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Preface

With the rapid development of digital technology, digital electronic circuits are
widely used in computers, communications systems, navigation and guidance sys-
tems, medical instrumentations, consumer and industrial electrical systems. It is
essential for engineers and students to fully understand both the fundamentals and
the implementation and application principles of digital circuits, thus enabling them
to master the most appropriate and effective technique to satisfy their technical
needs. This textbook aims to cover all three aspects related to the teaching of digital
circuits: digital principles, digital electronics, and digital design. It teaches the funda-
mental principles of digital circuits or systems and covers thoroughly both traditional
and modern methods of applying digital design and development techniques. This
textbook is appropriate for a compulsory course of digital electronic circuits or
systems in the electronic and electrical engineering, computer science and engineer-
ing, mechanical and electronic engineering, instrumentation engineer, and others
majorly related to electronics; it also can be a self-study reference book for digital
designers and engineers who want to design and build real digital circuits and
systems.

This book covers three aspects of digital circuits: digital principles, digital
electronics, and digital design. It is organized based on the idea that students must
grasp the fundamental knowledge, but at the same time to understand how circuits
work in the real world. Hence, the “principles and practices” theme are both adopted.
It is grounded on basic principles of digital design that do not change with technol-
ogy, such as combinational logic, sequential logic, and state machine. A fundamen-
tal grounding on the basic concepts of digital circuits and systems is reinforced by an
abundance of illustrations, examples, applications, and exercises.

The rapid development of integrated circuits technology results in an exponential
increase of the integrated density; logic packages in a tiny integrated chip are evolved a
dozen to more than millions of transistors. To keep up with the development of
integrated circuits technology, this book also introduces the modern design methods
using electronic design automation (EDA). These include how to use the hardware
description language (HDL) describing the circuit and how to implement designs with
programmable logic devices (PLDs) and large-scale integrated (LSI) circuit. We also
believe that students should be involved with projects using the state-of-the-art design
tools and hardware solutions.

In each chapter of this textbook, there is an introduction and the objectives at the
beginning and summary as well as key terms at the end. The treatment of each new
topic or device typically starts with the principle of operation and then the explana-
tions of applications. The internal circuit analysis and calculation of a digital circuit
are replaced by an emphasis on the introduction to the characteristics and para-
meters of the circuit. Self-test and problems are arranged in every chapter to help
students gain the ability of analyzing and designing digital circuits and systems.
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The problems are arranged in sequence, from simple to complex. Especially, the in-
depth problems are chosen to reinforce the material without simply repeating the
principles. This provides with a wide choice of student assignments and also
enhances students to demonstrate comprehension of the principles by applying
them to different situations. The most difficult goal in this textbook is set to help
students adapt to the inevitable changes in the future. As a new technology emerges,
you would be able to design circuits with it, utilizing the fundamental concepts and
methods introduced in this book.

Content organization and chapter overview

This textbook includes 12 chapters covering three major topics. These are the princi-
ple and application of small- andmedium-scale digital integrated circuits, large-scale
digital integrated circuits, and analog-digital mixed circuits.

Small- and medium-scale digital integrated circuits include logic gate circuits,
combinational logic circuits, flip-flops and related device, and sequential logic
circuits. The logic gate circuits are composed of transistors, multiple logic gates
constitute combinational logic circuits, flip-flops, and combinational logic circuits
constitute sequential logic circuits. Their mathematical basis is logical algebra,
which is also known as Boolean algebra.

Large-scale digital integrated circuits covered in this book include memories and
PLDs. Memories, including read-only memory (ROM) and random access memory
(RAM), are used to store data, programs, tables, etc. Programmable logic devices
(PLDs) include simple PLDs, complex PLDs, and field programmable gate arrays
(FPGAs).

Actually, lots of electronic products are composed of analog circuits and digital
circuits, which are analog-digital mixed circuits. Analog-to-digital converters (ADC)
and digital-to-analog converters (DAC) are essential interface circuits between analog
signal and digital signal.

The contents of the 12 chapters are briefly described in the following.
Chapter 1 provides a broad overview of digital electronic circuit, including the

introduction of basic concepts, advantages of digital technology, the classification
and the typical package of digital integrated circuits, and the EDA technology. The
key terms listed at the end of the chapter are to help learners easily and clearly grasp
the basic concepts in digital circuits.

Chapters 2 and 3 are the fundamental parts that will enable students to prepare the
fundamental theory and methods for further learning the core contents of digital
circuits. Chapter 2 introduces number representations, number conversions, binary
arithmetic, and themost commonly used binary codes. Chapter 3 begins with the basic
logical operations and logic gates, and it continues with the fundamentals of Boolean
algebra, including Boolean theory, axioms, and theorems that can be applied to digital
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circuits. Then the expressionmethods of Boolean function, especially standard sum-of-
product and product-of-sum expression, are introduced. Finally, the simplification
method of Boolean expression with Boolean algebra and Karnaughmap are discussed.
These provide theoretical fundamental for further analyzing and designing digital
circuit.

Chapter 4 is one of the core contents of digital circuits, which introduces analysis
and design methods of gate-level and block-level combinational logic circuits. This
chapter introduces some functional modules of digital integrated circuits, such as
multiplexers, decoders, adders, and comparators, as well as their applications in
constructing the combinational logic circuits and systems. In the last part, the
commonly used hardware description language, Verilog hardware description lan-
guage (HDL), and the typical Verilog HDL descriptions of commonly used logic
modules are introduced, which is fundamental to PLDs.

Chapters 5–8 are about sequential logic circuits, which are also the core contents of
digital circuits. Chapter 5 covers the basic devices for constructing sequential signal and
sequential circuits, which include different types of flip-flops for the applications of
memory and multivibrators for pulse generation and transformation. Chapter 6 begins
with the basic concepts and structural features of sequential logic circuits and continues
with the general analysis and design method of sequential circuits, focusing especially
on the analysis and design of synchronous sequential circuits. This chapter ends with
the state minimization to further simplify the design of sequential circuits. Chapter 7
focuses on counters, which are very widely used sequential modules in digital systems.
Counters are usuallymanufactured as separate integrated circuits and also incorporated
as a part of larger integrated circuits. This chapter introduces asynchronous counters,
synchronous counters, cascaded counters, and counter integrated modules and the
related applications. Chapter 8 introduces registers and shift registers, which are
another kind of commonly used sequential circuits in digital system. The contents
include registers, shift registers, and the applications of shift registers.

Chapters 9 and 10 are the contents involving large-scale integrated circuits.
Chapter 9 deals with semiconductor memories for storing large amount of data. The
contents involve RAM, ROM, and special types of semiconductormemories. This chapter
begins with the concepts, the memory cell organization, the basic operations and
applications of ROM, and continues with RAM, including static RAMs (SRAMs) and
dynamic RAMs (DRAMs). At the end, two methods for expanding the capacity of
memory, word-length expansion and word-capacity expansion, are introduced to con-
struct the larger capacity of memory. Chapter 10 covers PLDs including SPLDs, CPLDs,
and FPGAs. The programming process of PLDs is briefly introduced at the end of the
chapter.

Chapter 11 deals with the interface circuits between analog circuits and digital
circuits. The conversion accuracy and speed are two main parameters for ADC and
DAC. This chapter introduces the basic concepts and operating principles of DACs and
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ADCs. Commonly used DACs include binary-weighted-input DAC and R/2R ladder
DAC. Commonly used ADCs include flash ADC, successive-approximation ADC, dual-
slope ADC, and sigma-delta ADC. Several typical integrated DACs and ADCs chips and
their applications are introduced at the end.

Chapter 12 covers the integrated circuit technologies for designing and manu-
facturing logic gates. Two kinds of integrated circuit technologies are introduced.
One is bipolar technology, and the typical logic family is transistor-transistor logic
(TTL). Another is MOSFET (metal oxide semiconductor field effect transistor) or
unipolar technology and the typical logic family is CMOS (complementary MOS)
logic. The interface between TTL and CMOS-integrated circuits are discussed at the
end of this chapter.

This textbook also includes three appendices. Appendix 1 is a brief introduction
to Quartus II, which is commonly used EDA software for designing large-scale digital
integrated circuits and PLDs. Appendix 2 provides the information of Altera DE2
development and education board for implementing the design of PLDs. Appendix 3
lists the abbreviations in this book.

To the instructors

This textbook covers a comprehensive range of topics, beginning with basic digital
concepts and progressing through number systems, Boolean algebra and logic sim-
plification, combinational logic circuit, sequential logic circuit, programmable logic
device, semiconductor memory, ADC and DAC, and integrated circuit technologies.

Owing to the time limitations of course and the difference of the major, instruc-
tors can change the sequence for certain topics as they appear in the textbook.
Chapter 12 is intended to be used as a flexible chapter, which can be covered in
whole or in part at any point in the text, or it can be omitted without affecting any
other topics. If you want to include Chapter 12 in your lecture, the suggestion points
are to put this chapter after Chapter 3 or arrange it at the end of the course without
affecting the other contents. If the students already learn the knowledge of number
system and analog-to-digital conversion, you can omit Chapter 11 and part of content
in Chapter 2. If you want to emphasize the content of pulse generation and pulse
transform, you can split one shot, astable multivibrator, Schmitt trigger, and 555
timer from Chapter 5 into separated chapters.

To the students

For students, if you want to master the knowledge of digital circuit in this textbook.
You should pay an attention to the following suggestion.
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Firstly, logical algebra is the mathematical basis of digital circuit. A basic
knowledge about logic algebra is indispensable for learning digital circuits.
Secondly, you should master logic function and the external characteristics of
digital integrated circuits. Thirdly, digital electronic circuit is a course with
strong application background. Strengthening practical training is essential
part for this course. Finally, EDA is the up-to-date development of electronic
technology. Programmable logic devices are currently the most frequently used
logic devices, and the design of programmable logic devices needs to be rea-
lized through EDA technology. Examples of Verilog HDL for some logic circuits
are provided in Chapter 4. The readers can write their own Verilog HDL codes
for other logic circuits accordingly. In addition, Appendix I shows the guidance
of programmable logic device design by using software Quartus II. Function
simulation can be carried out for digital circuits by using Quartus II, and the
digital circuit simulation capabilities of students can be trained and strength-
ened. Students should actively learn the new knowledge through simulation
experiments.
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1 Introduction to digital electronic circuit

1.1 Introduction

Electronics is a branch of physics, engineering, and technology that deals with
circuits consisting of components that control the flow of electricity. Circuits and
components can be divided into two groups: analog and digital. A particular device
may consist of circuitry that has analog or digital or a combination of these. Digital
electronics or digital electronic circuits operate on digital signals. In the early days,
applications of digital electronic circuits were focused on computer systems. Now
digital electronics has been applied in a wide range of systems, such as telecommu-
nication systems, military systems, medical systems, control systems, and consumer
electronics. This chapter provides a broad overview of digital electronic circuits,
including a brief introduction to the basic concepts of digital circuits, their commonly
used devices, and technology of electronic design automation (EDA).

The objectives of this chapter are to
– Explain the differences between digital and analog quantities
– Describe the representation of digital quantities
– Explain the classification of digital circuits
– State the advantages of digital over analog
– Explain the characteristics of the commonly used hardware description lan-

guages (HDLs)
– Define EDA
– Describe the design and programming process of programmable logic device

(PLD)

1.2 Introductory basic concepts of digital electronic circuit

Electronic systems can be divided into two broad categories: digital and analog.
Digital circuits are electric circuits that deal with the digital signals that have a
number of discrete voltage levels. To most engineers, the terms “digital circuit,”
“digital system,” and “logic” are interchangeable in the context of digital circuits,
while analog circuits involve quantities with continuous values. This section intro-
duces some basic concepts about digital circuits.

The objectives of this section are to
– Explain the differences between digital and analog quantities
– Define binary digits
– Describe how to represent voltage levels by bits
– Explain the advantages of digital circuits over analog circuits
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1.2.1 Analog and digital

An analog quantity is the one having continuous values in time. A digital quantity is
the one having a discrete set of values. In the natural world, most of the physical
parameters, such as temperature, pressure, and strain, are analog quantities. These
physical parameters can be converted into continuous electronic signals, voltage, or
current, by the specific sensor so that they can be processed using the circuit.
An analog signal refers to a signal that changes its value continuously over time.
The typical analog signal is sinusoidalwave or soundwave, as shown in Figure 1.2.1(a).
The term analog signal usually refers to electronic signals; however, mechanical,
pneumatic, hydraulic, human speech, and other systems may also convey or be
considered analog signals.

A digital signal refers to an electrical signal that has a sequence of discrete values;
at any given time it can only take one of a finite number of values [1, 2]. This contrasts
with an analog signal, which represents continuous values; at any given time it
represents a real number within a continuous range of values. In digital circuit, a digital
signal is a pulse train, that is, a sequence of fixed width electrical pulses. Figure 1.2.1(b)
shows a typical digital signal that varies between low and high voltage levels, in which
the high voltage level conveys a binary 1 and the low voltage level conveys a binary 0.
This kind of digital signal is also called as a logic signal or a binary signal.

1.2.2 Binary digits, logic levels, and digital waveforms

1. Binary digits
Most digital circuits use a binary system that only has two digits, 1 and 0, which can
represent two voltage levels. A binary digit is called a bit. Often logic “0” will be a
lower voltage and referred to as “LOW”while logic “1” is referred to as “HIGH.” This is
called positive logic and is used throughout this book.

Of course, you can use logic “0” representing a HIGH and logic “1” representing a
LOW. This logic system is called negative logic.

In digital systems, a combination of 1s and 0s is called codes, which are used to
represent numbers, symbols, alphabetic characters, and other types of information.

t

V(t) V(t)

t

HIGH

LOW

(a) (b)

Figure 1.2.1: Comparison between (a) analog signal and (b) digital signal.
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2. Logic levels
The voltage used to represent a 1 or a 0 are called logic level. In a practical digital
circuit, a HIGH level can be any voltage level between a specifiedminimum value and
a specified maximum value. Likewise, a LOW can be any voltage level between a
specified minimum and a specified maximum. There is no overlap between the
accepted range of HIGH and LOW levels.

3. Digital waveforms
Digital waveform consists of voltage levels that change back and forth between theHIGH
and LOW levels. As shown in Figure 1.2.2, a positive-going pulse is generated when the
voltage goes from its normally LOW level to its HIGH level. The negative-going pulse is
formed when the voltage goes from its normally HIGH level to its LOW level.

Binary information, handled by digital systems, appears as digital waveforms. A
digital waveform is made up of a series of pulses, sometimes called pulse trains [3].
When the waveform is HIGH, a binary 1 is present; when the waveform is LOW, a
binary 0 is present. Each bit in a sequence occupies a defined time interval called a bit
time. In digital systems, signal waveforms are synchronized with a basic timing
waveform called the clock, as shown in Figure 1.2.3. The waveform of the clock is a
period of pulse trains in which the pulse period equals to a bit time. Binary data is
indicated by the level in the waveform. During each bit time of the clock, waveform of

HIGH

t0
LOW t1 t0 t1

Rising or
leading edge

Falling or
trailing edge

HIGH

LOW

Falling or
leading edge 

Rising or
trailing edge 

(a) (b)

Figure 1.2.2: Waveforms of positive-going (a) and negative-going (b) pulses.

Clock

Binary
data

1
0

1
0

1 1 0 0 1 1 10 1 0 0

Bit

Figure 1.2.3: Binary data indicated by a pulse train synchronized with a clock pulse.
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binary data is either HIGH or LOW, inwhichHIGHs and LOWs represent a sequence of
binary digits (bits). Binary data is represented by a group of several bits. Notice that
the clock waveform itself does not carry information.

1.2.3 Characteristics of digital circuit

A digital circuit is a circuit that takes digital signals as inputs, processes them, and
outputs the processed digital signals. Compared with analog circuits, digital circuits
have some distinguished advantages.

Since a digital signal is a signal in which discrete steps are used to represent
information, active components in digital circuits typically have one signal level
when turned on, and another signal level when turned off. In general, a component
in digital circuits is only switched on or off. For example, transistors in digital circuits
operate either in saturation region or in cutoff region. While transistors in analog
circuits operate in active region, their outputs are susceptible to several factors such
as temperature, power supply voltage, and component aging. Therefore, an advan-
tage of digital circuits when compared to analog circuits is that signals represented
digitally can be transmitted without degradation due to noise [4].

Information storage can be designed easily in digital systems than in analog
ones. The noise immunity of digital systems permits data to be stored and retrieved
without degradation. In an analog system, noise from aging and wear degrades the
stored information. In a digital system, as long as the total noise is below a certain
level, the information can be recovered perfectly.

Digital circuits are the most common physical representation of Boolean algebra
[5]. The design of digital circuits is a logical design that does not require designers to
have very strong mathematical background, whereas the analog circuit design
requires the calculation of the model in order to understand and study the internal
characteristics and the operating principle of the circuit. In a digital system, a more
precise representation of a signal can be obtained by using more binary digits to
represent it. While this requires more digital circuits to process the signals, each digit
is handled by the same kind of hardware, resulting in an easily scalable system. In an
analog system, additional resolution requires fundamental improvements in the
linearity and noise characteristics of each step of the signal chain.

Digital circuits are easy to be integrated, and they are low cost and small in size
[6]. The integration level of digital circuits is generally higher than that of analog
circuits. In addition, digital circuits are programmable. Computer language can be
used to design some digital circuits to achieve corresponding logic functions.
Computer-controlled digital systems can be controlled by software, allowing new
functions to be added without changing hardware. Often this can be done outside the
factory by updating the product’s software. So, the product’s design errors can be
corrected after the product is in the customer’s hands.

4 1 Introduction to digital electronic circuit
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1.3 Digital integrated circuits and typical packages

Digital electronic circuits are usually made from large assemblies of logic gates to
implement various logic functions, which mainly involve combinational logic func-
tions and sequential logic functions. All the logic elements and functions in a digital
circuit are available in an integrated circuit (IC) form. A monolithic IC is an electronic
circuit that is constructed entirely on a single small chip of silicon. All the compo-
nents that make up the circuit – transistors, diodes, resistors, and capacitors – are an
integral part of that single chip. Digital ICs are divided into two broad categories:
fixed-functional logic and programmable logic. This section briefly introduces fixed-
function devices, programmable logic devices (PLDs), and their typical packages.

The objectives of this section are to
– Explain the difference between fixed-function logic devices and PLDs
– Recognize the IC packages
– Explain the complexity of ICs
– Describe the IC technology

1.3.1 Fixed-function logic devices

The fixed-function logic devices refer to digital ICs that their logic functions are set by
the manufacturer and cannot be altered. They include standard chips and custom-
designed chips.

Standard chips refer to ICs that integrate some commonly used logic function
circuits into the chips of silicon [7]. Combinational logic circuits and sequential
logic circuits are two types of digital circuits. In the combinational logic circuit, its
outputs are only determined by its current inputs. Combinational logic ICs include
different gates, magnitude comparators, encoders, decoders, multiplexers, demul-
tiplexers, and other logic function devices. In the sequential logic circuit, its out-
puts depend not only on the current inputs but also on the past inputs. Sequential
logic ICs include latches, flip-flops, registers, and counters. These chips have
functions and specifications in line with recognized standards. Designers can use
these chips to design circuits that perform the desired functions. The advantages of
using standard chips are their ease to use and ready availability. They can be
bought off-the-shelf. However, their fixed simple functionality results in many
chips that should be used to implement a complex functionality on a printed circuit
board (PCB). This causes a requirement for more space, more components, and
more wires that make volume larger and reliability lower. An example of commonly
used standard chips is 7,400 series.

Custom-designed chips refer to ICs that are designed to meet the specific require-
ment, also known as application-specific ICs (ASICs) [7]. The distinguished advantage
of custom-designed ICs is that they are optimized for implementing a particular task
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so that higher performance can be achieved with higher integration level. Although
the production cost of these ICs is high, the allocated cost of each chip can be
obviously reduced by mass production. In addition, ASICs can integrate multiple
chips onto a single chip, reducing the size and cost of products.

1.3.2 Programmable logic devices

Before the 1980s, standard ICs were usually chosen to design logical circuits.
However, advances in very large scale integrated technology made possible the
design of special chips, which can be configured by a user to implement different
logic circuits. These chips are known as PLDs.

A PLD is a type of IC that starts as a “blank slate” and into which a logic design
can be programmed [3]. The logic design in the PLD can be changed repeatedly. The
designer first designs the prototype of a product; then the performance of the
design can be evaluated and problems could be found during the subsequent
hardware testing; finally, the product can be updated by adding new functionality
and reprogramming the PLD. Compared with the fixed-function logic devices, PLDs
have the following advantages. One advantage is that PLD uses much less board
space for the equivalent amount of logic. Another advantage is that designs with
PLD can be changed without rewiring or replacing components. Also, a logic design
can be generally implemented faster and less cost with programmable logic than
with fixed-function ICs. PLDs can be used to implement complex, large-scale logic
circuits that cannot be implemented with typical standard ICs. PLDs, also known as
semicustom-specific ICs, have made the design of products much easier. Various
types of PLDs are available, ranging from small devices that can replace a few fixed-
function devices to complex high-density devices that can replace thousands of
fixed-function devices.

The most popular types of PLDs are simple PLDs (SPLDs), complex PLDs
(CPLDs), and field-programmable gate arrays (FPGAs). Various types of PLDs
have different internal architecture. Among them, FPGAs have the highest gate
count, which can implement much larger designs than SPLDs and CPLDs. Today
there are millions of transistors in an FPGA chip. Some famous PLD manufacturers
include Altera Inc., Xilinx Inc., Lattice Semiconductor, Atmel, Actel, Cypress,
Lucent, and QuickLogic. The PLD Cyclone II produced by Altera Corporation is
shown in Figure 1.3.1.

1.3.3 Typical IC packages

A package of IC refers to IC shape and pin arrangement [6]. According to their
mounting methods in PCBs, packages can be divided into two types: through-hole
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and surface-mount. With a through-hole package, pins of a chip are inserted into the
through-hole from one side of the PCB and soldered on the other side. The pins of the
chip can be directly inserted into breadboards for experiments and thus through-hole
package is widely used in laboratory. Most packages of ICs use surface-mount
technology (SMT), which solders the pins of a chip directly on the circuit board
without through-holes, so that the other side of the circuit board can be used for
other circuits. SMT package can save the space of the circuit board. In addition, the
pins of the surface-mount package are arranged more closely. In particular, surface-
mount package is generally used in large-scale ICs due to the large amount of pins.

1. Through-hole package
Typical through-hole package is dual in-line package (DIP), which has two packaging
materials: plastic and ceramic. The pin center distance is 2.54 mm, and the number of
pins typically ranges from 6 to 64. The package width is typically 15.2 mm, as shown
in Figure 1.3.2.

Figure 1.3.1: The programmable logic device
“Cyclone II” produced by Altera Corporation.

Chip
Plastic
housing 

Leads

(a) (b)

Figure 1.3.2: Dual in-line package: (a) outline and (b) cross-sectional diagram.
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2. SMT package
There are many types of SMT packages, which are categorized according to the
integration level and the number of pins of ICs, as shown in Figure 1.3.3.

Small outline IC (SOIC) package is used for the chips with a small number of pins. The
pins are distributed on both sides of the package like “gull wing,” as shown in
Figure 1.3.3(a).

Plastic leaded chip carrier (PLCC) package is wrapped around and under the edge
of the package, and arranged on the four sides of the package serving as electrodes.
PLCC package is a high-speed and high-frequency IC package. The outline of the
package is square surrounded by leads, and its dimensions are smaller than the DIP
package. PLCC package has advantages such as small size and high reliability,
suitable for PCB SMT, as shown in Figure 1.3.3(b).

Figure 1.3.3(c) shows the ball grid array (BGA) package. In a BGA package, the
leads are replaced by pads on the bottom of the package, each initially with a tiny
solder ball stuck to it; meanwhile, a large-scale integration (LSI) chip is mounted on
the top of the printed board, and then the chip is sealed by a molding resin or a
potting method. This package is also known as the pad array carrier, whose pins can
be more than 200. Thus, this package is commonly used by multipin LSI chips.
Typical pitches of the lead of a BGA package are 1.27, 1.0, 0.8, 0.65, and 0.5 mm.

A quad flat package (QFP) is a surface-mount package with “gull wing” leads
extending from each of the four sides of the package, as shown in Figure 1.3.3(d). The

(a) (b)

(c) (d) 

Figure 1.3.3: Typical SMT package configurations: (a) SOIC; (b) PLCC; (c) BGA; and (d) QFP.
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commonly used materials of QFP include ceramic, metal, and plastic. From the
quantitative point of view, plastic packaging accouts for the vast majority. When
the material is not specifically required, the plastic QFP is mainly used. Typical
pitches of pins include 1.0, 0.8, 0.65, 0.5, 0.4 and 0.3 mm. The 0.65 mm pin pitch
has the maximum 304 pins. According to the thickness of package body, this type of
package can be further divided into QFP (from 2.0 to 3.6 mm thick), low-profile QFP
(1.4 mm thick), thin QFP (1.0 mm thick), and so on.

1.3.4 Complexity classifications for digital ICs

The complexity of digital ICs has various definitions from different sources. Here, the
complexity of digital ICs is defined in terms of the number of equivalent gate circuits
on a single chip. According to the complexity, digital ICs can be divided into five
categories: small-scale integration (SSI), medium-scale integration (MSI), medium-
scale integration (MSI), LSI, very large scale integration (VLSI), and ultra-large-scale
integration (ULSI) [3].

SSI refers to the digital ICs in which there are up to ten equivalent gate circuits
on a single chip, which include basic gates and flip-flops. MSI is a type of ICs in
which there are a number of equivalent logic gates from 10 to 100 on a chip, which
involves combinational logic function ICs, such as adders, comparators, decoders,
and encoders, and sequential logic function ICs including counters and registers.
LSI refers to ICs with complexities from more than 100 to 10,000 equivalent gates
per chip, which can be used to build memories. VLSI is a kind of ICs in which there
are a number of equivalent logic gates from more than 10,000 to 100,000 on a chip.
ULSI is a classification of ICs with the complexities of more than 100,000 equivalent
gates per chip, which can be used to construct very large memories, larger single-
chip computers, and larger microprocessors.

1.3.5 Integrated circuit technology

Logic gates are basic logic elements in digital circuits. Logic gate can be constructedwith
transistors, including metal oxide semiconductor (MOS) field-effect transistors and
bipolar junction transistors (BJT). Bipolar and CMOS (complementary MOS) are two
typical digital IC technologies. BiCMOS uses a combination of both CMOS and bipolar.

1.4 Introductory EDA

Design is a key issue in developing digital circuits to satisfy the requirement of
various applications. For a small-scale digital circuit, logic gates can be used to

1.4 Introductory EDA 9

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:53 AM



design digital logic circuit; thus, this designmethod is called as gate-level design. For
medium- or large-scale digital circuit, digital integration modules can be used to
design the required function circuits, so this design method is called as block-level
design. For larger scale logic circuit, the system level of hierarchy design is intro-
duced. Early designs were truly handcrafted. But with the rapid development of
semiconductor technology, the complex digital systems, for example, microproces-
sor, containsmore thanmillions of logic elements. Obviously, the handcrafted design
method is not appropriate when more than a million logic elements have to be
created and assembled. As a result, designers have increasingly adhered to rigid
design methodologies and strategies that are more amenable to design automation.
EDA is introduced into design practice to save costly engineering effort. This section
briefly introduces EDA. HDLs and design process of PLDs are covered.

The objectives of this section are to
– Define EDA
– Explain HDLs
– Describe design and programming process of PLDs

1.4.1 Electronic design automation

EDA is a term for a category of software tools that help to design electronic systems
with the aid of a computer [8]. It is also referred to as electronic computer-aided
design (ECAD). Integrating electronic technology, computer technology, and intelli-
gent technology, EDA uses a computer as a designworkbenchmainly supporting PLD
design, IC design, electronic circuit design, and PCB design. Design tools include
simulation at various complexity levels, design verification, layout generation, and
design synthesis. Popular names in the EDA software world are National Instruments
(Multisim), Cadence (ORCAD), Altium (Protel), LabCentre Electronics (Proteus),
Altera (Quartus II), and Xilinx (ISE).

For the design of digital ICs, EDA tools provide different styles for design entry,
which include not only the commonly used entry styles, for example, schematic
entry, waveform entry, and state machine, but also the HDL entry.

A large-scale digital system can be implemented with one or several PLDs, using
HDL to complete the system behavior-level design, and finally to generate the final
target device through synthesizers and adapters. This design method is called high-
level electronic design method.

1.4.2 Hardware description language

Due to the exploding complexity of digital electronic circuits since the 1970s (see
Moore’s law), circuit designers needed digital logic descriptions to be performed at a
high level without being tied to a specific electronic technology, such as CMOS or BJT.
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HDL was created to implement register transfer-level abstraction, a model of the data
flow and timing of a circuit [9].

In electronics, an HDL is a specialized computer language used to describe the
structure and behavior of electronic circuits, andmost commonly, digital logic circuits.
An HDL looks much like a programming language such as C; it is a textual description
consisting of expressions, statements, and control structures. One important difference
between most programming languages and HDLs is that HDLs explicitly include the
notion of time. An HDL enables a precise, formal description of an electronic circuit
that allows for the automated analysis and simulation of an electronic circuit. It also
allows for the synthesis of an HDL description into a netlist (a specification of physical
electronic components and how they are connected together), which can then be
placed and routed to produce the set of masks used to create an IC.

Comparedwith the traditional gate-level description, HDLs form an integral part of
EDA systems, especially for complex circuits, such as ASICs, microprocessors, and
PLDs. Many HDLs are available, but VHDL and Verilog are by far the most popular
ones. Most CAD tools available in themarket support these languages. VHDL stands for
“very high speed integrated circuit hardware description language.” Both VHDL and
Verilog are officially endorsed IEEE (Institute of Electrical and Electronics Engineers)
standards. Take a 32-bit adder, for example, gate-level description of the adder needs to
use 500–1,000 logic gates, whereas VHDL needs only one statement “A = B + C.”

1. VHDL
In the 1980s, the rapid advances in IC technology necessitated a need to standardize
design practices. In 1983, VHDL was developed under the very high speed IC (VHSIC)
program of the U.S. Department of Defense, which was originally intended to serve as a
language to document descriptions of complex digital circuits. In 1987, IEEE adopted
VHDL as the HDL standard (IEEE STD-1076) [10]. It was revised in 1993 as the standard
VHDL-93 [11]. VHDL includes multiple design levels, such as system behavior level,
register transfer level, and logic gate level, and supports mixed description methods
consisting of structural description, data-flow description, and behavioral description.
The entire large-scale digital IC design process can be completedwith VHDL. VHDL also
has several advantages. VHDL has awide range description capability. This enables the
designers to focus on improving the system functions and debugging, instead of
emphasizing the physical implementations. VHDL can describe complex control logic
with simple codes, which is very flexible and the results can be easily saved and reused.
VHDL design does not rely on a specific device. Now VHDL already becomes a standard
language, applicable for majority of EDA manufacturers with good portability.

2. Verilog HDL
Verilog HDL and a simulator were released by Gateway Design Automation (GDA) in
1983. In 1989, Cadence acquired GDA, andVerilogHDL becamean intellectual property
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of Cadence. In 1990, Cadence separated the HDL from its simulator (Verilog-XL) and
released the HDL into the public domain. Verilog HDL is guarded by the Open-Verilog
International Organization, now part of Accellera Organization. In 1995, IEEE adopted
Verilog HDL as standard 1364 (Verilog HDL 1364–1995). In 2001, IEEE issued the
Verilog HDL standard (Verilog HDL 1364–2001) and revised in 2005 [12, 13].

