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Preface

This is the age of data. There are more innovations and more op-
portunities for interesting work with data than ever before, but
there is also an overwhelming amount of quantitative information
being published every day. If you consume it (and who doesn’t?),
you might feel that you want to be able to get more out of what
you see. If you produce it, you’ll want your message to get across
and not fizzle out because of poor communication. I hope this book
is helpful to both the producers and the consumers.

Data visualization has become big business, because communi-
cation is the difference between success and failure, no matter how
clever the analysis may have been. Even the fact that charts and
graphs have a new name tells you that it is a hot topic, and you
can shorten it to dataviz if you want to be really à la mode.

This book is deliberately a broad overview that covers a lot
but not in great detail. Part 1 has two chapters that everyone
should read, then Part 2 can be skipped if you have already studied
statistics, otherwise it will help get you ready for the real fun which
follows in Part 3: a series of short chapters of a few pages each,
which you can dip into depending on your interests. I know my
readers may be busy people, so you can read a Part 3 chapter in a
coffee break or commute. You will also find no algebra anywhere
in this book. I promise.

When we analyze data, we are representing all the complexity
of the world, and our attempts to understand how it works, in
numbers. In doing so we lose some detail – we choose what to
quantify and what to leave behind – but we gain objectivity. With
modern statistical methods, we can spot a huge range of patterns
amid the noise, and overcome the cognitive biases that confuse us.
However, there are limits to what can be seen in a list or even a
table of numbers. When the numbers overwhelm us, an image can
help us spot what is really of interest. Sometimes, the pattern we
are looking for can be complex, and even with only a few numbers,

xxiii
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we still can’t grasp it until it is drawn. Why do images help so
much when they seem fundamentally different from numbers?

One explanation is that we humans have been using our eyes to
find food and shelter, and avoid predators, for a very long time, and
the part of the brain that processes visual information is extremely
well developed. In contrast, we have been writing and reading num-
bers for only a few thousand years at best. It would be a mistake
not to tap into the incredible power of our eyes and brains when
we need to understand data.

It can feel like drawing charts and maps belongs to the arts
a bit more than the sciences, and somehow is not as respectable
as a formidable equation with lots of arcane symbols, or a mind-
numbingly large table packed full of numbers. This is really not
true: there is nothing less scientific about an image, but there is
something bad about depicting data in a way that the audience
might not understand. If you want to calculate, you should also
know how to communicate. I’m sorry to say my profession (statis-
ticians) are not best known for this.

Most of the time, there is no single best way to visualize data,
which makes this endeavor harder work but also more interesting.
Statistician John Tukey wrote in 1977, “Aims can differ, and plots
[visualizations, we might say now] should follow aims.” This is still
true.

There are several excellent books on data visualization but this
one tries to do something different: provide a brief overview of
techniques and tools, while all the time emphasizing statistical
reasoning – the title of this series. Most of the visualization books
of recent years were written by people from a design or journal-
ism background, and although there is much to be learned from
them, this book will go deeper into statistical topics like predictive
models; I don’t believe there has been a statistical overview since
William Cleveland’s books The Elements of Graphing Data in 1985
and Visualizing Data in 1993.

I have written with some audiences in mind:
• The manager of a team working with data who has to get

them up and running with data visualization, or maybe com-
mission someone to do the work,

• the statistician or data scientist who has never had any train-
ing in visualizing their findings and wants to find out about
it,



Terminology � xxv

• the designer or journalist who wants to get into working with
data in a statistically sound way,

• anyone who reads about data and statistics and wants to
know how to get the most information out of charts, graphs
and maps while also spotting the misleading or confusing
ones.

I created all the visualizations in this book, except where copy-
right is given in the captions, and on the accompanying website at
robertgrantstats.co.uk/dataviz-book you will find how I did
it in each case. The goal was to illustrate specific topics in dataviz,
so they are generally quite plain. I also used parts of datasets, in-
vented datasets, and less than optimal analyses for this reason. You
should definitely not rely on any images in this book to guide you
on how to make British trains run on time, treat drug addiction,
or find taxis in New York!

There are some topics which are fascinating but can’t be in-
cluded in this book: representing data in sound, art made from
data, physical representations like sculptures or 3-D printing, visu-
alizing qualitative data (such as interview transcripts) and acces-
sibility for people with visual impairment.

TERMINOLOGY

There are a few common terms that are worth defining before we
begin.

• An observation is a single set of measurements. When we vi-
sualize data, we are dealing with measurements on observa-
tions. If it’s a questionnaire that was filled out by customers
after buying from your business, each questionnaire is an ob-
servation. If you have weather data taken at noon every day
for several years, each day is an observation.

• A variable is a characteristic that we measure for the ob-
servations. Your customers might indicate their age – that’s
a variable – and the weather might include temperature at
noon – another variable. Some variables are numbers and
some are categories, and we’ll separate those in Chapters 3
and 4. Each variable takes a value for each observation.

• Each variable is either quantitative or categorical. The quan-
titative ones have numbers that mean something, like the

http://www.robertgrantstats.co.uk/dataviz-book
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temperature at noon. We can subtract one day’s tempera-
ture from another and that is a meaningful number: how
much warmer or cooler it is. Categorical variables can be
sub-divided into nominal (just a collection of categories, like
countries of the world) or ordinal (categories that go in a spe-
cific order, like age groups: under 18, 18–30, 31–40, 41–64, 65
and over). These types of variables call for different types of
visualization, and I’ll go into that in more detail in Part 2 of
the book.

• In many data visualizations, there are axes which are like
rulers alongside the image, and indicate what value is shown
at what location. What we’re doing is taking the values and
encoding them as the position on the page or screen, and the
axes show us what that position means in numbers. We’ll
talk about that more in Chapter 2.

• Sometimes, the data appear as lines, sometimes as colored
areas, and sometimes as little circles or other shapes. Those
little shapes are called markers.

I also want to differentiate between three ways in which the
data get translated into what you see:

• By encoding, I mean a way of translating numbers into what
is seen. Perhaps a high value means that marker is far to the
right, and a low value means far to the left.

• By format, I mean that there are some familiar looks to vi-
sualizations and we can appeal to those to help readers un-
derstand what we’re showing. The same encoding can result
in lines or markers or colored areas, for example – those are
formats.

• What remains is a lot of choices about how it looks and I call
this aesthetics. For example, once you’ve decided to have a
line, you could make it thick or thin, it could have a shiny
effect so it looks like a metal tube, or whatever other special
effect you want.

If you have encountered Leland Wilkinson’s “grammar of graphics”
before (which is implemented in the popular “ggplot2” package
for the R programming language), you’ll notice these are almost
the “co-ordinates, geometries and aesthetics” used there (but not
quite).



I
The basics

1
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C H A P T E R 1

Why visualize?

I SPENT TWENTY YEARS working in various aspects of
medical research. I was trained in statistics and contributed to

many reports and scientific journal articles. One way or another,
my colleagues and I were aiming to make the world a better place.
To do that, we first had to get our messages across to busy readers.
We needed them to remember and act on our findings.

But most of that effort went on to have no impact at all. Those
reports, if they haven’t gone to the dump, gather dust on shelves.
Those scientific journal articles likewise. Few people have the en-
ergy to plough through boring, dry text and tables of numbers. I
realized too late that all our data and findings had to be visualized
to have impact. I thought I knew about it, but I was only producing
default bar charts and the like from my software, without thinking
through their design and the messages they should convey.

Around 2011, I started really learning how to think critically
about data visualization, and was inspired by the amazing exam-
ples that were appearing all the time: animations, interactive web
pages, and sophisticated statistical stories in newspapers. The term
“data visualization” (or dataviz) captured the attention of journal-
ists, academics and business people alike. Why should a picture be
so powerful compared to a bunch of numbers?

1.1 BECAUSE OUR BRAINS ARE WIRED THAT WAY

When we read some numerical facts in a newspaper article, or see
them presented in slides, our brains process this abstract informa-
tion and try to turn it into a deeper, more intuitive understanding
of the patterns. You could just tell people the headline messages,

3



4 � Why visualize?

but why should they believe you? If you want to be taken seriously,
you should have data to support a message, and you should show
your readers that data.

You could do that in words (but it would get extremely repet-
itive and boring), or you could do it in a table (but it would be
enormous and only the most numerate readers will bother to look
at it). But if you do it in a visualization, it is compact, accessible
to everyone, gets the top message across quickly, and can even be
eye-catching and exciting.

Human brains are wired for seeing patterns and differences, and
for understanding spatial relationships from this. Just think about
how much calculation takes place when you look down the road,
see a car approaching in the distance, and decide to cross because
you will be on the other side before it arrives. This is all to do with
spotting tiny clues about speed and distance, and weighing them
up in a fraction of a second. You don’t even think about it, it just
happens in the more mysterious recesses of your brain that deal
with distances, relative positions and changes, and they can distill
that information from what your eyes see almost instantaneously.

It takes teams of experts working for years to make a self-
driving car that can do the same task. We have evolved to be
exceptionally good at dealing with information like that – it was
the difference between catching the antelope to feed the family,
and being trampled by it – so when we present complex numerical
patterns visually, our readers are tapping into all that brain power
without even knowing it. It’s so effortless that conscious thought
is freed up for more important tasks. The reader can focus instead
on deciding whether they believe it or whether it matches what
they’ve heard before.

Of course, there are times when you only have a few numbers to
get across, and text works well. When the numbers build up and
text starts to sound repetitive, a table can be the most sensible
option, but – however fascinating you think it is – many readers
won’t want to read a table of numbers at all, so a visualization can
get the message through.

Sometimes the pattern you want them to see is too hard to make
out in a table but very clear visually. Tables of data are also useful
to back up the visualization with its underlying numbers, so that
the really keen readers can look them up. Layering information like
this, from the big headline through the more subtle patterns down
to the raw data, serves all our readers well. The boss who wants
to know the bottom line can just take that from the headline, the
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Figure 1.1 How to read a scatter plot.

experts who want to understand the patterns can take that from
the visualizations, and the skeptics who want to see exactly how
you came up with your conclusions can look at the tables.

If you are going to make data visualizations, take on the role of a
curator, explaining and guiding the reader through the information
with accompanying text, while leaving them to make their own
informed interpretations.

How to read a scatter plot
Any point on the scatter plot can be located exactly by saying
how far along the horizontal axis (or “x-axis”) it is, and how far
up the vertical axis (or “y-axis”). There should be tick marks and
numbers along each axis that will help you find each point’s val-
ues. There could also be “grid lines” that help if precise location
matters to the readers. You can find each value by looking at
the vertical axis to see how high up a marker is, and what num-
ber that relates to, and you can do the same for the horizontal
axis. So, this type of plot contains two variables’ worth of data.
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1.2 TO HELP THE ANALYST AVOID PROBLEMS

Visualizing is not only useful for communicating messages, but also
for the analyst to understand their data in depth. Statistics only
take us so far in this regard. Let’s imagine we have data on two
variables. By that, I mean that we have a series of measurements
with two values in each. We might be measuring height and weight
of people taking part in some study, or the unemployment and
homelessness levels in several towns.

For now, I’m just going to imagine an abstract situation where
I get the computer to tell me the basic stats that describe these
two variables – the numbers that statisticians like me would gen-
erate to help them understand the data. It tells me that variable
X has a mean (average) of 50.7 and variable Y has mean of 46.5,
so the X values are little bit bigger than the Y’s. I also learn that
the standard deviations are 19.6 and 27.3, so the Y values are a
bit more spread out than the X’s. I also learn that they have a
Pearson correlation of −0.18, which tells me that as values of X
get higher, the values of Y tend to get slightly lower. (These terms
like standard deviation and correlation are not important for now;
we’ll get into them in Chapter 5).

Most of the time, analysts stop at that and say they now un-
derstand the data. If you asked me to sketch it, I would draw a
cloud of dots centered on those mean values, very slightly elon-
gated from top left to bottom right (that’s the correlation), and
somewhat longer in one direction than the other (the difference in
standard deviations). In fact, I would have been fooled, because
if I visualize them in a scatter plot (which I’ll explain in full in
Chapter 2) they look like Figure 1.2!

Admittedly, when you collect real-life data, it is unlikely to look
like the Datasaurus. But it could still bite you if you jump straight
to statistics without having spotted errors or understood the salient
patterns. Visualizations are especially useful for this in the early
stages of analysis. It’s good practice in data analysis to generate a
lot of charts, maps and other relevant visualizations for your own
benefit. They will almost all be thrown away but they might help
you spot one error or better understand one relationship that saves
a lot of time or embarrassment later.

Visualization pioneer William Cleveland wrote, “Graphical
methods tend to show data sets as a whole, allowing us to summa-
rize the general behavior and to study detail. This leads to much
more thorough data analyses.” With statistics alone, you usually
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Figure 1.2 The Datasaurus, created by Alberto Cairo using my
webpage DrawMyData. Reproduced with permission.

get the general behavior but lose the detail. A classic example
of this is the four artificial datasets created by statistician Frank
Anscombe, which all have the same means, standard deviations,
and correlations (Figure 1.3).

In other words, if you didn’t draw the charts, and just worked
out the stats, you would conclude that they are identical. Figure
1.3 shows just how different they are. The diagonal line in each
chart is the best prediction of where the dots will lie, and for all
but the top left chart, it fails to take the appearance of the data
into account – but with identical statistics, only drawing the charts
will help refine that prediction.

We are also very good at spotting anomalies, and visualizations
can tap into this. In Figure 1.4, we see a grid showing results of
various elections; the voter turnout is arranged from left to right,
the level of support for the winning candidate from bottom to
top, and the color ranges from blue (this combination of turnout
and winner support did not happen) through to dark red (this
happened at many polling stations).
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Figure 1.3 Anscombe’s quartet: each plot shows a dataset with
exactly the same statistics, masking great differences.

Elections in Russia and Uganda contrast with the others be-
cause of an isolated dot in the top right corner, where many polling
stations had every registered voter turn up and every single one
of them vote for the winner. The authors suggest this is evidence
of fraudulent results because there is a gap between these stations
and the rest of the stations. If we had to examine pages and pages
of tabulated vote counts, we would have almost no chance of ever
spotting this, but visualization makes it jump off the page.

1.3 TO WIN OVER THE AUDIENCE

Writing in 2012, statisticians Andrew Gelman and Antony Unwin
suggested that there are at least six reasons why someone would
create a visualization of data:

1. to give an overview,

2. to show the scale and complexity of the data,

3. to allow exploration of the data,
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Figure 1.4 Voter turnout and winner support. Possible irregu-
larities are circled in red. From “Statistical detection of sys-
tematic election irregularities” by Peter Klimek, Yuri Yegorov,
Rudolf Hanel, and Stefan Thurner. Reproduced under open
access publication license from the Proceedings of the National
Academy of Sciences.

4. to communicate findings,

5. to tell a story, and

6. to attract attention and stimulate interest.

Reasons 1–3 are about showing data without interpretation,
while 4–6 are about communicating a message. If you received some
statistical training in the past, you were probably advised not to
do numbers 5 or 6. Perhaps your teachers were themselves taught
that data analysis must be scientific and objective, but you can be
both these things while also being interesting and engaging your
audience. Telling a story and catching the reader’s eye is nothing
to be ashamed of.

These six reasons would suggest multiple visualizations from
the same dataset. There isn’t one that’s better than others, it’s
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just that they have different goals. If different readers want to find
out different levels of detail, then they will want to pick one from
among these visualizations, and that means that one visualization
is sometimes not enough. A top-level overview will work for some
readers, while in-depth exploration is needed by others.

If you have findings to communicate, or recommendations to
make on the basis of these data, you may need to tell a story. And
if you fear that nobody will look at your work, you may have to
catch their attention first. Layering the information from simple
to complex allows users to drill down just as far as they want.
Later in this book, we will look at interactive visualizations and
how they potentially meet these different needs for all the readers
in one place.

The term “infographics” is used for eye-catching diagrams
which get a simple message across. They are very popular in ad-
vertising and can convey an impression of scientific, reliable in-
formation, but they are not the same thing as data visualization.
An infographic will typically only convey a few numbers, and not
use visual presentations to allow the reader to make comparisons
of their own. Once you read Chapter 2, the difference should be
clear. Figure 1.5 is a well-designed infographic: it is clearly laid out
with just enough imagery to support the messages without getting
in the way, it uses a limited range of colors that fit well together,
and it conveys quite a lot of information in one place. But it is not
a data visualization because it does not represent the numbers in
any way except writing them out in text.

Throughout this book, there are many different formats for
visualizations, from familiar ones such as bar charts to more exotic
options such as hexagonal bin maps. When you have a dataset and
a message to communicate, some formats will be better suited than
others. A visualization that is confusing or hard to read can often
be improved by using a different format. Sometimes the choice is
obvious and sometimes there is no ideal format and the pros and
cons have to be weighed against one another.

There are many possibilities, but here are some questions you
can run through to help narrow down the candidates:

1. How many different observations and variables do I need to
show?

2. Am I going to show the individual data, some aggregate of
them, or some statistics (we’ll look at this in Chapter 5)?
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Figure 1.5 “Accidents at Sea,” an example of an infographic.
Reproduced with permission of World Wildlife Fund UK.

3. Are the variables nominal, ordinal or scale (these are dealt
with in chapters 3 & 4)?

4. Do I want readers to focus on some comparison or change in
the data (Chapter 6)?

5. What formats are my readers likely to be familiar with?

It is worth spending time on this and producing sketches with
lots of alternative formats, because your goal is communication.

There is often no one “best” visualization, because it depends
on context, what your audience already knows, how numerate or
scientifically trained they are, what formats and conventions are
regarded as standard in the particular field you’re working in, the
medium you can use, and so on. It’s also partly scientific and partly
artistic, so you get to express your own design style in it, which is
what makes it so fascinating. Two people could take the same data
and arrive at very different visualizations, both valid and useful
(search online for “Tableau Makeover Mondays” for examples of
this).
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Imagine you work for an online retailer and you have asked cus-
tomers to rate their experience with browsing your website, regis-
tering and paying, the delivery and the quality of the goods. Each
of those gets rated from 1 (very bad) to 5 (very good). This is going
to give a collection of percentages – and we’ll go into them in detail
in Chapter 4 – but that alone doesn’t tell you what visualization to
make. Maybe you want to just describe what the responses were,
maybe you want to show what the company’s strong and weak
points are (people love our website but hate the delivery: time to
switch delivery providers), maybe you want to compare changes
from when you did the same survey last year, maybe you want to
show how the ratings vary around the country, or maybe you want
to show how people who didn’t like the delivery also tended to dis-
like the website but love the goods once they got them. There’s no
simple answer in visualization. That’s what makes it harder work
than it seems at first, but it’s also what makes it a lot of fun.

To choose a good visualization, and to make it look clear, un-
derstandable and attractive, you need to know a little about how
we see and process vision – the brain power described above – and
basic design principles, and we will discuss these in Chapter 7. If
you are aiming to communicate a message, you also need to have
a very clear idea of what that message is. It is easy for a visual-
ization to become confusing because too many messages are being
squeezed in. Here are some more questions to ask as you begin
work on a visualization:

1. What is the message?

2. What parts of the data are evidence for it?

3. What other parts need to be shown for contrast/context?

4. Do I/we know how to do this, or can we learn it / adapt
someone else’s work, or do we need to hire in?

There are some websites and publications that show a typology
of visualizations, listing the many common formats and what they
are useful for. Some of these are really nicely designed, but I don’t
recommend them if you are learning data visualization or trying to
choose a look for a particular problem. I think that each problem
is best served by thinking about what you need to show and how
best to encode and format it. There are several instances in this
book where I show something that you won’t find in any typology
of standard formats.
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1.4 WORKING ON DATA VISUALIZATION

If you are the boss in an organization, you have data, and need to
produce a data visualization, consider first whether you have the
necessary skills in your team. On the design side, you may be able
to access people in-house like web developers and graphic designers
who would enjoy a different challenge for a while, and benefit from
having a new skill on their résumé.

For statistics, you may already have people who work with data
analysis software, and even if they do not typically produce graph-
ical outputs, they might also enjoy learning something new. In
either case, ask them whether they enjoy teaching themselves new
skills quickly, and if that is so, your own team can probably get
the job done. However, there is always a risk of it not looking very
professional or taking longer than you hoped for, so if you have a
budget for it, you can hire in someone to do the work on a consul-
tancy basis.

There are many studios and agencies that would consider the
work, provided the data are fully cleaned, analyzed and ready to
go. Here are a few pointers to guide that decision:

• The individuals who take on the job will come from either a
statistical or a design background; think about which of these
you need. If your data analysis is complete and you want a
few slick visualizations to achieve the goal of catching the au-
dience’s eye, then it is design you need. If you already have
a very well-specified communications policy with branding
thoroughly defined, but the data need to be processed and
represented fairly, then it is statistics (and possibly program-
ming and database skills as well). If you need both, you will
need to hire an organization that is large enough to provide
both. Trying to act as a middleman between two contrac-
tors from very different backgrounds will not be easy. On
the other hand, if you need a very fast turn-around, hiring a
single self-employed consultant is probably the best option.

• The people you hire can only do what you tell them you
need, so clearly and comprehensively specifying the require-
ments is essential. Never assume that they have understood
something. There is no harm in giving a lot of detail, but not
enough detail will risk delays and expense.
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• Expect to be involved in user-testing, to look at early drafts
and provide feedback. It is essential to test and refine vi-
sualizations because there is no one right way to do them,
but they must match the requirements and knowledge of the
audience. If you are hiring a small studio or an individual,
you may have to organize a group of your staff, customers or
other contacts to act as a focus group for them, so that they
can get relevant feedback on drafts.

• Do not underestimate the tasks of design or web develop-
ment. They may look simple, but the detail is hidden from
view. It is probably not possible to squeeze in a good idea
later that wasn’t specified up front, without incurring delays.
Also, if you really cherish one idea that you had, and the de-
signer keeps telling you it won’t work, accept that they know
more about this than you do, and let it go.

If, on the other hand, you are thinking of taking on work making
visualizations for other people, this advice applies:

• Find out what the data are like before you start. Will analysis
be required; can you do that or can you get someone to do
it as a sub-contractor? Is everything labeled, defined, coded
consistently and available to you on day one? Ask to see the
data before giving a quote, offering to sign confidentiality
agreements if necessary. It shows that you are serious about
helping the organization.

• Get the timescale, budget, specifications and any confiden-
tiality requirements agreed in writing first. Ask for copies of
any communications policy or branding guidelines from the
organization hiring you, and make sure they stick to this.

• Propose a program of user-testing and feedback from the
outset, and get agreement to meeting times for that. It is all
right to identify problems – that is part of the design process
– and you can use these meetings to agree on how to deal
with them.

• Throughout, remember that your relationship to your clients
is a professional one: they want you do a great job and to tell
them what would be a good or bad idea. They might push
for a bad idea until convinced otherwise, but it is your job
to give them straight-talking advice. Do not be tempted to
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cut corners or allow mission creep so that you can secure the
job; be prepared to walk away from a deal that will cause you
headaches. Similarly, clients who are not trained in statistics
may ask for you to “massage” the figures a little to favor their
point of view. You should always help them to understand
why this is a bad idea: quite aside from misleading and maybe
harming people, the damage to both your reputations is not
worth it.

1.5 A TOOLBOX

Because these things change rapidly, I don’t talk about software in
this book. The code to make the figures is on the accompanying
website. But I will say this at the outset: if you want to become
a versatile visualization maker, I recommend building familiarity
with a box of tools like this:

• Programmable statistical software like Stata or a data-
focused programming language like R or Python,

• quick visualization software like Tableau,

• SVG editing in the text editor as well as a graphical interface
like Inkscape or Illustrator,

• sketching by hand,

• relevant JavaScript libraries – currently, D3 and Leaflet
would be the choice,

• an online mapping tool, like Mapbox,

• a versatile program for big data and fast data, like Spark.

I have not mentioned spreadsheets here. This is not because I
am a snob, but because it is far too easy to make mistakes with
them, and too hard to track those mistakes down. I recommend
you avoid them.

1.6 BE PREPARED TO SKETCH AND DISCARD

Because you need to choose from lots of competing designs and
formats, you will need to sketch some and discuss them. Often,
the quickest and most flexible way to do this is by hand – not with
any software. Your sketches will mostly be thrown away and one or
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Figure 1.6 Step one in sketching an idea for visualizing data
on the distance traveled by commuters in the city of Atlanta,
Georgia, United States: I used tracing paper to get minimal
information from a printed map. I chose the city boundaries,
shading for built-up areas, blue for reservoirs and lakes, and
orange for major roads. This should be enough information for
local people to recognize (see Chapter 13 for more on maps),
and I could use the orange to signify travel again later. We
revisit this dataset in Chapter 3.

two will emerge victorious to inform the serious work that follows.
They do not have to be beautiful – they have to be clear about
what goes where.

Quickly do lots of them and throw all but the best ones away.
It is worth thinking a little about color at this stage too, which is
the perfect excuse for having a large box of crayons on your desk.
Graph paper (which comes printed with an accurate grid) is not
important for this purpose, but it is worth having some acetate
(overhead projector) sheets and a set of colored glass marker pens
with fine points. You can use these to overlay extra information on
your sketch and then change your mind without having to redraw
everything. The very first ideas can also take shape on a white-
board using these pens. Tracing paper is also handy for getting
map outlines or copying existing visualizations with designs that
you like.
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Figure 1.7 Step two: I attached the tracing paper to a blank
sheet of paper, and an acetate transparency sheet on top. Map
data and image copyright Google.

The worked example below takes a simple dataset on com-
muters in Atlanta, Georgia, United States, and explores one way
of making it more engaging and meaningful. The intended audi-
ence is local commuters themselves. After choosing a few designs
and creating them with appropriate software, the next step would
be user testing, to overcome any assumptions and biases that we
might have, and to choose a final format for publication. I cannot
stress the value of user testing enough!
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Figure 1.8 Step three: I drew rings on the transparency at ten-
mile intervals around a central point. This relates the division
of data directly to the real world. Map data and image copy-
right Google.

Figure 1.9 Step four: I added annotations to the sheet under-
neath. I decided that I didn’t want to clutter the map with
names of towns, but it would be helpful to local readers to see
some of the main places in each ring named. Map data and
image copyright Google.
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Figure 1.10 A first digital draft of a contextualized bar chart of
commuting distances in Atlanta, Georgia. I decided to leave
extra space on the map outside the 50-mile radius, so that the
rings and the bar chart were visually spaced apart, linked just
by the dashed vertical lines. Empty space can be valuable.
This is ready to be given to some commuters for feedback,
to check that it is clear and understood. Data from Statis-
tics: Unlocking the Power of Data by the Locks, map image
copyright Mapbox, map data copyright OpenStreetMap con-
tributors.
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C H A P T E R 2

Translating numbers
to images

DATA VISUALIZATION pioneer William Cleveland wrote
that visualizations translate numbers into images on the page

or screen, so that the reader can translate them back again in their
brain. Both of those translations have to work, and there are many
ways in which we can take a number and make it into some aspect
of an image, so the choice has to be made carefully. Also, the reader
should be able to so without craning their neck, scratching their
head and generally struggling over the image, or they may well just
give up and move on.

Only a few seconds of confusion will dissuade most of your
audience, because of short attention spans, other demands on their
time, and math-phobia. But look at it from their perspective: if
you have something important to show them, get on with it, don’t
make them work for it. They have to be able to translate it back to
numbers, and do so quickly. Needless to say, they should also arrive
at the correct number and not be misled by the visualization.

2.1 LEAVES ON THE LINE: AN EXAMPLE OF VISUAL
ENCODING

This chapter explores an important concept that runs through data
visualization: when we do that translation into images, we have to
connect up values in our data with parameters of the image. This
is known as visual encoding of data. The best way to get to grips

21
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with this abstract-sounding notion is to jump right in and try out
a simple example.

Let’s explore whether delays on trains in South East England
are worst in the autumn, when the rails are slimy with leaves falling
from trees alongside the track, and the trains have to slow right
down to be sure they can stop safely. This “leaves on the line”
problem has attained legendary status in England, but is it really
true? I downloaded publicly available performance data from data-
portal.orr.gov.uk and tidied it up, but you can download it directly
from the website for this book at robertgrantstats.co.uk/dataviz-
book.

The variables we have to consider are time (the data are avail-
able for 4-week periods, and there are about 13 of these in each
year) and the percentage of train journeys recorded as being can-
celled or “significantly delayed.” We can also divide time up into
years and 4-week periods within years, or we could identify autumn
versus the rest of the year. The data covers twenty years from April
1997 to March 2017.

A scatter plot is one obvious choice, with time encoded to the
horizontal location, and delays encoded to the vertical location. As
shown in Figure 2.1, we have encoded our two variables (time and

Figure 2.1 Train delays: a first scatter plot

http://www.robertgrantstats.co.uk/datavizbook
http://www.robertgrantstats.co.uk/datavizbook
http://www.dataportal.orr.gov.uk
http://www.dataportal.orr.gov.uk
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Figure 2.2 Train delays: a line chart

delays/cancellations) to two image parameters, and then drawn a
marker for each of the observations at the resulting location. The
% delays and cancellations are values close to zero, so the vertical
axis has been extended to 0%. This helps to convey the values of
the markers as their height in the chart. However, this has not
been done for the horizontal axis because there is no meaningful
zero value in this context.

Encoding time to the horizontal location makes intuitive sense
to many readers because we read from left to right (in Latin al-
phabet languages anyway). We can easily spot the general trend:
getting worse, then better, then worse again. We can also see the
especially bad periods as high points on the chart, but it is hard
to compare autumn in different years because they are scattered
across the plot.

An alternative format with the same encoding is the line chart
(Figure 2.2). Although the same variables are encoded to the same
visual parameters, we connect the data with a line rather than
drawing individual markers.

This has an effect on how it is perceived; you might immediately
notice that the really high points are more obvious, and the long-
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term trend less so. The high points require the line to go all the
way up to a spike and all the way back down again, thus putting a
lot of “ink” on the page (or screen), which draws the reader’s eye
in a way that doesn’t happen for the scatter plot.

Statistically speaking, the delay/cancellation percentage (%)
data are positively skewed: most of the values are around the same
value, a few are much higher, but there are none that are much
lower. This sort of distribution can inform your choice of encod-
ing and format. We will look at distributions in more detail in
Chapter 3.

How to read a line chart
Line charts almost always trace lines from left to right, with the
height of the line indicating the value of principal interest. They
often, but not always, have time on the horizontal axis so can be
read as a sequence of events. High points, low points, periods
of (in)stability and lines crossing other lines are all of potential
interest to the reader and relatively easy to pick out. When there
are too many lines, and each one moves up and down a lot,
it can quickly become too cluttered to be read reliably (often
referred to as spaghetti by dataviz people). One solution to this
is to use “small multiples,” which we will revisit in Chapter 12.

Sometimes, a line chart uses one vertical axis on the left and
another on the right, and their values relate to different lines.
This is generally a bad idea because it encodes two variables
to the same parameter – vertical location – leaving it to the
reader to distinguish between them. Always try to make things
as easy as possible for your reader.

The story behind these visualizations is all about comparing
autumn to other times of the year, so we need the reader to be
able to identify autumn. One approach would be to highlight it,
which I have done in two ways in Figure 2.3. On the left, one period
each year (mid-November to mid-December) is picked out with a
colored dot, and on the right, colored shading is used to identify
mid-September through to mid-December.

The dots have the advantage of showing you exactly where the
autumn data lie, but it starts to get too visually busy to read easily.
Shading is less intrusive on the data markers, but the candy-stripe
effect creates its own kind of visual overload.
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Figure 2.3 Train delays: a line chart with highlighting. The
points identifying autumn in each year might work, but the
candy-stripes are distracting and overload the reader.

The color, by the way, was picked from a red maple leaf in real
life using a smartphone app. We’ll think about aesthetic choices
like that in Chapter 16.

