
M A N N I N G

Tommaso Teofili
Foreword by Chris Mattmann

Deep Learning for Search

Deep Learning for Search

TOMMASO TEOFILI

FOREWORD BY CHRIS MATTMANN

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Frances Lefkowitz
20 Baldwin Road Review editor: Ivan Martinović
PO Box 761 Production editor: Tiffany Taylor
Shelter Island, NY 11964 Copy editor: Tiffany Taylor

Proofreader: Katie Tennant
Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781617294792
Printed in the United States of America

http://www.manning.com

 To Mattia, Giacomo, and Michela

 “Happiness is only real when shared.”

 —Christopher McCandless

brief contents
PART 1 SEARCH MEETS DEEP LEARNING... 1

1 ■ Neural search 3
2 ■ Generating synonyms 36

PART 2 THROWING NEURAL NETS AT A SEARCH ENGINE 73
3 ■ From plain retrieval to text generation 75
4 ■ More-sensitive query suggestions 112
5 ■ Ranking search results with word embeddings 146
6 ■ Document embeddings for rankings and recommendations 170

PART 3 ONE STEP BEYOND.. 193
7 ■ Searching across languages 195
8 ■ Content-based image search 225
9 ■ A peek at performance 267
vii

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xviii
about the author xxi
about the cover illustration xxii

PART 1 SEARCH MEETS DEEP LEARNING..........................1

1 Neural search 3
1.1 Neural networks and deep learning 4
1.2 What is machine learning? 7
1.3 What deep learning can do for search 9
1.4 A roadmap for learning deep learning 12
1.5 Retrieving useful information 13

Text, tokens, terms, and search fundamentals 14 ■ Relevance
first 22 ■ Classic retrieval models 23 ■ Precision and
recall 24

1.6 Unsolved problems 24
1.7 Opening the search engine black box 25
1.8 Deep learning to the rescue 27
1.9 Index, please meet neuron 31
ix

CONTENTSx
1.10 Neural network training 31
1.11 The promises of neural search 34

2 Generating synonyms 36
2.1 Introduction to synonym expansion 37

Why synonyms? 39 ■ Vocabulary-based synonym matching 40

2.2 The importance of context 49
2.3 Feed-forward neural networks 51
2.4 Using word2vec 54

Setting up word2vec in Deeplearning4j 63 ■ Word2vec-based
synonym expansion 64

2.5 Evaluations and comparisons 66
2.6 Considerations for production systems 67

Synonyms vs. antonyms 69

PART 2 THROWING NEURAL NETS
AT A SEARCH ENGINE..73

3 From plain retrieval to text generation 75
3.1 Information need vs. query: Bridging the gap 77

Generating alternative queries 77 ■ Data preparation 79
Wrap-up of generating data 86

3.2 Learning over sequences 86
3.3 Recurrent neural networks 88

RNN internals and dynamics 91 ■ Long-term dependencies 94
Long short-term memory networks 95

3.4 LSTM networks for unsupervised text generation 95
Unsupervised query expansion 103

3.5 From unsupervised to supervised text generation 106
Sequence-to-sequence modeling 107

3.6 Considerations for production systems 110

4 More-sensitive query suggestions 112
4.1 Generating query suggestions 113

Suggesting while composing queries 113 ■ Dictionary-based
suggesters 114

CONTENTS xi
4.2 Lucene Lookup APIs 115
4.3 Analyzed suggesters 118
4.4 Using language models 124
4.5 Content-based suggesters 128
4.6 Neural language models 129
4.7 Character-based neural language model

for suggestions 131
4.8 Tuning the LSTM language model 134
4.9 Diversifying suggestions using word embeddings 142

5 Ranking search results with word embeddings 146
5.1 The importance of ranking 147
5.2 Retrieval models 149

TF-IDF and the vector space model 151 ■ Ranking documents
in Lucene 154 ■ Probabilistic models 156

5.3 Neural information retrieval 158
5.4 From word to document vectors 159
5.5 Evaluations and comparisons 165

Similarity based on averaged word embeddings 166

6 Document embeddings for rankings and recommendations 170
6.1 From word to document embeddings 171
6.2 Using paragraph vectors in ranking 174

Paragraph vector–based similarity 177

6.3 Document embeddings and related content 177
Search, recommendations, and related content 178 ■ Using
frequent terms to find similar content 179 ■ Retrieving
similar content with paragraph vectors 188 ■ Retrieving similar
content with vectors from encoder-decoder models 191

PART 3 ONE STEP BEYOND...193

7 Searching across languages 195
7.1 Serving users who speak multiple languages 196

Translating documents vs. queries 197 ■ Cross-language
search 199 ■ Querying in multiple languages on top of
Lucene 200

CONTENTSxii
7.2 Statistical machine translation 202
Alignment 204 ■ Phrase-based translation 205

7.3 Working with parallel corpora 206
7.4 Neural machine translation 208

Encoder-decoder models 209 ■ Encoder-decoder for MT in
DL4J 212

7.5 Word and document embeddings for multiple
languages 219
Linear projected monolingual embeddings 219

8 Content-based image search 225
8.1 Image contents and search 227
8.2 A look back: Text-based image retrieval 229
8.3 Understanding images 231

Image representations 233 ■ Feature extraction 235

8.4 Deep learning for image representation 243
Convolutional neural networks 245 ■ Image search 253
Locality-sensitive hashing 258

8.5 Working with unlabeled images 261

9 A peek at performance 267
9.1 Performance and the promises of deep learning 268

From model design to production 269

9.2 Indexes and neurons working together 284
9.3 Working with streams of data 287

index 295

foreword
It’s hard to quantify how commonplace terms like neural networks and deep learning
have become, and, more directly, how these technologies are impacting our lives.
From automating routine jobs, to replicating difficult decisions, to helping cars drive
themselves (and human beings) to their destinations, the power of neural networks
and deep learning as techniques for revolutionizing computing is only in its nascence.

 That’s why this book is so material and important. Not only are neural networks,
AI, and deep learning automating routine jobs and decisions and making them easier,
but they are also making search easier. Formerly, the state of the art in information
retrieval and search involved complex linear algebra, including matrix multiplication
to represent the matching of user queries to documents. Today, instead of using alge-
braic and linear models, the state of the art involves—as an example—the application
of neural networks to discern word similarity between documents after learning how
to summarize the documents into words using separate networks. And that is only one
area in the search process where AI and deep learning are being used.

 Tommaso Teofili, in Deep Learning for Search, takes a practical approach toward
showing you the state of the art in using neural networks, AI, and deep learning in the
development of search engines. The book is filled with examples and walks the reader
through the architecture of today’s search engines—while also giving you enough
background to understand how and where deep learning fits, and how it makes
search better. From building your first network to find similar words in a query expan-
sion, to learning word embeddings to help with search ranking, to searching across
languages and images, Tommaso shows you where AI and deep learning can super-
charge your code and search capability.

 The book is written by a true pioneer of open source. Tommaso is a former chair
of the Apache Lucene project—the de facto search indexing engine that powers
Elasticsearch and Apache Solr—and he has also contributed greatly to language
xiii

FOREWORDxiv
understanding and translation on Apache OpenNLP. More recently, he is the proposed
chair for the Apache Joshua (incubating) project for statistical machine translation.

 I know that you will learn a great deal from this book, and I commend it for find-
ing a middle ground in common sense, explanations of complex theory, and real
code that you can play with using the latest deep learning and search technologies.

 Enjoy. I know I did!
 —CHRIS MATTMANN

 ASSOCIATE CHIEF TECHNOLOGY
 AND INNOVATION OFFICER, NASA JPL

preface
The field of natural language processing bewitched me as soon as I came to know
about it nearly 10 years ago, while studying for my master’s degree. The promise that
computers could help us understand the (already, even then) vast amount of textual
documents in existence sounded like magic. I still remember how exciting it was to
see my first NLP programs extract even vaguely correct and useful information from a
few text documents.

 About the same time, at work, I was asked to do some consulting for a customer on
their new open source search architecture. My colleague, who was an expert in the
field, was busy on another project, so I was given a copy of Lucene in Action,1 which I
studied for a couple of weeks; then I was sent out on the consulting job. A couple of
years after I worked on that Lucene/Solr-based project, the new search engine went
live (and, as far as I know, it’s still used). I can’t tell you how many times the search
engine algorithms needed to be adjusted because of this or that query or this or that
fragment of indexed text, but we made it work. I could see users’ queries, and I could
see the data that was there to be retrieved, but a minimal difference in spelling or
omitting a certain word could cause very relevant information to not show up in the
search results. So while I was very proud of my work, I kept wondering how I could
have done better to avoid the many manual interventions the product managers asked
me to perform in order to provide the best possible user experience.

 Right after this, I quite by chance found myself involved in machine learning
thanks to Andrew Ng’s first machine learning online class (which originated the Cour-
sera MOOC series). I was so fascinated with the concepts behind the neural networks
shown in the class that I decided to try to implement a small library for neural

1 Michael McCandless, Erik Hatcher, and Otis Gospodnetić (Manning, 2010), http://www.manning.com/
books/lucene-in-action-second-edition.
xv

http://www.manning.com/books/lucene-in-action-second-edition
http://www.manning.com/books/lucene-in-action-second-edition
http://www.manning.com/books/lucene-in-action-second-edition

PREFACExvi
networks in Java myself, just for fun (http://svn.apache.org/repos/asf/labs/yay/). I
started hunting for other online courses like Andrej Karpathy’s course on convolu-
tional neural networks for visual recognition and Richard Socher’s course on deep
neural networks for natural language processing. Since then, I have kept working on
search engines, natural language processing, and deep learning, mostly in open
source.

 A couple of years ago (!), Manning reached out to me to review a book on NLP,
and I was naive enough to write at the bottom of my review that I would be interested
in writing a book on search engines and neural networks. When Manning came back
to me, expressing interest, I was kind of surprised, and wondered, do I really want to
write a book on that? I realized that, yes, I was interested.

 While deep learning has revolutionized computer vision and natural language pro-
cessing, there’s still a lot to uncover for its applications in search. I’m sure we can’t
(yet?) rely on deep learning to automatically set up and tune search engines on our
behalf, but it can help a lot in making the search engine user’s experience smoother.
With deep learning, we can do things in search engines that we can’t do with other
existing techniques so far, and we can use deep learning to enhance the techniques
we already use in search engines. The journey toward making search engines more
effective through deep neural networks has just started. I hope you enjoy it.

http://svn.apache.org/repos/asf/labs/yay/

xvii

acknowledgments
First and foremost I would like to thank my lovely wife Michela for encouraging and
supporting me throughout this long journey: thanks for the love, energy, and dedica-
tion during long days, nights, and weekends of writing!

 Thanks go to Giacomo and Mattia for helping me choose the coolest cover illustra-
tion possible and for all the playing and laughs while I was trying to write.

 I would like to thank my father for his pride and his confidence in me.
 Big thanks go to my friend Federico for his tireless effort in reviewing all the book

material (book, code, images, and so on) and for the enjoyable discussions and ideas
shared. More huge thanks go to my friends and colleagues Antonio, Francesco, and
Simone for their support, laughs, and advice. Thanks also go to my fellow Apache
OpenNLP (http://opennlp.apache.org) friends Suneel, Joern, and Koji for providing
feedback, advice, and ideas that helped shape the book.

 I thank Chris Mattmann for writing such an inspiring foreword.
 My thanks also go to Frances Lefkowitz, my development editor, for her patience

and guidance throughout the writing process, including our discussions about Steph,
KD, and the Warriors. And I thank the others at Manning who made this book possi-
ble, including publisher Marjan Bace and everyone on the editorial and production
teams who worked behind the scenes. In addition, I thank the technical peer review-
ers led by Ivan Martinović —Abhinav Upadhyay, Al Krinker, Alberto Simões, Álvaro
Falquina, Andrew Wyllie, Antonio Magnaghi, Chris Morgan, Giuliano Bertoti, Greg
Zanotti, Jeroen Benckhuijsen, Krief David, Lucian Enache, Martin Beer, Michael Wall,
Michal Paszkiewicz, Mirko Kämpf, Pauli Sutelainen, Simona Ruso, Srdan Dukic, and
Ursin Stauss—and the forum contributors. On the technical side, thanks go to
Michiel Trimpe, who served as the book’s technical editor; and Karsten Strøbaek, who
served as the book’s technical proofreader.

 Finally I’d like to thank the Apache Lucene and Deeplearning4j communities for
providing such excellent tools and for supporting users in a friendly manner.

http://opennlp.apache.org

about this book
Deep Learning for Search is a practical book about how to use (deep) neural networks to
help build effective search engines. This book examines several components of a
search engine, providing insights on how they work and guidance on how neural net-
works can be used in each context. Emphasis is given to practical, example-driven
explanations of search and deep learning techniques, most of which are accompanied
by code. At the same time, references to relevant research papers are provided where
applicable to encourage you to read more and deepen your knowledge on specific
topics. Neural network and search-specific topics are explained throughout the book
as you read about them.

 After reading this book, you’ll have a solid understanding of the main challenges
related to search engines, how they are commonly addressed, and what deep learning
can do to help. You’ll gain a solid understanding of several different deep learning
techniques and where they fit in the context of search. You’ll get to know the Lucene
and Deeplearning4j libraries well. In addition, you’ll develop a practical attitude
toward testing the effectiveness of neural networks (rather than viewing them as
magic) and measuring their costs and benefits.

Who should read this book
This book is intended for readers with an intermediate programming background. It
will be best if you’re proficient in Java programming, with an interest or active involve-
ment in developing search engines. You should read this book if you would like to
make your search engine more effective at giving relevant results and therefore more
useful for end users.

 Even if you don’t have a search background, basic concepts about search engines
are introduced during the course of the book as each specific aspect of search is
xviii

ABOUT THIS BOOK xix
touched on. Similarly, you aren’t expected to already know about machine or deep
learning. This book will introduce all the required machine learning and deep learn-
ing basics, together with practical tips regarding the application of deep learning to
search engines in production scenarios.

 You should be ready to get your hands on the code and extend existing open
source libraries to implement deep learning algorithms to solve search problems.

Roadmap
This book is divided into three parts:

 Part 1 introduces the basic concepts of search, machine learning, and deep
learning. Chapter 1 introduces the rationale for applying deep learning tech-
niques to search problems by touching on problems with respect to most com-
mon approaches to information retrieval. Chapter 2 gives a first example of
how to use a neural network model to improve the effectiveness of a search
engine by generating synonyms from the data.

 Part 2 deals with common search engine tasks that can be better addressed with
the help of deep neural networks. Chapter 3 introduces the use of recurrent
neural networks for generating queries that are alternatives to the ones entered
by users. Chapter 4 addresses the task of providing better suggestions while the
user is typing the query, with the help of deep neural networks. Chapter 5
focuses on ranking models: in particular, how to provide more-relevant search
results using word embeddings. Chapter 6 deals with the use of document
embeddings both in ranking functions and in the context of content recom-
mendation.

 Part 3 takes up more-complex scenarios like deep learning–powered machine
translation and image search. Chapter 7 guides you through giving your search
engine multilanguage capabilities through neural network–based approaches.
Chapter 8 deals with searching a collection of images based on their contents,
empowered by deep learning models. Chapter 9 discusses production-related
topics like fine-tuning deep learning models and dealing with constantly incom-
ing streams of data.

The complexity of the topics and concepts addressed grows over the course of the
book. If you’re new to deep learning, search, or both, I highly recommend reading
chapters 1 and 2 first. Otherwise, feel free to jump around and pick chapters based on
your needs and interests.

About the code
In this book, code snippets are preferred over fully detailed code listings, in order to
provide quick, easy insight into what the code is doing and how. The full source code
can be found on the book’s page on the Manning website: www.manning.com/
books/deep-learning-for-search. The software will also be kept up to date on the

ABOUT THIS BOOKxx
book’s official GitHub page (https://github.com/dl4s), including both the Java
source code in the book (using Apache Lucene and Deeplearning4j: https://github
.com/dl4s/dl4s) and a Python version of the same algorithms (https://github.com/
dl4s/pydl4s).

 The code examples use the Java programming language and the two open source
(Apache licensed) libraries Apache Lucene (http://lucene.apache.org) and Deep-
learning4j (http://deeplearning4j.org). Lucene is one of the most widely used librar-
ies for building search engines, and Deeplearning4j is, at the time of writing, the best
choice for a native Java library for deep learning. Together, they will allow you to eas-
ily, quickly, and smoothly test and experiment with search and deep learning.

 In addition, many researchers working on deep learning–related projects nowa-
days use Python (with frameworks like TensorFlow, Keras, PyTorch, and so on). There-
fore, a Python repository hosting TensorFlow (https://tensorflow.org) versions of the
algorithms detailed in the book is also provided.

 In the book, source code is formatted in a fixed-width font like this to sepa-
rate it from ordinary text. In many cases, the original source code has been reformat-
ted; we’ve added line breaks and reworked indentation to accommodate the available
page space in the book. In rare cases, even this was not enough, and listings include
line-continuation markers (➥). Additionally, comments in the source code have often
been removed from the listings when the code is described in the text. Code annota-
tions accompany many of the listings, highlighting important concepts.

liveBook discussion forum
Purchase of Deep Learning for Search includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum, go to https://livebook.manning.com/#!/book/deep-learning-for-search/
discussion. You can learn more about Manning’s forums and the rules of conduct at
https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://tensorflow.org
https://github.com/dl4s
https://github.com/dl4s/dl4s
https://github.com/dl4s/dl4s
https://github.com/dl4s/dl4s
https://github.com/dl4s/pydl4s
https://github.com/dl4s/pydl4s
https://github.com/dl4s/pydl4s
http://lucene.apache.org
http://deeplearning4j.org
https://livebook.manning.com/#!/book/deep-learning-for-search/discussion
https://livebook.manning.com/#!/book/deep-learning-for-search/discussion
https://livebook.manning.com/#!/book/deep-learning-for-search/discussion
https://livebook.manning.com/#!/discussion

about the author
TOMMASO TEOFILI is a software engineer with a passion for open
source and machine learning. As a member of the Apache Soft-
ware Foundation, he contributes to a number of open source
projects, ranging from topics like information retrieval (such as
Lucene and Solr) to natural language processing and machine
translation (including OpenNLP, Joshua, and UIMA).

He currently works at Adobe, developing search and indexing infrastructure compo-
nents, and researching the areas of natural language processing, information
retrieval, and deep learning. He has presented search and machine learning talks at
conferences including BerlinBuzzwords, International Conference on Computational
Science, ApacheCon, EclipseCon, and others. You can find him on Twitter at @tteofili.
xxi

about the cover illustration
The figure on the cover of Deep Learning for Search is captioned “Habit of a Lady of
China.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of
Different Nations, Ancient and Modern (four volumes), London, published between 1757
and 1772. The title page states that these are hand-colored copperplate engravings,
heightened with gum arabic.

 Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was
an English cartographer who was the leading map supplier of his day. He engraved
and printed maps for government and other official bodies and produced a wide
range of commercial maps and atlases, especially of North America. His work as a map
maker sparked an interest in local dress customs of the lands he surveyed and
mapped, which are brilliantly displayed in this collection. Fascination with faraway
lands and travel for pleasure were relatively new phenomena in the late eighteenth
century, and collections such as this one were popular, introducing both the tourist as
well as the armchair traveler to the inhabitants of other countries.

 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness
and individuality of the world’s nations some 200 years ago. Dress codes have changed
since then, and the diversity by region and country, so rich at the time, has faded away.
It’s now often hard to tell the inhabitants of one continent from another. Perhaps,
viewing it optimistically, we’ve traded a cultural and visual diversity for a more varied
personal life—or a more varied and interesting intellectual and technical life.

 At a time when it’s difficult to tell one computer book from another, Manning cel-
ebrates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jefferys’ pictures.
xxii

Part 1

Search meets deep learning

Setting up search engines to effectively react to users’ needs isn’t an easy
task. Traditionally, many manual tweaks and adjustments had to be made to a
search engine’s internals to get it to work decently on a real collection of data.
On the other hand, deep neural networks are very good at learning useful infor-
mation about vast amounts of data. In this first part of the book, we’ll start look-
ing into how a search engine can be used in conjunction with a neural network
to get around some common limitations and provide users with a better search
experience.

Neural search
Suppose you want to learn something about the latest research breakthroughs in
artificial intelligence. What will you do to find information? How much time and
work does it take to get the facts you’re looking for? If you’re in a (huge) library,
you can ask the librarian what books are available on the topic, and they will proba-
bly point you to a few they know about. Ideally, the librarian will suggest particular
chapters to browse in each book.

 That sounds easy enough. But the librarian generally comes from a different
context than you do, meaning you and the librarian may have different opinions
about what’s significant. The library could have books in various languages, or the
librarian might speak a different language. Their information about the topic
could be outdated, given that latest is a fairly relative point in time, and you don’t
know when the librarian last read anything about artificial intelligence, or if the
library regularly receives publications in the field. Additionally, the librarian may

This chapter covers
 A gentle introduction to search fundamentals

 Important problems in search

 Why neural networks can help search engines be more
effective
3

4 CHAPTER 1 Neural search
not understand your inquiry properly. The librarian may think you’re talking about
intelligence from the psychology perspective,1 requiring a few iterations back and
forth before you understand one another and get to the pieces of information you
need.

 Then, after all this, you might discover the library doesn’t have the book you need;
or the information may be spread among several books, and you have to read them
all. Exhausting!

 Unless you’re a librarian yourself, this is what often happens nowadays when you
search for something on the internet. Although we can think of the internet as a sin-
gle huge library, there are many different librarians out there to help you find the
information you need: search engines. Some search engines are experts in certain
topics; others know only a subset of a library, or only a single book.

 Now imagine that someone, let’s call him Robbie, who already knows about both
the library and its visitors, can help you communicate with the librarian in order to
better find what you’re looking for. That will help you get your answers more quickly.
Robbie can help the librarian understand a visitor’s inquiry by providing additional
context, for example. Robbie knows what the visitor usually reads about, so he skips all
the books about psychology. Also, having read a lot of the books in the library, Robbie
has better insight into what’s important in the field of artificial intelligence. It would
be extremely helpful to have advisors like Robbie to help search engines work better
and faster, and help users get more useful information.

 This book is about using techniques from a machine learning field called deep
learning (DL) to build models and algorithms that can influence the behavior of
search engines, to make them more effective. Deep learning algorithms will play the
role of Robbie, helping the search engine to provide a better search experience and
to deliver more precise answers to end users.

 One important thing to note is that DL isn’t the same as artificial intelligence (AI).
As you can see in figure 1.1, AI is a huge research field; machine learning is only part
of it, and DL, in turn, is a sub-area of machine learning. Basically, DL studies how to
make machines “learn” using the deep neural network computing model.

1.1 Neural networks and deep learning
The goal of this book is to enable you to use deep learning in the context of search
engines, to improve the search experience and results. Even if you’re not going to
build the next Google search, you should be able to learn enough to use DL tech-
niques within small or medium-sized search engines to provide a better experience to
users. Neural search should help you automate work that you’d otherwise have to per-
form manually. For example, you’ll learn how to automate extraction of synonyms
from search engine data, avoiding manual editing of synonym files (chapter 2). This
saves time while improving search effectiveness, regardless of the specific use case or

1 This happened to me in real life.

5Neural networks and deep learning
domain. The same is true for having good related-content suggestions (chapter 6). In
many cases, users are satisfied with a combination of plain search together with the
ability to navigate related content. We’ll also cover some more-specific use cases, such
as searching content in multiple languages (chapter 7) and searching for images
(chapter 8).

 The only requirement for the techniques we’ll discuss is that they have enough
data to feed into neural networks. But it’s difficult to define the boundaries of
“enough data” in a generic way. Let’s instead summarize the minimum number of
documents (text, images, and so on) that are generally needed for each of the prob-
lems addressed in the book: see table 1.1.

Note that table 1.1 isn’t meant to be strictly adhered to; these are numbers drawn
from experience. For example, even if a search engine counts fewer than 10,000 doc-
uments, you can still try to implement the neural machine translation techniques

Table 1.1 Per-task requirements for neural search techniques

Task Minimum number of docs (range) Chapter

Learning word representations 1,000–10,000 2, 5

Text generation 10,000–100,000 3, 4

Learning document representations 1,000–10,000 6

Machine translation 10,000–100,000 7

Learning image representations 10,000–100,000 8

Artificial
intelligence

Machine
learning Deep learning

Figure 1.1 Artificial intelligence,
machine learning, and deep learning

6 CHAPTER 1 Neural search
from chapter 7; but you should take into account that it may be harder to get high-
quality results (for example, perfect translations).

 As you read the book, you’ll learn a lot about DL as well as all the required search
fundamentals to implement these DL principles in a search engine. So if you’re a
search engineer or a programmer willing to learn neural search, this book is for you.

 You aren’t expected to know what DL is or how it works, at this point. You’ll get to
know more as we look at some specific algorithms one by one, when they become use-
ful for solving particular types of search problems. For now, I’ll start you off with some
basic definitions. Deep learning is a field of machine learning where computers are
capable of learning to represent and recognize things incrementally, by using deep
neural networks. Deep artificial neural networks are a computational paradigm origi-
nally inspired by the way the brain is organized into graphs of neurons (although the
brain is much more complex than an artificial neural network). Usually, information
flows into neurons in an input layer, then through a network of hidden neurons (form-
ing one or more hidden layers), and then out through neurons in an output layer. Neu-
ral networks can also be thought of as black boxes: smart functions that can transform
inputs into outputs, based on what each network has been trained for. A common
neural network has at least one input layer, one hidden layer, and one output layer.
When a network has more than one hidden layer, we call the network deep. In figure
1.2, you can see a deep neural network with two hidden layers.

Layer 1
(input layer)

Layer 2
(hidden layer)

Layer 3
(hidden layer)

Layer 4
(output layer)

Figure 1.2 A deep neural network with
two hidden layers

7What is machine learning?
Before going into more detail about neural networks, let’s take a step back. I said deep
learning is a subfield of machine learning, which is part of the broader area of artifi-
cial intelligence. But what is machine learning?

1.2 What is machine learning?
An overview of basic machine learning concepts is useful here before diving into DL
and search specifics. Many of the concepts that apply to learning with artificial neural
networks, such as supervised and unsupervised learning, training, and predicting, come
from machine learning. Let’s quickly go over some basic machine learning concepts
that we’ll be using in DL (applied to search) during the course of this book.

 Machine learning (ML) is an automated approach to solving problems based on
algorithms that can learn optimal solutions from previous experience. In many cases,
this experience comes in the form of pairs made from what has been previously
observed together with what you want the algorithm to infer from it. For example, an
ML algorithm can be fed text pairs, where the input is some text and the output is a
category that can be used to classify similar texts. Imagine you’re back in the library,
but this time as the librarian; you’ve bought thousands of books, and you want to orga-
nize them on bookshelves so people can easily find them. To that end, you want to cat-
egorize them so that books belonging to the same category are placed close to each
other on the same bookshelf (which perhaps has a small tag indicating the category).
If you can spend a few hours categorizing the books manually, you’ll have built the
experience your ML algorithm needs. Afterward, you can train an ML algorithm
based on your wise judgment, and it will do the categorization of the remaining books
on your behalf.

 This type of training, where you specify the desired output corresponding to each
input, is called supervised learning. Each pair made of an input and its corresponding
target output is called a training sample. Table 1.2 shows some of the categorizations a
librarian might make manually, to help create a supervised learning algorithm.

A supervised learning algorithm is fed data like the kind shown in the table during
what’s called a training phase. During the training phase, an ML algorithm crunches
the training set (the set of training samples) and learns how to map, for example,

Table 1.2 Example data for book categorization

Title Text Categories

Taming Text If you’re reading this book, chances are you’re a
programmer…

NLP, search

Relevant Search Getting a search engine to behave can be maddening … Search, relevance

OAuth2 in Action If you’re a software developer on the web today … Security, OAuth

The Lord of the Rings … Fantasy, novels

Lucene in Action Lucene is a powerful Java search library that lets you … Lucene, search

8 CHAPTER 1 Neural search
input text to output categories. What an ML algorithm learns depends on the task it’s
used for; in the example case, it’s being used for a document categorization task. How an
ML algorithm learns depends on how the algorithm itself is built. There isn’t only one
algorithm to perform ML; there are various subfields of ML, and many different algo-
rithms exist for each of them.

NOTE DL is just one way of doing ML, by using neural networks. But a vast
number of alternatives are available when it comes to deciding which kind of
neural network is best suited for a certain task. In the course of this book,
we’ll mostly cover ML topics via DL. Occasionally, though, we’ll quickly cover
other types of ML algorithms, mostly for the sake of comparison and reason-
ing for real-world scenarios.

Once the training phase has completed, you’ll usually end up with a machine learning
model. You can think of this as the artifact that captures what the algorithm has learned
during training. This artifact is then used to perform predictions. A prediction is per-
formed when a model is given a new input without any attached desired output, and
you ask the model to tell you the correct output, based on what it’s been learning
during the training phase. Note that you need to provide a lot of data for training
(not hundreds, but at least tens of thousands of training samples) if you want to
obtain good results when predicting outputs.

 In the book categorization example, when given the following text, the model will
extract categories such as “search” and “Lucene”:

Lucene is a powerful Java search library that lets you easily add search to
any application ...

These are the opening words from Lucene in Action, 2nd edition.
 As I mentioned, the extracted categories can be used to place books belonging to

the same category on the same bookshelf in a library. Are there other ways to accom-
plish this, without first providing a training set with book texts labeled by category? It
would be helpful if you could find a way to measure the similarity between books so
that you could place similar ones near to each other without caring too much about
the exact naming of each book category. To do that without categories, you can use
unsupervised learning techniques to cluster similar documents together. In unsupervised
learning, as opposed to supervised learning, an ML algorithm looks at the data with no
information about any expected output and extracts patterns and data representations
during the learning phase. During clustering, each piece of input data—in this case, the
text of a book—is transformed into a point that’s placed on a graph. During the train-
ing phase, a clustering algorithm places points in clusters, assuming that nearby points
are semantically similar. After training has completed, books belonging to the same
clusters can be picked up and placed on bookshelves accordingly.

 In this case, the output of unsupervised learning is the set of clusters with their
assigned points. Just as before, such models can be used for predictions, such as,
“What cluster does this new book/point belong to?”

9What deep learning can do for search
 ML can help solve a lot of different problems, including categorizing books and
grouping similar texts together. Until the early 2000s, several different techniques
were used to achieve decent results when trying to address these kinds of tasks. Then
DL became mainstream, not just in research labs of universities, but also in industry.
Many ML problems were better resolved with DL, so DL became better known and
more frequently used. The success and wide use of DL has resulted in extracting
more-accurate book categories and more-accurate clustering, and many other
improvements.

1.3 What deep learning can do for search
When deep artificial neural networks are used to help solve search problems, this field
is called neural search. In this book, you’ll get to know how neural networks are com-
posed, how they work, and how they can be used in practice, all in the context of
search engines.

You might be wondering why we need neural search: after all, we already have good
search engines on the web, and we often manage to find what we need. So what’s the
value proposition of neural search?

 Deep neural networks are good at the following:

 Providing a representation of textual data that captures word and document
semantics, allowing a machine to say which words and documents are semanti-
cally similar.

 Generating text that’s meaningful in a certain context: for example, useful for
creating chatbots.

 Providing representations of images that pertain not to the pixels but rather to
their composing objects. This allows us to build efficient face/object-recognition
systems.

 Performing machine translation efficiently.
 Under certain assumptions, approximating any function.2 There’s theoretically

no limit to the kinds of tasks deep neural networks can achieve.

2 See Kurt Hornik, Maxwell Stinchcombe, and Halbert White, “Multilayer Feedforward Networks Are Universal
Approximators,” Neural Networks 2, no. 5 (1989): 359-366, http://mng.bz/Mxg8.

Neural search
The term neural search is a less academic form of the term neural information
retrieval, which first appeared during a research workshop at the SIGIR 2016 confer-
ence (www.microsoft.com/en-us/research/event/neuir2016) focused on applying
deep neural networks to the field of information retrieval.

https://github.com/dl4s/pydl4s
http://mng.bz/Mxg8
www.microsoft.com/en-us/research/event/neuir2016

10 CHAPTER 1 Neural search
This might sound a bit abstract, so let’s look at how these capabilities can be useful for
you as a search engineer and/or a user. Think of the major struggle points when using
search engines. Most likely you’ll experience concerns like these:

 I didn’t get good results: I found somewhat related documents, but not the one
I was looking for.

 It took me too much time to find the information I was looking for (and then I
gave up).

 I had to read through some of the provided results before getting a good
understanding of the topic I wanted to learn about.

 I was looking for content in my native language, but I could find good search
results only in English.

 I was looking for a certain image I had once seen on a website, but I couldn’t
find it again.

Such problems are common, and various solutions exist to mitigate each of them. But
the exciting thing is that deep neural networks, if tailored properly, can help in all
these cases.

 With the help of DL algorithms, a search engine is able to

 Provide more-relevant results to its end users, increasing user satisfaction.
 Search through binary content like images the same way we search text. Think

of this as being able to search for an image with the phrase “picture of a leopard
hunting an impala” (and you’re not Google).

 Serve content to users speaking different languages, allowing more users to
access the data in the search system.

 Generally become more sensitive to the data it serves, which means less chance
for queries that give no results.

If you’ve ever worked on designing, implementing, or configuring a search engine,
you’ve surely faced the problem of obtaining a solution that adapts to your data. DL
will help a lot in providing solutions to these problems that are accurately based on
your data, not on fixed rules or algorithms.

 The quality of search results is crucial for end users. There’s one thing a search
engine should do well: find out which of the possibly matching search results would be
most useful for a specific user’s information needs. Well-ranked search results allow
users to find important results more easily and quickly; that’s why we put a lot of empha-
sis on the topic of relevant results. In real life, this can make a huge difference. According
to an article published in Forbes, “By providing better search results, Netflix estimates
that it is avoiding canceled subscriptions that would reduce its revenue by $1B annu-
ally.”3 Deep neural networks can help by automatically tweaking the end user query
under the hood based on past user queries or based on the search engine contents.

3 Louis Columbus, “McKinsey’s State of Machine Learning and AI, 2017,” July 9, 2017, http://mng.bz/a7KX.

http://mng.bz/a7KX

11What deep learning can do for search
 People today are used to working with web search engines to retrieve images. If
you search for “pictures of angry lions” on Google, for instance, you’ll get strongly rel-
evant images. Before the advent of DL, such images had to be decorated with metadata
(data about data) describing their contents before being put into the search engine.
And that metadata usually had to be typed by a human. Deep neural networks can
abstract a representation of an image that captures what’s in there so that no human
intervention is required to put an image description in the search engine.

 For scenarios like web search (searching over all the websites on the internet),
users can come from all over the world, so it’s best if they can search in their native
languages. Additionally, the search engine could pick user profiles and return results
in their language even if they search in English; this is a common scenario for tech
queries, because lots of content is produced in English. An interesting application of
deep neural networks is called neural machine translation, a set of techniques that use
deep neural networks to translate a piece of text from a source language into another
target language.

 Also exciting is the possibility of using deep neural networks to change the way
search engines return relevant information to end users. Most commonly, a search
engine will give a list of search results in response to a search query. DL techniques
can be used to let the search engine return a single piece of text that should give all
the information needed by a user.4 This would save users from looking at each and
every result to get all the knowledge they required. We could even aggregate all of
these ideas and build a search engine serving both text and images seamlessly to users
from all over the world, which, instead of returning search results, returns the single
piece of text or image the user needs.

 These applications are all examples of neural search. As you can imagine, they have
the potential to revolutionize the way we work and use search engines today.

 There are many possibilities for how computers can help people obtain the infor-
mation they need. Neural networks have been discussed for the past few years, but
only recently have they become so popular; that’s because researchers have discovered
how to make them much more effective than they used to be. In the early 2000s, for
example, adding the help of more-powerful computers was a key advance. To take
advantage of all the potential of deep neural networks, people interested in computer
science—especially in the fields of natural language processing, computer vision, and
informational retrieval—will need to know how such artificial neural networks work in
practice.

 This book is intended for people interested in building smart search engines with
the help of DL. This doesn’t necessarily mean you’re going to build the next Google
search. It could mean making use of what you learn here to design and implement an
efficient, effective search engine for your company, or expanding your knowledge
base to apply DL techniques in larger projects that may include web search engines.

4 Christina Lioma et al., “Deep Learning Relevance: Creating Relevant Information (As Opposed to Retrieving
It),” June 27, 2016, https://arxiv.org/pdf/1606.07660.pdf.

https://arxiv.org/pdf/1606.07660.pdf

12 CHAPTER 1 Neural search
The goal here is to enrich your skill set around search engines and DL, because these
skills can be useful in numerous contexts. For example:

 Training a deep neural network to learn to recognize objects in images and use
what the neural network has learned when searching for images

 Using neural networks to populate a “related content” bar in a search engine’s
search results list

 Training neural networks to learn to make the user query more specific (fewer
but better search results) or broader (more search results, even if some may be
less relevant)

1.4 A roadmap for learning deep learning
We’ll run our neural search examples on top of open source software written in Java
with the help of Apache Lucene (http://lucene.apache.org), an information retrieval
library; and Deeplearning4j (http://deeplearning4j.org), a DL library. But we’ll focus
as much as possible on principles rather than implementation, in order to make sure
the techniques explained in this book can be applied with different technologies
and/or scenarios. At the time of writing, Deeplearning4j is a widely used framework
for DL in the enterprise communities; it’s part of the Eclipse Foundation. It also has
good adoption because of integration with popular big data frameworks like Apache
Spark. Full source code accompanying this book can be found at www.manning.com/
books/deep-learning-for-search and on GitHub at https://github.com/dl4s/dl4s.
Other DL frameworks exist, though; for example, TensorFlow (from Google) is popu-
lar among the Python and research communities. Almost every day, new tools are
invented, so I decided to focus on a relatively easy-to-use DL framework that can be
easily integrated with Lucene, which is one of the most widely adopted search libraries
for the JVM. If you’re working with Python, you can find TensorFlow implementations
of most of the DL code used in this book together with some instruction on GitHub at
https://github.com/dl4s/pydl4s.

 While planning this book, I decided to present chapters in a kind of ascending
level of difficulty, so each chapter will teach a certain application of neural networks
to a specific search problem, supported by well-known algorithms. We’ll keep an eye
on state-of-the-art DL algorithms, but we’re also quietly conscious that we can’t cover
everything. The aim is to provide good baselines that can be easily extended if a new
and better neural network-based algorithm comes out next week. Key things we’ll
improve with the help of deep neural networks are relevance, query understanding,
image search, machine translation, and document recommendation. Don’t worry if
you don’t know about any of these: I’ll introduce such tasks as they exist without any
DL technique and then show when and how DL can help.

 In part 1 of this book, I’ll present an overview of how neural networks can help to
improve search engines in general. I’ll do this first with an application where neural
networks help the search engine build multiple versions of the same query by generat-
ing synonyms. In part 2 of the book, we’ll mostly examine DL-based techniques to

http://lucene.apache.org
http://deeplearning4j.org
www.manning.com/books/deep-learning-for-search
www.manning.com/books/deep-learning-for-search
www.manning.com/books/deep-learning-for-search
https://github.com/dl4s/dl4s
https://github.com/dl4s/pydl4s

13Retrieving useful information
make search queries more expressive. This improved expressiveness will make the
queries better fit user intent, and thus make the search engine return better (more
relevant) results. Finally, in part 3 of the book, we’ll work on more-complex things like
searching over multiple languages and searching for images, and finally address per-
formance aspects of neural search systems.

 Along the way, we’ll also pause to consider accuracy and how to measure the final
results when we apply neural search. Without numbers constantly demonstrating what
we think is good, we won’t go far. We need to measure how good our systems are, with
and without fancy neural nets.

 In this chapter, we’ll start with a look at the problems search engines try to solve
and the most common techniques used to solve them. This survey will introduce you
to the basics of how text is analyzed, ingested, and retrieved within a search engine, so
you’ll get to know how queries hit search results, as well as some fundamentals of solv-
ing the problem of returning relevant results first. We’ll also uncover some weaknesses
inherent in common search techniques, which sets up a discussion of what DL can be
used for in the context of search. Then we’ll look at which tasks DL can help to solve
and what the practical implications are of its applications in the search field. This will
help paint a realistic picture of what you can and can’t expect from neural search in
real-life scenarios.

1.5 Retrieving useful information
Let’s start by learning how to retrieve search results that are relevant to users’ needs.
This will give you the search fundamentals you need to understand how deep neural
networks can help build innovative search platforms.

 First question: what is a search engine? It’s a system, a program running on a com-
puter, that people can use to retrieve information. The main value of a search engine
is that whereas it ingests “data,” it’s expected to provide “information.” This goal
means the search engine should do its best to make sense of the data it gets in order
to provide something that can be easily consumed by its users. As users, we rarely need
lots of data about a certain topic; we’re often looking for a specific piece of informa-
tion and would be satisfied with just one answer, not hundreds or thousands of results
to inspect.

 When it comes to search engines, most people tend to think to Google, Bing,
Baidu, and other large, popular search engines that provide access to huge amounts
of information coming from a lot of diverse sources. But there are also many smaller
search engines that focus on content from a specific domain or topic. These are often
called vertical search engines because they work on a constrained set of document types
or topics, rather than the entire set of content that is online nowadays. Vertical search
engines play an important role, too, because they’re often able to provide more-
precise results about “their” data—because they’ve been tailored to that specific con-
tent. They often allow us to retrieve more-fine-grained results with higher accuracy
(think of searching for an academic article on Google versus using Google Scholar).

14 CHAPTER 1 Neural search
(For now, we won’t go into the details of what accuracy means; here, I’m talking about
the general concept of the accuracy of an answer to an inquiry. But accuracy is also the
name of a well-defined measure used to evaluate how good and precise an informa-
tion retrieval system’s results are.) We’ll make no distinction at this point about the
size of the data and user base, because all the concepts that follow apply to most of the
existing search engines no matter how big or small.

 Key responsibilities of a search engine usually involve the following:

 Indexing—Ingesting and storing data efficiently so that it can be retrieved
quickly

 Querying—Providing retrieval functionality so that search can be performed by
an end user

 Ranking—Presenting and ranking the results according to certain metrics to
best satisfy users’ information needs

A key point in practice is also efficiency. If it takes too much time to get the information
you’re looking for, it’s likely you’ll switch to another search engine next time.

 But how does a search engine work with pages, books, and similar kinds of text? In
the following sections, you’ll get to know

 How big chunks of text are split into smaller pieces for the search engine to
take a given query and quickly retrieve a document

 Basics of how to capture the importance and relevance of search results, for a
particular query

Let’s start with the fundamentals of information retrieval (indexing, querying, and
ranking). Before diving into that, you need to understand how big streams of texts
end up in a search engine; this is important, because it impacts the search engine’s
capabilities of searching fast and providing sensitive results.

1.5.1 Text, tokens, terms, and search fundamentals

Put yourself in the shoes of the librarian, who has just received an inquiry for books
related to a certain topic. How would you be able to say that one book contains informa-
tion about a certain topic? How would you know if a book even contains a certain word?

 Extracting the categories a certain book belongs to (high-level topics like “AI” and
“DL”) is different from extracting all the words contained in the book. For example,
categories make searching for a book about AI easier for a newbie, because no prior
knowledge of AI-specific techniques or authors is required. A user will go to the
search engine website and start browsing between the existing categories and look for
something that’s close enough to the topic of AI. On the other hand, for an AI expert,
knowing whether a book contains the words gradient descent or backpropagation allows
results to be found that contain finer-grained information about certain techniques or
problems in the field of AI.

 Humans generally have a hard time remembering all the words contained in a
book, although we can easily tell a book’s topic by reading a few paragraphs from the

15Retrieving useful information
book or even from looking at the preface or foreword. Computers tend to behave the
opposite way. They can easily store large amounts of text and “remember” all the
words contained in millions of pages so that they can be used while searching; on the
other hand, they aren’t so good at extracting information that’s implicit, scattered, or
not directly formulated in a given piece of text, such as which category a book belongs
to. For example, a book about neural networks may never mention “artificial intelli-
gence” (although it would probably refer to ML). But it would still belong to the
broad category of “books about artificial intelligence.”

 Let’s first look at the task computers can do well already: extracting and storing
text fragments (also known as terms) from streams of text. You can think of this pro-
cess, called text analysis, as breaking down the text of a book into all of its constituent
words. Imagine having a tape on which the contents of a book are written in a stream,
and a machine (the text analysis algorithm) into which you insert such tape as input.
You receive many pieces of such tape as output, and each of those output pieces con-
tains a word or a sentence or a noun phrase (for example, “artificial intelligence”);
you may realize that some of the words written on the input tape have been eaten by
the machine and not outputted in any form.

 Because the final units to be created by the text analysis algorithm might be words
but also might be group of words or sentences, or even portions of words, we refer to
these fragments as terms. You can think of a term as the fundamental unit that a
search engine uses to store data and, consequently, retrieve it.

 That’s the basis of one of the most fundamental forms of search, keyword search: a user
types a set of words and expects the search engine to return all the documents that con-
tain some or all of the terms. This is how web search started decades ago. Although
many search engines today are much smarter, many users keep composing queries
based on the keywords they expect the search results to contain. This is what you’ll learn
now: how the text entered by a user into a search box makes the search engine return
results. A query is what we call the text the user enters in order to search for something.
Although a query is just text, it conveys and encodes what the user needs and how the
user expresses this possibly general or abstract need (for example, “I want to learn about
the latest and greatest research in the field of artificial intelligence”) in a way that’s con-
cise but still descriptive (for example, “latest research in ai,” as in figure 1.3).

 If, as a user, you want to find documents that contain the word “search,” how
would the search engine return such documents? A not-so-smart way of doing that
could be to go over each document’s content from the beginning and scan it until the
search engine finds a match. But it would be very expensive to perform such text
scans for each query, especially with many large documents:

 Many documents may not contain the word “search”; therefore, it would be a
waste of computation resources to scan through them.

 Even if a document contains the word “search,” this word may occur toward the
end of the document, requiring the search engine to “read” through all the
preceding words before finding a match for “search.”

16 CHAPTER 1 Neural search
You have a match or a hit when one or more terms that are part of a query are found in
a search result.

 You need to find a way to compute this retrieval phase quickly. One fundamental
method to accomplish that is to break down sentences like “I like search engines” into
smaller units: in this case, [“I”, “like”, “search”, “engines”]. This is a prerequisite for
efficient storage mechanisms called inverted indexes, which we’ll cover in the next sec-
tion. A text analysis program is often organized as a pipeline: a chain of components,
each of which takes the previous component’s output as its input. Such pipelines are
usually composed of building blocks of two types:

 Tokenizers—Components that break a stream of text into words, phrases, sym-
bols, or other units called tokens

 Token filters—Components that accept a stream of tokens (from a tokenizer or
another filter) and can modify, delete, or add new tokens

The output of such text analysis pipelines is a sequence of consecutive terms, as shown
in figure 1.4.

 You now know that text analysis is useful for performance reasons to build fast
search engines. Another equally important aspect is that it controls how queries and
the text to be put into the index match. Often, text analysis pipelines are used to filter

Latest research in
artificial intelligence

Search engine

Search results
are returned

Query is
executed

Figure 1.3 Searching
and getting results

I/0-1 like/2-6 search/7-13 engines/14-21
0 1 2 3 4

Figure 1.4 Getting the words of “I like search engines” using a simple text analysis pipeline

17Retrieving useful information
some tokens that aren’t considered useful or needed for the search engine. For exam-
ple, a common practice is to avoid storing common terms like articles or prepositions
in the search engine, because those words exist in most text documents in languages
like English, and you usually don’t want a query to return everything in the search
engine: that wouldn’t give much value to the user. In such cases, you can create a
token filter responsible for removing tokens like “the,” “a,” “an,” “of,” “in,” and so on,
while letting all the other tokens flow out as the tokenizer produces them. In this sim-
plistic example,

 The tokenizer will split tokens every time it encounters a whitespace character.
 The token filter will remove tokens that match a certain blacklist (also known as

a stopword list).

In real life, it’s common, especially when setting up a search engine for the first time,
to build several different text analysis algorithms and try them on the data you want to
put into the search engine. This allows you to visualize how content will be handled by
such algorithms, such as which tokens are generated, which ones eventually are fil-
tered out, and so on. You’ve built this text analysis chain (also called an analyzer) and
want to make sure it works as expected and filters articles, prepositions, and so forth.
Let’s try to pass a first piece of text to the simplistic analyzer and submit the sentence
“the brown fox jumped over the lazy dog” to the pipeline; you expect articles to be
removed. The generated output stream will look like figure 1.5.

The resulting token stream has “the” tokens removed, as expected; you can see that
from the dotted arrows at the start of the graph and between the nodes “over” and
“lazy.” The numbers beside the tokens represent the starting and ending positions (in
number of characters) of each token. The important bit of this example is that a
query for “the” won’t match, because the analyzer has removed all such tokens, and
they won’t end up being part of the search engine contents. In real life, text analysis
pipelines are often more complex; you’ll see some of them in the following chapters.
Now that you’ve learned about text analysis, let’s see how search engines store the text
(and terms) to be queried by end users.

INDEXING

Although the search engine needs to split text into terms for the sake of fast retrieval,
end users expect search results to be in the form of a single unit: a document. Think
about search results from Google. If you search for “books,” you’ll receive a list of
results, each composed of a title, a link, a text snippet of the result, and so on. Each of
those results contains the term “books,” but what’s shown is a document that has lot
more information and context than just the text snippet where the term matched. In

brown/4-9 fox/10-13 jumped/14-20 over/21-25
1

lazy/30-34
2 3 4 5 6 7

dog/35-38
8

Figure 1.5 The traversed token graph

18 CHAPTER 1 Neural search
practice, tokens resulting from text analysis are stored with a reference to the original
piece of text they belong to.

 This link between a term and a document makes it possible to

 Match a keyword or search term from a query
 Return the referenced original text as a search result

This whole process of analyzing streams of text and storing the resulting terms (along
with their referenced documents) in the search engine is usually referred to as indexing.

 The reason for such wording is that terms are stored in an inverted index: a data
structure that maps a term into the text that originally contained it. Probably the easi-
est way to look at it is as the analytic index of an actual book, where each word entry
points to the pages where it’s mentioned; in the case of the search engine, the words
are the terms and the pages are the original pieces of text.

 From now on, we’ll refer to the pieces of text to be indexed (pages, books) as docu-
ments. In order to visualize how documents end up after being indexed, let’s assume
you have the following two very similar documents:

 “the brown fox jumped over the lazy dog” (document 1)
 “a quick brown fox jumps over the lazy dog” (document 2)

Assuming you use the text analysis algorithm
defined earlier (whitespace tokenization with
stop words “a,” “an,” and “the”), table 1.3 shows a
good approximation of an inverted index con-
taining such documents.

 As you can see, there’s no entry for the term
“the” because the stopword-based token filter
has removed such tokens. In the table, you can
find the dictionary of terms in the first column
and a posting list—a set of document identifi-
ers—associated with each term for each row.
With inverted indexes, retrieval of documents
that contain a given term is very fast: the search
engine picks the inverted index, looks for an
entry for the search term, and eventually
retrieves the documents contained in the posting list. With the example index, if you
search for the term “quick,” the inverted index will return document 2 by looking into
the posting list corresponding to the term “quick.” We’ve just gone through a quick
example of indexing text into a search engine.

 Let’s think about the steps that go into indexing a book. A book is composed of
pages, the core content, but it also has a title, an author, an editor, a publication year,
and so on. You can’t use the same text analysis pipeline for everything; you wouldn’t
want to remove “the” or “an” from a book title. A user knowing a book’s title should be
able to find it by exact matching it! If the text analysis chain removes “in” from the

Table 1.3 Inverted index table

Term Document IDs

brown 1, 2

fox 1, 2

jumped 1

over 1, 2

lazy 1, 2

dog 1, 2

quick 2

jumps 1

19Retrieving useful information
book title Tika in Action, a query for “Tika in action” won’t find it. On the other hand,
you may want to avoid keeping such tokens for the book contents so you have a text
analysis pipeline that’s more aggressive in filtering unwanted terms. If the text analysis
chain removes “in” and “the” from the book title Living in the Information Age, it
shouldn’t be problematic: it’s very unlikely that a user will search for “Living in the
Information Age,” but they may search for “information age.” In this case, there’s little
or no loss of information, but you get the benefit of storing smaller texts and, more
important, improving relevance (we’ll talk about this in the next section). A common
approach in real life is to have multiple inverted indexes that address indexing of dif-
ferent parts of a document, all within the same search engine.

SEARCHING

Now that we have some content indexed in the search engine, we’ll look at searching.
Historically, the first search engines allowed users to search with specific terms, also
known as keywords, and, eventually, Boolean operators that let users determine which
terms must match, must not match, or can match in the search results. Most commonly,
a term in a query should match, but that isn’t mandatory. If you want search results that
must contain such a term, you must add the relevant operator: for example, using + in
front of the term. A query like “deep +learning for search” requires results that con-
tain both “deep” and “learning” and optionally contain “for” and “search.” It’s also
common to allow users to specify that they need entire phrases to match, instead of
single terms. That allows users to search for an exact sequence of words instead of sin-
gle terms. The previous query could be rephrased as ““deep learning” for search,” in
order to return search results that must contain the sequence “deep learning” and
optionally the terms “for” and “search.”

 It may sound surprising, but text analysis is also important during the search, or
retrieval, phase. Suppose you want to search for this book, Deep Learning for Search, on
top of the data you just indexed; assuming you have a web interface, you’d probably
type a query like “deep learning for search.” The challenge in this retrieval phase is to
make it possible to retrieve the right book. The first thing that sits between a user and
a classic search engine UI is a query parser.

 A query parser is responsible for transforming the text of the search query entered
by the user into a set of clauses that indicate which terms the search engine should look
for and how to use them when looking for a match in the inverted indexes. In the previ-
ous query examples, the query parser would be responsible for making sense of the sym-
bols + and ”. Another widespread syntax allows you to put Boolean operators among
query terms: “deep AND learning.” In this case, the query parser will give a special
meaning to the “AND” operator: terms to the left and right of it are mandatory. A query
parser can be thought as a function that takes some text and outputs a set of constraints
to apply to the underlying inverted index(es) in order to find results. Let’s again pick an
example query like “latest research in artificial intelligence.” A smart query parser would
create clauses that reflect the semantics of words; for example, instead of having two
clauses for “artificial” and “intelligence,” it should create only one clause for “artificial

20 CHAPTER 1 Neural search
intelligence.” In addition, probably the term “latest” isn’t to be matched; you don’t want
results containing the word “latest”; you instead want to retrieve results that have been
“created” recently. So a good query parser would transform the “latest” term into a
clause that can be expressed, for example, like “created between today and 2 months
ago” in natural language. The query engine would encode such a clause in a way that’s
more easily handled by a computer, such as created < today() AND created >

(today() - 60days); see figure 1.6.

During indexing, a text analysis pipeline is used to split the input text into terms to be
stored in the index; this is also called index-time text analysis. Similarly, text analysis can be
applied during search on the query in order to break the query string into terms; this is
therefore called search-time text analysis. A document is retrieved by the search engine
when the search-time terms match a term in the inverted index referenced by that doc.

 Figure 1.7 shows an index-time analysis on the left, which is used to split a docu-
ment text into terms. These end up in the index, all referencing doc 1. The index-time
analysis is composed of a whitespace tokenizer and two token filters: the former is
used to remove unwanted stopwords (like “the”), and the latter is used to convert all
the terms into lowercase (for example, “Fox” gets converted to “fox”). At upper right,

latest research in
artificial intelligence

Search engine

created < today()
AND

created > (today() - 60days)

artificial
intelligence

research

Query parser

Query is
executed

Query is
parsed

Different clauses are
generated by the

query parser.

Figure 1.6 Query parsing

21Retrieving useful information
the query “lazy foxes” is passed to the search-time analysis, which splits tokens using a
whitespace tokenizer but filters using a lowercase filter and a stemming filter. A stem-
ming filter transforms terms by reducing inflected or derived words to their root
form; this means removing plural suffixes, ing form in verbs, and so on. In this case,
“foxes” is transformed into “fox.”

A common way to verify that indexing and search text analysis pipelines work as
expected is to follow these steps:

1 Take sample content.
2 Pass the content to the index-time text analysis chain.
3 Take a sample query.
4 Pass the query to the search-time text analysis chain.
5 Check whether the produced terms match.

For example, it’s common to have stopword filters at indexing time, because perform-
ing the filtering then won’t have any performance impact on the retrieval phase. But

lazy foxes

Whitespace
tokenizer

Lowercase
filter

Whitespace
tokenizer

the big
brown fox
jumped
over the
lazy dog
...

Lowercase
filter

Stopword
filter

Stemming
filter

lazy

big

brown

fox

jumped

over

lazy

dog

big

doc 1

brown

fox

jumped

over

lazy

dog

fox

A text
document is

indexed.

Query is
executed

A tokenizer and
some filters
process the

document text.

A tokenizer and
some filters
process the

query.

The query terms
are matched
against the

inverted index.

Tokens are
indexed,

attached to a
document identifier.

Figure 1.7 Index, search-time
analysis, and term matching

22 CHAPTER 1 Neural search
it may be possible to have other filters within either the indexing or search phases.
With index- and search-time text analysis chains and query parsing in place, we can
look at how the process of retrieving search results works.

 You’ve learned one of the basic techniques at the core of every search engine: text
analysis (tokenization and filtering) allows the system to break down text into the
terms you expect users to type at query time and place them into a data structure
called an inverted index, which allows efficient storage (space-wise) and retrieval
(time-wise). As users, however, we don’t want to look into all the search results, so we
need search engine to tell us which ones are supposed to be the best. Now, you may be
wondering, what does the best mean? Is there a measure of how good a piece of infor-
mation is, given our queries? The answer is yes: we call such a measure relevance. Rank-
ing search results in an accurate way is one of the most important tasks a search
engine has to accomplish. In the next section, we’ll have a brief look at how to address
the problem of relevance.

1.5.2 Relevance first

You now know how search engines retrieve a document, given a query. In this section,
you’ll learn how search engines rank the search results so that the most important
results are returned first. This will give you a solid understanding of how common
search engines work.

 Relevance is a key concept in search; it’s a measure of how important a document is
with respect to a certain search query. As humans, it’s often easy for us to tell why cer-
tain documents are more relevant than others with respect to a query. So, in theory,
we could try to extract a set of rules to represent our knowledge about ranking the
importance of a document. But in practice, such an exercise would probably fail:

 The amount of information we have doesn’t allow us to extract a set of rules
applicable to most of the documents.

 Documents in the search engine change a lot over time, and it’s a huge effort to
keep adjusting the rules accordingly.

 Documents in the search engine can belong to diverse domains (for example,
in web search), and it’s not possible to find a good set of rules that works for all
types of information.

One of the central themes in the field of information retrieval is to define a model
that doesn’t require a search engineer to extract such rules. Such a retrieval model
should capture the notion of relevance as accurately as possible. Given a set of search
results, a retrieval model will rank each of them: the more relevant the result, the
higher its score.

 Most of the time, as a search engineer, you won’t get perfect results by just choos-
ing a retrieval model; relevance is a capricious beast! In real-life scenarios, you may
have to continuously adjust your text analysis pipelines, as well as the retrieval model,
and possibly make some fine-grained tuning to the search engine internals. But
retrieval models help a lot by providing a solid baseline to obtain good relevance.

23Retrieving useful information
1.5.3 Classic retrieval models

Probably one of the most commonly used information retrieval models is the vector
space model (VSM).5 In this model, each document and query is represented as a vec-
tor. You can think of a vector as an arrow in a coordinate plane; each arrow in VSM
can represent a query or a document. The closer two arrows are, the more similar they
are (see figure 1.8); each arrow’s direction is defined by the terms that compose the
query/document.

In such a vector representation, each term is associated with a weight: a real number
that tells how important that term is in that document/query with respect to the rest
of the documents in the search engine. Such weights can be calculated in various
ways. At this point, we won’t go too deep into the details of how these weights are cal-
culated; I’ll mention that the most common algorithm is called term frequency–inverse
document frequency (TF-IDF). The basic idea behind TF-IDF is that the more frequently
a term appears in a single document (term frequency, or TF) the more important it is.
At the same time, it states that the more common a term is among all the documents,
the less important it is (inverse document frequency, or IDF). So in VSM, search results
are ranked with respect to the query vector, so documents appear higher in the results
list (get a higher rank/score) if they’re closer to such query vector.

 Whereas VSM is an information retrieval model based on linear algebra, over the
years alternate approaches based on probabilistic relevance models have emerged.
Instead of calculating how near a document and a query vector are, a probabilistic
model ranks search results based on an estimate of the probability that a document is
relevant to a certain query. One of the most common ranking functions for such

5 See G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic indexing,” Communications of the
ACM 18, no. 11 (1975): 613-620, http://mng.bz/gNxG.

Term 1

Term 2

Document vector

Query vector

Similarity angle Figure 1.8 Similarities between document
and query vectors according to VSM

http://mng.bz/gNxG

24 CHAPTER 1 Neural search
models is Okapi BM25. We won’t dive into its details, but it has shown good results,
especially on texts that aren’t very long.

1.5.4 Precision and recall

We’ll look into how neural search can help address relevance in future chapters, but
first we need to be able to measure relevance! A standard way of measuring how well
an information retrieval system is doing is to calculate its precision and recall. Precision
is the fraction of retrieved documents that are relevant. If a system has high precision,
users will mostly find results they’re looking for at the top of the list of search results.
Recall is the fraction of relevant documents that are retrieved. If a system has a good
recall, users will find all results relevant for them in the search results, although they
might not all be among the top results.

 As you may have noticed, measuring precision and recall requires someone to
judge how relevant search results are. In small-scale scenarios, that’s an addressable
task; but the effort required makes it hardly doable for huge collections of docu-
ments. An option to measure the effectiveness of search engines is to use publicly
available datasets for information retrieval, like the ones from the National Institute of
Standards and Technology (NIST) Text REtrieval Conference (also known as TREC6),
which contain lots of ranked queries to be used for testing precision and recall.

 In this section, you’ve learned some basics of classic information retrieval models
like VSM and probabilistic models. We’re now going to examine common issues that
affect search engines. The rest of the book will discuss how to fix them with the help
of DL.

1.6 Unsolved problems
We’ve had a closer look at how a search engine works, in particular how it strives to
retrieve information relevant to the end user’s needs. But let’s take a step back and try
to see the problem from the perspective of how, as users, we use search engines every
day. We’ll examine some of the problems that remain unresolved in many search sce-
narios, in order to better understand which issues we can hope to solve with the help
of DL.

 Filling a knowledge gap, as opposed to retrieving information, is a slightly more
complex topic. Let’s again take the example of going to a library, because you want to
know more about interesting recent research in the field of AI. As soon as you meet
the librarian, you have a problem: how do you get the librarian to accurately under-
stand what you need and what would be useful to you?

 Although this sounds simple, the usefulness of a piece of information is hardly
objective, but instead is rather subjective and based on context and opinion. You may
assume that a librarian has enough knowledge and experience that what you receive is
good. In real life, you would probably talk to the librarian to introduce yourself and

6 See http://trec.nist.gov/data.html.

http://trec.nist.gov/data.html

25Opening the search engine black box
share information about your background and why you need something; that would
allow the librarian to use such context in order to

 Exclude some books before even trying to search
 Discard some books after having found them
 Explicitly search in one or more areas that have a closer relation to your context

(for example, coming from academia versus industry sources)

You’ll be able to give feedback on the books given to you by the librarian afterward,
although sometimes you can express concerns based on past experiences (for exam-
ple, you don’t like books written by a certain author, so you advise the librarian to
explicitly not consider them). Both context and opinion can vary considerably and
consequently influence the relevance of information over time and among different
people. How does a librarian cope with this mismatch?

 You as a user may not know the librarian, or at least not well enough to understand
their context. The librarian’s background and opinions are important because they
influence the results you get. Therefore, the better you understand the librarian, the
faster you’ll get your information. So you need to know your librarian in order to get
good results!

 What if the librarian gives you a book about “deep learning techniques” in
response to your first inquiry about “artificial intelligence”? If you don’t know the sub-
ject, you need to make a second inquiry about “an introduction to what deep learning
is” and whether there’s a good book about it in the library. This process can repeat a
number of times; the key thing to understand is that information is flowing incremen-
tally—you don’t upload stuff into your brain the way characters do in The Matrix.
Instead, if you want to know something about AI, you may realize you need to know a
bit about DL first, and, for that, you discover you need to read about calculus and lin-
ear algebra, and so on. In other words, you don’t know all of what you need when you
first ask.

 To sum up, the process of getting the information you’re looking for from the
librarian has some flaws, caused by these situations:

 The librarian doesn’t know you.
 You don’t know the librarian.
 You may need a few iterations in order to get everything you need.

It’s important to identify these issues, because we want to use deep neural networks to
help us build better search engines that can be more easily used—and we’d like DL to
help fix those problems. Understanding these issues is the first step toward resolving
them.

1.7 Opening the search engine black box
Now let’s try to understand how much of what the search engine is doing users can
see. A crucial issue in creating effective search queries is which query language you
use. Some years ago, you would enter one or more keywords in a search box to

26 CHAPTER 1 Neural search
perform a query. Today, technology has evolved to the point that you can type queries
in natural language. Some search engines index documents in multiple languages
(for example, for web search) and allow subsequent querying. If you search for the
same thing but express it with slightly different queries in a search engine like Google,
you’ll observe surprisingly different results.

 Let’s run a little experiment to see how search results change when the same
request is expressed using different queries. If you were talking to a human and asking
the same question in different ways, you’d expect to always get the same kind of
answer. For example, if you ask someone, “What are the ‘latest breakthroughs in artifi-
cial intelligence,’ in your opinion?” you’ll get an answer based on their opinion. If you
ask that same person, “What are the ‘latest advancements in artificial intelligence,’ in
your opinion?” you’ll likely get exactly the same answer, or one that’s semantically
equivalent.

 Today, this often isn’t the case with search engines. Table 1.4 shows the results of
searching for “latest breakthroughs in artificial intelligence” and some variants on
Google.

Although the first result of the first query isn’t surprising, changing the term “break-
throughs” to one of its synonyms (“advancements”) produces a different result, which
seems to suggest that the search engine has a different understanding of the informa-
tion needed: you weren’t looking into how Google is improving AI! The third query
gives a surprising result: images! We have no real explanation for this. Changing “arti-
ficial intelligence” to its acronym, “AI,” leads to a different, but still relevant, result.
And when you use the Italian translation of the original query, you get a completely
different result with respect to the query in English: a Wikipedia page about artificial
intelligence. That seems generic, given the fact that, for example, Google Scholar
indexes research papers in different languages.

 Search engine rankings can vary significantly, much like user opinions; although a
search engineer could optimize a ranking to respond to a set of given queries, it’s dif-
ficult to adjust it for possibly tens or hundreds of similar queries. So in real life, we

Table 1.4 Comparing similar queries

Query First result title

Latest breakthroughs in artificial intelligence Academic papers for “latest breakthroughs in
artificial intelligence” (Google Scholar)

Latest advancements in artificial intelligence Google advancements artificial intelligence
push with 2 top hires

Latest advancements on artificial intelligence Images related to “latest advancements on
artificial intelligence” (Google Images)

Latest breakthroughs in AI Artificial Intelligence News—ScienceDaily

Più recenti sviluppi di ricerca sull’intelligenza artificiale Intelligenza Artificiale (Wikipedia)

27Deep learning to the rescue
don’t manually adjust the rankings of search results; doing so would be nearly impossi-
ble and unlikely to result in a generally good ranking.

 Often, performing search is a trial-and-error process: you issue an initial query and
get too many results; you issue a second query and still get too many; and a third query
may return trivial results you’re not interested in. Expressing an informational need
using a search query isn’t a trivial task. You often end up performing a bunch of que-
ries just to get a high-level understanding of what you think the search engine can do
with them. It’s like trying to look into a black box: you see almost nothing but try to
make assumptions about what happens inside.

 In most cases, users don’t have the chance to understand what the search engine is
doing. Even worse, things change a lot depending on the way the user expresses their
request.

 Now that you understand how a search engine generally works and you’ve learned
about some important problems that haven’t been completely solved yet in the search
field, it’s time to meet DL and discover how it can help to solve or at least mitigate such
issues. We’ll start with a high-level overview of the capabilities of deep neural networks.

1.8 Deep learning to the rescue
So far, we’ve explored information retrieval themes that are necessary to prepare
you for the journey through neural search. You’ll now start learning about DL,
which can help create smarter search engines. This section will introduce you to
basic DL concepts.

 In the past, a key difficulty in computer vision (a field of computer science that deals
with processing and understanding visual data like pictures or videos), when working
with images, was that it was nearly impossible to obtain an image representation con-
taining information about the enclosed objects and visual structures. How can you
make a computer tell whether an image represents a running lion, a refrigerator, a
group of monkeys, and so on? DL helped to solve this problem with the creation of a
special type of deep neural network that could learn image representations incremen-
tally, one abstraction at a time, as exemplified in figure 1.9.

As mentioned earlier in this chapter, DL is a subfield of ML that focuses on learning
deep representations of text, images, or data in general by learning successive abstrac-
tions of increasingly meaningful representations. It does that by using deep neural
networks (figure 1.10 shows a deep neural network with three hidden layers). Remem-
ber that a neural network is considered deep when it has at least two hidden layers.

 At each step (or layer of the network), such deep neural networks are able
to capture increasingly more complex structures in the data. It isn’t by chance that

Pixels Edges Shapes Objects Figure 1.9 Learning image
abstractions incrementally

28 CHAPTER 1 Neural search
computer vision is one of the fields that fostered the development and research of
representation-learning algorithms for images.

 Researchers have discovered that it makes sense to use such deep networks espe-
cially on data that is highly compositional.7 This means they can help immensely when
you can think of something as being formed by smaller parts of similar constituents.
Images and text are good examples of compositional data, because they can be divided
into smaller units incrementally (for example, text → paragraphs → sentences →
words). But (deep) neural networks aren’t useful only to learn representations; they
can be used to perform a lot of different ML tasks. I mentioned that the document-
categorization task can be solved via ML methods.

 Although there are many different ways a neural network can be architected, neu-
ral networks are commonly composed of the following:

 A set of neurons
 A set of connections between all or some of the neurons
 A weight (a real number) for each directed connection between two neurons
 One or more functions that map how each neuron receives and propagates sig-

nals toward its outgoing connections
 Optionally, a set of layers that group sets of neurons having similar connectivity

in the neural network

In figure 1.10, we can identify 20 neurons organized in a set of 5 layers. Each neuron
within each layer is connected with all the neurons in the layers nearby (both the previ-
ous and the following layers), except for the first and last layers. Conventionally, infor-
mation starts flowing within the network from left to right. The first layer that receives

7 See, for example, H. Mhaskar, Q. Liao, and T. Poggio, “When and Why Are Deep Networks Better Than Shal-
low Ones?” Proceedings of the AAAI-17: Thirty-First AAAI Conference on Artificial Intelligence (Center for Brain,
Minds & Machines), http://mng.bz/0Wrv.

Layer 1
(input layer)

Layer 2
(hidden layer)

Layer 4
(hidden layer)

Layer 3
(hidden layer)

Layer 5
(output layer)

Figure 1.10 A deep feed-forward neural network with three hidden layers

http://mng.bz/0Wrv

29Deep learning to the rescue
the inputs is called the input layer; and the last layer, called the output layer, outputs the
results of the neural network. The layers in between are called hidden layers.

 Imagine that you could apply the same approach to text to learn representations
of documents that capture increasingly higher abstractions within a document. DL-
based techniques exist for such tasks, and over time these algorithms are becoming
smarter: you can use them to extract word, sentence, paragraph, and document repre-
sentations that can capture surprisingly interesting semantics.

 When using a neural network algorithm to learn word representations within a set
of text documents, closely related words lie near each other in the vector space. Think
about creating a point on a two-dimensional plot for each word contained in a piece
of text, and see how similar or closely related words lie close to one another, as in fig-
ure 1.11. That can be achieved by using a neural network algorithm called word2vec to
learn such vector representations for words (also called word vectors). Notice that the
words “Information” and “Retrieval” lie close to each other. Similarly, “word2vec” and
“Skip-gram,” terms that both relate to (shallow) neural network algorithms used to
extract word vectors, are near each other.

