

Design and Analysis of Algorithms

The text introduces readers to different paradigms of computing in addition to the traditional
approach of discussing fundamental computational problems and design techniques in the
random access machine model. Alternate models of computation including parallel,
cache-sensitive design and streaming algorithms are dealt in separate chapters to underline
the significant role of the underlying computational environment in the algorithm design. The
treatment is made rigorous by demonstrating new measures of performances along with
matching lower bound arguments.

The importance of greedy algorithms, divide-and-conquer technique and dynamic
programming is highlighted by additional applications to approximate algorithms that come
with guarantees. In addition to several classical techniques, the book encourages liberal use of
probabilistic analysis and randomized techniques that have been pivotal for many recent
advances in this area. There is also a chapter introducing techniques for dimension reduction
which is at the heart of many interesting applications in data analytics as well as statistical
machine learning. While these techniques have been known for a while in other communities,
their adoption into mainstream computer science has been relatively recent.

Concepts are discussed with the help of rigorous mathematical proofs, theoretical
explanations and their limitations. Problems have been chosen from a diverse landscape
including graphs, geometry, strings, algebra and optimization. Some exposition of
approximation algorithms has also been included, which has been a very active area of
research in algorithms. Real life applications and numerical problems are spread throughout
the text. The reader is expected to test her understanding by trying out a large number of
exercise problems accompanying every chapter.

The book assumes familiarity with basic data structures, to focus on more algorithmic aspects
and topics of contemporary importance.

Sandeep Sen has been a faculty member in the Department of Computer Science and
Engineering, Indian Institute of Technology Delhi, India, since 1991 where he is currently a
professor. His research spans randomized algorithms, computational geometry, dynamic
graph algorithms and models of computation. He is a Fellow of the Indian National Science
Academy and the Indian Academy of Sciences.

Amit Kumar is a faculty member in the Department of Computer Science and Engineering,
Indian Institute of Technology Delhi, India. His research lies in the area of combinatorial
optimization, with emphasis on problems arising in scheduling, graph theory and
clustering. He is a Fellow of Indian Academy of Sciences, and is a recent recipient of the Shanti
Swarup Bhatnagar Award for Mathematical Sciences.

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/7238545A38E3A3E87842185C9C7F34A8
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/7238545A38E3A3E87842185C9C7F34A8
https://www.cambridge.org/core

Design and Analysis of Algorithms

Sandeep Sen
Amit Kumar

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/7238545A38E3A3E87842185C9C7F34A8
https://www.cambridge.org/core

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314 to 321, 3rd Floor, Plot No.3, Splendor Forum, Jasola District Centre, New Delhi 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108496827

c© Sandeep Sen and Amit Kumar 2019

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2019

Printed in India

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data
Names: Sen, Sandeep, author. | Kumar, Amit, 1976- author.
Title: Design and analysis of algorithms / Sandeep Sen, Amit Kumar.
Description: New York, NY, USA : University Printing House, 2019. | Includes
bibliographical references and index.
Identifiers: LCCN 2019002080| ISBN 9781108496827 (hardback : alk. paper) |
ISBN 9781108721998 (paperback : alk. paper)
Subjects: LCSH: Algorithms.
Classification: LCC QA9.58 .S454 2019 | DDC 005.1–dc23
LC record available at https://lccn.loc.gov/2019002080

ISBN 978-1-108-49682-7 Hardback
ISBN 978-1-108-72199-8 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/7238545A38E3A3E87842185C9C7F34A8
https://www.cambridge.org/core

To the loving memory of my parents, Sisir Sen and Krishna Sen who nourished and
inspired my academic pursuits and all my teachers who helped me imbibe the beauty
and intricacies of various subjects

– Sandeep Sen

To my parents
– Amit Kumar

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/F9759A07A63F34274F450C82B739DFE5
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/F9759A07A63F34274F450C82B739DFE5
https://www.cambridge.org/core

Content

List of Figures xv
List of Tables xix
Preface xxi
Acknowledgments xxv

1 Model and Analysis 1

1.1 Computing Fibonacci Numbers 1
1.2 Fast Multiplication 3
1.3 Model of Computation 4
1.4 Randomized Algorithms: A Short Introduction 6

1.4.1 A different flavor of randomized algorithms 8

1.5 Other Computational Models 10

1.5.1 External memory model 10
1.5.2 Parallel model 11

Further Reading 12
Exercise Problems 13

2 Basics of Probability and Tail Inequalities 16

2.1 Basics of Probability Theory 16
2.2 Tail Inequalities 21
2.3 Generating Random Numbers 26

2.3.1 Generating a random variate for an arbitrary distribution 26

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8B708722B4B11443F88E13D5A95090E3
https://www.cambridge.org/core

viii Contents

2.3.2 Generating random variables from a sequential file 27
2.3.3 Generating a random permutation 29

Further Reading 31
Exercise Problems 31

3 Warm-up Problems 34

3.1 Euclid’s Algorithm for the Greatest Common Divisor (GCD) 34

3.1.1 Extended Euclid’s algorithm 35
3.1.2 Application to cryptography 36

3.2 Finding the kth Smallest Element 37

3.2.1 Choosing a random splitter 38
3.2.2 Median of medians 39

3.3 Sorting Words 41
3.4 Mergeable Heaps 43

3.4.1 Merging binomial heaps 44

3.5 A Simple Semi-dynamic Dictionary 45

3.5.1 Potential method and amortized analysis 46

3.6 Lower Bounds 47

Further Reading 50
Exercise Problems 50

4 Optimization I: Brute Force and Greedy Strategy 54

4.1 Heuristic Search Approaches 55

4.1.1 Game trees* 57

4.2 A Framework for Greedy Algorithms 60

4.2.1 Maximum spanning tree 64
4.2.2 Finding minimum weight subset 64
4.2.3 A scheduling problem 65

4.3 Efficient Data Structures for Minimum Spanning Tree Algorithms 66

4.3.1 A simple data structure for Union–Find 68
4.3.2 A faster scheme 69
4.3.3 The slowest growing function? 71
4.3.4 Putting things together 72
4.3.5 Path compression only* 73

4.4 Greedy in Different Ways 74
4.5 Compromising with Greedy 76

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8B708722B4B11443F88E13D5A95090E3
https://www.cambridge.org/core

Contents ix

4.6 Gradient Descent* 77

4.6.1 Applications 83

Further Reading 87
Exercise Problems 88

5 Optimization II: Dynamic Programming 92

5.1 Knapsack Problem 94
5.2 Context Free Parsing 95
5.3 Longest Monotonic Subsequence 97
5.4 Function Approximation 99
5.5 Viterbi’s Algorithm for Maximum Likelihood Estimation 100
5.6 Maximum Weighted Independent Set in a Tree 102

Further Reading 102
Exercise Problems 103

6 Searching 109

6.1 Skip-Lists – A Simple Dictionary 110

6.1.1 Construction of skip-lists 110
6.1.2 Analysis 111
6.1.3 Stronger tail estimates 113

6.2 Treaps: Randomized Search Trees 114
6.3 Universal Hashing 117

6.3.1 Existence of universal hash functions 120

6.4 Perfect Hash Function 121

6.4.1 Converting expected bound to worst case bound 122

6.5 A log log N Priority Queue* 122

Further Reading 124
Exercise Problems 125

7 Multidimensional Searching and Geometric Algorithms 128

7.1 Interval Trees and Range Trees 129

7.1.1 Two-dimensional range queries 131

7.2 k–d Trees 132
7.3 Priority Search Trees 135
7.4 Planar Convex Hull 137

7.4.1 Jarvis march 139
7.4.2 Graham’s scan 140
7.4.3 Sorting and convex hulls 141

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8B708722B4B11443F88E13D5A95090E3
https://www.cambridge.org/core

x Contents

7.5 Quickhull Algorithm 142

7.5.1 Analysis 143
7.5.2 Expected running time* 145

7.6 Point Location Using Persistent Data Structure 146
7.7 Incremental Construction 149

Further Reading 152
Exercise Problems 153

8 String Matching and Finger Printing 157

8.1 Rabin–Karp Fingerprinting 157
8.2 KMP Algorithm 161

8.2.1 Analysis of the KMP algorithm 165
8.2.2 Pattern analysis 165

8.3 Tries and Applications 165

Further Reading 168
Exercise Problems 169

9 Fast Fourier Transform and Applications 171

9.1 Polynomial Evaluation and Interpolation 171

9.1.1 Multiplying polynomials 172

9.2 Cooley–Tukey Algorithm 173
9.3 The Butterfly Network 175
9.4 Schonage and Strassen’s Fast Multiplication* 176
9.5 Generalized String Matching 179

9.5.1 Convolution based approach 180

Further Reading 182
Exercise Problems 182

10 Graph Algorithms 184

10.1 Depth First Search 184
10.2 Applications of DFS 188

10.2.1 Strongly connected components (SCC) 188
10.2.2 Biconnected components 191

10.3 Path Problems 193

10.3.1 Bellman–Ford SSSP algorithm 194
10.3.2 Dijkstra’s SSSP algorithm 195
10.3.3 All pair shortest paths algorithm 197

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8B708722B4B11443F88E13D5A95090E3
https://www.cambridge.org/core

Contents xi

10.4 Computing Spanners for Weighted Graphs 198
10.5 Global Min-cut 201

10.5.1 The contraction algorithm 202
10.5.2 Probability of min-cut 203

Further Reading 204
Exercise Problems 205

11 Maximum Flow and Applications 208

11.0.1 Max-Flow Min-Cut 212
11.0.2 Ford and Fulkerson algorithm 213
11.0.3 Edmond–Karp augmentation strategy 214
11.0.4 Monotonicity lemma and bounding the number of iterations 215

11.1 Applications of Max-Flow 216

11.1.1 Disjoint paths 216
11.1.2 Bipartite matching 217
11.1.3 Circulation problems 222
11.1.4 Project planning 224

Further Reading 226
Exercise Problems 227

12 NP Completeness and Approximation Algorithms 230

12.1 Classes and Reducibility 233
12.2 Cook–Levin Theorem 235
12.3 Common NP-Complete Problems 237
12.4 Proving NP Completeness 240

12.4.1 Vertex cover and related problems 241
12.4.2 Three coloring problem 242
12.4.3 Knapsack and related problems 244

12.5 Other Important Complexity Classes 247
12.6 Combating Hardness with Approximation 249

12.6.1 Maximum knapsack problem 251
12.6.2 Minimum set cover 252
12.6.3 The metric TSP problem 253
12.6.4 Three coloring 253
12.6.5 Max-cut problem 254

Further Reading 254
Exercise Problems 255

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8B708722B4B11443F88E13D5A95090E3
https://www.cambridge.org/core

xii Contents

13 Dimensionality Reduction* 258

13.1 Random Projections and the Johnson–Lindenstrauss Lemma 259
13.2 Gaussian Elimination 262
13.3 Singular Value Decomposition and Applications 264

13.3.1 Some matrix algebra and the SVD theorem 265
13.3.2 Low-rank approximations using SVD 267
13.3.3 Applications of low-rank approximations 269
13.3.4 Clustering problems 271
13.3.5 Proof of the SVD theorem 273

Further Reading 275
Exercise Problems 275

14 Parallel Algorithms 277

14.1 Models of Parallel Computation 277
14.2 Sorting and Comparison Problems 278

14.2.1 Finding the maximum 278
14.2.2 Sorting 282

14.3 Parallel Prefix 287
14.4 Basic Graph Algorithms 291

14.4.1 List ranking 292
14.4.2 Connected components 294

14.5 Basic Geometric Algorithms 298
14.6 Relation between Parallel Models 300

14.6.1 Routing on a mesh 301

Further Reading 303
Exercise Problems 304

15 Memory Hierarchy and Caching 308

15.1 Models of Memory Hierarchy 308
15.2 Transposing a Matrix 310

15.2.1 Matrix multiplication 311

15.3 Sorting in External Memory 313

15.3.1 Can we improve the algorithm?* 314

15.4 Cache Oblivious Design 316

15.4.1 Oblivious matrix transpose 317

Further Reading 320
Exercise Problems 321

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8B708722B4B11443F88E13D5A95090E3
https://www.cambridge.org/core

Contents xiii

16 Streaming Data Model 323

16.1 Introduction 323
16.2 Finding Frequent Elements in a Stream 324
16.3 Distinct Elements in a Stream 327
16.4 Frequency Moment Problem and Applications 331

16.4.1 The median of means trick 334
16.4.2 The special case of second frequency moment 335

16.5 Proving Lower Bounds for Streaming Model 337

Further Reading 339
Exercise Problems 340

Appendix A Recurrences and Generating Functions 343

A.1 An Iterative Method – Summation 344
A.2 Linear Recurrence Equations 345

A.2.1 Homogeneous equations 345
A.2.2 Inhomogeneous equations 346

A.3 Generating Functions 346

A.3.1 Binomial theorem 348

A.4 Exponential Generating Functions 348
A.5 Recurrences with Two Variables 349

Bibliography 351
Index 363

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8B708722B4B11443F88E13D5A95090E3
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8B708722B4B11443F88E13D5A95090E3
https://www.cambridge.org/core

Figures

1.1 Algorithm for verifying matrix product 9
2.1 Generating a random permutation of n distinct objects 29
3.1 Euclid’s algorithm 35
3.2 Algorithm based on median of medians 40
3.3 (a) Recursive construction of binomial tree; (b) Binomial heap of 11

elements consisting of three binomial trees 44
4.1 Illustration of the induction proof when root node is

∨
59

4.2 Algorithm Gen Greedy 61
4.3 The matching (a,d) is a maximal independent set, but (a,b),(c,d) is a larger

maximal independent set 63
4.4 Kruskal’s minimum spanning tree algorithm 64
4.5 Successive iterations in Kruskal’s greedy algorithm 67
4.6 An example of a Union–Find data structure storing elements {1,2, . . . ,12} 69
4.7 An example of a path compression heuristic 70
4.8 Prim’s minimum spanning tree algorithm 74
4.9 Boruvka’s minimum spanning tree algorithm 76

4.10 A convex function of one variable 78
4.11 Gradient descent algorithm 80
4.12 The convex function is non-differentiable at x 82
4.13 The point P should ideally lie on the intersection of the three circles, but

there are some measurement errors 83
4.14 A perceptron with inputs x1,x2, . . . ,xn and output determined by the sign of

w0 +w1x1 + . . .+wnxn 84

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/DDE04A133EA5706FDFA193D89397C247
https://www.cambridge.org/core

xvi Figures

4.15 A plot of the function g as an approximation to the sgn function 85
4.16 The points in P are denoted by dots, and those in N by squares 86
5.1 Recursive Fibonacci sequence algorithm 93
5.2 The recursive unfolding of computing F6 93
5.3 Table (a) implies that the string aba does not belong to the grammar

whereas Table (b) shows that baaba can be generated from S 96
5.4 In (a), the constant function is an average of the y values which minimizes

the sum of squares error. In (b), a 3 step function approximates the 7 point
function 99

5.5 For the label aba and starting vertex v1, there are several possible labeled
paths like [v1,v3,v4,v6], [v1,v4,v5,v6], etc. 101

5.6 In the sequence 13, 5, 8, 12, 9, 14, 15, 2 we have predefined the tree structure
but only the first four numbers have been scanned, i.e., 13, 5, 8, 12 104

6.1 The path traversed while searching for the element 87 111
6.2 Diagrams (a) to (d) depict the rotations required to insert the element 20

having priority 58 starting with the treap for the first four elements.
Diagram (e) is the final tree after the entire insertion sequence. Diagram (f)
shows the schematic for left/right rotations 117

6.3 The shaded leaf nodes correspond to the subset S 123
7.1 The structure of a one-dimensional range search tree where a query interval

is split into at most 2logn disjoint canonical (half)-intervals 130
7.2 The rectangle is the union of the slabs represented by the darkened nodes

plus an overhanging left segment containing p6 132
7.3 Rectangular range query used in a k–d tree 133
7.4 Each rectangular subdivision corresponds to a node in the k–d tree and is

labeled by the splitting axis – either vertical or horizontal 134
7.5 The query is the semi-infinite upper slab supported by the two bottom

points (0, 4.5) and (10, 4.5) 137
7.6 The figure on the left is convex, whereas the one on the right is not convex 137
7.7 Convex hull of points shown as the shaded region 138
7.8 Jarvis March algorithm for convex hull 140
7.9 Merging upper hulls 141

7.10 Left turn(pm, p2 j−1, p2 j) is true but slope(p2 j−1 p2 j) is less than the median
slope given by L 144

7.11 The shaded vertical region does not contain any intersection points 147
7.12 An example depicting Ω(n2) space complexity for n segments 149
7.13 Path copying technique on adjacent slabs s5 and s6 149
7.14 Incremental algorithm for closest pair computation 150

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/DDE04A133EA5706FDFA193D89397C247
https://www.cambridge.org/core

Figures xvii

7.15 Maximum number of D-separated points per cell is 4 and the shaded area
is the region within which a point can lie with distance less than D from p 152

8.1 Testing equality of two large numbers 159
8.2 Karp–Rabin string matching algorithm 160
8.3 Knuth–Morris–Pratt string matching algorithm 164
8.4 The suffix tree construction corresponding to the string catca $: (i) Suffix a

starting at position 5, (ii) Suffixes at position 4 and 5, etc. 167
9.1 FFT computation 174
9.2 Computing an eight point FFT using a butterfly network 176
9.3 Matching with wildcards: The pattern is X = 3 2 1 ∗ and r1 = 6,r2 = 4,r3 =

11,r4 = 0 all chosen from [1 . . .16] corresponding to p = 17 182
10.1 Algorithm for Depth First Search 186
10.2 The pair of numbers associated with each vertex denotes the starting time

and finishing time respectively as given by the global counter 187
10.3 The pair of numbers associated with the vertices represent the start and

finish time of the DFS procedure 189
10.4 Finding strongly connected components using two DFS 190
10.5 The component graph for the graph on the left is shown on the right 192
10.6 Bellman–Ford single-source shortest path problem 194
10.7 For every vertex, the successive labels over the iterations of the

Bellman–Ford algorithm are indicated where i denotes ∞ 196
10.8 Dijkstra’s single source shortest path algorithm 196
10.9 An algorithm for weighted 3-spanner 199

10.10 The 3-spanner algorithm – Stages 1 and 2 200
10.11 Stretch bound: (i) Intracluster; (ii) Intercluster 201
10.12 Algorithm for computing t-partition 202

11.1 Greedy algorithm for max-flow: it may not give optimal solution 211
11.2 Example of residual graph 211
11.3 Example of disjoint paths in a graph 217
11.4 Reduction from a matching instance on the left to a max-flow instance on

the right 218
11.5 The matching M is shown by dotted edges 220
11.6 Illustration of Hall’s theorem 221
11.7 The shaded region consisting of s,A,C,D,E,F represents a min s-t cut of

capacity 3 222
11.8 Example of circulation on the left 223
11.9 Figure on the left shows an example of DAG on a set of tasks 225

11.10 Figure for Exercise 11.3. Numbers denote edge capacities 227
12.1 Many-to-one reduction from Π1 to Π2 by using a function f : N→ N 234

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/DDE04A133EA5706FDFA193D89397C247
https://www.cambridge.org/core

xviii Figures

12.2 Graph illustrating the reduction for the 3-CNF formula 242
12.3 Illustration of the reduction proving NP-completeness of the three coloring

problem. 243
13.1 Gaussian elimination algorithm 263
13.2 A two-dimensional illustration of the SVD subspace V1 of points

represented by circular dots, where V1 denotes the subspace spanned by
the first column of V 273

14.1 Parallel odd–even transposition sort 282
14.2 Sorting two rows by alternately sorting rows and columns 284
14.3 Shearsort algorithm for a rectangular mesh 285
14.4 Partition sort in parallel 285
14.5 Parallel prefix computation: this procedure computes prefix of xa,xa+1,

. . . ,xb 287
14.6 Parallel prefix computation using blocking 289
14.7 Recursive unfolding of the prefix circuit with 8 inputs in terms of 4-input

and 2-input circuits 289
14.8 Parallel list ranking 292
14.9 The star rooted at vertex 5 is connected to all the stars (dotted edges) on the

right that have higher numbered vertices 296
14.10 Parallel connectivity: We assume that there is a processor assigned to every

vertex v ∈V and to every edge (u,w) ∈ E 297
14.11 Starting from (r,c), the packet is routed to a random row r′ within the same

column c 303
15.1 The tiling of a p×q matrix in a row-major layout 310
15.2 Transposing a matrix using minimal transfers 311
15.3 Computing the product Z = X ·Y using tiles of size s 312
15.4 Searching a dictionary in external memory 316
15.5 Consider numbers from 1 to 16 arranged according to the Algorithm in

Fig. 15.4 316
15.6 Algorithm for matrix transpose 317
15.7 Base case: Both A,B fit into cache – no further cache miss 318
15.8 The subsequence σi1 σi1+1 . . .σi1+r1 σi2 have k+1 distinct elements, whereas

the subsequence σi1 σi1+1 . . .σi1+r1 have k distinct elements 319
16.1 The algorithm A receives input xt at time t, but has limited space 324
16.2 Boyer–Moore majority voting algorithm 325
16.3 Misra–Gries streaming algorithm for frequent elements 327
16.4 Counting number of distinct elements 328
16.5 Combining reservoir sampling with the estimator for Fk 332
16.6 Estimating F2 336

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/DDE04A133EA5706FDFA193D89397C247
https://www.cambridge.org/core

Tables

5.1 The dynamic programming table for Knapsack 95
8.1 Finite automaton transition function for the string aabb matching 163
8.2 Illustration of matching using KMP failure function f for the pattern

abababca. 164
12.1 Creating an instance of decision-knapsack from a given instance of 3-SAT 245
14.1 Consecutive snapshots of the list ranking algorithm on 15 elements 293

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/048C0613C730082406A7052129DCB8D1
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/048C0613C730082406A7052129DCB8D1
https://www.cambridge.org/core

Preface

This book embodies a distillation of topics that we, as educators, have frequently covered
in the past two decades in various postgraduate and undergraduate courses related to
Design and Analysis of Algorithms in IIT Delhi. The primary audience were the junior level
(3rd year) computer science (CS) students and the first semester computer science
post-graduate students. This book can also serve the purpose of material for a more
advanced level algorithm course where the reader is exposed to alternate and more
contemporary computational frameworks that are becoming common and more suitable.

A quick glance through the contents will reveal that about half of the topics are
covered by many standard textbooks on algorithms like those by Aho et al. [7], Horowitz
et al. [65], Cormen et al. [37], and more recent ones like those by Kleinberg and
Tardos [81] and Dasgupta et al. [40]. The first classic textbook in this area, viz., that by
Aho et al., introduces the subject with the observation ‘The study of algorithms is at the
very heart of computer science’ and this observation has been reinforced over the past
five decades of rapid development of computer science as well as of the more applied
field of information technology. Because of its foundational nature, many of the early
algorithms discovered about five decades ago continue to be included in every textbook
written including this one – for example, algorithms like FFT, quicksort, Dijkstra’s
shortest paths, etc.

What motivated us to write another book on algorithms are the several important and
subtle changes in the understanding of many computational paradigms and the relative
importance of techniques emerging out of some spectacular discoveries and changing
technologies. As teachers and mentors, it is our responsibility to inculcate the right focus

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.001
https://www.cambridge.org/core

xxii Preface

in the younger generation so that they continue to enjoy this intellectually critical activity
and contribute to the enhancement of the field of study. As more and more human
activities are becoming computer-assisted, it becomes obligatory to emphasize and
reinforce the importance of efficient and faster algorithms, which is the core of any
automated process. We are often limited and endangered by the instictive use of
ill-designed and brute force algorithms, which are often erroneous, leading to fallacious
scientific conclusions or incorrect policy decisions. It is therefore important to introduce
some formal aspects of algorithm design and analysis into the school curriculum at par
with maths and science, and sensitize students about this subject.

Who can use it

The present book is intended for students who have acquired skills in programming as
well as basic data structures like arrays, stacks, lists, and even some experience with
balanced trees. The authors, with a long experience behind them in teaching this subject,
are convinced that algorithm design can be a deceptively hard subject and a gentle
exposure is important for, both, understanding and sustaining interest. In IIT Delhi, CS
undergraduates do a course in programming followed by a course in data structures with
some exposure to basic algorithmic techniques. This book is intended for students having
this background and so we have avoided any formal introduction of basic data structures
including elementary graph searching methods like BFS/DFS. Instead, the book focusses
on a mathematical treatment of the previously acquired knowledge and emphasizes a
clean and crisp analysis of any new idea and technique. The CS students in IIT Delhi
would have done a course in discrete mathematics and probability before they do this
course. The design of efficient algorithms go hand-in-hand with our ability to quickly
screen intuitions that lead to poor algorithms – both in terms of efficiency and correctness.
We have consciously avoided topics that require long and dry formalism, although we
have emphasized rigor at every juncture.

An important direction that we have pursued is based on the significance of adapting
algorithm design to the computational environment. Although there has been a long
history of research in designing algorithms for real-world models such as parallel and
cache-hierarchy models, these have remained in the realms of niche and specialized
graduate courses. The tacit assumption in basic textbooks is that we are dealing with
uniform cost random access machines (RAMs). It is our firm belief that algorithm design
is as much a function of the specific problem as the target model of execution, and failing
to recognize this aspect makes the exercise somewhat incomplete and ineffective.
Therefore, trying to execute the textbook data structures on a distributed model or
Dijkstra’s algorithm in a parallel computer would be futile. In summary,

Algorithms = ProblemDe f inition+Model

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.001
https://www.cambridge.org/core

Preface xxiii

The last three chapters specifically address three very important environments, namely
parallel computing, memory hierarchy, and streaming. They form the core of a course
taught in IIT Delhi, Model Centric Algorithm Design – some flavor can add diversity to a
core course in algorithms. Of course, any addition to a course would imply proportionate
exclusion of some other equally important topic – so it is eventually the instructor’s choice.

Another recurring theme in the book is the liberal use of randomized techniques in
algorithm design. To help students appreciate this aspect, we have described some basic
tools and applications in Chapter 2. Even for students who are proficient in the use of
probabilistic calculations (we expect all CS majors to have one college level course in
probability), may find these applications somewhat non-intuitive and surprising –
however, this may also turn into a very versatile and useful tool for anyone who is
mathematically minded.

The other major development over the past decade is an increasing popularity of
algebraic (particularly spectral) methods for combinatorial problems. This has made the
role of conventional continuous mathematics more relevant and important. Reconciling
and bridging the two distinct worlds of discrete and continuous methods is a huge
challenge to even an experienced researcher, let alone an average student. It is too
difficult to address this in a book like ours but we have tried to present some flavor in
Chapter 12, which is an introduction to the technique of random projections.

Each chapter is followed by some brief discussion on some historical origins of the
problem and pointers to relevant existing literature. The subsections/sections/chapters
marked with ∗ are more suitable for the advanced reader and may be skipped by others
without loss of continuity.

One of the primary objectives of a course on algorithms is to encourage an appreciation
for creativity without sacrificing rigor – this aspect makes algorithm design one of the most
challenging and fascinating intellectual pursuit.

Suggested use of the chapters

The material presented in the sixteen chapters can be taught over two semesters at a
leisurely pace, for example, in a two sequence course on algorithms. Alternately, for a first
course on algorithms (with prior background in basic data structures), the instructor can
choose majority portions from Chapters 3 to 11 and parts of Chapter 12. An advanced
course can be taught using material from Chapters 12–16. Chapters 14–16 can form the
crux of a course on model centric algorithm design which can be thought of as a more
pragmatic exposure to theory of computation using contemporary frameworks.

Sandeep Sen
Amit Kumar

New Delhi, 2019

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.001
https://www.cambridge.org/core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.001
https://www.cambridge.org/core

Acknowledgments

The authors would like to acknowledge their respective PhD advisors, John Reif and Jon
Kleinberg, as their inspiring gurus in their journey in the algorithmic world. Sandeep Sen
would also like to acknowledge Isaac Scherson, his Masters supervisor, for his motivating
support to pursue algorithmic research.

The authors would like to thank many experienced researchers and teachers for their
encouraging comments, including Pankaj Agarwal, Gary Miller, Sariel Har Peled, Jeff
Vitter, Ravi Kannan, Sachin Maheshwari, Bernard Chazelle, Sartaj Sahni, Arijit Bishnu,
and Saurabh Ray. More specifically, the authors would like to acknowledge Kurt
Mehlhorn for sharing his notes on Gaussian Elimination in the finite precision model and
Surender Baswana for his careful reading of the section on Graph Spanners.

It will also be fitting to acknowledge the numerous students in IIT Delhi, CSE
department who have taken our courses in the area of algorithms, whose probing
questions and constant prodding have contributed immensely to the shaping of the
current contents.

Sandeep Sen would like to acknowledge the patience and support of his wife,
Anuradha, who showed exemplary tolerance in sacrificing many hours that was due to
her and his son, Aniruddha, for keeping the adrenaline going as a reminder of what the
next generation is likely to be interested in. Amit Kumar would like to acknowledge his
wife, Sonal, for her unwavering support and patience, and daughters, Aanvi and
Anshika, for their love and affection. He would also like to acknowledge his parents for
their encouragement and inspiration.

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/AD0E59D67D7325BBD5F60E12A9EA3804
https://www.cambridge.org/core

xxvi Acknowledgments

Since typists have long become defunct, it is obligatory to acknowledge the
contributions of Donald Knuth for TEX and Leslie Lamport’s LATEX manual for the ease
and convenience of writing such textbooks. For the sake of the environment and future of
the world, we hope that long-term dissemination of such books will be in the electronic
medium.

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/AD0E59D67D7325BBD5F60E12A9EA3804
https://www.cambridge.org/core

1
C H A P T E R

Model and Analysis

When we make a claim such as Algorithm A has running time O(n2 logn), we have an
underlying computational model where this statement is valid. It may not be true if we
change the model. Before we formalize the notion of a computational model, let us consider
the example of computing Fibonacci numbers.

1.1 Computing Fibonacci Numbers

One of the most popular sequences is the Fibonacci sequence defined by

Fi =

0 i = 0
1 i = 1
Fi−1 +Fi−2 otherwise for i≥ 2

It is left as an exercise problem to show that

Fn =
1√
5
(φn−φ

′n) where φ =
1+
√

5
2

φ
′ = 1−φ

Clearly, it grows exponentially with n and Fn has θ(n) bits.
Since the closed form solution for Fn involves the golden ratio – an irrational number –

we must find a way to compute it efficiently without incurring numerical errors or
approximations as it is an integer.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.002
https://www.cambridge.org/core

2 Design and Analysis of Algorithms

Method 1
By simply using the recursive formula, one can easily argue that the number of operations
(primarily additions) involved is proportional to the value of Fn. We just need to unfold
the recursion tree where each internal node corresponds to an addition. As we had noted
earlier, this leads to an exponential time algorithm and we cannot afford it.

Method 2
Observe that we only need the last two terms of the series to compute the new term. Hence,
by applying the principle of dynamic programming,1 we successively compute Fi starting
with F0 = 0 and F1 = 1 and use the previously computed terms, Fi and Fi−1 for i≥ 2.

This takes time that is proportional to approximately n additions, where each addition
involves adding (increasingly large) numbers. The size of Fdn/2e is about n/2 bits; so, the
last n/2 computations will take Ω(n) steps 2 culminating in an O(n2) algorithm.

Since the nth Fibonacci number is at most n bits, it is reasonable to look for a faster
algorithm.

Method 3[
Fi

Fi−1

]
=

[
1 1
1 0

][
Fi−1

Fi−2

]
By iterating the aforementioned equation, we obtain[

Fn

Fn−1

]
=

[
1 1
1 0

]n−1 [
1
0

]
To compute An, where A is a square matrix, we recall the following strategy for recursively
computing xn for a real x and positive integer n.{

x2k = (xk)
2 for even integral powers

x2k+1 = x · x2k for odd integral powers

We can extend this method to compute An.
The number of multiplications taken by the aforementioned approach to compute xn

is bounded by 2 logn (the reader can convince oneself by writing a recurrence). However,
the actual running time depends on the time taken to multiply two numbers, which in
turn depends on their lengths (number of digits). Let us assume that M(n) is the number
of (bit-wise) steps to multiply two n bit numbers. The number of steps to implement the
aforementioned approach must take into account the lengths of numbers that are being
multiplied. The following observations will be useful.

1The reader who is unfamiliar with this technique may refer to a later chapter, Chapter 5, that discusses it in
complete detail.

2Adding two k bit numbers takes Θ(k).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.002
https://www.cambridge.org/core

Model and Analysis 3

The length of xk is bounded by k · |x|, where |x| is the length of x.
Therefore, the cost of the the squaring of xk is bounded by M(k|x|). Similarly, the cost of

computing x× x2k can also be bound by M(2k|x|).The overall recurrence for computing xn

can be written as

TB(n)≤ TB(bn/2c)+M(n|x|)

where TB(n) is the number of bit operations to compute the nth power using the previous
recurrence. The solution of the aforementioned recurrence can be written as the following
summation (by unfolding)

logn

∑
i=1

M(2i|x|)

If M(2i)> 2M(i), then this summation can be bounded by O(M(n|x|)), that is, the cost of the
last squaring operation.

In our case, A is a 2× 2 matrix – each squaring operation involves 8 multiplications
and 4 additions involving entries of the matrix. Since multiplications are more expensive
than additions, let us count the cost of multiplications only. Here, we have to keep track
of the lengths of the entries of the matrix. Observe that if the maximum size of an entry is
|x|, then the maximum size of an entry after squaring is at most 2|x|+ 1 (Why?). The cost
of computing An is O(M(n|x|)), where the maximum length of any entry is |x| (left as an
exercise problem). Hence, the running time of computing Fn using Method 3 is dependent
on the multiplication algorithm. Well, multiplication is multiplication – what can we do
about it? Before that, let us summarize what we know about it. Multiplying two n digit
numbers using the add-and-shift method takes O(n2) steps, where each step involves
multiplying two single digits (bits in the case of binary representation), and generating
and managing carries. For binary representation, this takes O(n) steps for multiplying
with each bit; finally, n shifted summands are added – the whole process takes O(n2)

steps.
Using such a method of multiplication implies that we cannot do better than Ω(n2)

steps to compute Fn. For any significant (asymptotically better) improvement, we must
find a way to multiply faster.

1.2 Fast Multiplication

Problem Given two numbers A and B in binary, we want to compute the product A×B.
Let us assume that the numbers A and B have lengths equal to n = 2k – this will keep

our calculations simpler without affecting the asymptotic analysis.

A×B = (2n/2 ·A1 +A2)× (2n/2 ·B1 +B2)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.002
https://www.cambridge.org/core

4 Design and Analysis of Algorithms

where A1 (B1) is the leading n/2 bits of A (B). Likewise, A2 is the trailing n/2 bits of A. We
can expand this product as

A1×B1 ·2n/2 +(A1×B2 +A2×B1) ·2n/2 +A2×B2

Observe that multiplication by 2k can be easily achieved in binary by adding k trailing 0s
(likewise, in any radix r, multiplying by rk can be done by adding trailing zeros). Hence,
the product of two n bit numbers can be achieved by recursively computing four products
of n/2 bit numbers. Unfortunately, this does not improve things (see exercise 1.6).

We can achieve an improvement by reducing it to three recursive calls of multiplying
n/2 bit numbers by rewriting the coefficient of 2n/2 as follows

A1×B2 +A2×B1 = (A1 +A2)× (B1 +B2)− (A1×B1)− (A2×B2)

Although strictly speaking, A1 +A2 is not n/2 bits but at most n/2+1 bits (Why?), we can
still view this as computing three separate products involving n/2 bit numbers
recursively and subsequently subtracting appropriate terms to get the required products.
Subtraction and additions are identical in modulo arithmetic (2’s complement), so the
cost of subtraction can be bounded by O(n). (What is the maximum size of the numbers
involved in subtraction?). This gives us the following recurrence

TB(n)≤ 3 ·TB(n/2)+O(n)

where the last term accounts for addition, subtractions, and shifts. It is left as an exercise
problem to show that the solution to this recurrence is O(nlog2 3). This running time is
roughly O(n1.7), which is asymptotically better than n2 and therefore we have succeeded
in designing an algorithm to compute Fn faster than n2.

It is possible to multiply much faster using a generalization of the aforementioned
method in O(n logn log logn) bit operations utilizing Schonage and Strassen’s method.
However, this method is quite involved as it uses discrete Fourier transform computation
over modulo integer rings and has fairly large constants that neutralize the advantage of
the asymptotic improvement unless the numbers are a few thousand bits long. It is,
however, conceivable that such methods will become more relevant as we may need to
multiply large keys for cryptographic/security requirements. We discuss this algorithm
in Chapter 9.

1.3 Model of Computation

Although there are a few thousand variations of the computer with different architectures
and internal organization, it is best to think about them at the level of the assembly

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.002
https://www.cambridge.org/core

Model and Analysis 5

language. Despite architectural variations, the assembly level language support is very
similar – the major difference being in the number of registers and the word length of the
machine. However, these parameters are also in a restricted range of a factor of two, and
hence, asymptotically in the same ballpark. In summary, we can consider any computer
as a machine that supports a basic instruction set consisting of arithmetic and logical
operations and memory accesses (including indirect addressing). We will avoid
cumbersome details of the exact instruction set and assume realistically that any
instruction of one machine can be simulated using a constant number of available
instructions of another machine. Since analysis of algorithms involves counting the
number of operations and not the exact timings (which could differ by an order of
magnitude), the aforementioned simplification is justified.

The careful reader would have noticed that during our detailed analysis of Method 3
in the previous section, we were not simply counting the number of arithmetic operations
but actually the number of bit-level operations. Therefore, the cost of a multiplication or
addition was not unity but proportional to the length of the input. Had we only counted
the number of multiplications for computing xn, it would only be O(logn). This would
indeed be the analysis in a uniform cost model, where only the number of arithmetic (also
logical) operations are counted and the cost does not depend on the length of the operands.
A very common use of this model is for comparison-based problems like sorting, selection,
merging, and many data-structure operations. For these problems, we often count only the
number of comparisons (not even other arithmetic operations) without bothering about the
length of the operands involved. In other words, we implicitly assume O(1) cost for any
comparison. This is not considered unreasonable since the size of the numbers involved
in sorting does not increase during the course of the algorithm for most of the commonly
known sorting problems. On the other hand, consider the following problem of repeated
squaring n times starting with 2. The resultant is a number 22n

, which requires 2n bits to
be represented. It will be very unreasonable to assume that a number that is exponentially
long can be written out (or even stored) in O(n) time. Therefore, the uniform cost model
will not reflect a realistic setting for this problem.

On the other extreme is the logarithmic cost model where the cost of an operation is
proportional to the length of the operands. This is very consistent with the physical world
and is also similar to the Turing machine model which is a favorite of complexity theorists.
Our analysis in the previous section is actually done with this model in mind. It is not only
the arithmetic operations but also the cost of memory access that is proportional to the
length of the address and the operand.

The most commonly used model is something in between. We assume that for an
input of size n, any operation involving operands of size logn 3 takes O(1) steps. This is

3We can also work with c logn bits as the asymptotic analysis does not change for a constant c.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.002
https://www.cambridge.org/core

6 Design and Analysis of Algorithms

justified as follows. All microprocessor chips have specialized hardware circuits for
arithmetic operations like multiplication, addition, division, etc. that take a fixed number
of clock cycles when the operands fit into a word. The reason that logn is a natural choice
for a word is that, even to address an input size n, you require logn bits of address space.
The present high-end microprocessor chips have typically 2–4 GBytes of RAM and about
64 bits word size – clearly 264 exceeds 4 GBytes. We will also use this model, popularly
known as random access machine (or RAM in short), except for problems that deal with
numbers as inputs like multiplication in the previous section where we will invoke the log
cost model. In the beginning, it is desirable that for any algorithm, we get an estimate of
the maximum size of the numbers to ensure that operands do not exceed Ω(logn) so that
it is safe to use the RAM model.

1.4 Randomized Algorithms: A Short Introduction

The conventional definition of an algorithm demands that an algorithm solves a given
instance of a problem correctly and certainly, that is, for any given instance I , an algorithm
A should return the correct output every time without fail. It emphasizes a deterministic
behavior that remains immutable across multiple runs. By exploring beyond this
conventional boundary, we have some additional flexibility that provides interesting
trade-offs between correctness and efficiency, and also between predictability and
efficiency. These are now well-established techniques in algorithm design known as
randomized techniques. In this section, we provide a brief introduction to these alternate
paradigms, and in this textbook, we make liberal use of the technique of randomization
which has dominated algorithm design in the past three decades leading to some
surprising results as well as simpler alternatives to conventional design techniques.

Consider an array A of n elements such that each element is either colored red or green.
We want to output an index i, such that A[i] is green. Without any additional information or
structure, we may end up inspecting every element of A to find a green element. Suppose
we are told that half the elements are colored green and the remaining red. Even then we
may be forced to probe n/2 elements of the array before we are assured of finding a green
element since the first n/2 elements that we probe could be all red. This is irrespective of
the distribution of the green elements. Once the adversary knows the probe sequence, it
can force the algorithm to make n/2 probes.

Let us now assume that all
(n

n/2

)
choices of green elements are equally likely – in what

way can we exploit this? With a little reflection, we see that every element is equally
likely to be red or green and therefore, the first element that we probe may be green with
probability = 1/2. If so, we are done – however, it may not be green with probability 1/2.
Then, we can probe the next location and so on until we find a green element. From our
earlier argument, we may have to probe at most n/2 locations before we succeed. But there

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.002
https://www.cambridge.org/core

Model and Analysis 7

is a crucial difference – it is very unlikely that in a random placement of green elements, all
the first n/2 elements are red. Let us make this more precise.

If the first m < n/2 elements are red, it implies that all the green elements got squeezed
in the n−m locations. If all placements are equally likely, then the probability of this
scenario is(n−m

n/2

)(n
n/2

) =
(n−m)! · (n/2)!
n! · (n/2−m)!

=
(n−m)(n−m−1) · · ·(n/2−m+1)

n(n−1) · · ·(n/2+1)

It is easy to check that this probability is at most e−m/2. Therefore, the expected number of
probes is at most

∑
m≥0

(m+1) · e−m/2 = O(1)

In the previous discussion, the calculations were based on the assumption of random
placement of green elements. Can we extend it to the general scenario where no such
assumption is required? This turns out to be surprisingly simple and obvious once the
reader realizes it. The key to this is – instead of probing the array in a pre-determined
sequence A[1], A[2], . . ., we probe using a random sequence, say j1, j2, . . . , jn, where
j1, . . . , jn is a permutation of {1, . . . ,n}.

How does this change things ? Since n/2 locations are green, a random probe will yield
a green element with probability 1/2. If it is not green, then the subsequent random probes
(limited to the unprobed locations) will have even higher probability of the location having
a green element. This is a simple consequence of conditional probability given that all
the previous probes yielded red elements. To formalize, let X be a random variable that
denotes the number of probes made to find the first green element. Then,

Pr[X = k] = The probability that the initial k−1 probes are red and the k-th probe is green

≤ 1/2k

The reader must verify the correctness of this expression. The expression can also be
modified to yield

Pr[X ≥ k]≤
i=n/2

∑
i=k

1/2i ≤ 1/2k−1,

and the expected number of probes is at most O(1).
This implies that the number of probes not only decreases exponentially with k but is

independent of the placement of the green elements, that is, the worst-case scenario is over all
possible input arrays. Instead of relying on the randomness of the placement (which is
not in our control), the algorithm itself uses a random probe sequence matching the same
phenomenon. This is the essence of a randomized algorithm. In this case, the final result is

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.002
https://www.cambridge.org/core

8 Design and Analysis of Algorithms

always correct, that is, a green element is output but the running time (number of probes)
is a random variable and there is a trade-off between the number of probes k and the
probability of termination within k probes.

If the somewhat hypothetical problem of finding a green element from a set of
elements has not been convincing in terms of its utility, here is a classical application of
the aforementioned solution. Recall the quicksort sorting algorithm. In quicksort, we
partition a given set of n numbers around a pivot. It is known that the efficiency of the
algorithm depends primarily on the relative sizes of the partition – the more balanced
they are in size, the better. Ideally, one would like the pivot to be the median element so
that both sides of the partition are small. Finding the median element is a problem in
itself; however, any element around the median is almost equally effective, say an
element with rank4 between [n

4 ,
3n
4] will also lead to a balanced partitioning. These n/2

elements can be thought of as the green elements and so we can apply our prior
technique. There is a slight catch – how do we know that the element is green or red? For
this, we need to actually compute the rank of the probed element, which takes n− 1
comparisons but this is acceptable since the partitioning step in quicksort takes n steps
and will subsume this. However, this is not a complete analysis of quicksort which is a
recursive algorithm; we require more care that will be discussed in a later chapter dealing
with selections.

1.4.1 A different flavor of randomized algorithms

Consider a slight twist on the problem of computing the product of two n× n matrices
C = A×B. We are actually given A,B,C and we have to verify if C is indeed the product
of the two matrices A and B. We may be tempted to actually compute A×B and verify it
element by element with C. In other words, let D= A×B and we check if C−D=On, where
the right-hand side is an n×n matrix whose elements are identically 0.

This is a straightforward and simple algorithm, except that we will pay the price for
computing the product which is not really necessary for the problem. Using elementary
method for computing matrix products, we will need about O(n3) multiplications and
additions5, whereas an ideal algorithm could be O(n2) steps, which is the size of the
input. To further simplify the problem and reduce dependency on the size of each
element, let us consider Boolean matrices and review addition modulo 2. Examine the
algorithm described in Figure 1.1. It computes three matrix vector products – BX , A(BX),
and CX–incurring a total of 3n2 operations which matches the input size and therefore, is
optimal.

4The rank of x is the number of elements in the set smaller than x.
5There are sophisticated and complex methods to reduce the number of multiplications below n3 but they are still
much more than n2.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.002
https://www.cambridge.org/core

Model and Analysis 9

Procedure Verifying matrix product(A,B,C)

1 Input: A,B,C are n×n matrices over GF(2);
2 Output: If A ·B =C then Yes else No;
3 Choose a random 0–1 vector X ;
4 if A · (B ·X) =C ·X then
5 Return YES;
6 else
7 Return NO

Figure 1.1 Algorithm for verifying matrix product

Observation If A(BX) 6=CX , then AB 6=C.
However, the converse, that is, A(BX) = C =⇒ AB = C is not easy to see. On the

contrary, consider the following example, which raises serious concerns.

Example 1.1 A =

[
1 1
1 0

]
B =

[
0 1
1 0

]
C =

[
1 0
0 1

]
AB =

[
1 1
1 0

]
X =

[
1
0

]
ABX =

[
1
0

]
CX =

[
1
0

]
X ′ =

[
0
1

]
ABX ′ =

[
1
0

]
CX ′ =

[
0
1

]
Clearly, the algorithm is not correct if we choose the first vector. Instead of giving up on
this approach, let us get a better understanding of the behavior of this simple algorithm.

Claim 1.1 For an arbitrary vector (non-zero) Y and a random vector X , the probability that the dot
product X ·Y = 0 is less than 1/2.

There must be at least one Yi 6= 0 – choose that Xi last; with probability 1/2, it will be
non-zero. For the overall behavior of the algorithm, we can claim the following.

Claim 1.2 If A(BX) 6=CX , then AB 6=C, that is, the algorithm is always correct if it answers NO.
When the algorithm answers YES, then Pr[AB =C]≥ 1/2.

If AB 6=C, then in AB−C, at least one of the rows is non-zero and from the previous claim,
the dot product of a non-zero vector with a random vector is non-zero with probability
1/2. It also follows that by repeating this test and choosing independently another random
vector when it returns YES, we can improve the probability of success and our confidence
in the result. If the algorithm returns k consecutive YES, then Pr[AB 6=C]≤ 1

2k .
The reader may have noted that the two given examples of randomized algorithms

have distinct properties. In the first example, the answer is always correct but the running

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.002
https://www.cambridge.org/core

10 Design and Analysis of Algorithms

time has a probability distribution. In the latter, the running time is fixed, but the answer
may be incorrect with some probability. The former is known as Las Vegas and the latter is
referred to as Monte Carlo randomized algorithm. Although in this particular example, the
Monte Carlo algorithm exhibits asymmetric behavior (it can be incorrect only when the
answer is YES), it need not be so.

1.5 Other Computational Models

There is clear trade-off between the simplicity and the fidelity achieved by an abstract
model. One of the obvious (and sometimes serious) drawbacks of the RAM model is the
assumption of unbounded number of registers since the memory access cost is uniform.
In reality, there is a memory hierarchy comprising registers, several levels of cache, main
memory, and finally the disks. We incur a higher access cost as we go from registers toward
disks and for technological reasons, the size of the faster memory is limited. There could
be a disparity of 105 between the fastest and the slowest memory which makes the RAM
model somewhat suspect for larger input sizes. This has been redressed by the external
memory model.

1.5.1 External memory model

In this model, the primary concern is the number of disk accesses. Given the rather high
cost of a disk access compared to any CPU operation, this model actually ignores all other
costs and counts only the number of disk accesses. The disk is accessed as contiguous
memory locations called blocks. The blocks have a fixed size B and the simplest model
is parameterized by B and the size of the faster memory M. In this two-level model, the
algorithms are only charged for transferring a block between the internal and external
memory; all other computations are free. The cost of sorting n elements is O

(
n
B logM/B

n
B

)
disk accesses and this is also optimal. To see this, we can analyze M/B-way merge sort
in this model. Note that one block from each of the M/B sorted streams can fit into the
main memory. Using appropriate data structures, we can generate the next B elements
of the output and we can write an entire block to the output stream. Hence, the overall
number of I-Os per phase is O(n/B) since each block is read and written exactly once. The
algorithm makes O(n/B

M/B) passes, yielding the required bound.
There are further refinements to this model that parameterizes multiple levels and also

accounts for internal computation. As the model becomes more complicated, designing
algorithms also becomes more challenging and often more laborious. We discuss algorithm
design and analysis in this model and many variations in Chapter 15.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.002
https://www.cambridge.org/core

Model and Analysis 11

1.5.2 Parallel model

The basic idea of parallel computing is extremely intuitive and a fundamentally intellectual
pursuit. At the most intuitive level, it symbolizes what can be achieved by cooperation
among individuals in terms of expediting an activity. It is not about division of labor (or
specialization), but actually assuming similar capabilities. Engaging more laborers clearly
speeds up construction; similarly, using more than one processor is likely to speed-up
computation. Ideally, by using p processors, we would like to obtain a p-fold speed-up
over the conventional algorithms; however, the principle of decreasing marginal utility
shows up. One of the intuitive reasons for this is that with more processors (as with more
individuals), the communication requirements tend to dominate after a while. But more
surprisingly, there are algorithmic constraints that pose serious limitations to our objective
of obtaining proportional speed-up.

This is best demonstrated in the model called PRAM (or parallel random access
machine) which is the analog of RAM. Here p processors are connected to a shared
memory and the communication happens through reading and writing in a globally
shared memory. It is left to the algorithm designer to avoid read and write conflicts. It is
further assumed that all operations are synchronized globally and that there is no cost of
synchronization. In this model, there is no extra overhead for communication as it is
charged in the same way as a local memory access. Even in this model, it has been shown
that it is not always possible to obtain ideal speed-up. As an example, consider the
elementary problem of finding the minimum of n elements. It has been proved that with n
processors, the time (parallel time) is at least Ω(log logn). For certain problems, like depth
first search of graphs, it is known that even if we use any polynomial number of
processors, we cannot obtain polylogarithmic time! So, clearly not all problems can be
parallelized effectively.

A more realistic parallel model is the interconnection network model that has an
underlying communication network, usually a regular topology like a two-dimensional
mesh, hypercube, etc. These can be embedded into VLSI (very large scale integration)
chips and be scaled according to our needs. To implement a parallel algorithm, we have
to design efficient schemes for data routing.

A very common model of parallel computation is a hardware circuit comprising basic
logic gates. The signals are transmitted in parallel through different paths and the output
is a function of the input. The size of the circuit is the number of gates and the (parallel)
time is usually measured in terms of the maximum path length from any input gate to the
output gate (each gate contributes to a unit delay). Those familiar with circuits for addition
and comparison can analyze them in this framework. The carry–save adder is a low-depth
circuit that adds two n-bit numbers in about O(logn) steps, which is much faster than a
sequential circuit that adds one bit at a time taking n steps.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.002
https://www.cambridge.org/core

12 Design and Analysis of Algorithms

An example Given numbers x1,x2, . . . ,xn, consider the problem of computing the terms
Si = ∑

i
j=1 x j for all 1≤ i≤ n. Each term corresponds to a partial sum. It is trivial to compute

all the partial sums in O(n) steps. Computing Si for each i can be done in parallel using a
binary tree of depth dlog ie, where the inputs are given at the leaf nodes and each internal
node corresponds to a summation operation. All the summations at the same level can be
done simultaneously and the final answer is available at the root. Doing this computation
independently for each Si is wasteful since Si+1 = Si+xi+1 that will be about O(n2) additions
compared to the sequential complexity of O(n).

Instead we use the following idea. Add every odd–even pair of inputs into a single
value yi/2 = xi−1 + xi, for every even i (assume n is a power of two). Now compute the
partial sums S′1,S

′
2, . . . ,S

′
n/2 recursively. Note that S′j = ∑

2 j
k=1 xk = S2 j, that is, half the terms

can be computed this way. To obtain S2 j+1, 0 ≤ j ≤ n/2− 1, add x2 j+1 to S′j. This can also
be done simultaneously for all terms.

This recursive description can be unfolded to yield a parallel circuit for the
computation. The algorithm can be generalized for any arbitrary associative operation
and is known as parallel prefix or scan operation. Using an appropriately defined
composition function for a semi-adder (adding two bits given a carry), we can construct
the carry–save adder circuit. In Chapter 14, we formally introduce parallel computation
models and discuss parallel algorithm design techniques for many basic problems
including parallel prefix.

One of the most fascinating developments is the quantum model, which is inherently
parallel but also fundamentally different from the previous models. A breakthrough result
in recent years is a polynomial time algorithm [134] for factorization, which forms the
basis of many cryptographic protocols in the conventional model. The interested reader
may learn the basics of quantum computing from introductory textbooks like the one by
Nielsen and Chuang [111].

Biological computing models is a very active area of research where scientists are trying
to assemble a machine out of DNA strands. It has potentially many advantages over
silicon-based devices and is inherently parallel. Adleman [2] was one of the earliest
researchers to construct a prototype to demonstrate its potential.

Further Reading

The dependence between algorithm designs and computation models is often not
highlighted enough. One of the earliest textbooks on algorithm design [7] had addressed
this very comprehensively by establishing precise connections between random access
machine (RAM) and random access stored program (RASP) as well as between the
uniform and the logarithmic cost models. However, over the last two decades,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.002
https://www.cambridge.org/core

Model and Analysis 13

researchers have shown how to exploit word models to improve algorithms based on
comparison models – see Fredman and Willard [54] – that breaches the Ω(n logn) lower
bound for comparison sorting. Shamir [132] had shown that factorization of a given
integer can be done in O(logn) arithmetic steps if very large integers can be allowed as
operands. A very esoteric field of theoretical computer science is complexity theory, where
precise relations are characterized between various computational models [13, 114].

Fibonacci sequence is one of the most popular recurrences in computer science and also
quite useful in applications such as Fibonacci search (see Knuth’s work [83]) and Fibonacci
heaps [53]. The divide-and-conquer algorithm for multiplication is known as Karatsuba’s
algorithm (described by Knuth [82]). Algorithms for multiplication and division attracted
early attention [17] and continues to be a tantalizing issue, as is it is indeed asymptotically
harder than addition.

Randomized algorithm and probabilistic techniques opened up an entirely new
dimension in algorithm design which is both elegant and powerful. Starting with the
primality testing algorithms [95, 103, 136], it provided researchers with many surprising
alternatives that changed the perspective of computer science. Readers are encouraged to
refer to the textbook by Motwani and Raghavan [106] for a very comprehensive
application of such methods.

In the later chapters of this book, we provide a more detailed introduction to alternate
models of algorithm design such as parallel, external memory, and streaming models. An
experienced algorithm designer is expected to find the right match between an algorithm
and a model for any specific problem.

Exercise Problems

1.1 Solve the following recurrence equations given T (1) = O(1)

(a) T (n) = T (n/2)+bn logn

(b) T (n) = aT (n−1)+bnc

1.2 Show that

Fn =
1√
5
(φn−φ

′n) φ =
1+
√

5
2

φ
′ = 1−φ

where Fn is the nth Fibonacci number. Use the recurrence for Fn and solve it using the
generating function technique.

Prove that

Fn = 1+
n−2

∑
i=0

Fi

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.002
https://www.cambridge.org/core

14 Design and Analysis of Algorithms

1.3 An AVL tree is a balanced binary search tree that satisfies the following invariant.
At every internal node (including the root node), the heights of the left subtree and the
right subtree can differ by at most one.
Convert this invariant into an appropriate recurrence to show that an AVL tree with n nodes
has height bounded by O(logn).

1.4 Show that the solution to the recurrence X(1) = 1 and

X(n) =
n

∑
i=1

X(i)X(n− i) for n > 1

is X(n+1) = 1
n+1

(2n
n

)
.

1.5 Show that the cost of computing An is O(M(n|x|), where A is a 2×2 matrix and the largest
element is x. Here |.| denotes the size of a number.

1.6 (i) Show that the recurrence T (n) = 4T (n/2)+O(n) has a solution T (n) = Ω(n2).

(ii) The improved recurrence for multiplying two n-bit numbers is given by

TB(n)≤ 3 ·TB(n/2)+O(n)

With an appropriate terminating condition, show that the solution for the bit complexity
TB(n) is O(nlog2 3).

(iii) Extend the idea of doing a two-way divide-and-conquer algorithm to multiply two n-bit
numbers, to a four-way division by saving the number of lower order multiplications.
Is there any advantage in extending this further ?

1.7 Given two polynomials PA(n) = an−1xn−1 + an−2xn−2 + . . .+ a0 and PB(n) = bn−1xn−1+

bn−2xn−2 + . . .+ b0, design a subquadratic (o(n2)) time algorithm to multiply the two
polynomials. You can assume that the coefficients ai and bi are O(logn) bits and can be
multiplied in O(1) steps.

1.8

Let f act(n) =

{(n
n
2

)
· (n/2)!2 if n is even

n · (n−1)! n is otherwise

This equation is similar to the recurrence for fast computation of xn. Can you make use of
it to compute a fast algorithm for computing factorials?

1.9 Let p(x1,x2, . . . ,xn) be a multivariate polynomial in n variables and degree d over a field F
such that p() is not identically 0. Let I⊆ F be a finite subset. Then the number of elements
Y ∈ In such that p(Y) = 0 is bounded by |I|n−1 ·d. Note that Y is an n tuple.

(i) Prove this using induction on n and the fundamental theorem of algebra.

(ii) Give an alternate proof of the matrix product verification C = A ·B using this result.

Hint: What is the degree and the field size in this case?

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.002
https://www.cambridge.org/core

Model and Analysis 15

1.10 Comparison model In problems related to selection and sorting, the natural and intuitive
algorithms are based on comparing pairs of elements. For example, the minimum among
a given set of n elements can be found in exactly n−1 comparisons.

(i) Show that no algorithm can correctly find the minimum in fewer than n−1 comparisons.

(ii) Show that 3 n
2 comparisons are sufficient and necessary to find the minimum and the

maximum (both) of n elements.

1.11 Lop-sided search A company has manufactured shock-proof watches and it wants to test
the strength of the watches before it publicizes its warranty that will be phrased as “Even
if it drops from the Xth floor, it will not be damaged." To determine what X is, we have to
conduct real experiments by dropping the watch from different floors. If it breaks when we
drop it from, say, 10th floor, then X is clearly less than 10. However, in this experiment, we
have lost a watch.

(i) If the watch can withstand a fall from the Xth floor but not the X+1th, what is the
minimum number of trials we have to conduct if we are allowed to destroy at most one
watch?

(ii) Let a pair Tn = (k,m) denote that, to determine that the watch can withstand a fall from
the nth floor (but not n+1), we can do this by breaking at most k watches and m trials.
The previous problem alluded to k = 1.

Determine (2,m) where you need to express m as a function of n.

(iii) For any constant integer k, determine m by writing an appropriate recurrence.

Contrast your results with binary search.

1.12 Given a positive integer n, design an efficient algorithm to find all the primes ≤ n. Recall
that the number of primes is Θ(n/ logn), so the running time should be close to this.

Hint: Use the sieve technique where we begin with a size n array and progressively cancel
all the multiples of primes. The algorithm should not visit a location too many times if we
want to achieve a running time close to O(n), which is the time required to initialize the
array.

1.13 In the field F2, there are two elements, namely 0 and 1, and addition and multiplication are
performed modulo 2. Let y be a non-zero vector of length n. We choose a random vector
x of length n by choosing each coordinate independently to be 0 or 1 uniformly at random.
Prove that the probability that the dot product (x · y) mod 2 is 0 is exactly 1/2.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.002
https://www.cambridge.org/core

2
C H A P T E R

Basics of Probability and
Tail Inequalities

Randomized algorithms use random coin tosses to guide the progress of the algorithm.
Although the actual performance of the algorithm may depend on the outcomes of these
coin tosses, it turns out that one can often show that with reasonable probability, the
algorithm has the desired properties. This model can dramatically improve the power of
an algorithm. We will give examples where this ability can lead to very simple
algorithms; in fact, sometimes, randomization turns out to be necessary. In this chapter,
we begin with the basics of probability theory. We relate the notion of a random variable
with the analysis of a randomized algorithm – often, the running time of a randomized
algorithm will be a random variable. We will then describe techniques for bounding the
probability of a random variable exceeding certain values, thereby bounding the running
time.

Note Since randomized techniques have been extensively used as a basic tool, this
chapter lays down some of the foundations of such applications for readers who are not
familiar with this methodology. For others, this chapter can be used as reference as and
when required.

2.1 Basics of Probability Theory
In this section, we provide a brief review of the axiomatic approach to probability theory.
We will deal with the discrete case only. We begin with the notion of a sample space, often

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

Basics of Probability and Tail Inequalities 17

denoted by Ω. It can be thought of as the set of outcomes (or elementary events) in an
experiment. For example, if we are rolling a dice, then Ω can be defined as the set of 6
possible outcomes. In an abstract setting, we will define Ω to be any set (which will be finite
or countably infinite). To see an example where Ω can be infinite, consider the following
experiment: we keep tossing a coin till we see a heads. Here the set of possible outcomes
are infinite – for any integer i ≥ 0, there is an outcome consisting of i tails followed by a
heads. Given a sample space Ω, a probability measure Pr assigns a non-negative real value pω

to each elementary event ω ∈ Ω. The probability measure Pr should satisfy the following
condition:

∑
ω∈Ω

pω = 1. (2.1.1)

A probability space consists of a sample space Ω with a probability measure associated with
the elementary events. In other words, a probability space is specified by a pair (Ω,Pr) of
sample space and probability measure. Observe that the actual probability assigned to
each elementary event (or outcome) is part of the axiomatic definition of a probability
space. Often one uses prior knowledge about the experiment to come up with such a
probability measure. For example, if we assume that a dice is fair, then we could assign
equal probability, that is, 1/6 to all the 6 outcomes. However, if we suspect that the dice is
biased, we could assign different probabilities to different outcomes.

Example 2.1 Suppose we are tossing 2 coins. In this case, the sample space is {HH,HT,T H,T T}.
If we think all 4 outcomes are equally likely, then we could assign probability 1/4 to each of these
4 outcomes. However, assigning probability 0.3,0.5,0.1,0.1 to these 4 outcomes also results in a
probability space.

We now define the notion of an event. An event is a subset of Ω. The probability of an
event E is defined as ∑ω∈E pω, that is, the total sum of probabilities of all the outcomes in E.

Example 2.2 Consider the experiment of throwing a dice, that is, Ω= {1,2,3,4,5,6}, and suppose
the probabilities of these outcomes (in this sequence) are 0.1,0.2,0.3,0.2,0.1,0.1. Then, {2,4,6}
is an event (which can also be defined as the event that the outcome is an even number) whose
probability is 0.2+0.2+0.1 = 0.5.

The following properties follow immediately from the definition of the probability of an
event (proof deferred to exercises):

1. For all A⊂Ω ,0≤ Pr[A]≤ 1

2. Pr[Ω] = 1

3. For mutually disjoint events E1,E2, . . . ,Pr[∪iEi] = ∑i Pr[Ei]

The principle of inclusion–exclusion also has its counterpart in the probabilistic world,
namely

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

18 Design and Analysis of Algorithms

Lemma 2.1

Pr[∪iEi] = ∑
i

Pr[Ei]−∑
i< j

Pr[Ei∩E j]+ ∑
i< j<k

Pr[Ei∩E j ∩Ek] . . .

Example 2.3 Suppose we pick a number uniformly at random from 1 to 1000. We would like to
calculate the probability that it is divisible by either 3 or 5. We can use the principle of
inclusion–exclusion to calculate this. Let E be the event that it is divisible by either 3 or 5. Let E1

be the event that it is divisible by 3 and E2 be the event that it is divisible by 5. Clearly,
E = E1∪E2. By the inclusion–exclusion principle

Pr[E] = Pr[E1]+Pr[E2]−Pr[E1∩E2].

Clearly E1 happens if we pick a multiple of 3. The number of multiples of 3 in the range [1,1000] is
b1000/3c= 333, and so, Pr[E1] =

333
1000 . Similarly, Pr[E2] =

200
1000 . It remains to compute Pr[E1∩E2].

But note that this is exactly the probability that the number is divisible by 15, and so, it is equal to
b1000/15c

1000 = 66
1000 . Thus, the desired probability is 467/1000.

Definition 2.1 The conditional probability of E1 given E2 is denoted by Pr[E1|E2] and is
given by

Pr[E1∩E2]

Pr[E2]

assuming Pr[E2]> 0.

Definition 2.2 A collection of events {Ei|i ∈ I} is independent if for all subsets S⊂ I

Pr[∩i∈SEi] = Πi∈S Pr[Ei]

Remark E1 and E2 are independent if Pr[E1|E2] = Pr[E1].
The notion of independence often has an intuitive meaning – if two events depend on

experiments which do not share any random bits respectively, then they would be
independent. However, the converse may not be true, and so the only way to verify if two
events are independent is to check the aforementioned condition.

Example 2.4 Suppose we throw two dice. Let E1 be the event that the sum of the two numbers
is an even number. It is easy to check that Pr[E1] = 1/2. Let E2 be the event that the first die has
outcome “1”. Clearly, Pr[E2] = 1/6. It is also clear that Pr[E1∩E2] is 1/12 – indeed, for E1∩E2 to
occur, the second die can have only 3 outcomes. Since Pr[E1∩E2] = Pr[E1] ·Pr[E2], these two events
are independent.

We now come to the notion of a random variable.

Definition 2.3 A random variable (r.v.) X is a real-valued function over the sample space, X :
Ω→ R.

In other words, a random variable assigns a real value to each outcome of an experiment.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

Basics of Probability and Tail Inequalities 19

Example 2.5 Consider the probability space defined by the throw of a fair die. Let X be function
which is 1 if the outcome is an even number and 2 if the outcome is an odd number. Then, X is a
random variable. Now consider the probability space defined by the throw of two fair dice (where
each of the 36 outcomes are equally likely). Let X be a function which is equal to the sum of the values
of the two dice. Then, X is also a random variable which takes values in the range {2, . . . ,12}.

With each random variable X , we can associate several events. For example, given a real
x, we can define the event [X ≥ x] as the set {ω ∈ Ω : X(ω) ≥ x}. One can similarly define
the events [X = x], [X < x], and in fact, [X ∈ S] for any subset S of real numbers.1 The
probability associated with the event [X ≤ x] (respectively, [X < x]) is known as the
cumulative density function, cdf (respectively, probability density function or pdf); it helps us
characterize the behavior of the random variable X . As in the case of events, one can also
define the notion of independence for random variables. Two random variables X and Y
are said to be independent if for all x and y in the range of X and Y respectively

Pr[X = x,Y = y] = Pr[X = x] ·Pr[Y = y].

It is easy to check from this definition that if X and Y are independent random variables,
then

Pr[X = x|Y = y] = Pr[X = x].

As in the case of events, we say that a set of random variables X1, . . . ,Xn are mutually
independent if for all reals x1, . . . ,xn, where xi lies in the range of Xi, for all i = 1, . . . ,n,

Pr[X1 = x1,X2 = x2, . . . ,Xn = xn] =
n

∏
i=1

Pr[Xi = xi].

The expectation of an r.v. X , whose range lies in a (countable) set R, is denoted by E[X] =

∑x∈R x ·Pr[X = x]. The expectation can be thought of as the typical value of X if we conduct
the corresponding experiment. One can formalize this intuition – the law of large numbers
states that if we repeat the same experiment many times, then the average value of X is
very close to E[X] (and gets arbitrarily close as the number of experiments goes to infinity).

A very useful property of expectation, called the linearity property, can be stated as
follows.

Lemma 2.2 If X and Y are random variables, then

E[X +Y] = E[X]+E[Y]

Remark Note that X and Y do not have to be independent!

1 We are only considering the case when X can be countably many different values.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

20 Design and Analysis of Algorithms

Proof: Let us consider R to be the union of ranges of X and Y – we will assume that R is
countable, though the result holds in general as well. We can also assume that both X and
Y have range R (if r ∈ R is not in the range of X , we can add it to the range of X with the
provision that Pr[X = r] = 0). Then,

E[X +Y] = ∑
r1∈R,r2∈R

(r1 + r2)Pr[X = r1,Y = r2].

We proceed as follows:

∑
r1∈R,r2∈R

(r1 + r2)Pr[X = r1,Y = r2] = ∑
r1∈R,r2∈R

r1 ·Pr[X = r1,Y = r2]

+ ∑
r1∈R,r2∈R

r2 Pr[X = r1,Y = r2]. (2.1.2)

If X and Y were independent, we could have just written Pr[X = r1,Y = r2] as Pr[X = r1] ·
Pr[Y = r2], and the result would follow trivially.

Now observe that ∑r1∈R,r2∈R r1 · Pr[X = r1,Y = r2] can be written as ∑r1∈R1
r1·

∑r2∈R2
Pr[X = r1,Y = r2]. But we can see that ∑r2∈R2

Pr[X = r1,Y = r2] is just Pr[X = x1], and so
∑r1∈R1

r1 ·∑r2∈R2
Pr[X = r1,Y = r2] is the same as E[X]. One can similarly show that the other

term in the RHS of Eq. (2.1.2) is equal to E[Y]. 2

The linearity of the expectation property has many surprising applications, and can often
be used to simplify many intricate calculations.

Example 2.6 Suppose we have n letters meant for n different people (with their names written on
the respective letters). Suppose we randomly distribute the letters to the n people (more formally, we
assign the first letter to a person chosen uniformly at random, the next letter to a uniformly chosen
person from the remaining n−1 persons, and so on). Let X be the number of persons who receive the
letter meant for them. What is the expectation of X? We can use the definition of X to calculate this
quantity, but the reader should check that even the expression of Pr[X = r] is non-trivial, and then,
adding up all such expressions (weighted by the corresponding probability) is a long calculation.
We can instead use linearity of expectation to compute E[X] in a very simple manner as follows.
For each person i, we define a random variable Xi, which takes only two values – 0 or 1 2. We set Xi

to 1 if this person receives the correct letter, otherwise to 0. It is easy to check that X = ∑
n
i=1 Xi, and

so, by linearity of expectation, E[X] = ∑iE[Xi]. It is now easy to compute E[Xi]. Indeed, it is equal
to 0 ·Pr[Xi = 0] + 1 ·Pr[Xi = 1] = Pr[Xi = 1]. Now, Pr[Xi = 1] is 1/n because this person receives
each of the n letters with equal probability. Therefore, E[X] = 1.

Lemma 2.3 For independent random variables X ,Y ,

E[X ·Y] = E[X] ·E[Y]

2 These are called indicator random variables and often simplify calculations in many situations.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

Basics of Probability and Tail Inequalities 21

Proof:

E[XY] = ∑
i

∑
j

xi · y jP(xi,y j) where P denotes joint distribution,

= ∑
i

∑
j

xi · y j pX(xi) · pY (y j) from independence of X ,Y

= ∑
i

xi pX(xi)∑
j

y j pY (y j)

= E[X] ·E[Y] 2

As in the case of events, we can also define conditional expectation of a random variable
given the value of another random variable. Let X and Y be two random variables. Then,
the conditional expectation of X given [Y = y] is defined as

E[X |Y = y] = ∑
x

Prx · [X = x|Y = y]

The theorem of total expectation that can be proved easily states that

E[X] = ∑
y
E[X |Y = y]

2.2 Tail Inequalities

In many applications, especially in the analysis of randomized algorithms, we would like
to bound the running time of our algorithm (or the value taken by some other random
variable). Although one can compute the expectation of a random variable, it may not
give any useful information about how likely the random variable is going to be close to
its expectation. For example, consider a random variable which is uniformly distributed
in the interval [0,n], for some large number n. Its expectation is n/2, but the probability
that it lies in the interval [n/2(1−δ),n/2(1+δ)] is only 2δ, where δ is a small constant. We
will see examples of other random variables where this probability will be very close to 1.
Therefore, to say something more meaningful about a random variable, one needs to look
beyond its expectation. The law of large numbers states that if we take many independent
trials of a random variable, then the average value taken by the random variable over these
trials converges (almost certainly) to the expectation. However, it does not say anything
about how fast this convergence happens, or how likely the random variable is going to
be close to its expectation if we perform this experiment only once.

In this section, we give various inequalities which bound the probability that a random
variable deviates from its expectation by a large amount. The foremost such inequality is
Markov’s inequality, which just uses the expectation of a random variable. As mentioned

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

22 Design and Analysis of Algorithms

earlier, it may not yield very strong bounds, but it is the best one can say when we do not
have any other information about the random variable.

As a running example, we will use a modification of the experiment considered in the
previous chapter. We are given an array A of size m (which is even). Half of the elements
in A are colored red and the rest are colored green. We perform the following experiment
n times independently: pick a random element of A, and check its color. Define X as a
random variable which counts the number of times we picked a green element. It is easy
to show, using linearity of expectation, that E[X] is n/2. We would now be interested in tail
inequalities which bound the probability that X deviates from its mean.

Markov’s inequality Let X be a non-negative random variable. Then,

Pr[X ≥ kE[X]]≤ 1
k

(2.2.3)

This result is really an ‘averaging’ argument (for example, in any class consisting of n
students, at most half the students can get twice the average marks). The proof of this
result also follows easily. Let R be the range of X ≥ 0.

E[X] = ∑
r∈R

r ·Pr[X = r]≥ ∑
r∈R:r≥kE[X]

r ·Pr[X = r]≥ kE[X] · ∑
r∈R:r≥kE[X]

Pr[X = r]

= kE[X]Pr[X ≥ kE[X]]

Canceling E[X] on both sides yields Markov’s inequality. Unfortunately, there is no
symmetric result which bounds the probability of events [X < kE[X]], where k < 1. To see
why Markov’s inequality cannot yield a two-sided bound, consider the following
example.

Example 2.7 Let X be a random variable which takes two values – 0 with proability (1−1/n), and
n2 with probability 1/n (think of n as a large number). Then, E[X] is n. However, Pr[X < n/2] is
1−1/n, which is very close to 1.

We now apply this inequality on our running example.

Example 2.8 In the example of array A with elements colored red or green, we know that E[X] =

n/2. Therefore, we see that Pr[X > 3n/4]≤ 1/4.

Note that we get a very weak bound on the probability that [X ≥ 3n/4] in Example 2.7.
Ideally, one would think that the probability of this event would go down as we increase n
(and indeed, this is true). However, Markov’s inequality is not strong enough to prove this.
The reason for this is that one can easily design random variables X whose expectation is
n/2 but the probability of going above 3n/4 is at most 2/3. The extra information, that X is
a sum of several independent random variables, is not exploited by Markov’s inequality.
Moreover, notice that we cannot say anything about the probability of the event [X ≤ n/4]

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

Basics of Probability and Tail Inequalities 23

using Markov’s inequality. We now show that there are inequalities which can exploit facts
about higher moments of X , and give stronger bounds.

The notion of expectation of a random variable can be extended to functions f (X) of
random variable X in the following natural way (we can think of Y := f (X) as a new
random variable)

E[f (X)] = ∑
r∈R

Pr[X = r] · f (r)

The variance of a random variable is given by E[X2]−E[X]2. Consider the random variable
X in Example 2.7. Its variance is equal to

E[X2]−E[X]2 = n3−n2

Let us now compute the variance of the random variable in our running example. We first
show that if X1 and X2 are two independent random variables, then variance of X1 +X2 is
sum of the variance of the two random variables. The variance of X1 +X2 is given by

E[(X1 +X2)
2]−E[X1 +X2]

2 = E[X2
1]+E[X2

2]+2E[X1X2]−E[X1]
2−E[X2]

2−2E[X1]E[X2]

= E[X2
1]−E[X1]

2 +E[X2
2]−E[X2]

2

because E[X1X2] = E[X1]E[X2] (we use independence of these two random variables here).
The same observation extends by induction to the sum of several random variables. Let
us apply this observation to our running example. Let Xi be the random variable which
is 1 if we pick a green element on the ith trial, 0 otherwise. Variance of Xi is E[X2

i]−E[Xi]
2.

Since Xi is a 0–1 random variable, E[X2
i] = E[Xi], and so, its variance is 1/2−1/4 = 1/4. Let

X denote the total number of green elements seen. Hence, X = ∑
n
i=1 Xi and its variance is

n/4.
If we have bounds on the variance of a random variable, then the following gives a

stronger tail bound

Chebychev’s inequality

Pr[|X−E[X]| ≥ t]≤ σ

t2 (2.2.4)

where σ is the variance of X . The proof of this inequality follows from applying Markov’s
inequality on the random variable Y := (X − E[X])2. Observe that this is a two-sided
inequality – not only does it bound the probability that X goes much above its mean, but
also the probability of X going much below its mean.

Example 2.9 We now apply this inequality to our running example. We get

Pr[X ≥ 3n/4]≤ Pr[|X−E[X]≥ n/4|]≤ n/4
9n2/16

=
4
9n

Thus, this probability goes to 0 as n goes to infinity.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

24 Design and Analysis of Algorithms

We see in Example 2.9 that Chebychev’s inequality gives a much stronger bound than
Markov’s inequality. In fact, it is possible to get much stronger bounds. Chebychev just
uses bounds on the second moment of X . With knowledge of higher moments, we can
give tighter bounds on the probability that X deviates from its mean by a large amount.
If X = ∑

n
i Xi is the sum of n mutually independent random variables where each Xi is a

Bernoulli random variable (i.e., takes values 0 or 1 only), then

Chernoff bounds gives

Pr[X ≥ (1+δ)µ]≤ eδµ

(1+δ)(1+δ)µ (2.2.5)

where δ is any positive parameter and µ denotes E[X]. The analogous bound for deviations
below the mean is as follows:

Pr[X ≤ (1−δ)µ]≤ eδµ

(1+δ)(1+δ)µ (2.2.6)

where δ lies between 0 and 1.
Before we get into the proof of these bounds, we state more usable versions which often

suffice in practice. It is easy to check that for any δ > 0, ln(1+δ)> 2δ

2+δ
. Therefore,

δ− (1+δ) ln(1+δ)≤− δ2

2+δ

Taking exponents on both sides, we see that

eδµ

(1+δ)(1+δ)µ ≤ e−
δ2µ
2+δ

Thus, we get the following:

• For 0≤ δ≤ 1,

Pr[X ≥ (1+δ)µ]≤ e−δ2µ/3 (2.2.7)

and

Pr[X ≤ (1−δ)µ]≤ e−δ2µ/3 (2.2.8)

• For δ > 2,

Pr[X ≥ (1+δ)µ]≤ e−δµ/2 (2.2.9)

Prob(X ≥ m)≤
(np

m

)m
em−np (2.2.10)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

Basics of Probability and Tail Inequalities 25

We now give a proof of the Chernoff bound, Eq. (2.2.5). The proof for Eq. (2.2.6) is
analogous.

Pr[X ≥ (1+δ)µ] = Pr[eλX ≥ eλ(1+δ)µ]≤ E[eλX]

eλ(1+δ)µ

where λ is a positive parameter that we shall fix later, and the last inequality follows from
Markov’s inequality. Notice that E[eλX] = E[∏n

i=1 eλXi] = ∏
n
i=1E[eλXi] because X1, . . . ,Xn are

mutually independent. Let pi denote the probability with which Xi takes the value 1. Then,
E[eλXi] = (1− pi)+ pi ·eλ = 1+ pi(eλ−1)≤ epi(eλ−1), because 1+x≤ ex for any positive x. Since
µ = ∑

n
i=1 pi, we get,

Pr[X ≥ (1+δ)µ]≤ eµ(eλ−1)

eλ(1+δ)µ

Now we choose λ > 0 to minimize the right-hand side, that is, to minimize eλ−λ(1+δ). It
is easy to check that this is minimized at λ = ln(1+ δ). Substituting this value of λ in the
RHS of the aforementioned inequality gives us the Chernoff bound, Eq. (2.2.5).

Example 2.10 We now apply Chernoff bound to our running example. Here µ = n/2. Using δ =

1/2 in Eq. (2.2.7), we get

Pr[X ≥ 3n/4]≤ e−n/12

Note that for large values of n, this is a much sharper bound than the one obtained using Chebychev’s
inequality.

Example 2.11 (Balls in bins) Suppose we throw n balls into n bins, where each ball is thrown
independently and uniformly at random into one of the bins. Let Yi denote the number of balls
which fall in bin i. We are interested in the random variable Y := maxn

i=1 Yi, that is, the maximum
number of balls which fall in a bin. We will use Chernoff bound to show that Y is O(lnn) with high
probability. Let us first consider a fixed bin i and show that Yi is O(lnn) with high probability. For a
ball j, let X j be the indicator random variable which is 1 if ball j falls in bin i, 0 otherwise. Clearly,
Pr[X j = 1] is 1/n. Now, Yi = ∑

n
j=1 X j, and so, E[Yi] = 1. Since X1, . . . ,Xn are independent Bernoulli

random variables, we can apply Eq. (2.2.9) with δ = 4lnn to get

Pr[Yi ≥ 4lnn+1]≤ e−2lnn = 1/n2.

Now we use union bound to get

Pr[Y ≥ 4lnn+1]≤
n

∑
i=1

Pr[Yi ≥ 4lnn+1]≤ 1/n.

Thus, with probability at least 1−1/n, no bin gets more than 4lnn+1 balls.
It turns out that one can get a sharper bound if we use Eq. (2.2.5) directly. It is left as an exercise

to show that Y is O(lnn/ ln lnn) with high probability.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

26 Design and Analysis of Algorithms

Example 2.12 Suppose we toss a fair coin n times independently. What is the absolute value of
the difference between the number of Heads and the number of Tails? Using Chernoff bounds, one
can show that this random variable is very likely to be O(

√
n). To see this, let Xi be the indicator

random variable which is 1 if the outcome of the ith coin toss is Heads, 0 otherwise. Then the random
variable X = ∑

n
i=1 Xi counts the number of Heads which are seen during this experiment. Clearly,

µ := E[X] = n/2. Using δ = 3/
√

n in Eq. (2.2.7) and in Eq. (2.2.8), we see that Pr[|X−n/2| ≥
√

n]
is at most e−3, which is about 0.05.

2.3 Generating Random Numbers

The performance of any randomized algorithm is closely dependent on the underlying
random number generator (RNG) in terms of efficiency. A common underlying
assumption is the availability of an RNG that generates a number uniformly in some
range [0,1] in unit time or alternately logN independent random bits in the discrete case
for the interval [0, . . . ,N]. This primitive is available in all standard programming
languages – we will refer to this RNG as U. We will need to adapt this to various
scenarios that we describe in the following subsections.

2.3.1 Generating a random variate for an arbitrary distribution

We consider a discrete distribution D , which is specified by distribution function f (s),
s= 1, . . . ,N. We would like to generate a random variate according to D . The distribution D
can be thought of as generating a random variable X with weight wi = f (i), where ∑i wi = 1.
A natural way to sample from such a distribution is as follows. We can divide the interval
[0,1] into consecutive subintervals I1, I2, . . . such that I j has length w j. Now, using the RNG
U, we sample a random point in the interval [0,1]. If it falls in the interval I j, we output j.
It is easy to see that the probability that this random variable takes value j is exactly f (j).

As stated earlier, this process can take O(N) time because we need to figure out the
interval in which the randomly chosen point lies. We can make this more efficient by
using binary search. More formally, let F(j) denote ∑

j
i=1 f (i) – it is also called the

cumulative distribution function (CDF) of D . Clearly, the sequence F(1),F(2), . . . ,F(N) = 1
forms a monotonically non-decreasing sequence. Given a number x in the range [0,1], we
can use binary search to find the index j such that x lies between F(j) and F(j + 1).
Therefore, we can sample from the distribution in O(logN) time.

This idea of dividing the unit interval into discrete segments does not work for a
continuous distribution (for example, the normal distribution). However, we can still use
a simple extension of the previous idea. A continuous distribution is specified by a CDF
F(), where F(s) is supposed to indicate the probability of taking a value less than or equal

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

Basics of Probability and Tail Inequalities 27

to s. We assume that F() is continuous (note that F(−∞) = 0 and F(+∞) = 1). In order to
sample from this distribution, we again sample a value x uniformly from [0,1] using U.
Let s be a value such that F(s) = x (we are assuming we can compute F−1; in the discrete
case, we were using a binary search procedure instead). We output the value s. It is again
easy to check that this random variable has a distribution given by D .

2.3.2 Generating random variables from a sequential file

Suppose a file contains N records from which we would like to sample a subset of n records
uniformly at random. There are several approaches to this basic problem:

• Sampling with replacement We can use U to repeatedly sample an element from the
file. This could lead to duplicates.

• Sampling without replacement We can use the previous method to choose the next
sample but we will reject duplicates. The result is a uniform sample but the
efficiency may suffer. In particular, the expected number of times we need to invoke
the RNG for the kth sample is N

N−k (see exercises).

• Sampling in a sequential order Here we want to pick the samples S1,S2, . . . ,Sn in an
increasing order from the file, that is, Si ∈ [1 . . .N] and Si < Si+1. This has applications
to processes where we can scan the records exactly once and retracing is not possible.

Suppose we have selected S1, . . . ,Sm so far, and scanned the first t elements.
Conditioned on these events, we select the next element (as Sm+1) with probability
n−m
N−t . Again, we implement this process by choosing a random value x in the range
[0,1] using U and then checking if x happens to be more or less than n−m

N−t .

In order to show that this random sampling procedure is correct, let us calculate
the probability that this process selects elements s1, . . . ,sn, where 1 ≤ s1 ≤ s2 ≤ . . . ≤
sn ≤ N. Let us condition on the fact that S1 = s1, . . . ,Sm = sm. What is the probability
that Sm+1 = sm+1? For this to happen, we must not select any of the elements in
sm +1, . . . ,sm+1−1, and then select sm+1. The probability of such an event is exactly

n−m
N− sm+1

·
sm+1−1

∏
t=sm+1

(
1− n−m

N− t

)
Taking the product of this expression for m = 1, . . . ,n, we see that the probability of
selecting s1, . . . ,sn is exactly 1

(N
n)
.

Although the aforementioned procedure works, U is called N times. The following
is a more efficient process which calls U fewer number of times. It is easy to check
that the distribution of Si+1−Si is given by (see exercises)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

28 Design and Analysis of Algorithms

F(s) = 1−

(
(N−t−s)
(n−m)

)(
(N−t)
(n−m)

) s ∈ [t +1,N] (2.3.11)

Thus, we can sample random variables from the distribution S1,S2−S1, . . . ,Sn−Sn−1,
and then select the corresponding elements.

• Sampling in a sequential order from an arbitrarily large file: This case is the same as earlier
except that we do not know the value of N. This is the typical scenario in a streaming
algorithm (see Chapter 15).

In this case, we always maintain the following invariant:

Among the i records that we have scanned so far, we have a sample of n elements chosen
uniformly at random from these i elements.

Note that the invariant makes sense only when i ≥ n because the n samples are
required to be distinct. Further, when i = n, the first n records must be chosen in the
sample. Now assume that this invariant holds for some i ≥ n. Let Sn,i denote the
random sample of n elements at this point of time. When we scan the next record
(which may not happen if the file has ended), we want to restore this invariant for
the i + 1 records. Clearly the i + 1th record needs to be in the sample with some
probability, say pi+1 and if picked, one of the previous sampled records must be
replaced.

Note that pi+1 =
n

i+1 . This follows from the fact that there are
(i+1

n

)
ways of selecting

n samples from the first i + 1 elements, and exactly
(i

n−1

)
of these contain i + 1.

Therefore,

pi+1 =

(i
n−1

)(i+1
n

) =
n

i+1

If the (i+1)th record is indeed chosen, we drop one of the previously chosen n samples
with equal probability. To see this, notice that the invariant guarantees that the set
Sn,i is a uniformly chosen sample of n elements. We claim that dropping one of the
samples uniformly at random gives us Sn−1,i, that is, a uniform n− 1 sample. The
probability that a specific subset of n−1 elements, say S∗ is chosen is the probability
that S∗∪{x}was chosen, (x 6∈ S∗), and x was dropped. You can verify that

1
n
· (i−n+1) · 1(i

n

) = 1(i
n−1

)
where the term (i− n + 1) represents the number of choices of x. The RHS is the
uniform probability of an n− 1 sample. Thus, the sampling algorithm is as follows:
when we consider record i+ 1, we select it in the sample with probability n

i+1 – if it
gets selected, we drop one of the earlier chosen samples with uniform probability.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

Basics of Probability and Tail Inequalities 29

2.3.3 Generating a random permutation

Many randomized algorithms rely on the properties of random permutation to yield
good expected bounds. Some algorithms like Hoare’s quicksort or randomized
incremental construction actually start from the assumption of an initial random order.
However, the input may not have this property; in which case, the onus is on the
algorithm to generate a random permutation. Broadly speaking, any such algorithm must
have access to random numbers and also ensure that all the permutations of the input
objects are equally likely outcomes.

We describe the algorithm in Figure 2.1. The algorithm runs in n iterations; in the ith
iteration, it assigns xi to a random location in the permutation. It places the ordered
elements (according to the random permutation) in an array A. Note that the size of A is
slightly larger than n, and so, some positions in A will remain empty at the end. Still, we
can read the permutation from A by scanning it from left to right.

Procedure Random permutation({x1,x2, . . . ,xn})
1 Input : Objects {x1,x2, . . . ,xn} ;
2 Output: A random permutation Π = {xσ(1),xσ(2), . . . ,xσ(n)} ;
3 Initialize an array of size m(> n) as unmarked ;
4 for i = 1 to n do
5 while A[j] is marked do
6 Generate a random number j ∈U [1,m] ;

7 A[j]← i ;
8 mark A[j] ;

9 Compress the marked locations in A[1,n] and Return A where
σ(A[j]) = j ;

Figure 2.1 Generating a random permutation of n distinct objects

In the array A, the algorithm marks the locations which are occupied. The main loop
tries to assign xi to a random location among the unmarked (unoccupied) locations in the
array A. For this, it keeps trying until it finds a free position. We need to prove the following

(i) After termination, all permutations are equally likely.

(ii) The expected number of executions of the loop is not too large – preferably linear
in n.

(iii) Returning the n elements in contiguous locations takes m steps.

To balance (ii) and (iii), we have to choose m somewhat carefully. We make some simple
observations

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

30 Design and Analysis of Algorithms

Claim 2.1 If the number of unmarked locations in A is t, then each of the t locations is chosen with
equal likelihood.

This follows from a simple application of conditional probability, conditioned on a
location being unmarked. Consider any fixed set N of distinct n locations. Conditioned on
assigning the elements x1,x2, . . . ,xn to N, all permutations of x1,x2, . . . ,xn are equally likely.
Again this follows from the observation that, after x1,x2, . . . ,xi are assigned, xi+1 is
uniformly distributed among the unoccupied n− i locations. Since this holds for any
choice of N, the unconditional distribution of the permutations is also the same.

The number of iterations depend on the number of unsuccessful attempts to find an
unassigned location. The probability of finding an unassigned location after i assignments
is m−i

m = 1− i
m . Since the locations are chosen independently, the expected number of

iterations to find a free location for xi+1 is m
m−i and from the linearity of expectation, the

total expected number of iterations is

n−1

∑
i=0

m
m− i

= m
(

1
m
+

1
m−1

, . . . ,
1

m−n+1

)
(2.3.12)

For m = n, this is O(n logn), whereas for m = 2n, this becomes O(n). Since the probabilities
are independent, we can obtain concentration bounds for deviation from the expected
bounds using Chernoff–Hoeffding bounds as follows.

What is the probability that the number of iterations exceed 3n for m = 2n ? This is
equivalent to finding fewer than n assignments in 3n iterations. Let pi =

2n−i
2n , then for

i≤ n, pi ≥ 1/2, where pi is the probability of finding a free location for xi. Let us define 0–1
random variables Xi such that Xi = 1 if the ith iteration is successful, that is, we find an
unmarked location. To terminate, we need n unmarked locations. From our previous
observation, Pr[Xi = 1] ≥ 1/2. Hence, E[∑3n

i=1 Xi] ≥ 3n/2. Let X = ∑i Xi be the number of
successes in 3n/2 iterations. Then, X is a sum of independent Bernoulli random variables
and a straightforward application of Chernoff bounds (Eq. (2.2.8) shows that

Pr[X < n] = Pr[X < (1−1/3)E[X]]≤ exp
(
−3n

36

)
which is inverse exponential.

Claim 2.2 A random permutation of n distinct objects can be generated in O(n) time and O(n)
space with high probability.

The reader would have noted that as m grows larger, the probability of encountering a
marked location decreases. Therefore, it is worth estimating for what value of m, there
will be exactly n iterations with high probability, that is, no reassignment will be
necessary. This could be useful in online applications where we need to generate random

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

Basics of Probability and Tail Inequalities 31

permutations. Using equation (2.2.10), we can bound the probability that the number of
random assignments in a location exceeds 1 as(n

2m

)2
e2−n/m ≤ O(n2/m2)

Note that the expected number of assignments in a fixed location µ= n
m . From union bound,

the probability that any of the m locations has more than 1 assignment is bound by O(n2

m).
Hence, by choosing m = Ω(n2), with probability 1−O(n2

m), the number of iterations is n,
that is, there is no reassignment required.

Further Reading

There are several excellent textbooks on introductory probability theory and randomized
algorithms [105, 106, 126]. Most of the topics covered in this chapter are classical, and are
covered in these texts in more detail. Chernoff bounds are among the most powerful tail
inequalities when we are dealing with independent random variables. There are similar
bounds which sometimes give better results depending on the parameters involved, for
example, Hoeffding’s bound. Maintaining a random sample during a streaming algorithm
is a common subroutine used in many streaming algorithms (see e.g., Chapter 16). The
idea that picking n elements out of an array of size 2n or more results in small repetitions
is often used in many other applications, for example, hashing (see Chapter 6).

Exercise Problems

2.1 Consider the experiment of tossing a fair coin till two heads or two tails appear in
succession.

(i) Describe the sample space.

(ii) What is the probability that the experiment ends with an even number of tosses?

(iii) What is the expected number of tosses?

2.2 A chocolate company is offering a prize for anyone who can collect pictures of n different
cricketers, where each wrap has one picture. Assuming that each chocolate can have any
of the pictures with equal probability, what is the expected number of chocolates one must
buy to get all the n different pictures?

2.3 There are n letters which have corresponding n envelopes. If the letters are put blindly in
the envelopes, show that the probability that none of the letters goes into the right envelope
tends to 1

e as n tends to infinity.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

32 Design and Analysis of Algorithms

2.4 Imagine that you are lost in a new city where you come across a crossroad. Only one of
them leads you to your destination in 1 hour. The others bring you back to the same point
after 2, 3, and 4 hours respectively. Assuming that you choose each of the roads with
equal probability, what is the expected time needed to arrive at your destination?

2.5 A gambler uses the following strategy. The first time he bets Rs. 100 – if he wins, he quits.
Otherwise, he bets Rs. 200 and quits regardless of the result. What is the probability that
he goes back a winner assuming that he has probability 1/2 of winning each of the bets.
What is the generalization of his strategy?

2.6 Gabbar Singh problem Given that there are 3 consecutive blanks and three consecutive
loaded chambers in a pistol, and you start firing the pistol from a random chamber, calculate
the following probabilities.

(i) The first shot is a blank. (ii) The second shot is also a blank given that the first shot was
a blank. (iii) The third shot is a blank given that the first two were blanks.

2.7 In the balls in bins example (Example 2.11), show that the maximum number of balls in
any bin is O(lnn/ ln lnn) with high probability.

2.8 Suppose we throw m balls independently and uniformly at random in n bins. Show that
if m ≥ n lnn, then the maximum number of balls received by any bin is O(m/n) with high
probability.

2.9 Three prisoners are informed by the jailer that one of them will be acquitted without
divulging the identity. One of the prisoners requests the jailer to divulge the identity of one
of the other prisoner who will not be acquitted. The jailer reasons that since at least one of
the remaining two will not be acquitted, he would not be divulging the secret and reveals
the identity. However this makes the prisoner very happy. Can you explain this?

2.10 For random variables X ,Y, show that

(i) E[X ·Y] = E[Y ×E[X |Y]]
(ii) E[E[X |Y]] = E[X]

(iii) E[φ1(X1) ·φ2(X2)] = E[φ1(X1)] ·E[φ2(X2)] for functions φ1,φ2 of random variables.

2.11 Give an example to show that even if E[X ·Y] = E[X] ·E[Y], the random variables X ,Y may
not be independent.

Hint: Consider X and some appropriate function of X .

2.12 Let Y = ∑
n
i=1 Xi, where Xis are identically distributed random variables with expectation µ.

If n is a non-negative integral random variable, then Y is known as random sum. Show that
E[Y] = µ ·E[n].

2.13 Let Y be a random variable that denotes the number of times a fair die must be rolled till we
obtain a six. Assume that the outcomes are independent of each other. How many times
do we have to roll the die to obtain k successes?

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

Basics of Probability and Tail Inequalities 33

Let X be a random variable that denotes this, then

(i) Compute E[X].

(ii) Show that Pr[X ≥ 10k]≤ 1
2k using Chernoff bounds.

The distribution ofY is known as geometric distribution and X is known as negative binomial
distribution.

2.14 For a discrete random variable X , eXs is known as the moment generating function. Let
M(s) = E[esX]. Show that

E[X k] = dkM
dsk |s=0,k = 1,2, This is a useful formulation for computing the kth moment of

a random variable.

Hint: Write down the series for esX .

2.15 Let G(n, p) be a graph on n vertices where we add an edge between every pair of vertices
independently with probability p. Let X denote the number of edges in the graph G(n, p).
What is the expectation of X? What is the variance of X?

2.16 Let G(n, p) be as stated in Exercise 2.16. A triangle in this graph is a set of three vertices
{u,v,w} (note that it is an unordered triplet) such that we have edges between all the three
pairs of vertices. Let X denote the number of triangles in G(n, p). What are the expectation
and the variance of X?

2.17 Consider the algorithm for sampling from a continuous distribution in Section 2.3.1. Prove
that the random variable has the desired distribution.

2.18 Consider the problem of uniformly sampling n distinct elements from a file containing N
elements. Suppose we have already sampled a set S of k elements. For the next element,
we keep on selecting a uniform sample from the file till we get an element which is not in
S. What is the expected number of times we need to sample from the file?