At this stage, some new messages start to emerge, thanks to our
choices of encoding and format: although the autumn was indeed
the worst time for rail travel in most years up to 2002, from 2003
onwards the worst period has tended to be later, in the depths
of winter. Perhaps leaves have been defeated but ice remains a
problem. Without visualization, could you have spotted this from
the raw data?

In Figure 2.3, I effectively created a new variable, which just
identifies autumn. This is just a variant on the time variable that
we already had. We could take another approach to help readers
compare autumn to the rest of the year, again making a variant
on the time variable by splitting it into the year and the 4-week
period. Then, we can encode the 4-week period to the horizontal
position (Figure 2.4).

Figure 2.4 has definitely not helped! In the scatter plot, we can
no longer tell which year a particular point belongs to, and in the
line chart, even though there is one line per year, they intermingle
so much that it is impossible to trace any line across the chart. This
is because we now have three variables that have to be encoded:
year, 4-week period, and % delayed, and we are neglecting the year.

We have already used the horizontal and vertical positions,
so we need another chart parameter to indicate which year each
marker or line belongs to. One option is to use different colors, but
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Figure 2.4 Train delays: an unhelpful scatter plot and line chart
for periods within each year.

Figure 2.5 Train delays: scatter plot and line chart with old
data in black, ranging to newest data in orange

we must allocate colors that have some sense of going in a par-
ticular order, not just a rainbow effect, otherwise the order of the
years will be lost (Figure 2.5).

This helps a little in the line chart (compare the highest lines
at period 10 with the same lines in Figure 2.4), but not at all in
the scatter plot. If we had only a few years, the colors might be
so distinct that we could tell each one apart. But the fundamental
problem here is that the years are all quite similar and so their lines
lie on top of one another: a statistician might say that the variance
within years is larger than the variance between years. You have to
take this into account if you want the message to be clear and not
swamped by irrelevant noise.
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Figure 2.6 Train delays: year-period grid, with the worst 4-week
periods in each year colored

There are some tricks we can employ to help us out of this diffi-
cult spot that fall under formats rather than encoding, which I will
return to later in the book: we can smooth out the lines (Chap-
ter 5), show multiple small charts, one for each year (Chapter 12),
break the data down with statistical time series analysis (Chapter
9), or present it digitally as an animation or an interactive web
page (Chapter 14).

I want to close this example by breaking out of the horizontal-
vertical encoding of delays and time that we have used through-
out. Let’s think about the message again: we want to explore the
“leaves on the line” effect, so we need to focus on the time of year
when delays and cancellations are really bad. Perhaps the actual
delay/cancellation % does not matter as much as just identifying
the worst periods in each year. In Figure 2.6, the data are shown as
a colored grid, with the year encoded to the horizontal position, the
4-week period to the vertical position, and the delay/cancellation
% to color. To avoid the color overload we saw before, only the
three worst periods in each year are colored.

Grids of color like this (or Figure 1.4) are often called heatmaps.
This has the advantage that the story we want to convey will be
front and center. If there is a consistent autumn leaves effect, it will
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present itself as an obvious horizontal stripe of color. The actual
% in each of the worst periods is ignored, and they are simply
colored according to whether they are the worst, 2nd worst, or
3rd worst for each year, and everything else is left white. This
deliberately throws away a lot of the information in the data in
order to achieve clarity. That is not a decision to be taken lightly,
but in Chapter 16 I put this chart into a poster together with more
detailed information to back it up.

At the end of this extended example, you should understand the
difference between choosing formats and encoding data to visual
parameters. With the final chart of train delays, we can see that
problems have shifted from autumn to the coldest months of the
winter – December to February.

You should also realize that the choice of encoding and format
is tied up with what the message is that you want to communicate;
there is no universal right answer for one set of data.

2.2 CHOOSING VISUAL PARAMETERS

There are many parameters we can encode to. Research into human
visual perception has shown that some are not so easy for readers
to translate back into numbers. Areas, for example, are usually
perceived as being more similar to each other than they really are.
We’ll explore this further in Chapter 7. In Table 2.1, parameters
known to have problems like this are identified with asterisks.

Using volume to depict a quantitative variable, for example, is
not ideal because it is very hard to judge the precise relative size
of each “object” as depicted on the page or screen. Volumes could
be used for ordinal data, or a different parameter such as length
would be better suited. There are, however, exceptions to any rule
in dataviz, and for an example of making good use of volumes to
convey the scale of the data and attract attention, consider Figure
16.5.

In the Preface to this book, I defined variables as categorical
(with ordinal as a special case) and quantitative. Some of these pa-
rameters are suited only to having non-ordinal categories encoded
to them, while others will work for ordinal values but not the other
two.

Being measured against a common scale is important. It is quite
easy to judge the relative lengths of three lines which start at the
same point, like in the table above, but much harder if they are not
adjacent, in other words, they differ in horizontal location too, let
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TABLE 2.1 Visual parameters

Parameter Ideal data type

Position Quantitative

Length Quantitative

Angle Quantitative*

Area Quantitative*

Volume Quantitative*

Color hue Nominal or ordinal*

Color saturation Ordinal

Marker shape Nominal*

Features Quantitative*

Line width Ordinal*

alone when they differ in other parameters such as angle or width
(Figure 2.7). This is one reason why pie charts are hard to trans-
late back to values with an acceptable level of accuracy. There are
other circular designs such as “radial histograms” and “sunburst
diagrams” that suffer the same problem. They may be eye catching
and supply the sixth of Gelman and Unwin’s objectives, but fall
short for serious quantitative communication, and are not as novel
and exciting as some of the closing examples in Chapter 17.

Yes, it is possible to see that each case in Figure 2.7 is in the
ratio 1:3:2 after a few seconds of concentration at most, but we
know that readers of visualization might not concentrate at all
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Figure 2.7 To let the reader translate a parameter back into
numbers, keep everything else constant. The lengths of the
three bars on the left can be compared, but less so for the three
in the center, where the baseline position has been shifted, or
on the right where the width and angle changes too.

but rather draw conclusions based on first impressions, so it is
important to eliminate any chance for misunderstanding like this.

The lesson of this is that, if comparing some values is impor-
tant, those values should be prominent and adjacent. It can be
tempting, with many variables, to encode each to some parameter
and produce a very detailed, complex visualization. We can make
a scatter plot where each marker has not only a horizontal and
vertical location but also a particular shape, color and size – five
variables in one chart – but we should not be too surprised to find
that many readers would be discouraged by this. When there are
important messages involving specific variables and specific values,
it is best to apply the layering principle from Chapter 1: single them
out visually in a headline chart and then present the rest of the
detail elsewhere.

How to read a bubble chart
A bubble chart, like Figure 13.5, is just a scatter plot with a third,
quantitative variable encoded to the size of the marker. This is
particularly useful because sometimes we want to emphasize
that some of the observations in our data contain more informa-
tion than others. Imagine plotting data on countries – it would
make sense to give more emphasis to high-population coun-
tries in a visualization. There are two major problems with bub-
ble plots, though. Firstly, the bubbles sometimes overlap and
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obscure one another. You might find that drawing just the out-
line of the bubble and not filling it with color solves this, or you
can make them semi-transparent. Secondly, we know that ar-
eas are not accurately perceived, so if the third variable matters
a lot, it is probably a good idea to choose a different format or
encoding.

Not quite every combination is possible, but there are many
that will lead to unusual and possibly innovative visualizations.
However, encodings that are already familiar to your readers allow
them to skip those precious few seconds where they have to work
out how to read the visualization, and lets them move straight to
understanding the data. Innovation is always worth considering,
but the primary goal of most data visualization is to communi-
cate. We could move away from the horizontal-vertical alignment
completely and do something more meaningful by tapping into the
circular nature of the seasons. The 4-week periods could be ar-
ranged in a circle or a spiral instead of a straight line, and we’ll
look at formats like that in Chapter 9 on time series.

2.3 UNDERSTANDING COLOR

Of all the image parameters we can encode to, it’s worth learning
about how we can quantify color. There are several systems for
specifying an exact color, but this book will mostly use the RGB
(red, green, blue) system. Nearly seventeen million colors can be
described by giving a number from 0 to 255 to the amount of red,
green and blue that get mixed together. So, the darkest rectangles
in Figure 2.6 have RGB values of 173, 56, 41. The red component
(173) is the largest number, with relatively little green (56) and
blue (41). Pure black is 0, 0, 0 and pure white 255, 255, 255.

This means that any color can be described by three numbers.
We’ll return to RGB when considering visual perception and the
brain in Chapter 7. Another notation system called HSV describes
colors in terms of hue (basic colors from the spectrum), saturation
and value (added lightness or darkness) – terms which appear in
Table 2.1.

Whatever we use, we need to accept that the human brain is
not good at judging distances between colors in terms of mixing
together red, green and blue, so encoding three variables from your
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data to these primary colors is a bad idea, tempting though it may
seem.

Likewise, if color really is part of our dataset, then it is probably
a good idea to simply draw the color in question (encode it as
itself) in the visualization (although we’ll explore this further in
the example below), and not to three other parameters. However,
a more sparing use of color can work well, not encoding to the whole
spectrum but to shades of one color, like the saturation option in
Table 2.1, or the right-hand part of the hue option.

Despite our inability to see “distances” between colors, we can
still tell what is lighter or darker at a glance (ordinal information),
and this may be all that is needed sometimes, as in Figure 2.6.

2.4 THE LIMITATIONS OF AREAS

One very common problem in data visualization is that encoding
numerical variables to area is incredibly popular, but readers can’t
translate it back very well. Bubble charts, which we’ve already
encountered in this chapter, suffer from this. The reader can prob-
ably spot the biggest and smallest markers, but will find it hard
to judge sizes of others that are not adjacent. The same problem
affects pictograms where a variable is encoded to the relative size
of some icon. The area is not proportionate to the height of the
icon or bubble, but that is how we generally see it.

Wordclouds take this problem deeper into inadequacy, with the
human reader hardly capable of judging the relative areas of words
of different lengths, with different sized characters, in different col-
ors and different rotations. A better idea, if you want to use icons,
is to line up a number of them (Figure 2.8). This is also called a
pictogram, and sometimes an Isotype chart, named after its early
proponents, the Isotype Institute. Because here, the variable is en-
coded to length, it is much easier to see things clearly.

There’s another special kind of pictogram that is not often seen,
perhaps because it takes a lot of effort to produce, where the icons
are real objects in a photograph. Figure 2.10 is a photomontage,
combining separate photographs of every plane taking off from
Los Angeles International Airport’s South Complex in a day, while
Figure 2.11 was posed in real life with the city’s permission.

Because they rely on areas, it has been shown that readers reg-
ularly misjudge relative sizes of the slices in pie charts and donut
charts. A slice at the top or bottom of the pie (or donut) will appear
smaller than the same sized slice at the left or right. Also, people
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Figure 2.8 A pictogram in the Isotype tradition. Train
icon vectorized by Wikimedia user “Sgt bilko,” drawn
by Wikimedia user “Eschweiler,” CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=1158450

Figure 2.9 “The ocean shrinks,” a visualization by Otto and
Marie Neurath of the Isotype Institute. Public domain.

https://commons.wikimedia.org/w/index.php?curid=1158450
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Figure 2.10 “Wake Turbulence” by photographer Mike Kelley
visualizes every plane to take off from the LAX South Complex
in a day.

typically underestimate angles less than 90 degrees and overesti-
mate those which are larger.

Different colors and 3-D effects can trick the reader too — we’ll
explore these further in Chapter 7 on visual perception and the
brain. Although angles are proportionate to areas (if the radius
stays the same), the problem of different orientations affects the
pie and the donut (see Figure 2.7).

How to read a pie chart or donut chart
Pie and donut charts divide up a circle like slices of the prover-
bial pie, and so are well suited to data that represent parts of
a whole, perhaps percentages that add up to 100%. The only
difference between them is stylistic, with the center omitted in
the donut. In both cases, the angles of the slices are propor-
tionate to the data, so a 90-degree slice should represent an
observation with twice the value of one represented by a 45-
degree slice. The 90-degree slice will also have twice the area,
provided that slices have the same radius. The number of slices
that can be accurately displayed is probably fewer than ten. A
pie chart with dozens of thin slices is of very little use for data
visualization, and new problems are introduced, such as having
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Figure 2.11 Road congestion for different forms of transport.
A physical visualization by the International Sustainability
Institute. Reproduced with permission.
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to use several similar colors or squeeze in labels for the slices.
If you really do want to convey the message that there are many
categories in your data, just say so in text.

If you want to do accurate dataviz that helps your readers and
doesn’t attract criticism, you should try to avoid pies and donuts
where possible. Also, they are widely ridiculed in the dataviz world,
which might matter to you if you want to build a reputation for
good practice. Two good alternatives are the familiar bar chart
and the waffle plot. The bar chart simply encodes a quantitative
variable to the lengths of rectangles. They can easily be compared
because they share a common scale, as seen in Figure 2.7. If you
want to convey the impression of how much each bar contributes
to the whole, you can have all bars extend to the 100% mark and
color them in to the proportion that represents each observation
in your data.

The same information is conveyed by replacing the bar with a
line, and emphasizing the extent to which it is filled by superim-
posed circles; this is called a dot plot, but that term is also used for
a different chart called a dot plot, which you will encounter from
Chapter 3 onwards.

The waffle plot is a special kind of pictogram, where little
squares are lined up close together. It is similar to a bar chart
in that we can look at the length of a row of squares, but if the
values in our data differ greatly, then we could arrange the squares
in two dimensions. This has the advantage of accommodating much
larger numbers. We could show three categories in the ratio 1:3:2,
like in Figure 2.12, but we could also show 1:3:2000 (Figure 2.13).

Figure 2.12 Proportions of the whole in a bar chart (left) and
a dot plot (right)
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Figure 2.13 Very different values side by side in a waffle plot:
1, 3 and 2000

In a bar chart, this would make the first two values so small, they
would be invisible.

How to read a bar chart or waffle plot
A bar chart is probably the simplest of all formats to read: the
length of the bar is proportionate to the value that is encoded to
it. A waffle can go over onto multiple rows and then the area is
proportionate. It is the fact that one could potentially count the
squares that makes this better than the pie or donut.

Finally, why are some formats called charts and others plots?
There’s no reason, it’s just convention.
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2.5 ANNOTATION

Our goal is for our visualizations to be clearly understood, and
some annotation with text can help. Unfortunately, if we pile in
too much text, with attendant arrows and highlighting, it will
quickly make the overall impression too busy and confusing. Ed-
ward Tufte’s advice to reduce the ink:data ratio is worth bearing
in mind at all times – but that doesn’t mean that the absolute
minimum is always best.

A good general rule is to imagine the visualization being read
apart from any accompanying documentation or context: will it
be misunderstood? Labeling axes and saying where the data came
from is vital, and many visualizations benefit from a title that
tells the headline message. You don’t have to be po-faced: notice
how the Isotype image in Figure 2.9 is titled “The ocean shrinks,”
not “Travel times by different forms of transport.” I’ll return to
annotation in Chapter 16.

2.6 USER TESTING

This chapter has introduced various visual encodings and formats.
There will be plenty more in the chapters that follow. Whatever
approach is taken, an effective data visualization is only guaranteed
if it works for the intended readership. When you are looking at
someone else’s dataviz, consider what you like and don’t like about
it, and then how you might improve on it. This way you will learn
quickly from others’ mistakes.

If you find one confusing, don’t assume that it is your fault:
visualizations should be simple and intuitive. If you are making
dataviz, or supervising someone who is, then you should definitely
consider user-testing. Show drafts to some people who are like your
intended audience and get some honest opinions from them. The
user experience – ease of use, accessibility and enjoyment – matters
a lot, so the whole package of the image, accompanying text, color
schemes, annotations and terminology should work together to get
the message across and allow them to explore the data visually.
We will explore those aspects further in Chapter 16.

Although standard, familiar formats are powerful, there is an
attraction to novelty and some readers can be drawn in because of
curiosity about something new. Don’t shy away from innovation,
but be careful to user-test it.
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C H A P T E R 3

Continuous and
discrete numbers

THE BEST PLACE TO START learning about data vi-
sualization is with quantitative variables. By quantitative, I

mean that they can take a range of numeric values that measure
something in the real world. We can split them further into con-
tinuous variables and discrete variables. Continuous variables can
take a very precise value to many decimal places, at least in theory.
Discrete variables can only take particular values, usually 0, 1, 2,
3... (what mathematicians call natural numbers).

A good way to spot these variables is that if there are units of
measurement (for example, acres burned in a forest fire, or hours of
battery life for a new phone), it is definitely continuous or discrete.
Unfortunately, the opposite is not true: there are also discrete and
continuous variables with no units, such as the ratio of men to
women among job applicants.

The other form of data is categorical, which indicates that each
observation falls into one category. Those categories can sometimes
have a natural order to them, but that doesn’t make them discrete.
Discrete variables have a true numeric meaning: you can subtract
the population of Anytown from that of Othertown, and it means
the number of extra people. That is not true of ordinal categories
like Strongly Disagree, Disagree, Agree, and Strongly Agree, even
if you record them as numbers like 1, 2, 3 and 4. We’ll come back
to them in Chapter 4.

41
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3.1 ONE VARIABLE AT A TIME

Let’s start with one variable containing continuous data: the dis-
tance that people commute to work in the city of Atlanta, Georgia,
United States. Before we draw anything, even before looking at the
data, there are some aspects we expect to find. The numbers have
to be positive, and we would expect most of them to be under
twenty miles, with a few much longer.

You don’t have to know anything specific about Atlanta to
realize this, but it’s useful to stop and think about what you expect
to see before you get going. When you create visualizations, if you
find things not quite as you expected, it might suggest you did
something wrong – which is very easy with data analysis software
and spreadsheets.

It feels sensible to encode the commuting distance to the hori-
zontal position, from zero miles on the left to the maximum com-
mute distance on the right. Let’s draw a dot for each person in
this data set, and stack them up if they are within 2 miles of each
other’s distance. Figure 3.1 is sometimes called a strip chart, and

Figure 3.1 A strip chart or dot plot of one continuous variable.
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Figure 3.2 Histograms of one continuous variable. We can
choose how many bins to use for counting the data. Ten bins
(left) seems to lose the detail too much, twenty bins (center) is
about right, and fifty bins (right) is so many that it starts to
show the heaping effect of people reporting distances rounding
off to multiples of five miles, which overemphasizes errors or
“noise” in the data.

sometimes a dot plot. This confusion of names is something you
will find happening a lot in data visualization. (There’s another
meaning of dot plot, which appears in Figure 10.4, for example.)

A visualization should always tell the reader what the variables
are, preferably by labeling the axes like we did here with “Distance
traveled (miles)”; if there are units like miles they should be made
clear too. If you find a visualization confuses you because it is
not clear what the different visual parameters represent, then the
analyst has slipped up.

We also need to make the number of people at each distance
clear. In the strip chart / dot plot, the height of each stack of dots
shows this without any further effort on our part. If we encoded it
to something else, like color, it would not be so easy for readers to
compare the number of people traveling different distances.

However, there are limits to this basic chart. If we have a lot of
data, we will have a lot of dots, and our strip chart / dot plot will
either have to be very tall or the dots will have to be very small.
A better format for this same encoding is given by the histogram:
chop up the continuous variable into “bins,” count how many ob-
servations lie in each bin, then draw a bar of height to show the
count (Figure 3.2).

When I was a university lecturer in statistics, I always started
teaching with histograms, because being able to see and think
about the distribution is such a central concept, and it’s really
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Figure 3.3 A kernel density plot of one continuous variable.

obvious how it is created from the data. It’s a springboard to
thinking about data in all sorts of more sophisticated ways. The
histogram is very widely used and regarded as a standard, basic
form of data visualization, but in fact it also turns out to be a
crucial concept for today’s Big Data problems, which we will en-
counter in Chapter 15.

It’s easy to see how histograms get calculated by counting data,
but there’s an alternative called the “kernel density plot” that
works by replacing each observation by a nice smooth shape (called
the kernel) such as the normal distribution (see the box “How to
read a distribution”). When the heights of all the kernel curves are
added together at each point along the horizontal axis, and the
result is plotted, it forms a smooth line that traces out the same
shape as we’ve seen in the histogram.

Kernel density plots are a handy format to use in visualization
because there is less “ink” on the page, so they can be absorbed by
the reader quickly. On the other hand, they rely on computer power
to calculate them, they might not be available from every software
package, and they can extend into impossible values because of
the smoothing out, which might worry readers (you can see some
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negative distances in Figure 3.3). Also, the number of observations
in the data is lost, and would need to be noted in a caption or
nearby for readers to find.

How to read a distribution
Histograms and kernel density plots show us what shape the
data take when seen en masse. If the data are a sample from a
bigger population, then this can give us a clue about the shape
the population takes. It is valuable to be able to spot a few char-
acteristics in any chart that shows a distribution:

• Is there one peak or more than one? More than one might suggest the
data actually come from a mixture of different populations. Both the
distributions shown have one peak (statisticians call them unimodal).

• Is the spread around the central peak symmetric or skewed? How far
out does it go? The Atlanta commuting data is skewed (we call this
direction right-skewed or positively skewed).

• Are there outlier data that are separated from the bulk of the data by an
empty space? There might be something wrong with them – perhaps
a data collection error? There might be some outliers in the Atlanta
commuting data at 100 miles, which appears as a small bump towards
the right. The fact that this is exactly 100 is also suspicious and may
indicate heaping.

The same techniques can be used for discrete and continuous
variables, the only difference being that we expect the discrete
variables to be lumpier in shape as they can only take specific
values.

Sometimes, when the distribution is strongly skewed, it can help
to transform it. This means that instead of encoding values of the
variable to, say, the horizontal location, we encode the values after
sticking them through some mathematical function. Logarithms
are popular for this: they squash down high numbers more than
they do low numbers, so they reduce positive skew.

Any chart using a transformation like this needs to reflect it in
the axis, and I think it is probably worth noting it in text too. We
don’t want to confuse readers by the very trick that we thought
would make our work clearer for them. In Figure 3.4, I have en-
coded the square root of the commuting distance to the horizontal
location, and this has made the chart more symmetric.
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Figure 3.4 Commuting distances in a kernel density plot after
square root transformation.

3.2 COMPARING UNMATCHED DATA

Let’s say we have some data on one variable and some on an-
other, and we want to compare them. Figure 3.5 has three ways
of comparing commute times in Atlanta and New York. Because
distance is encoded to the horizontal location, if we want to make
comparison easy for the reader, we must arrange multiple visualiza-
tions like histograms above each other, and not alongside. Kernel
densities, because they are simple curves, can be superimposed ef-
fectively. The third option here is a heatmap ribbon, which counts
commuters within bins like the histogram, but encodes the count
to color. This is compact and can be eye-catching, but color is not
suited to detailed examination of the values under the data. In this
instance, it might suffice, if the message is simply that many New
Yorkers travel a relatively short distance to work.

We can do the same thing when we divide the data into groups
and compare the values of one variable across groups. Two his-
tograms stacked above each other allows for some, though not per-
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Figure 3.5 Comparing continuous data by a stacked histogram,
superimposed kernel density plot, and heatmap ribbons. At-
lanta data came from the Locks; New York data are fictitious.
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Figure 3.6 A violin plot of the train delay data, comparing four
seasons. There is obviously not much difference, except that
the winter “violin” is a little higher. I emphasize in the vertical
axis label that the data come from 20 years, as a subtle caution
to the reader that a lot may have changed in that time.

fect, visual comparison. Two density plots can actually be super-
imposed, which is clearer. But as the number of groups or variables
to be compared grows, the visualization will get too busy.

One really important option when that happens is to stop draw-
ing the data in its entirety and draw some summary statistics
instead: we’ll deal with this in Chapter 5. If there are a lot of
variables, you might have to try to get the best two-dimensional
representation you can, and we’ll go into that in Chapter 12. But
for now, a variant on the kernel density plot, called the violin plot,
can help. The kernel density is flipped round to the vertical dimen-
sion, and mirrored on either side of a line (Figure 3.6). Because this
is quite compact, you can line up quite a lot of groups or variables
before it gets overwhelming for the reader.

Long, thin visualizations for each group can also be stacked
above one another. This works well with heatmap ribbons, and
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when done with kernel densities it can look quite physical, like a
three-dimensional landscape, which helps readers absorb the infor-
mation quickly (Figure 3.7).

If you have to compare several variables over several groups,
you will need multiple charts. Ask yourself whether the reader will
typically compare groups or variables. To continue our example,
people may be interested to compare commute times between At-
lanta and New York, and work times likewise, but there’s less in-
terest (we imagine) in comparing commute time and work time in
any one city. So, we would make a chart – perhaps a violin plot – of
commute times in various cities, and another of work times in var-
ious cities, and so on for different daily activities. Sometimes, you
just have to compromise with complex, data-heavy visualizations.

3.3 COMPARING MATCHED DATA

When we are comparing two variables or two groups in the data,
and we can also link the individual observations together across
the comparison, we have matched data. The most common reason
for this is having data on the same people (or whatever you are
measuring) at two timepoints. The charts in the previous section
are applicable, but they omit information: the link between data
points.

It’s important here to compare like with like. Obviously, we
should match the correct data together, and for the same reason,
it will be confusing if some of the data are matched and some
are not. Suppose you are surveying customers on how much they
spent on groceries in the last month. Your company ran this survey
in 2015 with a small sample of about a hundred customers, and
now the boss wants to know if things have changed. One option
would be to run a whole new survey. It’s very unlikely that anyone
from the 2015 survey will be included, and you would then have
unmatched data.

However, this nagging doubt will stay with you: if you see a
difference, is it that shopping habits have changed generally, or is
it just bad luck that you got a different batch of people? There are
statistical ways of weighing up the evidence for these competing
explanations, mainly by establishing how unlikely the second (bad
luck) one is, but you could improve your information by getting the
list of people who took part in 2015 and contacting them again. If
they have all started spending more, or less, as individuals, then
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Figure 3.7 Stacked densities of time of day for various leisure
activities (note that no kernel has been used, so there is no
smoothing of the curves). A “joyplot” by Henrik Lindberg,
named after the sleeve of the Joy Division album Unknown
Pleasures which reproduced a visualization of astronomical
data by Harold Craft in 1970, then a student at Cornell Uni-
versity. Reproduced with permission.
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that would be stronger evidence for a widespread shift in habits,
or disposable income, or something else.

Visualizing this requires either drawing all the data with the
matches, or calculating differences and drawing those instead. Each
person in the customer survey could have a 2015 spend and a 2017
spend, and a line or other device joining them. Or, they could just
have the change (positive or negative) from 2015 shown. It would
amount to the same thing but the first option shows the reader
the distribution at each timepoint. However, there’s nothing to
stop you from doing this in a separate, scene-setting chart before
you get down to how much each person has changed.

One good way of showing these individual-level changes is by
a line chart where each observation has its own line and time (or
whatever the matching is) is encoded to the horizontal position
(Figure 3.8). This is a case of small multiples, which is a general
concept that reappears in several places in this book. There are
multiple small charts and each one shows a different aspect of the
data. Comparisons can be drawn while not losing sight (literally)
of the bigger picture. If a really data-heavy set of small multiples
is going to be viewed online, then it can be made interactive, so
readers can pick what they want to compare (Chapter 14).

Another option that is clearer for large data sets, but not so
intuitive for readers unaccustomed to statistics, is to draw a scatter
plot, like we saw in Chapter 2. This could have the 2015 spend on
the horizontal axis and the 2017 spend on the vertical, in which case
a line of equality should be drawn, on which the two spends are the
same, above which 2017 is greater, and below which 2015 is greater.
Another option is to encode the 2017 values to the horizontal,
and the change to the vertical. Either way, this will need some
accompanying text to introduce it to the audience.

Or you could divide up the change into ordered categories,
maybe “Notably less,” “About the same,” and “Notably more,”
and encode those as an additional parameter, maybe color. There
are plenty of other options too. Sometimes, with two variables and
their respective changes, it’s possible to draw a scatter plot and
have an arrow for each data point that points in the direction of
the change, essentially showing that it moved from this x and y
to that x and y. This could be horribly cluttered, but when the
changes have a clear consistent pattern, it can be very effective.
We will encounter one in Figure 9.2.



52 � Continuous and discrete numbers

Figure 3.8 A line chart used to show matched data for a ficti-
tious study of blood pressure treatment. To tackle overcrowd-
ing, I used small multiples, replicating the chart four times,
faintly, and highlighting a different part (quartile, see Chapter
5) of the data each time. Now we can see that it is the people
with the highest blood pressure at the beginning of the study
(bottom right) who benefitted the most, while others did not
consistently change.

3.4 ASSOCIATIONS

The idea of associations between two variables is a really important
one throughout statistics and data science. Suppose we notice that
the customers who have been customers of our company the longest
are the ones who tend to be spending more on their groceries.
Now we are talking about combinations of one variable (time with
company) with another (change in groceries spend), and we can do
this more generally, to find out whether the value of one variable
is associated with another.
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This can lend evidence to a hypothesis that our company
attracts people earning higher-than-average incomes, who spend
more (good news for the boss, perhaps). But it might be the re-
verse: those who can’t afford their groceries are economizing by
no longer being our customers (the same data have just become
bad news). Or it might be that both have a common cause: young
people can’t have been with us that long, and they don’t earn as
much and don’t have as many children, so don’t spend as much
on their groceries (no interesting news at all). Or there may be no
cause-and-effect connection we can understand at all, but even so,
we can use time with our company to predict people’s groceries
spend: a prediction, not an explanation.

The mainstay of associations in discrete or continuous data is
the scatter plot. A common problem is that markers might coincide
in one spot, when observations share the same values. One way
around this is to make the marker thicker or darker at a shared
point, but it is hard for the reader to judge just how many points
there are from the size or color of the marker, because these are
visual characteristics which are not accurately perceived.

Another approach is to jitter them by adding small random
numbers to both variables, which will spread the markers out into
a cloud of dots around their common location and give a general
impression of the number of data points. Of course, we should tell
the reader that we are jittering in accompanying text. We revisit
jittering in Chapter 7.

Important features to look for in a scatter plot are whether
there is one cloud of dots or several clusters, whether there is an
upward or downward slope to the cloud of dots (indicating cor-
relation, which we return to in Chapter 6), and whether there is
any curvature to the slope. Remember this old statistician’s saying:
correlation is not causation. Just because one variable goes up
or down as the other goes up or down does not mean one affects
the other in any way.

Sometimes, the individual variables encoded as horizontal and
vertical can be shown in their own right, by having histograms or
density plots in the margins of the scatter plot (see Figure 3.9).
Another option is to have a short line in the margin where each data
point occurs, which is called a “marginal barcode,” or sometimes
a “rug plot.” The concept lends its name to an important idea
in data visualization: “marginal distributions” are for one variable
at a time, “joint distributions” are the scatter plot itself, and we
previously saw some “conditional distributions” where we look at
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Figure 3.9 A scatter plot of iris flower shapes with marginal ker-
nel density plots. Neither marginal density on its own would
lead you to suspect that the data had contributions from more
than one species, but the scatter plot, visualizing them jointly,
shows it.

the distribution in a certain subset of the data (conditional on
belonging to that group).

Other variables can be encoded to parameters affecting the
markers. Color is a good option for categorical variables, as long as
there are not so many that it overwhelms the reader like a kalei-
doscope! A popular approach is the bubble chart, where the size
of markers is a third variable. Recall, though, that area is not well
perceived, so you should be prepared to accept the third variable as
ordinal at most. The bubbles can also obscure one another if they
are opaque. We will take a look at how to show many variables at
the same time in Chapter 12.

Although maps contain horizontal and vertical positions, they
are perceived in their own way, accelerated by the familiarity of the
location. Maps deserve at least a chapter of their own (Chapter 13).