Many syntaxes of Verilog HDL and C language are similar. For example, Verilog
HDL also has an “if-then-else” structure statement, a “for” statement, an “int”
variable type, a function, and so forth. However, Verilog HDL is fundamentally an
HDL, which is essentially different from the C language. First of all, C language
program is executed sequentially, that is, the next statement can’t be executed
until the execution of the current statement is completed. And Verilog statements
are executed in parallel, that is, multiple branches (multiple statements) of the circuit
may be executed at the same time. So beginners tend to be confused by concepts,
leading to the failure of the design.

Second, the hardware design language has a concept of timing sequence, that
is, there is always a delay existing from the input to the output in a hardware circuit.
However, this concept doesn’t exist in C language. In addition, C language has been
used for a long time, and it has perfect compiling and debugging environment and
powerful input and output functions. As for Verilog HDL, there are many restric-
tions, such as rigid syntax rules, poor debugging function, and incomplete error
messages. Moreover, the codes of Verilog HDL should be developed with a hard-
ware point of view. This requires that designer must have background knowledge of
digital circuits.

3. Comparison between VHDL and Verilog HDL
Both VHDL and Verilog HDL have strong capabilities of hardware description, and
each of them has its own characteristics. It is generally believed that Verilog HDL is
slightly inferior to VHDL in system-level abstraction and stronger than VHDL in gate-
level descriptions. Meanwhile, as Verilog has powerful gate-level description, the
bottom layer of the VHDL is supported with device library described by Verilog HDL.
It is much easier to learn Verilog HDL than to learn VHDL. This is mainly because
Verilog HDL is similar to C language. Therefore, for most designers, the choice of
Verilog HDL or VHDL may be more dependent on the habit and work environment.
This book will introduce the basic syntax of Verilog HDL and some logic circuits with
Verilog HDL description in Chapter 4.

4. Comparison between software language compiler and HDL synthesizer
The HDL program can be synthesized through synthesizers. Then a netlist file is
generated, which can be downloaded into devices to realize the corresponding logic
circuits. The software language compiles the program into the instruction or data
codes of the central processing unit (CPU) through the compiler. HDL synthesizers
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and software program compilers are nothing more than a “translator” that trans-
lates high-level design expressions into low-level expressions, but they have many
essential differences. The comparison of compilers and synthesizers is shown in
Figure 1.4.1 [6].

The compiler translates the software program into machine codes based on a
specific CPU, and the CPU executes the corresponding function sequentially. This
code is limited to this CPU and cannot be transplanted; the machine codes neither
represent the hardware structure nor change the CPU hardware structure. It can only
passively be used for the specified hardware circuit.

On the contrary, the “translation” target of a synthesizer is to generate the netlist
file for describing the bottom-layer circuit structure. The circuit structure that satisfies
the original design function does not depend on any particular hardware environment
and therefore can be independently stored and easily transplanted to any common
hardware environment, for example, from PLDs to ASICs. In addition, a synthesizer is
active and creative in the process of converting the circuit function describedwith HDL
into a specific circuit structure netlist. It doesn’t translate mechanically and literally,
but choose the optimum way to implement a circuit structure according to the design
library, technology library, and various preset constraints. For the same VHDL descrip-
tion, the synthesizer can use different circuit structures to realize the same function.

1.4.3 Design and programming process of PLD

A PLD can be thought of as a “blank slate” on which you implement a specified
system design by using a certain process. The implementation of programmable
logic requires both hardware and software so that PLDs can be programmed to

J Q

K
D Q

The circuit netlist file for an ASIC design

CPU codes / data codes:
010010 100010 1100CompilerC, ASM…

program

(a)

SYNTHESIZERVHDL/Verilog
program

(b)

Figure 1.4.1: Comparison between functions of compiler and synthesizer: (a) software language
design and (b) hardware description language design.
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perform specified logic functions by the designer. The software development
package installed on a computer is to implement a circuit design. The computer
must be interfaced with a development board or programming fixture containing
the device.

PLD manufacturers have their own EDA software package, which integrates all
function modules within an EDA environment to facilitate the development of
PLDs. The EDA software packages provided by Altera and Xilinx are shown in
Figure 1.4.2.

For instance, Altera’s MAX+PLUS II and Quartus II design tools include both VHDL
and Verilog HDL synthesizers to fully support the design process by using VHDL and
Verilog HDL. Quartus II is an upgraded version of MAX+PLUS II for programming the
following devices: low-cost FPGA devices (Cyclone series), high-density FPGA
devices (Stratix series), structured ASIC devices (Hardcopy series), and CPLD devices
(MAX series).

Logic circuit design process implemented by PLDs is shown in Figure 1.4.3. First,
according to the selected PLD, download the manufacturer’s corresponding design
tool; then, input the corresponding designs by using HDL, schematic, or a mixture of
HDL and schematic; finally, complete the design of PLD through synthesis, simula-
tion, and downloading.

Figure 1.4.4 shows the Altera development board DE2, whose core PLD is Cyclone II.
The design can be downloaded to the PLD of the DE2 board, and the validation of the
design can be carried out by inputs and outputs on the board.

The design kits of PLD include Altera’s MAX+PLUS II and Quartus II software,
Xilinx’s foundation and ISE software. With these software products and PLD pro-
gramming boards, you can program PLD on the board and test the functionality of
PLDs. If you do not have PLD programming board, you can use these software
products for digital logic circuit design and simulation.

XilinxAltera

FPGA/CPLD developing kit

MAX+
PLUS II Quartus II Foundation ISE Vivado

Figure 1.4.2: PLD corporations and their corresponding software packages.

14 1 Introduction to digital electronic circuit

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:53 AM



1.5 Summary

1. Analog and digital quantities are two basic ways of representing the numerical
value of physical quantities. An analog quantity is one having continuous values.
A digital quantity is one having a discrete set of values.

2. Most digital circuits use a binary system that only has two digits, 1 and 0, which
can represent two voltage levels. A binary digit is called a bit.

HDL Mixed input

Design entry

Simulation
input

/ Output
waveform

Schematic

Synthesis

Programming
download

Waveform simulator
X

Z
Y

Development
board

LEDPLD

Figure 1.4.3: Design process of using PLD to realize basic logic circuits.

Figure 1.4.4: DE2 development and education board
manufactured by Altera.
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3. The voltages used to represent a 1 or a 0 are called logic level. In a practical digital
circuit, a HIGH level and a LOW level correspond to a certain voltage range. There
is no overlap between the accepted range of HIGH levels and LOW level.

4. Digital waveform is one way of representing binary information, which consists
of voltage levels that change back and forth between the HIGH and LOW levels.

5. Digital ICs are divided into two broad categories: fixed-functional logic and
programmable logic.

6. The fixed-function logic devices have the fixed logic functions that cannot be
altered.

7. PLDs are ICs into which logic designs can be programmed.
8. Two types of IC packages are through-hole mounted and surface mounted.
9. According to the complexity, digital ICs can be divided into five categories: SSI,

MSI, LSI, VLSI, and ULSI.
10. EDA, also called as ECAD, is a category of software tools that help to design

electronic systems with the aid of computers.
11. HDL is a specialized computer language used to describe the structure and

behavior of electronic circuits. Currently, VHDL and Verilog HDL are most
commonly used HDL for digital circuit design.

12. The implementation of programmable logic requires both hardware and soft-
ware. The software development package installed on a computer is to imple-
ment a circuit design. The computer must be interfaced with a development
board or programming fixture containing the device.

Key terms

Analog quantity: The quantity having continuous values
Digital quantity: The quantity having a discrete set of values
Analog signal: A signal that has continuous values
Digital signal: An electrical signal that has a sequence of discrete values
Analog circuit: An electronic circuit involving quantities with continuous values
Digital circuit: An electric circuit based on a number of discrete voltage levels
Bit: A binary digit being either 1 or 0
Code: The combinations of 1s and 0s used to represent numbers, symbols, alphabetic
characters, and other types of information
Logic level: The voltage used to represent a 1 or a 0
Digital waveform:Awaveform describing voltage level which changes back and forth
between the HIGH and LOW level
Clock: The basic timing signal in a digital system; a periodic waveform used to
synchronize operation
Pulse: A sudden change from one level to another, followed after a time, by a sudden
change back to the original level
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Pulse train: A series of pulses
Complexity: The number of equivalent gate circuits on a single chip
Integrated circuit (IC):A type of circuits in which all components are integrated on a
single small chip of silicon
Fixed-function logic: A type of digital ICs whose logic functions are set by the
manufacturer and cannot be altered
Programmable logic:A type of digital IC that starts as a “blank slate” and into which
a logic design can be programmed
Standard integrated circuit: A type of digital ICs that integrate some commonly
used logic function circuit into the chips of silicon
Custom-designed integrated circuit: A type of digital ICs that is designed for
special applications; also called as ASIC
Electronic design automation (EDA): A category of software tools that help to
design electronic systems with the aid of computers; also called as ECAD
Hardware description language (HDL): A specialized computer language used to
describe the structure and behavior of electronic circuits, and most commonly,
digital logic circuits
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2 Number systems and codes

2.1 Introduction

Digital signals are generally represented by a series of binary digits. Binary number
system and digital codes are fundamental to digital circuits and digital systems. First,
this chapter introduces number systems including binary, decimal, octal, and hexa-
decimal, and conversion between different number systems. Then binary arithmetic
operations with binary numbers are introduced. Finally, digital codes such as binary-
coded decimal (BCD), excess-3 code, the Gray code, and the American Standard Code
for Information Interchange (ASCII) code are covered.

The objectives of this chapter are to
– Describe binary, decimal, hexadecimal, and octal number system
– Convert number representation between different number systems
– Apply arithmetic operations to binary numbers
– Express signed binary numbers in sign-magnitude, one’s complement, two’s

complement
– Describe BCD, excess-3 code, and Gray code.

2.2 Number systems

Number systems are ways to represent the quantities. You are familiar with the
decimal number system since you use decimal number in your daily lives.
However, a digital circuit and a digital system belong to a two-valued system. A
binary number system is the most efficient way to represent quantities. Hexadecimal
and octal number systems are used primarily as a compact way of writing binary
number since long binary numbers are difficult to read and write. In this section, we
will begin with the structure of decimal number system that you are familiar with.
This will help you more easily understand the structure of a binary number system, a
hexadecimal system, and an octal system. Then, the structure of a binary number
system, a hexadecimal system, and an octal system are introduced, because the same
quantity can be represented by a decimal number, or an equivalent binary number,
hexadecimal number, and octal number. Conversion between different number
systems is introduced at the end of this section.

The objectives of this section are to
– Determine the representation of binary, decimal, hexadecimal, and octal number

system
– Explain the weighted system and determine the weight of each digit in different

systems
– Conversion between different number systems

https://doi.org/10.1515/9783110614916-002

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:53 AM

https://doi.org/10.1515/9783110614916-002


2.2.1 Decimal number system

A decimal number system is the most commonly and broadly used number system in
our daily life. It contains 10 digits, 0–9, representing a certain quantity. If you express
a quantity greater than 9, you can use two or more digits. The position of each digit
indicates themagnitude of the quantity [14]. For example, a decimal number, 325, can
be expressed by their respective positions as follows:

Weight Weight

325 = 3 × 102 101+ 2 ×

Weight

100+ 5 ×

where the digit 3 represents the quantity of 300, the digit 2 expresses the quantity of
20; and the digit 5 indicates the quantity of five.

The position of each digit in a decimal number represents the magnitude of the
quantity assigned a weight of 10i, where 10 is the base of a decimal number and i is
the position of each digit relative to the decimal point in a decimal number. For the
whole number part, i is a positive number increasing from right to left starting with
0; for fractional numbers part, i is negative number decreasing from left to right
starting with −1. The weight structure of the decimal number is illustrated as
follows.

102101100.10–110–210–3Weight:

Position i:
Decimal point

2 1 0 –1  –2  –3 

Any decimal number can be represented by the sum of digits after each digit has
been multiplied by its weight as shown in eq. (2.2.1).

N½ �10 ¼ Kn�1 × 10n�1 þ � � � þ K1 × 101 þ K0 × 100 þ K�1 × 10�1 þ � � � þ K�m × 10�m

¼ Pn�1

i¼�m
Ki × 10i

(2:2:1)

where Ki represents a digit (0–9) in the decimal number, 10i is the corresponding
weight, and the subscript 10 or D illustrates that N is a decimal number.

For instance,

3281ð Þ10 = 3 × 103 + 2 × 102 + 8 × 101 + 1 × 100

209.04ð ÞD = 2 × 102 + 0 × 101 + 9 × 100 + 0 × 10− 1 + 4 × 10− 2
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2.2.2 Binary number system

A binary number system is another way to represent quantities. It is fundamental to
digital circuit and digital system. Same as the decimal system, the binary system
with its two digits (0 and 1) is a base-two system [14]. The position of each digit in a
binary number represents its weight. The weights in a binary number are based on
powers of two represented by 2i, where 2 is the base of a binary number and i is the
position of each digit in the binary number. For the whole number part, i is a
positive number increasing for right to left starting with 0; for the fractional number
part, i is a negative number, which decreases from left to right starting with −1. The
weight structure of the binary number is as follows

Weight:

Position i:
Binary point

2 1 0 –1  –2  –3

222120.2–12–22–3 

Any binary number can be represented as a sumof digits after each digit has been
multiplied by its weight as shown in eq. (2.2.2):

N½ �2 ¼ Kn�1 × 2n�1 þ � � � þ K1 × 21 þ K0 × 20 þ K�1 × 2�1 þ � � � þ K�m × 2�m

¼ Pn�1

i¼�m
Ki × 2i

(2:2:2)

where Ki represents a digit (0 or 1) in the binary number, 2i is the corresponding
weight, and the subscript 2 or B illustrates that N is a binary number.

The decimal value of any binary number can be obtained by eq. (2.2.2).
For instance,

101.01ð ÞB = 1 × 22 + 0 × 21 + 1 × 20 + 0 × 2 − 1 + 1 × 2− 2 = 5.25ð Þ10
From eqs. (2.2.1) and (2.2.2), we can deduce that any arbitrary number in other

number systems can be represented as a sum of the digits after each digit has been
multiplied by its weight as shown in eq. (2.2.3):

N½ �R =
Xn− 1
i= −m

Ki ×Ri (2:2:3)

where the definitions of i, m, and n are the same as in eq. (2.2.1); R is the base of the
number system; Ki denotes the digit (0 ~ R−1) in the ith position; and Ri is the
corresponding weight of Ki.
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2.2.3 Hexadecimal and octal number systems

A number represented in a binary number system usually involves many bits, which
are difficult to record and memorize. Consequently, hexadecimal and octal numbers
are commonly chosen to represent a binary number in a digital system.

A hexadecimal number system has 16 digits, 0–9 and A–F, where A–F denotes the
decimal numbers 10–15, respectively; 16 is the base of the hexadecimal number system.
The weight of each digit in a hexadecimal number is 16i. Any hexadecimal number can
be represented as a sum of the digits after each digit has been multiplied by its weight
as shown in eq. (2.2.4). The subscript 16 orH illustrates thatN is a hexadecimal number.

N½ �16 =
Xn− 1
i= −m

Ki × 16i (2:2:4)

The decimal value of any hexadecimal number can be obtained by eq. (2.2.4).
For instance,

D8.Að ÞH = 13 × 161 + 8 × 160 + 10 × 16− 1 = 216.625ð Þ10
An octal number system has eight digits, 0–7. Here, 8 is the base of an octal

number, and the weight of each digits is 8i. Any octal number can be represented as a
sum of the digits after each digit has been multiplied by its weight as shown in eq.
(2.2.5). The subscript 8 or O illustrates that N is an octal number.

N½ �8 =
Xn− 1
i= −m

Ki × 8i (2:2:5)

The decimal value of any octal number can be obtained by eq. (2.2.5). For instance,

207.04ð ÞO = 2 × 82 + 0 × 81 + 7 × 80 + 0 × 8− 1 + 4 × 8− 2 = 135.0625ð Þ10
Table 2.2.1 lists the corresponding relationship between binary, octal, decimal,

and hexadecimal numbers. Table 2.2.1 shows that each hexadecimal digit

Table 2.2.1: Equivalent relation of decimal, binary, hexadecimal, and octal numbers.

Decimal Binary Octal Hexadecimal Decimal Binary Octal Hexadecimal

       

       

       A
       B
       C
       D
       E
       F
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corresponds to a four-bit binary number and each octal digit is corresponding to a
three-bit binary number.

2.3 Conversion between number systems

The conversion between number systems is to transform a number from one number
system to another without changing its value. Essentially, the conversion process is
the conversion of the weights between different number systems. This section intro-
duces the conversion between different number systems.

The objectives of this section are to
– Convert from a decimal number to binary and from binary to decimal
– Covert from a binary number to hexadecimal and from hexadecimal to binary
– Covert from a binary number to octal and from octal to binary

2.3.1 Conversion between decimal and binary

1. Conversion from binary to decimal
As mentioned in Section 2.2, the conversion from a binary number to a decimal
number can be achieved directly by applying eq. (2.2.2).

Example 2.1 Convert the binary number (1011.01)2 to decimal.

Solution

1011.01ð Þ2 = 1 × 23 + 0× 22 + 1 × 21 + 1 × 20 +0× 2− 1 + 1 × 2− 2 = 11.25ð Þ10

2. Conversion from decimal to binary
The process of converting a decimal number to its equivalent binary number can
be divided into whole number conversion and fractional number conversion,
respectively.

(1) Whole number conversion
A systematic method of converting a whole number from decimal to binary is the
repeated division-by-2 process.

For a binary whole number, its equivalent decimal number is deduced by

N½ �10 =bn × 2n +bn− 1 × 2n− 1 + � � � +b1 × 21 +b0 × 20 (2:3:1)

where bn is the digit at the nth position with respect to the binary point, and 2n is the
corresponding weight of bn.
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If both sides of eq. (2.3.1) are divided by the base of 2, the result is

1
2
N½ �10 =bn × 2n− 1 +bn− 1 × 2n− 2 + � � � +b1 × 20 + b0

2
(2:3:2)

The remainder is b0, which is the least significant bit (LSB) in the binary number,
and the quotient is

bn × 2n− 1 +bn− 1 × 2n− 2 + � � � + b1 (2:3:3)

If you divide the quotient by the base of 2, the following result is

bn × 2n− 2 + bn− 1 × 2n− 3 + � � � +b2 + b1
2

(2:3:4)

The remainder is b1 and the quotient is

bn × 2n− 2 +bn− 1 × 2n− 3 + � � � + b2 (2:3:5)

The rest can be done in the same manner. Until the quotient is 0, the last
reminder is the most significant bit (MSB) of the binary number.

Therefore, the process of converting a decimal number to its equivalent binary
can be implemented by the repeated division-by-2 method. First, you begin with
dividing the decimal number by 2 and the first remainder to be produced is the LSB in
the binary number. Then divide each resulting quotient by 2 until the quotient is 0. The
last remainder to be produced is the MSB in the binary number. The procedure is
illustrated by the following example.

Consequently, if we divide eq. (2.3.4) by R, b1 can also be obtained as the remainder
of the division. Similarly, the coefficients b2–bn can be obtained successively by con-
tinuous division by the base R and keeping the corresponding remainders of each
division until the quotient of the division is zero. Thus, the conversion of the integer
part of a decimal number into the integer part of any number system is achieved.

(2) Fractional part
For the fractional part of any number in a binary, octal, or hexadecimal system, the
fractional part of its equivalent decimal number is obtained by

N½ �10 =b− 1 ×R− 1 +b− 2 ×R− 2 + � � � + b− ðm− 1Þ ×R− ðm− 1Þ +b−m ×R−m (2:3:6)

If both sides of the equation are multiplied by the base R (R can be 2, 8, 16, and
any other number), we can get

R × N½ �10 =b− 1 +b− 2 ×R− 1 + � � � +b− ðm− 1Þ ×R− ðm− 2Þ +b−m ×R− ðm− 1Þ (2:3:7)

where b−1 is the integer part of the product. Likewise, if eq. (2.3.7) is continuously
multiplied by the base R, then the coefficients b−2, b−3, . . ., b−m can be obtained
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step-by-step. This multiplication process would not be ceased until the rest of the
fractional part is zero or the required precision is reached.

Example 2.2 Convert a decimal number (342.6875)10 into its equivalent binary, octal, and hexadeci-
mal numbers.

Solution

6
2

0
5

42
3428

8
8

5

6
5

0
1

21
34216

16
16

1

0

0

0

0

1
1

1

1

1

3422
2
2
2
2
2
2
2
2

171
85
42
21
10

5
2
1
0

The integer part is: (342)10= (101010110)2= (526)8= (156)16
The fractional part is: (0.6875)10= (0.1011)2 = (0.54)8= (0.B)16
Thus, (342.6875)10= (101010110.1011)2= (526.54)8= (156.B)16.

2.3.2 Conversion between binary and hexadecimal

1. Conversion from binary system into hexadecimal system
A four-bit binary number can represent 16 different decimal values from 0 to 15. A
one-bit hexadecimal number also has 16 different digits (0–9 and A–F), correspond-
ing to 16 different decimal values too. Thus, a one-bit hexadecimal number can be
represented by a four-bit binary number. The conversion from binary to hexadecimal
typically begins with grouping the bits into sets of four starting at the radix point
(starting at the LSB for integer part, while the MSB for the fractional part), adding
zeros as needed to fill out the groups. Then, assign to each group with the equivalent
hexadecimal digit.

Example 2.3 Convert a binary number (10110100111100.01001)2 into its corresponding hexadecimal
number.

Solution

0010ð 1101 0011 1100 : 0100 1000Þ2
# # # # # #
2 D 3 C : 4 8

Thus, (10110100111100.01001)2= (2D3C.48)16.
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2. Conversion from hexadecimal system into binary system
Every bit of a hexadecimal number can be represented by a four-bit binary number.
Hence, the conversion from a hexadecimal number into its equivalent binary number
is typically realized by converting bit-by-bit the hexadecimal number using the
reverse process shown in Example 2.3.

Example 2.4 Convert a hexadecimal number (4FB.CA)16 into its corresponding binary number.

Solution

4ð F B : C AÞ16
# # # # #

0100 1111 1011 : 1100 1010

Thus, 4FB.CAð Þ16 = 010011111011.11001010ð Þ2.

2.3.3 Conversion between binary and octal

The conversion between a binary and octal system is similar to the conversion between
binary and hexadecimal system.

1. Conversion from binary system into octal system
Similarly, the conversion from binary into octal system typically begins with group-
ing the bits into sets of three starting at the radix point (starting at the LSB for the
integer part while the MSB for the fractional part), adding zeros as needed to fill out
the groups. Then, assign to each group the corresponding equivalent octal digit.

Example 2.5 Convert a binary number (1111010010.01)2 into its corresponding octal number.

Solution

001ð 111 010 010 : 010Þ2
# # # # #
1 7 2 2 : 2

Thus, 1111010010.01ð Þ2 = 1722.2ð Þ8.

2. Conversion from octal system into binary system
Likewise, the conversion: from an octal number to its equivalent binary number is
typically realized by bit-by-bit converting the number using the reverse process
shown in Example 2.5.
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Example 2.6 Convert an octal number (6407.2)8 into its corresponding decimal number.

Solution

6ð 4 0 7 . 2Þ8
# # # # #
110 100 000 111 . 010

Thus, 6407.2ð Þ8 = 110100000111.010ð Þ2.

2.4 Binary arithmetic operations

2.4.1 Basic arithmetic operations

Basic arithmetic operations of binary numbers are performed primarily in the same
manner as the arithmetic operations of decimal numbers [15]. For the addition of two
decimal numbers, a carry of 1 is produced when the sum is 10, while for the addition
of two binary numbers, a carry of 1 is produced when the sum is 2. Likewise, for the
subtraction of two decimal numbers, a borrow of 1 represents 10, while for binary
numbers, a borrow of 1 represents 2.

The four cases of the addition of two binary digits in any position are as follows:

0

þ0

0

0

þ 1

1

1

þ 0

1

1

þ 1

10

where the first three cases are the same as the addition of decimal digits and the last
case produces a carry of 1.

The four cases of the subtraction of two binary digits in any position are as follows:

0

−0

0

0

− 1

1

1

−0

1

10

− 1

01

where the first three cases are the same as the subtraction of decimal digits and the
last case produces a borrow of 1. As negative numbers cannot be represented by
unsigned numbers, the minuend should be greater than the subtrahend.

Likewise, the multiplication and division of binary numbers are the same as the
multiplication and division of decimal numbers except that only “0” and “1” are
involved in the operations.
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Example 2.7 Suppose X = (1100)2 and Y = (0101)2, calculate X + Y, X − Y , X × Y , and X � Y .

Solution

1100
0101

10001
+

1100
0101
0111

−

1100
0101
1100

0000
1100
111100

×
10.011

101 1100
101
001000

101
0110

101
01

X + Y = 1100ð Þ2 + 0101ð Þ2 = 10001ð Þ2
X − Y = 1100ð Þ2 − 0101ð Þ2 = 0111ð Þ2
X × Y = 1100ð Þ2 × 0101ð Þ2 = 111100ð Þ2
X � Y = 1100ð Þ2 � 0101ð Þ2 = 10:011ð Þ2

From this example, we can find that the multiplication of two binary numbers can be realized by
the combination of shifting and addition operations and the division can be realized by the combina-
tion of shifting and subtraction operations.

2.4.2 Representation of signed binary numbers

Numbers discussed above are unsigned numbers. For signed numbers, three forms of
representation, including sign-magnitude representation, one’s complement repre-
sentation, and two’s complement representation, are generally used. In sign-magni-
tude representation scheme, the left-most position is a sign bit (0 denotes positive
and 1 denotes negative), and the rest of the bits indicate the magnitude or absolute
value of the number. This representation scheme is straightforward, but its circuit
implementation is more complex than the other two forms of representation.
Negative numbers are typically represented by one’s complement and two’s comple-
ment forms, and two’s complement representation is more widely utilized in the
arithmetic operations of binary numbers in computers.

1. Two’s complement representation
For an n-bit binary number whose true form is N, its two’s complement form is
defined as

N½ �two’s complement = 2
n −N

For instance, if N = 1001, then [1001]two’s complement = 24−1001 = 10000−1001 =
0111
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2. One’s complement representation
For an n-bit binary numberwhose true form isN, its one’s complement form is defined as

N½ �one’s complement = 2n − 1ð Þ−N

For instance, if N = 1001, then [1001]one’s complement = (24−1)−1001 = 1111−1001 =
0110

From earlier examples, we can find that one’s complement of a number can be
directly obtained by changing each 0 to a 1 and each 1 to a 0 bit by bit. In addition,
from the definitions of one’s complement and two’s complement representations, the
two’s complement of a number can be derived by adding a 1 to its one’s complement.

2.5 Codes

Coding is a process of using a specific group of characters, alphabets, symbols, or
numbers to represent specific information. The digital data are represented, stored,
and transmitted as a group of binary bits. This group of binary bits is also called as the
binary code. The binary codes represent numbers as well as alphanumeric letters. They
are widely used for analyzing and designing digital circuit since only 0 and 1 are being
used, which can be implemented easily. Many specialized codes are used in a digital
system. The codes introduced in this section are BCD code, Gray code, and ASCII code.

The objectives of this section are to
– Express decimal number in BCD
– Convert the representation between decimal number and BCD
– Explain the advantage of Gray code
– Explain the ASCII code

2.5.1 Binary-coded-decimal

BCD is a way to express each of decimal digits with a binary code[16]. The BCD
code presented decimal digits, which are often used in daily life, provides an
excellent interface to binary system. In the BCD, each decimal digit is represented
by a four-bit binary number. Totally they can represent 16 numbers (0000–1111). But
in BCD code, only 10 of these are used. The remaining six code combinations are
invalid in BCD. The commonly used BCD codes include 8421BCD code, 5421BCD code,
2421BCD code, and excess-3 code, as listed in Table 2.5.1. Some codes in Table 2.5.1,
such as 8421, 5421, and 2421 codes, are weighted codes, while some codes, such as
excess-3 code, are nonweighted codes. In a weighted code, each digit position has a
weight and the sum of all digits multiplied by their weight represents its correspond-
ing decimal number. In a nonweighted code, no specific weights are assigned to bit
position [17].
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1. The 8421 BCD code
The 8421 BCD code is the most commonly used BCD code. It only uses the first ten
binary numbers (0000–1001) to represent ten decimal digits (0–9), respectively; the
remaining six numbers (1010–1111) are invalid in the 8421 BCD code. The 8421 BCD
code belongs to the weighted code and its weights from the MSB to the LSB are 23(8),
22(4), 21(2), and 20(1). The designation 8421 refers to the binary weight of the four bits
(23, 22, 21, 20). The 8421 code is the predominant BCD, and when we refer to BCD, we
always mean the 8421 BCD code unless otherwise stated.

2. The 5421 and 2421 BCD codes
The 5421 and 2421 BCD codes are weighted codes too, and their weights from MSB to
LSB are 5, 4, 2, 1 and 2, 4, 2, 1, respectively. For the 5421 and 2421 BCD codes, one
decimal digit may be represented by different binary numbers. For instance, 5 can be
represented by either 1011 or 0101 in the 2421 BCD code; likewise, 5 can be represented
by either 1000 or 0101 in the 5421 BCD code. However, the 5421 and 2421 BCD codes
listed in Table 2.5.1 have been generally accepted, and other forms are no longer used.

In addition, it can be observed that in BCD2421*, the code for decimal 0 is the
complement of the code for decimal 9; this also holds true for the codes for decimal 1
and 8, 2 and 7, 3 and 6, and 4 and 5. This property is called the nine’s complement of a
decimal number, that is, bitwise complementation of a code will produce the nine’s
complement of the decimal number, which makes hardware implementation of
arithmetic operations much simpler in digital systems.

3. The excess-3 Code
The excess-3 code is a nonweighted code used to express decimal numbers. The
Excess-3 code is derived from the 8421 BCD code adding (0011)2 or (3)10 to each

Table 2.5.1: Commonly used BCD codes.

Decimal  BCD  BCD  BCD BCD * Excess- code
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code in 8421 BCD.When the addition of two excess-3 codes produces a carry, the carry
signal can be directly obtained from the MSB. In addition, excess-3 code also has the
property of the nine’s complement of the decimal number, and has been commonly
used in the arithmetic operation circuitry of BCD codes.

There are only ten codes in the BCD system, and so it is very easy to convert
between decimal number and BCD. To convert any decimal number in BCD, simply
replace each decimal digit with the corresponding four-bit binary code. To convert a
BCD number to a decimal, you can break the code into groups of four bits, starting
from the LSB, and then write the corresponding decimal digit represented by each
four-bit group.

Example 2.8 Covert the following decimal numbers to the 8421 BCD codes and the excess-3 codes,
respectively.

(a) 15 (b) 276

Solution

8421 BCD

Excess-3

(a)Decimal (b)1

00010101

01001000

5 2

001001110110

010110101001

7 6

Example 2.9 Covert the following the 8421 BCD codes to decimal numbers.