One of the key ideas of neural search is to use such representations to improve the
effectiveness of search engines. It would be nice to have a retrieval model that relies
on word and document vectors (also called embeddings) with these capabilities, so we
could calculate and use document and word similarities efficiently by looking at the
nearest neighbors. Figure 1.12 shows a deep neural network used to create word repre-
sentations of the words contained in indexed documents, which are then put back
into the search engine; they can be used to adjust the order of search results.

language-modeling

Retrieval

embeddings

neural-networks
Compositionality

NLP
Skip-gram

olov
Sutskever

entations
word2vec

Glove

representation
R

Information

Figure 1.11 Word vectors derived from the text of research articles on word2vec

30 CHAPTER 1 Neural search
The previous section analyzed the impor-
tance of context when compared to the
complexity of expressing and understand-
ing information needs via text queries.
Good semantic representations of text are
often built by using the context in which a
word, sentence, or document appears, in
order to infer the most appropriate repre-
sentation. Let’s look at the previous exam-
ple to briefly see how DL algorithms can
help get better results with relevance. Con-
sider the two queries “latest breakthroughs
in artificial intelligence” and “latest break-
throughs in AI” from table 1.4, assuming
we’re using the VSM. In such models, the
similarity between queries and documents
can vary a lot based on the text analysis
chain. But this problem doesn’t affect vec-
tor representations of text generated with
recent algorithms based on neural net-
works. Although “artificial intelligence”
and “AI” might lie far apart in VSM, they

Layer 1
(input layer)

Layer 2
(hidden layer)

Layer 3
(hidden layer)

Layer 4
(output layer)

pixels edges shapes objects edges

pixels edges shapes objects edges

pixels edges shapes objects edges

Search engine

Search
result

The
cloud-capp’d
towers ...

the

cloud

capp’d

towers

Figure 1.12 A neural search application: using word representations generated by a deep neural network
to provide more-relevant results

Deep learning vs. deep neural
networks
We need to make an important dis-
tinction. Deep learning is mostly
about learning representations of
words, text, documents, and
images by using deep neural net-
works. Deep neural networks, how-
ever, have a wider adoption:
they’re used, for example, in lan-
guage modeling, machine transla-
tion, and many other tasks. In this
book, I’ll make it clear when we’re
using deep neural nets to learn rep-
resentations and when we’re using
them for other purposes. In addi-
tion to learning representations,
deep neural networks can help
solve a number of information
retrieval tasks.

31Neural network training
will likely be placed close together when they’re plotted using word representations
generated by neural nets. With such a simple change, we can boost the relevance of
the search engine via more semantically grounded representations of words.

 Before diving deeper into neural search applications, let’s look at how search
engines and neural networks can work together.

1.9 Index, please meet neuron
An artificial neural network can learn to predict outputs based on a training set with
labeled data (supervised learning, where each input is provided with information
about the expected output), or it can perform unsupervised learning (no information
about the correct output for each input is given) in order to extract patterns and/or
learn representations. A search engine’s typical workflow involves indexing and
searching content; notably, such tasks can happen in parallel. Although this may
sound like a technicality at this point, the way you integrate a search engine with a
neural network is important in principle because it impacts the neural search design’s
effectiveness and performance. You may have a super-accurate system, but if it’s slow,
no one will want to use it! In this book, you’ll see several ways to integrate neural net-
works and search engines:

 Train-then-index—Train the network first on a collection of documents (texts,
images), and then index the same data into the search engine and use the neu-
ral network in conjunction with the search engine at search time.

 Index-then-train—Index a collection of documents into the search engine first;
then train the neural network with the indexed data (eventually retraining
when data changes); and then use the neural network in conjunction with the
search engine at search time.

 Train-extract-index—Train the network first on a collection of documents, and
use the trained network to create useful resources that will be indexed along
with the data. Search happens as usual with only the search engine.

You’ll see each of these options in this book, being applied in the right context. For
example, the train-then-index option will be used in chapter 3 for text generation, and
the index-then-train option will be used in chapter 2 for synonym generation from the
indexed data. The train-extract-index option makes sense when you use a neural net-
work to learn something like a semantic representation of the data to be indexed;
you’ll use such representations at search time without requiring any interaction with
the neural network. This is the case for the scenario outlined in chapter 8 for image
search. The last chapter of the book also briefly looks at how to handle situations where
the data isn’t all available at first but rather arrives in a streaming fashion.

1.10 Neural network training
In order to use a neural net’s powerful learning capabilities, you need to train it. Train-
ing a network like the one shown in the previous section via supervised learning means
providing inputs to the network input layer, comparing the network (predicted)

32 CHAPTER 1 Neural search
outputs with the known (target) outputs, and letting the network learn from the dis-
crepancies between predicted and target outputs. Neural networks can easily represent
many interesting mathematical functions; that’s one of the reasons they can have very
high accuracy. Such mathematical functions are governed by the connections’ weights
and neurons’ activation functions. A neural network learning algorithm takes the dis-
crepancies between desired and actual outputs and adjusts each layer’s weights to
reduce the output error in the future. If you feed enough data to the network, it will be
able to achieve a very small error rate and therefore perform well. Activation functions
have an impact on a neural network’s ability to perform predictions and on how
quickly it learns; the activation functions control when and how much the incoming
signal to a neuron is propagated throughout to the output connections.

 The most commonly used learning algorithm for neural networks is called back-
propagation. Given desired and actual outputs, the algorithm backpropagates each neu-
ron’s error and consequently adjusts its internal state on each neuron’s connections,
one layer at a time, from output to input (backward); see figure 1.13. Each training
example makes backpropagation “adjust” each neuron’s state and connections to
reduce the amount of error produced by the network for that pair of specific input
and desired output. This is a high-level description of how a backpropagation algo-
rithm works; we’ll take a closer look in upcoming chapters, when you’re more familiar
with neural networks.

Layer 1
(input layer)

Layer 2
(hidden layer)

Layer 3
(hidden layer)

Layer 4
(output layer)

Error

Input

Figure 1.13 Forward step (feeding input) and backward step (backpropagating an error)

33Neural network training
Now that you understand how neural nets learn, you need to decide how to plug in to
the search engine. Search engines can receive data to be indexed continuously;
because new content is added, existing content is updated or even deleted. Although
it’s relatively easy and quick to support this process in a search engine, many ML algo-
rithms create static models that can’t be adapted quickly as data changes. A typical
development workflow for an ML task involves these steps:

1 Choosing and gathering data to be used as the training set
2 Keeping some portions of the training set apart for evaluation and tuning (test

and cross-validation sets)
3 Training a few ML models according to algorithms (feed-forward neural net-

works, support vector machines, and so on) and hyperparameters (for example,
the number of layers and the number of neurons in each layer for neural net-
works)

4 Evaluating and tuning the model over test and cross-validation sets
5 Choosing the best-performing model and using it to solve the desired task

As you can see, this process aims to generate a computational model to be used to
solve a certain task or problem by using training data that is static; updates to the
training sets (added or modified inputs and outputs) of such models often require
the entire sequence of steps to be repeated. This conflicts with systems like search
engines that deal with a constant stream of new data. For example, the search engine
for an online newspaper will be updated with many different news items every day;
you need to take this into account when architecting a neural search system. Neural
networks are ML models: you may need to retrain the model or come up with solu-
tions to allow your neural network to perform online learning (not require retraining).8

 Think of the evolution across time of the meaning of certain English words. For
example, the word “cell” today commonly refers to mobile phones or cells from the
biological perspective; before mobile phones were invented, the word “cell” primarily
referred to either biological cells or ... prisons! Some concepts are tightly bound to
words only in specific time windows: political offices change every few years, so Barack
Obama was President of the United States between 2009 and 2017, whereas the term
“President of the United States” referred to John Fitzgerald Kennedy between 1961
and 1963. If you think about the books contained in a library archive, how many of
them contain the phrase “President of the United States”? They will rarely relate to
the same person, because of the different times at which they were written.

 I mentioned that neural networks can be used to generate word vectors that capture
word semantics so that words with similar meanings will have word vectors close to one
another. What do you expect to happen to the word vector of “President of the USA”

8 See, for example, Andrey Besedin et al., “Evolutive deep models for online learning on data streams with no
storage” (Workshop on Large-scale Learning from Data Streams in Evolving Environments, 2017),
http://mng.bz/K14O; and Doyen Sahoo et al., “Online Deep Learning: Learning Deep Neural Networks on
the Fly,” https://arxiv.org/pdf/1711.03705.pdf.

http://mng.bz/K14O
https://arxiv.org/pdf/1711.03705.pdf

34 CHAPTER 1 Neural search
if you train the model over news articles from the 1960s and compare it with word vec-
tors generated by a model trained on news articles from 2009? Will the word vector
“Barack Obama” from the latter model be placed close to the word vector “President
of the USA” from the former one? Probably not, unless you instruct the neural net-
work how to deal with the evolution of words over time.9 On the other hand, common
search engines can easily deal with queries like “President of the USA” and return
search results that contain such a phrase, regardless of when they were ingested into
the inverted index.

1.11 The promises of neural search
Neural search is about integrating DL and deep neural networks into search at differ-
ent stages. DL’s ability to capture deep semantics lets us obtain relevant models and
ranking functions that adapt well to underlying data. Deep neural networks can learn
image representations that give surprisingly good results in image search. Simple sim-
ilarity measures like cosine distance can be applied to DL-generated representations
of data to capture semantically similar words, sentences, paragraphs, and so on; this
has a number of applications, such as in the text analysis phase and in recommending
similar documents. At the same time, deep neural networks can do more than “just”
learn representations; they can learn to generate or translate text, and how to opti-
mize search engine performance.

 As you’ll see throughout the book, a search system is made up of different compo-
nents playing together. The most obvious parts are ingesting data into the search
engine and searching for it. Neural networks can be used during indexing to enhance
the data right before it enters the inverted index, or they can be used to broaden or
specify the scope of a search query to provide a larger number of results or more-
precise results. But neural networks can also be used to make smart suggestions to
users to help them type queries or to translate their search queries under the hood
and make a search engine work with multiple languages.

 All this sounds awesome, but you can’t throw neural networks at a search engine
and expect it to become automagically perfect. Every decision has to be made in con-
text; and neural networks have some limitations, including the cost of training,
upgrading models, and more. But applying neural search to a search engine is a great
way to make it better for users. It also makes for a fascinating journey for the search
engineers, who get to explore the beauty of neural networks.

9 See, for example, Zijun Yao et al., “Dynamic Word Embeddings for Evolving Semantic Discovery” (Interna-
tional Conference on Web Search and Data Mining, 2018), https://arxiv.org/abs/1703.00607.

https://arxiv.org/abs/1703.00607

35Summary
Summary
 Search is a hard problem: common approaches to information retrieval come

with limitations and disadvantages, and both users and search engineers can
have a difficult time making things work as expected.

 Text analysis is an important task in search, during both the indexing and
search phases, because it prepares the data to be stored in inverted indexes and
has a significant influence on the effectiveness of a search engine.

 Relevance is the fundamental measure of how well the search engine responds
to users’ information needs. Some information retrieval models can give a stan-
dardized measure of the importance of results with respect to queries, but
there’s no silver bullet. Context and opinions can vary significantly among
users, and therefore measuring relevance needs to be a continuous focus for
search engineers.

 Deep learning is a field of machine learning that uses deep neural networks to
learn (deep) representations of content (text like words, sentences, and para-
graphs, but also images) that can capture semantically relevant similarity mea-
sures.

 Neural search stands as a bridge between search and deep neural networks,
with the goal of using deep learning to help improve different tasks related to
search.

Generating synonyms
Chapter 1 gave you a high-level overview of the kinds of possibilities that open up
when deep learning is applied to search problems. Those possibilities include using
deep neural networks to search for images via a text query based on its content,
generating text queries in natural language, and so on. You also learned about the
basics of search engines and how they conduct searches from queries and deliver
relevant results. You’re now ready to start applying deep neural networks to solve
search problems.

 In this chapter, we’ll begin with a shallow (not deep) neural network that can
help you identify when two words are similar in semantics. This seemingly easy task
is crucial for giving a search engine the ability to understand language.

 In information retrieval, a common technique to improve the number of
relevant results for a query is to use synonyms. Synonyms allow you to expand the

This chapter covers
 Why and how synonyms are used in search

 A brief introduction to Apache Lucene

 Fundamentals of feed-forward neural networks

 Using a word2vec algorithm

 Generating synonyms using word2vec
36

http://wordnet.princeton.edu

37Introduction to synonym expansion
number of potential ways a query or piece of indexed document is expressed. For
example, you can express the sentence “I like living in Rome” as “I enjoy living in the
Eternal City”: the terms “living” and “enjoying” as well as “Rome” and “the Eternal
City” are semantically similar, so the information conveyed by both sentences is mostly
the same. Synonyms could help with the problem discussed in chapter 1, of a librarian
and a student looking for a book understanding one another. That’s because using
synonyms allows people to express the same concept in different ways—and still
retrieve the same search results!

 In this chapter, we’ll start working with synonyms using word2vec, one of the most
common neural network–based algorithms for learning word representations. Learn-
ing about word2vec will give you a closer look at how neural networks work in practice.
To do this, you’ll first get an understanding of how feed-forward neural networks work.
Feed-forward neural networks, one of the most basic types of neural networks, are the
basic building blocks of deep learning. Next, you’ll learn about two feed-forward neu-
ral network architectures: skip-gram and continuous-bag-of-words (CBOW). They
make it possible to learn when two words are similar in meaning, and hence they’re a
good fit for understanding whether two given words are synonyms. You’ll see how to
apply them to improve search engine recall by helping the search engine avoid missing
relevant search results.

 Finally, you’ll measure how much the search engine can be enhanced this way and
what trade-offs you’ll need to consider for production systems. Understanding these
costs and benefits is important when deciding when and where to apply these tech-
niques to real-life scenarios.

2.1 Introduction to synonym expansion
In the previous chapter, you saw how important it is to have good algorithms for per-
forming text analysis: these algorithms specify the way text is broken into smaller frag-
ments or terms. When it comes to executing a query, the terms generated at indexing
time need to match those extracted from the query. This matching allows a document
to be found and then appear in the search results.

 One of the most frequent hurdles that prevent matching is the fact that people can
express a concept in multiple different ways. For example, “going for a walk in the
mountains” can be also expressed using the words “hiking” or “trekking.” If the
author of the text to be indexed uses “hike,” but the user doing the search enters
“trek,” the user won’t find the document. This is why you need to make the search
engine aware of synonyms.

 I’ll explain how you can use a technique called synonym expansion to make it possi-
ble to express the same information need in several ways. Although synonym expan-
sion is a popular technique, it has some limitations: in particular, the need to maintain
a dictionary of synonyms that will likely change over time and that often isn’t perfectly
suited to the data to be indexed (such dictionaries are often obtained from publicly
available data). You’ll see how you can use algorithms like word2vec to learn word

https://lucene.apache.org/core/mirrors-core-latest-redir.html?
https://lucene.apache.org/core/mirrors-core-latest-redir.html?
https://lucene.apache.org/core/mirrors-core-latest-redir.html?
https://lucene.apache.org/core/mirrors-core-latest-redir.html?
https://lucene.apache.org/core/7_4_0/index.html
https://lucene.apache.org/core/7_4_0/index.html
https://lucene.apache.org/core/7_4_0/index.html
https://issues.apache.org/jira/browse/LUCENE.
https://issues.apache.org/jira/browse/LUCENE.
https://issues.apache.org/jira/browse/LUCENE.
https://issues.apache.org/jira/browse/LUCENE.
http://mng.bz/vN1x
http://wordnet.princeton.edu
https://www.kaylinpavlik.com/50-years-of-pop-music
https://www.kaylinpavlik.com/50-years-of-pop-music
https://www.kaylinpavlik.com/50-years-of-pop-music
https://www.kaylinpavlik.com/50-years-of-pop-music

38 CHAPTER 2 Generating synonyms
representations that help generate synonyms accurately based on the data that needs
to be indexed.

 By the end of the chapter, you’ll have a search engine that can use a neural net-
work to generate synonyms that can then be used to decorate the text to be indexed. To
show how this works, we’ll use an example in which a user sends the query “music is
my aircraft” through the search engine user interface. (I’ll explain why the user is
using that particular query in a moment.) Figure 2.1 shows what you’ll end up with.

 Here are the major steps, as shown in the figure. In the search engine, the query is
first processed by the text analysis pipeline. A synonym filter in the pipeline uses a neu-
ral network to generate synonyms. In the example, the neural network returns “air-
plane,” “aeroplane,” and “plane” as synonyms of “aircraft.” The generated synonyms
are then used together with the tokens from the user query to find matches in the
inverted index. Finally, the search results are collected. That’s the big picture. Don’t
worry: we’ll now go through each step in detail.

Search
engine

User interface

music is my aircraft

music is my aircraft

Tokenizer

Synonym filter

aircraft

Neural network
Inverted index

music

is

my

airplane,
aeroplane,

plane, aircraft

airplane,
aeroplane, plane

User enters
query

Query is
analyzed

Neural net is
fed with
“aircraft”

Search
results are
returned

Similar words are
added to the
query tokens

Modified
query is
executed

Result

Neural net outputs
words similar to

“aircraft”

Figure 2.1 Synonym expansion at search time, with a neural network

https://aclweb.org/aclwiki/Distributional_Hypothesis
https://aclweb.org/aclwiki/Distributional_Hypothesis
https://aclweb.org/aclwiki/Distributional_Hypothesis

39Introduction to synonym expansion
2.1.1 Why synonyms?

Synonyms are words that differ in spelling and pronunciation, but that have the same
or a very close meaning. For example, “aircraft” and “airplane” are both synonyms of
the word “plane.” In information retrieval, it’s common to use synonyms to decorate
text in order to increase the probability that an appropriate query will match. Yes,
we’re talking about probability here, because we can’t anticipate all the possible ways
of expressing an information need. This technique isn’t a silver bullet that will let you
understand all user queries, but it will reduce the number of queries that give too few
or zero results.

 Let’s look at an example where synonyms can be useful. This has probably hap-
pened to you: you vaguely remember a short piece of a song, or you remember some-
thing about the meaning of a lyric, but not the exact wording from the song you have
in mind. Suppose you liked a song whose chorus was along the lines of, “Music is my
… something.” What was it? A car? A boat? A plane? Now imagine you have a system
that collects song lyrics, and you want users to be able to search through it. If you have
synonym expansion enabled in the search engine, searching for “music is my plane”
will yield the phrase you’re looking for: “music is my aeroplane”! In this case, using
synonyms lets you find a relevant document (the song “Aeroplane” by Red Hot Chili
Peppers) using a fragment and an incorrect word. Without synonym expansion, it
wouldn’t have been possible to retrieve this relevant response with queries like “music
is my boat,” “music is my plane,” and “music is my car.”

 This is considered an improvement in recall. Recall, briefly mentioned in chapter
1, is a number between 0 and 1 equal to the number of documents that are retrieved
and relevant, divided by the number of relevant documents. If none of the retrieved
documents are relevant, recall is 0. And if all the retrieved documents are relevant,
recall is 1.

 The overall idea of synonym expansion is that when the search engine receives a
stream of terms, it can enrich them by adding their synonyms, if they exist, at the same
position. In the “Aeroplane” example, synonyms of the query terms have been
expanded: they were silently decorated with the word “aeroplane” at the same posi-
tion as “plane” in the stream of text; see figure 2.2.

music/0-5 is/6-8 my/9-11 aeroplane/12-17

plane/12-17
0 1 2 3 4

Term

Start and
end

positions

Figure 2.2 Synonym expansion graph

40 CHAPTER 2 Generating synonyms
You can apply the same technique during indexing of the “Aeroplane” lyrics. Expand-
ing synonyms at indexing time will make indexing slightly slower (because of the calls
to word2vec), and the index will inevitably be bigger (because it will contain more
terms to store). On the plus side, searching will be faster because the word2vec call
won’t happen during search. The decision of whether to do index-time or search-time
synonym expansion may have a noticeable impact on the performance of the system
as its size and load grow.

 Now that you’ve seen why synonyms are useful in the context of search, let’s look at
how to implement synonym expansion, first by using common techniques and then by
using word2vec. This will help you appreciate the advantages of using the latter rather
than the former.

2.1.2 Vocabulary-based synonym matching

Let’s start by seeing how to implement a search engine with synonym expansion
enabled at indexing time. The simplest and most common approach for implementing
synonyms is based on feeding the search engine a vocabulary that contains the map-
ping between all the words and their related synonyms. Such a vocabulary can look like
a table, where each key is a word and the corresponding values are its synonyms:

aeroplane -> plane, airplane, aircraft
boat -> ship, vessel
car -> automobile
...

Imagine that you feed the lyrics of “Aeroplane”
into the search engine for indexing, and you use
synonym expansion with the previous vocabu-
lary. Let’s pick the chorus of the song—“music is
my aeroplane”—and see how synonym expan-
sion handles it. You have a simple text analysis
pipeline composed of a tokenizer, which creates
a token every time it encounters whitespace,
resulting in creating a token for each of the
words in the sentence. The index-time text anal-
ysis pipeline will thus create these tokens. Then
you’ll use a token filter for synonym expansion:
for each received token, it will look at the vocab-
ulary of synonyms and see if any of the keywords
(“aeroplane,” “boat,” “car”) is equal to the token text. The posting list for the frag-
ment “music is my aeroplane” (sorted in ascending alphabetical order) will look like
table 2.1.

 This particular posting list also records information about the position of the
occurrence of a term in a specific document. This information helps you visualize the
fact that the terms “plane,” “airplane,” and “aircraft,” which weren’t included in the

Table 2.1 Posting list for the fragment
“music is my aeroplane”

Term Document(position)

aeroplane 1(12,17)

aircraft 1(12,17)

airplane 1(12,17)

is 1(6,8)

music 1(0,5)

my 1(9,11)

plane 1(12,17)

41Introduction to synonym expansion
original text fragment, were added to the index with the same position as information
attached to the original term (“aeroplane”).

 You can record the positions of the terms in an inverted index in order to recon-
struct the order in which a term appears in the text of a document. If you look at the
inverted index table and pick the terms that have the lower positions in ascending
order, you’ll get “music is my aeroplane/aircraft/airplane/plane.” The synonyms can
be seamlessly replaced with one another, so, in the index, you can imagine having
four different pieces of text: “music is my aeroplane,” “music is my aircraft,” “music is
my airplane,” and “music is my plane.” It’s important to emphasize that although you
found four different forms in which the sentence can be indexed and searched, if any
of them matches, only one document will be returned by a search engine: they all ref-
erence document 1 in the posting list.

 Now that you understand how synonyms can be indexed into the search engine,
you’re ready to try things out and build your first Apache Lucene–based search
engine that indexes lyrics, setting up proper text analysis with synonym expansion at
indexing time.

NOTE Going forward, I’ll use Lucene and Apache Lucene interchangeably, but
the proper trademarked name is Apache Lucene.

A QUICK LOOK AT APACHE LUCENE

I’ll briefly introduce Lucene before diving into synonym expansion. This will allow
you to focus more on the concepts rather than on the Lucene API and implementa-
tion details.

Apache Lucene is an open source search library written in Java, licensed under Apache
License 2. In Lucene, the main entities to be indexed and searched are represented by
Documents. A Document, depending on your use case, can represent anything: a page, a

Obtaining Apache Lucene
You can download the latest release of Apache Lucene at https://lucene
.apache.org/core/mirrors-core-latest-redir.html?. You can download either a binary
package (.tgz or .zip) or the source release. The binary distribution is recommended
if you just want to use Lucene within your own project; the .tgz/.zip package contains
the JAR files of the Lucene components. Lucene is made of various artifacts: the only
mandatory one is lucene-core, and the others are optional parts that you can use
if needed. You can find the basics you need to know to get started with Lucene in the
official documentation, available at https://lucene.apache.org/core/7_4_0/index
.html. The source package is suitable for developers who want to look at the code or
enhance it. (Patches for improvements, new features, bug fixes, documentation, and
so on are always welcome at https://issues.apache.org/jira/browse/LUCENE.) If you
use a build tool like Maven, Ant, or Gradle, you can include Lucene in your project,
because all the components are released in public repositories like Maven Central
(http://mng.bz/vN1x).

https://lucene.apache.org/core/mirrors-core-latest-redir.html?
https://lucene.apache.org/core/mirrors-core-latest-redir.html?
https://lucene.apache.org/core/mirrors-core-latest-redir.html?
https://lucene.apache.org/core/7_4_0/index.html
https://lucene.apache.org/core/7_4_0/index.html
https://lucene.apache.org/core/7_4_0/index.html
https://issues.apache.org/jira/browse/LUCENE
http://mng.bz/vN1x

42 CHAPTER 2 Generating synonyms
book, a paragraph, an image, and so on. Whatever it is, that’s what you’ll get in your
search results. A Document is composed of a number of Fields, which can be used to
capture different portions of the Document. For example, if your document is a web
page, you can think of having a separate Field for the page title, the page contents, the
page size, the creation time, and so on. The main reasons for the existence of fields are
that you can do the following:

 Configure per-field text analysis pipelines
 Configure indexing options, such as whether to store in the posting list the

term positions or the value of the original text each term refers to

A Lucene search engine can be accessed via a Directory: a list of files where the
inverted indexes (and other data structures used, for example, to record positions)
are persisted. A view on a Directory for reading an inverted index can be obtained by
opening an IndexReader:

Path path = Paths.get("/home/lucene/luceneidx");

Directory directory = FSDirectory.open(path);

IndexReader reader = DirectoryReader.open(directory);

You can use an IndexReader to obtain useful statistics for an index, such as the num-
ber of documents currently indexed, or if there are any documents that have been
deleted. You can also obtain statistics for a field or a particular term. And, if you know
the identifier of the document you want to retrieve, you can get Documents from an
IndexReader directly:

int identifier = 123;
Document document = reader.document(identifier);

An IndexReader is needed in order to search, because it lets you read an index. There-
fore, you need an IndexReader to create an IndexSearcher. An IndexSearcher is the
entry point for performing search and collecting results; the queries that will be per-
formed via an IndexSearcher will run on the index data, exposed by the IndexReader.

 Without getting too much into coding queries programmatically, you can run a
user-entered query using a QueryParser. You need to specify (search-time) text analy-
sis when searching. In Lucene, the text analysis task is performed by implementing
the Analyzer API. An Analyzer can be made up of a Tokenizer and, optionally,
TokenFilter components; or you can use out-of-the-box implementations, as in this
example:

QueryParser parser = new QueryParser("title",
 new WhitespaceAnalyzer());
Query query = parser.parse("+Deep +search");

Target path where the
inverted indexes are
stored on the filesystem

Obtains a read-only
view of the search
engine via an
IndexReaderOpens a Directory

on the target path

Creates a query parser for the title
field with a WhitespaceAnalyzer

Parses the user-entered query
and obtains a Lucene Query

43Introduction to synonym expansion

In this case, you tell the query parser to split tokens when it finds whitespace and run
queries against the field named title. Suppose a user types in the query “+Deep
+search.” You pass it to the QueryParser and obtain a Lucene Query object. Now you
can run the query:

IndexSearcher searcher = new IndexSearcher(reader);
TopDocs hits = searcher.search(query, 10);

for (int i = 0; i < hits.scoreDocs.length; i++) {

 ScoreDoc scoreDoc = hits.scoreDocs[i];

 Document doc = reader.document(scoreDoc.doc);

 System.out.println(doc.get("title") + " : "
 + scoreDoc.score);
}

If you run this, you’ll get no results, because you haven’t indexed anything yet! Let’s
fix this and examine how to index Documents with Lucene. First, you have to decide
which fields to put into your documents and how their (index-time) text analysis pipe-
lines should look. We’ll use books for this example. Assume you want to remove some
useless words from the books’ contents while using a simpler text analysis pipeline for
the title that doesn’t remove anything.

Map<String, Analyzer> perFieldAnalyzers = new HashMap<>();

CharArraySet stopWords = new CharArraySet(Arrays
 .asList("a", "an", "the"), true);

perFieldAnalyzers.put("pages", new StopAnalyzer(
 stopWords));

perFieldAnalyzers.put("title", new WhitespaceAnalyzer());

Analyzer analyzer = new PerFieldAnalyzerWrapper(
 new EnglishAnalyzer(), perFieldAnalyzers);

The inverted indexes for a Lucene-based search engine are written on disk in a
Directory by an IndexWriter that will persist Documents according to an Index-
WriterConfig. This config contains many options, but for you the most important bit

Listing 2.1 Building per-field analyzers

Performs the query against
the IndexSearcher, returning
the first 10 documents

Iterates over the results

Outputs the value of the title
field of the returned document

Obtains a Document in which
you can inspect fields using

the document ID

Retrieves a ScoreDoc,
which holds the returned

document identifier and its
score (given by the

underlying retrieval model)

Sets up a map where the keys are the
names of fields and the values are the
Analyzers to be used for the fields

Creates a stopword list
of the tokens to remove
from the books’
contents while indexing

Uses a StopAnalyzer with
the given stopwords for
the pages field

Uses a
WhitespaceAnalyzer
for the title field

Creates a per-field Analyzer, which also requires a
default analyzer (EnglishAnalyzer, in this case) for
any other field that may be added to a Document

44 CHAPTER 2 Generating synonyms

Cr
Docu
inst
is the required index-time analyzer. Once the IndexWriter is ready, you can create
Documents and add Fields.

IndexWriterConfig config = new IndexWriterConfig(analyzer);
IndexWriter writer = new IndexWriter(directory,
 config);

Document dl4s = new Document();
dl4s.add(new TextField("title", "DL for search",
 Field.Store.YES));
dl4s.add(new TextField("page", "Living in the information age ...",
 Field.Store.YES));

Document rs = new Document();
rs.add(new TextField("title", "Relevant search", Field.Store.YES));
rs.add(new TextField("page", "Getting a search engine to behave ...",
 Field.Store.YES));

writer.addDocument(dl4s);
writer.addDocument(rs);

After you’ve added a few documents to the IndexWriter, you can persist them on the
filesystem by issuing a commit. Until you do, new IndexReaders won’t see the added
documents:

writer.commit();
writer.close();

Run the search code again, and this is what you’ll get:

Deep learning for search : 0.040937614

The code finds a match for the query “+Deep +search” and prints its title and score.
 Now that you’ve been introduced to Lucene, let’s get back to the topic of synonym

expansion.

SETTING UP A LUCENE INDEX WITH SYNONYM EXPANSION

You’ll first define the algorithms to use for text analysis at indexing and search time.
Then, you’ll add some lyrics to an inverted index. In many cases, it’s a good practice
to use the same tokenizer at both indexing and search time, so the text is split accord-
ing to the same algorithm. This makes it easier for queries to match fragments of doc-
uments. You’ll start simple and set up the following:

 A search-time Analyzer that uses a tokenizer that splits tokens when it encoun-
ters a whitespace character (also called a whitespace tokenizer)

 An index-time Analyzer that uses the whitespace tokenizer and a synonym filter

Listing 2.2 Adding documents to the Lucene index

Creates a configuration for indexing
Creates an IndexWriter to write Documents into

a Directory, based on an IndexWriterConfig

eates
ment
ances

Adds Documents to the search engine

Adds Fields, each of which has a
name, a value, and an option to
store the value with the terms

Commits the changes
Closes the IndexWriter (releases resources)

https://en.wikipedia.org/wiki/Builder_pattern

45Introduction to synonym expansion

r

 a
se
The reason for this is that you don’t need synonym expansion at both query time and
index time. For two synonyms to match, it’s sufficient to do expansion once.

 Assuming you have the two synonyms “aeroplane” and “plane,” the following list-
ing will build a text analysis chain that can take a term from an original token (for
example, “plane”) and generate another term for its synonym (for example, “aero-
plane”). Both the original and the new term will be generated.

SynonymMap.Builder builder = new SynonymMap.Builder();
builder.add(new CharsRef("aeroplane"), new CharsRef("plane"), true);
final SynonymMap map = builder.build();

Analyzer indexTimeAnalyzer = new Analyzer() {
 @Override
 protected TokenStreamComponents createComponents(
 String fieldName) {
 Tokenizer tokenizer = new WhitespaceTokenizer();
 SynonymGraphFilter synFilter = new
 SynonymGraphFilter(tokenizer, map, true);
 return new TokenStreamComponents(tokenizer, synFilter);
 }
};

Analyzer searchTimeAnalyzer = new WhitespaceAnalyzer();

This simplistic example creates a synonym vocabulary with just one entry. Normally,
you’ll have more entries, or you’ll read them from an external file so you don’t have to
write the code for each synonym.

 You’re just about ready to put some song lyrics into the index using the index-
TimeAnalyzer. Before doing that, let’s look at how song lyrics are structured. Each
song has an author, a title, a publication year, lyrics text, and so on. As I said earlier, it’s
important to examine the data to be indexed, to see what kind of data you have and
possibly come up with reasoned text analysis chains that you expect to work well on
that data. Here’s an example:

author: Red Hot Chili Peppers
title: Aeroplane
year: 1995
album: One Hot Minute
text: I like pleasure spiked with pain and music is my aeroplane ...

Can you keep track of such a structure in a search engine? Would doing so be useful?

Listing 2.3 Configuring synonym expansion

Creates a synonym filte
that receives terms from
the whitespace
tokenizer and expands
synonyms according to
map word, ignoring ca

Creates a custom
Analyzer, for indexing

Programmatically
defines synonyms

Whitespace analyzer
for search time

46 CHAPTER 2 Generating synonyms
 In most cases, it’s handy to keep a
lightweight document structure, because
each part of it conveys different seman-
tics, and therefore different require-
ments in the way it’s hit by search. For
example, the year will always be a
numeric value; it makes no sense to use
a whitespace tokenizer on it, because it’s
unlikely that any whitespace will appear
in that field. For all the other fields, you
can probably use the Analyzer you
defined earlier for indexing. Putting it
all together, you’ll have multiple
inverted indexes (one for each attri-
bute) that address indexing of different
parts of a document, all within the same
search engine; see figure 2.3.

 With Lucene, you can define a field
for each of the attributes in the exam-
ple (author, title, year, album, text).
You specify that you want a separate
Analyzer for the year field that doesn’t
touch the value; for all the other values, it will use the previously defined indexTime-
Analyzer with synonym expansion enabled.

Directory directory = FSDirectory.open(Paths.get(
 "/path/to/index"));

Map<String, Analyzer> perFieldAnalyzers =
 new HashMap<>();

perFieldAnalyzers.put("year",
 new KeywordAnalyzer());

Analyzer analyzer = new PerFieldAnalyzerWrapper(
 indexTimeAnalyzer, perFieldAnalyzers);

IndexWriterConfig config = new IndexWriterConfig(
 analyzer);

IndexWriter writer = new IndexWriter(
 directory, config);

Listing 2.4 Separate analysis chains for indexing and search

IndexWriter

text
year

Inverted indexes

author: Red Hot Chili Peppers
title: Aeroplane
year: 1995
album: One Hot Minute
text: ...

Text analyzer

Number
analyzer

Figure 2.3 Splitting portions of the text
depending on the type of data

Opens a Directory for indexing

Creates a map whose keys are the
names of the fields and the values
in the corresponding analysis
chain to be used

Sets up a different analyzer
(keyword; doesn’t touch
the value) for the year

Creates a wrapping
analyzer that can work
with per-field analyzersBuilds all the above in a

configuration objectCreates an IndexWriter
to be used for indexing

47Introduction to synonym expansion

This mechanism allows indexing to be flexible in the way content is analyzed before
being written into the inverted indexes; it’s common to play with different Analyzers
for different portions of Documents and to change them several times before finding
the best combination for a data corpus. Even then, in the real world, it’s likely that
such configurations will need adjustments over time. For instance, you may only index
English songs and then, at some later point, begin to add songs in Chinese. In this
case, you’ll have to adjust the analyzers to work with both languages (for example, you
can’t expect a whitespace tokenizer to work well on Chinese, Japanese, and Korean
[CJK] languages, where words often aren’t separated by a space).

 Let’s put your first document into the Lucene index.

Document aeroplaneDoc = new Document();
aeroplaneDoc.add(new Field("title", "Aeroplane", type));
aeroplaneDoc.add(new Field("author", "Red Hot Chili Peppers", type));
aeroplaneDoc.add(new Field("year", "1995", type));
aeroplaneDoc.add(new Field("album", "One Hot Minute", type));
aeroplaneDoc.add(new Field("text",
 "I like pleasure spiked with pain and music is my aeroplane ...", type));

writer.addDocument(aeroplaneDoc);
writer.commit();

You create a document composed of multiple fields, one per song attribute, and then
add it to the writer.

 In order to search, you open the Directory (again) and obtain a view on the
index, an IndexReader, on which you can search via an IndexSearcher. To make sure
synonym expansion works as expected, enter a query with the word “plane”; you’ll
expect the “Aeroplane” song to be retrieved.

IndexReader reader = DirectoryReader.open(directory);

IndexSearcher searcher = new IndexSearcher(reader);

QueryParser parser = new QueryParser("text",
 searchTimeAnalyzer);

Query query = parser.parse("plane");

TopDocs hits = searcher.search(query, 10);

Listing 2.5 Indexing documents

Listing 2.6 Searching for the word “plane”

Creates a document for the song “Aeroplane” Adds all the fields
from the song lyrics

Adds the document

Persists the updated inverted index
to the filesystem, making the
changes durable (and searchable)

Opens a view
on the index

Instantiates a searcher

Creates a query parser that uses
the search-time analyzer with
the user-entered query to
produce search terms

Transforms a user-entered query
(as a String) into a proper Lucene
query object using the QueryParser

Searches, and obtains
the first 10 results

48 CHAPTER 2 Generating synonyms

Define
ana
for (int i = 0; i < hits.scoreDocs.length; i++) {
 ScoreDoc scoreDoc = hits.scoreDocs[i];
 Document doc = searcher.doc(scoreDoc.doc);
 System.out.println(doc.get("title") + " by "
 + doc.get("author"));
}

As expected, the result is as follows:

Aeroplane by Red Hot Chili Peppers

We’ve gone through a quick tour of how to set up text analysis for index and search,
and how to index documents and retrieve them. You’ve also learned how to add syn-
onym expansion capability. But it should be clear that this code can’t be maintained
in real life:

 You can’t write code for each and every synonym you want to add.
 You need a synonym vocabulary that can be plugged in and managed separately,

to avoid having to modify the search code every time you need to update it.
 You need to manage the evolution of languages—new words (and synonyms)

are added constantly.

A first step toward resolving these issues is to write the synonyms into a file and let the
synonym filter read them from there. You’ll do that by putting synonyms on the same
line, separated by commas. You’ll build the Analyzer in a more compact way, by using
a builder pattern (see https://en.wikipedia.org/wiki/Builder_pattern).

Map<String, String> sffargs = new HashMap<>();
sffargs.put("synonyms", "synonyms.txt");
sffargs.put("ignoreCase", “true”);

CustomAnalyzer.Builder builder = CustomAnalyzer.builder()
 .withTokenizer(WhitespaceTokenizerFactory.class)
 .addTokenFilter(SynonymGraphFilterFactory.class, sffargs)
return builder.build();

Set up synonyms in the synonyms file:

plane,aeroplane,aircraft,airplane
boat,vessel,ship
...

This way, the code remains unchanged regardless of any change in the synonyms file;
you can update the file as much as you need to. Although this is much better than hav-
ing to write code for synonyms, you don’t want to write the synonyms file by hand,
unless you know that you’ll have just a few fixed synonyms. Fortunately, these days
there’s lots of data that you can use for free or for a very low cost. A good, large
resource for natural language processing in general is the WordNet project

Listing 2.7 Feeding synonyms from a file

Iterates over the results

Obtains the search result

Outputs the title and author
of the returned song

Defines the file that
contains the synonyms

s an
lyzer

Lets the
analyzer use
a whitespace
tokenizer

Lets the analyzer use
a synonym filter

https://en.wikipedia.org/wiki/Builder_pattern

49The importance of context
(http://wordnet.princeton.edu), a lexical database for the English language from
Princeton University. You can take advantage of WordNet’s large synonym vocabulary,
which is constantly updated, and include it in your indexing analysis pipeline by
downloading it as a file (called, for example, synonyms-wn.txt) and specifying that you
want to use the WordNet format.

Map<String, String> sffargs = new HashMap<>();
sffargs.put("synonyms", "synonyms-wn.txt");
sffargs.put("format", "wordnet");
CustomAnalyzer.Builder builder = CustomAnalyzer.builder()
 .withTokenizer(WhitespaceTokenizerFactory.class)
 .addTokenFilter(SynonymGraphFilterFactory.class, sffargs)
return builder.build();

With the WordNet dictionary plugged in, you have a very large, high-quality source of
synonym expansion that should work well for English. But there are still a few prob-
lems. First, there’s not a WordNet-type resource for every language. Second, even if
you stick to English, the synonym expansion for a word is based on its denotation as
defined by the rules of English grammar and dictionaries; this doesn’t take into
account its connotation as defined by the context in which those words appear.

 I’m describing the difference between what linguists define as a synonym, based
on strict dictionary definitions (denotation), versus how people commonly use lan-
guage and words in real life (connotation). In informal contexts like social networks,
chat rooms, and meeting friends in real life, people may use two words as if they were
synonyms even if, by grammar rules, they aren’t synonyms. To handle this issue,
word2vec will kick in and provide a more advanced level of search than just expanding
synonyms based on the strict syntax of a language. You’ll see that using word2vec
enables you to build synonym expansions that are language agnostic; it learns from
the data which words are similar, without caring too much about the language used
and whether it’s formal or informal. This is a helpful feature of word2vec: words with
similar contexts are considered similar exactly because of their context. There’s no
grammar or syntax involved. For each word, word2vec looks at the surrounding words,
assuming that semantically similar words will appear in similar contexts.

2.2 The importance of context
The main problem with the approach outlined so far is that synonym mappings are
static and not bound to the indexed data. For example, in the case of WordNet, syn-
onyms strictly obey English grammar semantics but don’t take into account slang or
informal contexts where words are often used as synonyms even if they aren’t syn-
onyms according to strict rules of grammar. Another example is acronyms used in
chat sessions and emails. For instance, it’s not uncommon to see acronyms like ICYMI
(“in case you missed it”) and AKA (“also known as”) in email. ICYMI and “in case you
missed it” can’t be called synonyms, and you probably won’t find them in a dictionary,
but they mean the same thing.

Listing 2.8 Using synonyms from WordNet

Sets up a synonym file using
the WordNet vocabulary

Specifies the
WordNet format
for the synonym file

http://wordnet.princeton.edu

50 CHAPTER 2 Generating synonyms
 One approach to overcoming these limitations is to have a way to generate syn-
onyms from the data to be ingested. The basic concept is that it should be possible to
extract the nearest neighbors of a word by looking at the context of the word, which
means analyzing the patterns of surrounding words that occur together with the word
itself. A nearest neighbor of a word in this case should be its synonym, even if it’s not
strictly a synonym from the grammar perspective.

 This idea that words that are used, and occur, in the same contexts tend to have
similar meanings is called the distributional hypothesis (see https://aclweb.org/aclwiki/
Distributional_Hypothesis) and is the basis of many deep learning algorithms for text
representations. The interesting thing about this idea is that it disregards language,
slang, style, and grammar: every bit of information about a word is inferred from the
word contexts that appear in the text. Think, for example, of how words representing
cities (Rome, Cape Town, Oakland, and so on) are often used. Let’s look at a few
sentences:

 I like to live in Rome because …
 People who love surfing should go to Cape Town because …
 I would like to visit Oakland to see …
 Traffic is crazy in Rome …

Often the city names are used near the word “in” or a short distance from verbs like
“live,” “visit,” and so on. This is the basic intuition behind the fact that the context
provides a lot of information about each word.

 With this in mind, you want to learn word representations for the words in the data
to be indexed, so that you can generate synonyms from the data rather than manually
building or downloading a synonym vocabulary. In the library example in chapter 1, I
mentioned that it’s best to have insight about what’s in the library; with this additional
insight, the librarian could help you more effectively. A student coming to the library
could ask the librarian for, say, “books about artificial intelligence.” Let’s also suppose
the library has only one book on the topic, and it’s called AI Principles. If the librarian
(or the student) were searching through book titles, they would miss this book, unless
they knew that AI is an acronym (and, given previous assumptions, a synonym) for
artificial intelligence. An assistant knowledgeable about these synonyms would be use-
ful in this situation.

 Let’s imagine two hypothetical types of such an assistant: John, an English lan-
guage expert who has studied English grammar and syntax for years; and Robbie,
another student who collaborates weekly with the librarian and has the chance to read
most of the books. John couldn’t tell you that AI stands for artificial intelligence,
because his background doesn’t give him this information. Robbie, on the other
hand, has far less formal knowledge of English, but he’s an expert on the books in the
library; he could easily tell you that AI stands for artificial intelligence, because he’s read
the book AI Principles and knows it’s about the principles of artificial intelligence. In
this scenario, John is acting like the WordNet vocabulary, and Robbie is the word2vec

https://aclweb.org/aclwiki/Distributional_Hypothesis
https://aclweb.org/aclwiki/Distributional_Hypothesis
https://aclweb.org/aclwiki/Distributional_Hypothesis

51Feed-forward neural networks
algorithm. Although John has proven knowledge of the language, Robbie may be
more helpful in this particular situation.

 In chapter 1, I mentioned that neural networks are good at learning representa-
tions (in this case, representations of words) that are sensitive to the context. That’s
the kind of capability you’ll use with word2vec. In short, you’ll use the word2vec neu-
ral network to learn a representation of the words that can tell you the most similar
(or nearest neighbor) word for “plane”: “aeroplane.” Before we get deeper into that,
let’s take a closer look at one of the simplest forms of neural networks: feed-forward.
Feed-forward neural networks are the basis for most more-complex neural network
architectures.

2.3 Feed-forward neural networks
Neural networks are the key tool for neural search, and many neural network archi-
tectures extend from feed-forward networks. A feed-forward neural network is a neural
network in which information flows from the input layer to hidden layers, if any, and
finally to the output layer; there are no loops, because the connections among neu-
rons don’t form a cycle. Think of it as a magic black box with inputs and outputs. The
magic mostly happens inside the net, thanks to the way neurons are connected to
each other and how they react to their inputs. If you were looking for a house to buy
in a specific country, for instance, you could use the “magic box” to predict a fair price
you could expect to pay for a specific house. As you can see in figure 2.4, the magic
box would learn to make predictions using input features such as house size, location,
and a rating given by the seller.

Layer 1
(input layer)

Layer 2
(hidden layer)

Layer 3
(output layer)

Figure 2.4 Predicting price with a feed-forward neural network with three inputs, five hidden
units, and one output unit

52 CHAPTER 2 Generating synonyms
A feed-forward neural network is composed of the following:

 An input layer—Responsible for gathering the inputs provided by the user.
These inputs are usually in the form of real numbers. In the example of predict-
ing a house price, you have three inputs: house size, house location, and
amount of money required by the seller. You’ll encode these inputs as three real
numbers, so the input you’ll pass to the network will be a three-dimensional
vector: [size, location, price].

 Optionally, one or more hidden layers—Represents a more mysterious part of the
network. Think of it as the part of the network that allows it to be so good at
learning and predicting. In the example, there are five units in the hidden
layer, all of which are connected to the units in the input layer and also to the
units in the output layer. The connectivity in the network plays a fundamental
role in the network activity dynamics. Most of the time, all units in a layer (x)
are fully connected (forward) to the units in the next layer (x+1).

 An output layer—Responsible for providing the final output of the network. In
the house price example, it will provide a real number representing what the
network estimates the right price should be.

NOTE Usually, it’s a good idea to scale inputs so they’re more or less in the
same range of values—for example, between -1 and 1. In the example, a
house’s size in square meters is between 10 and 200, and its price range is in
the order of tens of thousands. Preprocessing the input data so it’s all in simi-
lar ranges of values allows the network to learn more quickly.

HOW IT WORKS: WEIGHTS AND ACTIVATION FUNCTIONS

As you’ve seen, a feed-forward neural network receives inputs and produces outputs.
The fundamental building blocks of these networks are called neurons (even though a
brain neuron is much more complex). Every neuron in a feed-forward neural network

 Belongs to a layer
 Smooths each input by its incom-

ing weight
 Propagates its output according to

an activation function

In the feed-forward neural network in
figure 2.5, the second layer is composed
of only one neuron. This neuron receives
input from three neurons in layer 1 and
propagates output to only one neuron in
layer 3. It has an associated activation
function, and its incoming links with the
previous layer have associated weights
(often, real numbers between -1 and 1).

Layer 1

Layer 2 Layer 3

Figure 2.5 Propagating signals through the
network

53Feed-forward neural networks
Let’s assume that all the incoming weights of the neuron in layer 2 are set to 0.3 and
that it receives from the first layer the inputs 0.4, 0.5, and 0.6. Each weight is multiplied
by its input, and the results are summed together: 0.3 × 0.4 + 0.3 × 0.5 + 0.3 × 0.6 = 0.45.
The activation function is applied to this intermediate result and then propagated to
the outgoing links of the neuron. Common activation functions are hyperbolic tangent
(tanh), sigmoid, and rectified linear unit (ReLU).

 In the current example, let’s use the tanh function. You’ll have tanh(0.45) =

0.4218990053, so the neuron in the third layer will receive this number as an input on
its only incoming link. The output neuron will perform exactly the same steps the
neuron from layer 2 does, using its own weights. For this reason, these networks are
called feed-forward: each neuron transforms and propagates its inputs in order to feed
the neurons in the next layer.

BACKPROPAGATION IN A NUTSHELL

In chapter 1, I mentioned that neural networks and deep learning belong to the field
of machine learning. I also touched on the main algorithm used for training neural
networks: backpropagation. In this section, we’ll give it a closer look.

 A fundamental point when discussing the rise of deep learning is related to how
well and how quickly neural networks can learn. Although artificial neural networks
are an old computing paradigm (circa 1950), they became popular again recently
(around 2011) as modern computers’ performance improved to a level that allowed
neural nets to perform effective learning in a reasonable time.

 In the previous section, you saw how a network propagates information from the
input layer to the output layer in a feed-forward fashion. On the other hand, after a
feed-forward pass, backpropagation lets the signal flow backward from the output
layer to the input layer.

 The values of the activations of the neurons in the output layer, generated by a
feed-forward pass on an input, are compared the values in the desired output. This
comparison is performed by a cost function that calculates a loss or cost and represents
a measure of how much the network is wrong in that particular case. Such an error is
sent backward through the incoming connections of the output neurons to the corre-
sponding units in the hidden layer. You can see in figure 2.6 that the neuron in the
output layer sends back its portion of error to the connected units in the hidden layer.

 Once a unit receives an error, it updates its weights according to an update algo-
rithm; usually, the algorithm used is stochastic gradient descent. This backward update of
weights happens until the weights on the input layer connections are adjusted (note
that updates are done only for output and hidden layer units, as input units don’t
have weights), and then the update stops. So a run of backpropagation updates all the
weights associated with the existing connections. The rationale behind this algorithm
is that each weight is responsible for a portion of the error and, therefore, backpropa-
gation tries to adjust such weights in order to reduce the error for that particular
input/output pair.

 The gradient descent algorithm (or any other update algorithm for adjusting the
weights) decides how the weights are changed with respect to the portion of error

54 CHAPTER 2 Generating synonyms
each weight contributes. A lot of math is involved in this concept, but you can think of
it as if the cost function defines a shape like the one in figure 2.7, where the height of
the hill defines the amount of error. A very low point corresponds to the combination
of the neural network weights having a very low error:

 Low—The point with the lowest possible error, having optimal values for the
neural network weights

 High—A point with high error; gradient descent tries to perform descent
toward points with lower error

The coordinates of a point are given by the value of the weights in the neural network,
so the gradient descent tries to find a value of the weights (a point) with very low error
(a very low height) in the shape.

2.4 Using word2vec
Now that you understand what a generic feed-forward network is, we can focus on a
more specific neural network algorithm based on feed-forward neural networks:
word2vec. Although its basics are fairly easy to understand, it’s fascinating to see the
good results (in terms of capturing the semantics of words in a text) you can achieve.
But what does it do, and how is it useful for the synonym expansion use case?

Layer 1
(input layer)

Layer 2
(hidden layer)

Layer 3
(hidden layer)

Layer 4
(output layer)

Figure 2.6 Backpropagating a signal from the output layer to the hidden layer

55Using word2vec
Word2vec takes a piece of text and outputs a series of vectors, one for each word in
the text. When the output vectors of word2vec are plotted on a two-dimensional
graph, vectors whose words are very similar in terms of semantics are very close to one
another. You can use a distance measures like the cosine distance to find the most sim-
ilar words with respect to a given word. Thus, you can use this technique to find a
word’s synonyms. In short, in this section you’ll set up a word2vec model, feed it the
text of the song lyrics you want to index, get output vectors for each word, and use
them to find synonyms.

 Chapter 1 discussed using vectors in the context of search, when we talked about
the vector space model and term frequency-inverse document frequency (TF-IDF). In
a sense, word2vec also generates a vector space model whose vectors (one for each
word) are weighted by the neural network during the learning process. Word vectors
generated by algorithms like word2vec are often referred to as word embeddings
because they map static, discrete, high-dimensional word representations (such as TF-
IDF or one-hot encoding) into a different (continuous) vector space with fewer
dimensions involved.

 Let’s get back to the example of the song “Aeroplane.” If you feed its text to
word2vec, you’ll get a vector for each word:

0.7976110753441061, -1.300175666666296, i
-1.1589942649711316, 0.2550385962680938, like
-1.9136814615251492, 0.0, pleasure
-0.178102361461314, -5.778459658617458, spiked
0.11344064895365787, 0.0, with
0.3778008406249243, -0.11222894354254397, pain
-2.0494382050792344, 0.5871714329463343, and
-1.3652666102221962, -0.4866885862322685, music
-12.878251690899361, 0.7094618209959707, is

Figure 2.7 Geometric
interpretation of
backpropagation with
gradient descent

56 CHAPTER 2 Generating synonyms
0.8220355668636578, -1.2088098678855501, my
-0.37314503461270637, 0.4801501371764839, aeroplane
...

You can see these in the coordinate plan shown in figure 2.8.

In the example output, two dimensions were used so those vectors are more easily
plottable on a graph. But in practice, it’s common to use 100 or more dimensions, and
to use a dimensionality reduction algorithm like Principal Component Analysis or
t-SNE to obtain two- or three-dimensional vectors that can be more easily plotted.
(Using many dimensions lets you capture more information as the amount of data
grows.) At this point, we won’t discuss this tuning in detail, but we’ll return to it later
in the book as you learn more about neural networks.

 Using cosine similarity to measure the distance among each of the generated vec-
tors produces some interesting results:

music -> song, view
looking -> view, better
in -> the, like
sitting -> turning, could

As you can see, extracting the two nearest vectors for a few random vectors gives
results, some good, and some, not so much:

 “Music” and “song” are very close semantically; you could even say they’re syn-
onyms. But the same isn’t true for “view.”

 “Looking” and “view” are related, but “better” has nothing to do with “looking.”
 “In,” “the,” and “like” aren’t close to each other.

aeroplaneaeroplane
andand

isis

likelike

musicmusic
spikedspiked

ii

painpain
mymy

aeroplane
and

is

like

music
spiked

i

pain
my

Figure 2.8 Plotted word vectors for “Aeroplane”

57Using word2vec
 “Sitting” and “turning” are both verbs of the “ing” form, but their semantics are
loosely coupled. “Could” is also a verb, but it doesn’t have much else to do with
“sitting.”

What’s the problem? Isn’t word2vec up to the task?
 There are two factors at play:

 The number of dimensions (two) of the generated word vectors is probably too
low.

 Feeding the word2vec model the text of a single song probably doesn’t provide
enough contexts for each of the words to come with an accurate representa-
tion. The model needs more examples of the contexts in which the words “bet-
ter” and “view” occur.

Let’s assume you again build the word2vec model, this time using 100 dimensions
and a larger set of song lyrics taken from the Billboard Hot 100 dataset (https://www.
kaylinpavlik.com/50-years-of-pop-music):

music -> song, sing
view -> visions, gaze
sitting -> hanging, lying
in -> with, into
looking -> lookin, lustin

The results are much better and more appropriate: you could use almost all of them
as synonyms in the context of search. You can imagine using such a technique at
either query or indexing time. There would be no more dictionaries or vocabularies
to keep up to date; the search engine could learn to generate synonyms from the data
it handles.

 You may have a couple of questions right about now: How does word2vec work?
And how can you integrate it, in practice, into a search engine? The paper “Efficient
Estimation of Word Representations in Vector Space”1 describes two different neural
network models for learning such word representations: continuous-bag-of-words
(CBOW) and continuous skip-gram. We’ll discuss both of them, and how to implement
them, in a moment. Word2vec performs unsupervised learning of word representa-
tions; the mentioned CBOW and skip-gram models just need to be fed a sufficiently
large text, properly encoded. The main concept behind word2vec is that the neural
network is given a piece of text, which is split into fragments of a certain size (also
called windows). Every fragment is fed to the network as a pair consisting of a target
word and a context. In the case of figure 2.9, the target word is “aeroplane,” and the
context consists of the words “music,” “is,” and “my.”

 The hidden layer of the network contains a set of weights (in this case, 11 of
them—the number of neurons in the hidden layer) for each word. These vectors will
be used as the word representations when learning ends.

1 Tomas Mikolov et al. (2013), https://arxiv.org/pdf/1301.3781.pdf.

https://www.kaylinpavlik.com/50-years-of-pop-music
https://www.kaylinpavlik.com/50-years-of-pop-music
https://www.kaylinpavlik.com/50-years-of-pop-music
https://arxiv.org/pdf/1301.3781.pdf

58 CHAPTER 2 Generating synonyms
An important note about word2vec is that you don’t care much about the outputs of the
neural network. Instead, you extract the internal state of the hidden layer at the end of
the training phase, which yields exactly one vector representations for each word.

 During training, a portion of each fragment is used as target word, and the rest is
used as context. With the CBOW model, the target word is used as the output of the
network, and the remaining words of the text fragment (the context) are used as
inputs. The opposite is true with the continuous skip-gram model: the target word is
used as input and the context words as outputs (as in the example). In practice, both
work well, but skip-gram is usually preferred because it works slightly better with infre-
quently used words.

 For example, given the text “she keeps moet et chandon in her pretty cabinet let
them eat cake she says” from the song “Killer Queen” (by the band Queen), and a win-
dow of 5, a word2vec model based on CBOW will receive a sample for each five-word
fragment. For example, for the fragment | she | keeps | moet | et | chandon |,
the input will consist of the words | she | keeps | et | chandon | and the output
will consist of the word moet.

Layer 1
(input layer)

Layer 2
(hidden layer)

Layer 3
(output layer)

I like music spiked

like music spiked with

music spiked with pain

spiked with pain and

with pain and music

pain and music is

and music is my music

my

ismusic is my aeroplane

aeroplane

Window = 4

I like music spiked with pain and music is my aeroplane ...

Figure 2.9 Feeding word2vec
(skip-gram model) text fragments

59Using word2vec
 As you can see from figure 2.10, the neural network is composed of an input layer,
a hidden layer, and an output layer. This kind of neural network, with one hidden
layer, is referred to as shallow. Neural networks with more than one hidden layer are
referred to as deep.

The neurons in the hidden layer have no activation function, so they linearly combine
weights and inputs (multiply each input by its weight and sum all of the results
together). The input layer has a number of neurons equal to the number of words in
the text for each word; word2vec requires each word to be represented as a one-hot-
encoded vector.

 Let’s see what a one-hot-encoded vector looks like. Imagine that you have a dataset
with three words: [cat, dog, mouse]. You have three vectors, each with all the values
set to 0 except one, which is set to 1 (that one identifies that specific word):

dog : [0,0,1]
cat : [0,1,0]
mouse : [1,0,0]

Input Projection

CBOW

moet

Sum

Output

she

keeps

et

chandon

Linear combination
between inputs and
hidden layer weights

Softmax
activation

One-
hot-encoded

word

Four
one-hot-encoded

words

Figure 2.10 Continuous-bag-of-words model

60 CHAPTER 2 Generating synonyms
If you add the word “lion” to the dataset, one-hot-encoded vectors for this dataset will
have dimension 4:

lion : [0,0,0,1]
dog : [0,0,1,0]
cat : [0,1,0,0]
mouse : [1,0,0,0]

If you have 100 words in your input text, each word will be represented as a 100-
dimensional vector. Consequently, in the CBOW model, you’ll have 100 input neu-
rons multiplied by the value of the window parameter minus 1. So, if window is 4, you’ll
have 300 input neurons.

 The hidden layer has a number of neurons equal to the desired dimensionality of
the resulting word vectors. This parameter must be set by whoever sets up the network.

 The size of the output layer is equal to the number of words in the input text: in
this example, 100. A word2vec CBOW model for an input text with 100 words, embed-
dings dimensionality equal to 50, and window set to 4 will have 300 input neurons, 50
hidden neurons, and 100 output neurons. Note that, while input and output dimen-
sionalities depend on the size of the vocabulary (in this case, 100) and the window
parameter, the dimensionality of the word embeddings generated by the CBOW
model is a parameter, to be chosen by the user. For example, in figure 2.11 you can
see the following:

 The input layer has a dimensional-
ity of C × V, where C is the length of
the context (corresponding to the
window parameter minus 1) and V
is the size of the vocabulary.

 The hidden layer has a dimension-
ality of N, defined by the user.

 The output layer has a dimension-
ality equal to V.

For word2vec, CBOW model inputs are
propagated through the network by first
multiplying the one-hot-encoded vectors
of the input words by their input-to-hid-
den weights; you can imagine that as a
matrix containing a weight for each con-
nection between an input and a hidden
neuron. Those are combined (multi-
plied) with the hidden-to-output weights,
producing the outputs; and these outputs
are then passed through a softmax func-
tion. Softmax “squashes” a K-dimensional

Output layer

V-dim

N-dim

yjhi

xCk

xlk

x2k

Hidden layer

W'W

W

W

Input layer

C × V-dim

V × N

V × N

V × N

N × V

Figure 2.11 Continuous-bag-of-words model
weights

61Using word2vec
vector (the output vector) of arbitrary real values to a K-dimensional vector of real val-
ues in the range (0, 1) that add up to 1, so that they can represent a probability distri-
bution. Your network tells you the probability that each output word will be selected,
given the context (the network input).

 You now have a neural network that can predict the most likely word to appear in
the text, given a context of a few words (the window parameter). This neural network
can tell you that given a context like “I like eating,” you should expect the next word
to be something like “pizza.” Note that because word order isn’t taken into account,
you could also say that given the context “I eating pizza,” the next word most likely to
appear in the text is “like.”

 But the most important part of this neural network for the goal of generating syn-
onyms isn’t learning to predict words given a context. The surprising beauty of this
method is that, internally, the weights of the hidden layer adjust in a way that makes it
possible to determine when two words are semantically similar (because they appear
in the same or similar contexts).

 After forward propagation, the backpropagation learning algorithm adjusts the
weights of each neuron in the different layers, so the neural network will produce a
more accurate result for each new fragment. When the learning process has finished,
the hidden-to-output weights represent the vector representation (embedding) for
each word in the text.

 Skip-gram looks reversed with
respect to the CBOW model. The same
concepts apply: the input vectors are
one-hot encoded (one for each word),
so the input layer has a number of neu-
rons equals to the number of words in
the input text. The hidden layer has the
dimensionality of the desired resulting
word vectors, and the output layer has a
number of neurons equal to the num-
ber of words multiplied by window

minus 1. Using the same example as
before, given the text “she keeps moet
et chandon in her pretty cabinet let
them eat cake she says” and a window
value of 5, a word2vec model based on
the skip-gram model will receive a first
sample for | she | keeps | moet | et |
chandon | with the input moet and the
output | she | keeps | et | chandon |
(see figure 2.12).

Skip-gram

moet

she

keeps

et

chandon

Input Projection Output

Figure 2.12 Skip-gram model

62 CHAPTER 2 Generating synonyms
Figure 2.13 is an example excerpt of word vectors calculated by word2vec for the text
of the Hot 100 Billboard dataset. It shows a small subset of words plotted, for the sake
of appreciating word semantics being expressed geometrically.

Notice the expected regularities between “me” and “my” with respect to “you” and
“your.” Also note the groups of similar words, or words used in similar contexts, which
are good candidates for synonyms.

 Now that you’ve learned a bit about how the word2vec algorithm works, let’s write
some code and see it in action. Then you’ll be able to combine it with the search
engine for synonym expansion.

feel

your
my

heart

she

good

yeah
life

love

girl

baby

you
me

50,000

25,000

0

–25,000

–50,000
–20,000 –10,000 10,000 20,0000

Figure 2.13 Highlights of word2vec vectors for the Hot 100 Billboard dataset

Deeplearning4j
Deeplearning4j (DL4J) is a deep learning library for the Java Virtual Machine (JVM). It
has good adoption among Java users and a not-too-steep learning curve for early
adopters. It also comes with an Apache 2 license, which is handy if you want to use
it within a company and include it in a possibly non-open source product. Additionally,
DL4J has tools to import models created with other frameworks such as Keras, Caffe,
TensorFlow, Theano, and so on.

63Using word2vec
2.4.1 Setting up word2vec in Deeplearning4j

In this book, we’ll use DL4J to implement neural network–based algorithms. Let’s see
how to use it to set up a word2vec model.

 DL4J has an out-of-the-box implementation of word2vec, based on the skip-gram
model. You need to set up its configuration parameters and pass the input text you
want to feed the search engine.

 Keeping the song lyrics use case in mind, let’s feed word2vec the Billboard Hot 100
text file. You want output word vectors of a suitable dimension, so set that configura-
tion parameter to 100 and the window size to 5.

String filePath = new ClassPathResource(
 "billboard_lyrics_1964-2015.txt").getFile()
 .getAbsolutePath();
SentenceIterator iter = new BasicLineIterator(filePath);

Word2Vec vec = new Word2Vec.Builder()
 .layerSize(100)
 .windowSize(5)
 .iterate(iter)
 .elementsLearningAlgorithm(new CBOW<>())
 .build();
vec.fit();

String[] words = new String[]{"guitar", "love", "rock"};
for (String w : words) {
 Collection<String> lst = vec.wordsNearest(w, 2);
 System.out.println("2 Words closest to '"
 + w + "': " + lst);
}

You obtain the following output, which seems good enough:

2 Words closest to 'guitar': [giggle, piano]
2 Words closest to 'love': [girl, baby]
2 Words closest to 'rock': [party, hips]

Note that you can alternatively use the skip-gram model by changing the elements-
LearningAlgorithm.

Word2Vec vec = new Word2Vec.Builder()
 .layerSize(...)
 .windowSize(...)
 .iterate(...)
 .elementsLearningAlgorithm(new SkipGram<>())
 .build();
vec.fit();

Listing 2.9 DL4J word2vec example

Listing 2.10 Using the skip-gram model

Reads the corpus of text
containing the lyrics

Sets up an iterator
over the corpus

Creates a
configuration
for word2vec

Sets the
window

parameter

Sets the number of dimensions the
vector representations should have

Sets word2vec to iterate over
the selected corpus

Performs training Uses the CBOW model

Obtains the closest
words to an input word

Prints the nearest words

Uses the skip-gram model

64 CHAPTER 2 Generating synonyms
As you can see, it’s straightforward to set up such a model and obtain results in a rea-
sonable time (training the word2vec model took around 30 seconds on a “normal”
laptop). Keep in mind that you’ll now aim to use this in conjunction with the search
engine, which should yield a better synonym-expansion algorithm.

2.4.2 Word2vec-based synonym expansion

Now that you have this powerful tool in your hands, you need to be careful! When
using WordNet, you have a constrained set of synonyms, so you can’t blow up the
index. With word vectors generated by word2vec, you can ask the model to return the
closest words for each word to be indexed. This might not be acceptable from a per-
formance perspective (for both runtime and storage), so you have to come up with a
strategy for using word2vec responsibly. One thing you can do is constrain the types of
words for which you ask word2vec to get the nearest words. In natural language pro-
cessing, it’s common to tag each word as a part of speech (PoS) that labels its syntactic
role in a sentence. Common parts of speech are NOUN, VERB, and ADJ; there are also
finer-grained ones like NP and NC (proper and common noun, respectively). For
example, you might decide to use word2vec only for words whose PoS is either NC or
VERB, to avoid bloating the index with synonyms for adjectives. Another technique
would be to look at how informative the document is. A short text has a relatively poor
probability of being hit with a query, because it’s composed of only a few terms. So you
might decide to focus on such documents and expand their synonyms, rather than
focusing on longer documents.

 On the other hand, the “informativeness” of a document doesn’t only depend on
its size. Thus you might use other techniques, such as looking at term weights (the
number of times a term appears in a piece of text) and skipping those that have a low
weight.

 You could also choose to use word2vec results only if they have a good similarity
score. If you use cosine distance to measure the nearest neighbors of a word vector,
such neighbors may be too far away (a low similarity score) but still be the nearest. In
that case, you could decide not to use those neighbors.

 Now that you’ve trained a word2vec model on the Hot 100 Billboard dataset using
Deeplearning4j, let’s use it in conjunction with the search engine to generate syn-
onyms. As explained in chapter 1, a token filter performs operations on the terms pro-
vided by a tokenizer, such as filtering them or, as in this case, adding other terms to be
indexed. A Lucene TokenFilter is based on the incrementToken API, which returns a
boolean value that is false at the end of the token stream. Implementors of this API
consume one token at a time (for example, by filtering or expanding a token). Figure
2.14 shows a diagram of how word2vec-based synonym expansion is expected to work.

 You’re finished with word2vec training, so you can create a synonym filter that will
use the learned model to predict term synonyms during filtering. You’ll build a
Lucene TokenFilter that can use DL4J word2vec on input tokens. This means imple-
menting the left side of figure 2.14.

65Using word2vec

e

)

r
)

e
ken
ms
The Lucene APIs for token filtering require you to implement the incrementToken
method. This method will return true if there are still tokens to consume from the
token stream or false if there are no more tokens left to consider for filtering. The
basic idea is that the token filter will return true for all original tokens and false for
all the related synonyms you get from word2vec.

 protected W2VSynonymFilter(TokenStream input,
 Word2Vec word2Vec) {
 super(input);
 this.word2Vec = word2Vec;
 }

 @Override
 public boolean incrementToken()
 throws IOException {
 if (!outputs.isEmpty()) {
 ...
 }

 if (!SynonymFilter.TYPE_SYNONYM.equals(
 typeAtt.type())) {
 String word = new String(termAtt.buffer())
 .trim();
 List<String> list = word2Vec.
 similarWordsInVocabTo(word, minAcc);
 int i = 0;
 for (String syn : list) {
 if (i == 2) {
 break;
 }
 if (!syn.equals(word)) {
 CharsRefBuilder charsRefBuilder = new CharsRefBuilder();
 CharsRef cr = charsRefBuilder.append(syn).get();

 State state = captureState();
 outputs.add(new PendingOutput(state, cr));

Listing 2.11 Word2vec-based synonym expansion filter

Tokenizer

Synonym filter

aircraft

Word2vec

airplane,
aeroplane, plane

Neural net is
fed with
“aircraft”

Neural net outputs
words similar to

“aircraft”
Figure 2.14 Synonym expansion
at search time, with word2vec

Creates a token filter that takes an
already-trained word2vec model

Implements the Lucene
API for token filtering

Adds cached synonyms to the token
stream (see the next code listing)

Expands a token only if it’s
not a synonym (to avoid
loops in the expansion)

For each term, uses word2vec to find th
closest words that have an accuracy
higher than a minAcc (for example, 0.35

Records no
more than two

synonyms for
each token

Records the
synonym

value

Records the current state of the original term
(not the synonym) in the token stream (fo

example, starting and ending position

Creates an object to contain th
synonyms to be added to the to
stream after all the original ter
have been consumed

66 CHAPTER 2 Generating synonyms
 i++;
}

}
 }
 return !outputs.isEmpty() || input.incrementToken();
 }

This code traverses all the terms and, when it finds a synonym, puts the synonym in a list
of pending outputs to expand (the outputs list). You apply those pending terms to be
added (the actual synonyms) after each original term has been processed, as shown next.

...
 if (!outputs.isEmpty()) {
 PendingOutput output = outputs.remove(0);
 restoreState(output.state);
 termAtt.copyBuffer(output.charsRef.chars, output

.charsRef.offset, output.charsRef.length);
 typeAtt.setType(SynonymFilter.TYPE_SYNONYM);
 return true;
 }

You use the word2vec output results as synonyms only if they have an accuracy greater
than a certain threshold, as discussed in the previous section. The filter picks only the
two words closest to the given term (according to word2vec) having an accuracy of at
least 0.35 (which isn’t that high), for each term passed by the tokenizer. If you pass the
sentence “I like pleasure spiked with pain and music is my airplane” to the filter, it will
expand the word “airplane” with two additional words: “airplanes” and “aeroplane”
(see the final part of the expanded token stream shown in figure 2.15).