Associations � 55

Figure 3.10 Alternatives to scatter plots: hexagonal binning
(left) counts the observations (flowers) inside each hexago-
nal area and encodes the count to color, with darker hexagons
containing more observations, while the contour plot (right)
adds together two-dimensional kernel densities around each
observation and then draws lines joining together equal den-
sity points.

If the scatter plot is a two-dimensional dot plot, you might
wonder what the two-dimensional histogram and density plot look
like. In the same way that histograms count data in bins, we can
subdivide the two-dimensional surface into bins and count within
them. A square grid works, but hexagons create a smoother ef-
fect by avoiding the sharp corners. Recently, hexagonal binning or
“hexbin” plots superimposed on maps have become very popular
(Figure 3.10, left).

We can also smooth the density over the two-dimensional sur-
face and show this as though it was the height rising out of the
page. Contour plots are a simple way to do this. Although the den-
sity above a two-dimensional surface can’t be drawn directly (short
of using a 3-D printer), there are a couple of options we can use: we
can take slices through the joint distribution and then draw condi-
tional distributions, mimicking a 3-D elevation seen from an angle
(in the style of Figures 3.7 and 12.3), or we can draw contour lines
in the same way that maps show elevation above sea level (Figure
3.10, right).

Two cautions need to be given. First, continuous or discrete
data can be made to look like there is a bigger or smaller difference
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Figure 3.11 Use and abuse of axes: sometimes, it is misleading
not to show the whole range that a variable could take.

than there really is by zooming in on the area the data occupy. You
can see this in Figure 3.11, where the left image shows a variable
that extends down to zero and the right image zooms in on just the
available observations. If the data showed sales dropping in a com-
pany, it might be tempting to show the left one. If it showed crime
rates falling for a police force, the right one might be preferred.
Because of this, you may sometimes hear a very strict rule that
all axes should begin at zero. That misses the point; you should
show the whole picture and try not to mislead the reader. As a
counter-example, it would be silly to extend the axis representing
the year in the train delay data down to zero.

The second caution is that you may sometimes see broken axes
like that in Figure 3.12 (right). In fact, the left and right images
show exactly the same data. You might not notice the small symbol
and the change in numbers on the vertical axis in the right image,
and it could easily mislead readers. There is no reason ever to use
a broken axis like this.

Secondly, some numbers, like countries’ GDP in billions of US
dollars, are totals which would make more sense divided by the
population (per capita). The problem is that the observations in
the data are quite different: some are bigger than others, so it
is hard to compare like with like. Similarly, the number of times
some event has happened should be shown as a rate if different
observations have been followed for different lengths of time. You
can imagine how the customer survey above would be undermined
if some people replied with how much they had spent on groceries in
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Figure 3.12 Use and abuse of axes: breaking the axis is mis-
leading.

a month, and others in a year: they would all have to be converted
to a per month figure.

This chapter has been all about showing data. We will address
the statistical summaries in Chapter 5 and predictive models in
Chapters 9, 10, and 11.
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C H A P T E R 4

Percentages and
risks

WHEN THE DATA are just a list of “yes” and “no” for
each observation, the options for how you represent it sta-

tistically are seriously limited. That’s not to say that data like this
is not useful, it’s just simple. What we are really dealing with here
is membership of a category, and “yes” and “no” are the simplest
categories. Whenever you fill out a survey and tick a box, you put
yourself into a category. Maybe there are only two options: ticked
or not ticked, or maybe there are multiple categories. If you tell an
election pollster how you intend to vote, you fall into one of several
categories.

Sometimes, questionnaires ask people to “tick all that apply”
(for example: “Which of these software packages do you regularly
use?” followed by a long list), so they can fall in more than one
category at the same time. Some categories go in a specific order,
for example “How do you feel about our service? Very unhappy –
Unhappy – Happy – Very happy.” And finally, some categories are
nested inside others: you might work in the Data Analytics Team,
which is part of the Marketing Department, which is part of the
Commercial Services Division of a company. In each case, there are
some helpful visualization formats.

4.1 SHOWING ONE VARIABLE AT A TIME

To describe a variable with two categories, like “yes” and “no,”
only three numbers are needed: how many said “yes,” how many
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answered the question, and what percentage that is. If you asked
200 people and 60 said “yes,” that’s 60/200 = 30% . Occasionally,
you might see people using proportions, where you just divide the
number saying “yes” by the number who answered, so 30%, written
as a proportion, is 0.3. Whichever you use, visualizations will look
the same except for the labels on the axes, but most readers will
be more accustomed to seeing percentages.

What about the people who said “no”? Their numbers are im-
plicitly 200 − 60 = 140, so you don’t have to write them out. But,
if there were some “yes” answers, some “no,” and some left blank,
then the blanks should be acknowledged somehow. You could treat
it as three categories (“60 (30%) said yes, 110 (55%) said no, and
30 (15%) did not answer”). Alternatively, state how many were
blank and then reduce the total accordingly to just the “yes” and
“no” answers: “60/180 = 33% said yes, while 20 did not answer the
question.” In visualization, you are often drawing the percentage,
so make sure that the count in each category is not lost: include it
in a label or accompanying text.

The count matters because small numbers cause the percent-
age to be less stable. With only 2 observations, for example, the
percentage has to be 0, or 50, or 100, which seems much more dra-
matic a change than it really is, unless you can see that it is based
on small numbers. I’ll talk about data versus statistics much more
in Chapter 5, and how to show uncertainty in the stats in Chapter
8.

Simple percentages are best encoded as lengths, for example a
bar chart or dot plot. To be a little more eye-catching, you could
use a pictogram (see Figure 2.8), which is also encoded to length
if you line up the icons. To give an impression of the whole 100%,
the length can be shown against a 100% background (Figure 4.1
(left)), or to compare with some targets or other reference values,
a variation on this is called the bullet chart (Figure 4.1 (right)).

When there are more than two categories, they should all be
visible or listed in accompanying text, even just to show that no-
body chose it. For example, customers buying goods online can be
classified according to their home country (where the billing ad-
dress is); there will be about 200 categories but each person can
only fit in one of them. One bar or length will no longer suffice,
and sometimes there might be a big contrast between one percent-
age (say, the number of customers from the United States) and
another (the number from Swaziland). This will make the Swazi
bar so small that it will be impossible to see or judge its size.
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Figure 4.1 Percentage answers to one binary question.

We previously explored the problems with pie charts, but we
could consider some kind of waffle to get around this problem (Fig-
ure 4.2). Of course, small categories can be lumped together as
“Other” and a footnote can explain what it contains. When there
are large numbers of categories, readers will find it hard to absorb
all the information, and it might be best to collapse some together.
User testing can help with finding the right threshold for this.

Ternary plots are a way of simply showing any variable that
contains three categories – but no more than three (Figure 4.3).
The abundance of each must add together to 100%. They are pop-
ular in geology, chemistry and food science – all areas where people
deal with mixtures. At each corner of the triangle, we find 100% or
one of the categories and 0% of the others. In Figure 4.3, a day that
occupied the top corner of the triangle would comprise all work,
no play and no rest.

There are two special cases to think about. First, “tick all that
apply” questions, where the percentages may well add to more than
100%. Essentially, this sort of question has to be broken apart
into a series of binary yes/no questions for each of the options.
Second, ordinal variables have an innate order, and that always
has to be respected in visualization. Unfortunately, this introduces
another restriction into making the visualization, but compromise
is inevitable.

4.2 COMPARING UNMATCHED DATA

If you are interested in comparing the percentages arising from two
variables, encoding them as lengths and presenting them next to
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Figure 4.2 A 10-by-10 waffle shows percentages from six cate-
gories with one highlighted. Data from “The Global Epidemi-
ology and Contribution of Cannabis Use and Dependence to
the Global Burden of Disease: Results from the GBD 2010
Study” by Louisa Degenhardt and colleagues.

Figure 4.3 A ternary plot of proportions of activities for each
day of the week
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Figure 4.4 Comparing percentage answers to two questions

one another is the best first choice (part of an imaginary customer
survey is in Figure 4.4). Areas, even the waffle plot, can’t be vi-
sually compared without some effort or guesswork on the part of
the reader. You might feel tempted to add the actual percentages
as text to a chart like this, but there is no need if the axes are
labeled clearly and the encoding is appropriate; any extra text will
only clutter the image and distract the reader. These percentages
represent unmatched data because we are not explicitly linking one
person’s reply in one variable to the same person’s reply in another
variable. If they differ, that’s all there is to say about it.

If there are many variables or categories to be compared over
many timepoints, you can line them all up alongside one another,
but comparison gets harder as they move farther apart. Important
comparisons should appear close together, and to do this, there
might have to be compromises, for example, show all the categories
in one chart and then the important comparisons only in another,
or collapse less crucial categories together. If only one of the cate-
gories matters, why not collapse it to a binary yes/no, which can
be shown in a very compact form?

The option of stacking a bar chart (Figure 4.5) is given in many
spreadsheets and data analysis software packages, but this is prob-
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Figure 4.5 A stacked bar chart; compare with Figure 4.6

lematic. Although the category at the bottom of the bar can be
visually compared across the bars, all the others on top of it cannot
(without using a tape measure...) because of the problem shown in
Figure 2.7: they don’t start at the same level.

4.3 COMPARING MATCHED DATA

As with continuous and discrete variables in Chapter 3, we some-
times have matched data. The clustered bar chart, or its dot plot
and line chart equivalents, is key here (Figure 4.6). You could help
readers to also see which question has the highest percentage, or
the biggest change, by arranging the pairs in that order (Figure
4.7). This is a simple example of emphasizing the message without
distorting the facts.

When comparing timepoints, compare like with like. For ex-
ample, if the respondents to the 2017 survey were very different
from the 2014 survey, you need to tell the readers about that in a
footnote, or think twice about comparing them at all. It might be
better to compare only a subset that took part in both. Sometimes,
the matching of data is done in some way other than time. A med-
ical study of arthritis, for example, might compare the affected hip



Comparing matched data � 65

Figure 4.6 Clustered bar charts comparing three binary vari-
ables over time; notice how the small changes are easier to see
in the left chart, and easier than in the stacked version above.

Figure 4.7 Comparing ten binary variables over time, ranked
by value at the first timepoint (left) and the change (right).

to the healthy hip in each participant. It’s still matched and needs
to be shown as such.

Sometimes, what matters most is not that so many people gave
a certain answer in 2014 and so many in 2017, but rather how many
changed one way and how many the other way. This takes us away
from the raw percentages and into ratios and differences – statistics
that measure the change itself. We’ll look at them in Chapter 6. But
consider Figure 4.7 for now. Has everyone’s response to question
P2 stayed the same? Or have the same number gone from yes to no
as went the other way? We can’t tell from a bar chart like this. One
way of showing these flows of matched data is with a parallel sets
plot (Figure 4.8), though they can become very cluttered quite
quickly; this is analogous to the matched line charts we saw in
Figure 3.8.
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Figure 4.8 Showing movement between categories in matched
data with a parallel sets chart – 2 people have moved from
Ireland to the UK, 1 from Ireland to Portugal, 2 from UK to
Ireland, and 1 from Portugal to Ireland.

4.4 CATEGORIES WITHIN CATEGORIES

When categories are nested inside one another, the tree format
comes into its own. A decision tree can be linear, with the branches
always heading down (or up, though down seems more common)
the page as the data get subdivided (Figure 4.10). It can also be
radial, so that concentric rings show the categories and the data
are subdivided more when moving away from the center. A popular
form of this is the donut chart, which like a pie, encodes propor-
tions as angles (and therefore areas); further rings can then contain
subdivisions quite intuitively and this is sometimes called a sun-
burst chart. The treemap is another option (Figure 4.9). All of
these suffer from the problem that we might have to compare non-
adjacent items, and they might not have the same starting point
(because the location of the branch dictates it). The treemap and
donut chart also rely on perception of areas.
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Figure 4.9 A treemap: a marketing experiment compares two
deals and whether website visitors make a purchase. Although
a minority of visitors were offered the new deal, the higher split
of that green segment into purchases and no purchases shows
that it was more popular than the old deal.

4.5 ASSOCIATIONS

The idea of associations between two variables is a really important
one throughout statistics and data science. So far, I’ve shown you
some ways of comparing percentages over categories and sometimes
comparing categories over timepoints. That means combinations of
one variable (the categories) with another (time), and we can do
this more generally, to find out whether the value of one variable
is associated with another.

For example, imagine data provided by people receiving drug
treatments for arthritis. They are asked how satisfied they are with
the pain relief they feel they are getting from the treatment (“not
satisfied” or “satisfied”) and also whether they have tried any com-
plementary therapies, like acupuncture. Perhaps the percentage
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trying acupuncture is higher in people who are not satisfied than
in people who are satisfied. This could lend evidence to a hypoth-
esis that inadequate pain relief leads to people seeking their own
additional treatments in the form of acupuncture.

It might be the reverse: the experience of receiving the acupunc-
ture with unhurried one-to-one care makes them less satisfied with
the short medical consultation. Or it might be that both have
a common cause: some people just don’t trust conventional drug
treatments. Or there may be no cause-and-effect connection we can
understand at all, but even so we can use lack of satisfaction to
identify people who might want to try acupuncture, as a prediction
not an explanation.

In cases like this, we need to look at conditional percentages:
the percentage trying acupuncture in the “not satisfied” group (or
we could call this “conditional on satisfaction”). For conditional
percentages, there are several options in addition to clustered bar
charts.

Treemaps divide up a rectangular area on the basis of one vari-
able encoded to horizontal length and another to vertical (Figure
4.9); although we know that areas are not accurately perceived,
the lengths on either side are.

Decision trees show the breakdown of the data by one variable
then another in a very intuitive way, though they are generally just
diagrams that don’t actually encode data visually. However, pic-
tograms or waffles can be superimposed at each of the points where
the decision tree branches or terminates, giving at a glance a feel
for the numbers and how they propagate through the tree (Figure
4.10). The numbers can be real observations or hypothetical ones:
a tech company’s marketing department might show various sce-
narios where users move from visiting their website to downloading
their app to making in-app purchases. Chapter 10 will look at vi-
sualizing predictions as a result of statistical modeling like this,
and Chapter 11 will look at decision trees in more detail.

Ideally, the reader should be able to mentally flip the percent-
ages around to whatever way interests them. We have shown how
many website visitors offered a particular deal made a purchase,
but if they wanted to know how many of those who made a pur-
chase had been offered a particular deal, this should be easy to do
visually, even without counting the squares of the waffles or any
more than negligible effort. Reversing conditional proportions like
this is a common problem in statistics.
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Figure 4.10 A decision tree with waffles: a marketing experi-
ment compares two deals and whether website visitors make
a purchase.

The explanation is not something you can get from the data:
it has to be discussed and considered by experts and the arthritis
patients. Qualitative research is used in many settings, scientific
and commercial, to back up the patterns in the data with insights
like these. The relevance to data visualization is that we are always
conveying a message to some extent, and in the case of associations
between variables, that message is sometimes a step removed from
the data itself. If you are making visualizations, be careful not to
impose your own interpretation too much when showing associ-
ations. If you are reading them, don’t assume that the message
accompanying the data is as sound and scientifically based as the
data themselves.
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This chapter has been all about showing the data (or that sim-
plest of statistics, the percentage). We will look at how to visualize
predictive models for future data in Chapter 10.

4.6 RISKS, RATES AND ODDS

We often want to show the risk of something happening, and this
is just a proportion or percentage like any other, but we have to
be careful to be absolutely clear about the denominator, either in
the image or in accompanying text.

What happens when the risk is no longer a fair comparison?
If the marketing department we just considered had tracked cus-
tomers over a long time and counted whether someone had made
any purchase or no purchases, then it might not be a fair compari-
son to look at long-standing visitors in the same way as newcomers:
surely the newcomer is less likely to make a purchase as they have
had less time to do so.

In cases like this, we should divide the number of purchases by
the length of time someone has been visiting our website (or how
many times they have visited). This gives us a rate, and although
rates do not fall into the range 0% to 100%, we can visualize them
using the same techniques we’ve been looking at in this chapter.

Sometimes, for computational reasons, we have to talk about
the odds of an event happening and not the risk. The odds is
just the number of “yes” (or equivalent) answers divided by the
number of “no” answers (not the total). In the marketing example
above, the odds of making a purchase if you were offered the new
deal is 270/630 = 0.43. Odds are never written as percentages
(43%) to avoid confusion. Try not to use odds if you are making
data visualizations, as it has been shown that people find them
more confusing than risks and other straightforward percentages.
We will encounter the odds again in Chapter 6, including ways to
avoid it.
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Showing data or
statistics

EVERY TIME WE SUMMARIZE data, we are representing
them by a statistic. The mean is a statistic that tells us where

the middle of the data is by adding them all up and dividing by
the number of observations, and likewise the median is a statistic:
the value that has half the data above (or equal to) it and half
below (or equal to) it. The percentage of data falling in a category
is also a statistic. Technically, even the counts shown in the height
of a histogram’s bars are statistics.

There is a choice between showing the individual data and the
statistics, and the goal should be clarity. It is nice to see all the
data so the reader knows that nothing is being hidden, and can
explore the data to answer their own questions, but that can be-
come too busy to be helpful for many readers who want a headline.
Returning to the commuting data from Chapter 3, if we wanted to
compare several cities, then showing stacked histograms or super-
imposed kernel density plots, as we did for two cities, would just
be information overload.

The headline message might be adequately captured by just
showing a summary statistic for each city (Figure 5.1). If we show
just a marker for each statistic, this is called a dot plot (there is
a different visualization in Chapter 3 with this name, but that is
quite rare in practice).
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Figure 5.1 Dot plots show just the mean (or another statistic)
for a series of groups in the data, or variables. Dot plots can
also have the statistic encoded as the horizontal position, for
example Figure 10.4. Fictitious statistics, except for Atlanta;
see Chapter 3.

5.1 CHOOSING DATA OR STATISTICS

Apart from clarity, the visualization should take into account the
readers’ needs and the subject’s anonymity. If the reader just needs
to know a statistic, for example the median house price in various
neighborhoods, don’t waste their time with each house. Interac-
tive online visualizations allow for some flexibility in this (Chapter
15). The creator of the data visualization might also need to work
within the confines of agreements to collect or use the data, or
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wider laws. Perhaps the individual who has participated in some
research must not be identified, even accidentally.

Publishing only statistics would help here, though we may still
have to redact some of them, such as the earnings and demograph-
ics in various groups if one of the groups has only one person in
it; in this case, publishing statistics will be as good as publishing
that person’s data. The risk of re-identification is never completely
removed but it can be managed.

You can also combine the statistics with the data, as long as it
doesn’t get cluttered. Biostatistician Frank Harrell has suggested
spike histograms, which are histograms with little spikes extending
down from the horizontal axis that show the locations of the mean,
quartiles or whatever statistics you might want to show. They are
compact and allow the reader to choose what to look at.

It’s critically important that all the relevant statistics are
shown, not just the ones that look exciting. The more we indulge
in cherry-picking some results and ignoring others, the greater risk
we run that those statistics will turn out to have been nothing
more than chance fluctuations, which will disappear if we repeat
the data collection.

This is perhaps the single most damaging problem with how
statistical analysis is practiced today. It has different names, like
multiplicity, p-hacking or the garden of forking paths. It is con-
cerning in visualization because we have no choice but to curate
information and it takes an experienced analyst to know when this
crosses over into hiding some of the facts. We’ll encounter a real-life
example of this in Chapter 6.

5.2 THE STANDARD DEVIATION

The mean has an accompanying measure, called the standard de-
viation, of how spread out the values are around it. Unfortunately,
its interpretation is not very intuitive. The normal distribution in
Figure 5.2 is often encountered in continuous variables, and if your
data have a histogram like this, the mean will be at the high-
est point, and the standard deviation is the horizontal distance
from the mean to the point where the histogram bars change from
bulging upwards to bulging downwards. Frankly, even a statistician
finds this dull.

So, a more intuitive way to express it in words is that 95%
of the data should lie between two standard deviations below the
mean and two standard deviations above the mean. Remember that
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Figure 5.2 The normal distribution is a commonly occurring
shape in many different settings.

this applies for normally distributed data, not with other shapes.
This is sometimes called a 95% reference range. You can show it
on visualizations by an error bar extending above and below the
mean (Figure 5.3). But, as we will see in Chapter 8, the error bar
can mean other things too, so we should always state what it is in
an annotation.

In two dimensions, such as we’ve seen in scatter plots, you can
have a reference range for the horizontal variable, and another for
the vertical, and visualize this as two sets of error bars at right
angles, or as an ellipse. The cross where the error bars meet, or
the center of the ellipse, will be at the point defined by the two
means. However, although the means tell us where to center the
ellipse, and the two standard deviations how elongated it should
be in the two dimensions, we don’t know if it should be tilted at an
angle or not. That is the role of the correlation, which completes
the picture and we’ll discuss in Chapter 6, because it also functions
as a measure of how two variables change together.
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Figure 5.3 A dot plot with error bars.

5.3 QUANTILES AND OTHER ROBUST STATISTICS

The median has a more immediate interpretation than the mean.
Half of the data lie on the median or above it, the other half on
the median or below it. It is also more “robust”: if there are errors
in data collection which show up as very low or high outliers, these
will pull the mean up and down. However, the median simply has
to have half the data above and half below. It doesn’t matter how
far above and below, so errors at the extremes have no influence
on the median, as long as the value isn’t on completely the wrong
side.

In the same way the median is a robust alternative to the mean,
there are other statistics which can be used to describe the spread
of the data. The most common are the quartiles, which divide
the data into four equally populated parts. One quarter of the
data should lie below (or on) the first quartile, and one quarter
above (or on) the third. The second quartile is the same thing as
the median. The first quartile is also known as the 25th centile
(imagine dividing the data into 100 equal parts), the median is the
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Figure 5.4 A boxplot comparing nine variables over three time-
points, created for Princess Alice Hospice, Esher, England.

50th centile, and the third quartile is the 75th centile. You can
also work with different measures of spread, perhaps the 2.5th and
97.5th centiles, which together correspond to the 95% reference
range we saw before.

With skewed data, quantiles will reflect the skew, while adding
standard deviations assumes symmetry in the distribution and can
be misleading. For instance, the Atlanta commute times have mean
18 minutes and standard deviation 14 minutes. We’ve seen that
they are skewed in distribution: there are a few very long com-
mutes. The reference range based on standard deviations will ex-
tend into negative commute times, which is clearly wrong. Instead,
using the quantiles will get a better estimate of spread: 95% of the
data lie between 1 minute and 50 minutes.

We can use dot plots to put markers at the median and error
bars extending to some quantiles, as long as we make it clear what
they represent. A popular format, expanding on this idea is the
box plot (Figure 5.4).

A box plot shows five statistics, all encoded to horizontal or
vertical position. The median is the line in the middle of the box,
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and the edges of the box are the first and third quartiles. There
are then “whiskers” extending to the extremes of the data. But
sometimes, outliers could be hiding under the whisker, so typically
they will extend to the extreme data point or 1.5 lengths of the box
(the box length is also called the inter-quartile range), whichever
comes first. This convention is sadly not adopted by all software
packages, so you may sometimes find that the whiskers do some-
thing different, and it is worth checking the documentation to be
sure.

We can obtain a two-dimension variant on the quantile concept
too. Imagine a scatter plot of points. If you could put an elastic
band around the points, you can identify the outermost points as
those that the elastic band touches. This shape that encloses the
data is called a convex hull. If you remove them and repeat until
you have removed, say, 10% of the data, then you will have a 90%
quantile in a two-dimensional sense.

Quantiles are not the only robust statistics in town. Another
popular approach to reducing the influence of outliers is to trim
or Winsorize the data. Trimming involves simply setting aside any
data outside a certain quantile before calculating the mean or other
statistics. Leaving out the top 10% and bottom 10% would yield
an 80% trimmed mean, for example.

Winsorizing is similar but replaces those outer data values with
the quantile chosen as a threshold, so effectively they are replaced
with the quantile, and then the statistics are calculated. It’s worth
thinking for a moment about why the 80% trimmed or Winsorized
median would be no different than the original median. For the
same reason, the inter-quartile range will not change until you trim
or Winsorize 50% or more of the data, which would be an extreme
intervention in the data!

For describing spread, you might want something between the
standard deviation and the inter-quartile range for robustness, and
the median absolute deviation could help. We calculate the mean,
and then each value’s distance above or below it (the deviation),
we change the negative deviations so they are all positive, and then
find the median of those. This is a nice way of describing scatter
around the (possibly trimmed or Winsorized) mean because it is
quite tangible: half the data are farther away than this distance.
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Figure 5.5 A box plot (left) and dot plot (right) summarizing
change in train delays over 20 years. Notice how the mean for
2000 is inflated by just one exceptionally bad period, which is
visible as an outlier in the box plot.

5.4 SMOOTHING

So far, we have been boiling our data down to just a few statistics.
Sometimes we want more than that. Consider the train delay data
from Chapter 2 again. The line showing time trends across all
data points (Figure 2.2) was not helpful because it actually had
too much data in it. To see the overall trends and patterns, we
need to reduce our data down a bit more. This is perhaps the one
thing statistics is about, more than anything else, and we’ll look
at it in more detail in Chapters 9 and 10.

To visualize the longer-term trends, we could chop up time
into years and then draw some statistics for each year. Figure 5.5
has a box plot and a dot plot, while Figure 5.6 joins together
statistics over time: quartiles and 80% Winsorized mean ± the
median absolute deviation. Because there are 13 observations in
each year, the 80% Winsorization affects the two worst periods
and the two best periods.

None of these options is right or wrong – the choice should
be led by helping the readers to understand the message most
easily. There are always plenty of options for summarizing data and
visualizing the summaries; never feel restricted to one choice that
is popular or you have seen used before. You can do user-testing
with different options to see which is understood most easily.

There are several techniques to smooth out these lines. It’s eas-
ier for the reader to absorb smoothed lines, because there’s less in-
formation shown, especially when the visualization gets cluttered.
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Figure 5.6 Lines connecting statistics to summarize change in
train delays over 20 years: the quartiles (left) and 80% Win-
sorized mean ± the median absolute deviation (right).

Figure 5.7 Smoothed data to summarize change in train delays
over 20 years, using splines (left) and LOESS (right).

We’ve already seen kernel density plots doing this compared to his-
tograms (Chapter 3). Without going into details, the most popular
methods for putting smooth lines through scatter plots are called
splines, LOESS and polished medians. Data analysis software can
do these for you.

The person making the visualization can decide how much
smoothing to apply: too much and the crucial details could be
lost, too little and the line remains bumpy and might distract read-
ers from the important trend. We will look at smoothing again in
Chapter 10.
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C H A P T E R 6

Differences, ratios,
correlations

OFTEN WE HAVE TO GO ONE STEP beyond present-
ing summary statistics: we have to present patterns in the

statistics. Maybe we have a poll of voting preferences in various
towns and we summarize those data as percentages. Our readers
may also want to see what has changed since an earlier poll, or
how the towns compare to one another.

6.1 DIFFERENCE OR RATIO?

Most of what we do to compare statistics falls into subtracting
one from another or dividing one by another. Means and medi-
ans are well suited to subtraction: the difference in these statistics
is roughly what the reader sees when considering adjacent violin
plots, histograms, density plots, or whatever format. Their eye will
generally go to the middle of the distributions and see how much
it is shifted: a change in the average. If the data are matched and
joined by lines, and it is not too cluttered, they will also get a
general feel for the average change.

In the case of the mean for matched data, the difference in
means is in fact equal to the mean of the differences. But this is
not so for medians and other summary statistics, so visualizations
of change in matched data should make it clear whether it shows
statistics for the differences or differences in the statistics. If we
have unmatched data, we cannot subtract or divide specific obser-
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TABLE 6.1 Cancer diagnoses and person-years at risk
(PYAR) in the Million Women Study, comparing
number of weekly alcoholic drinks

Drinks per week Million PYAR New cancer
in the study diagnoses

Non-drinkers 2.18 17,416
≤ 2 2.68 19,307
3 − 6 2.11 15,183
7 − 14 1.71 12,838
≥ 15 0.48 4031
All combined 9.16 68,775

vations by one another, so statistics of the differences are not an
option, and can only really work with differences in the statistics.

Percentages, on the other hand, don’t have such a visual clue
for readers: there are just some bars in a bar chart, for example,
and some are longer than others. We can subtract percentages to
get a difference, or divide them to get a ratio.

Here are some figures analyzed by Dr. Naomi Allen and col-
leagues from the Million Women Study, which look at alcohol con-
sumption and the appearance of cancer in the years that followed.
Because not all women stayed in the study for the same time, a
time at risk is calculated for each woman and these are added
together to give the person-years at risk (PYAR) for the alcohol
groups in question (Table 6.1).

We can divide the number of women with new cancer diagnoses
by the PYAR and get an incidence rate. It makes sense to compare
this rather than the number of women, because the low numbers
in the group with heaviest drinkers indicate that there are not so
many of them, rather than that it is safe to drink so much. This
gives us rates in Table 6.2.

Clearly, the rates per 10,000 PYAR are easier to read and un-
derstand than the raw rates, and this kind of conversion to a more
human scale is essential for good visualization. It would not be a
good idea to show the rates per PYAR with an axis extending all
the way to 100% (where everybody gets cancer within a year), be-
cause the values are so small that any markers or bars would just
disappear, but also because 100% risk is just not of interest here.
We can plot the region from 0 per PYAR to 0.01 per PYAR (0 to
100 per 10,000 PYAR), which captures all our stats (Figure 6.1).
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TABLE 6.2 Incidence rates of cancer diagnoses in
the Million Women Study, comparing number of
weekly alcoholic drinks

Drinks per week Rate per Rate per
PYAR 10,000 PYAR

Non-drinkers 0.0080 80
≤ 2 0.0072 72
3 − 6 0.0072 72
7 − 14 0.0075 75
≥ 15 0.0084 84
All combined 0.0075 75

Figure 6.1 Incidence rates in the Million Women Study (unad-
justed).
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It might be helpful to contextualize these rates by annotating
the bar chart with a horizontal line at the British incidence rate for
women aged 55 (the average in the study), which is 56 per 10,000.
This would show that the study has somewhat higher incidence of
cancer than we would expect from the general population. Perhaps
there is a bias leading women who know they are at risk to par-
ticipate, or perhaps they are just diagnosed sooner when they are
in the study. With the context made clear, the reader can think
about this.

We could also add some unrelated incidence rates, like the re-
gional variation. The Office of National Statistics gives incidence
rates for men and women at all ages in England: from 57 in Lon-
don to 65 in the North East. Adding this to the plot would help
the reader see that the alcohol-related variation is greater than the
regional variation. However, we have to be a little careful; alcohol
consumption is likely to vary by region too, in which case maybe
we are just showing the same thing two ways. If you are reading
visualizations like this and they lack context, you should seek out
some related statistics like I just did, and see where they lie on the
chart.

By rounding off the rates per 10,000, we can make this a lit-
tle more human again: an extra 12 women with cancer! These are
called natural frequencies: the number of women expected on av-
erage. We might make it even more human with a pictogram, or
some interpretive heading like “of 10,000 women who have one or
two drinks a week, 72 will get a new diagnosis of cancer each year;
this rises to 84 in women who have 15 or more drinks a week.” You
could even give a local example of a town with about 10,000 adult
women, if you thought that would help.

But now we need to make the comparison, and we’ll find that
the human element is hard to maintain. We can compare each of
the categories to those who have 1 or 2 alcoholic drinks a week
(Table 6.3).

If we divide them to get a ratio, it gives a multiplicative in-
crease, again assuming cause and effect. With ratios, a value of
one means no difference (anything multiplied by one is unchanged).
The Million Women data gives rate ratios because we have divided
our number of diagnoses by the PYAR and are dealing with rates.
We could say – and visualize – that there is a 16.6% increase in can-
cers among the heavy drinkers compared to the lightest drinkers.