2.19 Consider the problem of sampling in a sequential order. Prove that the distribution of
Si−Si−1 is given by the expression in Eq. (2.3.11).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.003
https://www.cambridge.org/core

3
C H A P T E R

Warm-up Problems

In this chapter, we discuss some basic algorithmic problems. Each of these problems
requires a new technique and its analysis depends on the underlying computational
model. These are analyzed using basic techniques which should be familiar to the reader.

3.1 Euclid’s Algorithm for the Greatest Common Divisor
(GCD)

Euclid’s algorithm for computing the greatest common divisor (gcd) of two positive
integers is allegedly the earliest known algorithm in a true sense. It is based on two very
simple observations. Given two positive integers a,b, their gcd satisfies

gcd(a,b) = gcd(a,a+b)

gcd(a,b) = b if b divides a

The reader is encouraged to prove this rigorously. The aforementioned equations also
imply that gcd(a,b) = gcd(a− b,b) for b < a and repeated application of this fact implies
that gcd(a,b) = gcd(a mod b,b), where mod denotes the remainder operation. Hence, we
have essentially derived Euclid’s algorithm, described formally in Figure 3.1.

Let us now analyze the running time of Euclid’s algorithm in the bit computational
model (i.e., we count the number of bit operations needed for the computation). Since it
depends on integer division, which is a topic in its own right, let us compute the number
of iterations of Euclid’s algorithm in the worst case.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

Warm-up Problems 35

Procedure Algorithm Euclid-GCD(a,b)

1 Input: Positive integers a,b such that b≤ a;
2 Output GCD of a,b;
3 Let c = a mod b;
4 if c = 0 then
5 return b
6 else
7 return Euclid-GCD(b,c)

Figure 3.1 Euclid’s algorithm

Observation 3.1 The number a mod b≤ a
2 , that is the size of a mod b is strictly less than |a|.

This is a simple case analysis based on b ≤ a
2 and b > a

2 . As a consequence of this
observation, it follows that the number of iterations of Euclid’s algorithm is bounded by
|a|, or equivalently O(loga). This bound is actually tight. Hence, by using the long
division method to compute mod, the running time is bounded by O(n3), where
n = |a|+ |b|.

3.1.1 Extended Euclid’s algorithm

If you consider the numbers defined by the linear combinations of a,b, namely,
{xa+ yb|, x,y are integers}, it is known that

gcd(a,b) = min{xa+ yb|xa+ yb > 0}

To prove this, let ` = min{xa + yb|xa + yb > 0}. Clearly, gcd(a,b) divides ` and hence,
gcd(a,b) ≤ `. We now prove that ` divides a (also b). Let us assume by contradiction that
a = `q+ r, where ` > r > 0. Now r = a− `q = (1− xq)a− (yq)b contradicting the minimality
of `. �

For some applications, we are interested in computing x and y corresponding to gcd(a,b).
We can compute them recursively along with Euclid’s algorithm.

Claim 3.1 Let (x′,y′) correspond to gcd(b,a mod b), that is, gcd(b,a mod b) = x′ · b + y′ · (a
mod b). Then, gcd(a,b) = y′ ·a+(x′−q)b, where q is the quotient of the integer division of a by b.

The proof is left as an exercise problem.
One immediate application of the extended Euclid’s algorithm is for computing the

inverse in a multiplicative prime field F∗q , where q is prime. F∗q = {1,2, . . . ,(q−1)}, where

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

36 Design and Analysis of Algorithms

the multiplication is performed modulo q. It is known1 that for every number x ∈ F∗q , there
exists y ∈ F∗q such that x · y ≡ 1 mod q, which is also called the inverse of x. To compute
the inverse of a, we can use the extended Euclid algorithm to find s, t such that sa+ tq = 1
since a is relatively prime to q. By taking remainder modulo q, we see that s mod q is the
required inverse. This result can be extended to Z∗N = {x|x is relatively prime to N}. First
show that Z∗N is closed under multiplication modulo N, that is, a,b ∈ Z∗N a ·b mod N ∈ Z∗N .
The proof is left as an exercise problem.

3.1.2 Application to cryptography

The RSA (Rivest–Shamir–Adleman) public cryptosystem is one of the most important
discoveries in computer science. Suppose we want to send an encrypted message to a
receiver. One idea would be that the sender and the receiver share a secret key among
themselves and then use this secret to encrypt and decrypt messages. However, this
solution is not scalable – how would they share the secret key? If this involves
communication over an insecure channel, then we are back to the same problem. A more
elegant solution was proposed by Rivest, Shamir, and Adleman in 1977, and is now
known as the RSA public key cryptosystem. Here the receiver generates two keys – one is
called the public key which is known to everyone, and the other is called the private key
which is known to the receiver only. Anyone who wants to send a message to the receiver
will encrypt the message using the public key, but one can decrypt the message only if
she knows the private key!

The RSA cryptosystem works on the following principle. We (i.e., the receiver) first
pick two large prime numbers p and q, and let n = p ·q. Think of the message as an integer
m such that 0 ≤ m < n. Let φ(n) = (p− 1) · (q− 1), which is known as Eulier’s totient
function, and is the private key. Let d,e be integers such that e ·d ≡ 1 mod φ(n), where e,d
are co-primes to φ(n). The public key is e. The encryption of message m is done by
computing me mod n and decryption is done by computing (me)d mod n. Note that
(me)d ≡ mkφ(n)+1 mod p ≡ m mod p. Similarly, (me)d ≡ m mod q implying that (me)d ≡ m
mod (pq) ≡ m mod n. The last step follows from the Chinese remainder theorem (see
Exercise 8.1 for a formal statement of the theorem). The underlying assumption is that
given n,e, it is hard to compute d.

The two main algorithmic steps here are computing exponentiation, which can be
done using the divide and conquer technique described in Chapter 1, and computing the
multiplicative inverse which can be done using the extended Euclid’s algorithm.

1 since it forms a group

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

Warm-up Problems 37

3.2 Finding the kth Smallest Element

Problem Given a set S of n elements, and an integer k, 1≤ k≤ n, find an element x∈ S such
that the rank of x is k. The rank of an element in a set S is k if x = xk in the sorted sequence
x1,x2, . . . ,xn of the elements in S. We will denote the rank of x in S by R(x,S).

Since S can be a multi-set, the position of x in the sorted sequence is not uniquely
defined. We can however make the elements unique by (hypothetically) appending extra
bits to them. For example, if S is an array, we can append logn trailing bits equal to the
index of each element in the array. So the ith element xi can be thought of as a pair (xi, i).
This makes all the elements in S unique. The case k = 1 (k = n) corresponds to finding the
minimum (maximum) element.

We can easily reduce the selection problem to that of sorting. First we sort S and then
report the kth element of the sorted sequence. But this also implies that we cannot
circumvent the lower bound of Ω(n logn) for comparison-based sorting. If we want a
faster algorithm, we cannot afford to sort. For instance, when k = 1 or k = n, we can easily
select the minimum (maximum) element using n− 1 comparisons. The basic idea for a
faster selection algorithm is based on the following observation.
Given an element x ∈ S, we can answer the following query in n−1 comparisons:

Is x the kth element or is x larger than the kth element or is x smaller than the
kth element?

This is easily done by comparing x with all elements in S−{x} and finding the rank of x.
Using an arbitrary element x as a filter, we can subsequently confine our search for the kth
element to either

(i) S> = {y ∈ S−{x}|y > x} if R(x,S)< k or

(ii) S< = {y ∈ S−{x}|y < x} if R(x,S)> k

In the fortuitous situation, R(x,S) = k, x is the required element. In case (i), we must find
the k′th element in S>, where k′ = k−R(x,S).

Suppose T (n) is the worst case running time for selecting the kth element for any k;
then, we can write the following recurrence

T (n)≤max{T (|S<|),T (|S>|)}+O(n)

A quick inspection tells us that if we can ensure max{|S<|, |S>|} ≤ εn for some 1/2≤ ε < n−1
n

(for all recursive calls as well), T (n) is bounded by O(1
1−ε
·n). So it could vary between Ω(n)

and O(n2) – where a better running time is achieved by ensuring a smaller value of ε.
An element x used to divide the set is often called a splitter or a pivot. We will now

discuss methods to select a good splitter. From our previous discussion, we would like to
select a splitter that has a rank in the range [ε ·n,(1− ε) ·n] for a fixed fraction ε. Typically, ε

will be chosen as 1/4.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

38 Design and Analysis of Algorithms

3.2.1 Choosing a random splitter

Let us analyze the situation where the splitter is chosen uniformly at random from S, that
is, any of the n elements is equally likely to be chosen as the splitter. This can be done
using standard routines for random number generation in the range (1,2, . . . ,n). A central
observation is as follows:

For a randomly chosen element r ∈ S, the probability

Pr{n/4≤ R(r,S)≤ 3n/4} ≥ 1/2

It is easy to verify, in linear time, if the rank R(r,S) falls in this range; if it does not, then
we choose another element independently at random. This process is repeated till we find a
splitter in the aforementioned range – let us call such a splitter a good splitter.

How many times do we need to repeat the process?
To answer this, we have to take a slightly different view. One can argue easily that

there is no guarantee that we will terminate after some fixed number of trials, while it is
also intuitively clear that it is extremely unlikely that we need to repeat this more than
say 10 times. The probability of failing 9 consecutive times, when the success probability
of picking a good splitter is ≥ 1/2 independently is ≤ 1

29 . More precisely, the expected 2

number of trials is bounded by 2. Hence, in (expected) two trials, we will find a good
splitter that reduces the size of the problem to at most 3

4 n. This argument can be repeated
for the recursive calls, namely, the expected number of splitter selection (and verification
of its rank) is 2. If ni is the size of the problem after i recursive calls with n0 = n, then
the expected number of comparisons done during the ith recursive call is 2ni. The total
expected number of comparisons X after t calls can be written as X0 +X1 + . . .+Xt , where t
is sufficiently large such that the problem size nt ≤C for some constant C (we can choose
other stopping criteria) and Xi is the number of comparisons done at stage i. By taking
expectation on both sides

E[X] = E[X1 +X2 + . . .+Xt] = E[X1]+E[X2]+ . . .+E[Xt]

From the previous discussion, E[Xi] = 2ni; moreover ni ≤ 3
4 ni−1. Therefore, the expected

number of comparisons is bounded by 8n.
Let us analyze the original recursive algorithm, where we choose a random splitter and

proceed with the relevant subproblem. Let T̄ (n) be the expected time for selection of the
kth ranked element (for any k). Since each element is equally likely to be the splitter, we
can do a case analysis based on the rank of the random splitter x compared to k.

Case rank(x) < k: The subproblem size is n – rank(x) for each of the k− 1
possibilities for x.

2 Please refer to Chapter 2 for a quick recap of basic measures of discrete probability.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

Warm-up Problems 39

Case rank(x) > k: The subproblem size is rank(x)− 1 for each of the n− k− 1
possibilities for x.

As each individual case has probability 1
n , we can write the recurrence as

T̄ (n) =
1
n

k−1

∑
i=n−1

T̄ (i)+
1
n

n−(k−1)

∑
j=n−1

T̄ (j)+O(n) (3.2.1)

We then verify that this recurrence has the worst case behavior for k = n/2 assuming that
T̄ (i) grows monotonically with i. Then, we have to find the solution of

T̄ (n) =
2
n

n−1

∑
i=n/2

T̄ (i)+ c′n

which can be verified as T̄ (n) = cn for c > 4c′ by induction as follows

T̄ (n) =
2
n

n/2−1

∑
i=0

[c(n/2+ i)]+ c′n

≤ c[
n
2
+

n
4
]+ cn/4 = cn (3.2.2)

3.2.2 Median of medians

The aforementioned algorithm required random number generation. What if we are
required to give a deterministic algorithm? It turns out that one can still come up with a
linear time algorithm for selection of the kth smallest element, but it is more involved.
This is typical of many randomized algorithms – getting rid of randomness used by an
algorithm often leads to more complicated algorithms.

Consider the deterministic algorithm given in Figure 3.2 for a selection that finds the
kth ranked element in a given (unordered) set S of n elements.

The algorithm begins by successively forming groups of 5 consecutive elements. It finds
the median of each of these groups (of size 5) in constant time (it could just sort them as
it would take constant time only). Among these set of n/5 medians, it picks their median
element (i.e., median of medians) as the splitter. The reader may note that this algorithm
is very similar to the previous strategy, except for the choice of M – which was randomly
selected. Let us first estimate how many elements are guaranteed to be smaller than M
since from our previous observation, we would like to prune at least a constant fraction of
S going into the recursive calls.

Without loss of generality, assume all elements are distinct; this implies that there are
about n/10 medians3 that are smaller than M. For each such median, there are 3 elements

3 Strictly speaking, we should be using the floor function but we are avoiding the extra symbols and it does not
affect the analysis.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

40 Design and Analysis of Algorithms

that are smaller than M, giving a total of at least n/10 · 3 = 3n/10 elements smaller than
M. Likewise, we can argue that there are at least 3n/10 elements larger than M. Therefore,
we can conclude that 3n/10 ≤ R(M,S) ≤ 7n/10, which satisfies the requirement of a good
splitter.

Procedure Algorithm MoMSelect(S,k)

1 Input A set S of n elements. ;
2 Output The kth ranked element of S. ;
3 Partition S into 5-element groups arbitrarily – denote the groups by

G1, . . . ,Gt , where t = dn/5e. ;
4 For i = 1,t let mi denote the median of Gi (rank 3 element) and

let S′ = {m1,m2, . . . ,mt}. ;
5 Let M be the median of S′ and m = R(M,S), i.e., the rank of M. ;
6 Let S< = {x ∈ S|x < M} and S> = S−S< ;
7 if m = k then
8 return M
9 else

10 if k < m then
11 MoMSelect (S<,k)
12 else
13 MoMSelect (S>,m− r)

Figure 3.2 Algorithm based on median of medians

The next question is how to find M which is the median of medians. Each mi can be
determined in O(1) time because we are dealing with groups of size 5. However, finding
the median of n/5 elements is like going back to square one! But it is n/5 elements instead
of n and therefore, we can apply a recursive strategy, that is, the line 5 in the algorithm
would be

M = MoMSelect
(

S′,
|S′|
2

)
.

We can write a recurrence for running time as follows

T (n)≤ T
(

7n
10

)
+T

(n
5

)
+O(n)

where the second recursive call is to find the median of medians (for finding a good
splitter). After we find the splitter (by recursively applying the same algorithm), we use it
to reduce the original problem size to at most 7n

10 . Note that for this to be a linear time

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

Warm-up Problems 41

algorithm, it is not enough that the splitter satisfies the requirements of a good splitter. It
is easy to check that the solution to a recurrence of the form

T (n)≤ T (αn)+T (βn)+O(n)

is linear if α+β < 1. The proof is left as an exercise. Since 7n/10+ n/5 = 9n/10, it follows
that the aforementioned algorithm is a linear time algorithm.

3.3 Sorting Words

Problem Given n words w1,w2, . . . ,wn of lengths l1, l2, . . . , ln respectively, arrange the words
in lexicographic order. A word is an ordered sequence of characters from a given
alphabet Σ.

Recall that lexicographic ordering refers to the dictionary ordering. Let N = ∑i li, that
is, the cumulative length of all words. A single word may be very long and we cannot
assume that it fits into a single word of the computer. So, we cannot use straightforward
comparison sorting. Let us recall some basic results about integer sorting.

Claim 3.2 n integers in the range [1..m] can be sorted in O(n+m) steps.

We maintain an array of m lists for bucket bi, where 1≤ i≤ m. For multiple integers in the
same bucket, we form a linked list. After this, the lists are output by scanning all the
(non-empty) lists in sequence. The first phase takes O(n) steps and the second phase
requires a scan of all the m buckets. Note that we could speed-up the procedure by
skipping the empty buckets but we do not maintain that information.

A sorting algorithm is considered stable if the relative order of input elements having
identical values is preserved in the sorted output. Clearly, the previous sorting, often
called bucket sorting is inherently stable since the linked lists containing all the
same-valued elements are built in order of the input elements.

Claim 3.3 Using stable sorting, n integers in the range [1..mk] can be sorted in O(k(n+m) steps.

We think of each integer as a k-tuple in radix m. We now apply the O(n+m) time stable
sorting algorithm for each of the digits, starting from the least significant digit first. We
leave it as an exercise to show that after we have applied this algorithm on all the digits,
the integers will be arranged in sorted sequence. This algorithm, also called radix sort, is
an ideal algorithm for sorting numbers with a small number of digits. When we consider
the algorithm for sorting words, the running time will be O(L(n + |Σ|)), where
L = max{l1, l2, ..., ln}. This is not satisfactory since L · n can be much larger than N (size of
input).

The reason that the aforementioned method is potentially inefficient is that many
words may be much shorter than L and hence, by considering them to be length L words

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

42 Design and Analysis of Algorithms

(by hypothetical trailing blanks), we are increasing the input size asymptotically. If we
consider radix sort as a possible solution, the words would have to be left-aligned, that is,
all words should begin from the same position. For example, consider the English words
{cave,bat,at}. Since the largest string has four letters, a straightforward application of
radix sort will have four rounds as follows. Note that we have used the character to
represent blank which is the hypothetical lowest rank character.

b a t
a t
c a v e

a t
b a t
c a v e

b a t
c a v e
a t

a t
b a t
c a v e

To make radix sort efficient and to avoid redundant comparison (of blanks), we should not
consider a word until the radix sort reaches the right boundary of the word. The radix sort
will take a maximum of L rounds and a word of length l will start participating from the
L− l+1 iteration. This can be easily achieved. A bigger challenge is to reduce the range of
sorting in each iteration depending on which symbols of the alphabet participate.

Given a word wi = ai,1ai,2 . . .ai,li , where ai, j ∈ Σ, we form the following pairs –
(1,ai,1),(2,ai,2), There are N such pairs from the n words and we can think of them as
length two strings, where the first symbol is from the range [1 . . .L] and the second symbol
is from Σ. We can sort them using radix sort in two rounds in time proportional to
O(N + L+ |Σ|), which is O(N + |Σ|) since N > L. From the sorted pairs, we know exactly
which symbols appear in a given position (between 1 and L) – let there be mi words that
have non-blank symbols in position i. When considering position i in the radix sort
algorithm, we will like to sort these mi words only (according to their ith digit), because
the remaining words will have a blank here, and so, will appear before all these mi words.

Continuing with the previous example, we obtain the following pairs

cave :(1,c),(2,a),(3,v),(4,e)
bat : (1,b),(2,a)(3, t)
at : (1,a),(2, t)

The sorted order of the pairs is given by the following:

(1,a),(1,b),(1,c),(2,a),(2,a),(2, t),(3, t),(3,v),(4,e)

Each pair maintains a pointer to the original word so that given a set of pairs, we can
recover the set of words which correspond to these pairs. Now we go back to sorting the
given words using radix sort where we will use the information available from the sorted
pairs. We start with i = L and decrease it till we reach i = 0. For each value of i, let Wi

denote the words which have at least mi symbols. We maintain the invariant that after we
have seen digits i+1 till L, we have the sorted sequence of words Wi+1 according to these
digits. As we change i, we also maintain a pointer in the sequence of sorted pairs which

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

Warm-up Problems 43

points to the first pair for which the first symbol is i. In iteration i, we apply stable sort
to pairs which have i as their first symbol (for example, if i = 2 in the given example, we
will apply stable sort to the pairs (2,a),(2,a),(2, t)). We need to clarify what ‘stable’ means
here. Note that we have an ordering of words from the previous iteration – this ordering
arranges the words in Wi+1 (and any word which is not in Wi+1 appears before the words
in Wi+1). While applying the stable sorting algorithm on the ith digit of all words in Wi,
we maintain the invariant mentioned earlier. To maintain this invariant, we allocate an
array of size mi, where we place the pointers to the words in Wi. We must also take care of
the new words that start participating in the radix sort – once a word participates, it will
participate in all future rounds. (Where should the new words be placed within its symbol
group?)

In the given example, m4 = 1, m3 = 2, m2 = 3, and m1 = 4. After two rounds, the table
has two elements, viz., bat and cave. When at enters, it must be implicitly before any of the
existing strings, since it has blanks as the trailing characters.

b a t
c a v e

a t
b a t
c a v e

The analysis of this algorithm can be done by looking at the cost of each radix sort which is
proportional to ∑

L
i=1 O(mi) which can be bounded by N. Therefore, overall running time of

the algorithm is the sum of sorting the pairs and the radix sort. This is given by O(N+ |Σ|).
If |Σ|< N, then the optimal running time is given by O(N).

3.4 Mergeable Heaps

Heaps4 are one of the most common implementation of priority queues and are known
to support the operations min, delete-min, insert, delete in logarithmic time. A complete
binary tree (often implemented as an array) is one of the simplest ways to represent a heap.
In many situations, we are interested in an additional operation, namely, combining two
heaps into a single heap. A binary tree does not support fast (polylogarithmic) merging
and is not suitable for this purpose – instead we use binomial trees.

A binomial tree Bi of order i is recursively defined as follows:

• B0 is a single node.

• For i ≥ 0 , Bi+1 is constructed from two Bis by making the root node of one Bi a left
child of the other Bi.

The following properties for Bi can be proved using induction (left as an exercise).

4 We are assuming min heaps.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

44 Design and Analysis of Algorithms

Claim 3.4 (i) The number of nodes in Bi equals 2i.

(ii) The height of Bk is k (by definition B0 has height 0).

(iii) There are exactly
(i

k

)
nodes at depth k for k = 0,1, . . .

(iv) The children of Bi are roots of Bi−1,Bi−2, . . . ,B0.

A binomial heap is an ordered set of binomial trees such that for any i there is at most
one Bi.

Let us refer to this property as the unique-order property. We actually maintain a list of
the root nodes in increasing order of their degrees.

B0 B1 B2 B3

B0 B1 B3

(a)

(b)

Figure 3.3 (a) Recursive construction of binomial tree; (b) Binomial
heap of 11 elements consisting of three binomial trees

We can think of this property as a binary representation of a number where the ith bit
from right is 0 or 1; in the latter case, its contribution is 2i (for LSB i = 0). Figure 3.3
illustrates a Binomial heap contructed using the Binomial trees. From this analog, a
binomial heap on n elements has logn binomial trees. Therefore, finding the minimum
element can be done in O(logn) comparisons by finding the minimum of the logn roots.

3.4.1 Merging binomial heaps

Merging two binomial heaps amounts to merging the root lists and restoring the
unique-order property. First, we merge the two root lists of size at most logn into one list
so that the trees of the same degree are consecutive in this list (this is similar to the
merging procedure in merge sort, and we can do this in time proportional to the total
length of these two lists). Subsequently, we walk along the lists, combining two trees of
the same degree whenever we find them – they must be consecutive. In other words,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

Warm-up Problems 45

whenever we see two Bi trees, we combine them into one Bi+1 tree by making the root of
one tree, a child of the root of the other tree (the choice of the root which becomes the
child of the other root depends on which of these is storing the larger value, so that the
heap property is preserved). Note that to preserve the property that the list maintains the
trees in sorted order of degree, it is best to scan the list from highest degree first. In this
way, whenever we replace two Bi trees by one Bi+1 tree, this property would be
preserved. It is possible that a Bi+1 tree appeared before the two Bi trees in this sequence.
In this case, we will have to merge the two Bi+1 trees as well into a Bi+2 tree, and so
on. Combining two binomial trees takes O(1) time, so the running time is proportional to
the number of times we combine.

Claim 3.5 Two binomial heaps can be combined in O(logn) steps where the total number of nodes
in the two trees is n.

Every time we combine two trees, the number of binomial trees decreases by one, so there
can be at most 2logn times when we combine trees.

Remark The reader may compare this with the method for summing two numbers in
binary representation. This procedure can be used to implement the operation delete-min –
the details are left as an exercise.

Inserting a new element is easy – add a node to the root list and merge. Deletion takes
a little thought. Let us first consider an operation decrease-key. This happens when a key
value of a node x decreases. Clearly, the min-heap property of the parent node, parent(x)
may not hold. But this can be restored by exchanging the node x with its parent. The
operation may have to be repeated at the parent node. This continues until the value of x
is greater than its current parent or x does not have a parent, that is, it is the root node.
The cost is the height of a binomial tree which is O(logn).

To delete a node, we decrease the key value to −∞, so that it becomes the root node.
Now, it is equivalent to the operation delete-min which is left as an exercise problem.

3.5 A Simple Semi-dynamic Dictionary

Balanced binary search trees like AVL (Adelson-Velskii and Landis) trees, red–black trees,
etc., support both search and updates in the worst case O(logn) comparisons for n keys.
These trees inherently use dynamic structures like pointers which actually slow down
memory access. Arrays are inherently superior since they support direct memory access;
however, they are not amenable to inserts and deletes.

Consider the following scheme for storing n elements in multiple arrays A0,A1, . . . ,Ak

such that Ai has length 2i. Each Ai that exists contains 2i elements in sorted order – there
is no ordering between different arrays. Only those Ai exists for which the ith bit bi in the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

46 Design and Analysis of Algorithms

binary representation of n is non-zero (recall that this representation is unique). Therefore,
∑i bi · |Ai|= n and maximum number of occupied arrays is logn.

For searching, we do binary search in all the arrays that takes O(log2 n) steps (O(logn)
steps for each array). To insert, we compare the binary representations of n and n+1. There
is a unique smallest suffix (of the binary representation of n) that changes from 11 . . .1 to
100 . . .0, that is, n is w011...1 and n+1 is w100 . . .0. Consequently, all the elements of those
Ai for which the ith bit becomes 0 are merged into an array that corresponds to the bit that
becomes 1 (and is also large enough to hold all elements including the newly inserted
element). It is left as an exercise (Problem 3.6) to show how these lists can be merged into
a single list using O(2 j) comparisons, where A j is the final sorted list (and contains 2 j

elements).
Clearly this could be much larger than O(logn), but notice that A j will continue to exist

for the next 2 j insertions and therefore, averaging over the total number of insertions gives
us a reasonable cost. As an illustration, consider a binary counter and let us associate the
cost of incrementing the counter as the number of bits that undergo changes. Observe that
at most logn bits change during a single increment but mostly it is much less. Overall,
as the counter is incremented from 0 to n− 1, bit bi changes at most n/2i times, 1 ≤ i. So
roughly there are O(n) bits that change, implying O(1) changes on the average.

In the case of analyzing insertion in arrays, by analogy, the total number of operations
needed to carry out the sequence of merging that terminates at A j is ∑

j−1
s=1 O(2s), which is

O(2 j). Therefore, the total number of operations over the course of inserting n elements
can be bounded by ∑

logn
j=1 O(n/2 j ·2 j), which is O(n logn). In other words, the average cost of

insertion is O(logn) that matches the tree-based schemes.
To extend this analysis more formally, we introduce the notion of potential-based

amortized analysis.

3.5.1 Potential method and amortized analysis

To accurately analyze the performance of an algorithm, let us denote Φ(i) as a function that
captures the state of an algorithm or its associated data structure at any stage i. We define
amortized work done at step i of an algorithm as wi +∆i, where wi is the actual number of
steps5, as ∆i = Φ(i)−Φ(i−1), which is referred to as the difference in potential. Note that

the total work done by an algorithm over t steps is W =
i=t
∑

i=1
wi. On the other hand, the total

amortized work is
t

∑
i=1

(wi +∆i) =W +Φ(t)−Φ(0)

If Φ(t)−Φ(0)≥ 0, amortized work is an upperbound on the actual work.

5 This may be hard to analyze.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

Warm-up Problems 47

Example 3.1 For the counter problem, we define the potential function of the counter as the
number of 1s of the present value. Then, the amortized cost for a sequence of 1s changing to 0 is 0
plus the cost of a 0 changing to 1 resulting in O(1) amortized cost.

Example 3.2 A stack supports push, pop, and empty stack operations. Define Φ() as the number
of elements in the stack. If we begin from an empty stack, Φ(0) = 0. For a sequence of push, pop,
and empty stack operations, we can analyze the amortized cost. Amortized cost of push is 2, for pop
it is 0, and for empty stack it is negative. Therefore, the bound on amortized cost is O(1) and the
cost of n operations is O(n). Note that the worst case cost of an empty stack operation can be very
high.

Let us try to define an appropriate potential function for the search data structure
analysis. We define the potential of an element in array Ai as c(logn− i) for some suitable
constant c. This implies that the cost of insertion is c logn for each new element. This could
lead to a sequence of merges and from our previous observation, the merging can be done
in O(2 j) steps if it involves j arrays. For concreteness, let us assume that it is α2 j for some
constant α. Since the elements are moving to a higher numbered list, the potential is
actually decreasing by the number of levels each element is moving up. The decrease in
potential can be bounded by

i= j−1

∑
i=0

c2i(j− i) =
j−1

∑
i=0

c · i ·2 j−1

2i ≤ c′2 j for some appropriate c′

By balancing out α and c, the aforementioned relation can be bounded by O(1). Therefore,
the total amortized cost of inserting an element can be bounded by O(logn) which is the
initial potential of an element at level 0.

3.6 Lower Bounds

Although designing a faster algorithm gives us a lot of satisfaction and joy, the icing on the
cake is to show that our algorithm is the best possible by proving a matching lower bound.
A lower bound is with reference to a computational model with certain capabilities and
limitations that constrain the behavior of any algorithm solving a specific problem. The
lower bound is also with reference to a problem for which we have to design an algorithm
in the given computational model.

The most common example is that of showing a Ω(n logn) lower bound in the
comparison model. In earlier sections, we have shown that this can be circumvented by
using hashing-based algorithms that avoid pairwise comparisons.

Let us highlight the arguments for the Ω(n logn) lower bound. First, we abstract every
algorithm as a binary tree where the root corresponds to the input sequence and the leaves

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

48 Design and Analysis of Algorithms

correspond to each of the n! output permutations. It is left as an exercise problem to the
reader to justify this observation. Each internal node correspond to a specific pair that is
being compared by the algorithm and the two children correspond to the relations >,≤.
For a specific input, the execution of the algorithm corresponds to a path in this tree and
the number of nodes in this path is the number of comparisons done. Note that in this
model, we are not charged for any operations other than comparisons, in particular, for
any processing done to infer the (partial) ordering between successive comparisons. For
example, if two comparisons yield that a < b and b < c, then the information a < c can be
deduced without additional comparisons and one is not charged for this.

Then, we can invoke the following classical result.

Lemma 3.1 For any binary tree having N leaves, the average length of a root–leaf path is at least
Ω(logN).

A formal proof is left to the reader as an exercise problem. As a corollary, the average (and
therefore the worst case) number of comparisons used for sorting is Ω(log(n!)), which is
Ω(n logn) from Stirling’s approximations.

If all input permutations are equally likely, then Ω(n logn) is also a lower bound on the
average complexity of sorting that is attained by quicksort.

The following elegant result connects the average complexity to the expected
complexity of a randomized algorithm.

Theorem 3.1 Let A be a randomized algorithm for a given problem and let EA(I) denote the
expected running time of A for input I. Let TD(A) denote the average running time of a
deterministic algorithm A over all inputs chosen from distribution D . Then

max
I

EA(I)≥min
A

TD(A)

Proof: If we fix the random bits for a randomized algorithm, then its behavior is
completely deterministic. Let us denote the family of algorithms by A s when the choice of
the random string is s. The lower bound of the average behavior of A s for inputs with
distribution D is given by TD(A s). The average of the expected running time of the
randomized algorithm A on inputs having distribution D can be written as

∑
I∈D

∑
s

Pr(s) ·T (A s(I)) = ∑
s

Pr(s) ∑
I∈D

T (A s(I)) by interchanging the summation

Since every A s is a deterministic algorithm, their average running time over inputs having
distribution D is at least T ∗D , where T ∗D = minA TD(A). So the RHS is at least ∑s Pr(s)T ∗D ≥ T ∗D
as ∑s Pr(s) = 1. This implies that for at least one input I∗, the expected running time must
exceed the average value T ∗D that proves the result about the worst case expected bound
EA(I∗). 2

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

Warm-up Problems 49

In the context of sorting, we can conclude that quicksort is optimal even among the family
of randomized sorting algorithms.

We now consider a more basic problem that helps us to get an alternate proof for
sorting.

Element distinctness (ED): Given a set S of n elements, we want to determine if for all pairs
of elements x,y ∈ S, x 6= y.

This is a decision problem, that is, the output is YES/NO. For example, the answer is YES
for the input [5,23,9,45.2,38] and NO for the set [43.2,25,64,25,34.7]. We can use sorting
to solve this problem easily since all elements with equal values will be in consecutive
locations of the sorted output. Therefore, the ED problem is reducible to the problem of
sorting. We will discuss the notion of reducibility more formally in Chapter 12.

Therefore, any upper bound on sorting is an upper bound on ED and any lower bound
on ED will apply to sorting. To see this, suppose there is a o(n logn) algorithm for sorting;
then, we can obtain an algorithm for ED by first sorting followed by a linear time scan to
find duplicate elements. This will give us an o(n logn) algorithm for ED.

Given this relationship, the nature of the domain set S is crucial for the time complexity
of ED. For example, if S = [1,2, . . . ,n2], then ED can be solved in O(n) time using radix sort.
Here, we will focus on the complexity of ED in the comparison model where the interesting
question is if it is easier to compute than sorting.

Consider the input [x1,x2, . . . ,xn] as a point p in the Euclidean space Rn. Consider the
hyperplanes in Rn corresponding to the equations xi = x j i 6= j. A point p is classified as
YES iff it is NOT incident on any of the hyperplanes.

Claim 3.6 The hyperplanes partitions the space into n! disconnected6 regions.

Clearly any two distinct permutations π1,π2 must be separated by such a hyperplane
since there is at least one pair of elements whose ordering are different across π1,π2. So
the number of such regions exceed n!. For the equality the reader is encouraged to
complete the proof. Any algorithm for ED can be represented as a comparison tree where
each internal node corresponds to a comparison of the kind xk ≤ x` and the two children
corresponds to the two possibilities. The algorithm navigates through this hypothetical
tree and reaches a leaf node where the given input is classified as YES/NO. Consider any
path in the comparison tree – this corresponds to the intersection of inequalities xk ≤ x`
that are half-plane and hence convex. Since the intersection of convex regions is convex,
any node in the path corresponds to a connected convex region C in Rn. Therefore, this
tree must have at least n! leaf nodes as the region corresponding to a leaf node must be
completely contained within one of the n! partitions described in the previous claim.

6 It implies that any path between two regions must intersect at least one of the hyperplanes.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

50 Design and Analysis of Algorithms

Note that the segment joining two points p1, p2 that reach the same leaf node with a YES
label completely lies in the convex region corresponding to this leaf node. That is, all the
input points represented by this segment will yield a YES answer. If p1, p2 correspond to
distinct permutations then the segment joining p1, p2 will intersect their separating
hyperplane at some point q ∈ Rn which corresponds to a NO answer. Therefore, the
algorithm will classify q incorrectly on reaching the leaf node. The same argument can be
extended easily even when we allow stronger primitives than comparisons like general
linear inequalities ∑

n
i aixi ≤ 0. So we can conclude the following

Theorem 3.2 The lower bound for the element-distinctness problem in a linear decision tree model
is Ω(n logn) for an input [x1,x2, . . . ,xn] ∈ Rn.

Further Reading

The RSA algorithm [125] forms the basis of many cryptographic protocols. It is based on
the (conjectured) hardness of a number theoretic problem. There exist public key
cryptographic systems based on other hardness assumptions [46]. The randomized
selection algorithm is conceptually simpler than the deterministic ‘median of medians’
algorithm [22] and is described in Floyd and Rivest [49]. This is typical of many problems
– andomization often simplifies the algorithm. The nuts and bolts problem [85] is another
such example. The binomial heap was invented by Vuileman [151]. A related and
theoretically somewhat superior data structure called Fibonacci heaps was first reported
by Fredman and Tarjan [53]. The relationship between the worst case randomized time
complexity and the average case time complexity was shown by Yao [155].

Exercise Problems

3.1 Construct an input for which the number of iterations in Euclid’s algorithm is Θ(n), where
n is the sum of the sizes of the input numbers.

3.2 Prove the following claim about the extended Euclid’s algorithm.

Let (x′,y′) be the integral multipliers corresponding to gcd(b,a mod b), that is, gcd(b,a
mod b) = x′ ·b+y′ · (a mod b). Then show that gcd(a,b) = y′ ·a+(x′−q)b, where q is the
quotient of the integer division of a by b.

3.3 Extend the algorithm for computing inverse modulo N for a non-prime number N, where
Z∗N = {x|x is relatively prime to N}. First show that Z∗N is closed under the multiplication
modulo N, that is, a,b ∈ Z∗N a ·b mod N ∈ Z∗N .

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

Warm-up Problems 51

3.4 Analyze the complexity of the encryption and decryption of the RSA cryptosystem including
finding the inverse pairs e,d as described in Section 3.1.2.

3.5 Prove that the recurrence given by Eq. (3.2.1) for the recursive selection algorithm attains
its worst case behavior for k = n/2.

Hint: Compare the recurrence expressions for k = n/2 versus k 6= n/2.

3.6 Given a set S of n numbers, x1,x2, . . . ,xn, and an integer k, 1≤ k ≤ n, design an algorithm
to find y1,y2, . . . ,yk−1 (yi ∈ S and yi ≤ yi+1) such that they induce k partitions of S of roughly
equal size. Namely, let Si = {x j|yi−1 ≤ x j ≤ yi} be the ith partition and assume y0 = −∞

and yk = ∞. The number of elements in Si should be bn/kc or bn/kc+1.

Note: If k = 2, then it suffices to find the median.

3.7 By using an appropriate terminating condition, show that T (n) ∈O(n) for the deterministic
algorithm based on median of medians.

(a) Try to minimize the leading constant by adjusting the size of the group.

(b) What is the space complexity of this algorithm?

3.8 An element is common if it occurs more than n/4 times in a given set of n elements. Design
an O(n) algorithm to find a common element if one exists.

3.9 For n distinct elements x1,x2, . . . ,xn with positive weights w1,w2, . . . ,wn such that ∑i wi = 1,
the weighted median is the element xk satisfying

∑i|xi<xk
wi ≤ 1/2 ∑i|xi≥xk,i6=k wi ≤ 1/2

Describe an O(n) algorithm to find such an element. Note that if wi = 1/n, then xk is the
(ordinary) median.

3.10 Given two sorted arrays A and B of sizes m and n respectively, design an algorithm to find
the median in O(polylog(m+n)).

(You can do this in exactly O(log(m+n)) steps).

Can you generalize it to m sorted arrays?

3.11 Multi-set sorting Given n elements among which there are only h distinct values, show
that you can sort in O(n logh) comparisons.

Further show that if there are nα elements with value α, where ∑α nα = n, then we can sort
in time

O(∑
α

nα · log(
n
nα

+1))

3.12 Sorting in linear time Consider an input S of n real numbers αi 1 ≤ i ≤ n that are
independently and uniformly chosen at random from the interval [0,1]. We use the following
algorithm to sort S.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

52 Design and Analysis of Algorithms

(i) Hash xi ∈ [0,1] to the location A(dxi · ne) where A is an array of length n. If there is
more than one element, create a list in the corresponding location.

(ii) Sort each of the lists using some simple algorithm like selection sort. If A(i) has ni

elements, this will take O(n2
i) comparisons.

(iii) Concatenate the sorted chains to output the sorted set of elements. Show that the
expected running time of this algorithm is O(n). The reader may want to reflect on
why this is possible even though the average case lower bound for sorting is Ω(n logn)
comparisons.

3.13 The mode M of a set S = {x1,x2, . . . ,xn} is the value that occurs most frequently (in case of
ties, break them arbitrarily). For example, among {1.3,3.8,1.3,6.7,1.3,6.7}, the mode is
1.3. If the mode has frequency m(≤ n), then design an O(n log

(n
m +1

)
) algorithm to find

the mode – note that m is not known initially.

3.14 Instead of the conventional two-way merge sort, show how to implement a k-way (k ≥ 2)
merge sort using appropriate data structure in O(n logn) comparisons. Note that k is not
necessarily fixed (but can be a function of n).

3.15 * We want to sort n integers in the range 0 . . .2b−1 (b bits each) using the following approach.
Let us assume that b is a power of 2. We divide each integer into two b/2 bit numbers
– say xi has two parts x′i and x′′i , where x′i is the more significant part. We view the more
significant bits as buckets and create lists of b/2 bit numbers by associating the lower
significant b/2 bit numbers with the bucket with the more significant bits. Namely, x′′i is
put into the list corresponding to x′i. To merge the list, we now add the b/2 bit numbers
corresponding to the non-empty buckets to the earlier list (to distinguish, we can mark
them). We can now sort the list of b/2 bit integers recursively and output the merged list
by scanning the sorted elements. Note that this list can have more than n numbers since
we also added the buckets. Suggest a method to avoid this blow up (since it is not good
for recursion) and analyze this algorithm.

Hint: You may want to aim for an O(n logb) performance in a model that has word size of
b bits. What is the space used?

3.16 Odd–even merge sort Consider the following (recursive) algorithm for merging two sorted
sequences S1 and S2. Let Si, j denote the jth element in the sorted sequence Si and for
i = 1,2 , let

SE
i = {Si,2,Si,4,Si,6 . . .} (all the even numbered elements)

SO
i = {Si,1,Si,3,Si,5 . . .} (all the odd numbered elements)

The algorithm (recursively) merges SE
1 with SE

2 and SO
1 with SO

2 . Denote the two merged
sequences by SE and SO. Intersperse the two sequences starting with the smallest element
of SO. (Interspersing a1,a2,a3 . . . with b1,b2,b3 . . . produces a1,b1,a2,b2 . . .).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

Warm-up Problems 53

For example, if we have S1 = [2,6,10,11] and S2 = [4,7,9,15], then after merging the
odd numbered elements, we get SO = [2,4,9,10] and similarly, SE = [6,7,11,15]. After
interspersing, we obtain [2,6,4,7,9,11,10,15].

(i) Prove that the smallest element of SO is the smallest element in the entire set.

(ii) If the interspersed sequence is α1,α2,α3, . . . ,α2i,α2i+1, . . ., show that we can obtain
a sorted sequence by comparing the pairs α2i,α2i+1 independently. Hence, we need
another n/2 comparisons to complete the merging.

(iii) How will you use odd–even merge to design a sorting algorithm and what is the running
time?

3.17 Show that the delete-min operation a binomial heap can be implemented in O(logn) steps
using merging.

3.18 Starting from an empty tree, show that the amortized incremental cost of building a binomial
heap by successive insertions is O(1). (No other updates are allowed). Compare this with
the cost of building a binary heap.

3.19 You are given k sorted lists S0,S1, . . . ,Sk−1, where Si contains 2i elements. Design an
efficient algorithm to merge all the given lists into a single sorted list in O(∑i=k−1

i=0 |Si|)
steps.

3.20 We have a set of n nuts and n bolts such that there are n unique pairs of nuts and bolts.
There are no measuring gauge available and the only way that we can test a nut against a
bolt is to try and see if it exactly fits or the nut is oversized or the bolt is oversized. Design
a strategy that minimizes the number of trials comparing a nut and a bolt.

Note that two nuts or two bolts cannot be compared against each other directly.

3.21 Given an array A = x1x2 . . .xn, the smallest nearest value corresponding to xi is defined as
Vi = min j>i{ j|x j < xi}. It is undefined if all elements to the right of xi are larger than xi.
The all smallest nearest value problem (ANSV) is to compute for all i for a given array A. For
example, for the array [5,3,7,1,8], V1 = 2,V2 = 4,V3 = 4,V4 = U,V5 = U . Here U means
undefined.

Design a linear time algorithm for the ANSV problem.

3.22 Prove Lemma 3.1. Generalize the result to k-ary trees for any 2≤ k < n.

Complete the Ω(n logn) proof for sorting by an argument that the comparison tree for any
sorting algorithm must have at least Ω(n!) leaf nodes. Justify why this result does not
contradict the earlier exercise problem 3.11 on the upper bound for multi-set sorting.

3.23 The recurrence for the running time of randomized quicksort is given by

T (n)≤ T (|S<|)+T (|S>|)+O(n)

using the same notations as in the partition procedure in Section 3.2. Derive a bound on
the expected running time by suitably modifying the analysis of the selection problem.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.004
https://www.cambridge.org/core

4
C H A P T E R

Optimization I:
Brute Force and Greedy Strategy

Optimization problems are used to model many real-life problems. Therefore, solving
these problems is one of the most important goals of algorithm design. A general
optimization problem can be defined by specifying a set of constraints that defines a
subset in some underlying space (like the Euclidean space Rn) called the feasible subset
and an objective function that we are trying to maximize or minimize, as the case may be,
over the feasible set. The difficulty of solving such problems typically depends on how
‘complex’ the feasible set and the objective function are. For example, a very important
class of optimization problems is linear programming. Here the feasible subset is specified
by a set of linear inequalities (in the Euclidean space); the objective function is also linear.
A more general class of optimization problems is convex programming, where the feasible
set is a convex subset of a Euclidean space and the objective function is also convex.
Convex programs (and hence, linear programs) have a nice property that any local
optimum is also a global optimum for the objective function. There are a variety of
techniques for solving such problems – all of them try to approach a local optimum
(which we know would be a global optimum as well). These notions are discussed in
greater detail in a later section in this chapter. The more general problem, the so-called
non-convex programs, where the objective function and the feasible subset could be
arbitrary can be very challenging to solve. In particular, discrete optimization problems,
where the feasible subset could be a (large) discrete subset of points falls under this
category.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 55

In this chapter, we first discuss some of the most intuitive approaches for solving such
problems. We begin with heuristic search approaches, which try to search for an optimal
solution by exploring the feasible subset in some principled manner. Subsequently, we
introduce the idea of designing algorithms based on the greedy heuristic.

4.1 Heuristic Search Approaches

In heuristic search, we explore the search space in a structured manner. Observe that in
general, the size of the feasible set (also called the set of feasible solutions) can be infinite.
Even if we consider some discrete approximations to the feasible set (or if the feasible set
itself is discrete), the set of feasible solutions can be exponentially large. In such settings,
we cannot hope to look at every point in the feasible set. Heuristic search approaches
circumvent this problem by pruning out parts of the search space where we are sure that
the optimal solution does not lie. These approaches are widely used in practice, and are
often considered a general purpose technique for many difficult optimization problems.

We illustrate the ideas behind this technique by considering the 0–1 knapsack problem.
The 0–1 knapsack problem is defined as follows. The input consists of a parameter C,
which is the capacity of a knapsack, n objects of volumes {w1,w2, . . . ,wn}, and profits
{p1, p2, . . . , pn}. The objective is to choose a subset of these n objects that fits into the
knapsack (i.e., the total volume of these objects should be at most C) such that the total
profit of these objects is maximized.

We can frame this problem as a discrete optimization problem. For each object i, we
define a variable xi, which could be either 0 or 1. It should be 1 if the solution selects object
i in the knapsack, 0 otherwise. Note that the feasible subset in this optimization problem
is a subset of {0,1}n. The knapsack problem can also be formally stated as follows:

Maximize
n

∑
i=0

xi · pi subject to
n

∑
i=0

xi ·wi ≤C, and (x1, . . . ,xn) ∈ {0,1}n

Note that the constraint xi ∈ {0,1} is not linear, otherwise we could use linear
programming. A simplistic approach to solving this problem would be to enumerate all
subsets of the n objects, and select the one that satisfies the constraints and maximizes the
profits. Any solution that satisfies the knapsack capacity constraint is called a feasible
solution. The obvious problem with this strategy is the running time which is at least 2n

corresponding to the power-set of n objects. Instead of thinking of the search space as the
set of all subsets of objects, we now think of it in a more structured manner. We can
imagine that the solution space is generated by a binary tree where we start from the root
with an empty set and then move left or right according to the selection of the first object
(i.e., value of the variable x1). At the second level, we again associate the left and right
branches with the choice of x2. Thus, each node in the tree corresponds to a partial solution

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

56 Design and Analysis of Algorithms

– if it is at depth j from the root, then the values of variables x1, . . . ,x j are known at j. In
this way, the 2n leaf nodes correspond to each possible subset of the power-set which
corresponds to an n length 0–1 vector. For example, the vector 000 . . .01 corresponds to
the subset that only contains the object n.

Thus, the simplistic approach just means that we look at every leaf node in this tree,
and see whether the objects chosen by the solution at the leaf node fit in the knapsack.
Among all such leaves, we pick the best solution. This is just a re-statement of the brute
force strategy of looking at all possible 2n different solutions. However, we can devise
clever ways of reducing the search space. For example, suppose we traverse the tree (in a
top–down manner), and reach a node v. This node corresponds to a partial solution, and
assume that the objects which have been picked in this partial solution have total volume
more than the knapsack size. At this moment, we know that there is no use exploring the
sub-tree below v, because the partial solution corresponding to v itself does not fit in the
knapsack.

One can devise more intricate strategies for pruning the search space. A very high level
idea would be the following. We maintain a parameter T , which denotes the profit of
the best solution that we have obtained thus far while traversing the tree. For each node
v, let P(v) denote the partial solution (objects chosen) till v that we want to extend by
reaching the set of leaves in the sub-tree rooted at v. For each node v in the tree, we maintain
two values, L(v) and U(v), which are supposed to be lower and upper bounds on the
best solution among all leaves such that the extended solution lies in the range [P(v) +
L(v),P(v)+U(v)]. When our algorithm reaches a node v, and if T > P(v)+U(v), it need not
explore the sub-tree below v at all. However, if T < P(v)+L(v), then we are guaranteed to
improve the current best solution and the algorithm must explore the sub-tree. Note that
the bounds L(v) and U(v) may not be fixed – the algorithm updates them as it proceeds.

Consider a node v at level j in the tree, implying that P(v) corresponds to a partial
solution, where we have decided which objects to choose among 1,2, . . . , j. Now suppose
the partial solution fits in the knapsack; it occupies weight W (v) and has profit P(v). For
U(v), let ρ denote the maximum density of an object among j+1, . . . ,n, where the density
of an object is the ratio of its profit to its weight. We observe that U(v) can be set to (C−
W (v)) ·ρ. Indeed, the objects chosen in the partial solution for v already occupy W (v) space,
and so, we can only add C−W (v) more weight to it. Any such object added after v would
contribute at most ρ units of profit per unit weight.

Example 4.1 Let the capacity of the knapsack be 15; the weights and profits are as follows:

Profits 10 10 12 18
Weight 2 4 6 9

We will use the strategy described earlier for setting L(v) and U(v). Observe that the densities
of the objects are 5, 2.5, 2, and 2 respectively. Initially, our estimate T = 0. For the root node v, L(v)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 57

is 0 and U(v) is 5×15 = 75. Consider the left child of the root node which corresponds to including
the first object. For this node, call it w, the remaining capacity of the knapsack is 13, and T becomes
10 (because there is a solution of value 10 – just take this object). By proceeding this way, we obtain
T = 38 for the set of objects {1,2,4}. Exploring further, we will come to a stage where we would
have included object 1 and decided against including object 2. Call this node u. Hence, L(u) = 10,
and residual capacity is 13. Should we explore the sub-tree regarding {3,4}? Since the densities
of both these objects are 2, we get U(u) = 2× 13+ 10 = 36 < T = 38. So we need not search this
sub-tree. By continuing in this fashion, we may be able to prune large portions of the search tree.
However, it is not possible to obtain any provable improvements.

This method of pruning a search is called branch and bound and although it is clear that it is
advantageous to use the strategy, there may not be any provable savings in the worst case.

4.1.1 Game trees*

Game trees1 represent a game between two players who alternately make moves trying to
win the game. For example, consider the game “tic-tac-toe”. This game is played on a 3×3
board with 9 squares. Let us call the two players A and B. Initially, all 9 squares are empty.
The two players make a move alternately – player A writes the symbol × on one of the
empty squares, whereas the player B writes the symbol © on one of the empty squares.
The player who first gets three of her symbols along a straight line in the board (diagonal,
vertical, or horizontal) wins.

The set of all strategies in this game can be represented by a giant tree, where each
node in the tree corresponds to a configuration of the board. A configuration of the board
is obtained by labeling the squares on the board which can be realized during a game.
Note that certain labelings of the board are not configurations. For example, suppose we
label 4 of the squares as × and 1 square as©. We can never reach such a labeling because
players take turns. In this tree, the root node corresponds to the configuration where all
squares are empty. Further, player A makes a move – she has 9 choices. Therefore, the root
node has 9 children, each corresponding to writing the × symbol on one of the 9 squares.
Consider a child v of the root (which has exactly one × symbol). At v, it is B’s turn to
move. Player B has 8 choices, and so this node will have 8 children. As we can see, this
tree has 9 levels, with odd levels (we denote the top level consisting of the root as level 1)
corresponding to player A’s turn and even levels for player B. Further, a node at which we
have three symbols of the same kind lying on a straight line corresponds to a win situation
for one of the players. Such a node will be a leaf node in the tree. Similarly, a node where
all the squares have been labeled will be a leaf node (and may correspond to a scenario
where no one wins).

1 The reader is expected to be familiar with the notion of conditional expectation.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

58 Design and Analysis of Algorithms

For the sake of simplicity, let us consider a two-player game where one of the players
always wins when the game stops (at a leaf node). For reasons which will become clear
soon, we shall call the nodes corresponding to player A’s turn (i.e., those at odd levels) as
‘OR’ nodes denoted by ∨ ; similarly, we shall call the nodes at even levels as ‘AND’ nodes
denoted by ∧ . Such a tree is often called an AND–OR tree. Let 1 represent a win for player
A and 0 represent a loss for player A. These numbers are flipped for player B. The leaf
nodes correspond to the final state of the game and are labeled 1 or 0 corresponding to
win or loss for player A. We describe a rule for labeling each internal node of the tree (in a
bottom-up fashion). A ∨ node has value 1 if one of the children is 1, and 0 otherwise, and
so it is like the Boolean function OR. A ∧ node behaves like the Boolean AND function –
it is 0 if one of the children is 0, and 1 if all of the children are 1. The interpretation of this
0–1 assignment to nodes is as follows. A node is labeled 1 if there is a winning strategy for
player A irrespective of how player B plays; whereas, a label of 0 indicates that no matter
how A plays, there is always a winning strategy for player B. The player A at the root can
choose any of the branches that leads to a win. However, at the next level, she is at the
mercy of the player B – only when all branches for B lead to a win for A, will player A have
a winning strategy; otherwise, the player B can inflict a loss on player A. Note that in such
situations, we are not banking on mistakes made by either player; we are only concerned
with guaranteed winning strategies.

For concreteness, we will consider game trees where each internal node has two
children. Hence, the evaluation of this game tree works as follows. Each leaf node is
labeled 0 or 1 and an internal node is labeled ∧ or ∨ – these will compute the Boolean
function of the value of the two child nodes. The value of the game tree is the value
available at the root node. This value indicates which player has a winning strategy –
note that one of the two players will always have a winning strategy, because it will be
labeled 0 or 1. Consider a game tree of depth 2k – it has 22k = 4k nodes. Thus, it seems that
it will take about O(4k) time to evaluate such a game tree. We now show that with clever
use of randomness, one can reduce the expected time to O(3k) evaluations, which is a
considerable saving since the exponent changes.

The basic idea can be explained with the help of a single level ∧ tree. Suppose we are
evaluating the ∧ node at the root; assume that it evaluates to 0. Therefore, at least one of
the two leaf children happens to be 0. If we happened to look at this child before the other
one, we need not evaluate the other child. Apriori, it is difficult to tell which of the two leaf
children is 0 – but if we choose a child randomly, then the expected number of lookups is

Pr[first child is 0] ·1+Pr[first child is not 0] ·2 =
1
2
·1+ 1

2
·2 =

3
2

a saving of 4/3 factor over the naive strategy of probing both the children. This is a
conditional expectation that the ∧ node is 0. Note that in the case where both children are
0, the expectation is 1; so we are considering the worst case scenario. For the other case,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 59

when the ∧ node evaluates to 1, there is no saving by this strategy. We still have to probe
both the children. However, any interesting game tree will have at least two levels, one
∧ and the other ∨. Then we can see that for an ∧ node to be 1, both the child ∨ nodes must
be 1. Now for these ∨ nodes, we can use the aforementioned strategy to save the number
of probes. In essence, we are applying the branch and bound method to this problem, and
we obtain a provable improvement by evaluating the two children at a node in a random
order.

Now consider the general case of a tree with depth 2k (i.e., 4k leaf nodes) and alternating
∧ and ∨ nodes, each type having k levels. We will show that the expected number of leaf
nodes visited is 3k by induction on k. The base case (for k = 1) is left to the reader as an
exercise problem. Assume that the statement is true for trees of depth 2(k− 1) k ≥ 2. We
will use N(v) to denote the number of leaf nodes evaluated of a sub-tree rooted at v and
E[N(v)] to denote its expected value.

Now consider such a tree of depth 2k. There are two cases depending on whether the
root is labeled ∨ or ∧ . Let us consider the case where the root has label ∨ ; hence, its two
children, say y and z, are labeled ∧ (Fig. 4.1). The children of y and z are ∨ nodes with
2(k−1) depth.

Root = 0 Root = 1

y z
y

y1 y2 z1 z2

z

y1 y2 z1 z2

= 1= 1

(a) (b)

Figure 4.1 Illustration of the induction proof when root node is
∨

.
The two cases (i) and (ii) correspond to when the root node
equals 0 and 1.

We will consider the two cases.

(i) The root evaluates to 0: Since the root is an ∨ node, both y and z must evaluate to 0.
Since these are ∧ nodes, it must be the case that at least one child of y is 0 (and
similarly for z). It now follows from the earlier argument that with probability 1/2,
we will end up evaluating the leaf nodes of only one of the children of y (and similarly
for z). Using the induction hypothesis for the children y1,y2 of y, we obtain that the
expected number of evaluations for the sub-tree below y satisfies

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

60 Design and Analysis of Algorithms

E[N(y)] =
1
2
·E[N(y)| one children evaluated]+

1
2
E[N(y)| both child evaluated]

= 1/2 · 3k−1 + 1/2 · 2 · 3k−1 = 3k/2. We obtain an identical expression for the expected
number of evaluations below z, and therefore, the total expected number of
evaluations is 3k.

(ii) The root evaluates to 1: At least one of the ∧ nodes y,z must be 1. Assume without
loss of generality that the node y evaluates to 1. With probability 1/2, we will probe
y first; then, we need not look at z. To evaluate y, we will have to look at both the
children of y, which are at depth 2(k − 1). Applying induction hypothesis on
children of y, we see that the expected number of evaluations for the sub-tree below
y is 2 · 3k−1. We obtain the same expression for the sub-tree below z. Therefore, the
expected number of evaluations is 1/2 · 2 · 3k−1 + 1/2 · 4 · 3k−1 = 3k, where the first
term corresponds to the event that we pick y first (and so do not evaluate z at all),
and the second term corresponds to the event that we pick z first, and so may
evaluate both y and z.

In summary, for an ∨ root node, regardless of the output, the expected number of
evaluations is bounded by 3k. We can express this in terms of the total number of leaves.
Note that if N denotes the number of leaves, then N = 4k, and so, the expected number of
evaluations is N log4 3 = Nα, where α < 0.8. The case when the root is an AND node is left as
an exercise.

4.2 A Framework for Greedy Algorithms

There are very few algorithmic techniques for which the underlying theory is as precise
and clean as the framework that is presented here. Let S be a set and M be a subset2 of 2S.
Then, (S,M) is called a subset system if it satisfies the following property.

For all subsets T ∈M, if T ′ ⊂ T , then T ′ ∈M.

Note that the empty subset φ∈M. The family of subsets M is often referred to as independent
subsets and one may think of M as the feasible subsets.

Example 4.2 Let G = (V,E) be an undirected graph. Consider the subset system (E,M), where M
consists of all subsets of E which form a forest (recall that a set of edges form a forest if they do not
induce a cycle). It is easy to see that this satisfies the property for a subset system.

Given a subset system, we can define a natural optimization problem as follows. For
any weight function w : S → R+, we would like to find a subset in M for which the

2 M is a family of subsets of S.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 61

cumulative weight of the elements is maximum among all choices of subsets from M. We
refer to such a subset as an optimal subset. Note that this is a non-trivial problem because
the size of M could be exponential in S, and we may only have an implicit description of
M (as in the earlier example3). In such a case, we cannot afford to look at every subset in
M and evaluate the total weight of elements in it. An intuitive strategy to find such a
subset is the greedy approach explained in Fig. 4.2.

Procedure GenGreedy(S,M)

1 Input S = {e1,e2, . . . ,en} in decreasing order of weights;
2 T = φ.
3 for i = 1 to n do
4 if T ∪{ei} ∈M then
5 T ← T ∪{ei}

6 Output T as the solution

Figure 4.2 Algorithm Gen Greedy

The running time of the algorithm is dependent mainly on the test for independence
which depends on the specific problem. Even if M is not given explicitly, we assume that
an implicit characterization of M can be used to perform the test. In the example of forests
in a graph, we just need to check if the set T contains a cycle or not.

What seems more important is the following question – Is T the maximum weight
subset in M? This is answered by the following result.

Theorem 4.1 The following are equivalent.

1. Algorithm Gen Greedy outputs the optimal subset for any choice of the weight function.

2. Exchange property
For any pair of subsets S1,S2 ∈M, where |S1|< |S2|, there exists an element e ∈ S2−S1 such
that S1∪{e} ∈M.

3. Rank property
For any A ⊂ S, all maximal independent subsets of A have the same cardinality. A subset T
of A is a maximal independent subset if T ∈M, but T ∪{e} /∈M for any e ∈ (A−T). This is
also called the rank of the subset system.

A subset system satisfying any of the aforementioned three conditions is called a
matroid. The theorem can be used to establish properties 2 or 3 to justify that a greedy

3 The number of spanning trees of a complete graph is nn−2 from Cayley’s formula.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

62 Design and Analysis of Algorithms

approach works for the problem. On the contrary, if we prove that one of the properties
does not hold (by a suitable counterexample), the greedy approach may not return an
optimal subset.

Proof: We will prove it by the following cyclic implications:
Property 1 =⇒ Property 2, Property 2 =⇒ Property 3, Property 3 =⇒ Property 1.

Property 1 implies Property 2 We prove the contrapositive. Suppose Property 2 does not
hold for some subsets S1 and S2. That is, we cannot add any element from S2−S1 to S1 and
keep it independent. We will show that Property 1 does not hold. Let p denote S1 (and
hence, |S2| ≥ p+ 1). We now define a weight function on the elements of S such that the
greedy algorithm fails to output an optimal subset. We define the weight function on the
elements of S as follows:

w(e) =

p+2 if e ∈ S1

p+1 if e ∈ S2−S1

0 otherwise

The greedy algorithm will pick up all elements from S1 and then it will not be able to
choose any element from S2− S1. Therefore, the solution given by the greedy algorithm
has weight (p+ 2)|S1| = (p+ 2) · p. Now consider the solution consisting of elements of
S2. The total weight of elements in S2 is (p+1)|S2−S1|+(p+2)|S1|> (p+2) · p. Thus, the
greedy algorithm does not output an optimal subset, that is, Property 1 does not hold.

Property 2 implies Property 3 Let S1 and S2 be two maximal independent subsets of A, and
suppose, for the sake of contradiction, that |S1|< |S2|. Then, Property 2 implies that we can
add an element e ∈ S2− S1 to S1 and keep it independent. However, this contradicts the
assumption that S1 is maximal. Therefore, the two sets must have the same size.

Property 3 implies Property 1 Again we will prove the contrapositive. Suppose Property 1
does not hold, that is, there is a choice of weights w(e) such that the greedy algorithm does
not output an optimal subset. Let e1,e2, . . . ,en be the edges chosen by the greedy algorithm
in decreasing order of their weights. Call this set E1. Further, let e′1,e

′
2, . . . ,e

′
m be the edges

of an optimal solution in decreasing order of their weights – call this set E2. First observe
that the solution E1 is maximal – indeed, if we can add an element e to the greedy solution
and keep it independent, then the greedy algorithm should have added e to the set T (as
described in Procedure Gen Greedy). It follows from Property 3 that m = n.

Since the weight of the greedy solution is not maximum, there must be a j ≤ m such
that w(e j) < w(e′j). Otherwise, the fact that m = n implies that the weight of E1 is at least
that of E2. Let A = {e ∈ S|w(e) ≥ w(e′j)} be the set of elements whose weight is at least
w(e′j). The subset {e1,e2, . . . ,e j−1} is maximal with respect to A (Why?). All the elements in

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 63

{e′1,e′2, . . . ,e′j} form an independent subset of A that has greater cardinality. This shows
that Property 3 does not hold. 2

Many natural problems can be modeled by subset systems. We describe some
well-known examples of matroids and the corresponding maximum weight independent
set problem in this section.

Example 4.3 Half-matching problem Given a directed graph with non-negative edge weights,
we would like to find out the maximum weighted subset of edges such that the in-degree of any
node is at most 1. Let us see how to phrase this as a maximum weight independent set problem in a
matroid.

The definition of the subset system should be clear – the set S is the set of edges in the directed
graph and M is the family of all subsets of edges E ′ such that no vertex has an in-degree more than
1 in the sub-graph induced by E ′. Let us now show that this subset system is a matroid. We prove
Property 2. Consider two subsets Sp and Sp+1 with p and p+ 1 edges respectively. Let Vp be the
set of vertices which form the head of the edges in Sp, that is, Vp = {u : ∃e = (v,u) ∈ Sp}. By the
definition of an independent set, note that |Vp| = |Ep|. Define Vp+1 similarly. Since |Vp+1| > |Vp|,
there is a vertex u ∈ Vp+1−Vp. Consider the edge e in Ep+1 whose head is u. Clearly, e /∈ Ep and
adding e to Ep will preserve the independence of this set. Therefore, this subset system is a matroid.

Example 4.4 Maximum weight bipartite matching We now give an example of an important
subset system which is not a matroid. Let G be a bipartite graph where edges have weights. A
matching in G is a subset of edges which do not share a common vertex. The maximum weight
matching problem seeks to find a matching for which the total weight of the edges in it is maximum.
As earlier, we can define a subset system corresponding to matchings in G. We define a subset
system (S,M), where S is the set of edges in G and M consists of all subsets of edges which form a
matching. However, this subset system is not a matroid.

a b

c d

Figure 4.3 The matching (a,d) is a maximal independent set, but
(a,b),(c,d) is a larger maximal independent set.

To see why, consider a simple bipartite ‘zig-zag’ graph (shown in Fig. 4.3). There are two
maximal independent sets here – one with cardinality 2 and the other having only 1 edge.
Therefore, Property 3 is violated. In fact, algorithms for finding maximum weight matchings turn
out to be much more complex than simple greedy strategies.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

64 Design and Analysis of Algorithms

4.2.1 Maximum spanning tree

In the maximum spanning tree problem, we are given an undirected graph G = (V,E) and
a weight function w : E→ R. Assuming that the graph is connected, we would like to find
a spanning tree for which the total weight of edges in it is maximum. It is natural to define
a subset system here – (S,M), where S is the set of edges, and M consists of those subsets of
S which form a forest (i.e., do not contain a cycle). For any A⊂ E, let V (A) denote the vertex
set of the edges in A. Note that a maximum independent subset here will be a spanning
tree. We know that every spanning tree in a connected graph has n− 1 edges, where n is
the number of vertices and equals n− k if there are k connected components. Hence, the
maximal subset of A has rank V (A)−k if there are k connected components in the subgraph
induced by the edges in A. Therefore, it follows from Property 3 that this set system is a
matroid.

4.2.2 Finding minimum weight subset

The greedy algorithm for matroids finds an independent set of maximum total weight. Is
it possible to extend the algorithm to finding the minimum weighted maximal
independent subset, for example, minimum spanning trees (MST)? The well-known
Kruskal’s algorithm (see Figure 4.4) seems identical to the greedy framework except that
it chooses the minimum weight element at each stage. Do we need to develop an
analogous theory for minimization? Fortunately, we can simply use a reduction to the
maximization problem. Replacing the weight of each element by its negation does not
work because the greedy algorithm requires that all weights be non-negative.

Procedure Kruskal(G,w)

1 Input Graph G =V,E, a weight function w : E⇒ R ;
2 Sort E in increasing order of weights. Let {e1,e2, . . . ,em} be the

sorted order;
3 T = Φ ;
4 for i = 1 to m do
5 if T ∪{ei} does not contain a cycle in G then
6 T ← T ∪{ei}

7 Output T as MST of G.

Figure 4.4 Kruskal’s minimum spanning tree algorithm

Suppose the maximum weight of any element in S is g = maxx∈S{w(x)}. We define
another related weight function w′(x) = g−w(x),∀x ∈ S. Thus, w′(x)≥ 0. Suppose we now

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 65

run the Gen Greedy algorithm with the weight function w′. This produces a maximum
weight independent subset with respect to the weight function w′. Let this subset be
{y1,y2, . . . ,yn} in decreasing order of weights w′(yi), where n equals the size of any
maximal independent set in the matroid, that is, its rank (Property 3).

n

∑
i=1

w′(yi) =
n

∑
i=1

(g−w(yi)) = ng−∑
i

w(yi)

This implies that ∑i w(yi) must be the minimum among all maximal independent subsets
(else we improve the maximum under w′). Moreover, y1,y2, . . . ,yn must be in increasing
order of weights under w. This means that if we run the Gen Greedy algorithm by picking
the smallest feasible element at each step, we obtain the minimum weighted independent
subset. Kruskal’s algorithm is a special case of this fact.

The crucial argument in this reduction is based on the rank property of matroids that
enabled us to express the weight of the minimum subset in terms of subtraction from
the fixed term ng, where n is the rank of the matroid. If n was not fixed for all maximal
independent subsets, the argument would fail.

4.2.3 A scheduling problem

We now give another application of the greedy algorithm. Unlike other examples, the
construction of the corresponding matroid for this application is not immediately
obvious. Consider the following scheduling problem. We are given a set of jobs
J1,J2, . . . ,Jn. Each job Ji has a deadline di for completion and a corresponding penalty pi if
it exceeds its deadline. There is one machine on which each of them needs to be processed
(in some order) and each job takes unit amount of time to complete. Our goal is to process
the jobs in an order such that the the total penalty incurred by the jobs that are not
completed before their deadlines is minimized. Equivalently, we want to maximize the
penalty of the jobs that get completed before their deadlines.

In order to apply the greedy algorithm, we define a subset system (S,M), where S is
the set of all jobs. A set A of jobs is independent if there exists a schedule to complete all
jobs in A without incurring any penalty, that is, all jobs in A can be completed within their
deadlines. We prove that this set system is a matroid by showing that it has Property 2.
Recall that Property 2 states that given any two independent sets A,B with |B|> |A|, there
exists a job J ∈ B−A such that {J}∪A is independent. We prove this by induction on |A|.
If |A| = 0, this is trivial. Now assume Property 2 holds whenever |A| = m− 1. Pick two
independent sets A,B, with |A|= m < n = |B|.

Consider a feasible schedule FA for A, that is, an ordering of jobs in A such that each
job finishes before its deadline. Note that the ith job in this ordering finishes at time i
because all jobs are of unit size. Let this ordering be A1,A2, . . . ,Am (note that A1, . . . ,Am are

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

66 Design and Analysis of Algorithms

the jobs in the set A). Similarly, consider a similar schedule FB for B, and let the ordering
be B1,B2, . . . ,Bn.

Note that the deadline of Bn is at least n (because it finishes before its deadline in FB). If
Bn /∈ A, then we can add Bn to A and schedule it as the last job – this job will finish at time
m+1, whereas it was finishing at time n in schedule B. Since m+1≤ n, this job will finish
before its deadline. Hence, assume Bn ∈ A. Now form sets A′ and B′ by removing Bn from
A and B respectively. By induction hypothesis, there is a job J ∈ B′−A′ such that A′ ∪{J}
is independent. Let A′′ denote A′ ∪{J} – we know that there is an ordering FA′′ of jobs in
A′′ such that every job finishes by its deadline. Now we claim that A′′∪{Bn}, which is the
same as stating that A∪{J} is also independent. Indeed, consider the following schedule
– first process the jobs in A′′ according to FA′′ , and then process Bn. Since |A′′|= m, note that
Bn will finish at time m+ 1 ≤ n, which is before its deadline. Thus, we see that A∪{J} is
independent. Since J ∈ B−A, Property 2 follows.

Now that our subset system is a matroid, we can use the greedy algorithm to solve
the maximization problem. The only remaining detail is how to verify if a set of jobs is
independent. For this, we just need to order the jobs in increasing order by their deadlines
and check if this ordering satisfies all the deadlines (see Exercises).

4.3 Efficient Data Structures for Minimum Spanning Tree
Algorithms

In this section, we re-visit the greedy algorithm for the minimum spanning tree in
(connected) undirected graphs. This algorithm (Fig. 4.4) is also known as Kruskal’s
algorithm and was discovered much before the matroid theory was developed. We
present it again without the matroid notation. We first sort the edges in increasing order
of weights. The algorithm maintains a set T of edges which will eventually form the
desired spanning tree. It considers edges in this order, and adds an edge e to T only if
adding e to T does not create a cycle (i.e., if the set remains independent in the matroid
sense).

The key to an efficient implementation is the cycle test, that is, how do we quickly
determine if adding an edge induces a cycle in T ? We can view Kruskal’s algorithm as a
process that starts with a forest of singleton vertices and gradually connects the graph by
adding edges to the set T and hence, grow the trees. In fact, at any point of time, the set T
will be a forest. An edge e will be added to T only if the endpoints of e do not lie in the
same connected component (i.e., tree) of T . Adding such an edge will create a cycle (Fig.
4.5). Conversely, if the endpoints of such an edge lie in different trees of T , then we can
add e to T without creating a cycle. When we add such an edge to T , two connected
components of T merge into one connected component.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 67

a b c

d

e
fg

h

a b c

d

e
fg

h

a b c

d

e
fg

h

a b c

d

e
fg

h
4

6

2 9

3

10

5 8

11

10

15 5

1

a b c

d

e
fg

h

1

a b c

d

e
fg

h
3

a b c

d

e
fg

h

5

a b c

d

e
fg

h
4

6
3

10

5 8

1

5

1

3

5

7

2

4

6

Figure 4.5 Successive iterations in Kruskal’s greedy algorithm. The
dashed edge denotes that the edge could not be selected since
it induces a cycle.

Therefore, we can answer the cycle test query, provided we maintain the partition of
vertices into trees in T . It should be clear that we need to maintain a data structure that
supports the following operations

Find Given a vertex, find out which connected component it belongs to.

Union Combine two connected components into one component.

The Find operation corresponds to checking if adding an edge creates a cycle. Indeed, we
just need to check if the endpoints of a vertex belong to the same connected component.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

68 Design and Analysis of Algorithms

The Union operation is needed to update the set of connected components. When we add
an edge, two components in T merge into one tree.

For obvious reasons, such a data structure is called a Union–Find data structure. In fact,
we can view the data structure in a more general context. Given a set S, we shall maintain
a family of disjoint subsets that are connected components. The Union-Find data structure
supports two operations – given an element of S, it finds the subset in this family which
contains this element, and replaces two subsets in this family by their union. Next, we
explore how to implement this data structure.

4.3.1 A simple data structure for Union–Find

We will use a more general context where we are given a set with n elements, labeled
1,2, . . . ,n. We are also given a family of subsets of {1,2, . . . ,n} – the subsets in this family
form a disjoint partition of {1,2, . . . ,n}. Initially, we assume that the family consists of n
singleton sets, one for each element (this corresponds to the case when the set T is empty
in the minimum spanning tree algorithm).

We use an array A of size n to represent the sets. For each element i, A(i) contains the
label of the set containing i – we assign each set in the family a unique label. Initially, we
set A(i) to i. Thus, all labels are distinct to begin with. As we merge sets (during union
operation), we create a new set – we will need to assign a new label. We will ensure that
the label of each set remains in the range 1,2, . . . ,n at all times. For each set (label), we also
have pointers to all its elements, that is, the indices of the array that belongs to the set.
Now we perform the two Find and Union operations as follows:

Find This is really simple – for vertex i, report A(i). This takes O(1) time.

Union To perform union(S j,Sk), where S j and Sk are labels of two sets, we first consider
the elements in the two sets and update the A[i] value for all such elements i to a
unique label. For the sake of concreteness, we update the A[i] values of all elements
in the set labeled S j to Sk. The time for this operation is proportional to the number
of elements in set S j. Note that we had a choice here – we could have changed the
labels of all elements in Sk to S j. For obvious reasons, we would change labels of the
smaller subset (this is called union-by-rank heuristic).

Note that the time for a single union operation can be quite high. Instead, as in Kruskal’s
algorithm, we shall analyze the total time taken by a sequence of union operations.
Consider a fixed element x. The key to the analysis lies in the answer to the following
question.

How many times can the label of x change?

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 69

Every time there is a label change, the size of the set containing x increases by a factor of
two because of the union-by-rank heuristic. Since the size of any set in our set system is at
most n, this implies that the maximum number of label changes is log2 n for any element x
and a total of O(n logn) for all the n elements.. Kruskal’s algorithm involves |E| finds and
at most |V |−1 unions; it follows that this can be done in O(m+n logn) steps using the array
data structure described earlier.

4.3.2 A faster scheme

The previous data structure gives optimal performance for m ∈ Ω(n logn) – indeed, any
algorithm for the minimum spanning tree (MST) must look at every edge. Hence,
theoretically, we want to design better schemes for graphs with fewer edges. For this, we
will explore faster schemes implementing the Union–Find data structure.

Instead of arrays, it is easier to visualize the data structure using trees.4 We represent
every subset using a rooted tree. We will maintain the invariant that every such tree will
have as many nodes as the number of elements in the corresponding connected component
– each node of the tree will be labeled by a unique element of the subset. An example is
given in Fig. 4.6. We can label the three sets by the labels of their roots, that is, 6, 12, and 5
respectively.

6

4 10

9 7

1

12

8

3 11

5

2

Figure 4.6 An example of a Union–Find data structure storing
elements {1,2, . . . ,12}. The three sets are {6,4,10,1,9,7},
{12,8,3,11}, {5,2}.

Initially, all trees are singleton nodes (which represent singleton sets). The root of each
tree is associated with a label (of the corresponding subset) and a rank which denotes the
maximum depth of any leaf node in this tree. To perform the operation Find(x), we traverse
the tree starting from the node x till we reach the root and report its label. Hence, the cost
of a Find operation is the maximum depth of a node.

4 This tree should not be confused with the MST that we are trying to construct.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

70 Design and Analysis of Algorithms

To perform Union (T1,T2), where T1 and T2 are the roots of two trees, we make the root
of one tree the child of the root of the other tree. To minimize the depth of a tree, we
attach the root of the smaller rank tree to the root of the larger rank tree. This strategy is
known as the union by rank heuristic. The rank of the resulting tree is determined as
follows: if both T1 and T2 have the same rank, then the rank of the new tree is one more
than the rank of T1 (or T2); otherwise, it is equal to the maximum of the ranks of the two
trees. Note that once a root node becomes a child of another node, its rank does not
change anymore. Clearly, the union operation takes O(1) steps. We leave it as an exercise
to show that a tree of rank r has at least 2r nodes, and so, the depth of any tree in this data
structure will be bounded above by logn. It follows that a Find operation will take
O(logn) time. We have already argued that a Union operation takes O(1) time. Therefore,
Kruskal’s algorithm can be implemented in O(m logn+ n) time. This seems to be worse
than the array implementation mentioned earlier. Seemingly, we have not quite gained
anything; so let us use the following additional heuristic.

Path compression heuristic In this heuristic, we try to reduce the height of a tree even
below logn by compressing any sequence of nodes which lie on a path starting from the
root. When we do a Find(x) operation, let x,x1,x2, . . . ,xr = root of x be the sequence of
nodes visited (in the reverse order starting from x). In this heuristic, we update xr as the
parent of x1,x2, . . . ,x (i.e., xr has all the other nodes in this path as its children). An example
is given in Fig. 4.7.

5

8

1 2

7

4

3 6

5

8

1

7 4

2 3

6

Figure 4.7 An example of a path compression heuristic. The operation
Find(6) causes 6, 4, and 7 to become children of the root
node.

Clearly, the motivation is to bring more nodes closer to the root node so that the time
for subsequent Find operations involving these nodes decrease. Note that the time spent
during the path compression heuristic is not much – it only doubles the cost of the current
Find operation.

While it is intuitively clear that this method should give us an advantage, we have to
rigorously analyze if it indeed leads to any asymptotic improvement. Before we get into

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 71

the analysis, we first introduce a very slowly growing function which will be used for
expressing the heights of such trees.

4.3.3 The slowest growing function?

Let us look at a very rapidly growing function, namely the tower of two which looks like

22
2.
.2
}

i

This can defined more formally as the following function

B(i) =

21 i = 0

22 i = 1

2B(i−1) otherwise for i≥ 2

We now define the operation which applies log iteratively i times. More formally, we define

log(i) n =

{
n i = 0

log(log(i−1) n) for i≥ 1

The inverse of B(i) is defined as

log∗ n = min{i≥ 0| log(i) n≤ 1}

In other words,

log∗ 22
2.
.2
}

n

= n+1

We will use the function B() and log∗() to analyze the effect of path compression. We will
say that two integers x and y are in the same block if log∗ x = log∗ y.

Although log∗ appears to be slower than anything we can imagine (for example
log∗ 265536 ≤ 5), there is a generalized family of functions called the inverse Ackerman
function that is even slower!

Ackerman’s function is defined as

A(1, j) = 2 j for j ≥ 1

A(i,1) = A(i−1,2) for i≥ 2

A(i, j) = A(i−1,A(i, j−1)) for i, j ≥ 2

Note that A(2, j) is similar to B(j) defined earlier. The inverse Ackerman function is given
by

α(m,n) = min{i≥ 1|A(i,bm
n
c)> logn}

To get a feel for how slowly it grows, verify that

α(n,n) = 4 for n = 22
2.
.2
}

16

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

72 Design and Analysis of Algorithms

4.3.4 Putting things together

Clearly the cost of Find holds a key to the analysis of this Union–Find data structure. Since
the rank of any root node is at most logn, we already have an upper bound of logn for any
individual Find operation. We now show that the path compression heuristic further
reduces the cost of Find operations to O(log∗ n). Before we do this, we need to recall the
definition of rank function. The earlier rank of a node v was defined as the maximum
distance from the node v to a leaf in the sub-tree rooted below v. We cannot use this
definition now, but will continue to use the definition which was used to define these
values. In other words, every node maintains a rank. Whenever we need to make a root u
a child of a root v, the rank of v is updated as before – it is rank(v) if rank(u) < rank(v),
otherwise it is rank(v)+ 1. We state below some simple properties of the rank function.
The proof is left as an exercise problem.

Lemma 4.1 The rank function has the following properties:

• Property 1: The rank of a root node is strictly larger than that of any children nodes.

• Property 2: There are at most n/2r nodes of rank r.

• Property 3: For a node v, the rank of its parent node never decreases (note that the parent
node could change because of union operations followed by path compression).

• Property 4: If the root node of a tree changes from w to w′, then the rank of w′ is strictly larger
than that of w.

We shall use log∗(rank(v)) for a node v to refer to the block number of v. We will adopt
the following strategy for counting the cost of Find operations. Let us refer to every visit
that a Find operation makes to a node, as charging the node. Clearly, the total cost of all
Find operations is bounded by the total number of charges. We distinguish between three
kinds of charges.

Base charge If the parent of v is the root node (of the tree containing v), then v receives a
base charge. Clearly, each Find operation incurs at most one base charge, resulting
in a total of m charges.

Block charge If the block number of the parent node p(v) is strictly greater than that of
the node v, that is, log∗(rank(p(v))) > log∗(rank(v)), then we assign v a block charge.
Clearly, the maximum number of block charges for a single Find operation is
O(log∗ n)

Path charge Any charge incurred by a Find operation that is not a block charge or a base
charge is the path charge.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 73

From our previous observation, we will focus on counting the path charges. Consider a
node v. Whenever it gets a path charge, its parent is the root node. For it to incur a path
charge again, the root node of this tree needs to change. But then the rank of the root node
will go up (Property 4). Consequently, v, whose rank lies in block j (say), will continue to
incur path charge for at most B(j)−B(j−1)≤ B(j) Find operations.

Since the number of elements with rank r is at most n
2r (Property 2), the number of

elements having ranks in block j is

n
2B(j−1)+1 +

n
2B(j−1)+2 + . . .+

n
2B(j) = n

(
1

2B(j−1)+1 +
1

2B(j−1)+2 + . . .

)
≤ 2n · 1

2B(j−1)+1 =
n

2B(j−1)

Therefore, the total number of path charges for elements in block j is at most n
2B(j−1) ·B(j)

which is O(n). For all the log∗ n blocks the cumulative path charges is O(n log∗ n). Further,
the total number of block charges will be O(m log∗ n) . Therefore, the total time taken by the
Find and Union operations is O((m+n) log∗ n).

4.3.5 Path compression only*

To gain a better understanding of role of path compression, let us analyze the use of path
compression without the union-by-rank heuristic. We can define the rank of a node similar
to the previous version with a subtle change. If a tree T1 with rank r1 links to a tree T2

having a smaller rank r2, then the rank of the root of T2 becomes r1 + 1. If T2 links to T1

then the ranks remain unchanged. Without the union by rank heuristic, both options are
permissible and so we cannot bound the rank of a node by logn and it can be n− 1 in the
worst case.

Let us denote the parent of a node x as p(x). The level of a node x, denoted by `(x), is
an integer i such that 2i−1 ≤ rank(p(x))− rank(x)≤ 2i. Therefore, `(x)≤ logn. Note that `(x)
is defined for non-root vertices only.

We account for the cost of a Find(x) operation by charging one unit of cost to all the
nodes in the path from x to the root (except the root). The only exception is that for any
level i, 1≤ i≤ logn, the last node in the path to the root in level i is not charged. Instead, the
cost is charged to the Find operation. Clearly, the number of charges to the Find operation
is O(logn).

Claim 4.1 For any other node y, we claim that whenever it gets charged by the Find operation, `(y)
increases by at least one.

Since `(y) is bounded by logn, this will imply that any node y is charged at most logn times.
Let us now see why the claim is correct. Since y is not the last node in its level, there is

another node v above y in the path to the root such that `(v) = `(y) = i (say). By definition
of level,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

74 Design and Analysis of Algorithms

rank(p(v))− rank(y) = rank(p(v))− rank(v)+ rank(v)− rank(y)

≥ rank(p(v))− rank(v)+ rank(p(y))− rank(y)≥ 2 ·2i−1 = 2i.

The second last inequality here follows from the fact that v lies above p(y) in the path from
y to the root, and so, rank of v will be at least that of p(y). Let w be the parent of v (before
this Find operation) and r be the root of this tree. Again, by rank monotonicity, rank(r) ≥
rank(w). We have shown earlier that rank(w)− rank(y)≥ 2i, and so, rank(r)− rank(y)≥ 2i as
well. Since r will now be the parent of y, it follows that `(y)≥ i+1. This proves our claim.

Therefore, over the course of all the Union–Find operations, a node can get charged at
most logn times resulting in a total cost of O(m logn) for all the Find operations.

4.4 Greedy in Different Ways

The matroid structure is closely related to the form of the greedy algorithm described in
Figure 4.2. But there may be other variations that attempt to choose the next best element
without necessarily picking them in reverse sorted order of their weights. One such
classic algorithm is Prim’s MST algorithm described in Figure 4.8. Recall that Kruskal’s
algorithm maintains several connected components – at each step, it picks an edge and
merges two of these components into one. In Prim’s algorithm, we maintain only one
connected component which is initially just the cheapest edge. At each step, the algorithm
finds the least weight edge which can extend this connected component by one more edge.

Procedure Prim(G,w)

1 Input Graph G =V,E, a weight function w : E⇒ R ;
2 T = e1 where ei ∈ E is the smallest weighted edge;
3 for |T | ≤ n−1 do
4 Let (u,v) be the least weight edge in VT × (V −VT);
5 T ← T ∪{(u,v)} ;

6 Output T as MST of G.

Figure 4.8 Prim’s minimum spanning tree algorithm

Although Prim’s algorithm intuitively seems to do the right thing, note that the
sequence of edges that it picks could be different from Kruskal’s and therefore it requires
a separate proof of correctness. It is clear that it outputs a tree. Indeed, it always picks an
edge, one of whose endpoints is not in the current component T . Therefore, the added
edge cannot induce a cycle.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 75

Let us first address the running time. The algorithm needs to pick the least weighted
edge going out of the current tree T . For this, we can maintain a label for every vertex
denoting its distance from the tree T . If v ∈ T , then its label is 0. Let N(v) denote the
neighbors of v in G. Then, label of v is `(v) = minu∈N(v) w(u,v)+ `(u). (If no neighbor of v
belongs to T , then its label is ∞.) The labels maintain the shortest distance of any vertex
to the nearest vertex in T . The details of maintaining this data structure and update time
are left as exercises (see also Dijkstra’s algorithm in Chapter 10). We can use a heap data
structure to store these labels so that finding the minimum weight edge will take O(logn)
time. Consequently, the algorithm can be implemented in O(m logn) time.

To prove correctness, we will invoke a useful result whose proof is left as an exercise.
The setting is an undirected weighted graph G = (V,E), whose edges are colored red, blue
(or left uncolored) according to the following rules:

(i) Red rule: An edge is colored red if it is the heaviest (i.e., highest weight)
edge in a cycle5.

(ii) Blue rule: An edge is colored blue if it is the lightest edge across any cut
of the graph. A cut is a partition of the vertices V ; an edge across the cut
has one endpoint in each partition.

(iii) The two rules can be applied in any order.

Theorem 4.2 (Red–blue rule) There exists an MST of G that includes all the blue edges and
none of the red edges.

The proof is left as an exercise. This theorem has profound connections to all the known
MST algorithms. Prim’s algorithm can be seen as coloring edges blue where each blue edge
is the lightest cut defined by the tree vertices and the remaining graph.

Kruskal’s algorithm can be viewed as coloring an edge red if the two endpoints are
within the same component and the order of adding the edges ensures that it is the heaviest
edge (in the cycle formed by this edge and the edges in the component). On the other hand,
if an edge connects two components, then it must be a cut-edge if the two components are
in different partitions (other components can be arbitrarily assigned to either partitions).
Moreover, it is the lightest edge among the edges not added, and so it must be colored blue
by definition.

A lesser known algorithm called Borüvka’s algorithm is described in Figure 4.9. The
algorithm maintains several connected components at any point of time as in Kruskal’s
algorithm. The set F denotes the set of these components. At any point of time, it picks
a component C in F and chooses the least weight edge which has exactly one endpoint in
C – such an edge would have its other endpoint in some other component C′ in F . The

5 Assume all edges have unique weight.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

76 Design and Analysis of Algorithms

algorithm picks this edge e and replaces C and C′ with C∪C′∪{e}. Note that the choice of
C is arbitrary. The algorithm terminates when there is one connected component in F .

The correctness of the algorithm follows from the use of the blue rule and an
additional assumption that the edge weights are unique.6 Indeed, whenever we add an
edge joining C and C′, it is the cheapest edge in the cut formed by C and the rest of the
vertices. There are several advantages of this algorithm. It is inherently parallel in nature
as all the components can simultaneously choose the nearest neighboring vertex.
Moreover, the fastest known linear MST algorithm is based on an adaptation of this
algorithm with clever use of randomization.

Procedure Boruvka(G,w)

1 Input Graph G =V,E, a weight function w : E⇒ R ;
2 F = {{v1},{v2}, . . .}, where vi ∈V are initial components without

any edges;
3 T = φ ;
4 while |F |> 1 do
5 Pick a component C in F ;
6 Let (v,w) ∈ E be the least weight edge out of component C ;
7 Suppose w lies in component C′ in F ;
8 Replace C and C′ by C∪C′∪{(v,w)} in F .

9 Output the single component in F as MST of G.

Figure 4.9 Boruvka’s minimum spanning tree algorithm

4.5 Compromising with Greedy

So far, we have shown that the greedy strategy yields an optimal solution for a large class of
problems. However, in many cases, the greedy strategy does not always yield an optimal
solution. It is still attractive because of its simplicity and efficiency. What if we compromise
our objective of finding an optimal with a near optimal solution? We touch on this aspect of
algorithm design in a later chapter more formally – here we illustrate this with an example.

Recall the maximum matching problem discussed in Example 4.4. Although the
example discussed the special case of bipartite graphs, the same definition extends to
general graphs. More formally, we are given an undirected graph G = (V,E). We want to
find a subset E ′ ⊂ E such that no two edges in E ′ share any endpoints (the degree of the

6 One can add lower significant bits based on edge labels to break ties.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 77

induced subgraph is exactly 1) and we want to maximize the number of edges in E ′. For a
weighted graph, we want to maximize ∑e∈E ′ w(e), where w(e) is the weight of e. We had
shown in Example 4.4 that the subset system corresponding to matchings is not a
matroid.

Nevertheless, let us persist with the greedy strategy for finding a matching and analyze
the outcome. Consider the following algorithm: sort the edges in decreasing order of the
weights. Maintain a solution G initialized to empty. We look at edges in this order, and
add an edge to G if it does not have a common endpoint with any of the edges chosen in G
so far. It is easy to show that this algorithm may not give an optimal solution. Still it turns
out that the total weight of edges in G is always at least half of that of an optimal solution.
We now prove this claim.

Let O denote an optimal solution. Let w(O) and w(G) denote the total weight of edges
in O and G respectively. Clearly, w(O) ≥ w(G). Consider an edge e = (x,y) ∈ O \G. When
the greedy algorithm considered e, there must have been an edge e′ ∈ G which shared a
common endpoint with e. Further, w(e′)≥w(e). Thus, we can define a mapping B : O\G→
G \O (mapping edges e ∈ O \G to e′ ∈ G \O). How many edges can map to an edge e′ in
G using this mapping B? We claim that there can be at most 2 such edges, and both these
edges have weight at most w(e′). Indeed, e′ has two endpoints, and if B(e) = e′, then e must
have a common endpoint with e′. The claim now follows from the fact that no two edges
in O (and so, in O \G) share a common endpoint. Therefore, the total weight of edges
in O \G is at most twice that of edges in G \O. Therefore, w(O) = w(O \G)+w(O∩G) ≤
2w(G\O)+w(G∩O)≤ 2w(G) or equivalently w(G)≥ w(O)

2 .

Thus, the greedy strategy can have some provable guarantees even though it does not
yield an optimal solution.

4.6 Gradient Descent*

So far we have used the greedy strategy to solve ‘discrete’ optimization problems, that is,
problems where a decision variable can take a finite set of values. For example, in the
minimum spanning tree problem, we have one variable with each edge – should we
include this edge in the tree solution? This variable is a binary variable, because it can
take only two values – true or false. Similarly, in the more general setting of finding the
maximum weight independent set in a matroid, we have to decide whether to add an
element in the independent set or not. We now consider a different application of the
greedy strategy where the variables can have values from a continuous interval.

We are given a continuous (and differentiable) function f : ℜn→ℜ, where the domain
of the function, denoted by dom(f), is a convex and compact set. We would like to find a
minimizer of f , that is, a point x? ∈ dom(f) such that f (x?)≤ f (x) for all x ∈ dom(f). Because

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

78 Design and Analysis of Algorithms

the domain is a compact set, we know that there will be at least one such point x?, though it
may not be unique. The problem is not very well defined because it may not be possible to
express the point x? using finite precision. Consider, for example, the function f (x) = x2−2.
Clearly, x? =

√
2, and it cannot be expressed using a finite number of bits. We shall assume

that the input instance also provides an error parameter ε; we are required to find a point
x such that f (x)− f (x?)≤ ε.

For a general function f , we do not know how to solve this problem in polynomial
time (where the polynomial may include terms depending on the diameter of the domain
of f and bounds on the slope of f). We focus on a special class of functions called convex
functions. It turns out that any local minimum for such functions is also a global minima,
and so, it suffices to run a greedy algorithm to find a local minimum of such a function.
Let f be a function of one variable, that is, f : ℜ→ℜ. We say that f is convex if for every
x,y ∈ dom(f), and parameter λ, where 0≤ λ≤ 1,

f (λx+(1−λ)y)≤ λ f (x)+(1−λ) f (y). (4.6.1)

Graphically, it means that if we look at the plot of f , then the line joining the points (x, f (x))
and (y, f (y)) should lie above the curve f in the interval [x1,x2] (see Figure 4.10). We say
that f is strictly convex if the aforementioned inequality is strict. It is not clear how we
can use this definition to easily check if a function is convex. Fortunately, if we make some
mild assumptions on f , then there are other equivalent definitions which turn out to be
easier to work with. It turns out that if f is differentiable, then it is enough to check that
for every pair of points x,y ∈ dom(f),

f (y)≤ f (x)+(y− x) · f ′(x) (4.6.2)

x y

Figure 4.10 A convex function of one variable. The line joining the points
(x, f (x)) and (y, f (y)) stays above the plot of f .

where f ′(x) denotes the derivative of f w.r.t. x. This result gives another way of thinking
about convex functions: if we draw the tangent at any point on the curve corresponding to

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 79

f , then the entire curve lies above the tangent line. If f happens to be twice differentiable,
there happens to be another intuitive definition of convex functions: the second derivative
of f is always non-negative (see Exercise 4.23).

We now extend these definitions to a function of multiple variables. We say that a
function f : ℜn→ℜ is convex if the restriction of f on any line is a convex function. Recall
that a line can be specified by two vectors: a point x0 on the line, and a direction d. Any
point on this line can be described by a single parameter t: x0 + t ·d. Thus, we can define a
function h(t) = f (x0 + t ·d), and think of h as the restriction of f on this line. According to
our definition, f is convex iff every such function h is convex.

As in the case of functions of one variable, we now want to define convexity in terms
of first and second derivatives of f . Let ∇ f denote the gradient of f . Exercise 4.25 shows
the analogous statements. It turns out that a local minimum of a convex function is also a
global minimum. More precisely,

Lemma 4.2 Suppose x ∈ dom(f) and x is a local minimum of f , that is, there is a radius r > 0 such
that f (x) ≤ f (y) for all y satisfying ||y− x|| ≤ r. Then, x is also a global minimum of f , that is,
f (x)≤ f (y) for all y ∈ dom(f).

The intuitive reason for this statement is as follows. Suppose a convex function has a local
minimum at x. Let x′ be any other point in the domain of f . Consider the one-dimensional
projection of f along the line joining x and x′. Suppose, for the sake of contradiction, that
f (x′) < f (x). Then, by convexity of f , the curve corresponding to f lies below the line
joining x and x′. Therefore, we can find a point x′′ in the vicinity of x such that f (x′′)< f (x).
This contradicts the fact that x is a local minimum.

Thus, if we want to find the minimum of a convex function, it is enough to find a local
minimum of f – note that in general, a convex function may not have a unique local
minimum; but a strictly convex function has a unique local minimum. The gradient
descent algorithm is a popular greedy algorithm for minimizing a convex function.
Intuitively, it starts from an arbitrary point in the domain of f , and tries to move along the
‘steepest direction’ at the current point.

The algorithm starts with an initial guess x(0), and iteratively moves to points x which
have smaller f (x) values. The intuition can be described as follows. Suppose we are
currently at a point x and want to make a small step of size η along a direction d, that is,
we want to move to a point x + ηd, where d is a unit vector. What should be the best
choice for d? If η is a small quantity, then we can approximate f by a linear
approximation using Taylor expansion, where we assume that d and ∇ f (x) are column
vectors and dT denotes the transpose of d.

f (x+ηd)≈ f (x)+ηdT
∇ f (x).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

80 Design and Analysis of Algorithms

Now, we know that |dT ∇ f (x)| ≤ ||d||||∇ f (x)||,7 with equality if and only if d is along ∇ f (x)
(using Cauchy Schwarz inequality). Therefore, we should pick d along the negative
gradient direction. This motivates the gradient descent algorithm described in
Figure 4.11. The parameter η, which is often called the ‘learning rate’, should be chosen
carefully: if it is too small, then the progress toward a local minimum will be slow,
whereas if we pick η to be large, we may not converge to the desired point. Similarly, the
time τ till which we need to run the algorithm depends on how close we want to come to
the optimal solution.