2.5 Evaluations and comparisons
As mentioned in chapter 1, you can usually capture metrics, including precision,
recall, query with zero results, and so on, both before and after the introduction of
query expansion. It’s also usually good to determine the best configuration set for all
the parameters of a neural network. A generic neural network has many parameters
you can adjust:

 The general network architecture, such as using one or more hidden layers
 The transformations performed in each layer

Listing 2.12 Expanding pending synonyms

Gets the first pending
output to expand

Sets the synonym text to that given
by word2vec and previously saved
in the pending output

Retrieves the state of
the original term,
including its text, its
position in the text
stream, and so on

Sets the type of the
term as synonym

8 9
is/38-40

10
my/41-43

11

airplane/44-52

aeroplane/44-52

airplanes/44-52

Figure 2.15 Token stream after word2vec synonym expansion

67Considerations for production systems
 The number of neurons in each layer
 The connections between neurons belonging to different layers
 The number of times (also called epochs) the network should read through all

the training sets in order to reach its final state (possibly with a low error and
high accuracy)

These parameters also apply to other machine learning techniques. In the case of
word2vec, you can decide

 The size of the generated word embeddings
 The window used to create fragments for unsupervised training of models
 Which architecture to use: CBOW or skip-gram

As you can see, there are many possible parameter settings to try.
 Cross validation is a method of optimizing the parameters while making sure a

machine learning model performs well enough on data that’s different from the one
used for training. With cross validation, the original dataset is split into three subsets: a
training set, a validation set, and a test set. The training set is used as the data source to
train the model. In practice, it’s often used to train a bunch of separate models with dif-
ferent settings for the available parameters. The cross-validation set is used to select the
model that has the best-performing parameters. This can be done, for example, by tak-
ing each pair of input and desired output in the cross-validation set and seeing whether
a model gives results equal or close to the desired output, when given that particular
input. The test set is used the same way as the cross-validation set, except it’s only used
by the model selected by testing on the cross-validation set. The accuracy of results on
the test set can be considered a good measure of the model’s overall effectiveness.

2.6 Considerations for production systems
In this chapter, you’ve seen how to use word2vec to generate synonyms from data to
be indexed and searched. Most existing production systems already contain lots of
indexed documents, and in such cases it’s often impossible to access the original data
as it existed before it was indexed. In the case of indexing the top 100 songs of the
year to build a search engine of song lyrics, you have to take into account that the
rankings of the most popular songs change every day, week, month, and year. This
implies that the dataset will change over time; therefore, if you don’t keep old copies
in separate storage, you won’t be able to build a word2vec model for all indexed docu-
ments (song lyrics) later.

 The solution to this problem is to work with the search engine as the primary data
source. When you set up word2vec using DL4J, you fetched sentences from a single
file:

String filePath = new ClassPathResource("billboard_lyrics.txt").getFile()
 .getAbsolutePath();
SentenceIterator iter = new BasicLineIterator(filePath);

68 CHAPTER 2 Generating synonyms
Given an evolving system that’s fed song lyrics from different files daily, weekly, or
monthly, you’ll need to take the sentences directly from the search engine. For this
reason, you’ll build a SentenceIterator that reads stored values from the Lucene
index.

public class FieldValuesSentenceIterator implements
 SentenceIterator {

 private final IndexReader reader;
 private final String field;
 private int currentId;

 public FieldValuesSentenceIterator(
 IndexReader reader, String field) {
 this.reader = reader;
 this.field = field;
 this.currentId = 0;
 }

 ...

 @Override
 public void reset() {
 currentId = 0;
 }

}

In the example of the song lyrics search engine, the text of the lyrics were indexed
into the text field. You therefore fetch the sentences and words to be used for train-
ing the word2vec model from that field.

Path path = Paths.get("/path/to/index");
Directory directory = FSDirectory.open(path);
IndexReader reader = DirectoryReader.open(directory);
SentenceIterator iter = new FieldValuesSentenceIterator(reader, "text");

Once you’ve set things up, you pass this new SentenceIterator to the word2vec
implementation:

SentenceIterator iter = new FieldValuesSentenceIterator(reader, "text");
Word2Vec vec = new Word2Vec.Builder()
 .layerSize(100)
 .windowSize(5)
 .iterate(iter)
 .build();
vec.fit();

During the training phase, the SentenceIterator is asked to iterate over Strings.

Listing 2.13 Fetching sentences for word2vec from the Lucene index

Listing 2.14 Reading sentences from the Lucene index

View of the index used to
fetch the document values

Specific field to fetch
the values from

The identifier of the current
document being fetched,
because this is an iterator

First document
ID is always 0

69Considerations for production systems

 @Override
 public String nextSentence() {
 if (!hasNext()) {
 return null;
 }
 try {
 Document document = reader.document(currentId,
 Collections.singleton(field));
 String sentence = document.getField(field)
 .stringValue();
 return preProcessor != null ? preProcessor
 .preProcess(sentence) :

sentence;
 } catch (IOException e) {
 throw new RuntimeException(e);
 } finally {
 currentId++;
 }
 }

 @Override
 public boolean hasNext() {
 return currentId < reader.numDocs();
 }

This way, word2vec can be retrained frequently on existing search engines without
having to maintain the original data. The synonym expansion filter can be kept up to
date as the data in the search engine is updated.

2.6.1 Synonyms vs. antonyms

Imagine that you have the following sentences: “I like pizza,” “I hate pizza,” “I like
pasta,” “I hate pasta,” “I love pasta,” and “I eat pasta.” This would be a small set of sen-
tences for word2vec to use to learn accurate embeddings in real life. But you can
clearly see that the terms “I” on the left and “pizza” and “pasta” on the right all share
verbs in between. Because word2vec learns word embeddings using similar text frag-
ments, you may end up with similar word vectors for the verbs “like,” “hate,” “love,”
and “eat.” So word2vec may report that “love” is close to “like” and “eat” (which is fine,
given that the sentences are all related to food) but also to “hate,” which is definitely
not a synonym for “love.”

 In some cases, this issue may not be important. Suppose you want to go out to din-
ner, and you’re searching for a nice restaurant on the internet. You write the query
“reviews of restaurants people love” in a search engine. If you get reviews about
“restaurants people hate,” then you’ll know where not to go. But this is an edge case;
generally, you don’t want antonyms (the opposite of a synonym) to be expanded like
synonyms.

 Don’t worry—usually, the text has enough information to tell you that although
“hate” and “love” appear in similar contexts, they aren’t proper synonyms. The fact

Listing 2.15 For each document, passing field values to word2vec for training

The iterator has more sentences if the current
document identifier isn’t bigger than the
number of documents contained in the index.

Gets the document with
the current identifier
(only the field you need
is fetched)

Gets the value of the text field
from the current Lucene
Document as a String

Returns the sentence, which
is preprocessed if you set a
preprocessor (for example,

to remove unwanted
characters or tokens)

Increments the document ID
for the next iteration

70 CHAPTER 2 Generating synonyms
that this corpus of text is only made of sentences like “I hate pizza” or “I like pasta”
makes it more difficult: usually, “hate” and “like” also appear in other contexts, which
helps word2vec figure out that they aren’t similar. To see that, let’s evaluate the near-
est words of the word “nice” together with their similarity:

String tw = "nice";
Collection<String> wordsNearest = vec.wordsNearest(tw, 3);
System.out.println(tw + " -> " + wordsNearest);
for (String wn : wordsNearest) {
 double similarity = vec.similarity(tw, wn);
 System.out.println("sim(" + tw + "," + wn + ") : " + similarity);
 ...
}

The similarity between word vectors can help you exclude nearest neighbors that
aren’t similar enough. A sample word2vec run over the Hot 100 Billboard dataset indi-
cates that the nearest words of the word “nice” are “cute,” “unfair,” and “real”:

nice -> [cute, unfair, real]
sim(nice,cute) : 0.6139052510261536
sim(nice,unfair) : 0.5972062945365906
sim(nice,real) : 0.5814308524131775

“Cute” is a synonym. “Unfair” isn’t an antonym but an adjective that expresses nega-
tive feelings; it’s not a good result, because it’s in contrast with the positive nature of
“nice” and “cute.” “Real” also doesn’t express the same general semantics as “nice.” To
fix this, you can, for example, filter out the nearest neighbors whose similarity is less
than the absolute value 0.5, or less than the highest similarity minus 0.1. You assume
that the first nearest neighbor is usually good enough, as long as its similarity is
greater than 0.5; once this applies, you exclude words that are too far from the nearest
neighbor. In this case, filtering out words whose similarity is less than the highest near-
est neighbor similarity (0.61) minus 0.1, you filter out both “unfair” and “real” (each
has a similarity less than 0.60).

Summary
 Synonym expansion can be a handy technique to improve recall and make the

users of your search engine happier.
 Common synonym-expansion techniques are based on static dictionaries and

vocabularies that might require manual maintenance or are often far from the
data they’re used for.

 Feed-forward neural networks are the basis of many neural network architec-
tures. In a feed-forward neural network, information flows from an input layer
to an output layer; in between these two layers, there may be one or more hid-
den layers.

 Word2vec is a feed-forward neural network–based algorithm for learning vector
representations for words that can be used to find words with similar mean-

71Summary
ings—or that appear in similar contexts—so it’s reasonable to use it for syn-
onym expansion, too.

 You can either use the continuous-bag-of-words or skip-gram architecture for
word2vec. In CBOW, the target word is used as the output of the network, and
the remaining words of the text fragments are used as inputs. In the skip-gram
model, the target word is used as input, and the context words are outputs.
Both work well, but skip-gram is usually preferred, because it works better with
infrequent words.

 Word2vec models can provide good results, but you need to manage word
senses or parts of speech when using it for synonyms.

 In word2vec, be careful to avoid letting antonyms be used as synonyms.

Part 2

Throwing neural nets
at a search engine

Now that you know something about the fundamentals of search and deep
learning, you can start throwing neural networks at a search engine wherever
you see fit, right? In theory, yes; in practice, no. Deep neural networks aren’t
magic: you need to use extreme care when deciding where and how using such
powerful techniques makes sense. Chapters 3–6 look at tasks that every modern
search engine commonly performs and highlight their limitations. As we iden-
tify them, we’ll explore how to use deep learning to mitigate such issues. You’ll
see how to better solve the search engine task, either by looking at example out-
put or by using more rigorous information-retrieval metrics.

From plain retrieval
to text generation
In the early days of the internet and search engines (late 1990s), people only
searched for keywords. Users might have typed “movie zemeckis future” to find
information about the movie Back to the Future, directed by Robert Zemeckis.
Although search engines have evolved, and today we can type queries using natural
language, many users still rely on keywords when searching. For these users, it
would be advantageous if the search engine could generate a proper query based
on the keywords they type: for example, taking “movie Zemeckis future” and gener-
ating “Back to the Future by Robert Zemeckis.” Let’s call the generated query an
alternative query, in the sense that it’s an alternative (text) representation of the
information need expressed by the user.

This chapter covers
 Expanding queries

 Using search logs to build training data

 Understanding recurrent neural networks

 Generating alternative queries with RNNs
75

76 CHAPTER 3 From plain retrieval to text generation
 This chapter will teach you how to add text-generation capabilities to your search
engine so that, given a user query, it will generate a few alternative queries to run
under the hood together with the original one. The goal is to express the query in
additional ways so as to widen the net of the search—without asking the user to think
of or type in alternatives. To add text generation to a search engine, you’ll use a pow-
erful architecture for neural networks called a recurrent neural network (RNN).

 Recurrent neural networks have the same flexibility as the unembellished feed-
forward networks you learned about in chapter 2. But RNNs also have the advantage
of being able to deal with long sequences of inputs and outputs.

 Before you learn how to use RNNs, let’s remember what you did with feed-forward
networks. You used them with a specific model, word2vec, to improve synonym expan-
sion so a query could be expanded using one (or more) of its synonyms. Better syn-
onym expansion increases the effectiveness of the search engine by returning more-
relevant documents. Word2vec uses a specifically designed neural network to generate
dense vector representations for words. Such vectors can be used to calculate the sim-
ilarity of two words by their vectors’ distances, as in the synonym expansion case. But
they can also be used as inputs for more complex neural network architectures, like
RNNs. This is exactly how you’ll use them in this chapter.

NOTE In practice, it’s common to train neural networks to accomplish spe-
cific tasks by arranging neuron activation functions, layers, and their connec-
tions, depending on the problem at hand. The rest of this book will introduce
you to various neural network architectures, each addressing a different kind
of problem. For example, in the computer vision field, where network inputs
are usually images or videos, it’s common to use convolutional neural networks
(CNNs). In CNNs, each layer has a distinct, specific function: there are convo-
lutional layers, pooling layers, and so on. At the same time, the aggregation of
these layers allows you to build a deep neural network where pixels are incre-
mentally transformed into something more abstract: for instance, pixels →
edges → objects →. We looked briefly at these in chapter 1 and will take a
closer look in chapter 8.

In chapter 1, you saw how a user can express an information need as a variety of
slightly different versions, and how even small changes in the way a query is written
can influence which documents are returned first. So when training a neural network
to generate output queries from input queries, it’s useful to go beyond just the words
in a query, apart from their context. The aim is to generate text queries that are
semantically similar to the input query; doing so enables the search engine to return
search results based on different ways of expressing the same fundamental need (via
the query). You can use an RNN to generate text in natural language and then inte-
grate that generated text into a search engine. The rest of this chapter will teach you
how RNNs work, how to tune them to generate alternative queries, and how an RNN-
backed search engine offers improved effectiveness in returning relevant results for
end users.

77Information need vs. query: Bridging the gap
3.1 Information need vs. query: Bridging the gap
Chapter 1 talked about the fundamental problem of how users can best express an
information need. But as a user, do you really want to spend a lot of time thinking
about how to word a query? Imagine yourself on your way to work on public transport
early in the morning, searching for information on your phone. You don’t have the
time or the brainpower (it’s early!) to come up with the best way to interact with a
search engine.

 If you ask users to explain the information they need in three or four sentences,
you’re likely to get a detailed explanation of the specific need and its detailed context.
But if you ask the same person to express what they’re looking for in a short query of
no more than five or six words, the chances are high that they won’t be able to do it,
because it’s not always easy to compress a detailed requirement into a short sequence
of words. As search engineers, we need to do something to bridge this gap between
user intent and the resulting queries.

3.1.1 Generating alternative queries

A well-known technique to help users write queries is providing a hint with suggested
text while the user is typing the query. This lets the search engine UI guide the user
while they write. The search engine makes an explicit effort to help the user type a
“good” query (we’ll take a detailed look at how it does this in chapter 4). Another
approach to fill the gap between information need and the user-entered query is to
postprocess the query right after it enters the search engine system but before it’s exe-
cuted. Such a postprocessing task’s responsibility is to use the entered query to create
a new one that’s “better” to some extent. Of course, “better” can mean different things
in this context; this chapter focuses on producing a query that expresses the same
information need in various ways, to increase the likelihood that

 A relevant document is included in the result set
 More-relevant documents are ranked first in the search results

This is usually done manually and incrementally these days—you might fire a first
query about, for instance, “latest research in artificial intelligence”; then a second one
such as “what is deep learning”; and then a third one, like “recurrent neural networks
for search.” The term manually refers to the fact that in this example, you run a query,
look at the results, reason about them, write and run another query, look at the
results, reason about them, and so on, until you either get the knowledge you’re look-
ing for, or you give up.

 The goal is to produce a set of alternative queries without any interaction with the
user. Such queries should have the same or similar meaning with respect to the origi-
nal query, but using different words (while still being correctly spelled). To see how
this should work, let’s go back to the example of the query “movie Zemeckis future.” If
you enter that phrase, the search engine should do the following:

http://boston.lti.cs.cmu.edu/Data/web08-bst/planning.html
http://boston.lti.cs.cmu.edu/Data/web08-bst/planning.html
http://boston.lti.cs.cmu.edu/Data/web08-bst/planning.html
http://boston.lti.cs.cmu.edu/Data/web08-bst/planning.html

78 CHAPTER 3 From plain retrieval to text generation
1 Accept the user-entered query “movie Zemeckis future.”
2 Pass the query through the query time-analysis chain and produce the trans-

formed version of the user query—in this case, assuming you’ve configured a
filter to lowercase capital letters.

3 Pass the filtered query “movie zemeckis future” to the RNN and obtain one or
more alternative queries as output, such as “Back to the Future by Robert
Zemeckis.”

4 Transform the original filtered query and the generated alternative query into a
form that’s implementation-specific to the search engine (a parsed query).

5 Run the queries against the inverted indexes.

As you can see in figure 3.1, you’ll be setting up the search engine to use a neural net-
work at search time to generate appropriate alternative queries to add to the query
entered by the user. You’ll keep the original query as it was written by the user and add
the generated queries as additional optional queries. Toward the end of the chapter,
we’ll discuss how to best use the generated queries.

Search engine

User interface

Query parser

movie Zemeckis future

movie zemeckis future

movie Zemeckis future

Back to the Future by
Robert Zemeckis

Inverted index

Layer 1
(input layer)

Layer 2
(hidden recurrent layer)

Layer 3
(output layer)

“movie zemeckis future” OR “Back
to the Future by Robert Zemeckis”

Query is
executed

Query is
analyzed Both original and

alternative queries are
parsed and executed

Neural net outputs an
alternative query

Tokenizer
Filter 1
Filter 2
Filter 3

Figure 3.1 Alternative query generation

79Information need vs. query: Bridging the gap
Automatic query expansion is the name of the technique of generating (portions of)
queries under the hood to maximize the number of relevant results for the end user.
In some sense, synonym expansion (which you saw in chapter 2) is a special case of
automatic query expansion if you use it at query time only (not to index synonyms,
but only to expand synonyms for terms in the query).

 Your goal is to use this query-expansion feature to improve the query engine as
follows:

 Minimizing queries with zero results. Providing an alternative text representa-
tion for a query is more likely to produce hits on search results.

 Improving recall (the fraction of relevant documents that are retrieved, with
respect to a certain query) by including results you’d have missed otherwise.

 Improving precision by giving a boost to results that match both the original
query and an alternative query (which implies that the alternative queries are
close to the original).

NOTE Query expansion isn’t just for neural networks; this approach can be
implemented using various algorithms. You could, theoretically, replace the
neural network in the query-expansion model with a black box. Before the
advent of (deep) RNNs, other approaches existed for generating natural lan-
guage (this is a subfield of natural language processing called natural language
generation). At the end of the chapter, I’ll offer a brief comparison to other
methods, to illustrate “the unreasonable effectiveness of recurrent neural
networks.”1

Before seeing RNNs in action, as is the case with many machine learning scenarios, it’s
crucial to take a close look at how you train the model, along with what kind of data
you should use and why. As you may recall, in supervised learning, you tell the algo-
rithm how you want the model to produce an output with respect to a certain input.
Thus the way you structure inputs and outputs depends a lot on what you want to
achieve. The next section takes a quick tour of three possible ways to prepare the data
to be fed into the RNN.

3.1.2 Data preparation

I’ve chosen RNNs to implement query expansion because they’re surprisingly good at
and flexible for learning to generate sequences of text, including sequences that don’t
appear in the training data but that still “make sense.” Additionally, RNNs usually
require less tuning compared to other natural language generation algorithms that
use grammars, Markov chains, and so on. All this sounds great, but what do you
expect to happen when generating alternative queries in practice? What should the
generated queries look like? As is all too often true in computer science, the answer is
... it depends!

1 See Andrej Karpathy, “The Unreasonable Effectiveness of Recurrent Neural Networks,” May 21, 2015,
http://mng.bz/Mxl2.

http://mng.bz/Mxl2

80 CHAPTER 3 From plain retrieval to text generation
 It’s important to define what you want to achieve. If you think about the case
where a user enters the query “books about artificial intelligence,” you could provide
other queries (or sentences) that carry the same semantic information, like “publica-
tions from the field of artificial intelligence” or “books dealing with the topic of intel-
ligent machines.” At the same time, you need to consider how useful such alternative
representations would be in your search engine—the possible alternative queries may
give zero results if you have no documents dealing with the topic of artificial intelli-
gence! You don’t want to generate an alternative query representation that’s perfect
but not useful. Instead, you can look closely at user queries and provide alternative
representations that are built on the information they contain; or you can make the
query-generation algorithm obtain information from the indexed data rather than
the user data, so that the generated alternative queries better reflect what’s already in
the search engine (and mitigate the problem of an alternative query returning no
results).

 In real life, you often have access to query logs, which are flat records of what users
have queried via the search engine with minimal information about the results. You
can gain many insights from looking at query logs. For instance, you can clearly see
when people fail to find what they’re looking for, because they will submit queries that
are similar in meaning. You can also observe how users switch from searching for one
topic to another. For the sake of an example, let’s say you’re building a search engine
for a media company that provides political, cultural, and fashion news to users.
Here’s a sample query log:

time: 2017/01/06 09:06:41, query:{"artificial intelligence"}, results:
 {size=10, ids:["doc1","doc5", ...]}
time: 2017/01/06 09:08:12, query:{"books about AI"}, results:
 {size=1, ids:["doc5"]}
time: 2017/01/06 19:21:45, query:{"artificial intelligence hype"}, results:
 {size=3, ids:["doc1","doc8", ...]}
time: 2017/05/04 14:12:31, query:{"covfefe"}, results:
 {size=100, ids:["doc113","doc588", ...]}
time: 2017/10/08 13:26:01, query:{"latest trends"}, results:
 {size=15, ids:["doc113","doc23", ...]}
...

Assume that this is part of a huge query log of user activity on the search engine. Now,
imagine you have to build a training set from this query log—a collection of examples
of inputs associated with desired outputs—correlating similar queries so that you can
build training examples where the input is a query and the target output is one or
more correlated queries. In this case, each example will consist of one input query
and one or more output queries. In practice, it’s common to use query logs for such
learning tasks because

 Query logs reflect the behavior of users on that specific system, so the resulting
model will behave relatively close to the actual users and data.

The query “covfefe” returned 100 results, and
the first two resulting document identifiers

are doc113 and doc588.

81Information need vs. query: Bridging the gap
 Using or generating other datasets may incur additional costs while possibly
training a model that’s based on different data, users, domains, and so on.

In the current example, imagine that you have two related queries: “men clothing lat-
est trends” and “Paris fashion week.” You can use them interchangeably as input and
output for training a neural network. A nontrivial decision you need to make is how to
measure the correlation (similarity) of two queries. Your general knowledge tells you
that the two queries are similar in the sense that the Paris fashion week event has a sig-
nificant influence on clothing (fashion) trends (for both men and women), so you
may decide to set “Paris fashion week” as an alternative representation of the “men
clothing latest trends” query; see figure 3.2. But in this context, neither the search
engine nor the neural network knows anything about the topic of fashion—they just
see input and output texts and vectors.

Each line from the query log contains a user-entered query associated with its search
results: more precisely, the document IDs of the matching results. But this isn’t what
you need. Your training examples have to be composed of an input query and one or
more output queries that are similar or by some means correlated to the input. So
before you can train the network, you need to process the lines of the search log and
create a training set. This type of work, which involves manipulating and tweaking the
data, is often called data preparation or preprocessing. Although it may sound a bit
tedious, it’s crucial for the effectiveness of any associated machine learning task.

 The following sections look at three different ways of selecting input and output
sequences for a neural network to use to learn to generate alternative queries:

men clothing latest
trends

Recurrent neural network

men clothing latest
trends

Paris fashion week

Paris fashion week

Fashion trends

haute couture

Layer 1
(input layer)

Layer 2
(hidden recurrent layer)

Layer 3
(output layer)

Similar queries from
search log

Figure 3.2 Learning from queries

http://mng.bz/y1ZJ
http://mng.bz/y1ZJ

82 CHAPTER 3 From plain retrieval to text generation
correlating queries that generate similar search result sets, that come from the same
users in specific time windows, or that contain similar search terms. Each of these
options will yield specific side effects related to the way the neural network will learn
to generate new queries.

CORRELATING QUERIES THAT GENERATE SIMILAR SEARCH RESULT SETS

The first approach groups queries that share a portion of their associated search
result. For example, you could extract the following from the example query log.

query:{"artificial intelligence"} -> {"books about AI"
 , "artificial intelligence hype"}
query:{"books about AI"} -> {
 "artificial intelligence"}
query:{"artificial intelligence hype"} -> {
 "artificial intelligence"}
query:{"covfefe"} -> {"latest trends"}
query:{"latest trends"} -> {"covfefe"}

By correlating queries having shared documents in the search log, you can see that
“latest trends” can generate “covfefe” and vice versa, and the artificial intelligence–
related queries seem to suggest good alternatives.

 Note that “latest trends” refers to a relative concept: the latest trends one day may
(or will) be significantly different than those tomorrow or next week. If you assume
the covfefe trend lasted one week, it would be bad for the neural network to generate
“covfefe” as an alternative query for “latest trends” one month after covfefe showed up
in the news. As the real world outside of a search engine changes, you need to be care-
ful about using data that is up to date, or at least avoid potential problems by remov-
ing training examples that may cause bad results, as in this case.

CORRELATING QUERIES THAT COME FROM THE SAME USERS IN SPECIFIC TIME WINDOWS

The second potential approach relies on the assumption that users search for similar
things in small time windows. For example, if you’re searching for “that specific
restaurant I went to, but I can’t recall its name,” you’ll perform multiple searches that
relate to the same information need. The key point of this approach is to identify
accurate time windows in the query logs so that queries related to the same informa-
tion need can be grouped together (regardless of their results). In practice, identify-
ing search sessions that relate to the same need isn’t necessarily simple and depends
on how informative the search logs are. For instance, if the search log is a flat list of
concurrent anonymous searches for all users, it will be difficult to say which queries
were performed by a single user. If you instead have information about every user,
such as their IP address, you can try to identify a search session per topic.

 Let’s assume that the sample search log comes from a single user. The time infor-
mation on each line indicates that the first two queries were run in a two-minute win-
dow, whereas the others were run a long time apart. So you could correlate the first
two queries—”artificial intelligence” and “books about AI”—and skip the others. But

Listing 3.1 Correlating queries using shared results

Shares doc1 and doc5

Shares doc5

Shares doc1

Shares doc113

http://mng.bz/7ew9

83Information need vs. query: Bridging the gap
in real life, people may be doing multiple things concurrently, like wanting to get
information about a technical topic while going to work but also needing information
about public transport time tables or traffic on the highway. In such cases, it’s difficult
to distinguish which queries are semantically correlated without looking at the query
terms, which you do in the third approach.

CORRELATING QUERIES THAT CONTAIN SIMILAR SEARCH TERMS

Using similar terms to correlate queries is tricky to implement. On one hand, it
sounds simple. You can find common terms among the queries in the search log, as
shown next.

query:{"artificial intelligence"} ->

 {"artificial intelligence hype"}

query:{"books about AI"} -> {}

query:{"artificial intelligence hype"} ->

 {"artificial intelligence"}

query:{"covfefe"} -> {}

query:{"latest trends"} -> {}

Here, you’ve lost some information that was carried by the query results, as you can
see in comparison with the previous listing; in addition, the training set is much
smaller and poorer. Let’s look at “books about AI.” This is surely related to “artificial
intelligence” and, perhaps, to “artificial intelligence hype.” But simple term matching
fails to capture the fact that AI is short for artificial intelligence. You can mitigate that
issue by applying synonym expansion techniques, as you learned in chapter 2; doing
so requires an additional preprocessing step to generate new search log lines in which
synonyms are expanded. In this example, if your synonym expansion algorithm can
map the term “AI” to the composite term “artificial intelligence,” you’ll get the follow-
ing input/output pairs.

query:{"artificial intelligence"} -> {"artificial intelligence hype"}
query:{"books about AI"} -> {}
query:{"books about artificial intelligence"} ->
 {"artificial intelligence",
 "artificial intelligence hype"}
query:{"artificial intelligence hype"} -> {"artificial intelligence"}
query:{"covfefe"} -> {}
query:{"latest trends"} -> {}

With respect to the former results, you now have an additional mapping: using syn-
onyms generated by the new input query “books about artificial intelligence,” which
didn’t exist in the original search log. Although this seems fine, be careful, because
there may be more than one synonym for each term in each query. That’s often the
case with large dictionaries like WordNet and also when using word embeddings

Listing 3.2 Correlating queries using search terms

Listing 3.3 Correlating queries using search terms and synonym expansion

Shares “artificial” and “intelligence” terms
Shares nothing

Shares “artificial” and “intelligence” terms
Shares nothing

Shares nothing

Additional mapping;
shares “artificial” and
“intelligence terms”

84 CHAPTER 3 From plain retrieval to text generation
based on similarity (such as word2vec) to expand synonyms. Having more data for
training neural networks is usually desirable, but it has to be of good quality to give
good results. Let’s not forget that this is a preprocessing stage to train a neural net-
work that will be used to generate sequences. If you feed the neural network with text
sequences that don’t make much sense (not all synonyms of a certain word fit well in
every possible context), it will generate sequences with little or no meaning.

 If you plan to use synonym expansion, you probably should not expand on every
possible synonym; you could instead do so only for input queries that don’t have a cor-
responding alternative query, such as “books about AI” in the previous example.

SELECTING OUTPUT SEQUENCES FROM THE INDEXED DATA

If the techniques described so far don’t work well enough on your data—for example,
user-entered queries often give too few or zero results—you can get some help from
the indexed data. In many real-life scenarios, indexed documents have a title, which is
usually relatively short. Such a title can be used as a query if it’s correlated to the orig-
inal input query. Let’s again choose the query “movie Zemeckis future.” Running it on
a movie search engine (such as IMDB) would probably return something like this:

title: Back to the Future
director: Robert Zemeckis
year: 1985
writers: Robert Zemeckis, Bob Gale
stars: Michael J. Fox, Christopher Lloyd, Lea Thompson, ...

Let’s imagine how this document was retrieved:

 The term “movie” is on a stopword list on a search engine about movies, so it
didn’t match.

 The term “Zemeckis” matched in both the writers and director fields.
 The term “future” matched in the title field.

Put yourself in the shoes of someone looking at both the queries and the results: as the
user types a query, if you saw the user entering “movie Zemeckis future,” you could
immediately tell they should have typed a query like “back to the future” instead. That’s
exactly the type of training example you can pass to a neural network, composed of an
input (“movie Zemeckis future”) and a target output (“back to the future”). You can
preprocess the search log so that the target alternative query to be generated by the
neural network is the query that would return the best result. Doing so will likely help
reduce the number of queries with zero results, because the hints in the alternative
queries don’t come from the user-generated queries but rather from the text of rele-
vant documents. To build training examples, you associate a query with the titles of the
top two or three relevant documents from the search log, as in figure 3.3.

 You may wonder, why not use the search engine instead of a neural network to gen-
erate alternative queries? That approach would constrain the set of alternative queries
for a certain input text to what the search engine can already do in terms of matching.
For example, “movie Zemeckis future” will always give the same set of alternative que-
ries if you use the search engine to generate them. In the case of the example query,

85Information need vs. query: Bridging the gap
that would work—but what if the user typed “movie spielberg future” (confusing the
movie’s producer with its director)? There’s no match in the search engine with the
term “spielberg.” So the search engine might return a lot of movies Steven Spielberg
has directed that involve the term “future,” but it wouldn’t return Back to the Future.
The key takeaway is that you aren’t limited to using queries to train the neural net-
work, as long as the target output is correlated with the input in a way that’s useful for
representing an alternative query.

UNSUPERVISED STREAMS OF TEXT SEQUENCES

A completely different approach for feeding an RNN for text generation is to perform
unsupervised learning over streams of text. As mentioned in chapter 1, this is a form of
machine learning where the learning algorithm isn’t told anything about good (or
bad) output; the algorithm just builds a model of the data as accurately as possible.
You’ll see that this is probably the most surprising way RNNs can learn to generate text:
no one is telling them what good output is, so they learn to reproduce good-quality text
sequences on the basis of the inputs.

 In the search log example, you take the queries one after the other, removing
everything else:

artificial intelligence
books about AI
artificial intelligence hype
covfefe
latest trends

movie zemeckis
future

Recurrent neural network

movie zemeckis
future

Back to the Future

Back to the Future

Blade Runner

Star Wars the Last Jedi

Layer 1
(input layer)

Layer 2
(hidden recurrent layer)

Layer 3
(output layer)

star wars final
episode

movie dark future ford

Training set of
topmost relevant doc
given an input query

Figure 3.3 Learning from the titles of relevant documents

86 CHAPTER 3 From plain retrieval to text generation
As you can see, this is plain text. All you need to do is decide how to identify the end
of a query. In this case, you might use the carriage return character (\n) as a delimiter
for two consecutive queries, and the text-generation algorithm will stop whenever it
generates a carriage return. This approach is tempting, because it requires almost no
preprocessing: the data to be used can come from anywhere because it’s just plain
text. You’ll see the pros and cons later in this chapter.

3.1.3 Wrap-up of generating data

Here’s a quick summary of what we’ve discussed in this section:

 Performing supervised learning over similar queries gives you the advantage of
being able to specify what you think are good, similar queries. The downside is
that the neural network’s effectiveness will be based on how good you are at
defining when two queries are similar during the data-preparation phase.

 You may not want to explicitly specify when two queries are similar, but rather
let the relevant documents for a query provide the alternative query text. This
will make the neural network generate alternative queries whose text comes
from the indexed documents (for example, the document titles) and will likely
reduce the number of queries with few or zero results.

 An unsupervised approach considers the stream of queries from the search log
as a sequence of plausible consecutive words, so little data preparation is
needed. The advantages of this approach are that it’s simple to implement and
can closely capture which consecutive queries (and hence topics) users tend to
be interested in.

There are many alternatives and considerable room for creativity to build new ways to
generate data that suits the need of your users. The key point is to be careful how you
prepare data for your system. We’ll assume that you’ve chosen one of the approaches
discussed here; next, we’ll examine how RNNs learn to generate sequences of text.

3.2 Learning over sequences
In chapter 1, you saw what the general architecture of a neural network looks like,
with input and output layers at the edges of the network and hidden layers in
between. Then, in chapter 2, we started looking at two less-general neural network
models (continuous-bag-of-words and skip-gram) used to implement the word2vec
algorithm. The architectures discussed so far can be used to model how an input can
be mapped into its corresponding output. In the case of the skip-gram model, you
map an input vector representing a certain word to an output vector representing a
fixed number of words.

 Let’s think of a simple feed-forward neural network you could use to detect the
language used in text sentences: for example, for the four languages English, Ger-
man, Portuguese, and Italian. This is called a multiclass classification task, where the
input is a piece of text and the output is one of three or more possible classes assigned

87Learning over sequences
to that input (the document-categorization example from chapter 1 is also a multi-
class classification task). In this example, a neural network that can perform such a
task will have four output neurons, one for each class (language). Only one output
neuron will be set to 1 in the output layer, to signal that the input belongs to a certain
class. For example, if the value of output neuron 1 is 1, then the input text is classified
as English; if the value of output neuron 2 is 1, then the input text is classified as Ger-
man; and so on.

 The dimension of the input layer is much trickier to define. If you assume you’re
working with fixed-size text sequences, you can design the input layer accordingly. For
language detection, you need several words, so let’s assume you’ll set up the input
layer with nine neurons: one per input word; see figure 3.4.

NOTE In practice, it would be difficult to use such one-to-one mapping
between words and neurons: as you saw with the one-hot-encoding technique
described for word2vec, each word is represented as a vector of all zeros
except one, whose size is equal to the size of the entire vocabulary. In this
case, if you were to use one-hot encoding, the input layer would contain
9 * size(vocabulary) neurons. But because we’re focusing on fixed-size inputs,
this isn’t important here.

Clearly, you have a problem if a text sequence has fewer than nine words: you need to
fill (or pad) it with some fake filler words. For longer sequences, you’ll do language
detection nine words at a time. Consider the text of a movie review. The contents
might be in one language—for example, Italian—but deal with a movie whose title is
in its original language—for example, English. If you split the review text into nine-
word sequences, the output may be in either “Italian” or “English,” depending on the
portion of text fed into the neural network.

Layer 1
(input layer)

Layer 2
(hidden layer)

Layer 3
(output layer)

0.1 0.3 0.2 0.1 0.04 0.1 0.5 0.8 0.6 0 0 01

Figure 3.4 Feed-forward neural network with nine
inputs and four outputs for language detection

88 CHAPTER 3 From plain retrieval to text generation
 With this limitation in mind, how can you make a neural network learn from
sequences of inputs whose size isn’t known in advance? If you knew the size of each
sequence you wanted the network to learn, you could make the input layer long
enough to include the entire sequence. But doing so would hurt performance in the
case of long sequences, because learning from a larger input requires more neurons
in the hidden layer in order for the network to give accurate results. Thus this solu-
tion wouldn’t scale well. RNNs can handle unbounded sequences of text by keeping
their input and output layer sizes fixed, so they’re perfect for learning to generate
sequences of text in the use case of automatically expanding queries.

3.3 Recurrent neural networks
You can think of an RNN as a neural network that can remember information about
its inputs as it processes them, so that the outputs produced by subsequent inputs also
depend on previously seen inputs. At the same time, the size of the input layer (and
the output layer, if the RNN generates sequences) is fixed.

 For now, this is a bit abstract, but you’ll come to understand how it works in practice
and why it’s important. Let’s try to generate text sequences without an RNN, using a
feed-forward neural network with five inputs and four outputs. The language-detection
example used one input for each word, but in practice it’s often more convenient to
use characters instead of strings. The reason is that the number of possible words is
much larger than the number of available characters, and it can be easier for the net-
work to learn how to handle all possible combinations of 255 characters than all possi-
ble combinations of more than 300,000 words.2 Using the one-hot-encoding technique,
a character would be represented with a vector of size 255, and a word taken from the
Oxford English Dictionary would be represented as a vector of size 301,000! The neural
network input layer would need 301,000 neurons for one word, as opposed to 255 neu-
rons for one character. On the other hand, a word represents a combination of charac-
ters that has meaning. At the character level, such information isn’t available, and
therefore a neural network with character inputs must first learn to generate meaning-
ful words from characters; that isn’t the case if you use words as inputs. In the end, it’s a
trade-off.

 For example, when using characters, the sentence “the big brown fox jumped over
the lazy dog” can be split into chunks of five characters. Then, each input is fed into
the neural network with five input neurons; see figure 3.5. You can pass an entire
sequence to the network regardless of the size of the input layer. It appears that you
can use a “simple” neural network—you don’t need an RNN.

 But imagine if humans listening to someone talking had to understand what that
person was saying by only hearing words composed of five characters and forgetting
each sequence as soon as they heard the next. For example, if someone said “my

2 This number is constantly increasing; see the Oxford English Dictionary, www.oed.com.

www.oed.com

89Recurrent neural networks
name is Yoda,” you’d get each of the following sequences, without remembering all
the others:

my na
y nam
 name
name
ame i
me is
e is
 is Y
is Yo
s Yod
 Yoda

Now you’re asked to repeat what you heard. Weird! With such a short fixed input, you
may rarely get entire words, and each input is always detached from the rest of the
sentence.

Layer 1
(input layer)

Layer 2
(hidden layer)

Layer 3
(output layer)

t h e b i g b r o w ofn x

t h b

Split input

e

h e ib

e ib g

Layer 1
(input layer)

Layer 2
(hidden layer)

Layer 3
(output layer)

Layer 1
(input layer)

Time

Layer 2
(hidden layer)

Layer 3
(output layer)

First input

Second
input

Full character string

Third
input

Figure 3.5 Neural network ingesting an input sequence with a fixed input layer of five neurons

90 CHAPTER 3 From plain retrieval to text generation
 What makes it possible to understand a sentence is that each time you hear a five-
character sequence, you keep track of what you received immediately before that.
Let’s say you have a memory of size 10:

my na ()
y nam (m)
 name (my)
name (my)
ame i (my n)
me is (my na)
e is (my nam)
 is Y (my name)
is Yo (my name)
s Yod (my name i)
 Yoda (my name is)

This is a huge simplification of how both humans and neural networks work with
input and memory, but it should be enough for you to see the rationale behind the
effectiveness of RNNs (a simple one is shown in figure 3.6) in working with sequences
versus plain feed-forward neural networks.

Layer 1
(input layer)

Layer 2
(hidden recurrent layer)

Layer 3
(output layer)

Figure 3.6 A recurrent neural network

91Recurrent neural networks
3.3.1 RNN internals and dynamics

These special neural networks are called recurrent because, via simple looping connec-
tions in the hidden-layer neurons, the network becomes capable of operations that
depend on the current input and the previous state of the network with respect to the
previous input. In the case of learning to generate the text “my name is Yoda,” the
internal state of the RNN can be thought of as the memory that makes it possible to
understand the sentence. Let’s pick a single neuron in the hidden layer in an RNN, as
shown in figure 3.7.

The recurrent neuron combines the signal from the input neuron (the arrow from
the neuron on the left) and a signal stored internally (the looping arrow), which plays
the role of the memory in the Yoda example. As you can see, this single neuron pro-
cesses an input, transforming it into an output, given its internal state (the hidden-
layer weights and activation function). It also updates its state as a function of the new
input and its current state. This is exactly what the neuron needs to do to learn to
relate subsequent inputs. By relate, I mean that during training, the network will learn,
for example, that characters that form meaningful words are more likely to appear
nearby.

 Going back to the Yoda example, the RNN would learn that, having seen the char-
acters Y and o, the most probable character to generate is d, because the sequence
“Yod” has already been seen. This is a significant simplification of the learning dynam-
ics of an RNN, but it gives you a basic overview.

COST FUNCTIONS

As in many machine learning algorithms, a neural network learns to minimize the
errors it commits when trying to create “good” outputs from inputs. The good outputs
you provide during training, together with the inputs, tell the network how much it’s
wrong when it then performs a prediction. The amount of such error is usually mea-
sured by a cost function (also called a loss function). The aim of a learning algorithm is
to optimize the algorithm parameters (in the case of a neural network, optimize the
weights) so that the loss (or cost) is as low as possible.

 I mentioned earlier that an RNN for text generation implicitly learns how likely cer-
tain sequences of text are in terms of probability. In the previous example, the
sequence “Yoda” could have probability 0.7, whereas the sequence “ode “ may have a

Layer 1
(input neuron)

Layer 2
(recurrent neuron)

Layer 3
(output neuron)

Figure 3.7 A recurrent neuron in the hidden layer of an RNN

92 CHAPTER 3 From plain retrieval to text generation
probability of 0.01. An appropriate cost function compares the probabilities calculated
by the neural network (with its current weights) against the actual probabilities in the
input text; for example, the sequence “Yoda” would have an actual probability of about
1 in the example text. This gives the amount of loss (the error). Several different cost
functions exist, but one that intuitively performs this type of comparison is called a
cross-entropy cost function; we’ll use it in the RNN examples. You can think of such a cost
function as measuring how much the probabilities calculated by the neural network
differ from what they should be with respect to a certain output. For example, if a net-
work learning over the Yoda sentence says the probability of the word “Yoda” is
0.00000001, it’s probably going to have a high loss: the correct probability should be
high, because “Yoda” is one of the few known good sequences in the input text.

 Cost functions play a key role in machine learning, because they define the goal of
the learning algorithm. Different cost functions are used for different types of prob-
lems. For example, the cross-entropy cost function is useful for classification tasks,
whereas a mean squared error cost function is useful when a neural network needs to
predict real values.

 The mathematical foundations of cost functions would probably require an entire
chapter; because the focus of this book is the applications of deep learning for search,
we won’t go into more detail. But I’ll suggest the right cost function to use, depending
on the specific problem being solved, as we proceed through the book.

UNROLLING RNNS

You may have noticed that the only aesthetic difference between a feed-forward net-
work and an RNN is in some looping arrows in the hidden layers. The word recurrent
refers to such loops.

 A better way to visualize how an RNN works in practice is to unroll it. Imagine
unrolling an RNN into a set of finite connected copies of the same network. This is
useful in practice when implementing an RNN, but it also makes it easier to see how
RNNs naturally fit into sequence learning.

 In the Yoda example, I said that a memory of 10 characters helps you keep in mind
the previously entered characters as you see new inputs. An RNN has this capability of
keeping track of previous inputs (with respect to context) by means of recurrent neu-
rons or layers. If you let the recurrent layer of an RNN “explode” into a set of 10 cop-
ies of the layer, you unroll the RNN by 10 (see figure 3.8).

 You’re feeding the sentence “my name is Yoda” to an RNN unrolled for 10 steps.
Let’s focus on the highlighted node in figure 3.8: you can see that it receives inputs
from its input (the character s) and the previous node in the hidden (unrolled) layer,
which in turn receives input from the character i and the previous node in the hidden
layer; this goes back until the first input. The idea is that each node receives informa-
tion about plain input (a character of the sequence) and, backward, from previous
inputs and internal states of the network for such previous inputs.

 On the other hand, going forward, you can see that the output to the first charac-
ter (m) only depends on the input and the internal state (weights) of the network;

93Recurrent neural networks
whereas the output to character y depends on the input, the current state, and the
previous state as it was for the first character, m.

 Thus the unrolls parameter is the number of steps the network can look back in
time when generating the output for the current input. In practice, when setting up
RNNs, you can decide how many steps you want to use to unroll the network. The
more steps you have, the better the RNNs will be able to handle longer sequences,
although they will also require more data and more time to train. Now you should
have a basic idea of how an RNN handles sequences of inputs like text and keeps track
of past sequences, when generating values in the output layers.

Layer 2 (unrolled)

Layer 3 (output))

Layer 1 (input)

m y n a m e i s

Figure 3.8 An unrolled recurrent neural network reading “my name is Yoda”

94 CHAPTER 3 From plain retrieval to text generation
BACKPROPAGATION THROUGH TIME: HOW RNNS LEARN

Chapter 2 briefly introduced backpropagation, the most widely used algorithm for
feed-forward neural network training. RNNs can be thought as feed-forward networks
with an additional dimension: time. The effectiveness of RNNs lies in their ability to
learn to correctly take into account information from previous input, using a learning
algorithm called backpropagation through time. It’s essentially an extension of simple
backpropagation where the number of weights to learn is much higher than in plain
feed-forward neural networks, due to the loops in the recurrent layer, because RNNs
have weights that control how past information flows through. We just looked at the
concept of unrolling an RNN. Backpropagation through time (BPTT) adjusts the
weights of the recurrent layers; so, the more unrolls you have, the more parameters
must be adjusted to get good results. Essentially, BPTT makes the (recurrent) neural
network automatically learn not just the weights on the connections between neurons
belonging to different layers, but also how past information needs to be combined
with the current inputs, via additional weights.

 The reasons for unrolling an RNN should now be clearer. It’s a way to limit the
number of recursions the loop performs into a recurrent neuron or layer so learning
and predicting are bounded and don’t recur indefinitely (which would make it diffi-
cult to compute the value in a recurrent neuron).

3.3.2 Long-term dependencies

Let’s consider what an RNN for generating queries would look like. Imagine that you
have two similar queries, such as “books about artificial intelligence” and “books
about machine learning.” (This is a simple example: the two sequences are exactly the
same length.) One of the first things to do is decide the size of the hidden layers and
the number of unrolls. In the previous section, you learned that the number of
unrolls controls how far the network can look back in time. For that to work properly,
the network needs to be powerful enough, which means it needs more neurons in the
hidden layer to correctly handle the information coming from the past as the number
of unrolls grows. The number of neurons in a layer defines the maximum power of the
network. It’s also important to note that if you want a network with many neurons
(and layers), you’ll need to provide lots of data in order for the network to perform
well in terms of the accuracy of the outputs.

 The number of unrolls is related to long-term dependency: a scenario where words
may have semantic correlations even though they appear further from each other in a
sequence of text. For instance, look at the following sentence, where words that are
distant from each other are highly correlated:

In 2017, despite what happened during the 2016 Finals, Golden State Warriors won the
championship again.

Reading this phrase, you can easily understand that the word “championship” refers
to the year “2017.” But a not-so-smart algorithm may link “championship” to “2016,”
because that’s also a likely pair to generate. This algorithm would fail to take into

95LSTM networks for unsupervised text generation
account that the word “2016” refers to “Finals” in the incidental sentence. This is an
example of a long-term dependency. Depending on the data you’re dealing with, you
may need to take this into account to make an RNN work effectively.

 Using more unrolls helps mitigate long-term dependency problems, but in general
you may never know how far apart two correlated words can be (or characters, or even
phrases). To fix this problem, researchers came up with an improved RNN architec-
ture called a long short-term memory (LSTM) network.

3.3.3 Long short-term memory networks

So far, you’ve seen that a layer in a normal RNN is composed of a number of neurons
with looping connections. On the other hand, an LSTM network layer is slightly more
complex.

 LSTM layers can decide the following:

 Which information should go through the next unroll
 Which information should be used to update the values of the LSTM internal

state
 Which information should be used as the next possible internal state
 Which information to output

With respect to vanilla RNNs (the most basic form, as shown in the previous section),
there are many more parameters to learn in an LSTM. It’s the equivalent of a sound
engineer in a recording studio tweaking an equalizer (the LSTM), versus turning the
volume knob (the RNN): an equalizer is much more complex to operate, but if you
tune it correctly, you can get much better sound quality. The neurons of an LSTM
layer have more weights, which are adjusted to make them learn when to remember
information and when to forget it. This makes training LSTM networks more compu-
tationally expensive than training RNNs.

 A lighter-weight version of LSTM neurons, but still slightly more complex than
vanilla RNN neurons, is the gated recurrent unit (GRU).3 There’s a lot more to know
about LSTMs, but the key point here is that they perform extremely well with long-
term dependencies and therefore are a good fit for the use case of generating queries.

3.4 LSTM networks for unsupervised text generation
In Deeplearning4j, you can use an out-of-the-box implementation of LSTM networks.
Let’s set up a simple neural network configuration for an RNN with one hidden LSTM
layer. You’ll build an RNN that can sample text outputs of 50 characters. Although this
isn’t a long sequence, it should be enough to handle short text queries (for example,
“books about artificial intelligence” is 35 characters).

 The unroll parameter should ideally be larger than the target text sample (output)
size, so you can handle longer sequences of input. The following code will configure

3 See Kyunghyun Cho et al., “Learning Phrase Representations Using RNN Encoder-Decoder for Statistical
Machine Translation” (September 3, 2014), https://arxiv.org/abs/1406.1078v3.

https://arxiv.org/abs/1406.1078v3

96 CHAPTER 3 From plain retrieval to text generation
an RNN with 50 neurons in the input and output layers and 200 neurons in the hid-
den (recurrent) layer, unrolling it 10 time steps.

int lstmLayerSize = 200;
int sequenceSize = 50;
int unrollSize = 10;
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .list()
 .layer(0, new LSTM.Builder()
 .nIn(sequenceSize)
 .nOut(lstmLayerSize)
 .activation(Activation.TANH).build())
 .layer(2, new RnnOutputLayer.Builder(LossFunctions
 .LossFunction.MCXENT)
 .activation(Activation.SOFTMAX)
 .nIn(lstmLayerSize)
 .nOut(sequenceSize).build())
 .backpropType(BackpropType.TruncatedBPTT)
 .tBPTTForwardLength(unrollSize)
 .tBPTTBackwardLength(unrollSize)
 .build();

It’s important to note a few details about this architecture:

 You specify the loss-function parameter for the cross-entropy cost function.
 You use the tanh activation function on input and hidden layers.
 You use a softmax activation function in the output layer.

Using the cross-entropy cost function is closely tied to the use of a softmax function in
the output layer. A softmax function in the output layer transforms each of its incom-
ing signals into an estimated probability with respect to the other signals, generating a
probability distribution, where each such value is between 0 and 1 and the sum of all the
resulting values is equal to 1.

 In the context of character-level text generation, you’ll have one neuron for each
character in the data used to train the network. Once the softmax function is applied
to the values generated by the hidden LSTM layer, each character will have an
assigned probability (a number between 0 and 1). In the Yoda example, the data con-
sists of 10 characters, so the output layer will contain 10 neurons. The softmax func-
tion makes the output layer contain a probability for each character:

m -> 0.031
y -> 0.001
n -> 0.022
a -> 0.088

Listing 3.4 Sample LSTM configuration

Number of neurons in the
hidden (LSTM) layer

Number of neurons in the
input and output layers

Number of unrolls for the RNN

Declares the LSTM layer with 50
inputs (nIn) and 200 outputs (nOut),
using the tanh activation function

Declares the output layer with
200 inputs (nIn) and 50 outputs
(nOut), using the softmax
activation function. The cost
function is also declared here.

Declares the time dimension of the RNN
(LSTM) with unrollSize as a parameter of the

backpropagation-through-time algorithm

97LSTM networks for unsupervised text generation
e -> 0.077
i -> 0.063
s -> 0.181
Y -> 0.009
o -> 0.120
d -> 0.408

As you can see, the most probable character comes from the neuron associated with
the character d (probability = 0.408).

 Let’s pass some sample text to this LSTM network and see what it learns to gener-
ate. Before generating text for your queries, though, let’s first try something simpler
to understand. This will help you make sure the network is doing its job correctly.
We’ll use some text written in natural language: specifically, pieces of literature taken
from the Gutenberg project (www.gutenberg.org), such as “Queen. This is mere mad-
ness; And thus a while the fit will work on him.” You’re going to teach the RNN to
(re)write Shakespearean poems and comedies (see figure 3.9)!

This will be your first experience with an RNN, so it’s good to start with the simplest
possible approach to train it. You’ll perform unsupervised training of the network by
feeding it text from Shakespeare’s works, one line at a time, as illustrated in figure
3.10. (The input and output layer sizes are set to 10 for the sake of readability). As you
go through the text of Shakespeare’s works, you take excerpts of unroll size + 1 and
feed them, one character at a time, into the input layer. The expected result in the
output layer is the next character in the input excerpt: for example, given the sen-
tence “work on him,” you’ll see the inputs receiving characters for “work on hi,” and
the corresponding outputs “ork on him.” This way, you train the network to generate
the next character, by also looking back at the previous 10 characters.

Layer 1
(input layer)

Layer 2
(hidden recurrent layer)

Recurrent neural network

KING EDWARD.
This counsel, Artois,

like to fruitful
showers,

Hath added growth
unto my dignity ...

KING THOMAS.
This party, my dear,
like to nice whatever,

Has added growth
unto my stuff;

Layer 3
(output layer)

Original
Shakespeare

poems

RNN-
generated

poems

Figure 3.9 Generating Shakespearean text

www.gutenberg.org

98 CHAPTER 3 From plain retrieval to text generation
You configured the LSTM earlier; now you’ll train it by iterating over the character
sequences from the Shakespearean texts. First, you initialize the network with the con-
figuration defined earlier:

MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();

As mentioned, you’re building an RNN that generates text sequences one character at a
time. Therefore, you’ll use a DataSetIterator (the DL4J API for iterating over datasets)

Layer 2
(unrolled)

... And thus a
while the fit will
work on him ...

Layer 3 (output))

Layer 1 (input)

w

o r k o n h i m

o r k no h i

work on him

Select
input/output

Output
sequence

Input
sequence

Figure 3.10 Feeding the unrolled RNN with unsupervised sequence learning

99LSTM networks for unsupervised text generation
that creates character sequences: a CharacterIterator (http://mng.bz/y1ZJ). You can
skip some of the details regarding the CharacterIterator. You initialize it with

 The source file that contains the text to perform unsupervised training
 The number of examples that should be fed together into the network before it

updates its weights (called the mini-batch parameter)
 The length of each example sequence

Here’s the code to iterate over Shakespearean text characters:

CharacterIterator iter = new CharacterIterator("/path/to/shakespeare.txt",
 miniBatchSize, exampleLength);

Now you have all the pieces of the puzzle to train the network. Training a MultiLayer-
Network is done with the fit(Dataset) method:

MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
net.setListeners(new ScoreIterationListener(1));
while (iter.hasNext()) {
 net.fit(iter);
}

You want to check that the value of the loss generated by the network during training
steadily declines over time. This is useful as a sanity check: a neural network with appro-
priate settings will see this number steadily decline. The following log shows that over 10
iterations, the loss went from 4176 to 3490 (with some ups and downs in between):

Score at iteration 46 is 4176.819462796047
Score at iteration 47 is 3445.1558312409256
Score at iteration 48 is 3930.8510119434372
Score at iteration 49 is 3368.7542747804177
Score at iteration 50 is 3839.2150762596357
Score at iteration 51 is 3212.1088334832025
Score at iteration 52 is 3785.1824493103672
Score at iteration 53 is 3104.690257065846
Score at iteration 54 is 3648.584794826596
Score at iteration 55 is 3064.9664614373564
Score at iteration 56 is 3490.8566755252486

If you plot the score and loss of more such values (for example, 100), you may see
something like figure 3.11.

 Let’s see some sequences (of 50 characters each) generated by this RNN after a few
minutes of learning:

 …o me a fool of s itter thou go A known that fig..
 ..ou hepive beirel true; They truth fllowsus; and..
 ..ot; suck you a lingerity again! That is abys. T…
 ..old told thy denuless fress When now Majester s…

You can set listeners to look
into the training process (for
example, to check that the loss
is going down over time).

Iterates over the
dataset content

Trains the network on each
portion of the dataset

http://mng.bz/y1ZJ

100 CHAPTER 3 From plain retrieval to text generation
Although you can recognize that the grammar isn’t too bad, and some portions may
even make sense, you can clearly see that this isn’t something of good quality. You
probably wouldn’t want to use this network to write a query in natural language for an
end user, given its poor outcomes. A complete example of Shakespeare text genera-
tion with a similar LSTM (with one hidden recurrent layer) can be found in the DL4J
examples project (http://mng.bz/7ew9).

 One good thing about RNNs is that it’s been demonstrated that adding more hid-
den layers often improves the accuracy of the generated results.4 This means that,
given enough data, increasing the number of hidden layers can make deeper RNNs
work better. To see if this applies in this use case, let’s build an LSTM network with two
hidden layers.

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.list()
.layer(0, new LSTM.Builder()
.nIn(sequenceSize)
.nOut(lstmLayerSize)
.activation(Activation.TANH).build())

 .layer(1, new LSTM.Builder()
.nIn(lstmLayerSize)

4 See Razvan Pascanu et al., “How to Construct Deep Recurrent Neural Networks” (April 24, 2014), https://
arxiv.org/abs/1312.6026.

Listing 3.5 Configuring an LSTM with two hidden layers

5,000

Cost

Iterations

4,000

3,000

2,000

1,000

0

Figure 3.11 Plotting a loss trend

In this new configuration, you
add a second hidden LSTM
layer identical to the first.

https://arxiv.org/abs/1312.6026
https://arxiv.org/abs/1312.6026
https://arxiv.org/abs/1312.6026
http://mng.bz/7ew9

101LSTM networks for unsupervised text generation
.nOut(lstmLayerSize)

.activation(Activation.TANH).build())
 .layer(2, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT)

.activation(Activation.SOFTMAX)

.nIn(lstmLayerSize)

.nOut(sequenceSize).build())
 .backpropType(BackpropType.TruncatedBPTT)

.tBPTTForwardLength(unrollSize).tBPTTBackwardLength(unrollSize)
 .build();

With this configuration, you again train the neural network using the same dataset, so
the code for training remains the same. Note how you generate the output text from
the trained network. Because this is an RNN, you use the DL4J API network.rnnTime-
Step(INDArray), which takes an input vector, produces an output vector using the
previous RNN state, and then updates it. A further call to rnnTimeStep will use this
previously stored internal state to produce the output.

 As discussed earlier, the input to this RNN is a sequence of characters, each of
which is represented in a one-hot-encoded manner. The Shakespearean text contains
255 distinct characters, so a character input will be represented by a size-255 vector
whose values are all set to 0 except one that has a value of 1. Each position corre-
sponds to a character, so setting the vector value at a certain position to 1 means that
input vector represents that specific character. The output generated by the RNN with
respect to the input will be a probability distribution, because you’re using the soft-
max activation function in the output layer. Such a distribution will tell you which
characters are more likely to be generated in response to the corresponding input
character (and previous inputs, as per information stored in the RNN layer). A proba-
bility distribution is like a mathematical function that can output all possible charac-
ters, but with a greater probability of outputting some than others. For example, in a
vector generated by an RNN trained over the sentence “my name is Yoda,” the charac-
ter y is more likely to be generated by such a distribution than the character n when
the previous input character is m (and hence the sequence my is more likely than mn).
Such a probability distribution is used to generate the output character.

 You first convert an initialization character sequence (for example, a user query)
to a sequence of character vectors.

INDArray input = Nd4j.zeros(sequenceSize,
 initialization.length());
char[] init = initialization.toCharArray();
for (int i = 0; i < init.length; i++) {

 int idx = characterIterator.convertCharacterToIndex(
 init[i]);

 input.putScalar(new int[] {idx, i}, 1.0f);
}

Listing 3.6 One-hot-encoding a character sequence

Creates an input vector
of the required size

Iterates over each
character in the input
sequence

Gets the index of each character

Creates a one-hot-encoded vector
for each character, with the value
at position “index” set to 1

102 CHAPTER 3 From plain retrieval to text generation
For each character vector, you generate an output vector of character probabilities
and convert it into an actual character by sampling (extracting a probable result)
from the generated distribution:

INDArray output = network.rnnTimeStep(input);

int sampledCharacterIdx = sampleFromDistribution(
 output);

char c = characterIterator.convertIndexToCharacter(
 sampledCharacterIdx);

In the Shakespearean text, you initialize the input sequence with a random character,
and then the RNN generates subsequent characters. With the text-generation part
covered, you can see that having two hidden LSTM layers gives better results:

 … ou for Sir Cathar Will I have in Lewfork what lies …
 … , like end. OTHELLO. I speak on, come go’ds, and …
 … , we have berowire to my years sword; And more …
 … Oh! nor he did he see our strengh …
 … WARDEER. This graver lord. CAMILL. Would I am be …
 … WALD. Husky so shall we have said? MACBETH. She h …

As expected, the generated text looks more accurate than the text generated with the
first LSTM, which had one hidden layer. At this point, you may be wondering what
would happen if you added another hidden LSTM layer. Would the results be even
better? How many hidden layers should a perfect network for this text-generation case
have? You can easily answer the first question by trying the example with a network
that has three LSTM hidden layers. It’s more difficult, and perhaps impossible, to
come up with an accurate response for the second question. Finding the best architec-
ture and network settings is a complex process; you’ll find more details about RNNs
toward the end of this chapter when we talk about using them in production.

 Using the same configuration as earlier, but with an additional (third) hidden
LSTM layer, the samples look like these:

 … J3K. Why, the saunt thou his died There is hast …
 … RICHERS. Ha, she will travel, Kate. Make you about …
 … or beyond There the own smag; know it is that l …
 … or him stepping I saw, above a world’s best fly …

Given the parameters you set in the neural network (layer size, sequence size, unroll
size, and so on), adding a fourth hidden LSTM layer wouldn’t improve the results. In
fact, they’d be slightly worse (for example, “… CHOPY. Wencome. My lord ‘tM times
our mabultion …”): adding more layers means adding power but also complexity to

Predicts the probability
distribution over the given
input character (vector)

Samples a probable
character from the
generated distribution

Converts the index of the
sampled character to an
actual character

103LSTM networks for unsupervised text generation
the network. Training requires more and more time and data; sometimes it isn’t possi-
ble to generate better results just by adding another hidden layer. In chapter 9, we’ll
discuss a few techniques for addressing this balance between the needs of computa-
tional resources (CPU, data, time) and result accuracy in practice.

3.4.1 Unsupervised query expansion

Now that you’ve seen how an RNN based on LSTMs works in the case of literary text,
let’s assemble a network to generate alternative queries. In the literature example, you
passed the text to the RNN (unsupervised learning) because that was the simplest way
to understand and visualize how such a network works. Now, let’s look at using this
same approach for query expansion. You can try it on publicly available resources like
the web09-bst dataset (http://boston.lti.cs.cmu.edu/Data/web08-bst/planning.html),
which contains queries from actual information retrieval systems. You expect that the
RNN will learn to generate queries similar to those found in a search log, one per line.
Consequently, the data-preparation task consists of grabbing all the queries from the
search log and writing them in a single file, one after the other.

 Here’s an excerpt from the query log :

query:{"artificial intelligence"}, results:{
 size=10, ids:["doc1","doc5", ...]}
query:{"books about AI"}, results:{
 size=1, ids:["doc5"]}
query:{"artificial intelligence hype"}, results:{
 size=3, ids:["doc1","doc8", ...]}
query:{"covfefe"}, results:{size=100, ids:["doc113","doc588", ...]}
query:{"latest trends"}, results:{size=15, ids:["doc113","doc23", ...]}
...

Using only the query part of each line, you get a text file like this:

artificial intelligence
books about AI
artificial intelligence hype
covfefe
latest trends
...

Once you have that, you can pass it to an LSTM network like that described in the pre-
vious section. The number of hidden layers depends on various constraints; two is usu-
ally a good starting value. As shown in the graph back in figure 3.1, you’ll build your
query-expansion algorithm in a query parser, so the user isn’t exposed to the alterna-
tive query generation. For the sake of this example, you’ll extend a Lucene Query-
Parser, whose responsibility is to build a Lucene Query from a String (a user-entered
query, in this case).

The query part consists of
“artificial intelligence.”

The query part consists
of “books about AI.”

http://boston.lti.cs.cmu.edu/Data/web08-bst/planning.html

104 CHAPTER 3 From plain retrieval to text generation

public class AltQueriesQueryParser
 extends QueryParser {

 private final MultiLayerNetwork rnn;
 private CharacterIterator characterIterator;

 public AltQueriesQueryParser(String field, Analyzer a,
 MultiLayerNetwork rnn, CharacterIterator characterIterator) {
 super(field, a);
 this.rnn = rnn;
 this.characterIterator = characterIterator;
 }

 @Override
 public Query parse(String query) throws ParseException {
 BooleanQuery.Builder builder =
 new BooleanQuery.Builder();
 builder.add(new BooleanClause(super.parse(
 query), BooleanClause.Occur.MUST));

 String[] samples = sampleFromNetwork(query);

 for (String sample : samples) {
 builder.add(new BooleanClause(super.parse(
 sample), BooleanClause.Occur.SHOULD));
 }

 return builder.build();
 }

 private String[] sampleFromNetwork(String query) {
 // where the "magic" happens ...
 }

}

You initialize the query parser with the RNN and use it to build a number of alterna-
tive queries that are added as optional clauses appended to the original query. All the
magic is contained in the portion of the code that generates new query strings from
the original one.

 The RNN receives the user-entered query as an input and produces a new query as
output. Remember, neural networks “talk” by means of vectors, so you need to trans-
form the text query into a vector. You perform one-hot encoding of the characters of
the user-entered query. Once the input text is converted into a vector, you can sample
the output query one character at a time. Looking back at the Shakespearean exam-
ple, you did the following:

Listing 3.7 Lucene query parser for alternative query expansion

The query parser translates
a String into a parsed query
to be run against the
Lucene index.

RNN used by the
custom query
parser to generate
alternative queries

Initializes a Lucene Boolean query
to contain the original user-

entered query and the optional
queries created by the RNN

Adds a mandatory clause
for the user-entered
query (the results for that
query need to be shown)

Lets the RNN generate
some samples to be used
as additional queries

Parses text generated by
the RNN and includes it
as an optional clause

Builds and returns the final query as a
combination of the user-entered query and
the RNN-generated queries

This method does query encoding,
RNN prediction, and output decoding
into a new query, as in the
Shakespearean example.

105LSTM networks for unsupervised text generation

G

e
1 Encoded the user-entered query into a series of one-hot-encoded character vectors
2 Fed this sequence to the network
3 Got the first output character vector, transformed it into a character, and fed

this generated character back into the network
4 Iterated the previous step until an ending character was found (such as the car-

riage return character, in this case)

Practically, this means if you feed the RNN a user-entered query that’s something like
a common term, the RNN will probably “complete” the query by adding relevant
terms. If you instead feed the RNN a query that looks like a finished query, the RNN
will probably generate a query that you could find near the user-entered query in a
search log. With all this in place, you can now generate alternative queries by using
the following settings.

int lstmLayerSize = 150;
int miniBatchSize = 10;
int exampleLength = 50;
int tbpttLength = 40;
int epochs = 1;
int noOfHiddenLayers = 2;
double learningRate = 0.1

String file = getClass().getResource("/queries.txt")
 .getFile();
CharacterIterator iter = new CharacterIterator(file,
 miniBatchSize, exampleLength);

MultiLayerNetwork net = NeuralNetworksUtils
 .trainLSTM(
 lstmLayerSize, tbpttLength, epochs, noOfHiddenLayers, iter, learningRate,
 WeightInit.XAVIER,
 Updater.RMSPROP,
 Activation.TANH,
 new ScoreIterationListener(10));

Analyzer analyzer = new EnglishAnalyzer(null);
AltQueriesQueryParser altQueriesQueryParser =
 new AltQueriesQueryParser("text",
 analyzer, net, iter);

Listing 3.8 Trying AltQueriesQueryParser using an LSTM with two hidden layers

The size of LSTM layers

Number of examples to
put into a mini-batch

Length of each input
sequence to make the RNN
learn to generate new ones

Unroll size (as a parameter of
backpropagation through time)

Number of times the RNN should
iterate over the same data

Number of hidden LSTM
layers in the RNN networkradient

descent
learning

rate Source file containing the queries

Builds an iterator over text characters
of the file containing queries

Algorithm used to initializ
the network weights

Update algorithm used to
update parameters while
performing gradient descent

Activation function to be
used in the hidden layers

Sets up a score-iteration listener that
outputs the value of loss every 10 iterations
(of backpropagation through time)

Analyzer used to identify
terms in the query text

Instantiates the
AltQueriesQueryParser

106 CHAPTER 3 From plain retrieval to text generation
String[] queries = new String[] {"latest trends",
 "covfefe", "concerts", "music events"};

for (String query : queries) {
 System.out.println(altQueriesQueryParser
 .parse(query));
}

The standard output will contain the following:

latest trends -> (latest trends) about AI,
 (latest trends) about artificial intelligence

covfefe -> books about coffee

concerts -> gigs in santa monica
music events -> concerts in california

Note that no terms are shared between the input and output queries.
 The first alternative queries generated sound like more specific versions of the

original, which may not be what the user wants. You can see that “latest trends” is in
parentheses: the RNN is generating “about AI” and “about artificial intelligence” to
sort of complete the sentence. If you ask a generic question about “latest trends,” the
query parser will be cautious in generating more-specific versions of an original query,
if no more context is given (in this example case, “latest trends” is too generic). If you
don’t want alternative queries like those for the first query here, you can use a trick to
hint to the RNN that it should try to generate a completely new query. The data you
feed the RNN is split into sequences, one per line, delimited by a carriage return, so
here’s the trick: add a carriage return character at the end of the user-entered query.
The RNN is used to observing sequences of the form wordA wordB wordC CR (or, more
precisely, character streams that often have a space character in between), where CR is
a carriage return. Implicitly, the CR character tells the RNN that the sequence of text
before CR is finished and that a new sequence of text is starting. If you take the user-
entered query “latest trends” and let the query parser add CR at the end of it, the RNN
will try to generate a new sequence starting from a carriage return character. This
makes it much more likely that the RNN will generate text that sounds like a new
query rather than a more specific version of the original query.

3.5 From unsupervised to supervised text generation
The approach that you’ve just seen for generating alternative queries is nice, but you
want something better than nice; you’re focused on providing a tool that changes the
lives of your end users. You want to make sure the search engine operates better than
before, or all this effort will have been useless.

 In the query expansion use case, a key role is defined by the way the RNN learns.
You’ve seen how the RNN performs unsupervised learning from a text file contain-
ing many user queries that aren’t directly related. Section 3.1.2 also mentioned

Creates a few sample queries

Prints the alternative queries
generated by the custom parser

The query “latest trends” is
expanded in a more specific
query about trends about AI;
this boosts AI-related results.

The second query looks weird, but it isn’t
from the RNN perspective: the characters
composing “covfefe” and “coffee” are
almost identical and in similar positions.

The alternative query for “music
events” is similar but more specific.

107From unsupervised to supervised text generation
more-complex alternatives, creating examples that had the desired alternative query
with respect to a certain input query.

 In this section, I’ll briefly introduce supervised text generation for search (for
example, using search logs) with two different algorithms.

3.5.1 Sequence-to-sequence modeling

You’ve learned about LSTMs and how they’re good at handling sequences. Doing
supervised learning for the task of building alternative queries requires providing a
desired target sequence to be generated with respect to an input sequence. In section
3.1.2, where we discussed data preparation, you saw that you can obtain training
examples by deriving them from the search logs.

 So if you have pairs like “latest research in AI” → “recent publications in artificial
intelligence,” you can use them in an RNN architecture, as shown in figure 3.12.

Layer 3 (output))

Layer 1 (input)

Layer 2
(unrolled)

latest research in Al

recent publications in
artificial intelligence

Target
outout

Input
sequence

Figure 3.12 Supervised sequence learning with a single LSTM

108 CHAPTER 3 From plain retrieval to text generation
With such input/output pairs, it’s much more difficult for the RNN (or LSTM) to learn.
In the previous unsupervised approach, the network was learning to generate the next
character in the sequence in order to teach the RNN to reproduce the input sequence.