(a) 10010100 (b) 000110000110

Solution

8421 BCD (a)

9

10010100

Decimal

(b)

1

000110000110

4 8 6

2.5.2 Gray code

The Gray code is the nonweighted code and it is not arithmetic code. This means that
there are no specific weights assigned to the bit position. It has a very special feature
that only one bit will change each time the decimal number is incremented as shown
in Table 2.5.2. As only one bit changes at a time, the Gray code is called as a unit
distance code and is also known as a cyclic code. The Gray code cannot be used for
arithmetic operation.
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The advantage of using a Gray code is that transient errors can be avoided.
During the transition process from one code number to a new one, the switching
speed of each bit may be different from the others. For instance, the transition
process from binary code 0111 to 1000 can experience the following transient states:
0111→0011→1010→1000. In fact, 0011 and 1010 are transient states that are not
suppose to appear and are called as the transient errors. These transient errors should
be avoided in the digital systems. Table 2.5.2 lists four-bit Gray code, four-bit binary
code, and its corresponding decimal numbers.

2.5.3 Alphanumeric codes

A binary digit or bit can represent only two symbols as it has only two states “0” or
“1.” However, this is not enough to convey information because you need not only
numbers but also letters and other symbols for communication. These symbols are
required to represent 26 alphabets with capital and small letters, numbers from0 to 9,
punctuation marks, and other symbols. The alphanumeric codes are the codes that
represent numbers and alphabetic characters. Generally such codes also represent
other characters such as symbols and various instructions necessary for conveying
information. The commonly used alphanumeric codes include ASCII, International
Standard Organization code, Chinese national standard code, and so on.

The ASCII code is the most common alphanumeric code, which is universally
adopted in computers and electronic devices. Most computer keyboards are standar-
dized with ASCII. When a letter, a number, a symbol, or a command is inputted via a
keyboard, its corresponding ASCII code will be recognized by the computer. The
ASCII code has 128 characters and symbols represented by a seven-bit binary code.
The ASCII codes for some typical symbols are listed in Table 2.5.3. The first column of
Table 2.5.3 lists controlling symbols for transferring information between the com-
puter and its peripheral equipment, and cannot be printed out or displayed. Other
symbols including digits, letters, and common symbols can be printed out and
displayed.

Table 2.5.2: Four-bit Gray code.

Decimal Binary Gray code Decimal Binary Gray code
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2.6 Summary

1. A digital circuit and digital system belong to a two-valued system. A binary
number system is the most commonly used number system, with the base of 2
and the weight of 2i.

2. The hexadecimal number system is used in digital systems and computers as an
efficient way of representing binary quantities. It has 16 numbers and characters,
0–9 followed by A–F, with the base of 16 and the weight of 16i.

3. The octal number system is also an efficient way of representing binary quan-
tities. It has eight numbers, 0–7, with the base of 8 and the weight of 8i.

4. A decimal whole number can be converted to binary by using the repeated
division-by-2 method and a decimal fraction can be converted to binary by
using the repeated multiplication-by-2 method.

5. A decimal whole number can be converted to octal and hexadecimal by using the
repeated division-by-base method and a decimal fraction can be converted to
octal and hexadecimal by using the repeated multiplication-by-base method.

6. Hexadecimal-to-binary conversion is completed by simply replacing each hex-
adecimal digit with the corresponding four-bit binary number. The process is
reversed for binary-to-hexadecimal conversion.

7. For the conversion between octal and binary, each octal digit corresponds to
three bits.

8. Arithmetic operations of binary numbers include addition, subtraction, multi-
plication, and division.

9. The basic rules for binary addition are as follows:

0

þ 0

0

0

þ 1

1

1

þ 0

1

1

þ 1

10

Table 2.5.3: ASCII code for some symbols.

Name ASCII Symbol ASCII Symbol ASCII Symbol ASCII

NUL  !    A 

SOH  “    B 

STX  #    C 

ETX  $    D 

EOT  %    E 

ENQ  &    F 

ACK  ，    G 

BEL  (    H 

BS  )    I 

HT  *    J 
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10. The basic rules for binary subtraction are as follows:

0

− 0

0

0

− 1

1

1

−0

1

10

− 1

01

11. The multiplication of two binary numbers can be realized by the combination of
shifting and addition operations and the division can be realized by the combi-
nation of shifting and subtraction operations.

12. For signed binary numbers, three forms of representation, including sign-
magnitude representation, one’s complement representation, and two’s com-
plement representation, are generally used. The left-most position is a sign bit
(0 denotes positive and 1 denotes negative).

13. The one’s complement of a binary number can be directly obtained by changing
each 0 to a 1 and each 1 to a 0 bit by bit.

14. The two’s complement of a binary number can be derived by adding a 1 to its
one’s complement.

15. In digital system, binary subtraction is usually accomplished with addition by
using one’s and two’s complement method.

16. The BCD code for a decimal number is formed by converting each digit of the
decimal number to its equivalent four-bit binary number. The most commonly
used BCD code is the 8421 BCD code that is a weighted code.

17. The Gray code, belonging to a nonweighted code, adopts a sequence of bit
patterns in which only one bit changes between successive patterns in the
sequence, which can efficiently avoid transient errors.

18. An alphanumeric code is the one that uses groups of bits to represent all of the
various characters and functions that are part of a typical computer’s key-
board. The ASCII code is the most widely used alphanumeric code.

Key terms

Alphanumeric code: Codes that represent numbers, letters, and alphabetic characters.
ASCII: American Standard Code for Information Interchange.
BCD: Binary-coded decimal; a digital code in which each decimal digit, 0–9, is
represented by a group of four-bit binary number.
Gray code: A nonweighted code in which only one bit will change each time the
decimal number is incremented; also called as a unit distance code or a cyclic
code.
Hexadecimal: A number system with a base of 16.
Octal: A number system with a base of 8.
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Self-test

2.1 The equivalent decimal number of binary number 10111011 is _____________.
(a) 107 (b) 187 (c) 287 (d) 256

2.2 The equivalent binary number of decimal number 181 is ____________.
(a) 11000101 (b) 10110110 (c) 10110101 (d) 11000110

2.3 The sum of 110101+011001 is ____________.
(a) 1001110 (b) 1001101 (c) 1010010 (d) 1001100

2.4 The difference of 110101−011001 is ____________.
(a) 011000 (b) 011001 (c) 010111 (d) 011100

2.5 The one’s complement of a signed number 10110010 is ____________.
(a) 10110011 (b) 11001101 (c) 01001101 (d) 01001110.

2.6 The two’s complement of a signed number 11010111 is ____________.
(a) 00101000 (b) 10101001 (c) 11011000 (d) 00101100

2.7 The 8421 BCD code of decimal number 437 is ____________.
(a) 010000110111 (b) 110001110011 (c) 111011010 (d) 010000111111

2.8 The two’s complement of a decimal number +118 is ___________(assuming there
are eight bits in the corresponding binary number)
(a) 00001010 (b) 00001001 (c) 01110110 (d) 10001010

2.9 The two’s complement of a decimal number −34 is ___________(assuming there
are eight bits in the corresponding binary number)
(a) 10100010 (b) 11011101 (c) 00100010 (d) 11011110

2.10 Which one in the following numbers is not an excess-3 code?
(a) 0000 (b) 1000 (c) 0111 (d) 1010

2.11 The equivalent binary number of (F7A9)16 is ___________.
(a) 1111111101011001 (b) 1110111110101001
(c) 1111011110101001 (d) 1110011010101001

2.12 Which one in the following codes is the 5421 BCD code?
(a) 0000, 0001, 0010, 0011, 0100, 1000, 1001, 1010, 1011, 1100
(b) 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001
(c) 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1110, 1111
(d) 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100
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Problems

2.1 What are the weights of digit 3 in the following decimal numbers?
(a) 325 (b) 4513 (c) 32658 (d) 236

2.2 Expand the following binary numbers in the form of sum of weights.
(a) 10010 (b) 110 (c) 1011001 (d) 11010100

2.3 Convert the following binary numbers into decimal numbers.
(a) 100 (b) 1011 (c) 0.1001 (d) 101101.011

2.4 Convert the following decimal numbers into binary numbers.
(a) 28 (b) 422 (c) 0.32 (d) 0.246

2.5 Convert the decimal numbers shown in Problem 2.1 into octal and hexadecimal
numbers.

2.6 Convert each group of the following decimal numbers to binary and finish the
arithmetic operation by using binary numbers.
(a) 21+18 (b) 54−23 (c) 32×11 (d) 18÷3

2.7 Obtain the sign-magnitude, the one’s complement, and the two’s complement
representations of the following decimal numbers.
(a) +43 (b) −126 (c) +10 (d) −38

2.8 What are two ways of represent zero in one’s complement form?

2.9 How is zero represented in two’s complement form?

2.10 Implement the following operations using two’s complement form.
(a) 00100011−00010010 (b) 00001100−00100000
(c) 01111100−01000011 (d) 00010000−00100000

2.11 Convert the following 5421 BCD codes into their equivalent decimal numbers,
binary numbers, 8421 BCD codes, and excess-3 codes.
(a) 1001 0011 (b) 1100 1010 0001
(c) 0011 1000 1001 (d) 1011 0010.0100

2.12 Convert the following decimal numbers into their equivalent 8421 BCD codes
and excess-3 codes.
(a) 76 (b) 175 (c) 2446 (d) 372
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3 Boolean algebra and logic simplification

3.1 Introduction

Digital system belongs to a two-valued algebraic system which was invented by an
Irish logician and mathematician, George Boole, in 1854 [18]. Now a two-valued
algebraic system is usually called Boolean algebra or logical algebra. Boolean
algebra is to formulate logic statements with symbols so that problems can be written
and solved in a manner similar to ordinary algebra. Shannon was the first person to
apply Boole’s work to analyze and design logic circuit in 1938. Today, Boolean
algebra has already become a convenient and systematic way of analyzing and
designing digital circuits. Boolean algebra involves a large amount of content. In
this chapter, we only introduce the limited content in Boolean algebra required for
digital circuits. This chapter covers the laws, the rules, and the theorems of Boolean
algebra for the requirement of digital circuits. You will learn how to simplify logic
expressions using the methods of Boolean algebra and Karnaugh map.

The objectives of this chapter are to
– Apply basic laws, rules, and theorems of Boolean algebra
– Define AND, OR, NOT operation
– Describe logic function of three basic logic gates including inverter, AND gate,

OR gate
– Explain the combinational operation NAND, NOR, XOR, or NXOR
– Explain standard sum-of-product expression and standard product-of-sum

expression
– Simplify Boolean expressions using Boolean algebra
– Apply Karnaugh map to simplify logic expression

3.2 Boolean operations and logic gates

Boolean algebra is a mathematics tool for digital circuit and system. This section
mainly introduces basic knowledge of Boolean algebra, several commonly used
logical operations and logic gates. Logic symbols used to represent the logic gates
are in accordance with the ANSI/IEEE Standard 91-1984 in the whole book [19].

The objectives of this section are to
– Define variable, complement, and literal
– Describe the operation of inverter, AND gate, and OR gate
– Describe the operation of NAND gate and NOR gate
– Describe the operation of exclusive-OR and exclusive-NOR gate
– Recognize the distinctive shape logic gate symbols and the rectangular outline

logic symbols of the ANSI/IEEE Standard 91-1984
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– Apply commutative laws, associative laws and distributive laws
– Apply rules of Boolean algebra
– Explain DeMorgan’s theorems

3.2.1 Boolean variable and Boolean constant

Boolean algebra uses variables and operators to describe a logic circuit. Variable,
complement, and literal are terms used in Boolean algebra. A variable in Boolean
algebra is a symbol used to represent a logical quantity. Similar to ordinary algebra, it
can usually be expressed by an italic uppercase letter, for example, A, B or C. Any
single variable can have one of the two possible values, 0 or 1. These two values
represent two possible or opposite conditions, for example, true or false of one event,
off or on of a switch, high or low of voltage level, etc. Boolean algebra has only two
Boolean constants, 0 and 1. A complement is the inverse of a variable and is indicated
by a bar over the variable (overbar). For example, the complement of the variable A is
�A. If A = 0, then �A = 1; if A = 1, then �A = 0. The complement of the variable A is read as
“not A” or “A bar”. Sometimes other symbols rather than an overbar are used to
denote the complement of a variable; for example, B′ indicates the complement of B.
In this book, only the overbar is used. A literal refers to a variable or the complement
of a variable.

3.2.2 Basic logic operations

Basically, logic is the realm of human reasoning that tells you a certain proposition is
true if certain conditions are true [20]. Propositions can be classified as true or false.
Several propositions, when combined, form propositional or logic functions. For
example, the propositional statement “the light is on” will be true if both “the bulb
is not burned out” and “the switch is on” are true. Therefore, this logical statement
can bemade: the light is on only if the bulb is not burned out and the switch is on. In this
example, the first statement is true only if the last two statements are true. The first
statement (“the light is on”) is the basic proposition, and the other two statements are
the conditions on which the proposition depends. The conditions correspond to the
input variables and the proposition is the output variable. Since such functions are
true/false or yes/no statements, digital circuits with their two-state characteristics
are applicable.

The term logic is applied to digital circuits used to implement logic functions.
Several kinds of digital logic circuits are the basic elements which form the building
blocks for complex digital systems. We will introduce these elements and discuss
their functions in the following sections.
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1. AND
Figure 3.2.1 (a) shows a switch circuit. Variables A and B represent the states of the
switches and variable F describes the states of the light. The function of this circuit is
that the light is on only if switches A and B are both on. The statement (“the light is on”)
is a basic proposition, and the states of the two switches are the conditions on which
the proposition depends. “The light is on” will be true only if “both of the two
switches are on” is true. That is to say, the proposition is true only if all conditions
are true. This kind of logic function is called AND operation. If “the switch is on” is 1,
then “the switch is off” is 0. If “the light is on” is 1, then “the light is off” is 0. The AND
operation produces a HIGH (1) output only when all inputs are HIGH (1) and a LOW
(0) when any or all inputs are LOW (0). A circuit that performs an AND operation is
called an AND gate.

The logical operations of an AND gate can be expressed with a truth table that
lists all input combinations with the corresponding output, as illustrated in
Figure 3.2.1 (b) for a 2-input AND gate. The inputs in the truth table can be expanded.
For an AND gate, regardless of the number of inputs, the output is HIGH only
when all inputs are HIGH.

Standard logic symbols for a 2-input AND gate are shown in Figure 3.2.2.
Figure 3.2.2 (a) shows the distinctive shape symbol and Figure 3.2.2 (b) shows the
rectangular outline symbol [19]. The inputs are on the left and the output are on the
right in the standard logic symbols. In this textbook, distinctive shape symbols are
generally used. However, the rectangular outline symbols are often found in many
industry publications, thus you should be familiar with them as well.

F

A B

+

–
Us

FA B
0 0 0
0 1 0
1 0 0
1 1 1

Inputs Output

(a) (b)

Figure 3.2.1: A switch circuit: (a) circuit diagram; (b) truth table.

A
B

F
A
B

&
F

(a) (b)

Figure 3.2.2: Standard logic symbol for 2-input AND gate: (a) distinctive shape; (b) rectangular
outline with the AND (&) qualifying symbol.
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Theoperation of a 2-inputANDgate canbedescribed by a logic expression too. If the
input variable are A and B, and the output variable is F, then its Boolean expression is

F =AB

To extend the AND expression to more than two input variables, simply add a new
letter representing each input variable. For example, the logic function of a 3-input
AND gate can be expressed by F = ABC where C represents the third input variable.

In a majority of applications, the inputs to a gate are not stationary voltage levels
but voltage waveforms that change frequently between HIGH and LOW logic level.
Timing diagram is basically a graph that accurately displays the relationship of two or
more waveforms with respect to each other on a time basis. Now let’s look at the
operation of AND gates with pulse waveform inputs in Figure 3.2.3, keeping in mind
that an AND gate obeys the truth table operation regardless of whether its inputs are
constant levels or levels that change back and forth. The output level can be deter-
mined by checking the inputs with respect to each other at any given time. In
Figure 3.2.3, two inputs are both HIGH (1) during the time interval t1, and thus the
output is HIGH (1). During the time interval t2, input A is LOW (0) and input B is HIGH
(1), so the output is LOW (0). During the time interval t3, input A is HIGH (1) and input
B is LOW (0), and thus the output is LOW (0). Finally, during the time interval t4, the
inputs are both LOW (0), so the output is LOW (0).

2. OR
OR operation produces a HIGH output when any input is HIGH and a LOW output
only when all inputs are LOW. A circuit that performs the OR operation is called an
OR gate.

The logical symbol and the truth table for 2-input OR gate are illustrated in
Figure 3.2.4. The truth table can be expanded to any number of inputs. For an OR
gate, regardless of the number of inputs, the output is LOW only when all inputs
are LOW.

The operation of 2-input OR gate can be described by a logic expression. If the
two input variables are A and B, and the output variable is F, then the Boolean
expression of the 2-input OR gate is

A
B

F
A

B

F

t1 t2 t3 t4

1 0 01

1 0 01

1 0 0 0

Figure 3.2.3: Timing diagram of 2-input AND gate.
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F =A+B

To extend the OR expression to more than two input variables, simply add a new
letter for each input variable.

A 2-input OR gate can be used to construct a simple intrusion detection and alarm
system, as shown in Figure 3.2.5 [3]. This system can be used for a room with a
window and a door. The sensors A and B are magnetic switches that produce a HIGH
output when opened and a LOW output when closed. As long as the window and the
door are closed, all switches are closed and all the inputs of the OR gate are LOW.
Thus the output is in a LOW state. When a window or a door is opened, a HIGH is
produced on input and the output of the OR gate turns to a HIGH state. An alarm
circuit is activated to produce the warning of the intrusion.

3. NOT
NOT operation changes one logic level to the opposite logic level. That is to say, the
output is a LOW (0) when the input is a HIGH (1) and the output is a HIGH (1)
when the input is a LOW (0). The NOT operation is implemented by a logic circuit
known as an inverter. The logical symbol and the truth table of an inverter are
illustrated in Figure 3.2.6.

The operation of an inverter can be described by a logic expression. If the input
variable is called A and the output variable is called F, then

F = �A

This expression shows that the output is the complement of the input. if A = 0,
then X = 1; if A = 1, then X = 0.

A
B F

A
B F

≥1

FA B
0 0

1
0
1

0 
0 1
1 1
1 1

Inputs Output

(a) (b) (c)

Figure 3.2.4: Standard logic symbols and truth table for 2-input OR gate: (a) distinctive shape; (b)
rectangular outline with the OR (≥1) qualifying symbol; (c) truth table.

Alarm
circuit

Sensors
HIGH = Opened
LOW = Closed

A

B

Figure 3.2.5: Application of a 2-input OR gate as an intrusion detection and alarm system.
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Figure 3.2.7 shows an application of inverters used to obtain the 1’s complement
of an 8-bit binary number. The bits of the binary number are applied to inputs of the
inverter and the 1’s complement of the number appears on the outputs.

3.2.3 Combinational logic operations

With AND, OR, and NOT operations, some combinational logic operations can be
implemented. Common combinational logic operations include NAND, NOR, XOR,
and NXOR.

1. NAND
The term NAND is the contraction of NOT-AND and implies an AND function with a
complemented (inverted) output. The standard logic symbol and truth table of a 2-
input NAND gate are shown in Figure 3.2.8.

A F A
1

F

FA

0 1
1 0

Input Output

(a) (b) (c)

Figure 3.2.6: Standard logic symbol and the truth table of 2-input OR gate: (a) distinctive shape; (b)
rectangular outline with the NOT (1) qualifying symbol; (c) truth table.

1

0

0

1

1

0

1

0

0

1

0

1

1

0

1

0

Binary number

1’s complement

Figure 3.2.7: Inverters used to obtain the 1’s complement of an 8-bit binary number.

A
B F

A

B

&
F

A B
1
1
1
0

0
0
1
1

0
1
0
1

Inputs Output
F = AB

(a) (b) (c)

Figure 3.2.8: Standard logic symbol and truth table of a 2-input NAND gate: (a) distinctive shape; (b)
rectangular outline with the NAND qualifying symbol (&); (c) truth table.
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The NAND gate produces a LOW output only when all the inputs are HIGH.
When any input is LOW, the output will be HIGH. The Boolean expression of a
NAND gate is

F =A � B
Usually AND operator “⋅” can be omitted.

2. NOR
The term NOR is the contraction of NOT-OR and implies an OR function with a
complemented (inverted) output. The standard logic symbol and truth table of a 2-
input NAND gate are shown in Figure 3.2.9.

The NOR gate produces a LOW output when any input is HIGH; and it produces a
HIGH output only when all inputs are LOW. The Boolean expression of a NOR gate
operation is

F =AþB

The NOR gate, like the NAND gate, is a commonly used logic gate because it can
be used as a universal gate; that is, NOR gates can be used to perform the AND, OR
and inverter opetations.

3. Exclusive-OR (XOR) and Exclusive-NOR (XNOR)
The Boolean expression of an XOR gate is

F =A¯B= �AB+A�B

where “⊕” is the operator of an exclusive-OR operation. It can be seen from the
expression that an XOR operation is formed by a combination of other operations.
However, because of its fundamental importance in many applications, XOR gates
are often treated as logic gates with their own unique symbols, as shown in
Figure 3.2.10.

A

B
F

(b)

A B
1
0
0
0

0
0
1
1

0
1
0
1

Inputs Output
F = A+B

(c)

A
B

≥1

(a)

Figure 3.2.9: Standard logic symbol and truth table of a 2-input NOR gate: (a) distinctive shape; (b)
rectangular outline with the NOR qualifying symbol (≥1); (c) truth table.
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The output of an exclusive-OR gate is HIGH only when the two inputs are at
opposite logic levels.

The Boolean expression of an XNOR gate is

F ¼ A� B ¼ �A�Bþ AB ¼ A¯B

where “� ” is the operator of an XNOR operation. It can be seen from the expression
that an XNOR operation is the complement of an exclusive-OR. However, due to its
fundamental importance in many applications, an exclusive-NOR gate has its own
unique symbol, as shown in Figure 3.2.11.

The output of an XNOR gate is HIGH only when the two inputs are at the same
logic level.

3.3 Laws, rules, and theorems of Boolean algebra

In Boolean algebra, there are certain well-developed laws, rules, and theorems that
must be followed in order to properly apply Boolean algebra. This section only
introduces the most important Boolean algebra laws, rules, and theorems for analyz-
ing and designing digital circuits.

A B
0
1
1
0

0
0
1
1

0
1
0
1

Inputs

(c)

FA
B

A

B

= 1
F

(a) (b)

Output
F = A    B

Figure 3.2.10: Standard logic symbol and truth table of an exclusive-OR gate: (a) distinctive shape;
(b) rectangular outline with the XOR qualifying symbol; (c) truth table.

A B
1
0
0
1

0
0
1
1

0
1
0
1

Inputs

(c)

FA
B

A

B

= 1
F

(a) (b)

Output
F = A    B

Figure 3.2.11: Standard logic symbol and truth table of an exclusive-NOR gate: (a) distinctive shape;
(b) rectangular outline with the XNOR qualifying symbol (=1); (c) truth table.
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The objectives of this section are to
– Apply commutative laws, associative laws, and distributive laws
– Apply basic rules of Boolean algebra
– Apply DeMorgan’s theorems

3.3.1 Boolean addition and Boolean multiplication

1. Boolean addition
Boolean addition is equivalent to the OR operation and the basic rules are illustrated
with their relation to the OR gate as shown in Figure 3.3.1.

In Boolean algebra, a sum term is a sum of literals. In logic circuit, a sum term
could be produced by an OR operation without AND operation involved. For exam-
ple, A+C, A+ �B and �A+ �B+ �C are sum terms.

2. Boolean multiplication
Boolean multiplication is equivalent to AND operation and the basic rules are illu-
strated with their relation to AND gate as shown in Figure 3.3.2.

In Boolean algebra, a product term is a product of literals. In logic circuit, a
product term could be produced by an AND operationwithout OR operation involved.
For example, AC, A�B, �A�B�C, and �A�BCD are product terms.

3.3.2 Laws of Boolean algebra

Similar to ordinary algebra, Boolean algebra has three basic laws including commu-
tative laws, associative laws, and distributive laws. Each of the laws is illustrated
with two or three variables, but the number of variables can be extended.

0+0=0 0+1=1 1+0=1 1+1=1

Figure 3.3.1: Illustration of the relation between
Boolean addition and OR gate.

0 . 0 = 0 0 . 1 = 0 1 . 0 = 0 1 . 1 = 1

Figure 3.3.2: Illustration of the relation between Boolean multiplication and AND gate.
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1. Commutative laws
The commutative laws for the multiplication and the addition of two variables are
expressed as below:

AB=BA

A+B=B+A

2. Associative laws
The associative laws for the multiplication and the addition of three variables are
written as follows:

ABð ÞC =A BCð Þ
A+Bð Þ+C =A+ B+Cð Þ

3. Distributive laws
The distributive laws for three variables are written as follows:

A B+Cð Þ=AB+AC

A+BC = A+Bð Þ A+Cð Þ

3.3.3 Rules of Boolean algebra

Table 3.3.1 lists basic rules which are useful in the manipulation and simplification of
Boolean expressions.

Rules 1 through 9 can be verified with truth table. If the values on both sides of
the equation are equal for all possible variable combinations, then the rule is true and
otherwise the rule is false.

Table 3.3.1: Basic rules of Boolean algebra.

. A⋅ =  9. ��A=A
. A⋅ = A . A + AB = A
. A+ = A . A(A+B) = A
. A+ =  12. Aþ �AB=Aþ B
. A⋅A = A 13. Að�Aþ BÞ=AB
6. A � �A=0 14. AB+ �AC +BC =AB+ �AC
. A+A = A 15. ðA+BÞð�A+CÞðB+CÞ= ðA+BÞð�A+CÞ
8. Aþ �A= 1
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For example, rule 1: A⋅0 = 0. This rule can be proved as follows:

If A = 0, A⋅0 = 0;
If A = 1, A⋅0 = 0.
So A⋅0 = 0.

Rules 10 through 15 can be proved with the truth table or by applying the simple
rules and the laws previously discussed.

For example, rule 12: A+ �AB=A+B.
This rule can be proved as follows:

A+ �AB= A+ABð Þ+ �AB Rule 10: A = A + AB
=A+ ðA+ �AÞB Associate laws and distributive laws
=A+ 1 � B Rule 8: A+ �A = 1
=A+B Rule 2: drop the 1

The proof with the truth table is shown in Table 3.3.2. It can be seen from
Table 3.3.2 that the values on both sides of the equation are equal for all possible
combinations of variables A and B. So the equation of A+ �AB=A+B is true.

Let’s check rule 14: AB+ �AC +BC =AB+ �AC.
This rule can be proved as follows:

AB+ �AC +BC=AB+ �AC + ðA+ �AÞBC Rule 8: times A+ �A = 1
=AB+ �AC +ABC + �ABC Distributive law
= ðAB+ABCÞ+ ð�AC + �ABCÞ Associate law
=ABð1 +CÞ+ �ACð1 +BÞ Factoring and rule 4: A+1 = 1
=AB+ �AC Rule 2: A⋅1 = A

3.3.4 DeMorgan’s theorems

DeMorgan’s first theorem is stated as follows [3]:

The complement of a product of variables is equal to the sum of the
complements of the individual variables.

Stated in another way:

The complement of two or more ANDed variables is equivalent to the OR of
the complements of the individual variables.

Table 3.3.2: Truth table.

A B �A B A+ �A B A+B
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For the case of two variables, the formula of this theorem can be expressed as

AB= �A+ �B (3:3:1)

The DeMorgan’s second theorem is stated as follows:

The complement of a sum of variables is equal to the product of the
complements of the variables.

Stated in another way:

The complement of two or more ORed variables is equivalent to the AND of
the complements of the individual variables.

For the case of two variables, the formula of this theorem can be expressed as

A+B= �A�B (3:3:2)

The proofs with the truth table are shown in Table 3.3.3. and Table 3.3.4,
respectively.

Each variable in the DeMorgan’s theorems as stated in eqs. (3.3.1) and (3.3.2) can
also be represented by a combination of other variables. For example, B can be equal
to the term AC+D. Thus, if you apply DeMorgan’s first theorem in eq. (3.3.1), the
following result can be obtained:

AðAC +DÞ= �A+AC +D (3:3:3)

Table 3.3.3: Truth table.

Inputs Outputs

A B AB �A+ �B

   

   

   

   

Table 3.3.4: Truth table.

Inputs Outputs

A B A+B �A � �B
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Notice that the second term ACþ D can be decomposed by applying DeMorgan’s
second theorem as follows:

AC +D=AC � �D (3:3:4)

For AC, you can apply the DeMorgan’s first theorem again, so the final result is

AðAC +DÞ= �A+ ð�A+ �CÞ�D= �A+ �A�D+ �C�D (3:3:5)

Although this result can be simplified further by the use of Boolean rules and
laws, the DeMorgan’s theorems can not be applied further.

3.4 Standard forms of Boolean expression

Boolean expression provides an efficient way to express the operation of a logic
circuit formed by a combination of logic gates. Boolean expression has various
expression forms. Regardless of their forms, all Boolean expressions can be con-
verted into two standard forms. This section introduces the representation of Boolean
expression first. Then standard forms of Boolean expression are introduced.

The objectives of this section are to
– Construct a truth table
– Explain a sum-of-products expression and a product-of-sums expression
– Define the standard sum-of-products term and the standard product-of-sums

term
– Define the standard sum-of-products expression and the standard product-of-

sums expression
– Convert any sum-of-products expression into a standard form
– Convert any product-of-sums expression into a standard form

3.4.1 Representation of Boolean expression

Boolean expression can be constructed by a finite number of two-valued variables
connected by the basic operations, which can be expressed as follows:

F = f A;B;Cð Þ
where A, B, C are input variables and F is an output variable, and f is a function
relation which consists of a group of basic logic operators. Input variable is also
called logic variable and output variable is called logic function. If n-input variables
are involved, we say that the Boolean expression is a Boolean function of n variables.
Generally, a logic circuit with n-input can be described by a Boolean function of n
variables.
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Boolean expression has various forms [21]. The commonly used forms are the
sum-of-products and the product-of-sums. For example,

F =AB+ �AC (3:4:1)

Two product terms AB and �AC are summed together by Boolean addition and the
resulting expression is a sum-of-products (SOP), which is also called as AND-OR
form.

The Boolean expression in eq. (3.4.1) can be also converted into a product-of-
sums (POS) as follows:

F = ðA+CÞð�A+BÞ (3:4:2)

Two sum terms (A+C) and ð�Aþ BÞ are multiplied together and the resulting
expression is a product-of-sums (POS), which is also called as OR-AND form. Other
forms, such as NAND-NAND, NOR-NOR and AND-OR-NOT forms, are equivalent to
the Boolean expression in eq. (3.4.1) as follows:

F =AB � �AC NAND-NAND

F =A+C + �A+B NOR-NOR

F = �A � �C +A � �B AND-OR-NOT

You can prove the above five Boolean expressions representing the same logic
function. That is to say, they have the same truth table. Different forms of Boolean
expressions can be converted into each other. For example, you can convert SOP into
NAND-NAND form by using the laws, the rules, and the theorems of Boolean algebra
as bellow.

F =AB+ �AC

=AB+ �AC Rule 9: A= �A

=AB � �AC DeMorgan’s theorems: A+B= �A�B

3.4.2 Minterms and maxterms

Minterms, called standard product terms, are the product terms which contain all of n
variables in the domain [22]. Each variable only appears in either true or comple-
mentary form.

For example, if the domain is made up of two variables A and B, then the number
of minterms is 22 = 4. The corresponding minterms are �A�B, �AB, A�B and AB. For the
domain with n-variables, the number of minterms is 2n.

