Academic Press.

Mitcham, Carl. (1994). Thinking Through Technology: The Path Between
Engineering and Philosophy. University of Chicago Press.

altzer, Jerome H., and Michael D. Schroeder. (1975). Protection of
information computer systems. Proceedings of the IEEE 63 (9)
(September): 1278–1308.

tokes, Donald E. (1997). Pasteur’s Quadrant—Basic Science and
Technological Innovation. Brookings Institution Press.

Wirth, Niklaus. (2008). A brief history of software engineering. IEEE Annals
of the History of Computing, 30 (3): 32–39.

Chapter 6

rooks, Frederick P. Jr. (1975). The Mythical Man-Month. (20th anniversary
edition, 1995). Addison-Wesley.

Denning, Peter. (2016). Software quality. Communications of ACM 59 (9)
(September): 23–25.

orsythe, George E. (1966). A University’s Educational Program in Computer
Science. Technical Report No. CS39, May 18, 1966. Stanford University:
Computer Science Department, School of Humanities and Sciences.

Grudin, Jonathan. (1990). The computer reaches out: The historical continuity
of interface design. In CHI ’90: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 261–268. ACM.

andwehr, Carl, et al. 2017. Software Systems Engineering Programmes: A
Capability Approach. Journal of Systems and Software 125: 354–364.

eveson, Nancy. (1995). SafeWare: System Safety and Computers. Addison-
Wesley.

Norman, Donald A. (1993). Things That Make Us Smart. Basic Books.

Norman, Donald A. (2013). The Design of Everyday Things. First edition
1983. Basic Books.

arnas, Dave, and Peter Denning. (2018). An interview with Dave Parnas.
Communications of ACM 61 (6).

Winograd, Terry, and Flores, F. (1987). Understanding Computers and
Cognition. Addison-Wesley.

Chapter 7

Aho, Al. (2011). Computation and computational thinking.

Akera, Atshushi. (2007). Calculating a Natural World: Scientists, Engineers,
and Computers During the Rise of U.S. Cold War Research. MIT Press.

altimore, David. (2001). How biology became an information science. In
The Invisible Future. Peter Denning, ed., pp. 43–46. McGraw-Hill.

Denning, Peter. (2017). Remaining trouble spots with computational thinking.
Communications of the ACM 60 (6) (June): 33–39.

Wilson, Ken. (1989). Grand challenges to computational science. In Future
Generation Computer Systems, pp. 33–35. Elsevier.

Wolfram, Stephen. (2002). A New Kind of Science. Wolfram Media.

Chapter 8

Abelson, Harold, and Gerald J. Sussman. (1996). Structure and Interpretation
of Computer Programs. 2nd edition. MIT Press.

olter, J. David. (1984). Turing’s Man: Western Culture in the Computer Age.
University of North Carolina Press.

Denning, Peter. (2017). Remaining trouble spots with computational thinking.
Communications of the ACM 60 (6) (June): 33–39.

Guzdial, Mark. (2015). Learner-Centered Design of Computing Education:
Research on Computing for Everyone. Synthesis Lectures on Human-
Centered Informatics. Morgan & Claypool.

Kestenbaum, David. (2005). The challenges of IDC: What have we learned
from our past? Communications of the ACM 48 (1): 35–38. [A conversation
with Seymour Papert, Marvin Minsky, Alan Kay]

Knuth, Donald E. (1974). Computer science and its relation to mathematics.
American Mathematical Monthly 81 (April): 323–343.

ockwood, James, and Aidan Mooney. (2017). Computational Thinking in
Education: Where Does It Fit? A Systematic Literary Review. Technical
report, National University of Ireland Maynooth.

Minsky, Marvin. (1970). Form and content in computer science. Journal of the
ACM 17 (2): 197–215.

edre, Matti, Simon, and Lauri Malmi. (2018). Changing aims of computing
education: a historical survey. Computer Science Education, June.

Wing, Jeanette M. (2006). Computational thinking. Communications of the
ACM 49 (3): 33–35.

Chapter 9

Adleman, Leonard M. (1994). Molecular computation of solutions to
combinatorial problems. Science 266 (5187): 1021–1024.

rynjolfsson, E., and McAfee, A. (2014). The Second Machine Age: Work,
Progress, and Prosperity in a Time of Brilliant Technologies. W. W. Norton
& Company.

Denning, Peter. J., and Ted G. Lewis. (2017). Exponential laws of computing
growth. Communications of ACM 60 (1) (January): 54–65.

riedman, Thomas. (2016). Thank You for Being Late. Farrar, Straus and
Giroux.