 In a supervised learning scenario, you’re instead trying to teach the neural net-
work to generate a sequence of output characters that might be completely different
from the input characters. Let’s look at an example. If you have the input sequence
“latest resea,” it’s easy to guess that the next character will be r. The RNN output to be
learned looks one character ahead in time:

l -> a
la -> at
lat -> ate
late -> ates
lates -> atest
latest -> atest
latest -> atest r
latest r -> atest re
latest re -> atest res
latest res -> atest rese
latest rese -> atest resea
latest resea -> atest resear

On the other hand, if you use the portion of the sentence “recent pub” as the target
output, the RNN should do something like this:

l -> r
la -> re
lat -> rec
late -> rece
lates -> recen
latest -> recent
latest -> recent
latest r -> recent p
latest re -> recent pu
latest res -> recent pub
latest rese -> recent publ
latest resea -> recent publi

This task is clearly much more difficult, so I’ll now introduce a fascinating architec-
ture called sequence-to-sequence models. This architecture uses two LSTM networks:

 The encoder takes the input sequence as a sequence of word vectors (not charac-
ters). It generates an output vector called a thought vector that corresponds to
the last hidden state of the LSTM, rather than generating a probability distribu-
tion like the previous model.

 The decoder takes the thought vector as an input and generates an output
sequence that represents a probability distribution to be used to sample the out-
put sequence.

This architecture is also called seq2seq (see figure 3.13). We’ll inspect it in more detail
in chapter 7, because it’s also used to perform machine translation (transforming one

109From unsupervised to supervised text generation
sequence written in a certain language into a corresponding sequence in another tar-
get language). Seq2seq is also often used to build conversational models for chatbots.
In the context of search, what’s interesting is the concept of the thought vector: a vec-
torized representation of the user’s intent. There’s a lot of research in this area.5

Although it’s called a thought vector, what the RNN learns is based on the given
inputs and outputs. In this case, if the input is a query and the output is another
query, the thought vector can be seen as the vector that can map the input query to
the output query. If the output query is relevant with respect to the input query, then
the thought vector encodes the information about how a relevant alternative query
can be generated from that input query, a distributed representation of user intent.

Because we’ll take a closer look at sequence-to-sequence models in chapter 7, for now
we’ll use a previously trained seq2seq model where related input and desired output
queries have been extracted from a search log on the basis of two measures:

 How close in time they were fired, as seen in the search log
 Whether they share at least one search result

In DL4J, you load this previously created model from the filesystem and pass it to the
previously defined AltQueriesQueryParser:

MultiLayerNetwork net = ModelSerializer
 .restoreMultiLayerNetwork(
 "/path/to/seq2seq.zip");
AltQueriesQueryParser altQueriesQueryParser = new
 AltQueriesQueryParser("text", new
 EnglishAnalyzer(null), net, null);

5 See, for example, Ryan Kiros et al., “Skip-Thought Vectors” (June 22, 2015), https://arxiv.org/pdf/
1506.06726v1.pdf; Shuai Tang et al., “Trimming and Improving Skip-thought Vectors” (June 9, 2017), https://
arxiv.org/abs/1706.03148; and Yoshua Bengio, “The Consciousness Prior” (September 25, 2017),
https://arxiv.org/abs/1709.08568.

research in Al artificial intelligence hype

LSTM LSTM LSTM LSTM LSTM LSTM

Thought
vector

Encoder Decoder

Figure 3.13 Sequence-to-sequence modeling for queries

Restores a previously
persisted neural network
model from a file

Builds the AltQueriesQueryParser using the neural
network implementing the seq2seq model. Note
that you no longer need the CharacterIterator.

https://arxiv.org/pdf/1506.06726v1.pdf
https://arxiv.org/pdf/1506.06726v1.pdf
https://arxiv.org/pdf/1506.06726v1.pdf
https://arxiv.org/abs/1706.03148
https://arxiv.org/abs/1706.03148
https://arxiv.org/abs/1706.03148
https://arxiv.org/abs/1709.08568

110 CHAPTER 3 From plain retrieval to text generation
In order to use the sequence-to-sequence model, you need to change the way you gen-
erate the sequence. In the unsupervised approach, you sampled characters from the
output probability distributions. In this case, you’ll instead generate the sequence
from the decoder LSTM at the word level. Here are some results given by the Alt-
QueryParser using the seq2seq model:

museum of contemporary art chicago -> foundation

joshua music festival -> houston monmouth

mattel toys -> mexican yellow shoes

3.6 Considerations for production systems
Training RNNs was tedious, and it was even worse with LSTMs. Nowadays, we have
frameworks like DL4J that can run on CPUs or on graphical processing units (GPUs),
or can even run in a distributed manner (for example, via Apache Spark). Other
frameworks like TensorFlow have dedicated hardware (tensor-processing units
[TPUs]!), and so on. But it’s not trivial to set up an RNN to work well. You may have to
train several different models to come up with the one that works best on your data.
By the way, not only are there theoretical constraints around setting up LSTMs, but
the data you use to train also defines what they can do at test time: for example, when
using them on unseen queries.

 In practice, it took several hours of trial and error to come up with good settings
for the different parameters in the unsupervised approach. This process will take less
time as you become more experienced with the dynamics of LSTMs (and, in general,
of neural networks). For instance, the Shakespeare example contains sequences that
are much longer than queries. Queries are short—on average, between 10 and 50
characters—whereas lines from Macbeth can contain 300 characters. So the example-
length parameter for the Shakespeare example (200) is longer than that used for
learning to generate queries (50).

 Also consider the hidden structures in text. Text from Shakespearean comedies
usually has the following pattern: CHARACTERNAME : SOMETEXT PUNCTUATION CR, whereas
queries are just sequences of words followed by a carriage return. Queries can contain
both formal and informal sentences, with words like “myspaceeee” that can confuse the
RNN. So whereas the Shakespearean text needed only one hidden layer to give okay
results, the LSTM needed at least two hidden layers to perform in a useful way.

 The decision about whether to perform unsupervised LSTM training over charac-
ters versus using a sequence-to-sequence model depends first on the data you have. If

This result may look weird at first, but
there’s actually a foundation for the
Museum of Contemporary Art in Chicago.

The input query about a music
event generates a query that
contains a city and the name
of another event (although
the Monmouth Festival takes
place in Oregon).

A query about toys for kids generates a query
for Mexican yellow shoes. If it’s Christmas, this
is a good result (gift for kids and for …
someone who may like yellow shoes)!

111Summary
you aren’t able to generate good training examples (where the output query is a rele-
vant alternative to the input query), you should probably go with the unsupervised
approach. The architecture is also lighter, and training will likely take less time.

 A key point to take into account is that during training, the loss values should be
tracked to make sure they’re steadily declining. You saw a graph of the loss generated
by plotting the values outputted by the ScoreIterationListener while training the
unsupervised LSTM. It’s useful to do this to make sure training is going well. If the
loss begins to increase or stops decreasing at a value far from zero, you probably need
to tune the network parameters.

 The most important parameter is the learning rate. This value (usually between 0
and 1) determines the speed at which the gradient descent algorithm goes downhill
toward points where the error is low. If the learning rate is too high (closer to 1: for
example, 0.9), it will result in the loss starting to diverge (increasing to infinity). If the
learning rate is instead too low (closer to 0: for example, 0.0000001), the gradient
descent may take too long to reach a point with low error.

Summary
 Neural networks can learn to generate text, even in the form of natural lan-

guage. This is useful for silently generating queries that are executed together
with user-entered queries to provide better search results.

 Recurrent neural networks are helpful for the task of text generation, because
they’re adept at handling even long sequences of text.

 Long short-term memory networks are an extension of RNNs that can deal with
long-term dependencies. They work better than plain RNNs when dealing with
natural language text where related concepts or words may be a significant dis-
tance apart in a sentence.

 Providing deeper layers in neural networks can help in cases where the network
requires more computational power for handling larger datasets and/or more-
complex patterns.

 Sometimes it’s useful to look closely at how a neural network is generating its
outputs. Small adjustments (like the CR trick) can make a difference in the qual-
ity of the results.

 Sequence-to-sequence models and thought vectors are powerful tools for learn-
ing to generate sequences of text in a supervised manner.

More-sensitive
query suggestions
We’ve covered the fundamentals of neural networks and looked at the construction
of both shallow and deep architectures for these networks. In practical terms, you
now know how to integrate neural networks into a search engine to boost the
search engine with two key features: synonym expansion and alternative query gen-
eration. Both of these features work on the search engine to make it smarter and
return better results to the user. But can you do anything to improve the wording of
the query itself? In particular, can you do anything to help the user write better
queries—queries that deliver the results that come closest to what the user is look-
ing for?

 The answer, of course, is yes. You’re no doubt accustomed to a search engine
providing you with suggestions as you type in your query. This autocomplete func-
tion is designed to speed up the querying process by suggesting words or sentences

This chapter covers
 Common approaches to composing query suggestions

 Character-level neural language models

 Tuning parameters in neural networks
112

113Generating query suggestions
that could make up a meaningful query. For instance, if a user starts typing “boo,” the
autocomplete feature may provide the rest of the word the user is likely to be writing:
“book,” for example, or a complete sentence that starts with “boo,” such as “books
about deep learning.” Helping users compose their queries is likely to speed things up
and help users avoid typos and similar errors. But this functionality also gives the
search engine the opportunity to provide hints to help the user compose a better
query. These hints are words or sentences that make sense in the context of the spe-
cific query the user is writing. The words “book” and “boomerang” share the same
“boo” prefix, so if a user starts typing “boo,” the search engine might suggest that they
choose either “book” or “boomerang” to complete the query. But if the user types “big
parks where I can play boo,” it’s clear that suggesting “boomerang” would make more
sense than suggesting “book.”

 By generating these hints, autocomplete also has an impact on the effectiveness of
the search engine. Imagine if, instead of “big parks where I can play boomerang,” the
search engine suggested “big parks where I can play book.” That would certainly
return fewer relevant search results.

 Suggestions also give the search engine a chance to favor certain queries (and
therefore documents to be matched) over others. This can be useful, for example, for
marketing purposes. If the owner of the search engine of an e-commerce website
wants to sell books more than boomerangs, they may want to suggest “big parks where
I can play book” rather than “big parks where I can play boomerang.” If you know the
topics that users look for most often, you may want to suggest terms related to those
recurring topics more frequently.

 Autocomplete is a common feature in search engines, so there are already plenty
of algorithms to create it. What can neural networks help you with here? In a word:
sensitivity. A sensitive suggestion is one that accurately interprets what the user is look-
ing for and rewords it in a manner that will more likely deliver relevant results. This
chapter will build on what you’ve learned about neural nets to get them to generate
more-sensitive suggestions.

4.1 Generating query suggestions
You know from chapter 3 that deep neural networks can learn to generate text that
looks like it was written by a human. You saw this at work when you generated alterna-
tive queries. Now you’ll see how to use and extend such neural nets so they can out-
perform the current most widely used algorithms for autocompletion by generating
better, more-sensitive query suggestions.

4.1.1 Suggesting while composing queries

In chapter 2, we discussed how to help users of a search engine look for song lyrics, in
the common scenario in which the user doesn’t recall a song title exactly. In that con-
text, we introduced the synonym-expansion technique, to allow users to fire a possibly
incomplete or incorrect query (for example, “music is my aircraft”) that was fixed by

114 CHAPTER 4 More-sensitive query suggestions
expanding synonyms under the hood (“music is my aeroplane”) using the word2vec
algorithm. Synonym expansion is a useful technique, but perhaps you could do some-
thing simpler to help a user recall that the song chorus is “music is my aeroplane” and
not “music is my aircraft” by suggesting the right words while the user types the query.
You can avoid letting the user run a suboptimal query, in the sense that they already
know “aircraft” isn’t the right word.

 Having good autocompletion algorithms offers two benefits:

 Fewer queries with few or zero results (affects recall)
 Fewer queries with low relevance (affects precision)

If the suggester algorithm is good, it won’t output nonexistent words, or terms that
never occurred in the indexed data. This means it’s unlikely that a query using terms
suggested by such algorithm will return no results. Let’s think about the “music is my
aircraft” example. Provided you don’t have synonym expansion enabled, there’s prob-
ably no song that contains all such terms; therefore, the best results will contain
“music” and “my,” or “my” and “aircraft,” with low relevance to the user’s information
need (and hence a low score). Ideally, once the user enters “music is my,” the suggester
algorithm will offer the hint “aeroplane,” because that’s a sentence the search engine
has already seen (indexed).

 We just touched an important point that plays a key role in generating effective
suggestions: where do suggestions come from? Most commonly, they originate from
the following places:

 Static (handcrafted) dictionaries of words or sentences to be used for suggestions
 Chronology of previously entered queries (for example, taken from a query log)
 Indexed documents taken from various portions of the documents (title, main

text content, authors, and so on)

In the rest of this chapter, we’ll explore obtaining suggestions from these sources by
using common techniques from the fields of information retrieval and natural lan-
guage processing (NLP). You’ll also see how they compare with suggesters based on
neural network language models, a longstanding NLP technique implemented
through neural networks, in terms of features and accuracy of results.

4.1.2 Dictionary-based suggesters

Back in the old days, when search engines required many handcrafted algorithms, a
common approach was to build a dictionary of words that could be used to help users
type queries. Such dictionaries usually contained important words only, such as main
concepts that were closely related to that specific domain. For example, a search
engine for a shop selling musical instruments might have used a dictionary containing
terms like “guitar,” “bass,” “drums,” and “piano.” It would have been very difficult to
fill the dictionary with all the relevant English words by hand-compiling it. Instead, it’s
possible to make such dictionaries build themselves (for example, using a script) by
looking at the query logs, getting the user-entered queries, and extracting a list of the

115Lucene Lookup APIs
1,000 (for example) most frequently used terms. That way, you can avoid misspelled
words in the dictionary, by means of the frequency threshold (hopefully, people type
queries without typos most of the times). Given this scenario, dictionaries can still be a
good resource for query history–based suggestions: you can use that data to suggest
the same queries or portions of them.

 Let’s build a dictionary-based suggester using Lucene APIs, with terms from previ-
ous queries. Over the course of the chapter, you’ll implement this API using different
sources and suggestion algorithms; this will help you compare them and evaluate
which one to choose, depending on the use case.

4.2 Lucene Lookup APIs
Suggestion and autocompletion features are provided by means of the Lookup API in
Apache Lucene (http://mng.bz/zM0a). The life cycle of a lookup usually includes the
following phases:

 Build—The lookup is built from a data source (for example, a dictionary).
 Lookup—The lookup is used to provide suggestions based on a sequence of

characters (and some other, optional, parameters).
 Rebuild—The lookup is rebuilt if the data to be used for suggestion is updated

or a new source needs to be used.
 Store and load—The lookup is persisted (for example, for future reuse) and

loaded (for example, from a previously saved lookup on disk).

Let’s build a lookup using a dictionary. You’ll use a file containing the 1,000 previously
entered queries as recorded in the search engine log. The queries.txt file looks like
this, with one query per line:

...
popular quizzes
music downloads
music lyrics
outerspace bedroom
high school musical sound track
listen to high school musical soundtrack
...

You can build a Dictionary from this plain text file and pass it to Lookup to build the
dictionary-based suggester:

Lookup lookup = new JaspellLookup();

Path path = Paths.get("queries.txt");

Dictionary dictionary = new
 PlainTextDictionary(path);

lookup.build(dictionary);

Instantiates a Lookup

Locates the input file containing
the queries (one per line)

Creates a plain text dictionary
that reads from the queries file

Builds the Lookup using the
data from the Dictionary

http://mng.bz/zM0a
http://boston.lti.cs.cmu.edu/Data/web08-bst/planning.html
http://mng.bz/K19K

116 CHAPTER 4 More-sensitive query suggestions
As you can see, the Lookup implementation called JaspellLookup, which is based on a
ternary search tree, is fed data from a dictionary containing past queries. A ternary
search tree (TST; https://en.wikipedia.org/wiki/Ternary_search_tree) like that
shown in figure 4.1 is a data structure in which strings are stored in a way that recalls
the shape of a tree. A TST is a particular type of tree called a prefix tree (or trie), where
each node in the tree represents a character and has a maximum of three child nodes.

Such data structures are particularly useful for autocompletion, because they’re effi-
cient in terms of speed when searching for strings that have a certain prefix. That’s
why prefix trees are often used in the context of autocompletion: as a user searches
for “mu,” the trie can efficiently return all the strings in the tree that start with “mu.”

 Now that you’ve built your first suggester, let’s see it in action. You’ll split the query
“music is my aircraft” into progressively bigger sequences and pass them to the lookup
to get suggestions, simulating the way a user types a query in a search engine user
interface. You’ll start with “m,” then “mu,” “mus,” “musi,” and so on, and see what
kind of results you get based on past queries. To generate such incremental inputs, use
the following code:

List<String> inputs = new LinkedList<>();
for (int i = 1; i < input.length(); i++) {
 inputs.add(input.substring(0, i));
}

Lucene’s Lookup#lookup API accepts a sequence of characters (the input of the user
typing the query) and a few other parameters, such as if you only want more-popular
suggestions (for example, strings found more frequently in the dictionary) and the
maximum number of such suggestions to retrieve. Using the list of incremental
inputs, you can generate the suggestions for each such substring:

List<Lookup.LookupResult> lookupResults = lookup.lookup(substring, false, 2);

F R O

N TN T

S

l

OB

A HE

Figure 4.1 Ternary search tree

Each step creates a substring
of the original input where
the ending index i is bigger.

Uses Lookup to obtain a maximum of two results for a
given substring (such as “mu”), regardless of their
frequency (morePopular is set to false)

https://en.wikipedia.org/wiki/Ternary_search_tree

117Lucene Lookup APIs
You obtain a List of LookupResults, each composed of a key that’s the suggested
string and a value that’s the weight of that suggestion; this weight can be thought of
as a measure of how relevant or frequent the suggester implementation thinks the
related string is, so its value may vary depending on the lookup implementation used.
Let’s show each suggestion result together with its weight:

for (Lookup.LookupResult result : lookupResults) {
 System.out.println("--> " + result.key + "(" + result.value + ")");
}

If you pass all the generated substrings of “music is my aircraft” to the suggester, the
results are as follows:

'm'
--> m
--> m &

'mu'
--> mu
--> mu alumni events

'mus'
--> musak
--> musc

'musi'
--> musi
--> musi for wish you could see me now

'music'
--> music
--> music &dvd whereeaglesdare

'music '
--> music &dvd whereeaglesdare
--> music - mfs curtains up

'music i'
--> music i can download for free no credit cards and music parental advisory
--> music in atlanta

'music is'

...

You get no suggestions for inputs beyond “music i.” Not too good. The reason is that
you’ve built a lookup based solely on entire query strings; you didn’t provide a means
for the suggester to split such lines into smaller text units. The lookup wasn’t able to
suggest “is” after “music” because no previously entered query started with “music is.”
That’s a significant limitation. On the other hand, this kind of suggestion is handy for
chronological autocompletion, where a user sees queries they entered in the past as
soon as they begin typing a new query. For example, if a user ran a query that was the

No more suggestions

118 CHAPTER 4 More-sensitive query suggestions
same as one they ran a week before, it would appear as a suggestion if the implementa-
tion used a dictionary of previously entered queries.

 But you want to do more:

 Suggest not just entire strings that the user typed in the past, but also the words
that composed past queries (for example, “music,” “is,” “my,” and “aircraft”).

 Suggest query strings even if the user types a word that’s in the middle of a pre-
viously entered query. For example, the previous method gives results if the
query string starts with what that user is typing, but you’d like to suggest “music
is my aircraft” even if the user types “my a.”

 Suggest word sequences that are grammatically and semantically correct, but
may not have been previously typed by any user.

The suggestion functionality should be able to compose natural language to help
users write better-sounding queries:

 Make suggestions that reflect the data from the search engine. It would be
extremely frustrating for a user if a suggestion led to an empty list of results.

 Help users disambiguate when a query may have different scopes among the
possible interpretations.

Imagine a query like “neuron connectivity,” which could relate to the field of neuro-
science as well as to artificial neural networks. It would be helpful to give the user a
hint that such a query might hit very different domains, and let them filter the results
before firing the query.

 In the following sections, we’ll examine each of these points and see how using
neural networks allows you to achieve more accurate suggestions when compared to
other techniques.

4.3 Analyzed suggesters
Think about typing a query in a web search engine. In many cases, you don’t know the
entire query you’re going to write. This wasn’t true years ago, when most web search
was based on keywords and people had to think in advance: “What are the most
important words I have to look for in order to get search results that are relevant?”
That approach involved a lot more trial and error than searching does now. Today,
good web search engines give useful hints while you’re typing a query; so you type,
look at the suggestions, select one, begin typing again, and look for additional sugges-
tions, select another one, and so on.

 Let’s run a simple experiment and see what suggestions I got when I searched for
“books about search and deep learning” on Google. When I typed “book,” the results
were generic, as shown in figure 4.2 (as you might expect, because “book” can have a
lot of different meanings in various contexts). One of the suggestions was about
bookings for going on vacation in Italy (Roma, Ischia, Sardegna, Firenze, Ponza). At
this stage, the suggestions weren’t much different than what you created using the

119Analyzed suggesters
dictionary-based suggester with Lucene in the previous section: all the suggestions
started with “book.”

I didn’t select any of the suggestions, because none of them were relevant to my
search intent. So I continued typing: “books about sear” (see figure 4.3).

The suggestions became more meaningful and closer to my search intent, although
the first results weren’t relevant (books about search engine optimization, books
about searching for identity, books about search and rescue). The fifth suggestion was
probably the closest. It’s interesting to note that I also got the following:

 An infix suggestion (a suggestion string containing new tokens placed infix—
between two existing tokens of the original string). In the “books about google

Figure 4.2 Suggestions for “book”

Figure 4.3 Suggestions
for “books about sear”

http://localhost:9000
http://localhost:9000

120 CHAPTER 4 More-sensitive query suggestions
search” suggestion, the word “google” is between “about” and “sear” in the
query I typed. Keep this in mind, because this is something you’ll want to
achieve later; but we’ll skip it for now.

 A suggestion that skipped the word “about” (the last three, “books search…”).
Keep this in mind also; you can discard terms from the query while giving
suggestions.

I selected the “books about search engines” suggestion, typed “and,” and got the
results shown in figure 4.4. Looking at the results, you probably realize that the topic
of integration of search engines and deep learning doesn’t have much book coverage:
none of the suggestions hints “deep learning.” A more important thing to note is that
the suggester seems to have discarded some of the query text when giving me hints; in
the suggestions box, the results all start with “engine and.” But this might be a user
interface issue, because the suggestions seem accurate; they’re not about engines in
general, but rather clearly reflect that engine refers to a search engine. Here’s another
idea to keep in mind for later: you may want to discard some of the query text as is
becomes longer.

I kept trying. The final suggestion, shown in figure 4.5, was the query I intended to type
initially, with a small modification: I planned to type “books about search and deep
learning,” and the suggestion was “books about search engines and deep learning.”

Figure 4.4 Suggestions for
“books about search engines and”

Figure 4.5 Suggestions for “books
about search engines and dee”

121Analyzed suggesters
This experiment wasn’t intended to demonstrate how the Google search engine
implements autocompletion. Rather, we wanted to observe some of the possibilities
when working with autocompletion:

 Suggestions of single words (“books”)
 Suggestions of multiple words (“search engines”)
 Suggestions of whole phrases

This will help you reason and decide what’s useful in practice for your own search
engine applications.

 Beyond the granularity of the suggestions (single word, multiword, sentence, and
so on), we observed that some suggestions had these characteristics:

 Words removed from the query (“books search engines”)
 Infix suggestions (“books about google search”)
 Prefix removed (“books about” wasn’t part of the final suggestions)

All this, and much more, is possible by applying text analysis to the incoming query
and the data from the dictionary you use to build a suggester. You can, for example,
remove certain terms by using a stopword filter. Or you can break long queries into
multiple subsequences, and generate suggestions for each subsequence by using a fil-
ter that breaks a text stream at a certain length. This fits nicely with the fact that text
analysis is heavily used within search engines. Lucene has such a lookup implementa-
tion, called AnalyzingSuggester. Instead of relying on a fixed data structure, it uses
text analysis to let you define how text should be manipulated, first when building the
lookup and again when passing a piece of text to the lookup to get suggestions:

Analyzer buildTimeAnalyzer =
 new StandardAnalyzer();

Analyzer suggestTimeAnalyzer =
 new StandardAnalyzer();

Directory dir = FSDirectory.open(
 Paths.get("suggestDirectory"));

AnalyzingSuggester lookup = new AnalyzingSuggester(
 dir, "prefix", buildTimeAnalyzer,
 suggestTimeAnalyzer));

The AnalyzingSuggester can be created using separate Analyzers for build and
lookup times; this allows you to be creative when setting up the suggester.

 Internally, this lookup implementation uses a finite state transducer: a data structure
used in several places in Lucene. You can think of a finite state transducer (FST) as a
graph in which each edge is associated with a character and, optionally, a weight (see fig-
ure 4.6). At build time, all possible suggestions that come from applying the build-time

When you build the lookup, you use a
StandardAnalyzer that removes stopwords
and splits tokens on whitespace.

When you look for suggestions, you use
the same analyzer used at build time.

You need to provide a Directory
on the filesystem because the
AnalyzingSuggester uses it
internally to create the required
data structures for generating
suggestions.

Creates an
AnalyzingSuggester
instance

122 CHAPTER 4 More-sensitive query suggestions
analyzer to the dictionary entries are compiled into a big FST. At query time, traversing
the FST with the (analyzed) input query will produce all the possible paths and, conse-
quently, suggestion strings to output:

'm'
--> m
--> .m

'mu'
--> mu
--> mu'

'mus'
--> musak
--> musc

'musi'
--> musi
--> musi for wish you could see me now

'music'
--> music
--> music'

'music '
--> music'
--> music by the the

'music i'
--> music i can download for free no credit cards and music parental advisory
--> music industry careers

'music is'
--> music'
--> music by the the

'music is '
--> music'
--> music by the the

'music is m'
--> music by mack taunton
--> music that matters

a
w/1

f/3

t/7

v/4

e/2
a l

c k

t

h
r

y

e

lf

e

h

Figure 4.6 A finite
state transducer

The dictionary-based suggester
wasn’t able to provide
suggestions past this point.

123Analyzed suggesters

'music is my'
--> music of my heart by nicole c mullen
--> music in my life by bette midler

'music is my '
--> music of my heart by nicole c mullen
--> music in my life by bette midler

'music is my a'
--> music of my heart by nicole c mullen
--> music in my life by bette midler

'music is my ai'

...

The earlier ternary search tree–based suggester stopped providing suggestions
beyond “music i,” because no entry in the dictionary started with “music is.” But this
analyzed suggester, even though the dictionary is the same, is able to provide more
suggestions.

 In the case of “music is,” the token “music” matches some suggestions, and there-
fore the related results are provided, even though “is” doesn’t give any suggestions.
Even more interestingly, when the query becomes “music is my,” some suggestions
contain both “music” and “my.” But at a certain point, where there are too many
tokens that don’t match (starting with “music is my ai”), the lookup stops providing
suggestions because they might be too poorly related to the given query. This is a defi-
nite improvement on the previous implementation and solves one of the issues: you
can provide suggestions based on single tokens, not just on entire strings.

 You can also enhance things by using a slightly modified version of Analyzing-
Suggester that works better with infix suggestions:

AnalyzingInfixSuggester lookup = new AnalyzingInfixSuggester(dir,
 buildTimeAnalyzer, lookupTimeAnalyzer, ...);

By using this infix suggester, you get fancier results:

'm'
--> 2007 s550 mercedes
--> 2007 qualifying times for the boston marathon

'mu'
--> 2007 nissan murano
--> 2007 mustang rims com

'mus'
--> 2007 mustang rims com
--> 2007 mustang

You don’t get results starting with “m,” “mu,” or “mus”; instead, such sequences are
used to match the most important part of a string, like “2007 s550 mercedes,” “2007
qualifying times for the boston marathon,” “2007 nissan murano,” and “2007 mustang

The dictionary-based suggester
wasn’t able to provide
suggestions past this point.

No more suggestions

124 CHAPTER 4 More-sensitive query suggestions
rims com.” Another noticeable difference is that token matching can happen in the
middle of a suggestion (that’s why it’s called infix):

'music is my'
--> 1990's music for myspace
--> words to music my humps

'music is my '
--> words to music my humps
--> where can i upload my music

'music is my a'
--> words to music my humps
--> where can i upload my music

With the AnalyzingInfixSuggester, you get infix suggestions. It takes the input
sequence, analyzes it so that tokens are created, and then suggests matches based on
prefix matches of any such tokens. But you still have the problems of making sugges-
tions closer to the data stored in the search engine, making suggestions look more
like natural language, and being able to better disambiguate when two words have dif-
ferent meanings. Additionally, you aren’t getting any suggestions when you begin typ-
ing “aircraft,” as not enough tokens match.

 Now that you have some experience with the problem of providing good sugges-
tions, we’ll discuss language models. First we’ll explore models implemented through
natural language processing (ngrams), and then we’ll look at those implemented via
neural networks (neural language models).

4.4 Using language models
In the suggestions shown in the previous sections, some text sequences made little
sense: for example, “music by the the.” You fed the suggester data from previously
entered queries, so in some entry a user must have made a mistake by typing “the”
twice. Beyond that, you’ve provided suggestions consisting of the entire query.
Although this is fine if you want to use autocompletion to return the entire text of pre-
vious queries (this might be useful if you were searching for a book in an online book-
store), it doesn’t work well for composing new queries.

 In medium to large search engines, the search logs contain a huge number of
diverse queries—coming up with a good suggester algorithm is difficult because of the
number and diversity of such text sequences. For example, if you look at the web09-bst
dataset (http://boston.lti.cs.cmu.edu/Data/web08-bst/planning.html), you’ll find
queries such as “hobbs police department,” “ipod file sharing,” and “liz taylor’s biogra-
phy.” Such queries look good and can be used as sources for the suggester algorithm.
On the other hand, you can also find queries like “hhhhh,” “hqwebdev,” and “hhht
hootdithuinshithins.” You probably don’t want the suggester to provide similar sugges-
tions! The problem isn’t filtering out “hhhh,” which can be cleared out of the dataset
by removing all lines or words that contain three or more consecutive characters that
are the same. Filtering out “hqwebdev” is much harder: it contains the word “webdev”

http://boston.lti.cs.cmu.edu/Data/web08-bst/planning.html

125Using language models
(shortened version of “web developer”), prefixed by “hq.” Such a query might make
sense (for example, there’s a website with this name), but you don’t want to use over-
specific suggestions for a general-purpose suggester service. The challenge is to work
with diverse text sequences, some of which may not make sense to use because they’re
too specific and therefore rare. One way to address this is to use language models.

Language models are often implemented by calculating the probabilities of ngrams.

As an implementation note, the probability of (a sequence of) ngrams for a language
model can be calculated in a number of ways. Most of them rely on the Markov assump-
tion that the probability of some future event (for example, the next character or word)
depends only on a limited history of preceding events (characters or words). So if you
use an ngram model with n = 2, also called a bigram model, the probability of the next
word, given a current word, is given by counting the number of occurrences of the two
words “music is” and dividing that result by the number of occurrences of the current
word (“music”) alone. For example, the probability that the next word is “is,” given the
current word “music,” can be written as P(is|music). To calculate the probability of a
word given a sequence of words greater than two—for example, the probability of
“aeroplane” given “music is my,” you split that sentence into bigrams, calculate the
probabilities of all such bigrams, and multiply them:

 P(music is my aeroplane) = P(is|music) * P(my|is) * P(aeroplane|my)

Language models
In the NLP field, a language model’s main task is to predict the probability of a certain
sequence of text. Probability is a measure of how likely a certain event is, and it
ranges between 0 and 1. So if you take the weird query we saw earlier—”music by
the the”—and pass it to a language model, you’ll get a low probability (for example,
0.05). Language models represent a probability distribution and therefore can help
predict the likelihood of a certain word or character sequence in a certain context.
Language models can help with excluding sequences that are unlikely (low probabil-
ity) and with generating previously unseen word sequences, because they capture
which sequences are most likely (even though they may not appear in the text).

Ngrams
An ngram is a sequence of characters made up of n consecutive units, where a unit
can be a character (“a,” “b,” “c,” …) or a word (“music,” “is,” “my,” …). Imagine an
ngram language model (using words as units) where n = 2. An ngram with n = 2 is also
known as a bigram; an ngram with n = 3 is also known as a trigram. A bigram language
model can estimate the probability of pairs of words like “music concert” or “music
sofa.” A good language model would assign a probability to the bigram “music con-
cert” that’s higher with respect to the probability of the “music sofa” bigram.

126 CHAPTER 4 More-sensitive query suggestions
For reference, many ngram language models use a slightly more advanced method
called stupid backoff 1 that tries first to calculate the probability of ngrams with a higher
n (for example, n = 3) and then recursively falls back to smaller ngrams (such as n = 2)
if an ngram with the current n doesn’t exist in the data. Such fallback probabilities are
discounted so that probabilities from bigger ngrams have more positive influence on
the overall probability measure. Lucene has an ngram-based language model lookup
called FreeTextSuggester (using the stupid backoff algorithm) that uses an analyzer
to decide how to split ngrams:

Lookup lookup = new FreeTextSuggester(new WhitespaceAnalyzer());

Let’s see it in action, with n set to 2, on the query “music is my aircraft”:

'm'
--> my
--> music

'mu'
--> music
--> museum

'mus'
--> music
--> museum

'musi'
--> music
--> musical

'music'
--> music
--> musical

'music '
--> music video
--> music for

'music i'
--> music in
--> music industry

'music is'
--> island
--> music is

'music is '
--> is the
--> is a

'music is m'
--> is my

1 See section 4 of Thorsten Brants et al., “Large Language Models in Machine Translation,” http://www.aclweb
.org/anthology/D07-1090.pdf.

One of the suggestions for
“music is m” matched the
desired query (“is my”) one
character in advance.

http://www.aclweb.org/anthology/D07-1090.pdf
http://www.aclweb.org/anthology/D07-1090.pdf
http://www.aclweb.org/anthology/D07-1090.pdf

127Using language models
--> is missing

'music is my'
--> is my
--> is myspace.com

'music is my '
--> my space
--> my life

'music is my a'
--> my account
--> my aol

'music is my ai'
--> my aim
--> air

'music is my air'
--> air
--> airport

'music is my airc'
--> aircraft
--> airconditioning

'music is my aircr'
--> aircraft
--> aircraftbarnstormer.com

...

One positive thing is that the language model–based suggester always gives sugges-
tions. There’s no point when the end user can’t count on suggestions, even if they
aren’t particularly accurate. That’s an advantage over previous methods. Most import-
ant, you can see the stream of suggestions from “music” onward.

NOTE You may wonder how bigram-based models can predict entire words
from portions of words. Similarly to the AnalyzingSuggester, the FreeText-
Suggester builds a finite state transducer from the ngrams.

With the ngram language model, you can generate queries like “music is my space,”
“music is my life,” and even “music is my airconditioning” that don’t appear in the
search log. So you’ve reached the goal of generating new sequences of words. But
due to the nature of ngrams (a fixed sequence of tokens), longer queries aren’t pro-
vided with full suggestions: thus “music is my aircraft” wasn’t included in the sugges-
tions in the final stages, just “aircraft.” This isn’t necessarily bad, but it highlights the
fact that such ngram language models aren’t very effective for calculating good prob-
abilities for long sentences; therefore they may give weird suggestions like “music is
my airconditioning.”

The suggestions for “music is
my “ (“my space,” “my life”)
aren’t what you’re looking for,
but they sound good.

The suggestions for “music is
my ai” aren’t much good (“my
aim,” “air”) but are closer to
what you wanted.

The suggestions for “music is my airc”
caused a match four characters in
advance (“aircraft”) and a funny
sentence (“airconditioning”).

128 CHAPTER 4 More-sensitive query suggestions
 All that you’ve just learned relates to existing methods for generating suggestions.
I wanted you to see all the issues that affect these approaches before diving into neural
language models, which aggregate capabilities from each of these methods. Another
disadvantage of these models that we’ve ignored so far is that they need manually
curated dictionaries, as you saw in the word2vec example—something that isn’t sus-
tainable in practice. You need solutions that automatically adapt to changing data
rather than requiring manual interventions. To do that, you’ll use the search engine
to feed the suggester. The suggestions generated with such data will be based on the
indexed content. If documents are indexed, the suggester will be updated as well. In
the next section, we’ll look at these content-based suggesters.

4.5 Content-based suggesters
With content-based suggesters, the content comes directly from the search engine. Con-
sider the search engine for a book shop. It’s probable that users will look for book
titles or authors much more often than they will search through the text of a book.
Each book that’s indexed has separate fields for title, author(s), and, eventually, the
text of the book. Also, as new books are indexed and old ones go out of production,
you need to add the new documents to the search engine and delete the ones related
to books that can’t be bought anymore. The same thing needs to happen for the sug-
gestions: you don’t want to miss suggesting new titles, and you want to avoid suggest-
ing titles for books that are no longer being sold.

 So the suggester must be kept up to date. If any document is removed from the
index, the suggester may keep the suggestions that were built from that text, but they
may be of little use. Suppose two books have been indexed: Lucene in Action and
Oauth2 in Action. A suggester using only the text from the books’ titles will be based on
the following (lowercased) terms: “lucene,” “in,” “action,” “oauth2.” If you remove the
Lucene in Action book, the list of terms will be trimmed down to this: “in,” “action,”
“oauth2.” You can keep the “lucene” token in the suggester; in that case, if the user
types an “L,” the suggester will suggest “lucene.” The problem is that a query for
“lucene” won’t return any results. That’s why you should remove terms from the sug-
gester when they have no possible match at search time.

 You can access the inverted index that contains data about the book titles and use
those terms the same way you use the lines of a static dictionary. In Lucene, feeding
lookups with data from the index can be done using a DocumentDictionary. A
DocumentDictionary reads data from the search engine, specifically from an Index-
Reader (a view on the search engine at a certain point in time), using one field for
fetching the terms (to be used for suggestions) and another field to eventually calcu-
late the suggestion weights (how important a suggestion is).

 Let’s build a dictionary from data indexed into the title field in the search
engine. You’ll give more weight to titles whose rating is higher. Suggestions coming
from books with a higher rating will be shown first:

129Neural language models
IndexReader reader = DirectoryReader.open(
 directory);

Dictionary dictionary = new DocumentDictionary(
 reader, "title", "rating");

lookup.build(dictionary);

You can guide the user to select the search results you want them to find—for
instance, as the owner of the book shop, you may be happier if higher-rated books are
shown more often. Other metrics to boost the suggestion may be related to prices, so
that a user is given more frequent suggestions of books that have higher or lower
prices.

 Now that you’re all set as far as getting the data for suggestions from the search
engine, we can look at neural language models. We expect them to be able to mix all
the good things from the methods discussed so far with better accuracy, composing
queries that sound like they were typed by a human.

4.6 Neural language models
A neural language model is supposed to have the same capabilities as other types of
language models, such as the ngram models. The difference lies in how they learn to
predict probabilities and how much better their predictions are. Chapter 3 intro-
duced a recurrent neural network (RNN) that tried to reproduce text from Shake-
speare’s works. We were focused on how RNNs work, but in practice you were setting
up a character-level neural language model ! You saw that RNNs are very good at learning
sequences of text in an unsupervised way, so that they can generate good new
sequences based on previously seen ones. A language model learns to get accurate
probabilities for text sequences, so this looks like a perfect fit for RNNs.

 Let’s start with a simple RNN that’s not deep and that implements a character-level
language model: the model will predict the probabilities of all the possible output
characters, given a sequence of input characters. Let’s visualize it:

LanguageModel lm = ...
for (char c : chars) {
 System.out.println("mus" + c + ":" + lm.getProbs("mus"+c));
}

....

musa:0.01
musb:0.003
musc:0.02
musd:0.005
muse:0.02
musf:0.001
musg:0.0005

Builds the lookup with the data from the
index, just as with a static dictionary

Creates a dictionary based on the
contents of the title field, and lets
rating decide how much weight a
suggestion has

Gets a view (an IndexReader)
on the search engine

130 CHAPTER 4 More-sensitive query suggestions
mush:...
musi:...
...

You know that a neural network uses vectors for inputs and outputs; the output layer
of the RNN you used for text generation in chapter 3 produced a vector holding a real
number (between 0 and 1) for each possible output character. This number rep-
resents the probability of the character being outputted from the network. You also
saw that generating probability distributions (the probability for all the possible char-
acters, in this case) is accomplished by the softmax function. Now that you know what
the output layer does, you can add a recurrent layer in the middle whose responsibil-
ity is to remember previously seen sequences, and an input layer for sending input
characters to the network. The result is illustrated in the diagram in figure 4.7.

With DL4J, you configured such a network when generating alternative queries in
chapter 3 as follows:

int layerSize = 50;
int sequenceSize = chars.length();
int unrollSize = 100

Layer 1
(input layer)

Layer 2
(hidden recurrent layer)

Layer 3
(output layer)

Figure 4.7 RNN for sequence learning

Size of the hidden layer

Input and output size

Number of unrolls of the RNN

131Character-based neural language model for suggestions

d

e)
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.layer(0, new LSTM.Builder().nIn(sequenceSize).nOut(layerSize)
 .activation(Activation.TANH).build())
.layer(1, new RnnOutputLayer.Builder(LossFunction.MCXENT).activation(
 Activation.SOFTMAX).nIn(layerSize).nOut(sequenceSize).build())
.backpropType(BackpropType.TruncatedBPTT).tBPTTForwardLength(unrollSize)
 .tBPTTBackwardLength(unrollSize)
.build();

Although the fundamental architecture is the same (LSTM network with one or more
hidden layers), the goal here is different with respect to what you want to achieve in
the alternative query generation use case. For alternative queries, you need the RNN
to get a query and output a new query. In this case, you want the RNN to guess a good
completion for the query the user is writing before they’re finished typing it. This is
exactly the same RNN architecture used for generating text from Shakespeare’s
works.

4.7 Character-based neural language model
for suggestions
In chapter 3, you fed the RNN a CharacterIterator that iterated over the characters
in a file. So far, you’ve built suggestions from text files. The plan is to use the neural
network as a tool to help the search engine, so the data to feed it should come from
the search engine itself. Let’s index the Hot 100 Billboard dataset:

IndexWriter writer = new IndexWriter(directory, new IndexWriterConfig());

for (String line :
IOUtils.readLines(getClass().getResourceAsStream("/billboard_lyrics_1964
-2015.csv"))) {

 if (!line.startsWith("\"R")) {

 String[] fields = line.split(",");
 Document doc = new Document();
 doc.add(new TextField("rank", fields[0],
 Field.Store.YES));

 doc.add(new TextField("song", fields[1],
 Field.Store.YES));

 doc.add(new TextField("artist", fields[2],
 Field.Store.YES));

 doc.add(new TextField("lyrics", fields[3],
 Field.Store.YES));

 writer.addDocument(doc);
 }
}
writer.commit();

Creates an IndexWriter to put
documents into the index

Reads each line of the
dataset, one at a time

Doesn’t
use the
header

line
Each row in the file has the
following attributes, separate
by a comma: Rank, Song,
Artist, Year, Lyrics, Source.

Indexes the rank of the song
into a dedicated field (with its
stored value)

Indexes the title of the song into a
dedicated field (with its stored valu

Indexes the artist who played
the song into a dedicated field
(with its stored value)

Indexes the song lyrics into a
dedicated field (with its stored value)

Adds the created
Lucene document
to the index

Persists the index
into the filesystem

132 CHAPTER 4 More-sensitive query suggestions
You can use the indexed data to build a character LSTM–based lookup implementa-
tion called CharLSTMNeuralLookup. Similarly to what you’ve been doing for the Free-
TextSuggester, you can use a DocumentDictionary to feed the CharLSTMNeural-
Lookup:

Dictionary dictionary = new DocumentDictionary(reader, "lyrics", null);
Lookup lookup = new CharLSTMNeuralLookup(...);
lookup.build(dictionary);

The DocumentDictionary will fetch the text from the lyrics field. In order to instan-
tiate the CharLSTMNeuralLookup, you need to pass the network configuration as a con-
structor parameter so that

 At build time, the LSTM will iterate over the characters of the Lucene docu-
ment values and learn to generate similar sequences.

 At runtime, the LSTM will generate characters based on the portion of the
query already written by the user.

Completing the previous code, the CharLSTMNeuralLookup constructor requires the
parameters for building and training the LSTM:

int lstmLayerSize = 100;
int miniBatchSize = 40;
int exampleLength = 1000;
int tbpttLength = 50;
int numEpochs = 10;
int noOfHiddenLayers = 1;
double learningRate = 0.1;
WeightInit weightInit = WeightInit.XAVIER;
Updater updater = Updater.RMSPROP;
Activation activation = Activation.TANH;

Lookup lookup = new CharLSTMNeuralLookup(lstmLayerSize, miniBatchSize,
 exampleLength, tbpttLength, numEpochs, noOfHiddenLayers,
 learningRate, weightInit, updater, activation);

As mentioned earlier, neural networks require a lot of data to produce good results.
Take care when choosing how the neural network is configured to work with these
datasets. In particular, it’s common for a configuration that made a neural network
work well on one dataset not to result in the same quality on a different dataset. Con-
sider the number of training samples with respect to the number of neural network
weights to be learned by the network. The number of examples should always be
greater than the number of learnable parameters: the neural network weights.

 If you have a MultiLayerNetwork and a DataSet, you can compare them:

MultiLayerNetwork net = new MultiLayerNetwork(...);
DataSet dataset = ...;
System.out.println("params :" + net.numParams() + ," examples: "
 + dataset.numExamples());

Creates a DocumentDictionary whose content
is fetched from the indexed song lyrics

Creates the lookup based on
the charLSTMTrains the charLSTM-

based lookup

133Character-based neural language model for suggestions
Another aspect we haven’t considered yet is the initialization of the network weights.
When you start training a neural network, what are the initial values of the weights?
Bad ideas for weight initialization are setting all the weights to the same value (zero is
even worse), and setting the weights to random values. Weight initialization schemes
are extremely important for the neural network’s ability to learn quickly. In this case,
good weight initialization schemes are NORMAL and XAVIER. Both refer to probability
distributions with certain properties; you can read about them on the DL4J cheat
sheet (http://mng.bz/K19K).

 To predict outputs from the neural network, you use the same code used to gener-
ate alternative queries. Because this LSTM works at character level, you output one
character at a time:

INDArray output = network.rnnTimeStep(input);

int sampledCharacterIdx = sampleFromDistribution(
 output);

char c = characterIterator.convertIndexToCharacter(
 sampledCharacterIdx);

You can now implement the Lookup#lookup API with the neural language model. The
neural language model has an underlying neural network and an object (Character-
Iterator) that consults the dataset used for training. The primary reason to consult it
is for one-hot-encoding mapping—for example, you need to be able to reconstruct
which character corresponds to a certain one-hot-encoded vector (and vice versa):

public class CharLSTMNeuralLookup extends Lookup {

 private CharacterIterator characterIterator;
 private MultiLayerNetwork network;

 public CharLSTMNeuralLookup(MultiLayerNetwork net,
 CharacterIterator iter) {
 network = net;
 characterIterator = iter;
 }

 @Override
 public List<LookupResult> lookup(CharSequence key,
 boolean onlyMorePopular, int num) throws IOException {
 List<LookupResult> results = new
 LinkedList<>();
 Map<String, Double> output = NeuralNetworksUtils
 .sampleFromNetwork(network, characterIterator,
 key.toString(), num);
 for (Map.Entry<String, Double> entry : output.entrySet()) {
 results.add(new LookupResult(entry.getKey(),
 entry.getValue().longValue()));
 }
 return results;
 }
 ...

Predicts a probability
distribution over the given
input character (vector)

Samples a probable
character from the
generated distribution

Converts the index of the sampled
character to an actual character

Prepares the
list of results

Adds the sampled outputs to the list of
results, using their probabilities (from the
softmax function) as suggestion weights

Samples num text sequences
from the network, given the

input string entered by a user

http://mng.bz/K19K

134 CHAPTER 4 More-sensitive query suggestions

Wr
text

tem
The CharLSTMNeuralLookup also needs to implement the build API. That’s where the
neural network will train (or retrain):

IndexReader reader = DirectoryReader.open(directory);
Dictionary dictionary = new DocumentDictionary(reader,
 "lyrics", "rank");
lookup.build(dictionary);

Because the character LSTM uses a CharacterIterator, you convert data from the
Dictionary (an InputIterator object) into a CharacterIterator, and pass it to the
neural network for training (as a side effect, this means having a temporary file on
disk to hold the data extracted from the index to train the network):

@Override
public void build(Dictionary dictionary) throws IOException {
 Path tempFile = Files.createTempFile("chars",
 ".txt");
 FileOutputStream outputStream = new FileOutputStream(tempFile.toFile());
 for (BytesRef surfaceForm; (surfaceForm = dictionary
 .getInputIterator().next()) != null;) {
 outputStream.write(surfaceForm.bytes);
 }
 outputStream.flush();
 outputStream.close();
 characterIterator = new CharacterIterator(tempFile
 .toAbsolutePath().toString(), miniBatchSize,
 exampleLength);
 this.network = NeuralNetworksUtils.trainLSTM(
 lstmLayerSize, tbpttLength, numEpochs, noOfHiddenLayers, ...);
 FileUtils.forceDeleteOnExit(tempFile.toFile());
}

Before going forward and using this Lookup in a search application, you need to make
sure the neural language model works well and gives good results. Like other algo-
rithms in computer science, neural networks aren’t magic: you need to set them up
correctly if you want them to work well.

4.8 Tuning the LSTM language model
Instead of doing what you did in chapter 3 and adding more layers to the network,
you’ll start simple with a single layer and adjust other parameters, and see if one layer
is sufficient. The most important reason to do this is that as the complexity of the net-
work grows (for example, more layers), the data and time required for the training
phase to generate a good model (which gives good results) grows as well. So although

Extracts text to be used for
suggestions from the lyrics field,
weighted by the song’s rank value

Creates a temporary file
Fetches text coming from the lyrics field in

the Lucene index (Lucene uses BytesRef
instead of String for performance reasons)

ites the
into the
porary

file

Releases resources for writing
into the temporary file

Creates a CharacterIterator
(using the
CharLSTMNeuralLookup
configuration parameters)

Builds and trains the LSTM
(using the CharLSTMNeuralLookup
configuration parameters)

Removes the
temporary file

135Tuning the LSTM language model
small, shallow networks can’t beat deeper ones with lots of different data, this
language-modeling example is a good place to learn to start simple and go deeper
only when needed.

 As you work more with neural networks, you’ll get to know how to best set and
tune them. For now, you know that when data is large and diverse, it may be a good
idea to have a deep RNN for language modeling. But let’s be pragmatic and see if
that’s true. To do so, you need a way to evaluate the neural network learning process.
Neural network training is an optimization problem, where you want to optimize the
weights in the connections between the neurons in order to let them generate the
results you desire. In practice, this means you have an initial set of weights in each
layer, according to a chosen weight-initialization scheme. These weights are adjusted
during training so that the error the network commits when trying to predict outputs
decreases as training goes on. If the error committed by the network doesn’t decrease
or, even worse, increases, you’ve done something wrong in your setup. In chapter 3,
we talked about cost functions that measure such error, and the fact the neural
network–training algorithm’s objective is to minimize these cost functions. A good way
to begin measuring whether the training is doing well is to plot the network cost (or
loss) over time and make sure it keeps decreasing as backpropagation proceeds.

 To make sure your neural language model will give good results, you need to track
whether the cost decreases. In the case of DL4J, you can use TrainingListeners like
the ScoreIterationListener from chapter 3 (which logs the loss value) or, even bet-
ter, a StatsListener, which has a proper user interface and will collect and send sta-
tistics to a remote server so you can better monitor the learning process. Figure 4.8
shows how such a server displays the learning process.

Figure 4.8 DL4J Training UI

136 CHAPTER 4 More-sensitive query suggestions
The Overview page of the DL4J Training UI contains a lot of information about the
training process; for now, we’ll focus on the score versus iteration panel at upper left.
That’s where the score should decrease as the number of iterations grows over time,
ideally to near zero. At upper right, you can see some general information about the
network parameters and training speed. We’ll skip the graphs at the bottom, because
they show more detailed information about the size of the parameters (such as
weights) and how they vary over time.

 It’s easy to set up this UI:

UIServer uiServer = UIServer.getInstance();

StatsStorage statsStorage = new InMemoryStatsStorage();

uiServer.attach(statsStorage);

Having configured and started the UI server, you now tell the neural network to send
statistics to it by adding a StatsListener:

MultiLayerNetwork net = new MultiLayerNetwork(conf);

net.init();

net.setListeners(new StatsListener(statsStorage));

net.fit()

As soon as training begins, you can access the DL4J UI at http://localhost:9000 from a
web browser. When you do, you’ll see the Overview page.

 Let’s start with a character LSTM network that has two hidden layers, and see how
it performs on the queries dataset by looking at the DL4J training UI (see figure 4.9).
As you can see, the score decreases very little with the number of iterations, which
means you probably won’t get good results. A common mistake is to overengineer the
neural network: you started with two 300-dimensional hidden layers, and maybe that’s
too many. Earlier in the chapter, I mentioned that it’s not a good idea to have more
weights to be learned than training samples. Let’s double-check the logs:

...
INFO o.d.n.m.MultiLayerNetwork - Starting MultiLayerNetwork ...
INFO c.m.d.u.NeuralNetworksUtils - params :1.197.977, examples: 77.141
INFO o.d.o.l.ScoreIterationListener - Score at iteration 0 is 174.1792
....

The number of training examples is 100 times smaller than the number of parameters
to be learned. Because of that, it’s unlikely that the training will achieve a good set of
weights. You don’t have enough data!

Initializes the user
interface backend

Configures where the network
information is to be stored—

in this case, in memoryAttaches the StatsStorage instance to the UI so
the contents of StatsStorage will be displayed

Neural network
to monitor

Initializes the network (for
example, sets the initial
weights in the layers)

Lets training start
Uses the StatsListener

137Tuning the LSTM language model
You need to either get more data or use a simpler neural network, with fewer parame-
ters to be learned. Assuming you can’t do the former, let’s go for the latter: configure
a simpler, smaller neural network that has one hidden layer with 80 neurons, and
check the logs again:

...
INFO o.d.n.m.MultiLayerNetwork - Starting MultiLayerNetwork ...
INFO c.m.d.u.NeuralNetworksUtils - params :56.797, examples: 77.141
INFO o.d.o.l.ScoreIterationListener - Score at iteration 0 is 173.4444
...

Figure 4.10 shows a nicer loss curve; it degrades smoothly, although the final point
isn’t close to zero.

 The goal is to have the final loss reach a value that steadily remains close to zero.
Let’s test it anyway, with the “music is my aircraft” query—you can expect suboptimal
results because the neural network didn’t find a combination of weights with a low
cost:

'm'
--> musorida hosking floa
--> miesxams reald 20

...

Figure 4.9 Character-level LSTM neural language model with 2 hidden layers (300 neurons each)

138 CHAPTER 4 More-sensitive query suggestions
'music '
--> music tents in sauraborls
--> music kart

'music i'
--> music instente rairs
--> music in toff chare sive he

'music is'
--> music island kn5 stendattion
--> music is losting clutple

'music is '
--> music is seill butter
--> music is the amehia faches of

...

'music is my ai'
--> music is my airborty cioderopaship
--> music is my air dea a

Figure 4.10 Character-level LSTM neural language model with one hidden layer (80 neurons)

139Tuning the LSTM language model
'music is my air'
--> music is my air met
--> music is my air college

'music is my airc'
--> music is my aircentival ad distures
--> music is my aircomute in fresight op

'music is my aircr'
--> music is my aircrichs of nwire
--> music is my aircric of

'music is my aircra'
--> music is my aircrations sime
--> music is my aircracts fast

'music is my aircraf'
--> music is my aircraffems 2
--> music is my aircrafthons and parin

'music is my aircraft'
--> music is my aircrafted
--> music is my aircrafts njrmen

These results are worse than those with previous solutions that weren’t based on neu-
ral networks! Let’s compare the results from this first neural language model to those
from the ngram language model and from the AnalyzingSuggester. Table 4.1 shows
that although the neural language model always gives results, many of them don’t
make much sense.

What is “sauraborls” in the “music tents in sauraborls” suggestion? And what is “sten-
dattion” from the “music island kn5 stendattion” suggestion? As the length of the text
to be predicted grows, the neural language model starts returning sequences of char-
acters that don’t form meaningful words—it fails at estimating good probabilities for
longer inputs. That’s exactly what you expected after observing the learning curve.

 You want the network to learn better, so let’s look at one of the most important
configuration parameters when setting up the training for a neural network: the learn-
ing rate. The learning rate defines how much the weights of the neural network are

Table 4.1 Comparing results of different Suggester implementations

Input Neural Ngram Analyzing

“m” musorida hosking floa my m

“music” music tents in sauraborls music music

“music is” music island kn5 stendattion island music

“music is my ai” music is my airborty cioderopaship my aim

“music is my aircr” music is my aircrichs of nwire aircraft

140 CHAPTER 4 More-sensitive query suggestions
changed with respect to the (gradient) cost. A high learning rate may cause the neural
network to never find a good set of weights, because the weights are changed too
much and a good combination is never found. A low learning rate may slow learning
so much that a good set of weights isn’t found before all the data is used for learning.

 Let’s increase the number of neurons in the layer just a bit, to 90, and start the
training again:

...
INFO o.d.n.m.MultiLayerNetwork - Starting MultiLayerNetwork ...
INFO c.m.d.u.NeuralNetworksUtils - params :67.487, examples: 77.141
INFO o.d.o.l.ScoreIterationListener - Score at iteration 0 is 173.9821
...

The number of neural network parameters is slightly smaller than the number of
available training examples, so you shouldn’t add more parameters going forward.
Once you’ve finished training, let’s get the lookup results:

'm'
--> month jeans of saids
--> mie free in manufact

'mu'
--> musications head socie
--> musican toels

'mus'
--> muse sc
--> muse germany nc

'musi'
--> musical federations
--> musicating outlet

'music'
--> musican 2006
--> musical swin daith program

'music '
--> music on the grade county
--> music of after

'music i'
--> music island fire grin school
--> music insurance

'music is'
--> music ish
--> music island recipe

'music is '
--> music is befied
--> music is an

141Tuning the LSTM language model

'music is m'
--> music is michigan rup dogs
--> music is math sandthome

'music is my'
--> music is my labs
--> music is my less

'music is my '
--> music is my free
--> music is my hamby bar finance

'music is my a'
--> music is my acket
--> music is my appedia

'music is my ai'
--> music is my air brown
--> music is my air jerseys

'music is my air'
--> music is my air bar nude
--> music is my air ambrank

'music is my airc'
--> music is my airclass
--> music is my aircicle

'music is my aircr'
--> music is my aircraft
--> music is my aircross of mortgage choo

'music is my aircra'
--> music is my aircraft
--> music is my aircraft popper

'music is my aircraf'
--> music is my aircraft in star
--> music is my aircraft bouble

'music is my aircraft'
--> music is my aircraft
--> music is my aircraftless theatre

The quality of the suggested results has improved. Many of them are composed of cor-
rect English words; some of them are even funny, like “music is my aircraft popper”
and “music is my aircraftless theatre”! Let’s take another look at the Overview tab of
the just-trained neural language model (see figure 4.11).

142 CHAPTER 4 More-sensitive query suggestions
The loss is decreasing better, but it still didn’t reach a small enough value, so the
learning rate probably isn’t set correctly yet. Let’s try to boost it by setting the learning
rate to a higher value. It was set to 0.1, so let’s try 0.4—a very high value! Figure 4.12
shows the network being trained again.

 The result is a lower loss, and the neural network reached that with more parame-
ters. This means it knows more about the training data. We’ll stop here and consider
ourselves satisfied with these outputs.

 For optimal training, more iterations would be required; adjusting other parame-
ters may give better-looking shapes and better-sounding suggestions. We’ll discuss
neural network tuning further in the final chapter of the book.

4.9 Diversifying suggestions using word embeddings
In chapter 2, you saw how useful it is to use word embeddings for synonym expansion.
This section shows how to mix them with the results of LSTM-generated suggestions
to provide more diverse suggestions for the end user. In production systems, it’s com-
mon to combine the results of different models to provide a good user experience.
The word2vec model lets you create a vectorized representation of a word. Such vec-

Figure 4.11 More parameters but still suboptimal convergence

143Diversifying suggestions using word embeddings
tors are learned by a shallow neural network by looking at the surrounding context
(other nearby words) of each word. The nice thing about word2vec and similar algo-
rithms for representing words as vectors is that they place similar words close together
in the vector space: for example, the vectors representing “aircraft” and “aeroplane”
will be very close to one another.

 Let’s build a word2vec model from the Lucene index containing the song lyrics,
similar to what you did in chapter 2:

CharacterIterator iterator = ...
MultiLayerNetwork network = ...

FieldValuesSentenceIterator iterator = new
 FieldValuesSentenceIterator(reader, "lyrics");
Word2Vec vec = new Word2Vec.Builder()
 .layerSize(100)
 .iterate(iterator)
 .build();
vec.fit();

Lookup lookup = new CharLSTMWord2VecLookup(network,
 iterator, vec);

Figure 4.12 Higher learning rate

Creates a
DataSetIterator over
the contents of the
Lucene lyrics field

Configures a word2vec
model with word
vectors of size 100

Performs word2vec model training

Builds the neural language model
with the previously trained LSTM,
the CharacterIterator, and the
word2vec model

144 CHAPTER 4 More-sensitive query suggestions
With the word2vec model trained on the same data, you can now combine it with the
CharLSTMNeuralLookup and generate more suggestions. You’ll define a CharLSTM-
Word2VecLookup that extends the CharLSTMNeuralLookup class. This Lookup imple-
mentation requires a Word2Vec instance. At lookup time, it goes over the string
suggested by the LSTM network, and then the word2vec model is used to find the near-
est neighbor(s) for each word in the string. These nearest neighbors are used to create
a new suggestion. For example, the sequence “music is my aircraft” generated by the
LSTM will be split into its tokens “music,” “is,” “my,” and “aircraft.” The word2vec
model will check, for example, the nearest neighbors of the word “aircraft” and find
“aeroplane,” and then create the additional suggestion “music is my aeroplane.”

public class CharLSTMWord2VecLookup extends CharLSTMNeuralLookup {

 private final Word2Vec word2Vec;

 public CharLSTMWord2VecLookup(MultiLayerNetwork net,
 CharacterIterator iter, Word2Vec word2Vec) {
 super(net, iter);
 this.word2Vec = word2Vec;
 }

 @Override
 public List<LookupResult> lookup(CharSequence key, Set<BytesRef> contexts,
 boolean onlyMorePopular, int num) throws IOException {
 Set<LookupResult> results = Sets.
 newCopyOnWriteArraySet(super.lookup(key,
 contexts, onlyMorePopular, num));
 for (LookupResult lr : results) {
 String suggestionString = lr.key.toString();
 for (String word : word2Vec.
 getTokenizerFactory().create(
 suggestionString).getTokens()) {
 Collection<String> nearestWords = word2Vec
 .wordsNearest(word, 2);
 for (String nearestWord : nearestWords) {
 if (word2Vec.similarity(word, nearestWord)
 > 0.7) {
 results.addAll(enhanceSuggestion(lr,
 word, nearestWord));
 }
 }
 }
 }
 return new ArrayList<>(results);
 }

 private Collection<LookupResult> enhanceSuggestion(LookupResult lr,
 String word, String nearestWord) {
 return Collections.singletonList(new LookupResult(
 lr.key.toString().replace(word, nearestWord),
 (long) (lr.value * 0.7)));
 }
}

Listing 4.1 Extended neural language model with Word2Vec

Gets the suggestions generated
by the LSTM network

Divides the suggestion string
into its tokens (words)

Finds the top
two nearest
neighbors of

each token For each nearest neighbor,
checks whether it’s similar
enough to the input word

Creates an enhanced
suggestion using the word
suggested by word2vec

Simple suggestion enhancement
implementation: substitutes the original
word with its nearest neighbor word

145Summary
Back at the beginning of chapter 2, a user wanted to find the lyrics of a song whose title
they couldn’t exactly recall. With a word2vec model for synonym expansion, you can
return the correct song even when the query doesn’t match the title, by means of gen-
erated synonyms. With this combination of a neural language model and a word2vec
model to generate suggestions, you manage to let the user avoid searching completely:
the user types “music is my airc…” and gets the suggestion “music is my aeroplane,” so
no actual search is performed, but the user’s information need is satisfied!

Summary
 Search suggestions are important to help users write good queries.
 The data for generating such suggestions can be static (for example, dictionar-

ies of previously entered queries) or dynamic (such as documents stored in the
search engine).

 You can use text analysis and/or ngram language models to build good sug-
gester algorithms.

 Neural language models are language models based on neural networks, such
as RNNs (or LSTMs).

 By using neural language models, you can get better-sounding suggestions.
 It’s important to monitor the neural network training process to make sure you

get good results.
 You can combine the results of the original suggester with word vectors to aug-

ment the diversity of the suggestions.

Ranking search results
with word embeddings
Since chapter 2, we’ve been building components based on neural networks that
can improve a search engine. These components aim to help the search engine bet-
ter capture user intent by expanding synonyms, generating alternative representa-
tions of a query, and giving smarter suggestions while the user is typing a query. As
these approaches show, a query can be expanded, adapted, and transformed before
matching with the terms stored in the inverted indexes is performed. Then, as men-
tioned in chapter 1, the terms of the query are used to find matching documents.

 These matching documents, also known as search results, are sorted according to
how closely they’re predicted to match the input query. This task of sorting the
results is known as ranking or scoring. The ranking function has a fundamental
impact on the relevance of search results, so getting it right means the search engine

This chapter covers
 Statistical and probabilistic retrieval models

 Working with the ranking algorithm in Lucene

 Neural information retrieval models

 Using averaged word embeddings to rank search results
146

147The importance of ranking
will have higher precision, and users will receive the most relevant and important infor-
mation first. Getting ranking right isn’t a one-shot process; rather, it’s an incremental
one. In real life, you’ll use an existing ranking algorithm, create a new one, or use a
combination of existing and new ranking functions. Many times you’ll have to fine-
tune them to accurately capture what your users are looking for, how they’re writing
queries, and so on.

 In this chapter, you’ll learn about common ranking functions, information
retrieval models, and how a search engine “decides” which results to show first. Then
I’ll show you how to improve your search engine’s ranking functions by using dense
vector representations of text (words, sentences, documents, and so on). Also known
as embeddings, these vector representations of text can help your ranking functions to
do a better job matching and scoring documents according to the user’s intent.

5.1 The importance of ranking
A somewhat funny meme that floated around on the internet for a while said, “The
best place to hide a dead body is page two of Google.” This is of course a hyperbolic
sentence that applies mostly to web search (searching for content, such as pages, from
websites). But it says a lot about the degree to which users expect search engines to be
good at returning relevant results. It’s often mentally easier for a user to write a better
query than to scroll down and click the Page 2 button on the results page. The meme
could be rephrased as, “If it didn’t show up on the first page, it can’t be relevant.” This
tells you why relevance is important. You can assume the following:

 Users are lazy. They don’t want to scroll down or look at more than two or three
results before deciding whether the search results are good. Returning thou-
sands of results is often useless.

 Users are uninformed. They don’t know how a search engine works internally;
they just write a query and hope to get good results.

If a search engine ranking function works well, you can return the top 10 to 20 results,
and the user will be satisfied. Note that this approach can also have a positive impact
on the performance of the search engine, because the user won’t browse through all
the matching documents.

 You may wonder if the relevance problem applies in all cases, though. For exam-
ple, if you have a short query that consists of one or two words and that clearly identi-
fies a small set of search results, the relevance problem is less evident. Think about all
the search queries you’ve performed on Google just to retrieve a Wikipedia page. For
example, imagine that you want to find the page that describes Bernhard Riemann.
It’s annoying to enter the en.wikipedia.org URL, type Bernhard Riemann in the Wiki-
pedia Search text box, and click the magnifying glass button to get the results. It’s
much faster to type Bernhard Riemann in the Google search box—and you’ll most
probably get the Wikipedia page as the first or second search result on the first page.
This is an example where you (think you) know in advance what you want to retrieve

148 CHAPTER 5 Ranking search results with word embeddings
(you’re lazy, but you were informed about what you wanted and you knew from prior
experience how the search engine usually works when searching for people). But in
many cases, this doesn’t apply. Put yourself in the shoes of an undergrad math student
who isn’t interested in generic information about Riemann, but instead wants to
understand why his works are considered important in several different fields of sci-
ence. The student doesn’t know in advance the specific resources they want; they
know the type of resource needed and will type a query based on that. So such a stu-
dent may type a query like the importance of Bernhard Riemann works or Bernhard
Riemann influence in academic research. If you run these two queries on Google
yourself,

 You’ll see different search results for each query.
 Search results that appear in both cases are in a different order.

More notably, at the time of writing, the first query returns the Wikipedia page as the
first result, whereas the second query’s first result is “herbart’s influence on bernhard
riemann.” That’s odd because it turns the user’s intent upside down: the student
wanted to know how Riemann influenced others, not vice versa (the second result,
“riemann’s contribution to differential geometry,” sounds much more relevant). This
is the kind of problem that makes ranking search results difficult.

 Let’s now see how ranking comes into play in the life cycle of a query (see also fig-
ure 5.1):

1 A query written by the user is parsed, analyzed, and broken down into a set of
term clauses (an encoded query).

2 The encoded query is executed against the search engine data structures (for
each term, a lookup in the inverted index table is performed).

3 The matching documents are collected and passed to the ranking function.
4 Each document is scored by the ranking function.
5 Typically, the list of search results is composed of such documents, sorted

according to their score in descending order (the first result has the highest
score).

The ranking function takes a bunch of search results and assigns each one a score
value that’s an indicator of its importance with respect to the input query. The higher
the score, the more important the document.

 Additionally, when ranking results, a smart search engine should consider the
following:

 User history—Record the past activity of a user and take it into consideration
when ranking. For example, recurring terms in past queries may indicate a
user’s interest in a certain topic, so search results on that same topic should
have a higher ranking.

 User’s geographical location—Record the user’s location, and increase the score of
search results written in the appropriate language.

149Retrieval models
 Temporal changes in information—Recall the “latest trends” query from chapter 3.
Such a query should match not only the words “latest” and/or “trends,” but
should also boost the score of newer documents (more recent information).

 All possible context clues—Look for signals to provide more context to the query.
For example, look at the search logs to see whether a query was previously per-
formed; if so, check the next query in the search log to see if there are any
shared results, and give them a higher ranking.

We’ll now dive into answering the key question: how does the search engine decide
how to rank search results with respect to a given query?

5.2 Retrieval models
So far, we’ve talked about the task of ranking a document as a function that takes a
document as input and generates a score value representing the document’s rele-
vance. In practice, ranking functions are often part of an information retrieval model (IR
model). Such a model defines how the search engine tackles the entire problem of
providing relevant results with respect to an information need: from query parsing to
matching, retrieving, and ranking search results. The rationale for having a model is
that it’s hard to come up with a ranking function that gives an accurate score without

Query is
executed

Bernhard Riemann influence in
academic research

Query parser
Tokenize

Filter

Filter

docld = 215

Ranked search results
are returned

Ranking function

docld = 233

Inverted index

List of search
results is returned

bernhard OR riemann
OR influen OR academ
OR research

Results are
ranked

Query is
transformed
into clauses

Figure 5.1 Querying, retrieving, and ranking

150 CHAPTER 5 Ranking search results with word embeddings
knowing how the search engine handles a query. In a query like “+riemann -influ-
enced influencing,” if a document contains both the terms “riemann” and “influenc-
ing,” the resulting final score should be a combination of the scores for the first and
second terms (score = score(riemann) \+ score(influencing)); but the “riemann” term
has a mandatory constraint (the \+ sign), so it should contribute a higher score than
“influencing,” which is optional.

 Thus the way a search engine calculates the relevance of a document with respect
to a query has an impact on the design and infrastructure behind the search engine.
Since chapter 1, we’ve assumed that when text is fed into the search engine, it’s ana-
lyzed and split into chunks that can be altered depending on tokenizers and token fil-
ters. This text analysis chain generates terms that end up in inverted indexes, also
known as posting lists. The search-by-keyword use case motivated the choice of posting
lists to efficiently retrieve documents by matching terms. Similarly, the choice of how
to rank query-document pairs may impact system requirements: for example, the
ranking function may need to access more information about the indexed data than
just the presence or absence of a term in the posting list. A widely used set of retrieval
models called statistical models makes decisions about ranking a certain document
based on how frequently a matching term appears within a specific document and the
entire document set.

 In previous chapters, we’ve already gone beyond simple matching of terms
between queries and documents. We’ve used synonym expansion to generate syn-
onym terms: for example, at search time, to extend the number of possible ways a user
can “say” the same thing (at a word level). We expanded this approach in chapter 3 by
generating new alternative queries in addition to the original query entered by the
user.

 All this work aims to build a search engine that’s eager to understand the seman-
tics of text:

 In the synonym expansion case—Whether you type “hello” or “hi,” you’re semanti-
cally saying the same thing.