Procedure Gradient descent(f ,η,x0)

1 Input Convex function f , step size η and initial point x(0) ;
2 for t = 1, . . . ,τ do
3 xt ← xt−1−η∇ f (x)

4 Output xT .

Figure 4.11 Gradient descent algorithm

Let us see an example. Consider f (x) = x2− 1. Clearly, x? = 0 is the global minimum.
Now, if we start at x = 1, and set η = 10, it is easy to see that the successive points will
diverge from x?. Therefore, it is important to keep η small, preferably much smaller than
the distance between the current point and the desired minimum. However, as
Exercise 4.27 shows, even a very small value of η can lead to an oscillatory behavior if we
do not assume the smoothness properties of f . The reason for the oscillatory behavior of
the gradient descent in this exercise is because the derivative of the function changes
suddenly at x = 0. We now assume that the derivative of the function cannot change very
fast, that is, there is a parameter L such that for all x,y ∈ dom(f),

||∇ f (x)−∇ f (y)|| ≤ L · ||x− y||.

Such a convex function is said to be L-smooth. One consequence of L-smoothness is that a
convex function cannot deviate from the tangent line at a point too fast. Let x and y be two
points in the domain of a real valued L-smooth function f . Then,

0≤ f (y)− f (x)− f ′(x) · (y− x)≤ L
2
· (y− x)2. (4.6.3)

The first inequality follows by the definition of convexity. For the other inequality, note
that

7We have used the notation |x| to denotet the absolute value and ||x|| to denote the length of the vector.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 81

f (y)− f (x)− f ′(x) · (y− x) =
∫ 1

0
(f ′(x+ t(y− x)) · (y− x)− f ′(x) · (y− x))dt

=
∫ 1

0
(f ′(x+ t(y− x))− f ′(x)) · (y− x)dt

≤ L ·
∫ 1

0
t(y− x)2dt =

L
2
· (y− x)2.

The first inequality follows from the fact that if g(t) denotes f (x+ t(y− x)) for a real t, then∫ 1
0 g′(t) = g(1)− g(0). The last inequality uses the fact that f is smooth. The following

theorem states that the gradient descent converges in a small number of steps provided
we pick η suitably. We prove this for a function f of one variable only – the ideas for the
more general proof when f is a function of several variables are similar, though the details
require a bit more work. We first observe a simple consequence of L-smoothness.

Theorem 4.3 Let f be an L-smooth convex function. Let x? denote a global minimum of f . If we
run the gradient descent with η = 1/L, then f (xt)− f (x?)≤ ε for t ≥ LR2

ε
, where R denotes |x0−x?|.

To prove this result, we show that the gradient descent algorithm makes some progress
at each step – the progress is higher if we are farther from x? and it slows down as we
start approaching x?. From the description of the gradient descent algorithm, we know
that xs− xs+1 = η f ′(xs) =

f ′(xs)
L . Using this fact and substituting x = xs and y = xs+1 in the

inequality in Eq. (4.6.3), we see that

f (xs)− f (xs+1)≥ (xs− xs+1) f ′(xs)−
L
2
(xs− xs+1)

2 =
1

2L
· f ′(xs)

2.

Thus, if f ′(xs) is large, we make more progress; as we approach x?, f ′(xs) gets closer to 0,
and so, our progress also slows down. Now, we show how to make this argument more
formal. Assume without loss of generality that x0 > x?. We will show that xs will also be at
least x? for all values of s≥ 1. Assuming this is the case, it follows that xs−x? ≤ x0−x? ≤ R.
Now, if δs denotes f (xs)− f (x?), then the aforementioned observation can be restated as

δs−δs+1 ≥
f ′(xs)

2

2L
. (4.6.4)

Convexity of f implies that

δs = f (xs)− f (x?)≤ f ′(xs)(xs− x?)≤ R f ′(xs).

Substituting this in the inequality in Eq. (4.6.4), we get

δs−δs+1 ≥
δ2

s

2LR2 .

It only remains for us to solve this recurrence relation. Observe that

1
δs+1
− 1

δs
=

δs−δs+1

δsδs+1
≥ δs−δs+1

δ2
s

≥ 1
2LR2 .

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

82 Design and Analysis of Algorithms

Adding this for s = 1, . . . ,τ, we see that

1
δτ

− 1
δ1
≥ τ−1

2LR2 .

Finally, notice that the inequality in Eq. (4.6.3) implies that

δ1 = f (x1)− f (x?)≤ f ′(x?)(x1− x?)+
LR2

2
=

LR2

2
.

Substituting this in the aforementioned inequality, we see that δτ is O(LR2/τ). This proves
the theorem.

It remains to show that xs always stays at least x?, that is, the iterates never cross from
the right of x? to the left of x?. This happens because our step sizes are small enough – in
fact this illustrates the concept that the step size should be large enough to make enough
progress but small enough to avoid ‘overshooting’ the desired point. From the definition
of L-smoothness, we know that f ′(xs)− f ′(x?) ≤ L(xs − x?), and so, f ′(xs) ≤ L(xs − x?).
Therefore, xs+1 = xs − f ′(xs)/L ≥ xs − (xs − x?) ≥ x?. This completes the analysis of the
greedy algorithm and shows that under mild conditions, it converges to the optimal
solution.

Remarks:

1. In practice, the parameter η is often chosen in an ad-hoc manner by figuring out the
right trade-off between convergence rate and accuracy.

2. The decision to stop the iterations of the gradient descent algorithm can also be
based on several criteria: (i) there could be an upper bound on the number of
iterations, (ii) the value ||xt − xt−1|| becomes smaller than a given threshold, (iii) the
values f (xt)− f (xt+1) become smaller than a given threshold.

x

Figure 4.12 The convex function is non-differentiable at x. We can
instead use the slope of the dotted line as sub-gradient at x.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 83

3. Sometimes, the function f may not be differentiable at the current point xt .
Consider, for example, the function in Figure 4.12 – this function is convex, but not
differentiable at the point x. It turns out that one can still use the gradient descent
algorithm at x provided one uses a vector v instead of the gradient ∇ f (x) and the
following condition holds for all points y in the domain of f :

f (y)≥ f (x)+(y− x)T v.

Such a vector v is called a sub-gradient at x – note that there is no unique choice for v
here.

4.6.1 Applications

Gradient descent is a very popular general purpose algorithm for optimizing a function.
In practice, it is used even if the function is not convex – the hope is that one would instead
converge to a local optimum. We now give some sample applications.

Locating a point by multiple measurements
Suppose we want to find the location of an object P in the two-dimensional plane. There are
three observation points O1,O2,O3. For each of the observation points Oi, you can measure
the distance ri between P and Oi. As shown in Figure 4.13, you can find the location of P by
finding the common intersection point of the circles of radii r1,r2,r3 centered at O1,O2,O3

respectively. But the measurements incur some error, and so we only know approximations
to r1,r2,r3 – call these r̃1, r̃2, r̃3. Given these three approximate values, we would like to find
the best possible estimate for the location of P (see Figure 4.13).

O1

O2

O3

r1

r2

r3

P

Figure 4.13 The point P should ideally lie on the intersection of the three
circles, but there are some measurement errors.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

84 Design and Analysis of Algorithms

Such problems are often solved by solving an appropriate optimization problem.
Suppose the coordinates of Oi are (ai,bi), i = 1,2,3. Let (x,y) be the coordinates of P. Note
that (ai,bi) are known quantities, whereas we would like to find (x,y). Assuming the
errors in the measurements are small, one way of framing this problem would be to find
the values of (x,y) such that the overall error is as small as possible. In other words, let
fi(x,y) denote (r̃i −

√
(ai− x)2 +(bi− y)2)

2
. Observe that fi(x,y) denotes (square of) the

error in the measurement of ri. And so we would like to find the value of (x,y) such that
f (x,y) = ∑

3
i=1 fi(x,y) is minimized. We can solve this by the gradient descent algorithm. It

is easy to write down the gradient of f (x,y) and so, one can run the gradient descent
algorithm till the values converge.

Perceptron algorithm
A neuron is often modeled as a unit with a threshold w0. When the input to the neuron
exceeds w0, it outputs 1. Otherwise, it outputs −1.8 Consider the situation shown in
Figure 4.14. There are n input variables x1,x2, . . . ,xn, and weights w1,w2, . . . ,wn (shown on
the ‘input’ edges in the figure). Therefore, the input to the neuron is w1x1 + . . .+wnxn – if
this exceeds w0, output is 1; otherwise, output is –1. In other words (replacing w0 by −w0),
the output is determined by the sign of w0 +w1x1 + . . .+wnxn.

x1

x2

x3

xn

w1

w2

w3

wn

w0

Figure 4.14 A perceptron with inputs x1,x2, . . . ,xn and output
determined by the sign of w0 +w1x1 + . . .+wnxn.

The perceptron algorithm takes as input several pairs (x(1),y(1)), . . . ,(x(m),y(m)), where
each x(j) is a vector (x(j)

1 , . . . ,x(j)
n), and y(j) is either –1 or 1. Given such input pairs, we

would like to find the values w0,w1, . . . ,wn. One way of thinking about this problem is as

8 Inputs and outputs are electrical signals in nature. Also note that this is an ideal model of a neuron. In reality,
there will be a ‘gray’ area where it outputs something between −1 and 1. The output −1 refers to the fact that
there is no output signal, and so, it corresponds to the zero signal.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 85

follows: consider the hyperplane w0 +w1x1 + . . .+wnxn = 0 in n dimensions (where the
coordinates are given by (x1,x2, . . . ,xn)). The points x(j) for which y(j) is 1 lie on one side of
this hyperplane, whereas the rest lie on the other side. Thus, we can frame this problem
as follows: given a set of points where each point is labeled either ‘+’ or ‘–’ (depending on
whether the y-coordinate is 1 or 0), find a hyperplane separating the points.

We can express this as an optimization problem as follows. Let w denote the vector
(w0,w1, . . . ,wn). Given such a solution w, we can count the number of mis-classified inputs
– an input (x(j),y(j)) is mis-classified if the sign of wT x(j) is positive if and only if y(j) is –1.
More formally, define a function sgn as sgn(z) to be 1 if z < 0, 0 otherwise. Notice that
the quantity sgn(y(j) ·wT x(j)) is 1 if and only if we make a mistake for the input (x(j),y(j)).
Therefore, we can state this problem as minimizing f (w) := ∑ j sgn(y(j) ·wT x(j)). However,
the function f is not convex – it is easy to see that the function sgn (as a function of one
variable) is not convex. Instead, we replace f by another function which is convex and
approximates the sgn function. There are various ways to do this. We will use a simple
approach which replaces sgn by the following function g: g(x) = x is |x| if x < 0, otherwise
it is 0. This function is shown in Figure 4.15. Note that the function g is convex, but it is not
differentiable at x = 0. Recall from the discussion on the gradient descent algorithm that
we can run it on a non-differentiable convex function as long as we can define the notion
of a sub-gradient. It is easy to see that we can define any number between 0 and −1 as the
sub-gradient at x = 0 – we shall define it to be 0 here. If x < 0, the derivative of g is −1. If
x ≥ 0, the derivative is 0. Now, we can define the function f as f (w) := ∑ j g(y(j) ·wT x(j)).

Observe that if w indeed represents a separating hyperplane, then f would be 0. In this
sense, we are justified in replacing sgn by the function g. It is now easy to write down
the derivative of f at a point w. Let N(w) be the set of input points which are incorrectly
classified by w, that is, y(j) ·wT x(j) < 0. Then, the derivative is given by −∑ j∈N(w) y(j)x(j).
Thus, we get the following simple rule for finding the separating hyperplane: if wt is the
estimate for w at iteration t, then:

wt+1 = wt + ∑
j∈N(wt)

y(j)x(j).

Figure 4.15 A plot of the function g as an approximation to the sgn

function.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

86 Design and Analysis of Algorithms

Geometrically, this rule says that we tilt the vector wt based on the points which are getting
mis-classified. Observe that the learning rate η is 1 here.

We now analyze this algorithm. We cannot apply Theorem 4.3 directly because the
slope of the function g changes instantaneously from −1 to 0 at x = 0. Such functions can
still be analyzed, but we will consider a simpler case and show that the algorithm stops
after a small number of iterations. Let P denote the points for which y(j) is 1 and N denote
the points for which this quantity is −1. We will assume that there is a hyperplane which
separates P and N, and there is a margin around this hyperplane which does not contain
any point (see Figure 4.16). We can state this condition formally as follows: there is a unit
vector w? such that for all points x(j),

y(j)〈x(j),w?〉 ≥ γ,

where γ is a positive constant. Note that γ denotes the margin between the hyperplane and
the nearest point. We now show that the gradient descent algorithm, with step size η = 1,
terminates in O(R2/γ2) iterations, where R is an upper bound on ||x(j)|| for all points x(j).

g

w*

Figure 4.16 The points in P are denoted by dots, and those in N by
squares.

The idea behind the proof is to bound the size of wt in two different ways. We assume
that the initial guess w0 is the zero vector. Let Nt denote the indices of mis-classified points
at the beginning of iteration t, and nt denote the cardinality of this set. We first upper
bound the size of wt. Recall that wt+1 = wt +∑ j∈Nt

y(j)x(j). Therefore,

||wt+1||2 = ||wt||2 + || ∑
j∈Nt

y(j)x(j)||2 +2 ∑
j∈Nt

y(j)〈wt,x(j)〉 ≤ ||wt||2 +n2
t R2,

because y(j)〈wt,x(j)〉 < 0 for all j ∈ Nt , and ||x(j)|| ≤ R. It follows that for a time τ, where Nτ

is non-empty,

||wτ+1||2 ≤ R2
τ

∑
t=1

n2
t .

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 87

Now we lower bound the size of wt by considering the quantity 〈wt,w?〉. Note that

〈wt+1,w?〉= 〈wt,w?〉+ ∑
j∈Nt

〈y(j)x(j),w?〉 ≥ 〈wt,w?〉+ γnt .

Therefore, it follows that

||wτ+1|| ≥ 〈wτ+1,w?〉 ≥ γ

τ

∑
t=1

nt ≥ γ
√

τ ·

(
τ

∑
t=1

n2
t

)1/2

,

where the last inequality follows from the Cauchy–Schwarz inequality. Comparing the
upper and lower bounds on ||wτ+1||, it follows that τ≤ R2/γ2. Thus, the algorithm will not
find any mis-classified points after R2/γ2 iterations.

Further Reading

Solving an optimization problem using a brute force search is a basic instinct that should
be avoided for obvious reasons such as prohibitive running time. Use of heuristics like αβ

pruning or heuristic counterparts like A∗ algorithm are widely used but without
guarantees. The randomized AND–OR tree evaluation algorithm was given by [135]. The
theory of matroids was developed by Whitney [153] and many extensions are known –
Lawler [88] provides a comprehensive account of the theory with many applications. The
minimum spanning tree has been a celebrated problem for more than a hundred years
now, where the algorithms of Kruskal and Prim are among the best known. Boruvka’s
algorithm [110] turned out to be the basis of the linear time algorithm of Karger, Klein,
and Tarjan [75] which is randomized. The best deterministic algorithm runs in O(nα(n))
time and is due to Chazelle [29]. The characterization of the MST algorithms using
red–green rule is from Tarjan [140]. The Union–Find data structure has a long history
starting with Hopcroft and Ullman [64] including the path compression heuristics; it
culminates with Tarjan [139] who gives a matching lower bound in the pointer model.
Many variations of the basic heuristics of Union–Find are discussed by [138]. The
Ackerman function is well known in computability theory as a primitive recursive
function that is not µ-recursive.

Gradient descent algorithms form an important class of first order algorithms for
convex optimization and many variations have been studied, both in theory and practice.
Convex optimization is a rich topic of research for many applications [23]. In this book,
we have covered the case of unconstrained optimization only. There are many settings
where there are additional constraints for a feasible solution. This is called constrained
optimization. For example, in linear programming, the objective function is a linear
function (and hence convex), but any feasible point must also satisfy a set of linear
inequality or equality constraints [31]. Another way of visualizing this problem is that we

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

88 Design and Analysis of Algorithms

are given a polytope (i.e., a convex figure obtained by intersection of several half-spaces)
and we want to minimize a linear function over all points in this polytope. Starting from
a feasible point, gradient descent would take us in the direction of negative gradient (note
that the gradient of the objective function is a constant vector). But we cannot move
indefinitely along this direction as we may move out of the polytope. One of the most
popular algorithms, called the simplex algorithm, maintains a feasible point on the
boundary of this polytope, and always moves in a direction which improves the objective
function.

Exercise Problems

4.1 Construct an instance of a knapsack problem that visits every leaf node, even if we use
branch and bound. You can choose any well defined way of pruning the search space.

4.2 Recall the knapsack problem where we have n objects x1, . . . ,xn, with object xi having
volume wi and profit pi. The capacity of the knapsack is C. Show that if we use a greedy
strategy based on profit/volume, that is, if we choose the objects in decreasing order of
this ratio, then the resultant final profit is at least half of the optimal solution. For this claim,
we need to make one change, namely, if xk is the last object chosen, such that x1,x2, . . . ,xk

is in decreasing order of their ratios that can fit in the knapsack, then eventually we choose
max{∑i=k

i=1 pi, pk+1}. Note that xk+1 is such that ∑
i=k
i=1 wi ≤C < ∑

i=k+1
i=1 wi.

4.3 Consider the special case of k = 1 in the analysis of the AND–OR tree. Show that the
expected number of evaluations is 3. (We must consider all cases of output and take the
worst, since we are not assuming any distribution on input or output).

4.4 Complete the analysis of the AND–OR tree when the root is an AND node.

4.5 Consider the following special case of Union–Find. There are three phases where in each
phase, all the Unions precede all the Find operations. Can you design a more efficient
implementation for this scenario?

4.6 We are given a sequence of integers in the range [1,n], where each value occurs at most
once. An operation called EXTRACT-MIN occurs at arbitrary places in the sequence which
detects the minimum element up to that point in the sequence and discards it. Design an
efficient algorithm for this any given sequence of EXTRACT-MIN operations.

For example, in 4,3,1,E,5,8,E, ... the output is 1,3,

4.7 Prove that Borüvka’s algorithm outputs an MST correctly.

4.8 Given an undirected graph G = (V,E), consider the subset system (E,M), where M
consists of those subsets of edges which induce a subgraph of G with at most one cycle.
Prove that this subset system is a matroid.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 89

4.9 Without using the rank property, show that the exchange property holds for the MST
problem. In other words do not invoke the matroid theorem to prove the exchange property.

4.10 For implementing Prim’s algorithm, design a suitable data structure to choose the minimum
label as well as update the labels.

4.11 Suppose you are given an MST for a graph. Now suppose we increase the weight of one
of the edges e in this MST from we to w′e. Give a linear time algorithm to find the new MST.

4.12 Discuss appropriate data structures to implement Borüvka’s algorithm efficiently.

4.13 The second minimal spanning tree is one that is distinct from the minimal spanning tree
(has to differ by at least one edge) and is an MST if the original MST is ignored although
they may even have the same weight. Design an efficient algorithm to determine the
second MST.

Hint: Show that the second MST differs from the original MST by exactly one edge.

4.14 A bottleneck spanning tree (BST) minimizes the maximum weight edge among all
spanning trees of a weighted undirected graph G = (V,E). The value of BST
= minT∈T (maxe∈T{weight(e)}), where T is the set of all spanning trees of G.

(a) Design a linear time algorithm to determine if the BST has value ≤ b for a given b.

(b) Design an efficient, preferably linear time algorithm for finding a BST.

4.15 Given a set J of unit duration jobs with deadlines, how would you determine if all the jobs
can be scheduled within the deadlines. Describe an algorithm that either determines a
feasible schedule or concludes that it is not possible.

4.16 Consider a set of jobs Ji, 1≤ i≤ n such that every job Ji consists of two subtasks (ai,bi),
where ai units of time is required on a single common resource and bi units can be done
independently. Both ai,bi are non-negative integers and the second subtask can be started
strictly after the completion of the first subtask for each job. For example, if J1 = (4,7) and
J2 = (5,5), then one possible schedule is to start J1 with subtask 1 requiring 4 units.
Following which, subtask 2 of J1 can be done and subtask 1 of J2 can be started. So J1 is
completed after 11 units while J2 finishes both subtasks after 14 units. Hence, both jobs
are completed after 14 units if we start with J1. For the case where we schedule J2 before
J1, these jobs complete after 10 and 16 units respectively. Therefore, the first schedule
completes faster.

Given n jobs, how would you schedule the jobs so as to minimize the completion time
of the longest job? Let si denote the starting time for job Ji. Then we want to minimize
maxi{si +ai +bi}.

4.17 Consider a job scheduling problem where each job Ji has a start and a finish time (si, fi).
Two jobs cannot run simultaneously and once started, a job must run to its completion
(i.e., we cannot split a job into parts). Given a set of jobs,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

90 Design and Analysis of Algorithms

(i) If we schedule greedily in increasing order of finish times, can we maximize the number
of jobs completed? Justify.

(ii) If job Ji is associated with a profit pi (≥ 0), can you apply a greedy algorithm to
maximize the profit (of all completed jobs)? Justify.

4.18 We are given a set of events (with starting and finishing times) that have to be scheduled
in a number of halls without conflicts. Design an algorithm to find the minimum number
of halls needed for this purpose. Note that the timings are fixed and no two events can
happen at the same time in the same hall.

You can think of the events as intervals on the real line such that we have to assign a color
to each interval in a way that no two overlapping intervals are assigned the same color.
What is the minimum number of colors required?

4.19 Prove Lemma 4.1.

4.20 Prove Theorem 4.2.

4.21 Consider a long straight road from left to right with houses scattered along the road (you
can think of houses as points on the road). You would like to place cell phone towers at
some points on the road so that each house is within 4 km of at least one of these towers.
Describe an efficient algorithm which achieves this goal and uses as few cell phone towers
as possible.

Hint: Consider a solution where each tower is located as much to its right as possible
(without changing the number of towers). How would you construct such a solution?

4.22 Suppose f : ℜ→ℜ is differentiable. Prove that f is convex if and only if for every pair of
points x,y ∈ dom(f),

f (y)≤ f (x)+(y− x) · f ′(x), (4.6.5)

where f ′(x) denotes the derivative of f .

4.23 Suppose f : ℜ→ℜ is twice differentiable. Prove that f is convex if and only if f ′′(x)≥ 0
for all x ∈ dom(f). Use this to prove that the functions x2,ex and ex2

are convex.

4.24 Consider the following functions on n variables x1, . . . ,xn: (i) a1x1 + . . .+ anxn, where
a1, . . . ,an are constants, (ii) log(ex1 + . . .+ exn), (iii) x2

1 + x2
2 + . . .+ x2

n. Prove that these
functions are convex.

4.25 Let f and h be defined as in Section 4.6. Prove that h′(t) = dT ∇ f (x0 + td). Conclude that
a differentiable function f is convex if and only if for all points x,y ∈ dom(f),

f (y)≥ f (x)+(y− x)T
∇ f (x) (4.6.6)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

Optimization I: Brute Force and Greedy Strategy 91

Suppose the second derivative, that is, the Hessian of f , denoted by H(x) exists. Show
that f is convex if and only if the matrix H(x) is positive semi-definite9 at all points x in the
domain of f .

4.26 Show that a strictly convex function has a unique local minimum in its domain.

4.27 Consider the convex function f (x) = x2−1. Starting from x0 = 1, run the gradient descent
algorithm with η = 0.1 for 10 steps (you may need to use a calculator). How close is the
final estimate to the minimizer of f ?

4.28 Consider the function f (x) = |x| and η= 0.1 with starting point 3.05. Show that the gradient
descent algorithm will never converge to the minimum.

9 an m×m matrix H is said to be positive semi-definite if xT Hx≥ 0 for all vectors x.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.005
https://www.cambridge.org/core

5
C H A P T E R

Optimization II:
Dynamic Programming

The idea behind dynamic programming is very similar to the concept of divide and
conquer. In fact, one often specifies such an algorithm by writing down the recursive
sub-structure of the problem being solved. If we directly use a divide and conquer
strategy to solve such a problem, it can lead to an inefficient implementation. Consider
the following example: the Fibonacci series is given by the sequence 1,1,2,3,5,8, ... If Fn

denotes the nth number in this sequence, then F0 = F1 = 1, and subsequently,
Fn = Fn−1 +Fn−2. This immediately gives a divide and conquer algorithm (see Figure 5.1)
for the problem of computing Fn for an input number n. However, this algorithm is very
inefficient – it takes exponential time (see Section 1.1 regarding this aspect), even though
there is a simple linear time algorithm for this problem. The reason why the divide and
conquer algorithm performs so poorly is because the same recursive call is made multiple
times. Figure 5.2 shows the recursive calls made while computing F6. This is quite
wasteful and one way of handling this would be to store the results of a recursive call in a
table so that multiple recursive calls for the same input can be avoided. Indeed a simple
way of fixing this algorithm would be to have an array F [] of length n, and starting from
i = 0 onward, we fill the entries F [i] in this array.

Thus, dynamic programming is a divide and conquer strategy done in a careful
manner. Typically, one specifies the table which should store all possible recursive calls
that the algorithm will make. In fact, the final algorithm does not make any recursive
calls. The entries in the table are computed such that whenever we need to solve a
sub-problem, all the sub-problems appearing in the recursive call needed for this have

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

Optimization II: Dynamic Programming 93

already been solved and stored in the table. For example, in the Fibonacci series example,
the table corresponds to the array F , and when we need to compute F [i], the values F [i−1]
and F [i−2] have already been computed.

Procedure Computing(Fn)

1 Input Positive integer n ;
2 F(n){
3 If n = 1 or n = 0 Output 1
4 Else Output F(n−1)+F(n−2)} ;

Figure 5.1 Recursive Fibonacci sequence algorithm

F2

F4

F6

F5

F4

F3

F2

F3

F3

F2
F2

F2

0 1 1 1

0 1

0 1 1 110 0

Figure 5.2 The recursive unfolding of computing F6. Each internal node
represents an addition of the children nodes. The leaf nodes
are indicated in solid circles and correspond to terminating
conditions. The reader may note the multiplicity of F2,F3, etc;
this gets worse as we compute bigger Fibonacci numbers.

A generic dynamic programming approach can be summarized as follows. We begin
with a recurrence (or an inductive) relation. In a typical recurrence, you may find repeated
subproblems as we unfold the recurrence relation. There is an interesting property that
the dynamic programming problems need to satisfy. The overall optimal solution can be
described in terms of the optimal solution of the subproblems, sometimes known as the
optimal substructure property. This is what enables us to write an appropriate recurrence
for the optimal solution.

Following this, we describe a table that contains the solutions to the various
subproblems. Each entry of the table T must be computable using only the previously

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

94 Design and Analysis of Algorithms

computed entries. This sequencing is very critical to carry the computation forward. The
running time is proportional to

∑
s∈T

t(s), where t(s) is the time taken to compute an entry s

In the Fibonacci series example, t(s) = O(1). The space bound is proportional to part of
the table that must be retained to compute the remaining entries. This is where we can
make substantial savings by sequencing the computation cleverly. Dynamic programming
is often seen as a trade-off between space and running time, where we reduce the running
time at the expense of extra space. By storing the solutions of the repeated subproblems,
we save the time for re-computation.

5.1 Knapsack Problem

In the knapsack problem, we are given a set of n objects, and a knapsack of size B. Object
xi has profit pi and weight (or size) wi. We want to find a subset of objects whose total
weight is at most B and the total profit is maximized. As described earlier, we begin with
a recurrence for this problem, which reduces the optimum value for this problem to
finding the optima of sub problems. For integer parameters i,y, 1≤ i≤ n and 0≤ y≤ B, let
F(i,y) denote the profit of the optimal solution for a knapsack of capacity y and using
only the objects in {x1,x2, . . . ,xi}. Under this notation, F(n,B) is the optimal value to the
knapsack problem with n objects and capacity M (we are assuming that all weights and B
are integers). As a base case, consider F(1,y) – this is easy to define. If y≥ w1, then F(1,y)
is p1, otherwise it is 0. Assuming i≥ 1, we can write the following equation

F(i,y) = max{F(i−1,y),F(i−1,y−wi)+ pi}

where the two terms correspond to inclusion or exclusion of the object i in the optimal
solution (if y < wi, we do not have the second term). Also note that once we decide about
the choice of xi, the remaining choices must be optimal with respect to the remaining
objects and the residual capacity of the knapsack.

This algorithm can be easily implemented where we can store F using a
two-dimensional table. The rows of F can be indexed by i and columns by y. Note that the
computation of row i requires us to know the entries in row i− 1. Since we can compute
row 1 as described here, we can implement this algorithm by computing entries row-wise
from row 1 to row n. Since computation of each entry F(i,y) requires constant time, this
algorithm can be implemented in O(nB) time. As stated earlier, the algorithm requires
O(nB) space. But as outlined here, the computation of entries in row i only requires
entries in row i−1. Therefore, we can reduce the space to O(B). Note that this may not be
polynomial time. The parameter B requires only O(logB) bits for its representation.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

Optimization II: Dynamic Programming 95

Hence, if B happens to be 2n, the running time of this algorithm would be 2n, even though
the input size is O(n). Table 5.1 illustrates this for the example given earlier in Chapter 4.

So far, we have shown how to compute the value of the optimal solution. But we may
want to find the actual subset of objects which are selected by an optimal solution. This
can be easily gleaned from the table once we have computed all its entries. Indeed, each
entry F(i,y) is a choice between two options. Besides storing the optimal value of the
corresponding problem, we will also store which choice was selected while computing
this entry. From this, it is easy to compute an optimal solution. We start with the table
entry F(n,B). If its value was F(n− 1,B) (first choice), then we proceed from the table
entry F(n − 1,B); otherwise (second choice), we select object n in our solution, and
proceed to the table entry F(n− 1,B−wn). We repeat this process till we exhaust looking
at all the rows. Note that now we need to store the entire table, we cannot just use O(B)
storage. Although there are tricks which even allow us to compute the optimal solution
using O(B) storage (and O(nB) time), we will not cover them in this chapter.

Table 5.1 The dynamic programming table for Knapsack

p1 = 10,w1 = 2 p2 = 10,w2 = 4 p3 = 12,w3 = 6 p4 = 18,w4 = 9 B = 15

i y = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10
2 0 10 10 10 10 20 20 20 20 20 20 20 20 20 20
3 0 10 10 10 10 20 20 22 22 22 22 32 32 32 32
4 0 10 10 10 10 20 20 22 22 22 28 32 32 32 38 **

5.2 Context Free Parsing

Given a context free grammar G in a Chomsky normal form (CNF) and a string
X = x1x2 . . .xn over some alphabet Σ, we want to determine if X can be derived from the
grammar G.

Recall that a grammar in CNF has the following production rules

A→ BC A→ a

where A,B,C are non-terminals and a is a terminal (symbol of the alphabet). All derivations
must start from a special non-terminal S which is the start symbol. We will use the notation
S ∗⇒ α to denote that S can derive the sentence α in a finite number of steps by applying
the production rules of the grammar.

The basis of our algorithm is the following observation

Observation 5.1 A ∗⇒ xixi+1 . . .xk iff A → BC and there exists an i < j < k such that
B ∗⇒ xixi+1 . . .x j and C ∗⇒ x j+1 . . .xk.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

96 Design and Analysis of Algorithms

There are k− 1 possible partitions of the string and we must check all partitions to see if
the aforementioned condition is satisfied. More generally, for the given string x1x2 . . .xn,
we consider all substrings Xi,k = xixi+1 . . .xk, where 1 ≤ i < k ≤ n – there are O(n2) such
substrings. For each substring, we try to determine the set of non-terminals A that can
derive this substring. To determine this, we use the observation above. Note that both B
and C derive substrings that are strictly smaller than Xi,k. For substrings of length one, it is
easy to check which non-terminals derive them, so these serve as base cases.

We define a two-dimensional table T such that the entry T (s, t) corresponds to all
non-terminals that derive the substring starting at xs of length t. For a fixed t, the possible
values of s are 1,2, . . . ,n− t +1 which makes the table triangular. Let N denote the number
of non-terminals in the grammar. Then T (s, t) consists of all non-terminals A such that one
of the following conditions are satisfied: (i) If t = 1 then there should be a rule A→ xs in
the CNF grammar, or (ii) there is an index k,s < k < t and a rule A→ BC in the grammar
such that T (s,k) contains B and T (k, t) contains C. Note that such an entry can be
computed in O(tN) time.

Each entry in the table can be filled up in O(t) time for column t. This yields a total
running time of ∑

n
t=1 O((n− t) · t), which is O(n3). The space required is the size of the table

which is O(n2). This algorithm is known as the CYK (Cocke–Young–Kassimi) algorithm
after the discoverers.

Example 5.1 Given the following grammar

S→ AB S→ BA
A→ BA A→ a
B→CC B→ b
C→ AB C→ a

determine if strings s1 = aba and s2 = baaba are generated by this grammar. The tables in
Figure 5.3 corresponds to the two input strings.

a b a b a a b a

C, A B C, A

SC

f

B A, C A, C B A, C

S, A S, AS, CB

f

f B B

S, A, C

A, S, C

1

2

3

1

2

3

4

5
(a) (b)

Figure 5.3 Table (a) implies that the string aba does not belong to
the grammar whereas Table (b) shows that baaba can be
generated from S

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

Optimization II: Dynamic Programming 97

5.3 Longest Monotonic Subsequence

We are given a sequence S of numbers x1,x2, . . . ,xn, a subsequence xi1 ,xi2 , . . . ,xik , where i j+1 >

i j is monotonic if xi j+1 ≥ xi j . We want to find the longest (there may be more than one)
monotonic subsequence.

Claim 5.1 For any sequence of length n, either the longest increasing monotonic subsequence or
the longest decreasing subsequence has length at least d

√
ne.

This is known as the Erdos–Szekeres theorem. The proof is based on a clever
application of the pigeon-hole principle and is left as an exercise. The previous result is
only an existential result but here we would like to find the actual sequence. Let Li denote
the length of the largest monotonic subsequence in x1, . . . ,xi which ends at xi. Clearly, L1 is
just 1. We can write an easy recurrence for Li, i > 1. Consider such a longest subsequence
ending at xi. Let xk be the element in this subsequence before xi (clearly xk must be less
than or equal to xi). Then, Li must be Lk +1. Thus, we get

Li = max
k:1≤k<i,xk≤xi

Lk +1

One can see that computing Li for all i takes O(n2) time. The length of the longest
monotonic subsequence is just maxi Li. It is also easy to see that once we have computed
this table, we can also recover the actual longest monotonic subsequence in O(n) time.
Note that the space requirement is only O(n).

Can we improve the running time? For this, we will actually address a more general
problem1, namely for each j, we will compute a monotonic subsequence of length j (if it
exists). For each j ≤ i≤ n, let Mi, j denote the set of monotonic subsequences of length j in
x1x2 . . .xi. Clearly, if Mi, j exists, then Mi, j−1 exists as well and the maximum length of the
subsequence is given by the largest value of j for which Mn, j is non-empty.

Further, among all subsequences of length j, we will like to focus on the subsequence
mi, j ∈ Mi, j which has the minimum terminating value. For example, among the
subsequences 2,4,5,9 and 1,4,5,8 (both length 4), we will choose the second one, since
8 < 9.

Let `i, j be the last element of mi, j. Here is a simple property of the `i, j values.

Observation 5.2 For any fixed index i, the `i, js form a non-decreasing sequence in j.

To prove this, we argue by contradiction. Fix an index i and let j1 < j2 ≤ i be such that
`i, j1 > `i, j2 . But now, look at the monotonic subsequence mi, j2 . This will contain a monotonic
subsequence of length j1 in which the last element is at most `i, j2 and hence, less than `i, j1 .

1See Exercise 5.3 for an alternate approach.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

98 Design and Analysis of Algorithms

We now write a recurrence for `i, j. As a convention, we will set `i, j to infinity if the set
Mi, j is empty. As base cases, `i,1 is just the smallest number in x1, . . . ,xi, for all i, and `(i, j)
is infinity for all j > 1. For i≥ 1, j > 1,

`i+1, j =

{
xi+1 if `i, j−1 ≤ xi+1 < `i, j

`i, j otherwise

This follows, since, mi+1, j is either mi, j or xi+1 must be the last element of mi+1, j; in the
latter case, it must satisfy the previous observation. As an example, consider the sequence:
13, 5, 8, 12, 9, 14, 15, 2, 20. Starting from index 1, m1,1 = 13. Then, successively we have
m2,1 = 5, and m3,1 = 5, m3,2 = 5,8. Subsequently, we get m4,1 = 5 m4,2 = 5,8 m5,3 = 5,8,12,
etc. Therefore, `4,2 would be 8, `5,3 would be 12, and so on. If we compute `i, j using the
recurrence given here, this will take O(n2) time because there are n2 table entries. Instead,
we use the aforementioned observation to update these table entries in a fast manner.

For a fixed i, the observation shows that the sequence `i, j is a non-decreasing sequence
– call this sequence Di. We now show how to update Di to Di+1 quickly. Indeed, the
previous recurrence shows that if `i,k−1 ≤ xi+1 < `i,k, then Di+1 is obtained from Di by just
inserting xi+1 after `i,k−1 and removing `i,k. We can implement these two operations,
namely, search for xi+1 in a sorted sequence, and insert xi+1 in this sequence efficiently
using a dynamic dictionary data structure, like an AVL tree, in O(logn) time. Consider the
following example sequence. The sequences D1, . . . ,D9 are as given here:

D1 13 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

D2 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

D3 5 8 ∞ ∞ ∞ ∞ ∞ ∞ ∞

D4 5 8 12 ∞ ∞ ∞ ∞ ∞ ∞

D5 5 8 9 ∞ ∞ ∞ ∞ ∞ ∞

D6 5 8 9 14 ∞ ∞ ∞ ∞ ∞

D7 5 8 9 14 15 ∞ ∞ ∞ ∞

D8 2 8 9 14 15 ∞ ∞ ∞ ∞

D9 2 8 9 14 15 20 ∞ ∞ ∞

Once we have all these sequences, we can construct the longest monotonic subsequence
easily. Consider the given example. We know that there is a subsequence of length 6 ending
at 20. Looking at D8, we can see that there is a subsequence of length 5 ending at 15, and we
know from our earlier observation that 20 follows 15 in the input sequence. Hence, there
is a subsequence of length 6 ending with 15,20, and so on. The reader should work out the
details of the information maintained in Di and reconstruction of the longest sequence.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

Optimization II: Dynamic Programming 99

5.4 Function Approximation

Consider an integer valued function h(i) on integers {1,2, . . . ,n}. Given a parameter k ≤ n,
we want to define another function g(i) with a maximum of k steps such that the difference
between g and h, ∆(g,h) is minimized according to some measure ∆. One of the most
common measures is the sum of the squares of the differences of the two functions that
we will denote by L2

2, that is, L2
2(g,h) = ∑

n
i=1(g(i)−h(i))2. We will also denote L2

2(g,h) by the
sum of squares error between g and h.

Given indices i≤ k and j ≤ n, let g∗i, j denote the optimal i-step function for this problem
restricted to the points 1, . . . , j – we are interested in computing g∗k,n. Note that g∗i, j for i≥ j
is identical to h restricted to points 1 . . . j.

Claim 5.2 g∗1, j =
1
j ∑

j
i=1 h(i), that is, it is a constant function equal to the mean.

(,)x y5 5

(,)x y3 3

(,)x y2 2

(,)x y1 1

(,)x y4 4

(,)x y7 7

(,)x y6 6

(a) (b)

Figure 5.4 In (a), the constant function is an average of the y values
which minimizes the sum of squares error. In (b), a 3 step
function approximates the 7 point function.

The proof of this claim is left as an exercise.
For indices i, j,1≤ i≤ j ≤ n, let D(i, j) denote ∑

j
l=i(h(l)−Ai, j)

2, where Ai, j is the mean of
h(i), . . . ,h(j). In other words, it is the smallest value of the sum of squares error between h
restricted to the range {i, i + 1, . . . , j} and a constant function. We can now write a
recurrence for the g∗i,` as follows. Let t(i, j) denote the smallest s ≤ j such that g∗i, j is
constant for values ≥ s, viz., t(i, j) is the last step of g∗i, j . Then,

t(i, j) = min
s< j
{L2

2(h,g
∗
i−1,s)+Ds, j}

We can now write

g∗i,`(s) =

{
g∗i−1,t(i,`)(s) s < t(i, `)

At(i,`),` otherwise

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

100 Design and Analysis of Algorithms

The recurrence captures the property that an optimal k step approximation can be
expressed as an optimal k− 1 step approximation till an intermediate point followed by
the best 1 step approximation of the remaining interval (which is the mean value in this
interval from our previous observation). Assuming that D j,` are pre-computed for all
1 ≤ j < ` ≤ n, we can compute the g∗i, j for all 1 ≤ i ≤ k and 1 ≤ j ≤ n in a table of size kn.
The entries can be computed in increasing order of i and thereafter in increasing order of
js. The base case of i = 1 can be computed directly from the result of the previous
exercise. We simultaneously compute t(i, j) and the quantity L2

2(h,g
∗
i, j). Each entry can be

computed from j−1 previously computed entries yielding a total time of

i=k

∑
i=1

n

∑
j=1

O(j) = O(k ·n2)

The space required is proportional to the previous row (i.e., we need to keep track of the
previous value of i), given that D j,` can be stored/computed quickly. Note that an i-step
function can be stored as an i-tuple; so the space in each row is O(k ·n), since i≤ k.

To complete the analysis of this algorithm, the computation of Di, j is left as an exercise.
The reader is also encouraged to explore alternate dynamic programming recurrence to
compute the optimal function.

5.5 Viterbi’s Algorithm for Maximum Likelihood Estimation

In this problem, we have a labeled directed graph G = (V,E), where the edges are labeled
with symbols from an alphabet Σ. Note that more than one edge can share the same label.
Further, each edge (u,v) has a weight Wu,v, where the weights are related to probabilities
and the sum of the probabilities on outgoing edges with the same label from any given
vertex is 1. Given a string σ = σ1σ2 . . .σn over Σ, find the most probable path in the graph
starting at vo with label equal to σ. The label of a path is the concatenation of labels
associated with the edges. To find the most probable path, we can actually find the path
that achieves the maximum probability with label σ. By assuming independence between
successive edges, we want to choose a path that maximizes the product of the
probabilities. Taking the log of this objective function, we can instead maximize the sum
of the probabilities. So, if the weights are negative logarithms of the probability – the
objective is to minimize the sum of the weights of edges along a path (note that the log of
probabilities are negative numbers).

We can write a recurrence based on the following observation.
The optimal least-weight path x1,x2, . . . ,xn starting at vertex x1 with label σ1,σ2, . . . ,σn

is such that the path x2,x3, . . . ,xn is optimal with respect to the label σ2,σ3, . . . ,σn. For paths
of lengths one, it is easy to find the optimal labeled path. Let Pi, j(v) denote the optimal
labeled path for the labels σi,σi+1, . . . ,σ j starting at vertex v. We are interested in P1,n(vo).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

Optimization II: Dynamic Programming 101

Pi, j(v) = min
w|(v,w)∈E

{Pi+1, j(w)+Wv,w|label of (v,w) = σi}

Starting from the base case of length 1 path, we build length 2 paths from each vertex and
so on. Note that the length i+1 paths from a vertex v can be built from length i paths from
w (computed for all vertices w ∈ V). The paths that we compute are of the form Pi,n for all
1 ≤ i ≤ n. Therefore, we can compute the entries of the table starting from i = n−1. From
the previous recurrence, we can now compute the entries of the Pn−2,n, etc. by comparing
at most |V | entries (more specifically the outdegree) for each starting vertex v.

More precisely, we can argue that each of this is proportional to dv which is the
outdegree of any vertex v. Therefore, the total time for each iteration is ∑v dv = O(|E|)
steps, where |E| is the number of edges. Hence, the total time to fill up the table is
O(n · |E|). Although the size of the table is n · |V |, the space requirement can be reduced to
O(|V |) from the observation that only the (i−1) length paths are required to compute the
optimal i length paths.

20

7

15

11

17

15

10

5

10

6

V1

V2

V6

V4

V3 V5

a

a

a

a

a
b

bb

b

b

V5

V6

V4

V1

V2

V3

1

15

5

15

1

1

1

1

21

1

15

15

1

32

1

1

1

1

1

2 3

Figure 5.5 For the label aba and starting vertex v1, there are several possible
labeled paths like [v1,v3,v4,v6], [v1,v4,v5,v6], etc. The weights
are normalized instead of taking logarithm of probability.
The entry (vi, j) corresponds to the optimum path
corresponding to the labels σ jσ j+1 . . .σn starting from vertex
vi. In this case, the entry corresponding to (v1,3) is the answer.
The entry (v1,2) corresponds to the labeled path ba from v1 that
does not exist and therefore it is ∞.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

102 Design and Analysis of Algorithms

5.6 Maximum Weighted Independent Set in a Tree

We are given a rooted tree T and each vertex v in T has a weight wv. An independent set in
T is a subset of vertices such that no two of them have an edge between them (i.e., no two
of them have a parent–child relation). We would like to find an independent set whose
weight is as large as possible. For a node v in the tree, let Tv denote the sub-tree rooted
below v. The dynamic programming algorithm is based on the following idea: suppose we
want to find the maximum weighted independent set in the tree Tv. There are two options
at v – (i) If we do not pick v, we can recursively solve each of the subproblems defined by
the children of v; (ii) If we pick v, then we again need to solve these subproblems, but now
we cannot pick the children of v. Motivated by this, we define a table I(v,b), where v is a
node in the tree, and the parameter b is either 0 or 1. I(v,1) denotes the optimal value of
the subproblem defined by Tv under the restriction that we are not allowed to pick v, and
I(v,0) is the same quantity with the restriction that we must pick v.

As a base case, if v is a leaf, then I(v,1) is wv (assuming weights are non-negative) and
I(v,0) is 0. If v is not a leaf, let w1, . . . ,wk denote the children of v. Then, we have the
following recurrences:

I(v,1) = wv +
k

∑
i=1

I(wi,0), I(v,0) =
k

∑
i=1

max(I(wi,1), I(wi,0))

If r is the root of the tree, then we output max(I(r,0), I(r,1)). In order to compute I(v,b), we
need to know the values I(w,b′) for all children w of v. Therefore, we can compute them
using post-order traversal of the tree. Computing each entry takes time proportional to
the number of children, and so, the optimal value can be computed in O(n) time, where n
is the number of nodes in the tree. Note that ∑v∈V d(v) = n− 1 for any tree, where d(v) is
the number of children of a node v.

Further Reading

Dynamic programming is one of the fundamental techniques of algorithm design, and is
covered in many classical textbooks [7, 37]. The knapsack problem has been well-studied
by the algorithms community both for its simplicity and wide range of applications. The
fact that we could not get a polynomial time algorithm is not surprising because it
happens to be NP-hard (see Chapter 12). But one can get polynomial time algorithms
which come very close to the optimal solution (see Chapter 12). We could save space in
the dynamic programming table for the knapsack problem by keeping only row i− 1
while computing row i. This is typical of many dynamic programming algorithms.
However, if we also want to reconstruct the actual solution (and not just the value of the
optimal solution) and still save space, then it requires more clever tricks (see for example,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

Optimization II: Dynamic Programming 103

Hirschberg’s algorithm [62]). The CYK algorithm is named after its discoverers Cocke,
Younger, and Kasami [7], and remains one of the most efficient algorithms for CNF
parsing. With careful choice of data structures, it can be implemented in O(n3t) time,
where t denotes the size of the CNF grammar. Viterbi’s algorithm is named after its
discoverer Viterbi [149] and finds many applications in digital communication, machine
learning, and other areas. Many graph theoretic optimization problems like vertex cover,
independent set, clustering become easier on trees. Often dynamic programming is the
principal technique for solving these problems on trees. Use of additional properties like
the quadrangle inequality by Yao [158] would lead to non-trivial improvements over the
straightforward dynamic programming formulations like matrix-chain product and
constructing optimal binary search trees – see exercise problems.

Exercise Problems

5.1 For any sequence of length n prove that either the longest increasing monotonic
subsequence or the longest decreasing subsequence has length at least d

√
ne.

5.2 Given a sequence of n real numbers [x1,x2 . . .xn], we want to find integers 1 ≤ k ≤ ` ≤ n,
such that ∑

`
i=k xi is maximum. Note that xis may be negative,otherwise the problem is

trivial. Design a linear time algorithm for this problem.

5.3 If you could design a data structure that would return the maximum value of L j for all x j ≤ xi

in O(logn) time then we may be able to obtain a better bound with the simpler recurrence
for the longest monotonic sequence. Note that this data structure must support insertion
of new points as we scan from left to right. Since the points are known in advance, we
can pre-construct the BST skeleton (see Figure 5.6) and fill in the actual points as we
scan from left to right, thereby avoiding dynamic restructuring. As we insert points, we
update the heap data along the insertion path. Work out the details of this structure and
the analysis to obtain an O(n logn) algorithm.

You may also want to refer to Section 7.3 for a similar data structure.

5.4 A bitonic sequence of numbers x1,x2,x3 . . .xk is such that there exists an i, 1≤ i≤ k such
that x1,x2, . . . ,xi is an increasing sequence and xi,xi+1, . . . ,xn is a decreasing sequence.
It is possible that one of the sequences is empty, i.e., strictly increasing (decreasing)
sequences are also considered bitonic. For example, 3, 6, 7 , 5, 1 is a bitonic sequence
where 7 is the discriminating number.

Given a sequence of n numbers, design an efficient algorithm to find the longest bitonic
subsequence. For the sequence, 2, 4, 3 , 1, –10, 20, 8, the reader can verify that 2, 3, 20,
8 is such a sequence of length 4.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

104 Design and Analysis of Algorithms

12 [3]

8 [2]
9 [3]

5 [1] 8 [2] 9 [3]

12 [3]

12 [3]

[1]5 8 12 13 [1]

52 8 9 12 13 14 15

Figure 5.6 In the sequence 13, 5, 8, 12, 9, 14, 15, 2 we have predefined
the tree structure but only the first four numbers have been
scanned, i.e., 13, 5, 8, 12. The internal node contains the
tuple a[b] to denote that the longest increasing subsequence
corresponding to all the scanned numbers in the subtree has
length b ending at a. When 9 is inserted along the dotted
path, we only need to consider the subtrees to the left of the
path, as these are smaller than 9 and choose the largest b
value among them.

5.5 Recall the definition of g(i, j) in the function approximation problem. Show that g∗1, j =
1
n ∑

j
i=1 h(i), i.e., it is a constant function equal to the mean.

Further show that L2
2(h,g

∗
1− δ) = L2

2(h,g
∗
1)+ δ2 · n, i.e., for δ = 0, the sum of squares of

deviation is minimized.

5.6 In the algorithm for function approximation, design an efficient algorithm for the prior
computation of all the Di, js.

5.7 Instead of partitioning g∗i, j in terms of an optimal i− 1 step approximation and a 1 step
(constant) approximation you can also partition as i′ and i− i′ step functions for any
i−1≥ i′ ≥ 1.

Can you analyze the algorithm for an arbitrary i′?

5.8 Matrix chain product Given a chain (A1,A2 . . .An) of matrices where matrix Ai has
dimensions pi−1 × pi, we want to compute the product of the chain using minimum
number of multiplications.

(i) In how many ways can the matrices be multiplied?

(ii) Design an efficient algorithm that does not exhaustively use (i).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

Optimization II: Dynamic Programming 105

5.9 Given two character strings S1 = x[1..n] and S2 = y[1..m], over some alphabet Σ, the
edit distance is the cost of transforming the string x to y using a minimum number of
operations from the set {copy,replace, insert,delete}. Design an efficient algorithm to find
the minimum edit distance between two given strings. For example, the string cat can be
transformed to kite by the following sequence of operations.

(1) replace c with k; (2) replace a with i; (3) copy t; (4) insert e.

There are specific costs associated with each of the operation and we need to minimize
the total cost. This has direct application to DNA sequencing problems, i.e., how close two
strings are to each other.

5.10 Typesetting problem The input is a sequence of n words of lengths l1, l2, . . . , ln measured
in characters. We want to print it nicely on a number of lines that can hold a maximum
of M characters each. The criterion for ‘niceness’ is as follows. No word can be split
across lines with a blank separating words and each line should be as full as possible.
The penalty for a trailing space of s is s3. If si is the trailing space left in line i, we want to
minimize ∑i s3

i .

If the penalty function is ∑i si, would a greedy approach work?

5.11 An ordered subset of a word is a subsequence, for example, xle is a subsequence of the
string example. For the strings length and breadth, the longest common subsequence is
eth, that occurs in both strings. Given two strings s1 and s2 of lengths m and n respectively,
design an efficient algorithm to find their longest common subsequence.

5.12 Optimal BST We are given a sequence K = {k1,k2, . . . ,kn} of n distinct keys in sorted
order with associated probability pi that the key ki will be accessed. Moreover, let qi

represent the probability that the search will be for a value (strictly) between ki and ki+1.
So ∑i pi +∑ j q j = 1. How would you build a binary search tree so as to optimize the
expected search cost?

Note that we are not trying to build a balanced tree but to optimize the weighted length of
paths – the more probable value should be closer to the root.

5.13 A non-deterministic finite automaton (NFA) is known to be equivalent to a deterministic
finite automaton (DFA) in terms of the languages that can be accepted. Given an NFA,
how do you find out an equivalent regular expression? What is the running time of your
algorithm if a regular expression of length ` can be output in (i) constant time (ii) time
proportional to `?

Recall that a regular expression represents a set (possibly infinite) of strings over an
alphabet which is called a regular set and NFA/DFAs accept precisely this class of
languages. An NFA may be thought of as a directed, labeled transition graph where
states correspond to vertices. We want to characterize all the strings using a regular

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

106 Design and Analysis of Algorithms

expression that take the automaton from an initial state to one of the final accepting
states.

Remark This problem can be attempted only if you have some familiarity with regular
expressions and finite automata.

5.14 A taxi-driver has to decide about a schedule to maximize his profit based on an estimated
profit for each day. Due to some constraint, he cannot go out on consecutive days. For
example, over a period of 5 days, if his estimated profits are 30, 50, 40, 20, 60, then by
going out on 1st, 3rd and 5th days, he can make a profit of 30+40+60 =130. Alternately, by
going out on 2nd and 5th days, he can earn 110. First, convince yourself that by choosing
alternate days (there are two such schedules), he won’t maximize his profit. Design an
efficient algorithm to pick a schedule to maximize the profit for an n days estimated profit
sequence.

5.15 A vertex cover of a graph G = (V,E) is a subset W ⊆V such that for all (x,y) ∈ E at least
one of the endpoints x,y ∈W .

(i) For a given tree T , design an efficient algorithm to find the minimum cardinality vertex
cover of T . The tree is not necessarily balanced, nor is it binary.

(ii) If every vertex has a non-negative real number weight, find the minimum weight vertex
cover of a given tree.

5.16 You are given a stick of (integral) length n and you are required to break into pieces of
(integral) lengths `1, `2, . . . , `k such that a piece having length `i fetches profit pi > 0 – for
all other lengths, the profit is zero. How would you break the stick into pieces so as to
maximize the cumulative profit of all the pieces.

5.17 There are n destinations Di, 1≤ i≤ n with demands di. There are two warehouses W1,W2

that have inventory r1 and r2 respectively such that r1+r2 = ∑i di. The cost of transporting
xi, j units from Wi to D j is ci, j(xi, j). We must ensure that xi, j + x2, j = d j in a way so as to
minimize ∑i, j ci, j(xi, j).

Hint: Let gi(x) be the cost incurred when W1 has an inventory of x and supplies are sent
to D j in an optimal manner – the inventory at W2 is ∑1≤ j≤i d j− x.

5.18 An n×n grid has integer (possibly negative) labels on each square. A player starts from
any square at the left end and travels to the right end by moving to one of the 3 adjacent
squares in the next column in one step. From the top and bottom row there are only 2
adjacent squares in the next column. The reward collected by the player is the sum of the
integers in all the squares traversed by the player. Design an efficient (polynomial time)
algorithm that maximizes the reward collected by the player.

5.19 Given a convex n-gon (number of vertices is n), we want to triangulate it by adding
non-crossing diagonals. Recall that n− 3 diagonals are required to triangulate. The cost
of triangulation is the sum of the lengths of the diagonals added. For example, in a

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

Optimization II: Dynamic Programming 107

parallelogram, we will choose the shorter diagonal for minimizing cost. Design an
efficient algorithm to find the minimum cost diagonalization of a given n-gon.

5.20 Suppose you want to replicate a file over a collection of n servers, labeled S1, . . . ,Sn.
Placing a copy of the file at server Si results in a placement cost of ci for an integer ci > 0.

Now if a user requests the file from server Si, and no copy of the file is present at Si, then
the servers Si+1,Si+2, . . . are searched in order until a copy of the file is finally found, say
at server S j, j > i. This results in an access cost of j− i. Thus, the access cost of Si is 0
if Si holds a copy of the file, otherwise it is j− i, where j > i is the smallest integer greater
than i such that S j has a copy of the file. We will require that a copy of the file be always
placed at Sn, the last server, so that all such searches terminate.

Now you are given the placement cost ci for each server Si. We would like to decide which
servers should contain a copy of the file so that the sum of the placement cost and the sum
of access costs for all the servers is minimized. Give an efficient algorithm which solves
this problem.

5.21 The classical traveling salesman problem (TSP) involves finding a shortest tour in a
directed weighted graph G = (V,E) that visits every vertex exactly once. A brute force
method would try all permutations of [1,2, . . . ,n], where V = {1,2, . . . ,n} that results in an
Ω(n!) running time with O(n logn) space to count all the permutations. Design a faster
dynamic programming algorithm based on the following idea.

Let T (i,W) denote the shortest path in the graph which starts from vertex i, visits only the
vertices in W , and ends in vertex 1. Then, the shortest tour of G can be expressed as

min
k
{w(1,k)+T (k,V −{1})}

Show how to compute T (i,W) using dynamic programming and also analyze the time and
space complexity.

5.22 You are given a set of points (i.e., real numbers) x1,x2, . . . ,xn, and a parameter k. In the
k-means clustering problem, we wish to partition the set of points into k disjoint intervals
I1, . . . , Ik such that the objective function

k

∑
i=1

∑
x j∈Ii

|x j−µi|2

is minimized, where µi denotes the average of all the points in Ii. Give an efficient algorithm
for solving this problem.

5.23 Knapsack cover problem You are given a knapsack of size B. You are also given a set
of n items, where the ith item has size si and cost ci. We want to select a minimum cost
subset of items whose total size is at least B. Give an efficient algorithm for this problem.
You can assume that all quantities are positive integers.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

108 Design and Analysis of Algorithms

5.24 You are given n (closed) intervals I1, . . . , In on a line. Each interval Ii has an associated
weight wi. Give an efficient algorithm to select a maximum weight subset of intervals such
that the selected intervals are pair-wise disjoint.

5.25 Consider the same setting as in the previous exercise. But now, we would like to select a
maximum weight subset of intervals such that for any point p on the line, there are at most
two selected intervals containing p. Give an efficient algorithm for this problem.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.006
https://www.cambridge.org/core

6
C H A P T E R

Searching

The problem of searching is basic in the computer science field and vast amount of
literature is devoted to many fascinating aspects of this problem. Starting with searching
for a given key in a pre-processed set to the more recent techniques developed for
searching documents, the modern civilization forges ahead using Google Search.
Discussing the latter techniques is outside the scope of this chapter, so we focus on the
more traditional framework. Knuth [83] is one of the most comprehensive sources of the
earlier techniques; all textbooks on data structures address common techniques like
binary search and balanced tree-based dictionaries like AVL (Adelson-Velsky and Landis)
trees, red–black trees, B-trees, etc. We expect the reader to be familiar with such basic
methods. Instead, we focus on some of the simpler and lesser known alternatives to the
traditional data structures. Many of these rely on innovative use of randomized
techniques, and are easier to generalize for a variety of applications. They are driven by a
somewhat different perspective of the problem of searching that enables us to get a better
understanding including practical scenarios where the universe is much smaller. The
underlying assumption in comparison-based searching is that the universe may be
infinite, that is, we can be searching real numbers. While this is a powerful framework,
we miss out on many opportunities to develop faster alternatives based on hashing in a
bounded universe. We will address both these frameworks so that the reader can make an
informed choice for a specific application.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

110 Design and Analysis of Algorithms

6.1 Skip-Lists – A Simple Dictionary

Skip-list is a data structure introduced by Pugh [119] as an alternative to balanced binary
search trees for handling dictionary operations on ordered lists. The reader may recall that
linked lists are very amenable to modifications in O(1) time although they do not support
fast searches like binary search trees. We substitute complex book-keeping information
used for maintaining balance conditions for binary trees by random sampling techniques.
It has been shown that given access to random bits, the expected search time in a skip-list
of n elements is O(logn), which compares very favorably with balanced binary trees. The
basic idea is to add shortcut pointers to the original sorted list so that we can quickly
narrow the search to a much smaller interval and develop this idea recursively. Moreover,
it retains the simplicity of insertion and deletion procedures of linked lists, which makes
this data structure a very attractive alternative to balanced binary trees.

6.1.1 Construction of skip-lists

A skip-list is maintained as a hierarchy of sorted linked-lists. The bottom-most level is the
entire set of keys S. We denote the linked list at level i from the bottom as Li and let
|Li|= ni. By definition, L0 = S and |L0|= n. For every i > 0, we shall maintain the invariant
that Li ⊂ Li−1 and the topmost level, say level k, has a constant number of elements.
Moreover, correspondences are maintained between common elements of lists Li and Li−1

using (vertical) links. We define a pair Ti = (li,ri), li ≤ E ≤ ri, li,ri ∈ Li corresponding to E
in the list Li. We call this tuple the straddling pair (of E) in level i that is well-defined for
any element E in the universe. The reader may note that this can be easily ensured by
notionally adding the elements −∞ and +∞ to the list.

We first describe the procedure for searching for an element E in the set S. The search
begins from the topmost level Lk, where Tk can be determined in constant time
(see Figure 6.1). If lk = E or rk = E, then the search is successful else we recursively search
among the elements [lk,rk]

⋂
L0. Here, [lk,rk] denotes the closed interval bound by lk and rk.

This is done by searching the elements of Lk−1 which are bounded by lk and rk. Since both
lk,rk ∈ Lk−1, the descendence from level k to k−1 is easily achieved in O(1) time. In general,
at any level i, we determine the tuple Ti by walking through a portion of the list Li. If li or
ri equals E, then we are done; else, we repeat this procedure by descending to level i−1.

In other words, we refine the search progressively until we find an element in S equal
to E or we terminate when we have determined (l0,r0). This procedure can also be viewed
as searching in a tree that has variable degree (not necessarily two as in a binary tree).

Of course, to be able to analyze this algorithm, one has to specify how the lists Li are
constructed and how they are dynamically maintained under deletions and additions.
Roughly, the idea is to have elements in the ith level point to approximately 2i nodes

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

Searching 111

ahead (in S) so that the number of levels is approximately O(logn). The time spent in each
level i depends on [li+1,ri+1]

⋂
Li and hence, the objective is to keep this small. To achieve

these goals on-line, we use the following intuitive strategy. The nodes from the
bottom-most layer (level 0) are chosen with probability p (for the purpose of our
discussion, we shall assume p = 0.5) to be in the first level. Subsequently, in any level i,
the nodes of level i are chosen to be in level i+1 independently with probability p and at
any level, we maintain a simple linked-list, where the elements are in sorted order. For
p = 0.5, then it is not difficult to verify that for a list of size n, the expected number of
elements in level i is approximately n/2i and are spaced about 2i elements apart. The
expected number of levels is O(logn), and the expected space requirement is O(n) as the
expected number of levels that each element moves up is 2 when p = 1/2. It follows from
the linearity of expectation that the expected total number of nodes is 2n.

2.6

2.6

2.6

2.6 6.1

10

10

15.4

15.4

15.4 25 32

32

32

32

56.9 82

82

90

90

90

90

87 ?

Figure 6.1 The path traversed while searching for the element 87

To insert an element, we first locate its position using the search strategy described
previously. Note that a byproduct of the search algorithm is the knowledge of all the
Tis. At level 0, we choose it to be in level L1 with probability p. If it is selected, we insert it
in the proper position (which can be trivially done from the knowledge of T1), update the
pointers and repeat this process from the present level. Deletion is the exact reversal of this
process and it can be readily verified that deletion and insertion have the same asymptotic
run time as the search operation. So we shall focus on the search operation.

6.1.2 Analysis

To analyze the run-time of the search procedure, we look at it backward, that is, we retrace
the path from level 0. The search time is clearly the length of the path (number of links)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

112 Design and Analysis of Algorithms

traversed over all the levels. So one can count the number of links one traverses before
climbing up a level. In other words, the expected search time can be expressed by the
following recurrence

C(i) = (1− p)(1+C(i))+ p(1+C(i+1))

where C(i) is the expected number of steps starting from level i to reach the topmost level
k. This recurrence can be justified as follows. Suppose we start from a node v in level
0. With probability (1− p), we stay at this level and move to the next node in level 0. Now,
the expected number of steps needed to reach level k is still C(i). With probability p, we
move a copy of node v to level i+1. In this case, the expected number of steps is C(i+1).
The recurrence implies that

C(i) =C(i+1)+
1
p

At any node of a given level, we climb up if this node has been chosen to be in the next
level or else, we add one to the cost of the present level. From the boundary condition
C(k) = 0, where k is the topmost level, one readily obtains C(0) = k/p, that is the expected
length of the search path.

To get a bound on the expected search time, we consider two variations.

(i) We cap k by some fixed level, say logn. In this case, the expected search time is the
number of elements in level k plus C(0).

Let Ui = 1 if the element xi is present in the lognth level and 0 otherwise. Note that
Pr[Ui = 1] = 1

n since it will rise to level k with probability 1
2k , corresponding to k

successes in independent coin tosses. Hence, the number of elements in the topmost
level U = ∑

n
i=1 Ui. This implies that

E[U] = E[∑
i

Un
i=1Ui] =

n

∑
i=1

E[Ui] =
n

∑
i=1

1
n
= 1

So the expected search time is O(logn).

(ii) We construct the skip-list until the number of elements in the topmost level is
bounded by 4 (it is possible to choose some other suitable constant also).

Let L be the number of levels; we would like to compute E[L]. From the definition of
expectation, it follows that

E[L] = ∑
i≥0

iPr[L = i] = ∑
i≥0

Pr[L≥ i]

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

Searching 113

Therefore,

E[L] =
logn

∑
i=0

Pr[L≥ i]+ ∑
i>logn

Pr[L≥ i] (6.1.1)

≤ logn+
1
2
+

1
4
+

1
23 . . . (6.1.2)

≤ logn+1 (6.1.3)

since Pr[L≥ logn+ j]≤ 1
2 j . This can be verified as follows. Consider a single element x.

The probability that it gets promoted up to level logn+ j is at most 1
n·2 j . Using union

bound, the probability that any element gets promoted up to level logn+ j is at most
1
2 j . But this is exactly the probability of the event [L≥ logn+ j].

The expected number of steps for searching is bounded by the expected number
of traversals in each level multiplied by the expected number of levels which is
2(logn+1).1

6.1.3 Stronger tail estimates

If one is not satisfied with expected bounds (after all, there could be constant probability
that the search time will exceed the expected bounds), one can get tighter estimates of
deviation from expected performance. The search procedure (again looking backward),
either moves left or moves up. Whenever it visits a node, it moves up with probability p –
we consider such an event a success event. Note that this event will happen O(logn) times
because the height of the data structure is O(logn).

Thus, the entire search procedure can be viewed in the following alternate manner.
We are tossing a coin which turns up heads with probability p – how many times should
we toss to come up with O(logn) heads? Each head corresponds to the event of climbing
up one level in the data structure and the total number of tosses is the cost of the search
algorithm. We are done when we have climbed up O(logn) levels (there is some technicality
about the number of levels being O(logn) but that will be addressed later). The number of
heads obtained by tossing a coin N times is given by a binomial random variable X with
parameters N and p. Using Chernoff bounds (see Eq. 2.2.6), for N = 15logn and p = 0.5,
Pr[X ≤ 1.5logn] ≤ 1/n2 using δ = 9/10 in this equation. Using appropriate constants, we
can get rapidly decreasing probabilities of the form Pr[X ≤ c logn] ≤ 1/nα for c,α > 0 with
α increasing with c. These constants can be fine-tuned although we shall not bother with
such an exercise here.

We thus state the following lemma.

1 This is based on a very common stochastic phenomenon called the random sum. Consider a random variable
X = X1 +X2 + . . .+XT , where Xis are identically distributed and T itself is an integral random variable that has
finite expectation. Then, it can be shown easily that E[X] = E[Xi] ·E[T].

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

114 Design and Analysis of Algorithms

Lemma 6.1 The probability that access time for a fixed element in a skip-list data structure of
length n exceeds c logn steps is less than O(1/n2) for an appropriate constant c > 1.

Proof: We compute the probability of obtaining fewer than k (the number of levels in the
data structure) heads when we toss a fair coin (p= 1/2) c logn times for some fixed constant
c > 1. That is, we compute the probability that our search procedure exceeds c logn steps.
Recall that each head is equivalent to climbing up one level and we are done when we
have climbed k levels. To bound the number of levels, it is easy to see that the probability
that any element of S appears in level i is at most 1/2i, that is, it has turned up i consecutive
heads. So the probability that any fixed element appears in level 3logn is at most 1/n3. The
probability that k > 3logn is the probability that at least one element of S appears in L3logn.
This is clearly at most n times the probability that any fixed element survives and hence,
probability of k exceeding 3logn is less than 1/n2.

Given that k ≤ 3logn, we choose a value of c, say c0 (to be plugged into Eq. (2.2.8) of
Chernoff bounds) such that the probability of obtaining fewer than 3logn heads in c0 logn
tosses is less than 1/n2. The search algorithm for a fixed key exceeds c0 logn steps if one
of the aforementioned events fail – either the number of levels exceeds 3logn or we get
fewer than 3logn heads from c0 logn tosses. This is clearly the summation of the failure
probabilities of the individual events which is O(1/n2). 2

Theorem 6.1 The probability that the access time for any arbitrary element in a skip-list exceeds
O(logn) is less than 1/nα for any fixed α > 0.

Proof: A list of n elements induces n+1 intervals. From the previous lemma, we know that
the probability P that the search time for a fixed element exceeding c logn is less than 1/n2.
Note that all elements in a fixed interval [l0,r0] follow the same path in the data structure. It
follows that for any interval, the probability of the access time exceeding O(logn) is n times
P. As mentioned before, the constants can be chosen appropriately to achieve this. 2

It is possible to obtain even tighter bounds on the space requirement for a skip-list of n
elements. We can show that the expected space is O(n) since the expected number of times
a node moves to upper levels is 2.

6.2 Treaps: Randomized Search Trees

The class of binary (dynamic) search trees is perhaps the first introduction to non-trivial
data structures in computer science. However, update operations, although asymptotically
very fast, are not the easiest to remember. The rules for rotations and double-rotations of
the AVL trees, the splitting/joining in B-trees, and the color changes of red–black trees
are often complex; so are their correctness proofs. Randomized search trees (also known as

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

Searching 115

randomized treaps) provide a practical alternative to the balanced BST (binary search tree).
We still rely on rotations, but no explicit balancing rules are used. Instead, we rely on the
magical properties of random numbers.

The randomized search tree (RST) is a binary tree that has the keys in an in-order
ordering. In other words, for every node, the key stored in it is larger than or equal to the
keys stored in the nodes in the left subtree rooted to it, and less than or equal to that in the
right subtree rooted to it. In addition, each element is assigned a priority when it arrives;
the nodes of the tree are heap-ordered based on the priorities with the highest priority as
the parent. In other words, the priority of any element is larger than the priorities of
elements stored as its children. Because the key values follow an in-order numbering,
insertion follows the normal procedure (as in a binary search tree). After insertion, the
heap-ordering may not hold and subsequently, it needs to be restored. This is done by
rotations, since rotation preserves in-order numbering.

Claim 6.1 For a given assignment of (distinct) priorities to elements, show that there is a unique
treap.

The proof is left as an exercise problem. The priorities are assigned randomly (and
uniquely) from a sufficiently large range2. The priorities induce a random ordering of the
N nodes. By averaging over the random ordering, the expected height of the tree is small.
This is the crux of the following analysis of the performance of RSTs.

Let us first look at the search time (for an element Q) based on a technique known as
backward analysis. A more elaborate exposition of this technique can be found in Section
7.7. For that, we (hypothetically) insert the N elements in decreasing order of their priorities.
Note that whenever we insert a node (as in a binary search tree), it gets inserted at a leaf
node. Therefore, the heap priority is satisfied (because we are inserting them in decreasing
order of priorities). At any time during this process, the set of inserted nodes will form a
sub-tree of the overall search tree. For an element Ni, we say that Q can see this element if
no previously inserted element has a key which lies between the keys corresponding to Q
and Ni. We count the number of elements that Q can see during this process.

Claim 6.2 The tree constructed by inserting nodes in order of their priorities (highest priority is
the root) is the same as the tree constructed on-line.

This follows from the uniqueness of the treap.

Claim 6.3 The number of nodes Q sees during the insertion sequence is exactly the number of
comparisons performed for searching for Q. In fact, the order in which it sees these nodes corresponds
to the search path of Q.

2 For N nodes, O(logN) bit random numbers suffice – see Section 2.3.3.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

116 Design and Analysis of Algorithms

Let N1,N2, . . . denote the nodes arranged in decreasing order of priorities. Let us prove
the aforementioned claim by induction on i, that is, among nodes N1,N2, . . . ,Ni, the total
number of comparisons performed equals the number of nodes Q sees. For the base case,
N1 corresponds to the root and every element can see N1 and must be compared to the
root. Assuming this is true for i, what happens when we consider Ni+1? Node Q will see
Ni+1 iff they are in the same interval induced by the nodes N1,N2, . . . ,Ni. From the previous
observation, we know that we can construct the tree by inserting the nodes in decreasing
order of priorities. If node Q and Ni+1 are in the same interval, then Q is in the subtree
rooted at Ni+1 (node Ni+1 has one of the previous nodes as its parent) and so it will be
compared to Ni+1 in the search tree. Conversely, if Q and Ni+1 are not in the same interval,
then there must be some node Y ∈ {N1, . . . ,Ni} such that Q and Ni+1 are in different subtrees
of Y (the least common ancestor). So, Ni+1 cannot be a node that Q will be compared with
(recall that the tree is unique).

Theorem 6.2 The expected length of a search path in RST is O(HN), where HN is the Nth harmonic
number.

To prove this property, let us arrange the elements in increasing order of keys (note
that this is deterministic and different from the ordering N1,N2, . . .). Let this ordering be
M1,M2, . . . ,Mn. Suppose Q happens to be M j in this ordering. Consider an element M j+k,k≥
0. What is the probability that M j sees M j+k? For this to happen, the priorities of all the
elements between M j and M j+k must be smaller than the priority of M j+k. Since priorities
are assigned randomly, the probability of this event is 1/k. Using linearity of expectation,
and summing over all k, both positive and negative, we see that the expected number of
elements that M j sees is at most 2 times HN . When Q 6= M j then the same argument holds
for the closest element M j and therefore true for Q.

Insertions and deletions require changes in the tree to maintain the heap property and
rotations are used to push up or push down some elements as per this need. Recall that
rotations do not violate the binary search tree property. Figure 6.2 shows the sequence
of changes including rotations required for the insertion sequence 25, 29, 14, 18, 20, 10,
35 having priorities 11, 4, 45, 30, 58, 20, 51 respectively that are generated on the fly by
choosing a random number between 1 and 100.

A similar technique can be used for counting the number of rotations required for RST
during insertion and deletions. In the cases of both skip-lists and RSTs, implicitly we are
relying on a simple property of random numbers referred to as the principle of deferred
decision. The random priorities in the case of RSTs (or the number of copies of an element in
skip-lists) are not known to the algorithm in advance but revealed at the time it is needed.
This does not affect the performance or the analysis of the algorithm and allows us to deal
with the dynamic updates seamlessly without any additional complications compared to

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

Searching 117

the static case – as if the present set of elements were given to us all at once. The high
probability bounds for RSTs is left as an exercise problem.

14 [45]

18

25

29

[30]

[11]

20 [4][58]

RR25

14 [45]

18

20

25

[30]

[58]

[11]

LR18

29 [4]

14 [45]

20

25

29

[58]

[11]

[4]

[30] 18

20 [58]

25

29

[11]

[4]

[45] 14

18[30]

LR20

1

2 3

a b g

Right Rotate (RR) 1

Left Rotate (LR) 1

2

1

3
a

b
g

(a) (b) (c)

(d)

20 [58]

25

29

[51][45]
14

18[30]

29

[20] 10
[11]

[4]
(e)

(f)

Figure 6.2 Diagrams (a) to (d) depict the rotations required to insert the
element 20 having priority 58 starting with the treap for the
first four elements.
Diagram (e) is the final tree after the entire insertion sequence.
Diagram (f) shows the schematic for left/right rotations – LRx
denotes a left rotation operation around node x. The numbers
in [] indicates the corresponding (random) priorities of the
elements; a max heap property is to be maintained on the
priorities.

6.3 Universal Hashing

Consider that we are given a set of n keys which take values from a large universe U.
Recall that hashing maps these n keys to values in a small range (often called a hash table)
such that each of these keys is (hopefully) mapped to a distinct value. If we can achieve
this, we can perform operations like search in O(1) time.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

118 Design and Analysis of Algorithms

For the simple reason that the number of possible key values (i.e., size of U) is much
larger than the table size, it is inevitable that more than one key is mapped to the same
location in the hash table. The number of conflicts increase the search time. If the keys are
randomly chosen, then it is known that the expected number of conflicts is O(1). However,
this may be an unrealistic assumption; so we must design a scheme to handle any arbitrary
subset of keys. We begin with some useful notations.

• Universe : U, Let the elements be 0,1,2, . . . ,N−1

• Set of elements : S, where |S|= n

• Hash locations : {0,1, ...,m−1} usually, m≥ n

Collision: In collision, x,y ∈U are mapped to the same location by a hash function h. We
define δh(x,y) to be the indicator variable when x and y are hashed to the same location.
Similarly, δh(x,S) denotes the number of elements in S which collide with x .

δh(x,y) =

{
1 : h(x) = h(y),x 6= y

0 : otherwise

δh(x,S) = ∑
y∈S

δh(x,y)

Hash by chaining: In hashing by chaining, all the elements that get mapped to the same
location are stored in a linked-list. During the search procedure, one may need to traverse
such lists to check if an element is present in the table or not. Thus, the more the collision,
the worse the performance. Consider a sequence of operations O1(x2),O2(x2), ..., On(xn),
where Oi ∈ {Insert, Delete, Search} and xi ∈ U. Let us make the following assumptions,
which says that the hash function is in some sense “uniform”.

1. |h−1(i)|= |h−1(i′)|, where i, i′ ∈ {0,1, ...,m−1}.
2. In the sequence, xi can be any element of U with equal probability.

Claim 6.4 The total expected cost of these operations is O((1+β)n), where β = n
m (load factor).

Proof: Consider the (k+ 1)th operation. Say it is searching for an element x, where x is a
randomly chosen element. Recall that the table has m locations – let Li be the number of
elements which have been inserted at location Li (so ∑i Li ≤ k). By the second property
described earlier, h(x) is equally likely to be any of these m locations. Therefore, the
expected time to search would be

m

∑
i=1

1
m
· (1+Li)≤ 1+ k/m

So total expected cost over all the operations would be at most ∑
n
k=1(1 + k

m)

= n+ n(n+1)
2m = (1+ β

2)n. Note that this is the worst case over operations but not over elements
– the elements are assumed to be randomly chosen from the universe. 2

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

Searching 119

Note that the commonly used hash function h(x) = x mod m satisfies the first property
and therefore, it behaves well for randomly chosen keys. However, it is easy to construct
a bad example by choosing keys that map to same modulo class.

Universal hash functions: We now define a family of hash functions which have the
property that a randomly chosen hash function from this family will have small number
of collisions in expectation.

Definition 6.1 A collection H ⊂ {h|h : [0...N − 1]→ [0...m− 1]} is c-universal if for all x,y ∈
[0...N−1] x 6= y,

|{h|h ∈ H and h(x) = h(y)}| ≤ c
|H|
m

for some (small) constant c. Equivalently, ∑h δh(x,y)≤ c |H|m .

This definition states that if we pick a hash function from H uniformly at random,
then the probability that x and y collide is at most c/m. Thus, assuming m is large enough
compared to n, the expected number of collisions would be small. Note the subtle
difference from the previous analysis – now x and y are any two elements; they may not
be randomly chosen ones. The following claim says that given any set S of size n, the
probability that a randomly chosen hash function causes a collision for an element x is
small.

Claim 6.5

1
|H| ∑h∈H

δh(x,S)≤ c
n
m

where |S|= n.

Proof: Working from the LHS, we obtain

=
1
|H| ∑h∈H

1
|H|∑h

∑
y∈S

δh(x,y)

=
1
|H|∑y

∑
h

δh(x,y)

≤ 1
|H|∑y

c
|H|
m

=
c
m

n

2

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

120 Design and Analysis of Algorithms

The expected length of a chain (containing an element x) for any choice of S can be denoted
by E[δh(x,S)] for any x ∈ S. This can be calculated as 1

|H| ∑h δh(x,S) for a random choice
of h ∈ H. From the previous claim, this is bounded by cn

m and so the expected cost of any
operation is bounded by 1+ cn

m , where the additional 1 is the cost of the actual list operation
of insert or delete. So, the expected cost of t operations is bounded by (1+ cβ)t for any set
S of n elements, that is, it holds for worst case input.

6.3.1 Existence of universal hash functions

The idea behind universal hash functions is to map a given element x ∈U uniformly into
any of the m locations with equal likelihood by choosing a hash function randomly from a
given set H. If this is true for all elements in S, then the behavior is similar to the previous
case of a random subset S implying that the expected length of a chain is O(n

m). So let us
try a very simple family of the form

ha(x) = (x+a) mod N mod m, where a ∈ {0,1,2, . . . ,(N−1)}

The reader should verify that for a random choice of a, an element x will be mapped to any
of the m locations with equal probability.

However, this is not enough as we can verify that this family of functions is not
universal. Suppose for elements x,y ∈ U, x 6= y, the following holds: x− y = m mod N.
Then,

(x+a) mod N = (y+m+a) mod N = (y+a) mod N +m mod N

Taking mod m, we obtain ha(x) = ha(y), for any a and therefore, it violates the key property
of the universal hash family. This reasoning can be extended to |x − y| = k · m for
k ∈ {1,2, . . . ,bN

mc}.
Next, we try another variant H ′ in our quest for universal hash functions. Let

H ′ : ha,b;hab(x)→ ((ax+b) mod N) mod m, where a,b ∈ 0...N−1 (N is prime3).
If hab(x) = hab(y), then for some q ∈ [0...m−1] and r,s ∈ [0...N−1

m]

ax+b = (q+ rm) mod N

ay+b = (q+ sm) mod N

This is a unique solution for a,b once q,r,s are fixed (note that we are using the fact that N is
prime, in which case, the numbers {0,1, . . . ,N−1} form a field and therefore each element
has an inverse modulo N). So there are a total of m(N2

m) solutions = N2

m . Also, since |H ′|= N2,
H ′ is ‘1’ universal.

3 This is not as restrictive as it may seem, since from Bertrand’s postulate there is at least one prime between an
integer i and 2i.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

Searching 121

6.4 Perfect Hash Function

Universal hashing is a very useful property but may not be acceptable in a situation where
we do not want any collisions. Open addressing is a method that achieves this at the expense
of an increased search time. In case of conflicts, we define a sequence of probes that is
guaranteed to find an empty location (if there exists one).

We will extend the scheme of universal hashing to one where there is no collision
without increasing the expected search time. Recall that the probability that an element x
collides with another element y is less than c

m for some constant c (when we choose a
random function from a universal family of hash functions). Therefore, the expected
number of collisions in a subset of size n by considering all pairs is f =

(n
2

)
· c

m . By
Markov’s inequality, the probability that the number of collisions exceeds 2 f is less than
1/2. For c = 2 and m ≥ 4n2, the value of 2 f is less than 1

2 , that is, there are no collisions.
Thus, if we use a table of size Ω(n2), it is unlikely that there will be any collisions.
However, we end up wasting a lot of space. We now show that it is possible to achieve
low collision probability and O(n) space complexity.

We use a two-level hashing scheme. In the first level, we hash it to locations 1,2, . . . ,m
in a hash table. For each of these locations, we create another hash table which will store
the elements which get hashed to this location. In other words, if there are ni keys that get
mapped to location i, we subsequently map them to a hash table of size 4n2

i . From our
previous discussion, we know that we can avoid collisions with probability at least 1/2. If
a collision still happens (in this second-level hash table), we create another copy of it and
use a new hash function chosen randomly from the family of universal hash functions. So
we may have to repeat the second-level hashing a number of times (expected value is 2)
before we achieve zero collision for the ni keys. Clearly, the expected search time is O(1)
for both the levels.

The expected space bound is a constant times ∑i n2
i . We can write

n2
i = ni +2 ∑

x,y|h(x)
=h(y)=i

1

∑
i

n2
i = ∑

i
ni +2 · ∑

x,y|h(x)
=h(y)=i

1

= 2∑
i

ni +2∑
i

∑
x,y|h(x)
=h(y)=i

1

= 2n+∑
x,y

δ(x,y)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

122 Design and Analysis of Algorithms

Taking expectation on both sides (with respect to any choice of a random hash function),
the RHS is 2E[∑x,y∈S δ(x,y)] + 2n. The first expression equals 2

(n
2

)
· c

m since E[δ(x,y)] =
Pr[h(x) = h(y)]≤ c

m . Therefore, the total expected space required is only O(n) for m ∈ O(n).

6.4.1 Converting expected bound to worst case bound

We can convert the expected space bound to a worst case space bound in the following
manner as can be done for transforming any Monte Carlo procedure to a Las Vegas
algorithm. In the first level, we repeatedly choose a hash function until ∑i n2

i is O(n). We
need to repeat this twice in the expected sense. Subsequently, at the second stage, for each
i, we repeat it till there are no collisions in mapping ni elements in O(n2

i) locations. Again,
the expected number of trials for each i is two that takes overall O(n) time for n keys. Note
that this method makes the space worst case O(n) at the expense of making the time
expected O(n). But once the hash table is created, for any future query, the time is worst
case O(1).

For practical implementation, the n keys will be stored in a single array of size O(n),
where the first-level table locations will contain the starting positions of keys with value i
and the hash function used in the second-level hash table.

6.5 A log log N Priority Queue*

Searching in a bounded universe is faster when we use hashing. Can we achieve similar
improvements for other data structures? Here we consider maintaining a priority queue
for elements drawn from universe U. Let |U| = N. The operations supported are insert,
minimum, and delete.

Imagine a complete binary tree on N leaf nodes that correspond to the N integers of
the universe – this tree has depth logN. Let us color the leaf nodes of the tree black if the
corresponding integer is present in the set S ⊂U, where |S| = n. We would like to design
a data structure that supports predecessor queries faster than doing a conventional binary
search. The elements are from an universe U = {0,1,2, . . . ,N− 1}, where N is a power of
2. Given any subset S of n elements, we want to construct a data structure that returns
maxy∈S y≤ X for any query element X ∈U.

The elements of S are marked in the corresponding leaf nodes and in addition, we also
mark the corresponding leaf to root paths. Each internal node of the binary tree T stores
the smallest and the largest element of S in its subtree. If there are none, then these are
undefined. This information can be computed at the time of marking out the paths to
the node. The smallest and the largest element passing through a node can be maintained
easily. See Figure 6.3 for an illustration.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

Searching 123

Given a query X , consider the path from the leaf node for X to the root. The predecessor
of X can be uniquely identified from the first marked node on this path since we can identify
the interval of S that contains X . Note that all the ancestors of a marked node are also
marked. So from any given leaf node, we need to identify the closest marked ancestor.
With a little thought, this can be done using an appropriate modification of binary search
on the path of ancestors of X . Since it is a complete binary tree, we can map them to an
array and query the appropriate nodes. This takes O(log(logN)) steps which is superior to
O(logn) for moderately large N = Ω(npolylogn). Clearly, we cannot afford to store the binary
tree with N nodes. So, we observe that it suffices if we store only the n paths which takes
space O(n logN). We store these O(n logN) nodes using a universal hash function so that
the expected running time of the binary search procedure remains O(log logN). The nodes
that are hashed return a successful search: otherwise, it returns a failure.

(6,10)

(2,5)

(_,2)

(2,_)

(_,5)

(5,6)

(6,_)

(_,10)

(10,_) (_,13)

(13,_)

(10,13)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 6.3 The shaded leaf nodes correspond to the subset S. The pairs
(a,b) associated with a node correspond to the maximum
and minimum marked nodes in the left and right subtrees
respectively and are undefined if there are no marked nodes
in the subtree. For example, the path starting at 8 encounters
the first shaded node on the path from 10 implying that the
successor of 8 is 10 and the predecessor is 6, which can be
precomputed

For a further improvement which does not rely on hash functions, we can do a
two-phased search. In the first phase, we build a search tree on a uniform sample of
n/ logN keys which are exactly logN apart, so that the space is O(n logN

logN) = O(n). In the
second phase, we do a normal binary search on an interval containing at most logN
elements that takes O(log logN) steps.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

124 Design and Analysis of Algorithms

We will now extend this idea to priority queues. We begin by storing the tree with
N leaves as done earlier. We again define a notion of coloring of nodes. As before, a
leaf is colored if the corresponding element is present in the set S. Let us also imagine
that if a leaf node is colored then its half-ancestor (halfway from the node to the root) is
also colored and is labeled with the smallest and the largest integer in its subtree. The
half-ancestor will be present at level logN/2. Denote the set of the minimum elements (in
each of the subtrees rooted at level logN/2) by TOP. Note that the set TOP has size

√
N.

We will recursively build the data-structure over the elements in TOP. We will denote
the immediate predecessor of an element x by PRED(x) and the successor of an element
by SUCC(x). The reason we are interested in PRED and SUCC is that when the smallest
element is deleted, we must find its immediate successor in set S. Likewise, when we
insert an element, we must know its immediate predecessor. Henceforth, we will focus
on the operations PRED and SUCC as these will be used to support the priority queue
operations.

For a given element x, we will check if its ancestor at depth logN/2 (halfway up the
tree) is colored. If so, then we recursively search PRED(x) within the subtree of size

√
N.

Otherwise, we recursively search for PRED(x) among the elements of TOP. Note that
either we search within the subtree or in the set TOP but not both. Suitable terminating
conditions can be defined. The search time can be captured by the following recurrence

T (N) = T (
√

N)+O(1)

which yields T (N) = O(log logN). The space complexity of the data structure satisfies the
recurrence

S(N) = (
√

N +1)S(
√

N)+O(
√

N)

because we need to recursively build the data structure for the TOP elements and for each
of the subtrees rooted at level logN/2 (the additive O(

√
N) is for other book-keeping

information; for example, the list of elements in TOP, etc.). The solution to this recurrence
is S(N) = O(N log logN) that can be verified using induction.

Note that, as long as log logN = o(logn), this data structure is faster than the
conventional heap. For example, when N ≤ 22logn/ log logn

, this holds an advantage, but the
space is exponential. This is one of the drawbacks of the data structure – the space
requirement is proportional to the size of the universe. By using hashing similar to the
scheme described before, we can reduce the space to O(n).

Further Reading

The skip-list data structure as an alternative to balanced tree-based dictionary structure
was proposed by Pugh [119]. The analysis in the paper was improved to an inverse

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

Searching 125

polynomial tail estimate by Sen [130]. Seidel and Aragon [129] proposed the treap
structure as a randomized alternative to maintaining balance in tree-based data
structures. Universal hashing was proposed by Carter and Wegman [26] who also proved
the optimal worst case bounds for such data structures. An alternate approach called
cuckoo hashing was proposed by Pagh and Roddler [113]. The notion of perfect hashing
was a subject of intense research, especially the quest for the deterministic
techniques [43, 52]. Yao [157] obtained interesting lower bounds for this problem. The
reader may note that for random input (or data generated by a known distribution), one
can use interpolation search that works in expected O(log logn) time [116].

The log logn priority queue was first proposed by Boas [147]; it demonstrates that one
can exploit the size of smaller universe analogous to integer sorting in a smaller range.
Mehlhorn’s monograph [102] is an excellent source for learning about sophisticated data
structures.

Exercise Problems

6.1 Prove the following stronger bound for the skip list space using Chernoff bounds – For any
constant α > 0, the probability of the space exceeding 2n+α ·n is less than expΩ(−α2n).

6.2 While constructing a skip-list, Professor Thoughtful decided to promote an element to the
next level with probability p (p < 1) and calculate the best value of p for which the product
Eq×Es is minimized, where Eq,Es are the expected query and expected space respectively.
He concluded that p = 1/2 is not the best. Justify, giving the necessary calculations.

6.3 To expedite searching in some interval of length `, many data structures provide extra
links/fingers that gets us within the proximity for that interval very quickly. In the context of
skip-lists, design a strategy for providing such links that can enable us to search a sublist
of length ` within O(log`) steps.

6.4 For frequently searched items in a skip-list, we want to maintain weights with each element
x as w(x) that will help us reduce the search time for such elements. If W = ∑x w(x), then
we want to design a scheme that results in a search time of O(1+ log(W/w)) for an
element having weight w.
Hint: A frequently searched element should be closer to the topmost level.

6.5 For a given assignment of priorities, show that there is a unique treap.

6.6 *Prove that the probability that the search time exceeds 2logn comparisons in a
randomized treap is less than O(1/n).

Hint: The reader may realize that even if the priorities are assigned independently, the
events that M j+k and M j+` are visible from M j for k 6= ` may require some additional
arguments for independence. Without that we may not be able to apply Chernoff bounds.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

126 Design and Analysis of Algorithms

6.7 A dart game Imagine that an observer is standing at the origin of a real line and throwing
n darts at random locations in the positive direction numbered 1 to n. At any point of time,
only the closest dart is visible to the observer – so if the next dart lands beyond the closest
dart, it will never be visible to the observer.

(i) What is the expected number of darts visible to the observer over the entire exercise
of throwing n darts

(ii) Can you obtain a high-probability bound assuming independence between the throws?

(iii) Can you apply this analysis to obtain an O(n logn) expected bound on quicksort?

6.8 Consider the hash function h(x) = a ·x mod N mod m for a ∈ {0,1, . . . ,(N−1)}. Show that
it satisfies the properties of a universal family when m is prime.

Hint: For x 6= y, (x− y) has a unique inverse modulo m.

6.9 Show that for any collection of hash function H, there exists x,y such that

∑
h∈H

δh(x,y)≥ |H|(
1
m
− 1

n
)

where n and m are the sizes of the universe and table respectively.

Remark This justifies the definition of universal hash function.

6.10 Assume that the size of the table T is a prime m. Partition a key x into r + 1 parts
x =< x0,x1, . . . ,xr >, where xi < m. Let a =< a0,a1, . . . ,ar > be a sequence where
ai ∈ {0,1, . . . ,m−1}. We define a hash function ha(x) = ∑i aixi mod m. Clearly, there are
mr+1 distinct hash functions. Prove that ∪aha forms a universal class of hash functions.

A collection of hash functions H is called strongly universal if for all keys x,y and any
i, j ∈ [0, ..,m−1]

Pr
h∈H

(h(x) = i∧h(y) = j)≤ c
m2

How does this differ from the earlier definition in the chapter?

*Can you give an example of a strongly universal family?

6.11 Analyze the preprocessing cost for building the O(log logN) search data structure for
searching elements in the range [1,N].

6.12 Propose a method to decrease the space bound of the O(log logN) search data structure
from O(N log logN) to O(N) using only worst case deterministic techniques.

Hint: You may want to prune the lower levels of the tree.

6.13 Since the universe N can be much larger than n, describe a method to reduce the space
to O(n).

6.14 Show how to implement delete operation in the priority queue to O(log logN) steps.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

Searching 127

6.15 *Interpolation search Suppose T is an ordered table of n keys xi, 1 ≤ i ≤ n drawn
uniformly from (0,1). Instead of doing the conventional binary search, we use the following
approach.

Given key y, we make the first probe at the position s1 = dy ·ne. If y = xs1 , we are
through. Else if y > xs1 , we recursively search for y among the keys (xs1 , . . . ,xn).
Else recursively search for y among the keys (x1, . . . ,xs1).

At any stage, when we search for y in a range (xl , . . . ,xr), we probe the position l +
d (y−xl)(r−l)

xr−xl
e. We are interested in determining the expected number of probes required by

this searching algorithm.

Compare this with the way that we search for a word in the English dictionary.

In order to somewhat simplify the analysis, we modify the aforementioned strategy as
follows. In round i, we partition the input into n1/2i

sized blocks and try to locate the
block that contains y and recursively search within that block. In the ith round, if the block
containing y is (xl , . . . ,xr), then we probe the position si = l + d (y−xl)(r−l)

xr−xl
e. We then try to

locate the n1/2i
-sized block by sequentially probing every n1/2i

th element starting from si.

Show that the expected number of probes is O(log logn).

Hint: Analyze the expected number of probes in each round using Chebychev’s inequality.

6.16 Deferred data structure When we build a dictionary data structure for fast searching, we
expend some initial overheads to build this data structure. For example, we need O(n logn)
time to sort an array so that we can do searching in O(logn) time. If there were only a few
keys to be searched, then the preprocessing time may not be worth it since we can do a
brute force search in O(n) time which is asymptotically less that O(n logn).

If we include the cost of preprocessing into the cost of searching, then the total cost for
searching k elements can be written as ∑

k
i=1 q(i)+P(k), where q(i) represents the cost of

searching for the ith element and P(k) is the preprocessing time for the first k elements.
For each value of k, balancing the two terms would give us the best performance. For
example, for k = 1, we may not build any data structure but do a brute force search to
obtain n. As k grows large, say becomes n, we may want to sort. Note that k may not
be known in the beginning, so we may want to build the data structure in an incremental
manner. After the first brute force search, it makes sense to find the median and partition
the elements.

Describe an algorithm to extend this idea so as to maintain a balance between the number
of keys searched and the preprocessing time.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.007
https://www.cambridge.org/core

7
C H A P T E R

Multidimensional Searching and
Geometric Algorithms

Searching in a dictionary is one of the most primitive kind of search problems and it is
relatively simple because of the property that the elements can be ordered. One can
arrange the elements in an ordered manner (say, sorted array, or balanced search trees)
such that one can perform search efficiently. Suppose the points are from the d
dimensional space Rd . One way to extend the techniques used for searching in a
dictionary is to build a data structure based on lexicographic ordering. That is, given two
d dimensional points p and p′, there is a total ordering defined by the relation

p≺ p′⇔ ∃ j ≤ d : x1(p) = x1(p′),x2(p) = x2(p′) . . .x j−1(p) = x j−1(p′),x j(p)< x j(p′)

where xi(p) is the ith coordinate of point p. For example, if p = (2.1,5.7,3.1) and
p′ = (2.1,5.7,4), then p ≺ p′. If we denote a d dimensional point by (x0,x1, . . . ,xd). Then
given a set of n d-dimensional points, the immediate predecessor of a query point can be
determined in O(d · logn) comparisons using a straightforward adaption of the binary
search algorithm (note that the extra d factor is because comparing two points will take
O(d) time). With a little more thought we can try to improve as follows. When two
d-tuples are compared, we can keep track of the maximum prefix length (the index j),
which is identical in the two tuples. If we create a binary search tree (BST) to support
binary search, we also need to keep track of the largest common prefixes between the
parent and the children nodes so that we can find the common prefixes between the
query tuple and the internal nodes in a way that we do not have to repeatedly scan the
same coordinates of the query tuple. For example, if the root node has a common prefix of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

Multidimensional Searching and Geometric Algorithms 129

length 10 with the left child and the query tuple has 7 fields common with the root node
(and is smaller), it is clearly smaller than the left child also. The reader is encouraged to
solve Exercise 7.1 at the end of this chapter. Queries can of course be far more
sophisticated than just point queries but we will focus on the simpler case of searching for
points specified by a range (or rectangle).