A minterm is equal to 1 for only one combination of variable values. For
example, theminterm �A�B is equal to 1 onlywhenA = 0 and B = 0, and is 0 for the other
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combinations of variable values. In this case, theminterm �A�B has a binary value of 00
(decimal value of 0). This minterm can be represented bym0. Generally, the minterm
can be symbolized bymi. The subscript i is the decimal valuewhich is equivalent to the
binary value of the minterm. For example, the minterm �ABC can be represented bym3.

Maxterms, called standard sum terms, are the sum terms which contain all of n
variables in the domain. Each variable only appears in either true or complement form.

For example, if the domain is made up of two variables A and B, then the number
of maxterms is 22 = 4. The corresponding maxterms are �A+ �B, �A+B, A+ �B, and A+B.
For the domain with n variables, the number of maxterms is 2n.

A maxterm is equal to 0 for only one combination of variable values.
For example, the maxterm �A+ �B+C +D is equal to 0 only when A = 1, B = 1, C = 0,
and D = 0, and is 1 for all other combinations of the variable values. In this case, the
maxterm �A+ �B+C +D has a binary value of 1100 (decimal value of 12). This maxterm
can be represented by M12. Generally, the maxterm can be symbolized by Mi. The
subscript i is the decimal value which is equivalent to the binary value of the
maxterm. For example, the maxterm �A+B+C in the domain of 3 variables can be
represented by M4.

Table 3.4.1 lists representation of all minterms andmaxterms of three variablesA,
B, and C.

The important characteristics of minterms and maxterms are described as
follows:

(1) For a given combination of n-variable values, only one of 2nminterms is equal
to 1 while only one of 2n maxterms is equal to 0.
(2) The sum of all minterms is equal to 1; the product of all maxterms is equal to 0.
(3) The product of any twominterms is equal to 0; the sum of any twomaxterms is
equal to 1.
(4) A minterm is equal to the complement of its corresponding maxterm and a
maxterm is equal to the complement of its corresponding minterm. For example,

Table 3.4.1: Representation of minterms and maxterms.

Decimal A B C Minterms Maxterms

    m0 ¼ �A�B�C M0 ¼ Aþ Bþ C
    m1 ¼ �A�BC M1 ¼ Aþ Bþ �C
    m2 ¼ �AB�C M2 ¼ Aþ �Bþ C
    m3 ¼ �ABC M3 ¼ Aþ �Bþ �C
    m4 ¼ A�B�C M4 ¼ �Aþ Bþ C
    m5 ¼ A�BC M5 ¼ �Aþ Bþ �C
    m6 ¼ AB�C M6 ¼ �Aþ �Bþ C
    m7 =ABC M7 ¼ �A+ �B+ �C
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for three variables A, B, and C, the relationships between minterms and max-
terms are described as below:

m0 = �A�B�C =A+B+C =M0

m1 = �A�BC=A+B+ �C =M1

� � �
m7 =ABC= �A+ �B+ �C =M7

M0 =A+B+C = �A�B�C =m0

M1 =A+B+ �C = �A�BC =m1

� � �
M7 = �A+ �B+ �C =ABC=m7

3.4.3 Standard SOP form

A standard SOP expression, also called minterm expression, is an SOP expression in
which each product term is a standard product term or minterm. Standard SOP expres-
sions are important in constructing truth tables and Karnaugh map simplification.

Any nonstandard SOP expression can be converted to the standard form using
Boolean algebra. By using rule 8 (Aþ �A ¼ 1) of Boolean algebra, each nonstandard
product term in SOP expression can be converted into the standard product term. The
detailed steps are described as follows:

Step 1 Multiply each nonstandard product term by a term made up of the sum of a
missing variable and its complement (Aþ �A ¼ 1). As you know, you can multiply
anything by 1 without changing its value. This results in two product terms.

Step 2 Repeat step 1 until all resulting product terms are converted into the standard
form. This makes the number of product terms doubled for each missing variable.

Example 3.1 Convert the following expression into the standard SOP form.

F =A+ �BC

Solution

The domain of this SOP expression is made up of A, B, and C.
In the first term, A, the other two variables B and C are absent. So the first term ismultiplied by B+

�B and C+ �C as below:

A=AðB+ �BÞðC + �CÞ=ABC +AB�C +A�BC +A�B�C

In the second term,BC, the variableA is absent. So the second term ismultiplied byA+ �A as below:

�BC = �BCðA+ �AÞ+A�BC + �A�BC

The standard SOP form of the original expression is as follows:

F =A+BC =ABC +ABC +ABC +A�B�C + �A�BC

=m1 +m4 +m5 +m6 +m7 =
P

m 1;4; 5;6; 7ð Þ
where two same standard product terms A�BC can be merged by using rule 7: A+A = A.
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3.4.4 Standard POS form

A standard POS expression, referred to as a maxterm expression, is a POS expression
in which each sum term is a standard sum term or maxterm.

Any nonstandard POS expression can be converted to the standard form using
Boolean algebra. By using rule 6 (A�A=0) and the distributive law, each nonstandard
sum term in the POS expression can be converted into the standard sum term. The
detailed steps are described as follows:

Step 1 Add a term made up of the product of a missing variable and its complement
(A�A) to each nonstandard sum term. As you know, you can add anything by 0without
changing its value.

Step 2 Apply the distributive law: A+BC = (A+B)(A+C) and convert one sum term into
two sum terms.

Step 3 Repeat step 1 until all resulting sum terms are converted into standard form.
This makes the number of sum terms doubled for each missing variable.

Example 3.2 Convert the following expression into the standard POS form.

F = ðA+ �B+CÞðA+ �C +DÞðA+ �B+C + �DÞ
Solution

The domain of this POS expression is made up of A, B, C, D.
One variable D is missing in the first term. So add D�D and apply the distributive law as below:

A+ �B+C =A+ �B+C +D�D= A+ �B+C +D
� �

A+ �B+C + �D
� �

=M4M5

One variable B is missing in the second term. So add B�B and apply the distributive law as below:

A+ �C +D= A+ �C +D+B�B= A+B+ �C +D
� �

A+ �B+ �C +D
� �

=M2M6

The third term, A+ �B+C + �D (M5), is already a standard form.
So the standard POS form of the original expression is as follows:

F = ðA+B+CÞðA+ C +DÞðA+B+C +DÞ=M2M4M5M6 =
Y

Mð2;4; 5;6Þ

3.4.5 Boolean expression and truth table

All standard Boolean expressions can be easily converted into a truth table format.
The truth table is a concise way of presenting the logic operation of a circuit.

1. Converting SOP expression to truth table format
A truth table is simply a list of all possible combinations of input variable values and
their corresponding output values. For a given SOP expression, you can determine

3.4 Standard forms of Boolean expression 53

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:53 AM



the truth table format in terms of the expression’s domain. If an expression has a
domain of 2 variables, there are four different combinations of those variables (22 = 4).
If an expression has a domain of n variables, there are 2n different combinations of
those variables. So you can construct a truth table by listing all possible combina-
tions of binary values of the input variables in the expression first. Then, you evaluate
the output variable by substituting each binary value of the input variables combina-
tion into the SOP expression and the corresponding result is placed in the output
column (F). Alternatively, you can convert the SOP expression into its standard form.
If each binary valuemakes the standard SOP expression equal to 1, a 1 is placed in the
corresponding output column. Otherwise, a 0 is placed for all the remaining binary
values.

Example 3.3 Derive a truth table for the SOP expression F =A+ �BC

Solution

Step 1 There are three variables in the domain, so there are eight possible combinations of binary
values of the variables as listed in the left input columns of Table 3.4.2.

Step 2 Substitute each binary value into the SOP expression: F =A+ �BC. When ABC = 000, F = 0;
when ABC = 001, F = 1; when ABC = 010, F = 0; when ABC = 010, F = 0; when ABC = 011, F = 0; and so
on. The resulting output values are listed in the output column of Table 3.4.2.

Alternatively, you can convert the given SOP expression into the standard form. From example
3.1, you already convert the expression F =A+ �BC into a standard form and the resulting expression
is

F =A+BC =ABC +ABC +ABC +ABC +ABC

=m1 +m4 +m5 +m6 +m7 =
P

m 1;4; 5;6; 7ð Þ
Therefore, the binary values that make the standard SOP expression equal to 1 are �A�BC (m1):

001, A�B�C (m4):100, A�BC (m5):101, AB�C (m6):110, ABC (m7):111. For each of these binary values, a 1 is
placed in the output column as shown in Table 3.4.2. For every remaining binary combination, a 0 is

Table 3.4.2: Truth table.

Input Output

A B C F
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placed in the output column. In other words, one row of the truth table corresponds to a minterm. If a
minterm exists in the SOP expression, the corresponding output is a 1. If a minterm does not exist in
the SOP expression, the corresponding output is a 0.

2. Converting POS expression to truth table format
For a given POS expression, you can determine the truth table format in terms of the
expression’s domain just as you have done for the SOP expression. Then, you evaluate
the output variable by substituting each binary value of input variable combinations
into POS expression and the corresponding results are placed in the output column (F).
Alternatively, you can convert the POS expression into the standard form. If each binary
valuemakes the standard POS expression equal to 0, a 0 is placed in the corresponding
output column. Otherwise, a 1 is placed for all the remaining binary values.

Example 3.4 Derive a truth table for the POS expression as below:

F = ðA+B+CÞðA+ �CÞðA+ �BÞ
Solution

Step 1 There are three variables in the domain, so eight possible combinations of binary values of
3-input variables exist as listed in the left three columns of Table 3.4.3.

Step 2 Substitute each binary value into the POS expression. When ABC = 000, F = 0; when ABC =
001, F = 0; when ABC = 010, F = 0; when ABC = 011, F = 0, and so on. The resulting output values are
listed in the output column of Table 3.4.3.

Alternatively, you can convert the POS expression into the standard form.
The first term is already a standard sum term.
The second term has a missing variable B, so add B�B and apply the distributive law as below:

A+ �C +B�B= ðA+B+ �CÞðA+ �B+ �CÞ

Table 3.4.3: Truth table.

Input Output

A B C F

   

   

   

   

   

   

   

   

3.4 Standard forms of Boolean expression 55

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:53 AM



The third term has a missing variable C, so add C�C and apply the distributive law as below:

A+ �B=A+ �B+C�C = ðA+ �B+CÞðA+ �B+ �CÞ
So the standard POS form of the original expression is as follows:

F = ðA+B+CÞðA+B+CÞðA+B+ CÞðA+B+CÞ=
Y

Mð0; 1; 2; 3Þ
The binary values that make the standard sum terms (maxterms) in expression equal to 0 are

A+B+C (M0):000, A+B+ �C (M1):001, Aþ �Bþ C (M2):010, A+ �B+ �C (M3):011. For each of these binary
values, a 0 is placed in the output column as shown in Table 3.4.3. For each of the remaining binary
combinations, a 1 is placed in the output column.

3. Deriving standard expressions from a truth table
To derive the standard SOP expression from a truth table, you should pick up the
binary values of the input variables that make the output a 1. For each binary value,
write a product term by replacing each 1 with the corresponding variable and each 0
with the corresponding variable complement. Finally, add all product terms which
make the output a l and derive the standard SOP expression for the output.

Similarly, to derive the standard POS expression from a truth table, you should
pick up the binary values of the input variables that make the output a 0. For each
binary value, write a sum termby replacing each0with the corresponding variable and
each 1 with the corresponding variable complement. Finally, multiply all sum terms
which make the output a 0 and derive the standard POS expression for the output.

Example 3.5 Derive the standard SOP expression and the standard POS expression according to the
truth table shown in Table 3.4.4.

Solution

There are five 1s in the output column and the corresponding binary values of the input variables are
010, 011, 101, 110, 111. These binary values are converted to the product terms as follows:

Table 3.4.4: Truth table.

Input Output

A B C F
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010→ �AB�C (m2); 011→ �ABC (m3); 101→ A�BC (m5); 110→ AB�C (m6); 111→ ABC (m7)

The resulting standard SOP expression for the output F is

F =ABC +ABC +ABC +ABC +ABC =
X

mð2; 3; 5;6; 7Þ
For POS expression, there are three 0s in the output column and the corresponding binary

values of the input variables are 000, 001, 100. These binary values are converted to the sum terms
as follows:

000→ A+B+C (M0); 001→ A+B+ �C (M1); 100→ �A+B+C (M4)

The resulting standard POS expression for the output F is

F = ðA+B+CÞðA+B+ CÞðA+B+CÞ=
Y

Mð0; 1;4Þ
Comparing the standard SOP expression with the standard POS expression, you can find

that the labels in minterm expression and maxterm expression are complemented for the same
truth table. That is, the labels occurring in minterm expression will not appear in maxterm
expression.

3.5 Simplification using Boolean algebra

In the previous section, we introduced that there are various forms of one Boolean
expression to describe a same logic function with a unique truth table. In order to
implement the Boolean expression with a simple logic circuit, you have to reduce a
particular expression to its simplest form or change its form into a more convenient
one implemented most efficiently. This section introduces the simplification method
of the Boolean expression by using Boolean algebra. In this section, you will learn
how to apply the laws, rules, and theorems of Boolean algebra to simplify general
expressions.

A Boolean expression can be implementedwith a logic circuit by using AND gates
to implement product terms and OR gates to implement sum terms. In order to
implement the Boolean expression with a simple logic circuit, you have to reduce a
particular expression to its simplest form containing the fewest terms with the
fewest possible variables per term.

Simplification using Boolean algebra is to use the laws, the rules, and the
theorems of Boolean algebra to convert Boolean expression into a simplified form.
There are no fixed steps for obtaining a simplified expression using Boolean algebra.
Here, the commonly used methods are summarized as follows:

1. Merging the product terms
Two product terms can be merged into one product term by using Aþ �A ¼ 1 (rule 8)
and thus one or more product terms can be eliminated.
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Example 3.6 Simplify the Boolean expression F =A�B+AB+ABC + �ABC

Solution

F = AB+AB+ABC +ABC

=AðB+BÞ= ðA+AÞBC FactoringA out of the first and second terms and BC

out of the third and fourth terms

=A+BC ApplyingA+A= 1 and drop the 1

2. Absorbing the product terms
One or more product terms can be absorbed by using Aþ AB ¼ A (rule 10) and thus
the product term, AB, can be absorbed.

Example 3.7 Simplify the Boolean expression F =AðB+C +ACÞBD+AD

Solution

F =AðB+C +ACÞBD+AD Associative law

= ðB+C +ACÞB � AD+AD Rule 10: A+AB=A

=AD

3. Eliminating the product terms
By using AB+ �AC +BC =AB+ �AC (rule 14), the product term, BC, can be eliminated.

Example 3.8 Simplify the Boolean expression F =AB+ �AC +BCD

Solution
F =AB+AC +BCD

= ðAB+AC +BCÞ+BCD Rule 14 : AB+AC =AB+AC +BC

= AB+AC + ðBC +BCDÞ Associative law

= AB+AC +BC Factoring BC and drop the 1

= AB+AC Rule 14 : AB+AC = AB+AC +BC

4. Removing variable or variable complement
By using A+ �AB=A+B (rule 12), �A can be removed from the term �AB.

Example 3.9 Simplify the Boolean expression F =Að�B+ �CÞ+BC
Solution
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F =Að�B+ �CÞ+BC
=A � BC +BC Using DeMorgan0s theorem

=Aþ BC Rule 12 : A+ �AB= A+B; removing BC

5. Adding the terms
By using A+ �A= 1 (rule 8), a product term is multiplied by ðA+ �AÞ and thus decom-
posed into two product terms which can be merged with other product terms to
obtain a simplified Boolean expression.

Example 3.10 Simplify the Boolean expression F =A�B+B�C + �BC + �AB

Solution

F =ABþ BC þ BC þ AB

=ABðC + CÞ+BCðA+AÞ+BC +AB Rule 8 : 1 =A+A

=ABC +A�B�C +ABC +ABC +BC +AB Distributive law

= ðABC +BCÞ+ ðA�B�C +ABCÞ+ ðABC +ABÞ Associative law

=BC +AC +AB Factoring and drop the 1

The simplification using Boolean algebra depends on your experience. It requires that you are
familiar with the laws, the rules and the theorems of Boolean algebra and obtain skill by doing more
exercises.

3.6 Karnaugh map simplification

In the above section, you learnt how to simplify a Boolean expression by using Boolean
algebra. As you have seen, the effectiveness of algebraic simplification depends on
your familiarity with all the laws, the rules and the theorems of Boolean algebra and on
your ability to apply them. The Karnaugh map was proposed by M Karnaugh in
1953 [23]. It offers a systematic method of simplifying Boolean expression. If it is
used properly, the simplest Boolean expression can be more easily produced than
using Boolean algebra. This section introduces Karnaugh map with the variables from
two to five first. Then Karnaugh map simplification is introduced for obtaining a
minimum SOP expression and a minimum POS expression. Finally, we introduce the
treatment of terms that don’t care in Karnaugh map simplification. Basically, the
Karnaugh map, on the other hand, provides a “cookbook” method for simplification.

The objectives of this section are to
– Construct a Karnaugh map for three or four variables
– Define cell adjacency
– Map a Boolean expression on a Karnaugh map
– Map a truth table into Karnaugh map
– Combine the 1s or the 0s on the map into maximum groups
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– Determine the minimum SOP expression and the minimum POS expression
– Use “don’t care” conditions on a Karnaugh map

3.6.1 The Karnaugh map

Similar to a truth table, a Karnaughmap is organized as an array of cells in which each
cell represents a binary value of the input variables and corresponds to a minterm.
Each cell corresponds to a row in a truth table. The cells are arranged in a way that the
adjacent cells only differ from one literal. This offers an opportunity of converting the
simplification of a given expression into a matter of properly grouping the cells. The
number of cells in Karnaugh map (K-map) is equal to the total number of possible
input variable combinations as is the number of rows in a truth table. Therefore, the
number of cells is 22(=4) for two variables, 23(=8) for three variables, 24(=16) for four
variables, 25(=32) for five variables, as shown in Figure 3.6.1. Here, we focus on
discussing only 3-variable and 4-variable situations to illustrate the principles.

The 3-variable Karnaughmap has an array of eight cells shown in Figure 3.6.1(b).
A, B, and C are used to represent variables. Notice that other letters can also be used

A
B

AB
0 1

0

1

AB

AB AB
m0 m1

m2 m3

A
BC

00 01

0

1

m0 m1

m4 m5

m3 m2

m7 m6

11 10

AB
CD

00 01

m0 m1

m4 m5

m3 m2

m7 m6

11 10

m12 m13

m8 m9

m15 m14

m11 m10

00

01

11

10

AB
CD

00 01

0m 1m

4m 5m

3m 2m

7m 6m

11 10

12m 13m

8m 9m

15m 14m

11m 10m

00

01

11

10

18m 19m

22m 23m

17m 16m

21m 20m

30m 31m

26m 27m

29m 28m

25m 24m

10 11 01 00

(a) (b) (c)

(d)

E E

Figure 3.6.1: 2-variable (a), 3-variable (b), 4-variable (c) and 5-variable (d) Karnaugh maps.
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to represent variables. Binary values of A are along the left side and the values of B
and C are across the top. The value of a given cell is determined by the binary values
of A on the left in the row combined with the values of B and C on the top in the same
column. The values of B and C are arranged in the sequence of Gray code to guarantee
the cell adjacency. Each cell represents a minterm or a standard product term in
Karnaugh map.

Similarly, the 4-variable Kaunaugh map has an array of sixteen cells shown in
Figure 3.6.1(c). Binary values of A and B are along the left side and the values of C
andD are across the top. The value of a given cell is determined by the binary values
ofA and B on the left in the same row combinedwith the values of C andD on the top
in the same column. The binary values of A and B are arranged by the sequence of
Gray code to ensure the cell adjacency. So do the binary values of C and D. Each cell
represents a minterm or a standard product term in Karnaugh map.

The cells in a Karnaughmap have the logic adjacency. Adjacency is defined by a
single-variable change. The sequence of Gray code guarantees that adjacent cells
that differ by only one literal. That is to say, cells that differ by only one variable are
adjacent. For instance, in the 3-variable map, the 000 cell is adjacent to the 001 cell,
the 010 cell, and the 100 cell. Cells with values that differ by more than one variable
are not adjacent. For example, the 000 cell is not adjacent to the 011 cell, the 101
cell, the 110 cell, or the 111 cell.

Physically, each cell is adjacent to the cells that are next to it on any of its four
sides. Also, the cells in the top row are adjacent to the corresponding cells in the
bottom row and the cells in the leftmost column are adjacent to the corresponding
cells in the rightmost column. This is called “wrap around” adjacency since you can
think of the map as wrapping around from top to bottom to form a cylinder or from
left to right to form a cylinder. Figure 3.6.2 illustrates the cell adjacency with a 4-
variable map. Moreover, the same rules for adjacency apply to Karnaugh maps with
any number of cells.

AB
CD

00 01

m0 m1

m4 m5

m3 m2

m7 m6

11 10

m12 m13

m8 m9

m15 m14

m11 m10

00

01

11

10 Figure 3.6.2: Cells adjacency in a Karnaugh map. Arrows
indicate the adjacency between the cells.
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3.6.2 Karnaugh map SOP minimization

Minimization refers to the process which results in an expression containing the
fewest possible terms with the fewest possible variables [24].

Cells adjacency in Karnaugh map can be used to simplify Boolean expressions.
Generally, Karnaugh map SOP minimization includes three main steps. The first step
is to map an SOP expression on a Karnaugh map; the second step is to group 1s; the
third step is to determine the minimized SOP expression from the map.

A minimized SOP expression contains the fewest possible product terms with the
fewest possible variables per term. It can be implemented with fewer logic gates than
a standard expression.

This part mainly focuses on discussing how to get aminimized SOP expression by
using Karnaugh map.

1. Mapping an SOP expression
Usually, an SOP expression could be a standard SOP expression, or a nonstandard
SOP expression. Sometimes an SOP expression is expressed by a truth table.

(1) Mapping a standard SOP expression
For a standard SOP expression, if aminterm is in the expression, then a 1 is placed in its
corresponding cell on Karnaughmap; if a minterm is not in the expression, then a 0 is
placed in its corresponding cell. When mapping a standard SOP expression is com-
pleted, the number of 1s on the Karnaugh map is equal to the number of minterms in
the standard SOP expression. Usually, when mapping a standard SOP expression, the
0s can be omitted on the Karnaugh map.

Example 3.11 Map the following standard SOP expression on a Karnaugh map:

F ¼ �A�B�C þ �AB�C þ �A�BC þ ABC

Solution

The given SOP expression has a domain of three variables A, B, and C. You canmap this standard SOP
expression on a 3-variable Karnaugh map. A 1 is placed on the corresponding cell on Karnaugh map
for each minterm in the expression, as shown in Figure 3.6.3.

A
BC

00 01

0

1

11 10

1 1 1

1
Figure 3.6.3: Karnaugh map of example 3.11.
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(2) Mapping a nonstandard SOP expression
ABoolean expressionmust be in the standard form before using the Karnaughmap. If
an expression is not in the standard form, you can convert it to the standard form by
the method introduced in section 3.4. Alternatively, you can directly map a non-
standard SOP expression on a Karnaugh map. Example 3.12 shown below illustrates
the principle of directly mapping a nonstandard SOP expression on a Karnaugh map.

Example 3.12 Map the following SOP expression on a Karnaugh map:

F A;B;Cð Þ=B�C

Solution

One method is to convert this nonstandard SOP expression into a standard SOP expression firstly.

F A;B;Cð Þ=B�C = �A+A
� �

B�C = �AB�C +AB�C =m2 +m6

Sincem2 andm6 are in the standard SOP expression, their corresponding cells are placed 1s and
the other cells are placed 0s on Karnaugh map. The mapping result is shown in Figure 3.6.4.

Another method is to directly map the product term, B�C, on a Karnaugh map.
Product term B�C is not a minterm due to the absence of a variable A. You can multiply it by �Aþ A

and convert it into two minterms, m2 and m6. The binary value of B�C is 10 which corresponds to the
column of 10 on a Karnaugh map. m2 is located at the cross cell between the row of A = 0 and the
column of BC = 10;m6 is located at the cross cell between the row of A = 1 and the column of BC = 10.
This means that the product term, B�C, can be mapped directly by placing 1s on the cross cells
between the column of BC= 10 and the row of A = 0 and A= 1, which actually places 1s on the two cells
corresponding to the column of BC = 10. Therefore, you can directly map the product term on a
Karnaugh map.

Example 3.13 Map the following SOP expression on a Karnaugh map:

F A;B;C;Dð Þ=AB�D+ �AC

Solution

The given SOP expression has a domain of four variables A, B, C, and D. You can directly map the
product term in this SOP expression on a 4-variable Karnaugh map. The mapping process is shown in
Figure 3.6.5.

The product term AB�D is mapped by placing 1s in the two cross cells between the row of AB = 11
and the column of D = 0;

The product term �AC is mapped by placing 1s in four cross cells between the row of A = 0 and the
column of C = 1.

A
BC

00 01

0

1

11 10

0 00 1

0 00 1
Figure 3.6.4: Karnaugh map of example 3.12.
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(3) Mapping directly from a truth table
From the above introduction, you have known how to map an SOP expression. If the
logic function is expressed by a truth table, how do you directly get a Karnaugh map
from the truth table?

A truth table lists the output of a Boolean expression for all possible input
variable combinations. Recall that each cell on a Karnaugh map corresponds to a
row in a truth table which corresponds to a minterm. If the output is 1 for input
variable combinations, place a 1 into the cells corresponding to the values of the
input variable combinations; if the output is 0 for the input variable combinations,
place a 0 into the cells corresponding to the values of the input variable combination.

For example, a logic function is expressed by a truth table, as shown in
Figure 3.6.6 (a) and a mapping process from the truth table to a Karnaugh map is
illustrated in Figure 3.6.6 (b).

Till now, you can see that a logic function can be represented by different ways
such as the Boolean expression, the truth table, and the Karnaugh map.

2. Group the 1s
After an SOP expression has been mapped, the following step is to group the 1s. The
goal is to maximize the size of the group andminimize the number of the groups. You

ABD

AB
CD

00 01 11 10

00

01

11

10

1

1

1

1

1

1

AC

Figure 3.6.5: Karnaugh map of example 3.12.

(a) (b)

A
BC

00 01

0

1

11 10

11

1

A B C F

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Figure 3.6.6: Mapping from a truth table (a) to a Karnaugh map (b).
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can group 1s on a Karnaugh map by enclosing those adjacent cells containing 1s. The
rules of group 1s are as follows:

Rule 1 A group must contain 2i (i = 0,1,2,. . .) cells enclosed a rectangular or square
frame. Remember that each cell in a group must be adjacent to one or more cells in
the same group, but all cells in a group do not have to be adjacent to each other. In the
case of a 4-variable map, a group can enclose 1, 2, 4, 8, and 16 cells.

Rule 2 The number of the groups should be minimized as possible and each group
includes the largest possible number of 1s in accordance with rule 1.

Rule 3 Each 1 on the map must be included in at least one group. The 1s already in a
group can be included in another group. But the overlapping groups must include
non-common 1s.

Example 3.14 Group 1s in each of the Karnaugh map in Figure 3.6.7.

Solution

According to the rules of grouping 1s, the result of grouping 1s is shown in Figure 3.6.8.

A
BC

00 01

0

1

11 10

1

1

1

1

1

1

A
BC

00 01

0

11 10

1

1

1

1

1

11

AB
CD

00 01 11 10

00

01

11

10

1

1

11

1 1

1

1

1

1

1

1

1

1

AB
CD

00 01 11 10

00

01

11

10

1

1

1

1

11

(c) (d)

(a) (b)

Figure 3.6.7: Karnaugh maps.
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For each Karnaugh map, the number of the groups is minimized and the size of the groups is
maximized.

Notice that Figures 3.6.8 (a) and (b) have the same Karnaughmap but different grouping results.
These mean that there may be more than one way to group the 1s for a Karnaugh map.

3. Determining the minimum SOP expression from the Karnaugh map
When all the 1s representing the minterms in an expression are properly mapped and
grouped, the process of determining the resulting minimum SOP expression begins.
The following rules are applied to find the minimum product terms and thus the
minimum SOP expression:

(1) Each group of cells containing 1s produces one product term. This product
term is composed of variables that have the same binary value in the group.
The binary value “1” is represented by the variable and “0” is denoted by the
variable complement. Variables with different binary values are eliminated.

(2)When all theminimumproduct terms are determined from the Karnaughmap,
they are summed to form the minimum SOP expression.

Example 3.15 Use a Karnaugh map to minimize the following standard SOP expression:

F A;B;Cð Þ ¼ A�C þ �AC þ B�C þ �BC

A
BC

00 01

0

1

11 10

1

1

1

1

1

1

A
BC

00 01

0

11 10

1

1

1

1

1

11

AB
CD

00 01 11 10

00

01

11

10

1

1

11

1 1

1

1

1

1

1

1

1

1

AB
CD

00 01 11 10

00

01

11

10

1

1

1

1

11

(a) (b)

(c) (d)

Figure 3.6.8: Grouping result for the Karnaugh maps in Figure 3.6.7.

66 3 Boolean algebra and logic simplification

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:53 AM



Solution

The given SOP expression has a domain of three variables A, B, and C. You can map this SOP
expression on a 3-variable Karnaugh map.

The product term A�C is mapped by placing 1s in the two cross cells between the row of A = 1 and
the column of C = 0;

The product term �AC is mapped by placing 1s in two cross cells between the row of A = 0 and the
column of C = 1;

The product term B�C is mapped by placing 1s in the two cross cells in the column of BC = 10;
The product term �BC is mapped by placing 1s in the two cross cells in the column of BC = 01.
After mapping the SOP expression in a Karnaugh map, you will turn to next step of grouping 1s.

The cells are grouped as shown in Figure 3.6.9.

Figure 3.6.9 shows two kinds of grouping method. Totally, there are at least three groups and
each group of cells containing 1s creates one product term by eliminating the variables with different
binary value and leaving the variables with the same binary value.

Add the three product terms and determine the resulting minimum SOP expression as follows:
The minimum SOP expression in Figure 3.6.9(a) is

F A;B;Cð Þ ¼ A�Bþ �AC þ B�C

The minimum SOP expression in Figure 3.6.9(b) is

F A;B;Cð Þ ¼ A�C þ �BC þ �AB

The above two SOP expressions are both minimized SOP expressions.
This illustrates that it is possible for you to get more than one result through Karnaugh map

simplification.

Example 3.16 Use a Karnaugh map to minimize the following standard SOP expression:

F A;B;C;Dð Þ ¼ �AB�CDþ A�B�CDþ �A�B�CDþ AB�CDþ AB�C�Dþ ABCD

Solution

The given SOP expression has a domain of four variables A, B, C, and D. You can map this SOP
expression on a 4-variable Karnaugh map.

The simplification step is illustrated in Figure 3.6.10.

A
BC

00 01

0

1

11 10

1

1

1

01

10

1

A
BC

00 01

0

11 10

1

1

1

01

10

11

(a) (b)

AC

AB BC AC

BC

AB

Figure 3.6.9: Illustration of Karnaugh map simplification process.
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The resulting minimum SOP expression is

F A;B;C;Dð Þ ¼ �CDþ AB�C þ ABD

Example 3.17 Use a Karnaugh map to minimize the following SOP expression:

F A;B;C;Dð Þ ¼ �A�B�C þ A�C�Dþ A�Bþ ABC�Dþ �A�BC

Solution

Map the SOP expression on a 4-variable Karnaugh map. Notice that both groups exhibit “wrap
around” adjacency. Figure 3.6.11 shows the simplification process. The group of eight cells is formed
because the top and bottom cells are adjacent; the group of four cells is form to pick up the remaining
two 1s because the cells in the outer columns are adjacent.