 In the alternative query expansion case—If you type “latest trends,” you get alterna-
tive queries that are spelled differently but are semantically close to the original.

Overall, the (simplified) idea is that a document that’s relevant with respect to a cer-
tain query should be returned even if there’s no exact match between the query and
the indexed terms. Synonyms and alternative query representations provide a wider
range of relevant query terms that can match the document terms. Those methods
make it more probable that you’ll find a document using semantically similar words or
queries. In an ideal world, a search engine would go beyond query-document term
matching and understand the user’s information need. Based on that, it would return
results relevant to that need, again not constraining retrieval to term matching.

 Creating a search engine with good semantic understanding capabilities is diffi-
cult. The good news is that, as you’ll see, techniques based on deep learning can help

http://mng.bz/YP7N
http://mng.bz/YP7N
http://mng.bz/YP7N
http://mng.bz/YP7N
http://mng.bz/GWZq
http://mng.bz/GWZq
http://mng.bz/GWZq
http://trec.nist.gov

151Retrieval models
a lot in reducing the gap between a plain query string and the actual user intent.
Think about the thought vector you briefly met in chapter 3 when we looked at seq2seq
models. You can think of it as the kind of representation of user intent you need in
order to go beyond simple term matching.

 A good retrieval model should consider semantics. As you can imagine, this seman-
tic perspective applies to ranking documents, as well. For example:

 When ranking a result whose matching terms came from one of the alternative
queries generated by a LSTM network, should such documents score differently
than documents that matched based on terms from the original user query?

 If you plan to use representations generated via deep learning (for example,
thought vectors) to capture user intent, how do you use them to retrieve and
rank results?

We’ll now begin an exploration that will touch on the following:

 More-traditional retrieval models
 Extending traditional models that use vector representations of text learned

through neural networks (this will be our main focus)
 Neural IR models that rely purely on deep neural networks

5.2.1 TF-IDF and the vector space model

In chapter 1, I mentioned term frequency–inverse document frequency (TF-IDF) and
the vector space model (VSM). Let’s take a closer look at them to understand how
they work. The fundamental purpose of a ranking function is to assign a score to a
query-document pair. A common way to measure the importance of a document with
respect to a query is based on calculating and fetching statistics for query and docu-
ment terms. Such retrieval models are called statistical models for information retrieval.

 Suppose you have the query “bernhard riemann influence” and two resulting doc-
uments: document1 = “riemann bernhard - life and works of bernhard riemann,” and
document2 = “thomas bernhard biography - bio and influence in literature.” Both the
query and the documents are made up of terms. When you look at which of them
matched, you observe the following:

 Document1 matched the terms “riemann” and “bernhard.” Both terms
matched twice.

 Document2 matched the terms “bernhard” and “influence.” Both terms
matched once.

 The term frequency for document1 is 2 for each matching term, and docu-
ment2’s term frequency for its two matching terms is 1.

 The document frequency for “bernhard” is 2 (it appears in both documents;
you don’t count repeated occurrences in a singular document). The document
frequency for “riemann” is 1, and the document frequency for “influence” is 1.

152 CHAPTER 5 Ranking search results with word embeddings
If you sum all the term frequencies of each matching term, the score is 4 for docu-
ment1 and 2 for document2.

 Let’s add a document3 whose content is “riemann hypothesis - a deep dive into a
mathematical mystery” and score it against the same query. Document3 has a score of
1 because only the “riemann” term matches. This isn’t good, because document3 is
more relevant than document2, although it isn’t pertinent to Riemann’s influence.

 A better way to express ranking is to score each document using the sum of the
logarithms of term frequencies divided by the logarithm of the document frequency.
This famous weighting scheme is called TF-IDF:

 weight(term) = (1 + log(tf(term))) * log(N/df(term))

N is the number of indexed documents. With the new document3 added, the docu-
ment frequency for the term “riemann” is now 2. Using the previous equation for
each matching term, you add each TF-IDF and obtain the following scores:

 score(document1) = tf-idf(riemann) \+ tf-idf(bernhard) = 1.28 \+ 1.28 = 2.56
 score(document2) = tf-idf(bernhard) \+ tf-idf(influence) = 1 \+ 1 = 2
 score(document3) = tf-idf(riemann) = 1

You’ve just seen that TF-IDF–based scoring only relies on pure frequencies of terms,
so a document that isn’t relevant (document2) is scored higher than a somewhat-
relevant document (document3). This is a case where the retrieval model is missing
semantic understanding of query intent, as discussed in the previous section.

 In this book so far, you’ve encountered vectors many times. Using them in infor-
mation retrieval isn’t a novel idea; VSM relies on representing queries and documents
as vectors and measures how similar they are based on a TF-IDF weighting scheme.
Each document can be represented by a one-dimensional vector with size equal to the
number of existing terms in the index. Each position in the vector represents a term
having a value equal to the TF-IDF value for that document for that term.

 The same can be done for queries, because they’re also made up of terms; the only
difference is the fact that term frequencies can be either local (frequency of query
terms as they appear in the query) or from the index (frequency of query terms as
they appear in the indexed data). This way, you represent documents and queries as

Term frequency and document frequency
Often, statistical models combine term frequency and document frequency to come
up with a measure of the relevance of a document, given a query. The rationale
behind the choice of these metrics is that calculating frequencies and statistics
about terms give you a measure of how informative each of them is. More specifi-
cally, the number of times a query term appears in a document gives a measure of
how pertinent that document could be to that query; this is the term frequency. On
the other hand, terms that rarely appear in the indexed data are considered more
important and informative than more common terms (terms like “the” and “in” usu-
ally aren’t informative, because they’re much too common). The frequency of a term
within all the indexed documents is called the document frequency.

http://mng.bz/0WGx

153Retrieval models
vectors. This representation is called bag-of-words, because the information about posi-
tions of terms is lost—every document or query is represented as a collection of words,
as in table 5.1.

The vectors of “bernhard riemann influence” and “riemann influence bernhard” look
exactly the same: the facts that the two queries are different and that the first query is
more meaningful than the second one aren’t captured. Now that the documents and
queries are represented in a vector space, you want to calculate which document best
matches the input query. You do that by calculating the cosine similarity between each
document and the input query; that will give you the final ranking for each document.
The cosine similarity is a measure of the amplitude of the angle between a document
and the query vectors. Figure 5.2 shows vectors for the input query, document1, and
document2 in a (simplified, two-dimensional) vector space that only considers the
terms “bernhard” and “riemann.”

Table 5.1 Bag-of-words representations

Terms bernhard bio dive hypothesis in influence into life mathematical riemann

doc1 1.28 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.28

doc2 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0

doc3 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0 1.0

bernhard

riemann

Document 2

Query

Document 1

Figure 5.2 Cosine similarity

154 CHAPTER 5 Ranking search results with word embeddings
The similarity between the query vector and a document is evaluated by looking at the
existing angle between the two vectors. The smaller the angle, the more similar the
two vectors are. When you apply this to the vectors from table 5.1, you get the follow-
ing similarity scores:

cosineSimilarity(query,doc1) = 0.51
cosineSimilarity(query,doc2) = 0.38
cosineSimilarity(query,doc3) = 0.17

With just three documents, the resulting vector’s size is 10 (the number of columns
equals the number of the terms used across the documents). In production systems, this
value would be much higher. So one problem with this bag-of-words representation is
that the size of vectors grows linearly with the number of existing terms (all the distinct
words contained in the indexed documents). This is another reason word vectors like
those generated by word2vec are better than bag-of-words vectors. Word2vec-generated
vectors have a fixed size, so they don’t grow with the number of terms in the search
engine; therefore, resource consumption is much lower when using them. (Word2vec-
generated vectors do better at capturing word semantics, as explained in chapter 2.)

 Despite these limitations, VSM and TF-IDF are used often with good results in
many production systems. Before discussing other information retrieval models, let’s
get pragmatic, ingest the documents with Lucene, and see how they’re scored using
TF-IDF and VSM.

5.2.2 Ranking documents in Lucene

In Lucene, the Similarity API serves as the base for ranking functions. Lucene
comes with some information retrieval models implemented out of the box, such as
VSM with TF-IDF (which was the default used up to version 5), Okapi BM25, Diver-
gence from Randomness, language models, and others. Similarity needs to be set at
both indexing and search time. In Lucene 7, the VSM + TF-IDF similarity is Classic-
Similarity.

 At index time, Similarity is set in the IndexWriterConfig:

IndexWriterConfig config = new IndexWriterConfig();

config.setSimilarity(new ClassicSimilarity());

IndexWriter writer = new IndexWriter(directory, config);

At search time, Similarity is set in the IndexSearcher:

IndexReader reader = DirectoryReader.open(directory);
IndexSearcher searcher = new IndexSearcher(reader);
searcher.setSimilarity(new ClassicSimilarity);

Creates a configuration
for indexing

Sets the
similarity to
ClassicSimilarity

Creates an IndexWriter using
the configured Similarity

Opens an
IndexReader

Creates an
IndexSearcher
over the readerSets Similarity in

the IndexSearcher

155Retrieval models
If you index and search over the earlier three documents, you can see whether the
ranking behaves as you expect:

FieldType fieldType = ...
Document doc1 = new Document();
doc1.add(new Field("title",
 "riemann bernhard - life and works of bernhard riemann", ft));
Document doc2 = new Document();
doc2.add(new Field("title",
 "thomas bernhard biography - bio and influence in literature", ft));
Document doc3 = new Document();
doc3.add(new Field("title",
 "riemann hypothesis - a deep dive into a mathematical mystery", ft));
writer.addDocument(doc1);
writer.addDocument(doc2);
writer.addDocument(doc3);
writer.commit();

To check how each search result is scored by the Similarity class with respect to a
query, you can ask Lucene to “explain” it. The output of an explain consists of text
describing how each matching term contributes to the final score of each search result:

String queryString = "bernhard riemann influence";
QueryParser parser = new QueryParser("title", new WhitespaceAnalyzer());
Query query = parser.parse(queryString);
TopDocs hits = searcher.search(query, 3);
for (int i = 0; i < hits.scoreDocs.length; i++) {
 ScoreDoc scoreDoc = hits.scoreDocs[i];
 Document doc = searcher.doc(scoreDoc.doc);
 String title = doc.get("title");
 System.out.println(title + " : " + scoreDoc.score);
 System.out.println("--");
 Explanation explanation = searcher.explain(query, scoreDoc.doc);
 System.out.println(explanation);
}

With ClassicSimilarity, you get the following explain output:

riemann bernhard - life and works of bernhard riemann : 1.2140384
--
1.2140384 = sum of:
 0.6070192 = weight(title:bernhard in 0) [ClassicSimilarity], result of:
 0.6070192 = fieldWeight in 0, product of:
 ...
 0.6070192 = weight(title:riemann in 0) [ClassicSimilarity], result of:
 0.6070192 = fieldWeight in 0, product of:
 ...
--
thomas bernhard biography - bio and influence in literature : 0.9936098
--

You can define the features of a Lucene
field yourself (storing values, storing
term positions, and so on). For each document, creates a new

Document and adds the contents
in a title field

Adds all three documents
and commits the changes

Writes a query

Performs
the search

Parses the user-
entered query

Prints the document
title and score on
the standard output

Gets an explanation of how
the score was calculated

156 CHAPTER 5 Ranking search results with word embeddings
0.9936098 = sum of:
 0.42922735 = weight(title:bernhard in 1) [ClassicSimilarity], result of:
 0.42922735 = fieldWeight in 1, product of:
 ...
 0.56438243 = weight(title:influence in 1) [ClassicSimilarity], result of:
 0.56438243 = fieldWeight in 1, product of:
 ...
--
riemann hypothesis - a deep dive into a mathematical mystery : 0.4072008
--
0.4072008 = sum of:
 0.4072008 = weight(title:riemann in 2) [ClassicSimilarity], result of:
 0.4072008 = fieldWeight in 2, product of:
 ...

As expected, the ranking respects what’s described in the previous section. You can
see from the explanation that each term that matched the query contributes accord-
ing to its weight as they’re summed:

0.9936098 = sum of:
 0.42922735 = weight(title:bernhard in 1)...
 0.56438243 = weight(title:influence in 1)...

On the other hand, the scores aren’t exactly the same as when you manually compute
TF-IDF weights for terms. The reason is that there are many possible variations of TF-
IDF schemes. For example, here Lucene calculates inverse document frequency as

 log(N+1)/(df(term)+1)

instead of

 log(N/df(term))

Additionally, Lucene doesn’t take the logarithm of the term frequency but rather uses
the term frequency as it is. Lucene also uses normalization, a technique to mitigate the
fact that documents with more terms would score too high with respect to short docu-
ments (with fewer terms), which can be approximated as 1.0 / Math.sqrt(number-
OfTerms)). Using this normalization technique, calculating the cosine similarity
between a query vector and a document vector is equivalent to calculating their scalar
product:

score(query,document1) = tf-idf(query, bernhard) * tf-idf(document1,bernhard)
 + tf-idf(query, riemann) * tf-idf(document, riemann)

Lucene doesn’t store vectors. It’s enough to be able to compute the TF-IDF for each
matching term and combine the results to compute the score.

5.2.3 Probabilistic models

You’ve learned about some VSM theory and how it’s applied in practice in Lucene.
You’ve also seen scores being calculated using term statistics. In this section, you’ll
learn about probabilistic retrieval models, where scores are still calculated on the basis
of probabilities. The search engine ranks a document using its probability of rele-
vance with respect to the query.

157Retrieval models
 Probabilities are a powerful tool to address uncertainty. We’ve discussed how hard
it is to bridge the gap between user intent and relevant search results. Probabilistic
models try to model ranking by measuring how probable it is that a certain document
is relevant with respect to the input query. If you roll a six-sided die, each side has a
1/6 probability of being the result: for example, the probability of rolling a 3 is P(3) =
0.16. But in practice, if you roll a die six times, you probably won’t get all six different
results. Probability is an estimation of how likely a certain event is to occur—this
doesn’t imply that it will occur exactly that often.

 The unconditional probability of rolling any number on a die is 1/6, but what
about the probability of rolling two consecutive results that are the same? Such a condi-
tional probability can be expressed as P(event|condition). For the ranking task, you
can estimate the probability that a certain document is relevant (with respect to a given
query). This is represented as P(r = 1|x), where r is a binary measure of relevance:

 r = 1 : relevant, r = 0 : not relevant

In a probabilistic retrieval model, you generally rank all documents with respect to a
given query by P(r = 1|x). This is best expressed by the probability ranking principle: if
retrieved documents are ordered by decreasing probability of relevance to the data
available, then the system’s effectiveness is the best that can be obtained for the data.

 One of the most famous and widely adopted probabilistic models is Okapi BM25.
Briefly, it tries to mitigate two limitations of TF-IDF:

 Limit the impact of term frequency to avoid excessive scoring based on fre-
quently repeated terms.

 Provide a better estimate of the importance of the document frequency of a
certain term.

BM25 expresses the conditional probability P(r = 1|x) by means of two probabilities
that depend on term frequencies. So BM25 approximates probabilities by calculating
probability distribution over term frequencies.

 Consider the “bernhard riemann influence” example. In a classic TF-IDF scheme,
a high term frequency can lead to a high score. So, if you have a dummy document4
that contains lots of “bernhard” occurrences (“bernhard bernhard bernhard bern-
hard bernhard bernhard bernhard bernhard bernhard bernhard”), it may score
higher than more-relevant documents. If you index it into the previously built index,
you get the following outputs with TF-IDF and VSM (ClassicSimilarity):

riemann bernhard - life and works of bernhard riemann : 1.2888055
bernhard bernhard bernhard bernhard bernhard bernhard ... : 1.2231436
thomas bernhard biography - bio and influence in literature : 1.0464782
riemann hypothesis - a deep dive into a mathematical mystery : 0.47776502

As you can see, the dummy document is returned as the second result, which is
strange. Additionally, document4’s score is almost equal to the first-ranked result: the
search engine ranked this dummy document as important, but it isn’t. Let’s set the
BM25Similarity in Lucene (the default since version 6) using the same code as for
the ClassicSimilarity tests:

158 CHAPTER 5 Ranking search results with word embeddings
searcher.setSimilarity(new BM25Similarity());

With BM25 similarity set, the ranking is as follows:

riemann bernhard - life and works of bernhard riemann : 1.6426628
thomas bernhard biography - bio and influence in literature : 1.5724708
bernhard bernhard bernhard bernhard bernhard bernhard ... : 0.9965918
riemann hypothesis - a deep dive into a mathematical mystery : 0.68797445

The dummy document is ranked third instead of second. Although this isn’t optimal,
the score has greatly decreased as compared to the most relevant document. The rea-
son is that BM25 “squashes” the term frequency to keep it below a certain configu-
rable threshold. In this case, BM25 mitigated the impact of the high term frequency
for the term “bernhard.”

 The other good thing about BM25 is that it tries to estimate the probability of
terms that appear together in a document. The document frequency of a number of
terms in a document is given by the sum of the logs of the probability that each single
term appears in that document.

 But BM25 also has some limitations:

 Like TF-IDF, BM25 is a bag-of-words model, so it disregards term ordering when
ranking.

 Although in general it performs well, BM25 is based on heuristics (functions
that reach a fairly good result but aren’t guaranteed to work in general) that
may not apply well to your data (you may have to adjust those heuristics).

 BM25 performs some approximation and simplification on probability estima-
tion, which causes less-acceptable results in some cases (it doesn’t work well
with long documents).

Other probabilistic approaches to ranking based on language models are generally
better at plain probability estimations, but this doesn’t always result in better scoring.
In general, BM25 is an okay baseline ranking function.

 Now that we’ve explored some of the most commonly used ranking models for
search engines, let’s dive into how neural networks can help make those models better
and also provide completely new (and better) ranking models.

5.3 Neural information retrieval
So far, we’ve tackled the problem of effective ranking by looking at terms and their
local (per document) and global (per collection) frequencies. If you want to use neu-
ral networks to obtain a better ranking function, you need to think in terms of vectors.
Actually, this doesn’t solely apply to neural networks. You’ve seen that even the classic
VSM treats documents and queries as vectors and measures their similarity using
cosine distance. One problem is that the size of such vectors can grow enormously
(linearly) with the number of indexed words.

 Before neural information retrieval, other techniques were developed to provide
more compact (fixed-size) representations of words. These were mainly based on
matrix-factorization algorithms such as the latent semantic indexing (LSI) algorithm,

159From word to document vectors
which is based on singular value decomposition (SVD) factorization. In short, in LSI, you
create a matrix of terms and documents for each document row: put a 1 in each ele-
ment where the document contains the corresponding term, and a 0 for all others.
Then transform (factorize) this sparse matrix (lots of zeros) with a reduced SVD fac-
torization method, resulting in three (denser) matrixes whose product is a good
approximation of the original. Each resulting document row has fixed dimensionality
and is no longer sparse. Query vectors can also be transformed using SVD factorized
matrixes. (A somewhat similar technique is called latent Dirichlet allocation [LDA].)
The “juice” here is that no term matching is required; query and document vectors
are compared so that the most similar document vectors are ranked first.

 Learning good representations of data is one of the tasks deep learning can do
best. We’ll now look at using such vector representations for ranking. You’re already
familiar with the algorithm we’ll use—word2vec—which learns distributed representa-
tions of words. Word vectors are located close to one another when the words they
represent appear in similar contexts and, hence, have similar semantics.

5.4 From word to document vectors
Let’s start building a retrieval system based on vectors generated by word2vec. The
goal is to rank documents against queries, but word2vec gives vectors for words, not
sequences of words. So the first thing to do is find a way to use these word vectors to
represent documents and queries. A query will usually be composed of more than one
word, as will indexed documents. For example, let’s take the word vectors for each
of the terms in the query “bernhard riemann influence” and plot them as shown in
figure 5.3.

influence

0.8

0.6

0.4

0.2

0
–0.1 0.0 0.1 0.2 0.3

bernhard

riemann

Figure 5.3 Word vectors for “bernhard,” “riemann,” and “influence”

160 CHAPTER 5 Ranking search results with word embeddings
A simple method to create document vectors from word vectors is to average the word
vectors into a single document vector. This is a straightforward mathematical opera-
tion: every element at position j in each vector is added, and the total is then divided
by the number of vectors being averaged (the same as an arithmetic averaging opera-
tion). You can do that with DL4J vectors (INDArrays objects) as follows:

public static INDArray toDenseAverageVector(Word2Vec word2Vec,
 String... terms) {
 return word2Vec.getWordVectorsMean(Arrays.asList(terms));
}

The mean vector is the result of the averaging operation. In figure 5.4, as expected, the
average vector sits at the center of the three word vectors.

Note that this technique can be applied to both documents and queries, because
they’re compositions of words. For each document-query pair, you can calculate the
document vectors by averaging the word vectors and then assign the score to each
document based on how close their respective averaged word vectors are. This is simi-
lar to what you do in the VSM scenario; the big difference is that the values of these
document vectors aren’t calculated using TF-IDF but come from averaging word2vec
vectors. In summary, these dense vectors are less heavy in terms of required memory
(and space, if stored to disk) and more informative in terms of semantics.

 Let’s repeat the earlier experiment but rank documents using averaged word vec-
tors. You first feed word2vec data from the search engine:

influence

0.8

0.6

0.4

0.2

0
–0.1 0.0 0.1 0.2 0.3

riemann

bernhard

mean

Figure 5.4 Averaging the “bernhard,” “riemann,” and “influence” word vectors

161From word to document vectors

The
do
IndexReader reader = DirectoryReader.open(
 directory);

FieldValuesSentenceIterator iterator = new
 FieldValuesSentenceIterator(reader, "title");

Word2Vec vec = new Word2Vec.Builder()
 .layerSize(3)
 .windowSize(3)
 .tokenizerFactory(new DefaultTokenizerFactory())
 .iterate(iterator)
 .build();
vec.fit();

Once you’ve extracted the word vectors, you can build query and document vectors:

String[] terms = ...
INDArray queryVector = toDenseAverageVector(vec,
 terms);
for (int i = 0; i < hits.scoreDocs.length; i++) {
 ScoreDoc scoreDoc = hits.scoreDocs[i];
 Document doc = searcher.doc(scoreDoc.doc);

 String title = doc.get("title");

 Terms docTerms = reader.getTermVector(scoreDoc.doc,
 "title");

 INDArray denseDocumentVector = VectorizeUtils
 .toDenseAverageVector(docTerms, vec);

 double sim = Transforms.cosineSim(denseQueryVector,
 denseDocumentVector)

 System.out.println(title + " : " + sim);
}

For the sake of readability, the outputs are shown manually ordered from highest to
lowest scores:

riemann hypothesis - a deep dive into a
 mathematical mystery : 0.6171551942825317

thomas bernhard biography - bio and influence
 in literature : 0.4961382746696472

bernhard bernhard bernhard bernhard bernhard
 bernhard ... : 0.32834646105766296

riemann bernhard - life and works of bernhard
 riemann : 0.2925628423690796

Creates a reader over the
search engine document set

Creates a DL4J iterator that
can read data from the
reader on the title field

Configures
word2vec

You’re working with a super-
small dataset, so you use
very small vectors.

Lets word2vec learn word vectors

Array containing the terms
entered in the query (“bernhard,”
“riemann,” and “influence”)

Converts the query terms into a
query vector by averaging the
word vectors of the query terms

For each search result: ignores
the score as given by Lucene
and transforms the results into
document vectors

Gets the
document
title Extracts the terms contained in

that document (using the
IndexReader#getTermVector API)

Converts the document terms into a
document vector using the averaging
technique shown earlier

Calculates the cosine similarity
between the query and document
vector and prints it

The top-scored document is
relevant, regardless of low term
frequency.

The second document isn’t
relevant with respect to user
intent. dummy

cument

The (probably) most relevant
document has the lowest score.

162 CHAPTER 5 Ranking search results with word embeddings
This is strange: the technique you expected to help you get a better ranking ranked the
dummy document better than the most relevant one! The reasons are the following:

 There isn’t enough training data available for word2vec to provide word vectors
that carefully represent word semantics. Four short documents contain far too
few word-context pairs for the word2vec neural network to adjust its hidden
layer weights accurately.

 If you pick the document vector of the top-scored document, it will be equal to
the word vector for the word “bernhard.” The query vector is an average vector
of the vectors for “bernhard,” “riemann,” and “influence”; therefore, these vec-
tors will always be close together in the vector space.

Let’s visualize the second statement by plotting the generated document-query vectors
in a (reduced) two-dimensional space: see figure 5.5. As expected, document4 and
the query embeddings are so close that their labels almost overlap.

 One way to improve these results is to make sure the word2vec algorithm has more
training data. For example, you can start with an English dump from Wikipedia and
index each page’s title and content in Lucene. Additionally, you can mitigate the
impact of text fragments like the one from document4, which mostly (or only) con-
tains single terms that also appear in the query. A common technique to do so is to
smooth the averaged document vectors by using term frequencies. Instead of dividing
each word vector by the document length, you divide each word vector by its term fre-
quency according to the following pseudo-code:

documentVector(wordA wordB) = wordVector(wordA)/termFreq(wordA) +
 wordVector(wordB)/termFreq(wordB)

0.3

0.2

0.1

0

–0.1

–0.2
–0.25 –0.20 –0.15 –0.10 –0.05

doc1

doc2

doc4
query doc3

Figure 5.5 Similarity between query and document embeddings

163From word to document vectors
This can be implemented in Lucene and DL4J as follows:

public static INDArray toDenseAverageTFVector(Terms docTerms, Terms
 fieldTerms, Word2Vec word2Vec) throws IOException {
 INDArray vector = Nd4j.zeros(word2Vec
 .getLayerSize());
 TermsEnum docTermsEnum = docTerms.iterator();
 BytesRef term;
 while ((term = docTermsEnum.next()) != null) {
 long termFreq = docTermsEnum.totalTermFreq();
 INDArray wordVector = word2Vec.getLookupTable().
 vector(term.utf8ToString()).div(termFreq);
 vector.addi(wordVector);
 }
 return vector;
}

When I introduced averaged word vectors, you saw that such document vectors are
placed right at the center of their composing word vectors. In figure 5.6, you can see
that term-frequency smoothing can help detach the generated document vectors
from sitting at the center of the word vectors, nearer to the less-frequent (and hope-
fully more important) word.

 The terms “bernhard” and “riemann” are more frequent than “influence,” and the
generated document vector tf is closer to the influence word vector. This has a positive

Initializes all the
vector values to zero

Iterates over all the
existing terms of the
current doc

Fetches the
next term Obtains the term-

frequency value for
the current term

Extracts the word embedding
for the current term and then

divides its values by the
term-frequency value

Sums the current vector for
the current term with the

vector to be returned

influence

0.8

0.6

0.4

0.2

0
–0.1 0.0 0.1 0.2 0.3

riemann

bernhard

mean

tf

Figure 5.6 Averaged word vector smoothed by term frequencies

164 CHAPTER 5 Ranking search results with word embeddings
impact: documents whose term frequency is low are better ranked but still lie close
enough to the query vector:

riemann hypothesis - a deep dive into a mathematical
 mystery : 0.6436703205108643
thomas bernhard biography - bio and influence in
 literature : 0.527758002281189
riemann bernhard - life and works of bernhard
 riemann : 0.2937617599964142
bernhard bernhard bernhard bernhard bernhard
 bernhard ...: 0.2569074332714081

For the first time, the dummy document receives the lowest score. If you switch from
plain term frequencies to TF-IDF as smoothing factors for generating averaged docu-
ment vectors from word embeddings, you get the following ranking:

riemann hypothesis - a deep dive into a mathematical
 mystery : 0.7083401679992676
riemann bernhard - life and works of bernhard
 riemann : 0.4424433362483978
thomas bernhard biography - bio and influence in
 literature : 0.3514146476984024
bernhard bernhard bernhard bernhard bernhard
 bernhard ... : 0.09490833431482315

With the TF-IDF–based smoothing (see, for example, figure 5.7), the ranking of docu-
ments is the best you can achieve. You got away from strict term weighting–based simi-
larity: the most relevant document has a term frequency of 1 for the term “riemann,”
whereas the document with the highest term frequency has the lowest score. From a
semantic perspective, the most relevant documents are scored higher than the others.

influence

0.8

0.6

0.4

0.2

0
–0.1 0.0 0.1 0.2 0.3

riemann

bernhard

mean

tf

tf-idf

Figure 5.7 Averaged word vector smoothed with TF-IDF

165Evaluations and comparisons
5.5 Evaluations and comparisons
Are you happy with this means of ranking documents based on TF-IDF averaged word
vectors? In the previous example, you trained word2vec with specific settings: layer
size set to 60, skip-gram model, window size set to 6, and so on. The ranking was opti-
mized with respect to a specific query and a set of four documents. Although this is a
useful exercise for learning the pros and cons of different approaches, you can’t do
such fine-grained optimizations for all possible input queries, especially for large
knowledge bases. Given that relevance is so difficult to get right, it’s good to find ways
to automate the evaluation of ranking effectiveness. So before we jump on other ways
to address ranking (such as with the help of neural text embeddings), let’s quickly
introduce some tooling to speed up evaluating ranking functions.

 A nice tool for evaluating the effectiveness of Lucene-based search engines is
Lucene for Information Retrieval (Lucene4IR). It originated from a collaboration
between people from research and industry.1 A quick tutorial can be found at
http://mng.bz/YP7N. Lucene4IR makes it possible to try out different indexing,
retrieval, and ranking strategies over standard information retrieval datasets. To try it,
you can run Lucene4IR’s IndexerApp, RetrievalApp, and ExampleStatsApp in
sequence. Doing so will index, search, and record statistics over returned versus rele-
vant results: for example, according to the chosen Lucene configuration (Similarity,
Analyzers, and so on). By default, these apps run on the CACM dataset (http://mng
.bz/GWZq) using BM25Similarity.

 Once you’ve performed data evaluation with Lucen4IR tools, you can measure
precision, recall, and other IR metrics using the trec_eval tool (a tool developed to
measure the quality of search results on the data from the TREC conference series;
http://trec.nist.gov). Here’s an example of trec_eval terminal output on the CACM
dataset using BM25 ranking:

./trec_eval ~/lucene4ir/data/cacm/cacm.qrels

~/lucene4ir/data/cacm/bm25"results.res

...

num_q all 51

num_ret all 5067

num_rel all 793

num_rel_ret all 341

map all 0.2430

Rprec all 0.2634

P_5 all 0.3608

P_10 all 0.2745

If you change the Lucene Similarity parameter in the Lucene4IR configuration file
and again run RetrievalApp and ExampleStatsApp, you can observe how precision,
recall, and other measures commonly used in IR change in the dataset. Here’s an

1 See Leif Azzopardi et al., “Lucene4IR: Developing Information Retrieval Evaluation Resources using Lucene,”
ACM SIGIR Forum 50, no. 2 (December 2016), http://sigir.org/wp-content/uploads/2017/01/p058.pdf.

Number of queries performed
Number of returned results

Number of relevant results
Number of returned results that are also relevant

Mean average precision
R-precision

P_5, P_10, and so on give the precision
at 5, 10, and so on retrieved documents.

http://sigir.org/wp-content/uploads/2017/01/p058.pdf
http://mng.bz/YP7N
http://mng.bz/GWZq
http://mng.bz/GWZq
http://mng.bz/GWZq
http://trec.nist.gov

166 CHAPTER 5 Ranking search results with word embeddings
example of trec_eval terminal output on the CACM dataset using a language
model–based ranking (Lucene’s LMJelinekMercerSimilarity2):

./trec_eval ~/lucene4ir/data/cacm/cacm.qrels
~/lucene4ir/data/cacm/bm25_results.res

...
map all 0.2292
Rprec all 0.2552
P_5 all 0.3373
P_10 all 0.2529

In this case, Similarity was switched to use language models to estimate probabilities
of relevance. The results are worse than with BM25: all the metrics have slightly lower
values.

 The nice thing about using these tools together is that you can evaluate how well
your decisions impact the accuracy of search results in a series of quick, easy steps. This
doesn’t guarantee that you can achieve perfect rankings, but you can use this approach
to define the baseline ranking function for your search engine and data. After this
short intro to Lucene4IR, you’re encouraged to develop your own Similarity—for
example, based on word2vec—and see whether it makes a difference with respect to
BM25Similarity and so on.

5.5.1 Similarity based on averaged word embeddings

You saw the effectiveness of document embeddings generated using word vectors in
the small experiment with the “bernhard riemann influence” sample query. At the
same time, in real life, you need better evidence for the effectiveness of a retrieval
model. In this section, you’ll work on Similarity implementations based on averaged
word2vec word vectors. You’ll then measure their effectiveness on a small dataset
using the Lucene4IR project. These measures will give you a sense of how well these
ranking models behave in general.

 Extending a Lucene Similarity correctly is a difficult task that requires some
insights into how Lucene works. We’ll focus on the relevant bits of the Similarity
API to use document embeddings to score documents against queries. Let’s start by
creating a WordEmbeddingsSimilarity that creates document embeddings via aver-
aged word embeddings. It requires a trained word2vec model, a smoothing method to
average word vectors to combine them in a document vector, and a Lucene field from
which to fetch document content:

public class WordEmbeddingsSimilarity extends Similarity {

 public WordEmbeddingsSimilarity(Word2Vec word2Vec,
 String fieldName, Smoothing smoothing) {
 this.word2Vec = word2Vec;
 this.fieldName = fieldName;
 this.smoothing = smoothing;
 }

2 See Chengxiang Zhai and John Lafferty, “A Study of Smoothing Methods for Language Models Applied to Ad
Hoc Information Retrieval,” http://mng.bz/zM8a.

http://mng.bz/zM8a

167Evaluations and comparisons
The Lucene Similarity will implement the following two methods:

 @Override
 public SimWeight computeWeight(float boost,
 CollectionStatistics collectionStats, TermStatistics... termStats) {
 return new EmbeddingsSimWeight(boost, collectionStats, termStats);
 }

 @Override
 public SimScorer simScorer(SimWeight weight,
 LeafReaderContext context) throws IOException {
 return new EmbeddingsSimScorer(weight, context);
 }

The most important part for this task is to implement the EmbeddingsSimScorer,
which is responsible for scoring documents:

 private class EmbeddingsSimScorer extends SimScorer {
 @Override
 public float score(int doc, float freq) throws IOException {
 INDArray denseQueryVector = getQueryVector();
 INDArray denseDocumentVector = VectorizeUtils
 .toDenseAverageVector(reader.getTermVector(doc,
 fieldName), reader.numDocs(),
 word2Vec, smoothing);
 return (float) Transforms.cosineSim(
 denseQueryVector, denseDocumentVector);
 }
 }

As you can see, the score method does what you did in the previous section, but
within the Similarity class. The only difference with respect to the previous
approach is that the toDenseAverageVector utility class also takes a Smoothing
parameter that specifies how to average word vectors:

public static INDArray toDenseAverageVector(Terms docTerms, double n,
 Word2Vec word2Vec, WordEmbeddingsSimilarity.Smoothing smoothing)
 throws IOException {
 INDArray vector = Nd4j.zeros(word2Vec.getLayerSize());
 if (docTerms != null) {
 TermsEnum docTermsEnum = docTerms.iterator();
 BytesRef term;
 while ((term = docTermsEnum.next()) != null) {
 INDArray wordVector = word2Vec.getLookupTable().vector(
 term.utf8ToString());
 if (wordVector != null) {
 double smooth;
 switch (smoothing) {
 case MEAN:
 smooth = docTerms.size();
 break;
 case TF:
 smooth = docTermsEnum.totalTermFreq();

Generates the
query vector

Generates the
document vector

Calculates the cosine similarity
between document and query vectors,

and uses that as a document score

168 CHAPTER 5 Ranking search results with word embeddings
 break;
 case IDF:
 smooth = docTermsEnum.docFreq();
 break;
 case TF_IDF:
 smooth = VectorizeUtils.tfIdf(n, docTermsEnum.totalTermFreq(),
 docTermsEnum.docFreq());
 break;
 default:
 smooth = VectorizeUtils.tfIdf(n, docTermsEnum.totalTermFreq(),
 docTermsEnum.docFreq());
 }
 vector.addi(wordVector.div(smooth));
 }
 }
 }
 return vector;
}

getQueryVector does exactly the same thing, but instead of iterating over docTerms, it
iterates over the terms in the query.

 The Lucene4IR project comes with tools to run evaluations over the CACM data-
set, which you can do using different Similaritys. Following the instructions in the
Lucene4IR README (http://mng.bz/0WGx), you can generate statistics to evaluate
different rankings. For example, here’s the precision over the first five results using
different Similaritys:

WordEmbeddingsSimilarity: 0.2993
ClassicSimilarity: 0.2784
BM25Similarity: 0.2706
LMJelinekMercerSimilarity: 0.2588

These are some interesting numbers. First, VSM with TF-IDF weighting isn’t the worst
result. The word-embeddings Similarity is 2% better than the others; not bad. But
one simple takeaway from this quick evaluation is that the effectiveness of a ranking
model can change depending on the data, so you should take care when choosing a
model. Theoretical results and evaluations must always be measured against real-life
usage of your search engine.

 It’s also important to decide what to optimize the ranking for. Often, it’s difficult to
get high precision together with high recall, for example. Let’s introduce another
metric for evaluating a ranking model’s effectiveness: normalized discounted cumulative
gain (NDCG). NDCG measures the usefulness, or gain, of a document based on its
position in the results list. The gain is accumulated from the top of the results list to
the bottom, so that the gain contributed by each result decreases with ranking. If you
evaluate the NDCG of the previous Similaritys over the CACM dataset, the results
are even more interesting:

WordEmbeddingsSimilarity: 0.3894
BM25Similarity: 0.3805
ClassicSimilarity: 0.3805
LMJelinekMercerSimilarity: 0.3684

http://mng.bz/0WGx

169Summary
VSM and BM25 perform exactly the same; the word embeddings–based ranking func-
tion got a slightly better NDCG value. So if you’re interested in a more precise ranking
over the first five results, you should probably choose word embeddings–based rank-
ings, but this evaluation suggests that for an overall higher NDCG, this may not make
a significant difference.

 Additionally, a good solution that’s also supported by recent research can be to
mix classic and neural ranking models by using multiple scoring functions at the same
time.3 You can do that by using the MultiSimilarity class in Lucene. If you perform
the same evaluation but with different flavors of MultiSimilarity, you can see that
mixing language modeling and word vectors yields the best NDCG value:

WV+BM25 : 0.4229
WV+LM : 0.4073
WV+Classic : 0.3973
BM25+LM : 0.3927
Classic+LM : 0.3698
Classic+BM25 : 0.3698

Summary
 Classic retrieval models like VSM and BM25 provide good baselines for ranking

documents, but they lack semantic understanding of text capabilities.
 Neural information retrieval models aim to provide better semantic under-

standing capabilities for ranking documents.
 Distributed representations of words (like those generated by word2vec) can be

combined to generate document embeddings for queries and documents.
 Averaged word embeddings can be used to generate effective Lucene Similaritys,

which can achieve good results when evaluated against IR datasets.

3 Dwaipayan Roy et al., “Representing Documents and Queries as Sets of Word Embedded Vectors for Informa-
tion Retrieval,” Neu-IR ‘16 SIGIR Workshop on Neural Information Retrieval (July 21, 2016, Pisa, Italy),
https://arxiv.org/abs/1606.07869.

https://arxiv.org/abs/1606.07869

Document embeddings
for rankings and
recommendations
In the previous chapter, I introduced you to neural information retrieval models by
building a ranking function based on averaged word embeddings. You averaged
word embeddings generated by word2vec to obtain a document embedding, a dense
representation of a sequence of words, that demonstrated high precision in rank-
ing documents according to user intent.

 The drawback of common retrieval models such as Vector Space Model with TF-
IDF and BM25, however, is that they only look at single terms when ranking docu-
ments. This approach can lead to suboptimal results because the context informa-

This chapter covers
 Generating document embeddings using paragraph vectors

 Using paragraph vectors for ranking

 Retrieving related content

 Improving related-content retrieval with paragraph vectors
170

171From word to document embeddings
tion of those terms is discarded. With this drawback in mind, let’s see how you can
generate document embeddings that look not just at single words, but at the whole
text fragments surrounding those words. A vector representation created from these
context-enhanced document embeddings will carry as much semantic information as
possible, thus improving the ranking function’s precision even more.

 Word embeddings are very good for capturing word semantics, but the meaning
and deep semantics of text documents don’t depend on the meaning of words alone.
It would be nice to be able to learn semantics about phrases or longer pieces of text
instead of just words. In the previous chapter, you did that by averaging word embed-
dings. Going forward, you’ll discover that you can do better in terms of accuracy. In
this chapter, we’ll explore a technique for learning document embeddings directly.
Using extensions of the word2vec neural network learning algorithms, you can gener-
ate document embeddings for text sequences of different granularity (sentences,
paragraphs, documents, and so on). You’ll experiment with this technique and show
how it provides better numbers when used for ranking.

 Additionally, you’ll learn how to use document embeddings to find related con-
tent. Related content consists of documents (texts, videos, and so on) that are semanti-
cally correlated. When you show a single search result (such as when the user clicks it
in a search results web page), it’s common to display other content that, for example,
deals with similar topics or was created by the same author. Doing so is useful to cap-
ture the user’s attention and provide them with content they might like but that may
not appear on the first search results page.

6.1 From word to document embeddings
In this section, I’ll introduce an extension of word2vec that aims to learn document
embeddings during neural network training. This is different than the previously used
method of mixing word vectors (averaging and, eventually, smoothing them, such as
with TF-IDF weights) and often gives better results when capturing document seman-
tics.1 This method, also known as paragraph vectors, extends the two word2vec architec-
tures (the continuous-bag-of-words [CBOW] and skip-gram models), incorporating
information about the current document in the context.2 Word2vec performs unsuper-
vised learning of word embeddings by using fragments of texts of a certain size, called
the window, for training the neural network to either predict the context given a word
belonging to that context or predict the word given a context the word belongs to.

 Specifically, a CBOW neural network has three layers (see figure 6.1):

 Input layer containing context words
 Hidden layer containing one vector for each word
 Output layer containing the word to predict

1 See the comparisons in Andrew M. Dai, Christopher Olah, and Quoc V. Le, “Document Embedding with Para-
graph Vectors,” https://arxiv.org/pdf/1507.07998.pdf.

2 See Quoc Le and Tomas Mikolov, “Distributed Representations of Sentences and Documents,” http://cs
.stanford.edu/~quocle/paragraph_vector.pdf.

https://arxiv.org/pdf/1507.07998.pdf
http://cs.stanford.edu/~quocle/paragraph_vector.pdf
http://cs.stanford.edu/~quocle/paragraph_vector.pdf
http://cs.stanford.edu/~quocle/paragraph_vector.pdf

172 CHAPTER 6 Document embeddings for rankings and recommendations
The intuition provided by the paragraph vector–based
methods can either decorate or replace the context
with a label representing a document, so that the neu-
ral network will learn to correlate words and contexts
with labels, rather than words with other words.

 The CBOW model is expanded so that the input
layer also contains the label of the document contain-
ing the current text fragment. During training, each
text fragment is tagged with a label. Such text frag-
ments can be entire documents or portions of a doc-
ument, like sections, paragraphs, or sentences. The
value of the label generally isn’t important;3 a label
can be doc_123456 or tag-foo-bar or any kind of
machine-generated string. The important thing is
that labels should be unique within a document: two
different text fragments shouldn’t be tagged with the same label if they don’t belong
to the same piece of text.

 As you can see in figure 6.2, the architecture of this model is similar to CBOW; it
just adds an input label representing the document in the input layer. Consequently,
the hidden layer needs to be equipped with a vector for each label, so that at the end
of the training, you have a vector representation for each label. The interesting thing
about this approach is that it allows you to handle documents of different granulari-
ties. You can use labels for either entire documents or smaller parts of them, like para-
graphs or sentences. These labels act as a sort of memory that wires contexts to
(missing) words; therefore, this method is called the distributed memory model of para-
graph vectors (PV-DM).

 In the case of documents like “riemann
hypothesis - a deep dive into a mathemati-
cal mystery,” it makes sense to use a single
label, because the text is relatively short.
But for longer documents, like Wikipedia
pages, it may be useful to create a label for
each paragraph or sentence. Let’s pick the
first paragraph of Riemann’s Wikipedia
page: “Georg Friedrich Bernhard Riemann
(17 September 1826 – 20 July 1866) was a
German mathematician who made contri-
butions to analysis, number theory, and dif-
ferential geometry. In the field of real
analysis, he is mostly known for the first

3 Unless you intend to use it in some way other than training, such as using the labels generated by the network
as document identifiers when indexing them after training has finished.

the cat sat

W W

on

W

Figure 6.1 Word2vec CBOW
model

Paragraph
ID

the cat

D W

on

W

sat

W

Figure 6.2 Distributed memory model of
paragraph vectors

http://mng.bz/A2Qo
http://mng.bz/A2Qo
http://mng.bz/A2Qo
http://mng.bz/A2Qo
https://en.wikipedia.org/wiki/Ledgewood_Circle
https://en.wikipedia.org/wiki/Ledgewood_Circle
https://en.wikipedia.org/wiki/Ledgewood_Circle
https://en.wikipedia.org/wiki/Ledgewood_Circle

173From word to document embeddings
rigorous formulation of the integral, the Riemann integral, and his work on Fourier
series.” You can tag each sentence with a different label and generate a vector repre-
sentation that will help find similar sentences instead of similar Wikipedia pages.

 Paragraph vectors also extend the word2vec skip-gram model with the distributed-
bag-of-words model (PV-DBOW). The continuous skip-gram model uses a neural net-
work with three layers:

 Input layer with one input word
 Hidden layer containing a vector representa-

tion for each word in the vocabulary
 Output layer containing a number of words

representing the predicted context with
respect to the input word

The DBOW model with paragraph vectors (see figure
6.3) inputs labels instead of words, so the network
learns to predict portions of text belonging to the
document, paragraph, or sentence having that label.

 Both PV-DBOW and PV-DM models can be used
to calculate similarities between labeled documents.
Just as in word2vec, they achieve surprisingly good
results when capturing the document semantics.
Let’s try using paragraph vectors on the example
scenario with the DL4J ParagraphVectors imple-
mentation:

ParagraphVectors paragraphVectors = new ParagraphVectors.Builder()
 .iterate(iterator)
 .layerSize(50)
 .minWordFrequency(7)
 .sequenceLearningAlgorithm(new DM<>())
 .tokenizerFactory(new DefaultTokenizerFactory())
 .build();

paragraphVectors.fit();

Similar to what you did with word2vec, you can ask the paragraph vector models
questions:

 What are the nearest labels to label xyz? This will allow you to find the most-
similar documents (because each document is tagged with a label).

 What are the nearest labels, given a new piece of text? This will make it possible to
use paragraph vectors on documents or queries that aren’t part of the training set.

Configures paragraph vectors

Sets the document embedding dimensions

As in word2vec, you can set the minimum
frequency threshold for a word to be used
during learning.

Selects the chosen
paragraph vector model:
in this case, PV-DM

Finalizes the
configuration

Performs
(unsupervised)
learning over
the input data

Paragraph
ID

D

catthe onsat

Figure 6.3 Distributed-bag-of-words
model with paragraph vectors

https://en.wikipedia.org/wiki/Ledgewood_Circle
http://mng.bz/ZZlR
http://mng.bz/ZZlR

174 CHAPTER 6 Document embeddings for rankings and recommendations
If you use titles from Wikipedia pages to train paragraph vectors, you can look for
Wikipedia pages whose titles are semantically similar to input text. Suppose you want
to get information about your next big trip to South America. You can get the top
three closest documents to the sentence “Travelling in South America” from the para-
graph vector model you just trained:

Collection<String> strings = paragraphVectors
 .nearestLabels("Travelling in South America"
 , 3);
for (String s : strings) {
 int docId = Integer.parseInt(s.substring(4));

 Document document = reader.document(docId);

 System.out.println(document.get(fieldName));
}

The output is as follows:

Transport in São Tomé and Príncipe
Transport in South Africa
Telecommunications in São Tomé and Príncipe

If you train paragraph vectors using the entire text of Wikipedia pages, instead of just
the title, you get more-relevant results. This is mostly due to the fact that paragraph
vectors, like word2vec, learn text representations by looking at the context, and this is
more difficult with shorter text (titles) than with longer text (an entire Wikipedia
page).

 The output when training with the entire text of Wikipedia pages is as follows:

Latin America
Crime and violence in Latin America
Overseas Adventure Travel

Document embeddings like those generated by paragraph vectors aim to provide a
good representation of the semantics of the entire text, in the form of a vector. You
can use them in the context of search to address the problem of semantic understand-
ing in ranking. The similarity between such embeddings depends more on the mean-
ing of text and less on simple term matching.

6.2 Using paragraph vectors in ranking
Using paragraph vectors in ranking is simple: you can ask the model to either provide
the vector for an already-trained label or document, or train a new vector for a new
piece of text (such as an unseen document or query). Whereas with word vectors you
have to decide how to combine them (you did it at ranking time, but you could have
done so at indexing time), paragraph vector–based models make it possible to fetch
query and document embeddings easily, to compare and rank them.

Gets the labels nearest
to the given input string

Each label is in the form
“doc_”+ documentId, so
you only get the document
identifier part to fetch the
document from the index.

Retrieves the Lucene document
having the given ID

Prints the document
title on the console

São Tomé and Príncipe (a South
American republic) information about
transport and telecommunicationsNot very

relevant

175Using paragraph vectors in ranking
 Before jumping into using paragraph vectors for ranking, let’s take a step back.
The previous section talked about using the data indexed in Lucene to train a para-
graph vector model. That can be done by implementing a LabelAwareIterator: an
iterator over document contents that also assigns a label to each Lucene document.
You tag each Lucene document with its internal Lucene document identifier, result-
ing in a label that looks like doc_1234:

public class FieldValuesLabelAwareIterator implements LabelAwareIterator {

 private final IndexReader reader;
 private final String field;
 private int currentId = 0;

 @Override
 public boolean hasNextDocument() {
 return currentId < reader.numDocs();
 }

 @Override
 public LabelledDocument nextDocument() {
 if (!hasNextDocument()) {
 return null;
 }
 try {
 Document document = reader.document(currentId,
 Collections.singleton(field));

 LabelledDocument labelledDocument = new
 LabelledDocument();
 labelledDocument.addLabel("doc_"
 + currentId);
 labelledDocument.setContent(document
 .getField(field).stringValue());
 return labelledDocument;
 } catch (IOException e) {
 throw new RuntimeException(e);
 } finally {
 currentId++;
 }
 }
 ...

}

You initialize the iterator for paragraph vectors this way:

IndexReader reader = DirectoryReader.open(writer);

String fieldName = "title";

FieldValuesLabelAwareIterator iterator = new

 FieldValuesLabelAwareIterator(reader, fieldName);

FieldValuesLabelAwareIterator fetches
sequences from an IndexReader (a read
view on the search engine).

The content will be fetched from a
single field, not from all possible

fields in the Lucene document.

Identifier of the current document
being fetched, initialized as 0

If the current identifier is less than the
number of documents in the index,
there are more documents to read.

Fetches content from
the Lucene index

Creates a new LabelledDocument to be
used to train DL4J’s ParagraphVectors.
The internal Lucene identifier is used as
the label.

Sets the content of the
specified Lucene field into
the LabelledDocument

Creates an IndexReader
Defines the field to be used

Creates the iterator

176 CHAPTER 6 Document embeddings for rankings and recommendations
ParagraphVectors paragraphVectors = new ParagraphVectors.Builder()

 .iterate(iterator)

 .build();

paragraphVectors.fit();

Once the model has finished training, you can use the paragraph vectors to rescore
documents after the retrieval phase:

IndexSearcher searcher = new IndexSearcher(reader);

INDArray queryParagraphVector = paragraphVectors
 .getLookupTable().vector(queryString);
if (queryParagraphVector == null) {
 queryParagraphVector = paragraphVectors
 .inferVector(queryString);
}

QueryParser parser = new QueryParser(fieldName, new WhitespaceAnalyzer());
Query query = parser.parse(queryString);
TopDocs hits = searcher.search(query, 10);
for (int i = 0; i < hits.scoreDocs.length; i++) {
 ScoreDoc scoreDoc = hits.scoreDocs[i];
 Document doc = searcher.doc(scoreDoc.doc);

 String label = "doc_" + scoreDoc.doc;

 INDArray documentParagraphVector = paragraphVectors
 .getLookupTable().vector(label);
 double score = Transforms.cosineSim(
 queryParagraphVector, documentParagraphVector);

 String title = doc.get(fieldName);
 System.out.println(title + " : " + score);
}

This code shows how easy it is to fetch a distributed representation for queries and
documents without having to work on the word embeddings. For the sake of readabil-
ity, the results are again shown as scored from best to worst (even though the code
doesn’t do that). The ranking is very much in line with the actual relevance of the
returned documents, and the scores are consistent with the document relevance:

riemann hypothesis - a deep dive into a mathematical mystery : 0.77497977
riemann bernhard - life and works of bernhard riemann : 0.76711642
thomas bernhard biography - bio and influence in literature : 0.32464843
bernhard bernhard bernhard bernhard bernhard bernhard ... : 0.03593694

Sets the iterator in
ParagraphVectorsBuilds a paragraph vectors

model (still to be trained)

Lets paragraph vectors perform
(unsupervised) learning

Creates an IndexSearcher to perform the
first query that identifies the result set

Tries to fetch an existing vector
representation for the current query. This
can fail because you’ve trained the model
over search engine content, not queries.

If the query vector doesn’t exist, lets the
underlying neural network train and infer
a vector on that new piece of text (whose
label will be the entire text of the String)

Performs a search

Builds the label of
the current doc

Fetches the existing vector
for the document that has
the specified label

Calculates the score as the cosine similarity
between the query and document vector

Prints the results
on the console

http://wiki.dbpedia.org
https://en.wikipedia.org/wiki/Help:Category

177Document embeddings and related content
The two most relevant documents have high (and very close) scores, and the third has
a significantly lower score; that’s okay, because it’s not relevant. Finally, the dummy
document has a score close to zero.

6.2.1 Paragraph vector–based similarity

You can introduce a ParagraphVectorsSimilarity that uses paragraph vectors to
measure the similarity between a query and a document. The interesting part of this
similarity is the implementation of the SimScorer#score API:

@Override
public float score(int docId, float freq) throws IOException {
 INDArray denseQueryVector = paragraphVectors
 .inferVector(query);
 String label = "doc_" + docId;
 INDArray documentParagraphVector = paragraphVectors
 .getLookupTable().vector(label);
 if (documentParagraphVector == null) {
 LabelledDocument document = new LabelledDocument();
 document.setLabels(Collections.singletonList(label));
 document.setContent(reader.document(docId).getField(fieldName)
 .stringValue());
 documentParagraphVector = paragraphVectors
 .inferVector(document);
 }
 return (float) Transforms.cosineSim(
 denseQueryVector, documentParagraphVector);
}

6.3 Document embeddings and related content
As a user, you may have experienced the feeling that a certain search result is almost
good, but for some reason it isn’t good enough. Think about searching for “a book
about implementing neural network algorithms” on a retail site. You get the search
results: the first is a book titled Learning to Program Neural Nets, so you click that result
and are taken to a page containing more details about the book. You realize that you
like the book’s contents. The author is a recognized authority on the subject, but he
uses Python as the programming language for his teaching examples, which you don’t
know well enough. You may wonder, “Is there a similar book, but using Java to teach
how to program neural nets?” The retail site may show you a list of similar related
books, in the hope that if you don’t want to buy the one with examples written in
Python, you may instead buy another book with similar contents (which may include a
book that has examples in Java).

Extracts a paragraph vector for the text of the
query. If the query has never been seen before,
this will imply performing a training step for
the paragraph vector network.

Extracts the paragraph vector for
the document with the label equal

to its document identifier

If a vector with the given label (docId) can’t be
found, performs a training step over the paragraph
vector network to extract the new vector

Calculates the cosine similarity
between the query and
document paragraph vectors,
and uses it as the score for the
given document

178 CHAPTER 6 Document embeddings for rankings and recommendations
 In this section, you’ll see how to provide such related content by finding additional
documents in the search engine that are similar not just because they’re from the
same author or have some words in common, but because there is a more meaningful
semantic correlation between two such documents. This should remind you of the
semantic-understanding issue we addressed when ranking functions using document
embeddings learned with paragraph vectors.

6.3.1 Search, recommendations, and related content

To illustrate how important it is to indicate appropriate related content in a search
engine, let’s consider the stream of actions a user performs on a video-sharing plat-
form (such as YouTube). The primary (or even only) interface is the search box where
users enter a query. Suppose the user types Lucene tutorial in the search box and
clicks the Search button. A list of search results is shown, and the user eventually picks
one they find interesting. From then on, it’s common for the user to stop searching
and instead click videos in the Related box or column. Typical recommendations for a
video entitled “Lucene tutorial” could be videos with titles like “Lucene for begin-
ners,” “Intro to search engines,” and “Building recommender systems with Lucene.”
The user can click any of these recommendations; for example, if they learned
enough from the “Lucene tutorial” video, they might jump to watching a more
advanced video; otherwise, they might want to watch another introductory video, or
one introducing search engines, if they realized that additional prior knowledge was
required to understand how to use Lucene. This process of consuming retrieved con-
tent and then navigating through related content can go on indefinitely. Thus, provid-
ing relevant related content is of the utmost importance to best satisfy user needs.

 The contents of the Related box can even shift the user’s intent toward topics that
are far from the initial query. In the previous example, the user wanted to learn how
to use Lucene. The search engine provided a related item whose main topic wasn’t
directly related to Lucene: it was about building a machine learning system for gener-
ating recommendations based on Lucene. That’s a big switch, from needing informa-
tion about working with Lucene as a beginner to learning about recommender
systems based on Lucene (a more advanced topic).

 This brief example also applies to e-commerce websites. The main purpose of such
websites is to sell you something. So although you’re encouraged to search for the
product you (may) need, you’re also flooded with lots of “recommended for you”
items. These recommendations are based on factors such as these:

 Which products you searched for in the past
 Which topics you search for most
 New products
 Which products you saw (browsed or clicked) recently

One of the main points of this flood of recommendations is user retention : an e-commerce
site wants to keep you browsing and searching as long as possible, hoping that any of the
products they sell will be interesting enough for you to buy it.

179Document embeddings and related content
 This goes beyond buying and selling. Such capabilities are very important for many
applications, such as in the field of healthcare: for example, a doctor looking at a
patient’s medical records would benefit from being able to look at similar medical
records from other patients (and their histories) in order to make a better diagnosis.
We’ll focus now on implementing algorithms for retrieving related or similar docu-
ments with respect to an input document, based on their contents. First, we’ll look at
how to get the search engine to extract related content, and then you’ll see how to use
different approaches to build document embeddings to overcome some limitations of
the first approach; see figure 6.4. We’ll also take this chance to discuss how to use
paragraph vectors to perform document classification, which is useful in the context
of providing semantically relevant suggestions.

6.3.2 Using frequent terms to find similar content

In the previous chapter, you saw how the TF-IDF weighting scheme for ranking relies
on term and document frequencies to provide a measure of a document’s importance.

User enters
query

Index returns
search results

Search
results

Related content is
attached to each

search result.

Lucene tutorial

Query parser

Tokenize

content b...

Content-based
filtering
recommender

Building
recommender
systems with
Lucene

Building
recommender...

Inverted index

Building
recommender
systems with
Lucene

Filter

Filter

Query is
executed

Neural net
generates

related content

Layer 2
(hidden layer)

Layer 1
(input layer)

Layer 3
(output layer)

Each search
result is fed into
the neural net.

Query is parsed
and analyzed

Figure 6.4 Using neural networks to retrieve related content

180 CHAPTER 6 Document embeddings for rankings and recommendations
The rationale behind TF-IDF ranking is that a document’s importance grows with the
local frequency and global rarity of its terms, with respect to an input query. Building
on these assumptions, you can define an algorithm to find documents that are similar
to an input document, solely based on the search engine’s retrieval capabilities.

 Wikipedia dumps can be a good collection to evaluate the effectiveness of an algo-
rithm for retrieving related content. Each Wikipedia page contains content and useful
metadata (title, categories, references, and even some links to related content in the
“See also” section). Several available tools can be used to index Wikipedia dumps into
Lucene, such as the lucene-benchmark module (http://mng.bz/A2Qo). Suppose
you’ve indexed each Wikipedia page with its title and text into two separate Lucene
indexes. Given the search results returned by a query, you want to fetch the five most-
similar documents to show to the user as related content. To do that, you pick each
search result, extract the most important terms from its content (in this case, from the
text field), and perform another query using the extracted terms (see figure 6.5).
The first five resulting documents can be used as related content.

TF-IDF
filter

TF-IDF

travel hints

record govern left depart
west onto intersect 1997
wish move cite turn ...

Ledgewood
Circle

Ledgewood Circle

Mount Baker
Tunnel

Mount Baker
Tunnel

Inverted index

Query parser

Tokenize

Filter

Filter

Related
search
results

Search and
“related”
results

Original
search
results

Original
query

Filter text
query

Figure 6.5 Retrieving related content by using a document’s most important terms, weighted
by TF-IDF scheme

http://mng.bz/A2Qo

181Document embeddings and related content

en
en
ia

ry,
op
Suppose you run the query “travel hints” and get a search result about a traffic circle
in New Jersey called Ledgewood Circle. You take all the terms contained in the Wiki-
pedia page https://en.wikipedia.org/wiki/Ledgewood_Circle and extract those that
have at least a term frequency of 2 and a document frequency of 5. This way, you
obtain the following list of terms:

record govern left depart west onto intersect 1997 wish move cite turn
township signal 10 lane travel westbound new eastbound us tree 46
traffic ref

You then use these terms as a query to obtain the documents to be used as related con-
tent presented to the end user.

 Lucene lets you do this using a component called MoreLikeThis (MLT, http://
mng.bz/ZZlR), which can extract the most important terms from a Document and cre-
ate a Query object to be run via the same IndexSearcher used to run the original
query.

EnglishAnalyzer analyzer = new EnglishAnalyzer();
MoreLikeThis moreLikeThis = new MoreLikeThis(
 reader);
moreLikeThis.setAnalyzer(analyzer);

IndexSearcher searcher = new IndexSearcher(
 reader);

String fieldName = "text";
QueryParser parser = new QueryParser(fieldName,
 analyzer);
Query query = parser.parse("travel hints");

TopDocs hits = searcher.search(query, 10);

for (int i = 0; i < hits.scoreDocs.length; i++) {
 ScoreDoc scoreDoc = hits.scoreDocs[i];
 Document doc = searcher.doc(scoreDoc.doc);

 String title = doc.get("title");
 System.out.println(title + " : " +
 scoreDoc.score);

Listing 6.1 Searching and getting related content via MLT

Defines an Analyzer to be used while
searching and while extracting terms
from search results’ content

Creates an
MLT instance

Specifies the Analyzer
to be used by MLT

Creates an IndexSearcher

Defines which field to use wh
doing the first query and wh
looking for related content v
the MLT-generated query

Parses the user-
entered query

Creates a QueryParser

Executes the que
and returns the t
10 search results

Retrieves the Document
object related to the
current search result

Prints the current
document’s title
and score

https://en.wikipedia.org/wiki/Ledgewood_Circle
http://mng.bz/ZZlR
http://mng.bz/ZZlR
http://mng.bz/ZZlR

182 CHAPTER 6 Document embeddings for rankings and recommendations
 String text = doc.get(fieldName);
 Query simQuery = moreLikeThis.like(fieldName,
 new StringReader(text));

 TopDocs related = searcher.search(simQuery, 5);
 for (ScoreDoc rd : related.scoreDocs) {
 Document document = reader.document(rd.doc);
 System.out.println("-> " + document.get(
 "title"));
 }
}

No machine learning is involved to extract related content: you use the search
engine’s capabilities to return related documents containing the most important
terms from a search result. Here’s some example output for the “travel hints” query
and “Ledgewood Circle” search result:

Ledgewood Circle : 7.880041
-> Ledgewood Circle
-> Mount Baker Tunnel
-> K-5 (Kansas highway)
-> Interstate 80 in Illinois
-> Modal dispersion

The first three related documents (not counting the “Ledgewood Circle” document)
are similar to the original document. They all relate to something correlated with traf-
fic circles, such as a tunnel, highway, or interstate. The fourth document, though, is
completely unrelated: it deals with fiber optics. Let’s dig deeper into why this result
was fetched. To do this, you can turn on Lucene’s Explanation:

Query simQuery = moreLikeThis.like(fieldName, new StringReader(text));
TopDocs related = searcher.search(simQuery, 5);
for (ScoreDoc rd : related.scoreDocs) {
 Document document = reader.document(rd.doc);
 Explanation e = searcher.explain(simQuery, rd.doc);
 System.out.println(document.get("title") + " : " + e);
}

The explanation allows you to inspect how the terms signal, 10, travel, and new
matched:

Modal dispersion :
20.007288 = sum of:
 7.978141 = weight(text:signal in 1972) [BM25Similarity], result of:
 ...
 2.600343 = weight(text:10 in 1972) [BM25Similarity], result of:
 ...
 7.5186286 = weight(text:travel in 1972) [BM25Similarity], result of:
 ...

Extracts the content of the
text field from the current
Document

Uses MLT to generate a query based on the
content of the retrieved Document, by extracting
the most important terms (TF-IDF ranking-wise)

Performs the query
generated by MLT

Prints the title of the
Document found by the
Query generated by MLT

Gets the
Explanation for
the MLT query

183Document embeddings and related content
 1.9101752 = weight(text:new in 1972) [BM25Similarity], result of:
 ...

The issue with this approach is that MoreLikeThis extracted the most important terms
according to TF-IDF weighting. This, as you saw in the previous chapter, has the prob-
lem of relying on frequencies. Let’s look at these important terms extracted from the
“Ledgewood Circle” document text: the terms “record,” “govern,” “left,” “depart,”
“west,” “onto,” “intersect,” “1997,” “wish,” “move,” and so on don’t seem to suggest
that the document deals with a traffic circle. If you try to read them as a sentence, you
can’t derive much sense from it.

 The Explanation uses the default Lucene BM25Similarity. In chapter 5, you saw
that you can use different ranking functions and test whether you can get better
results. If you adopt the ClassicSimilarity (vector-space model with TF-IDF), you
get the following:

Query simQuery = moreLikeThis.like(fieldName, new StringReader(text));
searcher.setSimilarity(new ClassicSimilarity());
TopDocs related = searcher.search(simQuery, 5);
for (ScoreDoc rd : related.scoreDocs) {
 Document document = reader.document(rd.doc);
 System.out.println(searcher.getSimilarity() +
 " -> " + document.get("title"));
}

Here are the results:

ClassicSimilarity -> Ledgewood Circle
ClassicSimilarity -> Mount Baker Tunnel
ClassicSimilarity -> Cherry Tree
ClassicSimilarity -> K-5 (Kansas highway)
ClassicSimilarity -> Category:Speech processing

They’re even worse: both “Cherry Tree” and “Speech processing” are completely
unrelated to the original “Ledgewood Circle” document. Let’s try using a language
model–based similarity, LMDirichletSimilarity:4

Query simQuery = moreLikeThis.like(fieldName, new StringReader(text));
searcher.setSimilarity(
 new LMDirichletSimilarity());
TopDocs related = searcher.search(simQuery, 5);
for (ScoreDoc rd : related.scoreDocs) {
 Document document = reader.document(rd.doc);
 System.out.println(searcher.getSimilarity() +
 " -> " + document.get("title"));
}

The results are as follows:

LM Dirichlet(2000.000000) -> Ledgewood Circle
LM Dirichlet(2000.000000) -> Mount Baker Tunnel

4 See Chengxiang Zhai and John Lafferty, “A Study of Smoothing Methods for Language Models Applied to Ad
Hoc Information Retrieval,” http://mng.bz/RGVZ.

Uses ClassicSimilarity
instead of the default
(only for the similar
content search)

http://mng.bz/RGVZ

184 CHAPTER 6 Document embeddings for rankings and recommendations
LM Dirichlet(2000.000000) -> K-5 (Kansas highway)
LM Dirichlet(2000.000000) -> Interstate 80 in Illinois
LM Dirichlet(2000.000000) -> Creek Turnpike

Interestingly enough, these results all sound good—all of them relate to infrastruc-
tures for cars, such as highways or tunnels.

MEASURING THE QUALITY OF RELATED CONTENT USING CATEGORIES

In chapter 5, you learned how important it is to not do single experiments. Although
they allow a fine-grained understanding of how retrieval models work in some cases,
they can’t provide an overall measure of how well such a model works on more data.
Because Wikipedia pages come with categories, you can make a first evaluation of the
accuracy of related content using them. If documents found by the related-content
algorithm (in this case, Lucene’s MoreLikeThis) fall in any of the original document
categories, you can consider them relevant. In real life, you may want to do this evalu-
ation slightly differently: for example, you may also consider a suggested document
relevant if its category is a subcategory of the original document category. You can do
this (and much more) by building a taxonomy, extracting it from Wikipedia
(https://en.wikipedia.org/wiki/Help:Category), or by using a DBpedia project (a
crowdsourced effort to build structured information about content in Wikipedia;
http://wiki.dbpedia.org). But for the sake of this chapter’s experiments, you can
define an accuracy measure as the sum of the times a piece of related content shares
one or more categories with the original document, divided by the number of related
documents retrieved.

 Let’s use the Wikipedia page for the soccer player Radamel Falcao, which has lots
of categories (1986 births, AS Monaco FC players, and so on). Using BM25Similarity
to rank the MLT-generated Query gives the following top five related documents, with
the shared category in parentheses (if any):

Bacary Sagna (*Expatriate footballers in England*)
Steffen Hagen (*1986 births*)
Andrés Scotti (*Living people*)
Iyseden Christie (*Association football forwards*)
Pelé ()

The first four results have a category in common with Radamel Falcao’s Wikipedia
page, but “Pelè” doesn’t. Therefore, the accuracy is 4 (the number of results sharing a
category with Radamel Falcao’s page) divided by 5 (the number of returned similar
results), or 0.8.

 To evaluate this algorithm, you can generate a number of random queries and
measure the defined average accuracy over the returned related content. Let’s gener-
ate 100 queries using words that exist in the index (to make sure at least one search
result is returned), and then retrieve the 10 most similar documents using paragraph
vectors and cosine similarity. For each of these related documents, check whether one
of its categories also appears in the search result.

https://en.wikipedia.org/wiki/Help:Category
http://wiki.dbpedia.org

185Document embeddings and related content

int topN = 10;
String[] originalCategories = doc
 .getValues("category");
Query simQuery = moreLikeThis.like(fieldName,
 new StringReader(s));
for (Similarity similarity : similarities) {
 searcher.setSimilarity(similarity);
 TopDocs related = searcher.search(simQuery,
 topN);
 double acc = 0;
 for (ScoreDoc rd : related.scoreDocs) {
 if (rd.doc == scoreDoc.doc) {
 topN--;
 continue;
 }
 Document document = reader.document(rd.doc);
 String[] categories = document.getValues("category");
 if (categories != null && originalCategories != null) {
 if (find(categories, originalCategories)) {
 acc += 1d;
 }
 }
 }
 acc /= topN;
 System.out.println(similarity + " accuracy : " + acc);
}

The corresponding output with BM25Similarity, ClassicSimilarity, and LMDirichlet-
Similarity looks like this:

BM25(k1=1.2,b=0.75) accuracy : 0.2
ClassicSimilarity accuracy : 0.2
LM Dirichlet(2000.000000) accuracy : 0.1

Running this over 100 randomly generated queries and the corresponding 10 top
results gives the following average accuracies:

BM25(k1=1.2,b=0.75) average accuracy : 0.09
ClassicSimilarity average accuracy : 0.07
LM Dirichlet(2000.000000) average accuracy : 0.07

Given the fact that the best possible accuracy is 1.0, these are low accuracy values. The
best one finds a related document with a matching category only 9% of the time.

 Although this is a suboptimal result, it’s useful to reason about it and the availabil-
ity of the category information in each document. First, did you choose a good metric
to measure the “aboutness” of the related content retrieved with this approach? Cate-
gories attached to Wikipedia pages are usually of good quality, and the “Ledgewood

Listing 6.2 Fetching related content and calculating accuracy

Gets the categories associated
with the original Wikipedia
page returned by a query

Creates the related-content
query with MLT

Runs the same query with
multiple Similarity
implementations to evaluate
what works best

Uses a specific Similarity
in the IndexSearcher

Performs the related-
content query

Initializes the
accuracy to zero

Skips a result if it’s equal
to the original document

Retrieves the related Document

If any category of the
related content is contained
in the original Document,
increases the accuracy

Divides the accuracy by
the number of returned
related documents

186 CHAPTER 6 Document embeddings for rankings and recommendations
Circle” page’s categories are “Transportation in Morris County” and “Traffic circles in
New Jersey.” A category like “Traffic circles” would also have been appropriate, but
more generic. So the level of detail in the choice of relevant categories attached to
such articles can vary and influence the accuracy estimates you calculate. Another
thing to analyze is whether the categories are keywords taken from the text. In the
case of Wikipedia, they aren’t, but in general this may not always be the case. You can
think about extending the way you measure accuracy by including not just categories
a document belongs to, but also important words or concepts mentioned in the text.
For example, the “Ledgewood Circle” page contains a section about a controversy that
arose back in the 1990s about a tree planted in the middle of the traffic circle. Such
information isn’t represented in any way in the categories. If you want to be able to
extract concepts discussed on a page, you can add them as additional categories (in
this case, it might be a generic “Controversies” category). You can also think of this as
tagging each document with a set of generic labels: these can be categories, concepts
mentioned in the text, important words, and so on The bottom line is that your accu-
racy measure is as good as the labels or categories attached to documents. On the
other hand, the way you build and use categories can have a significant impact on
your evaluations.