7.1 Interval Trees and Range Trees

In this section, we describe two commonly used data structures which partition the search
space in a suitable manner and store points in each ‘cell’ of this partition. We first consider
the problem of range search in one dimension, and then generalize it to higher dimensions.

Subsequently, we will see how these search algorithms can be used as building blocks
for maintaining a convex hull of a set of points.

One-dimensional range searching
Given a set S of n points on a line (without loss of generality, say the x-axis), we have
to build a data structure to report the points inside a given query interval [x` : xu]. The
counting version of range query only reports the number of points in this interval instead
of the points themselves.

Let S = {p1, p2, . . . , pn} be the given set of points on the real line. We can solve the
one-dimensional range searching problem using a balanced binary search tree T in a
straightforward manner. The leaves of T store the points of S and the internal nodes of T
store splitters to guide the search. Let the splitter-value at node v be denoted by xv, then
the left subtree TL(v) of a node v contains all the points smaller than or equal to xv and
right subtree TR(v) contains all the points strictly greater than xv. Note that xv can be
chosen as any x-coordinate between the rightmost point in TL(v) and the leftmost point in
TR(v). It is easy to see that we can build a balanced tree by balancing the sizes of TR(v) and
TL(v).

To report the points in the range query [x` : xu] we search with x` and xu in the tree T .
Let `1 and `2 be the leaves where the searches end. Then the points in the interval [x` : xu]

are the points stored between the leaves `1 and `2.
Another way to view the set of points is the union of the leaves of some subtrees of T 1.

If you examine the search path of x` and xu, they share a common path from root to some
vertex (may be the root itself), where the paths fork to the left and right – let us call this
the forking node. The output points correspond to the union of leaves of the right subtrees
of the left path and the left subtrees of the right path. This can be formally proved to be
the union of at most 2logn subtrees – see Exercise 7.2 and also illustrated in Figure 7.1. If

1 This perspective will be useful for the later extensions.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

130 Design and Analysis of Algorithms

each node also stores a count of the number of leaf nodes in the subtree then the counting
range query can be answered as the sum of these 2logn counters. Since the query interval
extends across both sides of the forking node, the left and right paths (also called left and
right spines) define a set of subtrees that fall within the span of the query interval. In
particular, the right (left) subtrees attached to the left (respectively right) spine correspond
to disjoint half-intervals on either side of the forking node. Note that the values x` or xu

may not be present among the leaf nodes; they can represent some over-hanging portions
and be effectively ignored beyond the successor leaf node (of x`) and predecessor leaf node
of xu.

Complexity The tree uses O(n) space and it can be constructed in O(n logn) time. Each
query takes O(logn+ k) time, where k is the number of points in the interval, that is, the
output size. The counting query takes O(logn) time (if we also store the number of nodes
stored in the sub-tree rooted at each node). This is clearly the best we can hope for.

Left spine

Forking

54.5 [3,97.9]

82 [55,97.9]

91 [85.8, 97.9]

9587755645c
b

da

4

3 5 11 15 21 30.3 40.5 54 55 58.4 72 77 85.8 88 93 97.9

65 [55, 77]35 [21, 54]

Right spine

17 [3, 54]

8 [3, 15]

4.8 42.6
x xu

Figure 7.1 The structure of a one-dimensional range search tree where a
query interval is split into at most 2logn disjoint canonical
(half)-intervals. Each node is associated with an interval [`,r]
that corresponds to the leftmost and rightmost coordinates of
the points and a splitting coordinate between the left and right
subtrees. The query interval [x`,xu] traces out a search path
starting from the root to a forking node, from where it defines a
left and a right spine. The union of right subtrees a,b (shaded
in the figure) attached to the left path and the left subtrees c,d
attached to the right path gives us the disjoint intervals.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

Multidimensional Searching and Geometric Algorithms 131

7.1.1 Two-dimensional range queries

We now extend these ideas to the two-dimensional case. Each point has two attributes: its
x coordinate and its y coordinate – the two-dimensional range query is a Cartesian
product of two one-dimensional intervals. Given a query [x` : xu] × [y` : yu] (a
two-dimensional rectangle), we want to build a data structure to report the points inside
the rectangular region or alternately, count the number of points in the region.

We extend the previous one-dimensional solution by first considering the vertical slab
[x` : xu]. 2 Let us build the one-dimensional range tree identical to the previous scheme (by
ignoring the y coordinates of points). Therefore, we can obtain the answer to the slab query.
As we had observed, every internal node represents an interval in the one-dimensional
case and analogously the corresponding vertical slab in the two-dimensional case. The
answer to the original query [x` : xu]× [y` : yu] is a subset of [x` : xu]× [−∞ : +∞]. Since our
objective is to obtain a time-bound proportional to the final output, we cannot afford to
list out all the points of the vertical slab. However, if we had the one-dimensional data
structure available for this slab, we can quickly find out the final points by doing a range
query with [y` : yu]. A naive scheme will build the data structure for all possible vertical
slabs that can be Ω(n2). We can do much better by observing that we need to worry about
only those vertical slabs which correspond to an internal node in the tree – we shall call
such vertical slabs as canonical slabs.

Each canonical slab corresponds to the vertical slab (the corresponding [x` : xu]) spanned
by an internal node. We can therefore build a one-dimensional range tree for all the points
spanned by the corresponding vertical slab – this time in the y-direction (and associate it
with each of the internal nodes). As in the previous section, we can easily show that each
vertical slab is a union of 2logn canonical slabs (Figure 7.2). So, the final answer to the
two-dimensional range query is the union of at most 2logn one-dimensional range queries,
giving a total query time of ∑

t
i=1 O(logn+ ki), where ki is the number of output points in

slab i among t slabs and ∑i ki = k. This results in a query time of O(t logn+ k), where t is
bounded by 2logn. The space is bounded by O(n logn) since in a given level of the tree T , a
point is stored exactly once.

The natural extension of this scheme leads us to d-dimensional range search trees with
the following performance parameters.

Q(d)≤

2logn ·Q(d−1) for d ≥ 2

O(logn) d = 1
(7.1.1)

2 We can think about [y` : yu] as [−∞ : +∞].

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

132 Design and Analysis of Algorithms

1

(12, 13, 11, 9, 14,

15, 10)

p p p p p

p p

2 3 4 5 6 7 8 9 10 11 12 13 14 15

p
3

p
4

p
6

p
9

p
7

(5, 2, 8, 7, 1,

6, 4, 3)

p p p p p

p p p

p
1

4.5 7.5

p
2 p

5

p
11

14.5

(p15)

9.2

p
10

p
14

p
15

12.1

12.1

(12, 13, 14, 25)p p p p

(12, 13, 14)p p p

p
13

p
12

p
8

(8, 7)p p

(2, 1, 3)p p p

(5, 2, 1, 4, 3)p p p p p

6.3

(11, 9, 10)p p p

10

Figure 7.2 The rectangle is the union of the slabs represented by the
darkened nodes plus an overhanging left segment containing
p6. The sorted list of points in the y direction is indicated next
to the nodes – not all the lists are shown. The number inside the
node of a tree indicates the splitting coordinate of the interval
that defines the left and right subintervals corresponding to the
left and right children.

where Q(d) is the query time in d dimensions for n points. This yields Q(d) = O(2d · logd n).
A more precise recurrence can be written in terms of n,d.

Q(n,d)≤

{
2∑i Q(n

2i ,d−1) for d ≥ 2

O(logn) d = 1
(7.1.2)

since the number of points in a node at distance i from the root has at most n
2i points.

The reader may want to find a tight solution of this recurrence (Exercise 7.5). The number
of output points k can be simply added to Q(n,d) since the subproblems output disjoint
subsets.

7.2 k–d Trees

A serious drawback of range trees is that both the space and the query time increases
exponentially with dimensions. Even for two dimensions, the space is super-linear. For

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

Multidimensional Searching and Geometric Algorithms 133

many applications, we cannot afford to have such a large blow-up in space (for a million
records, logn = 20).

Let us do a divide-and-conquer on the set of points – we partition the space into regions
that contain a subset of the given set of points. The input rectangle is tested against all the
regions of the partition. If it does not intersect a region U , then we do not search further.
If U is completely contained within the rectangle, then we report all the points associated
with U ; otherwise we search recursively in U . We may have to search in more than one
region – we define a search tree where each region is associated with a node of the tree.
The leaf nodes correspond to the original point set. In general, this strategy will work for
other (than rectangular) kinds of regions also.

We now give the construction of the k–d tree. Each node v of the tree will have an
associated rectangular region R(v) which will consist of at least one input point. The root
node of the tree will correspond to a (bounded) rectangle that contains all the n points.
Consider a node v. Two cases arise depending on whether the depth of v is odd or even. If
depth of v is even, we split the rectangle R(v) by a vertical line into two smaller rectangles,
R1(v) and R2(v). We add two child nodes v1 and v2 to v and assign them the corresponding
rectangles – note that if one of these smaller rectangles is empty (i.e., has no input point),
we do not partition it further. To create a balanced tree, we choose the vertical line whose
x coordinate is the median x coordinate of the points in R(v). Similarly, if the depth of v is
odd, we split along a horizontal line. Thus, the levels in the tree alternate between splitting
based on x coordinates and y coordinates (Figure 7.3).

Since a point is stored exactly once and the description of a rectangle corresponding
to a node takes O(1) space, the total space taken up by the search tree is O(n). Figure 7.4
illustrates k–d tree data structure.

Procedure Search(Q,v)

1 if R(v)⊂ Q then
2 report all points in R(v)
3 else
4 Let R(u) and R(w) be rectangles associated with the children

u,w; /* if v is a leaf node then exit */
5 if Q∩R(u) is non-empty then
6 Search(Q,u)

7 if R∩R(w) is non-empty then
8 Search (Q,w)

Figure 7.3 Rectangular range query used in a k–d tree

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

134 Design and Analysis of Algorithms

R0

p
3

p
6

p
9 p

11

p
8

p
7

p
5

p
13

p
12

p
2

p
1

p
4

p
10

p
14

p
15

R22
R24

R37

R12

R35

R23

R34

R31

R21

R11

R32

R33

R36

R0

R11

R21

R12

R24

R37R36R35R34

R33R32R31

R22
R23

Figure 7.4 Each rectangular subdivision corresponds to a node in the k–d
tree and is labeled by the splitting axis – either vertical or
horizontal. The shaded nodes indicate the nodes visited due to
the query rectangle. The leaf nodes are represented by the black
squares – a leaf node is visited iff the parent was visited and is
associated with exactly one of the given points.

The problem of reporting all points in a query rectangle can be solved as follows (see
Figure 7.4). We search a subtree rooted at a node v iff the query rectangle intersects the
rectangle R(v) associated with node v. This involves testing if the two rectangles (the query
rectangle and R(v)) overlap, which can be done in O(1) time. We start at the root and
recursively traverse its descendants – if R(v) has no overlap with the query rectangle, we
do not proceed to the descendant of v. Similarly, if R(v) is contained in the query rectangle,
we can just report all the points contained in R(v). When the traversal reaches a leaf, we

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

Multidimensional Searching and Geometric Algorithms 135

have to check whether the point stored at the leaf is contained in the query region and, if
so, report it.

Let us now compute the query time of this algorithm. Let Q be the query rectangle. Our
algorithm will explore a node v only if R(v) intersects Q, in particular one of the sides of Q.
For each of the sides of Q, we will separately count the number of nodes v such that R(v)
intersects Q. Consider one of the four sides of Q; assume that is one of the vertical sides,
and let L denote the vertical line along this side.

Let Q(i) be the number of nodes v at distance i from the root for which R(v) intersects
L. Consider a node v at level i such that R(v) intersects L. Among its four children at level
i + 2, at most two will intersect L, corresponding to the level that partitions using a
horizontal cut. Therefore, we get the recurrence:

Q(i+2)≤ 2Q(i)+O(1)

It is easy to check that Q(i) is O(2bi/2c), and so, the total number of nodes which intersect
L is O(

√
n). Arguing similarly for each of the sides of Q, we see that the algorithm visits

O(
√

n) nodes. For nodes which are completely contained in the query rectangle, we simply
report all the points in it. Therefore, the running time is O(

√
n+ k), where k is the number

of points which are contained in the query rectangle.

7.3 Priority Search Trees

As we learned in the previous chapter, the combination of BST with heap property resulted
in a simple strategy for maintaining balanced search trees called treaps. The heap property
was useful to keep a check on the expected height of the tree within O(logn). What if we
want to maintain a heap explicitly on a set of parameters (say the y coordinates) along
with a total ordering required for binary search on the x coordinates? Such a data structure
would be useful to support a three sided range query in linear space.

A three sided query is a rectangle [x` : xu]× [y` : ∞], that is, a semi-infinite vertical slab.

If we had a data structure that is a BST on x coordinates, we can first locate the two
points x` and xu to determine (at most) 2logn subtrees whose union contains the points in
the interval [x` : xu]. Say, these are T1,T2, . . . ,Tk. Within each such tree Ti, we want to find the
points whose y coordinates are larger than yl . If Ti forms a max-heap on the y coordinates,
then we can output the points as described in the procedure Search (v).

The procedure is called with v being the root of the max-heap. In general, the procedure
returns the set of nodes in the sub-tree rooted below v whose y-coordinates is at least y`.
Since v is the root of max-heap, if vy < y`, then all the descendents of v also satisfy this
property. Therefore, we do not need to search any further. This establishes correctness
of the search procedure. Let us mark all the nodes that are visited by the procedure in
the second phase. When we visit a node in the second phase, we either output a point or

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

136 Design and Analysis of Algorithms

terminate the search. For the nodes that are output, we can charge it to the output size. For
the nodes that are not output, let us add a charge to its parent – the maximum charge to a
node is two because of its two children. The first phase takes O(logn) time to determine the
canonical sub-intervals and so the total search time is O(logn+ k), where k is the number
of output points3.

Procedure Search(v)

1 Let vy denote the y coordinate associated with a node v.;
2 if vy < y` or v is a leaf node then
3 terminate search
4 else
5 if vx ≥ x` then
6 Output the point associated with v ;

7 Search(u) where u is the left child of v.;
8 Search (w) where w is the right child of v

Until now, we assumed that such a dual-purpose data structure exists. How do we
construct one?

First we can build a leaf-based BST on the x coordinates. Next, we promote the points
according to the heap ordering. If a node is empty, we inspect its two children and pull up
the larger value. We terminate when no value moves up. Alternately, we can construct the
tree as follows.

Procedure Build Priority Search Tree(S)

1 Input A set S of n points in plane. ;
2 Output A priority search tree ;
3 Let p ∈ S be the largest y coordinate. Store y in the root r ;
4 if S− p is non-empty then
5 Let L (respectively R) be the left (respectively right) half of the

points in S− p with separating vertical line having x coordinate
m(L,R);

6 Set X(r) = m(L,R) in root r ;
7 Build Priority Search Tree (L) ;
8 Build Priority Search Tree (R) ;
9 Comment : The left (right) subtree will be searched iff the query

interval extends to the left (right) of X(r)

3 This kind of analysis where we are amortizing the cost on the output points is called a filtering search.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

Multidimensional Searching and Geometric Algorithms 137

p (0, 5):14

p (1, 9):42

p (–2, 10):81

p (15, 8):12.53

p (20, 3):157
p (11, 4):116p (7, 6):555

(–1, 1)
p8

(2, 3)
p9

(5, 0)
p10

(6, 4)
p15

(10, 2)
p11

(12, 0)
p12

(16, 1)
p13

(23, –1)
p14

Figure 7.5 The query is the semi-infinite upper slab supported by the two
bottom points (0, 4.5) and (10, 4.5). The points corresponding
to each node are indicated as well as the separating x coordinate
after the ‘:’. The points corresponding to the shaded points are
output. The lightly shaded nodes are visited but not output.

Since the number of points reduce by half in every subtree, the height of this tree is
clearly O(logn). This combo data structure is known as a priority search tree; it takes only
O(n) space and supports a O(logn+ k) time three sided query. Figure 7.5 illustrates query
processing in a priority search tree.

7.4 Planar Convex Hull

In this section, we consider one of the most fundamental problems in computational
geometry – computing the convex hull of a set of points. We first define this concept. A
subset of points S in the plane (or in any Euclidean space) is said to be convex, if for every
pair of points x,y ∈ S, the points lying in the line segment joining x and y also lie in S (see
Figure 7.6 for examples of convex and non-convex sets). It is easy to check that if S1 and

Figure 7.6 The figure on the left is convex, whereas the one on the right is
not convex.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

138 Design and Analysis of Algorithms

S2 are two convex sets, then S1 ∩ S2 is also convex (though S1 ∪ S2 may not be convex). In
fact, arbitrary (i.e., even uncountably infinite) intersection of convex sets is also convex.
Thus, given a set of points P, we can talk about the smallest convex set containing P – this
is the intersection of all convex sets containing P. This set is called the convex hull of P (see
Figure 7.7 for an example).

This definition is difficult to work with because it involves intersection of an infinite
number of convex sets. Here is another definition which is more amenable to a finite set
of points in the plane. Let P be a finite set of points in the plane. Then the convex hull of P
is a convex polygon whose vertices are a subset of P, and all the points in P are contained
inside (or on the boundary of) P. A polygon is said to be convex if it is also a convex set.
The two definitions are equivalent for points lying on the plane. Thus, we can compute
the convex hull of such a set of points by figuring out the subset of points which lie on the
boundary of this convex polygon.

Figure 7.7 Convex hull of points shown as the shaded region.

In this section, we restrict our attention to points lying on the plane; in which case,
the convex hull is also denoted as a planar convex hull. Given a set of n points P, we use
CH(P) to denote the convex hull of P. The equivalence of these two definitions can be seen
as follows. Let x,y be two distinct points in P such that all the points in P lie on one side of
the line joining x and y. Then, the half-plane defined by this line is a convex set containing
P, and so, CH(P) must be a subset of this half-plane. Further, it must contain the line
segment joining x and y (since it must contain x and y). Therefore, we get the following
observation.

Observation 7.1 CH(P) can be described by an ordered subset x1,x2, . . . of P, such that it is the
intersection of the half-planes supported by (xi,xi+1).

We can also assume that any three consecutive points, xi,xi+1,xi+2, are not collinear;
otherwise, we can remove xi from the list. Under this assumption, each of the points xi

form an extreme point of the convex hull – a point x ∈CH(P) is said to be extreme if it does

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

Multidimensional Searching and Geometric Algorithms 139

not lie on the (interior of) a line segment joining any two points CH(P). Therefore, CH(P)
is a sequence of extreme points and the edges joining those points.

Let xL and xR be the points with the smallest and the largest x coordinate (we assume
by a simple tie-breaking rule that no two points have the same x coordinate) – these are
also called the left-most and the right-most points. For building the convex hull, we divide
the points by a diagonal joining xL and xR. The points above the diagonal form the upper
hull and the points below form the lower hull. We also rotate the hull so that the diagonal is
parallel to the x-axis. We will describe algorithms to compute the upper hull – computing
the lower hull is analogous.

The planar convex hull is a two-dimensional problem and it cannot be done using a
simple comparison model. While building the hull, we will need to test whether three
points (x0,y0),(x1,y1), and (x2,y2) are clockwise (counter-clockwise) oriented. Since the x
coordinates of all the points are ordered, all we need to do is test whether the middle point
is above or below the line segment formed by the other two. A triplet of points (p0, p1, p2)

is said to form a right turn iff the determinant∣∣∣∣∣∣
x0 y0 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣< 0

where (xi,yi) are the coordinates of pi. If the determinant is positive, then the triplet points
form a left turn. If the determinant is 0, the points are collinear.

We now describe some simple algorithms before delving into the more efficient
quickhull algorithm.

7.4.1 Jarvis march

A very intuitive algorithm for computing convex hulls simply simulates wrapping a rope
around the boundary points (or gift wrapping). It starts with any extreme point, say xL, and
repeatedly finds the successive points in clockwise direction by choosing the point with
the least polar angle with respect to the positive horizontal ray from the first vertex. The
algorithm is described in Figure 7.8. It maintains the invariant that for all i, p0, . . . , pi form
contiguous vertices on the upper convex hull.

The algorithm runs in O(nh) time, where h is the number of extreme points in CH(P).
Note that we actually never compute angles; instead, we rely on the determinant method
to compare the angle between two points, to see which is smaller. To the extent possible, we
only rely on algebraic functions when we are solving problems in Rd . Computing angles
require inverse trigonometric functions that we avoid.

When h is o(logn), Jarvis march is asymptotically faster than Graham’s scan, which is
described next.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

140 Design and Analysis of Algorithms

1 Input A set of points in the plane such that xL and xR form a
horizontal line.

2 Initialize p0 = xL, p−1 = xR.
3 Initialize i = 0.
4 Repeat
5 find the input point p such that the angle pi−1 pi p j is largest.
6 Set pi+1← p, i← i+1.
7 Until pi = xR.

Figure 7.8 Jarvis March algorithm for convex hull

7.4.2 Graham’s scan

We assume that we need to produce the upper convex hull only, and xL,xR form a
horizontal line. In this algorithm, points in the input set P are first sorted in order of their
x coordinate. Let this order be p1, p2, . . . , pn. It considers the points in this order, and after
considering pi, it stores a subsequence of p1, . . . , pi which form the convex hull of the
points {p1, . . . , pi}. It stores this subsequence in a stack – the bottom of the stack will be p0

and the top will be pi. When it considers pi+1, the invariant is maintained as follows. It
starts popping points from the stack as long as pi+1 and the top two points in the stack
form a left turn. When the top two points in the stack and pi+1 form a right turn, it pushes
pi+1 on the stack. It is left as an exercise to show that this algorithm outputs the upper
convex hull.

The points in the set P are first sorted using their x coordinate in O(n logn) time and
then inductively a convex chain of extreme points is constructed. For the upper hull, it
can be easily seen that a convex chain is formed by successive right turns as we proceed
in the clockwise direction from the left-most point. When we consider the next point (in
increasing x coordinates), we test if the last three points form a convex sub-chain, that is,
they make a right turn. If so, we push it into the stack. Otherwise, the middle point among
the triplet is discarded (Why?) and the last three points (as stored in the stack) are tested
for right-turn. It stops when the convex sub-chain property is satisfied.

Let us now analyze the running time of this algorithm. Sorting the points according
to their x coordinate takes O(n logn) time. Further, each point is pushed on the stack only
once, and once it is popped, it is not pushed again. So, each element is popped from the
stack at most once. Thus, the total time for stack operations is O(n). Note that the running
time is dominated by the time to sort.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

Multidimensional Searching and Geometric Algorithms 141

7.4.3 Sorting and convex hulls

There is a very close relationship between sorting and convex hulls and we can reduce
sorting to convex hull in the following manner. Suppose we want to sort the numbers
x1, . . . ,xn in increasing order. Consider the parabola y = x2, where we map each point xi to
a point pi = (xi,x2

i) on this parabola. Note that all of these points are extreme points and
the ordered set of points on the convex hull is same as the points sorted by xi values. Thus,
any algorithm for constructing a convex hull would be required to sort these points.

In fact, it is hardly surprising that almost all sorting algorithms have a counterpart in
the world of convex hull algorithms. An algorithm based on a divide-and-conquer
paradigm which works by arbitrary partitioning is called merge hull. The idea is similar
to merge sort. We first partition the points into two arbitrary subsets of equal size. We
recursively construct the upper hull of both the subsets. We would now like to merge the
two upper hulls in O(n) time. If we could achieve this, then the running time would obey
the recurrence

T (n) = 2T (
n
2
)+O(n),

which would imply O(n logn) running time.
The key step here is to merge the two upper hulls in O(n) time. Note that the two

upper hulls are not necessarily separated by a vertical line, and could be intersecting each
other. The merge step computes the common tangent, called bridge over line L, of these
two upper hulls, as shown in Figure 7.9. For the separated hulls, the merge step computes
the common tangent, called bridge of these two upper hulls, as shown in Figure 7.9(a). We
leave it as an exercise to find this bridge in O(n) time – the idea is similar to merge sort –
we scan both the upper hulls in left to right order while computing the merged hull.

Bridge

A B

C

D

(a) (b)

Figure 7.9 Merging upper hulls – for the separated case in (a) we
compute the bridge joining the two hulls. For the non-separable
case depicted in (b) the two boundaries could have multiple
intersections and can be computed in a sequence.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

142 Design and Analysis of Algorithms

7.5 Quickhull Algorithm

We describe an algorithm for convex hull which is based on ideas from the quick-sort
algorithm – partitioning points into two disjoint subsets based on some criteria,
recursively solving each sub-problem, and then combining the two solutions should be
easy. Recall that quick-sort can take O(n2) time in the worst-case scenario, and one needs
to use randomization (or a median-finding algorithm) to ensure that it runs in O(n logn)
time. We will see that similar ideas are needed here as well.

Let S be the set of n points whose convex hull has to be constructed. As before, we
compute the convex hull of S by constructing the upper and the lower hulls of S. Let pl

and pr be the extreme points of S in the x direction. Let Sa (Sb) be the subset of S which
lies above (below) the line through pl and pr. As we had noted previously, Sa ∪ {pl , pr}
and Sb∪{pl , pr} determine the upper and the lower convex hulls of S respectively. We will
describe the algorithm Quickhull to determine the upper hull using Sa∪{pl , pr}.

We first give some definitions. The slope of the line joining p and q is denoted by
slope(pq). The predicate left-turn(x,y,z) is true if the sequence x,y,z has a
counter-clockwise orientation, or equivalently, the area of the triangle has a positive sign.
Recall that this can be figured out by computing the determinant of a 3×3 matrix.

We first pair the points and pick a random pair. Consider the line joining these two
points; we move it parallel to itself (i.e., its slope does not change) till all the points lie
below it. Thus, this line will be supported by some input point and the rest will lie below
it. Let pm be such a point; we use pm as a pivot to partition the points into two parts (as in
quick-sort). Consider the vertical line containing pm: points which lie to the left of pm are
in one half and those to the right are in the other half. Clearly, if we could construct the
upper convex hulls of the two halves, then the upper hull of the entire set of points can
be obtained by just combining these two upper hulls (because pm is an extreme point and
so will be part of the convex hull). In Step 4 of the following algorithm, we prune some
points which cannot lie on the boundary of the upper hull. For example, in case (i) of Step
4, if both the points in the pair (p2 j−1, p2 j) lie to the left of the vertical line below pm, and
the triplet (pm, p2 j, p2 j−1) forms a right turn, then we know that p2 j cannot be part of the
upper hull, and so, discard it.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

Multidimensional Searching and Geometric Algorithms 143

Algorithm Quickhull(Sa, pl , pr)

Input: Given Sa= {p1, p2, . . . , pn} and the leftmost extreme point
pl and the rightmost extreme point pr. All points of Sa lie
above the line pl pr.

Output: Extreme points of the upper hull of Sa ∪ {pl , pr} in
clockwise order.

Step 1. If Sa = {p}, then return the extreme point {p}.
Step 2. Select randomly a pair {p2i−1, p2i} from the the pairs

{p2 j−1, p2 j}, j = 1,2, . . . ,b n
2c.

Step 3. Select the point pm of Sa which supports a line with slope
(p2i−1 p2i)a. (If there are two or more points on this line then
choose a pm that is distinct from pl and pr). Assign Sa(l) =
Sa(r) = /0).

Step 4. For each pair {p2 j−1, p2 j}, j = 1,2, . . . ,b n
2c do the following

(assuming x[p2 j−1]< x[p2 j])

Case (i): x[p2 j]< x[pm]

if left-turn (pm, p2 j, p2 j−1) then Sa(l) = Sa(l) ∪
{p2 j−1, p2 j}
else Sa(l) = Sa(l)∪{p2 j−1}.

Case (ii): x[pm]< x[p2 j−1]

if left-turn (pm, p2 j−1, p2 j) then Sa(r) = Sa(r)∪{p2 j}
else Sa(r) = Sb(r)∪{p2 j−1, p2 j}.

Case (iii): x[p2 j−1]< x[pm]< x[p2 j]

Sa(l) = Sa(l)∪{p2 j−1};
Sa(r) = Sa(r)∪{p2 j}.

Step 5. If Sa(l) 6= /0 then Quickhull(Sa(l), pl , pm).

Output pm.
If Sa(r) 6= /0 then Quickhull(Sa(r), pm, pr).

aIn the early versions of quickhull, the point pm was chosen to be furthest from pl pr . The
reader may want to analyze its performance.

7.5.1 Analysis

To get a feel for the convergence of the algorithm Quickhull, we must argue that in each
recursive call, some progress is achieved. This is complicated by the possibility that one of
the endpoints can be repeatedly chosen as pm. However, if pm is pl , then at least one point is
eliminated from the pairs whose slopes are larger than the supporting line L through pl . If

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

144 Design and Analysis of Algorithms

L has the largest slope, then there are no other points on the line supporting pm (Step 3
of the algorithm). Then, for the pair (p2 j−1, p2 j), whose slope equals that of L, left-turn
(pm, p2 j, p2 j−1) is true, so p2 j−1 will be eliminated (Figure 7.10). Hence, it follows that the
number of recursive calls is O(n), since each call leads to either an output vertex or to an
elimination of at least one point.

L

pm

xm

p
l

pr

p
2 –1j

p
2j

Figure 7.10 Left turn(pm, p2 j−1, p2 j) is true but slope(p2 j−1 p2 j) is less than
the median slope given by L.

Let N represent the set of slopes(p2 j−1 p2 j), j = 1,2, . . .b n
2c. Let k be the rank of the

slope(p2i−1 p2i), selected uniformly at random from N in Step 2 of the algorithm. Let nl and
nr be the sizes of the sub-problems determined by the extreme point pm supporting the
line with slope(p2i−1, p2i). We can show the following.

Observation 7.2 max(nl ,nr)≤ n−min(b n
2c− k,k).

Without loss of generality, let us bound the size of the right sub-problem. There are b n
2c−k

pairs with slopes greater than or equal to slope(p2i−1 p2i). At most one point out of every
such pair can be an output point to the right of pm.

If we choose the median slope, that is, k = n
4 , then nl ,nr ≤ 3

4 n. Let h be the number
of extreme points of the convex hull and hl(hr) be the extreme points of the left (right)
sub-problem. We can write the following recurrence for the running time.

T (n,h)≤ T (nl ,hl)+T (nr,hr)+O(n)

where nl +nr ≤ n, hl +hr ≤ h−1. Exercise 7.10 requires you to show that the solution of this
recurrence relation is O(n logh). Therefore, this achieves the right balance between Jarvis

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

Multidimensional Searching and Geometric Algorithms 145

march and Graham’s scan as it scales with the output size at least as well as Jarvis march
and is O(n logn) in the worst case.

7.5.2 Expected running time*

Let T (n,h) be the expected running time of the algorithm randomized Quickhull to compute
hull vertices of a set of n points, given the extreme points pl and pr, where h denotes the
number of vertices on the upper hull. Let p(nl ,nr) be the probability that the algorithm
recursively calls two smaller size problems of sizes nl and nr containing hl and hr extreme
vertices respectively. Therefore, we can write

T (n,h)≤ ∑
∀nl ,nr≥0

p(nl ,nr)(T (nl ,hl)+T (nr,hr))+bn (7.5.3)

where nl ,nr ≤ n−1, nl +nr ≤ n, hl ,hr ≤ h−1, hl +hr ≤ h, and b > 0 is a constant. Here we are
assuming that the extreme point pm is not pl or pr. Although, in the Quickhull algorithm,
we have not explicitly used any safeguards against such a possibility, we can analyze the
algorithm without any loss of efficiency.

Lemma 7.1 T (n,h) ∈ O(n logh).

Proof: We will use the inductive hypothesis that for h′ < h and for all n′, there is a fixed
constant c, such that T (n′,h′)≤ cn′ logh′. For the case that pm is not pl or pr, from Eq. (7.5.3)
we get

T (n,h)≤ ∑
∀nl ,nr≥0

p(nl ,nr)(cnl loghl + cnr loghr)+bn

Since nl +nr ≤ n and hl ,hr ≤ h−1,

nl loghl +nr loghr ≤ n log(h−1) (7.5.4)

Let E denote the event that max(nl ,nr) ≤ 7
8 n and p denote the probability of E . Note that

p≥ 1
2 .

From the law of conditional expectation, we have

T (n,h)≤ p · [T (nl ,hl |E)+T (nr,hr)|E]+ (1− p) · [T (nl ,hl + |Ē)+T (nr,hr|Ē)]+bn

where Ē represents the complement of E .
When max(nl ,nr)≤ 7

8 n, and hl ≥ hr,

nl loghl +nr loghr ≤
7
8

n loghl +
1
8

n loghr (7.5.5)

The RHS of Eq. (7.5.5) is maximized when hl =
7
8 (h−1) and hr =

1
8 (h−1). Therefore,

nl loghl +nr loghr ≤ n log(h−1)− tn

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

146 Design and Analysis of Algorithms

where t = log8− 7
8 log7≥ 0.55. We get the same bounds when max(nl ,nr)≤ 7

8 n and hr ≥ hl .
Therefore,

T (n,h) ≤ p(cn log(h−1)− tcn)+(1− p)cn log(h−1)+bn

= pcn log(h−1)− ptcn+(1− p)cn log(h−1)+bn

≤ cn logh− ptcn+bn

Hence, from induction, T (n,h)≤ cn logh for c≥ b
t p .

If pm is an extreme point (say pl), we cannot apply Eq. (7.5.3) directly, but some points
will still be eliminated according to Observation 7.2. This can happen a number of times,
say r ≥ 1, at which point, Eq. (7.5.3) can be applied. We will show that this is actually a
better situation, that is, the expected time bound will be less and hence, the previous case
dominates the solution of the recurrence.

The rank k of slope(p2i−1 p2i) is uniformly distributed in [1, n
2], so that the number of

points eliminated is also uniformly distributed in the range [1, n
2] from Observation 7.2.

(We are ignoring the floor in n
2 to avoid special cases for odd values of n – the same bounds

can be derived even without this simplification). Let n1,n2, . . . ,nr be the r random variables
that represent the sizes of subproblems in r consecutive times; pm is an extreme point. It
can be verified by induction that E[∑r

i=1 ni] ≤ 4n and E[nr] ≤ (3/4)rn, where E[·] represents
the expectation of a random variable. Note that ∑

r
i=1 b · ni is the expected work done in r

divide steps. Since cn logh≥ 4nb+c(3/4)r ·n logh for r ≥ 1 (and logh≥ 4), the previous case
dominates. 2

7.6 Point Location Using Persistent Data Structure

The point location problem involves an input planar partition (a planar graph with an
embedding on the plane), for which we build a data structure such that given a point, we
want to report the region containing the point. This fundamental problem has numerous
applications including cartography, GIS, computer vision, etc.

The one-dimensional variant of the problem has a natural solution based on binary
search – in O(logn) time, we can find the interval containing the query point. In two
dimensions, we can also consider a closely related problem called ray shooting, in which
we are given a set of line segments in the plane, we shoot a vertical ray and report the first
segment that it hits. In the context of point location problem in a planar partition, this
problem is relevant because each edge of the planar graph can be thought of as a line
segment. Notice that every segment here borders two regions and we can use the ray
shooting problem to report the region below this segment (see also
Exercise 7.14). Consider a vertical slab which is criss-crossed by n line segments such that
no pair of segments intersect within the slab. Given a query point, we can use binary
search to answer a ray shooting query in O(logn) primitives of the following kind – Is the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

Multidimensional Searching and Geometric Algorithms 147

point below/above a line segment? This strategy works since the line segments are totally
ordered within the slab (they may intersect outside).

This is illustrated in Figure 7.11.

da q

b
c

s5

s4

s3

s2

s1

Figure 7.11 The shaded vertical region does not contain any intersection
points. The vertical ordering of the segments remain unchanged
as s5,s3,s4,s2,s1 between the intersection points b and c.
Segments s1,s4 flip after their intersection at c. Given a query
point q, a ray-shooting query can be answered by a binary
search comprising of above–below test wrt the segments within
the slab.

For the planar partition, imagine a vertical line V being swept from left to right and let
V (x) represent the intersection of V with the planar partition at an X-coordinate value x. For
simplicity, let us assume that no segment is vertical. Further, let us order the line-segments
according to V (x) and denote it by S(x). While V (x) is continuously changing as V sweeps
across, S(x) remains unchanged between consecutive intersection points. In Figure 7.11,
S(x) can be seen as s5,s3,s4,s2,s1 where the query point q lies between s3 and s5 and the
answer to the ray-shooting query is s5.

Observation 7.3 Between two consecutive (in X direction) end points of the planar partition, S(x)
remains unchanged.

The region between two consecutive end points is a situation similar to the vertical slab
discussed before. So once we determine which vertical slab contains the query point, in

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

148 Design and Analysis of Algorithms

an additional O(logn) above–below tests, we can solve the ray shooting problem. Finding
the vertical slab is a one-dimensional problem and can be answered in O(logn) steps
involving a binary search. Therefore, the total query time is O(logn) but the space bound
is not nearly as desirable. If we treat the (2n−1) vertical slabs corresponding to the 2n end
points, we are required to build Ω(n) data structures, each of which involves Ω(n)
segments. Figure 7.12 depicts a worst-case scenario in terms of space. A crucial
observation is that the two consecutive vertical slabs have almost all the segments in
common except for the one whose end points separate the region.

Can we exploit the similarity between two ordered lists of segments and support binary search on
both lists efficiently?

In particular, can we avoid storing the duplicate segments and still support logn step
binary searches. Here is the intuitive idea. For each vertical slab, we are storing the
segments in it in a balanced binary search tree (based on their order in terms of vertical
direction). This will ensure that the search time for a point in this vertical slab is O(logn).
Now, we can consider two adjacent slabs and notice that the set of segments can change
as follows: one new segment can enter the set or an existing segment can go away. Let us
assume that an element, i.e., a segment, is inserted in the adjacent vertical slab and we
would like to maintain both versions of the tree (before and after the insertion). Observe
that if a new node leaf v is inserted, then we may perform balancing operations to make
the BST balanced again – however all of these operations will only affect the path from v
to the root. We use the following idea to maintain both versions of the tree:

Path copying strategy If a node changes, then make a new copy of its parent and also
copy the pointers to its children.

Once a parent is copied, it will lead to copying its parent, etc, until the entire root–leaf
path is copied. At the root, create a label for the new root. Once we know which root node
to start the binary search, we only need to follow pointers and the search proceeds in the
normal way that is completely oblivious to fact that there are actually two implicit search
trees (Fig. 7.13). The search time also remains unchanged at O(logn). The same strategy
works for any number of versions except that to start searching at the correct root node,
we may require an additional data structure. In the context of planar point location, we
can build a binary search tree that supports one-dimensional search.

The space required is (path length) · (number o f slabs) + n which is O(n logn). This is
much smaller than the O(n2) scheme that stores each tree explicitly.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

Multidimensional Searching and Geometric Algorithms 149

1

2

3

4

5

6

7

8

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

1

2

3

4

5

6

Figure 7.12 An example depicting Ω(n2) space complexity for n segments.
The search tree corresponds to the slab s5 and each node
corresponds to an above–below test corresponding to the
segment.

1

2

4

6

5

3

2

1 3

5

6

7

4

s5 s6

Figure 7.13 Path copying technique on adjacent slabs s5 and s6.

7.7 Incremental Construction

Given a set S = {p1, p2, . . . , pn} of n points on a plane, we want to find a pair of points q,r ∈ S
such that d(p,q) = minpi,p j∈S d(pi, p j), where d() computes the Euclidean distance between
two points. The pair (q,r) is known as the closest pair and it may not be unique. Moreover,
the closest pair has distance zero if the points are not distinct.4

4 So the lower bound for element distinctness would hold for the closest pair problem.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

150 Design and Analysis of Algorithms

In one dimension, it is easy to compute the closest pair by first sorting the points and
choosing an adjacent pair which has minimum separation. A trivial algorithm is to
compute all the

(n
2

)
pairs and choose the minimum separated pair; so we would like to

design a significantly faster algorithm.
A general approach to many similar problems is given in Figure 7.14. The idea is to

maintain the closest pair in an incremental fashion, so that in the end, we have the required
result.

Algorithm 1: Closest pair(S)

1 Input P = {p1, p2 . . . pn} ;
2 S = {p1, p2} ; C = d(p1, p2); j = 2 ;
3 while j ≤ n do
4 if d(p j,S)< C then
5 C = d(p j,q) where q = argminp∈S d(p j, p)

6 P← P∪{p j} j← j+1

7 Output C as closest pair distance.

Figure 7.14 Incremental algorithm for closest pair computation

While the correctness of the algorithm is obvious, the analysis depends on the test
in line 3 and the update time in line 5. For simplicity, let us analyze the running time
for points in one dimension. Suppose the distances d(p j+1,S j) are decreasing where S j =

{p1, p2, . . . , p j}. Then the closest pair distance C is updated in every step. To find the closest
point from p j+1 to S j, we can maintain S j as a sorted set and find the closest point from p j+1

using a binary search in O(log j)=O(logn) time. Overall, the algorithm takes O(n logn) time
which is the same as presorting the points.

For points on a plane, we have to design a data structure to efficiently perform the test
in line 3 and update in line 5. Trivially, it can be done in O(n) steps leading to an O(n2) time
algorithm. Instead, we analyze the algorithm for a random ordering of points in S. This
will potentially reduce the number of updates required significantly from the worst case
bound of n−2 updates. Let qi denote the probability that point pi causes an update when
the points are inserted in a random order. A random ordering corresponds to a random
permutation of points in P. To avoid extra notations, let us assume that p1, p2, . . . , pn are
numbered according to a randomly chosen permutation.

We can restate our problem as follows.
When p1, p2, . . . , pi is a random ordering of the set of points P = {p1, p2, . . . , pi}, what is the
probability that pi defines the closest pair?

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

Multidimensional Searching and Geometric Algorithms 151

Suppose the closest pair is unique, that is, C = d(r,s) for some r,s∈ {p1, p2, . . . , pi}. Then,
this probability is the same as the event that pi = {r,s}. The total number of permutations
of i objects is i! and the total number of permutations with r or s as the last element is
2(i−1)!. So the probability that pi defines C equals 2(i−1)!

i! = 2
i . In a random permutation of

n elements, the previous argument holds for a fixed set of i points. The law of total probability
states that

Pr[A] = Pr[A|B1] ·Pr[B1]+Pr[A|B2] ·Pr[B2]+ . . .+Pr[A|Bk] ·Pr[Bk]

for disjoint events B1,B2 . . .Bk

(7.7.6)

In this situation, Bi represents each of the
(n

i

)
possible choice of i elements as the first i

elements and by symmetry, the probabilities are equal as well as ∑i Pr[Bi] = 1. Since
Pr[A|Bi] =

2
i , the unconditional probability of update in the ith step is 2

i .
This is very encouraging since the expected update cost of the ith step is 2

i ·U(i), where
U(i) is the cost of updating the data structure in the ith step. Therefore, even for U(i) =
O(i log i), the expected update time is O(log i) = O(logn).

The situation for the test in line 3 is somewhat different since we will execute this step
regardless of whether update is necessary. Given S and a new point pi, we have to find the
closest point from pi and S (and update if necessary). Suppose the closest pair distance in S
is D then consider a D×D grid of the plane and each point of S is hashed to the appropriate
cell. Given the new point pi = (xi,yi), we can compute the cell as d xi

De,d
yi
De. It can be seen

from Figure 7.15 that if the closest point to pi is within distance D; then, it must lie in one
of the neighboring grid cells, including the one containing pi. We can exhaustively search
each of the nine cells.

Claim 7.1 None of the cells can contain more than 4 points.

This implies that we need to do at most O(1) computations. These neighboring cells can be
stored in some appropriate search data structure (Exercise 7.25) so that it can be accessed in
O(log i) steps. In line 4, this data structure can be rebuilt in O(i log i) time, which results in an
expected update time of O(log i). So, the overall expected running time for the randomized
incremental construction is O(n logn).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

152 Design and Analysis of Algorithms

D

D

p

Figure 7.15 Maximum number of D-separated points per cell is 4 and the
shaded area is the region within which a point can lie with
distance less than D from p

Further Reading

The notion of multidimensional searching was motivated by an early paper of
Bentley [19] that introduced the k-d trees. The closely related classes of nested data
structures like range-search trees, interval trees, and segment trees were discovered in the
context of natural geometric search problems. The book by Mehlhorn [101] and Preparata
and Shamos [118] are excellent sources for these data structure techniques. Planar convex
hull was a subject that got a lot of attention during the early days of computational
geometry like Graham’s scan [59] and gift wrapping method [69, 117] including its
relationship to sorting algorithms. Kirkpatrick and Seidel [80] opened up a new direction
by introducing the output size as an important parameter in time complexity. Quickhull,
originally christened in the textbook [118] to describe an algorithm of Bykat [25] turned
out to be not comparable to quicksort from which it gets its name. The description given
in the chapter follows that of Bhattacharya and Sen [21] which is a randomized version of
Chan, Snoeyink, and Yap [28]. The priority search data structure was first presented by
McCreight [99]. The notion of persistent data structures was proposed in the context of
planar point location by Sarnak and Tarjan [127]. This was developed further to
accommodate updates in the past called fully persistent by Driscoll et al. [44]. The
framework of randomized incremental construction (ric) can be found in the works of
Clarkson and Shor [32] and Mulmuley [107]. The closest pair algorithm using ric has been

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

Multidimensional Searching and Geometric Algorithms 153

adapted from the paper by Khuller and Matias [79]. For readers who are interested in
pursuing more in-depth study in geometric algorithms are referred to many excellent
textbooks [20, 45, 118]. The book by Edelsbrunner [45] makes many interesting
connections between the combinatorial aspects of geometry and the analysis of geometric
algorithms.

Exercise Problems

7.1 Given a set of n points in d dimensions, show that the immediate predecessor of a query
point can be determined in O(d+ logn). The predecessor is according to the lexicographic
ordering described in the beginning of the chapter.

7.2 Show that for any query in the range search tree, the points belong to at most 2logn
subtrees.

7.3 Show how to use threading to solve the range query in a BST without having leaf-based
storage.

7.4 How would you modify the data structure for the counting version of orthogonal range
trees to obtain a polylogarithmic query time?

7.5 Find a solution rigorously for the recurrence given in Eq. (7.1.2).

7.6 Work out the details of performing a three-sided query using a priority search tree and
also analyze the running time.

If the given set of points is sorted by y coordinates, show that the priority search trees can
be constructed in O(n) time.

7.7 Given a set of n line segments, design a data structure such that for any query rectangle,
the set of line segments intersecting (including those fully contained) can be reported in
O(log2 n+ k) time. Here k represents the size of output.

7.8 Given a set of n horizontal line segments, design a data structure that reports all
intersections with a query vertical segment.

Hint: Use segment trees.

7.9 Given a set of n horizontal and vertical segments, design an algorithm to identify all the
connected components in O(npolylog(n)) time. A connected component is a set of line
segments defined as follows:

Two segments that intersect are connected. A segment intersecting any segment of a
connected component belongs to the connected component.

7.10 Complete the solution of the recurrence for running time of the quickhull algorithm to show
that T (n,h) is O(n logh).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

154 Design and Analysis of Algorithms

7.11 In some early versions of quick-hull, in Step 3, the point pm was chosen to be furthest from
pl pr. The reader may want to analyze its performance carefully and demonstrate some
bad inputs that would lead to quadratic running times.

7.12 Given a set S of n points on the plane, the diameter of S is defined as the maximum
Euclidean distance between p1, p2 ∈ S over all pairs of points. Design an efficient algorithm
to find the diameter of S.

Hint: Prove that the diameter is defined by a pair on the convex hull of S.

7.13 The width of a set S of n points in a plane is defined as the minimum width of a slab
defined by a pair of parallel lines, such that S is completely contained in the slab. More
formally, let ∆(S) = minθ maxp∈S{d(p, `}, where ` is a line that makes an angle θ with the
x-axis and d(p, `) is the Euclidean distance between p and `. The line ` that minimizes
this distance is called the median axis and the width of S is 2∆.

Design an O(n logn) algorithm for finding the width of a point set.

7.14 Design an efficient solution to the ray shooting problem by extending the interval trees.

7.15 Analyze the performance of range trees for reporting orthogonal range queries for
dimensions d ≥ 3. In particular, what are the preprocessing space and query time?

7.16 If we allow for insertion and deletion of points, how does the performance of range trees get
affected? In particular, what are the time bounds for the orthogonal range query, insertion,
and deletion of points? Discuss the data structure in details.

7.17 Design an efficient algorithm to construct the intersection of two convex hulls.

7.18 Design an algorithm to merge two upper hulls in O(n) time where n is the sum of the
vertices in the two hulls.
Further show how to find a bridge between two linearly separable upper hulls in O(logn)
steps using some variation of the binary search. Note that the bridge is incident on the
two hulls as a tangent on points p1 and p2. Use binary search to locate these points on
the two convex hulls by pruning away some fraction of points on at least one of the hulls.

7.19 If we want to maintain a convex hull under arbitrary insertion and deletion of points without
recomputing the entire hull, we can use the following approach. Use a balanced BST
(binary search tree) to store the current set of points. At each of the internal nodes, store
the bridge between the upper hull of the points stored in the left and right subtrees. Use
this scheme recursively – the leaves store the original points. In case of any changes
to the point set, the bridges may be re-computed using the algorithm in the previous
problem. Provide all the missing details to show that this data structure can be maintained
in O(log2 n) time per update, either insertion or deletion.

7.20 Given a set S of n points in a plane, design a data structure to

(i) Find the closest point from a query line.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

Multidimensional Searching and Geometric Algorithms 155

(ii) Find the closest point to the convex hull of S from a query point (if the point is inside
the hull, then distance is 0).

7.21 A point p1 � p2, (p1 dominates p2) iff all the coordinates of p1 are greater than or equal to
p2. A point p is maximal if it is not dominated by any other point in an input set S.

(i) Design an O(n logn) time algorithm to find all maximal points in an input set S of n
distinct points on the plane. This is known as the DOMINANCE problem.

(ii) Design an O(n logh) algorithm for the three-dimensional version of the DOMINANCE
problem.

7.22 Design an O(n logn) algorithm for finding all h maximal points among a set of n points on
a plane.

7.23 Point–line duality Consider a transform D(a,b) = ` : y = 2ax− b which maps a point
p = (a,b) to a line ` : y = 2ax−b. Moreover, D is a 1-1 mapping, that is, D(` : y =mx+c) =
(m/2,−c), such that D(D(p)) = p. Note that D is not defined for m = ∞, that is, vertical
lines.

Prove the following properties of D, where p is a point and ` is a (non-vertical) line.

1. If p is incident on `, then D(`) is incident on D(p).

2. If p lies below `, then D(`) lies above D(p) and vice versa.

3. Let p be the intersection point of lines `1 and `2. Then the line D(p) passes through
the points D(`1) and D(`2).

7.24 Intersection of half-planes Given a set of n half-planes hi : y = mi · x+ ci, we want to
compute the intersection of his. Note that the intersection of half-spaces in a convex region
may be bounded, unbounded, or even empty.

1. If the intersection is non-empty, show that the boundary is the intersection of two convex
chains C+ and C−, where

(i) C+ =
⋂

hi∈H+ Hi (ii) C− =
⋂

hi∈H− Hi

H+ (respectively H−) denotes the set of positive (negative) half-planes, that is, the
planes that contain (0,∞) and (0,−∞).

2. Design an O(n logn) algorithm for constructing the intersection of n half-planes by
exploiting the dual transform described in the previous problem.

Hint: There is a 1–1 correspondence between the boundary of the intersection of
half-planes and the boundary of the convex hull of D(hi). If a point belongs to the lower
hull, then there exists a line through the point that contains all the remaining points on
the positive half-plane. Likewise, if a half-plane forms the boundary of C+, then a point
on the boundary satisfies

⋂
hi∈H+ Hi.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

156 Design and Analysis of Algorithms

7.25 Let cd denote the maximum number points in a d-dimensional unit cube that are mutually
separated by at least distance 1. Calculate a tight upper-bound on c2 and c3.

Design an efficient data structure based on this observation to determine if the value of the
closest pair distance has changed in the algorithm given in Figure 7.14 and also analyze
the time to rebuild this data structure if the closest pair distance changes. Compare and
contrast tree-based and hashing-based schemes.

7.26 Prove that Graham’s scan algorithm correctly outputs the convex hull of a set of points in
the plane.

7.27 Consider the quick-hull algorithm and the notation used in its description. Show that the
points in Sa(l) which lie below the line joining pm and pl cannot be part of the upper hull,
and so, can be eliminated from Sa(l). Argue similarly for Sa(r).

7.28 Consider the quick-hull algorithm. In step 3, show that if the pair {p2i−1, p2i} satisfies
the property that the line containing p2i−1 p2i does not intersect the line segment pl , pr,
then it guarantees that p2i−1 or p2i does not lie inside the triangle4pl p2i pr or4pl p2i−1 pr

respectively. This could improve the algorithm in practice by eliminating all points within
the quadrilateral pl , p2i−1, p2i, pr.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.008
https://www.cambridge.org/core

8
C H A P T E R

String Matching and
Finger Printing

Given a string P and a text T , where T is usually much longer than P, the (exact) string
matching problem is to find all or some of the occurrences of P in T . This may also be
viewed as the linear version of the more interesting family of pattern matching problems
which is one of the central problems in the area of artificial intelligence and machine
learning. Discerning patterns in high dimensional spaces is believed to drive all our
cognition processes. Readers familiar with automata theory and formal languages will be
familiar with the complexity of recognizing complex patterns in strings that are generated
according to some rules. In this chapter, however, we will be mostly concerned with
identifying explicit substrings in a long text. Much of the contemporary work in
document classification uses keywords identification as a basic routine that feeds into
higher level heuristics.

8.1 Rabin–Karp Fingerprinting

We first introduce the notation needed to describe the algorithm. We shall use Σ to denote
the set of symbols which form the input string. Let Y denote the text string of length m,
where each character belongs to Σ. Let Yj denote the jth character of Y .

We shall use Y (j,k) to denote the substring Yj ·Yj+1 . . .Yj+k−1. In other words, Y (j,k) is
the substring of length k starting at the jth position. The length of a string Y is denoted by
|Y |. Similarly, the pattern string X is a length n string with symbols from Σ where n≤ m.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.009
https://www.cambridge.org/core

158 Design and Analysis of Algorithms

The string matching problem is as follows:

Given a pattern string X , |X |= n, find an index i such that X = Y (i,n), else report no match.

Other common variations include finding the smallest index where a match occurs, or
finding all indices where the match occurs. For example, given string Y = abbaabaababb
over alphabet {a,b} and patterns A = aaba and B = aaab, A = Y (4,4) = Y (7,4) whereas B
does not occur in Y . Note that the two occurrences of A actually overlap.

One obvious and natural way of finding matches is brute-force comparison of each
Y (i,n) with X for all i, that could result in Ω(nm) comparisons. This can actually happen for
the input strings Y = ababab . . .ab and X = abab . . .ab.

Consider the following idea : let F() be a function which maps strings of lengths n to
relatively shorter strings. Now, we compute F(X) and compare it with F(Y (1,n)),
F(Y (2,n)), and so on. Clearly, if F(X) 6= Y (i,n), then X and Y (i,n) are distinct strings. The
converse may not hold true.

For example, let F(a) = 1,F(b) = 2 and for a string X = X1X2 . . .Xn, define F(X) as
∑

n
i=1 F(Xi). Consider strings S1 = abbab, S2 = abbaa, and S3 = babab. Then, F(S1) = 8,

F(S2) = 7, and F(S3) = 8. Since F(S1) 6= F(S2), S1 6= S2. However, the converse is not true,
i.e., even though F(S1) = F(S3) = 8, we know that S1 6= S3. In fact, this issue is unavoidable
because F is mapping a large set to a smaller set viz., 2n strings to values in [n,2n], and so,
cannot be a 1-1 function.

The function F is known as the fingerprinting function (also called a hash function)
and may be defined according to the application. Although the function in the previous
example did not give us the desired result, let us try

F(X) = (
n

∑
i=1

2n−iXi) mod p

where p is a prime number. Here, X is assumed to be a binary pattern (of 0 and 1) and x is
the corresponding integral value1, i.e., if X = 10110, then x = 22 (in decimal).

To get some intuition about why this is a good idea, let us consider a slightly different,
though related, problem. Let x1,x2 be two integers and consider the expression (x1− x2)

mod p for some prime p.

Observation 8.1 If (x1− x2) mod p 6= 0 then x1 6= x2.
If (x1− x2) mod p = 0 then (x1− x2) = k · p for some integer k.

It follows that only when k = 0, x1 = x2. Consider another prime p′ 6= p. If (x1 − x2)

mod p′ 6= 0, then x1 6= x2 from our previous observation. However, it may happen that
(x1− x2) mod p′ = 0. Does it imply that x1 = x2? It may if (x1− x2) is simultaneously a
multiple of p and p′.

1 We will use the notation for string X and its integer cast x interchangeably when it is clear from the context.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.009
https://www.cambridge.org/core

String Matching and Finger Printing 159

For example, let x1 = 24,x2 = 9, p = 3, p′ = 5, then 15 mod 3 = 15 mod 5 = 0. Consider the
natural extension of this strategy given in Fig. 8.1.

Procedure Verifying equality of numbers(x1,x2)

1 Input: Integers x1,x2,k ;
2 Repeat k times ;
3 Choose a random prime p ∈ [1,M] ;
4 if If x1 mod p 6= x2 mod p then
5 Return NO;

6 Return YES COMMENT: If for all the k iterations (x1− x2) mod p = 0

Figure 8.1 Testing equality of two large numbers

When the test returns NO, the answer is correct; to analyze the other case, let us
denote by p1, p2, . . . , pk such that x1 ≡pi x2 or equivalently (x1− x2) ≡pi 0 for i = 1,2, . . . ,k.
The number x1− x2 is bounded by max{x1,x2}, which in turn is bounded by the range r
such that x1,x2 ∈ [1 . . .r]. Since pis divide (x1− x2), we can bound the number of prime
factors of x1 or x2 by logr. Indeed, if p1, . . . , p` are distinct primes dividing x1, then
∏

`
i=1 pi ≥ 2`. So, ` is O(logr).

If the number of primes from where we choose a random prime is at least t logr, then
the probability that a random prime divides x1− x2 is less than 1

t . So we summarize our
analysis as follows.

Claim 8.1 If the primes are chosen from the range [1,M], then the probability that the answer is

incorrect is less than
(

logr
π(M)

)k
, where π(M) is the number of primes in the range [1,M].

This follows easily from the observation that at most logr out of a possible π(M) primes
can yield an incorrect answer (YES) and this should happen in all the k iterations
independently. The quantity π(M) is known to satisfy the following inequality (using
results on density of primes)

M
lnM

≤ π(M)≤ 1.26
M

ln(M)

This gives us a way of reducing the error probability to any ε > 0 by choosing M and k
appropriately. If M ≥ 2logr log logr, then the error probability is less than 1

2 and by
repeating it k times, it decreases to 1

2k . By choosing a much larger range M = r, the error
probability is 1

r2 even for a very small constant k.
To get a better perspective of what we can achieve, let us consider a scenario with two

individuals A and B who have the two numbers x1,x2 respectively. They want to compare

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.009
https://www.cambridge.org/core

160 Design and Analysis of Algorithms

the numbers by exchanging as little information as possible. Since both numbers are in
[1,r], any one of the parties can send its individual numbers to the other person and they
can be compared easily. This involves sending across r′ = dlog2 re binary bits. Can we do
the same by communicating fewer bits? The strategy given in Fig. 8.1 can be used very
effectively by choosing pis that are much smaller than r and can be represented using fewer
bits. If pis are in the range [1, log2 r], then by sending the remainders (modulo pi) having
O(log logr) bits, we can compare them with reasonable probability of being error free. By
sending across multiple such fingerprints (modulo multiple primes), we can drive down
the error probability even further and the total number of bits is bounded by kdlog logre
which is much smaller than r′.

With this observation, let us now return to the string matching problem and consider
the following algorithm in Fig. 8.2. Note that Fp(i) denotes the fingerprint of the string
Y (i,n).

Procedure String match(Y,X)

1 Input: String Y = Y1,Y2 . . .Ym, Pattern X = X1,X2, . . .Xn ;
2 Output: { j|Y (j,n) = X}, else nil ;
3 Choose a random prime p ∈ [1,n3] ;
4 Compute hash Fp(X) = (∑n

i=1 2n−iXi) mod p ;
5 Compute the initial hash Fp(1) = Fp(Y (1,n)) ;
6 Match← φ (Initialize the match vector) ;
7 for i = 1 to m−n+1 do
8 Fp(i+1) = [2 ·Fp(i)+Yi+n] mod p−Yi ·2n−1 mod p ;
9 if If Fp(i+1) = Fp(X) then

10 Verify if Y (i,n) = X and add i to Match accordingly ;
11 Match = Match∪{i} ;

12 Return Match if non-empty else nil ;

Figure 8.2 Karp–Rabin string matching algorithm

Claim 8.2 The procedure String match(Y,X) always returns all the correct matches.

First note that because of the explicit verification step that checks if Y (i,n) = X character
by character, we have eliminated the case of false matches when the fingerprints match
without an actual match. This introduces some added cost when we analyze the overall
algorithm.

Let us now analyze the cost involved in each of the steps. In the logarithmic cost RAM
model, we assume that each word has O(logm) bits and any arithmetic operation on a word

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.009
https://www.cambridge.org/core

String Matching and Finger Printing 161

can be done in O(1) steps 2. From Claim 8.1, it follows that the probability of a false match
is n

n3 = 1
n2 since the strings are binary strings of length n and their values are bounded by

2n. Therefore, the expected cost of a false match is n
n2 =

1
n and the total expected cost of all

the false matches (maximum of m−n) can be bounded by m/n≤ m.
The most important step in the algorithm is line 8 where the fingerprint function Fp(i)

is being updated, and Fp(i) = Fp(Y (i,n)). Note that Y (i+ 1,n) = 2(Y (i,n)−Yi · 2n−1)+Yi+n.
So,

Fp(i+1) = Y (i+1,n) mod p (8.1.1)

= [2(Y (i,n)−2n ·Yi +Yi+n] mod p (8.1.2)

= 2Y (i,n) mod p−2n ·Yi mod p+Yi+n mod p (8.1.3)

= (2Fp(i)) mod p+Yi+n mod p−2n−1 ·Yi mod p (8.1.4)

All the terms are modulo p except 2n−1 ·Yi which can be much larger. However, we can
pre-compute it in O(n) time by noting that 2i mod p = 2(2i−1 mod p) mod p. So as long as
p can fit in one (or O(1)) word in the memory, this can be done in constant update time.

The actual running time of the algorithm depends on the number of (correct) matches.
If there are t matches of X in the string, then, the cost of verification is O(t · n). Since the
expected cost of false matches is m/n, we can summarize the overall analysis as follows

Theorem 8.1 The expected running time of the algorithm in Figure 8.2 is O((t +m/n) ·n), where
t is the number of matches of the the pattern X in the string Y .

Clearly, if we are only interested in finding the first match, the algorithm can be tweaked
so that it takes linear time. However, for multiple matches, the verification step is
expensive. The characterization of the algorithm minus the verification step (line 9) is left
as an exercise problem.

8.2 KMP Algorithm

Although the previous technique based on a random fingerprinting function is simple,
it can give erroneous results if the verification step is eliminated. Otherwise for multiple
matches, the verification could make it behave like a brute force O(m · n) algorithm. The
reader may have noted that the main challenge for designing an efficient algorithm is to
avoid repeated matching of symbols on the same part of the string. From a partial match,
we have already gained information about the string that we can make use of during the
next partial match. The pattern is like a moving window of fixed length n on the string; if
the windows are disjoint (or nearly so), then we will be in business. Let us illustrate this
using an example.

2 More specifically, any operation like integer division involving O(logn) sized integers can be done in O(1) time.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.009
https://www.cambridge.org/core

162 Design and Analysis of Algorithms

Consider Y = aababbabaabb and X = aabb. We start matching from Y (1,4) and we find
a mismatch Y4 = a 6= X4 = b. In the obvious brute force method, we will try to match Y (2,4)
with X . However, we have gained the information about Y2Y3Y4 = aba from the previous
partial match. So there is no point in trying a match starting from Y2 since we will fail at
Y3 = b 6= X2 = a. Similarly, there is no hope for Y (3,4) either. However, Y4 = X1 = a and we
must try Y (4,4). How do we formalize this heuristic for skipping some search windows of
the pattern?

For this, we have to deal with prefix and suffix of strings. A prefix of length i is the first
i characters of a string. For example, X(1, i) is a prefix of X . Likewise, the suffix of a string
of length i is the last i characters of a string. If |X |= n, then X(n− i+1,n) is a suffix of X of
length i.

Let α < β denote that α is a suffix of β. As in the previous example, we would like
to make use of matches done so far before proceeding to the next match. For example,
suppose while matching strings X and Y (k,n), we realize that the first i characters of X
match with those of Y (k,n), but Xi+1 6= Yk+i. Now next time we would like to align X with
Y (k + 1,n) and again check for a match. But note that we have already seen the first i
characters of Y (k + 1,n) and in fact, Y (k + 1, i− 1) overlap with X2, . . . ,Xi. Therefore, we
should try this alignment only if X2, . . . ,Xi is equal to X1, . . . ,Xi−1. Note that this property
can be ascertained without even looking at Y . Similarly, we should try to align X with Y (k+
j,n) only if Yk+ j, . . . ,Yk+i−1 is same as X1, . . . ,Xi− j−1, and Yk+i matches with Xi− j. Again, we
know that Yk+ j, . . . ,Yk+i−1 is same as X j, . . . ,Xi−1. Thus, we again get a property involving X
only (except for the character Xi− j matching with Yk+i). This discussion can be summarized
as follows.

Given a prefix X(1, i) of X and the character Yk+i in the earlier discussion, we would like
to find argmax j{X(1, j) < Y (k, i+ 1) = X(1, i) ·Yk+i}. Following this, we try matching X j+1

with Yk+i+1 which is yet to be read next. As observed before, this property is dependent
mostly on the pattern except the last symbol of the string. From this intuitive description,
we can define a function of a given pattern X as follows. For every i,1≤ i≤ n and character
a ∈ Σ, define

g(i,a) =

{
max j{X(1, j)< X(1, i) ·a} if such an index j exists

0 otherwise

The function g for the pattern X = aabb is given by the Table 8.1. Note that the columns
represent the extent of partial match of the relevant portion of the text with pattern. This
table can be naturally associated with a DFA (deterministic finite automaton) for the
pattern that we are trying to find. At any stage, the state of the DFA corresponds to the
extent of partial match – it is in state i if the previous i symbols of the text have matched
the first i symbols of the pattern. It reaches the final stage iff it has found a match. Given
this DFA, we can find all occurrences of an n symbol pattern in an m symbol text in m

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.009
https://www.cambridge.org/core

String Matching and Finger Printing 163

steps, where there is a transition for every input symbol of the text. Indeed, suppose we
are in state i and the last scanned character in the text is Yk. We check the table T for the
entry (Yk, i) – say T (Yk, i) is j. Then, we know that X1, . . . ,X j match with Yk− j+1, . . . ,Yk. Now
we match X j+1 and Yk+1. Two things can happen – (i) If these two characters do not match,
we move to state T (Yk+1, j) in the DFA and proceed as before; (ii) If these two characters
match, we move to state T (Yk+1, j) = j+1 in the DFA and continue.

Table 8.1 Finite automaton transition function for the string aabb
matching

0 1 2 3 4
a 1 2 2 1 1
b 0 0 3 4 0

The size of the DFA is O(n|Σ|), where Σ is the alphabet which is optimal if Σ is of constant
size. The algorithmic complexity should also include the construction of the DFA, that we
will address in the context of the next algorithm.

With some additional ideas, the previous approach can be made to run in O(n+m)

steps without dependence on the alphabet size. We modify the definition of g as follows.
Let us define the failure function of a given pattern X as

f (i) =

{
max j: j<i{X(1, j)< X(1, i) } if such an index j exists

0 otherwise

Note that the subtle change in the definition of f makes it purely a function of X and just
one index. The failure function for X = aabb is given by f (1) = 0, f (2) = 1, f (3) = 0, f (4) = 0.
Let us postpone the method for computing the failure function and assume that we have
the failure function available.

The overall idea of the algorithm is same as earlier. Let Yk denote the kth symbol of
the text for which we have a partial match up to i symbols of the pattern. We then try to
match Xi+1 with Yk+1. In case of a match, we increase the partial match and if it is n, then
we have found a match. Otherwise (if Xi+1 does not match Yk+1), we try to match X f (i)+1

with Yk+1 and again if there no match, we try X f (f (i)+1 with Yk+1 and so on till the partial
match becomes 0. The algorithm is described formally in Figure 8.3. Note that this differs
from the earlier algorithm (based on the function g) in only one situation – if X j does not
match with Yi, the earlier algorithm would compute the partial match according to Yi and
proceed to Yi+1. The current algorithm will keep on reducing the partial match j till it gets
a match at Yi. Therefore, it is not immediately clear if the running time of this algorithm is
linear since Yi is being repeatedly compared till partial match becomes 0.

Let us consider an example to illustrate the algorithm in Table 8.2. The first time there
is a mismatch between X and Y is at Y7. Subsequently, we shift the pattern right by 6− f (6)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.009
https://www.cambridge.org/core

164 Design and Analysis of Algorithms

and next again by 4− f (4). The notation X(+i) denotes that the pattern is shifted right by
i symbols.

The analysis of this algorithm centers around a situation where the pattern string keeps
sliding to the right till it either finds a match or it slides beyond the mismatched symbol.
Therefore, either the algorithm progresses right on Y or the pattern moves forward. We
can analyze it in many ways – here we will use the technique of potential function.

Procedure Deterministic String Match(Y,X)

1 Input: String Y = Y1,Y2 . . .Ym, Pattern X = X1,X2, . . .Xn ;
2 Output: { j|Y (j,n) = X}, else nil ;
3 j← 0 , Match← φ ;
4 for i = 1 to m do
5 j← j+1 ;
6 if Yi = X j then
7 if j = n then
8 Match←Match∪{(i−n+1)} (a match is found starting

in Yi−n+1) ;
9 j← f (j) (trying the next potential match)

10 else
11 while (f (j) 6= 0) ∧ (Yi 6= X j) do
12 j← f (j) ;

13 Return Match if non-empty else nil ;

Figure 8.3 Knuth–Morris–Pratt string matching algorithm

Table 8.2 Illustration of matching using KMP failure function f for
the pattern abababca.

1 2 3 4 5 6 7 8
X a b a b a b c a

f (i) 0 0 1 2 3 4 0 1
Y a b a b a a b a

X(+2) a b a b a b
X(+4) a b a b

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.009
https://www.cambridge.org/core

String Matching and Finger Printing 165

8.2.1 Analysis of the KMP algorithm

During the algorithm, we may be comparing any given element of the text Y ,3 a number of
times, depending on the failure function. Let us define the potential function as the extent
of partial match. In other words, at any point of time t, define Φ(t) as the value of the
index j as described in Figure 8.3. Recall that the amortized cost of an operation at time t
is defined as the actual cost plus the change in potential, i.e., Φ(t +1)−Φ(t).

We have two distinct cases – one where the symbols in the pattern and string match;
otherwise, we use the failure function to shift the pattern appropriately. So the amortized
cost works out as follows.

Case: match Here Yi matches with X j (as in the algorithm described in Figure 8.3). The
algorithm incurs one unit of cost, but the potential also increases by 1. Therefore, the
amortized cost of a match is 2.

Case: mismatch or j = n The amortized cost is ≤ 0, since the potential is strictly
decreasing as the value of j strictly decreases.

By associating this amortized cost with the index of the string Y , and summing over all
indices, the total amortized cost of all the operations is O(m). Since the initial potential is
0, it follows that the running time is O(m).

8.2.2 Pattern analysis

It remains to describe how to construct the failure function f . We use the following crucial
observation:

Observation 8.2 If the failure function f (i) = j, j < i, it must be true that X(j− 1) < X(i− 1)
and Xi = X j.

This shows that the computation of the failure function is very similar to the KMP
algorithm itself and we compute the f (i) incrementally with increasing values of i. The
details are left as an exercise for the reader. Therefore, we can summarize as follows.

Theorem 8.2 The failure function of a pattern X can be computed in O(|X |) comparisons so that
the total running time of the algorithm described in Figure 8.3 is O(|Y |), where Y is the string. The
number of comparisons is not dependent on the size of the alphabet |Σ|.

8.3 Tries and Applications

A trie or �digital tree data structure is tailor-made for addressing a wide range of problems
related to strings including string matching. It is particularly useful if the text remains

3 Unlike the DFA construction, we do not always move ahead on Y , which is handled in the inner loop.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.009
https://www.cambridge.org/core

166 Design and Analysis of Algorithms

fixed, and we need to query it with many different patterns. The text is pre-processed in a
manner that each query takes time proportional to the size of the pattern (and
independent of the size of the text). This can be very useful if the text is huge and patterns
are small strings. We will think of the text as consisting of a set of strings, and a pattern as
a single string. Given a pattern, we would like to check if the pattern appears in the set of
strings (of course, in real applications, we would also like to know the locations in the text
where the pattern appears, but such extensions are easy to achieve here).

We assume that the text consists of a set of strings (e.g., the set of words in a document).
As before, we use Σ to denote the alphabet. A trie on the given text can be thought of as a
k-ary tree, where k = |Σ| with a depth that is dependent on the length of the strings in the
text. Each internal node has k children corresponding to each symbol of the alphabet and
the edges are labeled accordingly (it is useful to think about edge labels rather than child
nodes in this framework). A single string is defined by a path in this tree, where the edge
labels on this path corresponds to the string (see Figure 8.4). This simple and intuitive
mechanism for storing a string provides many applications including locating exact and
closest substrings, finding common substrings, and many applications in genome research.

Let us see how tries can be used for string matching. First note that it is very easy to
check if a given pattern X is a prefix of a string stored in a trie. We simply try to see if
there a path starting from the root labeled with X . Therefore, if we have all the suffixes
Y (j) = YjYj+1 . . .Ym of a string Y , then we can easily check if X is a prefix of Y (j). In fact, we
can easily keep track of all the matches by storing in each node how many strings share
a given prefix. This is equal to the number of strings that pass through a given node. To
make this even simpler, we append a special character, say $, to denote the end of a string.
This ensures that all strings are uniquely identified by a leaf node that stores $ and also
that no string can be a prefix of another string. For example, in Figure 8.4, the number of
occurrences of the string ca is 2, which is the number of leaf nodes in the subtree rooted in
the node with label ca.

Definition 8.1 A suffix tree is a data structure that stores all the suffixes of a given string in a
trie-like storage including the string itself.

If we use a simple trie, the storage could become ∑
m
j=1 |Y (j)|, which could be as much as

θ(m2) – see Exercise Problem 8.8. There are sophisticated data structures for reducing the
storage to a linear structure by associating a substring (more than one symbol) on an edge.

Observation 8.3 The path corresponding to a string has two distinct spans – the initial span is
the longest common prefix with an existing string and then there is the subsequent path leading to
a leaf node with no other shared subpaths with another string.

This follows from the underlying tree structure – that is, once the paths of two strings
diverge, they cannot meet again. This also implies that the additional storage required

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.009
https://www.cambridge.org/core

String Matching and Finger Printing 167

for a string is O(1), that is, the unique second span of a string. We can store the forking
node with the string. Moreover, the initial span could also split an existing span into two
parts. All these changes can be performed in additional O(1) storage. Figure 8.4 shows the
different stages of a suffix tree for the string catca beginning with the smallest suffix a.

a

$ $ $

a ca [4,5]

$ $ $

a

tca [3,5]

ca

[4,5]

$

$ $ $

$

a

t

ca

[4,5]

tca [3,5]

tca [3,5]

ca

[4,5]

$

$

$ $

a
tca [3,5]

t

(a) (b) (c)

(d) (e)

Figure 8.4 The suffix tree construction corresponding to the string
catca $: (i) Suffix a starting at position 5, (ii) Suffixes at
position 4 and 5, etc. The [a,b] indicates a substring starting
at position a and ending in b.

The details of these algorithms are somewhat intricate, so we will only provide a high
level sketch and illustrate some applications of the suffix trees. Note that an edge labeled
with a substring of Y only needs an interval [a,b], where the substring is YaYa+1 . . .Yb such
that 1 ≤ a ≤ b ≤ m. Thus, it takes at most 2logm bits for any label which is O(1) space in
the context of the problem. The path associated with a node is the concatenation of the
labels of all the edges comprising the path from the root to the node and is referred to as a
path label of a node. The known linear time algorithms for constructing suffix trees assume
that the alphabet is bounded, that is, some known constant. All the suffixes, Y (j) 1 ≤ j ≤
(m+1) including Y (m+1) = $ are added in a forward or a reverse order, that is, from the
longest suffix Y (1) or from the shortest one at Y (m+ 1). Let us assume that all suffixes
Y (i+ 1) . . .Y (m+ 1) have been added and we are now trying to add Y (i). Starting from a
leaf of Y (i+1), we look for a node with maximum depth that has a path labeled Yi ·Y (i+1).
This path could even end in the middle of an edge. The data structure that we maintain
at each node contains this information corresponding to every a ∈ Σ and the path denoted
by the node. For example, if the path label of a node is a string α, then the node will store

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.009
https://www.cambridge.org/core

168 Design and Analysis of Algorithms

the information of all those nodes having path label a ·α for all a ∈ Σ4. This data structure
must also be updated after every insertion.

Some additional properties of suffix trees are needed to show that the new suffix can
modify only a constant number of nodes. The number of levels that must be traversed for
a single suffix insertion is not bounded but the amortized number of levels is O(1). This
leads to the O(m) bound on the total running time. One interesting and important property
of suffix trees can be stated as follows without a formal proof.

Claim 8.3 In any suffix tree, if there is a node v having label a ·α, where a ∈ Σ and α ∈ Σ∗, then
there is a node u having label α.

The suffix tree data structure has a related cousin called the suffix array – this can
actually be derived from the suffix trees. It is a sorted array of the suffix strings where its
ordering is defined as lexicographic on the strings. The strings are however, not stored
explicitly to save space and can be defined by the starting index of the suffix.

We provide a partial list of the plethora of applications of suffix trees to sequence
related problems, especially important in bioinformatics. Recall that the length of the text
is m.

1. Keyword set matching Given a set of keywords P1,P2, . . . ,Pk such that ∑i |Pi| = n, find
all the occurrences of all the keywords in the text.

2. Longest common substring Given two substrings S1 and S2, find the longest string s
which is a substring (contiguous) of both S1,S2.

Using tries, it is possible to find s in O(|S1|+ |S2|) comparisons. This is done by
building generalized suffix trees – a common suffix tree for all the suffixes of S1 and S2.

3. Matching statistics Given 1 ≤ i ≤ m, find the longest substring starting at position i
that occurs again in the text, starting from position j 6= i.

Further Reading

Along with sorting, string matching is one of the earliest problems in the computer
science community that drew a lot of attention. DFA based string matching was a natural
algorithm that was improved by the algorithm of Knuth–Morris–Pratt [84], presented as
the KMP algorithm. Aho and Corasic [6] generalized it to find all occurrences of a set of
keywords. The original algorithm of Rabin and Karp appeared in their paper in 1987 [78].
Tries appeared first in the work of Briandais and Fredkin [41, 51]. Linear tree construction
of suffix trees was first given by Weiner [152]. Subsequently, McCreight [98] and more

4 If Σ is not bounded, then the space will not be linear.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.009
https://www.cambridge.org/core

String Matching and Finger Printing 169

recently, Ukonnen [143] further simplified and refined the construction. The notion of
suffix arrays was proposed by Manber and Myers [97]. The book by Gusfield [60]
provides a comprehensive account of string matching algorithms with numerous
applications, in particular to computational biology.

Exercise Problems

8.1 Using the following well-known and useful result from number theory, give an alternate proof
of the procedure for testing equality of large numbers described in Figure 8.1.

(Chinese Remainder Theorem – CRT) For k numbers n1,n2, ...,nk, relatively prime to
each other,

x≡ y mod ni for all i⇔ x≡ y mod n1n2n3...nk = M

Moreover,

y≡
R

∑
i=1

cidiyi

where cidi ≡ 1 mod ni,di = Π
j=k
j=1, j 6=in j and yi = x mod ni

Hint: Let k be such that 2m < M = 2×3× ...× pk, that is, the first k primes. From CRT, if
X 6= Y (i,n), then for some p in {2,3, . . . , pk}, Fp(X) 6= Fp(Y (i,n)).

8.2 How does the algorithm in Figure 8.2 behave without the explicit verification step in line
10? In particular, comment about the trade-off between the overall correctness and running
time.

8.3 Using the potential function method, show that the failure function can be computed in
O(|X |) steps.

8.4 Let y be a string of length m. A substring x of y is called a period of y if y = (xk)x′, where
(xk) is the string x repeated k times and x′ is a prefix of x. The period is the shortest period
of y. Design an efficient algorithm to determine the period of a string of length n.

Hint: Prove that a string X is a period of a string Y iff Y is a prefix of XY

8.5 If p and q are periods (not the shortest) and |p|+ |q| < m, then there is a period of length
|p|− |q| (assuming p is larger).

(This is the equivalent of Euclid’s algorithm for strings).

8.6 Give an example to argue why KMP algorithm cannot handle wild-cards. You may want to
extend the definition of failure functions to handle wild-cards.

Hint: Find all occurrences of the pattern aba∗a in the text ababaababa...

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.009
https://www.cambridge.org/core

170 Design and Analysis of Algorithms

8.7 Geometric pattern Given a set of points on the real line with coordinates x1,x2, . . . ,xn, we
want to determine if there is a subset xi,xi+1, . . . ,xi+m−1 with separation distances di i≤m−1.
Design an O(n) algorithm for this problem.

Hint: Use the idea of the Rabin–Karp algorithm with a polynomial having coefficients from
xis.

8.8 Construct a trie for the string 0m ·1m where each edge is associated with one symbol label.
What is the size of the prefix tree?
Using a pair of integers to denote a substring, and using such pairs to denote a path label,
show how to reduce the size of the previous trie to O(m).

8.9 How would you use tries to sort s5 given set of n strings si such that ∑
n
i=1 |si| = N where

|si| is the length of string si? Analyze your algorithm and compare it to the string sorting
algorithm described in Section 3.3.

8.10 Design efficient algorithms to support the following operations on tries
(i) Keyword set matching (ii) Longest common substring (iii) Matching statistics

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.009
https://www.cambridge.org/core

9
C H A P T E R

Fast Fourier Transform and
Applications

Fast Fourier transform (FFT) is one of the most commonly used algorithms in
engineering, and there are dedicated hardware chips which perform this algorithm. Since
its development in the 1960s, it has become an indispensable algorithm in many areas of
science and engineering. The basic ideas behind the algorithm are rooted in the divide
and conquer paradigm, and these ideas are used to design dedicated hardware for FFT as
well. We explain FFT by applying it to the problem of multiplying two polynomials. It is
easy to show that two degree n polynomials can be multiplied in O(n2) time if they are
stored in suitable data structures. However, FFT allows this computation to be done in
O(n logn) time. As a result, lot of cryptographic algorithms based on polynomial
evaluation use FFT as a tool. At the end of this chapter, we will discuss a hardware
implementation of FFT and other applications of this algorithm.

9.1 Polynomial Evaluation and Interpolation
A polynomial P (x) of degree n− 1 in indeterminate x is a power series with maximum
degree n− 1 and has the general form an−1xn−1 + an−2xn−2 + . . .+ a1x + a0, where ais are
coefficients over some field, typically the complex numbers C. One way of storing a
polynomial would be to store the coefficients a0, . . . ,an−1 in an array or a list. This could
lead to wastage of space if most of these coefficients are 0. A more suitable data structure
is to store the non-zero coefficients (in the order of the degree of the polynomial) in a list.
Some of the most common problems involving polynomials are as follows:

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.010
https://www.cambridge.org/core

172 Design and Analysis of Algorithms

Evaluation Given a value for the indeterminate x, say α, we want to compute ∑
n−1
i=0 ai ·αi:

By Horner’s rule, the most efficient way to evaluate a polynomial is given by the
formula

(((an−1α+an−2)α+an−3)α+ . . .a0

It is easy to check that this expression involves n multiplications and n additions. We
are interested in the more general problem of evaluating a polynomial at multiple
(distinct) points, say x0,x1, . . . ,xn−1. If we apply Horner’s rule to each of these points,
then it will take Ω(n2) operations to evaluate the polynomial at these n points. We
will see that one can do this much faster if the n points x0, . . . ,xn−1 are chosen in a
suitable manner.

Interpolation We are given n pairs (x0,y0), . . . ,(xn−1,yn−1), where x0, . . . ,xn−1 are distinct,
and we need to find a degree n−1 polynomial P such that P (xi) = yi for i= 0, . . . ,n−1.

There is a unique degree n− 1 polynomial which has this property. This follows
from the fundamental theorem of algebra which states that a non-zero polynomial
of degree d has at most d roots. Indeed, if there were two such degree n − 1
polynomials P and P ′, then P (x)−P ′(x) will also be a degree n−1 polynomial. But
this polynomial has n roots – namely, x0, . . . ,xn−1. It follows that this polynomial
must be the zero polynomial, and so, P = P ′.

To show that there exists a unique polynomial, one can use Lagrange’s formula, which
gives an explicit expression for such a degree n−1 polynomial:

P (x) =
n−1

∑
k=0

yk ·
∏ j 6=k(x− x j)

∏ j 6=k(xk− x j)

Claim 9.1 Lagrange’s formula can be used to compute the coefficients ais in O(n2)

operations.

The details are left as an exercise problem. One of the consequences of the
interpolation is an alternate representation of polynomials as {(x0,y0),(x1,y1) . . .

(xn−1,yn−1)} from which the coefficients can be computed (using Lagrange’s
formula). We will call this representation as the point-value representation.

9.1.1 Multiplying polynomials

The product of two polynomials can be easily computed in O(n2) steps. Consider the
polynomials a0 +a1x+ . . .+an−1xn−1 and b0 +b1x+ . . .+bn−1xn−1. Then the coefficient of xi,
denoted by ci, in their product would be ci = ∑l+p=i al · bp for 0 ≤ i ≤ 2n − 2. The
coefficients ci correspond to the convolution of the coefficients (a0, . . . ,an−1) and
(b0, . . . ,bn−1).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.010
https://www.cambridge.org/core

Fast Fourier Transform and Applications 173

If the polynomials are given by their point-value with common x0, . . . ,xn−1, then the
problem is considerably simpler. Indeed, if P1(x) and P2(x) are two polynomials, and P
denotes their product, then P (xi) = P1(xi) ·P2(xi). There is one subtlety here though. The
polynomial P would have degree 2n− 2, and so, we need to specify its values at 2n− 1
distinct points. Thus, we would need that the polynomials P1 and P2 are specified using
the point-value representation at 2n − 1 common points. The efficiency of many
polynomial-related problems depends on how quickly we can perform transformations
between the two representations described earlier. We now show that it is possible to do
so efficiently assuming that one chooses the points x0, . . . ,xn−1 carefully.

9.2 Cooley–Tukey Algorithm

We now describe the Cooley–Tukey algorithm to evaluate a degree n− 1 polynomial at n
distinct carefully chosen points in O(n logn) time. We assume that n is a power of 2
(otherwise, just add zero coefficients, this will at most double the number of terms). Let
us choose xn/2 = −x0, xn/2+1 = −x1, . . .xn−1 = −xn/2−1. You can verify that P (x) = PE(x2)

+xPO(x2), where

PE = a0 +a2x+ . . .an−2xn/2−1

P0 = a1 +a3x+ . . .an−1xn/2−1

corresponding to the even and odd coefficients and PE ,PO are polynomials of degree
n/2−1. Then,

P (xn/2) = PE(x2
n/2)+ xn/2PO(x2

n/2) = PE(x2
0)− x0PO(x2

0)

since xn/2 =−x0. More generally,

P (xn/2+i) = PE(x2
n/2+i)+ xn/2+iPO(x2

n/2+i) = PE(x2
i)− xiPO(x2

i), 0≤ i ≤ n/2−1

since xn/2+i = −xi. Therefore, we have reduced the problem of evaluating a degree n− 1
polynomial at n points to that of evaluating two degree n/2−1 polynomials at n/2 points
x2

0,x
2
1, . . . ,x

2
n/2−1. In addition, we will also need to perform O(n) multiplications and

additions to compute the values at the original points. To continue this reduction, we
have to choose points such that x2

0 = −x2
n/4 or equivalently xn/4 =

√
−1 · x0. This involves

complex numbers even if we started with coefficients in R1. If we continue with this
strategy of choosing points, at the jth level of recursion, we require

x2 j−1

i =−x2 j−1
n

2 j +i 0≤ i≤ n
2 j −1

1 Depending on our choice of the field F , we can define ω such that ω2 =−1.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.010
https://www.cambridge.org/core

174 Design and Analysis of Algorithms

This leads to x2logn−1

1 = −x2logn−1

0 , that is, if we can choose an ω ∈ C such that ωn/2 = −1, then
the previous conditions can be satisfied by setting xi = ωxi−1. By letting x0 = 1, the
evaluation points are xi = ωi, 0 ≤ i ≤ n− 1, which are {1,ω,ω2 . . .ωn/2 . . .ωn−1}. These are
usually referred to as the principal nth roots of unity since ωn = 1.

Algorithm description and analysis

It will be convenient to set ω= e2πi/n, which is a primitive nth root of unity. We will evaluate
the degree n− 1 polynomial P (x) at ω0,ω1, . . . ,ωn−1. Let PE(x) and PO(x) be as described
earlier. Recall that P (x) = PE(x2)+ xP0(x2) which implies that for 0≤ i < n/2,

P (ωi) = PE(ω
2i)+ω

iP0(ω
2i), and

P (ωi+n/2) = PE(ω
2(i+n/2))+ω

i+n/2P0(ω
2(i+n/2)) = PE(ω

2i)−ω
iP0(ω

2i)

because ωn = 1 and ωn/2 = −1. Since ω2 is an (n/2)th root of unity, we can reduce the
problem to evaluating PO and PE at ω′0,ω′1, . . . ,ω′n/2−1, where ω′ = ω2. The algorithm is
formally described in Figure 9.1.

Procedure FFT(a0,a1 . . .an−1,ω)

1 Input Coefficients a0,a1, . . . ,an−1,ω : ωn = 1 ;
2 if n = 1 then
3 output a0 ;

4 Let α0,α1, . . . ,αn/2−1← FFT (a0,a2,a4, . . . ,an−2), ω2 ;
5 Let β0,β1, . . . ,βn/2−1← FFT (a1,a3,a5, . . . ,an−1), ω2 ;
6 for i = 0 to n/2−1 do
7 γi← αi +ωi ·βi ;
8 γn/2+i← αi−ωi ·βi;

9 Output (γ0,γ1, . . . ,γn−1).

Figure 9.1 FFT computation

Clearly, the running time follows the recurrence T (n) = 2T (n/2)+O(n), and so, the FFT
algorithm takes O(n logn) time. Let us get back to the problem of multiplying two degree
n−1 polynomials P1 and P2. Let P denote the product of these two polynomials. Since the
degree of P can be 2n−2 (and n is a power of 2), we evaluate P1 and P2 at ω0,ω1, . . . ,ω2n−1,
where ω is the (2n)th primitive root of unity. As explained earlier, this can be achieved in
O(n logn) time. Therefore, we can also find the value of P at these points in O(n logn) time.
Now, we need to solve the reverse problem – given the value of a polynomial at the roots
of unity, we need to construct the coefficients of the polynomial.

Therefore, we consider the problem of interpolation of polynomials, that is, given the
values at 1,ω,ω2, . . . ,ωn−1, we find the coefficients a0, . . . ,an−1. Let y0, . . . ,yn−1 denote the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.010
https://www.cambridge.org/core

Fast Fourier Transform and Applications 175

value of the polynomial at these points respectively as follows. The process of evaluation
of a polynomial functions can be expressed as a matrix vector product.

1 1 1 . . . 1
1 ω1 ω2 . . . ω(n−1)

1 ω2 ω4 . . . ω2(n−1)

...
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)

 ·

a0

a1

a2
...

an−1

=

y0

y1

y2
...

yn−1

Let us denote this by the matrix equation A ·a = y. In this setting, the interpolation problem
can be viewed as computing a = A−1 · y. Even if we had A−1 available, we still have to
compute the product which could take Ω(n2) steps. However, the good news is that the
inverse of A−1 is

1
n

1 1 1 . . . 1

1
1

ω1

1
ω2 . . .

1
ω(n−1)

1
1

ω2

1
ω4 . . .

1
ω2(n−1)

...

1
1

ωn−1

1
ω2(n−1) . . .

1
ω(n−1)(n−1)

which can be verified by multiplication with A. It is a well known fact that

1+ω
i +ω

2i +ω
3i + . . .+wi(n−1) = 0 (Use the identity∑

j
ω

ji =
ωin−1
ωi−1

= 0 for ω
i 6= 1.)

Moreover, ω−1,ω−2, . . . ,w−(n−1) also satisfy the properties of the nth roots of unity. This
enables us to use the same algorithm as FFT itself that runs in O(n logn) operations.

The process of computing the product of two polynomials of degree n−1 by using FFT
is often referred to as the convolution theorem.

9.3 The Butterfly Network

If we unroll the recursion of an eight point FFT, it looks like Figure 9.2. Let us work through
some successive recursive calls. Let P (x) be a0 + a1x+ a2x2 + . . .+ an−1xn−1. For brevity of
notation, given the indices i0, . . . , ik, we use Pi0,...,ik to denote ai0 + ai1 x+ . . .+ aik x

k. Let ω be
the primitive 8th root of unity. We shall use ωi to denote ωi.

P0,1,..7(ω0) = P0,2,4,6(ω
2
0)+ω0P1,3,5,7(ω

2
0)

P0,1,..7(ω4) = P0,2,4,6(ω
2
0)−ω0P1,3,5,7(ω

2
0) since ω4 =−ω0

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.010
https://www.cambridge.org/core

176 Design and Analysis of Algorithms

Subsequently, P0,2,4,6(ω
2
0) = P0,4(ω

4
0)+ω2

0P2,6(ω
4
0) and

P0,2,4,6(ω
2
2) = P0,4(ω

4
0)−ω

2
0P2,6(ω

4
0) since ω

2
2 =−ω

2
0

To calculate P0,4(ω
4
0) and P0,4(ω

4
1), we compute P0,4(ω

4
0) = P0(ω

8
0)+ω4

0P4(ω
8
0) and

P0,4(ω
4
1) = P0(ω

8
0)−ω

4
0P4(ω

8
0)

Since Pi denotes ai, there is no further recursive call. Notice that in Figure 9.2, a0 and
a4 are the multipliers on the left-hand side. Note that the indices of the ai on the input
side correspond to the mirror image of the binary representation of i. A butterfly operation
corresponds to the gadget ./ that corresponds to a pair of recursive calls. The black circles
correspond to ‘+’ and ‘–’ operations and the appropriate multipliers are indicated on the
edges (to avoid cluttering, only a couple of them are indicated).

000

100

010

110

001

101

011

111

000

001

010

011

100

101

110

111

a0

a4

a2

a6

a1

a5

a3

a7

1 stage 2 stage 3 stage

w4

w4

w4

w4

w4

w6

w2

()w 0

()w 1

()w 2

()w 3

()w 4

()w 5

()w 6

()w 7

Figure 9.2 Computing an eight point FFT using a butterfly network

One advantage of using a network is that the computation in each stage can be carried
out in parallel, leading to a total of logn parallel stages. Thus, FFT is inherently parallel
and the butterfly network manages to capture parallelism in a natural manner.

9.4 Schonage and Strassen’s Fast Multiplication*

In our analysis of the FFT algorithm, we obtained a time bound of O(n logn) with respect
to multiplication and additions in the appropriate field – implicitly we assumed C, the
complex field. This is not consistent with the Boolean model of computation and we
should be more careful in specifying the precision used in our computation. Boolean

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.010
https://www.cambridge.org/core

Fast Fourier Transform and Applications 177

computation is a topic in itself and somewhat out of the scope of the discussion here. In
reality, FFT computations are done using limited precision and operations like rounding
that inherently result in numerical errors.

In other kinds of applications, like integer multiplication, we choose an appropriate
field where we can do exact arithmetic. However, we must ensure that the field contains
the nth roots of unity. Modular arithmetic, where computations are done using modulo a
prime number, is consistent with the arithmetic done in hardware.

Observation 9.1 In Zm, where m = 2tn/2 +1 and n is a power of 2, we can use ω = 2t .

Since n and m are relatively prime, n has a unique inverse in Zm (recall extended Euclid’s
algorithm). Also,

ω
n = ω

n/2 ·ωn/2 = (2t)
n/2 · (2t)

n/2 ≡ (m−1) · (m−1) mod m≡ (−1) · (−1) mod m≡ 1 mod m

We will actually work in a ring since m may not be prime. However, m and n being
relatively prime, it follows that n−1 exists as does ω−1.

Claim 9.2 If the maximum size of a coefficient is b bits, the FFT and its inverse can be computed
in time proportional to O(bn logn).

Note that the addition of two b bit numbers takes O(b) steps and that multiplications with
powers of ω are multiplications by powers of two which can also be done in O(b) steps.
From Observation 9.1, if we do an n′-point FFT, and if n′ is not a power of 2, then we may
choose a Zm′ such that m′ = 2tn/2 + 1, where n ≤ 2n′ is the closest power of 2. Note that

m′

2tn′/2+1
≤ 2tn′/2×2tn′/2, viz., the number of bits may be doubled if n′ is not a power of two.

The basic idea of the multiplication algorithm is to extend the idea of polynomial
multiplication. Recall, that in Chapter 1, we had divided each number into two parts and
subsequently, recursively computed the solution by computing the product of smaller
numbers. By extending this strategy, we divide the numbers a and b into k parts
ak−1,ak−2, . . . ,a0 and bk−1,bk−2, . . . ,b0.

a×b =
(
ak−1 · xk−1 +ak−2 · xk−2 + . . .a0

)
×
(
bk−1 · xk−1 +bk−2 · xk−2 + . . .b0

)
where x = 2n/k – for simplicity, assume n is divisible by k. By multiplying the RHS, and
clubbing the coefficients of xi, we obtain

a×b = ak−1bk−1x2(k−1)+(ak−2b1 +bk−2a1)x2k−3 + . . .+a0b0

Although in the final product, x = 2n/k, we can compute the coefficients using any method
and perform the necessary multiplications by an appropriate power of two (which is just
adding trailing 0s). This is polynomial multiplication and each term is a convolution, so

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.010
https://www.cambridge.org/core

178 Design and Analysis of Algorithms

we can invoke FFT-based methods to compute the coefficients. The following recurrence
captures the running time

T (n)≤ P(k,n/k)+O(n)

where P(k,n/k) is the time for polynomial multiplication of two degree k−1 polynomials
involving coefficients of size n/k. (In a model where the coefficients are not too large, we
could have used O(k logk) as the complexity of polynomial multiplication.) We will have to
do exact computations for the FFT and for that we can use modular arithmetic. The modulo
value must be chosen carefully so that the following conditions are satisfied.