That sounds quite alarming, but that is because the rate is not
much bigger after multiplication. Indeed, some people might mis-
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TABLE 6.3 Additional cancer diagnoses per 10,000
PYAR

Drinks per week Rate per Additional
10,000 PYAR diagnoses

Non-drinkers 80 8
≤ 2 72 0 (Baseline)
3 − 6 72 0
7 − 14 75 3
≥ 15 84 12

TABLE 6.4 Rate ratio of cancer diagnoses

Drinks per week Rate per 10,000 PYAR Rate ratio
Non-drinkers 80 1.109
≤ 2 72 1 (Baseline)
3 − 6 72 0.999
7 − 14 75 1.042
≥ 15 84 1.166

construe it as adding 16.6% to the incidence (which would take it
from 0.8% to 17.4%!). It will also look alarming in isolation (Figure
6.2). It is a good idea to show both absolute and relative risks (or
rates, in this case). If you can clearly use natural frequencies, it
will probably avoid all this confusion. (Sometimes, you may read
about relative risks and sometimes about risk ratios, especially in
medicine. They mean exactly the same thing!)

When we are dealing with continuous variables, the same choice
of multiplicative or additive scales applies, though it is not going
to introduce as much confusion as with binary values. It is quite
common to see the baseline value shown as a value of 100, and any
change is then relative to that: 120 means a 20% increase, and 75
means a 25% decrease. This is a multiplicative scale because you
multiply the baseline value by the change. Alternatively, the base-
line could be shown as zero and any change from that in positive
or negative numbers: an additive scale.

One advantage of setting the baseline to 100 and showing multi-
plicative change is that different variables can be brought together
despite having different values; perhaps we want to see hospital
waiting times and teacher-to-pupil ratios in schools alongside our
train delay data, in one visualization that considers investment in
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Figure 6.2 Rate ratios in the Million Women Study (unad-
justed, and relative effects without absolute values). This for-
mat, essentially a dot plot with added vertical lines from the
baseline, is sometimes called a lollipop chart. Leaving as much
space for negative values as positive emphasizes the fact that
all categories are at higher risk than the baseline, at the cost
of some empty (but perhaps not wasted) space.

public services over time. In (Figure 6.3), we see two variables,
wages and productivity, over time. They have very different values
naturally but here we just see change since 1999 on the multiplica-
tive scale and we can appreciate that wages have not kept up with
productivity.

6.2 ODDS AND THE ODDS RATIO

Sometimes for technical reasons we have no choice but to work
with the odds and odds ratio (which we encountered in Chapter
4). The odds ratio is always farther away from 1 than the corre-
sponding risk ratio, so comparisons look more striking. Unfortu-
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Figure 6.3 A line chart showing changes in productivity and
wages since a baseline at 1999, which is given the index value
of 100. Although the variables have different values, they are
brought together into a common scale of relative change. Data
source: International Labour Organization, reproduced with
permission.

nately, researchers have repeatedly found that people (even those
with scientific training) misunderstand the odds ratio and treat it
as if it was a risk ratio. If you could simply convert the odds ratio
to the risk ratio, this problem would disappear, but it isn’t that
simple.

In Chapter 10, I’ll look at a study of different residential courses
for drug addiction. For now, imagine you have the results of that
study, and because some more complex statistical analysis was
needed, this involves an odds ratio of 1.2, and we can interpret
it like this: comparing two people who are identical in other re-
spects but one went through the shorter course and one through
the longer course, the odds of staying drug-free are 1.2 times higher
in the person on the longer course.
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So far so good; no matter what someone’s odds are (determined
in part by other factors like history of failed treatments), they will
be better on the longer course. We can also say that the change in
the odds is multiplicative: 1.2 times better for everyone. However,
this doesn’t mean the risk is 1.2 times better for everyone. The
risk ratio will vary somewhat depending on those other factors. In
short, an odds ratio shared by everyone doesn’t mean a shared risk
ratio.

What can we do? My advice for visualizing odds ratios is to
convert them back to risks as much as possible. The risk is just a
percentage or proportion, so it is easy to visualize and to interpret.
Advanced statistical software can produce estimates of the risks
(called marginal effects) over a range of different people, and make
some nice charts of it too. We’ll look at those in Chapter 10 where
we dig deeper into the business of statistical models and this drug
addiction study in particular. If marginal effects are not an option,
you can still convert the odds ratio to a range of plausible risks
and then show those.

6.3 CHOOSING A BASELINE

Calculating a meaningful difference or ratio depends on having
a meaningful baseline. In Figure 6.3, we compared countries to
their 1999 values, so those make up the baseline. When you are
comparing groups, like taking a shorter or longer course to beat an
addiction, one has to be the baseline. To simply say that the odds
ratio is 1.2 is not enough; the reader needs to know which one is
being compared. You could use the shorter course as the baseline,
in which case the longer course has an odds ratio of 1.2 (improved
odds of staying drug-free compared to the baseline). Or, you could
regard the longer course as the baseline, in which case the shorter
course has an odds ratio of 0.83 (= 1/1.2 = 0.83).

There is no rule to guide your choice of baseline, which you
should choose to help the reader follow the story or message you
want to communicate. To show how great the longer course is, use
the shorter one as the baseline (odds ratio = 1.2). To show how
the shorter course has been failing some of its participants, use the
longer one as the baseline. If you have multiple visualizations tack-
ling the same comparison, be consistent in your choice of baseline
or you will confuse readers.
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6.4 CHERRY-PICKING

But here is a warning. Although we can and should choose statistics
to clarify our messages, we should not cherry-pick which parts of
the data to show, and hide the rest.

When the spin-off analysis from the Million Women study I
described earlier was published in the prestigious Journal of the
National Cancer Institutes, there was a chart showing a relative
risk arising from further statistical modeling, for various levels of
alcohol intake (Figure 6.4). This roughly corresponds to the figures
above and shows a steadily rising risk. The straight line looks quite
compelling.

The journal asked an expert to write an editorial comment on
it and they wrote “the message of this report could not be clearer.
There is no level of alcohol consumption that can be considered
safe.” Other campaigners found this quite exciting too; the pres-
ident of the Royal College of Physicians at the time wrote “we
also have to be clear that there is no level of consumption that is
risk-free, as clearly shown in the million women study.”

They had all been tricked by the omission of the non-drinkers
from the chart. To be fair, Dr. Allen and colleagues expressed con-
cern about the non-drinkers – they felt that the data were mislead-
ing and the risk too high – and they noted in the paper that they
could not distinguish people who never drank alcohol from those
who only recently became non-drinkers.

This is a good point, but the same thing can be said of all
the categories. It would have been better to include the data in
the visualization, with an annotation about their concerns, and let
the reader judge it for themselves. It goes to show that, if you are
making visualizations, you should not put all the detail in a boring
table and only the really exciting stuff in the visualization. Giving
different layers of detail is good, but selecting what to show within
one layer is potentially misleading.

If you are the reader, always consider whether some detail has
been omitted by having a look at the tables, appendices and so on.
It may be boring but you will be surprised at how often you are
being shown a selected version of the facts.

6.5 CORRELATIONS

So far, we have been talking about differences across groups (un-
matched data), or timepoints (matched data), or something sim-
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Figure 6.4 Line chart with error bars from Allen and colleagues’
paper on the Million Women Study, reproduced with permis-
sion of Oxford University Press.
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Figure 6.5 Scatter plots of 1000 random numbers with correla-
tions 0.2, 0.6 and 0.9 from left to right.

ilar. What if we have two continuous variables and we want to
describe how, as one goes up, the other tends to go up too (or
maybe goes down). This is the role of correlations. Although that
word is often abused to mean any generic association, it specifically
means a statistic describing this numeric connection between two
variables. It can take values from −1 to 1. Positive values mean
that as one variable goes up, the other tends (on average) to go up
too – as shown in Figure 6.5.

The more stretched out the markers are into a long straight
line, the higher the correlation will be. It does not tell you how
steep the line is, just how stretched out the markers are. Negative
values mean that as one goes up, the other goes down, so the
shapes in scatter plots will be stretched from top left to bottom
right instead. A correlation of zero means a shapeless cloud of dots,
neither sloping up nor down.

There are several correlation statistics, just as there are sev-
eral ways of measuring how spread out data are. The most widely
used is called Pearson’s correlation, and if someone does not tell
you which one they have used, it’s probably Pearson’s. A more
robust version called Spearman’s simply replaces the data values
with their ranks (1, 2, 3, and so on from smallest number to largest
number) and then puts those through Pearson’s formula instead.
The important difference this introduces is that Spearman’s will
detect any monotonic (always increasing or decreasing) relation-
ship between the two variables, whereas Pearson’s wants to find a
straight line before it returns a high correlation statistic.

It is unusual to see correlations visualized like the dot plot,
with just a marker for each correlation, encoded as the horizontal
or vertical location, though it could be done. Shapes of variously
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Figure 6.6 Scatter plot matrix of four measurements of iris flow-
ers.

elongated ovals would be another obvious encoding, though it could
only be appreciated at an ordinal level of information and would
require a lot of statistical literacy. For most purposes, though, the
scatter plot does the job adequately. Often, there are several vari-
ables and they all have to be shown correlated with each other.

The scatter plot matrix in Figure 6.6 shows this reasonably well.
The markers have to be quite small and possibly semi-transparent,
and the labeling of axes minimal, in order to keep it clear for
readers. This is not a common visualization for lay readers, so
some explanation is required. Personally, I like to introduce any
matrix visualization like this by comparing them to the tables of
distances that one sometimes finds with road maps, where towns
are listed down the left and along the top of a table. If the reader
has ever used them to look up the distance from A to B, they will
know how to read these visualizations.

Look along the row labeled with a particular variable until you
find it intersecting the column with the other variable you are
interested in. That will locate a scatter plot showing those two
variables together. The diagonal line down the middle is not needed
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Figure 6.7 Heatmap matrix of correlations among four mea-
surements of iris flowers. The color scale is diverging: it ex-
tends either side of a neutral value (0) to two different col-
ors. All variables are strongly and positively correlated, except
sepal width, which is weakly and negatively correlated to the
others.

and in some versions simply shows each variable against itself as
a straight line. Also, only one of the halves either side of that
diagonal are needed, as they are mirror images of each other.

Another variant is achieved by dropping the scatter plots and
just coloring in the blocks according to how high the correlation
is. In fact, this is easily achieved in some spreadsheet packages
once you have a table of the correlations, by using “conditional
formatting.” This approach of coloring in blocks according to some
statistic that relates the horizontal position to the vertical posi-
tion is called a heatmap (although the term heatmap gets used for
other things too sometimes, like two-dimensional kernel density
plots where density is encoded as color).
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C H A P T E R 7

Visual perception
and the brain

IT HELPS TO KNOW A LITTLE about how the human
brain processes visual information. It’s very popular to explain

this in terms of evolution, even though it is largely speculative.
Nevertheless, the great majority of our million years or so on earth
involved finding things to eat and spotting predators before they
spotted us. Sitting down and looking at data is a new preoccupa-
tion, but uses the same old hunter-gatherer apparatus (eyes and
brain). We tend to notice only the very broadest outlines of our
surroundings except for one or two things that stand out in some
way and draw our attention.

As a first principle, any visualization should convey its informa-
tion quickly and easily, and with minimal scope for misunderstand-
ing. Unnecessary visual clutter makes more work for the reader’s
brain to do, slows down the understanding (at which point they
may give up) and may even allow some incorrect interpretations
to creep in. You might hear this called chartjunk. The designer
Edward Tufte encourages us to think about the data:ink ratio,
which you should try to keep high at all times. Statistician William
Cleveland was more specific: the plot region is the part of any vi-
sualization that has to be clutter-free. That is the space between
axes where the data appear. Annotations, examples, and even just
eye candy outside the plot region impacts less on understanding.
Sometimes a key, showing what different colors stand for, can be
placed in the plot region without intruding much on the reader’s
attention.
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Figure 7.1 A version of Figure 4.6 with a better data-to-ink
ratio.

Although simplicity helps to avoid distraction, and some de-
signers claim that a good visualization will require no explanation,
not even axis labels, a legend or key, most experienced data an-
alysts recognize that some explanation and guidance is essential.
Complicated visualizations can make use of a “How to read this
chart” paragraph, and talking the reader through how to identify
and interpret one of the aspects of the data can be helpful.

Getting the reader to understanding the visualization at the
time is a different task than getting them to remember the image
or its message. Some research has found that including relevant
and witty chartjunk can actually help recall, but it has to be done
carefully.

7.1 ATTENTION AND CLARITY

Often, a visualization tells a story or conveys one specific message
out of a larger analysis. Scientific training discourages analysts
from telling the reader what to think, but in dataviz it may be
important. Such points of interest can be highlighted: a steady
increase in a line chart or one out of a cloud of markers in a scatter
plot, for example.
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This can be done effectively without cluttering by using pre-
attentive cues. These are features that our brains seem to be hard-
wired to detect. We can add unobtrusive features to our visualiza-
tions just to help tell the story like this. In Figure 7.2, one marker
is highlighted by color, another by size, then part of a line chart by
shading around it. Very little is needed to draw the eye. I challenge
you not to look at those points!

Crucially, these highlights have to be used sparingly. If there are
too many of them, the reader will feel overloaded with information
and they will no longer work. If you are making visualizations, be
careful not to fall into a trap where you are very familiar with
the data, so everything you create makes perfect sense to you.
Experimentation and user testing will help you out. In Chapter
17, I am going to revisit some of these highlights and link them to
everything else that surrounds the visualization.

We can also influence how the reader sees objects as being con-
nected in some way. Good data visualization builds on the long-
established Gestalt principles. The most obvious is that objects
(like markers or lines) that are close together in a cluster and dis-
tinct from others farther away will be seen as connected. If we
encode some of our variables as location or length then this follows
naturally. But there are others that are not used so often:

• Draw subtle lines connecting the objects of interest together.

• Identify a group by a very distinct color and shape (for mark-
ers) or pattern and thickness (for lines).

• Enclose them in a shaded area, or surrounding oval or rect-
angle (more complex shapes will lose this effect).

Of course, it’s not always possible to connect objects in the
visualization without clutter, but it is worth considering. As with
the pre-attentive cues, don’t overload the reader. There should only
be one group that gets connected per visualization for maximum
impact, and going beyond this can backfire. If you have multiple
messages, maybe you need multiple visualizations (or an interactive
one).

Jittering takes objects that confusingly coincide on the visual-
ization and moves them by small random amounts. Scatter plots
with markers piled on top of one another now have a cloud of
closely packed markers around a common point, and line charts
with the same problem now have a bundle of lines moving closely
together from one common end to another.
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Figure 7.2 Examples of pre-attentive features.



Attention and clarity � 101

Figure 7.3 Observed rates of bird seed consumption in my
garden, and smoothed lines through the data using splines.
robertgrantstats.co.uk/dataviz/birdfeeders

Smoothing is perhaps the opposite of jittering, in that a lot of
information gets summarized into one simple impression. A curve
wiggles through a scatter plot, tracking the markers, or through
a chart with multiple lines, showing a summary of the patterns
(Figure 7.3).

The important feature of smoothed curves is that the smooth-
ness is not part of the data. In the bird feeder data of Figure 7.3,
the consumption often changes, and the resulting lines are very
rough series of steps up and down (the gray lines). Most readers
would find it hard to see the overall pattern, but the smoothed
lines make it easier: more seeds consumed in summer 2015 and
spring 2016, less so in the winter and through the rest of 2016. We
are compromising by bending the natural line of the data, with the
intention of improving understanding.

In Chapter 10, we’ll explore different techniques for smoothing
in the context of models that predict one variable based on others.
If your aim is not as formal as all that, and you just want to give
a simplified impression, you could try a trick suggested by John
Tukey that didn’t catch on: instead of small markers like circles,
draw a vertical line for each data point. The overall shape will be
apparent to readers but the central locations on the line will not
be obvious (Figure 7.4).

Sometimes, there is a good reason for breaking a sequence of
data into more than one smoothed line. For example, if you have
economic data before and after the credit crunch of 2008, then

http://www.robertgrantstats.co.uk/dataviz/birdfeeders


102 � Visual perception and the brain

Figure 7.4 Tukey’s smoothing by drawing vertical lines instead
of points, applied to the train delay data from Chapter 2.

you know from the context, even before you draw the data, that
it could be represented as one smooth curve before and another
smooth curve after the crunch.

Another simplifying trick which we will encounter in Chapter
11 is edge bundling, where lines connecting points together are
artificially pulled together to reduce the spaghetti effect.

Semi-transparency is a great all-round tool for busy visualiza-
tions, also known as opacity. This allows lines, markers and such
that coincide to be seen. Those in the background show through
slightly. When markers are piled on top of one another, they
look extra dark compared to others on their own. Because semi-
transparency is more like the real world, we get an impression
of lines moving continuously over and under one another and are
able to take in more information immediately. There are several
images in this book with semi-transparency, such as Figure 8.2;
even though there are many markers or lines, you can see where
they pile up in greater numbers.

Colors, lengths, and areas are some of the attributes to which
we have been encoding data. These are stimuli that get perceived
by the brain. Not all stimuli have the same effect; the psychologist
Stanley Smith Stevens showed that, if you double a length, it will
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be perceived accurately as twice the size of the original, but dou-
bling an area is underestimated as 1.6 times bigger, while doubling
the redness of a color is overestimated as 3.2 times bigger. This is
why serious data visualization experts don’t like encoding things
to area or color unless they are just ordinal (or you are happy for
them to be understood as such).

7.2 CULTURAL ASSUMPTIONS

In many of the visualizations we’ve seen so far, time has been
encoded to the horizontal location, with old data on the left and
new data on the right. Why? This is an artifact of reading from left
to right, and is so universal in dataviz that it is preferred even by
writers of right-to-left alphabets like Arabic. Colors, too, do not
have a universal meaning. Red is dangerous in some places and
auspicious in others. It is a good idea not to assume your reader
understands this sort of culture-specific encoding.

Some visualization formats are themselves cues to interpret the
data in a specific way. For example, connections between data
points have been visualized in the style of a subway map, and lists
of items in the style of a periodic table of chemical elements. The
trouble here is that, unless these are aimed wholly at city dwellers
or chemists, not everyone will know what you are implying by the
format. Although they are creative and fun, creators of these sorts
of visualizations have sometimes been mocked for not having un-
derstood the thing they imitated. Do the distances between the
subway stops represent anything? Is there actually periodicity in
what looks like a periodic table, or is it just a glorified list?

7.3 LEARNING FROM OPTICAL ILLUSIONS

In data visualization, optical illusions are not just fun but actually
give us some clues as to ways that people might misinterpret our
work.

The café wall illusion (Figure 7.5, left) is one that may well
affect data visualizations with blocks of color, causing lines to ap-
pear sloped when they are actually not. Lines entering and leaving
shaded regions can also appear to bend (Figure 7.7), and wavy lines
appear flatter or taller than they really are (Figure 7.5, right). Any
visualization with high-contrast blocks of background color might
be at risk from these effects.
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Figure 7.5 The café wall illusion (left), where all lines
are actually straight and either vertical or horizontal. A
related illusion by Akiyoshi Kitaoka (right), where the
two gray waves are identical in height. Left image by
Wikipedia user “Fibonacci” - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=1788689.
Right image by Akiyoshi Kitaoka, used with permission.

Figure 7.6 The Ebbinghaus illusion: the darker gray circles are
the same size.

Figure 7.7 An illusion by Akiyoshi Kitaoka: the diagonal lines
are all straight and parallel, used with permission.

https://commons.wikimedia.org/w/index.php?curid=1788689
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The Ebbinghaus illusion shows that the perceived size of an ob-
ject is influenced by nearby objects. Bubble plots could be affected
by this, where the size of markers represents a variable. Our im-
pression of colors is also influenced by the colors of nearby objects,
and by what we expect to see. Any visualization with variation
in the size or color of markers which are close together could be
affected.
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Showing uncertainty

E STIMATES BASED ON DATA are often uncertain. If the
data were intended to tell us something about a wider popu-

lation (like a poll of voting intentions before an election), or about
the future, then we need to acknowledge that uncertainty. This is
a double challenge for data visualization: it has to be calculated
in some meaningful way and then shown on top of the data or
statistics without making it all too cluttered.

The most common source of uncertainty is when our data are
a sample from a wider population and we want to use them to
tell us something about the population. Because our estimates are
based on a sample and not the whole population, they give us an
underestimate or overestimate, and we don’t know which, but we
can at least put some boundaries on that error.

Other sources of uncertainty include missing data, bias in data
collection, imperfect measurements, and so on. We can attempt to
quantify these uncertainties too, and if we do so we can visualize
their impact, but there will be assumptions involved and these need
to be made clear to the reader.

8.1 THE BOOTSTRAP

Ideally, we would run our data collection again and again, and
see how different the estimates were each time. If they were really
unstable, maybe we should not draw any conclusions. If they are
always about the same, we can be more confident. Unfortunately,
re-running the collection many times is not an option, but we can
do the next best thing: we can make new versions of the data that
behave as though they came from re-runs.
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Figure 8.1 Semitransparent markers for 100 bootstrap esti-
mates of the mean in two-dimensional data.

If we then calculate our statistics or whatever we need from
each of those new versions and look at the distribution, it turns
out we can get an accurate measure of the size of the uncertainty.
This technique, which may sound too good to be true at first, is
called the bootstrap.

If we are showing the mean, for example, and we generate a
thousand bootstrap versions of the data, we will have a thousand
versions of the mean. These scatter about the observed mean that
we originally got (Figure 8.1), and if we discard the top 25 and
the bottom 25, we will have a 95% confidence interval around our
estimate.

In other words, there’s a 95% chance the population mean is in
that interval. (Some people prefer a more long-winded definition to
do with infinite repetitions of the data collection and analysis, but
I believe these come to the same thing. The difference of opinion is
down to the philosophical definition of probability. I only mention
it here so that, should you one day explain it in these terms, you
can at least be prepared for the pedantry that follows.)

We can show this interval using error bars, as we saw for the
standard deviation in Chapter 3, but now you can see why it’s
essential to explain what the error bars stand for: standard devi-
ation, confidence interval, or another statistic called the standard
error.

With some relatively simple calculations, like the mean, there
is no need to bootstrap, because a shortcut formula can give you
the width of the confidence interval straight away. This is generally
done in terms of the standard error. Just as two standard deviations
show the 95% reference range (within which we expect to find the



Confidence regions � 109

Figure 8.2 Semitransparent lines for 100 bootstrapped splines
through two-dimensional data.

population data), two standard errors show the 95% confidence
interval (within which we expect to find the population mean).

Another advantage of the bootstrap is that it cannot extend
into impossible values, such as less than 0%. Some of the short-
cut formulas can do this, which may lead readers to question the
reliability of the whole analysis.

If the data includes the whole population, meaning there are
no other observations to infer to, then there is no need for confi-
dence intervals or other measures of sampling error. Inference to
the future is different, though, and we return to that in Chapter 9.

8.2 CONFIDENCE REGIONS

Apart from error bars, there are a few options to show the uncer-
tainty:

• Shade the areas above and below lines, or around markers,
to indicate the confidence interval.

• Draw faint semi-transparent markers drawn at random from
the bootstrap statistics (Figure 8.1).

• Add lines or shading for a series of quantiles from the boot-
strap statistics, or theoretically from the standard error (like
Figure 5.6).

• Draw multiple semi-transparent lines (Figure 8.2).
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• Thicken, or make a line more transparent as it becomes more
uncertain.

• Use interactive graphics (Chapter 15) or animation (Chapter
9).

The funnel plot is a compact alternative, if you want to compare
one statistic across lots of groups of data. One example of this
might be to look at hospitals’ death rates in treating some life-
threatening condition called Disease X. Although we might prefer
to go to the hospital with the lowest death rate, if that is based
on only a few patients, then it carries a lot of uncertainty with
it. In a funnel plot (Figure 8.3), the individual hospitals (or other
units to be compared) are represented by markers, the percentages
(or whatever statistic) are encoded to the vertical position, and
the number of patients (or other units making up the data) to the
horizontal position.

Then, the hospitals with few patients are on the left and those
with many patients are on the right. We would expect the hospitals
on the left to be more variable just by chance, so we can superim-
pose a funnel shape that represents the confidence interval around
the average percentage. Any marker outside the funnel indicates a
clinic whose difference from the rest is so large that it is unlikely
to be attributable to a run of bad or good luck. This sort of plot
is routinely used to detect surgeons whose practice is potentially
dangerous and warrants investigation.

Two-dimensional confidence intervals are sometimes seen by
crossed error bars or shaded ellipses around markers. Unfortu-
nately, the plot region will quickly get cluttered with these. It is
simple to calculate the confidence interval for two statistics sepa-
rately (one on the horizontal location, the other on the vertical),
but bear in mind that they can also be correlated, so that a con-
fidence ellipse might be tilted. Bootstrapping is a simple way to
assess this.

One thing that definitely should not be done with error bars is
to have them in a bar chart, appearing above the bars but obscured
below. This seems to be standard practice in some scientific fields.
Hiding some of the statistical information for the sake of a format
is never a good idea. A dot plot is preferable if you need to show
a few values with error bars.
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Figure 8.3 A funnel plot comparing fictitious death rates across
60 hospitals. Note that the confidence intervals are jagged
because they show the number of deaths, which are fairly small
and go up or down in steps. Often, alternative calculations
are used to obtain smooth curves. The two hospitals at the
bottom left with no deaths only had 27 and 31 patients with
Disease X, while others were treating hundreds of people in
the same period. Because the probability of lying outside the
95% interval is one in 20, and we comparing 60 hospitals, we
would expect there to be a few hospitals outside the 95% limit
just by bad or good luck, even if they were no different from
the national death rate.

8.3 OTHER SOURCES OF UNCERTAINTY

Imagine a pre-election opinion poll, where people are called at ran-
dom from the phone book. Those with particular views might have
refused to take part, skewing the results. Maybe some people are
not in the phone book, or are out at the time of day when we called,
or don’t own a landline phone. How can we account for these biases
at the point of data collection?
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There are two broad approaches. One is to present the analysis
of the data as it is, and list the potential faults and biases in
accompanying text. Unfortunately, that may well be skipped by
the reader. Another is to try to take account of the biases and
what effect they might have had on our observations. That will
give us a more accurate result – but only if we get our assumptions
right.

If we use Bayesian statistics for the adjustment, we can apply
probability to any unknown, such as the association between polit-
ical views and being away from home at the time that the call was
attempted. We can get the computer to simulate different scenarios
like this and feed them through the analysis one at a time. This
gives multiple estimates, just like we have from the bootstrap, and
these can be visualized in the same way.

Missing data is a common problem. One Bayesian method for
this that has become very popular in recent years is called multiple
imputation. It fills in the missing values with multiple informed
guesses. Just one guess might be good but would imply that there
was no uncertainty about it, so it is better to have several guesses
that reflect the uncertainty too.

We can show the multiple imputed values in a faint, semi-
transparent color, or with smaller markers, dotted lines, or some
other way of making them carry less visual weight.

Data which we know are heaped (where data get rounded off
in some instances and not others – for example, the number of
cigarettes people recall smoking per day) or coarsely measured
(where you know it’s in a certain range but not a precise value
– for example, if a doctor records patients’ blood pressure as low,
normal or high without recording the actual values) can also be
imputed in the same way.

Weather maps, particularly for hurricanes, have popularized
multiple curves showing uncertainty in predictions, so that if you
use one of these approaches, it is likely to be understood quickly
by readers. These don’t only work for geographical data (we’ll look
at maps in Chapter 13).

In Figure 8.4, there are three different approaches: multiple es-
timates with semi-transparency (left), an interval around a best
estimate (center), and contours showing that the edges are less
likely than the central path (right). The center image suffers from
the misconception that if you live just outside the interval, you
are completely safe, and if you are inside, the hurricane is certain
to pass over you. In other words, presented with an interval for
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Figure 8.4 Three ways of showing uncertainty in projected hur-
ricane paths – and other visualizations too.

uncertainty, people often interpret it as something else: statisti-
cal uncertainty is a difficult concept to grapple with. These visual
approaches can all be adapted for lines and markers.
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Time trends

TRACKING CHANGES IN DATA OVER TIME is very
common and we have already encountered some visualiza-

tions with time encoded to the horizontal location, using bars,
lines and areas to indicate the data required. We call this time
series data, and there are some special statistical techniques for
analyzing it, which can impact on visualization.

9.1 MORE FORMATS AND ENCODINGS FOR TIME

I’ve already looked at bars, scatter plots and lines, which can all
be used to encode a variable you are interested in to the vertical
position and time to the horizontal. The areas under lines can be
shaded in too. Bars and areas can be stacked, though this is hard
for readers to digest; in recent years a lot of streamgraphs have
appeared which have a smooth flow of brightly colored areas above
and below a horizontal axis. They are striking but very hard to
translate back into numbers.

The alternative to stacking is to have multiple lines or bars
interwoven, one for each variable, group or observation, which can
become hard to read as the numbers increase, and depending on
how much variance there is within groups (jumping up and down
and crossing each other). We can also choose to show the data or
change relative to a baseline (see Chapter 6 for more on this).

A connected scatter plot shows how two linked variables have
changed over time. They get encoded to the horizontal and ver-
tical locations, and then the markers are joined by curving lines
that trace out time (smoothers are useful here to help readers dis-
entangle lines). So, time is not encoded as such but appears thanks
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Figure 9.1 A connected scatter plot in a ternary layout: Scot-
tish election results. This image uses splines in both horizon-
tal and vertical dimensions to obtain the smooth curves like
handwriting.

to the format. However, time could also be encoded in the color,
size, or some other attribute of the markers and/or the line joining
them (Figure 9.1). Animation can also capture time explicitly; the
various talks of global health professor Hans Rosling, which can be
viewed online, are excellent examples of this.

If we have a scatter plot showing two variables, and measure-
ments were made at successive points in time, then the mark-
ers could be replaced with an arrow, tracing out the direction of
change. This is very effective if the arrows do not overlap too much
and if there is a consistent pattern. Chaotic arrows going in all di-
rections are worse than no arrows at all, but some smoothing might
be possible (Figure 9.2). Thin isosceles triangles or tadpole/comet
shapes might be better than arrows, by doing away with the ar-
rowhead that complicates and puts more “ink” onto the “page.”
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Figure 9.2 A connected scatter plot showing countries moving
over time with Gross Domestic Product on the vertical axis
and a measure of economic fitness on the horizontal axis. Ir-
regular movement (top) is reduced to smooth flows by aver-
aging countries’ directions within each square of a grid (cen-
ter). Interpretation is then based on the averaged arrows alone
(bottom). From “The Heterogeneous Dynamics of Economic
Complexity” by Matthieu Cristelli and colleagues, reproduced
under PLoS One open access.
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Figure 9.3 A timeline: all the cities I have lived in, plus mini
maps, plus three line charts for things we lost sleep over in the
1980s. Some got better, some got worse. Note that the three
line charts are all on different vertical axes, none of which
are shown because I just wanted to convey the direction of
change. This sort of broad-brush approach is likely to irritate
more statistically literate readers.

Sparklines are very small line or bar charts for time series
data, with no labeling, that can be incorporated into text like this:

(that’s the train delays from Chapter 2 in 2007, with
a blue dot for the coldest period and a red for the falling leaves).
They are useful for giving a quick impression of a pattern without
taking up much space, and also have the benefit of breaking up
text and being fun.

Readers will find it easier to see vertical rises and falls in areas,
lines, or bars if the overall gradient (assuming there is a general
upward or downward trend) is not too flat or steep – 45 degrees
might be ideal – on the page or screen. You might need to stretch
one of the axes in order to achieve that. William Cleveland sug-
gested that long time series could appear in a sequence of vertically
stacked charts to get closer to this 45-degree slope, which he called
cut-and-stack. The disadvantage of this is that you break up the
series, making it much harder for a reader to mentally join the
parts back together again.