 Second, did you use the metric appropriately? You extracted the categories of the
input document and the related content to see if any category belonged to both. The
“Ledgewood Circle” page doesn’t have the “Traffic circle” category, but its category
“Traffic circles in New Jersey” could be thought of as a subcategory of a more generic
“Traffic circle” category. Extending this reasoning to all the categories in Wikipedia,
you could imagine building a tree as shown in figure 6.6: the nodes are categories,
and the deeper a node is, the more specific and fine-grained its category will be.

 In this experiment, you could change the rule for matching categories from “at
least one category should be shared between both the input and related content” to
“at least one category should be shared between both the input and related content,
or one of the categories of a certain document should be a specification of another
category in the other document.” If you know more about what kinds of relationships
exist between categories (and labels in general), you can use that information, too.
DBpedia can be used as one such source of information about relationships that exist
between pages. Imagine that the algorithm returns the “New Jersey” page as related to
“Ledgewood Circle.” The main thing they have in common is that Ledgewood Circle
is located in the state of New Jersey, specifically in Roxbury Township. If such informa-
tion is available, it’s a great link you can navigate to measure the relevance of related
content. For example, you could mark as relevant related documents that have any
relation to the input document, or only mark documents relevant when they’re linked
by any of a subset of existing relations.

 The DBpedia project records many such relations between pages from Wikipedia.
You can think of it as a graph whose nodes are pages; arcs are relations (with a name).
Figure 6.7 shows the relationships between Ledgewood Circle and New Jersey using
RelFinder (www.visualdataweb.org/relfinder).

www.visualdataweb.org/relfinder

187Document embeddings and related content

arts

economy

traffic circles in New Jersey

Root category

politics

healthcare

entertainment

transport

transport by country

transportation in the united states

transportation in the united states by state

transportation in New Jersey

roads in New Jersey

Figure 6.6 Building a taxonomy
from Wikipedia categories

north

Che

south

isPartOf

Randolph, New Jersey

Wharton, New Jersey

Hopatcong, New Jersey

New JerseyLedgewood Circle

isPartOf
isPartOf

isPartOf

east

east i

state

Mine Hill Town

Mount Arlington, New...

timezone

north

isPartOf

isPartOfsubdivision...

Eastern Daylight Time

Morris County, New Je...

southeast

Eastern Time Zone

location

eZone

subdivision...

Roxbury Township, Ne...

timezoneDst

timezone

timezoneDst

timeZ
timezone

Figure 6.7 Navigating relationships
between the “Ledgewood Circle” and
“New Jersey” pages in DBpedia

188 CHAPTER 6 Document embeddings for rankings and recommendations
Having a good hierarchical taxonomy for categories is important when you’re using
them to measure the accuracy of results from MoreLikeThis and other related-
content algorithms. On the other hand, information about categories and their rela-
tions often isn’t available in practice; in such cases, methods based on unsupervised
learning can help you find out whether two documents are similar. Let’s think about
algorithms to learn vector representations of text, like word2vec (for words) or para-
graph vectors (for sequences of words): when you plot them on a graph, similar words
or documents will be located near each other. In that case, you can group the closest
vectors together to form clusters (there are several ways to do that, but we won’t cover
them here), and consider related words or documents as belonging to the same clus-
ter. In the next section, we’ll look at one of the more straightforward usages of docu-
ment embeddings: finding similar content.

6.3.3 Retrieving similar content with paragraph vectors

A paragraph vector learns a fixed (distributed) vector representation for each
sequence of words fed into its neural network architecture. You can feed an entire doc-
ument into the network, or portions of it, such as sections of an article, paragraphs, or
sentences. It’s up to you to define the granularity. For example, if you feed the network
entire documents, you can ask it to return the most similar document it has already
seen. Each ingested document (and generated vector) is identified by a label.

 Let’s get back to the problem of finding related content for a search engine on
Wikipedia pages. In the previous section, we used Lucene’s MoreLikeThis tool to
extract the most important terms and then used them as a query to fetch related con-
tent. Unfortunately, the accuracy rates were low, primarily for these reasons:

 The most important terms extracted by MoreLikeThis were okay, but could be
better.

 If you look at the set of important terms from a document, you may not recog-
nize what kind of document they came from.

Let’s look again at our friend the “Ledgewood Circle” page. According to MLT, the
most important terms are as follows:

record govern left depart west onto intersect 1997 wish move cite turn
township signal 10 lane travel westbound new eastbound us tree 46
traffic ref

By no means would it be possible to say that these terms come from the “Ledgewood
Circle” page, so you can’t expect very accurate related-content suggestions. With doc-
ument embeddings, there’s no explicit information you can look at (that’s a general
problem in deep learning: it’s not easy to understand what these black boxes do). A
paragraph vector’s neural network adjusts each document’s vector values during train-
ing, as explained in chapter 5.

 Let’s fetch related content by finding the nearest vectors to the vector representing
the input document, using cosine similarity. To do this, you first run a user-entered

189Document embeddings and related content
query—for example, “Ledgewood Circle”—that returns search results. For each such
result, you extract its vector representation and look at its nearest neighbors in the
embeddings space. This is like navigating on a graph or map that has all documents
plotted according to their semantic similarity. You go to the point that represents
“Ledgewood Circle,” find the nearest points, and see which documents they repre-
sent. You’ll notice that the “Ledgewood Circle” vector’s neighbors will represent docu-
ments dealing with traffic and transportation topics; if you instead pick, for example,
the vectors of some documents about music, you’ll see they’ll be located far away from
“Ledgewood Circle” and its neighbors in the embedding space (see figure 6.8).

Similarly to what you do for ranking, you first feed the paragraph vector network the
indexed data:

File dump = new File("/path/to/wikipedia-dump.xml");
WikipediaImport wikipediaImport = new WikipediaImport(dump,
 languageCode, true);
wikipediaImport.importWikipedia(writer, ft);
IndexReader reader = DirectoryReader.open(writer);
FieldValuesLabelAwareIterator iterator = new
 FieldValuesLabelAwareIterator(reader, fieldName);
ParagraphVectors paragraphVectors = new ParagraphVectors.Builder()
 .iterate(iterator)
 .build();
paragraphVectors.fit();

0.75

0.50

0.25

0.2 0.4 0.6 0.8

Texas State Highway 186

s State Highway Loop 150

Ledgewood Circle
Farm to Market Road 999

Waylon’s Greatest Hits, Vol. 2

Miss Peggy Lee Sings the Blues

Banjo & Sullivan: The Ultimate Collection

EMI Songbook Series
An Introduction to The Mo

to Market Road 1000
Jersey Shore Pine Creek and Buffalo Railway

Figure 6.8 Paragraph vectors for “Ledgewood Circle” and its neighbors, compared with music-related
paragraph vectors

190 CHAPTER 6 Document embeddings for rankings and recommendations
Once that’s done, you can use DL4J’s built-in nearestLabels method to find the doc-
ument vectors closest to the “Ledgewood Circle” vector. Internally, this method uses
cosine similarity to measure how close two vectors are:

TopDocs hits = searcher.search(query, 10);
for (int i = 0; i < hits.scoreDocs.length; i++) {
 ScoreDoc scoreDoc = hits.scoreDocs[i];
 Document doc = searcher.doc(scoreDoc.doc);
 String label = "doc_" + scoreDoc.doc;
 INDArray labelVector = paragraphVectors
 .getLookupTable().vector(label);
 Collection<String> docIds = paragraphVectors
 .nearestLabels(labelVector, topN);
 for (String docId : docIds) {
 int docId = Integer.parseInt(docId.substring(4));
 Document document = reader.document(docId);
 System.out.println(document.get("title"));
 }
}

The results are as follows:

Texas State Highway 186
Texas State Highway Loop 150
Farm to Market Road 1000
Jersey Shore, Pine Creek and Buffalo Railway
Farm to Market Road 999

Just from looking at this simple example, the results seem to be better than those
given by MLT. There are no off-topic results: they all relate to transportation (whereas
MLT returned the “Modal dispersion” page, which refers to optics).

 To confirm your good feelings, you can do the same thing you did to measure the
effectiveness of MoreLikeThis by calculating the average accuracy of this method. To
make a fair comparison, use the same approach of checking whether any of the search
result’s categories (such as “Ledgewood Circle”) also appear in the related-content
categories. Using the same randomly generated queries used when evaluating MLT,
paragraph vectors yield the following average accuracy:

paragraph vectors average accuracy : 0.37

The best average accuracy for MLT was 0.09; 0.37 is much better.
 Finding similar documents with close semantics is one of the key advantages of

using document embeddings and is also why they’re so useful in natural language pro-
cessing and search. As you’ve seen, they can be used in various ways, including for
ranking and to retrieve similar content. Paragraph vectors aren’t the only way you can
learn document embeddings, though. You used averaged word embeddings in chap-
ter 5, but researchers keep working on better and more advanced ways of extracting
word and document embeddings.

Runs the original query

For each result, builds a label

Finds the labels of the
nearest vectors to the
search result vector

Fetches the document
embedding for the
search result

For each nearest vector, parses its label and
fetches the corresponding Lucene Document

191Document embeddings and related content
6.3.4 Retrieving similar content with vectors
from encoder-decoder models

Chapters 3 and 4 introduced a deep neural network architecture called the encoder-
decoder (or sequence-to-sequence [seq2seq]) model. You may remember that this model
consists of an encoder LSTM network and a decoder LSTM network. The encoder
transforms an input sequence of words into a fixed-length dense vector as output; this
output is the input to the decoder, which turns it back into a sequence of words as the
final output (see figure 6.9). You’ve used such an architecture to produce alternative
query representations and to help users type a query. In this case, you’re instead inter-
ested in using the output of the encoder network, the so-called thought vector.

The reason it’s called a thought vector is that it’s meant to be a compressed represen-
tation of the input text sequence, which, when decoded correctly, generates a desir-
able output sequence. Seq2seq models, as you’ll see in the next chapter, are also used
for machine translation; they can transform a sentence in an input language into a
translated output sequence. You want to extract such thought vectors for the input
sequences (documents, sentences, and so on) and use them the same way you used
paragraph vectors to measure similarity between documents.

 First, you need to hook into the training phase so you can “save” the embeddings
as they’re generated one step at a time. You place them in a WeightLookupTable,
which is the entity responsible for holding word vectors in word2vec and paragraph
vectors in ParagraphVectors objects. With DL4J, you can hook into the training
phase with a TrainingListener that captures the forward pass as the thought vector is
generated by the encoder LSTM. You extract the input vector and transform it back
into a sequence by retrieving words one at a time from the original corpus. Then, you
extract the thought vector and put the sequence with its thought vector into the
WeightLookupTable.

public class ThoughtVectorsListener implements TrainingListener {
 @Override
 public void onForwardPass(Model model,
 Map<String, INDArray> activations) {
 INDArray input = activations.get(
 inputLayerName);

Listing 6.3 Extracting thought vectors during encoder-decoder training

Thought
vector

LSTM LSTMLSTM LSTM LSTMLSTM

in Alresearch intelligence hypeartificial

Encoder Decoder

Figure 6.9 Encoder-
decoder model

Fetches the network input (a
sequence of words transformed
into vectors) from the input layer

192 CHAPTER 6 Document embeddings for rankings and recommendations
 INDArray thoughtVector = activations.get(
 thoughtVectorLayerName);
 for (int i = 0; i < input.size(0); i++) {
 for (int j = 0; j < input.size(1); j++) {
 int size = input.size(2);
 String[] words = new String[size];
 for (int s = 0; s < size; s++) {
 words[s] = revDict.get(input.getDouble(i, j, s));
 }
 String sequence = Joiner.on(' ')
 .join(words);
 lookupTable.putVector(sequence, thoughtVector
 .tensorAlongDimension(i, j));
 }
 }
 }
}

With these vectors, you can reach the same level of accuracy as paragraph vectors; the
difference lies in the fact that you can decide how to influence them. These thought
vectors are generated as an intermediate product of encoder and decoder LSTM net-
works. You can decide what to include in the encoder input and what to include in the
decoder output in the training phase. If you put documents belonging to the same
category at the edges of the network, the generated thought vectors will learn to out-
put documents whose categories are the same. Therefore, you can achieve much
higher accuracy.

 If you take the encoder-decoder LSTM defined in chapters 3 and 4 and train it
with documents belonging to the same category, you’ll get an average accuracy of
0.77. That’s much higher than even paragraph vectors!

Summary
 Paragraph vector models provide distributed representations for sentences and

documents at configurable granularity (sentence, paragraph, or document).
 Ranking functions based on paragraph vectors can be more effective than old-

school statistical models and those based on word embedding because they cap-
ture semantics at a sentence or document level.

 Paragraph vectors can also be used to effectively retrieve related content based
on document semantics, to decorate search results.

 Thought vectors can be extracted from seq2seq models to retrieve related con-
tent based on document semantics, to decorate search results.

Fetches the thought
vector from the
thought-vector layer

Rebuilds the
sequence one word
at a time from the
input vector

Merges the words
together in a
sequence (as a String)

Records the thought vector associated
with the input text sequence

Part 3

One step beyond

In part 1 of this book, you got a basic understanding of what search engines
and deep neural networks are, how they work, and how they can work together
to create smarter search engines. Part 2 dove into the technical details of major
deep neural network applications for search engines, mostly using recurrent
neural networks and word/document embeddings to give users more relevant
results. In this part of the book, we’ll tackle more-advanced topics and chal-
lenges by extending the applications of neural networks to two new areas:
searching text in multiple languages using machine translation (chapter 7), and
searching for images using convolutional neural networks (chapter 8). Finally,
in chapter 9, we’ll look at the thing that makes the biggest difference in produc-
tion scenarios: performance, whether plain speed when training and predicting,
or accuracy of results. You’ll see an example of how to tune a neural network
model to reach good accuracy in a reasonable training time. In addition, we’ll
look at how to deal with continuous streams of data for neural search.

Searching across languages
In this chapter, we’ll focus on expanding your ability to serve users who speak, read,
and write queries in languages other than the language in which documents are
written. Specifically, you’ll see how to use machine translation to build a search
engine that can automatically translate queries so those queries can be used to
search and deliver content from multiple languages. We’ll spend some time look-
ing at how this translation ability can be useful in various contexts, from common
web searches to more specific cases where it’s important not to miss search results
due to a language barrier. The benefit of being able to automatically translate que-
ries is that your search engines gain the ability to reach more users, without requir-
ing you to store multiple copies of each text document in different languages.

This chapter covers
 Cross-language information retrieval

 Statistical machine translation

 Seq2seq models for machine translation

 Word embeddings for machine translation

 Comparing the effectiveness of machine translation
methods for search
195

196 CHAPTER 7 Searching across languages
7.1 Serving users who speak multiple languages
Many of the scenarios presented in earlier chapters focused on vertical search
engines, or search engines that are specific to an often small, well-defined domain,
such as a search engine for movie reviews. In this chapter, which explores the chal-
lenge of retrieving useful information for users speaking different languages, there’s
no better fit than web search, or searching over data from everywhere on the World
Wide Web. We use web search on an everyday basis with search engines like Google
Search, Bing, and Baidu. Although a lot of online content is written in languages spo-
ken by a huge number of people (like English), there are still many users who need to
retrieve information and hope to find that information by using their native language.

 You may wonder what the point of this discussion is. If you have a Wikipedia page
written in Italian, it will surely be indexed by, for example, Google Search, and you’ll
be able to search for it by writing a query on Google Search in Italian, as in figure 7.1.

Realistically, though, when searching, especially for tech-related topics, it’s often expe-
dient to write queries in English. This is because the amount of information available
in English, especially for tech topics, often far outweighs the amount written in other
languages. A user whose first language is Italian (or Danish, or Chinese, and so on)
writes a query in English to maximize the chance of getting as many relevant results as
possible. Those results will then include only documents written in English. And the
fact is that search results written in English aren’t always as helpful to users as results
written in their native language. Let me explain by showing what you can do for a
query written in English from a user whose native language is Italian. As you can see in
figure 7.2, the query written in English also returned a search result in Italian, shown
on the right. In cases like this, when a query is performed by a logged-in user, the
search engine can look up the user’s native language and include results in that lan-
guage in addition to results that match the original query (in this case, in English).

Figure 7.1 Searching for “rete neurale,” Italian for “neural network”

197Serving users who speak multiple languages
How is this helpful for the user? Think about reading your favorite book in your native
language, as opposed to reading it in a language that you studied at school. Even
though you may be able to understand the content of the foreign-language version of
the book, it may take you extra time and effort, and you may miss some subtle or espe-
cially difficult parts. The same applies to documents on the web. The Wikipedia entry
for “artificial neural network,” for example, exists in many different languages, mak-
ing it more easily understood by more users. Imagine a search engine that not only
shows the English entry (which matches a query written in English), but also high-
lights the entry written in the native language of the user who entered the query. This
search engine better serves the needs of more users.

 You can equip your search engine to return both types of results by incorporating
machine translation (MT) tools into your search engine. With machine translation, a
program can translate a sentence from an input language into the corresponding ver-
sion in a target language. In the rest of this chapter, you’ll see how to use MT tools to
perform text translation at query time, resulting in improved recall and precision for
search engine queries across multiple languages.

7.1.1 Translating documents vs. queries

Imagine having to build a search engine with capabilities similar to the ones briefly
outlined in the previous section, for a nonprofit entity that supports refugees around
the world with administrative and legal services. A search engine for such an organiza-
tion would help refugees find appropriate documentation, for example, to fill out asy-
lum requests. Each and every country around the world probably requires different
documents and forms to be completed and signed; requirements may also vary
depending on the country the applicant comes from. Users of such a platform may
speak their native language but not the language of their host country. So if refugees
from Iceland are seeking asylum in Brazil, they’ll need to retrieve documents that may

Figure 7.2 Searching for “artificial neural network” and getting results in Italian as well as English

198 CHAPTER 7 Searching across languages
be written in Portuguese. If users don’t know Portuguese, how can they know what to
include in the search query for the information they’re seeking?

 Regardless of the situation, you can assume that users want to be able to retrieve
content in their mother tongue whenever possible. There are two straightforward
ways to do this using MT:

 Use MT programs to translate queries in order to find matches in more than
one language.

 Have content created in one language, and use MT programs to create trans-
lated copies of the documents so queries can match the translated versions.

These options aren’t mutually exclusive: you can have one or the other or both. What
fits best depends on the use case.

 Consider customer reviews on sites like Amazon and Airbnb. Such reviews are often
written in the reviewer’s native language, so for the purpose of easy consumption of
search results, it may be good to translate those reviews when they reach the user.

 Another good case for translating search results is question-answering systems.
Answering questions uses an information retrieval system where the user specifies
their intent in the form of a question written in natural language (such as “Who was
elected president of U.S.A. in 2009?”). The system replies with an answer: a piece of
(hopefully informative) text related to the question (such as “Barack Obama”).

 On the other hand, for web search, as discussed in the previous section, it may be
good to translate the query to get results in different languages, because doing so
allows more choices for end users. Once that’s done, you need to make an important
decision about ranking: how do you rank results that come from the translated query?

 In the case of a refugee searching in Icelandic for documents written in Portu-
guese, if the user searches for “pólitísk hæli” (the Icelandic version of “politic asy-
lum”), the query is translated into Portuguese (“asilo politico”). In such use cases,
results from both the original and translated queries are retrieved. For the specific use
case of a user who’s an asylum seeker, the documents returned from the translated
query are more important, because they’re the ones the user will need to fill out and
submit to the local authorities.

 In web search, that may not be always the case. Let’s get back to the example of the
Wikipedia page for “artificial neural networks.” The English version of the page has
much more information than the Italian version. Depending on various factors, such
as the user’s interests and preferred topics, the search engine may decide to rank the
translated page lower than the original, because it’s less informative. If a deep learn-
ing researcher performs a web search for “artificial neural networks,” the Italian ver-
sion of the “artificial neural network” page won’t be useful to them, because the
amount of information is less, compared to the original English page. If, instead, the
user is a newbie on the topic, reading a page in their native language will probably
help them grasp the topic. Although a lot depends on the use case, if you decide to
use MT in a search engine, it’s a good idea to rank the additional results the same as
or higher than the “normal” results.

http://opus.nlpl.eu
https://en.wikipedia.org/wiki/Translation_Memory_eXchange

199Serving users who speak multiple languages
 The rest of this chapter focuses on translating queries rather than translating doc-
uments; the principles are similar whether translating short or long pieces of text. On
the other hand, from a technical perspective, working with very short text (such as a
search query) or very long text (such as a long article) is usually more difficult than
working with single sentences.

7.1.2 Cross-language search

Let’s take a quick look at how to incorporate MT into a search engine to translate user
queries. In web search, the MT task is usually performed in the search engine; noth-
ing is said to the user about it. For the other use cases mentioned, users may want to
specify the desired language for the search results; an asylum seeker will know the best
language for the legal documents they need, but this information may be not available
to the search system.

 Going forward, I’ll assume you have a set of MT tools that can translate from the
language of the user query to other languages and that your search engine contains
documents in many different languages—a common setup for cross-language infor-
mation retrieval for web search. The tools for performing MT can be implemented in
many different ways; as we go continue through the chapter, you’ll see a few different
methods of MT. It’s common for such tools to be able to translate text from a source
language to a target language. Imagine you have a query written in Icelandic, as men-
tioned earlier, and you have three models that can translate from Icelandic to English,
from English to Icelandic, and from Italian to English, respectively. The search engine
needs to be able to choose the right tool for translating the query. If you pick the
Italian-to-English tool, then no translation or, even worse, a bad translation may come
from the model. This may cause retrieval of unwanted results, which of course is bad.
Even when the inappropriate model gives no translation, CPU and memory resources
are used, and therefore the attempt may negatively impact performance without giv-
ing a useful outcome.

 To mitigate such issues, it’s a good practice to place a language detector program on
top of MT models. A language detector receives an input text and outputs the lan-
guage of the input sequence. You can think of it as a text classifier whose output
classes are language codes (en, it, ic, pt, and so on). With the language detector pro-
viding the user’s query language, you can choose the right MT model to translate the
query. The output text from all of the MT models will be sent to the search engine as
an additional query together with the original query; you can think of it as using a
Boolean OR operator between the original and translated versions of the query (such
as “pólitísk hæli OR political asylum”). Figure 7.3 shows an example flow for using MT
at query time.

 Let’s look at how cross-language search can be implemented on top of Apache
Lucene. For now, we’ll keep the MT part a bit abstract. In the following sections, we’ll
go over different types of MT models and examine the advantages and weaknesses of
each. In particular, we’ll focus on why most research and industries have switched

200 CHAPTER 7 Searching across languages
from statistical machine translation (based on statistical analysis of probability distribu-
tions for words and phrases) to neural machine translation based on the use of neural
networks.

7.1.3 Querying in multiple languages on top of Lucene

Let’s continue with the example of asylum seekers. Suppose I’m an Italian refugee in
the United States, and I need to fill out some legal documents. I type a query in Ital-
ian, looking for documents to enter the United States. Here’s what the search engine
should do:

> q: documenti per entrare negli Stati Uniti

> detected language 'ita' for query

> found 1 translation

> t: documents to enter in the US

> 'documenti per entrare negli ...' parsed as:

 '(text:documenti text:per text:entrare text:negli text:Stati text:Uniti)'

 OR

 '(text:documents text:to text:enter text:in text:the text:US)'

Language is
detected

Query parser

User query string

Parsed user query

Translated query

User query string

lang detect

decoder en -> it

decoder en -> de

Parser delegates
query translation

Index

Searcher

User enters
query

Query is
translated from

English to Italian
and German

Original and
translated queries

are executed

Figure 7.3 Query
translation flow

Input query
Language detection output

Translated query

Enhanced query containing both the
original and translated queries
separated by a Boolean OR clause

201Serving users who speak multiple languages
As you may guess, the “magic” happens during the parsing of the user-entered query.
Here’s a simplified sequence of operations performed by the query parser:

1 The query parser reads the input query.
2 The query parser passes the input query to the language detector.
3 The language detector determines the language of the input query.
4 The query parser chooses MT models that can translate the identified language

into other languages.
5 Each selected MT model translates the input query into another language.
6 The query parser aggregates the input and the translated text in OR clauses of a

Boolean query.

You’ll extend a Lucene QueryParser whose main method #parse transforms a String
into a Lucene Query object.

 @Override
 public Query parse(String query) throws ParseException {

 BooleanQuery.Builder builder = new BooleanQuery
 .Builder();
 builder.add(new BooleanClause(super.parse(query),
 BooleanClause.Occur.SHOULD));

 ...
 }

Then the input query language is extracted by a language detector tool. (There are
many different ways that can be done; for now, we won’t focus on that.) You’ll use
the LanguageDetector tool from the Apache OpenNLP project (http://opennlp
.apache.org).

 Language language = languageDetector.
 predictLanguage(query);
 String languageCode = language.getLang();

Here you assume you’ve already loaded the models to perform machine translation,
such as in a Map whose key is the language code (en for English, it for Italian, and so
on) and whose value is a Collection of TranslatorTools. For the moment, it doesn’t
matter how TranslatorTool is implemented; we’ll focus on that in later sections.

Listing 7.1 Creating a BooleanQuery containing the original query

Listing 7.2 Detecting the language of the query

Creates a Boolean
query in Lucene

Parses the original user query
and adds it to the Boolean
query as an OR clause

Performs language detection

Gets the language code
(en, it, and so on)

http://opennlp.apache.org
http://opennlp.apache.org
http://opennlp.apache.org

202 CHAPTER 7 Searching across languages

 private Map<String,Collection<TranslatorTool>> perLanguageTools;

 @Override
 public Query parse(String query) throws ParseException {
 ...
 Collection<TranslatorTool> tools =
 perLanguageTools.get(languageString);
 ...
 }

Now that you have the MT tools loaded, you can use them to create additional Bool-
ean clauses to be added to the final query.

 for (TranslatorTool tt : tools) {
 Collection<Translation> translations = tt.
 translate(query);

 for (Translation translation : translations) {
 String translationString = translation.
 getTranslationString();
 builder.add(new BooleanClause(super.parse(
 translationString), BooleanClause.Occur.SHOULD));
 }
 }

 return builder.build();

With this code, you’re all set with a query parser that lets you create queries in multi-
ple languages. The missing part is implementing the TranslatorTool interface in the
best possible way. To do that, we’ll take a quick journey into different ways of address-
ing the MT task. First we’ll look at a statistical MT tool, and then we’ll move to meth-
ods based on neural networks; this will help you understand the main challenges of
translating text and how using neural network–based models generally provides better
MT models.

7.2 Statistical machine translation
Statistical machine translation (SMT) uses statistical approaches to predict what target
word or sentence is the most probable translation of an input word or sentence. For
example, an SMT program should be able to answer the question, “What’s the most
probable English translation of the word ‘hombre’?” To do that, you train a statistical
model over a parallel corpus. A parallel corpus is a collection of text fragments (docu-
ments, sentences, or even words) where each piece of content comes in two versions:

Listing 7.3 Choosing the correct TranslatorTools

Listing 7.4 Translating a query and building a query with the translated text

Gets the tools that can
translate from the detected
language into other languages

Translates
the input

query

Iterates over all
possible translations
of the input query

Gets the translation text (each translation
consists of the text and its score,
representing the quality of the translation)

Parses the translated
query and adds it to

the Boolean query to
be returned

Finalizes the process of
building the Boolean query

203Statistical machine translation
the source language (such as Spanish) and the target language (such as English).
Here’s an example:

s: a man with a suitcase
t: un hombre con una maleta

A statistical model is a model that can calculate the probability of source and target text
fragments. A correctly trained statistical model for MT will answer the question about
the most probable translation for a text fragment by providing the translation
together with its probability:

hombre -> man (0.333)

The probability of a translated text fragment will help you decide whether the transla-
tion can be considered good and therefore whether it should be used for search. An
SMT model evaluates the probability of many possible translations and only returns
the one with the highest probability. If you ask the SMT model to output all the prob-
abilities for the example query “hombre,” you’ll see high probabilities for good trans-
lations and low probabilities for unrelated translations, as in this sample output:

man (0.333)
husband (0.238)
love (0.123)
...
woman (0.003)
truck (0.001)
...

Under the hood, the SMT model calculates the probability of each possible transla-
tion and records the translation that has the best probability. Such an algorithm looks
like this in pseudocode:1

f = 'hombre'
for (each e in target language)
 p(e|f) = (p(f|e) * p(e)) / p(f)

 if (p(e|f) > pe~)

 e~ = e

 pe~ = p(e|f)

e~ = best translation, the one with highest probability
pe~ = the probability of the best translation

The algorithm isn’t complex; the only missing piece is how to calculate probabilities
like p(e) and p(f |e). In information theory and statistics, p(f |e) is the conditional
probability of e, given f. Generally speaking, you can think of it as the probability of

1 See also Bayes’ theorem, https://en.wikipedia.org/wiki/Bayes%27_theorem.

Calculates the probability of the
current target word given the
source word “hombre”

If the probability is higher than the current highest
probability, you have a new best translation.

Records the best
translation

Records the best
translation
probability

https://en.wikipedia.org/wiki/Bayes%27_theorem

204 CHAPTER 7 Searching across languages
the event e occurring as a consequence of event f. In this case, “events” are pieces of
text! Without going too deep into statistics, you can think of word probabilities relying
on counting the frequencies of words. For example, p(man) would be equal to the
number of times the word man appears in the parallel corpus. Similarly, you can
assume p(hombre|man) is equal to the number of times the word man appears in a
sentence in the target language that’s paired with a sentence in Spanish containing
hombre. Let’s look at the following three parallel sentences: two of them contain man in
the source language and hombre in the target sentence; the other contains man in the
source sentence but not hombre in the target:

s: a man with a suitcase
t: un hombre con una maleta

s: a man with a ball
t: un hombre con una pelota

s: a working man
t: un senor trabajando

In this case, p(hombre|man) equals 2. As another example, in the parallel sentences,
p(senor|man) equals 1 because the third parallel sentence contains man in the source
sentence and senor in the target sentence. In summary, hombre is translated to man
because, among the many possible alternatives, man is the most frequently used
English word when a Spanish sentence contains hombre.

 You’ve learned some of the basics of SMT. You’ll also get to know some of the chal-
lenges that make this task harder than it may seem from this introduction; they’re
important to know, because neural machine translation is less affected by such prob-
lems—part of the rationale behind the current switch from SMT to neural machine
translation (NMT).

7.2.1 Alignment

In the previous section, you learned that you can build a statistical model to trans-
late text. This translation happens by estimating probabilities based on the fre-
quency of words. In practice, though, there are other factors at play. For example,
the co-occurrence of two words f and e in two source and target sentences doesn’t
mean one is the translation of the other. In the previously mentioned sentences, the
words a and hombre co-occur more frequently than hombre and man:

s: a man with a suitcase
t: un hombre con una maleta

s: a man with a ball
t: un hombre con una pelota

s: a working man
t: un senor trabajando

So p(hombre|a) = 3, and p(hombre|man) = 2 Does that mean a is English for hombre?
Of course not! This information is important when deciding whether the right transla-
tion for hombre is a or man.

205Statistical machine translation
 But translated words aren’t always perfectly aligned. Consider the third parallel
sentence: the correct translation for man is senor in that context. But man is in the
third position in the source sentence, whereas senor is in the second position in the
target sentence:

s: a working man
t: un senor trabajando

The task of dealing with words placed at different positions in source and target sen-
tences is called word alignment, and it plays an important role in the effectiveness of
SMT. SMT models usually define an alignment function that maps, for example, a Span-
ish target word at position i to an English source word at position j . The mapping for
the sentence transforms the positions according to the indices 1 → 1, 2 → 3, 3 → 2:

s: a working man
 ↓ ↙
t: un senor trabajando

Another example where word alignment plays an important role is when there’s no
one-to-one mapping between words in different languages. This is especially true with
languages that don’t originate from the same root language. Let’s take another exam-
ple of an English-to-Spanish parallel sentence:

s: I live in the USA
t: vivo en Estados Unidos

There are two special cases here:

 The words I live in English are translated into the single word vivo in Spanish.
 The word USA in English is translated into the two words Estados Unidos in Spanish.

The word-alignment function will need to also take care of these cases:

s: I live in the USA
 ↘ ↙ ↙↘
t: vivo en Estados Unidos

7.2.2 Phrase-based translation

So far, we’ve discussed how to translate single words. But, as in many other areas of
natural language processing, translating a single word is difficult without knowing the
context. Phrase-based translation aims to reduce the amount of error due to the lack
of information when translating single words. Generally, performing phrase-based
translation requires more data to train a good statistical model, but it can handle lon-
ger sentences better, and it’s often more accurate than word-based statistical models.
All the things you learned for word-based SMT models apply to phrase-based models;
the only difference is that the translation units aren’t words, but phrases.

 When a phrase-based model receives an input text, it breaks the text into phrases.
Each phrase is translated independently, and then the per-phrase translations are
reordered using a phrase-alignment function. Until the success of neural models for

“a” and “un” are at the same position.

“man” and “senor” are one position apart.

206 CHAPTER 7 Searching across languages
MT, phrase (and hierarchical) SMT models were the de facto standard for MT and
were used in many tools, such as Google Translate.

7.3 Working with parallel corpora
As you probably realize, one of the most important aspects of machine learning is hav-
ing a lot of good-quality data. MT models are usually trained on parallel corpora:
(text) datasets provided in two languages so that words, sentences, and so on in the
source language can be mapped to words, sentences, and so on in the target language.

 A very useful resource for those interested in MT is the Open Parallel Corpus
(OPUS, http://opus.nlpl.eu). It provides many parallel resources; you can select the
source and target languages, and you’ll be shown a list of parallel corpora in different
formats. Each parallel corpus is usually provided in different XML formats, or dedi-
cated MT formats like the one from the Moses project (www.statmt.org/moses).
Sometimes translation dictionaries with word frequencies are also available.

 In this context, let’s set up a small tool to parse the Translation Memory eXchange
(TMX) format (https://en.wikipedia.org/wiki/Translation_Memory_eXchange).
Although the TMX specification isn’t new, a lot of the existing parallel corpora are
available in TMX format on the OPUS project, so it’s useful to be able to work with
TMX when you train your first NMT model.

 The TMX file format uses one tu XML node per parallel sentence. Each tu node
has two tuv child elements: one for the source sentence and one for the target sen-
tence. And each of those nodes has a seg node containing the actual text.

 Here’s a sample from a TMX file for translating from English to Italian:

<?xml version="1.0" encoding="UTF-8" ?>
<tmx version="1.4">
<header creationdate="Wed Jul 30 13:12:22 2014"
 srclang="en"
 adminlang="en"
 o-tmf="unknown"
 segtype="sentence"
 creationtool="Uplug"
 creationtoolversion="unknown"
 datatype="PlainText" />
 <body>
 ...
 <tu>
 <tuv xml:lang="en">
 <seg>
 It contained a bookcase: I soon possessed myself of a volume.
 </seg>
 </tuv>
 <tuv xml:lang="it">
 <seg>
 Vi era una biblioteca e io m'impossessai di un libro.
 </seg>
 </tuv>
 </tu>

http://opus.nlpl.eu
www.statmt.org/moses
https://en.wikipedia.org/wiki/Translation_Memory_eXchange

207Working with parallel corpora

g
 ...
 </body>
</tmx>

In the end, you’re interested in getting the contents of the tuv and seg XML nodes.
You want to collect parallel sentences where you can obtain the source and target text.
To do so, you first create a ParallelSentence class.

public class ParallelSentence {

 private final String source;
 private final String target;

 public ParallelSentence(String source, String target) {
 this.source = source;
 this.target = target;
 }

 public String getSource() {
 return source;
 }

 public String getTarget() {
 return target;
 }
}

Next, let’s create a TMXParser class to extract a Collection of parallel sentences from
TMX files.

TMXParser tmxParser = new TMXParser(Paths.get("/path/to/it-en-file.tmx")
 .toFile(), "it", "en");
Collection<ParallelSentence> parse = tmxParser.parse();
for (ParallelSentence ps : parse) {
 String source = ps.getSource();
 String target = ps.getTarget();
 ...
}

The TMXParser will look inside all tu, tuv, and seg nodes and build the Collection:

 public TMXParser(final File tmxFile, String
 sourceCode, String targetCode) {
 ...
 }

 public Collection<ParallelSentence> parse() throws IOException,
 XMLStreamException {
 try (final InputStream stream = new
 FileInputStream(tmxFile)) {
 final XMLEventReader reader = factory
 .createXMLEventReader(stream);
 while (reader.hasNext()) {

Listing 7.5 A class for parallel sentences

Listing 7.6 Parsing and iterating through the parallel corpus

Creates a parser on a TMX file, specifyin
the source and target languages

Reads
the file Creates an XMLEventReader: a

utility class that emits events every
time it reads XML elements

Iterates over each XML event

(nodes, attributes, and so on)

208 CHAPTER 7 Searching across languages
 final XMLEvent event = reader.nextEvent();
 if (event.isStartElement() && event.asStartElement().getName()
 .getLocalPart().equals("tu")) {
 parse(reader);
 }
 }
 }
 return parallelSentenceCollection;
 }

We won’t dig too far into the code for extracting the ParallelSentences, because
parsing XML isn’t the primary focus here. For the sake of completeness, here’s the
important part of the parseEvent method:

 if (event.isEndElement() && event.asEndElement()
 .getName().getLocalPart().equals("tu")) {
 if (source != null && target != null) {
 ParallelSentence sentence = new ParallelSentence(source, target);
 parallelSentenceCollection.add(sentence);
 }
 return;
 }
 if (event.isStartElement()) {
 final StartElement element = event.asStartElement();
 final String elementName = element.getName().getLocalPart();
 switch (elementName) {
 case, "tuv":
 Iterator attributes = element.getAttributes();
 while(attributes.hasNext()) {
 Attribute next = (Attribute) attributes.next();
 code = next.getValue();
 }
 break;
 case "seg":
 if (sourceCode.equals(code)) {
 source = reader.getElementText();
 } else if (targetCode.equals(code)) {
 target = reader.getElementText();
 }
 break;
 }
 }

Using the generated parallel sentences, you can train an MT model—either statistical,
as described in the previous section, or neural, as you’ll see next.

7.4 Neural machine translation
With all that background about SMT and parallel corpora, you’re now ready to learn
about why and how neural networks are used in the context of MT applied to search.
Imagine you’re an engineer who has the task of building a search engine for a non-
profit organization that helps refugees from all around the world gather information
about required legal documentation for each country. You need MT models for as

Intercepts tu nodes
Parses the tu nodes and
reads the contained
parallel sentences

Closing tu element. The
ParallelSentence is ready.

Reads the language code
from the tuv element

Reads the text from
the seg element

209Neural machine translation
many language pairs as possible (for example, Spanish to English, Swahili to English,
English to Spanish, and so on). Training statistical models based on explicit probabil-
ity estimation, like the word- or phrase-based SMT models discussed earlier, would be
time-consuming because of the amount of manual work such an approach usually
takes. For example, word alignment would require a lot of work for each of the lan-
guage pairs.

 When the first NMT models were introduced, one of their most intriguing features
was that they didn’t require much tuning. When Ilya Sutskever presented the work he
and his coauthors did on an encoder-decoder architecture for NMT,2 he stated, “We
use minimum innovation for maximum results.”3 That turned out to be one of the
best qualities of this type of model.

 This approach uses a deep, long short-term memory (LSTM) network whose out-
put is a big vector, the thought vector mentioned in chapter 3, and then feeds the
sequence (and the thought vector) to another decoder LSTM that generates the
translated sequence. Over time, different “flavors” of NMT models have been pro-
posed, but the main idea of using an encoder-decoder network was a milestone: it was
the first model fully based on neural networks to beat SMT models in an MT task.

 These models are flexible for mapping sequences to sequences in different
domains, not just for MT. For example, you used seq2seq encoder-decoder models to
perform query expansion in chapter 3, and thought vectors to retrieve related con-
tent in chapter 6. Now we’ll go a bit deeper into how such models work and how the
sequences flow into and out of them.

7.4.1 Encoder-decoder models

At a high level, the encoder LSTM reads and encodes a sequence of the source text
into a fixed-length vector, the thought vector. A decoder LSTM then outputs a trans-
lated version of the source sentence from the encoded vector. The encoder–decoder
system is trained to maximize the probability of a correct translation, given a source
sentence. So, to some extent, these encoder-decoder networks, like many other deep
learning–based models, are a statistical model! The difference with respect to “tradi-
tional” SMT is that NMT models learn to maximize the correctness of a generated
translation via neural networks, and they do so in an end-to-end fashion. For example,
there’s no need for dedicated tools for word alignment; an encoder-decoder network
only needs a huge collection of source/target sentence pairs.

 The key features of encoder-decoder models are as follows:

 They’re easy to set up and understand—the model is intuitive.
 They can handle variable-length input and output sequences.
 They produce input sequence embeddings that can be used in different ways.

2 Ilya Sutskever, Oriol Vinyals, and Quoc V. Le, “Sequence to Sequence Learning with Neural Networks,” Sep-
tember 10, 2014, https://arxiv.org/abs/1409.3215.

3 “NIPS: Oral Session 4 - Ilya Sutskever,” Microsoft Research, August 18, 2016, https://www.youtube
.com/watch?v=-uyXE7dY5H0.

https://arxiv.org/abs/1409.3215
https://www.youtube.com/watch?v=-uyXE7dY5H0
https://www.youtube.com/watch?v=-uyXE7dY5H0
https://www.youtube.com/watch?v=-uyXE7dY5H0

210 CHAPTER 7 Searching across languages
 They can be used for seq2seq mapping tasks in various domains.
 They’re an end-to-end tool, as just explained.

Let’s break down the graph shown in figure 7.4 to
better understand what’s in each part of the
model and how the parts work together. The
encoder is made up of a recurrent neural network
(RNN), usually an LSTM or another alternative
like gated recurrent units (GRUs4), which we
don’t expand on here. Remember that the main
difference between a feed-forward network and
an RNN is that the latter has recurrent layers that
make it possible to easily work with unbounded
sequences of inputs while keeping the size of the
input layer fixed. The encoder RNN is usually
deep, so it has more than one hidden recurrent
layer. Just as you saw when we introduced RNNs in
chapter 3, you can add more hidden layers if the
translation quality is poor even when a lot of train-
ing data is provided. In general, between two and
five recurrent layers is enough for training sets on the order of magnitude of tens of
gigabytes. The output of the encoder network is the thought vector, which corresponds
to the last time step of the last hidden layer of the encoder network. For instance, if the
encoder has four hidden layers, the last time step of the fourth layer will represent the
thought vector.

 For simplicity, let’s consider translating a sentence with four words, written by an
Italian user who’s looking for information about entering the UK with an Italian
identity card. The source sentence could be something like “carta id per gb.” The
encoder network is fed one word of the sentence at each time step. After four time
steps, the encoder network has been fed all four words in the input sentence, as
shown in figure 7.5.

4 See the well-known paper by Kyunghyun Cho et al., “Learning Phrase Representations Using RNN Encoder-
Decoder for Statistical Machine Translation,” June 3, 2014, https://arxiv.org/abs/1406.1078.

Target sentence

Source sentence

Internal representation

Decoder

Encoder

Figure 7.4 An encoder-decoder model

h1

carta

h4

gb

h2

id

h3

per Figure 7.5 An encoder network with
four hidden recurrent layers

https://arxiv.org/abs/1406.1078

211Neural machine translation
NOTE In practice, the input sequence is often reversed, because it turns out
the neural network usually gives better results that way.

When you learned about word2vec in chapter 2, you saw that words are often trans-
formed into one-hot-encoded vectors to be used in a neural network. Word embed-
dings were an output of the word2vec algorithm. The encoder network does
something similar, using an embedding layer. You transform the input words into one-
hot-encoded vectors, and the network’s input layer has a dimension equal to the size
of the vocabulary of words in the collection of source sentences. Remember that a
one-hot-encoded vector for a certain word, such as gb, is a vector with a single 1 for the
vector index assigned to that word, and 0 in all the remaining positions. Before the
recurrent layer, the one-hot-encoded vector is transformed into a word embedding of
a layer with a lower dimension than the input layer. This layer is the embedding layer,
and its output is a vector representation of the word (a word embedding) similar to
the one obtained using word2vec.

 Looking closer at the encoder network layers, you see a stack similar to that shown
in figure 7.6. This input layer consists of 10 neurons, which implies that the source
language contains only 10 words; in reality, the input layer may contain tens of thou-
sands of neurons. The embedding layer reduces the input word size and generates a
vector whose values aren’t just 0s and 1s, but real values. The embedding layer output
vector is then passed over to the recurrent layers.

Layer 1
(input layer)

Layer 2
(embedding

layer)

Layer 3
(first recurrent layer)

Layer 4
(second recurrent layer)

Figure 7.6 Encoder network layers (up to the second
hidden recurrent layer) with a dictionary of 10 words

212 CHAPTER 7 Searching across languages
After processing the last word in the input sequence, a special token (such as <EOS>:
end of sentence) is passed to the network to signal that the input is finished and
decoding should start. This makes it easier to handle variable-length input sequences,
because decoding won’t start until the <EOS> token is received.

 The decoding part mirrors the encoding part. The only difference is that the
decoder (see figure 7.7) receives both the fixed-length vector and one source word at
each time step.

No embedding layer is used in the decoder. The probabil-
ity values in the output layer of the decoder network are
used to sample a word from the dictionary at each time
step. Let’s look now at an encoder-decoder LSTM with
DL4J in action.

7.4.2 Encoder-decoder for MT in DL4J

DL4J lets you declare the architecture of your neural net-
work via a computational graph. This is a common paradigm
in the deep learning framework; similar patterns are used
in other popular deep learning tools such as TensorFlow,
Keras, and others. With a computational graph for a neu-
ral network, you can declare which layers exist and how
they’re connected to one another.

 Let’s consider the encoder network layers defined in
the previous section. You have an input layer, an embed-
ding layer, and two recurrent (LSTM) layers (shown as
visualized by the DL4J UI in figure 7.8). The encoder net-
work computational graph is as follows:

ComputationGraphConfiguration.GraphBuilder graphBuilder =
 builder.graphBuilder()
 ...
 .addInputs("inputLine", ...)
 .setInputTypes(InputType.
 recurrent(dict.size()), ...)
 .addLayer("embeddingEncoder",
 new EmbeddingLayer.Builder()
 .nIn(dict.size())

id ukcard for

t2 t5t3 t4 Figure 7.7 A decoder network
with four hidden recurrent layers

Specifies an input type for an RNN

Creates an embedding layer

The embedding layer expects a number of inputs
equal to the size of the word dictionary.

Figure 7.8 Encoder layers

213Neural machine translation
 .nOut(EMBEDDING_WIDTH)
 .build(),
 "inputLine"
 .addLayer("encoder",
 new GravesLSTM.Builder()
 .nIn(EMBEDDING_WIDTH)
 .nOut(HIDDEN_LAYER_WIDTH)
 .activation(Activation.TANH)
 .build(),
 "embeddingEncoder")
 .addLayer("encoder2",
 new GravesLSTM.Builder()
 .nIn(HIDDEN_LAYER_WIDTH)
 .nOut(HIDDEN_LAYER_WIDTH)
 .activation(Activation.TANH)
 .build(),
 "encoder");
 ...

The decoder part contains two LSTM layers and an
output layer (see figure 7.9). Translated words are
sampled from the output values generated by the soft-
max function on the output layer:

 ...
 .addLayer("decoder",
 new GravesLSTM.Builder()
 .nIn(dict.size() + HIDDEN_LAYER_WIDTH)
 .nOut(HIDDEN_LAYER_WIDTH)
 .activation(Activation.TANH)
 .build(),
 "merge")
 .addLayer("decoder2",
 new GravesLSTM.Builder()
 .nIn(HIDDEN_LAYER_WIDTH)
 .nOut(HIDDEN_LAYER_WIDTH)
 .activation(Activation.TANH)
 .build(),
 "decoder")
 .addLayer("output",
 new RnnOutputLayer.Builder()
 .nIn(HIDDEN_LAYER_WIDTH)
 .nOut(dict.size())
 .activation(Activation.SOFTMAX)
 .lossFunction(LossFunctions.

Output
embedding

vector width Embedding layer input
Adds the first encoder layer

The first layer of the
encoder is an LSTM layer.

Uses a tanh function in the
LSTM layers

The encoder layer takes inputs from
the embeddingEncoder layer.

Adds the second layer of the
encoder (another LSTM layer)

The encoder2 layer takes inputs
from the encoder layer.

Figure 7.9
Decoder layers

The decoder recurrent
layers are also based
on LSTMs.

Normal RNN output layer

The output is a probability
distribution generated by

the softmax activation.

214 CHAPTER 7 Searching across languages
 LossFunction.MCXENT)
 .build(),
 "decoder2")
 .setOutputs("output");

At this point, you may think you’re finished, but you’re still missing the glue that con-
nects the encoder with the decoder. This consists of the following:

 The thought vector layer, which captures the distributed representation of the
source word used by the decoder to generate the correct translated word

 A side input used by the decoder to keep track of the words it generates

The graph will look slightly more com-
plex than you may expect, because the
decoding side of the neural network
uses both the thought vector and the
outputs it generates as well, at each time
step. The decoder network starts gener-
ating translated words as soon as it
receives a special word (such as go) on a
dedicated input. At that time step, the
decoder fetches both the value from the
thought vector generated by the
encoder and this special word, and gen-
erates its first decoded word. In the next
time step, it uses the just-generated
decoded word as new input, together
with the thought vector value, to gener-
ate the subsequent word—and so forth,
until it generates a special word (such as EOS) that stops the decoding.

 In summary, the thought vector layer is fed the last time step of the final recurrent
(LSTM) layer of the encoder network and used as input to the decoder together with
a word at each decoding time step, as illustrated in figure 7.10. The complete model
looks like figure 7.11.

 The connections between the encoder and the decoder, shown in figure 7.10, are
implemented by the following code:

.addVertex("thoughtVector", new LastTimeStepVertex(
 "inputLine"), "encoder2")

.addVertex("dup", new DuplicateToTimeSeriesVertex(
 "decoderInput"), "thoughtVector")

.addVertex("merge", new MergeVertex(), "decoderInput"
 , "dup")

The cost function to be used
is multiclass cross entropy.

Figure 7.10 Connecting layers

Only the last time
step of the encoder
output is recorded in
the thought vector.

Creates a new time-series input for
the decoder, initialized with the
values from the thought vector

Prepares the decoder to receive merged
inputs from the thought vector and the
decoder side input

215Neural machine translation
With this computational graph built, you’re ready to train the network with a parallel
corpus. In order to do so, you build a ParallelCorpusProcessor that processes the
parallel corpus: for example, in the form of a TMX file downloaded from the OPUS
project. This processor extracts the source and target sentences and builds the dictio-
nary of words. Then it will be used to provide the input and output sequences
required for training the encoder-decoder model:

File tmxFile = new File("/path/to/file.tmx");
ParallelCorpusProcessor corpusProcessor = new
 ParallelCorpusProcessor(tmxFile, "it", "en");
corpusProcessor.process();

Figure 7.11 Encoder-decoder model
with two LSTMs layers per side

TMX file containing the
parallel corpus

Parses the TMX file and
extracts source and target
sentences based on the
language codes (for example,
“it” for the source, “en” for
the target)

Processes the corpus

216 CHAPTER 7 Searching across languages
Map<String, Double> dictionary =
 corpusProcessor.getDict();
Collection<ParallelSentence> sentences =
 corpusProcessor.getSentences();

The dictionary is now used to set up the network: the dictionary size defines the num-
ber of inputs (for one-hot-encoded vectors). In this case, the dictionary is a Map whose
keys are the words and whose value is a number used to identify each word when feed-
ing it into the embedding layer. The sentences and the dictionary are needed to build
an iterator over the parallel sentences. A DataSetIterator over the parallel corpus is
then used to train the network across different epochs (an epoch of training is a full
round of training on all the available training examples from the training set):

ComputationalGraph graph = createGraph(dictionary.
 getSize());

ParallelCorpusIterator parallelCorpusIterator = new
 ParallelCorpusIterator(corpusProcessor);
for (int epoch = 0; epoch < EPOCHS; epoch++) {
 while (parallelCorpusIterator.hasNext()) {
 MultiDataSet multiDataSet = parallelCorpusIterator
 .next();
 graph.fit(multiDataSet);
 }
}

The network now begins to learn to generate English sequences from Italian
sequences. Figure 7.12 shows the network error decreasing.

 The translation performed by the network consists of a feed-forward pass for all
the words in the input sequence across the encoder and decoder networks. The
encoder network implements the TranslatorTool API, and the output method per-
forms the feed-forward pass on the neural network. That gives the translated version
of the source sentence:

 @Override
 public Collection<Translation> translate(String text) {
 double score = 0d;
 String string = Joiner.on(' ').join(output(text, score));
 Translation translation = new Translation(string, score);
 return Collections.singletonList(translation);
 }

The output method transforms the text sequence into a vector and then passes it
along the encoder and decoder networks. The text vector is fed into the network
using the word indexes generated by the ParallelCorpusProcessor. So you trans-
form a String into a List<Double>, which is the ordered list of word indexes corre-
sponding to each token in the source sequence:

Collection<String> tokens = corpusProcessor.tokenizeLine(text);
List<Double> rowIn = corpusProcessor.wordsToIndexes(tokens);

Retrieves the corpus dictionary

Retrieves the parallel sentences

Builds the network using
the computational graph

Builds the iterator over
the parallel corpus

Iterates over
the corpus

Trains the network over
the current batch

Extracts a batch of input
and output sequences

217Neural machine translation
Now you prepare the actual vectors to be used as input to both the encoder (the
input vector) and the decoder (the decode vector), and perform separate feed-
forward passes for the encoder and decoder networks. The encoder feed-forward pass
is as follows:

net.rnnClearPreviousState();
Collections.reverse(rowIn);
Double[] array = rowIn.toArray(new Double[0]);
INDArray input = Nd4j.create(ArrayUtils.toPrimitive(array),
 new int[] {1, 1, rowIn.size()});
int size = corpusProcessor.getDict().size();
double[] decodeArr = new double[size];
decodeArr[2] = 1;
INDArray decode = Nd4j.create(decodeArr, new int[] {1, size, 1});
net.feedForward(new INDArray[] {input, decode}, false, false);

The decoder feed-forward pass is slightly more complex because it expects to use the
thought vector generated by the encoder pass and the source sequence token vectors.
So, at each time step, the decoder performs a translation, given the thought vector
and a source sentence token vector:

Collection<String> result = new LinkedList<>();
GravesLSTM decoder = (GravesLSTM) net.getLayer("decoder");
Layer output = net.getLayer("output");
GraphVertex mergeVertex = net.getVertex("merge");
INDArray thoughtVector = mergeVertex.getInputs()[1];
for (int row = 0; row < rowIn.size(); row++) {

Figure 7.12 Encoder-decoder network training

218 CHAPTER 7 Searching across languages
 mergeVertex.setInputs(decode, thoughtVector);
 INDArray merged = mergeVertex.doForward(false);
 INDArray activateDec = decoder.rnnTimeStep(merged);
 INDArray out = output.activate(activateDec, false);
 double idx = sampleFrom(output);
 result.add(corpusProcessor.getRevDict().get(idx));
 double[] newDecodeArr = new double[size];
 newDecodeArr[idx] = 1;
 decode = Nd4j.create(newDecodeArr, new int[] {1, size, 1});
}
return result;

Finally everything is set to start translating queries using the encoder-decoder net-
work. (In practice, you’d perform the training phase outside of the search workflow.)
Once training is finished, the model is persisted to disk and then loaded by the query
parser defined at the beginning of this chapter:

ComputationGraph net ...
File networkFile = new File("/path/to/file2save");
ModelSerializer.writeModel(net, networkFile, true);

The query parser is created using the encoder-decoder network for Italian sentences
(and the language detector tool):

File modelFile = new File("/path/to/file2save");
ComputationGraph net = ModelSerializer.restoreComputationGraph(modelFile);
net.init();
TranslatorTool mtNetwork = new MTNetwork(modelFile);

Map<String, Collection<TranslatorTool>> mappings = new HashMap<>();
mappings.put("ita", Collections.singleton(mtNetwork));
LanguageDetector languageDetector = new LanguageDetectorME(new
 LanguageDetectorModel(new FileInputStream("/path/to/langdetect.bin")));
MTQueryParser MTQueryParser = new MTQueryParser("text",
 new StandardAnalyzer(), languageDetector, mappings);

The query parser’s internal logging will tell you how it’s translating incoming queries.
Suppose an Italian user wants to know whether their identity card is valid in the UK.
Their query, written in Italian, is translated to English as follows using the encoder-
decoder network:

> q: validità della carta d'identità in UK
> detected language 'ita' for query 'validità della carta d'identità in UK'
> found 1 translation
> t: identity card validity in the UK
> 'validità della carta d'identità in UK' was parsed as:
 '(text:validità text:della text:carta text:identità text:in text:UK)'
 OR
 '(text:identity text:card text:validity text:in text:the text:UK)'

This wraps up the end-to-end solution for machine translation based on an encoder-
decoder model using LSTM networks. Many MT production systems use such models
or extensions of them. One of the key advantages of using NMT is that it generally
results in accurate translations, given enough training data—but such models can

219Word and document embeddings for multiple languages
require significant computational resources when training. In the next section, we’ll
examine another approach to implementing MT programs that uses word and docu-
ment embeddings (word2vec, paragraph vectors, and so on). When compared with
models like the one implemented in this section, it may not be able to achieve the
same level of accuracy, but it requires far less computational resources and therefore
may be a good compromise.

7.5 Word and document embeddings
for multiple languages
Previous chapters used word embeddings (dense vectors representing words’ seman-
tics), in particular the word2vec model, both to generate synonyms to enrich the text
of documents to be indexed, and to define a ranking function that better captures the
relevance of search results. In chapter 6, you saw a paragraph vector algorithm that
learns dense vectors of sequences of text (entire documents or portions of them, such
as paragraphs or sentences), and you used it to recommend similar content and cre-
ate another (yet more powerful) ranking function. Now you’ll see each of those neu-
ral network algorithms applied to the task of translating text.

7.5.1 Linear projected monolingual embeddings

One of the key aspects of the word vectors generated by the word2vec model is that
when such vectors are plotted as points in a vector space, words with similar meanings
are placed close to one another. Soon after the publication of the paper that intro-
duced word2vec, the same researchers wondered what would happen to word embed-
dings if they came from the same data but were translated. Would there be any
relation between the word vectors for a piece of English text and the same text written
in Spanish? They discovered that there were significant geometric similarities in the
relations that hold between the same words in different languages. For example, the
distribution of numbers and animals in English and Spanish is similar if their respec-
tive word vectors are plotted, as you can see in figure 7.13.

 These visual and geometric similarities suggested that a function that can trans-
form a word vector from the English embedding space into a word vector from the
Spanish embedding space would be a good candidate for translating words. Such a
function is called a linear projection because it’s sufficient to multiply the source vector
(for an English word) by a certain translation vector to project the source word into a
target word (in Spanish). Let’s assume you have a small vector with two dimensions
<0.1, 0.2> for the English word cat from the word2vec model of the English text (in
practice, this will never happen; real-life dimensions for word embeddings are usually
in the order of hundreds or thousands). You can learn a transformation matrix that
will approximate the source vector for cat in the corresponding vector <0.07, 0.22> of
the word gato in the Spanish embedding space. A transformation matrix multiplies its
weights by the input vector and outputs a projected vector.

220 CHAPTER 7 Searching across languages
To make this more practical, let’s set this up in DL4J using the same English-to-Italian
parallel corpus used for the encoder-decoder. You’ll get a parallel corpus and build
two independent word2vec models, one for the source language and one for the tar-
get language.

Collection<ParallelSentence> parallelSentences = new
 TMXParser(tmxFile, source, target).parse();

Collection<String> sources = new LinkedList<>();
Collection<String> targets = new LinkedList<>();
for (ParallelSentence sentence : parallelSentences) {
 sources.add(sentence.getSource());
 targets.add(sentence.getTarget());
}

int layerSize = 100;
Word2Vec sourceWord2Vec = new Word2Vec.Builder()
 .iterate(new CollectionSentenceIterator(sources))
 .tokenizerFactory(new DefaultTokenizerFactory())
 .layerSize(layerSize)
 .build();
sourceWord2Vec.fit();

Listing 7.7 Building two independent word2vec models

0.15 four

four

three

two

one

0.10

0.05

0.0

–0.05

–0.10

–0.15

–0.20

–0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
–0.25

0.2 cuatro (four)

cinco (five)

tres (three)

dos (two)

uno (one)0.1

0.0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
–0.6

0.20
horse

cow

pig

cat

dog

0.15

0.05

0.10

0.0

–0.05

–0.10

–0.15

–0.20

–0.25

–0.3 –0.25 –0.2 –0.15 –0.1–0.05 0.050.0 0.1 0.15
–0.30

0.5

0.4 caballo (horse)

vaca (cow)

cerdo (pig)

gato (cat)

perro (dog)
0.3

0.2

0.1

–0.1

0.0

–0.2

–0.3

–0.4

–0.5 –0.4 –0.2 –0.1–0.3 0.0 0.1 0.2 0.3 0.4 0.5
–0.5

Figure 7.13 English and Spanish embeddings from the paper “Exploiting Similarities among Languages for
Machine Translation” by Mikolov et al.

Parses the parallel corpus file

Creates two separate collections
for source and target sentences

Trains two word2vec models:
one from the source
sentences and one from the
target sentences

The embedding dimensions, equal to the size
of the hidden layer of the word2vec model,
must be consistent across the two models.

221Word and document embeddings for multiple languages
Word2Vec targetWord2vec = new Word2Vec.Builder()
 .iterate(new CollectionSentenceIterator(targets))
 .tokenizerFactory(new DefaultTokenizerFactory())
 .layerSize(layerSize)
 .build();
targetWord2vec.fit();

In this case, you also need extra information about word translations, not just raw
source and target text. You need to be able to say which Italian word is the translation
of each English word in the parallel corpus. You can obtain this information either
from a dictionary (containing information such as cat = gato) or from a word-aligned
corpus, where positional information about the source and target words is available
for each parallel sentence. In the OPUS portal, it’s easy to find dictionary files with
one word translation per line:

...
Transferring trasferimento
Transformation Trasformazione
Transient transitori
...

You can parse the dictionary with the following line of code:

List<String> strings = FileUtils.readLines(dictionaryFile,
 Charset.forName("utf-8"));
int dictionaryLength = strings.size() - 1;

At this point, you’ve learned word embeddings for both the English sentences and the
Italian ones. The next step is to build a translation matrix. To do this, you need to put
the word embeddings for English and Italian into two separate matrixes. Each matrix
contains a row for each word, and each row consists of the embedding relative to the
given word. From those matrixes, you learn the projection matrix.

INDArray sourceVectors = Nd4j.zeros(dictionaryLength, layerSize);
INDArray targetVectors = Nd4j.zeros(dictionaryLength, layerSize);
int count = 0;
for (String line : strings) {
 String[] pair = line.split(");
 String sourceWord = pair[0];
 String targetWord = pair[1];
 if (sourceWord2Vec.hasWord(sourceWord) &&
 targetWord2Vec.hasWord(targetWord)) {
 sourceVectors.putRow(count, sourceWord2Vec
 .getWordVectorMatrix(sourceWord));
 targetVectors.putRow(count, targetWord2Vec
 .getWordVectorMatrix(targetWord));
 count++;
 }
}

Listing 7.8 Putting embeddings from each word2vec model in a separate matrix

The embedding dimensions, equal to the size
of the hidden layer of the word2vec model,
must be consistent across the two models.

Trains two word2vec models: one from
the source sentences and one from the
target sentences

222 CHAPTER 7 Searching across languages
With the two matrixes in place, the projection matrix can be learned using various
methods. The goal is to minimize the distance between each target word vector and its
corresponding source word vector multiplied by the transformation matrix. This
example uses an algorithm for linear regression called normal equation. We’ll skip the
details; the key point is that this approach finds the combination of values in the pro-
jection matrix that will give the best translation results.

INDArray pseudoInverseSourceMatrix = InvertMatrix.pinvert(

 sourceVectors, false);

INDArray projectionMatrix = pseudoInverseSourceMatrix.mmul(

 targetVectors).transpose();

This ends the training phase. All of this is now encapsulated in a TranslatorTool called
LinearProjectionMTEmbeddings. The training steps can be performed either in a con-
structor or in a dedicated method (such as LinearProjectionMTEmbeddings#train).

 From this point on, you can use the two word2vec models in conjunction with the
projection matrix to translate words. For each source word, you check that you have a
word embedding for it and then multiply that vector by the projection matrix. Such a
candidate vector represents the approximation of the target word vector. Finally, you
look for the nearest neighbor of the candidate vector in the target embedding space:
the word associated with the resulting vector is the translation you’re looking for.

public List<Translation> decodeWord(int n, String sourceWord) {
 if (sourceWord2Vec.hasWord(sourceWord)) {
 INDArray sourceWordVector = sourceWord2Vec
 .getWordVectorMatrix(sourceWord);
 INDArray targetVector = sourceWordVector
 .mmul(projectionMatrix.transpose());
 Collection<String> strings = targetWord2Vec
 .wordsNearest(targetVector, n);
 List<Translation> translations = new ArrayList<>(strings.size());
 for (String s : strings) {
 Translation t = new Translation(s,
 targetWord2Vec.similarity(s,
 sourceWord));
 translations.add(t);
 log.info("added translation {} for {}", t, sourceWord);
 }
 return translations;
 } else {
 return Collections.emptyList();
 }
}

Listing 7.9 Finding the projection matrix

Listing 7.10 Decoding a source word into a target word

Inverts the source vectors matrix

Calculates the translation matrix

Checks whether the source
word2vec model has a word
vector for the source wordRetrieves the

word
embedding Multiplies the source vector

by the projection matrix

Finds the candidate nearest-neighbor words

Adds the translations to the
final result, including a score

based on the distance between
the source and target words

223Word and document embeddings for multiple languages
You can perform a word-by-word translation on longer text sequences by extracting
tokens from the input text sequence and applying the decodeWord method to each
source word.

public Collection<Translation> translate(String text) {
 StringBuilder stringBuilder = new StringBuilder();
 double score = 0;
 List<String> tokens = tokenizerFactory.create(
 text).getTokens();
 for (String t : tokens) {
 if (stringBuilder.length() > 0) {
 stringBuilder.append(' ');
 }
 List<Translation> translations = decodeWord(
 1, t);
 Translation translation = translations.get(0);
 score += translation.getScore();
 stringBuilder.append(translation);
 }
 String string = stringBuilder.toString();
 Translation translation = new Translation(string,
 score / (double) tokens.size());
 log.info("{} translated into {}", text, translation);
 return Collections.singletonList(translation);
}

You’re finally ready to run some test translations.

String[] ts = new String[]{"disease", "cure",
 "current", "latest", "day", "delivery", "destroy",
 "design", "enoxacine", "other", "validity",
 "other ingredients", "absorption profile",
 "container must not be refilled"};
File tmxFile = new File("en-it_emea.tmx");
File dictionaryFile = new File("en-it_emea.dic");
LinearProjectionMTEmbeddings lpe = new
 LinearProjectionMTEmbeddings(tmxFile,
 dictionaryFile, "en", "it");

for (String t : ts) {
 Collection<TranslatorTool.Translation> translations =
 linearProjectionMTEmbeddings.transalate(t);
 System.out.println(t + " -> " + translations);
}

You can expect good results, especially for translations of single words. This approach
performs each translation in isolation, without using the surrounding words, so there’s
room for improvement. In the following output, I’ve manually added an accuracy tag
to each translation (in pointy brackets), to help readers who don’t know Italian:

Listing 7.11 Translating text using LinearProjectionMTEmbeddings

Listing 7.12 Testing LinearProjectionMTEmbeddings

Splits the input text
into tokens (words)

Translates one word at a
time and gets exactly
one translation each

Accumulates the translation score

Accumulates the translated
words in a StringBuilder

Generates the resulting
translation with the
translated text and score

Test input words
and sentences

Parallel corpus file

Parallel dictionary file

Trains the models and projection matrix for
the LinearProjectionMTEmbeddings

For each input text,
returns the top translation

224 CHAPTER 7 Searching across languages
disease -> malattia <PERFECT>
cure -> curativa <AVERAGE>
current -> stanti <BAD>
day -> giorno <PERFECT>
destroy -> distruggere <PERFECT>
design -> disegno <PERFECT>
enoxacine -> tioridazina <BAD>
other -> altri <PERFECT>
validity -> affinare <BAD>
other ingredients -> altri eccipienti <PERFECT>
absorption profile -> assorbimento profilo <GOOD>
container must not be refilled -> sterile deve non essere usarla <BAD>

The outputs are okay although not perfect; you’d expect a properly trained encoder-
decoder model to work better than this, but the amount of time and computational
resources required are typically so much lower with linear projected machine transla-
tion embeddings that people working with low-resource systems may be willing to
accept the compromise. In addition, word2vec models can be reused in other con-
texts. For example, you can use these projected embeddings for machine translation
to make search more effective, and you can also use word2vec models in ranking or
synonym expansion. You can select which word2vec model to use at search time, using
a language detection tool like the one you used for query expansion.

Summary
 Machine translation can be useful in the context of search to improve the user

experience for users who speak various languages.
 Statistical models can achieve good translation accuracy, but the amount of pair

tuning required for each language is nontrivial.
 Neural machine translation models provide ways to learn to translate sequences

of text into different languages in a less articulated yet more powerful way.

Content-based image search
Traditionally, most users use search engines by writing text queries and consuming
(reading) text results. For that reason, most of this book is focused on showing you
ways neural networks can help users search through text documents. So far, you’ve
seen how to

 Use word2vec to generate synonyms from the data ingested into the search
engine, which makes it easier for users to find documents they may otherwise
miss

 Expand search queries under the hood via recurrent neural networks
(RNNs), giving the search engine the ability to express a query in more ways
without asking the user to write all of them

 Rank text search results using word and document embeddings, thus provid-
ing more-relevant search results to end users

 Translate text queries with the seq2seq model to improve how the search
engine works with text written in multiple languages and better serve users
speaking different languages

This chapter covers
 Searching for images based on their content

 Working with convolutional neural networks

 Using query by example to search for similar images
225

226 CHAPTER 8 Content-based image search
But users increasingly expect search engines to be “smarter” and to be able to handle
more than just written text queries. Users want search engines to search the web using
voice, as with the built-in microphone on a smartphone, and to return not just text
documents, but also relevant images, videos, and other formats. In addition to web
search, it’s becoming the norm for other types of search engines to index images and
videos as well as text. A newspaper website, for instance, consists of more than text
articles: on the homepage of any newspaper, you’ll find multimedia content in addi-
tion to text. Therefore, a search engine for these websites needs to index images and
video as well as text.

 For some time now, databases have indexed images using metadata: written infor-
mation about an image, such as its title or a description of its contents, that’s attached
to the image. Traditional information retrieval techniques, as well as the newer
approaches described in this book, use metadata tags to help users find the pictures
they’re looking for. But manually crafting and inputting descriptions and tags for
every image you need to index is tedious, time consuming, and prone to subjective
error—one indexer’s couch, after all, may be another indexer’s sofa. Wouldn’t it be
nice if you could index images and make them searchable just as they are, without any
manual intervention?

 In this chapter, we’ll look at how to do just that: outfit a search engine with image
search that allows users to search through images based on their contents rather than
based on text descriptions of their contents. To build this kind of image search, we’ll
use convolutional neural networks, which are a special type of deep neural network.

 A search engine for images works by indexing image features. When we talk about
machine learning, a feature represents semantically relevant data that we want to cap-
ture in order to solve a particular task. More concretely, when dealing with images, an
image feature can be represented by specific image points or regions (for example,
high-contrast regions, shapes, edges, and so on). I’ll start by touching on the tradi-
tional ways of extracting important semantics from images, because we can use these
techniques as a guide to the challenges of extracting features from images. This is a
key step, because the extracted features can then be used to compare images, make
and answer queries, and perform other tasks that a search engine needs to do.