(i) It must be larger than the maximum value of the numbers involved, so that there is
no loss of most significant bits.

(ii) It should not be too large, otherwise, operations will be expensive.

Moreover, the polynomial multiplication itself consists of three distinct phases.

1. Forward FFT transform. This takes O(bk logk) time for b bit operands.

2. Pairwise product of the values of the polynomials at the roots of unity. This will be
done recursively incurring cost 2k ·T (b), where b≥ n/k.

The factor two accounts for the number of coefficients of the product of two
polynomials of degree k−1.

Using a technique called wrapped convolution, we can avoid this blow-up. The details
of wrapped convolution are omitted from this discussion.

3. Inverse FFT, to extract the actual coefficients. This step also takes O(bk logk), where b
is the number of bits in each operand.

So the previous recurrence can be expanded to

T (n)≤ r ·T (b)+O(br logr) (9.4.1)

where r · b = n and we must choose an appropriate value of b. For coefficients of size b,
we can argue that the maximum size of numbers during the FFT computation is 2b+ logr
bits (sum of r numbers where each number is a pairwise multiplication of b bit numbers).
Recall that n = 2` is a power of 2, and we will maintain this property in recursive calls. If `
is even, then `′ = 2 else `′ = n−1

2 , where `′ is the new value in the recursive call. The reader
may verify that balancing r,b leads to a superior solution of the previous recurrence. So r
will be roughly

√
n/2, then b =

√
2n and we can rewrite the recurrence Eq. (9.4.1) as

T (n)≤
√

n
2
·T (2

√
n logn+ logn)+O(n logn) (9.4.2)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.010
https://www.cambridge.org/core

Fast Fourier Transform and Applications 179

where we have dropped the factor 2 in the recursive call by invoking wrapped convolution
and the number of bits can increase by a factor of 2 for an appropriate choice of Zm as
noted after Observation 9.1. An underlying assumption in the recurrence is that all the
expressions are integral.

To solve the recurrence, we define T ′(n) = T (n)/n, so that it is transformed to

T ′(n) ·n≤
√

n
2
·2
√

2n ·T ′(2
√

2n)+O(n logn)

=⇒ T ′(n)≤ 2T ′(2
√

2n)+O(logn)

Using an appropriate terminating condition, this yields a solution T ′(n) = O(logn log logn)
or equivalently T (n) = O(n logn log logn).

Claim 9.3 With an appropriate terminating condition, say the O(nlog2 3) time multiplication
algorithm, T (n) ∈ O(n logn log logn).

A detailed proof of this claim is left to the reader as an exercise problem.

9.5 Generalized String Matching

Very often, we encounter string matching problems where the strings are not represented
explicitly. This feature lends versatility to many applications. It gives us a way of
compactly representing a set of strings and also dealing with situations when we do not
have complete information about strings.2 One of the fundamental applications is parsing,
where we have a compact representation of (possibly infinite) strings in the form of a
grammar and given a query string, we would like to know if the string belongs to the set
described by the grammar. For example, consider the regular expression (r.e.)
(aba)∗ · b · (ba)∗. We would like to find all the occurrences of this r.e.3 in a given text over
alphabet Σ = {a,b}. One possible solution is to construct a DFA corresponding to the
aforementioned regular expression and mark out the final states so that we can keep track
of every occurrence of this r.e. The DFA should be such that the recognition problem can
be solved in linear time in a left to right scan of the text which is an input to this
automaton. However, the construction of the DFA is quite expensive and would be
efficient only if the r.e. is relatively small compared to the text. This is related to the
problem of transforming an NFA (non-deterministic finite automaton) to a DFA.

Consider a special case, where we have to deal with wildcard symbols. For example,
there is a match between the strings acb ∗ d and a ∗ bed by setting the first wild card to e

2 Typical situation in many biological experiments dealing with genetic sequences.
3 We are assuming that the reader is familiar with automata theory.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.010
https://www.cambridge.org/core

180 Design and Analysis of Algorithms

and the second one as c. Here a wildcard is a placeholder for exactly one symbol. In other
applications, the wildcard may represent an entire substring of arbitrary length.
Unfortunately, none of the previous string matching algorithms are able to handle
wildcards (see Exercise Problem 8.6).

9.5.1 Convolution based approach

For a start, assume that we are only dealing with binary strings. Given a pattern
X = a0a1a2 . . .an−1 and a text Y = b0b1b2 . . .bm−1, where ai,bi ∈ {0,1}, let us view them as
coefficients of polynomials. More specifically, let PA(x) = a0xn−1 + a1xn−2 + a2xn−3 + . . .

+an−1 and PB(x) = b0 + b1x + b2x2 + . . . + xm−1. Note that the coefficients in the two
polynomials are in opposite order of the exponents which will be crucial for our
application. The product of PA and PB can be written as ∑

m+n−2
i=0 cixi. It follows that

cn−1+ j = a0 ·b j +a1 ·b1+ j +a2 ·b2+ j + . . .+an−1 ·bn−1+ j 0≤ j ≤ m+n−2

which can be interpreted as the dot product of X = a0a1 . . .an and Y (j,n) = b jb j+1 . . .

b j+n−1, 0≤ j ≤ n−1. Recall the notations for string matching in Chapter 8.
If we replace {0,1}with {−1,+1}, then we can make the following claim.

Observation 9.2 There is a match in position j iff cn−1+ j = n.

A match occurs iff all the n positions in the string starting from j are identical to the pattern.
By taking the index-wise product, we obtain cn−1+ j = ∑

n
i=1 Yj+i ·Xi = n iff b j+i−1 = ai ∀i.

This convolution can be easily done using FFT computation in O(m logm) steps.4 When
wildcard characters are present in the pattern, we can assign them the value 0. If there are
w such characters, then we can modify the previous observation by looking for terms that
have value n−w (Why?). However, the same may not work if we have wildcards in the
text also – try to construct a counterexample.

Wildcard in pattern and text

Assume that the alphabet is {1,2, . . .s} (zero is not included). We will reserve zero for the
wildcard. For every position i of the pattern (assume for now that there are no wildcards
in the pattern), we will associate a random number ri from the set {1,2, . . . ,N} for a
sufficiently large N that we will choose later. Let t = ∑i riai mod N. We will actually do all
computations modulo p for a suitably large prime p ≥ N. For simplicity of notations, we
will omit the modulo notation in the remaining discussion.

Observation 9.3 For any string v1,v2, . . . ,vn, suppose there exists some i for which ai 6= vi. Then
the probability that ∑i vi · ri = t is less than 1

N .

4 The numbers involved are small enough so that we can do exact computation using O(logn) bit integers.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.010
https://www.cambridge.org/core

Fast Fourier Transform and Applications 181

Consider assigning values for all the numbers r j, j 6= i. For any such fixed assignment,
∑ j v jr j will be equal to ∑ j a jr j only if (vi−ai)ri = ∑ j: j 6=i r j(a j− v j). Since vi 6= ai and the RHS
is some fixed quantity, this condition will be satisfied by at most one value of ri in the
multiplicative modulo prime p field.

We can use this observation to build a string matching algorithm as follows. Compute
the quantity t for the pattern X as done earlier. Now for every position of text we compute
∑

n
i=1 b j+iri and check if it is equal to t – if the two are same, we declare this to be a match.

Since the probability of a false match is at most 1/N, we can choose N ≥ n ·m to ensure that
the probability of a false match for any of the locations of text is small.

In the presence of wildcards in the pattern A, we assign ri = 0 iff ai =* (instead of a
random non-zero number) and the same result holds for positions that do not correspond
to wildcards that are blanked out by 0. The number t = ∑ j:X j 6=∗ r j ·X j acts like a fingerprint
or a hash function for the pattern.

When the text has wildcards, then the fingerprint cannot be fixed and will vary
according to the wildcards in the text. The fingerprint tk at position k of the text can be
defined as

tk =
n

∑
j=1

δ j+k−1 · r j ·a j

where δi = 0 if Yi = * and 1 otherwise where tk is the fingerprint corresponding to Y (k,n).
Recall that r j = 0 if a j = *.

Now we can compute all the tk values using convolution. Indeed, for the pattern X ,
we define a string F where Fj = a jr j, if a j is not a wildcard, otherwise it is 0. For the text
Y , we construct a 0–1 string C which is 1 whenever we have a non-wildcard entry and 0
whenever we have a wildcard entry. Now, we can construct the convolution of these two
strings to find all the tk values. To check for a pattern match, we just need to compute the
analogous values t ′k which are the same as tk with a j replaced by bk+ j−1. Again, this is a
convolution of two strings, that can be computed using FFT. There is a possible match at
position k of text iff tk = t ′k.

The probability of error (false match) is calculated along similar lines. Thus, the
algorithm takes O(m logm) time. Figure 9.3 illustrates the algorithm on the pattern
X = 321∗.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.010
https://www.cambridge.org/core

182 Design and Analysis of Algorithms

i 1 2 3 4 5 6 7 8 9 10 11
Yi 2 2 ∗ 3 ∗ 2 ∗ 3 3 ∗ 2
δi 1 1 0 1 0 1 0 1 1 0 1
tk 9 12 8 12 8 12 8 13 - - -
t ′k 3 6 12 13 8 11 0 13 - - -

Figure 9.3 Matching with wildcards: The pattern is X = 3 2 1 ∗
and r1 = 6,r2 = 4,r3 = 11,r4 = 0 all chosen from [1 . . .16]
corresponding to p = 17. Since t5 = t ′5 and t8 = t ′8 it can
be verified that X matches with * 2 * 3 and with 3 2 * 2
respectively and there are no other matches.

Further Reading

The FFT algorithm was discovered by Cooley and Tukey in 1965 [36], and has found
applications in diverse areas. The use of FFT for pattern matching is due to Fisher and
Patterson [47]. However, because of superlinear running time, it is not the preferred
method for simple string matching for which KMP and Karp–Rabin are more efficient.
The application to string matching with wildcards was shown by Kalai [72].

Exercise Problems

9.1 Show how to compute the polynomial using Lagrange’s interpolation formula in O(n2)

operations.

9.2 Describe an efficient algorithm to evaluate a degree n univariate polynomial P(x) at n
arbitrary points x1,x2, . . . ,xn (not necessarily roots of unity). You may assume that polynomial
division takes the same asymptotic time as polynomial multiplication.

Hint: Use the following observation which is similar to the remainder theorem. Let Di, j =

Π(x− xi)(x− xi+1) · · ·(x− x j) and let P(x) = Q1,1(x)D1,n +R1,1(x). Then, P(xi) = R1,1(xi),
where the degree of R1,1 is less than D1,n. To compute R1,1(xi), we can apply a similar
decomposition, once with D1,n/2 and Dn/2+1,n recursively. This defines a tree where at each
node we do a polynomial division (of degree n/2i at distance i from the root). At the leaf
nodes, we have the answers.

9.3 Can a claim similar to Observation 9.2 be proved for the alphabet {0,1} without mapping
them to {+1,−1}? Explain by giving examples.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.010
https://www.cambridge.org/core

Fast Fourier Transform and Applications 183

9.4 Prove Claim 9.3 rigorously.

Hint: Use appropriate induction hypothesis and bounds like logn
2 + log logn≤ 2logn

3 .

9.5 The RSA cryptosystem described in Section 3.1.2 involves exponentiation of very large
numbers. For a k-bit RSA cryptosystem, i.e., n = p · q, where n, p,q are roughly k bits,
what is the complexity of encryption and decryption if we use the FFT based multiplication
algorithm? Recall that we also need to compute the multiplicative inverse but here we are
only looking at the complexity of the exponentiation.

9.6 A Toeplitz matrix An×n has the property that Ai, j = Ai+n, j+n for all i, j. In other words, the
elements along any diagonal are identical. Design a fast algorithm to compute the matrix
vector product Av̄ for some given n-vector v̄.

Hint: Use a compact representation for the Toeptlitz matrix and reduce this to a convolution
problem.

9.7 Consider the set Sn = {n+1,2n+1, . . . , i ·n+1, . . .}, where n is a power of 2. The following
result is due to Dirichlet.

Theorem Any arithmetic progression of the form a+ i · b, i ∈ Z contains infinitely many
primes if gcd(a,b) = 1.

Therefore, the set Sn must contain a prime. Consider the smallest such prime p = kn+1. It
is known that k is O(logn). Therefore, p has length O(logn). In Zp, let g be a generator , i.e.,
g0,g1,g2, . . . ,gp−1 are exactly all the elements of Zp (not necessarily in that order). Then,
gk is a principal nth root of unity. Note that gkn = gp−1 ≡ 1 mod p from Fermat’s theorem.

Use this observation to reduce the size of the ring for computing FFT from roughly n bits to
O(logn) bits.

9.8 Construct an example to illustrate that by taking care of the wild-card characters in the
fingerprint function of the pattern there could be incorrect results if the text also contains
wild-card characters.

9.9 Suppose we place a charge qi at the integer coordinate i on the unit line (here qi could be
positive or negative). Also suppose charges are placed at coordinates lying in the range
[0,n]. Give an O(n logn) time algorithm to compute the force on each point charge.

(Hint: Frame this problem as computing convolution of two sequences, and then use the
FFT algorithm.)

9.10 Let X and Y be two sets containing integer values in the range [0,M]. The set X +Y is
defined as {x+ y : x ∈ X ,y ∈ Y}. Given an O(M logM) time algorithm to compute the size
of X +Y . Note that X +Y is not a multi-set. For example, if X = {1,2},Y = {3,4}, then
X +Y = {4,5,6}.

(Hint: Define degree M polynomials for each of the sets, and use the FFT algorithm.)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.010
https://www.cambridge.org/core

10
C H A P T E R

Graph Algorithms

Graphs are one of the most versatile and useful data structures that have numerous
applications involving representation of relationship between a set of objects. Recall that a
graph is represented by a pair G = (V,E), where V denotes the set of vertices and E
denotes the set of edges. Depending on whether G is directed or undirected, the pairs
may or may not be ordered in E. We assume that the reader is familiar with the data
structures used to store a graph. Unless specified otherwise, we assume that graphs are
stored using the adjacency list data-structure, where we store the list of neighbors of each
vertex (in the case of directed graphs, we separately store the lists of in-neighbors and
out-neighbors). We begin by reviewing depth first search (DFS) traversal algorithm and
some of its applications. Subsequently, we shall study some of the most widely used
graph algorithms – shortest paths, min-cut, and a useful structure called spanners.

10.1 Depth First Search
A number of graph problems use depth first search (DFS) as the starting point. Since it
runs in linear time, it is an optimal algorithm. We will explain DFS through an
application. Consider the natural problem of sequencing a set of tasks. We are given a set
of jobs J1,J2, . . . ,Jn. Further, a set of precedence constraints are given. A precedence
constraint Ji ≺ Jk specifies that Ji must be completed before Jk. We want to find a feasible
sequence of performing the tasks such that all precedence constraints are satisfied, or
determine that such a sequence is not possible.

Example 10.1 Set of jobs : Ja,Jb,Jc,Jd .
Precedence constraints : Ja ≺ Jb, Ja ≺ Jd , Jd ≺ Jc, Jc ≺ Jb.
One possible sequencing is Ja,Jd ,Jc,Jb that satisfies all the precedence constraints.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

Graph Algorithms 185

When does a sequence exist? What happens if we change the precedence from Ja ≺ Jb to
Jb ≺ Ja? Let us use a graph G = (V,E) to model this problem. The set of vertices correspond
to the set of jobs and a directed edge (vi,vk) denotes that Ji ≺ Jk. More formally, we want to
define a function f : V →{1,2, . . . ,n} such that ∀i, j Ji ≺ Jk⇒ f (i)< f (k).

Observation 10.1 There is a feasible schedule if and only if there is no directed cycle in the graph.

Clearly, there cannot be a consistent ordering if there is a cycle. Suppose there is no cycle.
We claim that there must be a vertex of 0 in-degree in the graph. Suppose there is no
such vertex. Let us start with a vertex v, and keep following any of the incoming edges.
Since this sequence cannot go on without repeating a vertex, it is guaranteed that we will
eventually find a directed cycle in the graph. This is a contradiction. Therefore, there is an
in-degree 0 vertex v in the graph. We can do the corresponding task first because it does
not require any other job as a prerequisite. Now we delete v from the graph and recursively
solve the remaining problem. This idea can be implemented in O(m+n) time. However, it
turns out that DFS gives a cleaner approach to solving this problem.

We first review DFS. The algorithm is described in Figure 10.1. Whenever DFS visits
a vertex, it marks it (initially, all vertices are unmarked). Then it recursively calls DFS on
each of the neighbors (or out-neighbors in case of directed graphs) of this vertex which
have not been marked. There is also a notion of time in DFS. For every vertex x, start(x) is
the time at which DFS(x) gets called, and f inish(x) is the time at which the procedure ends.
Since function calls are nested, it follows that the intervals defined by [start(x), f inish(x)]
for all the vertices x are also laminar, that is, either one is contained inside the other or the
two are disjoint. It cannot happen that start(x)< start(x′) and f inish(x)< f inish(x′) for two
vertices x and x′.

Observation 10.2 For u,v∈V , where DFS(u) is called before DFS(v), either start(u)< start(v)<
f inish(v)< f inish(u), or start(u)< f inish(u)< start(v)< f inish(v). This is called the bracketing
property.

One can also associate a rooted tree with DFS, often called the DFS tree. This is defined
as follows: whenever the DFS(w) gets called during the execution of DFS(v), we make w a
child of v – note that w must be a neighbor of v for this to happen. Since DFS(w) is called
at most once, it is clear that each node will have exactly one parent, and so, we get a tree
structure. Figure 10.2 illustrates the result of running DFS on the given graph.

Consider the starting times start(v). In the DFS tree, the starting time of a node is always
less than those of its children. Similarly, the finish time of a node is always more than those
of its children. In fact, it is easy to show the following stronger property.

Observation 10.3 The starting and finishing times correspond to pre-order and post-order
numbering respectively of a DFS tree (if we set the starting time of the starting vertex as 1).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

186 Design and Analysis of Algorithms

Procedure Depth First Search of a directed graph(G)

1 Input A directed graph G = (V,E) where |V |= n, |E|= m ;
2 Output Starting and Finishing times for every vertex v ∈V ;
3 Initially all vertices are unmarked. A global counter c = 1 ;
4 while Some vertex x is unmarked do
5 start(x)← c ; Increment c ;
6 DFS (x)

Procedure DFS(v)

1 Mark v ;
2 if there is an unmarked neighbour y of v then
3 start(y)← c ; Increment c ;
4 DFS (y)
5 else
6 f inish(v)← c ; Increment c

Figure 10.1 Algorithm for Depth First Search

Note that pre-order and post-order numbering are in the range [1 . . .n], so we will need
two distinct counters for starting and finishing times which are incremented appropriately.
Alternately, the counts from the global counter can be mapped to the range {1,2, . . . ,n}
using integer sorting.

Here is another useful observation about DFS. We use the notation u ; v to denote the
fact that there is a (directed) path from u to v.

Observation 10.4 If u and v are two vertices with start(u) < start(v) < f inish(v) < f inish(u),
then u ; v.

This observation can be shown using the following argument: for u and v as earlier,
DFS(v) must get called after DFS(u) is called, but before DFS(u) ends. So, there must be a
sequence of vertices u = u1,u2, . . . ,uk = v such that DFS(ui) gets called inside DFS(ui−1). But
this implies that (ui−1,ui) must be edges in the graph and therefore, u ; v.

One can similarly prove the following observation, which is left as an exercise.

Observation 10.5 If u and v are two vertices in a graph such that start(u)< f inish(u)< start(v)
then there is no path from u to v.

Let us now see how DFS can be used to solve the sequencing problem mentioned at
the beginning of this section. Recall that we are given a directed graph G which has no
cycles (also called a DAG, a directed acyclic graph), and we want to output an ordering
v1, . . . ,vn of the vertices such that all edges in G are directed from smaller to larger vertices.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

Graph Algorithms 187

Such an ordering is called topological sort of the vertices in the DAG. Note that there may
not be a unique ordering here, and any order of vertices satisfying the property is a valid
topological sort. It is also important to realize that the DFS also detects the presence of
a cycle is the given graph in which case, we cannot do topological sort. In line 2 of the
DFS algorithm, all neighbors of v that are marked should have finished DFS, else there is a
cycle.

G

(15, 16)

A

(5, 12)

B

(6, 11)

H

(7, 8)

I

(17, 18)

C

(9, 10)

D

(13, 14)

E

(1, 4)

F

(2, 3)

{8, 8}

{3, 6}

{4, 5}

{6, 4}

{7, 7}

{1, 2}

{2, 1}

{5, 3}

{9, 9}

Figure 10.2 The pair of numbers associated with each vertex denotes the
starting time and finishing time respectively as given by the
global counter. The normalized numbers in curly brackets
correspond to the pre-order and the post-order numbering.
The dashed lines indicate tree edges. The reverse order of
post-order numbering is F,E,H,C,B,A,D,G, I.

We first prove a partial converse of Observation 10.4.

Observation 10.6 If u and v are two vertices in a DAG such that u ; v, then
f inish(u)> f inish(v).

Consider the two possibilities, either start(u) < start(v) or start(v) < start(u). In the first
case, the DFS (u) will terminate before DFS (v) and the result follows. In the second case,
using the bracketing property, there are two possibilities: (i) start(v) < f inish(v) < start(u)
< f inish(u), or (ii) start(v)< start(u)< f inish(v)< f inish(v). The first condition is consistent

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

188 Design and Analysis of Algorithms

with the observation whereas the second condition implies that v ; u from
Observation 10.5 which contradicts that the graph is a DAG.

This leads to the following algorithm: Let us run DFS and sort the vertices in decreasing
order of finish times which is given by v1, . . . ,vn. We claim that this ordering is consistent
with a topological sort. To see this suppose vi ; v j then the previous observation implies
that f inish(vi) > f inish(v j), and we have arranged the vertices in decreasing order of their
finish times.

Since DFS takes linear time, we have given a linear time algorithm for computing the
topological sort of a set of vertices.

10.2 Applications of DFS

A DFS on a directed graph G = (V,E) yields a wealth of information about the structure of
the graph. As mentioned earlier, the finish time can be used to yield the topological sort of
a DAG. We now give some more non-trivial applications of DFS.

10.2.1 Strongly connected components (SCC)

In a directed graph G = (V,E), two vertices u,v ∈V are in the same SCC iff u ; v and v ; u.
It is easy to verify that this is an equivalence relation on the vertices and the equivalence
classes correspond to the SCCs of the given graph. We now show how DFS can be used to
identify all the SCCs of a graph.

Before doing this, let us understand the structure of the SCC. Let us define a directed
graph G = (V ′,E ′) as follows – V ′ corresponds to the SCCs of G, that is, for every SCC in G,
we have a vertex in G . Given two SCCs, c1 and c2 in G, we have a directed edge (c1,c2)∈ E ′

if there is an edge from some vertex in c1 to some vertex of c2. Note that we are abusing
notation by using c1 (or c2) to denote a vertex in G and a subset of vertices in G.

It can be shown that G is a DAG (see Exercise 10.2).

We call a vertex in a DAG to be a sink if its out-degree is 0. It is easy to show that every
DAG must have at least one sink (e.g., consider the last vertex in a topological sort of the
graph). Similarly, define a source vertex as a vertex whose in-degree is 0.

To determine the SCCs of G, notice that if we start a DFS from a vertex of a sink
component c′ of G , then the DFS traversal will visit precisely all the vertices in c′. Let us
see why. Say u is a vertex of c and we start DFS from u. We know that v is any other vertex
of c, then u ; v, and so, we will visit v while performing DFS starting from u. Conversely,
suppose we visit a vertex v while performing DFS from u. We claim that v must be in c as
well. Suppose not. Say v ∈ c′, where c′ is some other SCC. Since u ; v (because we visited
v), consider a path from u to v. We know that u ∈ c and v /∈ c. Therefore, there must be an

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

Graph Algorithms 189

edge in this path which goes from a vertex in c to a vertex not in c. This contradicts the
assumption that c is a sink vertex in G . Thus, DFS from u will reveal exactly the vertices in
c, and so, we can identify one SCC of G. To identify another component, we can use the
following idea: remove all the vertices of c from G, and repeat the same process. In this
manner, we can find all the SCCs of G (Figure 10.3). This strategy works except that we do
not know G .

We then have the following property whose proof is left to the reader.

Observation 10.7 If u and v are two vertices in G belonging to SCC c and c′ respectively with
c ; c′ in G , then u ; v and there is no path from v to u.

(13, 14)

a

e

b c d

f g h

(11, 16)

(1, 10)

(8, 9)

(5, 6)(2, 7)(3, 4)(12, 15)

a b e, ,

f g,

c d,

h

Source Sink

Figure 10.3 The pair of numbers associated with the vertices represent
the start and finish time of the DFS procedure. The SCC
component DAG has four components.

Since G is not explicitly available, we will use the following strategy to determine a
sink component of G . First, reverse the edges of G – call it GR. The SCCs of GR are the same
as those of G, but the sink components and source components of G are interchanged. If
we do a DFS in GR, then the vertex with the largest finish time is in a sink component of
G . Let us see why. Let v be the vertex in c with the largest finish time, and suppose it is in

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

190 Design and Analysis of Algorithms

a SCC c where c is not a sink component. Let c′ be a sink component such that c ; c′ in G
(check that such a sink component exists). Let u be a vertex in c′. From Observation 10.7,
we know that v ; u, but there is no path from u to v in G.

Since f inish(v) > f inish(u), the bracket property implies the following possibilities: (i)
start(u) < f inish(u) < start(v) < f inish(v), or (ii) start(v) < start(u) < f inish(u) < f inish(v).
Note that in GR, u ; v and so the first property is ruled out because of Observation 10.4.
The second property implies that v ; u in GR, and so, u ; v in G, again a contradiction.

This enables us to output the SCC corresponding to the sink component of G using a
DFS in GR where the vertices are ordered according to the decreasing finish time GR. Once
this component (a sink component) is deleted (where the vertices and the induced edges
are deleted), we can apply the same strategy to the remaining graph, that is, start with the
next highest finish time. The algorithm is described in Figure 10.4.

Algorithm 2: Finding SCC of (G)

1 Input A directed graph G = (V,E) ;
2 Output The strongly connected components of G ;
3 Let GR be the reversal of G and pr : V →{1,2, . . . ,n} be the finish

times obtained by doing DFS on GR ;
4 W ←V and G(W) be subgraph of G induced by W ;
5 while W is not empty do
6 Choose v = argmaxw∈W{pr(w)} ;
7 Let V ′ denote the vertices of W reachable from v by DFS(v) in

G(W) ;
8 Output V ′ as an SCC of G ;
9 W ←W −V ′

Figure 10.4 Finding strongly connected components using two DFS

We have already indicated earlier that the first vertex v encountered in Step 6 belongs
to a sink SCC, and the vertices reachable by it belong to this SCC. To complete the proof,
one needs to use induction. Details are left as an exercise.

Example 10.2 Let us revisit the graph given in Figure 10.3. For convenience, we will assume that
the DFS numbering corresponds to GR, that is, the original graph has all the edges reversed. The
component SCC of the original graph must have the direction of the edges reversed. Since b has
the highest value of finish time, we begin DFS from b (in the reverse of the graph). The reachable
vertices are a,e which correctly corresponds to a sink component.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

Graph Algorithms 191

10.2.2 Biconnected components

Biconnected graphs can be defined on the basis of vertex connectivity as well as
equivalence classes on edges. Undirected graphs that cannot be disconnected by
removing one vertex (along with the incident edges) are biconnected. If the removal of a
vertex disconnects a graph, then such a vertex is called an articulation point.

It will follow from the max-flow min-cut theorem (explained in Chapter 11) that for
any biconnected graph, there are at least two vertex disjoint paths between every pair of
vertices. The generalization of this observation is known as Whitney’s theorem, where a
graph is said to be k connected if removal of any subset of k−1 vertices does not disconnect
the graph.

Theorem 10.1 (Whitney) A graph is k-connected if and only if there are at least k vertex disjoint
paths between any pair of vertices.

It is clear that if there are k vertex disjoint paths then at least k vertices must be removed to
disconnect the graph. However the proof of the converse is non-trivial and is not included
here (see Chapter 11). We are interested in 2-connectivity in this section.

As mentioned earlier, the notion of biconnectivity can also be defined in terms of an
equivalence relation on edges. We define an equivalence relation on edges as follows.

Definition 10.1 Two edges belong to the same BCC (biconnected component) iff they belong to a
common (simple) cycle. A singleton edge is considered as a biconnected component.

It is not difficult to show that this is an equivalence relation. Each equivalence class
forms a biconnected subgraph, also called, a biconnected component. Therefore, a graph
is biconnected if and only if it has only one biconnected component. Although we have
defined the BCCs in terms of edges, one can also define this in terms of vertices. A maximal
subgraph which is biconnected is called a block. One can show that if two different blocks
have a common vertex, then this vertex must be an articulation point. In fact, consider the
following bipartite graph G – on one side of G , we have all the articulation points, and on
the other side we have one vertex for each block in the graph. Further we add an edge
between a block B and an articulation point v if v belongs to B. One can show that this
graph is a tree (see Exercises). This graph is also called the component graph.

Now one can show that the set of edges in a block form a BCC, and conversely, the
subgraph consisting of edges in a BCC (and the incident vertices) form a block.

One obvious procedure to check biconnectivity is to test if there is an articulation point
in a graph. For every vertex v ∈ V , check if G−{v} is connected. This takes O(n · (m+ n))
time which we will try to improve by using an alternate characterization. Moreover, we
will also determine the biconnected components if the graph is not biconnected.

DFS on an undirected graph G = (V,E) partitions the edges into T (tree edges) and B
(back edges). Based on the DFS numbering (pre-order numbering or start times) of the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

192 Design and Analysis of Algorithms

vertices, we can direct the edges of T from a lower to a higher number and the edges in B
from a higher to a lower number. Let us denote the DFS numbering by a function d(v) v∈V .

The basic idea behind the BCC algorithm is to detect articulation points. If there are no
articulation points, then the graph is biconnected. Simultaneously, we also determine the
BCC. The DFS numbering d(v) helps us in this objective based on the following intuitive
observation.

Observation 10.8 If there are no back-edges out of some subtree of the DFS tree Tu rooted at a
vertex u that leads to a vertex w with d(w)< d(u), then u is an articulation point.

B1

B2

B3

B5

B4

u

v

w

x

B1

B2

B3

B4

B5

u

w

x

Figure 10.5 The component graph for the graph on the left is shown on
the right.

This follows because all paths from the subtree to the remaining graph must pass through u
making u an articulation point. To detect this condition, we define an additional numbering
of the vertices based on DFS numbering. Let h(v) denote the minimum of d(u), where (v,u)
is a back-edge, i.e., it is the highest node in the DFS tree which can be reached from u by a
back-edge. We also define a quantity LOW (v) with every vertex v as follows: consider the
vertices in the sub-tree rooted at v. Then LOW (v) is the minimum over all vertices u in this
sub-tree of h(u), i.e., it is the highest node one can reach by following a back-edge from this
sub-tree. It is easy to see that LOW (v) can be computed by the following recurrence:

LOW (v) = min
w|(v,w)∈T

{LOW (w),h(v)}

Note that h(v) and LOW (v) can be easily computed if v is a leaf node of the DFS tree. Using
this as a base case, we can compute the h(v) values and the LOW numbers simultaneously
while doing the DFS (Exercise 10.6). Once the LOW numbers are known, we can check if
h(u) ≥ d(v) for any child u of v. If so, the removal of v would disconnect all the vertices in
the subtree rooted at v from the remaining graph and therefore, v is an articulation point. A

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

Graph Algorithms 193

special case happens if v is the root of the DFS tree, since v does not have any predecessor.
In this case, v is an articulation vertex if it has more than one child in the DFS tree since all
paths between the children in the subtrees must go through v.

The computation of LOW numbers results in an efficient algorithm for testing
biconnectivity but it does not yield the biconnected components directly. For this, let us
consider the component graph G (recall that this does not contain any cycles). The
biconnected component that corresponds to a leaf node of G should be output as we
back-up from a subtree w of v such that LOW (w) is not smaller than d(v) (v is an
articulation point). After deleting this vertex from G , we consider the leaf components in
the remaining G . The edges of a BCC can be kept in stack starting from (v,w) that will be
popped out till we reach the edge (v,w).

DFS can start from an arbitrary BCC (biconnected component); this component will
be last to be output. An articulation point will be the only way out of a leaf component
and all its edges will be output. For a non-leaf component, it will be output after all the
neighboring components are output, except for the one through which it first arrived. In
other words, the DFS on the component tree has a traversal property similar to the DFS
on the vertices of a tree. Formalize this argument into an efficient algorithm that runs in
O(|V |+ |E|) steps (Exercise 10.12).

10.3 Path Problems

We are given a directed graph G = (V,E) and a weight function w : E → R (may have
negative weights also). The natural versions of the shortest path problem are as follows

Distance between a pair Given vertices x,y ∈V , find the least weighted path starting at x
and ending at y.

Single source shortest path (SSSP) Given a vertex s∈V , find the least weighted path from
s to all vertices in V −{s}.

All pairs shortest paths (APSP) For every pair of vertices x,y ∈V , find the least weighted
path from x to y.

Although the first problem often arises in practice, there is no specialized algorithm for
it. The first problem easily reduces to the SSSP problem. Intuitively, to find the shortest
path from x to y, it is difficult to avoid any vertex z since there may be a shorter path from
z to y. Indeed, one of the most basic operations used by shortest path algorithms is the
relaxation step. For any edge (u,v) in the graph, this operation performs the following step
where ∆(v) is an upperbound on the shortest length to v:

Relax(u,v)
if ∆(v)> ∆(u)+w(u,v) then ∆(v) = ∆(v)+w(u,v)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

194 Design and Analysis of Algorithms

Initially, it is set to ∞ but gradually its value decreases till it becomes equal to δ(v) which
is the actual shortest path distance (from a designated source vertex). In other words, the
following invariant is maintained for all vertices v: ∆(v)≥ δ(v).

The other property that is exploited by all algorithms is as follows.

Observation 10.9 Subpath optimality
Let s = v0,v1,v2, . . . ,vi, . . . ,v j, . . . ,v` be the shortest path from v0 to v`. Then for any intermediate
vertices, vi,v j, the subpath vi,vi+2, . . . ,v j is also a shortest path between vi and v j.

This follows from a simple argument by contradiction. Moreover, any shortest path
algorithm using the relaxation step would compute the shortest path to vi before v j for
j > i. In particular, once the shortest path to v j is successfully computed, viz.,
δ(v j) = ∆(v j), then δ(v j+1) = ∆(v j+1) the next time edge (v j,v j+1) is relaxed.

10.3.1 Bellman–Ford SSSP algorithm

The Bellman–Ford algorithm is essentially based on the following recurrence

δ(v) = min
u∈In(v)

{δ(u)+w(u,v)}

where In(v) denotes the set of vertices u∈V such that (u,v)∈ E. The shortest path to v must
have one of the incoming edges into v as the last edge. The algorithm (Figure 10.6) actually,
maintains upper bounds ∆(v) on the distance from the source vertex s to all vertices v –
initially ∆(v) = ∞ for all v ∈ V −{s} and ∆(s) = 0 = δ(s). The previous recurrence is recast
in terms of ∆

∆(v) = min
u∈In(v)

{∆(u)+w(u,v)}

Algorithm 3: SSSP ((V,E,s)

1 Initialize ∆(s) = 0, ∆(v) = ∞ v ∈V −{s} ;
2 for i = 1 to |V |−1 do
3 for all e ∈ E do
4 Relax (e)

5 Output δ(v) = ∆(v) for all v ∈V .

Figure 10.6 Bellman–Ford single-source shortest path problem

that follows from a similar reasoning. Note that if ∆(u) = δ(u) for any u ∈ In(v), then after
applying relax(u,v), ∆(v) = δ(v).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

Graph Algorithms 195

The correctness of the algorithm follows from the previous discussion and the
following key observation.

Observation 10.10 After i iterations, all vertices v whose shortest paths consist of i edges, satisfy
∆(v) = δ(v).

The proof follows from a simple induction on i.
So, the algorithm finds all the shortest paths consisting of at most n− 1 edges within

n− 1 iterations (Figure 10.7). However, if there is a negative cycle in the graph, then you
may require more iterations and in fact, the problem is not well defined any more. We
can specify that we will output simple paths (without repeated vertices) but this version is
not easy to handle.1 However, we can use the Bellman–Ford algorithm to detect negative
cycles in a given graph (Exercise 10.7). Since each iteration involves O(|E|) relax operations
– one for every edge, the total running time is bounded by O(|V | · |E|).

To actually compute the shortest path, we keep track of the predecessor of a vertex which
is determined by the relaxation step. The shortest path can be constructed by following the
predecessor links (Exercise 10.9).

10.3.2 Dijkstra’s SSSP algorithm

If the graph does not have negative weight edges, then we can exploit this feature to
design a faster algorithm. When we have only non-negative weights, we can actually
determine which vertex has its ∆(v) = δ(v). In the case of the Bellman–Ford algorithm, at
every iteration, at least one vertex had its shortest path computed but we could not
identify them. Here, we maintain a partition U and V −U of the set of vertices such that
s ∈ U , and the following invariant holds: for any v ∈ U , ∆(u) = δ(u). For non-negative
weights, we can make the following claim.

Observation 10.11 The vertex v ∈ V −U for which ∆(v) is minimum, satisfies the property that
∆(v) = δ(v).

We prove this by contradiction. Suppose for some vertex v that has the minimum label after
some iteration, ∆(v)> δ(v). Consider a shortest path s ; x→ y ; v, where y /∈U and all the
earlier vertices in the path s ; x are in U . Since x ∈U , ∆(y)≤ δ(x)+w(x,y) = δ(y). Since all
edge weights are non-negative, δ(y)≤ δ(v)< ∆(v) and therefore, ∆(y) = δ(y) is strictly less
than ∆(v) which contradicts the minimality of ∆(v).

Run the algorithm (Figure 10.8) on the graph given in Figure 10.7 and convince yourself
that it does not work. Then make all the weights non-negative and try again.

1 This is equivalent to the longest path problem which is known to be intractable.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

196 Design and Analysis of Algorithms

D

E

C

B

A

F

G
H

–2

–2

2
1

3

–1

1

–13

4

3

4

i,i,i,4,4,4,1,1

i,i,i,7,7,7,7,7

i,i,3,3,3,3,3,3

i,i,0,0,0,0,–3,–3

i,3,3,3,–4,–4,–4,–4

i 2,2,2,2,2,2,2

i,1,1,1,1,1,1,–1

0,0,0,0,0,0,0,0

Figure 10.7 For every vertex, the successive labels over the iterations of
the Bellman–Ford algorithm are indicated where i denotes
∞. The dotted line shows the final path computed for vertex
F.

Algorithm 4: SSSP (V,E,s)

1 Initialize ∆(s) = 0, ∆(v) = ∞ v ∈V −{s} ;
2 U ←{s} ;
3 while V −U 6= φ do
4 x = argminw∈V−U ∆(w) ;
5 δ(x) = ∆(x) ; Move x to U ;
6 Relax (x,y) for all edges (x,y) ;

Figure 10.8 Dijkstra’s single source shortest path algorithm

A crucial property exploited by Dijkstra’s algorithm is that along any shortest path
s ; u, the shortest path lengths are non-decreasing because of non-negative edge weights.
Along similar lines, we can also assert the following

Observation 10.12 Starting with s, the vertices are inserted into U in a non-decreasing order of
their shortest path lengths.

We can prove this by induction starting with s−δ(s) = 0. Suppose it is true up to iteration i,
that is, all vertices v ∈U are such that δ(v)≤ δ(x),x ∈V −U . Let ∆(u) ∈V −U be minimum,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

Graph Algorithms 197

then we claim that ∆(u) = δ(u) (from the previous observation) and ∆(u)≤ ∆(x),x ∈V −U .
Suppose δ(x) < δ(u), then by an extension of the previous argument, let y be the earliest
predecessor of x in s ; x that is not in U . Then, ∆(y) = δ(y) ≤ δ(x) < δ(u) ≤ ∆(u), thereby
violating the minimality of ∆(u).

To implement this algorithm efficiently, we maintain a min heap on the values of ∆(v)
for v ∈ V −U , so that we can choose the vertex with the smallest value in O(logn) steps.
Each edge is relaxed exactly once since only the edges incident on vertices in U are
relaxed – however because of the relax operation, the ∆() of some vertices may change;
these changes need to be updated in the heap. This yields a running time of
((|V |+ |E|) log |V |).

10.3.3 All pair shortest paths algorithm

We now consider the version of the shortest path problem where for all pairs u,w ∈ V ,
we would like to compute δ(u,v). We can compute this by using the previous algorithm on
each of the possible source vertices. The running time will be O(|V | · |V | · |E|), that is, O(|V |2 ·
|E|) steps. For a dense graph having close to |V |2 edges, this results in O(|V |4) running time.
We will try to improve this performance significantly.

We start by numbering the vertices arbitrarily with integers {1,2, . . . , |V | = n}. Let us
assume that the graph G is represented using an adjacency matrix AG where
AG[i, j] = w(i, j) which is the weight of the edge (i, j). If there is no edge, then w(i, j) = ∞.
We define Dk

i, j as the length of the shortest path between vertex i to vertex j that does not
use any intermediate vertex numbered higher than k (i, j are not included among the
intermediate vertices). This restricts the paths for a given value of k but since all vertices
are numbered [1..n], δ(i, j) = Dn

i, j. Moreover, we define D0
i, j = w(i, j). The following

recurrence leads to an efficient dynamic programming based algorithm for all
i, j ∈ {1,2, . . . ,n}.

Dk
i, j =

w(i, j) if k = 0

min{Dk−1
i, j ,Dk−1

i,k +Dk−1
k, j 1≤ k ≤ n

(10.3.1)

The reasoning is based on comparing Dk
i, j and Dk−1

i, j . If the former does not use any vertex
numbered k, then Dk

i, j = Dk−1
i, j . Otherwise, the shortest path containing k comprises two

subpaths – one from i to k (that does not use vertices numbered k) and the remaining path
from k to j (again that does not use vertex k). These paths correspond to Dk−1

i,k and Dk−1
k, j

respectively. The reader may also ponder about why k cannot be visited multiple times in
the shortest path between i to j.

The remaining details of refining the recurrence to an algorithm is left as an exercise
(Exercise 10.10(b)). We would like to draw attention to computation of the actual paths.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

198 Design and Analysis of Algorithms

Since each path can be of length |V |−1,2 the total length of the paths can add up to Ω(n3).
The reader is encouraged to design such a graph.

Instead, we can exploit the subpath optimality to reduce the storage. We will only store
the first edge of the path Pi, j (the sequence of vertices in the shortest path from i to j).
Suppose this is i1, then we can find the next vertex with the entry Pi1, j. If the shortest path
Pi, j = i = i0, i1, i2 . . . im = k, then we will look up the matrix m− 1 times which is optimal in
terms of the path length.

10.4 Computing Spanners for Weighted Graphs

Given a weighted undirected graph, we can construct a minimal spanning tree which is a
subgraph with minimum weight that preserves connectivity. A shortest path tree from a
source vertex is a subgraph constructed using the Dijkstra or the Bellman–Ford algorithm
that preserves the shortest path distance from the source vertex. What if we want to
construct a subgraph that preserves the shortest path between all pairs of vertices and has
a significantly smaller size compared to the original graph? Clearly, we cannot delete any
edge from the tree since it will disconnect the graph. One would be tempted to conjecture
that it could be possible in denser subgraphs, especially when there are Ω(n2) edges in an
n-node graph.

An immediate counter-example that comes to our mind is a complete bipartite graph.
If we remove any edge from this graph, the alternate path must have at least three edges,
so even for an unweighted graph, we cannot have a strict subgraph that preserves the
distances. In fact, the previous example leads us to the following observation. The girth
g of a graph is the length of the smallest cycle in a graph. When we remove any edge e
from the graph, the alternate path Π(e) (if one exists) along with e defines a simple cycle of
length at least g, that is, the length of Π(e) is at least g−1. Since bipartite graphs have girth
four, the previous example is a special case of the dependence on girth of a graph which is
4 for the family of complete bipartite graphs.

This forces us to redefine the problem in terms of allowing more flexibility in the
alternate paths provided in a subgraph in terms of allowing longer paths. A t spanner is a
subgraph S = (V,ES) of a given graph G = (V,E) such that for any pair of vertices u,w ∈V ,
the shortest path distance between u and v in S,G satisfies δS(u,w) ≥ δG(u,w). Here δ

denotes the shortest path distance. The bipartite graph example tells us that we cannot
have t < 3 for some graphs, but it is far from clear if we can get a 3-spanner for any graph
and even when the edges have arbitrary real weights. Moreover, can we obtain a much
smaller graph of size o(n2)?

The problem of computing, a t spanner involves exploring the trade-offs between t
and the size of the spanner. It has real life applications in routing networks, distributed

2 This is again related to the absence of negative cycles.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

Graph Algorithms 199

computing, and in approximating shortest paths within a guaranteed ratio. The following
algorithm constructs a 3-spanner having O(n3/2) edges.

We shall use the following notations

(i) w(u,v): weight of edge (u,v)

(ii) N(v,S) = argminu∈S w(v,u) and N (v,S) = {x|w(v,x) ≤ N(v,S)}, i.e., it is the subset of all
vertices closer than the closest sampled vertex.

If no neighbor of v is in S, then N (v,S) = {x|(v,x) ∈ E}, that is, all the neighbors of v.

The algorithm in Figure 10.9 has two distinct stages. In stage 1, we are building clusters
C (x) and in the second stage, we are joining vertices to other clusters (Figure 10.9). A cluster
C (x) is defined by a sampled vertex x and all other unsampled vertices for which x is the
nearest sampled vertex. Figure 10.10 gives an illustration of the two stages. We will first
prove that the set of edges output as ES is a legitimate 3-spanner. For this, we will establish
the following property.

Procedure 3-spanner(G (V,E,w))

1 Input : Weighted undirected graph G = (V,E,w);
2 Let R⊆V be a random sample where each vertex v ∈V is

independently included in R with probability 1√
n ;

3 ES← φ ;
4 Stage 1 ;
5 for v ∈V do
6 ES← ES∪{(v,u)|u ∈N (v,R)} ;

7 For every sampled vertex x ∈ R, define a cluster
C (x) = {v|N(v,R) = x} ;

8 (all vertices v whose nearest sampled vertex is x) ;
9 Stage 2 ;

10 for v ∈V do
11 for all clusters C (x) ,v 6∈ C (x) do
12 ES← ES∪{(v,y)}where y = N(v,C(x));

13 Output ES ;

Figure 10.9 An algorithm for weighted 3-spanner

Claim 10.1 For any edge (u,v) ∈ E−ES, there is an alternate path Π consisting of at most three
edges such that the weight of each of those edges is at most w(u,v).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

200 Design and Analysis of Algorithms

Once this claim is proved, then the 3-spanner property follows3 easily. For this, we
consider two kinds of edges (u,v) – refer to Figure 10.10 for an illustration.

• Intracluster missing edges If u,v ∈ C (x) for some x, then (u,x) ∈ ES and (v,x) ∈ ES. You
can think of x as the center of the cluster C (x). Hence, there exists a path {u,x,v} in
the spanner between u and v. Since v 6∈ N (u,R), w(u,x) ≤ w(u,v); recall that N (u,R)
consists of all neighbors of u whose weights are smaller than w(u,x). Similarly,
w(v,x) ≤ w(u,v) and there exists a path with two edges between u,v with weight no
more than 2w(u,v).

• Intercluster missing edges Suppose v ∈ C (x) but u 6∈ C (x). In stage 2, an edge (u,y) is
added where y = N(u,C (x)) (the least weight edge from u to the cluster C (x)). Clearly,
y ∈ C (x). Consider the path {u,y,x,v} – all the three edges belong to ES. Since u 6∈
N (v,R), w(v,x) ≤ w(u,v). Similarly, u 6∈ N (y,R), so w(y,x) ≤ w(y,u). Moreover, since
(u,y) was added in stage 2, w(u,y)≤ w(u,v). So

w(u,y)+w(y,x)+w(x,v)≤ w(u,y)+w(u,y)+w(u,v)≤ 3w(u,v)

This implies that the weight of the edges in the path {u,y,x,v} is no more than 3w(u,v).

W

E

I

G

H

T

S

u

v

.

.

.
u

.

.

.

(a) (b)

Figure 10.10 The 3-spanner algorithm – Stages 1 and 2

We now proceed to prove a bound on the size of the spanner. We will actually bound
the expected number of edges output as ES. Since each vertex is chosen independently with
probability 1√

n , the expected size of |R|, which is also the expected number of clusters, is
√

n.
Consider the view from each vertex u as shown in Figure 10.10(a). From the vertex u, all the
edges before the first sampled vertex v (hypothetically ordered in increasing weights) are

3 Not every 3-spanner needs to satisfy this property.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

Graph Algorithms 201

included in ES. Let the number of such edges be denoted by Xu which is a random variable
taking values between 1 and deg(u). To estimate E[Xu], note that Xu is equal to k if the first
k− 1 neighbors of u are not chosen and the kth neighbor is selected in R. The probability
of this event is exactly (1−1/

√
n)k−1 ·1/

√
n. Of course if the degree of u is less than k, then

the probability of this event is 0. From this, we see that the expectation of Xu is at most
∑k k · (1− 1/

√
n)k−1 · 1/

√
n, which is equal to

√
n. So the total expected number of edges

included in stage 1 is ∑u∈V Xu whose expectation is E[∑u∈V Xu] =∑u∈V E[Xu]≤ n ·
√

n=O(n3/2).
In stage 2, each vertex can add 1 edge for each of the

√
n clusters (expected), that is

again bounded easily by n ·
√

n = O(n3/2).

(a)

x

u v

u v x

y

(b)

Figure 10.11 Stretch bound: (i) Intracluster; (ii) Intercluster

Lemma 10.1 The expected size of the spanner, output by the previous algorithm is O(n3/2) and as
stated before, is the best possible.

To analyze the running time of this algorithm, we note that in stage 1, each vertex u can
identify N (u,R) in time proportional to its degree, deg(u). This implies an O(|E|) bound.
In stage 2, each vertex must identify all neighbors of every cluster and then choose the
closest neighbor from each cluster. This can be done by sorting all the vertices on their
cluster label (there are

√
n expected number of clusters) as well as the label u. There are

|E| tuples of the form (u,c), where u ∈ [1, . . . , |V |] and c ∈ [1, . . . ,
√

V]. Using radix sort, this
can be done in O(|V |+ |E|) steps. Once all the edges to a cluster are adjacent, choosing the
closest neighbor can be done in linear time in number of edges.

Theorem 10.2 A 3-spanner of a weighted undirected graph G = (V,E) of expected size O(|V |3/2)

can be constructed in O(|V |+ |E|) steps.

10.5 Global Min-cut

A cut of a given (connected) graph G = (V,E) is the set of edges which when removed
disconnects the graph. In the next chapter, we will consider a related notion, called s-t
cut, where s and t are two vertices in the graph. Here, an s-t cut is a set of edges whose

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

202 Design and Analysis of Algorithms

removal disconnects s and t. A min-cut is the minimum number of edges that disconnects
a graph and is sometimes referred to as global min-cut to distinguish it from s-t min-cut.
The weighted version of the min-cut problem is the natural analog when the edges have
non-negative associated weights. A cut can also be represented by a set of vertices S where
the cut-edges are the edges connecting S and V −S.

It was believed for a long time that the min-cut is a harder problem to solve than the
s-t min-cut – in fact, the earlier algorithms for min-cuts determined the s-t min-cuts for all
pairs s, t ∈V . The s-t min-cut can be determined from the s-t max-flow flow algorithms and
over the years, there have been improved reductions of the global min-cut problem to the
s-t flow problem, such that it can now be solved in one computation of s-t flow.

In a remarkable departure from this line of work, first Karger, followed by Karger and
Stein developed faster algorithms (than max-flow) to compute the min-cut with high
probability. The algorithms produce a cut that is very likely the min-cut.

10.5.1 The contraction algorithm

The basis of the algorithm is the procedure contraction described in this section. The
fundamental operation contract(v1,v2) replaces vertices v1 and v2 by a new vertex v and
assigns the set of edges incident on v by the union of the edges incident on v1 and v2. If
there are edges from v1 and v2 to a common vertex w, then we retain all these edges as
parallel edges between v and w. Notice that by definition, the edges between v1 and v2

disappear.

Procedure Partition(t)

1 Input: A multigraph G = (V,E) ;
2 Output: A t partition of V ;
3 while |V |> t do
4 Choose an edge (v1,v2) uniformly at random ;
5 contract(v1,v2)

Procedure contract(u,v)

1 Merge vertices u and v into w such that all neighbours
of u and v are now neighbours of w ;

Figure 10.12 Algorithm for computing t-partition

The procedure mentioned here takes a parameter t, and keeps contracting edges till
only t vertices remain. At this time, if we remove all the existing edges, it will yield a
cut which partitions the graph into k connected components. The procedure Partition(2)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

Graph Algorithms 203

produces a 2-partition of V which defines a cut. If it is a min-cut, then we are done. There
are two issues that must be examined carefully.

1. How likely is it that the cut is a min-cut?

2. How do we know that it is a min-cut?

The second question addresses a more general question, namely, how does one verify the
correctness of a Monte Carlo randomized algorithm? In most cases, there are no efficient
verification procedures and we can only claim the correctness in a probabilistic sense. In
our context, we will show that the contraction algorithm will produce a min-cut with
probability p, so that, if we run the algorithm 1

p times, we expect to see the min-cut at
least once. Among all the cuts that are output in O(1

p) runs of the algorithm, we choose
the one with the minimum cut value. If the minimum cut had been produced in any of
the independent runs, we will obtain the min-cut.

10.5.2 Probability of min-cut

We now analyze the algorithm. We will fix a min-cut C (the reader can easily create
example graphs where there are multiple min-cuts), and compute the probability that the
algorithm outputs C. If C is output, then it means that none of the edges of C has ever
been contracted. Let A(i) denote the event that an edge of C is contracted in the ith
iteration and let E(i) denote the event that no edge of C is contracted in any of the first i
iterations. Let Ā(i) denote the complement of the event A(i).

If ni is the number of vertices after i iterations (initially n0 = n), we have ni = n− i. We
first argue that the probability that an edge of C is contracted in the first iteration is at most
2
n . Indeed, let k denote the minimum degree of a vertex. Removing the edges incident
to such a vertex will yield a cut, and so, the number of edges in C is at least k. Since the
number of edges in the graph is at least kn/2 (because the sum of the degrees of vertices is
twice the number of edges), it follows that the probability of A(1) is at most k

kn/2 = 2
n .4

Thus, we see that Pr[Ā(1)] ≥ 1− 2/n and similarly, Pr[Ā(i)|E(i− 1)] ≥ 1− 2/ni−1. Then,
using the property of conditional probability

Pr[E(i)] = Pr[Ā(i)∩E(i−1)] = Pr[Ā(i)|E(i−1)] ·Pr[E(i−1)].

We can use this equation inductively to obtain
Pr[E(n− t)] ≥∏

n−t
i=1 (1−2/ni−1)

= ∏
n−t
i=1

(
1− 2

n−i+1

)
≥ t(t−1)

n(n−1)

4 We are considering the unweighted version but the proof can be extended to the weighted version using multiset
arguments.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

204 Design and Analysis of Algorithms

Claim 10.2 The probability that a specific min-cut C survives at the end of Partition(t) is at least
t(t−1)
n(n−1) .

Therefore, Partition (2) produces a min-cut with probability Ω(1
n2). Repeating this

algorithm O(n2) times would ensure that the min-cut is expected to be the output at least
once. If each contraction can be performed in t(n) time, then the expected running time is
O(t(n) ·n ·n2).

By using an adjacency matrix representation, the contraction operation can be
performed in O(n) steps. We now address the problem of choosing a random edge using
the aforementioned data structure.

Claim 10.3 An edge E can be chosen uniformly at random at any stage of the algorithm in O(n)
steps.

The selection works as follows.

• Select a vertex v at random with probability =
deg(v)

∑u∈V deg(u)
=

deg(v)
2|E|

• Select an edge (v,w) at random with probability =
#E(v,w)

∑z∈N(v) #E(v,z)
=

#E(v,w)
deg(v)

where #E(u,v) denotes the number of edges between u and v and N(v) is the set of
neighbors of v.
Hence, the probability of choosing any edge (v,w) is given by

=
#E(v,w)
deg(v)

· deg(v)
2|E|

+
#E(w,v)
deg(w)

deg(w)
2|E|

=
#E(v,w)
|E|

Therefore, this method picks edges with probability that is proportional to the number of
edges between v and w. When there are no multiple edges, all edges are equally likely
to be picked. For the case of integer weights, the derivation works directly for weighted
sampling. Using an adjacency matrix M for storing the graph, where M(v,w) denotes the
number of edges between v and w, allows us to merge vertices v and w in O(n) time. It is
left as an exercise (Exercise problem 10.24) to design an efficient method for Partition (2).

Further Reading

There are many excellent textbooks on graph theory (see e.g., [42, 61]). The shortest path
problem is one of the most fundamental algorithmic problems in graph theory. Using
Fibonacci heaps, Dijkstra’s algorithm can be implemented in O(m + n logn) time [53].
Thorup [141] improved this to an O(m+n log logn) time algorithm.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

Graph Algorithms 205

Karger’s min-cut algorithm [74] takes O(n2m) time in expectation. Karger and
Stein [76] extended this result to an O(n2 log3 n) time algorithm. The notion of a graph
spanner was formally introduced by Peleg and Schaeffer [115]; the graph spanner has
applications to distributed computing. Althöfer et al. [11] described a greedy algorithm
based on Dijkstra’s algorithm that achieved 2k−1 stretch bound, but with a running time
of O(mn1+1/k). This was improved by Thorup and Zwick [142] to O(mn1/k). The algorithm
presented here follows Baswana and Sen [15] who developed the first O(m+n) linear time
algorithm.

Exercise Problems

10.1 Graph theory

1. Show that in any graph there are at least two vertices of the same degree.

2. Given a degree sequence d1,d2, . . . ,dn such that ∑i di = 2n−2, either construct a tree
whose vertices have these degrees, or show that no such tree exists.

3. Show that in a complete graph on six vertices where edges are colored red or blue,
there is either a red or a blue triangle (a triangle is a set of three vertices with an edge
between every pair of these vertices).

10.2 Prove that the graph G corresponding to strongly connected components in a directed
graph (see Section 10.2) is a DAG.

10.3 Based on suitable modifications of the DFS algorithm, design a linear time algorithm for
topological sorting or conclude that the given graph is not a DAG.

10.4 Prove rigorously the correctness of the algorithm given in Figure 10.4.

10.5 Consider the following relation on the edges of an undirected graph: two edges e and e′

are related if there is a simple cycle containing them; and an edge e is always related to
itself. Prove that this relation is an equivalence relation. Show that if a vertex v is incident
to two edges belonging to different equivalence classes of this relation, then v is a cut
vertex.

10.6 Show how to compute the quantities LOW (v), v ∈ V along with the DFS numbering in
linear time using the recursive definition of LOW . This should be done simultaneously
with the depth first search.

10.7 Describe an efficient algorithm to detect if a given directed graph contains a negative
weight cycle.

10.8 Describe an efficient algorithm to find the second minimum shortest path between vertices
u and v in a weighted graph without negative weights. The second minimum weight path

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

206 Design and Analysis of Algorithms

must differ from the shortest path by at least one edge and may have the same weight
as the shortest path.

10.9 If there is no negative cycle in a graph, show that the predecessors as defined by the
Bellman–Ford algorithm form a tree (which is called the shortest path tree).

10.10 (a) Using the recurrence in Eq. (10.3.1), design and analyze the dynamic programming
for computing shortest paths.

(b) How would you modify the algorithm to report the shortest paths?

10.11 Transforming to a non-negative weighted graph

If all the weights w()were non-negative, one could use the Dijkstra algorithm from different
vertices to compute APSP that will be faster than using the Bellman–Ford algorithm from
each of the vertices. For this, we will use weights on the vertices g : V → R. Then, the
weight of an edge (u,v) is transformed to w′(u,v) = w(u,v) + g(u)− g(v). If one can
ensure that w(u,v)− (g(v)−g(u))≥ 0, then w′()≥ 0.

(i) For any pair of paths (not just the shortest path), P = vs = v0,v1 . . .vk = vd P′ = vs =

v0,v′1,v
′
2 . . .vm = vd . Show that w(P)≥ w(P′) ⇐⇒ w′(P)≥ w′(P′), that is, the relative

ranking of the paths are preserved.

(ii) Define a function g that satisfies the required property.

(iii) Analyze the overall running time of your algorithm (including the transformation)
and compare with the running time of Dijkstra’s algorithm where all weights are
non-negative.

10.12 Show that the BCC of an undirected graph can be computed in O(|V |+ |E|) steps using
DFS.

10.13 The diameter of an undirected graph G = (V,E) is defined as maxu,v∈V{d(u,v)}, where
d() is the shortest distance between the vertices u,v. A pair that achieves the maximum
distance is called a diametral pair.

(i) Design an algorithm for finding the diameter of a given graph without computing
APSP distances.

(ii) Extend the algorithm to weighted graphs.

Hint: If x is a vertex in the shortest path between a diametral pair, then doing SSSP
from x will yield this distance. Choose a random subset of appropriate size.

10.14 Given a directed acyclic graph that has maximal path length k, design an efficient
algorithm that partitions the vertices into k+ 1 sets such that there is no path between
any pair of vertices in a set.

10.15 Given an undirected graph, describe an algorithm to determine if it contains an
even-length cycle. Can you do the same for odd-length cycle?

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

Graph Algorithms 207

10.16 Given an undirected connected graph G, define the biconnected component graph H as
follows. For each BCC of G and articulation point of G, there is a vertex in H. There is an
edge between vertices x and y in H if x is an articulation point in the BCC.

1. Prove that H is a tree.

2. Using H (or otherwise), design an efficient algorithm that adds the minimal number
of edges to G to make it biconnected.

10.17 A directed graph is Eulerian if the in-degree equals the out-degree for every vertex. Show
that in an Eulerian graph, there is a tour which starts at a vertex v, traverses every edge
in the graph exactly once, and ends at v. Design an efficient (linear time) algorithm to
find such a tour.

10.18 An n-vertex undirected graph is a scorpion if it has a vertex of degree 1 (the sting)
connected to a vertex of degree 2 (the tail) connected to a vertex of degree n− 2 (the
body) which is connected to the remaining n− 3 vertices (the feet). Some of the feet
may be connected among themselves. Give an O(n) algorithm to check if a given n×n
adjacency matrix represents a scorpion.

10.19 Given an undirected graph, we want to orient the edges such that the resulting graph
is strongly connected. Design a linear time algorithm which given an undirected graph,
either outputs such an orientation or shows that no such orientation is possible.

10.20 Given an undirected graph G= (V,E), create an efficient algorithm to find a maximum size
(i.e., number of vertices) subgraph such that the degree of every vertex in this subgraph
is at least k (or show that no such subgraph exists).

10.21 Prove Observation 10.7

10.22 Describe an efficient algorithm to find the girth of a given undirected graph. The girth is
defined as the length of the smallest cycle.

10.23 For an unweighted graph, an (α,β) spanner is a subgraph that preserves any path length
p within distance α · p+ β, where α ≥ 1 and β is some constant. The t-spanner is a
special case of α = t and β = 0.

Can you modify the construction to yield a (2,1) spanner?

Hint: For any path, v0,v1,v2 . . ., you can consider the alternate path starting from v0 and
going through c(v1), followed by v2, then c(v3), etc, where c(v) denotes the center of the
cluster of v.

10.24 (a) By using an adjacency matrix representation, show that the contraction operation in
the min-cut algorithm can be performed in O(n) steps.

(b) Describe a method to implement Partition (2) in O(m logn) steps. This will be faster
for sparse graphs.

Hint: Can you use union-find?

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.011
https://www.cambridge.org/core

11
C H A P T E R

Maximum Flow and
Applications

In this chapter, we introduce the maximum flow problem. This is a problem which has
numerous applications in many areas of operations research; it is also versatile enough to
fit many other problems which may seem unrelated. The problem can be analyzed from
the view point of traffic or water flow in a network. Consider a directed graph where
edges have capacities – these can be thought of as pipes with capacities being the
cross-sectional area; or in case of transportation networks, the edges can be thought of as
roads linking two junctions with the capacity of an edge being the maximum rate at
which traffic can flow (per unit time) through this edge. There are special ‘source’ and
‘destination’ vertices where these flows are supposed to originate and end. At every other
vertex, ‘flow-conservation’ holds, i.e., the total incoming flow equals the total outgoing
flow. We now define these concepts formally.

Given a directed graph G=(V,E) and a capacity function c : E→R+, and two designated
vertices s and t (also called ‘source’ and ’sink’ respectively), we want to compute a flow
function f : E→ R+ such that

1. Capacity constraint

f (e)≤ c(e) ∀e ∈ E

2. Flow conservation

∀v ∈V −{s, t}, ∑
e∈in(v)

f (e) = ∑
e∈out(v)

f (e)

where in(v) are the edges directed into vertex v and out(v) are the edges directed out
of v.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

Maximum Flow and Applications 209

As mentioned earlier, we can think of the flow as originating at s and ending into t. The
outflow of a vertex v is defined as ∑e∈out(v) f (e) and the inflow into v is given by ∑e∈in(v) f (e).
The net flow is defined as outflow minus inflow = ∑e∈out(v) f (e)−∑e∈in(v) f (e). From the
property of flow conservation, net flow is zero for all vertices except s, t. For vertex s, which
is the source, the net flow is positive and for t, the net flow is negative.

Observation 11.1 The net flow at s and the net flow at t are equal in magnitude.

To show this, we add the flow conservation constraints for all the vertices except s and t.
We get

∑
v∈V−{s,t}

(
∑

e∈out(v)
f (e)− ∑

e∈in(v)
f (e)

)
= 0

Let E ′ be edges that are not incident on s, t (either incoming or outgoing).
For an edge e∈E ′, f (e) is counted once as incoming and once as outgoing, which cancel

each other. So

∑
e∈out(s)

f (e)− ∑
e∈in(s)

f (e) = ∑
e∈in(t)

f (e)− ∑
e∈out(t)

f (e)

Hence, the net outflow at s equals the net inflow at t. We shall denote this as the value of
the flow f . An s-t flow is said to be a maximum s-t flow if its value is maximum among all
such flows.

Computing maximum flow is a classical problem in combinatorial optimization with
numerous applications. Therefore, designing efficient algorithms for maximum flow has
been the subject of study for many researchers over many years. Since the constraints and
the objective function are linear, we can pose it as a linear program (LP) and use an efficient
(polynomial time) algorithm for the LP. However, the algorithms for LP are not known to
be strongly polynomial1, and we will explore more efficient algorithms.

Path decomposition of flow
Before we explore algorithms for computing a maximum flow, we will discuss a useful
way of decomposing any s-t flow into a union of flows along s-t paths and cycles where
the value of flow in a path/cycle is the same for every edge in the path/cycle from the
conservation property. In particular, we will prove the following.

Theorem 11.1 [Path Decomposition] Let f be an s-t flow of value F . Then there exists a set of
s-t paths P1, . . . ,Pk and a set of cycles C1, . . . ,Cl , where k + l ≤ m, and values f (P1), . . . , f (Pk),

f (C1), . . . , f (Cl) such that for every edge e, f (e) is equal to ∑i:e∈Pi
f (Pi)+∑ j:e∈C j

f (C j).

1We define this class more precisely in the next chapter. This may be thought of as an algorithm that scales only
with the size of the graph but not the weights of the edges.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

210 Design and Analysis of Algorithms

Before we prove this theorem, it follows that the value of the flow must be the same as
∑

k
i=1 f (Pi) (see Exercise Problem 11.7). Further, the theorem shows that (ignoring the cycles,

which do not add to the value of the flow) one can construct a flow by sending flows along
s-t paths.

We prove this theorem by iteratively constructing the paths and the cycles, and then
removing an appropriate amount of flow from them. To begin with, let E ′ be the edges
with positive flow, and G′ be the sub-graph induced by them. Assume that E ′ is non-empty,
otherwise there is nothing to prove. Let e = (u,v) be an edge in E ′ having non-zero flow. By
flow conservation, either v = t or the out-degree of v must be at least 1 (in G′). Following
the out-going edges in this manner, we get a sequence of vertices v = v1,v2, . . . which either
ends with t, or repeats a vertex. If a vertex gets repeated, we find a cycle in G′; otherwise,
we find a path from v to t in G′. Similarly, following incoming edges from u, we will either
find a cycle in G′ or a path from s to u. Combining these facts, we see that either (i) G′ has
a cycle C, or (ii) an s-t path P.

In the former case, let fmin be the minimum of f (e) among all the edges in C. We add the
cycle C to our list (of cycles and paths) and define f (C) to be fmin. Further, we reduce the
flow along all edges in C by fmin (note that they will still be non-negative and satisfy flow
conservation). Similarly, in the latter case, define fmin to be the minimum of f (e) among
all the edges in P, and f (P) to be equal to fmin. We reduce flow along edges in P by fmin.
We repeat the same process with the new flow till it becomes 0 on all edges. It is clear that
when the process stops, we have the desired flow-decomposition property. To see why we
will not find more than m paths and cycles, notice that in each iteration, we reduce the flow
on at least one edge to 0.

Residual graphs

The path decomposition theorem suggests that one way of finding the maximum flow is by
finding appropriate paths and sending flow along them. Unfortunately, a simple greedy
strategy which iteratively finds paths from s to t and sends flow along them fails. For
example, consider the graph in Figure 11.1 where all edges have capacity 1. Note that the
maximum flow from s to t is 2 in this example. But if we send 1 unit of flow from s to t
along the path P = s,v1,v4, t, and remove all the edges with flow 1 on them (the ‘saturated’
edges), then we can no longer find another s to t path.

To prevent getting stuck with such solutions, we need to introduce the concept of
‘un-doing’ some of the past mistakes. In the example considered here, this would mean
sending 1 unit of flow back along the edge (v4,v1). One way of capturing this fact is the
notion of residual graphs. Given a graph G and a flow f in G, the residual graph G f is
defined as follows: the set of vertices is same as that of G. For every edge e in G with flow
f (e) and capacity ce, we consider the following cases (which may not be disjoint): (i)
f (e) < c(e): then we add the edge e to G f as well; the residual capacity re of e in G′ is

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

Maximum Flow and Applications 211

defined as c(e)− f (e): note that this is the extra flow we can still send on e without
violating the capacity constraint, (ii) f (e)> 0: we add the edge e′ which is the reversal of e
to G f with residual capacity f (e) – sending flow along e′ amounts to reducing flow along
e, and so, we are allowed to send up to f (e) flow along e′ (because we cannot reduce the
flow along e by more than f (e)). If both the cases happen, then we add two copies of e
pointing in opposite directions (see also Figure 11.2). For obvious reasons, the first kind of
edges are called forward edges, and the second kind are called backward edges.

v1

v2

t

v3
v4

s

Figure 11.1 Greedy algorithm for max-flow: it may not give optimal
solution.

v1
v2

t

v3 v4

s

1

2

2

2

3

1

1

1

2

4

2
5

2

3

v1
v2

t

v3 v4

s

2

2

2

3

3

1

1

11

1
1

1

Figure 11.2 Example of residual graph. On the left side, is a graph
with flow shown in boxes, and capacities mentioned along
edges. On the right side, the corresponding residual graphs
is shown.

Flow augmentation
Armed with the concept of residual graphs, we can now define a modified greedy-like
algorithm for finding max-flow. Initialize the flow f to be 0 on all edges. Let f be the
current flow and let G f be the residual graph with respect to f . Note that as f changes,
the graph G f will also change. In the graph G f , we find a path from s to t, and let δ be
the minimum residual capacity of an edge in this path. We augment flow along this path by
sending δ units of flow along it. More precisely, for every edge e, we perform the following

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

212 Design and Analysis of Algorithms

steps: (i) If e is also present in G, i.e., is a forward edge, then we increase the flow along e
by δ units; (ii) If reverse of e, call it e′, is present in G, i.e., e is a backward edge, then we
decrease the flow along e′ by δ units. It is easy to see that we preserve both the capacity
constraints and the flow conservation constraints. Such a path is called an augmentation
path. We now have a new flow whose value is δ more than the previous flow. We repeat the
process with this new flow. As long as we can find augmenting paths, we make progress.
The algorithm stops when there is no augmenting path in the residual graph (with respect
to the current flow). We will establish in the next section that when such a situation arises,
the flow must be a maximum flow.

11.0.1 Max-Flow Min-Cut

In this section, we develop a lower bound on the value of a maximum flow. Define a cut to
be a partition of the set of vertices into two parts such that one part contains s and the other
contains t. More formally, an s-t cut (we will use the term, cut, for the sake of brevity) is
defined as a partition of V into S,T such that s ∈ S and t ∈ T . We will often use the notation
S̄ to denote V − S that refers to the complementary partition of the cut S. In the present
context, T = S̄. The capacity of a cut is defined as ∑(u,v)∈E,u∈S,b∈T c((u,v)), i.e., it is the total
capacity of edges which leave the set S. We shall use out(S) to denote edges e= (u,v), where
u ∈ S,v ∈ T , i.e., the edges which leave S. One can define the set in(S) of edges coming into
S similarly. When S consists of a singleton element v, instead of the notation ∈ (v) and
out(v), we use in(S) and out(S) respectively.

It is easy to check that the value of a max-flow cannot exceed the capacity of any cut.
Intuitively, even if we saturate all the edges in out(S) for a cut (S,T), we will not be able to
send more flow than the capacity of this cut. To prove this formally, we first write down
the flow-conservation constraint for every vertex in S. If v ∈ S−{s}, we know that

∑
e∈in(v)

f (e) = ∑
e∈out(v)

f (e)

and for s,

∑
e∈in(v)

f (e)+F = ∑
e∈out(v)

f (e)

where F is the value of the flow. Adding all these constraints, we see that all terms cancel
except for those which enter and leave S. In other words, we get

F = ∑
e∈out(S)

fe− ∑
e∈in(S)

f (e) (11.0.1)

Since 0≤ f (e)≤ c(e), it follows that F ≤∑e∈out(S) c(e), which is the capacity of this cut. Since
f is an arbitrary flow and (S,T) is an arbitrary cut, we see that the value of maximum flow

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

Maximum Flow and Applications 213

is at most the minimum capacity of a cut. We now show that the two quantities are in fact
equal. In fact, we will show that the aforementioned algorithm finds a flow whose value
is equal to the capacity of a cut. Therefore, this flow must be a maximum flow (and the cut
must be a min-cut, i.e., a cut of minimum capacity).

Theorem 11.2 (max-flow–min-cut) The value of the s-t max-flow = s-t min-cut.

We now prove this result. Recall our algorithm for iteratively finding augmenting
paths. Consider a flow f such that there is no augmenting path with respect to it. Let S∗

be the set of vertices such that there is an augmenting path from s to u ∈ S∗. By definition,
s ∈ S∗ and t /∈ S∗ and T ∗ =V −S∗. Note that S∗ is exactly the set of vertices reachable from s
in the residual graph G f .

Consider an edge e ∈ out(S) in the graph G. Such an edge is not present in G f (by
definition of S∗). Therefore, it must be the case that flow on such an edge is equal to its
capacity. Similarly, for an edge e ∈ in(S∗), it must be the case that f (e) = 0; otherwise, the
reverse of this edge will be present in G f , contradicting the definition of S∗. It now follows
from Eq. (11.0.1) that the value of this flow must be equal to the capacity of this cut, and
so, it must be a maximum flow.

We now discuss some algorithms for finding the maximum flow.

11.0.2 Ford and Fulkerson algorithm

The Ford and Fulkerson strategy for finding max-flow is directly based on the
aforementioned result, i.e., we successively find augmenting paths till we cannot find any
more paths.

How do we find an augmenting path? We can run a graph traversal algorithm like DFS
or BFS in the residual graph. We can find such a path in linear time.

Although the Ford–Fulkerson method converges since the flow increases
monotonically, we do not have a bound on the maximum number of iterations that it
takes to converge to the max-flow. Bad examples (taking exponential time) can be easily
constructed; in fact, for irrational capacities, it converges only in the limit !

However, if all the capacities are integers, then the algorithm does converge. Indeed,
consider a graph having n vertices and m edges; let U denote the maximum capacity of
any edge (assuming all capacities are positive integers). A trivial upper bound on the
value of the maximum flow would be nU . Indeed, the value of a flow is equal to the flow
leaving the source vertex, and at most U amount of flow can leave on an edge out of s.
In each iteration, the value of the residual capacities will be integers as well, and so, the
flow sent along an augmenting path will be an integer as well. Therefore, the value of the
flow will increase by at least 1. It follows that we will send flow along augmenting paths
atmost nU times. This also allows us to bound the running time of this algorithm. In each

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

214 Design and Analysis of Algorithms

iteration, we have to find a path from s to t in the residual graph which will take linear
time (using any graph traversal algorithm). Updating the residual graph will also take
linear time. Therefore, assuming m ≥ n, each iteration will take O(m) time, which implies
O(mnU) running time for the algorithm. In fact, there exist examples where the running
time could be close to this bound (see Exercise Problem 11.3.).

Even though this bound is not very useful in practice, it implies an interesting fact,
which is often called integrality of max-flow:

Observation 11.2 Assuming all edge capacities are integers, there exists a maximum flow from s
to t which sends integral amount of flow on every edge.

Observe that not every max-flow has to be integral (even if edge capacities are
integers). It is easy to construct such examples, and is left as an exercise. However, the
Ford–Fulkerson algorithm shows that there is at least one max-flow which is integral.

Another consequence of this algorithm is that it also allows us to find a min s-t cut
(assuming it terminates, which will happen if all quantities are integers). Consider the
residual graph G f when the algorithm terminates. We know that there is no path from s
to t in the graph G f . Let S be the set of vertices which are reachable from s in G f , i.e.,
S = {u : there is a path from s to u in G f }. We claim that S is a min-cut. First of all, s ∈ S and
as argued earlier, t /∈ S. Therefore, S is an s-t cut. Now we claim that the value of the flow
across this cut is exactly the capacity of the cut. Indeed, consider an edge e= (u,v)∈ out(S).
By definition, u ∈ S,v /∈ S. We claim that fe = ce. Suppose not. Then the edge e is present in
G f . Since u ∈ S, there is a path from s to u in G f . But the fact that e ∈ G f implies that v is
also reachable from s, which contradicts the fact that v /∈ S. This proves the claim. One can
similarly show that if e ∈ in(S), then fe = 0. Now, Eq. (11.0.1) shows that the value of the
flow is equal to the capacity of the cut S, and so, S must be a min s-t cut.

11.0.3 Edmond–Karp augmentation strategy

It turns out that if we augment flow along the shortest path (in the unweighted residual
network using BFS) between s and t, we can prove much superior bounds. The basic
property that enables us to obtain a reasonable bound is the following result. At first, let
us define an edge in an augmenting path to be a bottleneck edge if it has the minimum
residual capacity among all edges in this path.

Claim 11.1 A fixed edge can become a bottleneck edge in at most n/2 iterations.

We will prove the claim shortly. The claim implies that the total number of iterations is
m ·n/2 or O(|V | · |E|), which is polynomial in the input size. Each iteration involves a BFS,
yielding an overall running time of O(n ·m2).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

Maximum Flow and Applications 215

11.0.4 Monotonicity lemma and bounding the number of
iterations

We now prove Claim 11.1. The idea behind the proof is that every time we augment flow
along an edge, the distance of an end-point of this edge from the source s increases (in
the residual graph). Since this distance cannot be more than n, we will be able to bound
the number of times we augment flow along such an edge. We now prove this claim
formally. We begin with some definitions. Let Gk be the residual graph after k iterations of
the algorithm. For a vertex v and iteration k of this algorithm, let sk

v denote the minimum
number of edges in a path from s to v in the residual graph Gk.

We claim that

sk+1
v ≥ sk

v

We will prove it by contradiction. Suppose sk+1
v < sk

v for some k and vertex v. Further,
among all such vertices, we choose v with the smallest sk+1

v value.
Consider the shortest s to v path in Gk+1, and let u be the vertex preceding v in this path.

Consider the last edge in the path, i.e., the edge (u,v). Then,

sk+1
v = sk+1

u +1 (11.0.2)

since u is on the shortest path. By assumption on minimality of violation,

sk+1
u ≥ sk

u (11.0.3)

From Eq. (11.0.2), it follows that

sk+1
v ≥ sk

u +1 (11.0.4)

Consider the flow f (u,v) after k iterations.

Case 1 : f (u,v)< c(u,v) Then there is a forward edge (u,v) in the residual graph and hence,
sk

v ≤ sk
u +1. From Eq. (11.0.4), sk+1

v ≥ sk
v, which contradicts our assumption.

Case 2: f (u,v) = c(u,v) Then (v,u) is an edge in the residual graph Gk, and (u,v) is not
present in Gk. But we know that (u,v) is present in Gk+1. Therefore, the shortest
augmenting path during iteration k must contain the edge (v,u). This implies that

sk
u = sk

v +1

Combining with inequality, Eq. (11.0.4), we obtain sk+1
v = sk

v + 2 that contradicts our
assumption.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

216 Design and Analysis of Algorithms

Let us now bound the number of times an edge (u,v) can be a bottleneck edge for
augmentations passing through the edge (u,v) in either direction. Suppose (u,v) is a
bottleneck edge during iteration k of the algorithm. It follows that (u,v) lies on a shortest
path in Gk from s to another vertex, and so, sk

v = sk
u +1. Since (u,v) is a bottleneck edge, the

residual graph Gk+1 will not contain the edge (u,v), but will contain the reverse edge (v,u).
Let `(≥ k + 1) be the next iteration when an augmenting path passes through (v,u)2.

From the monotonicity property, s`v ≥ sk
v, so

s`v ≥ sk
u +1 (11.0.5)

Then,

s`u = s`v +1≥ sk
u +1+1 = sk

u +2

using inequality, Eq. (11.0.5). Therefore, we can conclude that the distance from u to s
increases by at least 2 every time (u,v) becomes a bottleneck and hence, it can become a
bottleneck for at most |V |/2 augmentations.

11.1 Applications of Max-Flow

In this section, we describe several applications of maximum flow. Although some of these
are direct, others require non-trivial ideas.

11.1.1 Disjoint paths

Given a directed graph, we can check if there is a path from a vertex s to a vertex t using
DFS. However, we are often interested in more robust versions of this question. Suppose
we would like to answer the following question: there is an adversary which can remove
any k edges from the graph. Is it true that no matter which edges it removes, there will
still be a path from s to t? Consider for example Figure 11.3. It is easy to check that in the
graph in Figure 11.3, even after removing any single edge, there still remains a path from
vertex 1 to vertex 6. However, if we were to remove 2 edges, we could ensure that there
is no such path (for example, we could remove the two edges incident with vertex 1). We
would now like to answer the following question – given two vertices s and t, what is the
maximum number of edges which can be removed by an adversary such that there still
remains a path from s to t.

2 It may not be a bottleneck edge.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

Maximum Flow and Applications 217

2 3

4 5

61 7

Figure 11.3 Example of disjoint paths in a graph.

This question can be easily answered by the techniques we have learned so far. We
begin with a definition. Let P be a set of paths from s to t. We say that these paths are edge
disjoint if no two paths in P share a common edge (they could share a common vertex
though). Now suppose there are k+ 1 edge disjoint paths from s to t (for example, there
are two edge disjoint paths from vertex 1 to vertex 6 in Figure 11.3). Now if we remove any
k edges, there will still remain a path from which we would not remove any edge. Thus,
we see the following observation.

Observation 11.3 The minimum number of edges which need to be removed to ensure that there
is no path from s to t is at least the maximum number of edge disjoint paths from s to t.

It turns out that the previous equality holds, and is known as Menger’s theorem. It is a
direct consequence of the max-flow min-cut theorem.

We consider the problem of finding the maximum number of edge disjoint paths from
s to t. This can be easily solved by the max-flow algorithm. Indeed, we assign a capacity
of 1 to every edge. We now claim that the value of the maximum flow from s to t is equal
to the maximum number of edge disjoint paths from s to t. One direction is easy – if there
are k edge disjoint paths from s to t, then sending 1 unit of flow along each of these paths
yields a flow of value k from s to t. Conversely, suppose there is a flow of value k from s to
t. By integrality of maximum flow, we can assume that flow on every edge is 0 or 1. Now
proceeding as in the proof of Theorem 11.1, we can find k edge disjoint paths from s to t.

Menger’s theorem now follows from the max-flow min-cut theorem applied to the 0-1
flow graph. The proof is left as an exercise.

11.1.2 Bipartite matching

Matching is a classical combinatorial optimization problem in graphs and can be related
to a number of natural problems in real life. Given a graph G = (V,E), a matching M ⊂ E
is a subset of edges that do not have any common end-points in V . A maximal matching

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

218 Design and Analysis of Algorithms

M′ is such that there is no e ∈ E −M′ such that M′ ∪{e} is a matching, i.e., M′ cannot be
augmented. It is easy to see that a maximal matching can be easily constructed using a
greedy approach. We will repeatedly choose a new edge (u,v) such that no previously
chosen edge is incident on u,v until we cannot pick such an edge.

A maximum matching is far more challenging problem – here we want to find a
matching which has the highest number of edges.

However, it is easy to show that this problem is a special case of the max-flow problem.
Suppose we are given a bipartite graph G = (V,E) with V = L∪R being the partition of
V into the left and right side. From G, we construct a directed graph G′ as follows. (See
Figure 11.4 for an example.)

s t

Figure 11.4 Reduction from a matching instance on the left to a max-flow
instance on the right. Note that all edges leaving s and
entering t have unit capacity, and the rest have infinite
capacity.

The set of vertices in G′ includes V and two new vertices, called s and t. The set of edges
include all edges in E directed from L to R. We give infinite capacity to these edges. Now,
from s, we add directed edges (s,v) for all v ∈ L, and for t, we add edges (v, t) for all v ∈ R.
The capacity of all these edges are 1 (see Figure 11.4 for an example).

Now we argue that the graph G has a maximum matching of size k if and only if the
value of maximum flow in G′ is k. Let us see the forward implication first. Suppose G has
a matching M of size k. Let the edges in this matching be e1, . . . ,ek, with ei = (ui,vi),ui ∈
L,vi ∈ R. Then, we can find a flow of size k in G′ as follows: send 1 unit of flow along
each of the paths (s,ui,vi, t). Conversely, suppose G′ has a max-flow f of value k. By
integrality of flow3, we can assume that fe is an integer for each edge e. Therefore, on
all the edges leaving s and on the edges entering t, the value of the flow is either 0 or 1.

3 Even though some edges have infinite weight, the max-flow value is finite because edges incident to s have unit
capacity, so the min-cut is also finite.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

Maximum Flow and Applications 219

Flow conservation implies that if fe = 1 on some edge e = (s,u), then 1 unit of flow must
leave u. Again by integrality of flow, this flow can only leave on 1 edge from u, say on edge
(u,v). Finally, 1 unit of flow must leave v, and so, there is a unit of flow on the edge (v, t).
Thus, we get k disjoint paths from s to t, each containing an edge of the bipartite graph.
These edges form a matching in G.

We already know that we can find a maximum flow in G′ by the Ford–Fulkerson
algorithm. We give a more direct interpretation of the augmenting path algorithm for the
case of maximum matching in bipartite graphs. Consider the bipartite graph G, and
maintain a matching M. Initially, M is empty, and in each iteration, we increase the size of
M by 1 till we are no longer able to increase its size.

An augmenting path with respect to M begins from an unmatched vertex and traces
an alternating path of matched and unmatched edges ending with an unmatched vertex –
note that this exactly matches with the notion of augmenting path in the max-flow
formulation of this problem. If we find such an augmenting path P, then we can increase
the size of matching by 1 – just drop the edges in P∩M and include the edge in P \M.
What if no such augmenting path exists?

The following claim, analogous to the one in the max-flow problem, forms the basis of
all matching algorithms

Claim 11.2 A matching is maximum (cardinality) iff there is no augmenting path with respect
to it.

The necessary part of the claim is obvious. For the sufficiency, let M be a matching such
that there is no augmenting path with respect to it. Let M′ be a maximum matching. The
following notion of symmetric difference of the two matchings M and M′ is useful. Define
M′⊕M = (M′−M)∪ (M−M′). We will show in Exercise Problem 11.4 that M′⊕M consists
of a disjoint union of cycles and paths. Suppose M′ is maximum; but M is not. There must
be a component in M′⊕M which has more edges of M′ than that of M. Any cycle in M′⊕M
will consist of an even number of edges because any cycle in a bipartite graph has even
number of edges (this is the only place where we need to use the property that the graph
is bipartite). Therefore, there must be path in M′⊕M which has more edges of M′ than
those of M. It follows that such a path must be an augmenting path with respect to M
(with the starting and the ending vertices belonging to M′ \M). This proves the claim. (See
Figure 11.5 for an example).

It also proves that the augmenting path algorithm described earlier finds a maximum
matching. To analyze its running time, note that it will find an augmenting path at most
n times – whenever we find an augmenting path, the size of the matching increases by 1.
Let us see how we can find an augmenting path in O(m+n) time. This is similar in spirit to
constructing the residual graph in case of maximum flow. We construct a directed graph
as follows. Consider the directed graph G′ as described previously. For every edge in the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

220 Design and Analysis of Algorithms

matching M found so far, we reverse the direction of that edge in G′. It is now easy to check
that a path from s to t in this graph yields an augmenting path.

v1

v2

v3

v4

v5

u1

u2

u3

u4

u5

Figure 11.5 The matching M is shown by dotted edges. Note that there are
several augmenting paths with respect to M, e.g., v4,u5,v5,u4

and v3,u2

It is not difficult to prove that any maximal matching is at least half the size of a
maximum cardinality matching (see Section 4.5). There is a useful generalization of this
observation using the notion of augmenting paths.

Claim 11.3 Let M be a matching such that there is no augmenting path of length ≤ 2k−1. If M′

is a maximum matching, then

|M| ≥ |M′| · k
k+1

From our previous observation,the symmetric difference M ⊕M′ consists of a set P of
disjoint alternating paths and cycles (alternating between edges of M and M′) such that
each path has about half the edges from M. If the shortest augmenting path is of length
2k+1 (it must have an odd length starting and ending with edges in M′), then there are at
least k edges of M in each such augmenting path. It follows that |M′| − |M| ≤ |M′ −M|
≤ |M′⊕M| ≤ |P |. Therefore, |M′| ≤ |M|+ |M|/k implying the claim4.

Hall’s Theorem
Consider a bipartite graph which has n vertices on both sides. We would like to state
simple conditions when the graph has (or does not have) a matching of size n (clearly,

4 A maximal matching has no length 1 augmenting path and hence, it is within a factor 2 of maximum matching.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

Maximum Flow and Applications 221

such a matching is also a maximum matching) – such a matching is also called a perfect
matching. Consider for example the bipartite graph in Figure 11.6. It is easy to check that
it does not have a perfect matching. Here is one way of explaining why it does not have a
perfect matching: the vertices A,C,D on the left-hand side can only get matched to vertices
E,F on the right. Therefore, there cannot be a matching which matches all of A,C,D. Let
us formalize this condition.

Let S be a subset of vertices on the left-hand side. Let Γ(S) denote the neighbors of S,
i.e., {u : (v,u) ∈ E for some v ∈ S}. For example, in Figure 11.7, Γ({A,C,D} = {E,F}. Then,
the graph does not have a perfect matching if there exists a set S ⊆ L such that |Γ(S)|< |S|.
The reason is again easy to see – all the vertices in S can only get matched to the vertices in
Γ(S).

Surprisingly, the converse of this statement is also true. This is the statement of Hall’s
theorem:

A

B

C

D

E

F

G

H

Figure 11.6 Illustration of Hall’s theorem

Theorem 11.3 (Hall’s theorem) A bipartite graph with equal number of vertices on both sides has
a perfect matching iff for every subset S⊆ L,

|Γ(S)| ≥ |S|

We now show that this theorem is a direct consequence of the max-flow min-cut theorem.
Note that one direction of Hall’s theorem is immediate – if there is a perfect matching, then
clearly |Γ(S)| ≥ |S| for all S ⊆ L. The converse is the non-trivial direction. So assume that
the graph does not have perfect matching. Now we need to prove that there is a subset S
of L for which |Γ(S)|< |S|.

To prove this, we go back to the directed graph G′ which was used in the reduction of
the matching problem to the max-flow problem (see Figure 11.4). Assume that the bipartite
graph G has n vertices on both sides and it does not have a matching of size n. This implies
that the maximum s-t flow in G′ is less than n, and therefore, by the max-flow min-cut

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

222 Design and Analysis of Algorithms

theorem, there is an s-t cut of capacity less than n. Let X denote this s-t cut. Note that
s belongs to X and t does not belong to X . Also, none of the infinite capacity edges can
belong to out(X); otherwise, the capacity of the cut will not be finite (see Figure 11.7 for
an illustration). Let XL denote the vertices in X ∩L, where L denotes the vertices on the left
part of the bipartite graph, and X ∩R denotes the ones on the right side. Since no infinite
capacity edge belongs to out(S), it is easy to see that the capacity of the cut is given by
(|L|− |XL|)+ |XR|= (n−|XL|)+ |XR|, where the first term denotes the set of edges in out(X)

which leave s, and the second one denotes the ones entering t. We know that this quantity
is less than n, which implies that |XL| > |XR|. But note that Γ(XL) ⊆ XR – otherwise there
will be an infinite capacity edge in out(X) to a vertex w ∈ R−XR. Thus, |XL|> |Γ(XL)|. This
proves Hall’s theorem.

s
t

Figure 11.7 The shaded region consisting of s,A,C,D,E,F represents a
min s-t cut of capacity 3.

11.1.3 Circulation problems

In our maximum flow formulation, there is an upper bound ce on the amount of flow that
can be sent on an edge. We now consider settings where we also have lower bounds le
on the amount of flow that can be sent on an edge. Thus, each edge e now has a pair
of numbers (le,ce) associated with it, where le ≤ ce. Unlike the previous maximum flow
formulation, where setting fe = 0 for all edges e was a feasible flow, i.e., it satisfied flow
conservation and capacity constraints, it is not clear how to find a feasible flow. In fact, it
is easy to show that there may not exist a feasible flow in general. The circulation problem
seeks to find a flow which is feasible, i.e., satisfies flow conservation with fe lying between
le and ue for every edge e. Note that we are not trying to maximize any value, and there is
no designated s or t vertex here.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

Maximum Flow and Applications 223

It is easy to reduce the maximum flow problem to a circulation problem. Indeed,
suppose given an instance of the maximum flow problem (where we only have edge
capacities), we would like to check if there is a flow of value at least k from s to t (by
trying different k and using a binary search like procedure, we can also find the
maximum such k). Then, we can convert it to a circulation problem as follows – we add a
new arc e from t to s, and define le = k,ue = ∞ on this arc. Now it is easy to show that a
circulation in this graph implies a flow from s to t of value at least k, and vice versa.

We now show how to solve a circulation problem by reducing it to a maximum flow
problem. Given an instance of the circulation problem, we first send le amount of flow on
each edge – this may create a surplus or deficit at every node. Define the excess at a node
v as

e(v) := ∑
e∈in(v)

le− ∑
e∈out(v)

le, where e(v) may be negative

3

7
4

51

8

(5, 7) (3, 8)

(3, 10)
(1, 6)

(6, 10)

(4, 7)
s t

2 3 5
2

5

2

7

4

Figure 11.8 Example of circulation on the left. The numbers in the square
boxes represent a feasible flow. The figure on the right shows
the reduction to maximum flow problem. The number on
the edges on the right show edge capacities. Note that two
vertices have 0 excess, and so are not joined to either s or t.

Let P be the nodes for which excess is positive, and let N be the remaining ones. Note
that the total excess of nodes in P is equal to the total deficit (which is just the negative of
the excess) of nodes in N – let ∆ denote this value. We add two new nodes – a source node
s and a sink node t. We add arcs from s to every node in P, and from every node in N to t
(see Figure 11.8 for an example). We now set capacities on edges. For an edge e which was
present in the original graph, we set its capacity to ue− le – this is the extra flow we can
send on this edge. For an edge of the form (s,v) or (v, t), we set the capacity to the absolute
value of the excess of v. Now we find a maximum flow from s to t. The claim is that there

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

224 Design and Analysis of Algorithms

is a feasible circulation in the original graph if and only if there is a flow of value ∆ from s
to t. Note that this flow (if it exists) would saturate all edges incident with s or t.

Let us prove this claim. Let G = (V,E) denote the graph in an instance of the circulation
problem, and let G′ denote the instance of the maximum flow problem as described earlier.
Suppose there is a circulation which sends fe amount of flow on edge e in G. Then we claim
that in G′, the following is a feasible flow of value ∆ – send fe− le flow on all edges e of
G, and for edges of the form (s,v) or (v,s), we send flow equal to the absolute value of the
excess at this node. Clearly, all capacity constraints are satisfied by this flow in G′, because
0 ≤ fe− le ≤ ue− le for every edge e which was present in G. To check flow conservation,
note that in G′

∑
e∈out(v)∩E

fe = ∑
e∈in(v)∩E

fe

for every vertex v in V . Now suppose e(v) is positive. The aforementioned equation can be
written as

∑
e∈out(v)∩E

(fe− le)− ∑
e∈in(v)∩E

(fe− le) = e(v)

But the RHS is exactly the flow from s to v, and so, G′, the total inflow at v is equal to the
total out flow. Similar arguments hold if v lies in N.

Let us prove the converse. Suppose there is a flow as stated earlier in G′. Let ge denote
the flow on edge e in G′. In the graph G, define fe as ge + le. Since ge ≤ ue− le, it follows that
fe lies between le and ue. To check flow conservation at a vertex v, we first assume that v
lies in P (the case when v is in N is similar). Now,

∑
e∈in(v)

fe− ∑
e∈out(v)

fe = e(v)+ ∑
e∈in(v)

ge− ∑
e∈out(v)

ge

Since g is a feasible flow in G′ and the flow on (s,v) is exactly e(v), it follows that RHS is
0, and so, f satisfies flow conservation at v. This proves the equivalence between the two
problems.

11.1.4 Project planning

So far we have seen how various problems can be solved using the maximum flow
problem. Now we show an application of the min-cut problem. Recall that the algorithms
for finding a maximum flow also yield a minimum cut. In the project planning problem,
we are given a set of n tasks, and each task i has a profit pi. The profit could be positive or
negative – a positive profit may mean that you gain some amount by completing the task,
and a negative profit means that you may have to incur an expenditure in completing the
task. Moreover, there are dependencies between the tasks, which is given by a directed

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

Maximum Flow and Applications 225

acyclic graph (DAG) on these tasks. An arc (i, j) between two tasks indicates that task i
must be completed before we can start task j (see Figure 11.9 for an example).

Our goal is now to figure out which tasks to perform so that the overall profit of the
completed tasks is maximized (of course, we have to respect the dependencies; if we
complete a task, we must complete all tasks which are pre-requisites for it). We show that
this problem can be solved by solving a min-cut formulation for a suitable graph.

4

–7

–10

3

–5

6

–1

–2

t

s

Figure 11.9 Figure on the left shows an example of DAG on a set of
tasks. The numbers represent profits of the corresponding
tasks. The figure on the right shows the reduction to the
min-cut formulation.