Kelly, Kevin. (2017). The Inevitable: Understanding the 12 Technological
Forces That Will Shape Our Future. Penguin Books.

Kurzweil, Ray. (2006). The Singularity Is Near. Penguin Books.

McGeoch, Catherine. (2014). Adiabatic Quantum Computation and Quantum
Annealing. Synthesis Series on Quantum Computing. Morgan & Claypool.

Wolfram, Stephen. (2002). A New Kind of Science. Wolfram Media.

Index

Abacus, 28
Aberdeen Proving Ground, 33
Abstraction, 99, 118

data, 105
in engineering, 102
in science, 102

ACM (Association for Computing Machinery), 74, 185, 207
Acoustic delay lines, 55
Address-content distinction, 60
Advanced chess, 201
Advanced placement in computing, 187
Aggregation, hierarchical, 117–119
Agile methods, 134
Aiken, Howard, 52
Aircraft simulation, 167–169
Alexander, Christopher, 115, 127
ALGOL, 82
Algorithm, 1–2, 11
Algorithmic thinking, 79, 83–84
Algorithmizing, 180
AlphaGo game, 172, 201
Analytical engine, 50–51
Apple Mac operating system, 144
Architecture, von Neumann, 54
ARPANET, 81
Artificial intelligence, 90

strong, 93
weak, 93

Assembly language, 81
ATM (automatic teller machine), 142
Automatic programming, 200
Automation, 12, 39, 46, 85–90

of cognitive tasks, 197

Babbage, Charles, 12, 45, 49–52
Bauer, Fritz, 95

Bell, Tim, 191
Bernoulli numbers, 51
Big O-notation, 85
BINAC, 39
Binary code, 54
Bit, origin of term, 55
Boeing 777 aircraft, 150
Boole, George, 36, 56
Boolean algebra, 36, 56
British Computer Society, 185
Brooks, Frederick, 99, 110, 111, 121, 127
Bugs, 108
Bush, Vannevar, 101

Calculus, 26
Call instruction, 60
Chess, 46

advanced, 201
Chomsky, Noam, 77
Church, Alonzo, 77
Clients and servers, 121
Clock, 9

in CPU cycle, 57
Cloud, 171
COBOL, 82
Code optimization, 85
Code.org, 188
Compiler, 82, 85
Computation

as automation, 3, 12
definition, 5
by humans, xiii, 10
intractable, 7
by machines, xiii
mindlessness of, 9
numerical, 5
symbolic, 5

Computational
complexity, 81, 88
Fluid Dynamics, 160, 167
lens, 3
machines, 18

http://code.org/

methods, 18
model, 161–162, 194–196
science, 15, 19
science, movement, 75
steps, 9, 27, 29, 41, 57, 58, 64, 88, 194, 196

Computational thinking
by Babylonians, 11
for beginners, xii, 188, 217
definition, ix, 4, 217
as design, 4
by Egyptians, 11
as explanation, 4
in the large, 100, 109–111
origin of term, 14
for professionals, xii, 188, 217
in science, 15
six dimensions, 17–19
as skill set, 6
in the small, 100, 103–107
troublespots, 189–190, 214
two faces of, x
view, strong, 94
weak, 94

Computer
automatic, 39
definition, 1, 5, 6
fluency, 178
general purpose, 49
human, 10
human, 214
literacy, 175, 176
revolution, ix, 1–2
universal, 39

Computer science
departments, 14, 73
for all, 17
principles course, 16
Unplugged, 191

Computer Science Teachers Association (CSTA), 188
Computing at School (CAS), 188
Computing education, 18

Confinement, 63
Constructionism, 183
Control flow, 58
Correctness proofs, 85
COSERS, 87
CRISPR gene editing, 196
CS. See Computer science
CS&E, 74
CT. See Computational thinking

Data abstraction, 105, 118
Data protection, 62
DEC VMS operating system, 144
Decision problem, 37
Decomposition, 34, 118
Deep learning, 172
Derivative. See Calculus
Descartes, René, 35
Design, 4, 19, 20, 197

hints, 115–116
in engineering, 101
in science, 101
patterns, 114–115
patterns, 134
principles, 113–114
way, 146–147