The resulting minimum SOP expression is

F A;B;C;Dð Þ ¼ �Bþ A�D

AB
CD

00 01 11 10

00

01

11

10

1

1

1

1

11

ABC

CD

ABD

Figure 3.6.10: Illustration of simplification process
of example 3.16.
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CD

00 01 11 10

00

01

11

10 1

1

1

1

1

1

1

1

1

1

AD

B

Figure 3.6.11: Illustration of simplification process
of example 3.17.
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Example 3.18 Use a Karnaugh map to minimize the following SOP expression:

F A;B;C;Dð Þ ¼ �A�Dþ A�B�Dþ �A�CDþ �ACD

Solution

Map the SOP expression on a 4-variable Karnaughmap. Note that the four cells in the four corners are
also adjacent and they can form a group in Figure 3.6.12.

The resulting minimum SOP expression is

F A;B;C;Dð Þ ¼ �Aþ �B�D

3.6.3 Karnaugh map POS minimization

A minimized POS expression contains the fewest possible sum terms with the fewest
possible variables per term. The approach is the same as the simplification of SOP
expression except that 0s representing the standard sum terms in the POS expression
are placed on the Karnaugh map instead of 1s. 1s can be left off.

Generally, Karnaugh map POS minimization also includes three main steps. The
first step is to map a POS expression on a Karnaugh map; the second step is to group
0s; the third step is to determine the minimized POS expression from the map [3].

Example 3.19 Use a Karnaugh map to minimize the following POS expression:

F ¼ ðAþ Bþ CÞðAþ Bþ �CÞðAþ �Bþ CÞðAþ �Bþ �CÞð�Aþ �Bþ CÞ

Solution

The given POS expression has a domain of three variables A, B, and C. You can map this POS
expression on a 3-variable Karnaugh map.

Since all sum terms are standard sum terms which can be mapped directly in the corresponding
cells.

1

1

1

AB
CD

00 01 11 10

00

01

11

10

11

1 1

1

1

1

BD

A

Figure 3.6.12: Illustration of simplification process
of example 3.18.
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Aþ Bþ C ! 000;

Aþ Bþ �C ! 001;

Aþ �Bþ C ! 010;

Aþ �Bþ �C ! 011;
�Aþ �Bþ C ! 110;

The mapping result is shown in Figure 3.6.13.

Totally, there are five cells placed 0s, and the others are placed 1s. 1s can be left off.
Next step is to group 0s. One group of four cells is formed since the cells are adjacent. Another

group of two cells is formed to pick up the remaining one 0.
The final step is to determine theminimum sum terms for each group andmultiply them together.

Thus the resulting minimum POS expression is

FðA;B;CÞ ¼ Að�Bþ CÞ

3.6.4 Karnaugh map simplification with don’t care terms

Sometimes a situation arises in which some input variable combinations are not
allowed, or their corresponding output is not specified.

For example, there are six invalid combinations from 1010 to 1111 unused in BCD
code. Since these unallowed states will never occur in an application involving BCD
code, they can be treated as “don’t care” terms with respect to their effect on the
output. That is, for these “don’t care” terms either a 1 or a 0 may be assigned to the
output; it really does not matter since they will never occur.

Generally, the “don’t care” terms are denoted by the letter x, or d, or Φ in the
Boolean expression and a Karnaugh map. It can be used to help simplifying Boolean
expression further in Karnaugh map. They could be chosen to be either ‘1’ or ‘0’,
depending on whether they are beneficial to obtain a simpler expression.

Usually, when grouping the 1s, they can be treated as the 1s to make a larger
group or as 0s if they cannot be used. The larger a group is, the simpler the resulting
term will be.

A
BC

00 01

0

1

11 10

0

0

000 A

B + C

Figure 3.6.13: Illustration of simplification process
of example 3.19.
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Example 3.20 Minimize the following SOP expression with don’t care terms:

F A;B;C;Dð Þ ¼
X

m 0;2; 3;4;6;8; 10ð Þ þ
X

d 11; 12; 14; 15ð Þ

where
P

m �ð Þ lists the minterms and
P

d �ð Þ represents “don’t care” terms in an SOP expression.
Another representation of don’t care term can be expressed with a single equation. For example,P

d 11; 12; 14; 15ð Þ ¼ 0

Solution

Map a given SOP expression on a 4-variable Karnaugh map where the cells corresponding to the
minterms in the expression are placed 1s, and the cells corresponding to the “don’t care” terms in the
expression are placed Xs, as shown in Figure 3.6.14.

If the “don’t care” terms are not used as 1s in Figure 3.6.14(a), the resulting expression is

F ¼ �A�Dþ �B�Dþ �A�BC

If some “don’t care” terms are used as 1s to get the simplest expression in Figure 3.6.14(b), the
resulting expression is

F ¼ �Dþ �BC

So you can see the advantages of using “don’t care” terms to get the simplest expression.

3.7 Summary

1. Boolean algebra, also called logic algebra, is a mathematical tool used in the
analysis and design of digital circuits.

2. The basic Boolean operations are the OR, AND, and NOT operations.
3. The commonly used combinational operations are NAND, NOR, XOR, and XNOR

operations.
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0

0
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1 X 1
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ABC

D

AB
CD

1

0

X X

0

0

0

1

1 0 1

1

X

1 X 1

BC

(a) (b)

Figure 3.6.14: Comparison of “don’t care” conditions unused (a) with used (b) to simplify an
expression.
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4. An AND gate produces a HIGH output only when all inputs are HIGH.
5. An OR gate outputs a HIGH when any input is HIGH.
6. An INVERTER output is the complement of its input.
7. A NOR gate is the same as an OR gate with its output connected to an INVERTER.
8. A NAND gate is the same as an AND gate with its output connected to an

INVERTER.
9. The exclusive-OR (XOR) gate outputs a HIGH when its inputs are not the same.
10. The exclusive-NOR (XNOR) gate outputs a LOWwhen its inputs are not the same.
11. Boolean basic laws, rules and theorems can be used to simplify the expression of

a logic circuit and can lead to a simpler way of implementing the circuit.
12. Two standard forms for logic expressions are standard sum-of-products form and

standard product-of-sums form.
13. Karnaugh map is a graphical method for representing a circuit’s truth table and

generating a simplified expression for the circuit output.
14. Karnaugh map offers a systematic method for simplifying Boolean expression.

Generally, Karnaughmap SOPminimization includes three main steps: mapping
a SOP expression on a Karnaugh map, grouping 1s, deriving the minimized SOP
expression.

15. Karnaughmap POSminimization also includes three main steps: mapping a POS
expression on a Karnaugh map, grouping 0s, determining the minimized POS
expression.

16. For Karnaugh map simplification, “don’t care” terms can be chosen to be either
‘1’ or ‘0’, depending on which gives a simpler expression.

Key terms

Variable: A symbol used to represent a logical quantity that can have a value of 1 or
0, usually designated by an italic letter.
Complement: The inverse of a variable, usually indicated by a bar over the variable
(overbar).
Literal: A variable or the complement of a variable.
Boolean expression: An arrangement of variables and logical operators used to
express the operation of a logic circuit.
Truth table: A table listing all possible combinations of input variables with the
corresponding outputs.
Timing diagram:A graph displaying the relationship of two ormore waveformswith
respect to each other on a time basis.
Product term: The Boolean product of two or more literals equivalent to an AND
operation.
Sum term: The Boolean sum of two or more literals equivalent to an OR operation.
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Product-of-sums (POS): A form of Boolean expression that is basically the ANDing
of ORed terms.
Sum-of-product (SOP): A form of Boolean expression that is basically the ORing of
ANDed terms.
Minterm: A product term containing all of n variables in the domain, in which each
variable only appears in either true or complement form. Also called a standard
product term.
Maxterm: A sum term containing all of n variables in the domain, in which each
variable only appears in either true or complement form. Also called a standard sum
term.
A standard POS expression: A POS expression in which each product term is a
standard sum term or maxterm. Also called a maxterm expression.
A standard SOP expression: An SOP expression in which each product term is a
standard product term or minterm. Also called a minterm expression.
Cell: An area on a Karnaugh map that represents a unique combination of variables
in product form.
Karnaughmap:An arrangement of cells in which each cell represents a binary value
of the input variables corresponding to a minterm.
“Don’t care” term: A combination of input variables that is not allowed, or its
corresponding output is not specified.
Adjacency: Characteristic of cells in a Karnaugh map in which there is a single-
variable change from one cell to another cell next to it on any of its four sides.
Minimization: Process that results in an expression containing the fewest possible
terms with the fewest possible variables.

Self-test

3.1 The complement of a variable is always _______.
(a) 0 (b) 1 (c) the inverse of the variable (d) equal to the variable

3.2 Literal refers to _______.
(a) a variable (b) a sum term
(c) a product term (d) a variable or the complement of variable

3.3 Which one of the following is a minterm of four variables?
(a) ABC�C (b) ABC (c) �AB�CD (d) �AB�C�B

3.4 Which one of the following is a maxterm of three variables?
(a) Aþ B (b) Aþ Bþ �Cþ D
(c) �Aþ Bþ �C (d) �Aþ B

Self-test 73

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:53 AM



3.5 The Boolean expression Aþ Bþ �C is _______.
(a) a sum term (b) a literal term
(c) a product term (d) a complemented term

3.6 The domain of the Boolean expression Aþ �ABC þ B�C þ �AB�CD is
(a) A and D (b) A only (c) A, B, C, and D (d) none of these

3.7 Three basic logic operations in logic algebra are _______.
(a) AND，OR，and NOT (b) NAND，NOR，and AND-OR-NOT
(c) NAND，OR，and AND-OR (d) NOR，AND-OR，and AND-OR-NOT

3.8 According to DeMorgan’s theorems, which one of the following equalities is
correct?
(a) Aþ Bþ C ¼ �Aþ �Bþ �C (b) ABC ¼ �A�B�C
(c) ABC ¼ �Aþ �Bþ �C (d) none of these

3.9 Which one of the following expressions is an SOP expression?
(a) ð�Aþ �Bþ �CÞðAþ Bþ CÞ (b) Aþ �BðC þ �DÞ
(c) �A�Bþ A�CD (d) both (b) and (c)

3.10 Which one of the following expressions is a POS expression?
(a) ABþ ACD (b) Aþ �BðC þ �DÞ
(c) ð�Aþ �Bþ �CÞðAþ Bþ CÞ (d) both (b) and (c)

3.11 Which one of the following Boolean expressions is a standard SOP expression?
(a) ABþ ACDþ BC (b) ABþ A�Bþ �A�B
(c) �A�B�C þ ABC (d) both (b) and (c)

3.12 Which one of the following Boolean expressions is a standard POS
expression?
(a) ABþ ACDþ BC (b) ðAþ BÞðAþ �BÞ þ AB
(c) ð�Aþ �Bþ �CÞðAþ Bþ CÞ (d) both (b) and (c)

3.13 Which one of the following combinations can make the value of Boolean
expression F ¼ ABþ CD a 1?
(a) A = 0, BC = 0, D = 0 (b) A = 0, BD = 0, C = 0
(c) AB = 1, C = 0, D = 0 (d) AC = 1, B=0, D = 0

3.14 The result of 1¯1¯1¯1 ⋅⋅⋅ (2003 1s) and 1� 1� 1� 1� 1 ⋅⋅⋅ (2003 1s) is
(a) 0,0 (b) 1,0 (c) 0,1 (d) 1,1

3.15 Which one of the following Karnaugh map simplifications in Figure T3.1 is not
the minimum SOP expression?
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Problems

3.1 Write a Boolean expression that is a l only if all of its variables (A, B, C, and D)
are 1s.

3.2 Write a Boolean expression that is a l when one or more variables (A, B, C, and D)
are 0s.

3.3 Write a Boolean expression that is a 0 when one or more variables (A, B, C, and D)
are 1s.

3.4 Find the values of the variables that make each product term 1 and each sum
term 0.
(a) �A�B
(b) Aþ �Bþ Cþ �D
(c) �A�BC
(d) Aþ �Bþ C
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3.5 Construct a truth table for each of the following Boolean expressions.
(1) F ¼ ABþ �ACþ BC
(2) F ¼ ðAþ BÞð�Aþ CÞðBþ CÞ
(3) F ¼ ABCDþ A�B�Cþ �AB

3.6 Write Boolean expression and truth table for the logic circuits in Figure P3.1.

3.7 Prove the following equalities by using Boolean algebra.
(1) Aþ BC ¼ ðAþ BÞðAþ CÞ
(2) BC þ AD ¼ ðAþ BÞðBþ DÞðAþ CÞðC þ DÞ
(3) �A�BCþ �AB�C þ A�B�C þ ABC ¼ A¯B¯C
(4) ðABþ CÞB ¼ AB�C þ �ABC þ ABC

3.8 Using Boolean algebra, simply the following expressions as much as possible.
(1) F ¼ ABþ ACþ �ABþ B�C
(2) F ¼ ðABþ �ABþ A�BÞð�A�Bþ CDÞ
(3) F ¼ ABCDþ �ABC�Dþ BC�D
(4) F ¼ ABC þ Aþ Bþ �C þ �A�B�CD
(5) F ¼ BDþ BðDþ EÞ þ �DðAþ DÞ
(6) F ¼ Aþ A�B�Cþ �ACDþ �CE þ �DE

3.9 Using Boolean algebra, simplify the following expressions as much as possible.
(1) F ¼ A�BCþ CDþ B�Dþ �C
(2) F ¼ Aþ �Bþ CDþ AD � �B
(3) F ¼ ðA¯BÞðB¯�CÞ
(4) F ¼ A�Bþ �ACþ �BC

3.10 Convert the following Boolean expressions into the standard SOP form.
(1) F ¼ A�BCþ �A�Bþ AB�CD
(2) F ¼ ABþ A�BC

3.11 Convert the following Boolean expressions into the standard POS form.
(1) F ¼ ðAþ �Bþ CÞð�Bþ Cþ �DÞðAþ �Bþ �C þ DÞ
(2) F ¼ AðAþ �BÞð�Aþ CÞ

F

A

(a) (b)

B A
B F
C

Figure P3.1
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3.12 Write the standard SOP expression and the standard POS expression from the
truth table as shown in Table P3.1

3.13 Convert the following minterm expressions into maxterm expression.
(1) FðA;B;CÞ ¼ P

mð0; 1; 2; 5; 7Þ
(2) FðA;B;C;DÞ ¼ P

mð0; 2; 3; 5; 7; 8; 9; 10; 13Þ
3.14 Convert the following maxterm expressions into minterm expression.

(1) FðA;B;CÞ ¼ Q
Mð3; 6; 7Þ

(2) FðA;B;C;DÞ ¼ Q
Mð6; 7; 9; 13; 15Þ

3.15 Use Karnaugh map to simplify the following minterm expressions into mini-
mum SOP expression and minimum POS expression, respectively.
(1) FðA;B;CÞ ¼ P

mð0; 1; 2; 5; 6Þ
(2) ðA;B;C;DÞ ¼ P

mð0; 1; 2; 3; 4; 6; 7; 8; 9; 10; 11; 14Þ
(3) FðA;B;C;DÞ ¼ P

mð0; 1; 4; 6; 8; 9; 10; 12; 13; 14; 15Þ
(4) FðA;B;C;DÞ ¼ P

mð0; 1; 2; 3; 4; 5; 8; 10; 11; 12Þ
3.16 Use Karnaugh map to simplify the following SOP expressions into minimum

SOP expression and minimum POS expression, respectively.
(1) F ¼ �B�C þ ABþ �AB�C
(2) F ¼ �A�Bþ BCþ B�C
(3) F ¼ A�C þ �AC þ �BCþ B�C
(4) F ¼ ABC þ ABDþ A�CDþ �C�Dþ A�BCþ �AC�D
(5) F ¼ A�B�Cþ ACþ �A�BD
(6) F ¼ ABþ �C�Dþ �A�BCþ ADþ A�BC
(7) F ¼ �A�C þ �A�Bþ �B�C�Dþ BDþ A�B�Dþ �ABC�D

Table P3.1: Truth table.

Inputs Output

A B C F
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3.17 Use Karnaugh map to simplify the following expressions into minimum SOP
expression and minimum POS expression, respectively.
(1) F ¼ AðBþ �CÞðAþ DÞðBþ C þ �DÞð�Aþ �Bþ �Cþ DÞ
(2) FðA;B;C;DÞ ¼ Q

Mð1; 2; 7; 9; 10Þ
(3) FðA;B;C;DÞ ¼ Q

Mð0; 2; 4; 6; 9; 11; 13Þ
3.18 Use Karnaugh map to simplify the following expressions containing “don’t

care” term into the minimum SOP expression.
(1) FðA;B;C;DÞ ¼ P

mð3; 6; 8; 9; 11; 12ÞþP
dð0; 1; 2; 13; 14; 15Þ

(2) FðA;B;C;DÞ ¼ P
mð0; 2; 3; 4; 5; 6; 11; 12ÞþP

dð8; 9; 10; 13; 14; 15Þ
(3) FðA;B;C;DÞ ¼ P

mð0; 1; 2; 3; 6; 8ÞþP
dð10; 11; 12; 13; 14; 15Þ

(4) F3 ¼ Aþ Cþ Dþ �A�BC�Dþ A�B�CD
ABþ AC ¼ 0

�

3.19 For each group of the following Boolean expressions, use a Karnaugh map to
implement the logic operations:
(a) F � G;
(b) F þ G;
(c) F¯G

(1) F ¼ AB�C þ CDðAþ �BÞ þ �B�C�D
G ¼ ðABþ C�DÞAB�C þ �A�B�D

�

(2)
FðA;B;C;DÞ ¼ P

mð2; 4; 6; 9; 13; 14ÞþP
dð0; 1; 3; 8; 11; 15Þ

GðA;B;C;DÞ ¼ P
mð4; 5; 7; 9; 12; 13; 14ÞþP

dð1; 3; 8; 10Þ
�
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4 Combinational logic circuits

4.1 Introduction

In Chapters 2 and 3, fundamental mathematical tool and basic logic gates were
introduced to analyze and design digital circuits. Basic logic gates can be combined
to form various types of logic circuits with different functions: comparison, encoding,
decoding, counting, storage, and so on. Generally, logic circuits are divided into two
categories: combinational logic circuits and sequential logic circuits . When logic
gates are connected together to form a specified output for certain specified combi-
nation of input variables and no storage involved, the resulting circuit is in the
category of combinational logic circuits. In a combinational circuit, outputs solely
depend on current inputs. While in a sequential logic circuit, outputs depend not
only on current inputs but also on previous inputs. This chapter introduces the
analysis and design of logic circuits with logic gates. Races and hazards in a combi-
national logic circuit are also discussed.

With the rapid development of integrated circuit technology, methods of construct-
ing digital circuits also evolve. Currently, there are two methods to implement a more
complicated digital circuit. One is to construct a specified logic circuit with the universal
integrated chips that mainly involve medium-scale integration (MSI) and large-scale
integration (LSI) chips. The other is to implement a specified integrated logic circuit with
programmable logic device (PLD) by electronic design automation software.

This chapter also introduces several types of MSI combinational logic circuits,
including adders, decoders, encoders, multiplexers, and their application for design-
ing a more complicated logic circuit. The commonly used hardware description
language (HDL), such as Verilog HDL, and typical Verilog HDL descriptions of
commonly used MSI are also introduced.

The objectives of this chapter are to
– Define a combinational circuit
– Analyze a logic function of a combinational logic circuit constructed by logic gates
– Design a combinational circuit by using logic gates to satisfy practical

requirements
– Explain races and hazards in a combinational logic circuit
– Describe the functions of several types of MSI combinational logic circuit
– Apply these MSI combinational logic circuits to design a specified logic circuit

4.2 Analysis and design of combinational logic circuits

Combinational logic circuits are composed of logic gates. The obvious characteristics
of combinational circuits are that neither storage nor a signal feedback path from the

https://doi.org/10.1515/9783110614916-004
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output to the input is involved. That is to say, the output level of a combinational
logic circuit is only determined by the combination of current input levels and has
nothing to do with the previous state of circuit [25]. This section introduces the
analysis and design procedure of combinational logic circuits.

The structure of combinational circuits is shown in Figure 4.2.1, which has
multiple input variables (X1, X2, . . ., Xn) and output variables (P1, P2, . . ., Pm), and
signals can be transmitted only forwardly from inputs to outputs.

The logic relationship between each output Pi (i = 1,2,. . .,m) and n inputs can be
described by the following logic function:

P1 ¼ f1ðX1;X2; . . . ;Xn�1;XnÞ
P2 ¼ f2ðX1;X2; . . . ;Xn�1;XnÞ

..

.

Pm ¼ fmðX1;X2; . . . ;Xn�1;XnÞ

8>>>>><
>>>>>:

(4:2:1)

The objectives of this section are to
– Define combinational logic circuits
– Explain the analysis procedure of a combinational logic circuit
– Analyze the function of a combinational logic circuit by using logic gates
– Explain the design procedure of a combinational logic circuit
– Design a specified combinational logic circuit by using logic gates

4.2.1 Analysis of combinational logic circuits

The analysis of combinational logic circuits is to describe a given circuit with the logic
expressions and find the relationship between output variables and input variables,
and thus deduce the implementing functionality. The detailed analysis procedure is
shown in Figure 4.2.2.

Combinational
logic circuit 

X1 P1
P2X2

Xn–1 Pm–1
PmXn

Figure 4.2.1: Block diagram of combinational logic
circuits.

Combinational
logic circuit 

Writing
logic expressions

Minimized logic
expressions

Listing truth
table 

Determining
logic function

Simplified
Transformed

Figure 4.2.2: Analysis procedure of a combinational logic circuit.

80 4 Combinational logic circuits

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



First, determine the inputs and outputs of a given combinational logic circuit.
Second, write the logic expressions from inputs to outputs stage by stage accord-
ing to a logic circuit diagram and obtain the final logic expressions describing the
logic relationship between the input variables and output variables. Simplify or
transform the logic expressions appropriately. If the structure of the circuit is
complex, the logic expressions should be simplified with the Boolean algebra or
the Karnaugh map so that the logic relationship between inputs and outputs
becomes clear. Third, list the corresponding truth table from the resulting logic
expression. Finally, deduce the logic function of a given combinational logic
circuit by analyzing the relationship between outputs and inputs from the truth
table.

Example 4.1 Analyze the logic function of the circuit shown in Figure 4.2.3.

Solution
(1) This circuit is a combinational logic circuit with three input variables A, B, and C; an intermediate

output variable P1; and a final output variable P.
(2) Write the logic expression from inputs to outputs stage by stage as follows:

P1 =ABC (4:2:2)

P =AP1 +BP1 +CP1 (4:2:3)

Substitute eq. (4.2.2) into eq. (4.2.3) and then transform the logic expression into the standard
SOP form:

P =AABC þ BABC +C ABC

=ABCðA+B+CÞ
=ABC +A+B+C

=ABC + �A �B �C =m7 +m0 =
X

mð0; 7Þ

(4:2:4)

(3) List the truth table from the final logic expression in eq. (4.2.4).
There are three input variables and one output variable; thus, there are 23 = 8 possible
combinations of input variables. As only m0 and m7 appear in the logic expression, only two
combinations of input variables, 000 and 111, make the corresponding output yield a 1. The
resulting truth table is listed in Table 4.2.1.

A
PB

C

P1

Figure 4.2.3: Logic diagram of Example 4.1.
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(4) Deduce the logic function of the given combinational logic circuit from the truth table.
It can be found that the output is a HIGH (1) only when all the variables A, B, and C have the same
value and otherwise the output is a LOW (0). Therefore, the logic circuit in Figure 4.2.3 is used to
judge whether three inputs are the same or not and thus it is called “consistent judgment circuit.”

The consistent judgment circuit can be used in detecting the working state of
equipment with high reliability. Several devices are switched on at the same time; only
one device is actually working while all others are standby. As long as the working
device breaks down, the coincidence judgment circuit will send a trigger signal to cut
off the faulty device and put one of the standby devices into the working state.

Example 4.2 Analyze the logic function of the circuit shown in Figure 4.2.4.

Solution
(1) This circuit is a combinational logic circuit with four input variables A1, A0, B1, and B0 and four

output variables F4, F3, F2, and F1.
(2) Write the logic expression from inputs to outputs and transform them into simpler forms:

F4 ¼ A1B1 þ A0B0 ¼ A1B1 � A0B0 ¼ A1B1A0B0

F3 ¼ A1B1 � A0B0 ¼ A1B1 � A0 þ B0
� � ¼ A1A0B1 þ A1B1B0

F2 ¼ A1B0ð Þ¯ A0B1ð Þ ¼ A1B0ð Þ � A0B1ð Þ þ A1B0ð Þ � A0B1ð Þ
F1 ¼ A0B0 ¼ A0B0

8>>>>><
>>>>>:

(4:2:5)

Table 4.2.1: Truth table.

A B C P

   

   

   

   

   

   

   

   

F4

F3

F2

F1

A1
B1

A0
B0

Figure 4.2.4: Logic diagram.
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(3) List the truth table from the final logic expression in eq. (4.2.5).
The truth table is obtained by substituting 16 possible combinations of the four input variables
into eq. (4.2.5) and calculating the corresponding values of the output variables for each
combination of input variables, as shown in Table 4.2.2.

(4) Deduce the logic function of the circuit from the truth table.
This circuit has multiple outputs, and thus we should examine the values of four input variables
and four output variables at the same time to analyze the function of a circuit. It can be found
from Table 4.2.2 that this circuit implements themultiplication of two-bit binary numbers, where
A1A0 represents multiplicand, B1B0 represents multiplier, and F4F3F2F1 represents the product in
the form of four-bit binary numbers.

Example 4.3 Analyze the logic function of a circuit shown in Figure 4.2.5.

Solution
(1) This circuit is a combinational logic circuit with three input variables A, B, and C, and two output

variables P2 and P1.

Table 4.2.2: Truth table.

A A B B F F F F Comments

        ×
        ×
        ×
        ×
        ×
        ×
        ×
        ×
        ×
        ×
        ×
        ×
        ×
        ×
        ×
        ×

A

C

B P1

P2
Figure 4.2.5: Logic diagram.
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(2) Write the logic expression from inputs to outputs:

P1 =A¯B¯C = �A�BC + �AB�C +A�B�C +ABC

P2 = A¯Bð Þ � C = �A�B�C + �ABC +A�BC +AB�C

(
(4:2:6)

(3) List the truth table.
(4) Deduce the logic function of the circuit from the truth table.

When the number of 1s in the inputs is odd, then the output P1 is a 1 and the output P2 is a 0.
When the number of 1s in the inputs is even, P1 is a 0 and P2 is a 1. This circuit is a parity
generator. When odd number of 1s are applied to the inputs, a HIGH is produced on the output
P1, which acts as a flag representing an odd number of 1s are in the inputs; when even number of
1s are applied to inputs, a HIGH is produced on the output P2, which acts as a flag representing
an even number of 1s are in the inputs (Table 4.2.3).

4.2.2 Design of combinational logic circuits

The design of combinational logic circuits is also referred to as the synthesis of
combinational logic circuits. The requirements of a logic circuit are generally
described in words, or in the form of truth tables or waveforms. As logic problems
involved in practical engineering applications are different, various methods can be
used for different objects and requirements; even with the same design object, design
methods or ideas can be different. The implementation of digital circuits can use
small-scale integration (SSI), MSI, LSI, or PLD. Although the design method of a
combinational circuit is different for different objects, the description of basic logic
problem, design idea, and consideration of practical engineering problems have
some common objectives. There are three main objectives for the design of circuits:
one is to reduce the cost, which means that the number of gates or integrated chips
used is as few as possible for a logic circuit. Then, the design can guarantee a high
speed of performance for a circuit. Finally, the design can be simpler, which means

Table 4.2.3: Truth table.

A B C P(odd
number)

P(even
number)
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some parts can be reused as possible. Here, we focus on the design method of a
combinational logic circuit by using logic gates.

The design method for combinational logic circuits with logic gates is as
follows [26]:

Step 1Make logical abstraction in terms of the given practical problems by determin-
ing the required number of input and output variables, and then assign logical values
to variables.

An event can be abstracted as a logic problem only when causes and results of the
event can be clearly answered as “yes” and “no”, or “true” and “false”. The causes (or
conditions) of the event are referred to as input variables, and the results of the event
are referred to as output variables. The values of each input variable and each output
variable are either “1” or “0” representing “yes” and “no”, or “true” and “false”.

Step 2 Derive the truth table that defines the required relationship between inputs
and outputs from the given logic requirements.

It is an easy way to describe a practical logic problem with a truth table. The
correctness of the truth table is the prerequisite for a successful design. A truth table
should include all possible combinations of input values and their corresponding out-
put values. Additionally, the constraints of the problem should be considered as well.

Step 3Write the logic expression and make necessary simplification and transforma-
tion for the requirement of different devices.

When a combinational circuit is implementedwith logic gates, the logic expression
should be simplified and transformed into a suitable form in order to implement with
the given logic gates.

Step 4 Draw a logic diagram and verify the correctness of the design.
Draw a logic diagram in terms of the final logic expression. After completing the

circuit design, it is also necessary to carry out an analysis of the designed circuit to
verify if the circuit meets the requirements of practical logic problem.

The above-described steps are general procedure of designing a combinational logic
circuit by using logic gates. In a real engineering, a complete process of logic-circuit
design also includes additional steps as follows: replace the logic symbols in the diagram
with electronic components or integrated chips; then design a printed circuit board, and
finally complete the soldering, assembling, and debugging of the circuit board.

Example 4.4 Design a logic circuit to control a bulb “on” and “off.” As shown in Figure 4.2.6, the bulb
can be switched on or off no matter when people go downstairs or upstairs.

Solution

Step 1Make logical abstraction in terms of the given practical problems by determining the required
number of input and output variables and then assign logical values to variables.

According to the causality of this event, the controlled object is a bulb, and conditions to realize
the control are the states of two switches: upstairs and downstairs. The bulb has two states: “on” and
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“off”; and the switches have two states: “upward” and “downward.” So this event can be abstracted
as a logic proposition. Two switches are denoted by variables A and B, whose value equals to 1 when
they are switched upward and equals to 0 when they are switched downward; the bulb is denoted by
variable P, whose value equals to 1 when the bulb is on and equals to 0 when the bulb is off.

Step 2 Derive the truth table that defines the required relationship between inputs and outputs from
functional description of the circuit.

Assume that initial state is A = 0, B = 0, and the bulb is on. Note that if the assumption of initial
state is different, the designed circuit is different too. When the state of one switch changes, the
state of the bulb changes accordingly, but when the states of the two switches change at the same
time, the state of the bulb remains the same. The truth table of the circuit is shown in Table 4.2.4.

Step 3 Write the logic expression from the truth table.

The logic expression can be directly obtained from the truth table by summing the minterms
whose corresponding output equals to 1 as follows:

P=AB+ �A�B (4:2:7)

Equation (4.2.7) shows that the relationship between the two inputs is XNOR. It is already a
minimized SOP form, and no further simplification is needed.

Step 4 Draw a logic diagram from the logic expression.

Table 4.2.4: Truth table.

A B P

  

  

  

  

K

K

A

B

P

Figure 4.2.6: Illustration diagram.

A

P
B

A

B

A

B

Figure 4.2.7: Logic diagram of Example 4.4.
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Draw a logic diagram from the logic expression in eq. (4.2.7). The two stages of inverters in the
logic diagram serve as input buffers. They not only provide the input variables and its complement
forms, but also enhance the driving capability of the input signals (Figure 4.2.7).