Let G represent the aforementioned DAG. We would like to convert this into a min-cut
problem where the set of tasks in the cut would be the ones which get performed. In order
to respect the dependency criteria, if X is a cut in this graph, then there should not be any
edge e in the DAG which belongs to in(X) – otherwise we cannot perform the tasks in X
only. If X̄ denotes the complement of X , then we can say that there should not be any edge
in G which leaves the set X̄ . With this intuition in mind, we define a graph H as follows.
H contains all the vertices and edges in G, and it assigns infinite capacity to all edges in

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

226 Design and Analysis of Algorithms

G. Further, it has a source node s and a sink node t. Let P denote the tasks with positive
profit and N denote the nodes with negative profit. For every task i ∈ P, we add an edge
(i, t) whose capacity is pi. For every task i ∈ N, we add an edge (s, i) with capacity −pi to
the graph H. Now let S be an s-t cut with finite capacity (see Figure 11.9). First observe
that there is no edge in the DAG H which goes out of S, otherwise the cut capacity will be
infinite. Let S̄ denote the complement of S (i.e., the tasks which are not in S). The capacity
of the cut S is

− ∑
i∈N∩S̄

pi + ∑
i∈S∩P

pi = ∑
i∈P

pi−∑
i/∈S

pi by using P = S∩P∪ S̄∩P

The first term on the RHS is independent of S, and the second term is the net profit of the
tasks in S̄. Thus, minimizing the capacity of the cut S is same as maximizing the profit of S̄.
Therefore, our algorithm for finding the optimal subset of tasks is as follows – find a min
s-t cut, and then perform the tasks which belong to the complement of this cut.

Further Reading

Maximum flow is one of the most important topics in operations research, and there are
several excellent textbooks on it (see e.g., [8]). We have looked at two elementary
algorithms for computing maximum flow. In each iteration of the algorithms discussed in
this chapter, we increment flow along a single path. In approaches based on blocking flows,
we send flows along a maximal set of augmenting paths and make more progress in each
iteration. Using blocking flows, one can obtain algorithms with running time O(mn logm)

for maximum flow [112]. Pre-flow push algorithms form another class of algorithms for
finding the max-flow, where surplus flow is pushed from the source to intermediate
vertices and finally to the sink vertex. State-of-the-art techniques yield O(mn) time
strongly polynomial time algorithms. Since m is at most n2, this implies an O(n3) time
algorithm if we only want to consider the dependence of running time on n. Goldberg
and Rao [58] improved this result to O(min(n2/3,

√
m log(n2/m) logU) time algorithm,

where U is the largest capacity of an edge (assuming all capacities are integers). For the
case of unit capacity graphs, Madry [96] improved the running time to Õ(m10/7), where
the Õ notation hides logarithmic factors.

Menger’s theorem dates back to the 1920s, and is a special case of max-flow min-cut
theorem. The generalization to the case when we seek edge-disjoint paths between
arbitrary pairs of vertices is NP-hard. For directed graphs, finding edge-disjoint paths
between two pairs of vertices is an NP-hard problem, whereas in undirected graphs, this
can be solved in polynomial time as long as the number of pairs is a constant. The
problem of bipartite matching is one of the most fundamental combinatorial optimization
problems, and we considered the simplest version in the chapter. One can also consider

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

Maximum Flow and Applications 227

the case where edges have weights and the goal is to find a perfect matching with the
minimum total weight (see e.g. [94]).

Exercise Problems

11.1 Show that even if all capacities are integers, there could be maximum flow which is
non-integral.

11.2 Show how you can use maximum flow to find maximum number of edge-disjoint paths in
an undirected graph.

11.3 Consider running the Ford–Fulkerson algorithm on the graph shown in Figure 11.10,
where L is a large parameter. Show that if we are not careful about choosing the
augmenting path, it could take Ω(L) time.

1
L

L L

L

Figure 11.10 Figure for Exercise 11.3. Numbers denote edge capacities.

11.4 Let M and M′ be two matchings in a graph (which need not be bipartite). Prove that
M′⊕M consists of disjoint alternating cycles and paths.

11.5 Suppose you are given a directed graph with integer edge capacities and a maximum
flow from a vertex s to a vertex t in this graph. Now we increase the capacity of an edge
e in the graph by 1. Give a linear time algorithm to find the new maximum flow in this
graph.

11.6 Suppose you are given a directed graph with integer edge capacities and a maximum
flow from a vertex s to a vertex t in this graph. Now we decrease the capacity of an edge
e in the graph by 1. Give a linear time algorithm to find the new maximum flow in this
graph.

11.7 In the path decomposition theorem (Theorem 11.1), show that the value of the flow is
equal to ∑

k
i=1 f (Pi).

11.8 You are given a bipartite graph G and positive integers bv for every vertex v. A b-matching
in G is a subset of edges M such that for every vertex v, at most bv edges from M are

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

228 Design and Analysis of Algorithms

incident with v. Show how you can use maximum flow formulation to efficiently find a
b-matching of the largest size.

11.9 Use Hall’s theorem to show that any regular bipartite graph, i.e., a bipartite graph where
all vertices have the same degree, has a perfect matching.

11.10 A Latin square of size n is an n× n table where each table entry is filled with one of
the numbers {1,2, . . . ,n}. Further, no row or column contains a number twice (and so,
each number appears exactly once in each row and each column). For example, a Latin
square of size 3 is as follows:

2 1 3
3 2 1
1 3 2

You are given a k× n table, where k ≤ n. Again, each table entry is a number between
1 and n, and no row or column contains a number more than once. Show that this table
can be extended to a Latin square, i.e., there is a Latin square of size n such that the first
k rows of the Latin square are same as the rows of the given table.

11.11 Use the max-flow min-cut theorem to prove Menger’s theorem. Prove an analogous result
for undirected graphs.

11.12 Let G be a directed graph, and s, t,u be three vertices in G. Suppose there are λ

edge-disjoint paths from s to t, and λ edge-disjoint paths from t to u. Prove that there are
λ edge-disjoint paths from s to u (Hint: use max-flow min-cut theorem).

11.13 You have invited n friends to a party. There are k tables in your home, and each table
can accommodate ` people. There are s schools in the neighborhood, and each of your
friends attends one of these schools. You would like to ensure that at most 2 people from
the same school are seated at the same table. Show how you can use maximum flow
formulation to find such a seating arrangement (or declare that no such arrangement is
possible).

11.14 Consider the same problem as Exercise 11.13, but with the additional constraint that for
every table, there must be at least s guests seated at that table, where s is a parameter
which is at most `. Show how this problem can be formulated as a circulation problem.

11.15 Consider an instance of the maximum flow problem where the maximum s-t flow is F?.
Prove that there is a path from s to t such that the minimum capacity of any edge on this
path is at least F?/m, where m is the number of edges in the graph.

11.16 Use the max-flow min-cut theorem and the reduction from the circulation problem to the
maximum flow problem to prove the following min-max theorem for the circulation problem:
consider an instance of the circulation problem where we have a graph G = (V,E) and

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

Maximum Flow and Applications 229

every edge e has a pair (le,ce) of lower and upper bounds associated with it. Prove that
this instance has a feasible flow if and only if for every subset S of vertices, where S 6= /0,V ,

∑
e∈out(S)

ce ≥ ∑
e∈in(S)

le.

11.17 You are given an n×n matrix X with real positive entries where all row sums and every
column sums are integral. You would like to round each entry Xi j in the matrix to either
bXi jc or dXi je such that the row sums or column sums do not change (i.e., for any row,
the sum of the rounded entries is equal to the sum of the actual Xi j values in that row,
and similarly for any column). Show how you can solve this problem efficiently.

(Hint: Use circulation problem)

11.18 There are n teams playing in a tournament. Each pair of teams will play each other
exactly k times. So far, pi j games have been played between every pair of teams i and j.
Assume that in every game, one of the team wins (draw is not an option). You would like
to know if there is any possible scenario in which your favorite team, team 1, can have
more wins than any other team at the end of the tournament. In other words, you would
like to know if you could decide on the winner of every remaining game; then is it possible
that team 1 ends up with more wins than any other team. Show how you can formulate
this problem as a maximum flow problem.

11.19 You are running a company with n employees. In the beginning of the year, each employee
has specified a subset of days in the year during which he or she is not available. You
would like to ensure that on every day at least ` employees report to work, and no
employee comes to work for more than x days during the year. Show how you can solve
this problem efficiently.

11.20 Solve the same problem as Exercise 11.19 with the additional constraint that no employee
comes to work for more than 20 days during any month.

11.21 Consider a graph G = (V,E) with edge capacities ce. Prove that if S and T are any two
subset of vertices, then

∑
e∈out(S)

ce + ∑
e∈out(T)

ce ≥ ∑
e∈out(S∪T)

ce + ∑
e∈out(S∩T)

ce.

Use this result to show that if S and T are two min s-t cuts, then S∩T is also a min s-t cut.

11.22 Given a graph G= (V,E), define the density of a subset S of vertices as the ratio |e(S)|/|S|,
where e(S) denotes the edges in E which have both the end-points in S. Given a parameter
α, we would like to find a subset S whose density is at least α. Show how this can be
formulated as a min-cut problem on a suitable graph.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.012
https://www.cambridge.org/core

12
C H A P T E R

NP Completeness and

Approximation Algorithms

In the previous chapters we surveyed many well-known algorithmic techniques and
successfully applied them to obtain efficient algorithmic solutions for problems from
varied domains. Yet, we cannot claim that there is some general methodology for
obtaining efficient algorithms for any given problem. To the contrary any new problem
often presents unknown challenges that require new insights and the question that is
uppermost in anyone’s mind is - what are the problems that are notoriously difficult? We
need to first set some target before we can assign a notion of difficulty to a problem. For
reasons that will become clear later on, the quest is to design a polynomial time algorithm
for any given well-defined problem. This may appear too liberal initially since by
definition even n100 is a polynomial. However, even this has proved elusive for a large
number of problems among which we have come across one in the preceding chapters,
namely, 0-1 Knapsack problem. Despite promising starts, we could never claim a truly
polynomial time algorithm.

In addition to fixing the limits of practical computation being a polynomial time
algorithm, we need to specify the underlying computational model since that will also
affect what is achievable in polynomial time. Fortunately, the notion of polynomial time
is a robust concept that is not significantly affected by the choice of computational model,
except for some constant factors in the exponent of n. We will discuss about a large class
of natural and important problems that admits a characterization, that is very intuitive

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

NP Completeness and Approximation Algorithms 231

and has resulted in a very interesting theoretical framework. Since the reader is familiar
with the Knapsack problem, we will illustrate this framework in the context of the
Knapsack problem. Consider a Prover , Verifier interactive game regarding any given
Knapsack instance. The Prover is trying to convince the Verifier that she has an efficient
(polynomial-time) algorithm without actually revealing the technique. For proof, given an
instance of Knapsack, she provides a list of objects chosen in the optimal solution to the
Verifier who can easily verify the feasibility and the total profit that can be obtained from
this solution. But this is not enough, namely, how do we know that there isn’t a superior
solution? On the other hand, the Prover can easily convince the Verifier that the optimal is
at least p by giving out such a solution which can be verified easily. This version of the
Knapsack problem is known as the decision version of Knapsack and we will henceforth
be denoted as decision-Knapsack. The answer is YES/NO depending on whether the
optimal profit is ≥ p or < p. The reader may notice that although the Prover can convince
the Verifier easily if the solution is ≥ p, it is not obvious how to convince the Verifier
regarding the contrary. There is some inherent asymmetry in this framework that we will
address later in the chapter.

How are the original Knapsack problem and the decision-Knapsack related in terms of
computational efficiency?

Clearly, if we can solve the Knapsack in polynomial time, we can also solve the
decision-Knapsack easily by comparing the optimal solution O with the threshold p.
Conversely, if we can solve the decision version in time T , we can use a binary search like
method to compute an optimal solution. Assuming all quantities are integers, the value of
the optimal profit lies in the range [1,n · pmax], where pmax is the maximum profit of any
item. Therefore, we can find the optimal profit by calling the decision procedure at most
O(logn+ log pmax) times, which is linear in the input size (the number of bits required to
represent the Knapsack instance). Therefore these two versions are closely related with
respect to their computational efficiency. The theory about problems that have been
resistant to efficient algorithms (like Knapsack) has been primarily developed around
decision problems, i.e., those having YES/NO answers and from our previous discussion,
the reader should feel convinced that it is not too restrictive.

Let C be a class of problems characterized by some property - say polynomial time
solvability. We are interested in identifying the hardest problems in the class, so that if we
can find an efficient algorithm for any of these, it would imply fast algorithms for all the
problems in C . The class of problems that is considered important is the class P which is
the set of problems for which polynomial time algorithms can be designed. Note that this
definition does not preclude problems like Knapsack for which no such algorithm is
known today, but there is no proof (more specifically any lower-bound) that such an
algorithm cannot be discovered in future using some clever techniques. This subtle
distinction makes the definition confusing - so we can think about the problems in P for

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

232 Design and Analysis of Algorithms

which polynomial time algorithms are known today and those that have eluded our
efforts so far. One of the latest entrants to the former category is the problem of primality
testing, i.e., given an integer, an algorithm should answer YES, if it is prime and NO
otherwise (see [5]). So, the status of a problem can change from not known to be in P to
member of P when someone discovers a polynomial time algorithm for such a problem.
However from our experience with such problems, these can be thought of as tough nuts,
very few have changed status while others continue to be impregnable.

Over nearly five decades, researchers have tried to find common features of such
problems and developed some very interesting theory about a class named as N P , that
consists of problems for which non-deterministic polynomial time algorithms can be
designed. These algorithms can choose among more than one possible actions at any step,
and these actions may not depend on any prior information. This additional flexibility
can be thought of as guessing the next move and there is no cost incurred for guessing 1.
Since it can follow many possible computation trajectories, for the same input there could
be a large number of terminating states. These terminating states could be a mix of
YES/NO answers often referred to as accepting / rejecting states respectively. Even if even
one of them is an accepting state, the algorithm answers YES to the decision problem (so it
ignores the rejecting states). Conversely, the algorithm says NO if all the possible final
states are non-accepting.

Clearly, this computational paradigm is at least as efficient as the conventional
(deterministic) model that does not permit any guesses. However, the obvious question is
- does it provide us with any provable advantage? We can relate it to our earlier Prover
/Verifier game in the following manner. The Prover will guess the solution using its
magical non-deterministic power and the Verifier verifies using conventional
computation. While the verifier is limited by polynomial time, there is no such constraint
on the Prover, so we can think about the class N P as those problems for which
verification of solutions can be done in polynomial time.

Although, N P doesn’t correspond to any realistic computational model, it has been
very useful to characterize the important property of efficient verification and has also
helped us discover relationship between problems from diverse domains like graphs,
number theory, algebra, geometry, etc. In this chapter we will look at many such
problems. A deterministic model can emulate this by trying out all possible guesses but it
has to pay a huge price for this. Even for two guesses per move, for n moves of the
non-deterministic machine, we may have to try 2n moves. However, this doesn’t rule out
more efficient emulations or more clever transformations which is one of the central
theme of research in this area.

1The reader should not confuse it with a probabilistic model where a guess is made according to some probability
distribution.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

NP Completeness and Approximation Algorithms 233

More formally, we define the class P = ∪i≥1C (T D(ni)) where C (T D(ni)) denotes
problems for which O(ni) time deterministic algorithms can be designed. Analogously,
N P = ∪i≥1C (T N(ni)) where T N() represents non-deterministic time. From our previous
discussion it is obvious that P ⊆ N P . However, the Holy Grail of computational
complexity is the resolution of the perplexing conundrum P = N P ? or P ⊂ N P ? (strict
subset). For example, if it can be established that Knapsack cannot have a polynomial
time algorthm, then the latter holds.

Strong vs Weakly Polynomial Time Algorithms For certain problems, algorithms are
classified into weakly and strongly polynomial time algorithms. In such settings, one
assumes that all arithmetic operations take O(1) time irrespective of the size of the
operands. An algorithm for a problem is said to be strongly polynomial if the running
time (in this model of computation) is a polynomial in the number of integers in the
input. For example, consider the maximum flow problem on a graph containing n
vertices and m edges. In this model of computation, an O(n3)-time algorithm will be
considered strongly polynomial, whereas an algorithm with running time O(n3 logU),
where U is the largest capacity of an edge (assuming all edges have integer capacities)
will be considered weakly polynomial. Note that the latter running is still polynomial
time because the size of the input depends on n and logU .

One of the most well known problems for which a strongly polynomial time algorithm
is known as the linear programming problem. In the linear programming problem, we are
given n variables x1, . . . ,xn, a vector c of length n, a vector b of length m, and an m×n matrix
A. The objective is to find the value of x = (x1, . . . ,xn) such that A · x ≤ b and < c,x > is
maximized. All known polynomial time algorithms for this problem have running time
depending on the number of bits needed to represent A and b,c (even when all arithmetic
operations on these numbers are assumed to take O(1) time).

12.1 Classes and Reducibility

The intuitive notion of reducibility between two problems is that if we can solve one
efficiently, then we can also solve the other efficiently. We will use the notation P1 ≤R P2 to
denote that problem P1 is reducible to P2 using resource R (time or space as the case may
be) to problem P2.

Definition 12.1 In the context of decision problems, a problem P1 is many–one reducible to P2 if
there is a many-to-one function g() that maps an instance I1 ∈ P1 to an instance I2 ∈ P2 such that
the answer to I2 is YES iff the answer to I1 is YES (Fig. 12.1).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

234 Design and Analysis of Algorithms

In other words, the many-to-one reducibility function maps YES instances
to YES instances and NO instances to NO instances. Note that the mapping
need not be 1–1 and therefore, reducibility is not a symmetric relation.

P1

P2

f

f

f

Figure 12.1 Many-to-one reduction from Π1 to Π2 by using a function
f : N→N. Here, Π1,Π2 ⊂N, the set of natural numbers. If
f is computable in polynomial time, then it is a polynomial
time reduction.

Definition 12.2 If the mapping function g() can be computed in polynomial time, then we say
that P1 is polynomial time reducible to P2 and is denoted by P1 ≤poly P2.

The other important kind of reduction is logspace reduction and is denoted by

P1 ≤log P2.

Claim 12.1 If P1 ≤log P2, then P1 ≤poly P2.

This follows from a more general result that any finite computational process that uses
space S has a running time bounded by 2S. A rigorous proof is not difficult but is beyond
the scope of this discussion.

Claim 12.2 The relation≤poly is transitive, that is, if P1≤poly P2 and P2≤poly P3, then P1≤poly P3.

From the first assertion, there must exist polynomial time computable reduction
functions, say g() and g′() corresponding to the first and second reductions. So we can
define a function g′ ◦ g which is a composition of the two functions and claim that it
satisfies the property of a polynomial time reduction function from P1 to P3. Let x be an
input to P1, then g(x) ∈ P2

2 iff x ∈ P1. Similarly, g′(g(x)) ∈ P3 iff g(x) ∈ P2 implying

2 Note that g(x) may be significantly longer than x.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

NP Completeness and Approximation Algorithms 235

g′(g(x)) ∈ P3 iff x ∈ P1. Moreover, the composition of two polynomials is a polynomial, so
g′(g(x)) is polynomial time computable.

A similar result on transitivity also holds for logspace reduction, although the proof is
more subtle.

Claim 12.3 Let Π1 ≤poly Π2. Then

(i) If there is a polynomial time algorithm for Π2, there is a polynomial time algorithm for Π1.

(ii) If there is no polynomial time algorithm for Π1, there cannot be a polynomial time algorithm
for Π2.

Part (ii) is easily proved by contradiction. For part (i), let p(n) denote the running time of
the algorithm for Π2, and p1(n) denote the running time of the reduction function, where
p(n) and p1(n) are polynomials. Then we have an algorithm for Π1 which takes at most
p(p1(n))+ p1(n) steps on an input of size n. This is because the size of the input for Π2

produced by the reduction function is at most p1(n), and so, the time to solve the instance
of Π2 is bounded by p(p1(n)). Further, the reduction itself takes p1(n) steps.

A problem Π is called NP-hard under polynomial reduction if for any problem Π′ ∈
N P , Π′ ≤poly Π.

A problem Π is NP-complete (NPC) if it is NP-hard and Π ∈N P .
Therefore, these are problems that are hardest within the class N P . From Claim 12.2,

these problems form a kind of equivalent class with respect to polynomial time reductions.
However, a crucial question that emerges at this juncture is: Do NPC problems actually exist ?
A positive answer to this question led to the development of one of the most fascinating
areas of theoretical computer science and will be addressed in the next section.

So far, we have only discussed many–one reducibility that hinges on the existence of a
many–one polynomial time reduction function. There is another very useful and perhaps
more intuitive notion of reducibility, namely, Turing reducibility. The many-to-one
reduction may be thought of as using one subroutine call of P2 to solve P1 (when
P1 ≤poly P2) in polynomial time, if P2 has a polynomial time algorithm. Clearly, we can
afford a polynomial number of subroutine calls to the algorithm for P2 and still get a
polynomial time algorithm for P1. In other words, we say that P1 is Turing reducible to P2 if
a polynomial time algorithm for P2 implies a polynomial time algorithm for P1. Moreover,
we do not require that P1,P2 be decision problems. Although this may seem to be the
more natural notion of reducibility, we will rely on the more restrictive definition to
derive the results.

12.2 Cook–Levin Theorem

Given a Boolean formula in Boolean variables, the satisfiability problem is an assignment
of the truth values to the Boolean variables that can make the formula evaluate to TRUE.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

236 Design and Analysis of Algorithms

For example, x1 ∨ (x̄1 ∧ x2) will be TRUE for the assignment x1 = TRUE and x2 = FALSE,
whereas the boolean expression x1 ∧ x̄1 is always FALSE. A Boolean formula is in a
conjunctive normal form (CNF) if it is a conjunction of clauses that are a disjunction of
literals.3 A typical CNF formula has the form (y1 ∨ y2..) ∧ (yi ∨ y j ∨ ..) ∧ . . .(y`∨, . . . ,yn),
where yi ∈ {x1, x̄1,x2x̄2 . . .xn, x̄n}. The satisfiablity problem of the CNF formula is known as
CNF-SAT. Further, if we restrict the number of variables in each clause to be exactly k,
then it is known as the k-SAT problem. Although any arbitrary Boolean formula can be
expressed in an equivalent CNF form, the restriction in the syntax makes it easier and
more convenient for many applications. A remarkable result attributed to Cook and
Levin says the following.

Theorem 12.1 The CNF satisfiability problem is NP-complete under polynomial time reductions.

To appreciate this result, you must realize that there are potentially infinite number of
problems in the class N P , so we cannot explicitly design a reduction function for each of
them. Other than the definition of N P , we have very little to rely on for a proof of this
theorem. A detailed technical proof requires that we define the computing model very
precisely – it is beyond the scope of this discussion. Instead, we sketch an intuition behind
the proof.

Given an arbitrary problem Π ∈N P , we want to show that Π≤poly CNF-SAT. In other
words, given any instance of Π, say IΠ, we would like to define a Boolean formula B(IΠ)

which has a satisfiable assignment iff IΠ is an YES instance. Moreover, the length of B(IΠ)

should be polynomially bounded by the length of IΠ.
A computing machine is a state transition system that is characterized by the following.

(i) An initial configuration that contains the input

(ii) A final configuration that indicates whether or not the input is an YES or a NO
instance

(iii) A sequence of intermediate configurations Si, where Si+1 follows from Si using a
valid transition. In a non-deterministic system, there can be more than one possible
transition from a configuration. A non-deterministic machine accepts a given input
iff there is some valid sequence of configurations that certifies that the input is an
YES instance.

All these properties can be expressed as a Boolean formula in a CNF. Using the fact
that the number of transitions is polynomial, we can bound the size of this formula by a
polynomial. The details are quite laborious and the interested reader can consult a formal
proof in the context of the Turing machine model. Just to give the reader a glimpse of
the kind of formalism used, consider a situation where we want to write a propositional

3 A literal is a variable xi or its complement x̄i.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

NP Completeness and Approximation Algorithms 237

formula to assert that a machine is in exactly one of the k states at any given time i, where
1 ≤ i ≤ T . Let us use Boolean variables x1,i,x2,i, . . . ,xk,i, where x j,i = 1 iff the machine is in
state j at time i. We must write a formula that will be a conjunction of two conditions:

(i) At least one variable is true at any time i:

(x1,i∨ x2,i, . . . ,∨xk,i)

(ii) At most one variable is true at any time i :

(x1,i⇒ x̄2,i∧ x̄3,i∧ . . .∧ x̄k,i)∧(x2,i⇒ x̄1,i∧ x̄3,i∧ . . .∧ x̄k,i) . . .∧(xk,i⇒ x̄1,i∧ x̄2,i∧ . . .∧ x̄k−1,i)

where the implication a⇒ b is equivalent to ā∨b for Boolean expressions a,b.

A conjunction of the aforementioned formula over all 1 ≤ i ≤ T has a satisfiable
assignment of x j,i iff the machine is in exactly one state at each of the time instances. The
other condition should capture which states can succeed a given state. Note that multiple
satisfiable assignments correspond to more than one possible path taken by a
non-deterministic machine to reach the terminating state. An equivalent formulation can
be in terms of first-order logic using existential quantifiers which can choose successive
states that captures the sequence of transitions of the non-deterministic Turing machine.

In this discussion, we sketched a proof that CNF-SAT is NP-hard. Since we can guess
an assignment and verify the truth value of the Boolean formula in linear time, we can
claim that CNF-SAT is in N P .

12.3 Common NP-Complete Problems

To prove that a given problem Π is NPC, it suffices to establish that

(i) Π ∈N P : This is usually the easier part.

(ii) CNF-SAT ≤poly Π: We already know that for any Π′ ∈ N P , Π′ ≤poly CNF-SAT. So,
from transitivity (Claim 12.2), Π′ ≤poly Π and therefore, Π is NPC.

Example
Let us show that 3-SAT is NPC given that k-CNF is NPC. 4 Clearly, the 3-CNF formula can
be verified in linear time since it is a special case of a k-CNF formula. To reduce k-CNF
to 3-CNF, we will do the following. From a given k-CNF formula Fk, we will construct a
3-CNF formula F3 such that

F3 is satisfiable if and only if Fk is satisfiable.

4 All clauses have at most k literals. The construction in Cook–Levin theorem actually implies a bounded number
of literals in every clause.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

238 Design and Analysis of Algorithms

This transformation will actually increase the number of variables and clauses but the
length of the new formula will be within a polynomial factor of the length of the original
formula, thus justifying the definition of polynomial time reducibility. More formally, we
have an algorithm that takes Fk as input and produces F3 as output in polynomial time. We
will describe the essence of this algorithm.

The original clauses in Fk are permitted to have 1,2, . . . ,k literals. Only the 3 literal case
is compatible with F3. We will deal with three cases: (i) one literal clause, (ii) two literal
clauses, (iii) four or more literal clauses. For each case, we will construct a conjunction
of 3 literal clauses that are satisfiable iff the original clause had a satisfiable assignment
and for this, we will add variables. To keep these transformations independent, we will
introduce a disjoint set of variables so that the conjunction of these clauses is satisfiable iff
the original formula was satisfiable.

1. One literal clause: It is a single literal which is a variable or its complement. For a
satisfiable assignment of Fk, this literal must be assigned T – there is no other option.
Suppose the literal is (y). Let us define a set of four 3 literal clauses

C3(y) = (y∨ z1∨ z2)∧ (y∨ z1∨ z̄2)(y∨ z̄1∨ z2)∧ (y∨ z̄1∨ z̄2)

where z1,z2 are new Boolean variables disjoint from the given formula and from any
other new variables that we may introduce. We want to claim that y ⇐⇒ C3(y).
Notice that C3(y) is satisfied by setting y = T. Conversely, to satisfy C3(y), we have to
set y to be T (the reader may verify this easily). In other words, if there is a satisfiable
assignment for Fk, it must have y = T and the same assignment would make C3(y)
also T. Likewise, if F3 is satisfiable, then C3(y) must be T, which implies that y =

T. Since z1,z2 are not used anywhere else, it will not interfere with the satisfiability
assignment for a similar transformation of other clauses.

2. Two literal clauses: Given y1∨ y2, we replace it with

C3(y1,y2) = (y1∨ y2∨ z)∧ (y1∨ y2∨ z̄)

where z is a distinct new variable that is not used elsewhere in the construction of
F3. Along the lines of the previous case, the reader can easily argue that (y1∨y2) ⇐⇒
C3(y1,y2).

3. More than 4 literals per clause: Consider (y1 ∨ y2 ∨ y3 ∨ y4 ∨ y5 ∨ y6) for concreteness,
that is, k = 6. We will replace it with

(y1∨ y2∨ z1)∧ (z̄1∨ y3∨ z2)∧ (z̄2∨ y4∨ z3)∧ (z̄3∨ y5∨ y6)

where z1,z2,z2 are new Boolean variables disjoint from any other new or original
variables. Let us argue that if Fk is satisfiable, then this formula is satisfiable. Without

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

NP Completeness and Approximation Algorithms 239

loss of generality, assume y2 is set to T in Fk (at least one literal has to be true). Then
we can make the aforementioned formula satisfiable by setting z1,z2,z3 = F which
does not affect any other clauses as they do not appear anywhere else. Moreover, the
setting of y2 . . .y6 also does not affect satisfiability.

Conversely, if this formula is satisfiable, then it must be the case that at least one of
y1,y2, . . . ,y6 has been set to T so that Fk can be satisfied. For contradiction, suppose
none of the original literals is set to T. Then, z1 = T forcing z2 = T and z3 = T.
Therefore, the last clause is false contradicting our claims of satisfiability.

The length of F3 is not much larger compared to the length of Fk. For example, the CNF
formula (x2 ∨ x3 ∨ x̄4)∧ (x1 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x3 ∨ x4) gets transformed into the the 3-CNF
formula

(x2∨ x3∨ x̄4)∧ (x1∨ x̄3∨ y2,1)∧ (x1∨ x̄3∨ ȳ2,1)∧ (x̄1∨ x2∨ y3,1)∧ (ȳ3,1∨ x3∨ x4)

where y2,1,y3,1 are new Boolean variables.

Claim 12.4 If Fk has m clauses in n variables, then F3 has at most max{4,k− 2} ·m clauses and
n+max{2,k−3} ·m variables.
Therefore, if the original formula has length L, then the length of the equivalent 3-CNF formula is
O(kL), which is O(L) assuming k is fixed.

The proof of this claim is left as an exercise. The reader may want to convert this
transformation into an actual algorithm that takes in the formula Fk and outputs F3.

The second step of the reduction can be generalized by reducing any known NPC to
the new problem P. Having proved the previous result, we can reduce 3-SAT to a given
problem to establish NP completeness; 3-SAT turns out to be one of the most useful NPC
candidates for reduction because of its simple structure. Some of the earliest problems that
were proved NPC include (besides CNF-SAT) the following.

• Three coloring of graphs: Given an undirected graph G = (V,E), we want to define a
mapping χ : V → {1,2,3} such that for any pair of vertices u,w ∈ V such that (u,v) ∈
E χ(u) 6= χ(w), that is, they cannot be mapped to the same value (often referred
to as colors). The general problem for k possible values is known as the k-coloring
problem.

• Equal partition of integers: Given a set of n integers S = {x1,x2, . . . ,xn}, we want to
partion S into S1 and S2 = S−S1 such that

∑
y∈S1

y = ∑
z∈S2

z

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

240 Design and Analysis of Algorithms

• Independent set: Given an undirected graph G = (V,E) and a positive integer k ≤ |V |,
is there a subset W ⊆V such that for all pairs (u,w) ∈W , (u,w) 6∈ E and |W |= k.

In other words, there is no edge between any of the vertices in W which contains k
vertices. In a complete graph, W can have size at most 1.

A related problem is the clique problem where we want to find a W ∈ V such that
every pair in W has an edge between them and W has size k.

A complete graph has a clique of size |V | by definition.

• Hamilton cycle problem: Given an undirected graph G = (V,E), where V = {1,2, . . . ,n},
we want to determine if there exists a cycle of length n starting from vertex 1 that
visits every vertex j exactly once.

Note that this is not the same as the better known traveling salesman problem (TSP)
that is about finding the shortest such cycle in a weighted graph (which is not a
decision problem).

• Set cover: Given a ground set S= {x1,x2, . . . ,xn}, an integer k, and a family F of subsets
of S, that is, F ⊆ 2S, we want to determine if there is a sub-family E of k subsets of F
whose union is S.

A related problem is known as the hitting set problem where, given a family of
subsets F , we want to determine if there is a subset S′ ⊆ S of k elements such that for
all f ∈ F S′∩ f 6= φ, that is, S′ has non-empty intersection with every member of F .

Two outstanding problems whose status is open with regard to NPC are as follows.

• Graph isomorphism Given two graphs G1 = (V1,E1) and G2 = (V2,E2), we want to
determine if there is a 1–1 mapping g : V1 → V2 such that (u,v) ∈ E1 ⇐⇒
(g(u),g(v)) ∈ E2.

It is easy to verify this in polynomial time using g but no polynomial time algorithm
is known for this problem; the problem is not known to be NPC either.

• Factorization: Although it is not a decision problem, it continues to be elusive in
terms of its intractability and has huge ramifications since the security of the RSA is
dependent on its hardness.

12.4 Proving NP Completeness

In this section, we consider some of the classic NPC problems and describe reductions
from 3-SAT.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

NP Completeness and Approximation Algorithms 241

12.4.1 Vertex cover and related problems

Given an undirected graph G = (V,E) and an integer k, we want to determine if there is a
subset W ⊆ V of k vertices such that for any edge (u,w) ∈ E, either u or v (or both) are in
W . The vertex cover problem is a special case of the set cover problem. To see this, consider
the ground set as E and the family of subsets as Sv = {(v,u)|(v,u) ∈ E}. Then it is easy to
verify that a subset of k vertices cover all the edges iff the corresponding set cover problem
also has a solution. If vertex cover is NPC, then it immediately implies that the set cover
problem is also NPC (note that the other direction is not established by this construction).

The vertex cover problem is in N P since it is easy to verify that a given set of k
vertices covers all the edges. To establish the NP-hardness of vertex cover, we will reduce
an arbitrary instance of 3-SAT to an instance of vertex cover. More specifically, we will
start from a 3-CNF formula F and map it to a graph G(F) = (V,E) such that there is a
vertex cover of size k(F) in G(F) iff F is satisfiable. Note that both the graph and the
integer k are functions of the given 3-CNF formula F .5

Consider a Boolean 3-CNF formula

F : (y1,1∨ y1,2∨ y1,3)∧ (y2,1∨ y2,2∨ y2,3)∧ . . .∧ (ym,1∨ ym,2∨ ym,3)

where yi, j ∈ {x1, x̄1,x2, x̄2, . . . ,xn, x̄n}, that is, it has m clauses in n Boolean variables. We define
G(F) on the vertex set {y1,1,y1,2,y1,3,y2,1, . . . ,ym,3}, that is, 3m vertices. The edges are of two
types – for all i, we have edges Ei = {(yi,1,yi,2),(yi,2,yi,3),(yi,3,yi,1)} that define some triangles.
The union of all such edges number 3m. In addition, we have edges E ′ = {(y j,a,yk,b)| j 6=
k,y j,a 6= yk,b}, i.e., E ′ consists of those pairs of literals which are inverses of each other. The
integer k(F) is set to 2m (the number of clauses). Figure 12.2 shows an illustration of this
construction.

Claim 12.5 The graph G(F) has a vertex cover of size k(F) = 2m iff F is satisfiable.

For the proof, we first consider that F has a satisfable assignment – consider one such
assignment. Every clause in F has at least one true literal – we choose the other two vertices
(recall that every literal is mapped to a vertex in G(F)) in the cover. In case there is more
than one literal, which is true, we can choose one of them aribitrarily and pick the other
two in the cover. Overall, we have chosen 2 vertices from each triangle and it is clear that
the vertices picked cover all the edges of Ei for all i. For the sake of contradiction, suppose
some edge from E ′ is not covered by the chosen vertices. It implies that neither of the two
literals were set to F in the satisfiable assignment. Note that any literal that is set to F is
picked in the cover. But this is not possible since the two end points of an edge in E ′ are
mapped from complemented literals, so one of them must be F and it will be picked in the
cover. Thus, there is a cover of size 2m.

5We will not be as pedantic in our subsequent proofs but only use G instead of G(F) etc.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

242 Design and Analysis of Algorithms

y
1,1

y
2,1

y
3,1

y
1,2

y
2,2

y
3,2

y
1,3

y
2,3

y
3,3

Figure 12.2 Graph illustrating the reduction for the 3-CNF formula

(x1∨ x̄2∨x3)∧(x̄1∨x2∨x3)∧(x1∨x2∨ x̄3). Here, n= 4,m=

3, k = 2×3 = 6.

The checked vertices form a cover that defines the truth
assignment x3 = T x2 = T and x3 can be assigned arbitrarily
for the formula to be satisfiable.

For the other direction of the claim, suppose there is a vertex cover W of size 2m. Any
vertex cover must pick two vertices from each triangle and since |W | = 2m, exactly two
vertices are picked from each triangle. For the truth assignment in F , we set the literal not
picked in each triangle to be T. If some variable has not been assigned any value this way,
then we can choose them in any consistent way. Thus, there is a literal set to T in every
clause, but we must establish that the truth assignment is consistent, that is, both the literal
and its complement cannot be set to T. For the sake of contradiction, suppose it is so, which
implies that there is an edge connecting the two vertices, say (u,v) by construction. Can
both be assigned T? Since, at least one of the end points u or v must be in the cover, both
cannot be assigned T.

One can now use the NP completeness of the vertex cover problem to show that the
independent set problem is also NP complete. This follows from the observation that a set
I is an independent set if and only if V − I is a vertex cover.

12.4.2 Three coloring problem

Given a graph, it is easy to determine if it is two-colorable from the elementary property of
bipartiteness. This can be done in linear time. Somewhat surprisingly, three coloring turns
out to be far more challenging, viz., no polynomial time algorithm is known.6 It is easy to
see that if a graph has a clique of size k, then at least k colors are required but the converse

6 A similar phenomenon is also known in the case of 2-SAT vs 3-SAT.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

NP Completeness and Approximation Algorithms 243

is not true. So, even if a graph may not have a large clique, it could still require many
colors. That makes the coloring problem very interesting and challenging.

We will now formally establish that the 3-coloring problem is NPC. Given a coloring of
a graph, it is easy to verify that it is legal and uses only three colors; so the problem is in
N P .

We will sketch a reduction from the 3-SAT problem – some of the details are left as
exercise problems. Given a 3-CNF formula φ that has m clauses over n variables x1,x2, . . . ,xn,
we define a graph over a vertex set

{x1, x̄1,x2, x̄2, . . . ,xn, x̄n}∪
m⋃

i=1

{ai,bi,ci,di,ei, fi}∪{T,F,N}

This sums to 2n + 6m + 3 vertices. The edges are defined according to the subgraphs
depicted in Fig. 12.3. Broadly speaking, {T,F,N} represents the three colors with a natural
association of F to F and T to T; N can be thought of as neutral. The second triangle in the
figure ensures that the two complementary literals for each variable get distinct colors,
which are also distinct from N. The subgraph (a) in the figure is the more critical one that
enforces satisfiable assignments in φ. There is an inner triangle ai,bi,ci and an outer layer
diei fi connected to the inner triangle enforcing some coloring constraints. Here is the
crucial observation about the subgraph.

T

T

T

e

b

f

y
i,3

y
i,1

y
i,2

N

xi xi

N

T F

(a) (b) (c)

i

i ci

ai

di

i

Figure 12.3 A three coloring of the above subgraph (a) captures the
satisfiability of 3-CNF clause (yi,1∨yi,2∨yi,3). A 3-coloring
of subgraph (b) captures the constraint that for every
variable xi, its complement literal must have consistent truth
assignment, i.e., if xi = T then x̄i = F and vice versa (as
shown in (c)). The third color is the neutral colour N.

Claim 12.6 The subgraph is three colorable iff at least one of the literals yi,1,yi,2,yi,3 is colored the
same as T .

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

244 Design and Analysis of Algorithms

A formal proof of this claim is left as an exercise problem. However, the reader can see
that if yi,1 is not colored the same as T then, it must be colored the same as F (it cannot be
colored as N because of triangle in Figure 12.3(b)). This forces the color of N on ei implying
that bi cannot be N. Exactly one of the vertices ai,bi,ci must be colored the same as N but
this cannot happen if all the three literals are colored the same as F . From the claim, it
follows that the graph defined by the union of the 3-CNF clauses in φ is three-colorable iff
φ is satisfiable. A formal proof is left as an exercise problem.

12.4.3 Knapsack and related problems

We now show that many number theoretic problems like decision-knapsack are
NP-complete. We begin with a more elementary problem, called Subset Sum. In this
problem, an instance consists of a set of positive integers {x1, . . . ,xn} and a parameter
B. The problem is to decide if there is a subset of {x1, . . . ,xn} which adds up to exactly B. It
is easy to check that this problem can be solved in O(nB) time using dynamic
programming. However, this is not polynomial time because the input size only depends
on logarithms of these integers. It also suggests that any NP-completeness proof for the
Subset Sum problem must use instances where the number of bits needed to represent B
depends linearly (or a higher order polynomial) on n.

Proving that Subset Sum is in N P is easy. A solution just needs to specify the subset
of {s1, . . . ,sn} which adds up to B. A verifier just needs to add the numbers in this subset.
Note that addition of a set of k numbers can be done in time proportional to kb, where b is
the number of bits needed to represent these numbers. Therefore, a verifier can check, in
time proportional to the size of the input, if the solution is valid or not.

We now prove that this problem is NP-complete. Our goal is as follows: given a 3-CNF
formula φ, we need to produce an instance I of the Subset Sum problem such that the
formula φ is satisfiable if and only if the instance I has a solution (i.e., there is a subset of
{s1, . . . ,sn} in this instance which adds up to B).

Let φ have n variables x1, . . . ,xn and m clauses C1, . . . ,Cm. Recall that each clause C j can be
written as y j,1∨y j,2∨y j,3, where each of the literals y j,l is either one of the variables x1, . . . ,xn

or its negation. In the instance I, we will have k := 2n+2m numbers. We will write each of
these numbers in decimal, though one could write them in binary by just writing each of
the decimal digits in its corresponding binary representation. This would only blow up the
size of each number by a constant factor. Writing in decimal would be convenient because
our numbers will be such that if we add any subset of them, we would never cause any
carry over.

We now give details of the construction. Each number will have n+m digits. These
digits will be labeled by the n variables x1, . . . ,xn and the m clauses C1, . . . ,Cm. For every
variable xi, we have two numbers si and s̄i. The intuition would be that any solution for

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

NP Completeness and Approximation Algorithms 245

I would pick exactly one of si and s̄i – if a satisfying assignment for φ sets xi to T, one
would pick si, else s̄i. So, si would correspond to the literal xi and s̄i would correspond
to the literal x̄i. Both of these numbers will have ‘1’ in the digit corresponding to xi, and
will have 0 in all other digits corresponding to variables x j, j 6= i. Further, if the variables
xi appears (as a literal) in clauses Ci1 , . . . ,Cis , then the number si will have ‘1’ in the clause
digits corresponding to Ci1 , . . . ,Cis , and ‘0’ in all other clause digits. The clause digits for s̄i

are defined similarly – if x̄i appears in a clause C j, then the corresponding digit for s̄i is ‘1’,
else it is 0.

Let us first see an example. Suppose there are 4 variables x1,x2,x3,x4 and 3 clauses,
C1 = x1∨ x̄3∨ x4, C2 = x̄1∨ x2∨ x̄4, and C3 = x1∨ x3∨ x4. Then, the 8 numbers are as given in
Table 12.1.

Table 12.1 Creating an instance of decision-knapsack from a given
instance of 3-SAT. The dummy variables d1

j ,d
2
j are not shown

here. The capacity B can be seen as [1 1 1 1 3 3 3].

x1 x2 x3 x4 C1 C2 C3

s1 1 0 0 0 1 0 1

s̄1 1 0 0 0 0 1 0

s2 0 1 0 0 0 1 0

s̄2 0 1 0 0 0 0 0

s3 0 0 1 0 0 0 1

s̄3 0 0 1 0 1 0 0

s4 0 0 0 1 1 0 1

s̄4 0 0 0 1 0 1 0

Before we specify the remaining numbers in this instance, let us see what we would like
the target number B to be. For each of the variable digits xi, B would have “1”. Since we
would never create any carry over, this would ensure that every solution must pick exactly
one of si, s̄i for every i = 1, . . . ,n. Moreover, we would want such a selection to correspond
to a satisfying assignment. In other words, we would like that for every clause C j, we
pick at least one of the literals contained in it (i.e., for the clause C1 mentioned earlier, we
should pick at least one of s1, s̄3,s4). So in the digit corresponding to C j, we would want
that B should have a number greater than 0. But this is a problematic issue – a satisfying
assignment may choose to set 1 or 2 or 3 literals in C j to true. And so, we cannot tell in
advance if the corresponding clause digit in B should be 1 or 2 or 3. To get around this
issue, we add two more ‘dummy’ numbers for each clause C j; call these d1

j and d2
j leading

to an additional 2m numbers. Both of these dummy numbers have 0 in all the digits, except
for the digit corresponding to C j, where both have 1. The target B is as follows: for each of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

246 Design and Analysis of Algorithms

the variable digits xi, it has ‘1’, and for each of the clause digits C j, it has ‘3’. This completes
the description of the input I for the Subset Sum problem.

We now prove that the reduction has the desired properties. First of all, it is easy to
check that even if we add all the 2n+ 2m numbers, there is no carry over. Now suppose
there is a satisfying assignment for φ – call this assignment α. We now show that there is a
solution for I as well. We construct a subset S of the input numbers in I as follows. If α sets
xi to T, we add si to S, else we add s̄i to S. This ensures that for each of the variable digits,
the sum of the numbers added to S is 1. Now consider a clause C j. Since α sets at least one
literal in C j to true, there is at least one number in S for which the digit C j is 1. Let us now
see how many such numbers are there in S. Since C j has 3 literals, there would be at most
3 such numbers in S. If S contains exactly 3 such numbers, we have ensured that adding
all the numbers in S would result in digit C j being 3. If there are only 2 such numbers, we
add one of the dummy numbers d1

j ,d
2
j to S. If S contains exactly one such number, then

we add both these dummy numbers to S leading to an additional 3m variables. Thus, we
have ensured that when we add all the numbers in S, we get ‘3’ in each of the clause digits.
Thus, the sum of the numbers in S is exactly B.

The argument for the converse is very similar. Suppose there is a subset S of numbers in
the input I which add up to B. From this, we will construct a satisfying assignment α for φ.
As argued earlier, for each variable xi, S must contain exactly one of si and s̄i. If S contains
si, α sets xi to T, otherwise it sets xi to F. We claim that this is a satisfying assignment.
Indeed, consider the digit corresponding to clause C j. Even if we pick both the dummy
numbers d1

j ,d
2
j in S, we must have a non-dummy number in S for which this digit is ‘1’.

Otherwise, we will not get a ‘3’ in this digit when we add all the numbers in S. But this
implies that α is setting at least one of the literals in C j to T.

Thus, we have shown that Subset Sum is NP-complete. Starting with the Subset Sum,
we can show that the decision-knapsack problem is also NP-complete. Recall that in the
decision-knapsack problem, we are given a knapsack of size B, and a set of items I1, . . . , In.
Each item Ii has a size si and a profit pi. Given a target profit P, we would like to know if
there is a subset of items whose total size is at most B, and whose total profit is at least P.
We show that this problem is NP-complete by reduction from Subset Sum (proving that
the Knapsack problem in N P is again trivial).

Consider an instance I of Subset Sum consisting of numbers s1, . . . ,sn and parameter B.
We construct an instance I′ of the decision-knapsack problem as follows: the knapsack has
capacity B; the profit is also B. For each number si in I, we create an item Ii of size si and
profit si as well. It is now easy to check that the Subset Sum problem I has a solution if and
only if the corresponding decision-knapsack instance I′ has a solution.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

NP Completeness and Approximation Algorithms 247

12.5 Other Important Complexity Classes

While the classes P and N P get the maximum limelight in complexity theory, there are
many other related classes which are important in their own right.

• co-N P : Given an NP-complete problem P, the answer to every input is either YES or
NO. In fact, we had defined a problem to be the set of inputs for which the answer
is YES. A problem P is said to be in the class co-N P if its complement is in N P ,
that is, the problem defined by the set of inputs for which P outputs NO is in N P .
For example, the complement of 3-SAT, defined as the set of 3-CNF formulas which
do not have a satisfying assignment, is in co-N P . Recall that for a problem in N P ,
there is a short proof which certifies that the answer for an input is YES. It is not
clear if the same fact is true for a problem in co-N P . For example, in the 3-SAT
problem, a verifier just needs to specify the true/false assignment to each variable,
and an efficient verifier can easily check if this solution is correct. However in the
complement of 3-SAT, it is not at all clear if one can give a short proof which certifies
that a given 3-CNF formula is not satisfiable (i.e., all assignments make it false).

It is not known if N P is equal to co-N P or not. It is widely believed that they are
different. Note that any problem in P can be solved in polynomial time, and so,
we can also solve its complement in polynomial time. Therefore, P ⊆N P ∩co-N P .
Again, it is not known if this containment is strict, but it is widely believed to be so.

• PSpace: So far we have measured the resource consumed by an algorithm in terms
of the time taken by it. But we could also look at its space complexity. The class
PSpace consists of those problems for which there are algorithms that use
polynomial space. Any polynomial time algorithm (deterministic or
non-deterministic) in a Turing machine model can only modify a polynomial
number of memory locations. Therefore, N P ⊆ PSpace 7, but it is not known if the
containment is strict (though it is conjectured to be so).

As in the case of N P , we can define problems which are complete for the class
PSpace under polynomial time reductions (and so, may not be in N P as N P could
be strictly contained in PSpace). Here is one example of such a problem. A quantified
Boolean formula is a Boolean formula where each variable is quantified using either a
universal or an existential quantifier. For example, ∃x1∀x2∃x3P(x1,x2,x3), where
P(x1,x2,x3) is a Boolean propositional formula. One can solve this problem in
polynomial space by trying all possible (i.e., 2n) assignments of Boolean values to
the Boolean variables, and evaluating the proposition for each of these assignments.
Note that this algorithm would, however, take exponential time. Many counting

7From Savitch’s theorem, PSpace and non-deterministic polynomial space are the same.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

248 Design and Analysis of Algorithms

problems associated with problems in N P are in PSpace, for example, counting the
number of satisfying assignments to a 3-CNF formula, or counting the number of
vertex covers of size at most k in a graph.

• Randomized classes Depending on the type of randomized algorithms (mainly Las
Vegas or Monte Carlo), we have the following important classes (also refer to
Chapter 1, Section 1.4)

– R P : Randomized polynomial class of problems are characterized by (Monte
Carlo) randomized algorithms A such that

x ∈ L⇒ Pr[A accepts x]≥ 1/2

x /∈ L⇒ Pr[A accepts x] = 0

These algorithms can err on one side only. The constant 1/2 in the case x ∈ L
can be replaced by any constant. Indeed, if we have a Monte Carlo algorithm
for a language L with the probability of accepting an input x ∈ L being ε, then
we can boost this probability to any constant (close enough to 1) by repeating
the same algorithm multiple times, and accepting x if its gets accepted in any of
these runs (see Exercise Problems). A famous problem which lies in this class,
but is not known to belong to P is the polynomial identity testing problem. An
input to this problem is given by a polynomial on n variables. In general, such
a polynomial can have exponential number of monomials, and so even writing
it down may take exponential space (in n). We assume that the polynomial is
given in a compact form by a short Boolean circuit which takes as input n
variables (corresponding to x1, . . . ,xn), and outputs the value of the polynomial
(e.g., the polynomial could be (x1 + 1) · (x2 + 1) · · ·(xn + 1)). The language
consists of those polynomials (in fact, circuits) which are not identically zero. A
simple randomized algorithm is as follows: pick x1, . . . ,xn uniformly at random
(one needs to specify the range, but we ignore this issue). We evaluate the
polynomial at (x1, . . . ,xn) and check if it evaluates to 0. If it does, we declare
that it is identically zero. If the polynomial is identically equal to 0, then the
algorithm will not make a mistake. If it is not zero, then the probability of it
evaluating to 0 on a random input can be shown to be small. It is a major open
problem to come up with a deterministic polynomial time algorithm for this
problem. It is easy to check that R P is contained in N P .

– BP P : When a randomized algorithm is allowed to err on both sides

x ∈ L⇒ Pr[A accepts x]≥ 1/2+ ε

x /∈ L⇒ Pr[A accepts x]≤ 1/2− ε

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

NP Completeness and Approximation Algorithms 249

where ε is a fixed nonzero constant. Again, the parameter ε is arbitrary – we
can make the gap between the two probabilities larger (e.g., 0.99 and 0.01), by
repeating the algorithm multiple times and taking the majority vote (see
Exercise Problems). It is not known if BP P is contained in N P (in fact some
people believe that P = BP P .

– ZP P (zero error probabilistic polynomial time): This complexity class
corresponds to Las Vegas algorithms, which do not make any error, but take
polynomial time in expectation only (i.e., could take more time in worst case).

12.6 Combating Hardness with Approximation

Since the discovery of NP-complete problems in the early 1970s, algorithm designers
have been wary of spending efforts on designing algorithms for these problems as it is
considered to be a rather hopeless situation without a definite resolution of the P = N P
question. Unfortunately, a large number of interesting problems fall under this category
and so ignoring these problems is also not an acceptable attitude. Many researchers have
pursued non-exact methods based on heuristics and empirical results to tackle these
problems.8 Some of the well-known heuristics are simulated annealing, neural network
based learning methods, and genetic algorithms. You will have to be an optimist to use
these techniques for any critical application.

The accepted paradigm over the last decade has been to design polynomial time
algorithms that guarantee near-optimal solutions to an optimization problem. For a
maximization problem, we would like to obtain a solution that is at least f ·OPT , where
OPT is the value of the optimal solution and f ≤ 1 is the approximation factor for the worst
case input. Likewise, for a minimization problem, we would like a solution no more than
a factor f ≥ 1 larger than OPT . Clearly, the closer f is to 1, the better is the algorithm.
Such algorithms are referred to as approximation algorithms. Even though most
optimization problems solved in practice are N P -hard, they behave very differently
when it comes to approximations. In fact, assuming P 6= N P , there is a very rich
complexity theory of such problems, which tells us that the extent to which they can be
approximated can vary widely from problem to problem. In fact, just because we can
reduce one NP-complete problem to another NP-complete problem, it does not
necessarily follow that the optimization versions of these problems will also have similar
approximation algorithms. For example, there is a simple relation between the minimum
vertex cover problem and the maximum independent set problem – the complement of
an optimal vertex cover is a maximum independent set. While we know of

8 The reader must realize that our inability to compute the actual solutions makes it difficult to evaluate these
methods in a general situation.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

250 Design and Analysis of Algorithms

2-approximation algorithms for the vertex cover problem, no such small approximation
ratios are known for the maximum independent set problem.

We now give a brief description of the range of values that the approximation ratio can
have (although this is not exhaustive).

• PTAS (polynomial time approximation scheme): For problems falling in this class,
we can design polynomial time algorithms with f = 1 + ε, where ε is any user
defined constant (the running time may depend on 1/ε, and so will get worse as ε

approaches 0). Further, if the algorithm is polynomial in 1/ε, then it is called FPTAS
(fully PTAS). This is in some sense the best we can hope for in an N P -hard
optimization problem. The theory of hardness of approximation has yielded lower
bounds (for minimization and upper bounds for maximization problems) on the
approximation factors for many important optimization problems. One example of
a problem for which there exists a PTAS is the knapsack problem. Recall that we are
given a knapsack of capacity B, and a set of items, where each item has a size and a
profit. We would like to find a subset of items whose total size is at most B, and
whose profit is maximized. Since Knapsack is NP-complete, this optimization
problem is NP-hard and we had discussed how one is reducible to the other in the
beginning of this chapter. Recall that one can solve this problem by dynamic
programming, but this algorithm takes time exponential in the number of bits
needed to specify the input. It turns out that there is a PTAS for this problem.

There are very few problems for which one can get a PTAS. It is now known that
unless P = N P , we cannot have a PTAS for many problems. This includes problems
like minimum vertex cover, minimum set cover, maximum independent set, max-cut.

• Constant factor: If we cannot get a PTAS for a problem, the next best thing is to try
get a constant factor approximation (i.e., f is a constant independent of the size of the
problem instance). We can get such results for many problems, including minimum
vertex cover, max 3-SAT problem, where the max 3-SAT problem involves finding
the maximum number of satisfiable clauses in a 3-CNF expression.

• Logarithmic factor: For some NP-hard problems, we cannot hope to get a constant
factor approximation algorithm (unless P = N P). The most well-known of such
problems is the minimum set cover problem, for which we only have a logn
approximation algorithm, where n is the number of elements in an instance of the
set cover problem (and it is also known that one cannot improve on this bound if
P 6= N P).

• Even harder problems: There are many problems for which we cannot even get a
logarithmic approximation factor in polynomial time. One such problem is the
maximum independent set problem, for which we cannot even get f = n1−ε for any
constant ε > 0 (assuming P 6= N P).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

NP Completeness and Approximation Algorithms 251

There are several problems for which we do not know the right approximability ratio.
One such problem is (the optimization version of) the 3-coloring problem. In this problem,
we are given a graph G which is known to be 3-colorable. The problem is to color the
vertices with as few colors as possible in polynomial time. The best known polynomial
time algorithm uses about n0.2 colors, even though the possibility of a polynomial time
algorithm using a constant number of colors is not ruled out.

In the next section, we give several illustrative approximation algorithms. One of the
main challenges in the analysis is that even without explicit knowledge of the optimum
solutions, we can still prove guarantees about the quality of the solution of the algorithm.

12.6.1 Maximum knapsack problem

Given n items of sizes s1, . . . ,sn and profits p1, . . . , pn, and a knapsack of capacity B, we
would like to find a subset of items of maximum profit which can be packed in the
knapsack.

Recall our earlier approach in Section 5.1 using dynamic programmng: we maintain a
table S(j,r), where 0 ≤ r ≤ B, and 1 ≤ j ≤ n. This table entry would store the maximum
profit that can be obtained from the first j items if we are given a knapsack of size r. We
can write the following recurrence to compute S(j,r) (the base case when j = 1 is easy to
write):

S(j,r) = max{S(j−1,r), p j +S(j−1,r− s j)}

Although this dynamic programming only computes the value of the optimal solution,
it is easy to modify it to compute the subset of items which yields this optimal profit.
The running time of this algorithm is O(nB), which is not polynomial time because it is
exponential in the number of bits needed to write B. One idea for obtaining a PTAS would
be to round the item sizes so that B becomes polynomially bounded. However, this can
be tricky. For example, consider an input where the optimal solution consists of 2 items of
different sizes and equal profit. If we are not careful in rounding the sizes, it is possible
that in the rounded instance, both may not fit in the knapsack, and so, we may not be able
to get the profit of both.

Here is another dynamic program formulation which is less intuitive, but works with
the profits of the items rather than their sizes. Let pmax denote the maximum profit of any
item, that is, max j p j. Let P denote n · pmax – this is the maximum profit any solution can
have. We have a table T (j,r),1 ≤ j ≤ n,0 ≤ r ≤ P, which stores the minimum size of the
knapsack such that we can pack a subset of the first j items to get a profit of at least r (this
entry is infinity if r happens to be more than the total profit of the first j items or if the
minimum size is > B). The recurrence for T (j,r) can easily be written:

T (j,r) = min(T (j−1,r),T (j−1,r− p j)+ s j)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

252 Design and Analysis of Algorithms

The optimal solution can be found in the last row of the table, i.e., j = n which fetches the
maximum profit having volume ≤ B. The running time of this algorithm is O(Pn), which
again could be bad if P is very large. The idea now is to round down the values p j of items
j. More formally, let M denote εpmax/n, where ε is an arbitrary positive constant. Let I
denote the original input. Define a new input I′, which has the same set of items as that of
I, and the sizes of these items are also the same as those in I. However, the profit of item
j now becomes p̄ j = bp j/Mc. Note that the maximum profit in I′ is at most n/ε and so we
can run the aforementioned dynamic program in polynomial time using an n× n2

ε
table.

Let S denote the set of items picked by the dynamic program. Let O denote the set of items
picked by the optimal solution for I. As far as input I′ is concerned, S is at least as good as
O. Therefore, we get

∑
j∈S

p̄ j ≥ ∑
j∈O

p̄ j

Clearly, p j

M −1≤ p̄ j ≤ p j

M . Therefore, from this inequality, we get

∑
j∈S

p j

M
≥ ∑

j∈O

(p j

M
−1
)
⇒∑

j∈S
p j ≥ ∑

j∈O
p j−M|O| ≥ ∑

j∈O
p j−Mn

Let p(S) and p(O) denote the profit of S and O respectively. From this, we get

p(S)≥ p(O)−Mn = p(O)− εpmax ≥ p(O)(1− ε)

where the last inequality follows from the fact that the optimal profit is at least pmax. Thus,
we get a PTAS for this problem.

12.6.2 Minimum set cover

We are given a ground set S = {x1,x2, . . . ,xn} and a family of subsets S1,S2, . . . ,Sm, Si ⊂ S.
Each of these subsets Si also has a cost C(Si). We want to find a set cover, that is, a collection
of these subsets such that their union is S, of minimum total cost. Intuitively, we would
like to pick sets which are cheap and cover lots of elements. This motivates the following
greedy algorithm: we will pick sets iteratively. Let V ⊂ S be the set of elements covered
by the sets picked so far. At the next step, we pick the set U for which the ratio of its cost
to the number of new elements covered by it, that is, C(U)

|U−V | , is minimized. We will denote
this ratio as the cost-effectiveness of U at this time. We do this repeatedly till all elements are
covered. We now analyze the approximation ratio of this algorithm.

Let us number the elements of S in the order they were covered by the greedy algorithm
(without loss of generalization, we can re-number them such that they are x1,x2, . . .). We
will apportion the cost of covering an element e ∈ S as w(e) = C(U)

U−V , where e is covered for
the first time by U . The total cost of the cover is = ∑i w(xi).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

NP Completeness and Approximation Algorithms 253

Claim 12.7

w(xi)≤
Co

n− i+1

where Co is the cost of an optimum set cover.

In the iteration when xi is considered, the number of uncovered elements is at least n−
i+ 1. The greedy choice is more cost effective than any left over set of the optimal cover.
Suppose the cost-effectiveness of the best set in the optimal cover is C′/U ′, that is, C′/U ′ =
min

{
C(Si1)

Si1−S′ ,
C(Si2)

Si2−S′ . . .
C(Sik)

Sik−S′

}
, where Si1 ,Si2 , . . . ,Sik belong to minimum set cover and S′ is the

set of covered elements in iteration i. Then

C′/U ′ ≤ C(Si1)+C(Si2)+ . . .C(Sik)

(Si1 −S′)+(Si2 −S′)+ . . .(Sik −S′)
≤ Co

n− i+1

since the numerator is bounded by Co and the denominator is more than n− i+1, it follows
that w(xi)≤ Co

n−i+1 .
Thus, the cost of the greedy cover is ∑i

Co
n−i+1 , which is bounded by Co ·Hn. Here Hn =

1
n +

1
n−1 + . . .+1.

12.6.3 The metric TSP problem

The traveling salesman problem (TSP) is as follows: we are given an undirected graph G
with edge lengths. Our goal is to find a tour of minimum total length which starts at a
vertex s and comes back to s after visiting every vertex in G (recall that a tour is allowed to
traverse an edge multiple times). This problem is NP-hard even if all edge lengths are 0–1.
An approximation algorithm for this problem is as follows: let T be a minimum spanning
tree of the graph G. We define GT to be the graph obtained from T by replacing each in
T by two parallel copies. So, the total cost of edges in GT is twice that of T . In GT , the
degree of every vertex is even (because every edge has another parallel copy). So, GT is
Eulerian, and there is a tour in GT which visits every edge exactly once, and hence, visits
every vertex. The cost of this tour is exactly the cost of edges in GT . We now show that the
optimal cost is at least the cost of T , and so, we get a 2-approximation algorithm. This is
also easy to see – let E ′ be the set of edges used (at least once) by the optimal tour. Then,
(V,E ′) is a connected subgraph of G, and so, its cost is at least the cost of T .

It may be noted that there is a much superior approximation algorithm, in fact a PTAS,
known for the special case of points on the Euclidean plane.

12.6.4 Three coloring

In this problem, we are given an undirected graph G = (V,E), which is guaranteed to be
3-colorable. We describe a polynomial time algorithm which colors the vertices using

√
n

colors.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

254 Design and Analysis of Algorithms

We will rely on the following simple observations:

(i) Let Γ(v) denote the set of neighbors of a vertex v. Then, Γ(v) is 2-colorable. Indeed,
otherwise the subgraph induced by {v}∪Γ(v) will need more than 3 colors. Since we
can color a 2-colorable graph (i.e., bipartite graph) using 2-colors efficiently, it follows
that the subgraph induced by {v}∪Γ(v) can be colored with 3 colors efficiently.

(ii) Let ∆ be the maximum degree of a vertex in G. Then, it can be colored using ∆+

1 colors by a simple greedy algorithm – order the vertices in any manner. When
considering a vertex, assign it a color from {1, . . . ,∆+1}which is not assigned to any
of its neighbors.

We can now describe the coloring algorithm. While there is a vertex v of degree at least
√

n in the graph G, we color {v}∪Γ(v) using a set of 3 new colors (as mentioned in the
observation (i)). We now remove v and Γ(v) from G, and iterate. Note that in each such
iteration, we remove at least

√
n vertices from G, and so, this process can go on for at most

√
n steps. Thus, we would use at most 3

√
n colors. When this process ends, every vertex

has degree less than
√

n, and so, by the observation (ii), can be efficiently colored using at
most

√
n colors. Thus, our algorithm uses at most 4

√
n colors.

It is a rather poor approximation since we have used significantly more colors than
three, but even the best known algorithm uses nc colors, for some constant c > 0.

12.6.5 Max-cut problem

In the max-cut problem, we are given an undirected graph G with edges having weights.
We want to partition the vertices into sets U,V −U such that the total weight of edges
across U and V −U is maximized.

We have designed a polynomial time algorithm for min-cut but the max-cut problem
is an NP-hard problem. Consider the following simple idea: independently assign each
vertex uniformly at random to one of the two sets in the partition. Let us now estimate
the expected cost of the solution. For any fixed edge (u,v) ∈ E, let Xe be a random variable
which is 1 if the end points of e belong to different sets in the partition. If Y denotes the total
weight of edges crossing the partition, then it is easy to see that Y = ∑e∈E weXe. Linearity of
expectation now implies that E[Y] = ∑e weE[Xe]. Note that E[Xe] is just the probability that
end points of e belong to two different sets in the partition, and so, is equal to 1/2. This
shows that E[Y] is half of the total weight of all the edges in G. Since the optimal solution
can be at most the total weight of all edges, we see that this is a 2-approximation algorithm.

Further Reading

The class of NP-complete problems and the existence of a natural NP-complete problem
was given in a classic paper by Cook [35]. Later, it was also attributed to Levin [91] as an

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

NP Completeness and Approximation Algorithms 255

independent discovery and now it is known as the Cook–Levin theorem. Shortly following
Cook’s paper, Karp [77] strengthened the field of NP-completeness by demonstrating a
number of very fundamental decision problems like set cover, clique, partition that are also
NP-complete. It soon became the holy grail of the CS theory community to resolve the P =

N P puzzle and it continues to be elusive till this date. Garey and Johnson [57] maintained
a compendium of a large number of known NP-complete problems from the literature and
to this date, the compendium remains a very reliable repository of such problems. Levin
[92] developed the theory further to define the notion of average NP completeness which is
technically more complex but more relevant in areas like security and cryptography.

There are some excellent textbooks [63, 93] that deal with the formalism of the
NP-completeness theory using the Turing machine model of computation. A more recent
textbook by Arora and Barak [13] presents many important and interesting results in the
area of complexity theory that researchers have pursued to solve this long-standing open
problem.

The area of approximation algorithms got a big boost with the result on hardness of
approximation [14] that rules out efficient algorithms for many classical problems. The
books by Vazirani [148] and a relatively recent book by Williamson and Shmoys [154]
describe many interesting techniques for approximation algorithm design and different
ways of parameterization that help us to understand the deeper issues about the
complexity of a problem.

Exercise Problems

12.1 Prove the following
(i) If P ∈ P , then complement of P is also in P .

(ii) If P1,P2 ∈ P , then P1∪P2 ∈ P and P1∩P2 ∈ P .

12.2 If problems A and B are NPC, then A≤poly B and B≤poly A.

12.3 Show that the complement of an NPC problem is complete for the class co-N P under
polynomial time reduction.

12.4 Show that any arbitrary Boolean function of k variables can be expressed by a CNF
formula of atmost 2k clauses.

Note: When k is constant, the formula also has constant size, and therefore, the CNF
formula in the proof of Cook–Levin theorem expressing the transition function of the
NDTM is of bounded size as it only involves 4 cells.

12.5 Can you design an efficient algorithm that satisfies at least 50% of the clauses in a 3-CNF
Boolean formula?

How about 66%? You may want to use a randomized strategy.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

256 Design and Analysis of Algorithms

12.6 Show that if a Boolean formula in CNF contains at most one un-negated literal, then the
satisfiability problem can be solved in polynomial time.

Note: Such clauses are called Horn clause.

12.7 What would it imply if an NPC problem P and its complement P̄ are polynomial time
reducible to each other?

12.8 Prove Claim 12.4.

12.9 Formulate the vertex cover problem as an instance of a set cover problem.

Analyze the approximation factor achieved by the following algorithm. Construct a
maximal matching of the given graph and consider the union C of the end points of the
matched edges. Prove that C is a vertex cover and the size of the optimal cover is at
least C/2. So the approximation factor achieved is better than the general set cover.

12.10 Using the NP completeness of the vertex cover problem, show that the independent set
problem on graphs is NPC.

Further show that the clique problem is NPC. For this, you may want to use the notion
of complement of a graph. The complement of a graph G = (V,E) is a graph G′ =
(V,V ×V −E).

12.11 Prove Claim 12.6 and use it to show that the three-coloring problem on a given graph is
NPC.

Give a bound on the size of the graph in terms of the given 3-SAT formula.

12.12 Consider the following special case of the Subset Sum problem (also called the
‘PARTITION’ problem). Given n positive integers s1, . . . ,sn, we would like to know if there
is a partition of these numbers into two disjoint subsets such that the sum of the
numbers in each of the subsets are equal. Prove that this problem is NP-complete.

12.13 Given an undirected graph G and a parameter k, consider the problem of deciding whether
G has a clique of size k and an independent set of size k. Prove that this problem is
NP-complete.

12.14 A set of vertices S in an undirected graph G is said to form a near-clique if there is an
edge between every pair of vertices in S, except perhaps for one pair of vertices in S (so
a clique is also a near-clique). Prove that the problem of deciding whether a graph G has
a near-clique of size k is NP-complete.

12.15 Consider a randomized algorithm A that belongs to the class BP P which means that it
can output erroneous answers in both directions. So, unlike algorithms in R P where the
probability of error can be driven down by repeated runs of the algorithm, how can we
interpret an answer output by A? One possibility to run the algorithm multiple times and
hope that the mojority answer is correct. Given that the parameter ε bounds the error
probability from 1/2, can you use Chernoff bounds to show that by taking the majority of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

NP Completeness and Approximation Algorithms 257

sufficiently large number of independent runs, we can conclude the answer holds with
high probability.

12.16 You are given 2 machines and a set of n jobs. Each job j has a size p j. You want to
assign each job to one of the machines. The load on a machine is the total size of all
the jobs assigned to it. Prove that the problem of minimizing the maximum load on a
machine is NP-hard.

12.17 In the Hamiltonian cycle problem, we are given an undirected graph G and would like to
know if there is a simple cycle in it which contains all the vertices (no repetitions allowed).
In the Hamiltonian path problem, we are given an undirected graph and we would like to
know whether there is a path containing all the vertices. Show that the Hamiltonian cycle
problem is polynomial time reducible to the Hamiltonian path problem. Conversely, show
that the Hamiltonian path problem is polynomial time reducible to the Hamiltonian cycle
problem.

12.18 Consider the Hamiltonian cycle problem described in Exericise Problem 12.18. Suppose
you are given a black box algorithm A which, given an undirected graph G, outputs ‘yes’
if G has a Hamiltonian cycle, otherwise it outputs ‘no’. Give a polynomial time algorithm
for finding a Hamiltonian cycle in a graph (assuming it has such a cycle). Each call to the
black box algorithm A counts as 1 unit of time.

12.19 The path selection problem can be defined as follows: given a directed graph G, a set of
directed paths P1, . . . ,Pr in the graph G, and a number k, is it possible to select at least
k of these paths so that no two of the selected paths share any vertices? Prove that
the independent set problem is polynomial time reducible to the path selection problem.
Note that the parameters r,k are not constant.

12.20 A kite is a graph on an even number of vertices, say 2k, in which k of the vertices form a
clique and the remaining k vertices are connected in a ‘tail’ that consists of a path joined to
one of the vertices of the clique. Given a graph G and a number k, the KITE problem asks
whether G has a kite of size 2k as a subgraph (i.e., a set of 2k vertices a1,a2, . . . ,a2k such
that a1, . . . ,ak form a clique, and there are edges (ak,ak+1),(ak+1,ak+2), . . . ,(a2k−1,a2k) in
the graph). Prove that KITE is NP-complete.

12.21 The zero weight cycle problem can be defined as follows: you are given a directed graph
G = (V,E), with weights we on the edges e ∈ E. The weights can be negative or positive
integers. You need to decide if there is a cycle in G so that the sum of the edge weights
on this cycle is exactly 0 (i.e., say YES if there is such a cycle, NO otherwise). Prove that
the subset sum problem is polynomial time reducible to the zero weight cycle problem.
Contrast this result with the problem of negative cycle.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.013
https://www.cambridge.org/core

13
C H A P T E R

Dimensionality Reduction*

There are many applications where we deal with points lying in a very high dimensional
Euclidean space. Storing n points in a d-dimensional space takes O(nd) space, and even a
linear time algorithm for processing such an input can be impractical. Many algorithms
depend only on the pair-wise distance between these points. For example, the
nearest-neighbor problem seeks to find the closest input point (in terms of Euclidean
distance) to a query point. There is a trivial linear time algorithm to solve this problem,
which just looks at every input point and computes its distance to the query point. Since
the solution to this problem only depends on the distance of the query point to these n
points, we ask the following question: can the points be mapped to a low-dimensional
space which preserves all pair-wise distances? It is clear that d can be made at most n (just
restrict it to the affine space spanned by the n points), and in general, one cannot do better.

For example, Exercise Problem 13.1 shows that even in trivial settings, it is not possible
to reduce the dimensionality of a set of points without distorting pair-wise distances. What
if we are willing to incur a small amount of distortion in the pair-wise distances? This is
often an acceptable option because in many practical applications, the actual embedding
of points in d dimensions is based on some rough estimates. Since the data already has
some inherent noise, it should be acceptable to distort the pair-wise distances slightly.

Let us make these ideas more formal. We are given a set V of n points in a d-dimensional
Euclidean space. Let f be a mapping of these points to a k-dimensional Euclidean space.
We say that this mapping (or embedding) has distortion α > 1 if the following condition
holds for every pair of distinct points pi, p j ∈V :

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

Dimensionality Reduction* 259

1
α
· ||pi− p j||2 ≤ || f (pi)− f (p j)||2 ≤ || ≤ α · ||pi− p j||2

Note that ||v||2 denotes v ·v which is the square of the Euclidean distance – this turns out to
be much easier to work with than Euclidean distances.

13.1 Random Projections and the Johnson–Lindenstrauss
Lemma

The Johnson–Lindenstrauss lemma states that for any small constant ε > 0, there is a linear
map f from a Euclidean space containing n points into a Euclidean space of dimension
O(logn/ε2) such that the distortion is at most (1+ ε). In fact, the map f turns out to be
quite simple. They show that f just needs to be the projection of the points on a random
subspace of appropriate dimension.

As an example, consider the case when we have two points p and q in the
two-dimensional plane, and suppose we try to project the points on a 1-dimensional line
through the origin. We pick a suitable line L through the origin, and for a point p, define
f (p) as the projection of p on L. A moment’s thought shows that in general such an
embedding can have very high distortion. For example, suppose there are two points p
and q such that the line joining them is (nearly) perpendicular to L. In this case, f (p) and
f (q) will be very close, even though ||p−q|| could be large. We can avoid such a situation
by picking L to be a line along a random direction – we can easily do this by picking a
random number θ in the range [0,π) and then drawing L as the line which makes angle θ

with one of the coordinate axes. Can we now compute the probability with which the
distance between f (p) and f (q) is (nearly) the same as that between p and q (see Problem
Exercises)?

The aforementioned exercise shows that this probability is quite small. How can we
increase this probability to close to 1? One natural idea is to take several such lines, and
think of the projection along each line as giving one coordinate of f (p). This does not
make much sense when the points are already in 2-dimensions, but can lead to significant
savings if the number of such lines is much less than the dimension d.

So suppose we have a set V of n points in a d-dimensional Euclidean space. We pick k
lines through the origin along random directions – call these lines L1, . . . ,Lk. We now define
f (p) as a k-dimensional vector, where the ith coordinate is the length of the projection of p
along Li. The first non-trivial issue is how to pick a random direction in a d-dimensional
Euclidean space. The trick is to pick a distribution whose density does not depend on a
particular direction.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

260 Design and Analysis of Algorithms

Recall that the normal distribution with 0 mean and variance 1, denoted by N(0,1), has
density

φ(x) =
1√
2π

e−x2/2

We define a multi-dimensional normal distribution X = (x1, . . . ,xd), where the variables xi

are independent and each of them has distribution N(0,1) (such a set of variables are called
i.i.d. N(0,1) random variables). The joint distribution of X is given by

φ(X) =
1

(2π)d/2 e−(x
2
1+...+x2

d)/2 =
1

(2π)d/2 e−||X ||
2/2

Note that this distribution only depends on the length of X and is independent of the
direction of X . In other words, here is how we pick a line along a random direction: sample
d i.i.d. N(0,1) random variables x1, . . . ,xd . Consider the line through the origin and the
vector (x1, . . . ,xd).

Having resolved the issue of how to pick a line along a uniformly random direction,
we can now define what the embedding f does. Recall that f needs to project a point along
k such lines. Thus, if p is a point with coordinates p = (p1, . . . , pd), then f (p) = R ·p, where
R is a k× d matrix with entries being i.i.d. N(0,1) random variables. Note that each row
of R gives a line along a random direction, and each coordinate of R · p is proportional
to the projection of p along the corresponding line. To understand the properties of this
embedding, we first need to understand some basic facts about the normal distribution.
We use N(µ,σ2) to denote a normal distribution with mean µ and variance σ2. Recall that
the distribution of N(µ,σ2) is given by

φ(x) =
1√
2πσ

e−(x−u)2/2σ2

Exercise Problem 13.2 shows that the projection of a vector a along a uniformly random
direction also has normal distribution. Using this fact, we can now calculate the expected
length of f (p) for a point p. Indeed, each coordinate of f (p) is the projection of p along a
random direction (given by row i of R, denoted by Ri). Therefore, using the results of this
exercise, and substituting ai = pi, we get

E[|| f (p)||2] =
k

∑
i=1

E[(Ri · p)2] = k · ||p||2

We would like to normalize f (p) such that E[|| f (P)||2] is the same as that of ||p||2. Therefore,
we re-define f (p) as 1√

k
·R ·p. Now, the earlier calculations show that E[|| f (p)||2] = ||p||2. We

would now like to prove that || f (p)||2 is closely concentrated around its mean with high
probability. More precisely, we want to show that given an error parameter ε > 0 (which
should be thought of as a small constant),

Pr[|| f (p)||2 /∈ (1± ε)||p||2]≤ 1/n3

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

Dimensionality Reduction* 261

Once we show this, we will be done. We can replace p by pi− p j for all distinct pair of
points pi, p j in V . Thus, for any distinct pair of points pi, p j, the distance between them
gets distorted by more than (1+ ε)-factor with probability at most 1/n3. But now, notice
that there are at most n2 such pairs we need to worry about. So, using union bound, the
probability that there exists a pair pi, p j in V for which || f (pi)− f (p j)||2 is not in the range
(1± ε)||pi− p j||2 is at most

n2 ·1/n3 = 1/n

Thus, the embedding has distortion at most (1+ ε) with probability at least 1− 1/n (in
particular, this shows that there exists such an embedding).

Let us now prove that the length of f (p) is tightly concentrated around its mean. First
observe that || f (p)||2 is the sum of k independent random variables, namely, (R1 · p)2, . . . ,

(Rk · p)2, each of which has mean ||p||2. Therefore, as it happens in Chernoff–Hoeffding
bounds, we should expect the sum to be tightly concentrated around its mean. However, in
the setting of Chernoff–Hoeffding bounds, each of these random variables have a bounded
range, whereas here, each of the variables (Ri · p)2 lie in an unbounded range. Still, we do
not expect these random variables to deviate too much from their mean because (Ri · p) has
a normal distribution and we know that the normal distribution decays very rapidly as we
go away from the mean by a distance more than its variance. One option would be to carry
out the same steps as in the proof of the Chernoff–Hoeffding bound, and show that they
work in the case of the sum of independent random variables with normal distribution.

Theorem 13.1 Let X1, . . . ,Xk be i.i.d. N(0,σ2) random variables. Then, for any constant ε < 1/2,

Pr[(X2
1 + . . .+X2

k)/k ≥ (1+ ε)σ2]≤ e−ε2k/4

and

Pr[(X2
1 + . . .+X2

k)/k ≤ (1− ε)σ2]≤ e−ε2k/4

It follows that if we pick k to be 12logn/ε2, then the probability that || f (p)− f (q)|| differs
from ||p−q|| by more than (1± ε) factor is at most 1/n3. Since we are only concerned with
at most n2 such pairs, the embedding has distortion at most 1+ ε with probability at least
1−1/n. We now prove this theorem.

Proof: We prove the first inequality; the second one is similar. Let Y denote (X2
1 + · · ·+

X2
k)/k. Then, E[Y] = σ2. Therefore, as in the proof of Chernoff bounds,

Pr[Y > (1+ ε)σ2] = Pr[esY > es(1+ε)σ2
]≤ E[esY]

es(1+ε)σ2 (13.1.1)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

262 Design and Analysis of Algorithms

where s> 0 is a suitable parameter; we have used Markov’s inequality in the last inequality.
Now, the independence of the variables X1, . . . ,Xk implies that

E[esY] = E[e∑
k
i=1 sX2

i /k] = E[
k

∏
i=1

esX2
i /k] =

k

∏
i=1

E[esX2
i /k].

For a parameter α and a N(0,σ2) normal random variable X ,

E[eαX2
] =

1√
2πσ

∫ +∞

−∞

eαx2 · e−x2/2σ2
dx = (1−2ασ

2)−1/2

To evaluate the integral, we can use the result that
∫ +∞

−∞
e−x2/2 =

√
2π. Therefore, we can

express the right-hand side in Eq. (13.1.1) as

(1−2sσ2/k)−k/2

es(1+ε)σ2

Now, we would like to find the parameter s such that this expression is minimized. By
differentiating the expression with respect to s and setting it to 0, we see that the right
value of s is kε

2σ2(1+ε) . Substituting this in the expression, we see that Pr[Y > (1+ ε)σ2] is at
most ek/2ln(1+ε)−kε/2. Using the fact that ln(1+ ε) ≤ ε− ε2/2 if ε < 1/2, we get the desired
result. 2

13.2 Gaussian Elimination

Gaussian elimination is one of the most fundamental tools of solving a system of linear
equations. As a by-product, it also tells us the rank of a matrix. This can be useful if we are
given a set of points in a high-dimensional space but which belong to a low-dimensional
subspace. We can find this low-dimensional subspace by computing Gaussian elimination
of the matrix which has as its rows the coordinates of each of these points. We now explain
the idea behind Gaussian elimination.

It is easier to understand the algorithm when A is an invertible n× n square matrix,
and we need to solve the system of equations Ax = b, where b is a column vector of length
n. If A was upper triangular, solving this system of equations is easy. The fact that A is
invertible implies that all the diagonal entries of A would be non-zero. Therefore, we can
first solve for xn by An,nxn = bn. Having solved for xn, we can solve for xn−1 by considering
the equation An−1,n−1xn−1 +An−1,nxn = bn−1, and so on. Thus, we can solve this system of
equations in O(n2) time. Of course, A may not be upper triangular in general. The idea
behind the Gaussian elimination algorithm is to apply row operations to A such that it
becomes upper triangular. A row operation on A would mean one of the following: (i) let
Ai denote the ith row (vector) of A. Then, for a given row A j, we would replace row Ai by
Ai− cA j, where c is a non-zero constant. It is easy to see that this operation is invertible

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

Dimensionality Reduction* 263

– if we add cA j to the ith row of this new matrix, we will recover the original row vector
Ai, or (ii) interchange two rows Ai and A j of A. Again it is easy to see that this operation
is invertible. The bottomline is that the row operations preserve the original solution. The
algorithm is shown in Fig. 13.1.

At the beginning of iteration i, the matrix A satisfies the following properties: (i) rows
1 to i− 1 of A look like an upper triangular matrix, that is, for any such row j, j < i,
A j,1, . . . ,A j, j−1 = 0 and A j, j 6= 0, (ii) For all rows j ≥ i, the first i−1 entries are 0. In iteration
i, we would like to ensure that these properties hold for i as well. First assume that
Ai,i 6= 0. In this case, we can subtract a suitable multiple of row i from each of the rows j,
j > i, such that A j,i becomes 0. However, it may happen that Ai,i is 0. In this case, we look
for a row j, j > i, such that A j,i 6= 0 – such a row must exist. Otherwise, A j,i would be 0 for
all j ≥ 0. But then the determinant of A would be 0 (see Exercise Problem 13.4). We started
with A being invertible, and have applied operations to it which are invertible. So A
should remain invertible, which would be a contradiction. Therefore, such a row A j must
exist. Hence, we first interchange Ai and A j and perform the same operations as earlier.
When the procedure terminates, A is reduced to an upper triangular matrix, where all
diagonal entries are non-zero. Observe that the running time of this procedure is O(n3)

since in iteration i, there are O((n− i)2) row operations.

1 Input Square n×n matrix A ;
2 for i = 1, . . . ,n do
3 if Ai,i = 0 then
4 Let j be an index, i < j ≤ n such that A j,i 6= 0.
5 Interchange rows Ai and A j.
6

7 for j = i+1, . . . ,n do
8 Replace A j by A j− A j,i

Ai,i
Ai.

9

10

11 Output A.

Figure 13.1 Gaussian elimination algorithm

To summarize, let R1, . . . ,Rk be the row operations applied to A. Each of these row
operations can be represented by an invertible matrix (see Exercise Problem
13.5). Further, RkRk−1 . . .R1 · A is upper triangular. Let us see how this can be used for
solving a system of equations Ax = b. If we apply these row operations to both sides, we

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

264 Design and Analysis of Algorithms

get RkRk−1 . . .R1 ·Ax = RkRk−1 . . .R1 ·b. In other words, while we apply these row operations
on A, we apply them simultaneously on b as well. As a result, we replace these systems of
equations by an equivalent system of equations Ux = b′, where U is upper triangular and
b′ is obtained from b by these sequences of row operations. As mentioned earlier, this
system of equations can be easily solved in O(n2) time.

While implementing this algorithm, we should worry about the following issue – it
may happen that during iteration i, Ai,i 6= 0, but is very close to 0. In this case, computing
A j− A j,i

Ai,i
Ai would lead to a large numerical error. Therefore, it is always a good idea to first

find the index j≥ i for which |A j,i| is largest, and then interchange rows Ai and A j. We now
consider the more general scenario when A may not be invertible (or a non-square matrix).
It is useful to start with a notation: let A[i : j,k : l] be the sub-matrix of A consisting of rows
i till j and columns k till l. For example, in the Gaussian elimination algorithm described
earlier, the sub-matrix A[i : n,1 : i−1] is 0 at the beginning of iteration i.

We can run the same algorithm as before for a general matrix A. The only problem
would be that in iteration i, it is possible that Ai,i,Ai+1,i, . . . ,An,i are all 0. However, notice
that we could in principle bring any non-zero element in the sub-matrix A[i : n, i : n] by
performing row and column interchanges. For example, if Ak,l is non-zero, where i ≤ k ≤
n, i≤ l ≤ n, then we can interchange rows Ai and Ak, and similarly, columns Ai and Al (here,
A j refers to column j of A). This will bring the non-zero element at location Ai,i and the
invariant for rows 1 up to i− 1 will remain unchanged (i.e., they will continue to look
like an upper triangular matrix). After this, we can continue the algorithm as before. Just
as interchanging two rows corresponds to multiplying A by an invertible (permutation)
matrix on the left, interchanging two columns of A corresponds to multiplying A by such a
matrix on the right. Thus, we have shown the following result.

Theorem 13.2 Given any m×n matrix A, we can find invertible row operation matrices R1, . . . ,Rk,
and invertible column interchange matrices C1, . . . ,Cl such that the Rk . . .R1 ·A ·C1 . . .Ck has the
following structure: if the rank of A is i, then the sub-matrix A[1 : i,1 : n] is upper triangular with
non-zero diagonal entries, and the sub-matrix A[i+1 : n,1 : n] is 0.

Since the row operation and the column interchange matrices are invertible, one can
also get a basis for the sub-space spanned by the rows of A (see Exercise Problem 13.7).

13.3 Singular Value Decomposition and Applications

Singular value decomposition, often abbreviated as SVD, is a key tool in understanding
data which is inherently low-dimensional. Consider an n×d matrix A, where each row of
A can be thought of as a point in a d-dimensional Euclidean space. Suppose the points of
A actually lie in a lower dimensional subspace (say, a plane through the origin). We can
find the basis of this low-dimensional subspace by Gaussian elimination. However, in

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

Dimensionality Reduction* 265

most real-life applications, the coordinates of the points may get perturbed. This could
happen because of measurement errors, or even inherent limitations of the model being
used. Thus, we would like to find a matrix Ã which is low rank (i.e., rows span a
low-dimensional subspace), and closely approximates A. One can think of Ã as de-noising
of A – we are eliminating errors or noise in the data to get its ‘true’ representation. As we
will see in applications, there are many scenarios where we suspect that the data is
low-dimensional. SVD turns out to be an important tool for finding such a low-rank
matrix.

13.3.1 Some matrix algebra and the SVD theorem

Let A be an n× d matrix. It is often useful to think of A as a linear transformation from
ℜd to ℜn. Given a vector x ∈ℜd , this linear transformation (denoted by TA) maps it to the
vector A · (x1, . . . ,xd)

T ∈ ℜn, where (x1, . . . ,xd) are the coordinates of x. Now, if we change
the basis of any of the two Euclidean spaces, it changes the expression for A. Let us first
review linear algebra to see how change of basis works.

Suppose the current basis of ℜd is given by linearly independent vectors e1, . . . ,ed .
Thus, if a vector x has coordinates (x1,x2, . . . ,xd) with respect to this basis, then
x = x1 · e1 + . . .+ xded . Now suppose we change the basis of ℜd to e′1, . . . ,e

′
d . How does this

change the representation of the linear transformation TA? To understand this, let B be a
d× d matrix whose ith column is the representation of e′i in the basis {e1, . . . ,ed}, that is,
for every i = 1, . . . ,d:

e′i = B1ie1 +B2ie2 + . . .+Bdied (13.3.2)

It is easy to show that B must be an invertible matrix (see Exercise Problem 13.8). We
would like to now answer the following question: what are the coordinates of the vector
x in the new basis? If (x′1, . . . ,x

′
d) are the coordinates of x in this new basis, we see that

∑
d
i=1 x′ie

′
i = ∑

d
i=1 xiei. Now using the expression for e′i obtained in Eq. (13.3.2) and the linear

independence of vectors in a basis, we see that

xi =
d

∑
j=1

x′jBi j

which can be written more compactly as

(x1, . . . ,xd)
T = B · (x′1, . . . ,x′d)T (13.3.3)

Now we can understand how the representation of TA changes. Earlier, a vector x with
coordinates (x1, . . . ,xd) was getting mapped to a vector A · (x1, . . . ,xd)

T . If A′ is the new
representation of TA, then the same vector with new coordinates (x′1, . . . ,x

′
d) as before will

get mapped to A′ · (x′1, . . . ,x′d)T . Since these two resulting vectors are same, we see that

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

266 Design and Analysis of Algorithms

A′ · (x′1, . . . ,x′d)T = A · (x1, . . . ,xd)
T . Using Eq. (13.3.3), this implies that A′ · (x′1, . . . ,x′d)T = A ·

B · (x′1, . . . ,x′d)T . Since we could have chosen (x′1, . . . ,x
′
d) to be any vector, this equality can

happen if and only if A′ = A ·B. This expression shows how the matrix A changes when we
change the basis of ℜd . One can similarly show the following more general result.

Theorem 13.3 Suppose we change the basis of domain ℜd and range ℜn with corresponding
matrices B and C respectively. Then the matrix for the linear transformation TA becomes C−1AB.

We will be interested in cases where the basis vectors are always orthonormal, that is,
if e1, . . . ,ed is a basis, then < ei,e j >= 0 if i 6= j, 1 if i = j. Here < ei,e j > denotes the dot
product of these two vectors. Orthonormal vectors are convenient to work with because if
x is any vector with coordinates (x1, . . . ,xd) with respect to such a basis, then xi =< x,ei >.
This follows from the fact that x = ∑

d
j=1 x je j, and so, < x,ei >= ∑

d
j=1 x j < e j,ei >= xi. Using

this notation, let B be the d × d matrix corresponding to the orthonormal bases
{e′1,e′2, . . . ,e′d} and {e1,e2, . . . ,ed}. It immediately follows from Eq. (13.3.3) that the columns
of B are orthonormal, that is, the dot product of a column of B with itself is 1, and with
any other column is 0. To see this, observe that

< e′i,e
′
l >=<

d

∑
j=1

B jie j,
d

∑
k=1

Bklel >=
d

∑
j=1

B jiB jl ,

where the last equality follows from the orthonormality of the basis vectors e1, . . . ,ed . The
RHS in this equation is the dot product of columns i and l of B. If i = l, < e′i,e

′
l >= 1, and so,

each column of B has length 1. If i 6= l, then the columns i and l of B are orthogonal to each
other. Such a matrix is also called a unitary matrix. It follows that for a unitary matrix,
BT is the inverse of B (see Exercise Problem 13.10). The singular value decomposition
theorem shows that given a linear transformation TA from ℜd to ℜn with corresponding
matrix A, one can find orthonormal bases in the range and the domain such that the matrix
corresponding to this transformation becomes diagonal. More formally, we can state the
following theorem.

Theorem 13.4 Let A be any n×d matrix. Then there exist d×d and n×n unitary matrices V and
U respectively such that A =UΣV T , where Σ is a n×d diagonal matrix. Further, if σi denotes the
diagonal entry Σi,i, then σ1 ≥ σ2 . . .≥ σmin(d,n), and the matrix Σ is uniquely defined by A.

The theorem essentially says that any matrix can be thought of as a diagonal matrix
once we suitably change bases. The decomposition of A into UΣV T is called the singular
value decomposition (SVD) of A, and the diagonal entries of Σ are also called the singular
values of A. We give the proof of the SVD theorem in Section 13.3.5. We now give some
interesting applications of this decomposition. Given the SVD decomposition of A, one
can very easily read off several interesting properties of A. Since the rank of a matrix does
not change if we multiply it (on the left or the right) by an invertible matrix, we get the
following result by multiplying A with UT on the left and with V on the right.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

Dimensionality Reduction* 267

Corollary 13.1 The rank of A is the number of non-zero singular values of A.

Let u1, . . . ,un and v1, . . . ,vd be the columns of U and V respectively. Notice that the SVD
decomposition theorem implies that AV =UΣ and so, Avi =σiui if 1≤ i≤min(d,n), and Avi =

0 if i > n. Therefore, if r denotes the number of non-zero singular values of A, it follows that
u1, . . . ,ur span the range of A. Indeed, if x ∈ℜd , then we can write x as a linear combination
of v1, . . . ,vd . So assume that x = ∑

d
i=1 αivi. Therefore, Ax = ∑

d
i=1 αiAvi = ∑

r
i=1 αi ·σi · ui. Thus,

u1, . . . ,ur spans the range of A. One can show similarly that vr+1, . . . ,vd spans the null-space1

of A.

13.3.2 Low-rank approximations using SVD

As outlined in the beginning of this section, one of the principal motivations for studying
SVD is to find a low-rank approximation to a matrix A, that is, given an n×d matrix A, find
a matrix Ã of rank k, where k << d,n, such that Ã is close to A. We need to formally define
when a matrix is close to another matrix (of the same dimension). Recall that a similar
notion for vectors is easy to define: two vectors v and v′ are close if v− v′ has small length
(or norm). Similarly, we will say that Ã is close to A if the difference matrix A− Ã has small
norm. It remains to define the meaning of ‘norm’ of a matrix. There are many ways of
defining this (just as there are many ways of defining length of a vector, for example, `p

norms for various values of p). One natural way to define this notion is by thinking of a
matrix A as a linear transformation. Given a vector x, A maps it to a vector Ax. Intuitively,
we would like to say that A has large norm if A magnifies the length of x by a large factor,
that is, ||Ax||/||x|| is large, where || · || refers to the usual 2-norm (or the Euclidean norm) of
a vector. Thus, we define the norm of a matrix A, denoted by ||A|| (sometimes also called
the spectral norm of A) as

max
x:x 6=0

||Ax||
||x||

that is, the maximum ratio by which A magnifies the length of a non-zero vector.
Although the notation || · || is used for both the 2-norm for vectors and spectral norm for
the matrices, the reader should be able to interpret it unambiguously in a given context.
We can now define the low-rank approximation problem formally. Given an n×d matrix,
and a non-negative parameter k ≤ d,n, we would like to find a rank k matrix Ã such that
||A− Ã|| is minimized.

Before we go into the details of this construction, we observe that SVD of a matrix A
immediately gives its norm as well. To prove this, we make some simple observations.

1 All vectors v such that Av = 0.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

268 Design and Analysis of Algorithms

Lemma 13.1 Let A be an n× d matrix and B be a unitary n× n matrix. Then, ||A|| = ||BA||.
Similarly, if C is a unitary d×d matrix, then ||A||= ||AC||.

Proof: The main observation is that a unitary matrix preserves the length of a vector, that
is, if U is unitary, then ||Ux|| = ||x|| for any vector x (of appropriate dimension). Indeed,
||Ux||2 = (Ux)T ·Ux = xTUTUx = ||x||2, because UTU = I. Therefore, if x is any vector of
dimension d, then, by considering the vector Ax, we get ||Ax||= ||BAx||. So, maxx:x 6=0

||Ax||
||x|| =

maxx:x 6=0
||BAx||
||x|| .

For the second part, observe that if C is a unitary matrix, ||Cx|| = ||x||. Therefore, by
substituting x =Cy, we get

max
x:x 6=0

||Ax||
||x||

= max
y:y6=0

||ACy||
||y||

This implies that ||A||= ||AC||. 2

In particular, this result implies that ||A||= ||Σ||. But it is easy to see that ||Σ||= σ1 (see
Exercise Problem 13.11). Consider the matrix Ã = UΣkV T , where Σk is obtained from Σ by
zeroing out all diagonal entries after (and excluding) σk, that is, the non-zero entries in Σk

are σ1,,σk. As argued before, the rank of Ã is ≤ k (it could be less than k if some of the
singular values among σ1,σk are 0). Now, observe that Σ−Σk has norm σk+1. Therefore,
||A− Ã||= σk+1. We claim that Ã is the best rank k approximation to A, that is, for any other
rank k matrix B, ||A−B|| ≥ σk+1. Thus, SVD gives an easy way of finding the best rank k
approximation to A.