Timelines simply break up a horizontal or vertical length into
chunks of time. Having done that, they provide a simple and infor-
mative framework to which we can add other charting details or
small multiples (Figure 9.3).

In circular formats, some measure of time is encoded as an angle



More formats and encodings for time � 119

Figure 9.4 Waking and sleeping time over the first three months
of a baby’s life, in a spiral format. There’s a painful (for the
parents) flip in and out of being mostly nocturnal in the first
few weeks. Copyright Andrew Elliott (andrewelliott.design),
reproduced with permission.

around a central point, and a variable of interest is the distance
from that point. This can be effective if there is a strong periodic
pattern, but otherwise is often too confusing.

If we want to show hours within days, days within months, or
similar, these are nested loops, and we could capitalize on this in
the visualization, using some spiral format. To represent this in
two dimensions requires some compromise. If lines spiral out from
a central point, they will occupy more space in the image in the
outer loops of the spiral than they do close to the center, but that
might not affect understanding. Figure 9.4 shows a baby’s sleep
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patterns over the first three months, starting at the center and
moving out. The hour is encoded to the angle around the circle,
and the day is encoded to distance from the center. Each day is
a circuit, with waking time encoded as beige and sleeping time as
purple. Midnight is at the top.

To provide an eye-catching visualization, or when all the data
simply cannot be clearly shown in one chart, we can use anima-
tion with great effect to show the numbers changing over time.
This effectively encodes time to time, though maybe speeded up
or slowed down. Hans Rosling’s talks with animated bubble charts
were a landmark in data visualization in the 2000s, and they have
been watched online millions of times. You can make animated
charts as a stop-frame animation out of lots of static image files.
This book’s website links to some advice on this.

9.2 STATISTICAL CONSIDERATIONS

Regression to the mean is a common problem in data over time.
Imagine we are working on traffic safety. The city has paid to install
speed cameras at its most dangerous junctions, based on last year’s
data, and now we must show whether this has been effective. We
compare this year to last, and find an improvement!

Was it the cameras? Perhaps not, because some years are just
randomly bad years at some junctions, and in contrast next year
will tend to look better, even if the cameras did nothing. That’s to
say, sometimes random noise happens in your time series data and
if you select data on the basis of very high or low values, then you
might find the noise tends to go in the opposite direction (Figure
9.5).

This is a concern for data visualization because we often select
a part of the data on the basis of baseline values and visualize it.
The best way to avoid this is to have plenty of data from all sorts
of baseline values – but that’s not always an option. As we found
in Chapter 6, it’s best to show both change relative to baseline and
the absolute values. For changes over time, like the traffic cameras,
it would be helpful to show a longer period of time. If the problem
was just transient, this would stand out as a spike. We could also
show the spread at the baseline (accident rates at all the junctions
in the city, for example) and where the selected data lie in that.

Davis Balistracci has written an amusing, but worrying, list of
the ways in which any three timepoints of data can always have
a political spin to sound good (explained nicely on the Thinkpur-
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Figure 9.5 American unemployment rates, 2000-2017. If only
the period since the 2008-9 “credit crunch” was examined,
a misleading pattern would be found because of regression to
the mean. At the start of 2014, despite employment still being
below 2008 levels, an unscrupulous politician could present
only data since the start of 2010 and claim to have created
6 million jobs in steady growth. Created by Wikimedia user
“Farcaster,” used under CC-BY-SA 4.0 license.
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pose blog at goo.gl/ohEbQZ). When you are reading a visualization
showing a trend over time, and the people who prepared it stand
to benefit from a particular message, always ask yourself what time
period it spans, and whether that is really justified. At the time
of writing (2017), politicians still regularly take the credit for eco-
nomic improvements since 2008. But 2008 saw a massive crash in
the world economy, so it is hardly surprising that things might look
better now.

A special use of correlation comes into play with time series
data. We expect one value to be similar to the one that imme-
diately preceded it, and we can calculate a correlation or similar
statistic between these two parts of the data. In statistics, we say
the previous data is lagged. This is called autocorrelation (the data
is correlated with itself), and it can show us some patterns that
might not be so easy to pick out. In the train delays data from
Chapter 2, we can spot the roughly annual cycles of delays by
finding autocorrelations at one month’s lag, two months’, and so
on, and then drawing these as a bar chart.

Another important problem to be aware of is changing defi-
nitions in second-hand data. If the data were not collected afresh
for the purposes of the current analysis and visualization – perhaps
they were extracted from an existing database with other everyday
uses – then sharp changes may indicate that something has changed
in the way that the data are collected, labeled or calculated. If they
are drawn from something like a database of traffic accidents, for
example, we might find that at one point the law changed about
collecting these figures and so suddenly the numbers change. Per-
haps accidents involving bicycles have to be reported separately,
and what was once a database “field” containing all accidents now
contains only non-bicycle accidents. If we are not aware of this, we
could be fooled. Visualizations can work with imperfect data like
this, and they can help us spot them when we didn’t know about
them before, but each quirk needs to be explained.

9.3 UNCERTAINTY OVER TIME

Chapter 8 looked at uncertainty, and with time series data, there
is the special problem of predicting what will happen in the future.
Our best guess might be that trends will continue, but we do not
know this for certain, so as time goes by, the number of other
disturbances that might come into play increases and uncertainty
should increase too. For simple line charts, this allows a nice way

http://www.goo.gl/ohEbQZ
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Figure 9.6 Autocorrelation plot for the train delays data shows
a bump around a lag of 13 four-week periods which reflects
annual seasonality. The blue dashed horizontal lines indicate
the range within which we would expect to find fluctuations
due simply to random noise.
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Figure 9.7 A fan chart showing observed (and therefore pre-
cisely known) past inflation, and future projections with in-
creasing uncertainty. Copyright Bank of England, reproduced
with permission.

of showing the predictive uncertainty by having a shaded area that
fans out as we go into the future. These are called fan charts (Figure
9.7).

In the same way we can calculate confidence intervals, we can
also get software to give us predictive intervals. This is like pre-
dicting where the hurricane will move to on the map. Shading is
one way to visualize it, multiple lines is another, and we can also
have a sharp boundary or fade out the fan at the edges.

9.4 STATISTICAL TIME SERIES MODELS

Statistical models can be fitted to our data to explain how the
time series is comprised of a long-term trend, one or more pe-
riodic effects, and short-term noise. To continue the traffic acci-
dents example, the long-term trend might be that roads are getting
safer thanks to improved technology in cars and awareness among
drivers. Each year there may be more traffic accidents in the winter
because of wet and icy roads, and each week there may be more
accidents on Mondays to Fridays because of the volume of traffic
commuting to work. There may also be daily patterns reflecting
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rush hours, taking kids to and from school, and drunk drivers late
at night. Then there will also be some unexplained ups and downs
that we put down to noise.

Whatever patterns we discover, we need to consider whether
we believe the explanation, and we need to show it honestly. Gov-
ernment statistics are often seasonally adjusted, which means that
the analysts have tried to separate some periodic effect over the
year from a longer-term trend of interest. Simply writing that it
is adjusted, without further information, can arouse suspicion that
the figures have been manipulated, but showing what it entails
visually can reassure the reader that it is not only sensible but
actually essential to understand the data.

In Figure 9.8 we see an example of decomposing a time series
into different parts, which shows the daily number of births in
the United States each day from 1969 to 1988. There is a lot of
information here. The first chart shows a mean over all the data
as a horizontal line (and sets that as a baseline, so everything else
has a relative index where the mean is 100), a long-term trend and
shorter-term noise. The second chart shows a consistent effect of
days of the week: more babies tend to be born on week days. There
is a line for each of 1972, 1980, and 1988, so we can see that this
has become more pronounced over time. The third chart shows a
smoothed seasonal effect within each year, and again the individual
lines show that this has become more pronounced. Finally, there is
an effect for each day of the year, which is not smoothed, and we
can see the reduced births on significant holidays, with attendant
increases before and after them. A little annotation of the holidays
helps to tell the story.
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Figure 9.8 Time series data decomposed into seasonal compo-
nents, slow and fast trends: daily number of births in the
United States each day from 1969 to 1988. From Bayesian
Data Analysis by Andrew Gelman and colleagues. Copyright
CRC Press.
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Statistical predictive
models

MORE PEOPLE IN MORE SETTINGS than ever before
are interested in using data to predict the future. How many

new sales will this marketing strategy produce? How will people
vote in this neighborhood? What will unemployment be like over
the next two years?

These are all applications of statistical models. This chapter will
explore visualization aspects of regression models, while Chapter
11 covers trees and machine learning methods.

They all have some variables that are known and used to pre-
dict some other variable of interest. I will call these predictors and
outcomes respectively, but you might also hear talk of inputs and
outputs, independent and dependent variables, exogenous and en-
dogenous variables, covariates and target variables. They all mean
the same thing in simple predictive models.

In the machine learning community, this is called supervised
learning, because the outcome is known and you can check the
predictions against it to improve or supervise the model.

Having come up with a model that seems to predict the out-
come quite well, it is tempting to omit all the details of how it
was derived, and the assumptions it might rely on. A recurring
theme in this book is the idea of layering different levels of detail
so that readers can drill down to the extent they want. Don’t hide
the technical details completely – put them in a deeper layer of
visualization and explanation.
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10.1 LINEAR REGRESSION MODELS

The easiest predictive models to grasp are those with one continu-
ous outcome variable. We have a dataset where the predictor and
the outcome are both known for all observations, and we ask the
computer to find a formula that best relates one to the other.

Later, someone can apply this formula to new data, when they
know the predictor but not the outcome, by simply plugging the
predictor value into the formula. We can extend this idea: there
can be multiple predictors, and the formula can have a simple or
complex form, and those choices are up to the analyst.

With just one predictor and one outcome, visualization is
straightforward, because there are two variables and we can en-
code these as horizontal and vertical positions in simple, familiar
formats. The data can be shown as a scatter plot, and then the
formula is some kind of line or curve through the markers.

If we encode the predictor to the horizontal position, and the
outcome to the vertical position, as is conventional, then the ver-
tical distance from the curve to a marker is called the residual: a
measure of how wrong the prediction is for that observation.

We can visualize both the observed and predicted values in a
scatter plot, as long as we link them visually for each observation.
This has an extra interpretation, that the vertical linking line shows
the size of the residual (Figure 10.1).

The goal is to pass close to the markers (Figure 10.1), but not
to create a tortuously complicated curve that does a great job with
the current data and will actually do quite badly with the next lot
– which is called over-fitting: (Figure 10.2). In short, the prediction
should follow the overall trends and patterns and ignore the noise.

Cross-validation is a useful tool for finding optimal predictive
models, and it also works well in visualization. The concept is sim-
ple: split the data at random into a “training” and a “test” set, fit
the model to the training data, then see how well it predicts the
test data. As the model gets more complex, it will always fit the
training data better and better. It will also start off getting better
results on the test data, but there comes a point where the test
data predictions start going wrong (Figure 10.3).

The goal of the predictive modeler is then to fine-tune the model
until it works well for both training and test data. It can be helpful
to visualize some measure of model accuracy on the test data. In
linear regression, the root mean square (RMS) error is a common
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Figure 10.1 A simple linear regression model, with a straight
line, fits both training (left) and test data (right) quite well,
as shown by root mean square (RMS) error

choice. Different versions of the model will produce different RMS
errors. We can compare them in a line chart or dot plot.

We might also want to divide up the data, to see if there are
observations that are often poorly predicted, as this could prompt
us to design the model differently. So, we might want to have an
RMS error for each observation over multiple models and cross-
validation slices of the data. We can then draw these against other
variables and aspects of model complexity.

In Figure 10.3, we try predicting the vertical position (the out-
come) with just a single mean value for all data, which actually
does quite well and is of complexity 0. Then, we try including the
horizontal position’s predictor variable: a straight line, complexity
1. Then, the predictor squared, which allows a U-shape that the
data possibly exhibits (complexity 2). Any of these could be ac-
cepted, but adding more complexity leads to a poor fit to the test
dataset.

In the case of the straight line, we can talk about the slope of
the line, which defines how much the outcome changes if there is a
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Figure 10.2 A more complex regression gets a closer fit to the
training data but is over-fitting, because the test data are
much farther from the predicted curve, as shown by the large
RMS error. Even when we zoom in on the central region, (bot-
tom left) the size of the errors is much bigger than the simple
straight line achieved.

Figure 10.3 As the data on the left are used to fit increasingly
complex regression models, the RMS error slowly decreases
for the training set, but increases rapidly for the test set after
a certain point.
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Figure 10.4 The odds ratios, and their confidence intervals,
from a logistic regression for relapse in the IMPACT study,
shown in a dot plot. The red dashed line shows an odds ratio
of 1, indicating no effect. Confidence intervals lying entirely to
the right of the red line indicate statistically significant harm,
and those entirely to the left indicate statistically significant
benefit. The borderline significance of the benefit of longer
treatment is visible at the top, but beware of interpreting the
other odds ratios as cause and effect.

change in the predictor. A steeper slope means a stronger “effect.”
We can simply show the slope, which is quantified by a regression
coefficient, as a marker with error bars for its confidence interval
(Figure 10.4). A positive slope indicates that observations with
higher values of the predictor usually also have higher values of
the outcome too. A negative slope means the opposite.

A slope relating a predictor variable to an outcome might not
indicate a causal relationship. I can use sales of ice cream to predict
the number of people infected by common colds, but the ice cream
is not preventing colds, they are just correlated (see Section 6.2).
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What if the regression has more than one predictor? If there
are two predictors, you might be tempted to visualize them in
a three-dimensional format with the outcome encoded to height,
although this has some limitations (see Figure 12.3). Instead of a
line, there will be a surface slicing through the three-dimensional
space that gives a prediction of height for each combination of the
two predictors. Of course, this is no help once you have more than
two predictors.

We can show each predictor in turn against the outcome in
scatter plots with curves for the predictions. Now, with a more
complex model, the combined effect of all the predictors does not
necessarily indicate a straight line in such a visualization, even if
each one is itself just a simple slope.

Having a slope for predictor A and another of predictor B sug-
gests that their effect on the outcome add together. Our mod-
els don’t have to stop there, even in this simple linear regression
method. We can have interactions between predictors, which allow
the effect of A and B together to be more than (or less than) the
sum of their parts: the A slope plus the B slope plus some other
combined effect.

Interactions make visualization essential because we can no
longer simply use the coefficients to summarize the model. If we
visualized predictor A and the outcome together, we would have to
state what value predictor B has been set to, because it changes the
slope of predictor A. Often, people set them to the mean value in
the dataset, but more sophisticated software can generate marginal
effects and show the effect of multiple predictors in combination;
we’ll return to this below in logistic regression (Figures 10.5 and
10.6).

We have to be very careful about prediction out of sample,
which occurs when we assume the relationship we have found in
our model applies even beyond the range of predictor values we
had when we got the software to fit the model. You can see this
happening in Figure 10.2 where the prediction line does a great job
inside the range of the training data but heads off to improbable
values once it is outside that range. Visualization makes it obvious
when we are straying outside the data.

10.2 LOGISTIC REGRESSION MODELS

If the outcome is binary, we can give it values of 0 (no) and 1 (yes).
We wouldn’t expect a straight line to go through these points in a
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Figure 10.5 Marginal risks of relapse among IMPACT study
participants in the two treatment durations, with 95% confi-
dence intervals. Marginal risks are useful because all the com-
plexity of the adjustments in the model are captured.

scatter plot, at least not well, so there is a different sort of curve
that we commonly use, called the logistic function. It predicts the
risk of the outcome happening, a value between 0 (definitely not
going to happen) and 1 (definitely going to happen).

Unfortunately, to obtain this we have to have a slightly differ-
ent formula using the predictors, and the coefficients are no longer
slopes but rather odds ratios. We already found in Chapter 4 that
odds ratios are not very easy for people to understand and dis-
cussed ways of converting them to something more easy to visualize
and communicate.

Because the outcome values are either one (happened) or zero
(didn’t happen), encoding them as a position is not helpful. Too
many of the observations would be piled up on top of one another
to be seen clearly.

In Section 6.2 on correlations, I mentioned a study of residen-
tial courses of treatment for drug addiction. This was a real study
called IMPACT, run by the University of Massachusetts Aids Re-
search Unit, which looked at people attending two facilities in New
England, and allocated them randomly to either a short or long
course of treatment. However, the two facilities were very differ-
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Figure 10.6 Marginal risks of relapse among IMPACT study
participants in the two treatment durations and over three
different types of previous treatment history. The fact that
switching from short to long has almost the same effect in
each group reflects the lack of an interaction in this model
(“almost” because of the conversion of odds to risk).

ent, and actually the long course at one was the same length as
the short course at another. They also took in different groups of
people, who differed in their addictions and how many times they
had tried to recover.

In an experimental study like IMPACT, the aim is to estimate
the cause-and-effect relationship between treatment duration and
risk of relapse. If it had been more rigorously conducted, and there
had been no notable difference between facilities, we could simply
compare the risk (or rate) of relapse between short and long treat-
ments. A bar chart might show the two risks or rates, and a risk
(rate) ratio could be calculated and shown as annotation. Or the
ratio itself could be shown in a dot plot with its confidence inter-
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val. A waffle plot or pictogram might make this more concrete in
terms of people staying clean or relapsing.

However, this study was complicated by those differences be-
tween the two facilities. In situations like this, the analysis must
try statistically to separate the difference of interest (treatment
duration) from the one mixed up with it (previous addictions and
treatments, introduced via the facilities). This is called adjusting
and most times you read that some figures have been adjusted, it
will have been done by including those issues as predictors in a
regression model. (We saw this with the Million Women Study in
Figure 6.4 and in Figure 10.4.)

Suppose we include the treatment duration and the facility as
two predictors. That will give us two odds ratios, one showing
how much of an effect double-length treatment has, and the other
showing the odds ratio between the facilities.

Only the first of these – the odds ratio for duration – is of
interest and we say it has been adjusted for facility. We might want
to visualize this duration odds ratio and its confidence interval, but
there is not much point in visualizing the facility odds ratio. We
can present it in a table or text instead.

Other variables can be added too, such as the number of failed
previous treatments, or the participant’s age. We call these con-
founders when they get in the way of a causal estimate: the effect
that a change on duration has on the outcome. They are only in the
model so that we can separate them from the effect of treatment
duration, and should not be visualized in their own right (because
they are not causal estimates of the effect of failed previous treat-
ment, age, etc.).

If a confounder has an interaction with the predictor of prin-
cipal interest (treatment duration in this case), then that means
that changing treatment duration won’t affect everybody’s odds of
relapse in the same way, because the effect of the confounder and
the long treatment is not simply the two odds ratios multiplied
together. For example, someone who tried and failed several treat-
ments before might experience little benefit compared to someone
who is trying to give up for the first time.

If we believe that to be the case, we can try including that
interaction in the model. In such a case we would have to show
the predicted risk changing over values of the confounder, like in
Figure 10.6. This visualizes the marginal effects, which is a way
of estimating what the effect of the treatment is, taking the other
variables into account.
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Figure 10.7 Left image: two continuous predictor variables and
a binary outcome with a line showing where a logistic regres-
sion predicts a 50% chance of the outcome having happened
(black markers). Right image: we can also show just whether
the regression prediction is wrong.

Alternatives that you may encounter, such as partial depen-
dence plots and accumulated local effects plots, look similar but
use a different calculation underneath.

In this example, the treatment variable is categorical, but if it
was continuous, like the dose of a drug, then we could have a line
chart with shaded confidence region instead, or something similar.

Logistic regressions give us a predicted risk, from 0 to 1, and we
then have to decide whether each case is predicted to have or not
have the outcome, by imposing a threshold, over which we predict
a “yes,” and under which we predict a “no.” Once we have done
that, we can draw visualizations of both the old data used to fit
the model, and any new data, with the predicted status encoded as
some suitable parameter(s) like color, size or shape (Figure 10.7).

The line was placed in Figure 10.7 by finding the value of pre-
dictor A that gave a 50% risk prediction if predictor B was zero,
and the same thing when predictor B was ten. This is essentially
the location of the line at the top and bottom of the scatter plot.
Then, a line can just be drawn between these two points.

10.3 SEMI- AND NON-PARAMETRIC MODELS

If you read about smoothing in Section 7.1, you might wonder
how this is different from regression. In visualizations, it certainly
looks similar: a curve moves through the data, trying to follow any



Semi- and non-parametric models � 137

patterns. Up to this point in this chapter, we’ve been looking at
parametric models. They relate the predictor(s) to the outcome by
a formula with some parameters, such as the regression coefficients
we’ve already seen.

For example, in the IMPACT study, to adjust for the number
of previous failed treatments as a confounder, we might take that
number for each of the study participants, multiply it by a coef-
ficient (which happens in the case of logistic regression to be the
logarithm of the odds ratio) and then add that to the rest of the
formula. Once we know the parameters, we have fitted the model.

This is neat and simple but requires us to choose what sort of
shape the model curve will take up front, before fitting the model.
An alternative is non-parametric regression, where we allow the
data to determine the shape, perhaps using a smoother like splines
(see Section 5.4). Predictions can be generated from the smoothed
line or surface.

With non-parametric regression, there is no formula, just a
shape that curves through the data, so here visualization really
is essential. I discuss an interactive web page about splines in Sec-
tion 14.3. Generalized additive models are one of the most popular
non-parametric techniques nowadays; they allow there to be a com-
plex, non-parametric curve for each of several predictors, and these
added together make up a prediction.

The limitation of non-parametric models in data visualization
is that we cannot draw coefficient plots like Figure 10.4 because
there are no coefficients.

We can also mix these two together to get regression. Perhaps
the effect of the number of previous failed addiction treatments is
determined by a smoother, but that is then added to a parametric
formula with odds ratios for the treatment duration and facility.
Then the predicted risk of relapse would take each person’s position
on the smoothed curve and multiply it by the duration and facility
odds ratios. If long treatments are helpful and therefore reduce the
risk, the whole curve would drop downwards for people getting the
longer treatment.

Time-to-event or survival data require special models, and one
of the most common ways to examine them is with a Kaplan-Meier
plot. These show the percentage of study data still “surviving” at
various times. These needn’t be literally dying people: the data
could also be something like the time to first claim on an insurance
policy, and the event in question could even be desirable.

As time went by, people in IMPACT either disappeared and lost
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Figure 10.8 Kaplan-Meier plot showing the proportion of IM-
PACT study participants still at risk of relapse (therefore hav-
ing “survived”) at different points in time for the two treat-
ment durations.

contact with the researchers, or were recorded as having relapsed
and started taking drugs again. At the end of the study, anyone
remaining in contact and drug-free is recorded as such. In most
Kaplan-Meier plots, the survival curve is shown as a step, which
recognizes the individuals leaving the pool of people at risk. Confi-
dence intervals can be added, although there is scope for confusion
when they overlap.

The survival curve seen in the Kaplan-Meier plot could be a
strange shape. I once analyzed data on people dropping out from
a long-running study, and treated it as a survival problem. Every
couple of years, the study would send out questionnaires and invite
people to medical examinations. It tended to be at those times
that people asked to withdraw, so the survival curve looked like a
staircase with a series of sharp drops.

For situations like this, it is common to use a semi-parametric
model called Cox regression to see how other predictors, like the
treatment duration in IMPACT, raise or lower that curve. Cox
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regression parameters are usually provided by software in the form
of hazard ratios, which behave like risk ratios and can be drawn in
a dot plot.

10.4 HOW GOOD IS THAT MODEL?

Any fool can fit a statistical model, given the data and some soft-
ware. The real challenge is to decide whether it actually fits the
data adequately. It might be the best that can be obtained, but still
not good enough to use. With linear regressions, we can calculate
residuals for each of the data points by subtracting the observed
outcome from the predicted outcome.

A positive residual indicates an under-estimate, and a negative
one an over-estimate. The residuals can then be drawn in a scatter
plot against the predictions of the observed values, and possible
predictors that have not been included in the model. A good model
will have a uniform cloud of markers with no discernible trends to
them in each case.

With logistic regressions, the residuals are not calculated by
simple subtraction. Instead, we are interested in whether the pre-
dicted outcome (obtained by imposing a threshold value on the
predicted risks) and the observed outcome differ.

The location of the threshold matters here. Cutting at a risk of
0.5 (50%) might seem the obvious choice, but it is not guaranteed
to give the best predictions. That would mean that any predicted
risk under 50% means predicting that the outcome will not happen,
and any risk of 50% and above means it will happen. As we increase
the threshold, we will predict more data as “no” and fewer as “yes.”
This will mean more are false negatives and fewer false positives.
Lowering the threshold has the opposite effect.

A common, if not very intuitive way of showing this balancing
act is by drawing a receiver-operator curve (ROC). This is a line
chart with the proportions of the two types of wrong prediction
encoded to the two axes, and tracing out what happens as the
threshold moves from 0 to 1. A good model will have a line that
bulges upwards, while a model no better than random guessing
will have a diagonal line. The area under the curve (AUC), as a
proportion of the whole chart, is one way of assessing the overall
fit of the model, indicated by a high AUC.
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10.5 USES OF COMPUTER SIMULATION

Bootstrapping can be used to obtain estimates of uncertainty in
regression models, and the resulting many semi-transparent curves
through the data may be easier to read than shaded areas on either
side of the best guess.

Cross-validation also works by getting the computer to simulate
many analyses. If you have enough data, you can split them into
a training set and a test set. Fit the model using the training set
and then assess its fit on the test set. As the model becomes more
complex, it will always get better at fitting the training set but
after an optimal point, will actually start to get worse on the test
set. This is the over-fitting mentioned earlier. If this split-and-fit is
done several times, the results can be averaged and visualized for
increasing model complexity.

You might, for example, consider adding interaction terms to a
regression and assess that decision with cross-validation. We need
to communicate the choice of model as well as its results, and this is
a good way of bringing that out into the open while also being quite
intuitive. Line charts can show some measure of error for training
and test datasets as the model complexity increases (Figure 10.3).

Another useful approach to testing models using simulation is
to generate phony data using the estimated parameters of the
model. For example, if you get a line through the data, with a
certain amount of scatter above and below the line, simulate new
data along that line with that scatter. Then compare the phony
data to the real data. If there are discrepancies, it may highlight
somewhere that your model can be improved. Visually, having the
same charts of the real data alongside the phony data makes it
easy to spot problems. This is sometimes called posterior predic-
tive checking, especially in Bayesian statistics.
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Machine learning
techniques

DATA SCIENCE IS OFTEN DESCRIBED as a meeting
of methods to understand data, some from statisticians and

some from computer scientists. The computer scientists generally
refer to their techniques as machine learning. Newcomers to this
can find the distinction between machine learning and statistics
confusing, because there is not much more of a difference than
just the choice of words. Some methods, like principal component
analysis and logistic regression, get claimed by both sides.

These methods often help prediction with data where the pat-
terns are not simple. This can make visualization difficult, but it
also means that sometimes visualization is very valuable for under-
standing the model. Once you become familiar with the goal of the
analysis, and the many examples of different visualizations that
have been effectively used before, you will start to see connections:
how an idea from one application could be brought to bear on a
completely different problem.

The concept of marginal effects, which we encountered in Chap-
ter 6, is widely used for these models too, although a line chart of
the marginal prediction versus one predictor variable is often called
a partial dependence plot in machine learning.

In this chapter, I won’t attempt to give more than a very broad
introduction in intuitive terms, and to highlight some important
emerging areas that affect visualization. If you haven’t read Chap-
ter 10, and are unfamiliar with regression models, I suggest you
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read that first. I introduced cross-validation there, which is very
useful to tune these techniques so that they perform well.

Also, I must point out that you may see some of these tech-
niques described as “artificial intelligence,” which is overblown to
say the least. They may yet prove to be important tools for AI, but
in themselves they are just building blocks. Membranes are vital
for the functioning of our brains, but it would be foolish to refer
to a sausage as intelligent for that reason.

11.1 ENSEMBLES, BAGGING AND BOOSTING

A recurring theme in machine learning is combining predictions
across multiple models. There are techniques called bagging and
boosting which seek to tweak the data and fit many estimates to
it. Averaging across these can give a better prediction than any one
model on its own. But here a serious problem arises: it is then very
hard to explain what the model is (often referred to as a “black
box”). It is now a mixture of many, perhaps a thousand or more,
models.

For visualization then, we would have to abandon anything
based on model coefficients, and work simply with predictions and
residuals. When predictors include the position in space or time,
this can be capitalized on with a map or appropriate encoding of
the time variables (Figure 11.1).

It is tempting to visualize the prediction from each of the mod-
els that make up the ensemble, but this could be misleading. They
are not intended to stand on their own as predictions. Some will
work well only for a small subset of the data. Some will contain
predictor variables (which machine learning people often call “fea-
tures”) that are absent from others.

Nevertheless, we have predicted and observed values of the out-
come, and from those we can get residuals. It may be informative
to look at the residuals and find what sort of observation is not
predicted well. For those observations, we can then unpack the con-
stituent models and see if there are some that perform better than
others. This could help us open up the black box and understand
how to improve our model. There could be many observations and
many constituent models, so the only way to do this is with visu-
alization. Simple approaches like line charts will work well, as the
eye is drawn to anomalous spikes.
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Figure 11.1 Predicted taxi fares and tips from a random forest
model (explained below), fitted to a sample of journeys in
New York. Latitude and longitude are captured in a map,
while hour of the day, day of the week, and month of the year
are in a heatmap that reflects these variables’ cycles within
cycles. A slightly higher prediction at the southernmost tip of
Manhattan (the financial district) is the only obvious pattern
in space, while a strong pattern in the time variables correctly
reflects the way fares change between night and day, and a
preponderance of early-morning journeys to the airports.

11.2 CLASSIFICATION AND REGRESSION TREES

In Chapter 10 we looked at predictive regression models, which
always involved some kind of curve trying to pass through the ob-
served data points. But we could also chop up the predictor vari-
ables at specific values, creating a sharp step from one prediction
to another.

Trees, which can be used for categorical outcomes (classifica-
tion trees) or continuous outcomes (regression trees), look at each
predictor and judge how good a prediction would be if it simply
split the data at some threshold value. The predictor that does
best is kept, and the data split, like branches of a tree. Then it
repeats that inside each of the branches. Eventually, not much can
be gained, and some clever limits or “pruning” of branches ensures
that it is not over-fitting (see Chapter 10 for more discussion on
over-fitting).

This means that each observation belongs to some branch, and
every observation in the branch gets the same predicted value.
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Figure 11.2 A tree classifying three species of iris flowers, on the
basis of petal dimensions, shown as subdivisions of a scatter
plot.

For binary outcomes, we predict that it either happens or doesn’t
happen in a particular branch; for other categorical outcomes, we
predict which category every observation in the branch is most
likely to belong to; and for continuous or discrete outcomes, we
predict a value.

So, rather than a smooth curve, trees provide jumps to different
predictions. There are two easy ways of visualizing this that are
arguably easier to understand than regressions, though they only
help in simple cases. First, if we have two predictors, we can draw
a scatter plot with them encoded to horizontal and vertical, encode
the outcome to color or size, or some other attribute of the mark-
ers, and then draw lines sub-dividing the scatter plot with each of
the branch divisions. In Figure 11.2, the shapes of iris flowers are
subdivided on the basis of petal length and width.

In each of the branches, which appear as blocks, we can show
the predictive accuracy. One good option would be to annotate the
block with a measure of how well the tree does.