Example 4.5 Design a car buzzer alarm circuit by using NAND gates. The buzzer alarms when both the
windows and the doors of the car are open, or when the car key is in the ignition position and the car
doors are open.

Solution

Step 1Make logical abstraction in terms of the given practical problems by determining the required
number of input and output variables and then assign logical values to the variables.

According to the causality of this event, the controlled object is a buzzer, and conditions to control
the buzzer are the states of windows, the doors, and the position of key. The buzzer has two states:
“alarm on” and “alarm off”; the windows and the doors have two states “opened” and “closed”; and
the position of the key is “ignition” or “shut”. So this event can be abstracted as a logic proposition.
The windows and doors are denoted by variables W and D, whose value equals to 1 when they are
opened and equals to 0 when they are closed; K = 1 denotes the key is in the ignition position, and
F = 1 denotes the buzzer alarm is on.

Step 2 Write the logic expression directly and list the truth table.
In terms of logic requirements, if both W = 1 and D = 1 or both D = 1 and K = 1, then F = 1. So the

logic expression can be directly written out as follows:

F =KD+WD (4:2:8)

And the truth table of a car buzzer alarm circuit is shown in Table 4.2.5.

Step 3 To implement the circuit only with NAND gates, eq. (4.2.8) should be converted into
NAND-NAND form as follows:

F =KD+WD=KD �WD (4:2:9)

Draw the logic circuit from eq. (4.2.9), as shown in Figure 4.2.8.

Table 4.2.5: Truth table.

D W K F
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Example 4.6 Design a code converter to convert an excess-3 code into the corresponding 8421BCD
code.

Solution

Step 1 According to the logic requirement, a code converter converts an excess-3 code into the
corresponding 8421BCD code. Thus, there are four input variables represented by E3, E2, E1, and E0,
and four output variables denoted by B3, B2, B1, and B0.

Step 2 List the truth table of the code converter shown in Table 4.2.6. The four input variables have 16
combinations. There are only ten valid combinations in excess-3 code, and thus the rest six
combinations do not exist, which can be treated as “don’t care” terms.

Step 3 Use the Karnaugh maps to simplify the logic functions with a consideration of the constraint
condition (don’t care terms), as shown in Figure 4.2.9.

Table 4.2.6: Truth table.

Decimal E E E E B B B B

        

        

        

        

        

        

        

        

        

        

    × × × ×
    × × × ×
    × × × ×
    × × × ×
    × × × ×
    × × × ×

D

K

W

F

Figure 4.2.8: Logic diagram.
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The logic expressions for four outputs are obtained from the Karnaugh map as follows:

B0 ¼ �E0

B1 ¼ E0E1 þ E0E1 ¼ E0¯E1

B2 ¼ �E2
�E0 þ �E2

�E1 þ E2E1E0 ¼ �E2E1E0 þ E2E1E0 ¼ E2 � ðE1E0Þ
B3 ¼ E3E2 þ E3E1E0

8>>>><
>>>>:

(4:2:10)

Step 4 According to the logic expressions, the logic diagram converting excess-3 code into 8421BCD
code is shown in Figure 4.2.10.

4.3 Adders

Adders are important not only in computers but also in many types of digital systems
in which numerical data are processed. The basic function of a computer is arithmetic
operations, and the adder operation is fundamental to the study of computers and
digital systems. Subtraction operation can be implemented with adders. In this
section, the half-adder and the full-adder are introduced first. Then you will learn
how to construct a multi-bit adder and applications of adders.

The objectives of this section are to
– Explain the function of a half-adder and draw a half-adder logic diagram

E0

E2

E3

E1

A

B

C

D
Figure 4.2.10: Logic diagram.
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Figure 4.2.9: The Karnaugh map.
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– Explain the function of a full-adder and draw a full-adder logic diagram using
two half-adders

– Apply full-adders to construct a multi-bit binary adder
– Explain ripple carry and look-ahead carry
– Expand the MSI adder to a more bit binary adder
– Apply the MSI adder to implement the subtraction of two binary numbers

4.3.1 Half-adders

The addition of two one-bit binary numbers is illustrated in Figure 4.3.1, where the
two one-bit binary numbers are denoted by A0 and B0; the sum of A0 and B0 is
denoted by S0; and the carry is denoted by C0. A logic circuit implementing the
addition operation of two one-bit binary numbers is called a half-adder.

The half-adder accepts two binary digits A0 and B0 on its inputs and produces
two binary digits on its outputs, a sum bit S0 and a carry bit C0.

From Figure 4.3.1, the truth table of a half-adder is listed below.

The logic expressions of outputs of a half-adder are deduced from Table 4.3.1 as
follows:

S0 ¼ A0
�B0 þ �A0B0 ¼ A0 ¯B0

C0 ¼ A0B0

(
(4:3:1)

From eq. (4.3.1), the logic implementation required for the half-adder function
can be developed. A half-adder can be implemented by an AND gate and an XOR gate,
as shown in Figure 4.3.2(a). An alternative scheme is to use three AND gates and an
OR gate, as shown in Figure 4.3.2(b). The logic symbol of a half-adder is shown in
Figure 4.3.2(c).

Table 4.3.1: Truth table of a half-adder.

A B C S

   

   

   

   

A0
B0
S0C0

0
0
00

0
1
10

1
0
10

1
1
01

Figure 4.3.1: Addition of two one-bit binary numbers.
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4.3.2 Full-adders

Ahalf-adder can only realize an addition of two one-bit binary numbers. However, for
the addition of two multi-bit binary numbers, a half-adder is not feasible as the input
carry is not considered.

The full-adder accepts two input bits and an input carry and generates a sum
output and an output carry.

The logic symbol of a full-adder is shown in Figure 4.3.3, where Ai and Bi are
input variables (operands), Ci–1 is an input carry, Si is the sum output, and Ci is the
output carry.

The truth table in Table 4.3.2 shows the operation of a full-adder.

The logic expressions of outputs for a full-adder can be deduced for the truth
table in Table 4.3.2 as follows:

Σ Si

Ci

Ai
Bi

Ci–1 Figure 4.3.3: Logic symbol for a full-adder.

A0

B0

S0

C0

A0
B0

S0

C0

A0

B0

B0

B0

S0

C0

A0

A0

Σ

(a) (b) (c)

Figure 4.3.2: Logic diagrams (a) and (b), and logic symbol (c) for a half-adder.

Table 4.3.2: Truth table for a full-adder.

Ai Bi Ci– Ci Si
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Si =
P

mð1; 2; 4; 7Þ
= �Ai

�BiCi− 1 þ �AiBi
�Ci− 1 þ Ai

�Bi
�Ci− 1 þ AiBiCi− 1

=Ai ¯Bi ¯Ci− 1

Ci =
P

mð3; 5; 6; 7Þ
=AiBi

�Ci− 1 þ AiBiCi− 1 þ Ai
�BiCi− 1 þ �AiBiCi− 1

=AiBi þ ðAi  ¯ BiÞCi− 1

8>>>>>>>>><
>>>>>>>>>:

(4:3:2)

It can be seen from eq. (4.3.2) that a full-adder can be implemented with two half
-adders and an OR gate, as shown in Figure 4.3.4.

Example 4.7 A logic circuit is shown in Figure 4.3.5.

(1) Write the logic expression of the output in the dashed box.
(2) Analyze the logic function of the circuit.
(3) Simulate the logic implementation with Multisim software.

Solution

(1) The circuit in the dashed box consists of four NAND gates, and its logic expression of the output
P2 is

Ci–1

Ci

Si

Ai

Ai ⊕ Bi ⊕ Ci–1

(Ai ⊕ Bi)Ci–1Ai ⊕ Bi

AiBiBi

Σ S

C

Σ S

C

Figure 4.3.4: A full-adder implemented with two half-adders and one OR gate

Ai
P1 P2 Si

Ci

Bi

Ci–1

Figure 4.3.5: Logic diagram of Example 4.7.
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P2 =AiP1 � BiP1

=AiAiBi � BiAiBi

=AiAiBi +BiAiBi

=Ai �Bi + �Ai Bi

=Ai¯Bi

(4:3:3)

It can be seen from eq. (4.3.3) that the circuit in the dashed box implements an XOR operation.
(2) The circuit shown in Figure 4.3.5 is a combinational circuit with multiple outputs. Its logic

expressions of the outputs are

Si ¼ P2¯Ci�1 ¼ Ai¯Bi¯Ci�1

Ci ¼ P1 � P2 � Ci�1 ¼ P1 þ P2 � Ci�1 ¼ AiBi þ ðAi¯BiÞCi�1

(
(4:3:4)

Comparing eq. (4.3.4) with eq. (4.3.2), you can find that the circuit shown in Figure 4.3.5 is a full-
adder, which can realize the addition of two input bits and an input carry.

(3) Multisim software is used to simulate the logic implementation by the following steps. The first
step is to draw the logic diagram in terms of Figure 4.3.5, as shown in Figure 4.3.6; the second
step is to connect the inputs of the circuit with a digital signal generator and set the output of
the signal generator to generate a three-bit binary digit representing Ai, Bi, and Ci–1; the final
step is to connect a logic analyzer for displaying the signals of Ai, Bi, Ci–1, Si, and Ci.

The simulation waveform by the logic analyzer is shown in Figure 4.3.7. Through checking the
logic relationship between outputs and inputs, you can find that the logic function of the circuit in
Figure 4.3.5 accords with a full-adder.

Figure 4.3.6: Simulation logic diagram.

Ci–1

Si
Ci

Bi

Ai

Figure 4.3.7: A simulation waveform.
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4.3.3 Multi-bit binary adders

A single full-adder can only add two one-bit binary numbers and an input carry. To
add binary numbers with more than one bit, additional full-adders must be used. For
example, two four-bit binary numbers, A3A2A1A0 and B3B2B1B0, are added together
for illustrating how to add two multi-bit binary numbers. To add two four-bit binary
numbers, four full-adders are used. It begins with the addition of two least significant
bits (LSB), A0 and B0, and thus the LSB sum bit, S0, and carry output, C0, are
produced. The carry output, C0, is connected to the carry input of the next higher-
order full-adder and the addition operation of the adjacent higher-order bit, A1 and
B1, starts. This addition operation continues until the addition of the most significant
bit (MSB), A3 and B3, is accomplished. Figure 4.3.8 shows the block diagram of a four-
bit binary adder using four full-adders. Notice that only an LSB full-adder can be
substituted by a half-adder since the carry input of a LSB full-adder is a 0.

When the addition of two multi-bit binary digits is implemented by using several
full-adders, the carry output of each full-adder is connected to the carry input of the
next higher-order stage, which is called a ripple carry. For a ripple carry adder , the
sum and the output carry of any stage cannot be produced until the input carry
occurs; as a result, a time delay will occur in the addition process.

To speed up the addition process by eliminating this ripple carry delay, a look-
ahead carry adder is designed. For the look-ahead carry adder [27], the output carry of
each stage is obtained directly from the input bits of each stage by using logic circuits
rather than being generated and propagated bit by bit. Thus, the addition operation
of different bits is carried out simultaneously. As a result, the time delay will be
reduced. However, with the increase of bits, the complexity of the look-ahead carry
adder increases.

The structure diagram of a look-ahead carry adder is shown in Figure 4.3.9,
where F4–F1 are combinational circuits with inputs including the input carry C0,
the addends A3A2A1A0 and B3B2B1B0.

Σ Σ Σ Σ

S3

A3

C3

C2 C1 C0

C–1

B3 A0 B0A1 B1A2 B2

S0S1S2

Figure 4.3.8: A four-bit binary adder using four full-adders.
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4.3.4 MSI adders

The medium-scale integrated four-bit adder 74LS283, as a look-ahead carry full
adder, can complete the addition of two four-bit binary digits. For the 74LS283, VCC

is pin 16 and ground is pin 8, which is a more standard configuration. Pin diagram
and logic symbol for 74LS283 are shown in Figure 4.3.10, where A3, A2, A1, A0 and B3,
B2, B1, B0 are inputs of two four-bit binary digits, S3, S2, S1, S0 are sum outputs, C0 is
the input carry, and C4 is the output carry.

Two four-bit parallel adders can be cascaded to implement the addition of two
eight-bit binary numbers, as shown in Figure 4.3.11. The carry input of the low-order
adder (C0) is connected to ground due to no carry into the LSB position, and the carry
output of the lower-order adder (C4) is sent to the carry input of the next higher-order
adder. The output carry is designated C8 that comes from the output carry of the high-
order adder. The lower-order adder completes the addition of the lower or less

C3

A3 B3

F3

S3

C2

A2 B2

F2

S2

C1

A1 B1

F1

S1

A0 B0

S0

C0

F4

C4

Σ Σ Σ Σ

Figure 4.3.9: Structure diagram of a four-bit look-ahead carry adder.

74LS283

A3 B3 B2 B1 B0A2 A1 A0

C4 C0

S3 S2 S1 S0

531412 621511

10 13 1 4

9 7
74LS283

A3A2

A1 A0

B3B2

B1 B0

C4

C0

S3S2

S1 S0

16 15 14 13 12 11 10 9

1

(a) (b)

2 3 4 5 6 7 8
GND

VCC

Figure 4.3.10: The MSI four-bit parallel adder 74LS283: (a) pin diagram and (b) logic symbol.
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significant four bits in the eight-bit binary numbers and the higher-order adder
implements the addition of the higher or more significant four bits in the eight-bit
binary numbers. Similarly, four four-bit adders can be cascaded to handle the addi-
tion of two 16-bit binary numbers.

Example 4.8 Analyze the logic function of the circuit shown in Figure 4.3.12. The circuit consists of a
four-bit adder 74LS283 and four inverters.

Solution
From Figure 4.3.12, you can find that B3B2B1B0 is the 1’s complement of D3D2D1D0. Since C0
is connected to 1, the 2’s complement of D3D2D1D0 is then generated by the addition of B3B2B1B0 and
1. Thus the circuit is actually the addition of A3A2A1A0 and the 2’s complement of D3D2D1D0.

Assume that A3A2A1A0= 1100 and D3D2D1D0= 0011, and the output result of the circuit is
illustrated in Figure 4.3.13(a). Since the output carry C4 is a 1, which represents that the sum is
positive, this corresponds to 12−3 = 9 in a decimal number system.

C8
74LS283

(II)

A3 A2 A1 A0 B3 B2 B1 B0 A3 A2 A1 A0 B3 B2 B1 B0

C4 C0

S3 S2 S1 S0

74LS283
(I)C4 C0

S3 S2 S1 S0

A3 A2 A1 A0 B3 B2 B1 B0A7 A6 A5 A4 B7 B6 B5 B4

S7 S6 S5 S4 S3 S2 S1 S0

Figure 4.3.11: A cascade connection of two four-bit adders 74LS283 to form an eight-bit adder.

74LS283

A3 A2 A1 A0 B3 B2 B1 B0

C4 C0

S3 S2 S1 S0

"1"

A3 A2 A1 A0 D3 D2 D1 D0

Figure 4.3.12: Logic diagram of Example 4.8.

1

1

(a) (b)

1 0 0
1+ 1 0 1
1 0 0 1

2's complement
of  0011 +

0

0

0 1 1
0 1 0 0
0 1 1 1

2's complement of 1100 
2's complement of sum is 1001 

Figure 4.3.13: Output of the circuit in Figure 4.3.12: (a) 12-3 and (b) 3-12.

96 4 Combinational logic circuits

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



Assume that A3A2A1A0= 0011 and D3D2D1D0= 1100, the output of the circuit is illustrated in
Figure 4.3.13(b). The output carry C4 is a 0, which represents that the sum is negative. The correct
result should be the 2’s complement of the sum, which corresponds to 3−12 = –9 in the decimal
number system.

In summary, the logic function of the circuit shown in Figure 4.3.12 is the subtraction of two four-
bit binary digits.

Example 4.9 A code converter consisting of a 74LS283 and NOR gates is shown in Figure 4.3.14.
Assuming the input DCBA is a BCD8421 code, what kind of code is the output S3S2S1S0?

Solution
The logic expressions of B3B2B1B0 are as follows:

B3 ¼ B0 ¼ 0

B2 ¼ B1 ¼ Dþ C þ Dþ Bþ A ¼ ðDþ CÞðDþ Bþ AÞ ¼ Dþ AC þ BC

(

74LS283

A3 A2 A1 A0 B3 B2 B1 B0

C4 C0

S3 S2 S1 S0

D C B A

Figure 4.3.14: Logic diagram of Example 4.9.

Table 4.3.3: Function table of Example 4.9.

D C B A B B B B S S S S
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According to the logic function of 74LS283, the function table of the circuit is obtained in
Table 4.3.3.

It is found from Table 4.3.3 that when the input is 8421BCD code, the output S3S2S1S0 is 2421BCD
code.

4.4 Encoders and decoders

Digital systems and computers can only process information represented by a group
of binary codes, while human being is accustomed to decimal numbers and the
alphabetic characters for representing various information. Therefore, it is very
important for translating various information such as decimal numbers, words, and
alphabetic characters into a coded form or vice versa so that computers and digit
systems can recognize the information to control their peripheral devices as well as
the interaction with human being. In digital systems, encoders and decoders are
designed to realize the “translation” function, which are illustrated in Figure 4.4.1.

The function of the encoder in Figure 4.4.1 is to encode the four keys with binary
codes so that the microprocessor can recognize which key is pressed through check-
ing the output of the encoder. On the contrary, the decoder is to convert the coded
information outputting from the microprocessor into decimal numbers or alphabetic
character so that the information in decimal numbers or alphabetic characters can be
directly displayed.

The process of converting from various information including words, numbers,
and alphabetic characters into a coded format is called encoding. The encoding is
performed by a logic circuit called an encoder, and the process of converting from a
coded format to a noncoded information is called decoding. The decoding is per-
formed by a logic circuit called a decoder. This section introduces encoders, deco-
ders, and their applications.

The objectives of this section are to
– Define an encoder and a decoder
– Determine logic function of binary encoders and decoders

Micro
processor DecoderEncoder

S1
S2

S0

S3

+5 V

1 kΩ×4

Figure 4.4.1: Application of an encoder and a decoder.
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– Explain the priority feature in an encoder
– Describe the 74LS147 decimal-to-BCD priority encoder and the 74LS148 8-to-3

priority encoder
– Apply the encoder and the decoder for expansion purposes
– Describe the 74LS138 3-to-8 decoder and the 7474HC42 BCD-to-decimal decoder
– Apply the 74LS138 to design any combinational logic circuits
– Explain the principle of seven-segment display decoder
– Explain the difference between a common-cathode LED and a common-anode

LED

4.4.1 Encoders

An encoder accepts an active level on one of its inputs representing specific informa-
tion and converts it into a coded format output. It is a type of combinational logic
circuits with multi-input and multi-output. If an encoder has m-input signals and n-
bit binary code outputs, m should be less than or equal to 2n. The commonly used
encoders include binary encoders and BCD encoders.

1. Binary encoders
A binary encoder converts noncoded information, such as a decimal number and an
alphabetic character, into a binary code. An n-bit binary code can represent 2n events.
Thus, the logic circuit encoding 2n events into n-bit binary code are called 2n-to-n
binary encoder. A binary encoder has 2n inputs and n outputs. Only one of the input
signals of binary encoder is valid at any time and the active level can be defined by a
HIGH (1) or a LOW (0). That is say, if an input is in the active state, then an n-bit binary
code will be output. Notice that only one input is in the active state and other inputs
are in opposite level. If multiple valid signals are inputted simultaneously, encoder
cannot give the correct code.

Example 4.10 Design a 4-to-2 binary encoder to encode four keys: “up,” “down,” “left,” and “right.”
Each time only one key is allowed to be pressed. When the key is pressed, the encoder can output the
corresponding two-bit binary code and also offer a flag signal to inform a microprocessor to start a
key processing function.

Solution

(1) Let S0, S1, S2, S3 represent the “up,” “down,” “left,” and “right” keys, respectively. When
a key is pressed, its corresponding input level is a 0; otherwise, the input is a 1. Four
keys can be represented by two-bit binary code, D1D0. The output flag signal of the
encoder is denoted by INT0. The active level of INT0 is a HIGH, that is, INT0 = 1 when a
key is pressed.

(2) List the truth table from the logic requirement, as shown in Table 4.4.1. According to the
requirement, only one key is pressed each time. That is say, only one input is an active level
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(0) and other inputs are in opposite level (1). Therefore, if more than one zero occurs in the
combination of input levels, then the combination is invalid and can be treated as “don′t care”
term indicated by “×.”

(3) Simplify the logic expressions using the Karnaugh map. The Karnaugh map of the 4-to-2
encoder are shown in Figure 4.4.2.

Logic expressions of outputs of the 4-to-2 binary encoder are obtained as follows:

D1 ¼ S3S2 ¼ S3 þ S2

D0 ¼ S3S1 ¼ S3 þ S1

INT0 ¼ S3S2S1S0 ¼ S3 þ S2 þ S1 þ S0

8><
>: (4:4:1)

Table 4.4.1: Truth table.

S S S S D D INT

      

      

      

      

      

    × × ×
    × × ×
    × × ×
    × × ×
    × × ×
    × × ×
    × × ×
    × × ×
    × × ×
    × × ×
    × × ×

1

0

1

0

S3S2
01

00

01

11

10

00 11 10
S1S0D1 D0

1

1

0

0

01

00

01

11

10

00 11 10S3S2 S3S2

S1S0 S1S0INT0

1

1

1

1

01

00

01

11

10

00 11 10

× × × ×

×

×

×

0

×

× × ×

× × × ×

×

×

×

0

×

× × ×

× × × ×

×

×

×

0

×

× × ×

Figure 4.4.2: Karnaugh maps of Example 4.10.
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It can be found from eq. (4.4.1) that if S2 or S3 is pressed, then D1 = 1; if S1 or S3 is pressed, then
D0 = 1. No matter which key is pressed, the output flag INT0 = 1.
(4) Draw the logic diagram implemented with NAND gates, as shown in Figure 4.4.3.

2. Priority encoders
A priority encoder is a type of logic circuit that only produces a binary code
corresponding to the active input with the higher order and will ignore any other
active inputs with lower order. If there are multiple active inputs at the same time for
a priority encoder, only one input with the highest-order priority is encoded.

Example 4.11. Design a priority encoder to encode four keys in Example 4.10. Assume that key S3 has
the highest-order priority and key S0 has the lowest-order priority.

Solution

(1) Simply the truth table according to the logic requirements.
Assume that the active input level is a LOW. S0 has the lowest-order priority. Thus, the output
D1D0 = 00 only when S3, S2, and S1 are not pressed and S0 is pressed. S3 has the highest-order
priority. Thus, no matter whether S2, S1, and S0 are pressed, the output D1D0 = 11 only if S3 is
pressed, which is denoted by S3S2S1S0 = 0××× in the truth table. Similarly, the simplified
truth table is shown in Table 4.4.2.

This priority encoder performs the same 4-to-2 encoding function as in Example 4.10. But it
allowsmultiple active inputs at the same time. All combinations of inputs have their correspond-
ing output codes. Therefore, there is no constraint for inputs.

(2) The Karnaugh maps are shown in Figure 4.4.4, and the minimized logic expressions of outputs
for a 4-to-2 priority encoder are obtained as follows:

S2

S3

S1

S0

D1

D0

INT0

Figure 4.4.3: Logic diagram of a 4-to-2 binary encoder of Example 4.10.

Table 4.4.2: Truth table.

S S S S D D INT

      

      

   ×   

  × ×   

 × × ×   
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D1 ¼ S3S2 ¼ S3 þ S2

D0 ¼ S3 þ S2S1

INT0 ¼ S3S2S1S0 ¼ S3 þ S2 þ S1 þ S0

8><
>: (4:4:2)

(3) A logic circuit diagram of the priority encoder is shown in Figure 4.4.5.

Comparing the priority encoder in Figure 4.4.5 with the basic binary encoder in Figure 4.4.3, you
can find that the structure of a priority encoder ismore complex than that of a binary encoder. However,
a priority encoder is more effective for practical applications as there is no constraint for inputs.

3. MSI priority encoders
74LS147 and 74LS148 are commonly used MSI priority encoders. The 74LS147 is an
MSI decimal-to-BCD priority encoder with eight active-LOW inputs (0),D0 throughD9,
representing decimal digits 1 through 9 and four active-LOW BCD outputs,
�A3

�A2
�A1
�A0[28]. The output is zero when none of the inputs is active. Pin diagram

and logic symbol are shown in Figure 4.4.6.
The 74LS148 is an MSI 8-to-3 priority binary encoder with eight active-LOW

inputs, �I0~�I7, and three active-LOW outputs, �QC
�QB

�QA. It can convert eight inputs

into a three-bit binary code. Input �I7 has the highest-order priority and input �I0 has

the lowest-order priority. EI is an active-LOWenable input to enable the device.When

EI=1, encoder is disabled and all outputs are at a HIGH level. It also has an enable

output, EO, and group signal output, GS, for expansion purposes. EO is a LOW when

1

0

1

0

01

00

01

11

10

00 11 10
D1 D0

1

1

0

0

01

00

01

11

10

00 11 10S3S2S3S2 S3S2

S1S0S1S0 S1S0INT0

1

1

1

1

01

00

01

11

10

00 11 10

1 1 1 1

1

0

1 1

1 1 1

0

1 1 1 1

1

1

1 1

0 0 0

0

1 1 1 1

1

1

1 1

1 1 1

0

Figure 4.4.4: The Karnaugh map.

S2

S3

S1

S0

D1

D0

INT0
Figure 4.4.5: Logic diagram.
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EI is a LOW and none of the inputs is active. GS is a LOWwhen EI is a LOW and any of
the inputs are active, which indicates that the encoder is encoding. The function table
of the 74LS148 8-to-3 priority encoder is shown in Table 4.4.3. Figure 4.4.7 shows the
logic symbol of 74LS148. The small circles represent that the active level is a LOW.

HPRI/BCD

1 2 3 4 5 6 7 8

(1)(11)

(6) (14)

(16) (8)
74LS147

D2A3

D6 D8

D1NC

D5

D9D3

D4 D7

16 15 14 13 12 11 10 9

1 2

(a) (b)

3 4 5 6 7 8
GND

VCC A0

A2 A1

VCC GND

9

8421

(7)(9)
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Figure 4.4.6: The 74LS147 decimal to BCD priority encoder (HPRI means highest-order input has
priority): (a) pin diagram and (b) logic symbol.

Table 4.4.3: Function table of the 74LS148 8-to-3 priority encoder.

Inputs Outputs

EI �I0 �I1 �I2 �I3 �I4 �I5 �I6 �I7 GS �QC
�QB

�QA EO

 × × × × × × × ×     

             

 × × × × × × ×      

 × × × × × ×       

 × × × × ×        

 × × × ×         

 × × ×          

 × ×           

 ×            

             

74LS148

QC

I0 I1 I2 I3 I4 I5 I6 I7 EI

QB QAEO GS

10 11 12 13 1 2 3 4 5

15 6 7 9 14

Figure 4.4.7: Logic symbol of the 74LS148 8-to-3 priority
encoder.
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Using EI, EO, and GS, two 74LS148s can be cascaded to construct a 16-to-4

priority encoder, as shown in Figure 4.4.8. The enable output EO of the higher-

order encoder is connected to the enable input EI of the lower-order encoder. The
final outputs are obtained by the NAND gates with the corresponding binary outputs

as inputs. The highest bit output is the complement of GS for the higher-order
encoder by using an inverter. This particular configuration produces active-HIGH
outputs for the four-bit binary number.

4.4.2 Decoders

Decoding is a reverse process of encoding. A decoder is a combinational circuit
converting coded information, such as a binary number, into a noncoded form, such
as a decimal form. The basic function of a decoder is to detect the presence of a
specified combination of code on its inputs and to indicate the presence of that
code by a specified output level. Generally, a binary decoder has n-input lines to
handle n-bit input code and from one to 2n output lines to represent the presence of
one or more n-bit combination. Generally, there are two types of decoders: general-
purpose decoders and display decoders.

General-purpose decoders include binary decoders, BCD-to-decimal decoders,
and code converters. Binary decoders and BCD-to-decimal decoders are also called
variable decoders. Each output of a variable decoder corresponds to a minterm of
input variables. Thus variable decoders can be used as demultiplexers and the
implementation of any combinational logic circuits. Code converters can transform
one kind of code to another.

Display decoders are to convert binary codes on their inputs and provide outputs
to drive display devices.

74LS148 (I) 74LS148 (II)

QC QB QAEO GS QC QB QAEO GS

EI

I0 I1 I2 I3 I4 I5 I6 I7

I0

B0 B1 B2 B3

I1 I2 I3 I4 I5 I6 I7 EII0 I1 I2 I3 I4 I5 I6 I7

I8 I9 I10 I11 I12 I13 I14 I15 EI2EI1

GS1 GS2
EO2

EO1

Figure 4.4.8: Expansion of 74LS148.
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1. Variable decoders
A decoder is a multi-input and multi-output combinational logic circuit. For each
group of input codes, only one output among all outputs of the decoder is in activated
level and other outputs are in opposite levels. This kind of decoder is called a variable
decoder. Assume that a variable decoder has n-bit inputs andm outputs. Ifm is equal
to 2n, then the variable decoder is called binary decoder or n-to-2n decoder. Some
commonly used binary decoders include 2-to-4 decoder, 3-to-8 decoder, and 4-to-16
decoder. If m is less than 2n, then the variable decoder is called partial decoder, for
example, BCD-to-decimal decoder. The corresponding outputs should be 2n outputs
to decode all combinations of n bits.

(1) A 2-to-4 decoder
In order to decode all possible combinations of two bits, four outputs are required
(22 = 4). This type of decoder is commonly called a 2-line-to-4-line decoder or a 2-to-4
decoder since there are two inputs and four outputs. For any given code on the
inputs, one of four outputs is activated. Assume that the active level is a LOW, the
truth table of a 2-to-4 decoder is shown in Table 4.4.4. The logic expression of
outputs can be deduced from the truth table as follows:

�Y0 = �S�A�B, �Y1 = �S�AB, �Y2 = �SA�B, �Y3 = �SAB (4:4:3)

where A and B are two-bit inputs, �Y0–�Y3 are four active-LOW outputs, and �S is an
enable input.

Figure 4.4.9 shows the logic diagram of a 2-to-4 decoder by using NAND gates.
When �S is a LOW, the decoder is enabled. For any given code on the inputs, only one
of four outputs is a LOW and other outputs are in opposite level (HIGH). The logic
expression of outputs can be expressed as

�Y0 = �A�B=m0, �Y1 = �AB= =m1, �Y2 =A�B=m2, �Y3 =AB=m3 (4:4:4)

Table 4.4.4: Truth table.

Inputs Outputs

�S A B Y0 Y1 Y2 Y3

 × ×    
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That is to say, each output of the 2-to-4 decoder corresponds to the complement
of a minterm of the two-bit inputs.

If the active level is a HIGH, only one of four outputs is a HIGH and other outputs
are in opposite level (LOW) for any given code on the inputs. When �S is an active-
LOW, the logic expression of outputs can be expressed as

Y0 = �A�B=m0, Y1 = �AB=m1, Y2 =A�B=m2, Y3 =AB=m3 (4:4:5)

In this situation, each output of the 2-to-4 decoder corresponds to a minterm of
two-bit inputs, which means that four NAND gates should be replaced by four AND
gates as shown in Figure 4.4.9, and a HIGH output indicates the presence of the
proper binary code.