In order to prove this, we shall need some elementary linear algebra facts:

• Let V be a vector space of dimension n and W1 and W2 be two subspaces of V . If
dimension of W1 plus that of W2 is strictly greater than n, then there must be a
non-zero vector in W1∩W2.

• Let A be an n×d matrix. Recall that the nullspace of A is the set of vectors v such that
Av = 0. Then, the rank of A plus the rank of the null space of A is d.

Armed with these two facts, we now show that Ã is the best rank k approximation. Indeed,
let B be a matrix of rank at most k. Let v1, . . . ,vd be the columns of V . Let Vk+1 be the
sub-space spanned by v1,,vk+1. The second observation mentioned here shows that the
dimension of N(B) , the nullspace of B, is at least d− k, and so, using the first observation,
there is a non-zero vector x in Vk+1 ∩N(B). Observe that (A− B)x = Ax because Bx = 0.
Therefore, ||A−B|| ≥ ||Ax||

||x|| . Finally, observe that x is a linear combination of v1, . . . ,vk+1, each
of which gets magnified (in length) by a factor of at least σk+1 by A. Therefore, ||Ax||/||x|| ≥
σk+1 as well (see Exercise Problem 13.12). This shows that ||A−B|| ≥ σk+1.

SVD also yields optimal low rank approximation with respect to another popular
matrix norm, called the Frobenius norm. The Frobenius norm of an m× n matrix A is

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

Dimensionality Reduction* 269

defined as (∑m
i=1 ∑

n
j=1 |Ai j|2)1/2. This is the usual Euclidean norm of the vector obtained

from A by linearly arranging the entries in a vector of length mn. We state the following
theorem without proof.

Theorem 13.5 Let Ã denote the rank k matrix UΣkV T . For any rank matrix B of rank k or less,
||A− Ã||F ≤ ||A−B||F .

Let us understand this result in a more detailed manner. Consider the matrix m× n
matrix A as representing m points, a1, . . . ,am, where ai is the ith row of A. Each of these
points lie in the n-dimensional Euclidean space. The rows of a rank k matrix B span a
k-dimensional subspace, call it S. If we think of the ith row bi as an approximation of
ai, then ||ai− bi|| represents the distance between ai and its approximation bi. Thus, the
problem of minimizing ||AB||2F for a rank k matrix B can be stated as follows: we want to
find a rank k subspace and points bi in this subspace such that ∑

n
i=1 ||ai−bi||2 is minimized.

Clearly, bi should be the orthogonal projection of ai on this subspace. Theorem 13.5 states
that the optimal subspace is given by the span of the rows of Ã, and the projection of ai on
this subspace is given by the ith row of Ã. Can we give an orthonormal basis of this rank k
subspace?

We claim that this subspace is spanned by the first k columns of V (which also form an
orthonormal basis for this subspace). To see this, let Vk and Uk be the submatrix of V and
U respectively consisiting of their first k columns. Let Σk denote the k× k diagonal matrix
with diagonal entries σ1, . . . ,σk. It is easy to check that Ã = UkΣkV T

k . From this it follows
that each row of Ã is a linear combination of the columns of Vk.

13.3.3 Applications of low-rank approximations

As indicated earlier, SVD is often used to remove noise from data. We now illustrate this
concretely with an application in text processing, also denoted as ‘latent sematic
indexing’. We are given a set of documents, and would like to perform several tasks – (i)
given two documents, figure out how close they are, and (ii) given a query term, output
all documents which are relevant to this query term. A popular way to represent a
document, also called the ‘bag of words’ model, is to think of it as a multi-set of words
appearing in it. In other words, we store the documents in a term-document matrix T ,
where the columns of T correspond to documents, and rows of T corresponds to words
(or terms) that could occur in these documents.2 Thus, the entry Ti j, for a document j and
term i, stores the frequency of term i in document j.3 Suppose there are n documents and
m terms. Then we can think of each document as a vector in ℜm corresponding to the

2 Typically, we only use the root word, so that all forms of this word based on tense, etc. are unified.
3 There are more nuanced measures than frequency of a term, which increase the weights of ‘rare’ words, and
decrease the weights of very frequent words, like ‘the’, but we ignore such issues for the sake of clarity.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

270 Design and Analysis of Algorithms

column representing it in this matrix. Similarly, we can think of a term as a vector of size
n. Now, we can compare two documents by the cosine-similarity measure. Given two
documents i and j, this measure considers the angles between the vectors corresponding
to i and j, that is,

cos−1 < Ti,Tj >

||Ti||||Tj||

This gives a measure in the range [−1,1] of similarity between two documents. Now
suppose we want to output all documents which are relevant for a set of terms
(t1, t2, . . . , tr). We first think of this set of terms as a document containing just these terms,
and so, it can be thought of as a vector of length m as well (so, it is a bit vector, where we
have 1 for coordinates corresponding to these terms). Now, we can again use the
cosine-similarity measure to output all relevant documents.

This approach is very appealing in practice because one can ignore issues involving
grammar and a plethora of experimental data suggests that it works very well in practice.
However, there are several issues. The first issue is computational – the matrix T is huge
because the number of possible words can easily go up to several tens of thousands. The
second issue is more semantic in nature. It is possible that two documents use the same
term frequently but could be about completely different topics. For example, the term
‘jaguar’ could mean either the animal jaguar, or the car brand Jaguar. Similarly, it is
possible that two different terms (e.g., ‘car’ and ‘auto’) could mean the same entity, and
so, two different documents involving these terms respectively should be considered
similar. Both of these problems suggest that perhaps the vectors corresponding to text
belong to a different ‘semantic’ space where there are a smaller number of ‘semantic’
terms instead of actual words. The SVD approach tries to find such a low-dimensional
representation of these vectors.

Another way to think about this problem is as follows. Suppose there are only k
different topics that a document can be referring to (e.g., automobile, cooking, science,
fiction, etc.). Each of the documents is inherently a vector (w1, . . . ,wk), where wi denotes
the relevance of topic i for this document (if the weights are normalized so that they add
up to 1, then the weights can be thought of as probabilities). Similarly, each of the terms
can be thought of as a vector of length k. Now the entry Ti j of the term-document matrix
corresponding to document j and term i can be thought of as the dot product of the
corresponding vectors (that is, for the document and the term) of length k (if we think of
weights as probabilities, then this dot product is the probability of seeing term j in
document i). It is also easy to see that the rank of T will be at most k in this case (see
Exercise Problem 13.13). Of course, the actual matrix T may not be obtained in this
manner, but we still hope to see a rank k matrix which represents most of the content in
T . In this sense, it is very appealing to replace T by a low rank (that is, rank k)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

Dimensionality Reduction* 271

representation. Also, observe that if we can replace T by such a low-rank representation,
it may be possible to get representations of documents as vectors of low dimension.

We use SVD to get a low-rank representation of T , that is, if T = UΣV T , then define
T̃ =UΣkV T , where Σk is obtained from Σ by zeroing out all diagonal entries after σk. Let Uk

be the m× k matrix obtained by selecting the first k columns of U (define Vk similarly). If
Σ̃k denotes the square k× k matrix with diagonal entries σ1, . . . ,σk, then we can rewrite the
expression for T as T̃ = UkΣ̃kV T

k . We can now give the following low-dimensional
representation of each term and document: for a term i, let ti be the ith row vector of UkΣ̃k.
Similarly, for a document j, let d j be the jth row of Vk. It is easy to check that the (i, j)
entry of T is equal to the dot product of ti and d j. Thus, we can think of these vectors as
low-dimensional representation of terms and documents. Observe that for a document j,
which was originally represented by column vector Tj of T (of length m), the
representation d j is obtained by the operation Σ̃

−1
k UT

k Tj. Therefore, given a query q (which
is a vector of length m), we perform the same operation (that is, Σ̃

−1
k UT

k q) to get a vector q̃
of length k. Now we can find the most relevant documents for q by computing the angles
(cosine) between q̃ and the vectors d j for all documents j.

By storing low-dimensional representation of these vectors, we save on the space and
time needed to answer a query. Moreover, experimental data suggests that replacing T by
a low-dimensional representation gives better results.

13.3.4 Clustering problems

A very common scenario that a business company often encounters can be stated as
follows – Given a certain population distribution in a city, where would they open k
outlets such that the business benefits the most. Translated into a concrete objective
function, a company wants to open outlets in locations L = {L1,L2 · · ·Lk} such that ∑

n
i=1

dist(ai,L) is minimized where ai denotes the location of customer i and
dist(ai,L) = minL j∈L ||ai − L j|| i.e., the Euclidean distance to the closest outlet from
customer i. Often, we prefer the square of the Euclidean distance, viz.,
∑

n
i=1 dist2(ai,L). This belongs to a class of optimization problems known as facility location

where the solution depends on the choice of the distance metric. In the aforementioned
problem, we chose the sum of squared distance which is known as k-means problem. For
the sum of (absolute) distance, it is known as k-median. The chosen locations are referred
to as facilities and the customers that are associated with the same facility (usually the
closest) define clusters. If the clusters are known (or fixed), then it is known that

Claim 13.1 The k-means objective function is optimized by setting up a facility in the geometric
centroid for each of the k clusters.

This is true for any Euclidean space and the proof is left as an exercise to the reader.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

272 Design and Analysis of Algorithms

Finding optimal locations for potential customers may be thought of as converse of
the previously described nearest neighbor problem where the locations are known. Not
surprisingly, solving this problem even in low dimensions is known to be intractable, so it
makes sense to explore efficient algorithms that yield close to the optimal answers.

The k-means problem suffers from the so-called curse of dimensionality – many known
heuristics run in time exponential in the number of dimensions, and so, reducing the
dimensionality of the underlying points is an important preprocessing step. For example,
we know by the Johnson–Lindenstrauss lemma that we can project the points to an
O(logn/ε2) dimensional space while losing only (1+ ε)-factor in the approximation ratio.
In typical applications k is a small number. Can we reduce the dimension to k? We show
that this is indeed possible if we are willing to lose a factor 2 in the approximation.

The trick is again to use the SVD. Construct the n× d matrix A representing the n
points as the rows of this matrix. Let ai denote the ith row (and so, the ith point) of A.
Recall from Theorem 13.5 that the first k rows of V represent a basis for the subspace S for
which ∑

n
i=1 dist(ai,S)2 is minimized, where dist(ai,S) denotes the distance between ai and

its projection on S. Further, the projection ãi of ai on S is given by the ith row of the matrix
Ã =UkΣkV T

k .
We claim that the optimal set of locations for the points ã1,ãn will also give a good

solution for the k means problem for the points a1, . . . ,an. To see this, let L̃ = {L̃1, L̃2 . . . L̃k}
be the optimal locations in the subspace S for {ã1, ã2 . . . ãn}. The following statement shows
that these locations are good for the original set of points as well.

Lemma 13.2 Let L = {L1, . . . ,Lk} be the optimal set of locations for a1, . . . ,an. Then

n

∑
i=1

dist(ai, L̃)2 ≤ 2 ·
n

∑
i=1

dist(ai,L)2.

Since L̃ is subset of S, and ãi is the orthogonal projection of ai on this subspace,
Pythagoras theorem shows that

dist(ai, L̃)2 = ||ai− ãi||2 +dist(ãi, L̃)2. (13.3.4)

We prove the lemma by bounding each of these terms separately. To bound the first term,
consider the subspace S′ spanned by the points in L. Since L has size k, S′ has dimension at
most k. By optimality of S (Theorem 13.5),

n

∑
i=1
||ai− ãi||2 =

n

∑
i=1

dist(ai,S)2 ≤
n

∑
i=1

dist(ai,S′)2 ≤
n

∑
i=1

dist(ai,L)2,

where the last inequality follows from the fact that L is a subset of S′. This bounds the first
term in Eq. (13.3.4). Let us bound the second term now.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

Dimensionality Reduction* 273

V
^

V

L2

L1

L3

a3

a2

a1

Figure 13.2 A two-dimensional illustration of the SVD subspace V1 of
points represented by circular dots, where V1 denotes the
subspace spanned by the first column of V . The optimal
locations are L1,L2,L3. The optimal locations restricted to
the subspace V1 are a1,a2,a3.

Recall that L̃ is the optimal solution to the k-means instance given by the points
ã1, . . . , ãn. Let L̄ denote the projection of L on the subspace S. Clearly, dist(ãi,L) ≥
dist(ãi, L̄). But the optimality of L̃ shows that

n

∑
i=1

dist(ãi, L̃)2 ≤
n

∑
i=1

dist(ãi, L̄)2 ≤
n

∑
i=1

dist(ai,L)2,

where the last inequality follows from the fact that both ãi and the points L̄ j are obtained
by projecting ai and L j to the subspace S (see Exercise Probem 13.16). This bounds the
second term in Eq. (13.3.4) and proves the lemma.

13.3.5 Proof of the SVD theorem

In this section, we give the main ideas behind a proof of the SVD theorem. The details
are left as an exercise. Recall that the SVD theorem states that any m× n matrix A can be
written as UΣV T , where U and V are unitary square matrices (dimensions m×m and n×n
respectively) and Σ has non-zero entries in its diagonal only. Further, if σi denotes Σi,i, then
σ1≥σ2≥ If v1, . . . ,vn denote the columns of V , then the fact that V is unitary implies that
v1, . . . ,vn form an orthonormal basis of ℜn. Similarly, u1, . . . ,um, the columns of U , form an
orthonormal basis of ℜm. Finally, Avi = σui for 1≤ i≤min(m,n), and Avi = 0 if i > min(m,n).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

274 Design and Analysis of Algorithms

Let us see how to determine σ1 first. Observe that ||Av1||= ||σ1u1||= σ1. Further, if x is any
unit vector, then we claim that ||Ax| ≤ σ1. To see this, we write x as a linear combination
of v1, . . . ,vn, that is, ∑

n
i=1 αivi. Since ||x||2 = ∑

n
i=1 α2

i , we know that ∑
n
i=1 α2

i = 1. Now, Ax =

∑
n
i=1 αi ·Avi = ∑

min(m,n)
i=1 αiσiui, where we have used the properties of the SVD theorem. Since

the vectors ui are also orthonormal, it follows that ||Ax||2 = ∑
min(m,n)
i=1 α2

i σ2
i ≤ σ2

1. Thus, we
can conclude that if the SVD theorem is true, then σ1 must be the maximum value of ||Ax||
over all unit vectors x.

With this intuition, we proceed with the proof. Define σ1 as the highest value of ||Ax||
over all unit vectors x ∈ ℜn. Let v1 be the unit vector which achieves this maximum.4 So,
||Av1|| = σ1. Hence, we can write Av1 as σ1u1, where u1 is a unit vector. As the notation
suggests, the vectors u1 and v1 should form the first column of U and V respectively. To
complete the proof, we would argue that if V1 denotes the subspace ℜn of vectors
orthogonal to v1 and U1 denotes the corresponding subspace of vectors orthogonal to u1,
then A maps any vector in V1 to a vector in U1. Since the dimension of V1 is going to be one
less than the dimension of ℜn, the proof will be completed by induction (details left as
exercises).

Let x be any vector in V1, and suppose, for the sake of contradiction that Ax does
not belong to U1, that is, Ax can be written as αu+α1u1, where u ∈ U1 and α1 6= 0. By
scaling, we can assume that x is a unit vector; similarly, by choosing α suitably, we can
assume that u is a unit vector as well. Now consider the vector v′ = v1 + εx, where ε is a
small enough parameter which we will decide later. Since v1 and x are orthogonal,
||v′||2 = 1+ ε2. Further, Av′ = (σ1 + εα1)u1 + εαu. Since u and u1 are orthonormal, we get
||Av′||2 = (σ1 + εα1)

2 + ε2α2 ≥ σ2 + 2εα1σ1. Since α1 6= 0, we choose ε with small enough
absolute value such that 2εα1σ1 > ε2σ2. Therefore, ||Av′||2 > σ2

1(1+ ε2) = σ2
1||v′||2. We have

found a vector v′ such that the ratio ||Av′||/||v′|| is strictly larger than σ1, which is a
contradiction. Therefore, any vector in V1 must get mapped to U1 by A. We can now finish
the proof by induction.

Note that this proof is non-constructive. The proof requires us to find the unit vector
which maximizes ||Ax||. There are constructive methods for computing SVD; typically,
these would take cubic time (in the dimension of the matrix). There are also connections
between SVD and eigenvalues. To see this, first assume that m≥ n. If A =UΣV T , then AT =

V ΣTUT . Therefore, AT A = V ΣT ΣV T . Now ΣT Σ is an n× n diagonal matrix, and its entries
are σ2, . . . ,σ2

n. But note that if AT A =V DV T for some diagonal matrix D and unitary matrix
V , then the diagonal entries of D must be the eigenvalues of AT A (see Exercise Problems).
Therefore, one way of computing SVD is via eigenvalue computation – form the matrix
AT A and compute its eigenvalues. The (positive) square roots of the eigenvalues would
give the singular values of A.

4 One needs to use compactness arguments to show that such a vector exists, but we ignore this issue.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

Dimensionality Reduction* 275

Further Reading

One of the first non-trivial applications of the Johnson–Lindenstrauss [71] result on
random projection was to the problem of high-dimensional near neighbor searching by
Indyk and Motwani [66]. The proof in this chapter follows the presentation by Dasgupta
and Gupta [39]. Later, it was shown that the random projection can be approximated by
an uniform choice over {+1,−1} – see Achlioptas’ paper [1]. The classical algorithms for
SVD are iterative and take time O(min{m · n2,n · m2}). Using sophisticated random
projection techniques, the best known algorithms for approximate SVD take a time
polynomial in ε and k, where ε is a measure of the approximation in a suitable norm and k
corresponds to the best rank k approximation – see Frieze et al. [55].

Exercise Problems

13.1 Consider the 3 vertices of an equilateral triangle in the plane, each at distance 1 from the
other two vertices. Show that it is not possible to map these 3 points to a line such that
all pair-wise distances are 1.

13.2 If X is an N(0,1) random variable, and a is a real number, prove that aX is distributed as
N(0,a2). Using this, prove that if X ,Y are two independent N(0,1) random variables, and
a and b are two real numbers, then aX + bY has distribution N(0,a2 + b2). Finally, use
induction to prove that if X1, . . . ,Xd are d i.i.d. N(0,1) random variables, then a1X1 + . . .+

adXd has distribution N(0, ||a||2), where a denotes the vector (a1, . . . ,ad).

13.3 Let f be the random projection on a line as defined in Section 3.1. Assuming ε is a small
positive constant, prove that the probability that || f (p)− f (q)||2 is within (1± ε)||p−q||2

is θ(
√

ε).

13.4 Let A be a square matrix such that for the first i−1 rows, the following property holds: for
any j, 1≤ j ≤ i−1, the first j−1 entries in row j are 0. Further, suppose A j,i = 0 for all
j ≥ i. Prove that determinant of A is 0.

13.5 Let A be a square matrix. Find an invertible matrix P such that PA is the matrix obtained
from A by interchanging rows Ai and A j. Find an invertible matrix Q such that QA is
obtained from A by replacing row A j with A j− cAi, where c is a constant.

13.6 Let A be an n×d matrix whose rank is k (k ≤ d). Show how to use Gaussian elimination
to find the low-dimensional representation of these points.

13.7 Show how Gaussian elimination can be used to obtain a basis for the rows of A.

13.8 Prove that the matrix B in Section 13.3.1 is invertible.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

276 Design and Analysis of Algorithms

13.9 Suppose A and A′ are two n×d matrices such that Ax = A′x for all vectors x. Prove that
A = A′.

13.10 Let B be a unitary matrix. Show that the inverse of B is same as the transpose of B.

13.11 Let D be an n×d diagonal matrix. Show that ||D||= maxmin(d,n)
i=1 |D(i, i)|.

13.12 Let v1, . . . ,vs be a set of orthonormal vectors in ℜd and let A be an n×d matrix. Further,
assume that ||Avi|| ≥ σ for i = 1, . . . ,s. If x is any non-zero vector in the span of v1, . . . ,vs,
prove that ||Ax||/||x|| ≥ σ.

13.13 Let v1, . . . ,vn,w1, . . . ,wm be a set of vectors in ℜk. Construct a matrix T , where Ti j is equal
to the dot product of vi and w j. Prove that the rank of T is at most k. Give an example to
show that the rank of T can be strictly less than k.

13.14 Complete the proof of the SVD theorem by using induction on the subspaces U1 and V1.

13.15 Let B be an n×n square matrix. Suppose we can express B as V T DV , where V is unitary
and D is a diagonal matrix. Prove that the entries of D are eigenvalues of B.

13.16 Let S be a subspace in an n dimensional Euclidean space. Let a and b be two points
in the Euclidean space, and let ã, b̃ denote the orthogonal projection of a and b on S
respectively. Prove that ||ã− b̃|| ≤ ||a−b||.

13.17 Prove Claim 13.1.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.014
https://www.cambridge.org/core

14
C H A P T E R

Parallel Algorithms

14.1 Models of Parallel Computation

There is a perpetual need for faster computation which is unlikely to be ever satisfied.
With device technologies hitting physical limits, alternate computational models are being
explored. The Big Data phenomenon precedes the coinage of this term by many decades.
One of the earliest and natural direction to speed-up computation was to deploy multiple
processors instead of a single processor for running the same program. The ideal objective
is to speed-up a program p-fold by using p processors simultaneously. A common caveat is
that an egg cannot be boiled faster by employing multiple cooks! Analogously, a program
cannot be executed faster indefinitely by using more and more processors. This is not just
because of physical limitations but dependencies between various fragments of the code,
imposed by precedence constraints.

At a lower level, namely, in digital hardware design, parallelism is inherent – any circuit
can be viewed as a parallel computational model. Signals travel across different paths and
components and combine to yield the desired result. In contrast, a program is coded in a
very sequential manner and the data flows are often dependent on each other – just think
about a loop that executes in a sequence. Second, for a given problem, one may have to
re-design a sequential algorithm to extract more parallelism. In this chapter, we focus on
designing fast parallel algorithms for fundamental problems.

A very important facet of parallel algorithm design is the underlying architecture of
the computer, viz., how do the processors communicate with each other and access data

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

278 Design and Analysis of Algorithms

concurrently. Moreover, is there a common clock across which we can measure the actual
running time? Synchronization is an important property that makes parallel algorithm
design somewhat more tractable. In more generalized asynchronous models, there are
additional issues like deadlock and even convergence, which are very challenging to
analyze.

In this chapter, we will consider synchronous parallel models (sometimes called
SIMD) and look at two important models – parallel random access machine (PRAM) and the
interconnection network model. The PRAM model is the parallel counterpart of the popular
sequential RAM model where p processors can simultaneously access a common memory
called shared memory. Clearly, enormous hardware support is required to enable
processors to access the shared memory concurrently which will scale with increasing
number of processors and memory size. Nevertheless, we adopt a uniform access time
assumption for reads and writes. The weakest model is called EREW PRAM or exclusive
read exclusive write PRAM where all the processors can access memory simultaneously
provided that there is no conflict in the accessed locations. Exclusiveness must be
guaranteed by the algorithm designer. There are other varations as well, called CREW1

and CRCW PRAMs that allow read conflicts and write conflicts. Although these are
abstract models that are difficult to build, they provide conceptual simplicity for
designing algorithms which can subsequently be mapped into the (weaker) realistic
models that could lead to some slowdown.

Interconnection networks are based on some regular graph topology where the nodes
are processors and the edges represent a physical link. The processors communicate with
each other via messages passing through wired links where each link is assumed to take
some fixed time. The time to send a message between two processors is proportional to
the number of links (edges) in the route between the two processors. This could encourage
us to add more links, but there is a tradeoff between the number of edges and the cost and
area of the circuit, which is usually built as a VLSI circuit. Getting the right data to the
right processor is the key to faster execution of the algorithm. This problem is commonly
referred to as routing. Toward the end of this chapter we will discuss routing algorithms
that provides a bridge between PRAM algorithms and the interconnection networks.

14.2 Sorting and Comparison Problems

14.2.1 Finding the maximum

This is considered to be a trivial problem in the sequential context and there are several
ways of computing the maximum using n−1 comparisons. A simple scan suffices where
one maintains the maximum of the elements seen so far.

1 C denotes concurrent and E denotes exclusive.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

Parallel Algorithms 279

Claim 14.1 Finding the maximum of n elements requires at least n−1 comparisons.

The proof is left as an exercise. We want to do many comparisons in parallel so that we
can eliminate many elements from further consideration – every comparison eliminates
the smaller element. We assume that in each round, each of the available processors
compares a pair of elements. If we want to minimize the number of rounds, we can use(n

2

)
processors to do all the pairwise comparisons and output the element that wins across

all comparisons. The second phase of locating the element that has not lost requires more
details in the parallel context and may require several rounds. But is the first phase itself
efficient? We need roughly Ω(n2) processors and so the total number of operations far
exceeds the sequential bound of O(n) comparisons and does not seem to be cost effective.
The number of operations is often compared to the processor-time product which is a
measure of the total computational bandwidth. A parallel algorithm is considered to be
efficient if the number of operations is close to the processor-time product.2

Can we reduce the number of processors to O(n). That seems unlikely as we can do
at most n

2 comparisons in one round by pairing up elements and there will be at least n/2
potential maximums at the end of the first round. We can continue doing the same – pair
up the winners and compare them in the second round and keep repeating this till we find
the maximum. This is similar to a knockout tournament where after i rounds, there are at
most n

2i potential winners. So after logn rounds, we can pick the maximum.

How many processors do we need?
If we do it in a straight forward manner by assigning one processor to each of the
comparisons in any given round, we need n

2 processors (which is the maximum across all
rounds). So the processor time product is Ω(n logn); however, the total number of
comparisons is n

2 +
n
4 + . . . ≤ n, which is optimum. Hence, we must explore the reason for

the inefficient use of processors.
One possibility is to reduce the number of processors to p� n and slow down each

round. For example, the n
2 first round comparisons can be done using p processors in

roughly d n
2pe rounds. This amounts to slowing down round i by a factor n

2i·p
3 so that the

total number of rounds is

n
p
· (1

2
+

1
22 + . . .+

1
2i)≤

n
p

By definition, this is optimal work as the processor time product is linear. There is a
caveat – we are ignoring any cost associated with assigning the available processors to the
prescribed comparisons in each round. This is a crucial component for implementing
parallel algorithms called load balancing which itself is a non-trivial parallel procedure

2Another popular measure is called FLOPS (floating point operations per second)
3 We ignore the ceilings for simplicity.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

280 Design and Analysis of Algorithms

requiring attention at the system level. We will sketch some possible approaches to this in
the section on parallel prefix computation. For now, we ignore this component and
therefore, we have a parallel algorithm for finding the maximum of n elements that
require O(n

p) parallel time. But this tells us that we can find the maximum in O(1) time
using p = Ω(n)! Clearly, we cannot do this in less than O(logn) rounds by the previous
algorithm.

So there is a catch – when the number of comparisons falls below p, the time is at least
1, a fact that we ignored in the previous summation. So let us split the summation into two
components – one when the number of camparisons is ≥ p and the subsequent ones when
they are less than p. When they are less than p, we can run the first version in O(log p)
rounds which is now an additive term in the expression for parallel time that is given
by O(n

p + log p). It is now clear that for p = Ω(n), the running time is Ω(logn); the more
interesting observation is that it is minimized for p = n

logn . This leads to a processor-time
product O(n) with parallel running time O(logn).

A simpler way to attain this bound will be to first let the p = n
logn processors

sequentially find the maximum of (disjoint subsets of) logn elements in logn comparisons
and then run the first version of n

logn elements using p processors in log(n
logn) ≤ logn

parallel steps. This has the added advantage that practically no load balancing is necessary
as all the comparisons can be carried out by the suitably indexed processor. If a processor
has index i ,1≤ i≤ p, we must pre-assign the comparisons to each of the processors. This
is left as an Exercise Problem.

Can we reduce the number of rounds without sacrificing efficiency?
Let us re-visit the one-round algorithm and try to improve it. Suppose we have n3/2

processors which is substantially less than n2 processors. We can divide the elements into
√

n disjoint subsets, and compute their maximum using n processors in a single round.
After this round, we are still left with

√
n elements which are candidates for the

maximum. However, we can compute their maximum in another round using the
one-round algorithm.4 Taking this idea forward, we can express the algorithm in a
recursive manner as follows.

The recurrence for parallel time can be written in terms of T ||(x,y) which represents the
parallel time for computing the maximum of x elements using y processors. Then, we can
write

T ||(n,n)≤ T ||(
√

n,
√

n)+T ||(
√

n,n)

The second term yields O(1) and with appropriate terminating conditions, we can show
that T ||(n,n) is O(log logn). This is indeed better than O(logn) and the processor time

4 We are ignoring the cost of load balancing.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

Parallel Algorithms 281

product can be improved further using the previous technqiues. The number of
processors can be further reduced to n

log logn and still retain T ||(n,n/ log logn) = O(log logn).
This is left as an Exercise Problem.

Can we improve the parallel running time further?

This is a very interesting question that requires a different line of argument. It turns out
that with n processors, any algorithm requires Ω(log logn) rounds. We will provide a
sketch of the proof. Consider a graph G = (V,E), where |V | = n and |E| = p. Every vertex
corresponds to an element and an edge denotes a comparison between a pair of elements.
We can think about the edges as the set of comparisons done in a single round of the
algorithm. Consider an independent subset W ⊂ V . We can assign the largest |W | values
to the elements associated with W . Therefore, at the end of the round, there are still |W |
elements that are candidates for the maximum. In the next round, we consider the
(reduced) graph G1 on W and the sequence of comparisons in round i corresponds to the
edges in Gi−1. Again, we can choose an independent set in this graph, and let them be the
‘winners’ of comparisons done in this round. The number of edges is bound by p. The
following result on the size of the independent set of a graph, known as Turan’s theorem
will be useful in our context.

Lemma 14.1 In an undirected graph with n vertices and m edges, there exists an independent
subset of size at least n2

m+n .

Proof: We will outline a proof that is based on probabilistic reasoning. Randomly number
the vertices V in the range 1 to n, where n = |V | and scan them in an increasing order. A
vertex i is added to the independent set I if all its neighbors are numbered higher than i.
Convince yourself that I is an independent set. We now find a bound for E[|I |]. A vertex
v ∈ I iff all the d(v) neighbors (d(v) is the degree of vertex v) are numbered higher than v
and the probability of this event is 1

d(v)+1 . Let us define an indicator random variable Iv = 1
if v is chosen in I and 0 otherwise. Then,

E[|I |] = E[∑
v∈V

Iv] = ∑
v∈V

1
d(v)+1

Note that ∑v d(v) = 2m and that the aforementioned expression is minimized when all the
d(v) are equal, that is, d(v) = 2m

n . Hence, E[|I |]≥ n
2m/n+1 = n2

2m+n . Since the expected value of

|I | is at least n2

2m+n , it implies that for at least one permutation, I attains this value and
therefore, the lemma follows. 2

Let ni, i = 0,1,2 . . . denote |Gi| in the sequence G = G0,G1,G2, . . . ,Gi as defined by the
independent sets in the algorithm. Then, from the previous claim, for m = n, one can show
using induction that

ni ≥
n

32i−1

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

282 Design and Analysis of Algorithms

Claim 14.2 For p = n, show that after j =
log logn

2
rounds, n j > 1.

A detailed proof is left as an Exercise Problem.

14.2.2 Sorting

Let us discuss sorting on the interconnection network model where each processor initially
holds an element and after sorting, the processor indexed i, 1 ≤ i ≤ n, should contain the
rank i element. The simplest interconnection network is a linear array of n processing
elements. Since the diameter is n− 1, we cannot sort faster than Ω(n) parallel steps since
exchanging elements located at the two ends will have to move n−1 steps.

An intuitive approach to sorting is to compare and exchange neighboring elements
with the smaller element going to the smaller index. This can be done simultaneously for
all (disjoint) pairs. To make this more concrete, we will define rounds with each round
containing two phases – odd–even and even–odd. In the odd–even phase (Fig. 14.1), each
odd numbered processor compares its element with the larger even number element and
in the odd–even phase, each even numbered processor compares its element with that of
the higher odd numbered processor.

Procedure Odd–even transposition sort for processor(i)

1 for j = 1 to dn/2e do
2 for p = 1,2 do
3 if If i is odd then
4 Compare and exchange with processor i+1 ;
5 else
6 Compare and exchange with processor i−1 ;

7 if If i is even then
8 Compare and exchange with processor i+1 ;
9 else

10 Compare and exchange with processor i−1 ;

Figure 14.1 Parallel odd–even transposition sort

We repeat this over many rounds till the elements are sorted. To argue that it will
indeed be sorted, consider the smallest element. In every comparison, it will start moving
toward the processor numbered 1 which is its final destination. Once it reaches this
processor, it will continue to be there. Subsequently, we can consider the next element
which will finally reside in the processor numbered 2 and so on. Note that once elements

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

Parallel Algorithms 283

reach their final destination and all the smaller elements have also reached their correct
location, we can ignore them for future comparisons. Therefore, the array will be sorted
after no more than n2 rounds as it takes at most n rounds for any element to reach its final
destination. This analysis is not encouraging from the perspective of speed-up as it only
matches bubble sort. To improve our analysis, we must track the movements of elements
simultaneously rather than 1 at a time. To simplify our analysis, we invoke the following
result.

Lemma 14.2 (0–1 principle) If any sorting algorithm sorts all possible inputs of 0s and 1s
correctly, then it sorts all possible inputs correctly.

We omit the proof here but we note that there are only 2n possible 0–1 inputs of length n,
whereas there are n! permutations. The converse clearly holds.

So, let us analyze the algorithm mentioned earlier, called the odd–even transposition
sort for inputs restricted to {0,1}n. Such an input is considered sorted if all the 0s are to
the left of all 1s. Let us track the movement of the leftmost 0 over successive rounds of
comparisons. It is clear that the leftmost 0 will keep moving till it reaches processor 1.5

If this 0 is in position k in the beginning, it will reach its final destination within at most
dk/2e rounds. If we consider the next 0 (leftmost 0 among the remaining elements) to be
denoted by 02, the only element that can block its leftward progress is the leftmost 0 and
this can happen at most once. Indeed, after the leftmost 0 is no longer the immediate left
neighbor of 02, this elements will keep moving left till it reaches its final destination. If we
denote the sequence of 0s using 0i for the ith zero from left, we can prove the following by
induction.

Claim 14.3 The element 0i may not move for at most i phases (di/2e rounds) in the beginning;
subsequently, it moves in every phase until it reaches its final destination.

A detailed proof of this claim is left as an exercise to the reader.
Since the final destination of 0i is i, and it can be at most n− i phase away from the final
destination, the total number of phases for it to reach processor i is i+n− i = n. Note that
this argument holds simultaenously all the elements and so all the 0s (and therefore, all 1s)
are in their final positions within n phases or dn/2e rounds.

Next, we consider the two-dimensional mesh which is a widely used parallel
architecture. For sorting, we can choose from some of the standard indexing schemes like
row-major – every row i contains elements smaller than the next row, and the elements in
a row are sorted from left to right. Column-major has the same property across columns,
and snake-like row major has alternate rows that are sorted from left to right and the
others from right to left.

5 We are assuming that there is at least one 0 in the input; otherwise, there is nothing to prove.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

284 Design and Analysis of Algorithms

Suppose we sort rows and columns in successive phases. Does this converge to a sorted
array? No, you can construct an input where each row is sorted and every column is sorted
(top to bottom) but not all elements are in their final position. A small change fixes this
problem – sort rows according to snake-like row major (i.e., sort first row in increasing
order from left to right, but the second row in increasing order from right to left, and so
on) and the columns from top to bottom. The more interesting question is how many
rounds of row/column sorts are required?

Each row/column can be sorted using the odd–even transposition sort. So if we need t
iterations; then, the total parallel steps will be O(t

√
n) for a

√
n×
√

n array. To simplify our
analysis, we will again invoke the 0–1 principle. First consider only two rows of 0s and 1s.
Let us sort the first row from left to right and the second row from right to left. Then we
do the column sort.

Lemma 14.3 Either the top row will contain only 0s or the bottom row will contain only 1s – at
least one of the conditions will hold.

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

(i) After row sort in alternate directions

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1

(ii) After column sort, the top row is clean

Figure 14.2 Sorting two rows by alternately sorting rows and columns

We define a row clean if it consists of only 0s or only 1s and dirty otherwise. According to
this observation (prove it rigorously), after the row and column sort, at least one of the
rows is clean so that in the next iteration (sorting rows), the array is sorted (Fig. 14.2). Now
extend the analysis to an m×n array. After one round of row sort and column sort, at least
half the rows are clean. Indeed each consecutive pair of rows produces at least one clean
row and they continue to remain clean thereafter. In each iteration, the number of dirty
rows reduce by at least a factor of 2, leading to logm iterations for all (but one) row to be
clean. One more row sorting completes the ordering.

Lemma 14.4 For an m× n array, alternately sorting rows and columns results in a snake-like
sorted array after at most logm+1 iterations.

This rather simple algorithm, called Shearsort (Fig. 14.3) is close to being optimal, within
a factor of O(logn). Therefore, a

√
n×
√

n array can be sorted in O(
√

n logn) parallel steps.
In the Exercise Problems, you will be led through an O(

√
n) algorithm based on a recursive

variation of Shearsort.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

Parallel Algorithms 285

Procedure Shearsort(m,n)

1 for j = 1 to dlogme do
2 Sort rows in alternating directions ;
3 Sort columns from top to bottom ;

Figure 14.3 Shearsort algorithm for a rectangular mesh

It is not difficult to extend Shearsort to higher dimensional meshes but it does not lead
to an O(logn) time sorting algorithm in the hypercubic network. Obtaining an ideal
speed-up sorting algorithm on an n-processor interconnection network is very
challenging and requires many non-trivial ideas both in terms of algorithms and the
network topology.

In the shared memory model like PRAM, one can obtain an O(logn) time algorithm by
generalizing the idea of quicksort. This algorithm is called partition sort, and is shown in
Fig. 14.4.

The analysis requires use of probabilistic inequalities like Chernoff bounds that enable
us to obtain good control of the subproblem sizes for the recursive calls. Roughly
speaking, if we can induce O(

√
n) bound on the size of the recursive calls when we

partition n elements into
√

n intervals (Fig. 14.4), the number of levels is bounded by
O(log logn).6 Moreover, each level can be done in time O(logni), where ni is the maximum
subproblem size in level i. Then, the total parallel running time is bounded by
∑i log(n1/2i

) = O(logn) (by ignoring some messy details).

Procedure Parallel partition sort

1 Input X = {x1,x2, . . . ,xn} ;
2 if n≤C then
3 Sort using any sequential algorithm
4 else
5 Choose a uniform random sample R of size

√
n ;

6 Sort R - let r1,r2 . . . denote the sorted set ;
7 Let Xi = {x ∈ X |ri−1 ≤ x≤ ri} be the ith subproblem ;
8 In parallel do ;
9 Recursively partition sort Xi for all i in parallel ;

Figure 14.4 Partition sort in parallel

6 This is true for size of subproblems bounded by nc for any c < 1.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

286 Design and Analysis of Algorithms

In the following, we outline the proof for bounding the size of subprobems using a
uniformly sampled subset R ⊂ S, where |S|= n and R has size about r.

Lemma 14.5 Suppose every element of S is sampled uniformly and independently with probability
r
n . Then, the number of unsampled elements of S in any interval induced by R is bounded by
O(n logr

r) with probability at least 1− 1
rΩ(1) .

Proof: Let x1,x2, . . . be the sorted sequence of S and let random variables

Xi = 1 if xi is sampled and 0 otherwise 1≤ i≤ n

So the expected number of sampled elements = ∑
n
i=1 Pr[Xi = 1] = n · r

n = r. Using Chernoff
bounds, Eqs (2.2.7 , 2.2.8), we can bound the number of sampled elements by r±O(

√
r logr)

with probability 1− 1
r2 . The actual number may vary but let us assume that |R| = r that

can be ensured by fusing some pairs of consecutive intervals. Suppose, the number of
unsampled elements between two consecutive sampled elements [ri,ri+1] is denoted by
Yi (Y0 is the number of elements before the first sampled element). Since the elements are
sampled independently, Pr[|Yi|= k] = r

n ·(1−
r
n)

k because there are k consecutive unsampled
elements before a sampled element. It follows that

Pr[|Yi| ≥ k] = ∑
i=k

r
n
· (1− r

n
)

i
≤ (1− r

n
)

k

For k = cn logr
r , this is less than ec logr ≤ 1

rc .
If any of the intervals has more than k = c n logr

r unsampled elements, then some pair
of consecutive sampled elements [ri,ri+1] has more than k unsampled elements between
them; we have computed the probability of this event. So among the

(r
2

)
pairs of elements,

the r consecutive pairs are the ones that are relevant events for us. In other words, the
previous calculations showed that for a pair (r′,r′′),

Pr[|(r′,r′′)∩S| ≥ k|r′,r′′ are consecutive]≤ 1
rc

Since Pr[A|B]≥ Pr[A∩B], we obtain

Pr[|(r′,r′′)∩S| ≥ k and r′,r′′ are consecutive]≤ 1
rc

So, for all the pairs, by the union bound, the probability that there is any consecutive
sampled pair with more than k unsampled elements is O(r2

rc). For c ≥ 3, this is less than
1/r.

The reason that our sampling fails to ensure gaps less than cn logr/r is due to one of the
following events

(i) Sample size exceeds 2r (ii) Given that sample size is less than 2r, the gap exceeds k.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

Parallel Algorithms 287

This works out as O(1
r) as the union of the probabilities. Note that we can increase c to

further decrease failure probability and keep the union bound less than 1/r for r2

samples. 2

The lemma shows that for an input of size n = |X |, the inputs for the next recursive call
have sizes O(

√
n · logn). This slightly changes our calculation for the number of phases (for

which we had assumed that the recursive subproblems has size at most
√

n). Still it is easy
to check that the number of recursive phases remains O(log logn).

14.3 Parallel Prefix

Given elements x1,x2, . . . ,xn and an associative binary operator �, we want to compute

yi = x1� x2 . . .xi, i = 1,2, . . . ,n

Think about � as addition or multiplication and while this may seem trivial in the
sequential context, the prefix computation is one of the most fundamental problems in
parallel computation and have extensive applications.

Note that yn = x1� x2 . . .xn can be computed as a binary tree computation structure in
O(logn) parallel steps. We need the other terms as well. Let yi, j = xi� xi+1 . . .x j. Then, we
can express a recursive computation procedure as given in Fig. 14.5. Let T ||(x,y) represent

Procedure Prefix(a,b)

1 if If b−a≥ 1 then
2 c = b a+b

2 c ;
3 In parallel do
4 prefix (a,c) , prefix (c+1,b) ;
5 end parallel ;
6 Return (prefix (a,c) , ya,c� prefix (c+1 , b) (* ya,c is available in

prefix (a,c) and is composed with each output of prefix(c+1,b)
*)

7 else
8 Return xa ;

Figure 14.5 Parallel prefix computation: this procedure computes prefix
of xa,xa+1, . . . ,xb.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

288 Design and Analysis of Algorithms

the parallel time taken to compute the prefix of x inputs using y processors. For the
algorithm mentioned here, we obtain the following recurrence

T ||(n,n) = T ||(n/2,n/2)+O(1)

The first term represents the time for two (parallel) recursive calls of half the size and
the second set of outputs will be composed with the term y1,n/2 that is captured by the
additive constant. For example, given x1,x2,x3,x4, we compute in parallel prefix (x1,x2) =
x1,x1� x2 and prefix(x3,x4) = x3,x3� x4. Then in a single parallel step, we compute x1� x2�
prefix(x3,x4) = x1� x2� x3,x1� x2� x3� x4 and return this result in line 6 along with prefix
(x1,x2).7 The solution is T ||(n,n) = O(logn). Note that this is not optimal since the prefix
can be computed sequentially in n operations, whereas the processor time product of our
algorithm is O(n logn).

Let us try an alternate approach where we form n/k blocks of k inputs for a suitably
chosen k and compute the values x′i = x(i−1)k+1� x(i−1)k+2� . . .xik for 1 ≤ i ≤ bn/kc. Now,
we compute the prefix of x′i using n/k processors which yields the prefix values yi of the
original inputs xi for i = k,2k For the remaining elements within a block j, we can
compute the prefixes sequentially by computing

y(j−1)k+` = y(j−1)k� x(j−1)k+1� x(j−1)k+2 . . .� x(j−1)k+` for 1≤ `≤ k−1

This takes an additional k steps for each block and can be done simultaneously for all the
n/k blocks using n/k processors.

For example, let us consider elements x1,x2 . . .x100 since x1� x2� . . .x20 = x′1� x′2 = y20

and k = 10. Then,

y27 = x1� x2 . . .x27 = (x1� x2 . . .� x10)� (x11� x12 . . .� x20)� (x21� . . .x27)

= y20� (x21� x22 . . .� x27)

The last term (in paranthesis) is computed within the block as prefix of 10 elements
x21,x22 . . .x30 and the rest is computed as prefix on the x′is.

This approach is described formally in Fig. 14.6. The terminating condition takes
O(logP) time using P processors for an input of size ≤ P. An interesting variation would
be to compute the prefixes of Zis recursively (line 8 of the algorithm in Figure 14.6). The
reader should complete the analysis of this algorithm by writing an appropriate
recurrence and also choose an appropriate value of k for the best utilization of the P
processors – see Exercise problems.

7The reader may note that although the procedure is defined using the parameters a,b, we are referring to it in
the text as prefix (xa,xb).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

Parallel Algorithms 289

Procedure Blocked prefix computation prefix(n,k,P)

1 Input [x1,x2 . . .xn] P = number of processors ;
2 Output Prefix yi = x1� x2 . . .xi for i = 1, . . . ,n. ;
3 if n≥ P then
4 Divide x1, . . . ,xn into blocks of size k ;
5 Compute prefix of each k-block independently in parallel ;
6 Let Yik+` = xik� xik+1 . . .xik+`, 1≤ `≤ k−1 ;
7 Let Zi denote the last term in block i, i.e., Zi = xik�xik+1 . . .xik+k−1 ;
8 Compute yik = Z1�Z2 . . .Zi’s in parallel for all 1≤ i≤ bn/kc ;
9 Compute yi·k+` = Z1�Z2 . . .Zi�Yik+` for all i≤ n/k, `≤ k−1 ;

10 else
11 Compute parallel prefix using the algorithm in Figure 14.5 ;

Figure 14.6 Parallel prefix computation using blocking

For the value k = 2, this scheme actually defines a circuit using gates to compute the
operation � (see Fig. 14.7).

8

8y

4 2

1y 2y 3y 4y 5y 6y 7y

1z 2z

3z

4z 5z

8x1x 2x 3x 4x 5x 6x 7x

Figure 14.7 Recursive unfolding of the prefix circuit with 8 inputs in
terms of 4-input and 2-input circuits. These are indicated
by the inner rectangles. The shaded circles correspond to the
operation �.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

290 Design and Analysis of Algorithms

Parallel compaction
A very common scenario in parallel computation is periodic compaction of active
processes so that the available processors can be utilized effectively. Even in a structured
computation graph like a binary tree, at every level, half of the elements do not
participate in future computation. The available processors should be equitably
distributed to the active elements, so that the parallel time is minimized.

One way to achieve this is to think of the elements8 in an array where we tag them as
0 or 1 to denote if they are dead or active. If we can compress the 1s to one side of the
array, then we can find out how many elements are active, say m. If we have p processors,
then we can distribute them equally such that every processor is allocated roughly m

p active
elements.

This is easily achieved by running parallel prefix on the elements with the operation �
defined as addition. This is known as prefix sum. The ith 1 from the left gets a label i and it
can be moved to the ith location without any conflicts. Consider the array

1,0,01,0,1,0,1,0,0,0,1,1

After computing prefix sum, we obtain the labels yis as

1,1,1,2,2,3,3,4,4,4,4,5,6

Then we can move the 1s to their appropriate locations and this can be done in parallel
time n/p for p≤ n/ logn.

Simulating a DFA
Given a DFA M, let δ : Q×Σ→ Q denote its transition function where Q is the set of states
and Σ is a finite alphabet. For a ∈ Σ and any string w = a ·w1 over Σ, the transition function
gets extended as δ(q,a ·w)= δ(δ(q,a),w), so δ will also denote successive transitions of M on
a string of arbitrary length. We generalize the notion to transition vector δM(q̄,w) where q̄ is
a vector of length |Q|whose ith component is δ(qi,w) , qi ∈Q. In other words, the transition
vector gives us the final states for each of the |Q| starting states. Although this seems to
be redundant at first sight, since there is a unique starting state of any DFA, it will help
us in doing lookahead transitions to achieve parallelism across successive transitions. For
example, if w = w1 ·w2, where w,w1,w2 are strings, we can compute δM(q̄,w1) and δM(q̄,w2)

independently and then compose them in an obvious way to obtain δM(q̄,w). Although we
did not know the intermediate states after the transitions due to w1, since we precomputed
for all possible intermediate states, we can easily compose the transitions due to w1 and
w2. For example, let Q = {q0,q1} and the transition function be given by table

8 They can also be thought of as labels of processes

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

Parallel Algorithms 291

0 1
q0 q0 q0

q1 q0 q1

For w = 1011, δM(10) =
[

q0

q0

]
and δM(11) =

[
q0

q1

]
. We have dropped q̄ from the

notation since it is implicit.

This yields δM(1011) = δM(10)� δM(11) =
[

q0

q0

]
, where � denotes the composition of

the transition functions. Alternately, we can express δM(a) as a |Q| × |Q| matrix A where
Aa

i, j = 1 if δ(qi,a) = q j and 0 otherwise. Let w = w1w2 . . .wk where wi ∈ Σ and we will use the
notation wi, j to denote the substring wi ·wi+1 . . .w j. It can be easily verified that

δM(wi, j) = Awi ⊗Awi+1 ⊗ . . .Aw j

where ⊗ corresponds to matrix multiplication. Since the number of states is fixed, we can
bound the cost of multiplication by O(1). We will need the following property to reduce
this problem to prefix computation.

Claim 14.4

(Aw1 ⊗Aw2)⊗Aw3 = Aw1 ⊗ (Aw2 ⊗Aw3)

which follows from the associativity of matrix multiplication.

This shows that the composition of the generalized transition function δM() is associative,
so we can use the prefix computation to compute all the intermediate states in O(logn)
time using n/ logn processors. This gives us the intermediate states for all possible starting
states from which we choose the one corresponding to the actual starting state.

The addition of two binary numbers can be easily represented as state transition of
a finite state machine. For example, if the numbers are 1011 and 1101 respectively, then
one can design a DFA for an adder that takes an input stream (11, 10, 01, 11), which are
the pairs of bits starting from the LSB. The successive transitions are made according to
the previous carry, so there are two states correspoding to carry 0 and carry 1. Once the
carry bits are known, then the sum bits can be generated in constant time. The reader is
encouraged to work out the remaining details for the design of the carry save adder.

14.4 Basic Graph Algorithms

Many efficient graph algorithms are based on DFS (depth first search) numbering. A
natural approach to designing parallel graph algorithms will be to design an efficient

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

292 Design and Analysis of Algorithms

parallel algorithm for DFS. This turns out to be very challenging and no simple solutions
are known; there is evidence to suggest that it may not be possible. This has led to
interesting alternate techniques for designing parallel graph algorithms. We will consider
the problem of constructing connected components in an undirected graph.

14.4.1 List ranking

A basic parallel subroutine involves finding the distance of every node of a given linked
list to the end of the list. For concreteness and simplicity, we represent the list using an
array A[1 . . .n], where A[i] = j if node x j is a successor of node xi in the list. The first element
of the list is referred to as the tail that has no predecessor and all other elements have
exactly one successor. The head of the list is identified as k such that A[k] contains k, that is,
it points to itself. The purpose of list ranking is to find the distance of every element from
the head of the list where the distance of the head to itself is considered as 0.

A sequential algorithm can easily identify the tail of the list (the integer in {1, ...,n}
which does not appear in the array) and simply traverse the list in n steps. For the parallel
algorithm, let us initially assume that we have a processor for every element and each
processor executes the algorithm in Fig. 14.8. To analyze the algorithm, let us re-number
the list elements such that x0 is the head of the list and xi is at distance i from x0. The crux
of the algorithm is a doubling strategy. After j ≥ 1 steps, the processor responsible for xi,
say pi points to an element k such that k is 2 j−1 steps away from xi. So, in the next step,
the distance doubles to 2 j. Of course, it cannot be further than the head of the list, so we
have to account for that. Notice that when a processor points to the head, all the smaller
numbered processors must also have reached the head. Moreover, they will also have the
correct distances.

Procedure Parallel list ranking(pi)

1 Initialize If A[i] 6= i then d[i] = 1 else d[i] = 0 ;
2 while A[i]> 0 do
3 A[i]← A[A[i]] ;
4 d[i]← d[i]+d[A[i]] ;

5 Return d[i] ;

Figure 14.8 Parallel list ranking

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

Parallel Algorithms 293

Table 14.1 Consecutive snapshots of the list ranking algorithm on 15
elements. The A(i)s and d(i)s represent the value of the
pointers and distances from xi after i iterations. The xis
are shown to be in consecutive locations for convenience.
Actually they are arbitrarily permuted but the progress of
the algorithm remains as depicted in the table.

i x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

A(0) 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13
d(0) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A(1) 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12
d(1) 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2
A(2) 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10
d(2) 0 1 2 3 4 4 4 4 4 4 4 4 4 4 4
A(3) 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6
d(3) 0 1 2 3 4 5 6 7 8 8 8 8 8 8 8
A(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d(4) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lemma 14.6 After j iterations, A[i] = max{i−2 j,0}. Equivalently, the distance function from i,
d(i) is given by min{2 j, i}.
Proof: Initially element i points to element i−1. Note that for any i, once A[i] = 0, it remains
0 in future iterations. The same is also true for d(i) = i. Let l(i) be defined as 2l(i)−1 < i≤ 2l(i),
for example, l(8)= 3 and l(9)= 4. We shall prove the following by induction on the number
of iterations j :
(i) all elements xi with l(i)≤ j have A(i) = 0 and d(i) = i and (ii) for j < l(i), A[i] = i−2 j, d(i)
= 2 j.
Moreover all elements i with l(i) = j satisfy property (i) for the first time in iteration j. For
the base case i = 0, it is clearly true since x0 keeps pointing to itself and d[0] never changes.

Suppose the induction hypothesis is true for all iterations < j where j ≥ 1. For all
elements k for which l(k) ≥ j, from induction hypothesis, in iteration j − 1, all such
elements k will have A[k] = k−2 j−1. In particular, for l(k) = j, at the end of iteration j−1,
A[k] = k′ where l(k′) ≤ j− 1. Indeed the largest value of k, with l(k) = j is 2 j − 1 and
2 j−1−2 j−1 = 2 j−1−1 so l(2 j−1−1) = j−1. Since all elements i with l(i)≤ j−1 point to x0

by iteration j−1, in iteration j, all elements k with l(k) = j will have A[k] = 0 and d[k] = k
after the updates in iteration j. So the induction hypothesis holds for iteration j, thereby
completing the proof.

If 2l(i) < i, by an analogous argument, A[i] will increase by 2 j after j iterations. During
the last iteration, the length would not double but increase additively by i−2l(i). 2

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

294 Design and Analysis of Algorithms

Since l(n) ≤ logn, the overall algorithm terminates in O(logn) steps using n processors. It
is a challenging exercise to reduce the number of processors to n

logn so that the efficiency
becomes comparable to the sequential algorithm.

Claim 14.5 The number of processors in the list ranking algorithm can be reduced to n
logn without

increasing the asymptotic time bound.

For this, one can make use of a very useful randomized technique for symmetry-breaking.
Suppose one could splice out every alternate element from the list, and solve the list
ranking on the shortened list, then, one could also re-insert the deleted elements and
compute their ranks easily from the adjacent elements. There are two main difficulties.

(i) Identifying alternate elements: Since the list elements are not in consecutive memory
locations, we cannot use simple methods like odd/even locations. This is a classic
example of symmetry-breaking.

(ii) We do not have a processor for every element – so we have to do load balancing to
extract the ideal speed-up for every round of splicing.

To tackle the first problem, we label elements as male/female independently with equal
probability. Subsequently, we remove any male node that does not have adjacent male
nodes – probability of this is 1

8 for any node, so the expected number of such nodes is n
8 .

These nodes can be spliced easily as they cannot be adjacent – while it is not half of the
nodes, it is a constant fraction and serves our purpose. This technique is sometimes
referred to as random mate in the literature.

For load balancing, we can use parallel prefix at the end of every round. Over O(log logn)
rounds, we can reduce the number of active elements to n

logn following which we can apply
the previous algorithm. The details are left as an Exercise Problem.

In a PRAM model, each iteration can be implemented in O(1) parallel steps, but it may
require considerably more time in the interconnection network since the array elements
may be far away and so the pointer updates cannot happen in O(1) steps.

The aforementioned algorithm can be generalized to a tree where each node contains a
pointer to its (unique) parent. The root points to itself. A list is a special case of a degenerate
tree.

14.4.2 Connected components

Given an undirected graph G = (V,E), we are interested to know if there is a path from u
to w in G, where u,w ∈V . The natural method to solve this problem is to compute maximal
subsets of vertices that are connected to each other.9

9 This is an equivalence relation on vertices.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

Parallel Algorithms 295

Since it is difficult to compute DFS and BFS numbering in graphs in parallel, the
known approaches adopt a strategy similar to computing minimum spanning trees. This
approach is somewhat similar to Boruvka’s algorithm described earlier in Figure 4.9.
Vertices start out as singleton components and interconnect among each other using
incident edges. A vertex u hooks to another vertex w using the edge (u,w) and
intermediate connected components are defined by the edges used in the hooking step.
The connected components are then merged into a single meta-vertex and this step is
repeated until the meta-vertices do not have any edges going out. These meta-vertices
define the connected components. There are several challenges in order to convert this
high level procedure into an efficient parallel algorithm.

C1 What is an appropriate data structure that can maintain the meta-vertices?

C2 What is the hooking strategy so that the intermediate structures can be contracted
into a meta-vertex? This will require choosing among multiple options to hook.

C3 How can we reduce the number of parallel phases?

Let us address these issues one by one. For C1, we pick a representative vertex from
each component, called the root and let other vertices in the same component point to the
root. This structure is called a star and it can be thought of as a (directed) tree of depth 1.
The root points to itself. This is a very simple structure and it is easy to verify if a tree is a
star. Each vertex can check if it is connected to the root (which is unique because it points
to itself). With sufficient number of processors, it can be done in a single parallel phase.

We will enable only the root vertices to perform the hooking step, so that the
intermediate structures have a unique root (directed trees) that can be contracted into a
star. Note that a root vertex could hook to a non-root vertex according to this policy. We
still have to deal with the following complications.

How do we prevent two (root) vertices hooking on to each other? This is a typical
problem of symmetry-breaking in a parallel algorithm where we want to select one among
the many (symmetric) possibilities to succeed using some discriminating properties. In
this case, we can follow a convention that the smaller numbered vertex can hook on to a
larger numbered vertex. We are assuming that all vertices have a unique id between 1 . . .n.
Moreover, among the eligible vertices that it can hook onto, it will choose one arbitrarily.10

This still leaves open the possibility of several vertices hooking to the same vertex but that
does not affect the successful progress of the algorithm.

Let us characterize the structure of the subgraph formed by hooking. The largest
numbered vertex in a component cannot hook to any vertex. Each vertex has at most one
directed edge going out and there cannot be a cycle in this structure. If we perform

10This itself requires symmetry-breaking in disguise but we will appeal to the model supporting concurrent
writes.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

296 Design and Analysis of Algorithms

shortcut operations for every vertex similar to list ranking, then the directed tree will be
transformed into a star.

For the hooking step, all the edges going out of a tree are involved, as the star can be
considered as a meta-vertex. If all the directed trees are stars and we can ensure that a star
combines with another one in every parallel hooking phase, then the number of phases is
at most logn. The number of stars will decrease by a factor of two (except those that are
already maximal connected components). This would require that we modify the hooking
strategy so that every star gets a chance to combine with another.

T

T

n–6

n–5

n–3

n–4

n–2

n–1

n

1

2

5

4

3

6

7

9

8

Figure 14.9 The star rooted at vertex 5 is connected to all the stars (dotted
edges) on the right that have higher numbered vertices. It
can only hook on to one of the trees at a time; this makes
the process effectively sequential. The other stars have no
mutual connectivity.

Figure 14.9 gives an example where only one star gets hooked in every step because of
the symmetry-breaking rule. Therefore, we can add another step where a star that could
not combine since the root had a larger number (but it lost out to other large numbered
roots) can hook to a smaller numbered root. Since the smaller numbered root must have
hooked to some other tree (since the present tree continues to be a star), this cannot create
any cycles and is therefore safe.

The algorithm is described formally in Fig. 14.10.
For ease of understanding, the reader can assume that there is a processor assigned to

each vertex and to each edge. In reality, with fewer processors, we will need to repeatedly
use load balancing between iterations.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

Parallel Algorithms 297

Procedure Parallel graph connectivity(G)

1 Initialize For all v ∈V , we set p(v) = v, allstar = FALSE ;
2 while NOT allstar do
3 for (u,v) ∈ E in parallel do
4 if Isroot(p(u)) and (p(u)< p(v)) then
5 p(p(u))← p(v) (hook root of u to p(v));

6 if IsStar (v) then
7 p(p(v))← p(u) (since v belongs to star, hook the root v to

p(u)) ;

8 for v ∈V do
9 p(v)← p(p(v)) (pointer jumping to reduce height);

10 allstar = TRUE (Check if all components are stars) ;
11 for all vertices v in parallel do
12 if NOT IsStar(v) then
13 allstar = FALSE

Function IsStar(w)

1 if p(w) 6= p(p(w)) then
2 (the tree containing w is not a star) ;
3 Set the tag of w to FALSE.

Function IsRoot(v)

1 if p(v) = v then
2 true
3 else
4 false

Figure 14.10 Parallel connectivity: We assume that there is a processor
assigned to every vertex v ∈ V and to every edge (u,w) ∈
E. The global variable allstar is TRUE only when all
components are stars.

The algorithm maintains a parent pointer p(v) for each node v – this is meant to
maintain the star data structure. For any root node r, p(r) is set to r itself – the function
IsRoot() in Fig. 14.10 checks if a node is a root node or not. Similarly, the function
IsStar(w) checks if the parent of w is root. As the algorithm progresses, it may happen that
in a particular component, all the vertices do not have their parent pointers to the root.
Steps 8–9 fix this aspect by moving each of the p(v) pointers closer to the corresponding

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

298 Design and Analysis of Algorithms

root. In Steps 4–5, we ensure that if add the edge (u,v), then the parent of u is the root of
this component. Indeed, we want to assign p(p(u)) to p(v), and so, it better be the case
that p(p(u)) points to p(u) itself. A similar check is done in Steps 6–7.

The singleton vertices require special handling since these do not have any children.
The function IsStar() could encounter a problem since it is unable to distinguish between
stars with depth 1 and the depth 0 nodes. The reader can verify that it could lead to creation
of cycles as singleton vertices could hook onto each other. To avoid this we initialize all
the singleton nodes v by creating an artificial child node v′ that makes it a star. Then
we have stars hooking to another star creating a depth two tree that avoids the previous
complication of cycles. The extra nodes v′ do not otherwise affect the algorithm.

The nodes maintain the tree structure using the ‘parent’ pointers p(). The root of any
component will point to itself. The procedure IsStar() is executed at all nodes in parallel,
and tags those nodes v for which p(p(v)) is not equal to p(v) – this will happen only when
the pointer p(v) is not pointing to the corresponding root vertex.

The analysis is based on a potential function that captures the progress of the algorithm
in terms of the heights of the trees. Once all the connected components are hooked together,
the algorithm can take at most logn iterations to transform them into stars, based on our
analysis of pointer jumping.

We define a potential function Φi = ∑T∈F di(T), where di(T) is the depth of a tree T
(star has depth 1) in iteration i. Here F denotes the forest of trees. Note that a tree
contains vertices from a single connected component. We can consider each of the
components separately and calculate the number of iterations that it takes to form a single
star from the component starting with singleton vertices. The initial value of Φ is |C|,
where C ⊂V is a maximal component and finally, we want it to be 1, that is, a single star.

If T1 and T2 are two trees that combine in a single tree T after hooking, it is easily
seen that Φ(T) ≤ Φ(T1) +Φ(T2). For any tree (excluding a star), the height must reduce
by a factor of almost 1/2. Actually, a tree of depth 3, reduces to 2, which is the worst
case. Hence, Φ(C) = ∑T∈C d(T) must reduce by a factor 2/3 in every iteration, resulting in
overall O(logn) iterations. The total number of operations in each iteration is proportional
to O(|V |+ |E|).

The overall running time would vary by a logn factor depending on the model of
concurrency used. The present description assumes CRCW model – in particular, the
functions IsStar and Isroot involves several processors trying to write and read from the
same location. A CRCW model can be mapped to an EREW model at the cost of O(logn)
overhead per step. The details are beyond the scope of this discussion.

The reader is encouraged to analyze a variation of this algorithm, where we perform
repeated pointer jumping in step 3, so as to convert a tree into a star before we proceed
to the next iteration. It is left as an Exercise Problem to compare the two variants of the
connectivity algorithm.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

Parallel Algorithms 299

14.5 Basic Geometric Algorithms

The Quickhull algorithm described in Section 7.5 is a good candidate for a parallel
algorithm as most of the operations can be done simultaneously. These are O(1) time
left-turn tests involving the sign of a 3× 3 determinant, based on which some of the
points are eliminated from further consideration. The subproblems are no more than 3

4 of
the original problem implying that there are O(logn) levels of recursion. The number of
operations in each level is proportional to O(n) and so if each level of recursion can be
done in t(n) parallel time, the total time will be O(t(n) · logn). If t(n) is O(1), it would lead
to an O(logn) time parallel algorithm which is often regarded as the best possible
algorithm because of a number of related lower bounds. Although the left-turn tests can
be done in O(1) steps, the partitioning of the point sets into contiguous locations in an
array is difficult to achieve in O(1) time. Without this, we will not be able to apply the
algorithm recursively or work with points in contiguous locations. We know that
compaction can be done in O(logn) time using prefix computation, so we will settle for an
O(log2 n) time parallel algorithm.

The number of processors is O(n/ logn); this will enable us to do O(n) left-turn tests
in O(logn) time. Unlike the (sequential) Quickhull algorithm, the analysis is not sensitive
to the output size. For this, we will relate the parallel running time with the sequential
bounds to obtain an improvement of the following kind.

Theorem 14.1 There is a parallel algorithm to construct a planar convex hull in O(log2 n · logh)
parallel time and total work O(n logh) where n and h are the input and output sizes respectively.

We will describe a very general technique for load distribution in a parallel algorithm.
Suppose there are T parallel phases in an algorithm where there is no dependence
between operations carried out within a phase. If there are p processors available, then by
sharing the mi tasks in phase i tasks equally among them, 1≤ i≤ T , tasks in phase i can be
completed in time O(dmi

p e). Hence, the total parallel time is given by ∑
T
i O(dmi

p e)
= O(T)+O(∑i mi

p).
To this, we also need to add the time for load balancing based on prefix computation,

namely, O(mi
p) for phase i as long as mi ≥ p log p. So, this implies that each of the O(logn)

phases requires Ω(log p) steps since mi/p≥ log p. We can state the result as follows.

Lemma 14.7 (Load balancing) In any parallel algorithm that has T parallel phases with mi

operations in phase i, the algorithm can be executed in O(T log p+ ∑i mi
p) parallel steps using p

processors.

Let us apply the previous result in the context of the Quickhull algorithm. There are
logn parallel phases and in each phase, there are at most n operations as the points
belonging to the different subproblems are disjoint. From the analysis of the sequential

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

300 Design and Analysis of Algorithms

algorithm, we know that ∑i mi = O(n logh), where h is the number of output points. Then
an application of the aforementioned load balancing technique using p processors will
result in a running time of O(logn · log p)+O(n logh

p). Using p ≤ n
log2 n

processors yields the
required bound of Theorem 14.1.

Note that using p = n logh
log2 n

would yield a superior time bound of O(log2 n); however since
h is an unknown parameter, we cannot use it in the algorithm description.

14.6 Relation between Parallel Models

The PRAM model is clearly stronger than the interconnection network since all processors
can access any data in O(1) steps from the shared memory. More formally, any single step
of an interconnection network can be simulated by the PRAM in one step. The converse
is not true since data redistribution in the network could take time proportional to its
diameter.

The simplest problem related to redistribution of data is called 1–1 permutation routing.
Here every processor is a source and a destination of exactly one data item. The ideal
goal is to achieve this routing in time proportional to D which is the diameter. There are
algorithms for routing in different architectures that achieve this bound.

One of the simplest algorithms is the greedy algorithm where the data item is sent
along the shortest route to its destination. A processor can send and receive one data item
to/from each of its neighbors in one step.

Claim 14.6 In a linear array of n processors, permutation routing can be done in n steps.

One can look at the direction of the movement of the packets – either leftward or rightward
and one can argue about the number of steps taken being proportional to the distance
between the source and the destination. The details are left as an Exercise Problem.

If a processor has multiple data items to be sent to any specific neighbor, then only one
data item is transmitted at any time while the rest must wait in a queue. In any routing
strategy, the maximum queue length must have an upper bound for scalability. In the case
of linear array, the queue length can be bounded by a constant.

To simulate a PRAM algorithm on interconnection network, one needs to go beyond
permutation routing. More specifically, one must be able to simulate concurrent read and
concurrent write. There is a rich body of literature that describes emulation of PRAM
algorithms on low diameter networks like hypercubes and butterfly networks that take
O(logn) time using constant size queues. This implies that PRAM algorithms can run on
interconnection networks incurring no more than a logarithmic slowdown.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

Parallel Algorithms 301

14.6.1 Routing on a mesh

Consider an n×n mesh of n2 processors whose diameter is 2n. Let a processor be identified
by (i, j), where i is the row number and j is the column number. Let the destination of a
data packet starting from (i, j) be denoted by (i′, j′).

A routing strategy is defined by the following.

(i) Path selection.

(ii) Priority scheme between packets that contend for the same link.

(iii) Maximum queue size in any node.

In the case of a linear array, path selection is unique and priority is redundant since there
were never two packets trying to move along a link in the same direction (we assume that
links are bidirectional allowing two packets to move simultaneously in opposite directions
on the same link). There is no queue build up during the routing process.

However, if we change the initial and final conditions by allowing more than one
packet to start from the same processor, then a priority order has to be defined between
contending packets. Suppose we have ni packets in the ith processor, 1 ≤ i ≤ n, and
∑i ni ≤ cn for some constant c. A natural priority ordering is defined as furthest destination
first. Let n′i denote the number of packets that have destinations in the ith node. Clearly,
∑i ni = ∑i n′i and let m = maxi{ni} and m′ = maxi{n′i}. The greedy routing achieves a routing
time of cn steps using a queue size max{m,m′}. We outline an argument for c = 1 that can
be extended to the more general case.

Here is an analysis using the furthest destination first priority scheme. For a packet
starting from the ith processor, with destination j, j > i, it can be delayed only by
packets with destination in [j+1,n]. If n′i = 1 for all i, then there are exactly n− j−1 such
packets so that the packet will reach its destination within n− j− 1+ (j− i) = n− i− 1
steps. This can be easily argued starting from the rightmost moving packet and the next
packet which can be delayed at most once and so on. When n′i exceeds 1, then a packet
can get delayed by ∑

i=n
i= j n′i steps. The queue sizes do not increase while packets are being

received and sent by processors but will require additional storage when a packet reaches
its destination.

We can extend the previous strategy to routing on a mesh. Let us use a path such that
a packet reaches the correct column and then goes to the destination row. If we allow
unbounded queue size, then it can be easily done using two phases of one-dimensional
routing, requiring a maximum of 2n steps. However, the queue sizes could become as
large as n. For example, all packets in (r, i) may have destinations (i,r) for a fixed r and
1≤ i≤ n. To avoid this situation, let us distribute the packets within the same column such
that the packets that have to reach a specific column are distributed across different rows.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

302 Design and Analysis of Algorithms

A simple way to achieve this is for every packet to choose a random intermediate
destination within the same column. From our previous observations, this routing would
take at most n + m steps, where m is the maximum number of packets in any
(intermediate) destination. Subsequently, the time to route to the correct column will
depend on the maximum number of packets that end up in any row. The third phase of
routing will take no more than n steps since every processor is a destination of exactly one
packet. Figure 14.11 illustrates the path taken by a packet in a three phase routing.

To analyze phases 1 and 2, we will get a bound on the expected number of packets
that choose a given destination and the number of packets in a row that are destined for
any specific column. This will enable us to bound the sizes of the queues required and the
maximum number of packets that have to be routed in phase 2. Since the destinations are
chosen uniformly at random, the probability that a processor in row r is chosen in phase
1 is 1

n . Let Xi be a 0–1 random variable which is 1 if row r is chosen by the data packet i
and 0 otherwise. Then the number of packets that will end up in the processor in row r is
a random variable X = ∑

i=n
i=1 Xi. So,

E[X] = E[∑
i

Xi] = ∑
i

Pr[Xi = 1] = 1

The random destinations can be thought of as independent Bernoulli trials, so their sum is
a binomial random variable with expectation = 1. From Chernoff bounds, Eq. 2.2.5,

Pr[X ≥Ω(logn/ log logn)]≤ 1
n3

that bounds the maximum number of packets that end up in any processor at the end of
phase 1 using the union bound over n2 processors.

Let Yr represent the number of packets that end up in row r at the end of phase 1. Then,
by extending the aforementioned argument, the expected number of packets E[Yr] = n2 · 1

n =

n. From Chernoff bounds, Eq. 2.2.7, it follows that

Pr[Yr ≥ n+Ω(
√

n logn)]≤ 1
n2

This bounds the routing time of phase 2 within row r by n+O(
√

n logn from our previous
discussion on greedy routing using furthest destination first priority.

To bound the queue size for phase 2, we also need to bound the number of packets
(in row r) that have destinations in column j for any 1 ≤ j ≤ n. Let n j denote the number
of packets in column j initially that have destinations in column C where ∑ j n j = n. How
many of them choose row r as the random destination? If X j,C represents the number of
such packets in column j, then by using the previous arguments E[X j,C] =

1
n ∑ j n j = 1 since

each of the n j packets independently, choose their (random) destinations as row r in phase
1. Again by Chernoff bounds,

Pr[X j,C ≥Ω(logn/ log logn)]≤ 1
n3

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

Parallel Algorithms 303

which holds for all rows r and all columns C using union bound.
So, all the queue sizes can be bounded by logn/ log logn in phase 1 and phase 2.

Moreover the routing time in phase 2, can be bounded by n+O(
√

n logn) in phase 2. Thus
the total routing time over all the 3 phases can be bound by 3n + O(

√
n logn) using

O(logn/ log logn) sized queues.

Phase 3

Phase 1

(,)r c¢ Phase 2 (,)r t¢

(,)r c

(,)s t

Figure 14.11 Starting from (r,c), the packet is routed to a random row
r′ within the same column c. Subsequently, it reaches the
destination column t and finally the destination (s, t).

This bound can be improved to 2n+ o(n) routing time and O(1) queue size by using
more sophisticated analysis and overlapping phases 2 and 3, that is, a packet begins its
phase 3 as soon as it completes phase 3, rather than wait for all the other packets to
complete phase 2.

Further Reading

Early work in the area of parallel algorithms was inspired by the discovery of some
elegant sorting networks like shuffle exchange based on bitonic sort by Stone [137] and
odd–even merge sort by Batcher [16]. Knuth [83] provides a detailed account of much of the
early foundational work in parallel sorting network and the importance of 0–1 principle
of sorting (Lemma [14.2]) – for further generalization, see Rajasekaran and Sen’s
work [120]. The quest for an n processor O(logn) time parallel algorithm led to some
exciting developments starting from Reischuk’s sort [124] to Flashsort [123] and the AKS
sorting network [9] based on expander graphs. Cole [33] managed to come up with an
elegant adaption of merge sort on the PRAM model.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

304 Design and Analysis of Algorithms

These triggered almost two decades of hectic exploration of the power of parallel
algorithms across all domains of problem areas like graphs, geometry, algebra, numerical,
and so on. The early efforts focused on defining and resolving basic parallel algorithmic
techniques like prefix [87] and list ranking [50]. The two textbooks that the reader would
find extremely informative and rigorous are Leighton’s [89] that discusses algorithms for
interconnection networks and Ja’Ja’ [68] that provides an account of PRAM-based
algorithms. Further, the reader would also find an edited collection of articles by many
leading researchers in Reif’s book [122].

Limitations of parallel algorithms is a fascinating area of CS theory. After the early
work of Valiant [145] who obtained the Ω(log logn) rounds lower bound for extremal
selection in the parallel comparison tree problem, researchers [18, 156] showed that even
by using polynomial number of processors, addition of n numbers cannot be done faster
than O(logn

log logn) time in CRCW PRAM. This was a remarkable fundamental result that
established information computational limitations of parallel computation even without
restrictions in network speed. It also led to the definition of interesting parallel
complexity classes like N C and R N C that correspond to problems that admit
polylogarithmic time using a polynomial number of processors (the latter correponds to
randomized algorithms). After Reif [121] showed that lexicographic DFS is a P-complete
problem, the interesting question in parallel complexity theory is if P = N C?

Further variatons of the Shearsort algorithm can be found in Scherson and Sen [128].
Permutation routing and emulation of PRAM algorithms occupied considerable attention
of researchers – see Leighton et al.’s paper [90] for a detailed summary. The parallel
connectivity algorithm is based on the description by Shiloach and Vishkin [133].

While the big data phenomena has captured a lot of attention in contemporary
applications, the effort taken for massively parallel algorithms and architectures was an
early recognition of this aspect even though the applications had not caught up with it.
Even to this day, communication between processors is considered to be a bottleneck in
achieving the near ideal speed-up. This led researchers to experiment with a number of
architectures and theoretical models ([38, 146]) to bridge the gap between predicted
complexity and actual speed-ups. The recent popularity of multicore architectures and
GPU is testimony to the fact that we are still in search of an acceptable model for building
and designing parallel computers. Without efficient algorithms, these architectures will
only be able to boast of high FLOPS but not have proven superiority over standard
sequential algorithms that are optimized cleverly using many code optimization tools.

Exercise Problems

14.1 Analyze the parallel running time of the recursive version of the algorithm described in
Fig. 14.6 by writing the appropriate recurrence.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

Parallel Algorithms 305

What is the best value of the block size k for minimizing the parallel running time using
an optimal number of processors?

14.2 Show that n−1 comparisons are necessary to find the maximum of n elements.

14.3 Prove the 0–1 principle of sorting.

Note that necessary direction is obvious, but the sufficiency of the condition needs to be
proved rigorously. You may want to prove it by contradiction.

14.4 If a processor has index i ,1 ≤ i ≤ p, find out a way of preassigning the comparisons to
each of the processors for the problem of finding the maximum of n elements as described
in Section 14.2.1.

Use the binary tree numbering to label the designated comparison.

14.5 Show how to reduce the number of processors further to n
log logn and still retain

T ||(n,n/ log logn) = O(log logn) for finding maximum of n elements.

14.6 In the parallel comparison model for finding the maximum element, for p = n, show that
after j = log logn

2 rounds, n j > 1. This implies that any deterministic algorithm that correctly
identifies the maximum using n processors will require Ω(log logn) parallel rounds.

14.7 Given two sorted sequences A and B of n elements, design an O(log logn) time optimal
speed-up merging algorithm in the CRCW PRAM model.

14.8 (i) Refine the idea of computing the minimum of n elements in O(1) time using n3/2

processors to n1+ε CRCW processors for any 0 < ε < 1.

(ii) Show how to compute the minimum of n elements with n CRCW processors in O(1)
expected time using a randomized algorithm.

Note that this overcomes the deterministic lower bound.

14.9 Given a set S of n elements and 1≤ k≤ n, design an O(logn) time n
logn processors PRAM

algorithm to find the kth ranked element in S. Clearly you cannot use sorting but feel free
to use randomized techniques.

Hint: Selecting a sample of size m can be done by independent coin tossing in parallel.

14.10 Given an array A of 0–1 elements, design an O(logn
log logn) time O(n) operations CRCW

algorithm that computes the sum of the bits. Note that this shows that Ω(logn) is not the
lower bound for such a problem.

Hint: Use a k-ary tree for an appropriate k and table look-up to add k bits. The
precomputation phase should also be analysed carefully.

14.11 Recall the ANSV problem defined earlier in Exercise 3.21. Design a polylog time O(n)
processors CRCW PRAM algorithm for the ANSV problem.

14.12 Consider an array A of n integers and another set of integers i1, i2, . . . , ik, where 1 = i1 <
i j < i j+1 < xk = n+1. Describe an optimal O(logn) time PRAM algorithm to compute the
partial sums S j = ∑

i j+1−1
t=i j

xt for all 1≤ j ≤ k−1.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

306 Design and Analysis of Algorithms

For example, for inputs 4,2,8,9,−3 and indices 1,2,4,6, the answer is 4,2+ 8 = 10,
9−3 = 6. The normal prefix sum can be done with i1 = 1, i2 = n+1.

14.13 Consider the following algorithm to sort an n×n array of numbers. Assume for simplicity
that n = 2k.

• Sort the four n/2×n/2 subarrays recursively according to some indexing scheme.

• Rotate every alternate row of smaller subarrays by n/2 positions right/left.

• Run 3 iterations of shearsort.

Prove that this algorithm correctly sorts and analyze the parallel running time in some
appropriate model.

14.14 Consider an N×N×N three-dimensional mesh. Design an efficient sorting algorithm for
N3 numbers where each O(1) memory processor holds one element initially and finally.
You can choose any pre-defined indexing scheme for the sorted permutation. Justify why
your algorithm is optimal or near-optimal.

14.15 Reduce the number of processors in the list ranking algorithm to n
logn without increasing

the asymptotic time bound by using the technique of random-mate described in the end
of the section 14.4.1 on list ranking. As an intermediate step, first design an optimal
speed-up algorithm that runs in O(logn · log logn) parallel time.

You may also need to use a faster (than logarithmic time) prefix computation to achieve
the O(logn) bound. For this purpose, you can assume that the prefix computation of n
elements can be done in O(logn

log logn) time using an optimal number of n operations.

14.16 Generalize the list ranking algorithm to a tree and analyze the performance. Here we are
interested in finding the distance of every node to the root node.

14.17 Given n integers in the range [1, logn]

(i) Show how to sort in O(logn) time using n/ logn processors in a PRAM model.

(ii) Show how to extend this to sorting numbers in the range [1,n2] in O(log2 n
log logn) time using

n/ logn processors.

Note that the processor time product is O(n logn).

14.18 Analyze the following variation of the parallel connectivity algorithm. Each directed tree
is contracted to a star following the hooking step. Instead of the adjacency matrix, use a
list or array data structure to implement the algorithm using O(|E|+ |V |) processors and
polylog parallel time.

Compare the two variants of the connectivity algorithm.

14.19 Design a polylogarithmic time algorithm using a polynomial number of processors for the
shortest path problem in graphs. Although this is not very attractive in terms of resources,
it still establishes that the shortest path problem belongs to the class N C .

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

Parallel Algorithms 307

Modify your algorithm to do topological sort within the same bounds.

Hint: You may want to explore matrix-based computations.

14.20 Given a tree (not necessarily binary) on n nodes, an Euler tour visits all the edges exactly
twice – one in each direction.

(i) Show how to find an Euler tour in O(1) time using n processors. Finding a tour implies
defining the successor of every vertex where a vertex may be visited several times
(proportional to its degree).

(ii) Given an unrooted tree, define a parent function p(v) for every vertex for a designated
root r. Note that p(r)= r. Design a PRAM algorithm that computes the parent function
in O(logn) time using n/ logn processors.

(iii) Find the postorder numbering of a rooted tree in O(logn) time using n/ logn
processors in the PRAM model.

14.21 Show that in a linear array of n processors, permutation routing can be done in n steps.
Each processor is a source and destination of exactly one packet.

14.22 Consider a linear array of n processors pi 1 ≤ i ≤ n, where initially processor pi holds
ni packets. Moreover, ∑i ni = n, such that each processor is a destination of exactly
one packet. Analyze the greedy routing algorithm with furthest destination first queue
discipline for this problem, giving rigorous and complete proofs of the sketch given in the
chapter.

14.23 Odd–Even Merge sort: Recall the description of odd–even merge sort in Chapter 3.

Design an efficient parallel sorting algorithm based on this idea and analyze the running
time as well as the total work complexity.

14.24 For a lower triangular n×n matrix A, design a fast parallel algorithm to solve the system
of equations A · x̄ = b̄, where x̄, b̄ are n element vectors.

Note that by using straightforward back-substitution, your algorithm will take at least n
phases. To obtain a polylogarithmic time algorithm, use the following identity. The lower
triangular matrix A can be written as

A =

[
A1 0
A2 A3

]
where A1,A3 are lower triangular n/2×n/2 matrices. Then you can verify that

A−1 =

[
A−1

1 0

−A−1
3 A2A−1

1 A−1
3

]

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.015
https://www.cambridge.org/core

15
C H A P T E R

Memory Hierarchy and Caching

15.1 Models of Memory Hierarchy

Designing memory architecture is an important component of computer organization
that tries to achieve a balance between computational speed and memory speed, viz., the
time to fetch operands from memory. Computational speeds are much faster since the
processing happens within the chip; whereas, a memory access could involve off chip
memory units. To bridge this disparity, the modern computer has several layers of
memory, called cache memory that provides faster access to the operands. Because of
technological and cost limitations, cache memories offer a range of speed–cost
tradeoffs. For example, the L1 cache, the fastest cache level is usually also of the smallest
size. The L2 cache is larger, say by a factor of ten but also considerably slower. The
secondary memory which is the largest in terms of size, e.g., the disk could be 10,000
times slower than the L1 cache. For any large size application, most of the data resides on
disk and is transferred to the faster levels of cache when required.1

This movement of data is usually beyond the control of the normal programmer and
managed by the operating system and hardware. By using empirical principles called
temporal and spatial locality of memory access, several replacement policies are used to
maximize the chances of keeping the operands in the faster cache memory levels.
However, it must be obvious that there will be occasions when the required operand is

1 We are ignoring a predictive technique called pre-fetching here.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.016
https://www.cambridge.org/core

Memory Hierarchy and Caching 309

not present in L1; one has to reach out to L2 and beyond and pay the penalty of higher
access cost. In other words, memory access cost is not uniform as discussed in the
beginning of this book but for simplicity of the analysis, we had pretended that it remains
same.

In this chapter, we will do away with this assumption; however, for simpler
exposition, we will deal with only two levels of memory – slow and fast where the slower
memory has infinite size while the faster one is limited, say, of size M and significantly
faster. Consequently, we can pretend that the faster memory has zero (negligible) access
cost and the slower memory has access cost 1. For any computation, the operands must
reside inside the cache. If they are not present in the cache, they must be fetched from the
slower memory, paying a unit cost (scaled appropriately). To offset this transfer cost, we
are allowed to transfer a contiguous chunk of B memory locations. This applies to both
reads and writes to the slower memory. The model is known as the external memory model
with parameters M,B and will be denoted by C (M,B). Note that M ≥ B and in most
practical situations M ≥ B2.

We will assume that the algorithm designer can use the parameters M,B to design
appropriate algorithms to achieve higher efficiency in C (M,B). Later, we will discuss that
even without the explicit use of M,B, one can design efficient algorithms, called cache
oblivious algorithms. To focus better on the memory management issues, we will not
account for the computational cost and only try to minimize the cost of memory transfers
between cache and secondary memory. We will also assume that appropriate instructions
are available to transfer a specific block from the secondary memory to the cache. If there
is no room in the cache, then we have to replace an existing block in the cache and we can
choose a cache block to be evicted.2 A very simple situation is to add n elements stored as
n/B memory blocks where initially they are all in the secondary memory. Clearly, we will
encounter at least n/B memory transfers just to read all the elements.

We plan to study and develop techniques for designing efficient algorithms for some
fundamental problems in this two-level memory model and focus on issues that are
ignored in conventional algorithms. We would also like to remind the reader that
memory management is a salient feature of any operating system where various cache
replacement policies have been proposed to minimize cache misses for a given pattern of
memory access, viz., first in first out (FIFO), least recently used (LRU) etc. There is also an
optimal replacement policy, OPT that achieves the minimum among all possible
replacement policy for any given sequence of memory access. The OPT policy, also
known as clairvoyant and discovered by Belady, evicts the variable that is not needed for
the longest time in future. This makes it difficult for implementation as the access pattern

2 This control is usually not available to programmers in user mode and is left to the operating system responsible
for memory management.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.016
https://www.cambridge.org/core

310 Design and Analysis of Algorithms

may not be known in advance and it may be data-dependent. The goal in this chapter is
to develop algorithmic techniques for specific problems so that we can minimize the
worst case number of cache misses where the memory access pattern is dependent on the
algorithm. In other words, there is no pre-determined memory access pattern for which
we are trying to minimize cache misses. On the contrary, we would like to find the best
access pattern for a given problem which is distinct from the system based optimization.

15.2 Transposing a Matrix

Consider a p× q matrix A that we want to transpose and store in another q× p matrix A′.
Initially, this matrix is stored in the slower secondary memory and arranged in a row-major
pattern. Since the memory is laid out in a linear array, a row-major format stores all the
elements of the first row, followed by the second row elements, and so on. The column
major layout stores the elements of column 1 followed by column 2, and so on. Therefore,
computing A′ = AT involves changing the layouts from row-major to column-major.

The straightforward algorithm for transpose involves moving an element Ai, j to A′j,i
for all i, j. In the C (M,B) model, we would like to accomplish this for B elements
simultaneously since we always transfer B elements at a time. Recall that matrices are laid
out in row-major form. One idea would be to repeatedly take B elements from a row of A
(assuming p,q are multiples of B) and then transfer them simultaneously to A′ = AT . But
these B elements would lie in different blocks of A′ and so each such transfer will require B
memory transfers. This is clearly an inefficient scheme, but it is not difficult to improve it
with a little thought. Partition the matrix into B×B submatrices (see Fig. 15.1) and denote
these by At(a,b) 1 ≤ a ≤ p/B 1 ≤ b ≤ q/B for matrix A. These submatrices define a tiling of
the matrix A and the respective tiles for A′ are denoted by A′t(a,b) 1≤ a≤ q/B 1≤ b≤ q/B.

p

q

B

B

B

p

Figure 15.1 The tiling of a p×q matrix in a row-major layout.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.016
https://www.cambridge.org/core

Memory Hierarchy and Caching 311

The idea now is to first read each such submatrix in the cache (assume that M > B2).
Any such submatrix can be read using B memory transfers because each row of such a
submatrix is stored in consecutive locations. Then we compute its transpose in the cache,
and write back the submatrix to A′, again using B memory transfers (in each memory
transfer, we write one row of the corresponding submatrix of A′). See Fig. 15.1 for an
illustration. The details of this algorithm are given in Fig. 15.2. It is easy to check that the
the algorithm requires O(pq/B) memory transfers, which is also optimal.

Procedure Computing transpose efficiently in for matrix A(p,q)

1 Input A is a p×q matrix in row-major layout in external memory ;
2 for i = 1 to p/B do
3 for j = 1 to q/B do
4 move At(i, j) to the cache memory C using the Transfer

function ;
5 Compute the transpose AT

t(i, j) within C in a conventional
element-wise manner ;

6 move AT
t(i, j) to A′t(i, j) in the main memory using Transfer

function .

7 A′ contains the transpose of A in the external memory ;

Function Transfer(Dt(k,l),r,s)

1 Input transfer a B×B submatrix located at k ·B−1, l ·B−1 of an r× s
matrix to cache memory ;

2 for i = 1 to B do
3 move block starting at (k ·B+ i) · s+B · l into the ith block in C ;

4 Comment A similar procedure is used to transfer from C to the
external memory ;

Figure 15.2 Transposing a matrix using minimal transfers

15.2.1 Matrix multiplication

Given matrices X ,Y having n rows and n columns, we can first transpose Y since that
changes the matrix layout to a column ordering. Subsequently, when we compute all the
n2 row–column dot products, the contiguous elements are fetched as blocks.

Let us analyze the straightforward approach of multiplying rows of X with columns
of Y . For simplicity, assume that B divides M. We can fetch roughly M/2 elements of a
row of X and the same number of elements from a column of Y using M

2B I-Os. Multiply

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.016
https://www.cambridge.org/core

312 Design and Analysis of Algorithms

corresponding elements and sum them, that is, compute Zi, j = ∑k Xi,k ·Yk, j by repeating
the aforementioned computation for the sub-rows and sub-columns of size M/2. A quick
calculation for this simple approach shows that O(n2 · M

2B ·
n
M) = O(n3/B) I-Os are incurred.

This may look reasonable at first glance since O(n3) operations are needed to multiply the
matrices X and Y . However, this is the number of I-Os and there is no direct dependence on
M which is the size of the internal memory ! Suppose, M≥ 3n2, then clearly, we can can read
all the elements of X ,Y in the internal memory using O(n2/B) I-Os, generate the product
matrix Z internally and write it back to the external memory using the same number of
I-Os, thus totaling O(n2/B) I-Os. This is significantly superior and we are making good
use of the large internal memory. This should motivate us to look beyond the simple matrix
multiplication (SMM) procedure. Consider the algorithm given in Fig. 15.3.

Procedure Tiled matrix multiplication TMM(X ,Y,Z,s)

1 Input X ,Y is a n×n matrix in row-major layout in external memory
2 Let Ds denote a tiling of matrix D of size s× s where Ds

α,β denotes
the elements {Di, j|αs≤ i≤ (α+1)s−1,βs≤ j ≤ (β+1)s−1} ;

3 Y ← Y T ;
4 for α = 1 to n/s do
5 for β = 1 to n/s do
6 for k = 1 to n/s do
7 Transfer X s

α,k,Y
s

k,β,Z
s
α,β to the cache memory ;

8 Zs
α,β← Zs

α,β +SMM(X s
α,k,Y

s
k,β) ;

9 Transfer Zs
α,β to external memory ;

Figure 15.3 Computing the product Z = X ·Y using tiles of size s

The reader should recognize that this variation of the matrix multiplication expressed
in terms of blocks of size s×s is indeed correct. Let us analyze the number of I-Os required.
By using the previous algorithm for transpose, we can use Step 2 in O(n2/B) I-Os. In the
main loop, we are performing a matrix multiplication of size s× s using standard methods
and if we choose s such that all the matrices X s,Y s,Zs can fit into the cache, then there are no
further I-Os. The inside nested loop is executed n3/s3 times where each execution involves
transferring three sub-matrices that requires O(s2/B) I-Os. Therefore, the total number of
I-Os is bounded by O(n3

Bs) I-Os. The largest s that can be chosen is about
√

M so that three
submatrices can fit with the cache memory. This leads to overall O(n3

B
√

M
) I-Os. Note that

for M = n2, we get an optimal number O(n2/B) I-Os.
This method can be generalized to non-square matrices Xm×n and Y n×k, so that the

number of I-Os required is O(mnk
B
√

M
).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.016
https://www.cambridge.org/core

Memory Hierarchy and Caching 313

15.3 Sorting in External Memory

In this section, we consider the problem of sorting a set of n elements in the C (M,B)
model. We would like to remind the reader that unlike the traditional sorting algorithms,
the number of comparisons is not relevant in this model. We will adapt Merge sort to this
model by choosing a larger degree of merge. See Exercise Problem 15.2 at the end of this
chapter regarding how the degree of merge affects the complexity.

Let us briefly recall how the traditional merge sort can be thought of as sorting n
numbers using logn passes over it. Suppose the numbers are stored in an array A of size n.
In the first pass, we consider pairs of consecutive numbers A[2i],A[2i + 1] and arrange
them in the sorted order. After j passes, we have the invariant that sub-arrays of type
A[2 j · l + 1],A[2 j · l + 2], . . . ,A[2 j · l + 2 j], where l is a non-negative integer, are sorted. In the
next pass, we consider pairs of such consecutive length 2k sub-sequences and merge them
into a sorted sub-sequence of size 2 j+1. Thus, after logn passes, we would have sorted the
entire data. The idea now is to consider not only pairs of consecutive sub-sequences, but
choose a suitable parameter k and merge k consecutive sorted sub-sequences. Note that
now we would need logk n passes. Let us see how we can merge k such sorted
subsequences. Recall the merging algorithm – we need to keep the leading (smallest)
blocks of each sequence in the main memory, and choose the smallest element among
them for the next output. To economize memory transfer, we want to read and write
contiguous chunks of B elements, so we write only after B elements are output. Note that
the smallest B elements must occur among the leading blocks (smallest B elements) of the
sorted sequence. Since all the k + 1 sequences, including the k input and 1 output
sequence, must be within the cache, the largest value of k is O(M/B). We need some extra
space to store the data structure for merging (a k-ary min-heap) but we will not discuss
any details of this implementation since it can be done using any conventional approach
within the cache memory. So we can assume that k = M

cB for some appropriate constant
c > 1.

We shall first analyze the number of memory block transfers it takes to merge k sorted
sequences of lengths ` each. As previously discussed, we maintain the leading block of
each sequence in the cache memory and fetch the next block after this is exhausted. So we
need `/B = `′ block transfers for each sequence which may be thought of as the number
of blocks in the sequence (if it is not a multiple of B, then we count the partial block as an
extra block). Likewise, the output is written out as blocks and this must be the sum of all
input sequences, which is k · `′. In other words, the number of block transfers for merging
is proportional to the sum of the sequences being merged. This implies that for each pass
over the data, the total merging cost is proportional to n/B.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.016
https://www.cambridge.org/core

314 Design and Analysis of Algorithms

For k = Ω(M/B), there are logM/B(n/B) levels of recursion as the smallest size of a
sequence is at least B. So, the total number of block transfers is O(n

B logM/B(n/B)) for
sorting n elements in C (M,B).

Recall that this is only the number of memory block transfers – the number of
comparisons remain O(n logn) like conventional Merge sort. For M > B2, note that
logM/B(n/B) = O(logM(n/B)).

15.3.1 Can we improve the algorithm?*

In this section, we give a lower bound for sorting n elements in the C (M,B) model. We
relate sorting to permutation. Given a permutation π of n elements, we want the algorithm
to rearrange the elements in this permutation. Any lower bound on permutation is also
applicable to sorting since permutation can be done by sorting on the destination index of
the elements. If π(i) = j, then one can sort on js, where π() is the permutation function.

We will make some assumptions to simplify the arguments for the lower bound. These
assumptions can be removed with some loss of constant factors in the final bound. There
will be exactly one copy of any element, viz., when the element is fetched from slower
memory then there is no copy left in the slower memory. Likewise, when an element is
stored in the slower memory, then there is no copy in the cache. With a little thought, the
reader can convince herself that maintaining multiple copies in a permutation algorithm
is of no use since the final output has only one copy that can be traced backward as the
relevant copy.

The proof is based on a simple counting argument on how many orderings are possible
after t block transfers. For a worst-case bound, the number of possible orderings must
be at least n! for n elements. The argument does not apply to generating any specific
permutation but the total number of orderings that can be generated by bounding the
number of I-Os. We do not insist that the elements must be in contiguous locations. If
π(i)> π(j), then Ri > R j, where Ri is the final location of the ith element for all pairs i, j.