 Then I’ll show you a different and better way to extract image features using deep
neural networks, which requires less manual work and no handcrafted feature
extractors. Finally, we’ll look into how to incorporate the extracted features in a
search engine, while also taking into account performance based on the time and
space required to manage this type of image search.

NOTE In this chapter, images are discussed rather than videos, for simplic-
ity’s sake. A video is essentially a sequence of images with attached audio bits,
so you can certainly apply the approaches in this chapter to a video search
scenario as well as an image search scenario.

227Image contents and search
8.1 Image contents and search
Back in chapter 1, I gave a brief introduction to one of deep learning’s most promis-
ing aspects: representation learning. Representation learning is the task of taking input
data (for example, images) and automatically extracting features that make it easy for
a program to resolve a particular problem (such as recognizing which objects are
shown in an image, how similar two images are, and so on). A good representation of
a certain image should be expressive, meaning it should ideally provide information
about different aspects of the image (objects contained, light, exposure, and so on)
while also making it easy to compare single aspects (for example, you may want to
determine whether two images contain a butterfly by comparing such learned repre-
sentations). At a high level, learning an image representation using a deep neural net-
work commonly follows the simple flow shown in figure 8.1, where pixels are
converted to edges, edges to shapes, and shapes to objects.

Let’s consider an image stored on the hard disk of a computer and see what such a
binary representation tells us about its contents. Can you quickly open an image file as
you would a text file, and immediately recognize what the image shows? The answer is
no. If you look at the raw contents (for example, using the Linux cat command) of
the file of an image showing, say, a butterfly, you see nothing that can tell you about its
contents:

$ cat butterfly.jpg
????m,ExifII*
 ???(2?;??i?h%??*?1HH2018:07:01

08:37:38&??6??>"?'??0?2???0230?F?Z??
n?v?
~? ?
??|?
?)2?*4?5.*5?9??59?0100??p????)??)??)?????0?1?

The image file shows a butterfly when opened with the proper program: you can use
tools to “view” images, but a computer isn’t able to automatically recognize what the
image contains or tell you if it’s a picture of an old lady, a wild animal in a landscape,
or whatever else it might be. The binary content representation of an image isn’t good
for telling you that there’s a butterfly in it.

 Deep learning (DL), however, can help you learn a representation that, when used
properly, can tell you more about image contents. In this case, a deep neural network
could tell you that the image features a butterfly. A DL algorithm usually accomplishes
this by learning more and more information at each deep layer. For instance, in the
first layers, it learns edges, at successive layers it learns shapes, and in the final layers it
learns objects (like a butterfly, or a portion of one) so that it can tell what an image

Pixels Edges Shapes Objects Figure 8.1 Learning image
abstractions incrementally

http://yann.lecun.com/exdb/lenet
http://yann.lecun.com/exdb/lenet
http://yann.lecun.com/exdb/lenet
http://mng.bz/6j4y
http://mng.bz/6j4y
http://mng.bz/6j4y
http://mng.bz/6j4y
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

228 CHAPTER 8 Content-based image search
contains. Additionally, this information from all the layers is often encoded in a dense
vector representation for each image. Later in this chapter, we’ll unpack this quick
overview of the process, and you’ll finally meet deep neural networks that can learn
image representations.

 If you’ve ever tried to create a postcard by using an image (royalty-free, of course)
available on the internet, then you may have experienced problems when searching
for images relevant to a specific topic of interest. Let’s say, for instance, that you
bought a model car for your nephew or niece, and you want to print a postcard of a
car to use as a card that you can write on and send to him or her. So you go to a search
engine for images—perhaps Google Images or Adobe Stock—and type something like
“sports car” in the query box. The important thing to understand about this process is
that users look for images that contain a particular object or a specific feature. For
example, you may want a “red sports car” or a “vintage sports car.” Search engines for
images often use a mechanism called query by example (QBE) where you upload or take
a picture to be used as your input query. The search engine then returns images simi-
lar to the one that is input.

 Let’s freeze our running query for a moment and look at how this QBE process
works. We’ll start by thinking about how images are produced: how a digital camera or
a graphics app creates and stores a picture. Snap a picture with a camera, and a file is
stored somewhere that contains binary data (0s and 1s). You can think of this image
stored in a computer as a grid with a certain width and height, where each cell in the
grid is called a pixel and each pixel has a certain color. A colored pixel can be repre-
sented in different ways, and several color models are used to describe colors. For the
sake of simplicity, we’ll pick the most common scheme, RGB (Red, Green, Blue), in
which each color is made by a mixture of some red, some green, and some blue. Each
of those three colors has a range of values from 0 to 255, indicating the amount of
red, green, and blue to be used in each combination (there’s not just one red). Each
such value can then be represented with 8 binary values (2^8 = 256) and thus contains
all the possible ranges from 0 to 255. So an RGB image has a grid whose pixels are
made from binary values representing their colors.1 For example, the color red is
R:255, G:0, B:0; blue is R:0, G:0, B:255, and so on.

 With this in mind, let’s unfreeze our query. How can you match a query for “sports
car” when images are just series of bits? In the following sections, you’ll see a few dif-
ferent ways you can make queries and images match, and learn some techniques for
finding the particular sports car you want.

1 Although in practice images can have lots of different formats and color schemes, the core problem is that
images are usually stored as plain binaries, optionally with metadata that usually doesn’t tell anything about
their contents.

http://mng.bz/6j4y

229A look back: Text-based image retrieval
8.2 A look back: Text-based image retrieval
Users naturally tend to think about images in terms of what objects they contain (like
sports cars), rather than their RGB values. But shapes and colors are better for specify-
ing the information need, as in the thing they’re looking for, whether it’s a red sports
car, a Formula 1 sports car, or some other kind.

 A less-smart but common approach to mitigating the problem of matching text
queries with binary images is to add metadata to images during indexing. You’re
indexing images, but each one has a relevant text caption or description. This allows
you to do a normal search with a text query; the search will return images that have
metadata text attached to them that matches the query. Conceptually, this isn’t much
different from a regular full-text search, except the search results are images instead
of document titles or excerpts.

 Using the sports car query, let’s assume there are four images that can match that
query. During indexing, you can ingest both the image data and a small caption
describing each image; see figure 8.2. The image data is used to return the actual
image content to the end user (in the search results list), and the text description of
the image is indexed to match queries and images (as you’ll see in the next section, in
figure 8.3).

If you search for “sports car,” the search engine will return all the images shown in fig-
ure 8.2. If you search for “black sports car,” only two of them will appear in the results
list (recall that using double quotes in a query forces matches on the entire phrase
“black sports car” rather on the single words “black,” “sports,” and “car”).

Black sports car with blue finish Black fluorescent sports car

White sports car Black sports car

Figure 8.2 Manually captioned sports car images

230 CHAPTER 8 Content-based image search
 This approach can be performed in Lucene in a straightforward way. You store the
image binary as it is but index a manually entered description of the image (the
description won’t be returned with the search results):

byte[] bytes = ...
String description = ...
Document doc = new Document();

doc.add(new StoredField("binary", bytes));

doc.add(new TextField("description", description, Field.Store.NO));

writer.addDocument(doc);

writer.commit();

At search time, a simple text query can be used:

DirectoryReader reader = DirectoryReader
 .open(writer);

IndexSearcher searcher = new
 IndexSearcher(reader);

TopDocs topDocs = searcher.search(new PhraseQuery(
 "description", "black", "sports", "car"), 3);
for (ScoreDoc sd : topDocs.scoreDocs) {
 Document document = reader.document(sd.doc);

 IndexableField binary = document.getField(
 "binary");

 BytesRef imageBinary = binary.binaryValue();
 ...
}

This approach can work for a small number of images. But it’s very common to have
data of a size in the order of magnitude of millions or billions of documents. Even a
small online shop that makes postcards will probably have hundreds or thousands of
images. In many cases, it isn’t possible to ask people to undertake the (not very pleas-
ant) task of looking at each and every image and coming up with good descriptive
text. And, sometimes, such text isn’t good enough for all search cases. (In production
systems, it isn’t uncommon to have issues like “Why isn’t the query ‘black sports car’
returning the black fluorescent sports car? Please change the description so that it can
match such a query.”) In summary, this approach doesn’t scale, and it’s only as good as
the quality of the descriptions: poor descriptions lead to irrelevant search results.

Obtains the image
content as a byte[] Writes an image

description as a String Adds the image binary
content as a stored field

Adds the image
description as a text fieldIndexes the image

document

Commits the index changes

Opens an IndexReader over the
index containing the images

Creates an IndexSearcher
to run the query

Runs a query for
“black sports car”
on the caption field

Fetches each
matching document

Retrieves the
“binary” field Retrieves the actual image as a

binary and does something with it

231Understanding images
8.3 Understanding images
As I said, an image can be described in various ways, and the most common is to spec-
ify the people, objects, animals, and other recognizable objects it contains: for exam-
ple, “This is a picture of a man.” Additionally, you can mention descriptive details,
such as “This image shows a tall man.” As you can see in figure 8.3, however, such brief
descriptions are prone to ambiguity. The ambiguity comes from the simple fact that
one object or entity can be described in many different ways.

All three images in the figure certainly fit the description of a “tall man” that might be
used as a text query. The image in the middle, however, is different from the others.
Yes, it’s a picture of a tall man, but it’s also a picture of a player from the Houston
Rockets NBA basketball team. So other phrases, including “basketball player,” “hous-
ton rockets player,” and “basketball player wearing a 35 numbered jersey” describe
that image as well. It’s impossible for a human tasked with the job of writing short
metatags to think of every possible way an image can be described.

 In the same vein, a description like “basketball player wearing a 35 numbered jer-
sey” would perfectly fit not only the center image in figure 8.3, but also the images in
figure 8.4, which are of entirely different players and teams. In this case, the user may
be looking for one kind of image and get an entirely different kind, even though both
have the same descriptive metatag and would appear in the search results.

Figure 8.3 Some images described as “tall man”

Figure 8.4 Some images described as “basketball player wearing a 35 numbered jersey”

https://en.wikipedia.org/wiki/K-d_tree
https://en.wikipedia.org/wiki/K-d_tree

232 CHAPTER 8 Content-based image search
These simple examples teach you that text is extremely prone to mismatches, because
a single entity (a person, an animal, an object, and so on) can be described in many
different ways. This makes the quality of search results dependent on

 The way the user defines queries
 The way documents are written

You’ve already seen such problems in the context of search—that’s one of the reasons
why we use synonyms, query expansion, and so on. The search engine should be smart
enough to be able to enhance queries and indexed documents.

 In contrast, images, visually speaking, are generally less affected by this kind of
ambiguity. Let’s take the first image described as “tall man” and imagine you find
images that are visually similar to it, as in figure 8.5.

An input image allows for a better definition of what’s in the image, regardless of the
different ways it can be textually described. At the same time, it’s easy to say whether
an image is not similar to the input one: for example, the basketball player image from
figure 8.3 is clearly different from the images in figure 8.5, in terms of both the color
and type of clothing the man is wearing.

 Using sample images instead of text as input queries (also known as querying by
example) is very common in image search platforms where systems try to extract seman-
tic information from the images for accurate retrieval rather than having text meta-
data describe each image. Users express their query intent by means of a visual query.
Just as with text queries, the quality of the query has an impact on the relevance of the
results. Thinking in terms of text for a second may help: the query “red car” can return
results ranging from a toy car to a Formula 1 race car, as long as it’s red. If instead the
query is “red sports car” or “Formula 1 red race car,” then the range of possibly rele-
vant results will be less broad and less vague. The same applies to visual queries and
search results: the more accurate the query (the visual description of the information
needed), the better the search results. With images, what makes the difference isn’t
the user’s ability to write a “good” query—instead, the algorithm responsible for
extracting the information to be indexed and searching for images is most significant.

Figure 8.5 Some visually similar images

233Understanding images
Capturing objects and their features (color, light, shape, and so on) in an image, for
example, is one of the challenges in this area.

 Now you have all the pieces you need to start looking at some algorithms to extract
information from images and represent them in a way that makes it possible to run
queries that return meaningful results.

8.3.1 Image representations

The biggest challenge at this point is how to describe images in a way that makes it
possible to find similar images. In the example, you want to create a postcard to
accompany a gift. It would be great if you could take a picture of the gift with a camera
and use that as a query to the image search engine. That way, the postcard will have a
nice-looking picture that somehow suggests what’s inside the gift box when you give it
to the recipient.

 Although images are made up of pixels, it isn’t possible to perform a plain pixel
comparison. Pixel values alone don’t provide enough information about what’s in an
image. One problem is that a pixel represents only a very tiny portion of the image,
and it gives no information about its context. A red pixel may be part of a red apple or
a red car: there’s no way to determine which one it comes from by looking at pixels
alone. Even if pixels alone gave useful global information about an image, a large,
high-quality image these days may contain millions of pixels, so performing a pixel-by-
pixel comparison wouldn’t be computationally efficient. Additionally, even two pic-
tures of the same object taken with the same camera in the exact same conditions
(light, exposure, and so on), but taken from two slightly different angles, will probably
generate very different binary images, pixel-wise.

 In this case, you want to take a picture of your gift—a red model sports car—while
you’re at home, without caring about lighting conditions and the exact angle you
shoot the photo from. For example, you might take a picture like the one in figure
8.6. And you want the image search engine to return a nice picture of an actual red
sports car, preferably the very same car model, as in figure 8.7.

Figure 8.6 The red toy sports car you want to give as a gift

234 CHAPTER 8 Content-based image search
To overcome the problem of pixels providing poor information, the most widely used
technique to create searchable images is to extract visual features from them and index
those features instead of “just” the pixels. These visual features promise to provide
information that can be used to look for the contents of an image. Features are usu-
ally represented by sets of numbers or vectors.

NOTE You’ll see in the next section what this means, when we look at a couple
of feature extraction techniques. Understanding how feature extraction works
with non-neural network–based methods is useful to set the basis for the kind
of semantics they can convey and how different (and less human readable)
they are with respect to features extracted by DL techniques. As you’ll learn
later in this chapter, the amount of engineering effort spent on DL techniques
is much less than is required to design an accurate algorithm for feature
extraction. Also important is the fact that at the time of writing, DL-based fea-
ture extraction beats every handcrafted feature extraction algorithm.

The search engine must be able to work with such features to find similar images in
the QBE scenario. It will extract features from the images at indexing time and from
the example query image at query time. So feature extraction is important for under-
standing what’s in the image; but another important aspect is how to efficiently com-
pare features of different images. Feature-indexing techniques will impact the amount
of disk space required to store such inverted indexes; fast search algorithms for fea-
tures are required to efficiently retrieve images at search time.

Figure 8.7 A red sports car photo like the one you want retrieved by the
search engine, based on the picture of a toy

235Understanding images
 Visual features can be of different types:

 They can refer to global features like the colors used across the image, identified
textures, or global or average values for RGB and other color models (CMYK,
HSV, and so on).

 They can refer to local features (extracted from portions of the image) like
edges, corners, or other interesting key points in image cells (as in methods like
scale-invariant feature transform, speeded-up robust features, difference of
Gaussians, and so on, discussed later in the chapter).

 They can be learned end to end as semantic abstractions that are close to the
human cognition process, thanks to the use of deep neural networks.

The first two types are often referred to as handcrafted features because the respective
algorithms have been designed and tuned for the purpose based on heuristics. Many
DL-based models for image representations feed the network layers with image pixels
(inputs to the neural network) and learn to classify images (the network output
classes); during training, the neural network learns features automatically—this is the
third type of features.

 Let’s now look at some methods to extract both local and global handcrafted fea-
tures. Then we’ll focus on DL-based feature learning for images.

8.3.2 Feature extraction

Many cameras allow you to review a picture as soon as it’s taken. Some also provide
information about the amount of color contained in the picture for each of the three
RGB channels (red, green, blue). Let’s take as an example a picture of a butterfly,
shown in figure 8.8. The camera used to take that picture provides its color histogram,
shown in figure 8.9.

Figure 8.8 A picture of a butterfly

236 CHAPTER 8 Content-based image search
A color histogram is a representation of the distribution of the three color channels’
possible values (for example, from 0 to 255) among the pixels. For example, if a certain
pixel has a red channel value of 4 and another pixel has the same value, the color histo-
gram for the red channel for that image will have a size of 2 for the value 4 (two pixels
have a red channel value of 4). This process, applied to all the channels and pixels in a
certain image, produces three red, green, and blue graphs like those shown in figure
8.9. The color histogram is an example of a very simple, intuitive global feature that can
be used to describe an image. We’ll look next at global and local feature extractors.

GLOBAL FEATURES

Instead of indexing images by manually tagging them with captions or descriptions,
you can index the image binaries accompanied by their extracted features, as in figure
8.10. To do so, you can use the open source library Lucene Image Retrieval (LIRE,
licensed under the GNU GPL 2 license) to extract the color histogram from an image.
LIRE provides a lot of useful tools for working with images, which are Lucene friendly.
(At the time of writing, it doesn’t yet support any DL-based methods to extract image
features.) Here’s an example:

File file = new File(imgPath);
SimpleColorHistogram simpleColorHistogram = new SimpleColorHistogram();

BufferedImage bufferedImage = ImageIO.read(file);

simpleColorHistogram.extract(bufferedImage);

double[] features = simpleColorHistogram.getFeatureVector();

Figure 8.9 Color histogram for the butterfly picture

The image file Creates a color
histogram object

Reads the image
from the file

Extracts the color histogram
from the image

Extracts the color histogram
feature vectors as a double array

237Understanding images
Such a global representation of images has the advantage of being human interpreta-
ble and usually efficient in terms of performance. But if you think for a moment of
the fact that the color histogram image representation is bound to the color distribu-
tion over the image (disregarding position), it’s not hard to realize that two different
images with the same subject (such as a butterfly) may have very different color distri-
butions. Consider the butterfly image shown earlier, in figure 8.8, and another image
of a butterfly, shown in figure 8.11.

 Although the butterfly is the primary subject in both images, they have different
color schemes: as you can see in electronic versions of this book, in figure 8.8, the
main colors are yellow and green; whereas in figure 8.11, the main colors are red,
blue, and yellow. Comparisons of images based on histograms are mostly based on
color distributions. The images’ histograms look very different (see figure 8.12), so
the images won’t be considered similar by the search engine. Remember at this point
that you aren’t running a search yet—you’re analyzing the histogram feature and try-
ing to understand what kind of information it can give you.

 The color histogram scheme is just one of many possible ways to extract global fea-
tures, but in general they suffer from the problem that it’s difficult to capture image
details. For example, the first butterfly image doesn’t just contain a butterfly: there are
also flowers and leaves. Such entities aren’t captured by the color histogram; roughly
speaking, such histograms tell you, “There’s a certain amount of light green, another

Image features
are extracted

Image fed into the
feature-extraction

algoritm
Image binary

and features are
indexed

Search engine

Feature-extraction
algorithm

pixels edges shapes objects groups

pixels edges shapes objects groups

pixels edges shapes objects groups

pixels edges shapes objects groups

pixels edges shapes objects groups

pixels edges shapes objects groups

Figure 8.10 Indexing images with their features

238 CHAPTER 8 Content-based image search
amount of yellow, a small portion of white, some black, and so on.” One situation
where global features can work well is duplicate image detection, where the searcher is
looking for an image very similar to, if not exactly the same as, the one at hand.

 One detail that would help immensely is distinguishing background regions of a
photo from the central image. We’d like the representations of the two butterfly
images to somehow understand that the regions containing the butterfly are more
important than the background portions.

Figure 8.11 Another picture of a butterfly

Figure 8.12 Comparing histograms of two butterfly images

239Understanding images
LOCAL FEATURES

In contrast to global features, local features can more accurately capture details of
portions of images. So if you want to make a program detect potentially interesting
objects (for example, a butterfly) in an image, a common approach is to start by split-
ting that image into smaller cells, and then look in those cells for relevant shapes or
objects. Let’s see how this works in figure 8.13, using the same butterfly picture, but
now split into smaller cells.

Once the image is split into smaller parts (such as squares), the task of extracting local
features consists of two steps:

1 Find interesting points (rather than objects).
2 Encode interesting points with respect to the local region into a descriptor that

can be used later to match interesting regions.

But what does interesting mean in this context? You’re looking for points that delimit
or center regions of the image that contain objects. The final goal is still to have a way
to find objects and represent them using features that are comparable. Given two
images containing butterflies, you want features that carry this information in both.
Each image is usually represented as a feature vector—a number of features—so that
if you compute the distance (for example, the cosine distance) between image feature
vectors, images containing the same or similar objects should be close (have a low dis-
tance value).

Figure 8.13 Splitting an image into smaller cells

240 CHAPTER 8 Content-based image search
 Typical kinds of local features include human-understandable visual features like
edges and corners. But in practice, local feature–extraction techniques like scale-
invariant feature transform (SIFT) and speeded-up robust features (SURF) are used.

Local features are representations of portions of an image. A single image is associated
with several local features. But you need a single representation of an image so that:

 The final image representation contains information about all the interesting
local points.

 Efficient comparison can be performed at query time (one feature vector ver-
sus many feature vectors).

To do that, local features need to be aggregated into a single representation (the fea-
ture vector). A common approach is to aggregate local features using the bag-of-visual-
words (BOVW) model. You may recall the bag-of-words model from earlier in the
book: in such a model, a document is represented as a vector whose size is equal to the
number of words in all the existing documents. Each position in the vector is tied to a
certain word: if the value is 1 (or any value larger than zero: for example, calculated
using term frequency–inverse document frequency [TF-IDF]), then the related docu-
ment contains that word; otherwise, the value is 0.

SIFT
Finding edges is a relatively simple task that can be solved using mathematical tools
like Fourier, Laplace, or Gabor transforms; the SIFT and SURF algorithms are more
complex but also more powerful. With SIFT, for example, it’s possible to recognize
important regions in an image so that an object and a rotated version of the
same object produce the same or similar local features. This means that with
SIFT-based features, images that contain the same rotated objects can be rec-
ognized as similar.

We won’t dive into the details of SIFT, because that’s not part of the focus of this
book; but briefly, it uses a filter called Laplacian of Gaussian to recognize interest-
ing points in an image. You can think of a filter as a mask applied to the image.
A Laplacian of Gaussian filter produces an image where edges and other key
points are highlighted, and most other points are no longer visible. The filter is
applied to a preprocessed version of the image, so the resulting image is repre-
sented in a scale-invariant manner. After the application of such a filter, the inter-
esting points are made orientation invariant by recording the orientation of each
interesting point, so each time it’s compared with other points, the orientation
component is integrated in each calculation or comparison operation. Finally, all
the found local features are encoded in a single comparable descriptor/feature
vector.

241Understanding images
 Recall the sample bag-of-words representations for some documents in chapter 5,
shown in table 8.1.

In the BOVW model, each value of the vector is greater than zero if the image has the
local feature corresponding to that position. So instead of the word “bernhard” or
“bio” in the text case, the BOVW model will have “local-feature1,” “local-feature2,”
and so on. Each image is represented according the same principle, but using clus-
tered local features instead of words; see table 8.2.

Using local feature extractors, like SIFT, each image comes with a number of descrip-
tors that may vary depending on image quality, image size, and other factors.

 The BOVW model involves an additional preprocessing step to identify a fixed
number of local features. Let’s assume that for a dataset of images, SIFT extracts local
features for each image, but some have tens and others hundreds of features. To cre-
ate a shared vocabulary of local features, all the local features are collected together,
and a clustering algorithm such as k-means is performed over them to extract n cen-
troids. The centroids are the words for the BOVW model.

 If you look at a clear sky on a dark night, you’ll see many different stars. Each star
can be considered a cluster point: a local feature. Now imagine that the brightest stars
in the sky have more stars near them (in reality, the brightness of a star depends on
distance, size, age, radioactivity, and other factors). Under those conditions, the
brightest stars are the cluster centroids; you can use them to represent all the points
with some approximation. So instead of billions of stars (local features), you consider
only tens or hundreds of stars: the circled centroids. That’s what clustering algorithms
do (see figure 8.14).

Table 8.1 Bag-of-words representations

Terms bernhard bio dive hypothesis in influence into life mathematical riemann

doc1 1.28 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.28

doc2 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0

Table 8.2 Bag-of-visual-words representations

Features local-feature1 local-feature2 local-feature3 local-feature4 local-feature5

image1 0.3 0.0 0.0 0.4 0.0

image2 0.5 0.7 0.0 0.8 1.0

242 CHAPTER 8 Content-based image search

It’s now possible to use LIRE to create image feature vectors using a BOVW model.
First, you extract local features with SIFT and generate a vocabulary of visual words
using a clustering algorithm like k-means:

for (String imgPath : imgPaths) {
 File file = new File(imgPath);
 SiftExtractor siftExtractor = new
 SiftExtractor();

 BufferedImage bufferedImage = ImageIO
 .read(file);

 siftExtractor.extract(bufferedImage);

 List<LocalFeature> localFeatures = siftExtractor
 .getFeatures();

 for (LocalFeature lf : localFeatures) {
 kMeans.addFeature(lf.getFeatureVector());
 }
}
for (int k = 0; k < 15; k++) {
 kMeans.clusteringStep();
}
Cluster[] clusters = kMeans.getClusters();

This code computes all the visual words as a fixed number of clusters. With the visual
vocabulary in place, the local features of each image are compared with the cluster
centroids to calculate the final value of each visual word. This task is performed by the

Figure 8.14 Stars, clusters, and centroids

Iterates over all the images

Creates a local feature extractor
based on the SIFT algorithm

Reads the
image

contents Performs the SIFT
algorithm on the
given image

Extracts all
the SIFT local

features Adds all the SIFT features
for the current image as
points for clustering

Performs k-means clustering for
a predefined number of steps

Extracts the generated clusters

243Deep learning for image representation
BOVW model, which calculates the Euclidean distance between SIFT features and
cluster centroids:

for (String imgPath : imgPaths) {
 File file = new File(imgPath);
 SiftExtractor siftExtractor = new SiftExtractor();
 BufferedImage bufferedImage = ImageIO.read(file);
 siftExtractor.extract(bufferedImage);
 List<LocalFeature> localFeatures = siftExtractor
 .getFeatures();
 BOVW bovw = new BOVW();
 bovw.createVectorRepresentation(localFeatures
 , clusters);
 double[] featureVector = bovw
 .getVectorRepresentation();
}

This code gives a single feature-vector representation for each image that you can use
in image searches.

 In the examples, global feature extraction uses a simple color histogram extractor,
and local feature extraction uses SIFT in conjunction with BOVW. These are just some
of several algorithms that can be used to perform explicit feature extraction. For
example, for global feature extraction, alternatives include the fuzzy-color approach,
which is a bit more flexible. For local feature extraction, SURF (mentioned earlier) is
a variant of SIFT that’s more robust and usually better in terms of speed.

 The main advantage of the color histogram feature extractor is its simplicity and
intuitiveness; the main advantage of SIFT, SURF, and other local feature extractors is
that they perform well for identifying objects in smaller portions of an image in a scale-
and rotation-invariant way. In practice, a production system needs an approach that
gives the best guarantees in terms of accuracy, speed, engineering effort, and mainte-
nance required to make the entire system work. Once you have a feature vector of a
fixed dimension representing an image, the indexing and search strategies make the
most difference in terms of speed, as you’ll see later in this chapter. Regarding engineer-
ing effort, maintenance, and accuracy, the global and local feature extractors discussed
so far have been overtaken by DL architectures. The central point is that features aren’t
manually extracted but rather are learned through a deep neural network.

 In the next section, you’ll see how that makes feature extraction a straightforward
end-to-end learning process, from pixels to feature vectors. Such DL-generated fea-
tures are also typically better in terms of a semantic understanding of visual objects.

8.4 Deep learning for image representation
So far in this chapter, we’ve extracted features from images. Learning representations
of data is what has made DL so successful in recent years. Computer vision was the first
field where DL outperformed previous state-of-the-art approaches; in computer
vision, computers are tasked with recognizing objects in images or videos. This can be

Iterates again over all the images

Extracts the SIFT local features
again. SIFT features can be
temporarily cached per image in a
map to avoid computing them twice.

Creates a
BOVW

instance

Computes a single vector
representation for the current image,
given local SIFT features and centroidsExtracts feature vectors

244 CHAPTER 8 Content-based image search
used in a variety of applications, from retina scans, to identify driving violations (such
as identifying vehicles overtaking where it’s not permitted), optical character recogni-
tion, and so on. The technology’s success is driving DL researchers and engineers to
work on increasingly difficult tasks such as, for example, driverless cars.

 Some famous results of DL applied to images include LeNet (http://yann
.lecun.com/exdb/lenet), a neural network that can recognize handwritten and
machine-printed digits; and AlexNet (http://mng.bz/6j4y), a neural network that can
recognize objects in an image. AlexNet is particularly interesting for the image search
scenario, because it was able to categorize (assign a category to) a certain image
among 1,000 different very fine-grained categories. For example, it can differentiate
between very similar dogs of different canine breeds, as shown in figure 8.15.

Both LeNet and AlexNet use a special kind of feed-forward (artificial) neural network
called a convolutional neural network (CNN or ConvNet). In recent years, CNNs have
been applied not just to images and videos but also to sound and text; they’re very
flexible and can be used for a variety of tasks.

 At the beginning of this chapter, I mentioned that you can use DL to find increas-
ingly abstract structures in images. Researchers have discovered that this is what CNNs
do during the training phase. As the number of layers grows, layers closer to the input
learn raw features like edges and corners, while layers placed toward the end of the
deep neural network learn features that represent shapes and objects. Going forward,
you’ll learn the architecture of CNNs, how to train them and set them up, and finally,
how to extract features for image search (as in figure 8.16).

EntleBucher Appenzeller

Figure 8.15 Image of dogs classified by AlexNet

http://yann.lecun.com/exdb/lenet
http://yann.lecun.com/exdb/lenet
http://yann.lecun.com/exdb/lenet
http://mng.bz/6j4y

245Deep learning for image representation

8.4.1 Convolutional neural networks

Despite their names, the connection between artificial neural networks and how the
human brain works isn’t obvious. Most common neural network architectures have a
fixed architecture: often neurons are fully connected, whereas the neurons in the
brain don’t have such fixed (and simple) structures. CNNs were originally inspired by
how the visual cortex in the human brain works: dedicated cells take care of certain
portions of the image, passing the information to other cells that elaborate the infor-
mation in a flow similar to the one you’re going to see for a CNN. A fundamental dif-
ference in how CNNs work with respect to other types of neural networks is that they
don’t handle flat signal inputs (for example, dense, one-hot-encoded vectors).

 When we looked at creating a color histogram for an image, I mentioned that
images are commonly represented using RGB: a single pixel is described by three dif-
ferent values for the red, green, and blue channels. If you extend that to an entire
image, with many different pixels, you’ll have a representation for an image of width X
and height Y consisting of three different matrixes for each of the three RGB compo-
nents, each with Y rows and X columns. For example, an image 3 × 3 pixels in size
would have 3 matrixes with 9 values each. An RGB code of R:31, G:39, and B:201
would generate the color shown in figure 8.17 (visible in the e-book).

Image features
are extracted

Image is fed into
the neural net

Image binary
and features are

indexed

Search engine

pixels edges shapes objects groups

pixels edges shapes objects groups

pixels edges shapes objects groups

pixels edges shapes objects groups

pixels edges shapes objects groups

pixels edges shapes objects groups

Layer 1
(input layer)

Layer 2
(hidden layer)

Layer 3
(hidden layer)

Layer 4
(output layer)

Figure 8.16 Indexing images with their features, extracted by a neural network

246 CHAPTER 8 Content-based image search

 If you imagine such a value placed in the
first element of the second row of the 3 × 3
image, the RGB matrixes might look as shown
in tables 8.3–8.5(the bold values represent the
pixel in figure 8.17).

Instead of a single matrix of words or character vectors, a neural network needs to
handle three matrixes for each input image, one per color channel. This poses severe
performance issues when you’re handling images with conventional feed-forward,
fully connected neural networks. Very small images of size 100 × 100 would need 100 *
100 * 3 = 30,000 learnable weights just for the first layer. With a medium-sized image
(1024 × 768), the first layer would need more than 2,000,000 parameters (1024 * 768
* 3 = 2,359,296)!

 CNNs solve the problem of handling by training over large inputs, adopting a
lightweight design in layers and neuron connections. Fewer connections means fewer
weights to be learned by the network. And fewer weights makes learning less computa-
tionally complex and also faster. Not all neurons in this type of layer are always con-
nected to neurons in the preceding layer; such neurons have a receptive field of a
certain configurable size that defines the local region of the input matrixes they’re

Table 8.3 Red channel

0 4 0

31 8 3

1 12 39

Table 8.4 Blue channel

10 40 31

39 0 0

87 101 18

Table 8.5 Green channel

37 46 1

201 8 53

0 0 10

Figure 8.17
Sample RGB pixel value

247Deep learning for image representation
connected to. Therefore, some neurons aren’t connected to the entire input region
and hence don’t have an attached weight. Such layers called convolutional layers and
are the main building block of CNNs (together with pooling layers ; see figure 8.18).

 Back when I briefly introduced the SIFT feature extractor, I mentioned the Lap-
lacian of Gaussian (LoG) filter, which identifies the interesting points in an image.
Convolutional layers have that same responsibility; but in contrast with the LoG filter,
which is fixed, convolutional filters are learned during the network training phase to
best adapt to the images in the training set (see figure 8.19).

 Convolutional layers have a configurable depth (4, in figure 8.19), a number of fil-
ters, and some other configuration hyperparameters. The layer’s filters contain the
parameters (weights) that are learned by the network via backpropagation during
training. You can think of each filter as a small window over the entire image that

Convolutional
layer

Pooling
layer

Fully connected
layer

Output
layer

Input
layer

Figure 8.18 Building blocks (and flow) of CNNs

Convolutional
layer

Input
image

Local
region

Filters

Output
volume

Figure 8.19 Convolutional layer

248 CHAPTER 8 Content-based image search
changes the input pixels it’s currently “seeing”; the filter is slid over the entire image
so that it’s applied to all of the input values. This sliding filtering is the convolution
operation that gives the name to this type of layer (and to the network).

 A 5 × 5 filter has 25 weights, so it sees 25 pixels at a time. Mathematically speaking,
the filter computes the dot product between the 25 values of the pixels and the 25
weights of the filter. Suppose a convolutional layer receives a 100 × 100 × 3 input
image (also called an input volume because it has 3 dimensions). If the layer has 10 fil-
ters, the output is a volume of 100 × 100 × 10 values. The 10 generated 100 × 100
matrixes (1 for each filter) are called activation maps.

 When the filter slides over the input values, it moves one value/pixel at a time. But
sometimes, the filter can slide two or three values at a time (for example, on the width
axis) to reduce the number of generated outputs. This parameter for the move size is
generally called stride. Sliding one value at a time is stride = 1, sliding by two val-
ues means stride = 2, and so on.

 CNNs also reduce the computational burden of training with large input volumes
by adopting a way to control the number of weights to be learned. Imagine all the
neurons in figure 8.19 having a certain depth (for example, depth = 2). Then they
will share the same weights. This technique is called parameter sharing.

 In the end, the primary differences between convolutional layers and normal fully
connected neural network layers is that convolutional neurons are only connected to a
local region of the input, and some neurons in a convolutional layer share parameters.

POOLING LAYERS

A pooling layer’s responsibility is to downsample the input volume: it reduces the
input size while trying to maintain the most important information. This has the
advantage of reducing the computational complexity and the number of parameters
to be learned for successive layers (for example, other convolutional layers). Pooling
layers aren’t associated with weights to be learned; they look at portions of the input
volume and extract one or more values, depending on the chosen function. Common
functions are max and average.

 Like convolutional layers, pooling layers have a configurable receptive field size
and stride. For example, a pooling layer with a receptive field size of 2 and stride of
2 with a max function will take four values from the input volume and output the max-
imum value from those input values.

CNN TRAINING

You’ve learned about the main building blocks of CNNs. Let’s stack them together to
create an actual CNN and see how such a network is trained. Remember that the main
goal is to extract feature vectors that capture the notion of semantically similar
images.

 A typical CNN architecture usually involves at least one (or more) convolutional
layers, followed by

249Deep learning for image representation
 A dense, fully connected layer to hold the feature vectors for the images
 An output layer containing class scores for each of the classes an image can be

tagged with

A CNN is usually trained in a supervised way using training examples whose input is
an image and whose expected outputs are a set of classes the image belongs to.

 Let’s look at a known dataset that has been used a lot in computer vision research.
The CIFAR dataset (www.cs.toronto.edu/~kriz/cifar.html) contains thousands of
images labeled with 10 categories (see figure 8.20). Images from the CIFAR dataset
are color images, each of which is 32 × 32 pixels (very small). The first layer will there-
fore receive inputs of 32 * 32 * 3 = 3,072 values.

Let’s create a simple CNN with two convolution + pooling layers, one dense layer, and
the output layer; see figure 8.21. You expect the network to produce an evaluation of
the likelihood that the input image belongs to any of the 10 categories; figure 8.22
shows some example output (the image was generated using the ConvNetJS CIFAR-10
demo at https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html).

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Figure 8.20 Some examples from the CIFAR dataset

www.cs.toronto.edu/~kriz/cifar.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

250 CHAPTER 8 Content-based image search

Size
mini-
As you can see, during CNN training, no feature engineering has to be performed;
the feature vectors can be drained from the final dense layer, end to end. You “just”
need lots of images with labels!

 This architecture is a simple example of a CNN. Many things can be changed in
the fundamental design and in the many hyperparameters. For example, adding
more convolutional layers has been shown to improve accuracy. The size of the recep-
tive field and the depth of convolutional layers or pooling operations (max, average,
and so on) are all powerful aspects that can be tweaked to improve accuracy.

SETTING UP A CNN IN DL4J
The CNN from the previous section can easily be implemented in Deeplearning4j.
DL4J comes with a utility class to iterate and train over the CIFAR dataset, so let’s use
that to train the CNN.

int height = 32;

int width = 32;

int channels = 3;

int numSamples = 50000;

int batchSize = 100;

Listing 8.1 Setting up a CNN for CIFAR in DL4J

Convolution

Input conv1 conv2 outputpool1 pool2 hidden4

Convolution

Convolution

Full
connection

Subsample

Subsample

Figure 8.21 A simple CNN with two convolution + pooling layers

Frog
Bird
Deer

Horse
Frog
Deer

Truck
Airplane
Ship

Horse
Frog
Dog

Horse
Deer
Truck

Truck
Car
Ship

Truck
Car
Airplane

Truck
Horse
Airplane

Figure 8.22 Testing a CNN on the CIFAR dataset

Height of input images

Width of input images

Number of image channels to be used

Number of training examples to
drain from the CIFAR dataset

of the
batch

251Deep learning for image representation
int epochs = 10;

MultiLayerNetwork model = getSimpleCifarCNN();
CifarDataSetIterator dsi = new CifarDataSetIterator(
 batchSize, numSamples, new int[] {height, width,
 channels}, false, true);

for (int i = 0; i < epochs; ++i) {
 model.fit(dsi);
}
cf.saveModel(model, "simpleCifarModel.json");

The model architecture is defined by the getSimpleCifarCNN method, which is shown
next and in figure 8.23.

public MultiLayerNetwork getSimpleCifarCNN() {
 MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .list()
 .layer(0, new ConvolutionLayer.Builder(
 new int[]{4, 4}, new int[]{1, 1},
 new int[]{0, 0}).name("cnn1")
 .convolutionMode(ConvolutionMode.Same)
 .nIn(3).nOut(64).weightInit(WeightInit.XAVIER_UNIFORM).activation(
 Activation.RELU)

 .layer(1, new SubsamplingLayer.Builder(
 PoolingType.MAX, new int[]{2,2})
 .name("maxpool1").build())

 .layer(2, new ConvolutionLayer.Builder(
 new int[]{4,4}, new int[] {1,1},
 new int[]{0,0}).name("cnn2")
 .convolutionMode(ConvolutionMode.Same)
 .nOut(96).weightInit(WeightInit.XAVIER_UNIFORM)
 .activation(Activation.RELU).build())

 .layer(3, new SubsamplingLayer.Builder(
 PoolingType.MAX, new int[]{2,2}).name(
 "maxpool2").build())

 .layer(4, new DenseLayer.Builder().name(
 "ffn1").nOut(1024).build())

 .layer(5, new OutputLayer.Builder(LossFunctions
 .LossFunction.NEGATIVELOGLIKELIHOOD)

.name("output").nOut(numLabels).activation(Activation.SOFTMAX).build())
 .backprop(true).pretrain(false)
 .setInputType(InputType.convolutional(height, width, channels))
 .build();

 MultiLayerNetwork model = new MultiLayerNetwork(conf);
 model.init();
 return model;
}

Once the CNN has finished training, you’re ready to use the network outputs.

Listing 8.2 Configuring the CNN

Number of epochs to train the network

Sets up the network
architecture

Creates an iterator over
the CIFAR dataset

Trains the network

Saves the model for later use

First
convolution

layer

First pooling layer

Second
convolution

layer

Second pooling layer

Dense layer (the one
from which you’ll
extract features)

Output
layer

252 CHAPTER 8 Content-based image search
Think back to the color histogram or BOVW models—you obtained a feature vector
for each image. A CNN gives you more than that: the dense layer close to the output
layer contains the feature vectors you can use to compare images, and you also have a
trained CNN that you can use to tag new images.

 After training has finished, if you want to index the feature vectors learned for
each image by the convolutional neural network, you have to iterate again over the
image dataset, perform a feed-forward computation for each image, and extract the
feature vectors generated by the CNN.

Figure 8.23 Resulting model from the DL4J UI

253Deep learning for image representation
DataSetIterator iterator = ...
while (iterator.hasNext()) {

 DataSet batch = iterator.next(batchSize);
 for (int k = 0; k < batchSize; k++) {

 DataSet dataSet = batch.get(k);

 List<INDArray> activations = model.
feedForward(dataSet.getFeatureMatrix(),
 false);

 INDArray imageRepresentation = activations
.get(activations.size() - 2);

 INDArray classification = activations.get(
activations.size() - 1);

 ...
 }
}

You’re now ready to learn how you can efficiently index and search the feature vectors
extracted by a CNN (although this applies generally for any feature vector).

8.4.2 Image search

Let’s return to the example from the beginning of the chapter: given a picture taken
with your smartphone camera, you want to find a professional picture to use as a card
with a gift. You need to do the following:

1 Feed the input image to the CNN.
2 Extract the generated feature vectors.
3 Use the feature vectors to make a query to find similar images in the search

engine.

You saw how to perform the first two steps in the previous section. In this section,
you’ll learn how to perform the query efficiently.

 An obvious way to perform the query would be to perform a comparison between
the input-image feature vectors and the feature vectors of all the images stored in the
search engine. Imagine extracting the feature vectors from a CNN like the one in the
previous section, and putting them on a graph: the points represent similar images
that are close to one another. This is the same line of thought we applied to word and
document embeddings. So you can compute the distance between the feature vector
from the input image and the feature vectors of all the other images and, for example,
return the top 10 images that have the least-distant feature vectors. From a computa-
tional perspective, this approach won’t scale, because the time taken to perform a
query grows linearly with the number of images in the search engine. In real life, such

Listing 8.3 Extracting feature vectors

Obtains the iterator over the
images to be processed

Iterates over the dataset

Iterates over each batch

Iterates over each image
from the current batch

Performs a feed-forward pass,
without training, with the
current image (pixels as input)

Extracts the image representation
stored in the dense layer before the
final output layer

Extracts the classification
scores for the current image

Processes (stores) the image
feature-vector representation

254 CHAPTER 8 Content-based image search
nearest-neighbor algorithms are often approximated: they perform better, but at the
cost of accuracy. Such an approximated nearest-neighbor search algorithm may not
return the exact closest items with respect to the input image, but it will still return
close neighbors, much more quickly.

 In Lucene, you can use the (experimental) FloatPointNearestNeighbor class,
which provides an approximate nearest-neighbor function, or implement an approxi-
mate nearest-neighbor search using locality-sensitive hashing (LSH). FloatPointNearest-
Neighbor is more expensive at search time, with no additional space footprint on the
index; LSH increases the size of the index, because it requires you to store more than
just the feature vectors, but it’s faster at search time. We’ll start by using the Float-
PointNearestNeighbor class, and then look at LSH.

USING FLOATPOINTNEARESTNEIGHBOR

To use FloatPointNearestNeighbor, you need to extract the CNN feature vectors and
index them in Lucene as points. Recent Lucene versions have support for n-dimensional
points (another way to see a vector) based on the k-d tree algorithm (https://en
.wikipedia.org/wiki/K-d_tree). So the feature vector you extract from the CNN is
indexed using a dedicated field type called FloatPoint.

List<INDArray> activations = cnnModel.feedForward(currentImage, false);
INDArray imageRepresentation = activations
 .get(activations.size() - 2);
float[] aFloat = imageRepresentation.data()
 .asFloat();
doc.add(new FloatPoint("features", floats));

Unfortunately, as of Lucene 7, FloatPoints can index points whose dimension is at
most 8. Feature vectors are usually much bigger than that: for example, our example
CNN for CIFAR generates feature vectors whose dimension is 1,024. You’ll need to
reduce the float[] used to instantiate FloatPoint from having 1,024 values to hold-
ing at most 8.

 You can try to reduce the number of dimensions in vectors while retaining the
most important information; this technique is also called dimensionality reduction.
There are various dimensionality reduction algorithms, and we’ll look at one that you
can also reuse in other scenarios.

 A common dimensionality reduction algorithm is principal component analysis (PCA).
As the name suggests, PCA identifies the most important features from a feature-vector
set and throws away the others. The feature vectors extracted from the CNNs have
1,024 values each. You want to use PCA to merge each feature vector’s 1,024 values into
at most 8 different values. With PCA, you transform a point/vector on a graph that has
1,024 coordinates into a point/vector on a graph that has 8 coordinates.

Listing 8.4 Indexing a feature vector as a point

Obtains the feature vector
generated by the CNN

Converts it to a float array

Indexes the feature vector
as a Lucene FloatPoint

https://en.wikipedia.org/wiki/K-d_tree
https://en.wikipedia.org/wiki/K-d_tree
https://en.wikipedia.org/wiki/K-d_tree

255Deep learning for image representation
 Intuitively, a PCA algorithm goes through the values of each feature in each vector
to find the features whose values differ the most (have the highest variance). Such fea-
tures are considered the most important. PCA doesn’t discard the others; rather, it
builds new features from them, to avoid losing information. The features with the
highest variance have more weight when building out the new features. PCA will com-
bine the 1,024-sized feature vectors extracted from the CNN into 8 new features, so
that you can index each feature vector as a Lucene point.

 PCA can be implemented in several ways; because you’re dealing with vectors, you
could stack them together in a big matrix and use matrix factorization algorithms,
such as non-negative matrix factorization, truncated singular value decomposition,
and others. For the sake of feature-vector indexing, we won’t go into details about how
such PCA algorithms work, because they’re out of the scope of this book. DL4J pro-
vides tools to implement PCA, so we’ll use them instead.

 CIFAR has about 50,000 images of 1,024 dimensions each, so you have a huge
matrix with 50,000 rows (the number of feature vectors) and 1,024 columns (the fea-
ture vectors dimension). You want to reduce that to a 50,000 × 8 matrix.

CifarDataSetIterator iterator ...
INDArray weights = Nd4j.zeros(50000, 1024);
while (iterator.hasNext()) {
 DataSet batch = iterator.next(batchSize);
 for (int k = 0; k < batchSize; k++) {
 DataSet dataSet = batch.get(k);
 List<INDArray> activations = model
 .feedForward(dataSet.getFeatureMatrix(),
 false);
 INDArray imageRepresentation = activations
 .get(activations.size() - 2);
 float[] aFloat = imageRepresentation.data().asFloat();
 weights.putRow(idx, Nd4j.create(aFloat));
 }
}

With the entire feature-vectors matrix built, you can run PCA and obtain vectors that
are small enough to be indexed as FloatPoints in Lucene. Note that because this
matrix is so big, it may take a while (for example, several minutes on a modern lap-
top) for PCA to complete.

int d = 8;
INDArray reduced = PCA.pca(weights, d, true);

Although this should work well, you can generate smaller feature vectors of better
quality by borrowing a technique for compressing word embeddings from the paper

Listing 8.5 Building the image feature-vectors matrix

Listing 8.6 Reducing the vector dimensions to 8

Creates the weights matrix

Iterates over the
entire (CIFAR) dataset

Performs feed-forward on the CNN

Extracts feature
vectors from the
dense layer

Stores the feature vectors
in the weights matrix

Target-vector size
Performs PCA on the
weights matrix

256 CHAPTER 8 Content-based image search
“Simple and Effective Dimensionality Reduction for Word Embeddings”2 and use it
for image vectors, too. This technique is based on the combination of PCA and a post-
processing algorithm to highlight which features of an embedding are “stronger” than
the others. The postprocessing algorithm for stronger embeddings is described in the
paper “All-but-the-Top: Simple and Effective Postprocessing for Word Representa-
tions.”3 You can implement the postprocessing in DL4J as follows.

private INDArray postProcess(INDArray weights, int d) {
 INDArray meanWeights = weights.sub(weights.meanNumber());
 INDArray pca = PCA.pca(meanWeights, d, true);
 for (int j = 0; j < weights.rows(); j++) {
 INDArray v = meanWeights.getRow(j);
 for (int s = 0; s < d; s++) {
 INDArray u = pca.getColumn(s);
 INDArray mul = u.mmul(v).transpose().mmul(u);
 v.subi(mul.transpose());
 }
 }
 return weights;
}

The entire algorithm for this modified version of dimensionality reduction for
embeddings performs postprocessing on the weights matrix, followed by PCA, and
again followed by postprocessing on the reduced weights matrix.

int d = 8;
INDArray x = postProcess(weights, d);

INDArray pcaX = PCA.pca(x, d, true);

INDArray reduced = postProcess(pcaX, d);

You can now iterate over the weights matrix and index each row as a FloatPoint in
Lucene.

IndexWriter writer = new IndexWriter(directory, config);

for (int k = 0; k < reduced.rows(); k++) {
 Document doc = new Document();

2 By Vikas Raunak, https://arxiv.org/abs/1708.03629.

Listing 8.7 Postprocessing for stronger embeddings

3 By Jiaqi Mu, Suma Bhat, and Pramod Viswanath, https://arxiv.org/abs/1702.01417.

Listing 8.8 Dimensionality reduction with postprocessing of embeddings

Listing 8.9 Indexing feature vectors

Removes the mean values from each
embedding in the weights matrix

Performs PCA on the
resulting weights matrix

Emphasizes each
vector’s specific values

Subtracts the principal
component values for each vector

Returns the modified weights matrix

Postprocesses the original
feature-vector values

Performs PCA to obtain eight-
dimensional feature vectors

Postprocesses the reduced
feature-vector values

Creates an IndexWriter

Iterates over the rows of
the reduced weights matrix

https://arxiv.org/abs/1708.03629
https://arxiv.org/abs/1702.01417

257Deep learning for image representation
 doc.add(new FloatPoint("features", reduced.getRow(k)
 .toFloatVector()));

 doc.add(new TextField("label", ..., Field.Store.YES));

 writer.addDocument(doc);
}
writer.commit();

Now that you have images indexed by means of their feature vectors, you can query by
an example image and find the most similar images in the search engine. So, to run
some tests, you get a random indexed image, extract its feature vectors, and then per-
form a search using the FloatPointNearestNeighbor class.

int rowId = random.nextInt(reader.numDocs());
Document document = reader.document(rowId);
TopFieldDocs docs = FloatPointNearestNeighbor.nearest(searcher,
 "features", 3, reduced.getRow(rowId).toFloatVector());
ScoreDoc[] scoreDocs = docs.scoreDocs;
System.out.println("query image of a : " + document.get("label"));
for (ScoreDoc sd : scoreDocs) {
 System.out.println("-->" + sd.doc + " : " +
 reader.document(sd.doc).getField("label").stringValue());
}

For example, you expect the nearest neighbors of images of dogs to be labeled as dogs
as well. Here’s some sample output:

query image of a : dog
--> 67 : dog
--> 644 : dog
--> 101 : cat

query image of a : automobile
--> 2 : automobile
--> 578 : automobile
--> 311 : truck

query image of a : deer
--> 124 : deer
--> 713 : dog
--> 838 : deer

query image of a : airplane
--> 412 : airplane
--> 370 : airplane
--> 239 : ship

query image of a : cat
--> 16 : cat
--> 854 : cat
--> 71 : cat

Listing 8.10 Nearest-neighbor search

Indexes the vector
as a FloatPoint

Indexes the label
related to the
current vector

Indexes the document

Commits changes

Gets the document associated
with the randomly generated ID

Extracts the input-image
features, and performs a nearest-

neighbor search returning the
top three results

Iterates over the search results

258 CHAPTER 8 Content-based image search
You’ve completed the flow from extracting features, to indexing, and finally to search-
ing through images. I mentioned that you can improve the search performance by
adopting an algorithm called locality-sensitive hashing ; the next section introduces it
and looks at one possible implementation in Lucene.

8.4.3 Locality-sensitive hashing

The simplest possible implementation of a k-nearest-neighbor algorithm goes through
all the existing images in the search engine and compares the input-image feature
vector with each indexed-image feature vector, keeping the k-closest ones only. Those
are the input-nearest neighbors—the search results. This is what we implemented in
the previous section.

 Recall the earlier example of stars and clustering: if you plot the image feature vec-
tors on a graph and apply a clustering algorithm, you obtain clusters and centroids.
Each image belongs to a cluster, and each cluster has a centroid, which is the center of
the cluster. Instead of comparing the input-image feature vectors to all the vectors
from all the images, you can compare them against only the centroids’ feature vectors.
The number of clusters is usually much smaller than the number of points (vectors),
so this speeds up the comparison. Once you’ve found the nearest cluster, you can
decide whether to stop and keep all the other vectors belonging to the cluster as near-
est neighbors, or perform a second round of nearest-neighbor search against the
other feature vectors belonging to the nearest cluster.

 This basic idea can be implemented in a number of ways. Of course, you can run
a k-means clustering algorithm over the feature vectors, and index the centroids with
a special label (for example, adding a dedicated field that only centroids have) so
that during search, an initial query is performed to fetch the centroids. With the cen-
troids available, one or two executions of an exact or approximate nearest-neighbor
algorithm can be performed (first over the centroids, and then over the nearest clus-
ter points).

 One problem with this is a cluster needs to be maintained and kept up to date; as
new images are indexed, the cluster and, consequently, the centroids may change. This
might require you to have to run the clustering algorithm several times. The same
applies to the dimensionality reduction algorithm required to index small vectors.

 A lighter-weight but nice approach is to use hash functions and hash tables to find
near-duplicates. Hash functions are just one way that deterministic functions can
always transform an input into the same output. (It isn’t possible to recover the input
value from the output value.) The reason to choose hash functions for this task is that
they’re very good at detecting near-duplicates. When two values produce the same
output, they cause a hash collision. When a hash function is applied to several different
inputs, and you want to quickly retrieve those inputs, they can be collected in a hash
table. The nice thing about hash tables is that you can retrieve an item via hashing;
rather than you having to look for it by scrolling through all the items, the hash func-
tion tells you its position in the hash table.

259Deep learning for image representation
 With LSH, input-image feature vectors are passed through several different hash
functions so that similar items map to the same buckets (hash tables). Internally, the
purpose of LSH is to maximize the probability of a hash collision for two similar items.
When an input image is fed to LSH, it passes its feature vectors through several hash
functions, and the bucket where the input-image feature vectors end up says what
images the input image needs to be compared with. This operation is just as quick as
hashing functions, which are usually fast. Additionally, by using special types of hash
functions, you can usually map similar inputs into the same buckets.

 In Lucene, you implement this approach by creating a dedicated Analyzer. The
LSH Analyzer you’re going to build will perform some steps to produce hash values
or buckets that are stored in the index, just like plain text. So although you can use
FloatPoint fields to work with feature vectors as points in the vector space, you can
also use Lucene’s text capabilities for LSH. You store hash values generated by LSH as
plain tokens.

 The LSH algorithm will create hashes for portions of a feature vector, as well as for
the entire feature vector. This is done to maximize the probability of matching. First
you tokenize the feature vector and extract each feature with its position. For exam-
ple, from the feature vector <0.1, 0.2, 0.3, 0.4, 0.5>, you’ll obtain the following
tokens: 0.1 (position 0), 0.2 (position 1), 0.3 (position 2), 0.4 (position 3), 0.5 (posi-
tion 4). You can incorporate the position of each token in the token text so that the
hash function applied to the token text is calculated based on the position of each
token. The entire feature vector is also kept.

 Then you’ll create ngrams of each individual token: you don’t make hashes of the
entire vector or single features, but rather of the entire vector and portions of it. For
example, the bigram of the feature vector <0.1, 0.2, 0.3, 0.4, 0.5> is 0.1_0.2,
0.2_0.3, 0.3_0.4, 0.4_0.5.

 Finally, you’ll apply LSH by using Lucene’s built-in MinHash filter. The MinHash filter
applies several hash functions to the terms, generating the corresponding hash values.

public class LSHAnalyzer extends Analyzer {
...
 @Override
 protected TokenStreamComponents createComponents(String fieldName) {
 Tokenizer source = new FeatureVectorsTokenizer();
 TokenFilter featurePos = new FeaturePositionTokenFilter(source);
 ShingleFilter shingleFilter = new ShingleFilter
 (featurePos, min, max);
 shingleFilter.setTokenSeparator(" ");
 shingleFilter.setOutputUnigrams(false);
 shingleFilter.setOutputUnigramsIfNoShingles(false);
 TokenStream filter = new MinHashFilter(shingleFilter, hashCount,
 bucketCount, hashSetSize, bucketCount > 1);
 return new TokenStreamComponents(source, filter);
 }
...
}

Listing 8.11 The LSHAnalyzer class

Tokenizes the features
of the feature vector

Attaches the position
information to each tokenCreates

feature
ngrams

Applies the LSH filter

260 CHAPTER 8 Content-based image search

Ind

im
To use LSH, you need to use this analyzer (as you’ve seen in other parts of this book)
at both indexing and search time over the field where you index feature vectors. Note
that with LSH, you don’t need to reduce the feature vectors as you did in the previous
section: the feature vectors can be kept as they are (for example, 1,024 values) and
passed to LSHAnalyzer, which creates the feature-vector hash values.

 As you did before, you configure the LSHAnalyzer to be used for the field that will
host the hash values.

Map<String, Analyzer> mappings = new HashMap<>();

mappings.put("lsh", new LSHAnalyzer());

Analyzer perFieldAnalyzer = new PerFieldAnalyzerWrapper(new
WhitespaceAnalyzer(), mappings);

IndexWriterConfig config = new IndexWriterConfig(perFieldAnalyzer);

IndexWriter writer = new IndexWriter(directory, config);

Once you’ve set up the indexing configuration, you can proceed to index feature vec-
tors. Assuming you extracted feature vectors for each image in a matrix (for example,
called weights) where each row has 1,024 columns (the feature values), you can
index each row in a field called lsh that’s processed by LSHAnalyzer.

int k = 0;
for (String sl : stringLabels) {
 Document doc = new Document();
 float[] fv = weights.getRow(k).toFloatVector();

 String fvString = toString(fv);

 doc.add(new TextField("label", sl, Field.Store.YES));

 doc.add(new TextField("lsh", fvString, Field.Store.YES));

 writer.addDocument(doc);
 k++;
}
writer.commit();

Listing 8.12 Configuring LSHAnalyzer for the “lsh” field

Listing 8.13 Index feature vectors in an LSH field

Creates a map to contain
per-field analyzers

Whenever a Document
has a field named “lsh”,
uses LSHAnalyzer

Creates a per-field Analyzer

Creates the indexing configuration
with the defined Analyzers

Creates the IndexWriter to
index Lucene documents

Iterates over the images by their labels
(for example, “dog,” “deer,” “car,” and

so on for the CIFAR dataset) Gets the feature
vector from the
weights matrix

Converts the feature-
vector float[] to a String

exes the
current

age label Indexes the
current image
feature vector in
the “lsh” field

Indexes the document

Persists changes on disk

261Working with unlabeled images
To query for similar images using LSH, you retrieve the feature vector of the query
image, extract its token hashes, and run a simple text query using those hashes.

String fvString = reader.document(docId).get("lsh");

Analyzer analyzer = new LSHAnalyzer();

Collection<String> tokens = getTokens(analyzer, "lsh", fvString);

BooleanQuery.Builder booleanQuery = new BooleanQuery.Builder();

for (String token : tokens) {
 booleanQuery.add(new ConstantScoreQuery(new TermQuery(new Term(
 fieldName, token))), BooleanClause.Occur.SHOULD);
}
Query lshQuery = booleanQuery.build();

TopDocs topDocs = searcher.search(lshQuery, 3);

With LSH, you can generally get similar candidates faster than you could by querying
using a nearest-neighbor search, at the cost of more index space being occupied by
the feature-vector terms produced by LSHAnalyzer. The speed benefits of LSH are
especially clear when the number of images in the index is very large. In addition,
reducing the feature-vector dimensions to a small value (such as 8, as in the previous
section) can sometimes be very computationally expensive; LSH doesn’t require such
preprocessing of feature vectors, so it may be a better choice than nearest-neighbor
in such scenarios, regardless of the query time.

8.5 Working with unlabeled images
In this section, we’ll touch the case where you have a set of unlabeled images and you
can’t create a training set where each image is tagged with the proper classes (like
deer, automobile, ship, track, and so on in the CIFAR dataset).

 This can be your own set of images you want to be able to search for. As you’ve seen
in the previous sections, you need to have a vector representation for each image to
search for it based on its contents. But if your images don’t have labels, you can’t gener-
ate their feature vectors leveraging the CNN architecture seen in the previous sections.

 To overcome this problem, you’ll use a type of neural network whose task is to
learn to encode the input data, usually with a lower dimensionality than the original
one, and then reconstruct that. Such neural networks, called autoencoders, are typically
built so that one part of the network encodes the input into a vector (also known as
latent representation) with a fixed size, and then this vector is transformed back again in
the original input data, which is also used as the target output. Such autoencoders can
be used, for example, to transform an image vector into an eight-dimensional vector

Listing 8.14 Querying using LSHAnalyzer

Gets the query-image
feature-vector String

Creates the LSHAnalyzer
Gets the token hashes

of the feature vector
using the LSHAnalyzer

Creates a
Boolean query

For each token hash,
creates a term query
(with a constant score)

Finalizes query creation
Runs the LSH query, and

takes the three top results

262 CHAPTER 8 Content-based image search
to allow indexing it as a Lucene FloatPoint. The part of the autoencoder that trans-
forms the input data into another vector with a desired dimensionality (in our case, it
may be eight), is called the encoder. The part of the network that transforms the latent
representation back into the original data is called the decoder. Most commonly, the
structure of the encoder and the decoder is the same, just mirrored, as you can see in
the example of an autoencoder in figure 8.24.

There are many “variations” of autoencoders. For the case of generating a compact
latent representation of large image vectors, you’ll use a variational autoencoder (or
VAE). A variational autoencoder generates latent representations that follow a unit
Gaussian distribution.

 To test the usage of an autoencoder with unlabeled data, you’ll still use the CIFAR
dataset, but you won’t use the classes attached to each image to train the network.
You’ll instead use them to evaluate whether the search results are good after training
has finished. But the important part of this approach is that you’ll have a way to gener-
ate a dense vector representation, like a feature vector, for your images, even when
they’re not labeled.

 Let’s build a VAE in DL4J with a latent representation of size 8 and two hidden lay-
ers for both encoder and decoder. The first hidden layer will have 256 neurons, and
the second one will have 128 neurons.

Layer 1
(encoder layer 1)

Layer 2
(encoder layer 2)

Layer 3
(latent space)

Layer 4
(decoder layer 1)

Layer 4
(decoder layer 2)

Figure 8.24 An autoencoder

263Working with unlabeled images

int height = 32;
int width = 32;
int numSamples = 2000;

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .list()
 .layer(0, new VariationalAutoencoder.Builder()
 .activation(Activation.SOFTSIGN)
 .encoderLayerSizes(256, 128)
 .decoderLayerSizes(256, 128)
 .pzxActivationFunction(Activation.IDENTITY)
 .reconstructionDistribution(
 new BernoulliReconstructionDistribution(
 Activation.SIGMOID.getActivationFunction()))
 .numSamples(numSamples)
 .nIn(height * width)
 .nOut(8)
 .build())
 .pretrain(true).backprop(false).build();

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();

You want to use the CIFAR images to train the VAE; however, as discussed in previous
sections, images are composed of multiple channels. In the case of CIFAR, each image
is associated with three matrixes of size 32 × 32. Even if you use one single channel,
the autoencoder expects a vector, not a matrix. To fix that, you have to reshape a 32 ×
32 matrix into a 1024-sized vector, which can be done by a reshaping operation, as
shown in the following code. For simplicity, we assume using grayscale CIFAR images,
so only one channel instead of three.

int channels = 1;
int batchSize = 128;
CifarDataSetIterator dsi = new CifarDataSetIterator(
 batchSize, numSamples, new int[] {height, width,
 channels}, preProcessCifar, true);

Collection<DataSet> reshapedData = new
 LinkedList<>();
while (dsi.hasNext()) {
 DataSet batch = dsi.next(batchSize);
 for (int k = 0; k < batchSize; k++) {
 DataSet current = batch.get(k);
 DataSet dataSet = current.reshape(1, height *
 width);
 reshapedData.add(dataSet);
 }
}
dsi.reset();

Listing 8.15 Variational autoencoder configuration

Listing 8.16 Reshaping CIFAR images for ingestion in the variational autoencoder

Defines each
hidden layer size

for the encoder

Uses the VAE-specific
builder class

Defines each hidden
layer size for the decoder

The size of the input data
The size of the latent representation

Reads the CIFAR dataset

Stores the reshaped data
into a Collection to be used
for training the VAE

Iterates through the images

Reshapes the image
from 32 × 32 to 1

Adds the reshaped
image to the Collection

264 CHAPTER 8 Content-based image search
Once images have been reshaped, you can feed them into the VAE for training.

int epochs = 3;
DataSetIterator trainingSet = new
 ListDataSetIterator<>(reshapedData);
model.pretrain(trainingSet, epochs);

As soon as training has finished, you can finally index each image latent representa-
tion into a Lucene index. For the sake of a simpler evaluation, you can also index the
labels of each image into the search engine. This way, you can compare the labels of
the query image with the labels of the resulting images.

VariationalAutoencoder vae = model.getLayer(0);

trainingSet.reset();
List<float[]> featureList = new LinkedList<>();
while (trainingSet.hasNext()) {
 DataSet batch = trainingSet.next(batchSize);
 for (int k = 0; k < batchSize; k++) {
 DataSet dataSet = batch.get(k);
 INDArray labels = dataSet.getLabels();
 String label = cifarLabels.get(labels.argMax(1)
 .maxNumber().intValue());

 INDArray latentSpaceValues = vae.activate(dataSet
 .getFeatures(), false, LayerWorkspaceMgr
 .noWorkspaces());
 float[] aFloat = latentSpaceValues.data().asFloat();
 Document doc = new Document();
 doc.add(new FloatPoint("features", aFloat));
 doc.add(new TextField("label", label, Field.Store.YES));
 writer.addDocument(doc);
 featureList.add(aFloat);
 }
}
writer.commit();

With all the images indexed with their latent representation and label, you can use
Lucene’s FloatPointNearestNeighbor to perform a nearest-neighbor search. To see
whether the results are good without looking at each and every query and the resulting
image data, you can check if the query and each resulting image share the same label.

DirectoryReader reader = DirectoryReader.open(writer);
IndexSearcher searcher = new IndexSearcher(reader);

Random r = new Random();

Listing 8.17 Pretraining the variational autoencoder

Listing 8.18 Indexing image vectors extracted from VAE

Listing 8.19 Querying by image using nearest-neighbor

Converts the Collection into
a DL4J DataSetIterator

Trains the VAE for a
number of epochs

Gets the VAE to extract
image vectors

Iterates through
the CIFAR images

Gets the label attached
to the current image

Makes the VAE
perform a feed-
forward pass
with the current
reshaped image
as input

Indexes the document
with its image vector
and its label

Stores the extracted features for
each image into a List so you can

use them later for querying

265Summary
for (int counter = 0; counter < 10; counter++) {
 int idx = r.nextInt(reader.numDocs() - 1);
 Document document = reader.document(idx);
 TopFieldDocs docs = FloatPointNearestNeighbor
 .nearest(searcher, "features", 2, featureList
 .get(idx));
 ScoreDoc[] scoreDocs = docs.scoreDocs;
 System.out.println("query image of a : " +
 document.get("label"));
 for (ScoreDoc sd : scoreDocs) {
 System.out.println("-->" + sd.doc +" : " +
 reader.document(sd.doc).getField("label")
 .stringValue());
 }
 counter++;
}

We expect query and result images to share the same label most of the times. You can
check that in the following output:

query image of a : automobile
-->277 : automobile
-->1253 : automobile
query image of a : airplane
-->5250 : airplane
-->1750 : ship
query image of a : deer
-->7315 : deer
-->1261 : bird
query image of a : automobile
-->9983 : automobile
-->4239 : automobile
query image of a : airplane
-->6838 : airplane
-->4999 : airplane

As expected, most of the results share the label with the query. Note that you can also
use the locality-sensitive hashing technique described in the previous section instead
of nearest-neighbor search.

Summary
 Searching through binary content like images requires learning a representa-

tion that can capture visual semantics that can be compared across images.
 Traditional techniques for feature extraction have limits and require significant

engineering effort.
 Convolutional neural networks are at the core of the recent rise of DL, because

they can learn image-representation abstractions (edges, shapes, and objects)
incrementally during network training.

 CNNs can be used to extract feature vectors from images that can be used to
search for similar images.

Picks a random number

Fetches a Document
with the random
number as its
document identifier

Performs a nearest-neighbor
search using the image
vector associated with the
document identifier

Prints the
query

image label

Prints the resulting
image document
identifier and label

266 CHAPTER 8 Content-based image search
 Locality-sensitive hashing techniques can be used as an alternative to the nearest-
neighbor approach for image search based on feature vectors.

 Autoencoders can help extract image vectors if your images aren’t labeled.

A peek at performance
After reading the previous eight chapters, you hopefully have gained a broad
understanding of deep learning and how it can improve search. At this point, you
should be ready to make the most out of DL when setting up successful search
engine systems for your users. Along the way, however, you may have wondered
about applying these ideas to real-world production systems:

 How are these approaches applied in practice in a production scenario?
 Will adding these DL algorithms have a serious impact on the time and space

constraints of your systems?
 How big is that impact, and which parts or processes (such as searching ver-

sus indexing) will be affected?

In this chapter, I’ll address these practical concerns and discuss the considerations
you’ll need to think about as you apply DL and neural networks to your search

This chapter covers
 Setting up DL models in production

 Optimizing performance and deployment

 Getting real-life neural search systems to work with data
streams
267

https://catalog.ldc.upenn.edu/LDC2008T19

268 CHAPTER 9 A peek at performance
engine. We’ll look at the performance bits when search engines and neural networks
work side by side, and I’ll provide some example-driven suggestions for applying these
DL techniques in practice.

 The previous chapters explored several different search problems DL can help
solve. If you think about the application of the word2vec model for synonym expan-
sion (chapter 2) or recurrent neural networks to expand queries (chapter 3), you may
recall that data flows in and out of neural networks and in and out of search engines.
We can consider a search engine and a neural network as two separate components in
a real-world software architecture. A neural network needs to be trained to predict
accurate outputs. At the same time, a search engine must ingest data so that users can
search for it. To use DL to produce more-effective search results, we need the neural
network to be effective. These are somewhat conflicting requirements that bring up a
few logistical questions:

 Should training happen before indexing?
 Or should indexing happen first?
 Can you combine those data-feeding tasks?
 How do you handle updates to the data?

We’ll answer some of these questions as we look at the considerations you need to take
into account when launching real-world deployments of search engines using neural
networks.

9.1 Performance and the promises of deep learning
New DL architectures are published continuously to solve more and more complex
tasks. We’ve looked at some of them in this book: for example, generating text (chap-
ters 3 and 4), translating text from one language into another (chapter 7), classifying
and representing images based on their contents (chapter 8), and more. Not just
entire models, but also new types of activation functions, cost functions, backpropaga-
tion algorithm optimizations, weight-initialization schemes, and others are constantly
being researched and published.

 The DL concepts introduced in this book apply to recent-past, current, and (hope-
fully) newer neural network architectures. If you’re responsible for a search engine
infrastructure, you’ll probably look for approaches that researchers have demon-
strated work best for a specific task (also known as state of the art). For example, think
about machine translation or image search: at the time of writing, the state of the art
for machine translation is represented by sequence-to-sequence models, such as
encoder-decoder networks with attention.1 So you’d want to implement those state-of-
the-art models, and you’d expect them to give you good results like those you can read
about in the related research papers. In those cases, the first challenge is to reproduce

1 See this recent research that even discards RNNs: Ashish Vaswani et al., “Attention Is All You Need,”
http://mng.bz/nQZK.

http://flink.apache.org
http://twitter.com
http://mng.bz/nQZK

269Performance and the promises of deep learning
the model described in the paper and then to make it work effectively on your data
and infrastructure. To do so,

 The neural network must provide accurate results.
 The neural network must provide results quickly.
 The software and hardware must be adequate for the computational load, in

terms of time and space (and, remember, training is costly).