For binary outcomes, a classification matrix showing predicted
yes/no and actual yes/no would give complete information, al-
though you might prefer a more compact measure like % correct.
For continuous outcomes, you can summarize the residuals, either
with something visual like a miniature histogram or statistically.
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Figure 11.3 A regression tree, predicting petal width on the ba-
sis of sepal dimensions. Petal width (the outcome) is encoded
to the marker size in the left image, and the residuals are en-
coded to the marker size in the right image. The large residuals
in the corners of some blocks suggest that a tree might not be
the best way to classify these data.

Just as we could have marginal densities on a scatter plot
(Chapter 3), we could also add marginal plots of residuals ver-
sus predictor values (perhaps with a smooth regression line like
LOESS through them). A random scatter (with the
blue dot at the location of the branch) would indicate that the tree
found reasonable points at which to branch, while a change at the
point of the branch would suggest that maybe trees
are not a good way to model these data.

Another option would be to highlight the (hopefully few) incor-
rectly classified observations. In Figure 11.3, the predicted petal
width is shown in text in each block of the scatter plot – each
branch of the tree. We can see on the left how it captures the over-
all pattern of the outcome. But on the right, we see the largest
residuals around the diagonal. Trees, by splitting on one predictor
variable at a time, fail to draw diagonal lines and can only ap-
proximate them by lots of little branches. This image shows that
a linear regression would be better suited to this prediction.

Secondly, even with many predictors, we can show a decision
tree, listing the thresholds for each split and the accuracy of the
prediction against each branch. The scope for adding more small
visuals is sadly reduced, though. There are no margins because no
predictors are encoded to the horizontal or vertical positions, and
with more than two predictors, there is no longer a single scatter
plot that we can draw.
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Figure 11.4 A decision tree diagram for Fisher’s iris flowers.

Sometimes a tree has so many branches that it will be too wide
to draw. But it may help to have the branches radiate out from
a central point instead. This has been popularized by genetics,
where having too many “leaves” on the tree is a common problem
for visualization.

11.3 RANDOM FORESTS

Random forests are essentially an ensemble of trees. They use many
short trees, fitted to multiple samples of the data, and the predic-
tions are averaged for each observation. This helps to get around a
problem that trees, and many other machine learning techniques,
are not guaranteed to find optimal models, in the way that linear
regression is. They do a very challenging job of fitting non-linear
predictions over many variables, even sometimes when there are
more variables than there are observations. To do that, they have
to employ “greedy algorithms,” which find a reasonably good model
but not necessarily the very best model possible.

Trees, for instance, consider all the variables and partition the
data based on the best choice. Then they look inside each of the
branches. But the best overall prediction might not be achieved by
picking the best branching first, because that has repercussions on
all the branching that follows.

This is like how I play chess. I’m not very good at all. I try
to look at all the possible moves I could make next, and take the
one I think is best. But sometimes to win, you have to look farther
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Figure 11.5 Latitude versus the logarithm of fare plus tip in a
scatter plot (left); the same chart with a green line for latitude
versus predicted log fare plus tip (right). The financial district
effect (see Figure 11.1) is just slightly visible as an upturn on
the left of the chart, and this is captured in the predictions
(green line). Note that latitude is not the only predictor, so
the green line jumps around as other variables like time of day
push it up and down.

ahead, and make an apparently less good move now in order to set
yourself up for the killer in a few moves’ time. By averaging over
all the trees, and altering the data, random forests jump past this
trap.

Again, we have a black box. Each tree will lead to a different
layout in a decision tree visualization, so we cannot simply do
something like superimpose them with semi-transparency. We may
be able to draw the variables as markers and the path taken from
one branch to another, to see how often they follow in a certain
sequence.

We could also get the computer to crank out, for each predictor,
a scatter plot of observed outcome versus predictor, with a line
chart of predicted outcome versus predictor value superimposed. If
there is a pattern worth communicating to help people understand
what the model is doing, it should show up in these (Figure 11.5).

It’s also possible to obtain measures of how influential each
predictor variable is on the final prediction, either as a standard
output from the software, or in more heuristic fashion by altering
the predictor values one at a time and seeing how much the predic-
tion changes, and we can easily visualize these like in Figure 10.4 or
use them to order the predictor-by-predictor visualizations. Each
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Figure 11.6 Regression models like logistic regression can strug-
gle to correctly classify data like this, where there is no straight
line separating the two types of point. Another example is the
interlocking spirals in Figure 11.7.

case will be different when we have an ensemble of models, and
visualizing them is an area where experimentation is still going on.

Because the “forest” is a collection of steps between variables
(one is used to branch, then another, and so on), we may be able
to visualize it as a collection of lines connecting variables, using
some of the network techniques in Chapter 13. Whether this is
successful depends on the complexity of the trees and variability
between them; often the forest is comprised of very short trees.

11.4 SUPPORT VECTOR MACHINES

We looked at logistic regression in Chapter 10 as a way of sepa-
rating our variables into a region where the outcome is likely to
happen and a region where it is not. Logistic regression does that
with a line or surface, but some datasets have more complex pat-
terns that are not so easy to separate.

What if the outcome tends to happen in a small range of pre-
dictor values, and outside that, whether higher or lower, it does
not happen? This might look like the scatter plot in Figure 11.6.
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No straight line will successfully split the data and predict the
outcome.

However, if the predictor variables are replaced with distorted
versions of themselves, this will be possible. You could imagine
taking the scatter plot, printing it on a sheet of fabric and then
pulling the central region of the fabric up.

This is what support vector machines do with a lot of computer-
intensive calculation, and then you can predict that the outcome
would happen in any part of the fabric above a certain height.
Rather than using horizontal and vertical positions, we are using
a (potentially complex) combination of them.

With methods like support vector machines or neural networks,
we cannot employ the straight line we added to a pair of predictor
variables in Figure 10.7. There is no straight line dividing up the
data. Instead, we could try to find pockets of particular predictions
by getting predicted outcomes for a grid of points and then making
a contour plot.

This general concept of stretching and distorting the space
that the original predictor variables define is a powerful one, but
it causes a headache for visualization. The dilemma is to choose
between showing the predictor variables or the stretched and re-
combined versions of them. The original predictors which might
relate to the outcome in such a complex and non-linear way that
we can no longer see what the relationship is. But on the other
hand, the combinations of them that are used to identify pockets
of a particular outcome do not have any real-world meaning, like
the predictors do.

It also gets used to help visualization in a method called t-SNE,
which we will encounter in Chapter 12.

11.5 NEURAL NETWORKS AND DEEP LEARNING

Imagine you have a batch of logistic regressions, each with the same
predictors, but different coefficients so they give different predic-
tions. Then build another batch of logistic regressions, taking the
predictions out of the last batch as their predictors. Continue like
this and eventually boil it down to one prediction.

This will be a very complex model, capable of non-linearities
that pick out little patches in the data. Because the cascade of
connections forward from one batch of regressions (now you know
the structure, let’s call them layers) to another was originally con-
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ceived of as an imitation of neurons in the brain, this is called an
artificial neural network.

They used to be too hard to compute beyond the simplest of ex-
amples, but recent improvements in software, hardware and cloud
computing have made them possible even with a “deep” structure
of many layers; more than three layers is called deep learning.

They don’t have to involve logistic regressions as such, and
they don’t have to have connections between every “neuron” in
adjacent layers. One variant, called convolutional neural networks
(CNNs), has become very useful with image data, and because
images lend themselves directly to visualization, I’ll give CNNs
their own section below.

Are they a black box? They are certainly harder to grasp than a
simple regression, but the fact that they imitate physical structures
makes them easier to visualize than many other predictive models.
In theory, we could work out a formula based on the cascade of
coefficients in each layer, but it would be so complex it would give
us humans no new insights. However, plotting predictors versus
observed and predicted outcomes, as suggested for random forests
above, can give insight into the most informative predictors, and
what sort of pattern the model is suggesting for it.

If we can draw the network and also draw something about pre-
dictions, then we could have a small visualization at each neuron,
which helps us see how the prediction is built up, and if it is going
wrong somewhere, where that might be. Figure 11.7 is a screenshot
from an interactive web page that does just this.

There are two predictors and the outcome is binary, shown
by color. The data are shown with circular markers and the task
of the algorithm is to color the background so as to match the
pattern in the data. You can choose one of the datasets on the
left, select from seven features (machine learning terminology for
predictors or functions of predictors), and then press play to let the
software try to find a solution. Layers and neurons within layers
can be added and removed. By hovering over a neuron you can see
what its contribution is to the prediction, and by hovering over a
connection you can see its weight (influence on the next neuron
it connects to), also visualized by the color and thickness of the
curve.
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Figure 11.7 TensorFlow playground, an interactive illustration
of how neural networks fit predictions to data. By Daniel
Smilkov, Shan Carter, Martin Wattenberg and Fernanda
Viégas at Google, used under the Apache 2.0 License.

11.6 IMAGE DATA

Convolutional neural networks (CNNs) are especially useful for
analysing image data, where there is a two-dimensional grid of
pixels. The pixels are the predictors, but only in relation to their
neighbors. CNNs detect increasingly complex patterns in the im-
ages as the layers go on. The first layer might just predict yes or
no on the basis of whether dark and light boundaries between dark
and light patches appear, then in a later layer those will be com-
bined into lines and curves with various orientations, then those
get put together and start to detect recognizable shapes like faces.

CNNs are successfully used to automatically label images online
for web searches, for example, whether the image contains a dog
or a chair. Self-driving cars use CNNs to scan video cameras and
identify hazards and information on road signs.

Figure 11.8 shows images from a recent study. The image on
the left is classified by a CNN correctly as containing a flute with
99.73% probability. They then train the computer to blur parts of
the image (center image) until it finds a place that destroys the
CNN’s chances of finding a flute. This is then the location of the
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Figure 11.8 Image mask showing what a CNN detects and clas-
sifies as a flute, from the paper “Interpretable explanations of
black boxes by meaningful perturbation,” by Ruth Fong and
Andrea Vedaldi (arxiv.org/abs/1704.03296). When the flute
area is blurred (perturbing the data), the CNN’s accuracy at
detecting the presence of a flute drops from 99.7% to less than
0.1%.

flute, or at least the things that the CNN classifies as indicative of
a flute (right).

Visualization is helping us to interpret the supposed black box.
If we can see what the CNN is picking up on, we can check that it
is being sensible. It is the closest equivalent we can get to exam-
ining residuals in a regression model. There is an infamous story
of a military application of neural networks that had been trained
with many photographs, some containing tanks and other not. The
intention was to have automated tank detection cameras. The pro-
grammers got great results on these photographs and very poor
results in field tests. Only later did they realize that every tank
photograph had a cloudy sky, and many of the non-tank pho-
tographs had sunny skies – and it was this that the model was
using to predict the presence of the tanks. With a visualization
like Figure 11.8, they could have avoided the embarrassment.

http://www.arxiv.org/abs/1704.03296
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Many variables

HAVING TO SHOW COMPLEX INFORMATION in two
dimensions is just a fact of life in data visualization. Statis-

ticians call data with more than two variables multivariate. When
there are more than two variables to be shown, we have to choose
from:

• leaving some variables out,

• encoding some variables to less than perfectly perceived vi-
sual parameters like color,

• creating multiple visualizations, or

• trying to project as much of the information as possible onto
a two-dimensional image.

This chapter will take a look at the third and fourth options.
Of course, animation and interactivity can help, which appear in
Chapters 9 and 14 respectively. There is always some compromise
involved in showing it in two dimensions. Compromise is fine, as
long as the strengths and weaknesses are known and any caveats
are given clearly to the reader.

The individual variables should be described too, not just their
combined complexity. Small multiple kernel densities will often suf-
fice to give a quick overview of each variable that goes into a more
complex visualization.

12.1 SMALL MULTIPLES

At several places so far in this book, I have alluded to small mul-
tiples as a way of showing more variables. The principle is simply

153
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Figure 12.1 Prevalence of various languages in the United
States, detail from a small multiple choropleth map by Reuben
Fischer-Baum, used with permission. See Chapter 13 for more
on maps.

to have multiple images that are identical except that different
data are shown or highlighted in each. To avoid clutter, labeling
and axes are usually not repeated but relegated to the side of the
whole visualization. As a result, it may be that only very general
patterns can be seen, but that might be the best available option.
Small multiples can concisely show multiple variables, and maps
are also well suited (Figure 12.1).

To allow comparison along the horizontal axis, small multiples
will need to be positioned above and below one another, and like-
wise for the vertical axis they will need to be to the left and right.
You can compare the ease of up-down and left-right comparisons
in Figure 13.9.

12.2 IMPRESSIONS OF 3-D

If we have three continuous variables (or discrete or ordinal vari-
ables with enough distinct values), we could attempt to show them
as if they were in 3-D. The human brain is quite good at perceiv-
ing things as 3-D even when they are not, so we can tap into that.
Unfortunately, though, our visualization will not really be in three
dimensions, so the reader will not be able to rotate it, walk around
it or do any of the other things we do to understand the shapes of
objects in the real world. So, there will be scope for confusion.

Consider the 3-D bar charts offered by many spreadsheet pack-
ages and adopted gleefully by beginners in data analysis (Figure
12.2). It may not be clear how tall the bars are when they do
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Figure 12.2 One of the standard presets for rows and columns of
data in a popular spreadsheet package. This 3-D effect that is
totally unrelated to the data is never a good idea; for example,
can you tell if the blue in column 7 is taller than the gray?

not all start from the same line on the page or screen. Also, some
will obscure others, affecting the first impression that a reader has
(remember they will probably only look at a visualization for sec-
onds).

In Section 3.4, we had some alternatives to scatter plots, that
showed the density of observations at various points on a 2-
dimensional surface (Figure 3.10). It is worth looking back at those
as they can also be used to show the value of a third variable at
locations on the surface.

We can draw a wireframe: imagine taking some chicken wire (a
square grid) and shaping it into the surface you want, rising up
from the first two dimensions into the third one (Figure 12.3). We
can get software to emulate this and often readers will perceive it as
a sufficiently realistic 3-D surface to get an immediate impression.
It’s important, though, that they do not see through the surface
to what is behind it, or confusion will result – but then it is good
to avoid one side obscuring another anyway.
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Figure 12.3 A wireframe plot of three-dimension data (three
variables): latitude, longitude and height over a grid on the
New Zealand volcano of Maunga Whau. Unfortunately, some
of the data are obscured – a common problem with wireframes.

12.3 DISTANCES

A lot of statistical analysis is to do with distances. This is all to do
with how “far” one observation is from another. Just as you can
immediately see neighboring observations near one another with
two dimensions in a scatter plot, we can define distances in more
abstract ways. This leads to the idea of a distance matrix: a table
of all the distances in the data, between any pair of observations.

Figure 12.4 is a distance matrix from a study of tuberculosis in
the eye that I worked on, with data contributed from 26 hospitals
around the world. There are 962 rows and 962 columns; each one
belongs to one of the patients in the data. Where one patient’s row
meets another’s column, the pixel is colored according to a sta-
tistical distance between them. The diagonal line appears because
each patient is identical to themselves.

The rows and columns are ordered by hospital, and the fact
that we can see a pattern like tartan cloth indicates that there
are substantial differences in the data from the different hospitals.
That might indicate different populations of patients, or different
strains of disease, but it might also mean that they simply have
different habits in recording the data. Without visualizing this, it
would be hard to discern.

Statistical distances also play a role in putting things into the
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Figure 12.4 A heatmap of the distance matrix between 962 peo-
ple with suspected tuberculosis in the eye. Red pixels indicate
pairs of people with similar characteristics, yellow less so. The
fact that blocks of color are visible suggests that different hos-
pitals contributing data had differences in their patients, or in
the way they recorded the data.
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Figure 12.5 Multidimensional scaling allows archaeological
finds to be placed in a two-dimensional scatter plot that best
summarizes their differences, in this case the features of Eu-
ropean Stone Age pottery. Apart from three unusual finds at
the top, they mostly lie along a continuum from plain and
round on the left to flatter and more decorated on the right.
The archaeologists who drew this regarded it as evidence for a
continuum of pottery forms rather than two distinct cultures.
Annotating the plot with drawings of the objects is a helpful
and engaging addition for readers. From Upending a “Total-
ity”: Re-evaluating Corded Ware Variability in Late Neolithic
Europe, by Martin Furholt. Copyright Cambridge University
Press, reproduced with permission.

right order. In archaeology, it’s important to know what chrono-
logical order different artefacts were created in. If we dig up three
ceramic pots and find A and B have six features in common, B and
C have five in common, but A and C have only one, then they are
most likely to have been made in order A, B, C or C, B, A (either
in time or space). As soon as we have a distance like this, we can
use a technique called multidimensional scaling to summarize it in
two dimensions and then draw the points (Figure 12.5).
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Figure 12.6 Data in three variables with different standard de-
viations can be visualized in a three-dimensional shape like a
pitta bread. There is no ideal side from which to photograph
it, to convey its shape, but the image on the left is preferable.

12.4 PROJECTIONS INTO TWO DIMENSIONS

Imagine a three-dimensional cloud of data shaped like a pitta
bread. The three axes have different variances. If you wanted to
take a photograph of the pitta and show people what it is like, it
would be unhelpful to take the photograph end-on so that it looked
like a long pencil-shaped finger of bread (Figure 12.6, right). You’d
be losing a lot of information. However, even taking the photograph
so that the two dimensions with the largest standard deviations are
visible (Figure 12.6, left) fails to tell us how thick it is.

This is the idea of projecting multivariate data, which starts off
with as many dimensions as there are variables onto fewer (hope-
fully two) dimensions (Figure 12.7). As soon as you go above three
variables, you will not be able to picture this situation, but the
principle is the same. We want to project the dots from the right
angle to get insights into their structure.

Figure 12.7 Three projections of a three-dimensional distribu-
tion of data into two dimensions. No single projection conveys
all the information that this is shaped like the planet Saturn.
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In Section 12.3, we encountered distances between observations.
We can use these to work out the best projection. We want the dis-
tances in the projected image to be as close as possible to the dis-
tances in three or more dimensions. The most popular dimension
reduction techniques are principal component analysis for contin-
uous data (though it is often used for other types, usually without
disastrous distortion of the underlying patterns) and correspon-
dence analysis for categorical data.

They will both provide two-dimensional coordinates for each of
the observations, and these coordinates can then be encoded, for
example, in a scatter plot. Even without one of these techniques,
as long as you can calculate distances, you can feed them through
multidimensional scaling.

A major area of theoretical work in statistics in recent years
has been sparse data. This is the norm with data on people’s social
media, internet use or other routinely collected data, and especially
affects data that has been linked together from different sources.
Perhaps it is known that you and I are both interested in data
science. That is one similarity. My wife and I both like Italian food.
That’s another similarity. Nothing is known about your culinary
preferences or my wife’s views on data science.

How similar are you to her? This is a distance measure, and if
we are to visualize this sort of data, we will need to calculate it for
everyone, not just where there are matches, but it can usually only
be done with some assumptions. Perhaps the absence of informa-
tion means that you don’t like Italian food and Mrs. Grant can’t
stand data science. Or perhaps we allow people to partially like
things, so we can fill in the average. Whatever you do in the data
will not be evident in the visualization, so it needs to be explained.

Projections provide a scatter plot of some abstract combina-
tion of variables against another abstract combination of variables,
which is really not a good idea for readers’ understanding (we en-
countered something similar in Chapter 11 with complex predictive
procedures like neural networks). I have several times had an awk-
ward conversation with a colleague when I showed them a scatter
plot arising from principal component analysis only for them to
ask me what the horizontal and vertical axes show. It’s not an
easy question to answer if they don’t have any mathematical back-
ground.

Biplots and symmetric maps were devised as a way of indicating
not only the data but also where the original variables lie in the
projection (Figure 12.8). Suppose we have that cube containing
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dots in three dimensions, and we draw lines along three of the
edges radiating out from one corner, for the height, width and
depth. If you not only saw the dots in the projected image, but
those lines as well, it would be a biplot.

12.5 CLUSTER ANALYSIS

We might be interested in whether our data fall into clusters. In
other words, a group of observations with short distances among
them, and all the others much farther away. Take another look at
the iris flowers’ four variables in Figure 6.6.

One of the species is clearly a cluster on its own, while the
other two overlap a little and are not so easy to separate visually.
However, knowing any two of the variables allows an accurate de-
cision tree to be formed (see Figure 11.2). Even if you didn’t know
the species, you could still detect these clusters (machine learning
people call this unsupervised learning). This cluster analysis is in-
teresting for lots of analysts because it means you can “segment”
your data.

You might have a database of previous customers and want
to predict who will be interested in your new product. Suppos-
edly personalized internet advertisements and product recommen-
dations are done on this basis. Any projection that preserves as
much of the distances as possible is likely to show up the clusters,
as the biggest distances are between them.

So, dimension reduction and cluster analysis are closely related.
If we identified lots of clusters, we might show them and their con-
nections with other clusters using some kind of network visualiza-
tion (Chapter 13).

Despite the fascination with clusters, it’s important to recognize
that the computer, tasked with finding a given number of clusters,
will do its best. However, some things just do not occur in clusters,
but in a continuum. To take an example from a blog post by Joel
Caldwell, our feet are like this: they are variously long, wide, flat.
If you have a factory making flip-flops (“thongs” in some parts of
the world), you probably only need to make small, medium and
large. But if you are making smart dress shoes, you need lots of
gradations. Yet, we are classifying the same feet.

In this way, you might have to partition a continuum into dif-
ferent clusters for different purposes. Having a visualization can
help to convince a less statistically literate colleague or client to
give up on the dream of clusters that just don’t exist.
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Figure 12.8 A symmetric map summarizing the results of a sur-
vey in various countries which asked for opinions on the best
role for new mothers to play in the workplace: work full-time,
work part-time, stay at home or don’t know. The hollow cir-
cles indicate the projection of the extreme ends of the data,
where a country would be if 100% of participants answered
in that category. The projected countries are represented by
the dark circles, and the closer they are to the hollow circles,
the more preference they have for that category. There is a
characteristic horseshoe shape to the country points, which
often appears in dimension reduction, arcing from “work full-
time” (Canada, United States, Israel) through “don’t know”
and “work part-time” (Australia, Italy) to “stay at home” (Ro-
mania, Bulgaria, Hungary, Poland). The two dimensions can
also be interpreted as measuring a work / don’t work spectrum
(horizontal) and mix / don’t mix work and childcare (verti-
cal). From Correspondence Analysis in Practice by Michael
Greenacre. Copyright CRC Press.
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Figure 12.9 The Saturn-shaped data from Figure 12.7 have
data in three dimensions (left–right, front–back and top–
bottom), summarized here by principal component analysis
(left) and t-SNE (right). Principal component analysis retains
the two dimensions which give highest distances (variance)
among the observations, viewing the planet from above the
north pole and ignoring the height of the spherical part of the
data. Points at the north pole and the south pole of the planet
will appear together. t-SNE tries to show that, even within the
sphere, some observations are closer together than others, and
introduces distortions to capture this. However, in doing so, it
breaks up the structure of the rings. This is because t-SNE is
an algorithm that tries several distortions in an effort to find
a good one, but needs to be fine-tuned to produce its best
results. The rings contain fewer data than the planet, and so
they don’t matter so much to the algorithm.

A relatively new method to project multivariate data into two
dimensions while identifying clusters as much as possible (perhaps
at the expense of preserving the distances) is called t-distributed
Stochastic Neighbor Embedding (t-SNE). This is like projecting
the dots, not onto a flat sheet of paper, but one that curves up and
down (a similar idea to support vector machines in Chapter 11).
Finding the best way to bend the image is a very difficult task; it
can take a computer a long time to do this and it might not find
the ideal image, but t-SNE can still be very useful (Figure 12.9).

Dendrograms are a compact way of showing how observations
go together into clusters. Imagine we start with a small sphere
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Figure 12.10 A dendrogram uses a tree format but the verti-
cal distances between branching points shows how different
they are. In this case, rates of various violent crimes are com-
pared among American states. Starting from the right, we
can see that Iowa and New Hampshire are very similar to
each other, then Wisconsin is slightly more different, and Min-
nesota more different still. As we widen the search, we pick up
North Dakota and Vermont, which have already formed one
cluster together as they are similar to each other. So on up
the tree, until we find four and then two super-clusters. The
task of cluster analysis is to decide how far up this tree to go
before stopping and declaring the clusters to be meaningful.

around each of our dots, and gradually expand them all. When
they meet, like bubbles, they join together. As time goes by, our
data form into clusters. Now, if we encode the size of those expand-
ing bubbles to the vertical position, and line up the observations
along the horizontal position, we can draw lines going upward from
each observation, which combine at the point where their bubbles
combined (Figure 12.10).
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Figure 12.11 A radar chart showing four fictitious schools’
marks on six subjects. Each subject is a variable and each
school an observation.

12.6 OTHER APPROACHES

There have been many attempts to visualize multivariate data.
Radar plots (Figure 12.11) and stars are popular: lines extend out
from a central point, with each line having one variable encoded to
its length. The resulting shape gives you an indication of the several
values that each observation has across its variables. The stars can
even be located in a scatter plot, thus including a further two
variables in the visualization. The objection I have to these is that
it’s hard to sense the relative length of lines that point in different
angles and start in different places. I’m also not convinced that
the overall shape (round, oblong, crescent...) is really perceived
consistently by readers.

Line charts comparing matched data, which we encountered in
Chapter 3, can be repurposed for multivariate data, with different
variables at each horizontal location, rather than time. Combined
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with smoothing or maybe edge bundling, this could show some
clusters quite effectively.

Andrews’ plots take a series of wave shapes such as you might
recall from trigonometry at school – sines and cosines – and allo-
cates one variable to each. Each one is multiplied by the value of
the variable and they are added together to give a complex wave
shape, which is the same way that some musical synthesizers work.
One might hope that similar observations will have similar-looking
waves. It’s a nice idea but there is no guarantee that the same
change in variable will not produce two very different impacts on
the final shape.

Finally, Chernoff’s faces is a much-loved method that is very
rarely used. A face is drawn for each observation, and variables
are encoded to features like the size of the eyes, orientation of the
eyebrows, and so on. Like Andrews’ plots, it sounds good, and it is
certainly fun, but there is no guarantee that the same stimuli won’t
produce very different impacts on the reader. After all, we put a lot
of attention into the shapes of eyes, eyebrows and mouths, which
indicate emotion. Not so for the size of people’s ears. As William
Cleveland wrote of them, “visually decoding the quantitative in-
formation is just too difficult.”



C H A P T E R 13

Maps and networks

MAPS ARE VERY POWERFUL FORMS of data visu-
alization. The reader will usually know where to look for

the area that interests them, which makes the data rapidly under-
stood and absorbed. There is a long history of cartography that we
should draw on when making maps for data visualization, though
most statisticians or data scientists do not know enough about it.

Visualizing network data, where observations are linked in some
way with other observations, shares many of the same ideas as
mapping geographical data. The network might reflect physical
proximity, or social connections, investments and trade, or any
other concept that involves connections.

13.1 MAPPING BASICS

Our planet is not two-dimensional, so drawing a map involves some
compromise to get a roughly spherical surface onto a flat image.
There are several projections that can be used, which are like peel-
ing an orange and laying the peel out flat: it either has to be split
in places, or stretched somehow. Without going to a lot of detail,
the important considerations for making and reading maps with
data are as follows:

• The most familiar projection, the Mercator, is very distorting
as it gets away from the equator; Greenland becomes huge
and Antarctica stretches right across the bottom of the world
map.

• If all the data are contained in a fairly localized area, and the
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Figure 13.1 Two popular projections for maps: Mercator (left)
converts latitude and longitude to vertical and horizontal po-
sitions respectively, but this makes places farther from the
Equator look bigger, while Albers (right) preserves relative
area but at the cost of shape. There is no perfect projection.
Images from Wikimedia by user “Strebe,” CC BY-SA 3.0 li-
cense.

projection is centered there, the choice of projection won’t
matter much.

• Some projections that avoid distortion unfortunately involve
splitting the map.

Typically, when using a map in the data visualization context,
we need to decide how much information to have visible in the map.
After all, less is more if we want the data to be clear. Maps are com-
prised of layers: one might just indicate shorelines and whether a
place is under water or on land, whereas another might have coun-
try boundaries and names, then another cities and towns, another
roads, another rivers, and so on.

Sometimes the information in these layers matters to the
reader, but if not, then it is probably a good idea to omit them.
Just a few landmarks can help readers find their way, such as a
coastline or river and a city boundary, but unfortunately this isn’t
always possible (Figure 13.2) and some readers will not know the
area.

As we add data on top of the map, we might find it gets ob-
scured to such an extent that readers can no longer tell where the
data are supposed to be located. Semi-transparency can help, but
ultimately there comes a point where the data are too dense to
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Figure 13.2 A map with just water and major roads is an ade-
quate background to display data for New York (left) but not
Johannesburg (right). Copyright OpenStreetMap; prepared
with Mapbox.

allow the map to be seen, and they have to be summarized. The
next section looks at the options for superimposing data.

A very common encoding is for regional data values to control
the color in those regions of the map. This is called a choropleth.
The usual limitations of perceiving changes in color apply. Choro-
pleths lend themselves well to small multiples (see Figure 12.1).
Because the color blends right into the background, more variables
could even be added on top, but we have to be careful not to
overload the reader; user testing can help.

One problem that often affects choropleths is that some large
rural areas have a disproportionate impact on the reader’s first im-
pressions. If the data are about humans, then that could be mis-
leading. Cartograms attempt to correct this by shrinking sparsely
populated regions and enlarging densely populated ones. This can
be done by replacing the map with a grid: hexagons are best be-
cause they minimize the error where the grid has to approximate
the boundaries of a region.

Recently, cartogram grids of various shapes have been used not
so much to correct for population as simply to have one per region,
to make the map simpler and maybe more eye-catching. Not only
hexagons but circles and other non-tessellating shapes can be em-
ployed. I live in hope of seeing a cartogram in jigsaw puzzle shapes
one day.
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Figure 13.3 American congressional election results in 2012, vi-
sualized in a choropleth with hexagonal cartogram boundaries.
Share of the vote is encoded to a diverging color scale, with
pale gray in the center. The sparsely populated regions in the
Rocky Mountains have been pulled apart to preserve as much
of the recognizable coastline as possible. This map was created
to be viewed online, with interactive information popping up
as the pointer hovers over a hexagon. Created by Alec Rajeev,
reproduced with permission.
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Another approach is to use an algorithm called the Gastner-
Newman cartogram to stretch and squash regions smoothly, al-
though this seems to have been fashionable for a brief period before
falling out of favor. It is certainly harder for a reader to judge the
area of an organically stretched and squashed shape than it is for
a regular grid. Also, the familiarity of the map is at risk of being
lost if we distort it too much.

Future-proofing is another general concern. One day, your map
will be out of date. Perhaps that doesn’t matter given the data you
are displaying, but one option to consider is linking to an online
source for the background image (although some work potentially
has to be done to keep the link alive as years go by).

13.2 DATA ON TOP OF MAPS

Apart from the choropleths and cartograms already mentioned,
there are many ways of superimposing data that have been tried
with varying degrees of success. Markers can appear at specific
locations relating to the individual data points (Figure 13.4), or
at the centers of regions to show statistics for the region (Figure
13.5), with all the encoding options available to us. Lines can join
them to indicate some network (Figure 13.6), journeys or the paths
of hurricanes.

A map by itself requires little explanation, but once data are
superimposed, readers will probably need labels on the maps, and
legends explaining encodings like the color of markers.

We can also superimpose small charts for each region or loca-
tion of interest. One often sees pie charts (Figure 13.5) and bubble
charts (Figure 13.4) superimposed like this, though they are flawed,
as previously discussed, and could be effectively replaced with waf-
fles. A simple way of showing a single value at each location is to
add rectangles of the same size and fill them with color to a pro-
portion indicating the value. This is preferable to having a symbol
at each location, and encoding the value to the size of the symbol,
because of the usual problems of perceiving relative areas.