A typical algorithm has the following behavior.

1. Fetch a block from the slow memory into the cache.

2. Perform computation within the cache to facilitate the permutation.

3. Write out a block from the cache to the slower memory.
Note that Step 2 does not require block transfers and is free since we are not counting
operations within the cache. So we would like to count the additional orderings generated
by Steps 1 and 3.

Once a block of B elements is read into the cache, it can induce additional orderings
with respect to the M−B elements present in the cache. This number is M!

B!·(M−B)! =
(M

B

)
,

which is the relative orderings between M−B and B elements. Further, if these B elements
were not written out before, that is, these were never present in cache before, then there

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.016
https://www.cambridge.org/core

Memory Hierarchy and Caching 315

are B! ordering possible among them. (If the block was written out in a previous step, then
they were in cache together and these orderings would have been already accounted for.)
So this can happen at most n/B times, viz., only for the initial input blocks.

In Step 3, during the tth output, there are at most n/B+ t places relative to the existing
blocks. There were n/B blocks to begin with and t−1 previously written blocks, so the tth
block can be written out in n/B+ t intervals relative to the other blocks. Note that there
may be arbitrary gaps between blocks as long as the relative ordering is achieved.

From the previous arguments, we can bound the number of attainable orderings after
t memory transfers by

(B!)n/B ·
i=t−1

∏
i=0

(n/B+ i) ·
(

M
B

)
If T is the worst-case bound on the number of block transfers, then

(B!)n/B ·
i=T

∏
i=1

(n/B+ i) ·
(

M
B

)
≤ (B!)n/B · (n/B+T)! ·

(
M
B

)T

≤ Bn · (n/B+T)n/B+T · e−n · (M/B)BT

using Stirling’s approximation n!∼ (n/e)n and
(n

k

)
≤ (en/k)k.

From the last inequality, it follows that

e−n ·Bn · (n/B+T)n/B+T · (M/B)BT ≥ n!≥ (n/e)n

Taking logarithm on both sides and re-arranging, we obtain

BT log(M/B)+(T +n/B) · log(n/B+T)≥ n logn−n logB = n log(n/B) (15.3.1)

Since any algorithm must read all the numbers, we know that n/B ≤ T . Therefore,
(T +n/B) log(n/B+T)≤ 4T log(n/B); we can re-write this inequality as

T (B log(M/B)+4log(n/B))≥ n log(n/B)

For 4log(n/B)≤ B log(M/B), we obtain T = Ω(n
B logM/B(n/B)). For log(n/B)> 4 ·B log(M/B),

we obtain T = Ω(n log(n/B)
log(n/B)) = Ω(n).

Theorem 15.1 Any algorithm that permutes n elements in C (M.B) uses Ω(n
B · logM/B(n/B)) block

transfers in the worst case.

As a consequence of Theorem 15.1, the lower bound for sorting matches the bound for the
Merge sort algorithm and hence, the algorithm cannot be improved in asymptotic
complexity. Using some elegant connections between permutation networks with FFT
graphs, the aforementioned result also implies a similar bound for FFT computation in
external memory.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.016
https://www.cambridge.org/core

316 Design and Analysis of Algorithms

15.4 Cache Oblivious Design

Consider the problem of searching a large static dictionary in an external memory of n
elements. If we use a B-tree type data structure, then we can easily search using O(logB n)
memory transfers. This can be explained by effectively doing a B-way search. Each node
of the B-tree contains B records that we can fetch using a single block transfer.

Building a B-tree requires the explicit knowledge of B. Since we are dealing with a static
dictionary, we can consider doing a straightforward B-ary search in a sorted data set. Still,
it requires the knowledge of B. What if the programmer is not allowed to use the parameter
B? Consider the following alternative of doing a

√
n-ary search presented in Fig. 15.4.

Procedure Search(x,S)

1 Input A sorted set S = {x1,x2, . . . ,xn} ;
2 if |S|= 1 then
3 return Yes or No according to whether x ∈ S
4 else
5 Let S′ = {xi

√
n} be a subsequence consisting of every

√
nth

element of S ;
6 Search (x,S′) ;
7 Let p,q ∈ S′ where p≤ x < q ;
8 Return Search (x,S∩ [p,q]) – search the relevant interval of S′ ;

Figure 15.4 Searching a dictionary in external memory

The analysis of this algorithm in C (M,B) depends crucially on the elements being in
contiguous locations. Although S is initially contiguous, S′ is not, so the indexing of S has
to be done carefully in a recursive fashion. The elements of S′ must be indexed before the
elements of S−S′ and the indexing of each of the

√
n subsets of S−S′ will also be indexed

recursively. Figure 15.5 shows the numbering of a set of 16 elements.

4 8 12 16

1 2 3 9 10 115 6 7 13 14 15

4 12

8 16

Figure 15.5 Consider numbers from 1 to 16 arranged according to the
Algorithm in Fig. 15.4. On the left, we show the first level of
recursion. On the right we show the actual order in which
4,8,12,16 are stored.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.016
https://www.cambridge.org/core

Memory Hierarchy and Caching 317

The number of memory transfers T (n) for searching satisfies the following recurrence

T (n) = T (
√

n)+T (
√

n) T (k) = O(1) for k ≤ B

since there are two calls to subproblems of size
√

n. This yields T (n) = O(logB n). Note that
although the algorithm did not rely on the knowledge of B, the recurrence made effective
use of B, since searching within contiguous B elements requires one memory block
transfer (and at most two transfers if the memory transfers are not aligned with block
boundaries). After the block resides within the cache, no further memory transfers are
required; although, the recursive calls continue till the terminating condition is satisfied.

15.4.1 Oblivious matrix transpose

We consider the problem of transposing a matrix. Recall that a common assumption3 is
that M is Ω(B2). Given any m×n matrix A, we use a recursive approach for transposing it
into an n×m matrix B = AT . Two cases arise, whether A has more rows than columns or
vice versa.

[
Am×n/2

1 Am×n/2
2

]
⇒

[
Bn/2×m

1

Bn/2×m
2

]
where n≥ m and Bi = AT

i

[
A′m/2×n

1

A′m/2×n
2

]
⇒

[
B′n×m/2

1 B′n×m/2
2

]
where m≥ n and B′i = A′Ti

The formal algorithm based on the previous recurrence is described in Fig. 15.6.

Procedure Transpose(A,B)

1 Input A is an m×n matrix ;
2 if max{m,n} ≤ c then
3 perform transpose by swapping elements

4 if n≥ m then
5 Transpose (A1,B1) ; Transpose (A2,B2)

6 else
7 Transpose (A′1,B

′
1); Transpose (A′2,B

′
2)

Figure 15.6 Algorithm for matrix transpose

3also called tall cache

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.016
https://www.cambridge.org/core

318 Design and Analysis of Algorithms

When m,n ≤ B/4, then there are no more cache misses, since each row (column) can
occupy at most two cache lines (Fig. 15.7). The algorithm actually starts moving elements
from external memory when the recursion terminates at size c� B. Starting from that
stage, until m,n ≤ B/4, there are no more cache misses since there is enough space for
submatrices of size B/4×B/4. The other cases of the recurrence addresses the recursive
cases corresponding to splitting across columns or rows – whichever is larger. Therefore,
the number of memory block transfers Q(m,n) for an m× n matrix satisfies the following
recurrence.

Q(m,n)≤

4m n≤ m≤ B/4 in cache

4n m≤ n≤ B/4 in cache

2Q(m,dn/2e) m≤ n

2Q(dm/2e,n) n≤ m

The reader is encouraged to find the solution of the recurrence (Exercise Problem
15.11). When the matrix has less than B2 elements (m ≤ n ≤ B or n ≤ m ≤ B), the recursive
algorithm brings all the required blocks – a maximum of B, transposes them within the
cache and writes them out. All this happens without the explicit knowledge of the
parameters M,B but requires support from the memory management policy. For example,
consider the base case. When we are reading m rows (from different blocks), the
algorithm should not evict an earlier fetched row while we read the next row. In
particular, the recurrence is valid for the least recently used (LRU) policy. Since the
algorithm is parameter oblivious, there is no explicit control on the blocks to be replaced
and hence, its inherent dependence on the replacement policy. The good news is that the
LRU policy is known to be competitive with respect to the ideal optimal replacement
policy

A

B

Cache size >M B
2

Figure 15.7 Base case: Both A,B fit into cache – no further cache miss

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.016
https://www.cambridge.org/core

Memory Hierarchy and Caching 319

Theorem 15.2 Suppose OPT is the number of cache misses incurred by an optimal algorithm on
an arbitrary sequence of length n with cache size p. Then, the number of misses incurred by the
LRU policy on the same sequence with cache size k ≥ p can be bounded by k

k−p ·OPT .4

Observe that the algorithm OPT knows the entire sequence of length n beforehand, whereas
the LRU policy sees this sequence in an online manner, i.e., when it receives the request
for a page, it needs to decide which page to evict (assuming that cache is full) without
knowing which pages will be requested. It follows from the aforementioned theorem that
for k = 2p, the number of cache misses incurred by the LRU policy is within a factor two
of the optimal replacement.

We can pretend that the available memory is M/2, which preserves all the previous
asymptotic calculations. The number of cache misses by the LRU policy will be within a
factor two of this bound. Theorem 15.2 is a well-known result in the area of competitive
algorithms, which is somewhat out of the scope of the discussion here but we present a
proof of the theorem.

Consider a sequence of n requests σi ∈ {1,2, . . . ,N}, which can be thought of as the set
of cache lines. We further divide this sequence into subsequences s1,s2,s3, . . . , such that
every subsequence has k+ 1 distinct requests from {1,2, . . . ,N} and the subsequence is of
minimal length, viz., it ends the first time when we encounter the k+ 1st distinct request
without including this request. For example, suppose k = 3 and suppose there are 5
pages. Consider the request sequence 1,2,1,2,4,4,1,2,3,3,4,5,4,3,3,1,2, where the
integer i refers to the fact that page i is being requested. Here we will define the
subsequences as 1,2,1,2,4,4;1,2,3,3;4,5,4,3,3;1,2. The LRU policy will incur at most k
misses in each subsequence (Fig. 15.8). Now consider any policy (including the optimal
policy) that has cache size p, where k > p. In each phase, it will incur at least k− p misses
since it has to evict at least that many items to handle k distinct requests. Here we are
assuming that out of the k distinct requests, there are p cache lines from the previous
phase and it cannot be any better. In the first phase, both policies will incur the same
number of misses (starting from an empty cache).

σi1 σi1+1 . . .σi1+r1 σi2 σi2+1 . . .σi2+r2 σi3 σi3+1 . . .σi3+r3 . . . σit σit+1 . . .

Figure 15.8 The subsequence σi1 σi1+1 . . .σi1+r1 σi2 have k+1 distinct
elements, whereas the subsequence σi1 σi1+1 . . .σi1+r1 have
k distinct elements.

4 A more precise ratio is k/(k− p+1).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.016
https://www.cambridge.org/core

320 Design and Analysis of Algorithms

Let f i
LRU denote the number of cache misses incurred by LRU policy in subsequence

i and f i
OPT denote the number of cache misses by the optimal policy. Then, ∑

t
i=1 f i

LRU ≤
(t−1) · k and ∑

t
i=1 f i

OPT ≥ (p− k) · (t−1)+ k. Their ratio is bounded by

∑
t
i=1 f i

LRU

∑
t
i=1 f i

OPT
≤ (t−1) · k+ k

(t−1) · (p− k)+ k
≤ (t−1) · k

(t−1) · (k− p)
=

k
k− p

Further Reading

The external memory model was formally introduced by Aggarwal and Vitter [3], who
presented a version of Merge sort that uses a maximum O(N

B logM/B N/B) I/Os. Further,
they showed that this is the best possible algorithm by proving a tight lower bound. Our
description of the algorithm and the lower bound is based on their presentation. Prior to
this model, there had been very interesting work on IO complexity, which did not have
the notion of memory blocks. The area of external sorting on tapes and disks has been
historically significant and one of the first lower bounds was given by Floyd [48] on
matrix transpose. Hong and Kung [70] introduced the notion of pebbling games that led
to many non-trivial lower bounds for the IO complexity. The model formulated by
Aggarwal and Vitter [3] was further refined to multiple levels of cache – for example, see
that by Aggarwal et al. [4].

The cache oblivious model was formally introduced by Frigo et al. [56] who presented
a number of techniques that matched the performance of the cache-aware counterparts.
One of the non-trivial algorithms was a cache-oblivious sorting algorithm called Funnel
sort using a

√
n-way recursive Merge sort algorithm. The tall cache assumption is quite

crucial for the optimality of the bounds. Sen et al. [131] present a general technique for
efficient emulation of the external memory algorithms on limited set-associative cache
models that have fixed mapping of memory to cache, and restricts efficient use of cache.
Vitter [150] provides a comprehensive survey of the algorithms and data structures for
external memory.

Subsequent work on memory hierarchy expanded the scope to multiprocessors that
have their own cache memory as well as access to shared memory. The local accesses are
much faster. Arge et al. [12] formalized the parallel external memory (PEM) model and
presented a cache-aware Merge sort algorithm that runs in O(logn) time and has optimal
cache misses. Blelloch et al. [30] presented a resource-oblivious distribution sort
algorithm that incurs sub-optimal cache cost in the private-cache multicore model. A
somewhat different model was given by Valiant [144]; the model was designed for a
BSP-style version of a cache-aware, multi-level multicore which was difficult to compare
directly with the previous results. Recently, Cole and Ramachandran [34] presented a
new optimal Merge sort algorithm (SPMS) for resource-oblivious multicore models.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.016
https://www.cambridge.org/core

Memory Hierarchy and Caching 321

Exercise Problems

15.1 For M = O(B), what is the IO complexity (number of block transfers) to transpose an n×n
matrix?

15.2 In Merge sort, we partition the input into two (almost) equal halves and sort them
recursively. In the external memory merge sort, we partition into k ≥ 2 parts and do a
k-ary merge, analyze the number of comparisons required even though it is not a metric
for design.

15.3 Design an efficient version of partition sort (quicksort with multiple pivots) for the external
memory model with parameters M and B. Show that it is comparable to Merge sort.

Hint: You may want to use the sampling lemma used for PRAM-based partition sort.

15.4 Show that the average case lower bound for permutation is asymptotically similar to the
worst-case bound.

15.5 A k-transposition permutes n = k · ` elements as follows

x1x2x3x`x`+1,x`+2, . . .x`·k,x`·k+1 . . .x`·k+` are mapped to
x1,x`+1,x2·`+1 . . .x`k,x2,x`+2 . . .x2`k . . .

Show how to do this in an external memory model using O(n
B logM/B k) IOs.

15.6 Describe a cache-efficient algorithm for computing the matrix product

Cm×n = Xm×n ·Y k×n

for parameters M,B.

15.7 Describe a cache-efficient impementation of Shearsort in the external memory model
with parameters M,B (See Section 14.2.2 for a discussion on Shearsort).

15.8 Describe a cache-efficient algorithm for constructing planar convex hull of n points in the
external memory model.

15.9 Describe a cache-efficient algorithm for finding the maximal elements of n points on the
plane in the external memory model.

15.10 Describe a cache-efficient algorithm for computing all nearest smaller value problem
(defined in Exercise Problem 3.21) in the IO model.

15.11 Consider the recurrence Q(m,n) used in the analysis of Section 15.4.1. Show that
Q(m,n) ≤ O(mn/B) from this recurrence. You may want to rewrite the base cases to
simplify the calculations.

15.12 Design a cache-oblivious algorithm for computing matrix transpose for the case M≥ B3/2.
Recall that the method described in the chapter assumes that M ≥ B2.

15.13 Design a cache-oblivious algorithm for multiplying an N×N matrix by an N vector.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.016
https://www.cambridge.org/core

322 Design and Analysis of Algorithms

15.14 The FFT computation based on the butterfly network in Fig. 9.2 is a very important
problem with numerous applications. Show how to accomplish this in O(n

B logM/B(n/B))
IOs in C (M,B).

Hint: Partition the computation into FFT sub-networks of size M.

15.15 *Parallel disk model (PDM): Consider a realistic extension of the external memory
model where there are D disks capable of simultaneous input and output. That is, during
any read operation, blocks of size B can be read in parallel from each of the D disks and
similarly, D blocks of size B can be written in parallel. This is more constrained compared
to the ability of simultaneously accessing any set of D blocks from a disk – which yields
a virtual block size DB.

(i) Design an algorithm to transpose an N×N matrix that is faster than the single disk
model by a factor D.

(ii) Re-design the Merge sort algorithm to exploit this D fold increase in IO capability.

15.16 *Discuss methods to design an efficient external memory priority queue data structure.
This must support the operations delete-min , insert and delete efficiently. Use this to
implement an external memory heap sort. The reader will have devise fast amortized
versions of the priority queue operations to make heapsort match the performance of the
external memory merge sort since a straightforward application of n delete-min operations
would result in an O(n logB(n/B) I-Os.

15.17 Consider the paging problem where we have a cache of size p and are given a sequence
of page requests at the beginning (i.e., we know the entire sequence of page in advance).
Prove that the following algorithm (called Furthest In Future) is optimal – when we need
to evict a page, we evict the one which is requested farthest in future.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.016
https://www.cambridge.org/core

16
C H A P T E R

Streaming Data Model

16.1 Introduction

In this chapter, we consider a new model of computation where the data arrives as a very
long sequence of elements of unknown length. Such a setting has become increasingly
important in scenarios where we need to handle huge amounts of data and do not have
space to store all of it, or do not have time to scan the data multiple times. As an example,
consider the amount of traffic encountered by a network router – it sees millions of packets
every second. We may want to compute some properties of the data seen by the router,
for example, the most frequent (or the top ten) destinations. In such a setting, we cannot
expect the router to store details about each of the packet – this would require terabytes
of storage capacity, and even if we could store all this data, answering queries on them
will take too much time. Similar problems arise in the case of analyzing web-traffic, data
generated by large sensor networks, etc.

In the data streaming model, we assume that the data arrives as a long stream
x1,x2, . . . ,xm, where the algorithm receives the element xi at step i (see Fig. 16.1). Further,
we assume that the elements belong to a universe U = {e1, . . . ,en}. Note that the stream
can have the same element repeated multiple times.1 Both the quantities m and n are
assumed to be very large, and we would like our algorithms to take sub-linear space

1 There are more general models which allow both insertion and deletion of an element. We will not discuss these
models in this chapter, though some of the algorithms discussed in this chapter extend to this more general
setting as well.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

324 Design and Analysis of Algorithms

(sometimes, even logarithmic space). This implies that the classical approach where we
store all the data and can access any element of the data (say, in the RAM model) is no
longer valid here because we are not allowed to store all of the data. This also means
that we may not be able to answer many of the queries exactly. Consider, for example, the
following query – output the most frequent element in the stream. Now consider a scenario
where each element arrives just once, but there is one exceptional element which arrives
twice. Unless we store all the distinct elements in the stream, identifying this exceptional
element seems impossible. Therefore, it is natural to make some more assumptions about
the nature of output expected from an algorithm. For example, here we would expect the
algorithm to work only if there is some element which occurs much more often than other
elements. This is an assumption about the nature of the data seen by the algorithms. At
other times, we would allow the algorithm to output approximate answers. For example,
consider the problem of finding the number of distinct elements in a stream. In most
practical settings, we would be happy with an answer which is a small constant factor
away from the actual answer.

x1 x2 x3 xt xm… …

A

Figure 16.1 The algorithm A receives input xt at time t, but has limited
space.

In this chapter, we consider some of the most fundamental problems studied in the
streaming data model. Many of these algorithms will be randomized. In other words, they
will output the correct (or approximate) answer with high probability.

16.2 Finding Frequent Elements in a Stream

In this section, we consider the problem of finding frequent elements in a stream. As
indicated earlier, this happens to be a very useful statistic for many applications. The
notion of frequent elements can be defined in many ways:

• Mode: The element (or elements) with the highest frequency. In case there are
multiple modes, any of them is an acceptable output.

• Majority: An element with more than 50% occurrence – note that there may not be
any such element.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

Streaming Data Model 325

• Threshold: Find out all elements that occur more than f fraction of the length of the
stream, for any 0 < f ≤ 1. Finding majority is a special case with f = 1/2.

Observe that the aforementioned problems are hardly interesting from a classical
algorithmic design perspective because they can be easily reduced to sorting. Designing
more efficient algorithms requires further thought (for example, finding the mode).
Accomplishing the same task in a streaming environment with limited memory presents
interesting design challenges. Let us first review a well-known algorithm for majority
among n elements known as the Boyer–Moore voting algorithm. Recall that a majority
element in a stream of length m is an element which occurs more than m/2 times in the
stream. If no such element exists, the algorithm is allowed to output any element. This is
always acceptable if we are allowed to scan the array once more because we can check if
the element output by the algorithm is indeed the majority element. Therefore, we can
safely assume that the array has a majority element.

The algorithm is described in Fig. 16.2. The procedure scans the array sequentially 2

and maintains one counter variable. It also maintains another variable maj which stores the
(guess for) majority element. Whenever the algorithm sees an element which is identical
to the one stored in maj, it increases the counter variable, otherwise it decreases it. If the
counter reaches 0, it resets the variable maj to the next element. It is not obvious why it
should return the majority element if it exists. If there is no such element, then it can return
any arbitrary element.

Procedure Finding majority of m elements in array(a)

1 count← 0 ;
2 for i = 1 to m do
3 if count = 0 then
4 ma j← a[i] (* initialize ma j *)

5 if ma j = a[i] then
6 count← count +1
7 else
8 count← count−1 ;

9 Return ma j ;

Figure 16.2 Boyer–Moore majority voting algorithm

2 Often, we will think of the stream as a long array which can be scanned only once. In fact, there are more general
models which allow the algorithm to make a few passes over the array.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

326 Design and Analysis of Algorithms

As mentioned earlier, we begin by assuming that there is a majority element, denoted
by M. We need to show that when the algorithm stops, the variable maj is same as M. The
algorithm tries to delete elements without affecting the majority. More formally, we will
show that at the beginning of each step t (i.e., before arrival of xt), the algorithm maintains
the following invariant: let St denote the multi-set consisting of the elements xt ,xt+1, . . . ,xm

and count number of copies of the element maj, that is, St = {xt , . . . ,xm}∪{maj,maj . . .︸ ︷︷ ︸
count

}. We

shall prove that for all times t, M will be the majority element of St . This statement suffices
because at the end of the algorithm (when t = m), St will be a multi-set consisting of copies
of the element maj only. The invariant shows that M will be the majority element of St , and
so, it must be the same as the variable maj when the algorithm terminates.

Example 16.1 Consider an input consisting of a b b c c a a b a a a. Then, the values of maj and
count after each iteration are

(a,1),(a,0),(b,1),(b,0),(c,1),(c,0),(a,1),(a,0),(a,1),(a,2),(a,3)

We will prove this invariant by induction over t. Initially, S0 is same as the input sequence,
and so, the statement follows trivially. Suppose this fact is true at the beginning of step t.
A key observation is that if M is the majority of a set of elements, it will remain in majority
if some other element x 6= M is deleted along with an instance of the majority element –
this is implicitly done by reducing count. Indeed, if M occurs m1 times, m1 > m/2, then
m1−1 > (m−2)/2. So, if xt 6= maj, we decrement count. Hence, St+1 is obtained from St by
removing xt and at most one copy of M. Note that it is also possible that neither maj nor xt

equals M. From this observation, M continues to be the majority element of St+1.
The other case is when xt happens to be the same as maj. Here, the set St+1 = St since we

replace xt by one more copy of maj in the variable count. So the invariant holds trivially.
This shows that the invariant holds at all times, and eventually, the algorithm outputs
the majority element, M. In case, there is no majority element, the algorithm can output
anything and so, if we want to verify if the element output is actually the majority, we have
to make another pass through the array.

This idea can be generalized to finding out elements whose frequency exceeds m
k for

any integer k, see Fig. 16.3. Note that there can be at most k− 1 such elements. So instead
of one counter, we shall use k−1 counters. When we scan the next element, we can either
increment the count if there exists a counter for the element or start a new counter if the
number of counters used is less than k− 1. Otherwise, we decrease the counts of all the
existing counters. If any counter becomes zero, we discard that element and instead assign
a counter for the new element. In the end, the counters return elements that have non-zero
counts. As before, these are potentially the elements that have frequencies at least m

k and
we need a second pass to verify them.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

Streaming Data Model 327

The proof of correctness is along the same lines as the majority. Note that there can be
at most k− 1 elements that have frequencies exceeding m

k , that is, a fraction 1
k . So, if we

remove such an element along with k−1 distinct elements, it still continues to be at least 1
k

fraction of the remaining elements: n1 >
m
k ⇒ n1−1 > m−k

k .

Procedure Algorithm for threshold(m,k)

1 cur : current element of stream ;
2 S: current set of elements with non-zero counts, |S| ≤ k ;
3 if cur ∈ S then
4 increment counter for cur
5 else
6 if |S|< k then
7 Start a new counter for cur, update S
8 else
9 decrement all counters ;

10 If a counter becomes 0 delete it from S

11 Return S ;

Figure 16.3 Misra–Gries streaming algorithm for frequent elements

The previous algorithms have the property that the data is scanned in the order it is
presented and the amount of space is proportional to the number of counters where each
counter has logm bits. Thus, the space requirement is logarithmic in the size of the input.
This algorithm can be used for approximate counting – see Exercise Problems.

16.3 Distinct Elements in a Stream

The challenging aspect of this problem is to count the number of distinct elements d in the
input stream with limited memory s, where s� d. If we were allowed space comparable
to d, then we could simply hash the elements and count the number of non-zero buckets.
Uniformly sampling a subset of elements from the stream could be misleading. Indeed,
if some elements occur much more frequently than others, then multiple occurrence of
such elements would be picked up by the uniform sample and it does not provide any
significant information about the number of distinct elements.

Instead, we will hash the incoming elements uniformly over a range, [1, p] such that if
there are d distinct elements, then they will be roughly p/d apart where p > n ≥ d. If g is
the gap between two consecutive hashed elements, then we can estimate d = p/g. Think

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

328 Design and Analysis of Algorithms

of throwing d balls in p bins randomly which will be scattered evenly on the average.
Alternately, we can use the position of the first hashed position as estimate of g. This is the
underlying idea behind the algorithm given in Fig. 16.4. The algorithm keeps track of the
smallest value to which an element gets hashed (in the variable Z). Again, the idea is that
if there are d distinct elements, then the elements get mapped to values in the array that
are roughly p/d apart. So, p/Z should be a good approximation of d.

Procedure Distinct elements in a stream S(m,n)

1 Input A stream S = {x1,x2, . . . ,xm}, where xi ∈ [1,n] ;
2 Suppose p is a prime in the range [n,2n]. Choose 0≤ a≤ p−1 and

0≤ b≤ p−1 uniformly at random ;
3 Z← ∞ ;
4 for i = 1 to m do
5 Y = (a · xi +b) mod p ;
6 if Y < Z then
7 Z← Y

8 Return d p
Z e ;

Figure 16.4 Counting number of distinct elements

This procedure will be analyzed rigorously using the property of the universal hash
family discussed earlier in Section 6.3. The parameter of interest will be the expected gap
between consecutive hashed elements. Our strategy will be to prove that the Z lies between
k1 p/d and k2 p/d with high probability, where k1 and k2 are two constants. It will then follow
that the estimate p/Z is within a constant factor of d.

Let Zi = (a · xi +b) mod p be the sequence of hashed values from the stream. Then, we
can claim the following.

Claim 16.1 The numbers Zi ,1≤ i≤m are distributed uniformly at random in the range [0, p−1]
and are also pair-wise independent, viz., for i 6= k

Pr[Zi = r,Zk = s] = Pr[Zi = r] ·Pr[Zk = s] =
1
p2

Proof: For some fixed i0 ∈ [0, p− 1] and x ∈ [1,n], we want to find the probability that x is
mapped to i0. So,

i0 ≡ (ax+b) mod p

i0−b ≡ ax mod p

x−1(i0−b) ≡ a mod p

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

Streaming Data Model 329

where x−1 is the multiplicative inverse of x in the multiplicative prime field modulo p and
it is unique since p is prime.3 For any fixed b, there is a unique solution for a. As a is
chosen uniformly at random, the probability of this happening is 1

p for any fixed choice of
b. Therefore, this is also the unconditional probability that x is mapped to i0.

For the second part, consider i0 6= i1. We can consider x 6= y such that x,y are mapped
respectively to i0 and i1. We can write the simultaneous equations similar to the previous
one. [

x 1
y 1

]
·
[

a
b

]
≡p

[
i0
i1

]
The 2 × 2 matrix is invertible for x 6= y and therefore, there is a unique solution
corresponding to a fixed choice of (i0, i1). The probability that a,b matches the solution is
1
p2 as they are chosen uniformly at random. 2

Recall that d denotes the number of distinct elements in the stream. We will show the
following.

Claim 16.2 For any constant c≥ 2,

Z ∈
[p

cd
,

cp
d

]
with probability ≥ 1− 2

c

Proof: Note that if Z = p/d, then the algorithm returns d, which is the number of distinct
elements in the stream. Since Z is a random variable, we will only be able to bound the
probability that it is within the interval

[p
cd ,

cp
d

]
with significant probability implying that

the algorithm will return an answer in the range [p/c, pc] with significant probability. Of
course, there is a risk that it falls outside this window and that is the inherent nature of a
Monte Carlo randomized algorithm.

First, we will find the probability that Z ≤ s− 1 for some arbitrary s. For the sake of
notational simplicity, assume that the d distinct elements are x1,x2, . . . ,xd . Let us define a
family of indicator random variables in the following manner

Xi =

{
1 if (axi +b) mod p≤ s−1

0 otherwise

So the total number of xi that map to numbers in the range [0,s− 1] equals ∑
d
i=1 Xi (recall

that we assumed that x1, . . . ,xd are distinct). Let X = ∑
d
i=1 Xi and therefore, using linearity

of expectation

E[X] = E[∑
i

Xi] = ∑
i
E[Xi] = ∑

i
Pr[Xi = 1] = d ·Pr[Xi = 1] =

sd
p

3 By our choice of p, x 6≡ 0 mod p

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

330 Design and Analysis of Algorithms

The last equality follows from the previous result as there are s (viz., 0,1, . . . ,s − 1)
possibilities for xi to be mapped and each has probability 1

p .
If we choose s = p

cd for some constant c, then E[X] = 1/c. From Markov’s inequality,
Pr[X ≥ 1]≤ 1

c , implying that with probability greater than 1−1/c, no xi will be mapped to
numbers in the range [0,d p

cd e]. This establishes that Pr[Z ≤ p
cd]≤

1
c .

For the other direction, we will use Chebyshev’s inequality (Eq. (2.2.4)), which requires
computing the variance of X , which we shall denote by σ2(X). We know that

σ
2[X] = E[(X−E[X])2] = E[X2]−E2[X]

Since X = ∑
d
i=1 Xi, we can calculate (assume that all indices i and j vary from 1 to d)

E[X2] = E

(d

∑
i=1

Xi

)2

= E

[
d

∑
i=1

X2
i +∑

i6= j
Xi ·X j

]

= E

[
d

∑
i=1

X2
i

]
+E

[
∑
i6= j

Xi ·X j

]

=
d

∑
i=1

E[X2
i]+∑

i6= j
E[Xi] ·E[X j]

which follows from linearity of expectation and pairwise independence of Xi and X j.4 It is
easily seen that E[X2

i] = E[Xi] since Xi is 0-1 valued, so the expression simplifies to d · s
p +

d(d−1) · s2

p2 . This yields the expression for

σ
2(X) =

sd
p
+

d(d−1)s2

p2 − s2d2

p2 =
sd
p
·
(

1− s
p

)
≤ sd

p

For s = cp
d , the variance is bounded by c. From Chebyshev’s inequality, we know that for

any random variable X ,

Pr[|X−E[X]| ≥ t]≤ σ2(X)

t2

Using t =E[X] = sd
p = c, we obtain Pr[|X−E[X]| ≥E[X]]≤ c

c2 =
1
c . The event |X−E[X]| ≥E[X]

is the union of two disjoint events, namely

4 This needs to be rigorously proved using Claim 16.1 on pair-wise independence of (xi,x j) being mapped to
(i0, i1). We have to technically consider all pairs in the range (0,s−1).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

Streaming Data Model 331

(i) X ≥ 2E[X] and

(ii) E[X]−X ≥ E[X], or X ≤ 0

Clearly, both events must have probability bounded by 1
c and specifically, the second

event implies that the probability that none of the m elements is mapped to the interval
[0, cp

d] is less than 1
c . Using the union bound Pr[Z ≤ p/(cd)∪Z] ≥ (cp)/d ≤ 1

c +
1
c = 2

c , we
obtain the required result. 2

So the algorithm outputs a number that is within the range [d
c ,cd] with probability

≥ 1− 2
c .

16.4 Frequency Moment Problem and Applications

Suppose the set of elements in a stream S= {x1, . . . ,xm} belong to a universe U = {e1, . . . ,en}.
Define the frequency fi of element ei as the number of occurrences of ei in the stream S. The
kth frequency moment of the stream is defined as

Fk =
n

∑
i=1

f k
i .

Note that F0 is exactly the number of distinct elements in the stream. F1 counts the number
of elements in the stream, and can be easily estimated by keeping a counter of size O(logm).
The second frequency moment F2 captures the non-uniformity in the data – if all n elements
occur with equal frequency, that is, m/n (assume that m is a multiple of n for the sake of this
example), then F2 is equal to m2/n; whereas, if the stream contains just one element (with
frequency m), then F2 is m2. Thus, larger values of F2 indicate non-uniformity in the stream.
Higher frequency moments give similar statistics about the stream – as we increase k, we
are putting more emphasis on higher frequency elements.

The idea behind estimating Fk is quite simple: suppose, we sample an element
uniformly at random from the stream, call it X . Suppose X happens to be the element ei.
Conditioned on this fact, X is equally likely to be any of the fi occurrences of ei. Now, we
observe how many times ei occurs in the stream from now onward. Say it occurs r times.
What can we say about the expected value of rk ? Since ei occurs fi times in the stream, the
random variable r is equally likely to be one of {1, . . . , fi}. Therefore,

E[rk|X = ei] =
1
fi

fi

∑
j=1

jk

It follows from the aforementioned expression that E[rk− (r−1)k|X = ei] =
1
fi
· f k

i . Now, we
remove the conditioning on X , and we have

E[rk− (r−1)k] = ∑
i
E[rk− (r−1)k|X = ei]Pr[X = ei] =

1
fi
· f k

i ·∑
i

fi

m
=

1
m
·Fk

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

332 Design and Analysis of Algorithms

Therefore, the random variable m(rk− (r−1)k) has expected value Fk.
The only catch is that we do not know how to sample a uniformly random element of

the stream. Since X is a random element of the stream, we want

Pr[X = x j] =
1
m

for all values of j = 1, . . . ,m. However, we do not know m in advance, and so cannot use
this expression directly. Fortunately, there is a more clever sampling procedure, called
reservoir sampling, described in Fig. 16.5 (also see Section 2.3.2). Note that in iteration i, the
algorithm just tosses a coin with probability of heads equal to 1/i. It is left as an exercise
problem to show that at any step i, X is indeed a randomly chosen element from {x1, . . . ,xi}.

Procedure Reservoir sampling

1 X ← x1 ;
2 for i = 2 to m do
3 Sample a binary random variable ti, which is 1 with probability

1/i using Reservoir sampling ;
4 if ti = 1 then
5 X ← xi

6 Return X

Procedure Estimating Fk

1 X ← x1,r← 1 , i← 1 ;
2 while not end-of-stream do
3 i← i+1 ;
4 Sample a binary random variable ti, which is 1 with probability

1/i using Reservoir sampling ;
5 if ti = 1 then
6 X ← xi,r← 1

7 else

8 if X = xi then
9 r← r+1 ;

10 Return m
(
rk− (r−1)k

)
;

Figure 16.5 Combining reservoir sampling with the estimator for Fk

We now need to show that this algorithm gives a good approximation to Fk with high
probability. So far, we have only shown that there is a random variable, namely Y :=

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

Streaming Data Model 333

m(rk − (r− 1)k), which is equal to Fk in expectation. But now we want to compute the
probability that Y lies within (1±ε)Fk. In order to do this, we need to estimate the variance
of Y . If the variance is not too high, we can hope to use Chebyshev’s bound. We know that
the variance of Y is at most E[Y 2]. Therefore, it is enough to estimate the latter quantity.
Since we are going to use Chebyshev’s inequality, we would like to bound E[Y 2] in terms
of (E[Y])2, which is the same as F2

k . The first few steps for estimating E[Y 2] are identical to
those for estimating E[Y] :

E[Y 2] =
n

∑
i=1

E[Y 2|X = ei] ·Pr[X = ei] =
n

∑
i=1

m2 ·E
[(

rk− (r−1)k)2 |X = ei

]
· fi

m

=
n

∑
i=1

m fi ·
1
fi

fi

∑
j=1

(jk− (j−1)k)2 = m ·
n

∑
i=1

fi

∑
j=1

(jk− (j−1)k)2 (16.4.1)

We now show how to handle the expression ∑
fi
j=1(jk− (j−1)k)2. We first claim that

jk− (j−1)k ≤ k · jk−1

This follows from applying the mean value theorem to the function f (x) = xk. Given two
points x1 < x2, the mean value theorem states that there exists a number θ ∈ [x1,x2] such
that f ′(θ) = f (x2)− f (x1)

x2−x1
. We now substitute j−1 and j for x1 and x2 respectively, and observe

that f ′(θ) = kθk−1 ≤ kxk−1
2 to get

jk− (j−1)k ≤ k · jk−1

Therefore,

fi

∑
j=1

(jk− (j−1)k)2 ≤
fi

∑
j=1

k · jk−1 · (jk− (j−1)k)≤ k · f k−1
i

fi

∑
j=1

(jk− (j−1)k)≤ k · f k−1
? · f k

i

where f? denotes maxn
i=1 fi. Substituting this in Eq. (16.4.1), we get

E[Y 2]≤ k ·m · f k−1
? Fk

Recall that we wanted to bound E[Y 2] in terms of F2
k . So we need to bound m · f k−1

? in terms
of Fk. Clearly,

f k−1
? = (f k

?)
k−1

k ≤ F
k−1

k
k

In order to bound m, we apply Jensen’s inequality5 to the convex function xk to get(
∑

n
i=1 fi

n

)k

≤ ∑
n
i=1 f k

i

n

5 For any convex function f , E[f (X)]≥ f (E[X]) for a random variable X .

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

334 Design and Analysis of Algorithms

which implies that

m =
n

∑
i=1

fi ≤ n1−1/k ·F1/k
k

Combining all of these inequalities, we see that

E[Y 2]≤ k ·n1−1/k ·F2
k

If we now use Chebyshev’s bound, we get

Pr[|Y −Fk| ≥ εFk]≤
E[Y 2]

ε2F2
k
≤ k/ε

2 ·n1−1/k

The expression on the right-hand side is (likely to be) larger than 1, and so this does not
give us much information. The next idea is to further reduce the variance of Y by keeping
several independent copies of it, and computing the average of all these copies. More
formally, we maintain t i.i.d. random variables Y1, . . . ,Yt , each of which has the same
distribution as that of Y . If we now define Z as the average of these random variables,
linearity of expectation implies that E[Z] remains Fk. However, the variance of Z now
becomes 1/t times that of Y (see Exercise Problems).

Therefore, if we now use Z to estimate Fk, we get

Pr[|Z−Fk| ≥ εFk]≤
k

t · ε2 ·n
1−1/k

If we want to output an estimate within (1± ε)Fk with probability at least 1−δ, we should
pick t to be 1

δε2 ·n1−1/k. It is easy to check that the space needed to update one copy of Y is
O(logm+ logn). Thus, the total space requirement of our algorithm is O(1

δε2 · n1−1/k · (logm
+ logn)).

16.4.1 The median of means trick

We now show that it is possible to obtain the same guarantees about Z; but we need to
keep only O

(1
ε2 · log

(1
δ

)
·n1−1/k

)
copies of the estimator for Fk. Note that we have replaced

the factor 1/δ by log(1/δ) . The idea is that if we use only t = 4
ε2 ·n1−1/k copies of the variable

Y in the earlier analysis, then we will get

Pr[|Z−Fk| ≥ εFk]≤ 1/4

Although this is not good enough for us, what if we keep several copies of Z (where each
of these is average of several copies of Y)? In fact, if we keep log(1/δ) copies of Z, then
at least one of these will give the desired accuracy with probability at least δ – indeed,
the probability that all of them are at least εFk far from Fk will be at most (1/2)log(1/δ) ≤ δ.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

Streaming Data Model 335

But we will not know which one of these copies is correct! Therefore, the plan is to keep
slightly more copies of Z, say about 4log(1/δ). Using Chernoff bounds, we can show that
with probability at least 1− δ, roughly a majority of these copies will give an estimate in
the range (1± ε)Fk. Therefore, the median of all these copies will give the desired answer.
This is called the ‘median of means’ trick.

We now give details of this idea. We keep an array of variables Yi j, where i varies from
1 to ` := 4log(1/δ) and j varies from 0 to t := 2

ε2 ·n1−1/k. Each row of this array (i.e., elements
Yi j, where we fix i and vary j) will correspond to one copy of the estimate described here.
So, we define Zi = ∑

t
j=1 Yi j/t. Finally, we define Z as the median of Zi, for i = 1, . . . , `. We

now show that Z lies in the range (1± ε)Fk with probability at least 1− δ. Let Ei denote
the event: |Zi−Fk| ≥ εFk. We already know that Pr[Ei] ≤ 1/4. Now, we want to show that
the number of such events will be close to `/4. We can use Chernoff bounds to prove that
the size of the set {i : Ei occurs} is at most `/2 with at least (1−δ) probability (see Exercise
Problems).

Now assume this happens. If we look at the sequence Zi, i = 1, . . . , `, at least half of
them will lie in the range (1± ε)Fk. The median of this sequence will also lie in the range
(1± ε)Fk for the following reason: if the median is (say) above (1+ ε)Fk, then at least half
of the events Ei will occur, which is a contradiction. Thus, we have shown the following
result:

Theorem 16.1 We can estimate the frequency moment Fk of a stream with (1± ε) multiplicative
error with probability at least 1−δ using O

((1
ε2 · log

(1
δ

)
·n1−1/k

)
· (logm+ logn)

)
space.

16.4.2 The special case of second frequency moment

It turns out that we can estimate the second frequency moment F2 using logarithmic space
only (the aforementioned result shows that space requirement will be proportional to

√
n).

The idea is again to have a random variable whose expected value is F2, but now we will
be able to control the variance in a much better way. We will use the idea of universal hash
functions (refer to Section 6.3). We will require binary hash functions, that is, they will map
the set U = {e1, . . . ,en} to {−1,+1}. By generalizing the notion of pair-wise independent
universal hash function, a set of functions H is said to be k-universal if for any set S of
indices of size at most k, and values a1, . . . ,ak ∈ {−1,+1},

Pr
h∈H

[∧i∈Sxi = ai] =
1

2|S|

where h is a uniformly chosen hash function from H. We can construct such a set H which
has O(nk) functions; a hash function h ∈ H can be stored using only O(k logn) space (see
Exercise Problems at the end of the chapter). We will need a set of 4-universal hash
functions. Thus, we can store the hash function using O(logn) space only.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

336 Design and Analysis of Algorithms

The algorithm for estimating F2 is shown in Fig. 16.6. It maintains a running sum X –
when the element xt arrives, it first computes the hash value h(xt), and then adds h(xt) to X
(so, we add either +1 or−1 to X). Finally, it outputs X2. It is easy to check that the expected
value of X2 is indeed F2. First observe that if fi denotes the frequency of element ei, then
X = ∑

n
i=1 fi ·h(ei). Therefore, using linearity of expectation,

E[X2] =
n

∑
i=1

n

∑
j=1

fi f jE[h(ei)h(e j)]

Procedure Second frequency moment

1 X ← 0, h← uniformly chosen ±1 hash function from a 4-universal
family; for i = 1 to m do

2 X ← X +h(xi)

3 Return X2

Figure 16.6 Estimating F2

This sum splits into two parts: if i = j, then h(ei)h(e j) = h(ei)
2 = 1; and if i 6= j, then the

fact that H is 4-universal implies that h(ei) and h(e j) are pair-wise independent random
variables. Therefore, E[h(ei)h(e j)] = E[h(ei)] ·E[h(e j)] = 0, because h(ei) is ±1 with equal
probability. So,

E[X2] =
n

∑
i=1

f 2
i = F2

As before, we want to show that X2 comes close to F2 with high probability. We need to
bound the variance of X2, which is at most E[X4]. As previously, we expand the fourth
power of the expression of X :

E[X2] =
n

∑
i, j,k,l=1

fi f j fk flE[h(ei)h(e j)h(ek)h(el)]

Each of the summands is a product of 4 terms – h(ei),h(e j),h(ek),h(el). Consider such a
term. If an index is distinct from the remaining three indices, then we see that its expected
value is 0. For example, if i is different from j,k, l, then E[h(ei)h(e j)h(ek)h(el)] =

E[h(ei)]E[h(e j)h(ek)h(el)] (we are using 4-universal property here – any set of 4 distinct
hash values are mutually independent). But E[h(ei)] = 0, and so the expected value of the
whole term is 0. Thus, there are only two cases when the summand need not be 0: (i) all
the four indices i, j,k, l are same – in this case, E[h(ei)h(e j)h(ek)h(el)] = E[h(ei)

4] = 1,
because h(ei)

2 = 1, or (ii) exactly two of i, j,k, l take one value and the other two indices

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

Streaming Data Model 337

take another value – for example, i = j, k = l, but i 6= k. In this case, we again get
E[h(ei)h(e j)h(ek)h(el)] = E[h(ei)

2h(ek)
2 = 1. We can simplify

E[X4] =
n

∑
i=1

f 4
i +

n

∑
i=1

∑
j∈{1,...,n}\{i}

f 2
i f 2

j ≤ 2F2
2

Thus, we see that the variance of the estimator X2 is at most 2E[X2]2. The remaining ideas
for calculations are the same as in the previous section (see Exercise Problems).

16.5 Proving Lower Bounds for Streaming Model

The primary challenges in the streaming model are limited space and our inability to go
back and forth on the input data, that is, the single pass restriction. The latter has been
relaxed to allow multiple passes to understand the relative complexity of certain problems,
in particular graph problems that are very difficult to solve in one or even constant number
of passes. However, in reality, the single pass is the most realistic setting and one would
like to derive lower bounds on this problem. This is further complicated by our willingness
to allow approximation and use of randomness, so the lower bounds must address these
aspects along with any tradeoffs.

The most successful approach has been through communication complexity that has
many other applications for proving information theoretic lower bounds. There are two
parties in this model, typically named Alice and Bob. Alice holds an input denoted by X
and Bob has an input denoted by Y . The goal of the model is to compute a function
f : X ×Y → Z by exchanging as little information as possible. The inputs X and Y can be
thought of as bit strings of length n. For example, we may want to compute X +Y which
is the sum of the inputs or even simpler functions like (X +Y) mod 2 etc. If one of the
parties sends her input to the other party then it is trivially computed, but it involves
communication of n bits. While computing the sum may necessitate knowing the entire
input, for computing the sum modulo 2, one of the parties can just send over the parity,
i.e., one bit to the other, who can now easily compute the answer correctly as in the same
line with the expression (X +Y) mod 2 = X mod 2+Y mod 2.

In the most general setting, the communication is expected to happen in k ≥ 1 rounds
where alternately Alice and Bob send some inputs to the other party – this can help in
adaptive computation of the function f . The final answer is supposed to be with Bob and
the communication complexity of f is the total number of bits exchanged in all the rounds.
In our scenario, we will assume k = 1, so it is only Alice who will communicate some of
her input to Bob who is entrusted to compute the answer.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

338 Design and Analysis of Algorithms

To give the reader a flavor of this model, consider computation of the equality function

Equal : X×Y →{0,1}=

{
1 if X = Y

0 otherwise

Since the case of n bits is trivial, let us see even when Alice sends n− 1 or fewer bits, if
Bob can compute Equal correctly. The total number of possible messages that Alice can
send to Bob is ∑

n−1
i=1 2i = 2n− 2 since each bit can be 0 or 1; she must send at least one bit

(otherwise the problem is trivial). Since Alice holds n bits that has 2n possibilities, for at
least two distinct inputs x1,x2 ∈{0,1}n, Alice sends the same message to Bob. So the answer
computed by Bob for his inputs Y = {x1} and Y = {x2} must be identical since it depends
only on the message sent by Alice, but Equal(x1,x2) 6= Equal(x2,x2) so clearly the function
will not be correctly computed for all inputs.

An interesting variation is to allow use of randomization. Alice will send her input
modulo some random prime p where p is much smaller than n bits. Bob compares his
input also hashed wrt to the same prime number. If they are equal, he answers 1, else
0. Clearly, the answer is always correct when the hashes do not agree but the answer
may be wrong even when they agree. This was used very cleverly for the string matching
algorithm of Rabin-Karp (Section 8.1) where we showed that we can achieve this with high
probability by using only O(logn) bits. In this case, Alice can also send the random prime
number that is used to compute the hash within O(logn) bits. This implies an exponential
improvement over the n bit scheme by using randomization. Clearly there is a provable
gap between deterministic and randomized communication complexity. There are many
interesting results known for communication complexity but our purpose here is to only
highlight the relationship with streaming algorithms.

We hypothetically partition the stream into two halves, the first half and the second
half. The first half can be thought of as Alice’s part and the second half is with Bob. For any
communication complexity problem, we can define an equivalent streaming problem as
follows. We need to take care of a minor detail that the two input communication problem
(x,y) should be thought of as a single input with x and y concatenated corresponding to the
first and the second half. For example, the Equality(x,y) is transformed into Streamequal(x ·
y) and is equal to 1 iff the first half is equal to the second half.

Alice simply simulates the streaming algorithm on her input and passes s bits to Bob
where s is the space used by the corresponding streaming algorithm. If a streaming
algorithm can compute this function correctly using s amount of space, then Bob should
be able to successfully compute the function. Note that this applies both to deterministic
and randomized setting. Therefore we can claim the following

Claim 16.3 If the lower-bound for the one round communication complexity problem is s bits, then
the corresponding one pass streaming algorithm has an Ω(s) space bound.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

Streaming Data Model 339

Let us illustrate this technique on the problem of majority. For this, we define a problem
known as the Index problem for Alice and Bob. Alice holds an n bit input string X = {0,1}n

and Bob has an integer j, 1≤ j ≤ n. Then Index(X , j) = X [j], that is, Bob will output 0 or 1
depending on the value of the jth bit of X that is only known to Alice.

Claim 16.4 The communication complexity of the Index problem is Ω(n).

The proof of this claim is left as an Exercise Problem and can be argued along the lines of
the Equal problem. Note that this problem is not symmetric like the Equality problem. If
Bob was allowed to pass the bits, then it can be computed by Alice using logn
communication. Another important property of the Index problem is that, even by using
randomization, the communication complexity is Ω(n). The proof is based on Theorem
3.1 and requires a non-trivial construction of an appropriate distribution function – we
leave it out from this discussion.

Let us now reduce the Index problem to a majority in streaming. We transform the bit
sequence X [i] into a sequence of integers σi as follows:

σi = 2i+X [i], 1≤ i≤ n

For example, 10011010 is transformed to 3,4,6, 9,11,12, 15, 16. Similarly, the input of Bob is
transformed to the sequence σ′ = 2 j,2 j, . . . repeated n times. Then in the combined stream
σ ·σ′ the integer 2 j is a majority iff X [i] = 0. In the aforementioned example, suppose Bob
has j = 4, then in the transformed stream

3,4,6,9,11,12,15,16||8,8,8,8,8,8,8,8

we do not have a majority since X [4] = 1. The reader can verify that if X [4] = 0, then there
would be a majority element, namely, 8.

Further Reading

The study of streaming algorithms got formal recognition with the paper by Alon et
al. [10], although there existed well-known works on space-bounded algorithms like
those by Munro and Paterson [108] and the read-once paradigm implicit in the work of
Misra and Gries [104]. The main technique of Misra and Gries has been re-discovered
repeatedly in many later papers, implying the fundamental nature of this elegant
technique. The Boyer–Moore voting algorithm was first discovered in 1980 and
subsequently published much later [24].

Alon et al.’s [10] paper literally triggered a slew of fundamental results in the area of
streaming algorithms which can be found in a survey book by Muthukrishnan [109]. The
challenge in this model is typically more in the analysis and lower bounds rather than

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

340 Design and Analysis of Algorithms

sophisticated algorithms because of the limitations in the model. The frequency-moments
problem formalized by Alon et al. took a while to be satisfactorily settled [67] and
interesting connections were discovered with metric embeddings. For lower bounds,
there is a strong relationship between communication complexity [86] and streaming
algorithms – see for example, Chakrabarti et al. [27] or Kalyansundaram and
Schnitger [73]. Later papers extended the streaming model to multi-pass to understand
the complexity of various challenging problems in this paradigm, in particular, many
graph problems. See McGregor [100] for a nice survey.

Exercise Problems

16.1 Let fi be the frequency of element i in the stream. Modify the Mishra–Gries algorithm
(Fig. 16.3) to show that for a stream of length m, one can compute quantities f̂i for each
element i such that

fi−
m
k
≤ f̂i ≤ fi

16.2 Recall the reservoir sampling algorithm described in Fig. 16.5. Prove by induction on i
that after i steps, the random variable X is a uniformly chosen element from the stream
{x1, . . . ,xi}.

16.3 Let Y1, . . . ,Yt be t i.i.d. random variables. Show that the variance of Z = 1
t ·∑i Yi, denoted

by σ2(Z), is equal to 1
t ·σ

2(Y1).

16.4 Suppose E1, . . . ,Ek are k independent events such that each event occurs with probability
at most 1/4. Assuming k≥ 4log(1/δ), prove that the probability that more than k/2 events
occur is at most δ.

16.5 Let a1,a2, . . . ,an be an array of n numbers in the range [0,1]. Design a randomized
algorithm which reads only O(1/ε2) elements from the array and estimates the average
of all the numbers in the array within the additive error of ±ε. The algorithm should
succeed with at least 0.99 probability.

16.6 Show that the family of hash functions H defined as

h(x) : ak−1xk−1 +ak−2xk−2 . . .ak mod p

where ai ∈U {0,1,2, . . . , p−1} for some prime p is a k-independent universal hash family.

16.7 Consider a family of functions H where each member h ∈ H is such that h : {0,1}k →
{0,1}. The members of H are indexed with a vector r ∈ {0,1}k+1. The value hr(x) for
x ∈ {0,1}k is defined by considering the vector x0 ∈ {0,1}k+1 obtained by appending 1 to

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

Streaming Data Model 341

x and then taking the dot product of x0 and rmodulo 2 (i.e., you take the dot product of x0

and r, and hr(x) is 1 if this dot product is odd, and 0 if it is even). Prove that the family H
is three-wise independent.

16.8 For the algorithm given in Fig. 16.6 for estimating F2, show that by maintaining t
independent random variables and finally outputing the average of square of these
values, Z,

Pr[|Z−F2| ≥ εFk]≤
2

ε2 · t

16.9 Recall the setting for estimating the second frequency moment in a stream. There is a
universe U = {e1, . . . ,en} of elements, and elements x1,x2, . . . arrive over time, where
each xt belongs to U . Now consider an algorithm which receives two streams: S = x1,x2,

x3, . . . and T = y1,y2,y3, Element xt and yt arrive at time t in two streams respectively.
Let fi be the frequency of ei in the stream S and gi be its frequency in T . Let G denote
the quantity ∑

n
i=1 figi.

• As in the case of second frequency moment, define a random variable whose
expected value is G. You should be able to store X using O(logn+ logm) space only
(where m denotes the length of the stream).

• Let F2(S) denote the quantity ∑
n
i=1 f 2

i and F2(T) denote ∑
n
i=1 g2

i . Show that the
variance of X can be bounded by O(G2 +F2(S) ·F2(T)).

16.10 You are given an array A containing n distinct numbers. Given a parameter ε between 0
and 1, an element x in the array A is said to be a near-median element if its position in
the sorted (increasing order) order of elements of A lies in the range [n/2− εn,n/2+ εn].
Consider the following randomized algorithm for finding a near-median: pick t elements
from A, where each element is picked uniformly and independently at random from A.
Now output the median of these t elements. Suppose we want this algorithm to output a
near-median with probability at least 1−δ, where δ is a parameter between 0 and 1. How
big should we make t? Your estimate on t should be as small as possible. Give reasons.

16.11 Sliding window model of streaming Consider a variation of the conventional
streaming model where we are interested in computing a function of only the last N
entries (instead of from the beginning of the stream).

Given a 0–1 bit stream, design an algorithm to keep track of the number of 1s in the last
N inputs using space s. Your answer can be approximate (in a multiplicative or additive
manner) as a function of s. For instance, for s = N, we can get an exact answer.

16.12 Consider the problem of maintaining an approximate count of elements labeled
[0,1, . . . ,n−1] as accurately as possible as an alternative to the Misra–Gries technique.
The idea is to maintain a table T of hash values from where one can obtain an estimate
of the required label.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

342 Design and Analysis of Algorithms

The table T has dimensions r× k, where the values of these parameters should be
determined from the analysis. We will use r distinct universal hash functions (one for
each row) where each hash function hi : {0,1, . . . ,n−1}→ {0,1,k−1}, where i≤ r.

For each item x ∈ [0,1, . . . ,n−1], the location corresponding to hi(x) is incremented by 1
for each i = 1,2, ..,r, that is, the locations T (i,hi(x)), i = 1,2, ..,r will be incremented.

The query about the count of label j is answered as Fj = min1≤i≤r T (i,hi(j)).

(i) Show that fi≤Fi, where fi is the actual count of items labeled i and Fi is an estimate.

(ii) Show how to choose r,k such that Pr[Fj ≥ f j + εN− j]≤ δ for any given parameters
0 < ε,δ < 1 and N− j = ∑i fi− f j, the total count of all elements except j.

16.13 Densest interval problem Given a stream S of points xi, xi ∈ R, 1≤ i≤ m and a fixed
length r > 0, we would like to find an interval I = [s,s+ r] such that I ∩S is maximum. In
other words, a placement of the length r interval that maximizes the number of points of
S within the interval.

(i) Design a linear time sequential algorithm for this problem in a conventional model.

(ii) The general problem is quite difficult in the streaming setting, so we consider a
special case where the points x1 < x2 < .. . are presented in a sorted order. Design
an exact algorithm that outputs the densest interval using space O(D) where D is
the maximum density.

(iii) Given an approximation parameter ε, show how to output an interval Iz such that
D≥ |Iz∩S | ≥ (1−ε)D using space bounded by O(logn

ε
). Here Iz denotes the interval

[z,z+ r].

(iv) Can you improve the space bound to O(1
ε
)?

Hint: Consider forming a sample of the sorted stream that is k apart and choose a
suitable value of k that can be stored.

16.14 Prove Claim 16.4

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.017
https://www.cambridge.org/core

A
A P P E N D I X

Recurrences and Generating
Functions

Consider a sequence a1,a2, . . . ,an (i.e., a function with the domain as integers). A compact
way of representing it is as an equation in terms of itself, a recurrence relation. One of the
most common examples is the Fibonacci sequence specified as an = an−1 + an−2 for n ≥ 2
and a0 = 0, a1 = 1. The values a0,a1 are known as the boundary conditions. Given this and
the recurrence, we can compute the sequence step by step, or better still, we can write a
computer program. Sometimes, we would like to find the general term of the sequence.
Very often, the running time of an algorithm is expressed as a recurrence and we would
like to know the explicit function for the running time to make any predictions and
comparisons. A typical recurrence arising from a divide-and-conquer algorithm is

a2n = 2an + cn

which has a solution an ≤ 2cndlog2 ne. In the context of algorithm analysis, we are often
satisfied with an upper bound. However, to the extent possible, it is desirable to obtain an
exact expression.

Unfortunately, there is no general method for solving all recurrence relations. In this
chapter, we discuss solutions to some important classes of recurrence equations. In the
second part, we discuss an important technique based on generating functions which are
also important in their own right.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.018
https://www.cambridge.org/core

344 Appendix

A.1 An Iterative Method – Summation

As starters, some recurrence relations can be solved by summation or guessing and
verifying by induction.

Example A.1 The number of moves required to solve the Tower of Hanoi problem with n disks
can be written as

an = 2an−1 +1

By substituting for an−1, this becomes

an = 22an−2 +2+1

By expanding this till a1, we obtain

an = 2n−1a1 +2n−2 ++1

This gives an = 2n−1 by using the formula for geometric series and a1 = 1.

Example A.2 For the recurrence

a2n = 2an + cn

we can use the same technique to show that a2n = ∑i=0 log2 n2in/2i · c+2na1.

Remark We made an assumption that n is a power of 2. In the general case, this may present some
technical complications but the nature of the answer remains unchanged. Consider the recurrence

T (n) = 2T (bn/2c)+n

Suppose T (x) = cx log2 x for some constant c> 0 for all x < n. Then, T (n) = 2cbn/2c log2bn/2c+n.
Therefore, T (n)≤ cn log2(n/2)+n≤ cn log2 n− (cn)+n≤ cn log2 n for c≥ 1.

A very frequent recurrence equation that comes up in the context of divide-and-conquer
algorithms (like Merge sort) has the form

T (n) = aT (n/b)+ f (n) a,b are constants and f (n) is a positive monotonic function

Theorem A.1 For the following different cases, the aforementioned recurrence has the following
solutions

• If f (n) = O(nlogb a−ε) for some constant ε, then T (n) is Θ(nlogb a).

• If f (n) = O(nlogb a), then T (n) is Θ(nlogb a logn).

• If f (n) = O(nlogb a+ε) for some constant ε, and if a f (n/b) is O(f (n)), then T (n) is Θ(f (n)).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.018
https://www.cambridge.org/core

Appendix 345

Example A.3 What is the maximum number of regions induced by n lines in the plane? If we let
Ln represent the number of regions, then we can write the following recurrence

Ln ≤ Ln−1 +n L0 = 1

Again by the method of summation, we can arrive at the answer Ln =
n(n+1)

2 +1.

Example A.4 Let us try to solve the recurrence for Fibonacci, namely

Fn = Fn−1 +Fn−2 F0 = 0, F1 = 1

If we try to expand this in the way that we have done previously, it becomes unwieldy very quickly.
Instead we “guess” the following solution

Fn =
1√
5

(
φ

n− φ̄
n)

where φ = (1+
√

5)
2 and φ̄ = (1−

√
5)

2 . This solution can be verified by induction. Of course, it is far
from clear how one can magically guess the right solution. We shall address this later in the chapter.

A.2 Linear Recurrence Equations

A recurrence of the form

c0ar + c1ar−1 + c2ar−2 + . . .+ ckar−k = f (r)

where ci are constants is called a linear recurrence equation of order k. Most of the examples
in this chapter fall under this class. If f (r) = 0, then it is homogeneous linear recurrence.

A.2.1 Homogeneous equations

We will first outline the solution for the homogeneous class and then extend it to the
general linear recurrence. Let us first determine the number of solutions. It appears that
we must know the values of a1,a2, . . . ,ak to compute the values of the sequence according
to the recurrence. In the absence of this, there can be different solutions based on different
boundary conditions. Given the k boundary conditions, we can uniquely determine the
values of the sequence. Note that this is not true for a non-linear recurrence like

ar
2 +ar−1 = 5 with a0 = 1

This observation (of unique solution) makes it somewhat easier for us to guess some
solution and verify.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.018
https://www.cambridge.org/core

346 Appendix

Let us guess a solution of the form ar = Aαr, where A is some constant. This may be
justified from the solution of Example A.1. By substituting this in the homogeneous linear
recurrence and simplification, we obtain the following equation

c0α
k + c1α

k−1 + . . .+ ck = 0

This is called the characteristic equation of the recurrence relation and this degree k equation
has k roots, say α1,α2, . . . ,αk. If these are all distinct, then the following is a solution to the
recurrence

ar
(h) = A1α

r
1 +A2α

r
2 + . . .+Akα

r
k

which is also called the homogeneous solution to linear recurrence. The values of A1,A2, . . . ,Ak

can be determined from the k boundary conditions (by solving k simultaneous equations).
When the roots are not unique, i.e., some roots have multiplicity, then for multiplicity

m, αn,nαn,n2αn, . . . ,nm−1αn are the associated solutions. This follows from the fact that if α

is a multiple root of the characteristic equation, then it is also the root of the derivative of
the equation.

A.2.2 Inhomogeneous equations

If f (n) 6= 0, then there is no general methodology. Solutions are known for some particular
cases; they are known as particular solutions. Let a(h)n be the solution by ignoring f (n) and
let a(p)

n be a particular solution; then, it can be verified that an = a(h)n + a(p)
n is a solution to

the non-homogeneous recurrence.
The following is a table of some particular solutions

d a constant B
dn B1n+B0

dn2 B2n2 +B1n+B0

edn, e,d are constants Bdn

Here B,B0,B1,B2 are constants to be determined from initial conditions. When
f (n) = f1(n)+ f2(n) is a sum of the aforementioned functions, then we solve the equation
for f1(n) and f2(n) separately and add them in the end to obtain a particular solution for
f (n).

A.3 Generating Functions

An alternative representation for a sequence a1,a2, . . . ,ai is a polynomial function
a1x+ a2x2 + . . .+ aixi. Polynomials are very useful objects in mathematics, in particular as
‘placeholders.’ For example, if we know that two polynomials are equal (i.e., they

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.018
https://www.cambridge.org/core

Appendix 347

evaluate to the same value for all x), then all the corresponding coefficients must be equal.
This follows from the well-known property that a degree d polynomial has no more than
d distinct roots (unless it is the zero polynomial). The issue of convergence is not
important at this stage but will be relevant when we use the method of differentiation.

Example A.5 Consider the problem of changing a Rs 100 note using notes of the following
denomination −50, 20, 10, 5, and 1. Suppose we have an infinite supply of each denomination;
then, we can represent each of these using the following polynomials where the coefficient
corresponding to xi is non-zero if we can obtain a certain sum using the given denomination.

P1(x) = x0 + x1 + x2 + . . .

P5(x) = x0 + x5 + x10 + x15 + . . .

P10(x) = x0 + x10 + x20 + x30 + . . .

P20(x) = x0 + x20 + x40 + x60 + . . .

P50(x) = x0 + x50 + x100 + x150 + . . .

For example, we cannot have 51 to 99 using Rs 50, so all those coefficients are zero.
By multiplying these polynomials, we obtain

P(x) = E0 +E1x+E2x2 + . . .+E100x100 + . . .+Eixi

where Ei is the number of ways the terms of the polynomials can combine such that the sum of
the exponents is 100. Convince yourself that this is precisely what we are looking for. However, we
must still obtain a formula for E100 or more generally Ei, which is the number of ways of changing
a sum of i.

Note that for the polynomials P1,P5, . . . ,P50, the following holds

Pk(1− xk) = 1 for k = 1,5, ..,50 giving

P(x) =
1

(1− x)(1− x5)(1− x10)(1− x20)(1− x50)

We can now use the observations that 1
1−x = 1+ x2 + x3 . . . and 1−x5

(1−x)(1−x5)
= 1+ x2 + x3 So the

corresponding coefficients are related by Bn = An +Bn−5, where A and B are the coefficients of the
polynomials 1

1−x and 1
(1−x)(1−x5)

. Since An = 1, this is a linear recurrence. Find the final answer by
extending these observations.

Let us try the method of generating functions on the Fibonacci sequence.

Example A.6 Let the generating function be G(z) = F0 +F1z+F2z2 + . . .+Fnzn, where Fi is the
ith Fibonacci number. Then, G(z)− zG(z)− z2G(z) can be written as the infinite sequence

F0 +(F1−F2)z+(F2−F1−F0)z2 + . . .+(Fi+2−Fi+1−Fi)zi+2 + . . .= z

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.018
https://www.cambridge.org/core

348 Appendix

for F0 = 0,F1 = 1. Therefore, G(z) = z
1−z−z2 . This can be worked out to be

G(z) =
1√
5

(
1

1−φz
− 1

1− φ̄z

)
where φ̄ = 1−φ = 1

2

(
1−
√

5
)

.

A.3.1 Binomial theorem

The use of generating functions necessitates computation of the coefficients of power series
of the form (1+ x)α for |x|< 1 and any α. For that, the following result is very useful – the
coefficient of xk is given by

C(α,k) =
α · (α−1) . . .(α− k+1)

k · (k−1) . . .1

This can be seen from an application of Taylor’s series. Let f (x) = (1+ x)α. Then, from
Taylor’s theorem, expanding around 0 for some z,

f (z) = f (0)+ z f ′(0)+α · z+ z2 f ′′(0)
2!

+ . . .+ zk f (k)(0)
k!

. . .

= f (0)+1+ z2 α(α−1)
2!

+ . . .+C(α,k)+ . . .

Therefore, (1+ z)α = ∑
∞

i=0 C(α, i)zi, which is known as the binomial theorem.

A.4 Exponential Generating Functions

If the terms of a sequence is growing too rapidly, that is, the nth term exceeds xn for any
0 < x < 1, then it may not converge. It is known that a sequence converges iff the sequence
|an|1/n is bounded. Then, it makes sense to divide the coefficients by a rapidly growing
function like n!. For example, if we consider the generating function for the number of
permutations of n identical objects

G(z) = 1+
p1

1!
z+

p2

2!
z2 + . . .+

pi

i!
zi

where pi = P(i, i), then G(z) = ez. The number of permutations of r objects when selected
out of (an infinite supply of) n kinds of objects is given by the exponential generating
function (EGF)(

1+
p1

1!
z+

p2

2!
z2 + . . .

)n
= enx =

∞

∑
r=0

nr

r!
zr

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.018
https://www.cambridge.org/core

Appendix 349

Example A.7 Let Dn denote the number of derangements of n objects. Then, it can be shown that
Dn = (n− 1)(Dn−1 + Dn−2). This can be re-written as Dn − nDn−1 = −(Dn−1 − (n− 2)Dn−2.
Iterating this, we obtain Dn−nDn−1 = (−1)n−2(D2−2D1). Using D2 = 1,D1 = 0, we obtain

Dn−nDn−1 = (−1)n−2 = (−1)n.

Multiplying both sides by xn

n! , and summing from n = 2 to ∞, we obtain

∞

∑
n=2

Dn

n!
xn−

∞

∑
n=2

nDn−1

n!
xn =

∞

∑
n=2

(−1)n

n!
xn

If we let D(x) represent the exponential generating function for derangements, after simplification,
we get

D(x)−D1x−D0− x(D(x)−D0) = e−x− (1− x)

or D(x) = e−x

1−x .

A.5 Recurrences with Two Variables

For selecting r out of n distinct objects, we can write the familiar recurrence

C(n,r) =C(n−1,r−1)+C(n−1,r)

with boundary conditions C(n,0) = 1 and C(n,1) = n.
The general form of a linear recurrence with constant coefficients that has two indices

is

Cn,ran,r +Cn,r−1an,r−1 + . . .+Cn−k,ran−k,r + . . .+C0,ra0,r + . . .= f (n,r)

where Ci, j are constants. We will use the technique of generating functions to extend the
one variable method. Let

A0(x) = a0,0 +a0,1x+ . . .+a0,rxr

A1(x) = a1,0 +a1,1x+ . . .+a1,rxr

An(x) = an,0 +an,1x+ . . .+an,rxr

Then we can define a generating function with A0(x),A1(x)A3(x) . . . as the sequence – the
new indeterminate can be chosen as y.

Ay(x) = A0(x)+A1(x)y+A2(x)y2 + . . .+An(x)yn

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.018
https://www.cambridge.org/core

350 Appendix

For this example, we have

Fn(x) =C(n,0)+C(n,1)x+C(n,2)x2 + . . .C(n,r)xr + . . .

∞

∑
r=0

C(n,r)xr =
∞

∑
r=1

C(n−1,r−1)xr +
∞

∑
r=0

C(n−1,r)xr

Fn(x)−C(n,0) = xFn−1(x)+Fn−1(x)−C(n−1,0)

Fn(x) = (1+ x)Fn−1(x)

or Fn(x) = (1+ x)nC(0,0) = (1+ x)n as expected.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.018
https://www.cambridge.org/core

Bibliography

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss
with binary coins. Journal of Computer and System Sciences, 66(4):671–687, June 2003.

[2] Leonard M. Adleman. On constructing a molecular computer. In DNA Based
Computers, Proceedings of a DIMACS Workshop, Princeton, New Jersey, USA, April 4,
1995, pages 1–22, 1995.

[3] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, pages 1116–1127, 1988.

[4] Alok Aggarwal, Bowen Alpern, Ashok K. Chandra, and Marc Snir. A model for
hierarchical memory. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing (STOC), pages 305–314. ACM, 1987.

[5] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in P. Annals of
Mathematics, 2:781–793, 2002.

[6] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to
bibliographic search. Communications of the ACM, 18(6):333–340, June 1975.

[7] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and analysis of
computer algorithms. Addison-Wesley, Reading, 1974.

[8] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[9] M. Ajtai, J. Komlós, and E. Szemerédi. An 0(n log n) sorting network. In Proceedings
of the 15th Annual ACM Symposium on Theory of Computing (STOC), pages 1–9, 1983.

[10] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of
approximating the frequency moments. Journal of Computer and System Sciences,
58(1):137–147, 1999.

351

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.019
https://www.cambridge.org/core

352 Bibliography

[11] Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and Jośe Soares. On
sparse spanners of weighted graphs. Discrete and Computational Geometry, 9:81–100,
1993.

[12] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava. Fundamental parallel
algorithms for private-cache chip multiprocessors. In Proceedings of the 20th ACM
Symposium on Parallelism in. Algorithms and Architectures (SPAA), pages 197–206, 2008.

[13] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, New York, NY, USA, 2009.

[14] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems. J. ACM,
45(3):501–555, May 1998.

[15] Surender Baswana and Sandeep Sen. A simple and linear time randomized
algorithm for computing sparse spanners in weighted graphs. Random Structures
and Algorithms, 30:532–563, 2007.

[16] K. E. Batcher. Sorting networks and their application. Proc. AFIPS 1968 SJCC,
32:307–314, 1968.

[17] Paul Beame, Stephen A. Cook, and H. James Hoover. Log depth circuits for division
and related problems. SIAM Journal on Computing, 15(4):994–1003, 1986.

[18] Paul Beame and Johan Hastad. Optimal bounds for decision problems on the crcw
pram. Journal of the ACM, 36(3):643–670, July 1989.

[19] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, September 1975.

[20] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
Computational Geometry: Algorithms and Applications. Springer-Verlag TELOS, Santa
Clara, CA, USA, 3rd ed. edition, 2008.

[21] Binay K. Bhattacharya and Sandeep Sen. On a simple, practical, optimal,
output-sensitive randomized planar convex hull algorithm. Journal of Algorithms,
25(1):177–193, 1997.

[22] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E.
Tarjan. Time bounds for selection. Journal of Computer and System Sciences,
7(4):448–461, August 1973.

[23] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, New York, NY, USA, 2004.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.019
https://www.cambridge.org/core

Bibliography 353

[24] Robert S. Boyer and J. Strother Moore. MJRTY: A fast majority vote algorithm. In
Automated Reasoning: Essays in Honor of Woody Bledsoe, Automated Reasoning Series,
pages 105–118. Kluwer Academic Publishers, 1991.

[25] A. Bykat. Convex hull of a finite set of points in two dimensions. Information
Processing Letters, 7:296 – 298, 1978.

[26] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions
(extended abstract). In Proceedings of the 9th Annual ACM Symposium on Theory of
Computing (STOC), pages 106–112, 1977.

[27] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds
on the multi-party communication complexity of set disjointness. In Proceedings of
the 18th IEEE Annual Conference on Computational Complexity (CCC), pages 107–117,
2003.

[28] Timothy M. Chan, Jack Snoeyink, and Chee-Keng Yap. Primal dividing
and dual pruning: Output-sensitive construction of four-dimensional polytopes
and three-dimensional voronoi diagrams. Discrete & Computational Geometry,
18(4):433–454, 1997.

[29] Bernard Chazelle. A minimum spanning tree algorithm with inverse-ackermann
type complexity. Journal of the ACM, 47(6):1028–1047, 2000.

[30] G. Blelloch R. Chowdhury P. Gibbons V. Ramachandran S. Chen and M. Kozuch.
Provably good multicore cache performance for divide-and-conquer algorithms. In
Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
501–510, 2008.

[31] V. Chvátal. Linear Programming. Series of books in the mathematical sciences. W.H.
Freeman, 1983.

[32] Kenneth L. Clarkson and Peter W. Shor. Application of random sampling in
computational geometry, II. Discrete & Computational Geometry, 4:387–421, 1989.

[33] Richard Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–785, August
1988.

[34] Richard Cole and Vijaya Ramachandran. Resource oblivious sorting on multicores.
In Proceedings of the 37th International Colloquium on Automata, Languages and
Programming (ICALP), pages 226–237, 2010.

[35] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the 3rd Annual ACM Symposium on Theory of Computing (STOC), STOC ’71, pages
151–158, 1971.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.019
https://www.cambridge.org/core

354 Bibliography

[36] J. W. Cooley and J. W. Tukey. An algorithm for the machine computation of the
complex fourier series. Mathematics of Computation, 19:297–301, April 1965.

[37] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, 2nd edition, 2001.

[38] David E. Culler, Richard M. Karp, David Patterson, Abhijit Sahay, Eunice E. Santos,
Klaus Erik Schauser, Ramesh Subramonian, and Thorsten von Eicken. Logp: A
practical model of parallel computation. Communications of the ACM, 39(11):78–85,
November 1996.

[39] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson
and lindenstrauss. Random Structures and Algorithms, 22(1):60–65, January 2003.

[40] Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms.
McGraw-Hill, Inc., New York, NY, USA, 1 edition, 2008.

[41] Rene De La Briandais. File searching using variable length keys. In Papers Presented
at the the March 3-5, 1959, Western Joint Computer Conference, IRE-AIEE-ACM ’59
(Western), pages 295–298. ACM, 1959.

[42] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer, August
2005.

[43] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der
Heide, Hans Rohnert, and Robert E. Tarjan. Dynamic perfect hashing: Upper and
lower bounds. SIAM Journal on Computing, 23(4):738–761, 1994.

[44] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data
structures persistent. Journal of Computer and System Sciences, 38(1):86–124, February
1989.

[45] Herbert Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin,
Heidelberg, 1987.

[46] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In Proceedings of CRYPTO 84 on Advances in Cryptology, pages 10–18, 1985.

[47] M. J. Fischer and M. S. Paterson. String-matching and other products. Technical
report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1974.

[48] R. Floyd. Permuting information in idealized two-level storage. Complexity of
Computer Computations, pages 105–109, 1972.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.019
https://www.cambridge.org/core

Bibliography 355

[49] Robert W. Floyd and Ronald L. Rivest. Expected time bounds for selection.
Communications of the ACM, 18(3):165–172, March 1975.

[50] Steven Fortune and James Wyllie. Parallelism in random access machines. In
Proceedings of the 10th Annual ACM Symposium on Theory of Computing (STOC), pages
114–118. ACM, 1978.

[51] Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, September
1960.

[52] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table
with 0(1) worst case access time. Journal of the ACM, 31(3):538–544, June 1984.

[53] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

[54] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound
with fusion trees. Journal of Computer and System Sciences, 47(3):424–436, 1993.

[55] Alan M. Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms
for finding low-rank approximations. Journal of the ACM, 51(6):1025–1041, 2004.

[56] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science (FOCS), pages 285–298, 1999.

[57] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[58] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. Journal
of the ACM, 45(5):783–797, 1998.

[59] R.L. Graham. An efficient algorith for determining the convex hull of a finite planar
set. Information Processing Letters, 1(4):132 – 133, 1972.

[60] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York, NY, USA, 1997.

[61] Harary. Graph Theory. Perseus Books, Reading, MA, 1999.

[62] Daniel S. Hirschberg. Algorithms for the longest common subsequence problem.
Journal of the ACM, 24(4):664–675, October 1977.

[63] John E. Hopcroft and Jeff D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company, 1979.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.019
https://www.cambridge.org/core

356 Bibliography

[64] John E. Hopcroft and Jeffrey D. Ullman. Set merging algorithms. SIAM Journal on
Computing, 2(4):294–303, 1973.

[65] Ellis Horowitz, Sartaj Sahni, and Sanguthevar Rajasekaran. Computer Algorithms.
Silicon Press, Summit, NJ, USA, 2nd edition, 2007.

[66] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In Proceedings of the 30th Annual ACM
Symposium on Theory of Computing (STOC), pages 604–613, 1998.

[67] Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency
moments of data streams. In Proceedings of the 37th Annual Symposium on Theory
of Computing (STOC), pages 202–208, 2005.

[68] Joseph JáJá. An Introduction to Parallel Algorithms. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 1992.

[69] R.A. Jarvis. On the identification of the convex hull of a finite set of points in the
plane. Information Processing Letters, 2(1):18 – 21, 1973.

[70] Hong Jia-Wei and H. T. Kung. I/o complexity: The red-blue pebble game. In
Proceedings of the 13th Annual ACM Symposium on Theory of Computing (STOC), pages
326–333, New York, NY, USA, 1981. ACM.

[71] W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into hilbert
space. Contemporary Mathematics, 26:189– 206, 1984.

[72] Adam Kalai. Efficient pattern-matching with don’t cares. In Proceedings of the
13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SODA ’02, pages
655–656, 2002.

[73] Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication
complexity of set intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557,
1992.

[74] David R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut
algorithm. In Proceedings of the 4th Annual ACM/SIGACT-SIAM Symposium on Discrete
Algorithms (SODA), pages 21–30, 1993.

[75] David R. Karger, Philip N. Klein, and Robert Endre Tarjan. A randomized linear-time
algorithm to find minimum spanning trees. Journal of the ACM, 42(2):321–328, 1995.

[76] David R. Karger and Clifford Stein. A new approach to the minimum cut problem.
Journal of the ACM, 43(4):601–640, 1996.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.019
https://www.cambridge.org/core

Bibliography 357

[77] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[78] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching
algorithms. IBM J. Res. Dev., 31(2):249–260, March 1987.

[79] S. Khuller and Y. Matias. A simple randomized sieve algorithm for the closest-pair
problem. Information and Computation, 118(1):34 – 37, 1995.

[80] David G. Kirkpatrick and Raimund Seidel. The ultimate planar convex hull
algorithm? SIAM Journal on Computing, 15(1):287–299, 1986.

[81] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2005.

[82] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer
Programming. Addison-Wesley, Reading, Massachusetts, second edition, 1981.

[83] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.
Addison-Wesley, Reading, Massachusetts, second edition, 1981.

[84] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching
in strings. SIAM Journal on Computing, 6(2):323–350, 1977.

[85] Jnos Komls, Yuan Ma, and Endre Szemerdi. Matching nuts and bolts in o(n log n)
time. SIAM Journal on Discrete Mathematics, 11(3):347–372, 1998.

[86] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

[87] Richard E. Ladner and Michael J. Fischer. Parallel prefix computation. Journal of the
ACM, 27(4):831–838, October 1980.

[88] E. Lawler. Combinatorial optimization - networks and matroids. Holt, Rinehart and
Winston, New York, 1976.

[89] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Array, Trees,
Hypercubes. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[90] Frank Thomson Leighton, Bruce M. Maggs, Abhiram G. Ranade, and Satish
Rao. Randomized routing and sorting on fixed-connection networks. Journal of
Algorithms, 17(1):157–205, 1994.

[91] L.A. Levin. Universal sequential search problems. Probl. Peredachi Inf., 9:115–116,
1973.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.019
https://www.cambridge.org/core

358 Bibliography

[92] Leonid A Levin. Average case complete problems. SIAM Journal on Computing,
15(1):285–286, February 1986.

[93] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computation.
Prentice Hall PTR, 2nd edition, 1997.

[94] L. Lovasz and M. D Plummer. Matching Theory. Elsevier, 1986.

[95] Rabin M. Probabilistic algorithm for testing primality. Journal of Number Theory,
12(1):128–138, 1980.

[96] Aleksander Madry. Computing maximum flow with augmenting electrical flows.
In IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages
593–602, 2016.

[97] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string
searches. In Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 319–327. Society for Industrial and Applied Mathematics,
1990.

[98] Edward M. McCreight. A space-economical suffix tree construction algorithm.
Journal of the ACM, 23(2):262–272, April 1976.

[99] Edward M. McCreight. Priority search trees. SIAM Journal on Computing,
14(2):257–276, 1985.

[100] Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9–20,
2014.

[101] K. Mehlhorn. Data Structures and Algorithms III: Multi-dimensional Searching and
Computational Geometry, volume 3 of EATCS Monographs on Theoretical Computer
Science. Springer, 1984.

[102] Kurt Mehlhorn. Data structures and algorithms. Volume 1 : Sorting and searching,
volume 1 of EATCS Monographs on Theoretical Computer Science. Springer, 1984.

[103] G Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and System
Sciences, 13(3):300–317, 1976.

[104] Jayadev Misra and David Gries. Finding repeated elements. Science of Computer
Programming, 2(2):143–152, 1982.

[105] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, New York, NY,
USA, 2005.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.019
https://www.cambridge.org/core

Bibliography 359

[106] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[107] Ketan Mulmuley. A fast planar partition algorithm, I (extended abstract). In
Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 580–589, 1988.

[108] J. I. Munro and M. S. Paterson. Selection and sorting with limited storage. In
Proceedings of the 19th Annual Symposium on Foundations of Computer Science (SFCS),
SFCS ’78, pages 253–258, 1978.

[109] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations
andTrends in Theoretical Computer Science, 1(2):117–236, August 2005.

[110] Jaroslav Nesetril, Eva Milková, and Helena Nesetrilová. Otakar boruvka on
minimum spanning tree problem translation of both the 1926 papers, comments,
history. Discrete Mathematics, 233(1-3):3–36, 2001.

[111] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[112] James B. Orlin. Max flows in o(nm) time, or better. In ACM 45th Annual Symposium
on Theory of Computing Conference (STOC), pages 765–774, 2013.

[113] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms,
51(2):122–144, May 2004.

[114] Christos M. Papadimitriou. Computational complexity. Addison-Wesley, Reading,
Massachusetts, 1994.

[115] David Peleg and A. A. Schaffer. Graph spanners. Journal of Graph Theory, 13:99–116,
1989.

[116] Yehoshua Perl, Alon Itai, and Haim Avni. Interpolation search: a log logn search.
Communications of the ACM, 21(7):550–553, July 1978.

[117] F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three
dimensions. Communications of the ACM, 20(2):87–93, February 1977.

[118] Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, Berlin, Heidelberg, 1985.

[119] William Pugh. Skip lists: A probabilistic alternative to balanced trees.
Communications of the ACM, 33(6):668–676, June 1990.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.019
https://www.cambridge.org/core

360 Bibliography

[120] Sanguthevar Rajasekaran and Sandeep Sen. A generalization of the 0-1 principle for
sorting. Information Processing Letters, 94(1):43–47, 2005.

[121] John H. Reif. Depth-first search is inherently sequential. Information Processing
Letters, 20:229–234, 06 1985.

[122] John H. Reif. Synthesis of Parallel Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edition, 1993.

[123] John H. Reif and Leslie G. Valiant. A logarithmic time sort for linear size networks.
Journal of the ACM, 34(1):60–76, January 1987.

[124] Rüdiger Reischuk. A fast probabilistic parallel sorting algorithm. In Proceedings of
the 22nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
212–219. IEEE Computer Society, 1981.

[125] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, February
1978.

[126] Sheldon M. Ross. Introduction to Probability Models. Academic Press, San Diego, CA,
USA, sixth edition, 1997.

[127] Neil Sarnak and Robert E. Tarjan. Planar point location using persistent search trees.
Communications of the ACM, 29(7):669–679, July 1986.

[128] Isaac D. Scherson and Sandeep Sen. Parallel sorting in two-dimensional VLSI models
of computation. IEEE Transactions on Computers, 38(2):238–249, 1989.

[129] Raimund Seidel and Cecilia R. Aragon. Randomized search trees. Algorithmica,
16(4/5):464–497, 1996.

[130] Sandeep Sen. Some observations on skip-lists. Information Processing Letters,
39(4):173–176, 1991.

[131] Sandeep Sen, Siddhartha Chatterjee, and Neeraj Dumir. Towards a theory of
cache-efficient algorithms. Journal of the ACM, 49(6):828–858, November 2002.

[132] Adi Shamir. Factoring numbers in o(log n) arithmetic steps. Information Processing
Letters, 8(1):28–31, 1979.

[133] Y. Shiloach and Uzi Vishkin. An o (logn) parallel connectivity algorithm. Journal of
Algorithms, 3:57 – 67, 1982.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.019
https://www.cambridge.org/core

Bibliography 361

[134] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509,
1997.

[135] Marc Snir. Lower bounds on probabilistic linear decision trees. Theoretical Computer
Science, 38:69 – 82, 1985.

[136] Robert Solovay and Volker Strassen. A fast monte-carlo test for primality. SIAM
Journal on Computing, 6(1):84–85, 1977.

[137] H. S. Stone. Parallel processing with the perfect shuffle. IEEE Transactions on
Computers, 20(2):153–161, February 1971.

[138] Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithms.
Journal of the ACM, 31(2), March 1984.

[139] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. Journal
of the ACM, 22(2):215–225, 1975.

[140] Robert Endre Tarjan. Sensitivity analysis of minimum spanning trees and shortest
path trees. Information Processing Letters, 14(1):30–33, 1982.

[141] Mikkel Thorup. Integer priority queues with decrease key in constant time and
the single source shortest paths problem. Journal of Computer and System Sciences,
69(3):330–353, 2004.

[142] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of Association
of Computing Machinery, 52:1–24, 2005.

[143] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, Sep
1995.

[144] L. G. Valiant. A bridging model for multi-core computing. In Proceedings of the 16th
Annual European Symposium on Algorithms (ESA), pages 13–28, 2008.

[145] Leslie G. Valiant. Parallelism in comparison problems. SIAM Journal on Computing,
4(3):348–355, 1975.

[146] Leslie G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103–111, August 1990.

[147] Peter van Emde Boas. Preserving order in a forest in less than logarithmic time. In
Proceedings of the 16th Annual Symposium on Foundations of Computer Science (FOCS),
pages 75–84. IEEE Computer Society, 1975.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.019
https://www.cambridge.org/core

362 Bibliography

[148] Vijay V. Vazirani. Approximation Algorithms. Springer Publishing Company,
Incorporated, 2010.

[149] Andrew J. Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–269,
1967.

[150] Jeffrey Scott Vitter. Algorithms and Data Structures for External Memory. Now
Publishers Inc., Hanover, MA, USA, 2008.

[151] Jean Vuillemin. A data structure for manipulating priority queues. Communications
of the ACM, 21(4):309–315, April 1978.

[152] P. Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on
Switching and Automata Theory (SWAT), pages 1–11, Oct 1973.

[153] Hassler Whitney. On the abstract properties of linear dependence. American Journal
of Mathematics, 57(3):509–533, 1935.

[154] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, New York, NY, USA, 2011.

[155] A. C. C. Yao. Probabilistic computations: Toward a unified measure of complexity. In
18th Annual Symposium on Foundations of Computer Science (sfcs 1977), pages 222–227,
Oct 1977.

[156] Andrew C-C. Yao. Separating the polynomial-time hierarchy by oracles. In
Proceedings of the 26th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 1–10, 1985.

[157] Andrew Chi-Chih Yao. Should tables be sorted? Journal of the ACM, 28(3):615–628,
July 1981.

[158] F. Frances Yao. Speed-up in dynamic programming. SIAM Journal on Algebraic
Discrete Methods, 3(4):532–540, 1982.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108654937.019
https://www.cambridge.org/core

Index

Amortized
path compression, 73
potential, 46, 165
union find, 68

Approximation
3 coloring, 253
Greedy, 76
knapsack, 251
max-cut, 254
PTAS, 250
set cover, 252
TSP, 253
vertex cover, 250

Closest Pair
backward analysis, 115
expected runtime, 145
ric, 150

Computational models
external memory, 10
parallel, 11–12

PRAM, 11
RAM, 10

Convex hull
definition, 137
Graham scan, 140
Jarvis march, 139
Merging, 141
parallel, 299
quickhull, 142
relation to sorting, 141
union and intersection, 141

Cooley–Tukey
butterfly graph, 176
FFT, 175
roots of unity, 174–175

DFA
prefix computation, 291
string matching, 179

Dynamic programming
context free parsing, 95

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/7DC2DBA8DCF1590907170ED25D693FE0
https://www.cambridge.org/core

364 Index

Fibonacci series, 92
function approximation, 99
independent set in trees, 102
Knapsack, 94–95
longest monotonic subsequence, 97
Viterbi maximum likelihood, 100

Fibonacci
matrix recurrence, 2
number, 1
recursive definition, 1

Flow
augmenting path, 212
circulation, 222–223
disjoint path, 216–217
Edmond-Karp, 214
Ford Fulkerson, 213–214, 219
Halls theorem, 220
Max-flow, 212
Max-flow-min-cut theorem, 212
project planning, 224,
residual graph, 210, 212–213
Whitneys theorem, 191

Gradient descent
algorithm, 79, 84–85
convergence, 81
convex function, 78
perceptron, 84
point location, 146

Graph
All pairs shortest path, 193
augmenting path, 212
Bellman Ford, 194–195, 198
bi connectivity, 191
bipartite matching, 217
DFS, 184, 188
Dijkstras algorithm, 195

global mincut, 201
Max-flow, 212
parallel connectivity, 304
path decomposition, 209
spanners, 184, 198
s-t cut, 201
strong components, 188
topological sort, 187
Turan’s theorem, 281

Greatest Common Divisor (gcd)
Euclid’s algorithm, 34–35
Extended Euclid, 35–36

Greedy
Boruvka’s algorithm, 295
generic greedy, 61
gradient descent, 77
half-matching, 63
Kruskal’s algorithm, 64, 66, 69, 74
Matroid, 61, 74
maximum spanning tree, 64
minimum set cover, 252
Prim’s algorithm, 74
Routing, 301
Scheduling, 65

Heaps
binary, 43
Binomial, 44–45

Johnson Lindenstrauss
dimension reduction, 258
lemma, 259
random projection, 259–262
using normal distribution, 260–261

Knapsack
approximation, 251
dynamic programming, 244

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/7DC2DBA8DCF1590907170ED25D693FE0
https://www.cambridge.org/core

Index 365

formulation, 251
tree search and pruning strategy, 55

Linear algebra
Clustering, 271
document classification, 157
Frobenius norm, 268
Gaussian elimination, 262
low rank approximation, 267
spectral norm, 267
SVD theorem, 265–267
unitary matrix, 266, 274

Lower bound
communication complexity, 337
convex hull, 141
element distinctness, 49
external memory permutation, 314
external sorting, 314
parallel comparison tree, 281
randomized, 48
sorting: average, 48
sorting: worst case, 48

Matroid
exchange property, 61
greedy, 74
rank property, 61

Memory hierarchy
Cache model, 316
lower bound, 337
matrix multiplication, 311–312
merge sort, 313
models, 308
oblivious, 309, 317
transpose, 310–311

MST
Boruvka, 76
Kruskal, 74

Matroid, 64
Prim, 74
red-blue rule, 75

Multidimensional Search
Interval trees, 129
k-d trees, 132–135
persistent data structure, 146
priority search, 135
Range trees, 129

Multiplication
cache efficient, 311
integers, 176
matrix, 311–312
recursive, 3
Schonage-Strassen, 176

NP completeness
3-SAT, 240–241, 247
co-NP, 247
Cook-Levin theorem, 235
Definition, 230, 236
hardness, 249
independent set, 240
knapsack, 244
polynomial reducibility
PSPACE, 247
RP, PP, BPP, 247
Satisfiability, 235
set cover, 252
three coloring, 242, 253
vertex cover, 241

Parallel
Connectivity, 298
DFA simulation, 290
extremal selection, 304
interconnection networks, 278, 300
List ranking, 292

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/7DC2DBA8DCF1590907170ED25D693FE0
https://www.cambridge.org/core

366 Index

load balancing, 279–280, 294
lower bound: PCT
models, 300
partition sort, 285
PRAM, 300
prefix computation, 299
quickhull, 299
routing on mesh, 301
shear sort, 284–285
sorting, 282

Point location
binary search, 148
persistent data structure, 146
planar subdivision, 148

Polynomial
Convolution, 172
evaluation, 171
FFT, 171
Interpolation, 171–172
Lagrange’s formula, 172

Probability
Conditional, 30
density function, 19
independent, 18–19
inequality:Chebychev, 23
inequality:Chernoff
inequality:Markov, 21–24
measure, 17
random number generation, 26
random permutation, 29
random variable, 27
space, 17

Quicksort
expected runtime, 145
lower bound, 47–49
parallel, 285
partition, 8

partition sort, 285
quickhull, 142
recurrence, 53
running time, 125

Randomized Algorithms
backward analysis, 115
closest pair, 149
expectation, 9
game tree evaluation, 57–58
high probability, 30, 202
incremental construction, 29, 149, 151
Las Vegas, 10, 122, 248
Monte Carlo, 10, 122, 203, 248
Permutations, 29
random mate, 294
tail estimates, 113

RSA
complexity, 36
encryption and decryption, 36

Scheduling
Greedy, 65–66
using topological sort, 187

Searching
AVL, 109
Loglogn, 122
perfect hashing, 121
Priority search, 135
Semi-dynamic, 45
Skip Lists, 116
Treaps, 114, 135
universal hashing, 117, 121

Selection
expected runtime, 39
k-th smallest, 37, 39
median of medians, 39
random splitter, 38

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/7DC2DBA8DCF1590907170ED25D693FE0
https://www.cambridge.org/core

Index 367

Sorting
external memory, 313
integer, 313
lexicographic, 41
merge sort, 313–314
parallel, 282
quicksort, 8
radix, 41–43
stable, 41, 43
0-1 principle, 283, 303

Streaming
Boyer-Moore majority, 325
distinct elements, 327
frequency moment, 331
frequency threshold, 325
lower bound, 337
median-of-median, 39
Mishra-Gries, 327

Model, 337
reservoir sampling, 332
second frequency, 335

String matching
hashing, 159
KMP, 161, 165
Rabin Karp, 157
Tries and suffix trees, 167–168
using convolution, 181
wildcard in pattern, 180
wildcard in pattern and string, 179

Union Find
Array, 68
MST, 64
path compression, 70, 73
tree based, 46
union by rank, 68, 70

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/7DC2DBA8DCF1590907170ED25D693FE0
https://www.cambridge.org/core

	Cover
	Front Matter
	Design and Analysis of Algorithms
	Copyright
	Dedication
	Content
	Figures
	Tables
	Preface
	Acknowledgments
	1 Model and Analysis
	2 Basics of Probability andTail Inequalities
	3 Warm-up Problems
	4 Optimization I:Brute Force and Greedy Strategy
	5 Optimization II:Dynamic Programming
	6 Searching
	7 Multidimensional Searching andGeometric Algorithms
	8 String Matching andFinger Printing
	9 Fast Fourier Transform andApplications
	10 Graph Algorithms
	11 Maximum Flow andApplications
	12 NP Completeness andApproximation Algorithms
	13 Dimensionality Reduction
	14 Parallel Algorithms
	15 Memory Hierarchy and Caching
	16 Streaming Data Model
	A P P E N D I XA. Recurrences and Generating Functions
	Bibliography
	Index

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 1
 same as current

 1
 1
 1
 482
 277

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