In the next section, we’ll run through the entire process of implementing a neural
network model to solve a specific task and see what common steps you may have to
take along the way to solve these challenges.

9.1.1 From model design to production

In chapter 8, you saw convolutional neural networks in action, classifying images.
Once training was finished, you used the network to extract feature vectors to be
indexed and searched by the search engine. But we didn’t consider the accuracy of
the neural network classifications. Let’s now track some numbers for accuracy, train-
ing, and prediction times on the road to building a good neural network model to use
in conjunction with a search engine. We’ll return to the CIFAR dataset we used in
chapter 8 and see how to gradually adjust the neural network model to improve accu-
racy while keeping reasonable training timings; we’ll go through it step by step, as you
would in your own project.

 Indexing is usually costly with real-world data. CIFAR is only a few tens of thou-
sands of images, but many live deployments have to index hundreds of thousands,
millions, or billions of images or documents. If you index 100 million images with
their feature vectors, you don’t want to have to repeat the process as you might need
to if the feature vectors don’t accurately reflect the image contents, so the user experi-
ence isn’t great. So you’ll usually run a few experiments and evaluations before index-
ing feature vectors.

 Let’s start with a convolutional neural network (CNN) similar to one of the first
CNN-based architectures that achieved good results for categorizing images: the
LeNet architecture (http://yann.lecun.com/exdb/lenet). This is a simple CNN simi-
lar to the one you set up in chapter 8, but with slightly different configuration param-
eters for convolution depth, receptive-field size, stride, and dense-layer dimensionality
(see figure 9.1).

 The model contains two sequences of convolutional layers followed by a max pool-
ing layer and a fully connected layer. The filters are size 5 × 5, the first convolutional
layer’s depth is 28, and the second convolutional layer’s depth is 10. The dense layer is
size 500. The max pooling layers have stride equal to 2.

http://yann.lecun.com/exdb/lenet

270 CHAPTER 9 A peek at performance

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .list()
 .layer(0, new ConvolutionLayer.Builder(new int[]{5, 5}, new int[]{1, 1}
 , new int[]{0, 0}).convolutionMode(ConvolutionMode.Same)
 .nIn(3).nOut(28).activation(Activation.RELU).build())
 .layer(1, new SubsamplingLayer.Builder(PoolingType.MAX,
 new int[]{2,2}).build())
 .layer(2, new ConvolutionLayer.Builder(new int[]{5,5}, new int[] {1,1},
 new int[] {0,0}).convolutionMode(ConvolutionMode.Same)
 .nOut(10).activation(Activation.RELU).build())
 .layer(3, new SubsamplingLayer.Builder(PoolingType.MAX,
 new int[]{2,2}).build())
 .layer(4, new DenseLayer.Builder().nOut(500).build())
 .layer(5, new OutputLayer.Builder(LossFunctions.LossFunction
 .NEGATIVELOGLIKELIHOOD)
 .nOut(numLabels).activation(Activation.SOFTMAX).build())
 .backprop(true)
 .pretrain(false)
 .setInputType(InputType.convolutional(height, width, channels))
 .build();

This model is old, so you shouldn’t expect it to perform too well, but it’s a good prac-
tice to start with a small model and see how far it gets.

 You’ll train over 2,000 examples from the CIFAR dataset at first, to get some quick
feedback about how good the model parameters are. If the model begins to diverge
too soon, you can avoid loading huge training sets before discovering it.

int height = 32;
int width = 32;
int channels = 3;

Listing 9.1 LeNet type of model

Listing 9.2 Training over 2,000 samples from CIFAR

32 x 32 x 1 28 x 28 x 6 14 x 14 x 6 10 x 10 x 16 5 x 5 x 16

Pool 2 x 2
S=2

Pool 2 x 2
S=2

16 Conv 5 x 56 Conv 5 x 5

10 outputs
0–9

500
neurons

Figure 9.1 Example LeNet model

271Performance and the promises of deep learning
int numSamples = 2000;
int batchSize = 100;
boolean preProcessCifar = false;
CifarDataSetIterator dsi = new CifarDataSetIterator(batchSize, numSamples,
 new int[] {height, width, channels}, preProcessCifar, true);

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
for (int i = 0; i < epochs; ++i) {
 model.fit(dsi);
}

MODEL EVALUATION

To monitor how well the neural network learns to categorize the images, you’ll moni-
tor the training process with the DL4J UI. In the best possible case, you’d see the score
steadily decrease towards 0, but in this case, as shown in figure 9.2, it decreases very
slowly without ever reaching a point close to 0. Recall that the score is a measure of
the amount of error the neural network commits when trying to predict the classes for
each input image. So, with these stats, you don’t expect it to perform very well.

 To evaluate the accuracy of predictions for a machine learning model, it’s always a
good practice to separate a collection of data used for training (the training set) from
a collection of data to be used for testing the quality of a model (the test set). During
training, the model may overfit the data and therefore give good accuracy on the train-
ing set while being unable to generalize well over slightly different data, so using a test
set helps in finding out how well a model can work on data that it hasn’t previously
trained with.

A separate iterator over a different set of images can be created and passed to DL4J
tools for evaluation.

CifarDataSetIterator cifarEvaluationData = new
 CifarDataSetIterator(batchSize, 1000, new int[] {
 height, width, channels}, preProcessCifar, false);

Listing 9.3 Model evaluation with DL4J

You use only 2,000 random
samples from the CIFAR dataset.

Figure 9.2 LeNet training

Creates a test
set iterator

272 CHAPTER 9 A peek at performance
Evaluation eval = new Evaluation(cifarEval
 .getLabels());

while(cifarEvaluationData.hasNext()) {

 DataSet testDS = cifarEvaluationData.next(
 batchSize);

 INDArray output = model.output(testDS
 .getFeatureMatrix());

 eval.eval(testDS.getLabels(), output);
}
System.out.println(eval.stats());

The evaluation stats include metrics like accuracy, precision, recall F1 score, and con-
fusion matrix (the F1 score is a measure whose value ranges between 0 and 1 and which
takes into account precision and recall):

========================Evaluation Metrics========================
 # of classes: 10
 Accuracy: 0.2310
 Precision: 0.2207
 Recall: 0.2255
 F1 Score: 0.2133
Precision, recall & F1: macro-averaged (equally weighted avg. of 10 classes)

=========================Confusion Matrix=========================
 0 1 2 3 4 5 6 7 8 9
\\-------------------------------
 31 9 4 10 2 3 6 3 26 9 | 0 = airplane
 6 19 0 7 6 6 4 0 16 25 | 1 = automobile
 18 8 6 14 8 6 15 4 12 9 | 2 = bird
 11 14 1 28 14 5 8 6 3 13 | 3 = cat
 8 5 3 14 15 5 15 7 5 13 | 4 = deer
 9 5 5 21 18 8 8 1 3 8 | 5 = dog
 8 9 7 12 21 4 29 7 5 10 | 6 = frog
 11 11 8 13 8 4 6 10 11 20 | 7 = horse
 18 6 1 9 4 1 2 2 47 16 | 8 = ship
 12 12 2 8 6 3 2 3 23 38 | 9 = truck

In the confusion matrix, you can see that for the class airplane in the first row, 31
samples have been correctly assigned to the airplane class, but about the same num-
ber of predictions (26) were assigned the incorrect class ship for an airplane image.
Ideally, a confusion matrix will contain high values on the right diagonal and low val-
ues everywhere else.

 Changing the numSamples value to 5000 and performing training and evaluation
again, you expect better results:

========================Evaluation Metrics========================
 # of classes: 10
 Accuracy: 0.3100
 Precision: 0.3017

Instantiates the DL4J
evaluation tool

Iterates over the
test dataset

Fetches the next mini-batch of data
(100 examples, in this case)

Performs prediction
over the current batch

Performs evaluation using the
actual output and the CIFAR
output labelsPrints the statistics on

the standard output

273Performance and the promises of deep learning
 Recall: 0.3061
 F1 Score: 0.3010
Precision, recall & F1: macro-averaged (equally weighted avg. of 10 classes)

=========================Confusion Matrix=========================
 0 1 2 3 4 5 6 7 8 9
\\-------------------------------
 38 2 6 3 5 1 1 9 25 13 | 0 = airplane
 4 34 3 2 4 4 6 4 14 14 | 1 = automobile
 15 4 12 7 15 9 16 8 10 4 | 2 = bird
 7 4 4 26 16 11 15 13 1 6 | 3 = cat
 4 2 10 9 24 7 13 5 8 8 | 4 = deer
 7 5 5 19 9 14 11 7 3 6 | 5 = dog
 3 8 10 9 22 5 40 12 1 2 | 6 = frog
 4 8 6 13 12 2 9 29 2 17 | 7 = horse
 17 5 2 8 4 2 0 4 51 13 | 8 = ship
 7 13 3 4 4 3 2 10 21 42 | 9 = truck

The F1 score went up by 9% (0.30 versus 0.21), which is a big step forward, but getting
good results only about 30% of the time wouldn’t be appropriate in production.

 You may recall that neural network training uses the backpropagation algorithm
(eventually with variations, depending on the specific architecture, such as backprop-
agation through time for recurrent neural networks). The backpropagation algorithm
aims to reduce the prediction error committed by the network by adjusting the
weights so that the overall error rate decreases. At some point, the algorithm will find
a set of weights (such as the weights attached to connections between neurons in dif-
ferent layers) with the lowest possible error, but this may take a long time, depending
on features of the data used for training:

 Diversity in training examples—Some text is written in formal language, and other
text is written in slang. Or some images are pictures taken during daylight, and
others were taken at night.

 Noise in the training examples—Some text has typos or grammatical errors. Or
some images are of poor quality or contain watermarks or other types of noise
that makes training more difficult.

The ability of neural network training to converge to a good set of weights also
depends a great deal on the tuning parameters, such as the learning rate: I already
mentioned this, but it’s worth repeating that this is a fundamental aspect to get right.
A learning rate that’s too high will make training fail, and a learning rate that’s too
low will make training take too long to converge to a good set of weights.

 Figure 9.3 shows the training loss of the same neural network but with different
learning rates. You can clearly see that both learning rates converge over time to the
same set of weights. Learning begins at time t0; let’s consider what will happen if you
stop training at time t1 or t2. If you stop training after a small number of iterations
(before time t1), you’ll exclude the high learning rate, because it will make the loss
increase instead of decrease. If you stop training at time t2, you’ll instead discard the
low learning rate, because it will keep the same score as the high learning rate, or

274 CHAPTER 9 A peek at performance
begin to increase. It’s therefore a good idea to come up with a few possible architec-
tures with reasonable parameter settings and run some experiments.

 In DL4J Updater implementations, you can set the learning rate for your neural
network.

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .updater(new Sgd(0.01))
 ...
 .build();

ADDING MORE WEIGHTS

Using more weights to be learned is likely to cause training to take more time and
resources; a common mistake is to add layers or increase the size of layers as much as
possible. But adding layers can help when the network doesn’t have enough training
power to fit over lots of different training examples, such as when the number of
weights is far less than the number of examples, and the neural network is having a
hard time converging to a good set of weights (perhaps the score doesn’t go below a
certain value).

 The code defined in the previous sections trained a relatively lightweight CNN
with 5,000 examples. Let’s see what happens if you make the convolutional layers
deeper (depth of 96 and 256, respectively). The training time for 5,000 examples
increases from 10 minutes to 1 hour, with the following evaluation stats:

Listing 9.4 Setting the learning rate

Error

Time

Low learning rate

High learning rate

t2t1t0

Figure 9.3 Loss plotted for the same neural networks but trained with different learning rates

Sets the learning
rate to 0.01

275Performance and the promises of deep learning
========================Evaluation Metrics========================
 # of classes: 10
 Accuracy: 0.3011
 Precision: 0.3211
 Recall: 0.2843
 F1 Score: 0.3016

In this case, it wasn’t worth adding more power to the network.
 Working with deep neural networks in production requires some experience, but

it isn’t magic. The number of weights to be learned is an important factor: the num-
ber of data points in the training set should always be less than the number of weights.
Possible consequences of not following this rule are overfitting and difficulties in
converging.

 Let’s do some reasoning about the data. You have tiny images of 32 × 32 pixels.
CNNs learn features over time with convolutional layers while downsampling with
pooling layers. Maybe it would help to give the initial convolution layer a few more
weights but give the pooling layer a stride value of 2 instead of 1. You expect training
the network to achieve slightly better results in less time:

========================Evaluation Metrics========================
 # of classes: 10
 Accuracy: 0.3170
 Precision: 0.3069
 Recall: 0.3297
 F1 Score: 0.3316

Training finishes in 5 minutes instead of 7, thanks to the change to the pooling layer,
and the result quality also improved. This may not seem like much, but it would make
a real difference when training over the entire dataset.

TRAINING WITH MORE DATA

So far, you’ve performed experiments with only a few examples from the CIFAR data-
set. To better understand how well the CNN model can work, you need to train it with
more data.

 You have more than 50,000 images in CIFAR: you should split the dataset in such
a way that most of it is used for training, but many images are available to perform
evaluation.

 Before using the full dataset, it’s important to note the time taken by training with
respect to the available hardware and requirements of a production scenario. The first
iteration of training for 10 epochs with 2,000 images took 3 minutes on a normal lap-
top; 5,000 images training for 10 epochs took 7 minutes. These are acceptable times
for experiments where you want quick feedback, but training over the full dataset for
several epochs may take hours—time that would be better used if you knew in advance
what to change.

 Now, let’s run the current settings over 50,000 images for training and 10,000 for
evaluation. You expect better evaluation metric results and a lower score at the end of
training:

http://vespa.ai
https://lucene.apache.org/solr

276 CHAPTER 9 A peek at performance
========================Evaluation Metrics========================
 # of classes: 10
 Accuracy: 0.4263
 Precision: 0.4213
 Recall: 0.4263
 F1 Score: 0.4131
Precision, recall & F1: macro-averaged (equally weighted avg. of 10 classes)

=========================Confusion Matrix=========================
 0 1 2 3 4 5 6 7 8 9
\\--
 459 60 39 40 14 24 41 49 191 83 | 0 = airplane
 29 592 3 30 3 12 47 34 50 200 | 1 = automobile
 92 50 123 81 165 89 229 97 46 28 | 2 = bird
 19 34 40 247 48 200 216 103 19 74 | 3 = cat
 44 21 58 83 284 60 263 128 33 26 | 4 = deer
 11 22 69 189 63 337 158 100 29 22 | 5 = dog
 3 26 20 90 66 32 661 52 9 41 | 6 = frog
 24 38 27 86 72 69 107 494 18 65 | 7 = horse
 122 92 12 25 6 21 23 26 546 127 | 8 = ship

After training on almost the entire training set, you got a 0.41 F1 score after almost 3
hours (on a normal laptop). You can’t yet be satisfied with the accuracy of the model:
it would make errors 59% of the time.

 In this case, it’s useful to look at the loss curve, shown in figure 9.4. The curve is
decreasing and might keep doing so if you had more data. Unfortunately, for this case
you don’t, unless you use a smaller test set.

Figure 9.4 CNN full training loss graph

277Performance and the promises of deep learning
ADJUSTING BATCH SIZE

One thing you can look into when you have such curves is whether you’re using the
wrong size for the batch parameter. A batch or mini-batch is a collection of training
examples that are put together and fed to the neural network as a single batched
input. For example, instead of feeding one image at a time, and thus an input volume
(a set of stacked matrixes) at a time, you can squash a number of input volumes
together. Doing so usually has two consequences:

 Training is faster.
 Training is less prone to overfitting.

If the mini-batch parameter is set to 1, you’ll see a curve that, especially in the first
iterations, increases and decreases significantly. On the other hand, if you have a mini-
batch that’s too big, the network may not be able to learn about specific patterns and
features that rarely occur in inputs.

 It’s possible that a flat loss curve is related to a batch size (100, in this case) that’s
too large for the data. To see whether something like this will make a difference, it’s
useful to perform quick tests on small portions of the dataset. The changes in settings
can be proven later with full-dataset training if you get encouraging results. So let’s set
the batch parameter to 48, train on 5,000 examples, and perform evaluation on 1,000
images. You expect a less smooth curve, along with lower loss, and hope for better
accuracy:

========================Evaluation Metrics========================
 # of classes: 10
 Accuracy: 0.3274
 Precision: 0.3403
 Recall: 0.3324
 F1 Score: 0.3218

As you can see in these results and in figure 9.5, reducing the batch size helped: a loss
close to the minimum was reached much faster than with the batch size set to 100. But
training took more time: 9 minutes instead of the previous time of 7 minutes. A differ-
ence of 2 minutes might be noticed on a larger scale, but it’s acceptable if the training
time pays off with a significantly better F1 score.

 The F1 score improved from 0.30 to 0.32. So reducing the batch size seems to be a
good idea that you need to prove with a full training. We won’t compare the F1 score
of a small training set like this with the F1 score reached when training over 50,000
images, because that wouldn’t be fair and might mislead (and frustrate) our efforts.
But can you do better with an even smaller batch size? Let’s set the batch size to 24
and see:

========================Evaluation Metrics========================
 # of classes: 10
 Accuracy: 0.3601
 Precision: 0.3512
 Recall: 0.3551
 F1 Score: 0.3340

278 CHAPTER 9 A peek at performance
As you can see in figure 9.6, the curve is much sharper, and the loss is close to that
with batch set to 48. The F1 score is higher (0.33), but training took 13 minutes
instead of 9.

Figure 9.5 Training with a batch size of 48

Figure 9.6 Training with a batch size of 24

279Performance and the promises of deep learning
EVALUATE AND ITERATE

At this point, you have to make a decision: can you afford more costly training in
terms of time and computational resources (which may mean more money—for
example, if you’re running training in production over cloud services) to get better
numbers? A good practice is to save the different models you generate together with
their evaluation metrics and training times so that you can pick them up in a later
stage when you need to make decisions.

 With a smaller batch size, the neural network should be able to better handle
more-diverse inputs, but the curve is sharper. Training the latest model with 50,000
examples gave the following evaluation results after 5 hours of training on a laptop:

========================Evaluation Metrics========================
 # of classes: 10
 Accuracy: 0.5301
 Precision: 0.5213
 Recall: 0.5095
 F1 Score: 0.5153

The F1 score of 0.41 improved by 10% to reach a not-bad 0.51. But this still isn’t some-
thing you’d ship to end users. With such a number, if users looked for images of a
deer, they might get only five deer—the remaining images would show cats, dogs, or
even trucks and ships!

 You tried using more deep convolutional layers, but it didn’t help. You’ve seen that
accuracy improves with the amount of data used. Batch size has proved to be an
important parameter to get right even during the prototyping phase, to get better
results, but changes in batch size have an effect on the training time.

 But there are still a number of factors to consider:

 Train for more epochs.
 Check the weights and bias initialization.
 Look into regularization options.
 Change the way the neural network updates its weights during backpropagation

(the updater algorithm).
 Determine whether adding layers would help in this case.

Let’s look at all of these options.

EPOCHS

The example currently uses 10 epochs, so the neural network sees the same input
batches 10 times. The rationale is that the network should be able to get the right
weights for those inputs with a higher probability if it “sees” them multiple times. Low
numbers like 5, 10, and 30 are common during the development phase when the net-
work is being designed, but you may change this value when training your final model.
If you increase the number of epochs but don’t see any significant improvement, the
network probably can’t do more with the current setup for that data; in that case, you
need to change something else.

280 CHAPTER 9 A peek at performance
 Changing the number of epochs from 10 to 20 in this case gives the following
results:

========================Evaluation Metrics========================
 # of classes: 10
 Accuracy: 0.3700
 Precision: 0.3710
 Recall: 0.3646
 F1 Score: 0.3565

Training took 28 minutes; see figure 9.7.

WEIGHT INITIALIZATION

Think about the neural network before it receives any input. All the neurons have
activation functions and connections. As the network begins to receive inputs and
backpropagates output error, it starts to change the weights attached to each connec-
tion. A surprisingly effective change you can make to your neural network is the way
those weights are initialized. A lot of research has shown that weight initialization has
a significant impact on the effectiveness of training.2

 Simple things you can do to initialize weights are to set them all to zero or set them
to random numbers. A few chapters back, you saw how the learning algorithm

2 See Xavier Glorot and Yoshua Bengio, “Understanding the Difficulty of Training Deep Feedforward Neural
Networks,” in Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS)
(2010, Chia Laguna Resort, Sardinia, Italy), http://mng.bz/vNZM; and Kaiming He et al., “Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” https://arxiv.org/abs/
1502.01852.

Figure 9.7 Loss curve for 20 epochs

http://mng.bz/vNZM
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852

281Performance and the promises of deep learning
(backpropagation) makes the network weights change: you can think of this visually as
moving a point on an error surface (see figure 9.8). A point on such a surface rep-
resents a set of weights, and the minimum-height point represents the point where
the weights make the network commit the least possible error.

The highest point in the image represents a set of weights with a high error, the point
in the middle represents a set of weights with an average error, and the lowest point
represents the point with the lowest possible error. The backpropagation algorithm
will hopefully make the network weights move from their starting position to the
point marked at the bottom. Now think about the weight initialization: it will be
responsible for setting the starting point for the algorithm when looking for the best
set of weights. With a weight initialization of 0, the network weights may be at the
white point in the center: not bad, and not good. With a random initialization, you
may get lucky and place the weights near the bottom point (but it’s unlikely) or set the
weights somewhere far from there, such as the point marked at the top. This starting
position influences the ability of backpropagation to ever reach the bottom point or
may at least make the process longer and more difficult. Thus, good initialization for
the neural network’s weights is crucial for successful training.

 A good, commonly used weight initialization is called Xavier initialization. Basically,
it initializes the weights of the neural network by drawing them from a distribution
with zero mean and a specific variance for each neuron. The initial weight depends
on the number of neurons with outgoing connections to that specific neuron. You can
set this in DL4J in a specific layer with the following code:

.layer(2, new ConvolutionLayer.Builder(new int[]{5,5}, new int[] {1,1}, new
int[] {0,0})

 .convolutionMode(ConvolutionMode.Same)
 .nOut(10)
 .weightInit(WeightInit.XAVIER_UNIFORM)
 .activation(Activation.RELU)

High

Avg

Low
Error

Figure 9.8 Error surface with
some points of interest

Initializes the weights of the given
layer using Xavier distribution

282 CHAPTER 9 A peek at performance
REGULARIZATION

Earlier, when the number of inputs in a single batch was reduced, we noticed the loss
curve becoming less smooth. This is because, with fewer batches, the learning algo-
rithm is more prone to overfitting (see figure 9.9).

It’s often useful to introduce regularization methods in your neural network training
algorithm. This helps because of the small batch size, but that’s a good practice in
general. The amount of regularization to use depends on the use case:

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .gradientNormalization(GradientNormalization.RenormalizeL2PerLayer)
 .l1(1.0e-4d).l2(5.0e-4d)

With regularization and weight initializations in place, let’s perform another round of
training for 10 epochs on 5,000 images. Here are the final results:

========================Evaluation Metrics========================
 # of classes: 10
 Accuracy: 0.4454
 Precision: 0.4602
 Recall: 0.4417
 F1 Score: 0.4438

Training took 16 minutes, but as you can see in figure 9.10, the loss is decreasing
much more quickly and to a lower value than with previous settings. As expected, the
F1 score is high with relatively few training examples.

 Having noticed improvements with a greater number of epochs, let’s increase it to
20, as we did earlier:

========================Evaluation Metrics========================
 # of classes: 10
 Accuracy: 0.4435
 Precision: 0.4624
 Recall: 0.4395
 F1 Score: 0.4411

Figure 9.9 Sharpening loss curve with smaller batch sizes

283Performance and the promises of deep learning
Although training time increases to 19 minutes, the curve looks more or less similar,
and, surprisingly, the F1 score remains unchanged (see figure 9.11). There are a few
possible reasons for that: the first is that you may need more data.

Figure 9.10 Optimum tuning

Figure 9.11 Optimum tuning for 20 epochs

284 CHAPTER 9 A peek at performance
Let’s evaluate the accuracy of the last settings using the entire dataset of 50,000 images
(see figure 9.12):

========================Evaluation Metrics========================
 # of classes: 10
 Accuracy: 0.5998
 Precision: 0.6213
 Recall: 0.5998
 F1 Score: 0.5933

Reaching good numbers isn’t always easy and may require several iterations of the pro-
cess just described. Looking at recent research is always a good idea to find out whether
better solutions exist for various aspects of neural networks. To some extent, tuning a
neural network can seem like an art; experience helps, but getting to know the math
and dynamics of learning is key for coming up with effective models and settings.

9.2 Indexes and neurons working together
We just went through an end-to-end process to set up and tweak a deep neural net-
work to achieve the best results in terms of accuracy. We also briefly noted the time
required to train the entire network. With that set, only half the problem is solved.
The goal is to use DL models in the context of search to provide more-meaningful
search results to end users. Now, the question is how to use and update those DL mod-
els together with search engines.

 Assume for a moment that you have a pretrained model that perfectly fits the data
to be indexed. You index text documents and want to use, for example, a pretrained
seq2seq model to extract thought vectors to be used in the ranking function by the

Figure 9.12 Training loss curve for the entire dataset

285Indexes and neurons working together
search engine. A straightforward solution is to establish a document-indexing pipeline
where the document text is first sent to the seq2seq model, and then the correspond-
ing thought vector is extracted and indexed together with the document text into the
search engine. You can see in figure 9.13 that the actions and responsibilities of the
neural network and the search engine are heavily interleaved.

At search time, the seq2seq model is again used to extract thought vectors from the
query (see figure 9.14). The ranking function then performs scoring using the query
and document thought vectors (previously stored in the index).
Looking at these graphs, you may think everything seems reasonable. But the neural
network may introduce overhead for both indexing and search:

 Neural network prediction time—How long does the neural network take to extract
thought vectors for documents at indexing time? How long does the neural net-
work take to extract thought vectors for queries at search time?

 Search engine index size—How much space do generated embeddings take in
addition to storage space used by text documents?

Thought
vector is
extracted

Search engine

0.1 0.3 0.4 0.6

0.1 0.3 0.4 0.6

0.1 0.3 0.4 0.6

Separate indexing
pipelines exist for
text and vectors.

Document text is
sent to seq2seq

model

Text and thought
vectors

are indexed
together.

Layer 1
(input layer)

Layer 2
(embedding

layer)

Layer 3
(first recurrent layer)

Layer 4
(second recurrent layer)

Index

Tokenizer

Filter 1

Filter 2

Filter 3

Tokenizer

A text
document to
be indexed ...

A text
document to
be indexed ...

A text
document to
be indexed ...

Filter 1

Filter 2

Filter 3

Figure 9.13 Neural network and search
engine interactions, indexing time

286 CHAPTER 9 A peek at performance
In general, the most critical aspect for performance is the query/search phase. You
can’t expect users to wait for seconds just because your ranking function returns bet-
ter results. In most cases, users won’t ever know what’s behind the search box—they
just expect it to be fast and reliable, and to give good results.

 The previous section addressed the accuracy of results while noting the training
times. You also need to track the time taken by the network to compute a full feed-
forward pass from the input to the layer from which you get the network output.

 In the case of an encoder-decoder network, the feed-forward pass of the encoder
side of the network only needs to extract thought vectors. The decoder side of the net-
work is only used if you also want to use the input text to perform training using a tar-
get output (if you have one).

 The overhead in indexing must also be taken into account. In a “static” scenario
where you ingest a set of documents, even if it’s huge, that may not be important,
because you can accept an aggregate overhead of 1 or 2 hours if it only happens once.
But re-indexing or high-volume concurrent indexing may be problematic. Re-indexing
means indexing the entire corpus of documents in the search engine again from

0.1 0.3 0.4

Search
query

Search
query

0.6

0.1 0.3 0.4 0.6

0.5 0.1 0.3 0.6

0.2 0.1 0.6 0.2

0.3 0.4 0.1 0.9

Query text is
sent to

seq2seq model

Query text and
thought vectors
are sent to the
search engine

Ranking is
calculated via

query and
document

thought vectors

Layer 1
(input layer)

Layer 2
(embedding

layer)

Layer 3
(first recurrent layer)

Layer 4
(second recurrent layer)

Index

Tokenizer

Filter 1 result1

Ranking function

result2

result2

A search
query

result1

Filter 2

Filter 3

Search engine

Figure 9.14 Neural network and search engine interactions, search time

287Working with streams of data
scratch. This is usually done due to a change in the configuration of text analysis pipe-
lines or because a document processor is added to extract more metadata.

 For example, let’s take a simple search engine based on Lucene with no query-
expansion capability. To use the word2vec model to expand synonyms at indexing
time, you need to take all the existing documents and re-index them so the resulting
inverted index also contains the words/synonyms extracted by word2vec. The bigger
the index, the greater the impact of re-indexing will be.

 Concurrency is another aspect: can the neural network deal with concurrent
inputs? This is an implementation detail and may depend on the specific technology
used to implement your model, but it must be taken into account both at indexing
time (multiple parallel indexing processes) and at search time (multiple users search-
ing at the same time).

 Embeddings, and dense vectors in general, can have many dimensions. Efficiently
storing them is an open problem. In the real world, the choices may be limited by the
capabilities of the search engine technology used. In Lucene, for example, dense vec-
tors can be indexed as any of the following:

 Binaries—Every vector is stored like an unqualified binary, and all embedding
processing is done when the binary is fetched.

 n-dimensional points—Every vector is stored as a point with many dimensions (one
for each vector dimension). Basic geometric and nearest-neighbor queries can be
performed. At the moment, Lucene can index up to 8-dimensional vectors, so
you’ll have to reduce higher-dimensional vectors (for example, 100-dimensional
word vectors) to at most 8-dimensional vectors to index them in Lucene (like we
did in chapter 8 with PCA for image feature vectors).

 Text—It may sound weird at first, but with an appropriate design, vectors can be
indexed and searched over like text units.3

Other libraries like Vespa (http://vespa.ai) and search platforms like Apache
Solr (https://lucene.apache.org/solr) and Elasticsearch (www.elastic.co/products/
elasticsearch) may offer more or different options.

9.3 Working with streams of data
All the examples in this book use static datasets. Static datasets are great for illustrative
purposes, because they make it easier to focus on a particular set of data. Also, when
building a search engine, it’s common to start with a set of documents (text and/or
images) that you want to index. But as a search engine goes into production and
begins to be used, new documents will probably need to be ingested.

 Consider an application that allows users to search for popular posts from social
networks on various different topics. You might start with a set of downloaded or pur-
chased posts, but because the focus is on popular posts, you need to keep ingesting

3 See Jan Rygl et al., “Semantic Vector Encoding and Similarity Search Using Fulltext Search Engines,”
https://arxiv.org/pdf/1706.00957.pdf.

https://arxiv.org/pdf/1706.00957.pdf
http://vespa.ai
https://lucene.apache.org/solr
www.elastic.co/products/elasticsearch
www.elastic.co/products/elasticsearch
www.elastic.co/products/elasticsearch

288 CHAPTER 9 A peek at performance
data as trends change over time. A similar application might work on news rather than
on social network posts. You can download a news corpus like the NYT Annotated
Corpus (https://catalog.ldc.upenn.edu/LDC2008T19), but every day, the application
must ingest many new articles so that users can search for them.

 These days, it’s common to use a streaming architecture to address incoming flows of
data. In a streaming architecture, data flows in continuously from one or more
sources and is transformed by functions stacked in a pipeline. Data can be trans-
formed, aggregated, or dropped at any time and finally reaches a sink : the final stage
of the pipeline, such as a persistence system like a database or a search engine index.

 In the previous example, a streaming architecture can continuously ingest posts
from social networks and index them into the search engine. Another application
working with the indexed data can read the index and expose search features to end
users. But you’re working with neural networks, so you need to train the neural net-
work models you want to use.

 As an example scenario, let’s build an application to continuously find the most
relevant posts for each of a set of predefined topics; see figure 9.15. To do so, you’ll
use a streaming architecture to continuously do the following:

 Ingest posts from social networks (Twitter, in this case).
 Train different neural network models to extract document embeddings.
 Index text and embeddings in Lucene.
 For each ranking model and for each topic, write out the most relevant posts.

Finally, you’ll quickly evaluate which of the different ranking models (neural or not) is
more promising. Such an application could be used, for example, in a preproduction
phase to help choose the ranking model that works best for a production application.

 To set up the streaming architecture, let’s use Apache Flink (http://flink
.apache.org), a framework and distributed processing engine for computations over
data streams. The Flink streaming pipeline will do the following:

 Stream posts from the Twitter social network (http://twitter.com) that contain
certain keywords.

 Extract each tweet’s text, language, user, and so on.
 Extract document embeddings using two separate models: paragraph vectors

and word2vec averaged word embeddings.
 Index each tweet with its text, language, user, and document embeddings in

Lucene.
 Run predefined queries on all of the indexed data using different ranking mod-

els (classic and neural).
 Write the output in a CSV file that can be analyzed at a later stage to assess the

quality of the search results.

The output file will tell you how the different ranking models reacted to changing
data with respect to a set of fixed queries for certain topics. This will provide valuable

https://catalog.ldc.upenn.edu/LDC2008T19
http://flink.apache.org
http://flink.apache.org
http://flink.apache.org
http://twitter.com

289Working with streams of data
information about how well the ranking models adapt to new posts. If a ranking
model keeps giving the same results despite changing data, it probably isn’t the best
option for an application that aims to capture trending data.

 First, let’s define a stream of data coming from Twitter.

final StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();

Properties props = new Properties();
props.load(StreamingTweetIngestAndLearnApp.class.getResourceAsStream(
 "/twitter.properties"));
TwitterSource twitterSource = new TwitterSource(props);

Listing 9.5 Defining a stream of Twitter data with Flink

Index tweets
(with embeddings)

Update
all neural
network
models

Search with all
available

ranking models

Ranking
model

Write results

Search

Index

CSV

Lucene

Update models

Tweet

Tweet

Tweet

Stream
tweets

Tweet

Tweet TweetTweet

Layer 1
(input layer)

Layer 2
(embedding

layer)

Layer 3
(first recurrent layer)

Layer 4
(second recurrent layer)

Layer 1
(input layer)

Layer 2
(hidden layer)

Layer 3
(output layer)

Figure 9.15 Streaming application for continuous training, indexing, and search for social media posts

Defines a Flink execution environment Loads security credentials
for accessing Twitter

Creates a new Flink
source for Twitter data

290 CHAPTER 9 A peek at performance
String[] tags = {"neural search", "natural language processing", "lucene",
 "deep learning", "word embeddings", "manning"};
twitterSource.setCustomEndpointInitializer(new FilterEndpoint(tags));

DataStream<Tweet> twitterStream = env.addSource(twitterSource)
 .flatMap(new TweetJsonConverter());

This listing performs the required configuration to start ingesting tweets that contain
the keywords/topics “neural search,” “natural language processing,” “lucene,” “deep
learning,” “word embeddings,” and “manning.”

 You’ll next define a series of functions to work on the tweets. We’ll also focus on
implementation details regarding performance. For example, does it make sense to
run the predefined queries every time a new tweet comes in? Perhaps it’s better to do
this when you have more data (such as 20 tweets) that can influence scoring. For this
reason, you’ll define a count window function that will pass the data to the next func-
tion only when it has received 20 tweets. In addition, updating a neural network
model with just one sample usually isn’t a good idea: using a larger training batch is
less prone to fluctuating training error (leading to a smoother learning curve).

Path outputPath = new Path("/path/to/data.csv");
OutputFormat<Tuple2<String, String>> format = new

CsvOutputFormat<>(outputPath);

DataStreamSink<Tuple2<String, String>> tweetSearchStream =
 twitterStream
 .countWindowAll(batchSize)
 .apply(new ModelAndIndexUpdateFunction())
 .map(new MultiRetrieverFunction())
 .map(new ResultTransformer()).countWindowAll(1)
 .apply(new TupleEvictorFunction())
 .writeUsingOutputFormat(format);
env.execute();

ModelAndIndexUpdateFunction is responsible for updating the neural network mod-
els and for indexing the documents in Lucene. In theory, you can split it into many
tiny functions; but for the sake of readability, it’s easier to split the ingesting and
searching processes into only two functions. You can theoretically use as many neural
ranking models as you want; this example uses the ones defined in chapters 5 and 6,
using word2vec and paragraph vectors, respectively, to influence ranking.

Listing 9.6 Manipulating the streaming data

Defines the topics to be used to fetch posts
from Twitter (only tweets containing those
keywords will be ingested)

Adds the per-topic filter to the
Twitter source

Creates a stream
over the Twitter data

Starts by converting raw text
into a JSON format for tweets

Output CSV file
Defines a count
window over the
streaming data

Updates models,
extracts features,
and updates
the index

Runs
predefined

queries

Transforms the output in a way that’s
suitable for composing a CSV file

291Working with streams of data

xt

h

 After ingesting each tweet, both paragraph vectors and word2vec models are used
to generate two separate embeddings. The vectors are indexed together with the tweet
text and used by the ParagraphVectorsSimilarity and WordEmbeddingsSimilarity
classes at retrieval time.

public class ModelAndIndexUpdateFunction implements AllWindowFunction<Tweet,
Long, GlobalWindow> {

 @Override
 public void apply(GlobalWindow globalWindow, Iterable<Tweet> iterable,
 Collector<Long> collector) throws Exception {
 ParagraphVectors paragraphVectors = Utils.fetchVectors();
 CustomWriter writer = new CustomWriter();
 for (Tweet tweet : iterable) {
 Document document = new Document();
 document.add(new TextField("text", tweet.getText(),
 Field.Store.YES));

 INDArray paragraphVector =
 paragraphVectors.inferVector(tweet.getText());
 document.add(new BinaryDocValuesField(
 "pv", new BytesRef(paragraphVector.data().asBytes())));

 INDArray averageWordVectors =
 averageWordVectors(word2Vec.getTokenizerFactory()
 .create(tweet.getText()).getTokens(), word2Vec.lookupTable());
 document.add(new BinaryDocValuesField(
 "wv", new BytesRef(averageWordVectors.data().asBytes())));

 ...

 writer.addDocument(document);
 }
 long commit = writer.commit();

 writer.close();

 collector.collect(commit);
 }
}

MultiRetrieverFunction contains some basic Lucene search code to run the fixed
queries (such as “deep learning search”) over the entire index with different ranking
functions. First, it sets up IndexSearchers, each of which uses a different Lucene
Similarity.

Listing 9.7 Function for updating the model and indexing

Iterates over the
current batch of tweets

Creates a Lucene
document for the
current tweet’s te

Infers the paragrap
vector, and updates
the model

Indexes the
paragraph

vector

Infers a document
vector from

word2vec, and
updates the model

Indexes the
averaged

word
vector Indexes the document

Commits all the
tweets to Lucene

Closes the IndexWriter
(releasing resources)

Passes the commit identifier to the
next function (this can be used to

track changes to the index over time)

292 CHAPTER 9 A peek at performance

Map<String, IndexSearcher> searchers = new HashMap<>();

IndexSearcher classic = new IndexSearcher(...);
classic.setSimilarity(new ClassicSimilarity());
searchers.put("classic", classic);

IndexSearcher bm25 = new IndexSearcher(...);
searchers.put("bm25", bm25);

IndexSearcher pv = new IndexSearcher(...);
pv.setSimilarity(new ParagraphVectorsSimilarity(
 paragraphVectors, fieldName));
searchers.put("document embedding ranking", pv);

IndexSearcher lmd = new IndexSearcher(...);
lmd.setSimilarity(new LMDirichletSimilarity());
searchers.put("language model dirichlet", lmd);

IndexSearcher wv = new IndexSearcher(...);
pv.setSimilarity(new WordEmbeddingsSimilarity(
 word2Vec, fieldName, WordEmbeddingsSimilarity.Smoothing.TF_IDF));
searchers.put("average word embedding ranking", wv);

You can add as many ranking models as you want. Next, you iterate over the available
IndexSearchers and execute the same query for each of them. Finally, the results are
written into a CSV file.

 The output aggregated in the CSV file during an execution of MultiRetriever-
Function contains a line for each ranking model. Each line contains the name of the
model first (classic, bm25, average wv ranking, paragraph vectors ranking, and
so on), followed by a comma and the text of the first search result returned with that
ranking model. Over time, you’ll get a huge CSV file containing the output of the
same query for all the different ranking models.

 Let’s look at the results of two consecutive executions (manually tagged with
<iteration-1> and <iteration-2> for the sake of better readability):

...

...<iteration-1>

...
classic,Amazing what neural networks can do.
// Computational Protein Design with Deep Learning Neural Networks
language model dirichlet,Amazing what neural networks can do.
// Computational Protein Design with Deep Learning Neural Networks
bm25,Amazing what neural networks can do.
// Computational Protein Design with Deep Learning Neural Networks
average wv ranking,Amazing what neural networks can do.
// Computational Protein Design with Deep Learning Neural Networks

Listing 9.8 Setting up IndexSearchers

IndexSearchers with different
Similarities are kept in this Map.

Creates an IndexSearcher for
the ClassicSimilarity (TF-IDF) Sets the

ClassicSimilarity in
the IndexSearcher

Puts the
IndexSearcher in
the Map

Creates an IndexSearcher
for BM25Similarity
(Lucene’s default)

Creates an IndexSearcher for
ParagraphVectorsSimilarity

Creates an IndexSearcher
for LMDirichletSimilarity

Creates an IndexSearcher for
WordEmbeddingsSimilarity

293Looking forward
paragraph vectors ranking,Amazing what neural networks can do.
// Computational Protein Design with Deep Learning Neural Networks
...
...<iteration-2>
...
classic,Amazing what neural networks can do.
// Computational Protein Design with Deep Learning Neural Networks
language model dirichlet,Amazing what neural networks can do.
// Computational Protein Design with Deep Learning Neural Networks
bm25,Amazing what neural networks can do.
// Computational Protein Design with Deep Learning Neural Networks
average wv ranking,The Connection Between Text Mining and Deep Learning
paragraph vectors ranking,All-optical machine learning using diffractive
deep neural networks:
...

Notice that the non-neural ranking models didn’t change their top search result,
whereas those relying on embeddings adapted immediately to the new data: this is the
kind of capability for which neural ranking models can be useful. Streaming architec-
tures can keep up with high loads of data to be indexed into a search engine, evaluate
best models, and carefully orchestrate how neural networks and search engines can
best work together.

Summary
 Training deep learning models isn’t always straightforward; tuning and adjust-

ments for real-world scenarios are often needed.
 Search engines and neural networks are often two different systems that inter-

act both at indexing and search time. It’s essential to monitor their perfor-
mance in order to keep the overall user experience good in terms of response
times.

 Real-world deployments, like the common streaming scenario, must account
for load and concurrency and evaluate quality, to achieve the best possible
search solution.

Looking forward
We started this book by wondering whether it’s possible to use deep neural networks
as smart assistants to help provide better search tools. Over the course of the chapters,
we’ve touched on several aspects of common search engines where DL has significant
potential to help users find what they’re looking for.

 I hope you’ve become more and more interested in this topic as we’ve looked at
increasingly complex subjects and algorithms. This book has given you some tools and
practical advice that you can use immediately; hopefully, it has also inspired you to see
what can be done better and what issues remain unsolved, and to want to dive in.
While I was writing this book, many new DL papers were published, including some
related to search. New activation functions have been determined to be useful, and
new models have been proposed with promising results. I encourage you not to stop

294 CHAPTER 9 A peek at performance
here and to keep thinking about what you and your users need and how to get there
creatively.

 We’re just beginning to scratch the surface of applying DL to information
retrieval. You’ve learned about the foundations of neural search and are now ready to
learn and do more by yourself. Have fun!

index

Symbols

\n (carriage return character) 86, 105–106
+ operator 19

A

accuracy 14, 185
activation functions 32, 53, 91
activation maps 248
AI (artificial intelligence) 4
airplane class 272
AlexNet 244
algorithms 10
alignment functions 204–205
alternative queries 75, 78, 103, 150
AltQueriesQueryParser 105, 109–110
Analyzer API 17, 42, 46
Analyzers 47, 121
AnalyzingInfixSuggester 124
AnalyzingSuggester 121, 123, 127, 139
AND operator 19
Ant 41
antonyms vs. synonyms 69–71
Apache Flink 288
Apache Lucene library 12, 41–44, 115, 199

Lookup API in 115–118
querying multiple languages in 200–202
ranking documents in 154–156
with synonym expansion 44–49

Apache OpenNLP project 201
Apache Spark 12, 110
artificial intelligence (AI) 4
artificial neural networks 6, 197
autoencoders 261–262
automatic query expansion 79
average function 248

B

backpropagation 14, 32, 53–54, 61, 94, 273, 281
backpropagation through time (BPTT) 94
bag-of-visual-words (BOVW) model 240–241
bag-of-words 153–154, 158
batch parameter 277
batches 277–278
bigram model 125, 127
binaries 287
BM25Similarity 157, 165–166, 183–185
Boolean operators 19
boolean value 64
BOVW (bag-of-visual-words) model 240–241
BPTT (backpropagation through time) 94
build phase 115
builder pattern 48

C

Caffe 62
carriage return character (\n) 86, 105–106
cat command 227
categories 184–188
CBOW (continuous-bag-of-words) 37, 57, 59–60,

71, 86, 171–172
character-based neural language models

131–134, 137
CharacterIterator 99, 131, 133–134
character-level neural language model 129
CharLSTMNeuralLookup class 132, 134, 144
CharLSTMWord2VecLookup 144
CIFAR dataset 249, 262, 269, 275
CJK (Chinese, Japanese, and Korean)

languages 47
ClassicSimilarity 154–155, 157, 183, 185
clauses 19
295

296 INDEX
clustering 8, 188, 241
CNNs (convolutional neural networks) 76,

244–253, 269
in DL4J 250–253
pooling layers 248
training 248–250

color histogram feature extractor 243
commit method 44
compressing word embeddings 255
computational graphs 212
computer vision 27
concurrency 287
connotation 49
content, similar

finding using frequent terms 179–188
retrieving

with paragraph vectors 188–190
with vectors from encoder-decoder models

191–192
content-based image searches 225–265

deep learning for image representation
243–261

CNNs 245–253
locality-sensitive hashing 258–261

image contents 227–228
overview of images 231–243

feature extraction 235–243
image representations 233–235

text-based image retrieval 229–230
unlabeled images 261–265

content-based suggesters 128–129
context clues 149
continuous skip-gram 57
continuous-bag-of-words (CBOW) 37, 57, 59–60,

86, 171–172
convolutional layers 247
convolutional neural networks. See CNNs
corpora, parallel 206–208
correlating queries

containing similar search terms 83–84
generating similar search result sets 82
users in specific time windows 82–83

cosine similarity 153, 156
cost functions 53, 91–92, 135
count window function 290
CR character 106
cross validation 67
cross-entropy cost function 92
cross-language searches 199–200

D

data
generating 86

indexing 84–85
preparing 79–86
streams of 287–294
training 275–276

data-preparation phase 81, 86
DataSet 132
DataSetIterator 98, 216
DBpedia project 184
decode vector 217
decoder 108, 110, 262
decoder feed-forward pass 217
decoder layers 213
decodeWord method 223
decorating text 38
deep feed-forward neural network 28
deep learning 268–284

application to search 9–12
for image representation 243–261
from model design to production 269–284

adding weights 274–275
adjusting batch sizes 277–278
epochs 279–280
evaluating and iterating 279
evaluating models 271–274
regularization 282–284
training data 275–276
weight initialization 280–281

overview of 4–7
deep neural networks 6, 10–11, 27, 30
denotation 49
dense vectors 287
dependencies, long-term 94–95
Dictionary 115, 134
dictionary-based suggesters 114–115
dimensionality reduction 254
Directory 42–43, 47
distributed memory model of paragraph vectors

(PV-DM) 172
distributed-bag-of-words model (PV-DBOW) 173
distributional hypothesis 50
diversifying query suggestions 142–145
DL4J (Deeplearning4J) library

CNNs in 250–253
machine translation in 212–219
word2vec algorithm in 63–64

DL4J UI 135–136
docTerms 168
document categorization tasks 8
document embeddings 188

for multiple languages 219–224
for rankings and recommendations 170–192
from word embeddings to 171–174
related content and 177–192

finding similar content with frequent
terms 179–188

297INDEX
document embeddings, related content and
(continued)

recommendations 178–179
retrieving similar content with paragraph

vectors 188–190
retrieving similar content with vectors from

encoder-decoder models 191–192
searches 178–179

similarity with query embeddings 162
document frequency 152
document vectors 23, 159–164
DocumentDictionary 128, 132
documents

ranking in Lucene 154–156
translating 197–199

E

efficiency 14
Elasticsearch 287
elementsLearningAlgorithm 63
embedding layers 211–212
embeddings 29, 147, 221, 287
EmbeddingsSimScorer 167
encoder-decoder models 209–212

for machine translation in DL4J 212–219
vectors from 191–192

encoders 108, 262
<EOS> token 212
epochs 67, 279–280, 283
ExampleStatsApp 165

F

F1 score 272
feature vectors 253, 256
feature-indexing techniques 234
feed-forward neural networks 33, 51–54, 70, 87

backpropagation 53–54
overview of 52–53

Fields 42
FieldValuesLabelAwareIterator class 175
finite state transducer (FST) 121
fit(Dataset) method 99
Flink 288
FloatPoint 254–256, 259, 262
FloatPointNearestNeighbor class 254, 257–258,

264
FreeTextSuggester 126–127, 132
frequent terms, finding similar content

using 179–188
FST (finite state transducer) 121

G

gated recurrent unit (GRU) 95, 210
getQueryVector 168
getSimpleCifarCNN method 251
global features 235
Gradle 41
GRU (gated recurrent unit) 95, 210

H

handcrafted features 235
hash collision 258
hashing, locality-sensitive 258–261
hidden layers 6, 29, 51–52, 96, 100, 102, 136, 171,

173
high error point 54
hyperbolic tangent (tanh) function 53

I

IDF (inverse document frequency) 23
images

content-based searches of 225–265
contents of 227–228
deep learning for image representation

243–261
CNNs 245–253
locality-sensitive hashing 258–261

overview of 231–243
feature extraction 235–243
image representations 233–235

searching 227–228, 253–258
FloatPointNearestNeighbor 254–258

text-based image retrieval 229–230
unlabeled 261–265

incremental inputs 116
incrementToken API 64
incrementToken method 65
INDArrays objects 160
IndexerApp 165
indexing 14, 17–19, 47

data 84–85
neurons and 31, 284–287

IndexReader 42, 44, 47, 128
IndexSearcher 42, 47, 154, 181, 291–292
index-time text analysis 20, 40
indexTimeAnalyzer 45–46
IndexWriter 43–44
IndexWriterConfig 43, 154
infix suggestion 119, 124
information need, vs. queries 77–86

generating alternative queries 77–79
generating data 86

298 INDEX
information need, vs. queries (continued)
preparing data 79–86

information retrieval model (IR model) 149
initialization of network weights 133
initializing weights 280–281
input layer 6, 29, 51–52, 171, 173
input vector 217
input volume 248
InputIterator 134
inverse document frequency (IDF) 23
inverted indexes 16, 18
IR model (information retrieval model) 149
iterating 279

J

JaspellLookup 116

K

k-d tree algorithm 254
K-dimensional vector 61
Keras framework 62
keywords 15, 19
k-means clustering algorithm 258

L

LabelAwareIterator 175
labels 172
language detector tool 199, 201
language models 124–128

character-based neural language models
131–134

for LSTM networks 134–142
LanguageDetector 201
languages 195–224

document embeddings for 219–224
NMT 208–219

encoder-decoder for machine translation in
DL4J 212–219

encoder-decoder models 209–212
parallel corpora 206–208
serving multilingual users 196–202

cross-language searches 199–200
querying in multiple languages in

Lucene 200–202
translating documents vs. translating

queries 197–199
SMT 202–206

alignment functions 204–205
phrase-based translation 205–206

word embeddings for 219–224
Laplacian of Gaussian (LoG) filter 240, 247

latent Dirichlet allocation (LDA) 159
latent representation 261
latent semantic indexing (LSI) algorithm 158
layers, pooling 248
lazy users 147
LDA (latent Dirichlet allocation) 159
learning phase 8
learning rate 273
LeNet 244, 269, 271
linear projected machine translation embeddings

224
linear projected monolingual embeddings

219–224
linear projection 219
LinearProjectionMTEmbeddings 222–223
LinearProjectionMTEmbeddings#train method

222
LIRE (Lucene Image Retrieval) 236
LMDirichletSimilarity 185
LMJelinekMercerSimilarity 166
local features 235
locality-sensitive hashing. See LSH (locality-

sensitive hashing)
LoG (Laplacian of Gaussian) filter 247
long short-term memory networks. See LSTM

(long short-term memory) networks
long-term dependencies 94–95
Lookup API 115–118
lookup phase 115
Lookup#lookup API 116, 133
LookupResults 117
loss function 91
low error point 54
LSH (locality-sensitive hashing) 254, 258–261, 265
LSHAnalyzer class 259–261
LSI (latent semantic indexing) algorithm 158
LSTM (long short-term memory) networks 95,

108, 131, 209
for unsupervised text generation 95–106
language models 134–142

Lucene for Information Retrieval
(Lucene4IR) 165

Lucene Image Retrieval (LIRE) 236
Lucene library. See Apache Lucene library
Lucene Query object 43
lucene-benchmark module 180
lucene-core artifact 41
lyrics field 132

M

machine learning (ML) 7–9
machine translation (MT)

in DL4J 212–219

299INDEX
machine translation (MT) (continued)
tools for 197, 199, 202, 218
See also NMT (neural machine translation)

Markov assumption 125
matching synonyms 40–49
Math.sqrt(numberOfTerms) 156
matrix-factorization algorithms 158
Maven 41
max function 248
mean squared error cost function 92
mean vector 160
metadata 11
methods, DL-based 236
MinHash filter 259
mini-batch parameter 99, 277
MLT (MoreLikeThis) component 181, 183–184,

188
ModelAndIndexUpdateFunction 290
models

character-based neural language 131–134
encoder-decoder 209–212

for machine translation in DL4J 212–219
vectors from 191–192

evaluating 271–274
language 124–128

character-based neural language models
131–134

for LSTM networks 134–142
probabilistic 156–158
retrieval 23–24, 149–158

ranking documents in Lucene 154–156
TF-IDF 151–154

sequence-to-sequence 107–110
vector space 151–154

monolingual embeddings 219–224
MoreLikeThis (MLT) component 181, 183–184,

188
Moses project 206
multiclass classification task 86
MultiLayerNetwork 99, 132
multilingual users 196–202

cross-language searches 199–200
querying in multiple languages in Lucene

200–202
translating documents vs. translating queries

197–199
MultiRetrieverFunction 291–292
MultiSimilarity class 169

N

natural language generation 79
natural language processing (NLP) 114
NDCG (normalized discounted cumulative

gain) 168

n-dimensional points 287
nearest neighbors 29, 50
nearestLabels method 190
network.rnnTimeStep(INDArray) 101
neural information 9, 158–159
neural language models 129–134
neural machine translation. See NMT
neural network prediction time 285
neural networks

overview 4–7
training 31–34
See also feed-forward neural networks

neural searches 9, 11
future of 34–35
indexes and neurons 31
machine learning 7–9
neural networks 4–7
retrieving information 13–24

precision 24
recall 24
relevance 22
retrieval models 23–24
searches 14–22
terms 14–22
text 14–22
tokens 14–22

search engines 25–27
training neural networks 31–34

neurons 31, 52, 87, 284–287
ngrams 125, 127
NLP (natural language processing) 114
NLP field 125
NMT (neural machine translation) 204, 208–219

encoder-decoder for machine translation in
DL4J 212–219

encoder-decoder models 209–212
normal equation 222
NORMAL scheme 133
normalization 156
normalized discounted cumulative gain (NDCG)

168
numSamples value 272

O

Okapi BM25 24, 154, 157
one-hot encoding 55, 59, 87–88
Open Parallel Corpus (OPUS) 206, 221
OpenNLP project 201
optimization problem 135
OPUS (Open Parallel Corpus) 206, 221
output layer 6, 29, 51–52, 171, 173
output method 216
output sequences 84–85

300 INDEX
P

paragraph vectors 171–172
in rankings 174–177
retrieving similar content with 188–190
similarity 177

ParagraphVectors objects 173, 191
ParagraphVectorsSimilarity 177, 291
parallel corpora 202, 206–208
ParallelCorpusProcessor 215–216
ParallelSentence 207–208
parameter sharing 248
parsed query 78
parseEvent method 208
part of speech (PoS) 64
PCA (principal component analysis) 254–255
per-field analyzers 43
phrase-based translations 205–206
plotted word vectors 56
pooling layers 248
PoS (part of speech) 64
posting lists 18, 150
precision 24
predictions 8
prefix trees 116
preparing data

selecting output sequences from indexed
data 84–85

unsupervised streams of text sequences 85–86
preprocessing 81
principal component analysis (PCA) 56, 254–255
probabilistic models 156–158
probabilistic retrieval model 157
probability distribution 96
production systems

text generation for 110–111
with synonyms 67–71

PV-DBOW (distributed-bag-of-words model) 173
PV-DM (distributed memory model of paragraph

vectors) 172

Q

QBE (query by example) 228, 232
queries 15

alternative, generating 77–79
containing similar search terms 83–84
from users in specific time windows 82–83
generating similar search result sets 82
generating suggestions while composing

113–114
information need vs. 77–86

generating data 86
preparing data 79–86

of multiple languages in Lucene 200–202
translating 197–199

query by example (QBE) 228, 232
query embeddings 162
query expansion 103–106
query logs 80
Query object 181
query parser 19, 103–104, 201
query suggestions 112–145

analyzed suggesters 118–124
character-based neural language model for

131–134
content-based suggesters 128–129
diversifying using word embeddings 142–145
generating 113–115

dictionary-based suggesters 114–115
suggesting while composing queries 113–114

language models 124–128
LSTM network language models 134–142
Lucene Lookup APIs 115–118
neural language models 129–131

query-expansion algorithm 103
QueryParser 42–43, 103, 201

R

ranking 14, 22, 26, 146, 149, 153
document embeddings for 170–192

from word embeddings to document
embeddings 171–174

related content and 177–192
documents in Lucene 154–156
importance of 147–149
paragraph vectors in 174–177
search results with word embeddings 146–169

comparing 165–169
evaluating 165–169
neural information retrieval 158–159
retrieval models 149–158
word vectors to document vectors 159–164

rebuild phase 115
recall 24, 39, 79
receptive field 246
recommendations

document embeddings for 170–192
from word embeddings to document

embeddings 171–174
paragraph vectors in rankings 174–177
related content and 177–192

related content and 178–179
rectified linear unit (ReLU) function 53
recurrent neural networks. See RNNs
regularizing 282–284
re-indexing 286

301INDEX
related content 177–192
finding similar content using frequent terms

179–188
measuring quality of 184–188
recommendations and 178–179
retrieving similar content with paragraph

vectors 188–190
retrieving similar content with vectors from

encoder-decoder models 191–192
searches and 178–179

relevance 10, 22, 146
RelFinder 186
representation learning 227
reshaping operation 263
results. See search results
retrieval models 23–24, 149, 151–158

probabilistic models 156–158
ranking documents in Lucene 154–156
TF-IDF 151–154

retrieval phase 19
RetrievalApp 165
retrieving

images 229–230
information 13–24

precision 24
recall 24
relevance 22
retrieval models 23–24
searches 14–22
terms 14–22
text 14–22
tokens 14–22

RNNs (recurrent neural networks) 76, 85, 88–95,
108, 129, 210, 225

backpropagation through time 94
cost functions 91–92
dynamics of 91–94
internals of 91–94
long-term dependencies 94–95
LSTM networks 95
unrolling 92–93

rnnTimeStep function 101

S

scale-invariant feature transform (SIFT) 240–241,
243

ScoreIterationListener 111, 135
scoring 146
search engine index size 285
search engines 13, 22, 25–27, 33
search results 146–169

comparing 165–169
evaluating 165–169

importance of rankings 147–149
neural information retrieval 158–159
retrieval models 149–158
word vectors to document vectors 159–164

searching 14–22
across languages 199–200
images 253–258

content-based 225–265
FloatPointNearestNeighbor 254–258

indexes 17–19
related content and 178–179

search-time text analysis 20
seg node 206–207
SentenceIterator 68
seq2seq (sequence-to-sequence) model 108–110,

191, 209, 225
sequences

learning over 86–88
of output 84–85
of text 85–86

sequence-to-sequence model 107–110
See also seq-2-seq

shallow neural networks 29, 59
ship class 272
SIFT (scale-invariant feature transform) 240–241,

243
sigmoid function 53
Similarity API 154
Similarity class 155, 166–167, 291
Similarity parameter 165
Similarity, averaged 166–169
SimScorer#score API 177
singular value decomposition (SVD) 159
sink 288
skip-gram model 37, 61, 63, 86, 171, 173
Smoothing parameter 167
SMT (statistical machine translation) 202–206

alignment functions 204–205
phrase-based translation 205–206

softmax function 60, 213
Spark framework 12, 110
speeded-up robust features (SURF) 240, 243
static models 33
statistical machine translation 200
statistical models 150–151, 203
StatsListener 135–136
stemming filter 21
stochastic gradient descent 53
stopword-based token filter 18
stopwords 20
store-and-load phase 115
streaming architecture 288
stride parameter 248
stupid backoff method 126
Suggester 139

302 INDEX
suggester algorithm 114
suggesters

analyzed 118–124
content-based 128–129
dictionary-based 114–115

supervised learning 7
supervised text generation 106–110
SURF (speeded-up robust features) 240, 243
SVD (singular value decomposition) 159
synonym expansion 37–39, 45, 70, 114, 142, 150

Apache Lucene with 44–49
word2vec algorithm based 64–66

synonyms 36–71
antonyms vs. 69–71
comparing 66–67
evaluating 66–67
feed-forward neural networks 51–54

backpropagation 53–54
overview of 52–53

matching 40–49
overview of 39–40
production systems with 67–71
word2vec algorithm 54–66

in Deeplearning4J 63–64
synonym expansion 64–66

T

tanh function 53
target word 57
taxonomies 187
TensorFlow 12, 62, 110
tensor-processing units (TPUs) 110
term frequency (TF) 23, 152, 162–164
term frequency–inverse document frequency

(TF-IDF) 23, 55, 151–154, 156, 160, 240
terms 14–22

frequent 179–188
indexing 17–19
searching 19–22

ternary search tree (TST) 116, 123
text 14–22

generating 75–111
for production systems 110–111
information need vs. queries 77–86
learning over sequences 86–88
RNNs 88–95
supervised 106–110
unsupervised 106–110

indexing 17–19
searching 19–22
sequences of 85–86

text analysis pipelines 15–17, 20
text field 68, 180

Text REtrieval Conference (TREC) 24
text-based image retrieval 229–230
TF (term frequency) 23, 152
TF-IDF (term frequency–inverse document

frequency) 23, 55, 151–154, 156, 160, 240
Theano framework 62
thought vector layer 108, 151, 214
three-dimensional vector 52
title field 128
TMX (Translation Memory eXchange) 206
TMXParser class 207
toDenseAverageVector class 167
token filters 16–17, 20, 40
TokenFilter 42, 64
tokenizers 16–17, 42
tokens 14–22

indexing 17–19
searching 19–22

TPUs (tensor-processing units) 110
train-extract-index 31
training

CNNs 248–250
data 275–276
neural networks 31, 34

training phase 7
training sample 7
training set 80
TrainingListener 135, 191
train-then-index 31
translating documents vs. queries 197–199
Translation Memory eXchange (TMX) 206
translation vector 219
translations, phrase-based 205–206
TranslatorTool API 202, 216, 222
traversed token graph 17
TREC (Text REtrieval Conference) 24
trec_eval tool 165
trigrams 125
TST (ternary search tree) 116, 123
tu node 206–207
tuv node 206–207

U

unconditional probability 157
unlabeled images 261–265
unrolls parameter 93
unsupervised learning 7–8, 103
unsupervised query expansion 103–106
unsupervised text generation 106–110

LSTM (long short-term memory) networks
for 95–106

sequence-to-sequence modeling 107–110
update algorithm 53

303INDEX
Updater 274
user history 148
users, multilingual 196–202

cross-language searches 199–200
querying in multiple languages in Lucene

200–202
translating documents vs. translating

queries 197–199

V

VAE (variational autoencoder) 262
vector space models (VSMs) 23, 151–154, 156,

160, 170
vectors

from encoder-decoder models 191–192
word to document 159–164
See also paragraph vectors

vertical search engines 13
Vespa library 287
visual features 234
VSMs (vector space models) 23–151, 154, 156,

160, 170

W

web09-bst dataset 103, 124
weight initialization schemes 133
WeightLookupTable 191

weights 23, 32, 64, 133
adding 274–275
initializing 280–281

whitespace tokenizer 20, 44, 46–47
window parameter 57, 60–61, 171
word alignment 205
word embeddings 55, 176, 255

averaged Similarity based on 166–169
diversifying suggestions using 142–145
for multiple languages 219–224
ranking search results with 146–169

comparing 165–169
evaluating 165–169
importance of rankings 147–149
neural information retrieval 158–159
retrieval models 149–158
word vectors to document vectors 159–164

to document embeddings 171–174
word vectors 29, 33, 55, 108, 159–164
word2vec algorithm 29, 37, 49, 51, 54–66, 69, 84,

87, 114, 142, 145, 154, 159, 166, 173–174,
188, 219, 268, 287

in Deeplearning4J 63–64
synonym expansion 64–66

WordEmbeddingsSimilarity 166, 291
WordNet project 48–49, 64, 83

X

Xavier initialization 281
XAVIER scheme 133

For ordering information go to www.manning.com

Natural Language Processing in Action
Understanding, analyzing, and generating text
with Python
by Hobson Lane, Cole Howard, Hannes Hapke

ISBN: 9781617294631
544 pages, $49.99
March 2019

Deep Learning with Python
by François Chollet

ISBN: 9781617294433
384 pages, $49.99
November 2017

Relevant Search
With applications for Solr and Elasticsearch
by Doug Turnbull and John Berryman

ISBN: 9781617292774
360 pages, $44.99
June 2016

Solr in Action
by Trey Grainger and Timothy Potter

ISBN: 9781617291029
664 pages, $49.99
March 2014

RELATED MANNING TITLES

https://www.manning.com/books/natural-language-processing-in-action
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/relevant-search
https://www.manning.com/books/solr-in-action

Tommaso Teofili

ISBN-13: 978-1-61729-479-2
ISBN-10: 1-61729-479-9

D
eep learning handles the toughest search challenges,
including imprecise search terms, badly indexed data,
and retrieving images with minimal metadata. And

with modern tools like DL4J and TensorFlow, you can apply
powerful DL techniques without a deep background in data
science or natural language processing (NLP). This book will
show you how.

Deep Learning for Search teaches you to improve your search
results with neural networks. You’ll review how DL relates
to search basics like indexing and ranking. Then, you’ll walk
through in-depth examples to upgrade your search with DL
techniques using Apache Lucene and Deeplearning4j. As the
book progresses, you’ll explore advanced topics like searching
through images, translating user queries, and designing search
engines that improve as they learn!

What’s Inside
● Generating synonyms
● Accurate and relevant rankings
● Searching across languages
● Content-based image search
● Search with recommendations

For developers comfortable with Java or a similar language
and search basics. No experience with deep learning or NLP
needed.

Tommaso Teofili is a software engineer with a passion for open
source and artifi cial intelligence. He’s a long-time member of
the Apache Software Foundation, contributing to projects for
information retrieval, NLP, and distributed computing.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/deep-learning-for-search

$59.99 / Can $79.99 [INCLUDING eBOOK]

Deep Learning for Search

SEARCH/MACHINE LEARNING

M A N N I N G

“A practical approach that
shows you the state of the art

in using neural networks,
AI, and deep learning
in the development
of search engines.”—From the Foreword by

Chris Mattmann, NASA JPL

“A thorough and thoughtful
synthesis of traditional search
and the latest advancements

in deep learning.”—Greg Zanotti, Marquette Partners

“A well-laid-out deep dive
into the latest technologies
that will take your search
engine to the next level.”—Andrew Wyllie, Thynk Health

“Hands-on exercises teach
you how to master
deep learning for

 search-based products.”—Antonio Magnaghi, System1

See first page

	Deep Learning for Search
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	Roadmap
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1 Search meets deep learning
	1 Neural search
	1.1 Neural networks and deep learning
	1.2 What is machine learning?
	1.3 What deep learning can do for search
	1.4 A roadmap for learning deep learning
	1.5 Retrieving useful information
	1.5.1 Text, tokens, terms, and search fundamentals
	1.5.2 Relevance first
	1.5.3 Classic retrieval models
	1.5.4 Precision and recall

	1.6 Unsolved problems
	1.7 Opening the search engine black box
	1.8 Deep learning to the rescue
	1.9 Index, please meet neuron
	1.10 Neural network training
	1.11 The promises of neural search

	2 Generating synonyms
	2.1 Introduction to synonym expansion
	2.1.1 Why synonyms?
	2.1.2 Vocabulary-based synonym matching

	2.2 The importance of context
	2.3 Feed-forward neural networks
	2.4 Using word2vec
	2.4.1 Setting up word2vec in Deeplearning4j
	2.4.2 Word2vec-based synonym expansion

	2.5 Evaluations and comparisons
	2.6 Considerations for production systems
	2.6.1 Synonyms vs. antonyms

	Part 2 Throwing neural nets at a search engine
	3 From plain retrieval to text generation
	3.1 Information need vs. query: Bridging the gap
	3.1.1 Generating alternative queries
	3.1.2 Data preparation
	3.1.3 Wrap-up of generating data

	3.2 Learning over sequences
	3.3 Recurrent neural networks
	3.3.1 RNN internals and dynamics
	3.3.2 Long-term dependencies
	3.3.3 Long short-term memory networks

	3.4 LSTM networks for unsupervised text generation
	3.4.1 Unsupervised query expansion

	3.5 From unsupervised to supervised text generation
	3.5.1 Sequence-to-sequence modeling

	3.6 Considerations for production systems

	4 More-sensitive query suggestions
	4.1 Generating query suggestions
	4.1.1 Suggesting while composing queries
	4.1.2 Dictionary-based suggesters

	4.2 Lucene Lookup APIs
	4.3 Analyzed suggesters
	4.4 Using language models
	4.5 Content-based suggesters
	4.6 Neural language models
	4.7 Character-based neural language model for suggestions
	4.8 Tuning the LSTM language model
	4.9 Diversifying suggestions using word embeddings

	5 Ranking search results with word embeddings
	5.1 The importance of ranking
	5.2 Retrieval models
	5.2.1 TF-IDF and the vector space model
	5.2.2 Ranking documents in Lucene
	5.2.3 Probabilistic models

	5.3 Neural information retrieval
	5.4 From word to document vectors
	5.5 Evaluations and comparisons
	5.5.1 Similarity based on averaged word embeddings

	6 Document embeddings for rankings and recommendations
	6.1 From word to document embeddings
	6.2 Using paragraph vectors in ranking
	6.2.1 Paragraph vector?based similarity

	6.3 Document embeddings and related content
	6.3.1 Search, recommendations, and related content
	6.3.2 Using frequent terms to find similar content
	6.3.3 Retrieving similar content with paragraph vectors
	6.3.4 Retrieving similar content with vectors from encoder-decoder models

	Part 3 One step beyond
	7 Searching across languages
	7.1 Serving users who speak multiple languages
	7.1.1 Translating documents vs. queries
	7.1.2 Cross-language search
	7.1.3 Querying in multiple languages on top of Lucene

	7.2 Statistical machine translation
	7.2.1 Alignment
	7.2.2 Phrase-based translation

	7.3 Working with parallel corpora
	7.4 Neural machine translation
	7.4.1 Encoder-decoder models
	7.4.2 Encoder-decoder for MT in DL4J

	7.5 Word and document embeddings for multiple languages
	7.5.1 Linear projected monolingual embeddings

	8 Content-based image search
	8.1 Image contents and search
	8.2 A look back: Text-based image retrieval
	8.3 Understanding images
	8.3.1 Image representations
	8.3.2 Feature extraction

	8.4 Deep learning for image representation
	8.4.1 Convolutional neural networks
	8.4.2 Image search
	8.4.3 Locality-sensitive hashing

	8.5 Working with unlabeled images

	9 A peek at performance
	9.1 Performance and the promises of deep learning
	9.1.1 From model design to production

	9.2 Indexes and neurons working together
	9.3 Working with streams of data

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