Dot density maps are an alternative to choropleths. They con-
tain regions, with values for each region. Randomly located small
markers are drawn within each region at a density (markers per
square inch, for example) that encodes the value of interest. This
is engaging for readers because it looks like individual data points
are drawn on the map, but the drawback is that they might mis-
understand and assume that the points really are data. Also, it is
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Figure 13.4 Location and orientation of long barrows (elon-
gated mounds of chalk or earth constructed in the late Stone
Age) in Hampshire and Isle of Wight, England. In this map,
the small oblong markers show both location and orientation
without adding any clutter. Only the shoreline, rivers and
five categories of altitude are shown, which is just enough
to show location and relationship with the landscape. Repro-
duced with permission of English Heritage from Long Barrows
in Hampshire and the Isle of Wight.
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Figure 13.5 Bubbles representing the number of Somali
refugees in each neighboring country, superimposed on a map.
Reproduced under CC-BY-3.0 license, produced by United
Nations High Commissioner for Refugees Operational Data
Portal.
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Figure 13.6 Semitransparent lines between regions indicate
commuting for work from the 2011 UK Census in an inter-
active map. Copyright Office for National Statistics.
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Figure 13.7 Locations of deaths in the 1860 cholera outbreak
in Soho, London, shown as hexagonal bins over a map. Back-
ground map by OpenStreetMap contributors, data collected
at the time by John Snow and made available online by Robin
Wilson.

very hard to, as Cleveland said, translate the density back into a
number when looking at the map.

Maps with gazetteer symbols are very common: an ear of wheat
to indicate agricultural land, a cog to indicate industrial zones, and
so on. Although these could in principle be used for data visual-
ization, there are usually too many different symbols for readers to
absorb the pattern easily.

If the data reaches overload, we can switch to small multiples.
Naomi Robbins has popularized minimap symbols in tables, al-
though this depends on the distinctiveness of the shape that is
shown with no other markings on it: good for Texas, less so Col-
orado (Figure 14.2). Another option is to overlay hexagonal or
rectangular bins on the map (Figure 13.7).

We can draw contours, like showing height above sea level (Fig-
ure 13.8). This can work well, especially with software that can add
shading suggestive of light shining on peaks and troughs. However,
it can also clutter up any visualization that is already busy. It also
relies on the reader’s ability to look at contours and understand
quickly what they are being shown.

Animation is an excellent way of including time in a map, for
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Figure 13.8 A contour plot of the number of homicides in Mon-
terey, by Diego Valle-Jones. Reproduced with permission.

example Chris Whong’s video of New York taxis over the course
of one day, NYC Taxis: A Day in the Life.

Interactive online maps have the added benefit of allowing the
reader to zoom in on regions of interest, perhaps to click for more
information, and to switch on and off the display of layers in the
underlying map. Interactivity is explored in Chapter 14.

Geographical location can also serve as a way to help readers
absorb information quickly, even without having any visible map.
Figure 13.9 uses a cartogram layout of the United States to arrange
small multiple line charts.

13.3 SPATIAL MODELS AND UNCERTAINTY

Uncertainty is a matter of life and death when showing predictions
of hurricane paths, and there are at least three ways of showing
this that have become quite common, shown in Figure 8.4. Another
approach, if it is possible to obtain repeated statistics from the
bootstrap (see Chapter 8) or a Bayesian model, is to produce an
isarithmic map, which is like kernel density in two dimensions, with
the density encoded as color in the manner of heatmaps (this is the
approach in Figure 13.8).
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Figure 13.9 A small multiple grid map showing smoothed
trends (1969-2013) in the contribution non-communicable dis-
eases make to the gap between black and white American
men’s life expectancy. The black horizontal line indicates no
gap. Several features make this easy for readers to digest. Plac-
ing the individual states’ charts close to their geographical
location means they can be found quickly. Including the na-
tional trend as a repeated red line in each chart allows im-
mediate comparison. Smoothing and drawing not just the line
but the confidence interval gives an impression of trend in-
cluding uncertainty. Reproduced with permission from “Long-
term trends in the contribution of major causes of death to
the black-white life expectancy gap by US state” by Corinne
Riddell and colleagues, reproduced with permission.
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Spatial models extend the regression techniques from prior
chapters to include spatial autocorrelation (see Chapter 9 for au-
tocorrelation in time). The goal is to find a smooth underlying
density that might have resulted in the isolated observations that
we have in our data. It’s possible to adjust for some confounders
or time effects in the model too. Often, Bayesian software is used
for this sort of model, which provides simulated values at different
points over the map, and allows us to easily draw an isarithmic
map as output. An increasingly popular technique for this is called
Gaussian processes.

13.4 NETWORKS

Networks are just data with additional information on connections
between observations or clusters of observations. It can be physical
connections, a social network, or some measure of proximity. Visu-
alizations of networks can get very tangled and hard to understand,
so there are some tricks to simplify them.

If we reduce the distance matrix (which appeared in Chapter
12) to a binary value – connected or not connected – we can start to
draw a network of connections. This is called an adjacency matrix.
Typically, there is a marker for each observation and a line between
them for each connection. Unless there is some reason for encoding
some other variables to the positions of the markers, they can be
placed anywhere.

Deciding where to place the points for clarity is not easy, but
there are algorithms to calculate the best layout. The connections
can also be tidied up by software that uses edge bundling, which
pulls the lines together if they are starting and ending in similar
places (Figure 13.10). This makes it much easier for the reader to
absorb.

Networks simply show an adjacency matrix, which is not much
information in statistical terms. The markers could have other vari-
ables encoded as size, shape, color, etc., though we would run the
risk of overloading the reader with too much information all in one
visualization.

The connecting lines are sometimes thickened or made into sev-
eral parallel lines to indicate something about the strength of the
connection, though with edge bundling it would be very hard to
make out what is a thick/multiple connection and what is a bun-
dle of connections. It is hard to imagine how uncertainty could be
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Figure 13.10 A network showing airline routes within the
United States, using edge bundling and semi-transparency to
clarify the patterns and avoid the spaghetti effect. For exam-
ple, flights from San Diego to Houston initially curve north so
that they can join with other flights from the west coast; this
is not what happens in reality. By Sophie Engle, reproduced
with permission and under GPL-3 license.
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Figure 13.11 Connections between projects I have worked on,
visualized as a radial network with edge bundling.

shown about the markers or their connections on top of all the
information already present, without the use of interactivity.

Circular layouts can reduce clutter. The marker can be omit-
ted entirely because the labels will be unambiguous, and the loca-
tion around the circle can be tweaked to get clarity through edge
bundling (Figure 13.11).

Networks are sometimes subjected to creative formats, such as
making them look like subway maps; be careful not to let your
format get in the way of easy reading of the data. The job of the
visualization is to convey quantitative information easily to the
reader, not to show off design skills.
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Interactivity

THE RECENT RAPID GROWTH in data visualization has
been in large part driven by the power of interactive con-

tent. Data visualizations can be shown in a web browser and then
take advantage of the interactivity the browser provides, for ex-
ample showing more information when the user hovers the mouse
over a marker, or clicks on a region in a map. This interactivity
used to rely on proprietary software like Adobe’s Flash, but is now
achievable by everyone through JavaScript, the programming lan-
guage that powers web pages. This chapter outlines various forms
that interactivity takes, with links to good examples. However, as
links occasionally break and online content is lost, you will find
the most up-to-date links at this book’s accompanying web page:
robertgrantstats.co.uk/dataviz-book

14.1 WEB PAGES AND JAVASCRIPT

A web page is simply a plain text file that contains instructions
on what to display where. These are written in Hypertext Markup
Language (HTML), and can also bring in formatting instructions
in a language called Cascading Style Sheets (CSS), and most rel-
evant to data visualization, a more general-purpose programming
language called JavaScript. Confusingly, JavaScript has nothing to
do with Java, which is a different language for making user inter-
faces (you may have encountered Java applets, which have been
popular for teaching statistics).

With JavaScript, we can supply instructions to the web page
like “when the user clicks on Texas in the map, display a table
of statistics about Texas underneath it.” We don’t have to write
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everything from scratch because there are some useful functions
that we can link to and then use. The most flexible and widely
used “libraries” of these functions are probably D3 (“Data-Driven
Documents”) for having data determine – and change – anything
on the page, and Leaflet for mapping, but you should check for any
interesting newcomers.

For data visualization, we are really leveraging existing technol-
ogy intended to make web pages engaging and useful, and over the
last twenty years huge investments have been made in browsers,
so however complex a task we might write in JavaScript, it should
run very quickly in a modern browser.

Not every browser has the same capabilities. They are engaged
in something of an arms race, so if you are making an interactive
visualization, you should check that it works as intended in each
of these. If you are viewing one that someone else made recently
and it doesn’t seem to work, try updating your browser.

Although we can make content to be viewed in the browser, it
doesn’t have to be online and publicly visible. If confidentiality is
a concern, it can be viewed locally on one computer or through a
protected company server. Increasingly, online web pages will be
viewed on tablets and smartphones.

Designing a web page so that its contents are adjusted to be
most legible depending on the screen size, internet bandwidth and
other factors is called responsiveness, and is a major concern of
web developers worldwide. There are JavaScript libraries which
can make this task a lot easier, but moving text around is a far
simpler task than moving elements of a visualization around to fit
the screen, so be prepared for another layer of sketching, experi-
mentation and user testing if you want to go responsive.

14.2 FORMS OF INTERACTIVITY

There are many different ways that a reader could interact with a
visualization and attendant tables and text. They are more likely
to do so if it is obvious what to do – if it is familiar. These are
approaches used fairly widely at present:

• Hover the mouse to bring up a tooltip (floating box with
additional information).

• Click to show additional information nearby.
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Figure 14.1 Interactivity in a map and linked line chart in the
online State of Obesity annual report

• Click to replace content with more detail on the object you
clicked on (“drilling down”).

• Click and drag to zoom in on the selected rectangle.

• Pinch or widen fingers on a touchscreen to zoom in.

• Scroll or swipe down to move to the next level of detail
(“scrollytelling”).

• Move sliders to control some aspect of the visualization.

• Toggle between showing and hiding different aspects.

• Animate the content unless paused by the user, possibly as
an introduction to the interactive content that follows, or to
show different possible outcomes, bootstrap samples, etc.

• Move through the story as arrow buttons are pressed.

• Scroll around and zoom in on a map (also, we can roll a
virtual globe around).

The page might contain more than one connected visualization.
A good example is the State of Obesity annual report (stateofobe-
sity.org, Figure 14.1). Let’s look at the connections from the page

http://www.stateofobesity.org
http://www.stateofobesity.org
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Figure 14.2 Alternative presentation by bars and sparklines in
the State of Obesity website

on statistics on adult obesity. First, we see a choropleth map of
United States states on the left, color coded by obesity prevalence,
and on the right a line chart with one line per state, obesity on the
vertical and time on the horizontal. All the lines are gray.

There’s a slider at the bottom that lets us turn the clock back
in the map, and the color coding changes accordingly. When we
hover over a state, the relevant line is highlighted in black in the
chart, with a small blue circle indicating the year that the map
currently shows – subtle and sparing highlighting gets the message
across while avoiding information overload for readers.

The same highlighting happens from hovering on the line chart:
the relevant state gets a black border in the map. This way we can
look at the best and worst in the line chart and see where they are.
If we click on the state or the line, the line and state stay high-
lighted and we can hover along the line to see statistics in different
years. When we scroll down, we find the next layer of detail in a
table of states (Figure 14.2). This presents the information with
mini maps, bars and sparklines. If we click on the state name there,
we drill down further into a state-specific page, which breaks down
the obesity prevalence by age, race and sex.

The layout has changed in recent years, but there also used to
be policies and laws listed on this page, so you could see a list of
policies that could help or hinder obesity prevention, with green
tick or red cross icons as to whether they had been implemented
in that state. Clicking on the policy then took you through to an
in-depth political analysis. So, each user could drill down to the
level of detail they wanted, from headlines to deep discussion.

To see “scrollytelling” in action, an excellent example is a
Guardian online article called “Bussed Out” (goo.gl/uDRgKQ).

http://www.goo.gl/uDRgKQ
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For an example of how interactivity allows the layering of huge
amounts of detail, an innovative example is the New York Times’
“How the Recession Reshaped the Economy, in 255 Charts”
(nyti.ms/2jVJvTM).

Older interactives used software called Flash, rather than
JavaScript. This allowed some of the interactivity we’ve just seen:
hovering over a line chart and having text pop up in a tooltip,
and scrolling the timeline back and forth. The technology of in-
teractivity doesn’t matter as much as careful thought about what
you are going to do with it. My favorite visualization remains one
made by Amanda Cox for the New York Times in 2010 with Flash
(goo.gl/RtUPB2).

It has a clear and simple design and presents the story in six
layers of detail. I’m sure this drew in lots of readers who would
have skipped it if it had been laden with detail at first glance. It
shows each year’s American federal budget forecasts as pale blue
lines extending upward, departing from the reality that unfolded
(a thicker, dark blue line). Because the forecasts were always opti-
mistic and pointed up from the real dark blue curve, Cox called it
the porcupine chart.

The reader might think it through like this:

1. The US government’s debt is coming down.

2. Back in 2009, it got into a lot of debt.

3. It seems to have bumped up and down over the 30 years
before that.

4. But every single year, their forecasters said things would get
better.

5. That forecast depends on a lot of assumptions, like how many
people will be unemployed.

Highlighting of specific years is done by a small, semi-
transparent, yellow circle. Because there is no other yellow on the
page, and it contrasts with blue, it draws the reader’s attention
with very little clutter added to the image. Rather than assume
the reader understands it in the same way as you, user testing can
really help to refine these complex visualizations.

http://www.goo.gl/RtUPB2
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14.3 METHODVIZ

The TensorFlow Playground (see Section 13.3) is a beacon of clear
visual explanation in the world of machine learning methods. Vi-
sualization does not usually make much inroads in this area, but
here we see an interesting new angle: not dataviz but methodviz,
showing how the method works and helping people understand and
use it effectively. The best examples of this are interactive to some
extent.

Statistician and medical researcher Paul Lambert made a page
that shows how splines fit data, given some controlling parame-
ters (le.ac.uk/hs/pl4/spline eg/spline eg.html). Google’s Ian John-
son, Martin Wattenberg and Fernanda Viégas made a page about
the t-SNE method for visualizing clusters in multivariate data
(distill.pub/2016/misread-tsne/), which we encountered in Chap-
ter 12.

14.4 RUNNING THE ANALYSIS TOO

Expanding the idea of presenting different layers of detail, and
different questions of the data, for different readers, we might reach
a point where there are so many potential angles to accommodate
that it would be easier to upload the data and let the reader choose
for themselves. In fact, it is possible to program quite an open-
ended set of analytical and graphical tools in JavaScript and give
the reader this freedom. It will be a much harder task than making
a more closely curated interactive page, but it could engage readers
more deeply in understanding the data.

Bayesian data scientist Rasmus Bååth made a page that not
only explains a Bayesian method to compare means between two
groups of unmatched data, but also runs it without requiring any
software. It is possible to replace the data provided with your own
data and run the comparison (sumsar.net/best online/).

The Locks, a family of statistics teachers, made a website called
StatKey that performs a variety of analyses using computer simula-
tions and randomization methods (lock5stat.com/statkey). Again,
it is possible to replace the data provided with your own data. Both
these websites use only JavaScript, so they can run on smartphones
and tablets too.

These two examples run on the reader’s computer or smart-
phone, which is called client-side. An alternative approach is to
have some analytical software installed on a server, which then sup-

http://www.distill.pub/2016/misread-tsne/
http://www.le.ac.uk/hs/pl4/spline eg/spline eg.html
http://www.sumsar.net/best_online/
http://www.lock5stat.com/statkey
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plies results as requested from the reader’s browser. This is called
server-side, and although it requires control over the server, and
expertise in programming, there are some simple tools to achieve
it, like the R package Shiny.

14.5 SECURITY AND CONFIDENTIALITY

Any client-side online visualization will require an upload of data
to a web server. That could be a problem for confidentiality, as it is
effectively published and can be downloaded by visitors who know a
little about websites. The data might also move to a different legal
jurisdiction, depending on where the internet service provider’s
servers are physically located. Anyone making a visualization like
this with sensitive data needs to think through the implications
before they start.

Because the JavaScript program to run the interactive visual-
ization has to be downloaded and run by the browser, the reader
can open that program and read it. This means that the program
is essentially published and it is sometimes possible to learn from
and adapt other people’s JavaScript work (of course, one should
give credit and not just copy without permission).

When D3 (which is client-side) was relatively new, everyone was
learning to use it, and it was possible to view the source code be-
hind even the most highly regarded sites like the New York Times,
and understand it. This was a major driver of the explosion of
clever visualizations with D3 in the first half of the 2010s. But as
time has gone by, commercial pressures have pushed the programs
into large, all-purpose in-house JavaScript files, without human-
readable annotations. It is also possible to use software to “uglify”
the JavaScript (deliberately obscure the meaning of the program).
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Big data

WHAT HAPPENS WHEN THE DATA GETS SO BIG
that calculation becomes impossible? Big data is a term

that attracts a lot of hype, but it is real. What if the data is so
big, it can’t just be stored in one file and opened by your favorite
software? The most obvious meaning of big data is that the data
is bigger than your memory chips.

Another meaning is that it is arriving through some kind of
stream and has to be processed and visualizations updated in real-
time. There are some other definitions that have been proposed,
often a series of adjectives starting with the letter V, but these two
(volume and velocity) are the only ones I recognize as problems of
big data. The others, like veracity, are problems of any data.

Apart from the technical challenge of working with the data
itself, visualization in big data is different because showing the
individual observations is just not an option. But visualization is
essential here: for analysis to work well, we have to be assured
that patterns and errors in the data have been spotted and under-
stood. That is only possible by visualization with big data, because
nobody can look over the data in a table or spreadsheet.

The important considerations that we’ve already encountered
in this book, such as showing uncertainty or periodic effects, are
still important in big data. There is sometimes a notion that if the
data are “big,” then all those problems disappear. Sadly, this is
just not true. A billion biased observations are just as biased as
ten.

A nice example dataset, not quite big enough to challenge seri-
ous computer hardware, but big enough to learn from, is every taxi
journey taken in New York in 2013. There are geographic and time
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series variables, as well as continuous and categorical ones. This is
available online thanks to mapmaker Chris Whong, who obtained it
under Freedom of Information legislation (chriswhong.com/open-
data/foil nyc taxi/). It is about 20 gigabytes when compressed, so
choose a good time and connection before downloading.

15.1 TOO BIG

Let’s assume we can access the data in some way, not by opening
one file, but perhaps a series of large files, or by sending a query
to a database server. The details of that are not relevant to the
visualization that follows. We can read the data in chunks of a
manageable size and add each to a visualization. But if we draw
the data in any way like a scatter plot or markers on a map, we
will simply have a solid mass of ink on the page (or color on the
screen), with no patterns visible.

We have to visualize some statistics instead, but how are we
to calculate them if we can’t open the data? This is the crux of
big data and why it is a genuine area where a lot of clever people
are concentrating their efforts. New software and cloud computing
options are emerging all the time. However, the general options
are:

1. Work out what variables you need to show, define some cat-
egories for those variables, and then count how many obser-
vations fall into each category. Now, you only have to work
with the combinations of categories, not every individual ob-
servation.

2. With some statistical expertise, find stepping stones you need
for your calculations, that can be added across chunks of the
data to give you the results. Get those stepping stone values
for each chunk of the data, and add them together. Then, do
the final part of the calculation on the stepping stones, not
the individual observations.

3. Take a random sample from the data and do traditional sta-
tistical analysis on that.

The histogram is the simplest example of Option 1. If we have
a trillion observations from a continuous variable, we can still draw
a histogram. We just choose where to cut the variable up into bins,
open a manageable chunk of the data and count the observations

http://www.chriswhong.com/open-data/foilnyctaxi/
http://www.chriswhong.com/open-data/foilnyctaxi/
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Figure 15.1 A 1000 by 1000 heatmap counting all the starting
points of the 179 million yellow taxi journeys made in New
York City in 2013. Darker pixels indicate more taxi journeys.
It’s worth remembering that a simple random sample from
the data, of sufficient size, would lead to almost exactly the
same image.

falling into each bin. Then we open the next chunk and keep adding
to the counts. In the end, we will have a total count for each bin
and can draw the histogram, without ever having looked at all the
data at one time.

This extends to more than one variable because we can count
observations as they fall into combinations of the categories. That
is how I made a heatmap of the 179 million taxi journeys in the
New York 2013 data; each pixel in Figure 15.1 is a combination
of a longitude and a latitude category, with number of journeys
encoded to color between black and white.

In this image, I wanted to see fine details of roads, so I made
a 1000 by 1000 rectangular grid, but to see the general pattern in
two dimensions, a chunkier hexagonal grid, maybe 50 by 50, could
provide a two-dimensional histogram.

It’s worth bearing in mind that binning data in small rectan-
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gular regions allows you to aggregate the counts later into bigger
rectangles without having to return to the big data. This applies
to more dimensions (variables) too, because cutting each variable
into bins results in cubes or hypercubes that can be combined to
make bigger cubes or hypercubes.

It also allows some smoothing as you aggregate into bigger bins.
As this aggregation happens, some small bins will be next to the
boundary between two big ones. If you allocate part of their count
to one big bin, and part to the other, you will have smoothed the
boundary.

A very widely applicable framework for choosing an approach
to big data visualization is “bin-summarise-smooth,” proposed by
Hadley Wickham: count up data in some sort of bins, summarize
them into statistics, then perhaps smooth the statistics. This will
get you a lot of exploratory images but of course any analysis that
has to crunch all the data will still have to be run somehow, perhaps
by random sampling (Option 3).

Kernel density plots are also amenable to the binning and
adding approach, because they just add together the heights of
the kernel shapes at various values of the variable, but as the data
get more plentiful, the benefit of a smooth kernel vanishes along
with bumps and gaps that are just the result of noise. Counting
and averaging in bins is also useful to show changes: this is the ap-
proach taken in Figure 9.2 to reduce the spaghetti of 200 countries
over time into typical trajectories, and this can easily be scaled up
to big data.

New software using Option 2 is developing all the time. Unless
you are an expert statistician, you will not want to derive your own
bespoke method. However, it may help to think through a simple
example. A linear regression line with one predictor (Chapter 10)
can be calculated using

• the number of observations,

• the sum of all the predictor values,

• the sum of the squared predictor values,

• the sum of all the outcome values, and

• the sum of all the predictor values multiplied by the corre-
sponding outcome values.

These are the stepping stones. As before, we can work through
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the data in chunks and accumulate these five values, then put them
together to calculate the regression line, and visualize it. We can
do that for one hundred observations, and just as easily for one
hundred billion observations – it will just take much longer. We
may not be able to visualize every data point around the line, but
we can still calculate predicted values and residuals (see Chapter
10) for each observation. Histograms, kernel densities, hexagonal
bins, and the like are all good options. All these ways of thinking
about big data can be adapted and combined for a wide variety of
models.

Option 3 is more controversial. It is simple and very effective
because the early years of statistical theory gave us lots of useful
methods based on random samples. When we need quick visualiza-
tions to find problems in our data, like scatter plots and histograms,
and those are for our purposes and not for wider distribution, a
random sample will work fine. But, if we are looking for errors or
rare patterns, then we must process all the data or we might miss
some.

However confident a statistician may be in the power of a ran-
dom sample, the person asking for the final visualization might
object to the idea of throwing away data. Sometimes, the objec-
tive is not so much discovery as showing off how big the data are.
They might want to tell their boss, “this image contains all one
hundred billion observations,” and why not? Visualizations serve
many purposes.

An alternative use of random sampling for visualization is to
show the results of the analysis, for example the regression line,
and to give some indication of data by showing a random sample
of the data points (this should always make it clear that it’s a
sample).

15.2 TOO FAST

Imagine the task faced by a stock exchange to track transactions
and prices. Many of these are computer-to-computer transactions
that happen as fast as possible, to take advantage of fluctuations in
price. All this has to be processed and supplied to customers who
are paying for a live feed of information. That feed will typically
include summary statistics as well as visualizations.

Many organizations nowadays have to operate with live feeds of
data like this, not just in finance. Figure 15.2 is an example with
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Figure 15.2 Visualization of live data streams on cycle hire in
London, by Oliver O’Brien (bikes.oobrien.com/london/). It is
9:57 in the morning, and hire stations on the outside of the
area served tend to be empty (blue), while those in central
business districts are full (red). By clicking on one (Chancery
Lane), we can view more detail over time in a panel on the
right. Data from Transport for London, used with permission.

live cycle hire data. Websites dealing with similar challenges on
even larger scales include lightningmaps.org or flightradar24.com.

This has to be achieved using some of the same tools as above.
The data can provide accumulating statistics and stepping stones
for further calculations. The difference is that visualization will
typically show a moving average: the stock exchange might have
an average price over the last ten seconds, so as new data are added
to the calculation, the old ones have to be removed.

Summary statistics, and visualizations, can be based on periods
of time, a concept called windowing, and these windows combined
in various ways to give the required statistics. It’s important to
have summaries that include enough history so that they are reli-
able and informative, not just fluctuating rapidly.

Options 1 and 2 above can be used if you are creating something
like a histogram or kernel density: keep track of each batch of
counts or kernel heights in the moving calculation, then subtract
the oldest batch as a new one gets added. The result can then

http://www.lightningmaps.org
http://www.flightradar24.com
http://www.bikes.oobrien.com/london/
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be provided through a web browser but latency (the time delay
between the event happening and it being displayed) has to be
minimized so that it updates nearly in real time.

Although real-time updates might sound like a good goal for
streaming visualizations, it might not matter to the reader. The
technical challenges of getting close to it may not be justified by
the way the information is used. Here, as with using all the data in
the previous section, the desire to be technically impressive might
really matter to the organization or individual, but they should at
least be aware of the options and weigh cost against benefit.

Creating a system to feed streaming data through analysis and
on to end users is a considerable task and will require a range
of programming skills in the team. Fortunately, there are several
widely used and trusted open source tools, and with a lot of in-
vestment taking place, the options are likely to grow and get ever
more accessible.
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C H A P T E R 16

Visualization as part
of a bigger package

A GREAT VISUALIZATION DESERVES TO reach its
audience in a great package. That might be a printed doc-

ument, a website, a dashboard or a presentation. Whatever the
package is, it should not be an afterthought to the data analy-
sis and visualization. It should be discussed and user-tested from
the outset, to make sure that it will have the desired impact and
support understanding of the data.

This chapter will look at some design ideas that are generally
not the sort of thing data people consider, but can strengthen the
impact of their work. Training in data science or statistics does not
introduce design thinking, and there is a misconception in many
data people that good design is a thing, not a process, typified by
minimalism and Helvetica fonts. Although that is a good starting
point, there is no one look that is right, and a process of experi-
mentation, user testing and refinement has to be undertaken. This
chapter is mostly for people making visualizations, or paying some-
one to do it.

16.1 THINK ABOUT IT

We encountered the idea of storytelling linked to data visualization
in Chapter 14. When you have a message to convey, think about it
as a story. If you are accustomed to writing in a scientific format
– aims, methods, results, conclusions – resist the urge to do that

197
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in this context. It may well be better to reverse it or at least put
the conclusions first.

Another structure you can consider comes from Simon Sinek:
instead of telling people what you found, how you found it, then
why it matters, reverse that to why, how, what. Try to reduce your
message to an “elevator pitch,” as short as possible, preferably only
a few seconds long. You will have to think carefully about what
terms to use and what order to put the facts in. Then use that to
structure your visualizations.

However, remember that different readers want different things
from your visualization and the package it arrives in. Your story
should be the opening for them to explore further. We can layer the
information so readers can drill down to their preferred level. What
might those layers be? What order will readers want to encounter?
What words or symbols would they understand as signposts to
different layers?

Dataviz designer Andy Kirk suggests asking:

• What is the reason for its existence?

• Who are you creating it for, and how well-defined are their
requirements?

• What function is the package seeking to fulfill?

• What is the likely tone of the design?

The final point in that list is about matching the requirements
of the package. Is the visualization intended to be sober, eye-
catching, shocking, beautiful, funny? How can you stick with the
same encoding but tweak the format to achieve that tone? What
could we mean by beauty in data visualization? Noah Iliinsky sug-
gests a beautiful visualization ought to be novel, informative, effi-
cient and aesthetic. Novelty is highly valued in a designer’s port-
folio, but less so for people approaching data visualization from a
scientific background.

A team making a package around visualizations might include
a designer, a data scientist, an expert in the topic (like medicine,
or transport planning), a web developer, and a manager, and they
will have to work together efficiently up to the point of publication,
despite the different cultures that they come from. The first step
towards this is to understand each other’s motivations and to make
sure there is some aspect of the project that each team member
can be proud of afterwards.
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Figure 16.1 Example of a dashboard tracking retail sales data,
created by Joshua Kunst and published by RStudio. Repro-
duced with permission.

16.2 MAKE IT

Dashboards are collections of several linked visualizations all in
one place. The idea is very popular as part of business intelligence:
having current data on activity summarized and presented all in
one place. One danger of cramming a lot of disparate information
into one place is that you will quickly hit information overload.
Interactivity and small multiples are definitely worth considering
as ways of simplifying the information a reader has to digest in
a dashboard. As with so many other visualizations, layering the
detail for different readers is valuable.

Dashboards are meant to be updated frequently with new data.
If you have computer-intensive models like neural networks, they
might take too long to fit to the new data (while the boss is wait-
ing anxiously for the dashboard). But you can generate and visu-
alize predictions for new data quickly from previous models, even
very complex ones. Some of the problems we have encountered,
like prediction out of sample, need to be detected and appropriate
warnings added to the dashboard.
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The potential problem for most dashboards is that the reader’s
eyes will dart about trying to find where to start, and if they find
this confusing or fatiguing, their first impression will be a bad one.
As the curator of information, the dashboard maker should guide
them. This could be done by large text headlines against each part,
or arrows leading from one visualization to another, or by a sep-
arate “How to Read This Dashboard” guide. If the dashboard is
interactive (see Chapter 15), the reader could be guided through
one visualization at a time with the others faded into the back-
ground.

Each visualization needs to be linked visually to the rest of
the package. There should be recognizable elements leading atten-
tion in and out from the data. If there are pre-attentive cues (see
Chapter 7) in text, they should match those in the visualization.
For example, highlighted points on a chart can use a color that
matches a piece of text alongside.

Some formats of visualization seem to have become standard
dashboard components in particular industries. Gauges, which
show single values and look like speedometers or dials on some
vintage scientific instrument, are one such. They may be fun but
are quite poor in terms of the reader translating them back to
numbers and comparing one to another.

Color, typefaces, and other styling like line patterns and marker
shapes should be consistent throughout. This helps the reader to
focus on the information you want them to. Visualizations will
probably have to be edited manually to match the design of the
report, website, or whatever, and the SVG graphics format is very
useful for this.

If it is being made for an organization that already has a
logo, color scheme or branding guidelines, you should match
that. Perhaps you can identify one color in a logo. Then, there
are many websites that will take one color and suggest others
that complement it, for example colorhexa.com, 0to255.com, and
tools.medialab.sciences-po.fr/iwanthue/. When I made the boxplot
in Figure 5.4 and the line chart in Figure 16.3, I picked a color from
the organization’s logo and generated a scale around that. The
choice for data visualization must consider readers with various
forms of color blindness, and these websites can help by showing a
simulation of how the color palette will appear to them.

Now, with these ideas, let’s revisit the train delay data. We have
already seen some visualizations of different aspects of the data and
different levels of detail. Figure 5.7 (left) gave a quick overview by

http://www.colorhexa.com
http://www.0to255.com
http://www.tools.medialab.sciences-po.fr/iwanthue/
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using splines to smooth the line chart, Figure 2.6 focused on which
time of year was worst in each year, and Figure 2.2 is the original,
detailed line chart. I combined them into a poster or flyer in Figure
16.2.