(2) An MSI 3-to-8 decoder
The 74LS138 is a good example of aMSI decoders [20]. Its logic diagramand logic symbol
are shown in Figure 4.4.10. It has three inputs A2A1A0 and eight outputs �Y7–�Y0, so it is
called a 3-line-to-8-line decoder or a 3-to-8 decoder. An enable function (EN) is
provided on this device, which is implemented with a three-input AND gate. G1,
�G2A, and �G2B are three enable inputs for expansion purposes. When a LOW level is

applied on �G2Aand �G2B, and a HIGH level on G1, EN is a HIGH level, and thus the

A

S

B

Y3 Y2 Y1 Y0

Figure 4.4.9: Logic diagram of a 2-to-4 decoder.

G1

(a)

A1 A0A2

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
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2

0
1

EN
&

Y1
Y2
Y3

Y4
Y5
Y6
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2

0
1

5
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Figure 4.4.10: Logic diagram (a) and logic symbol (b) of the 74LS138 3-to-8 decoder.
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decoder performs the decoding function. For any given combination of the input
variables, A2, A1, A0, only one of eight outputs is a LOW and other outputs are in
opposite level (HIGH). When EN is a LOW, then the decoder is disabled and all
decoder outputs are HIGH regardless of the states of the three inputs, A2, A1, and A0.

The function table of 74LS138 is shown in Table 4.4.5.

When EN = 1, the logic expressions of outputs can be derived from Table 4.4.5 as
follows:

�Y0 ¼ A2A1A0 ¼ m0; �Y1 ¼ A2A1A0 ¼ m1; �Y2 ¼ A2A1A0 ¼ m2; �Y3 ¼ A2A1A0 ¼ m3

�Y4 ¼ A2A1A0 ¼ m4; �Y5 ¼ A2A1A0 ¼ m5; �Y6 ¼ A2A1A0 ¼ m6; �Y7 ¼ A2A1A0 ¼ m7

Each output of the 3-to-8 decoder corresponds to the complement of aminterm of
three-bit input.

Figure 4.4.11 shows a simulation circuit diagram of a 74LS138. A digital signal
generator is connected to inputs for providing the required four-bit natural binary
codes, which are continuously applied to the enable input �E1 and the three inputs,
A2, A1, and A0. A logic analyzer is connected to record inputs and outputs of the
74LS138.

Simulation waveforms obtained by the logic analyzer is shown in Figure 4.4.12.
When �E1 = 1, the decoder is prohibited and thus all outputs are at a HIGH level. When
�E1 = 0, the decoder performs the decoding function. The three-bit natural binary

codes are continuously applied to inputs A2, A1, and A0. The outputs �Y0–�Y7 will

Table 4.4.5: Function table of 74LS138.

Inputs Outputs

�G2A
�G2B G1 A A A Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

 × × × × ×        

×  × × × ×        

× ×  × × ×        
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produce a LOW output in sequence with an increase of the input value from 000 to
111. At any time, only one output is an active-LOW output and the other outputs are at
a HIGH level.

(3) 8421BCD-to-decimal decoders
An 8421BCD-to-decimal decoder converts each 8421BCD code into one of ten possible
decimal digit indications. It is often called a 4-line-to-10-line decoder or a 1-of-10
decoder.

The 74HC42 is a commonly used MSI 8421BCD-to-decimal decoder [6]. Its func-
tional table is given in Table 4.4.6 and the corresponding logic symbol is shown in
Figure 4.4.13. For any given combination of input variables, A3, A2, A1, A0, only one of
ten outputs is a LOW and other outputs are in opposite level (HIGH). Because four-bit
binary codes from 1100 to 1111 do not belong to 8421BCD, they are called pseudocodes
or “unallowable codes.” When these six binary codes are applied to inputs, all out-
puts are at HIGH levels.

Figure 4.4.11: Simulation circuit diagram of Example 4.11.

E1

A1

A2

A0

Y0
Y1 Y2
Y3 Y4
Y5 Y6
Y7

Figure 4.4.12: Simulation waveforms of Example 4.11.
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(4) Applications of decoders
Decoders have many typical applications. A common application is in microproces-
sors for input/output (I/O) selection, as shown in Figure 4.4.14 [6]. Microprocessors
must communicate with a variety of external devices called peripherals. The periph-
erals can be printers, modems, scanners, and others. A 3-to-8 decoder is connected
between the microprocessor and peripherals. Its inputs are connected with the
address lines of the microprocessor and its outputs are connected with the CS (chip
select) of peripherals to select the peripheral as determined by the microprocessor so
that the data can be sent or received from a specific peripheral. Each peripheral has a
unique number, called an address, for identifying itself in the system. When the
microprocessor needs to communicate with a specific peripheral, it arranges an
appropriate address code for each peripheral. This binary address is decoded and
the corresponding decoder output is activated to enable a particular peripheral. The

BIN/DEC
Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

A1
A2

A0

2

0
1

2

0
1

5

3
4

6
7

A3 3

8
9

Y8

Y9
Figure 4.4.13: The logic symbol of the 74HC42 1-of-10 decoder.

Table 4.4.6: Function table of 74HC42.

Inputs Outputs

A A A A Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9
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parallel data lines D0–D7 of the peripherals are connected with the eight-bit data bus
to the microprocessor so that the binary data are transferred within the micropro-
cessor on a data bus.

The 74LS138 3-to-8 decoder is arranged with three enable inputs for expansion
purposes. With these enable inputs, decoders can be cascaded to form a larger-
scale decoder. For instance, two 74LS138 chips can be cascaded to construct a 4-to-
16 decoder, as shown in Figure 4.4.15.

Since one 74LS138 can only handle three-bit binary code for inputs that can
select eight outputs, in order to implement a 4-to-16 decoder, two decoders must be
used to decode four bits. The lower three-bit inputs, A2, A1, and A0, of two decoders

Micro
processor

D0

D7

~Data
lines

Address
lines

A0

A12

A13

A14

A15

74LS138

1
0
0

D0~D7 D0~D7 D0~D7

CS Device 1 CS CS

8-bit data bus

Device 2 Device 8

Figure 4.4.14: Example of a 3-to-8 decoder for an address decoder connected with a microprocessor
and peripherals.
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Figure 4.4.15: A 4-to-16 decoder using the cascaded 74LS38s.
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are connected together and the MSB input A3 is connected to the enable inputs of the
two decoders. When A3 = 0, chip II is disabled, and its outputs are at a HIGH level;
chip I is enabled, and the binary codes 0000–0111 are decoded. When A3 = 1, chip I is
disabled and chip II is enabled to decode the binary codes 1000–1111. Therefore,
when the binary number is less than eight, the lower-order (chip I) is enabled and the
higher-order decoder (chip II) is disabled, whereaswhen the binary number is greater
than or equal to eight, the higher-order decoder is enabled and the lower-order one is
disabled.

In addition, an important application of decoders is to design arbitrary combina-
tional logic circuits. In the previous part, you learnt that each output of binary
decoders corresponds to a minterm or the complement of a minterm, and any logic
expression can be converted into a standard sum-of-products form. Therefore, any
combinational logic circuit can be constructed with decoder and additional several
logic gates.

Example 4.12 Implement a full adder with a 74LS138 and two NAND gates.

Solution
The output logic expressions of a full adder have been already deduced in Section 4.3 as follows:

Si ¼
P

mð1;2;4; 7Þ
Ci ¼

P
mð3; 5;6; 7Þ

(

Each output of the 74LS138 is the complement of a minterm of input variables, so the output
logic expression of a full adder should be transformed into the form of the complement of a minterm.
Boolean algebra is applied to transform logic expression as follows:

SiðAi;Bi;Ci�1Þ ¼ m1 þm2 þm4 þm7 ¼ m1 �m2 �m4 �m7

CiðAi;Bi;Ci�1Þ ¼ m3 þm5 þm6 þm7 ¼ m3 �m5 �m6 �m7

(
(4:4:6)

It can be seen from eq. (4.4.6) that a full adder can be implemented with a 74LS138 and two
NAND gates, as shown in Figure 4.4.16, where Ai, Bi, Ci–1 are applied to A2, A1, and A0, respectively.

BIN/OCT

Bi
Ai

Ci–1

1
0
0

Si

Ci

1

EN

2

0 0
1
2
3
4
5
6
7

74LS138

&

Figure 4.4.16: Logic diagram.
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Example 4.13 Implement the logic expression PðA,B, CÞ=AC +BC with a 74LS138 and an AND gate.

Solution
Since the given logic expression is a nonstandard SOP form, you should convert it into a standard
SOP form by using Boolean algebra as follows:

PðA,B,CÞ= AðB+ �BÞC + ðA+ �AÞBC =m3 +m5 +m7 =m0 +m1 +m2 +m4 +m6 =m0 �m1 �m2 �m4 �m6

The logic diagram implemented with a 74LS138 and an AND gate is shown in Figure 4.4.17.

2. Display decoders
(1) Display devices and decoders
Currently, light-emitting diodes (LEDs) [29] and liquid-crystal displays (LCDs) [30] are
commonly used display devices in electronic systems. Both of them can be divided
into two categories: segment display and dot-matrix display. A segment display
device usually consists of several segments. Numbers and alphabetic characters
can be displayed by applying the required voltage to the corresponding segments,
as shown in Figure 4.4.18(a). Matrix-dot display devices usually consist of a matrix of
light-emitting dots, and numbers and alphabetic characters are displayed by driving
different dots, as shown in Figure 4.4.18(b).

BIN/OCT

B
A

C

1
0
0

P

1
2

0 0
1
2
3
4
5
6
7

&

EN

Figure 4.4.17: Logic diagram.
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c

d

e g

dp
(a) (b)

Figure 4.4.18: Illustration diagram of segment display (a) and dot-matrix display (b).
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Here we only focus on the introduction of LEDs. LEDs are display devices that
consist of LEDs made of semiconductor materials such as gallium arsenide and
gallium arsenide phosphide. When a 10 mA forward-biased current flows through
an LED, it will emit light with several different colors such as red, green, yellow,
orange, and blue.

The dimensions of segment LED displays are small and are widely used for the
display of instruments. The dimensions of dot-matrix LED displays are comparatively
larger. They are typically used for large or very large display screens and can display
complex Chinese characters and images.

LED display devices can be divided into two categories: common cathode and
common anode. Seven-segment LED display is a commonly used LED display device,
as shown in Figure 4.4.19. It has seven-segment LEDs with the seven control inputs
from segment a to g. Decimal numbers from 0 to 9 can be displayed by driving the

corresponding segments and fractional point segment dp. All anodes in a common-
anode seven-segment LEDs should be connected together to a positive power supply,
thus this requires an active-LOW input to make the corresponding segment LED to
send out light. On the contrary, all cathodes in a common-cathode seven-segment
LED should be connected together to a ground, and this requires an active-HIGH
input tomake the corresponding segment LED to give out light. Notice that a 300–500
Ω current-limiting resistor is typically connected in series with each segment LED to
protect diodes. Figure 4.4.19(c) shows the pin diagram of a commonly used seven-
segment LED.

Display decoders are a type of combinational circuits to accept binary codes on
its inputs and provide outputs to drive display device to produce the corresponding
numbers and alphabetic characters.

a

com
(–)

b c d e f g dp

a

(a) (b) (c)

b c d e f g dp

(+)
com

f a b

c
d

e g

dp

com

com

a b

c dpde

g f

Figure 4.4.19: Seven-segment LED: (a) common anode; (b) common cathode; and (c) pin diagram.
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Example 4.14 Design a display decoder to accept binary codes on its inputs and provide outputs to
drive a common-anode seven-segment LED to display the fonts shown in Figure 4.4.20.

Solution

(1) Logic abstraction
There are seven fonts to be displayed. Thus, at least three input variables should be used. Each
font can be displayed by providing seven control signals to drive the seven-segment LEDs from
segment a to g. The input variables are represented by A, B, and C and the output variables are
denoted using the letters from a to g, which produce the control signals for seven-segment LEDs.
Owing to the use of a common-anode LED, an active-HIGH output is required to drive seven-
segment LED to give out light.

(2) List the truth table from logic requirement
Seven fonts will be displayed by controlling the states of the seven-segment LEDs. The three-input
variables have eight combinations of input levels; seven of them correspond to the seven fonts to
be displayed and the final one (ABC = 111) will be treated as a don’t care term. The truth table is
shown in Table 4.4.7.

Table 4.4.7: Truth table.

Fonts Inputs Outputs

A B C a b c d e f g

         

         

         

         

         

         

         

   × × × × × × ×

gf

e
d

c

b
a

Figure 4.4.20: Fonts to be displayed.
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(3) Write the output expression
The Karnaugh maps are used to simplify the logic expression, as shown in Figure 4.4.21. When
you design a combinational logic circuit with multiple outputs, the total cost of the design circuit
should be considered, which means that the product terms in the output logic expression should
be shared by different outputs asmany as possible to lower the cost. For instance, �AB�C exists not
only in the Karnaugh map of the output a but also in that of the output b. Although the simplest

form, �A�C, can be obtained by grouping the two 1s in the cells ofm0 andm1, the product term, �AB�C,
is left alone to reduce the total cost of the design circuit.

The minimized logic expressions of the outputs are

a ¼ �A�Bþ �AB�C þ AC ¼ �A�B � �AB�C � AC
b ¼ �AB�C þ AC ¼ �AB�C � AC
c ¼ �AB ¼ �AB

d ¼ �A�Bþ AB ¼ �A�B � AB
e ¼ ABþ �A�BC ¼ AB � �A�BC
f ¼ ABþ �AC ¼ AB � �AC
g ¼ A�C þ �A�BC ¼ A�C � �A�BC

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(4) Draw the logic diagram of a display decoder
Convert the logic expressions of the outputs into NAND–NAND form and implement the circuit
with NAND gates, as shown in Figure 4.4.22.
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Figure 4.4.21: The Karnaugh maps.
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When a display decoder is designed and debugged, two factors should be considered. First, current-
limiting resistors should be connected between the outputs of the decoder and the LED to limit the
current through the LED. Second, the output current of the decoder should be strong enough to drive
the LED. For a common-anode LED, the current supplied by the decoder is the sink current, whereas
the current is the source current for a common-cathode LED. If the current in an LED is 8 mA, then it
can be driven directly by the 74LS series logic gates whose sink current is typically 8 mA. If the
current required by the LED is greater than 8 mA, then a driving circuit or a buffer should be used
between the decoder and the LED.

(2) MSI display decoders
There are many MSI display decoders for LEDs and LCDs. Two types of integrated
decoders have been designed for seven-segment LEDs to display the ten decimal
digits 0–9. One is an active-HIGH for driving common-cathode LEDs, typically
74LS48; the other is an active-LOW for driving common-anode LEDs, typically
74LS47. The logic diagram of 74LS48 is shown in Figure 4.4.23 and its function
table is shown in Table 4.4.8.

The logic function and pins of 74LS47 are the same as 74LS48, but 74LS47 is
active-LOW for driving common-anode LEDs. The logic symbol and pin diagram of
74LS48 are shown in Figure 4.4.24(a), and the connection with a common-cathode
LED is shown in Figure 4.4.24(b).

74LS47 and 74LS48 decode a four-bit input (DCBA) into seven outputs a–g to
drive the seven-segment display. The display fonts corresponding to the four-bit
inputs are shown in Figure 4.4.25. When inputs are 8421BCD code, “0–9” will be
displayed. When the input is greater than 9, there are corresponding fonts too. When
the input is 1111, the LED is off.
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C Figure 4.4.22: Logic diagram.
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In addition, 74LS48 has several features as indicated by LT, RBI, and BI/RBO
functions.

Blanking input, BI, is an active-LOW. It shares a pin with ripple-blanking output

RBO. When a LOW is applied on BI as an input, all segment outputs are LOW and the
seven-segment display is turned off.

Lamp test input, LT, is an active-LOW.When BI= 1 and LT= 0, all segment outputs

are at the HIGH level. so the seven-segment in the display is turned on. LT is used to

check that no segments are burned out. The priority of LT is inferior to BI.
Zero suppression in the 74LS48 is accomplished by using the ripple blanking

input RBI and the ripple blanking output RBO together. RBI is an active-LOW. If RBI is
a LOW and input is 0000, all outputs are at the LOW level. This causes the display to

be blank and produces a LOW RBO. If the input is not equal to 0000, the decoder will
operate normally and the seven-segment in the display gives the corresponding

fonts. Among the three control inputs, BI has the highest-order priority and RBI has

the lowest-order priority. Only when LT= 1, RBI= 0, and DCBA = 0000, RBO = 0.

Ripple blanking output RBO is an active-LOW and it shares a pin with BI. The RBO is

often used to connect with the neighboring decoder’s RBI in a cascade connection for
zero suppression in the integral and fractional part, as shown in Figure 4.4.26. The

RBO of each decoder is connected to the RBI of the next lower order so that all zeros to
the left of the first nonzero digit are blanked. In Figure 4.4.26, the three highest-order
digits are zeros in the integral part and thus are blanked. Only the digit 3 in the

ALT BCD

abcdefg

RBI BI/RBO

Figure 4.4.23: Logic diagram of the 74LS48 display decoder.

4.4 Encoders and decoders 117

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



Ta
bl
e
4.
4.
8
:F

un
ct
io
n
ta
bl
e
of

th
e
74

LS
48

di
sp

la
y
de

co
de

r.

D
ec
im

al
In
pu

ts
B
I=

R
B
O

O
ut
pu

ts

LT
R
B
I

D
C

B
A

a
b

c
d

e
f

g












/















×







/















×







/















×







/















×







/















×







/















×







/















×







/















×







/















×







/
















×








/
















×








/
















×








/
















×








/
















×








/























/












B
I

×
×

×
×

×
×


/












RB
I










/













LT


×
×

×
×

×

/












118 4 Combinational logic circuits

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



integer part is displayed. Besides, the RBO of the lowest decoder is connected to the

RBI of the next higher-order decoder so that all zeros to the right of the first nonzero
digit in the fractional part are blanked. Only the digit 2 in the fractional part is
displayed.

4.5 Multiplexers and demultiplexers

A multiplexer is a device that allows data from different sources to be merged on a
single line through which data from different sources can be transmitted to a remote
common destination by using time division multiplex. Multiplexers have multiple

A
B
C
D

3
5
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7
1
2
6

a
b
c
d
e
f
g

13
12
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10
9

15
14

(a)

300 Ω×7BIN / 7-SEGBIN / 7-SEG

RBIRBI
LTLT

BI / RBOBI / RBO
a
b
c
d
e
f
g

GND

f a b

c
d

e g

dp

A
B
C
D

(b)

Figure 4.4.24: Logic symbol (a) of 74LS48 and circuit diagram (b) of driving a common-cathode LED.
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76543210

Figure 4.4.25: Displayed fonts and corresponding inputs of 74LS47 and 74LS48.

IIII
RBI RBO RBI RBO RBI RBO RBI RBO RBI RBO RBI RBO RBI RBO

II VIIVIVIV

1 1

Figure 4.4.26: Cascade connection of the 74LS48 display decoders.
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data input lines and a single output line; they also have data-select inputs, which
select one of the data input lines to be switched to the output line. Somultiplexers are
also called data selectors. A demultiplexer basically reverses the multiplexing func-
tion. It has a single input line andmultiple output lines; data-select inputs are used to
take data from an input line and distribute them to one of the output lines. So
demultiplexers are also known as data distributors. Demultiplexers can be realized
by binary decoders.

The objectives of this section are to
– Explain the basic operation of a multiplexer and a demultiplexer
– Describe logic function of MSI multiplexers involving 74LS151 and 74LS153
– Describe how to use a decoder as a demultiplexer
– Apply the multiplexer to generate a logic function

4.5.1 Multiplexers

1. A 4-to-1 multiplexer
A 4-to-1 multiplexer has four data input lines, a single output line, and two data-
select inputs. Two data-select inputs select data from one of four data input lines
then the selected data are then transmitted to the output line. The logic symbol of a
4-to-1 multiplexer is shown in Figure 4.5.1(a). D0, D1, D2, and D3 are four data input
lines and Y is an output line; A1 and A0 are two data-select inputs for determining
which data input will be selected and sent to the output. If A1 = 0 and A0 = 0, the
data on input D0 appears on the data output line. If A1 = 0 and A0 = 1, the data on
input D1 appear on the data output line. If A1 = 1 and A0 = 0, the data on input D2

appear on the data output line. If A1 = 1 and A0 = 1, the data on input D3 appear on
the data output line. A summary of this operation of a 4-to-1 multiplexer is given in
Table 4.5.1.

Y

A0

A0

(a) (b)

A0
A0

A1

A1
A1

A1

D0

D3

D3 D2 D1 D0

D2

D1

0
1

0
1
2
3

Y

MUXData-
select
inputs

Data
inputs

Data
output

Figure 4.5.1: The 4-to-1 multiplexer: (a) logic symbol and (b) logic diagram.
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The logic expression for the output of the multiplexer can be deduced from
Table 4.5.1 as follows:

Y = �A1
�A0D0 + �A1A0D1 + A1

�A0D2 + A1A0D3 =
X3
i=0

miDi (4:5:1)

where mi (i = 0, 1, 2, 3) is the minterm of data-select input variables A1 and A0.
From eq. (4.5.1), you can draw the logic diagram of the 4-to-1 multiplexer, as

shown in Figure 4.5.2(b).

2. MSI multiplexers
Quad 2-to-1 multiplexer 74LS157, dual 4-to-1 multiplexer 74LS153, and 8-to-1 multi-
plexer 74LS151 are commonly used MSI multiplexers. The 74LS153 consists of two
separate 4-to-1 multiplexers. Each of the two multiplexers has four data input lines,
one output line, and an enable input. They share two data-select inputs. A LOW on the
enable input allows the selected input data to pass through to the output. The 74LS151
is an 8-to-1multiplexer with eight data input lines, three data-select inputs, one enable
input, and two complemented outputs. The enable input is active-LOW. When the
enable input is a HIGH, the multiplexer is disabled and the data input cannot pass
through to the output. In this situation, the output is at a LOW level. Figure 4.5.2 shows
their logic symbols and pin diagrams. The logic expression for the output of an 8-to-1
multiplexer is described as

Table 4.5.1: Function table of a 4-to-1 multiplexer.

Select inputs Data inputs Output

A A D D D D Y

  × × × D D

  × × D × D

  × D × × D

  D × × × D

2D

EN1

MUX
74LS153

1Y

D0

2Y

EN2

1D

A1
A0

D1 D2 D3 D0 D1 D2 D3

EN1 EN2

2
14

1 156 5 4 3 10 11 12 13

7 9

EN

MUX
74LS151

D0 D1 D2 D3 D4 D5 D6 D7

A2
A1
A0

5

(a) (b)

6

Y Y

EN

9
10
11

7 4 3 2 1 15 14 13 12

Figure 4.5.2: Logic symbol and pin diagram of 74LS153 (a) and 74LS151 (b).
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Y =EN �
X7
i=0

miDi (4:5:2)

With the enable input, two 4-to-1 multiplexers can be expanded to an 8-to-1
multiplexer, as shown in Figure 4.5.3. If A2A1A0 = 000–011, then Y2 = 0 and an input
of D0–D3 is selected to pass through to Y; if A2A1A0 = 100–111, then Y1 = 0 and an input
of D4–D7 is selected to pass through to Y.

3. Applications of multiplexers
Multiplexers have many types of applications, in which a typical application is to
implement combinational logic functions.

A 2n-to-1 multiplexer can implement a logic function of n input variables. First,
the logic function should be expressed in the standard sum-of-products expression.
Then the n input variables are connected to n data-select inputs. Finally, each data
input is set to a fixed logic level required. If a minterm of data-select inputs is present
in the logic expression, the corresponding data input is set to a 1 and if a minterm of
data-select inputs does not present in the logic expression, the corresponding data
input is set to a 0.

Example 4.15 Implement the logic function P =A�C + �AC + �B with an 8-to-1 multiplexer 74LS151.

Solution An 8-to-1 multiplexer can be used to implement any specified three-variable logic function.
Assuming A is the MSB and C is the LSB, the logic function can be converted into a standard
sum-of-products form as follows:

PðA;B;CÞ ¼ Að�Bþ BÞ�C þ �Að�Bþ BÞC þ ð�Aþ AÞ�Bð�C þ CÞ
¼

X
mð0; 1; 3;4; 5;6Þ

(4:5:3)

Y1 Y2

A1
A0

A2

Y

D4 D5 D6 D7D0 D1 D2 D3

2D
EN1

MUX
74LS153

1Y

D0

2Y

EN2

1D

A1
A0

D1 D2 D3 D0 D1 D2 D3

Figure 4.5.3: An 8-to-1 multiplexer with a 74LS153 two 4-to-1 multiplexers.
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Connect the three variables A, B, and C to the three select inputs. Comparing eq. (4.5.3) with eq.
(4.5.2), the value of Di is 1 when its corresponding mintermmi exists in eq. (4.5.3); otherwise, Di = 0.
So D0 = D1 = D3 = D4 = D5 = D6 = 1 and D2 = D7 =0.

Alternatively, the Karnaugh map can be used to determine the logic level of each data input. In
terms of the logic expression for the output of the multiplexer, the subscript ofmi is the same as the
subscript of the data input Di. Therefore, we can directly obtain the logic level of each data input in a
Karnaugh map. The Karnaugh map of the given logic function is shown in Figure 4.5.4(a). From the
Karnaugh map, the logic levels of the data inputs of the 8-to-1 multiplexer are D0 =D1 =D3 =D4 =
D5 =D6 = 1, D2 =D7 = 0. So the logic diagram can be drawn in Figure 4.5.4(b).

A single smaller multiplexer, for example, a 2n–1-to-1 multiplexer also can be used to
implement any logic function of n input variables. You can select n – 1 input variables
as data-select inputs and the remaining variable as data inputs.

Example 4.16 Implement a four-variable logic function, Y ¼ A�BC þ BDþ �A �C , with an 8-to-1 multi-
plexer 74LS151.

Solution
Since the given logic function has four variables and an 8-to-1 multiplexer has three data-select
inputs, you can select any three variables, for instance, A, B, and C, as the select inputs of the
multiplexer. Assume that A is the MSB, the given logic expression can be converted into a standard
sum-of-products form, Y(A,B,C), as follows:

YðA;B;CÞ= �A�B�C�D+ �A�B�CD+ �AB�C�D+ �AB�CD+ �ABCD+A�BC�D+A�BCD+AB�CD+ABCD

=m0
�D+m0D+m2

�D+m2D+m3D+m5
�D+m5D+m6D+m7D

=m0 +m2 +m5 +m3D+m6D+m7D

(4:5:4)

Comparing the above equation with eq. (4.5.2), the logic level of each data input of 74LS151 can
be determined as follows:

D0 =D2 =D5 = 1

D1 =D4 = 0

D3 =D6 =D7 =D

8><
>: (4:5:5)

(a) (b)

10AB
C

00

01

11

10

P

1D0

0D2

1D6

1D4 1D5

1D3

0D7

1D1

P P

A
B
C

"1"
"0"

EN

MUX
74LS151

D0 D1 D2 D3 D4 D5 D6 D7

A2
A1
A0

Figure 4.5.4: The Karnaugh map (a) and the logic diagram (b).
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Notice that if different variables are chosen as the data-select inputs, the results will be
different. For instance, if variables, B, C, and D are chosen as the data-select inputs, the standard
sum-of-products form Y(B,C,D) is as follows:

YðB;C;DÞ= �A�B�C�D+ �A�B�CD+ �AB�C�D+ �AB�CD+ �ABCD+A�BC�D+A�BCD+AB�CD+ABCD

= �Am0 + �Am1 + �Am4 + �Am5 + �Am7 +Am2 +Am3 +Am5 +Am7

=m5 +m7 + �Am0 + �Am1 + �Am4 +Am2 +Am3

(4:5:6)

If B, C, D are chosen as the data-select inputs, the corresponding logic level of each data input of
74LS151 is D0 =D1 =D4 = �A, D2 =D3 =A, D5 =D7 = 1, D6 = 0.

The logic diagram using variables A, B, and C as the data-select inputs is shown in Figure 4.5.5
(a), and the logic diagram using variables B, C, and D as the data-select inputs is shown in
Figure 4.5.5(b). Obviously, the first solution is simpler than the second.

If the data inputs of a multiplexer are not enough to satisfy the requirement, you can use several
multiplexers for expansion. Figure 4.5.6 shows a 32-to-1 multiplexer consisting of four 8-to-1 multi-
plexers and one 4-to-1 multiplexer. For a 32-to-1 multiplexer, five data-select inputs A4A3A2A1A0 are

Y Y

A
B
C

(a) (b)
"1"

"0"

D

EN

MUX
74LS151

D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7

A2
A1
A0

Y Y

B
C
D

"1""0"

A

EN

MUX
74LS151

A2
A1
A0

Figure 4.5.5: Logic diagram: (a) variablesA, B, and C; and (b) variablesB, C, andD as data-select inputs.
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Figure 4.5.6: A 32-to-1 multiplexer.
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required for selecting one of 32 data input lines to be switched to one output line. These five data-
select inputs are divided into two groups. One group is the less significant three-bit inputs, A2A1A0,
as the data-select inputs of four 8-to-1 multiplexers. Each combination of the binary values of A2A1A0
will separately select a data from four groups of data inputs D0–D7, D8–D15, D16–D23, and D24–D31,
and send them to Y0, Y1, Y2, and Y3, respectively. Another group is the most significant two-bit
inputs, A4A3, as the data-select inputs of a 4-to-1 multiplexer. Each combination of the binary values
of A4A3 will select a data input coming from four outputs of four 8-to-1 multiplexers and send it to the
output Y. When the data-select inputs, A4A3A2A1A0, change from 00000 to 00111, one of data inputs
D0–D7 is selected according to the binary values of A2A1A0 and sent to the output Y. When the data-
select inputs, A4A3A2A1A0, change from 01000 to 01111, one of data inputs D8–D15 is selected
according to the binary values of A4A3A2A1A0 and sent to the output Y. The rest can be deduced in
the same manner.

4.5.2 Demultiplexers

A demultiplexer basically reverses themultiplexing function. It has a single input line
and multiple output lines; data-select inputs are used to take data from an input line
and distribute them to one of the output lines. So demultiplexers are also known as
data distributors. A demultiplexer has one data input line, four output lines, and two
data-select inputs. In terms of two data-select inputs, the demultiplexer distributes
the data from data input line to one of four output lines. So it is called a 1-line-to-4-
line demultiplexer or 1:4 demultiplexer. The logic circuit of a 1-line-to-4-line demul-
tiplexer is shown in Figure 4.5.7. The data input line is an input of the AND gates. The
two data-select lines enable only one gate at a time and the data appearing on the
data input line will be selected and sent to the corresponding data-output line. It is
shown in Figure 4.5.7 that a 1-line-to-4-line demultiplexer is actually a 2-to-4 decoder.
The data input corresponds to the enable input and the two data-select inputs are the
two-bit input code in a 2-to-4 decoder. That is to say, a demultiplexer can be
implemented by a decoder.

A1

D3 D2 D1 D0

A0

Select 
lines

Data input

Data output lines

Figure 4.5.7: Logic diagram of a 1-line-to-4-line demultiplexer.
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4.6 Magnitude comparators

In addition to the basic arithmetic operations such as addition, subtraction,
multiplication, and division, comparison operation is also indispensable for
computers and other electronic systems. A magnitude comparator is a logic circuit
that performs the comparison of two quantities and indicates whether they are
equal or not. The basic function of a comparator in digital circuit is to compare
the magnitudes of two binary quantities to determine the relationship of those
quantities.