Difference engine, 50
Differential equation models, 154
Difficulty, of problems, 88
Digitization, 30
Dijkstra, Edsger, 83
DNA computing, 195, 196
Doctor’s waiting room, 166–167
Domain dependence, 8
Domain dependency, 215
DRUSS objectives, 108, 113, 116, 129, 140
Dynabook, 182
D-wave computer, 195

Eckert, J. Presper, 53
Edifying conversations, 209–212
Encapsulation, 118

Engineering, definition, 101
Engineering-design view, 85, 101–103, 206
ENIAC, 34, 53, 153
Errors

elimination of, 13
in computational thinking, 214
in mathematical tables, 47
representation, 32
round off, 32

Euclid’s algorithm, 24
Explainability, 172

of neural networks, 200

ault tolerance, 62, 124
ellows, Michael, 191
luency, 16, 185
ormal verification, 81
orsythe, George, 71, 127, 180
ORTRAN, 82
ractal, 164
ragility, 126, 172
rege, Gottlob, 37
unctions, 60

Gauss, Carl, 26
Gaussian elimination 26
General purpose thinking tools, 179–181
Genetic algorithm, 169–171
Grand challenge problems, 15, 150, 154–155, 171–174, 216
Graphics chips for neural networks, 199, 200
Graphics processing unit (GPU), 67
Greatest common divisor, 24
Grid, computational, 26

Halting problem, 40
Hardware, secure, 124
Heuristic, 8, 89
Hewlett-Packard Company, 48
Holland, John, 170
Hollerith, Herman, 12, 49
Hour of code, 188
HP-35 calculator, 48
Human computer team, 33, 201–203

Human computers, 214

EEE (Institute of Electrical and Electronics Engineers), 74, 185
f-then-else, 58
ndustrial Age, x
nfinite series, 25
nflection point, 204
nformatics, 74
nformation hiding, 118
nformation interpretation

in science, 159–160
of world, 3

nformation object, 118
nformation, symbolic, 29
ntegral. See Calculus
nterfaces, 118
ntuition, 28
sing model, 195
SO software standards, 137, 141

acquard loom, 48, 51
ava, 83
ob(s)

definition, 6
impossible, 6, 7
intractable, 7
losses to automation, 2, 6

Kasparov, Garry, 201
Kernel, of operating system, 106, 112, 124
Keuffel and Esser Company, 47
Kleene, Stephen, 77
Knuth, Donald, 1, 83, 181
Kurzweil, Ray, 193, 203–205

Lampson, Butler, 115
Leibniz, Gottfried, 11, 23, 26, 35
LISP, 82
Literacy, 16, 185
Logarithm, 12
Logic, 35
Logic, predicate, 37
Logo (language), 182

Loops, 59
Loops, infinite, 59
Lotus 1-2-3, 144
Lovelace, Ada, 51

Machine, universal, 38
Machine learning, 125, 199–201. See also Neural network
Magician, computational, 24
Malware, 124
Mandelbrot set, 162–164
Mariner I disaster, 95–96
Mark I computer, 53
Mauchly, John, 53
Mechanical steps, 29
Mechanical Turk, 46
Mechanization, 29, 38
Memory partitioning, 63
Messages, inter-process, 106
Microsoft Word, 144
Minsky, Marvin, 181
Modeling and simulation, 161
Modularity, 118
Moore School, 53, 76, 153
Moore’s law, 65, 150, 154, 194, 195, 203, 204
Musa al Khwarizmi, Muhammad ibn, 11

Napier, John, 12
NATO software conferences, 99
Neural network, 9, 67, 125, 172, 195

training of, 67
Newell, Allen, 78
Newton, Isaac, 11, 26
Numerical analysis, 153

Objects, class, 119
Operating systems, 80
Orrery, 12, 30

apert, Seymour, 175, 179, 182–183
arnas, David, 129
arsing, 85
ascal, Blaise, 12, 47
erlis, Alan, 78, 180

ost, Emil, 77
rime numbers, 25
roblem solving, xiii
rocedures, 60
rocess, 106, 120
homing position, 59
service, 59

rogram counter, 58
rogramming
functional, 83
imperative, 82
language, 81
in the large, 97
object-oriented, 83, 105
paradigms, 82
in the small, 97

ython (language), 186

Quantum computer, 9, 68, 195
D-wave, 195

Queueing theory, 166

Rabin, Michael, 77
Randell, Brian, 111
Representation, 28, 30, 54

error, 32
round-off error, 32

Revolution in science, 215
Rice, John, 153
RISC computers, 125
RSA cryptosystem, 68
Russell, Bertrand, 37