I want to take a moment to go through the thought process
and decisions in detail. We need to guide the reader from the top
level of detail down, so they don’t get confused and they can drop
out at whatever point suits them. I tried to do this by placing the
images with some accompanying text in three rows. With a large
heading at the top, the starting point is clear. The charts switch
from left to right and back to keep it lively.

It is tempting to do more with the leaf image, but I want
to minimize clutter and keep it away from plot regions. It cer-
tainly shouldn’t be used as a backdrop, however faded. The times
of year could be augmented with holly for Christmas, leaves and
snowflakes, but this would be pure chartjunk.

I had to restrain myself from commenting too much. I could
have mentioned switches of governing political party, and providing
details of the equipment used to keep leaves off the rails, but in this
setting, I decided that was not my remit. You might feel that even
mentioning the government subsidy was irrelevant. I found news
stories online that explained many of the peaks in the line chart,
but decided that it would overload the visualization to annotate it
with them or have newspaper clippings. Different visualization jobs
might call for a lot more information like that, and user testing can
help to get the balance right. Remember to serve the reader and
not your own curiosity or design ideas.

The Helvetica typeface, especially in the bold heading, is rem-
iniscent of railway signs (at least in the UK). A little contextual
design like this can get readers’ interest, as long as it is done with
a light touch and does not intrude. I thought about making it look
like a railway station display board, but that is clearly going to
favor style over substance.

Finally, the website of the Office of the Rail Regulator is cited
as the source. You should always cite the data source. It is not
too difficult to find exactly these data there, but if a lot of work
had been done to combine and process data files before visualizing,
then it would be more helpful to provide a link to the processed
data files instead. (You can obtain my cleaned data file from the
book’s website at robertgrantstats.co.uk/dataviz-book.)

In summary, I had to consider layering information, color co-

http://www.robertgrantstats.co.uk/dataviz-book
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Figure 16.2 The train delay data visualizations could be com-
bined in a poster like this
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ordination, avoiding clutter, and how much annotation or context
to add.

16.3 TALK ABOUT IT

I mentioned user testing at various points in this book. When a
lot of information is brought together into one package, this is
especially important. Consider who needs to be involved to give
that feedback and to make sure the desired impact is achieved.
If time and resources permit, it may be possible to measure the
understanding and recall of information among readers. Qualita-
tive researchers can help here too, by interviewing and debriefing
readers.

The goal of a good package including data visualization is to
enable readers to access information in ways (and times and places)
that they could not otherwise. In recent years, much has been
written on the idea of the quantified self: that by using technology
to track things like our physical activity and heart rates, we notice
patterns that we are normally oblivious to, and can act on them
to improve our lives (or at least, our efficiency at work). Data
visualization is central to this; nobody experiences this kind of
insight into themselves after downloading a large spreadsheet file
of their personal data.

In contrast, designers Stefanie Posavec and Georgia Lupi, who
became famous for their project Dear Data, stress the value of data
humanism: using data to enrich our lives and not to drive efficiency
at the cost of happiness. Somewhere on this spectrum you will find
your readers’ ultimate goals. It may be hard to elicit this sort of
deep philosophical self-examination when they thought they were
just hiring you to make a bar chart, but it can lead to a much more
satisfying end result for all concerned if you pitch the information
in the right way.

It’s important to identify the level of statistical literacy in the
intended readership, and make visualizations and text that is ap-
propriate for them. Annotations will help to guide them through
(Figure 16.3). There is a school of thought that says that a good
visualization should be so intuitive that it requires no explanation
– not even a legend or title – but in my experience this is a theo-
retical ideal that should not be allowed to get in the way of readers
accessing and enjoying a visual interface to data. When we looked
at Figure 6.1, I considered ways of annotating it with contextual
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Figure 16.3 Changes in quality of life for nursing home residents
with dementia as they take part in reminiscence sessions in a
research project run by Royal Holloway, University of London.
This line chart shows the results of a regression model, with
annotations written in consultation with the academics and
funders. The audience were health and social care profession-
als with relatively poor statistical literacy.

statistics from outside the study. This sort of context is always
worth considering and discussing.

When visualizations are made by people with a statistics or
data science background, they tend to use a lot of the classic for-
mats and encodings and may be too reliant on bar charts, scatter
plots and line charts. These are classics precisely because they are
effective, but in a package, more engagement and recall can be
achieved by bringing in some design thinking.

The context of the topic may give some direction to this. For ex-
ample, if we are presenting data on commuting to work in Atlanta,
Georgia (Chapter 3 and Figures 1.6 to 1.10), we could make one
of the images a map with concentric rings at different distances,
showing the number traveling a distance in each ring. This is just a
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Figure 16.4 Gun deaths in the United States in 2013, an in-
teractive visualization that appeals to the metaphors of flying
objects in huge numbers. The reader can hover over the lines
to see each one as a real person (with data taken from coro-
ners’ reports), then break down the numbers by age, sex, race
and so on. Copyright Periscopic, reproduced with permission.

fancy histogram or bar chart, but it taps into the context: readers
recognize and relate to the map, and if they are local, they will
identify which ring they belong to.

Data visualization and design professor Isabelle Meirelles sug-
gests that metaphor can be used in this way to make data seem
more concrete and tangible to readers who are less statistically lit-
erate. This has to be tailored to each particular visualization and
its context, but here are some closing examples that might inspire
you.

Space flights are shown as concentric circles, suggesting orbits,
in a poster created by 5W Infographics for National Geographic
(you can view this at 5wgraphics.com). Lives cut short are shown
as interrupted trajectories (Figure 16.4) in an online animation fol-
lowed by interactivity by web agency Periscopic. The considerable
depth of the ocean is shown in an extremely tall and thin graphic by
the Washington Post that the reader has to descend (you can view
this at goo.gl/hdKwBT). Casualties over time in Iraq are shown
as a bar chart by Simon Scarr for the South China Morning Post,
but flipping it upside down and using a gory red color suggests
dripping blood (simonscarr.com/iraqs-bloody-toll). In one of my
favorite visualizations, the volume of carbon emissions is shown as
an ominous heap (Figure 16.5) in a video by Carbon Visuals.

http://www.5wgraphics.com
http://www.simonscarr.com/iraqs-bloody-toll
http://www.goo.gl/hdKwBT
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Figure 16.5 Volume of carbon dioxide emitted in New York City
in one hour, visualized as a heap of one-ton balls smothering
Midtown. A still from a video at youtu.be/DtqSIplGXOA, by
Carbon Visuals (www.realworldvisuals.com), reproduced with
permission.

http://www.realworldvisuals.com
http://www.youtu.be/DtqSIplGXOA
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Further reading

THERE ARE SEVERAL GOOD BOOKS on data visual-
ization, written in recent years, from a design or journalism

angle. I particularly recommend:

• Alberto Cairo’s The Functional Art and The Truthful Art

• Andy Kirk’s Data Visualization: A Successful Design Process
and Data Visualisation: A Handbook for Data Driven Design

• Isabelle Meirelles’ Design for Information

For a more specifically business-oriented audience, Cole
Knaflic’s Storytelling with Data: A Data Visualization Guide for
Business Professionals is a gently-paced introduction, aimed par-
ticularly at spreadsheet users.

William Cleveland’s books, The Elements of Graphing Data
and Visualizing Data, are an excellent introduction to the field
from a statistical perspective, but the world has moved on in many
ways since they were published in 1985 and 1993.

To think about the conflicting reasons for visualizing, and the
compromises required in creating these images, you may be inter-
ested in:

• Gelman and Unwin’s paper “Infovis and Statistical Graph-
ics: Different Goals, Different Looks” is available at
https://goo.gl/ij1ZaR and there are comments and responses
archived at https://goo.gl/3jVSe4

• “Useful Junk? The Effects of Visual Embellishment on Com-
prehension and Memorability of Charts”, by Scott Bateman
and colleagues, is available at https://goo.gl/m9o4by

• Edward Tufte and David McCandless occupy opposite ends
of a spectrum of visualization, from austere simplicity to col-
orful fun. They both have websites and many admirers, so
you can find out about them before investing in any books.
You may well decide that you agree with neither of them!
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Nate Silver’s The Signal and The Noise is an overview of the
current state of data science, written for a general audience (so
there’s little mathematics). Pedro Domingos’ The Master Algo-
rithm talks about this from a machine learning and artificial in-
telligence perspective. If you have studied mathematics to the end
of high school or first year of university, then you will get a much
deeper and more practical understanding of the methods I’ve talked
about in this book from Computer Age Statistical Inference by
Brad Efron and Trevor Hastie.

Twitter has been a huge source of ideas, inspiration, and net-
working for me and many others in the world of #dataviz. I highly
recommend using it as a way of quickly finding out what’s trendy
and who’s doing what.

Blogs come and go, but I would particularly recommend Andy
Kirk’s at visualisingdata.com/blog. He regularly provides a long
list of links to projects that he has been impressed by, so it is an
excellent starting point for online exploration.

For inspiration, you might enjoy these more creative collections
of dataviz:

• Information Graphics, by Sandra Rendgen and Julius Wiede-
mann

• London: The Information Capital: 100 Maps and Graph-
ics That Will Change How You View the City, by James
Cheshire and Oliver Uberti

• Photoviz: Visualizing Information through Photography,
edited by Nicholas Felton

• Information is Beautiful and Knowledge is Beautiful, by
David McCandless

• Dear Data, by Stefanie Posavec and Georgia Lupi

CHAPTER 1

• Alberto Cairo posted the Datasaurus at https://goo.gl/jiV7mh
and an even more clever version appeared in this blog post:
https://goo.gl/AFwQLa

• DrawMyData can be found at https://goo.gl/koeyCu

• Anscombe’s quartet is described in the Wikipedia article at
https://goo.gl/NgKFqM

https://goo.gl/jiV7mh
https://goo.gl/AFwQLa
https://goo.gl/koeyCu
https://goo.gl/NgKFqM
http://www.visualisingdata.com/blog
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• Gelman and Unwin’s paper “Infovis and Statistical Graph-
ics: Different Goals, Different Looks” is available at
https://goo.gl/ij1ZaR and there are comments and responses
archived at https://goo.gl/3jVSe4

• The election results visualizations were discussed in Sig-
nificance magazine and this article is available online at
https://goo.gl/usuRmf

• The background imagery of Figures 1.6–1.9 came from
Google Maps, while that of Figure 1.10 came from Mapbox
(mapbox.com) and was compiled by OpenStreetMap contrib-
utors.

• Designer Mike Monteiro gave a great talk on professional
practice as a designer, available at vimeo.com/121082134
(there’s some strong language). If you are considering work-
ing in dataviz, I strongly recommend listening and mentally
substituting design for data visualization.

• Data design agency Periscopic wrote this excellent article on
working with a dataviz consultant: https://goo.gl/x8mUBb

CHAPTER 2

• The train delay data came from dataportal.orr.gov.uk and
I tidied them up, combining some different tables into one.
You can also download my cleaned data in CSV format at
robertgrantstats.co.uk/data/traindelays.csv

• Robert Kosara has compiled evidence about perception of
data visualization, much of which is summarized in this talk:
eagereyes.org/talk/how-do-we-know-that

• Isotype is explained in Robert Kosara’s blog post
https://goo.gl/x1cH2m

• The Commuter Toolkit, including photographs of 200 com-
muters in Seattle, is explained at https://goo.gl/AqTdTE

• Mike Kelley’s photography: mpkelley.com

CHAPTER 3

• Scientific American had a blog post on Hal Craft and his
astronomical data: https://goo.gl/f4ExrN

http://www.robertgrantstats.co.uk/data/traindelays.csv
https://goo.gl/ij1ZaR
https://goo.gl/3jVSe4
https://goo.gl/usuRmf
https://goo.gl/x8mUBb
https://goo.gl/x1cH2m
https://goo.gl/AqTdTE
https://goo.gl/f4ExrN
http://www.eagereyes.org/talk/how-do-we-know-that
http://www.dataportal.orr.gov.uk
http://www.mapbox.com
http://www.vimeo.com/121082134
http://www.mpkelley.com
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CHAPTER 4

• “The Global Epidemiology and Contribution of Cannabis Use
and Dependence to the Global Burden of Disease: Results
from the GBD 2010 Study”, by Louisa Degenhardt and col-
leagues, can be read at https://goo.gl/kyXmTL – you will
find that their visualization is rather different from mine!

CHAPTER 5

• A short blog post at r-bloggers.com/thats-smooth describes
various smoothing algorithms succinctly.

• Spike histograms are available from the Hmisc package in
R. An example is presented in Frank Harrell’s tweet at
https://goo.gl/WMgkw2

• The garden of forking paths is described in this magazine
article: https://goo.gl/bcED27

CHAPTER 6

• I wrote more on odds ratios and relative risks in a paper
called “Converting Odds Ratios to a Range of Plausible Rel-
ative Risks for Better Communication of Research Findings”,
which you can access at https://goo.gl/ahQQVN

• The alcohol and cancer paper from the Million Women
Study is at https://goo.gl/Zi8YmN. The press release is at
https://goo.gl/R2d2ig and the comment article is titled “Ac-
tion Needed to Tackle a Global Drink Problem”, by Ian
Gilmore, and published in The Lancet, 27 June, 2009.

CHAPTER 7

• Much of the research about perception of different visual pa-
rameters is summarized in William Cleveland’s books, or Is-
abelle Meirelles’.

• Robert Kosara has compiled evidence about perception of
data visualization, much of which is summarized in this talk:
eagereyes.org/talk/how-do-we-know-that

• The bird feeder chart is updated periodically with measure-
ments from my garden and located at https://goo.gl/XWbhrn

https://goo.gl/kyXmTL
https://goo.gl/WMgkw2
https://goo.gl/bcED27
https://goo.gl/ahQQVN
https://goo.gl/Zi8YmN
https://goo.gl/R2d2ig
https://goo.gl/XWbhrn
http://www.eagereyes.org/talk/how-do-we-know-that
http://www.r-bloggers.com/thats-smooth
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• John Tukey’s book Exploratory Data Analysis is now out of
print and expensive second-hand, but contains a lot of vi-
sualisation, much of it experimental and focused on quickly
“scratching down” on paper to get an impression of data. In
the statistics literature, it is uniquely humorous and icono-
clastic.

• There is a short biography of Stanley Smith Stevens at
https://goo.gl/TmgndU

• A good place to start learning more about optical il-
lusions is the website of Professor Akiyoshi Kitaoka at
https://goo.gl/TcpzBB

CHAPTER 8

• The bootstrap and related randomization procedures are the
main approach to teaching statistical inference in the Locks’
textbook, Statistics: Unlocking the Power of Data. There are
many other introductions, but all requiring some comfort
with reading algebra and probability notation. Using sim-
ulation to introduce inference is now recommended by the
American Statistical Association in their Guidelines for As-
sessment and Instruction in Statistics Education (GAISE).

• Bias comes in many forms, and most are clearly explained
in a paper called “Bias” by Miguel Delgado-Rodríguez and
Javier Llorca, available at https://goo.gl/HHxY4F

• Sir David Spiegelhalter’s blog on funnel plots is a good
place to start exploring these further: understandinguncer-
tainty.org/fertility

• To read more about funnel plots, performance indicators, and
public service management, I recommend the book, Perfor-
mance Measurement for Health System Improvement, edited
by Peter Smith and colleagues, and published by Cambridge
University Press.

CHAPTER 9

• Edward Tufte’s online writing on sparklines is collected at
https://goo.gl/onjZtd

https://goo.gl/TmgndU
https://goo.gl/TcpzBB
https://goo.gl/HHxY4F
http://www.understandinguncertainty.org/fertility
http://www.understandinguncertainty.org/fertility
https://goo.gl/onjZtd
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• There is a short explanation of how to read ternary plots
(for geologists, but no knowledge of the subject is needed) at
https://goo.gl/MEi7QX

• Hans Rosling presented a great example of his animated
bubble charts for the BBC, which you can watch at
https://goo.gl/gy7ucd

• The paper, “The Heterogeneous Dynamics of Economic Com-
plexity”, by Matthieu Cristelli and colleagues, is available at
https://goo.gl/3zr4Ct

• Andrew Elliott’s design work is hosted at andrewelliott.design

• My stop-frame animation programs for R and Stata are avail-
able at https://goo.gl/Z5z5eQ

• The thinkpurpose blog post is available at https://goo.gl/
ohEbQZ

CHAPTER 10

• If you want to know more about biomedical applications of
data science, an excellent starting point is Doug Altman’s
book, Practical Statistics for Medical Research.

• The IMPACT study was published in scientific papers by
Jane McCusker and colleagues, the most relevant of which is
“The Effects of Planned Duration of Residential Drug Abuse
Treatment on Recovery and HIV Risk Behavior,” available
at https://goo.gl/87SrdE

• The concept of marginal effects is explained in more detail
here: https://goo.gl/tDKDRr

CHAPTER 11

• The TensorFlow Playground is located at: https://
goo.gl/U7vWqV

• For those with a little mathematical training, the neural net-
works chapter in Efron and Hastie’s book, “Computer Age
Statistical Inference: Algorithms, Evidence, and Data Sci-
ence” is excellent.

https://goo.gl/MEi7QX
https://goo.gl/gy7ucd
https://goo.gl/3zr4Ct
https://goo.gl/Z5z5eQ
https://goo.gl/ohEbQZ
https://goo.gl/87SrdE
https://goo.gl/tDKDRr
https://goo.gl/U7vWqV
https://goo.gl/U7vWqV
https://goo.gl/ohEbQZ
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• “Interpretable Explanations of Black Boxes by Meaningful
Perturbation,” by Ruth Fong and Andrea Vedaldi, is located
at: https://goo.gl/CcJokD.

• Another relevant effort to visualize CNNs is “Picasso: A Free
Open-Source Visualizer for Convolutional Neural Networks,”
by Ryan Henderson: https://goo.gl/mJgHzX

CHAPTER 12

• Principal components analysis, one of the most com-
monly used dimension reduction methods, is explained
in more detail and without excessive mathematics at
https://goo.gl/rXR2SE ; other methods such as correspon-
dence analysis and multidimensional scaling operate on the
same general principle of projecting and rotating the data.

• “How to Use t-SNE Effectively” is a good starting point
to understand this more complex procedure in more detail:
https://goo.gl/r9iTWF

• Joel Caldwell’s blog post on clustering is at:
https://goo.gl/PSHNty

CHAPTER 13

• Parag Khanna’s book, Connectography, has many examples
of network analysis and visualization.

• Maarten Lambrechts blogged about dot density maps at
https://goo.gl/c7yjuE

• Naomi Robbins’ book, Creating More Effective Graphs, in-
troduces minimaps.

• Long Barrows in Hampshire and the Isle of Wight was pub-
lished as a report of the Royal Commission on Historical
Monuments in 1979, and contains several fine diagrams and
maps. The copyright now belongs to English Heritage.

• Robin Wilson’s digitized cholera data are available at
blog.rtwilson.com/john-snows-cholera-data-in-more-formats
and you can read about John Snow and his map at
https://goo.gl/hDYPCu

https://goo.gl/CcJokD
https://goo.gl/mJgHzX
https://goo.gl/rXR2SE
https://goo.gl/r9iTWF
https://goo.gl/PSHNty
https://goo.gl/c7yjuE
https://goo.gl/hDYPCu
http://www.blog.rtwilson.com/john-snows-cholera-data-in-more-formats
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• Alec Rajeev’s cartogram is online at https://goo.gl/WGL5xa

• The United Nations High Commissioner for Refugees Oper-
ational Data Portal is at https://goo.gl/HLN3HS

• Diego Valle-Jones’ contour map of Monterey homicides is on-
line at bl.ocks.org/diegovalle/5166482

• Chris Whong’s “NYC Taxis: A Day in the Life” is online at
https://goo.gl/CL1fQo

• “Longterm Trends in the Contribution of Major Causes
of Death to the Black-White Life Expectancy Gap by US
State,” by Corinne Riddell and colleagues, is available online
at https://goo.gl/iyH29D

• You can read more about hurricane maps and misconceptions
about uncertainty at https://goo.gl/oVuVBW

• Sophie Engle’s edge bundling map of flights is at https://goo.
gl/spDWnM and upon loading, you will see the edges being
progressively bundled.

CHAPTER 14

• To learn more about interactive graphics, the best thing to
do is to look out for online articles with interactivity and con-
sider what interactions they use, what you like and what you
don’t like. The best publications for this, in my opinion, are
The Economist, the Financial Times, the New York Times,
the Washington Post, and The Guardian. However, there is a
lot of competition in this market, so look around and judge
for yourself; this list will soon be out of date.

• If you want to make interactive content yourself, you will
need to invest some time in learning either JavaScript (along-
side HTML and CSS to construct a web page) or a software
tool that does the work for you. For all the essentials of web
coding, I suggest w3schools.com, which is free online. For a
thorough but accessible introduction to JavaScript, Eloquent
JavaScript: A Modern Introduction to Programming, by Mar-
ijn Haverbeke, is highly recommended (and also free online
at eloquentjavascript.net).

https://goo.gl/WGL5xa
https://goo.gl/HLN3HS
https://goo.gl/CL1fQo
https://goo.gl/iyH29D
https://goo.gl/oVuVBW
https://goo.gl/spDWnM
https://goo.gl/spDWnM
http://www.bl.ocks.org/diegovalle/5166482
http://www.eloquentjavascript.net
http://www.w3schools.com
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• The D3 JavaScript library is well introduced by Scott Murray
in his book, Interactive Data Visualization for the Web, and
also in D3 Tips and Tricks by Malcolm Maclean. The official
website is d3js.org

• For the Leaflet library, I recommend starting with the tuto-
rials on the website at leafletjs.com, then moving on to Paul
Crickard’s book, Leaflet.js Essentials.

• Mapbox (mapbox.com) is also useful for quickly generating
a JavaScript interactive map, which you can then customize
further once you have some familiarity with the language.

• If you want to look into responsiveness for a web page, start
with JavaScript libraries like Bootstrap or Flexbox.

• To learn more about the SVG graphics format, I highly rec-
ommend the works (books, blogs, videos) of Sarah Drasner
and Nadieh Bremer. You can find them easily online.

• The examples included in this chapter are:

– State of Obesity: stateofobesity.org
– The Guardian article “Bussed Out: How America Moves

Its Homeless”: https://goo.gl/MKUV23
– The New York Times article “How the Recession Re-

shaped the Economy, in 255 Charts”: nyti.ms/2jVJvTM
– Amanda Cox for the New York Times in 2010 with

Flash: goo.gl/RtUPB2
– TensorFlow Playground: playground.tensorflow.org
– Paul Lambert’s splines: https://goo.gl/d5AvPV
– How to use t-SNE effectively: https://goo.gl/r9iTWF
– Bayesian Estimation Supersedes the t-test: https://goo

.gl/2rcx5p
– StatKey: lock5stat.com/statkey

CHAPTER 15

• FOILing NYC’s Taxi Trip Data: https://goo.gl/uDVFqZ
(also see Analyzing 1.1 Billion NYC Taxi and Uber
Trips, with a Vengeance, by Todd W. Schneider, at
https://goo.gl/pid8s8

http://www.d3js.org
https://goo.gl/MKUV23
http://www.stateofobesity.org
http://www.leafletjs.com
http://www.mapbox.com
https://goo.gl/d5AvPV
https://goo.gl/r9iTWF
https://goo.gl/2rcx5p
https://goo.gl/uDVFqZ
https://goo.gl/pid8s8
https://goo.gl/2rcx5p
http://www.playground.tensorflow.org
http://www.lock5stat.com/statkey
http://www.goo.gl/RtUPB2
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• Bin-Summarise-Smooth: A Framework for Visualising Large
Data: https://goo.gl/KGmhjX

• For open-source software tools that are designed for big and
fast data, look up the ever-evolving set of software made by
the Apache Foundation (projects.apache.org)

• Oliver O’Brien’s Bike Map: bikes.oobrien.com

• Lightning Maps: lightningmaps.org

• Flightradar24: flightradar24.com

CHAPTER 16

• Simon Sinek explains this idea of why, how, what in a short
TED talk at https://goo.gl/Vwv6Ke

• Noah Iliinsky’s views are expressed in the book Beautiful Vi-
sualization: Looking at Data through the Eyes of Experts, by
Julie Steele and Noah Iliinsky.

• The proponents of Quantified Self collect examples of data
visualisation at https://goo.gl/bExtd9

• Stefanie Posavec and Georgia Lupi’s project Dear Data is
online at dear-data.com, and published as a book. Georgia
discusses data humanism at https://goo.gl/gZpTm7

• The RADIQL project report, on reminiscence therapy in de-
mentia, is at https://goo.gl/b2gdWC

• Gun deaths in the US : guns.periscopic.com

• Fifty years of exploration (the solar system): https://goo.gl/
2nRKnt

• The Washington Post article “The Depth of the Problem”:
https://goo.gl/hdKwBT

• Iraq’s Bloody Toll, by Simon Scarr: https://goo.gl/pCVSJy

• The animated video New York City’s greenhouse gas emis-
sions as one-ton spheres of carbon dioxide gas is at:
youtu.be/DtqSIplGXOA

https://goo.gl/KGmhjX
https://goo.gl/Vwv6Ke
https://goo.gl/bExtd9
https://goo.gl/gZpTm7
https://goo.gl/b2gdWC
http://www.projects.apache.org
http://www.lightningmaps.org
http://www.bikes.oobrien.com
http://www.flightradar24.com
http://www.dear-data.com
https://goo.gl/2nRKnt
https://goo.gl/hdKwBT
https://goo.gl/pCVSJy
https://goo.gl/2nRKnt
http://www.guns.periscopic.com
http://www.youtu.be/DtqSIplGXOA
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3-D printing, 55

accumulated local effects plots,
136

adjacency matrix, 178
adjusting, 135
Andrews’ plots, 166
animation, 120, 153, 176, 205,

206
annotation, 82, 97, 134, 204
anonymity, 72, 187
artificial intelligence, 142
association, 52, 67
autocorrelation, 122, 176

bagging, 142
bar chart, 37, 60, 63, 64, 82,

134, 184, 205
baseline, 85, 88, 120
Bayesian statistics, 112, 140,

176, 186
big data, 44, 189
bins, 43, 191, 193
biplot, 160
black box, 142, 147, 150, 152
boosting, 142
bootstrap, 107, 140
box plot, 76
bubble chart, 54, 120, 171, 173
bullet chart, 60

cartogram, 169
chartjunk, 97, 98, 201
Chernoff’s faces, 166
choropleth, 169
cluster analysis, 161

color, 24, 26–28, 31, 32, 93, 97,
103, 105, 169, 200, 205

compromise, xxiii, 61, 79, 101,
153

conditional percentages, 68
confidence interval, 108, 131,

177
confounders, 135
contour plot, 55, 175, 176
convex hull, 77
correlation, 74, 89, 91, 131
correspondence analysis, 160
Cox regression, 138
cross-validation, 128, 140, 142
curation, 5, 69, 79, 84, 88, 89,

199–201
cut-and-stack, 118

dashboard, 197, 199
data:ink ratio, 24, 38, 44, 97,

98, 116
deep learning, 149, 150
dendrograms, 163
dimension reduction, 160, 161
distance matrix, 156
distribution, 24, 45

normal, 73
donut chart, 34
dot density map, 171
dot plot, 60, 91
dot plot, comparing statistics,

128, 131
dot plot, distributional, 43
dot plot, showing data, 36
dot plot, showing statistics, 71

219
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edge bundling, 102, 165, 178,
179

empty space, 19, 86
encoding, 21, 23
error bar, 73, 131

false negatives, 139
false positives, 139
fan chart, 124
format, 23
funnel plot, 110

Gaussian processes, 178
gazetteer symbols, 175
generalized additive models,

137
Gestalt principles, 99

hazard ratio, 139
heaping, 43, 45, 112
heatmap, 27, 28, 46, 47, 93, 176
hexagonal bins, 55, 175
histogram, 43, 47, 48, 144, 190,

193, 205
histogram, spike, 73
hurricanes, 112

incidence rate, 82
inter-quartile range, 76
interactions, 132, 135
interactive, 51, 72, 150, 153,

174, 180, 181, 183,
184, 194, 199, 205

isarithmic map, 176
Isotype, 32

JavaScript, 181
jittering, 53, 99
joyplot, 50

Kaplan-Meier plot, 137
kernel density plot, 44, 46–48,

78, 153, 176, 192, 193

line chart, 23, 24, 128, 147, 165,
177, 183, 185

linear regression, 128, 139, 192
LOESS, 78
logistic regression, 133, 139, 149
lollipop chart, 86

machine learning, 127, 141
maps, 154, 167, 183, 184, 194,

205
projections, 167

marginal effects, 88, 132–135
median, 75
median absolute deviation, 77
methodviz, 186
minimap, 175, 184
models, 124, 127, 128, 133, 176,

193, 199
non-parametric, 137
parametric, 137
semi-parametric, 137, 138

multidimensional scaling, 158,
160

multiple imputation, 112
multivariate data, 153, 159

natural frequencies, 84
network, 161, 167, 178
neural network, 149, 150

convolutional, 150, 151
noise, 43, 128

odds, 70, 86
odds ratio, 86, 87, 131, 133,

135, 137
optical illusions, 103
outlier, 45
over-fitting, 128, 143

parallel sets plot, 65
partial dependence plot, 136,

141
person-years at risk, 82
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pictogram, 32, 60, 84, 134
pie chart, 34, 171
plot region, 201
polished medians, 78
posterior predictive checking,

140
pre-attentive cues, 99, 200
prediction, xxiv, 53
prediction out of sample, 132
principal component analysis,

160
projection, 159, 160

qualitative research, 203
quartile, 75, 77, 78

radar plot, 165
random forests, 146
random sample, 193
rate, 70, 82, 84, 134
receiver-operator curve, 139
reference range, 73, 75
regression, 127
regression coefficients, 131, 133,

137, 142
regression to the mean, 120
relative risk, 84, 87
residual, 128, 139, 142
responsiveness, 182
risk, 70, 82, 133, 134, 136
risk ratio, 84, 87
robust, 75, 77, 78, 91

scatter plot, 5, 22, 53, 91, 145,
147, 160

connected, 116, 117
margins, 53

scatter plot matrix, 92
scrollytelling, 183
semi-transparency, 92, 102,

140, 147, 168
skewness, 24, 45, 76

small multiples, 24, 51, 153,
169, 177, 199

smoothing, 78, 99, 101, 102,
115, 137, 145, 165, 177

spaghetti, 102, 178, 179, 192
sparkline, 118, 184
sparse data, 160
splines, 78, 137, 186
standard deviation, 73, 108
standard error, 108
stars, 165
statistical literacy, 91, 118, 161,

203, 204
stimuli, 102
streamgraphs, 115
strip chart, 42
supervised learning, 127
support vector machines, 148
survival data, 137
symmetric map, 160

t-distributed Stochastic
Neighbor Embedding
(t-SNE), 163, 186

ternary plot, 61
tick all that apply, 61
time series, 115, 124

circular format, 118
time-to-event data, 137
timeline, 118
tooltip, 182
transforming distributions, 45
treemap, 66, 68
trees, 66, 68, 143, 146
trimming, 77

unsupervised learning, 161
user testing, 38

variables, xxv
categorical, xxv, 41, 59
continuous, 41, 128
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discrete, 41
nominal, xxvi
ordinal, xxvi, 61
outcome, 127, 128,

131–133, 137, 139
predictor, 127, 128, 131,

132, 135, 137
quantitative, xxv, 41

violin plot, 48

waffle plot, 36, 37, 60, 69, 134,
171

windowing, 194
Winsorizing, 77, 78
wireframe, 155
wordclouds, 32
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