altzer, Jerome, 113
andbox, 64
chroeder, Michael, 113
cience, definition, 101
cience-mathematics view, 85, 101–103, 206
cott, Dana, 77
-curve, 204
eries, infinite, 25
hannon, Claude, 36, 56
ieve of Eratosthenes, 25

imon, Herbert, 78
imulation, 15, 150–152
ingularity, 203–205
kills, at computational thinking, 216
lide rule, 12, 47
mallTalk, 83
oftware
as control for computers, 48
crises, 97–100, 107–109
engineering, 18–19, 75, 81
mass production of, 126
mathematical, 153
as product, 100, 107
productivity, 122
quality, 137–146
safety, 126

peed
importance of, 214
of machines, xiv

TEM education, 173, 186
teps
algorithmic, 57
computational, 27, 57

tored-program computer, 52–54
ubprograms, 60
ubroutines, 60
upercomputers in science, 154

Technology jumping, 203–205
Telephone engineers, 164–166
Texas Instruments Company, 48
Thought

language of, 35, 37
laws of, 36

Time-sharing systems, 78–79
Training, of neural networks, 67, 125, 126, 172, 199, 200, 201, 211
Transfer hypothesis, 183–184
Traveling salesman problem, 7
Trust, 13, 173
Turing, Alan, 38, 59, 61, 87, 119
Turing machine, 38–39

Unambiguity, of computational steps, 27
UNIVAC, 39
Universal machine, 38, 61–62
UNIX operating system, 144

Virtual machines, 119–121
Virtual memory, 106
Virtual world, 136

of games, 136
of software design, 136

VisiCalc, 144
on Ahn, Luis, 202
on Neumann, John, 53, 149, 154
on Neumann architecture, limits, 64

Warranties, software, 109
Whitehead, Alfred, 37
Whitten, Ian, 191
Whole world hypothesis, 205–206
Wicked problems, 173–174
Wilson, Kenneth, 157, 164
Wing, Jeannette, 16, 178, 187
Winograd, Terry, 134, 139
Wirth, Niklaus, 112

Zuse, Konrad, 52

The MIT Press Essential Knowledge Series
Auctions, Timothy P. Hubbard and Harry J. Paarsch
The Book, Amaranth Borsuk,
Carbon Capture, Howard J. Herzog
Cloud Computing, Nayan B. Ruparelia
Computing: A Concise History, Paul E. Ceruzzi
Computational Thinking, Peter J. Denning and Matti Tedre
The Conscious Mind, Zoltan E. Torey
Crowdsourcing, Daren C. Brabham
Data Science, John D. Kelleher and Brendan Tierney
Extremism, J. M. Berger
Free Will, Mark Balaguer
The Future, Nick Montfort
GPS, Paul E. Ceruzzi
Haptics, Lynette A. Jones
Information and Society, Michael Buckland
Information and the Modern Corporation, James W. Cortada
Intellectual Property Strategy, John Palfrey
The Internet of Things, Samuel Greengard
Machine Learning: The New AI, Ethem Alpaydin
Machine Translation, Thierry Poibeau
Memes in Digital Culture, Limor Shifman
Metadata, Jeffrey Pomerantz
The Mind–Body Problem, Jonathan Westphal
MOOCs, Jonathan Haber
Neuroplasticity, Moheb Costandi
Open Access, Peter Suber
Paradox, Margaret Cuonzo
Post-Truth, Lee McIntyre

Robots, John Jordan
School Choice, David R. Garcia
Self-Tracking, Gina Neff and Dawn Nafus
Spaceflight, Michael J. Neufeld
Sustainability, Kent E. Portney
Synesthesia, Richard E. Cytowic
The Technological Singularity, Murray Shanahan
3D Printing, John Jordan
Understanding Beliefs, Nils J. Nilsson
Waves, Frederic Raichlen

Peter J. Denning is Distinguished Professor of Computer Science, Chair of
Computer Science Department, Naval Postgraduate School, Monterey, CA.

Matti Tedre is Professor of Computer Science, University of Eastern
Finland.

	Contents
	Series Foreword
	Preface
	Acknowledgments
	1 What Is Computational Thinking?
	2 Computational Methods
	3 Computing Machines
	4 Computer Science
	5 Software Engineering
	6 Designing for Humans
	7 Computational Science
	8 Teaching Computational Thinking for All
	9 Future Computation
	Epilogue: Lessons Learned
	Glossary
	Notes
	References and Further Reading
	Index