The objectives of this section are to
– Describe the principle of a multi-bit binary number comparison
– Explain the logic function of a 74LS85 four-bit comparator
– Apply the 74LS85 to expand to a more-bit comparator

4.6.1 One-bit magnitude comparator

A one-bit magnitude comparator performs the comparison of two one-bit binary
digits, A and B, and produces three possible output results, YA=B, YA＞B, and YA＜B.
The truth table can be listed in Table 4.6.1.

From the truth table, the corresponding logic expression for three outputs is
deduced as follows:

YA <B = �AB

YA >B = A�B

YA=B = �A�B + AB = A� B

8><
>: (4:6:1)

The logic circuit of a one-bit magnitude comparator is shown in Figure 4.6.1.

Table 4.6.1: Truth table of a one-bit comparator.

A B YA＜B YA=B YA＞B
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4.6.2 An MSI four-bit magnitude comparator

The 74LS85 is an MSI four-bit magnitude comparator, which performs the compar-
ison of two four-bit binary numbers, A3A2A1A0 and B3B2B1B0, and produces three
possible output results, YA=B, YA＞B, and YA＜B. In addition, it has three cascading
inputs A=Bð Þi, A >Bð Þi, and A <Bð Þi for cascaded expansion, as shown in
Figure 4.6.2.

To determine the relationship of two binary numbers, the general procedure is
to check for an inequality in a bit position, starting with the highest order bit. When
such an inequality is found, the relationship of two numbers is established, and
any other inequality in lower-order bit positions must be ignored. Take the compar-
ison of two four-bit binary numbers A3A2A1A0 and B3B2B1B0, for example, we should
start with the comparison of the highest-order bit, A3 and B3. If A3＞B3, then number
A3 A2 A1 A0 is greater than number B3 B2 B1 B0. If A3 < B3, then number A3 A2 A1 A0 is
less than number B3 B2 B1 B0. If A3=B3, then the next lower-order bit A2 and B2

should be compared. The rest can be done in the same manner. When number A3 A2

A1 A0 is equal to number B3 B2 B1 B0, the states of the cascading inputs A=Bð Þi,
A >Bð Þi, and A <Bð Þi determine the final outputs of the comparator. If A >Bð Þi is a 1,
then number A3 A2 A1 A0 is greater than number B3 B2 B1 B0; if A <Bð Þi is a 1, then
numberA3 A2 A1 A0 is less than number B3 B2 B1 B0; if A=Bð Þi is a 1, then numberA3 A2

A1 A0 is equal to number B3 B2 B1 B0. The function table of 74LS85 is listed in
Table 4.6.2.

YA=B

YA<B

YA>B

A

B

Figure 4.6.1: Logic diagram of a one-bit magnitude comparator.
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YA=B
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Figure 4.6.2: Logic symbol and pin diagram of the 74LS85
four-bit magnitude comparator.
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The logic expressions for outputs of the 74LS85 are deduced as follows:

YA=B =A3¯B3 � A2¯B2 � A1¯B1 � A0¯B0 � A=Bð Þi
YA <B =A3B3 +A3¯B3 � A2B2 +A3¯B3 � A2¯B2 � A1B1 +A3¯B3 � A2¯B2 � A1¯B1 � A0B0

+A3¯B3 � A2¯B2 � A1¯B1 � A0¯B0 A <Bð Þi
YA >B =A3B3 +A3¯B3 � A2B2 +A3¯B3 � A2¯B2 � A1B1 +A3¯B3 � A2¯B2 � A1¯B1 � A0B0

+A3¯B3 � A2¯B2 � A1¯B1 � A0¯B0 � A >Bð Þi

8>>>>>>><
>>>>>>>:

(4:6:2)

4.6.3 Applications of magnitude comparators

The 74LS85 has three cascading inputs A=Bð Þi, A >Bð Þi, and A <Bð Þi. These three
cascading inputs can be used to expand the comparator for any number of bits
greater than four. In order to implement the comparison of two eight-bit binary
numbers, two 74LS85s are required and their connection is shown in Figure 4.6.3.

To expand the comparator, the A < B, A >B, A = B outputs of the lower-order
comparator (I) are connected to the corresponding cascading inputs, A <Bð Þi, A >Bð Þi,
A=Bð Þi, of the next higher-order comparator (II). The lowest-order comparator must
have a 1 on the input, A=Bð Þi and 0s on inputs A <Bð Þi and A >Bð Þi. The final results of
the comparator are presented from the outputs of the highest-order comparator.

Table 4.6.2: Function table of the 74LS85 four-bit magnitude comparator.

Number inputs Cascading inputs Outputs

A B A B A B A B (A>B)i (A<B)i (A=B)i YA>B YA<B YA=B

A＞B × × × × × ×   

A＜B × × × × × ×   

A＝B A＞B × × × × ×   

A＝B A＜B × × × × ×   

A＝B A＝B A＞B × × × ×   

A＝B A＝B A＜B × × × ×   

A＝B A＝B A＝B A＞B × × ×   

A＝B A＝B A＝B A＜B × × ×   

A＝B A＝B A＝B A = B      

A＝B A＝B A＝B A = B      

A＝B A＝B A＝B A = B      

A＝B A＝B A＝B A = B      

A＝B A＝B A＝B A = B      

A＝B A＝B A＝B A = B      

A＝B A＝B A＝B A = B      

A＝B A＝B A＝B A = B      
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Another typical application of comparators is used as the control circuit of
manufacture line, as shown in Figure 4.6.4 [6]. The products are delivered by the
conveyor belt and the number of products can be counted by detecting the number of
light pulse with a photoelectric detector. When a product passes the photoelectric
detector, light signal from light source is blocked and a pulse signal is produced for
the photoelectric detector. The counter counts the number of pulses representing the
number of products. The counting value of the counter is compared with the preset
number of products by a comparator.When the counting value of the counter is equal
to the preset number, the comparator outputs a HIGH level, and informs mechanical
equipment to carry out the next procedure. Meanwhile, the counter is reset and starts
a new counting cycle.

4.7 Races and hazards

The previous section discussed the analysis and design of combinational circuits
in a steady state without considering the propagation delay of logic gates and the
difference of the transfer time of signals. In fact, these factors would seriously
affect the performance of logic circuits and even result in races and hazards. This
section introduces the basic concepts of races and hazards in the combinational
logic circuits and discusses the methods for eliminating hazards.

Photoelectric
component
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C
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Figure 4.6.4: Block diagram of an application of magnitude comparators.
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Figure 4.6.3: An eight-bit comparator using the cascading of two 74LS85s.
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The objectives of this section are to
– Explain the static “1” and static “0” hazards
– Define races and hazards in combinational logic circuits
– Discriminate the possible hazards in combinational logic circuits
– Describe the methods of eliminating hazards

4.7.1 Basic concepts

Let us consider the combinational logic circuits in Figure 4.7.1(a). If the propagation
delay of the signal is not considered, then the output P1 =A � �A=0 and the output

P2 =A+ �A= 1. However, if the propagation delay of the signal is considered, some
unexpected glitches are generated in outputs, P1 and P2, as shown in Figure 4.7.1(b).
The reason for glitches can be explained by the existence of the gate delay. In fact,
every path from the input to the output is not the same length.

The output P1 would be constant (0) without considering the propagation delay of
the inverter; however, when the propagation delay of the inverter is considered, some
positive glitches occur at output P1. This phenomenon is called the static “0” hazard.
Similarly, output P2 would be constant (1) without considering the propagation delay of
the inverter; however, when the propagation delay of the inverter is considered, some
negative glitches occur at output P2. This phenomenon is called the static “1” hazard.
Races refer to a phenomenon that several input signals of a logic gate vary at the same
time, but have different transition time; or a signal is transferred to a logic gate through
different paths resulting in different arrival times of signals.Hazards refer to a phenom-
enon that glitches occur due to the existence of races in a combinational logic circuit.

4.7.2 Discrimination of hazards

Hazards are caused by the following two reasons: the delay of logic gates and the race
between input signals. In a complex digital system, it is very difficult to predict the

A

P1

P2

A

A

(a) (b)

P2

P1
A

Figure 4.7.1: Combinational logic circuits (a) and its output waveform with the propagation delay (b).
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accurate propagation delay of signals. To ensure the system’s operation reliability, a
feasible method is to find the existence of race in a combinational logic circuit and
eliminate the race so that the hazards can be avoided in advance.

Boolean algebra can be used to determine whether there is a race in a combina-
tional logic circuit. The first step is to check whether the logic expressions simulta-
neously have a variable and its complement. The next step is to check whether the
logic expressions can be converted into the forms of (A � �A) or (A+ �A) for different
input conditions; if yes, then a hazard may occur.

For instance, the logic expressions for the outputs of the logic circuit in
Figure 4.7.2 are written as

P3 ¼ Aþ Bþ A

P4 ¼ A � B � A

(
(4:6:3)

If B = 0, then P3 is converted into P3 =A+ �A, then a static “1” hazardmay occur for
the circuit in Figure 4.7.2(a).

If B = 1, then P4 can be changed to P4 =A � �A, then a static “0” hazard may occur
for the circuit in Figure 4.7.2(b).

Example 4.17 Determine whether hazards may exist in the following logic expressions:

P1 =AB+ �AC

P2 = A+Bð Þ �A+C
� �

P3 = �AB+A�C + �BC

8><
>:

Solution
(1) When B = C = 1, P1 =A+ �A, a static “1” hazard may occur.
(2) When B = C = 0, P2 =A � �A, a static “0” hazard may occur.
(3) When B = 1 and C = 0,P3 =A+ �A, a static “1” hazard may occur.

When A = 0 and C = 1, P3 =B+ �B, a static “1” hazard may occur.
When A = 1 and B = 0, P3 =C + �C, a static “1” hazard may occur.
Alternatively, the Karnaugh map can also be used to determine whether or not there is a

possible hazard in a combinational logic circuit. The first step is to represent each product term or
sum term in a logic expression by a Karnaugh map. Each term corresponds to a group. Then check
whether or not the adjacent groups contain logic adjacent terms that are not grouped together. If yes,
hazard may exist. For example, the Karnaugh map of a logic expression of P1 =AB+ �AC is shown in
Figure 4.7.3. Minterms m3 and m7 are two logic adjacent terms, but they are not included by other

group. Thus there is a possible hazard in the logic expression of P1 =AB+ �AC.

A P4

B

A P3

B
(a) (b)

Figure 4.7.2: Logic diagram of the combinational logic circuits
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4.7.3 Methods of eliminating hazards

1. Adding a redundancy term
Take P1 =AB+ �AC, for example; when B = C = 1, a static “1” hazard exists in P1. If a

logic redundancy term, BC, is added to the logic expression, then P1 =AB+ �AC +BC.
Thus, even if B = C = 1, P1≡ 1 due to the existance of redundancy term BC. As a result,
a static “1” hazard is eliminated.

Likewise, for P2 = A+Bð Þ �A+C
� �

, a static “0” hazard exists in P2 when B = C = 0. If

logic redundancy term, B+C, is added to the logic expression, then P2 = A+Bð Þ �A+C
� �

B+Cð Þ. Thus, even if B = C = 0, P2 ≡ 0 due to the redundancy term BC. As a result, a
static “0” hazard is eliminated.

A redundancy term can be easily obtained from the Karnaugh map. A group,
which is denoted by the dotted group in Figure 4.7.3, is added to include the logic
adjacent terms that are not grouped together. The possible hazard is eliminated. The
final expression is P1 =AB+ �AC +BC.

2. Adding absorption capacitors
Add an absorption capacitor between the output and ground so that the glitch can be
absorbed, as shown in Figure 4.7.4. Notice that the switch speed of the logic gate is
reduced due to the increase in capacitance load. In practice, a suitable capacitance is
chosen through the debugging process.

As the glitch from hazards is a transient signal, it disappears quickly and usually
doesn’t cause severe problems for combinational logic circuits. However, if the glitch
serves as an input for a sequential logic circuit, for instance, a flip-flop, it may change
the operating state of the flip-flop and thus this hazard must be eliminated.

A
BC

00 01

0

1

11 10

1

1

1

1

AB

AC

Figure 4.7.3: The Karnaugh map.

A

P1

AP1
A

C

Figure 4.7.4: Adding absorption capacitors to eliminate the hazard.
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3 Adding a strobing pulse
There is an efficient method of adding a control input for a logic gate that may have a
hazard. After finishing the change of input signals, a strobing pulse is applied to the
control input of the logic gate and enables the logic gate. In this way, the glitches
caused by the hazard can be eliminated.

4.8 Combinational logic circuits with Verilog HDL description

HDLs are a programming language used to describe the behavior or structure of a
digital integrated circuit. VHDL (very high speed integrated circuit HDL) and Verilog
HDL are the most popular and officially endorsed IEEE standards [10, 12, 13]. They are
used to program PLD- and FPGA-based systems. This section introduces the state-
ments of Verilog HDL through various examples so that the readers can efficiently
learn and grasp simple programming methods and syntax of Verilog HDL.

The objectives of this section are to
– Explain description method of Verilog HDL
– Use Verilog HDL to describe combinational logic function

4.8.1 Description methods of Verilog HDL

Verilog HDL uses three ways to describe logic circuits, namely behavioral description,
dataflow description, and structural description [31]. The behavioral description
describes behaviors, functions, and features of a circuit without indicating what struc-
tures and logic gates should be used; this is a high-level description with strong
versatility and flexibility. The dataflow description uses continuous assignment to des-
cribe combinational logic functions. Structural description describes the interconnection
of entities that are primitives defined by Verilog HDL in advance. That is to say, the
structural description describes logic circuits with primitives predefined byVerilogHDL.

For three description methods of Verilog HDL, behavioral description focuses on
the function of a circuit; the statements are comparatively concise but may be
difficult to be implemented (synthesized) with hardware. Statements with structural
description are much easier to be synthesized but the statements are typically more
complex. In practice, the statements of Verilog HDL are usually written with a
combination of three description methods at the same time.

4.8.2 A 2-to-1 multiplexer

Many description methods can be used to describe a 2-to-1 multiplexer. Here, these
examples are illustrated to describe the 2-to-1 multiplexer by using different Verilog
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description methods [32]. Example 4.18 illustrates the 2-to-1 multiplexer with
its Verilog behavioral description; Example 4.19 shows the 2-to-1 multiplexer with
its Verilog dataflow description; Example 4.21 shows the 2-to-1 multiplexer with its
Verilog structural description.

Example 4.18. Design a 2-to-1 multiplexer with Verilog behavioral description.

Solution
As you know, a 2-to-1 multiplexer has two data input ports, a single output port, and one data-select
input port. The data-select input select data from one of the two data inputs and the data are then
transmitted to the output. The Verilog 2-to-1 multiplexer description is used as a module, as shown in
Figure 4.8.1 in which a and b are two input ports, s is a select input port, and y is an output port.

Verilog behavioral description of a 2-to-1 multiplexer is illustrated as follows.

//Example 4-18

module Mux21 (a,b,s,y); //----------------1

input a,b; //Declaring I/O ports

input s;

output y;

assign y = (s==0)? a : b; //----------------2

endmodule //----------------3

Amodule is themost basic unit of Verilog codes, which can specify a component or
a circuit [33]. Amodule inVerilogHDL startswith a keyword “module” at the beginning
of codes and finishes with a keyword “endmodule” at the end of codes, as shown in
program lines 1 and 3 in Example 4.18. The structure of a module is as follows:

module <module name> （port list）

<Declarations>

<Module items>

Endmodule

Module name is the only identifier of a module. Port list specifies all ports ,
including input, output, and in/out (bidirectional) ports, of the module connecting
with external circuits. Three types of ports, including input, output, and inout, are used
in Verilog HDL, as shown in Figure 4.8.2, where the transmission direction of signals
are self-explanatory [34].

a

b s

y
mux 21

Figure 4.8.1: A 2-to-1 multiplexer module.
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The contents of amodule include two parts: declarations of variables andmodule
items specifying functions, behaviors, or structures of a circuit. Declarations include
the declaration of I/O ports and the declaration of internal variables used in the
module. Module items define the function of the module and are the most essential
part of a module.

The statement “assign y = (s= =0)? a: b;” in program line 2 is a continuous
assignment for signal y. Continuous assignment statement can assign values to nets.
The assignment of value takes place as soon as the values of variables on the right-
hand side of the expression change. Continuous assignment is typically used to
specify a combinational logic circuit.

The statement “s= =0?a:b” in program line 2 is a conditional statement. The
conditional operator “?” is a ternary operator, whose syntax is shown as follows:

Conditional_expression ? true_expression: false_expression

First, the conditional_expression will be evaluated. If it equals to 1, then the
value of the true_expression is chosen as the final result of the operation; if the
conditional_expression equals to 0, then the value of the false_expression is chosen.

The logical equality operator is used in s= =0. When two expressions are equal,
then the result is “1”; otherwise, the result is “0.” “!=” is a logical inequality operator.

In summary, program line 2 shown in Example 4.18 assigns values to a wire-type
variable y. If s is 0, then the state of y is the same as a; otherwise, the state is the same
as b. The function realized in these codes is a 2-to-1 multiplexer.

Comments are generally used in Verilog HDL to explain and mark the codes to
increase their readability. Programmers can add comments anywhere and these com-
ments will be ignored by compliers and simulators. “//” is used to indicate a single-line
comment. The information from “//” to the end of a line is treated as comments [34].

The simulation circuit diagram of Example 4.18 is shown in Figure 4.8.3, and the
simulation waveform is shown in Figure 4.8.4.

IN OUT INOUT

Figure 4.8.2: Three types of ports of Verilog HDL.

0
1

y~0

a
b

s

y

Figure 4.8.3: The simulation circuit diagram of Example 4.18.
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It is found from Figure 4.8.4 that if s = 1, then y = b; if s = 0, then y = a. This verifies
that the logic function of a 2-to-1 multiplexer is already implemented.

Example 4.19 Design a 2-to-1 multiplexer with Verilog dataflow description.

Solution
Here, two schemes of Verilog dataflow description are illustrated to design a 2-to-1 multiplexer.

Scheme 1 One Verilog dataflow description of a 2-to-1 multiplexer is illustrated as follows:

//Scheme 1 of Example 4-19

module Mux21 (a,b,s,y);

input a,b;

input s;

output y; //--------------1

wire d,e; //--------------2

assign d = a & (~s); //--------------3

assign e = b & s;

assign y = d | e;

endmodule

Intermediate variables used in Verilog codes should be declared. The program line 2 of the
above program defines variables d and e as wire type, indicating that they represent the nodes or
internal connections of a circuit. By default, the output port y in program line 1 is also regarded as the
wire type, representing a physical connection between logic gates. A net cannot retain data, but it
can be driven through a continuous assignment statement or logic gates. In this case, a continuous
driving source is required and the value of the net varies with the change of the driving source. The
value of a net is high impedance (z) if no driving source is connected with it.

Bitwise operators are used in the assignment statement and operate on individual bits of
operands. There are five commonly used bitwise operators in Verilog HDL, which are bitwise
NOT (~), bitwise AND (&), bitwise OR (|), bitwise XOR (^), and bitwise XNOR (^~). When two digits
in a bitwise operation have different bits, their LSB will be aligned automatically. 0s will be padded to
the MSB of the operand with fewer bits so that it has the same length of bits with the other operand,
and then the bitwise operation will be carried out.

Figure 4.8.4: The simulation waveform of Example 4.18.
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Scheme 2.Another Verilog dataflow description of a 2-to-1 multiplexer is illustrated as follows:

//Example 4.8.3

module mux21 (a,b,s,y);

input a,b,s;

output y;

reg y;

always @( a or b or s) //----------------------------------1

if (!s) y = a; //-----------------------------------2

else y = b; //------------------------------------3

endmodule

The output port y in the above program is defined as a reg-type variable. Reg does not
necessarily represent a register. It stands for a storage cell and its latest assignment can be retained
without a driving source. It can be synthesized to be a combinational circuit or a latch or a flip-flop.
Note that the value of a reg-type variable can be assigned only in an always block.

The “always @ (a or b or s)” in program line 1 is a continuous execution statement. The always
block is executed continuously and cannot be interrupted unless the time control feature of Verilog
utilizing symbols such as “@” is used. The part of the always block after the @ symbol, in
parentheses, is called the sensitivity list. The statements inside an always block are executed by
the simulator only when one or more of the signals in the sensitivity list changes their value. The
sensitivity list should be as complete as possible. Otherwise, the function of the synthesized circuit
may be different from the description of the module.

The if-else statement is used to indicate whether a statement is executed. Its
syntax is as follows:

if (conditional_expression)

statement 1;

else

statement 2;

If the conditional_expression is evaluated to true (“1”), the statement 1 is exe-
cuted; otherwise, statement 2 is executed. Consequently, the function of program
lines 2 and 3 is: if s = 0, then y = a; if s = 1, then y = b. The if-else statement can only be
used in always blocks.

Three logical operators are used in Verilog HDL: logic AND “&&”, logic OR “||”,
and logic NOT “!”. The value of a logic expression is either 1 (true) or 0 (false). “&&”
and “||” are binary operators that involve two operands, such as (a>b)&&(b>c) and
(a<b)||(b<c). The operator “!” is a unary operator and only has one operand such as!
(a>b). Table 4.8.1 is the truth table of logical operations, in which the results of
various logical operations are listed.

The priority of “!” is higher than “&&” and “||”. The priority of logical operators is
lower than the relational operators. Parentheses have the highest priority. For instance,
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(a>b)&&(x>y) can be written as: a>b && x>y
(a==b)||(x==y) can be written as: a==b || x==y
(!a)||(a>b) can be written as: !a || a>b

Example 4.20 Design a 2-to-1 multiplexer with the Verilog structure description.

Solution
The Verilog structure description of a 2-to-1 multiplexer is illustrated as follows.

//Example 4.20

module mux21(y, a, b, s);

input a, b, s;

output y;

not u1 (ns, s);//————————–1

and u2 (sela, a, ns);

and u3 (selb, b, s);

or u4 (y, sela, selb);

endmodule

Example 4.20 invokes several bottom-layer module instances. The process of invoking the
modules is called instantiation. After instantiation, the modules are called instances. The format of
an instance is

<module_name><instance_name><port_list>;

Example 4.20 invokes the instances of NOT gate, AND gate, and OR gate. “not u1 (ns,s)” in
Program line 1 invokes a NOT gate represented by the instance name “u1.” It has two ports ns and s:
ns is output and s is input. The NOT gate is predefined in Verilog HDL, and these predefined modules
are often referred to as primitives.

Example 4.20 is a gate-level description. It provides a direct corresponding relationship
between modules and real circuits. The keywords of several primitives in Verilog HDL are as follows:

not—NOT gate; buf— buffer; and—AND gate; or—OR gate; nand—NAND gate;
nor—NOR gate; xor—XOR gate; xnor—XNOR gate.
When programming with gate-level structural description, we can directly invoke these gates

through instantiation. The simulation circuit diagram of Example 4.20 is shown in Figure 4.8.5, and
its simulation waveform is the same as Figure 4.8.4.

Table 4.8.1: Truth table of logical operations.

a B !a !b a&&b a||b

True True False False True True
True False False True False True
False True True False False True
False False True True False False

138 4 Combinational logic circuits

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



4.8.3 4-to-1 Multiplexers

The function table of a 4-to-1 multiplexer is shown in Table 4.8.2. There are four data
inputs “in0, in1, in2, in3,” two select inputs “sel(1),sel(0),” and one output “out.”

1. A 4-to-1 multiplexer implemented with a case statement

//Example 4.8.5

module mux4_1(out,in0,in1,in2,in3,sel);

output out;

input in0,in1,in2,in3;

input[1:0] sel; //--- -----------------------------------1

reg out;

always @(in0 or in1 or in2 or in3 or sel) //------------ ---------------------2

case(sel)

2'b00: out=in0;

2'b01: out=in1;

2'b10: out=in2;

2'b11: out=in3;

default: out=1'bx;

endcase

endmodule

(1) Vector
The “input [1:0] sel;” in program line 1 defines a vector including two variables sel[1]
and sel[0]. If the bit width is not specified for a net or a reg variable in Verilog, then

u2

u3
y

a

b

s

u4

Figure 4.8.5: The simulation circuit diagram of Example 4.20.

Table 4.8.2: Function table of a 4-to-1 multiplexer.

sel() sel() out

  in
  in
  in
  in
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the variable is regarded as a scalar. If the bit width is specified, then the variable is a
vector. For instance:

wire [7:0] bus; //8-bit vector bus

reg [0:40] addr; //41-bit vector register addr

Vectors in Verilog are treated as unsigned numbers. The bit in the leftmost
position of a vector is the MSB, and the bit in the rightmost position is the LSB. For
instance, the zeroth bit of addr is the MSB, whereas the seventh bit of a bus is the
MSB.When the bit width of a vector is defined, theMSB and the LSB can be a negative
number. For instance:

reg [-1:4] b; //6-bit vector register b

The use of vectors is flexible, for instance:

bus[0] // The 0th bit of bus

bus[2:0] // The three least-significant bits of bus. Note we can’t use bus

[0:2] as the use of vector should be the same as its declaration

addr[0:1] //The two most-significant bits of addr

When assigning the value of a scalar to a vector, the value is assigned to the LSB
of the vector. The operation of a vector is equivalent to the operation of every variable
of the vector.

(2) Representation of number
Commonly used integers include decimal, hexadecimal, octal, and binary numbers.
The representation of an integer in Verilog can be either a decimal number or a fixed-
size number.

We can use the decimal digits 0–9 to directly represent an integer. The format of a
fixed-size number representation is:

<size_in_bits> <’radix_identifier> <significant_digits (including a–f for a hex
number)>

The size_in_bits can be absent. If this is the case, system will use the default size
(32 bits). The size_in_bits specifies the exact size of bits, and it should be an unsigned
decimal number.

Radix_identifier can be binary (b or B), decimal (d or D), hexadecimal (h or H),
and octal (o or O). The single quotation mark “ ” must be placed in front of the
radix_identifier and there is no space between them. Significant_digits are unsigned
numbers or a~g for a hexadecimal number.
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Any signal in Verilog can have four possible values: “x”, “z”, “0”, and “1”. “x” is
used to denote an unknown logic value, which could be any of “z”, “0”, and “1”. “z”
is used to denote a high-impedance state. Both “x” and “z” can be used in binary,
octal, and hexadecimal systems. For a hexadecimal number, an “x” represents a four-
bit binary number and all of the four bits are “x”. Likewise, an “x” in an octal number
system that represents three bits of “x”, and an “x” in a binary number represents a
bit of “x”. Same rules apply to “z”.

For an unsigned number with a fixed size, when the size of the number is smaller
than the specified size, 0s are usually padded to the left of the number; but if the
leftmost digit is x or z, then these values are padded to the left.

To improve readability, we can use the underscore character “_” to separate long
numbers. For instance, instead of writing 12ʹb100010001000, it can be written as
12ʹb1000_1000_1000 too. Note that “_” can’t be placed to the leftmost digit of a
number.

Examples of representation of integer are shown below:

' h 123F //Unsized hexadecimal number

' o 123 //Unsized octal number

3 'b101 //3-bit binary number

5 ' D 3 //5-bit decimal number

12 ' h x //12-bit unknown number

16 ' o z //16-bit high-impedance state

16 ' b 1001_0110_1111_zzzz //16-bit binary number

The following representation is incorrect:

123af //’h should be added to represent a hexadecimal number

(3) The case statement
The case statement in Verilog is defined as

case (expression)

alternative1: statement1;

alternative2: statement2;

alternative3: statement3;

…

alternativej: statementj;

[default: statement;]

Endcase

The controlling expression and each alternative are compared bit by bit. When
there aremore than onematching alternatives, the statement associated with the first
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match is executed. When the specified alternatives do not cover all possible values of
the controlling expression, the optional default clause should be included. Only one
default clause can be included in a case statement. If there is neither matching
alternative nor default clause, the case statement will not be executed. The size of
bits of the controlling expression should be the same as the size of bits of the
alternative expressions. If not, zeros (or x or z) will be padded to the left of the result
which has fewer bits.

The simulation of the circuit diagram of a 4-to-1 multiplexer is shown in
Figure 4.8.6, and the simulation waveform is shown in Figure 4.8.7.

It is shown in Figure 4.8.7 that when sel equals to 0, 1, 2, and 3, out equals to in0,
in1, in2, and in3, respectively. The function of this circuit is a 4-to-1 multiplexer.

2. A 4-to-1 multiplexer with the if-else statement

//Example 4.20

module mux4_1(out,in0,in1,in2,in3,sel);

output out;

input in0,in1,in2,in3;

input[1:0] sel;

reg out;

always @(in0 or in1 or in2 or in3 or sel)

begin

if(sel==2'b00) out=in0;

SEL[1..0]

DATA[3..0]
OUT

MUX

Mux0

out

in0
in1
in2
in3

sel[1..0]

Figure 4.8.6: The simulation of the
circuit diagram of a 4-to-1 multiplexer.

Figure 4.8.7: Simulation waveform of a 4-to-1 multiplexer.
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else if(sel==2'b01) out=in1;

else if(sel==2'b10) out=in2;

else if(sel==2'b11) out=in3;

else

out=1'bx;

end

endmodule

(1) if-else-if statement
In addition to the if-else statement, if-else-if statement can also be used as follows:

if (expression 1)

statement 1;

else if (expression 2)

statement 2;

else if …

else

statement n;

The if-else-if statement evaluates the values of expressions in the order that they
appear in the code [35]. If the value of an expression is true, then the corresponding
statement is executed, and the entire if-else-if statement is terminated.

In Verilog, “else” can be absent, and an “else” in Verilog codeswill automatically
search the precedent codes and find the closest “if” to form an “if-else” statement. For
instance:

if (a==0)

if (b==0)

c= 1;

else

c= 0;

(2) The begin-end block
The begin-end block is usually used to contain two or more statements so that they
look like a single statement.

Notice that statements in a begin-end block are executed in sequential order
within the block and the execution of a begin-end block will not be completed until
the last statement is executed.

The syntax of the begin-end block is:

4.8 Combinational logic circuits with Verilog HDL description 143

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



begin

statement 1;

statement 2;

……

statement n;

end

With a begin-end block, an “else” statement can be linked with a specified “if”
statement. For instance:

if (a==0)

begin

if (b==0)

c=1;

end

else

c=0;

(3) Default issues
Both the if-else and the case statements have default issues. The “else” in the if-else
statement and the “default” in the case statement can be absent, but this will
introduce latches into a combinational circuit and cause some problems.
Example 4.21 shows the codes with complete “if-else” pairs.

//Example 4.21

module ex3reg(y, a, b, c);

input a, b, c;

output y;

reg y, rega;

always @(a or b or c)

begin

if(a&b)

rega=c;

else //with an else as default

rega=0;

y=rega;

end

endmodule

This example uses the always block to define a combinational circuit. As the last
else exists serving as a default, reg a is synthesized to be a multiplexer, as shown in
Figure 4.8.8.

The Verilog codes without the default item are as follows:
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//Example 4.22

module ex4reg(y, a, b, c);

input a, b, c;

output y;

reg y, rega;

always @(a or b or c)

begin

if(a&b)

rega=c; // an “else” is absent

y=rega;

end

endmodule

An “else” is absent in Example 4.22. When a&b equals to 1, the value of c is
assigned to rega. But when a&b equals to 0, rega retains its original value. During the
synthesis process, rega is synthesized to be a latch, which is an extra and unneces-
sary part of the circuit. The synthesized circuit is shown in Figure 4.8.9.

Likewise, if the “default” is absent in the case statement, an unnecessary latch is
generated too. The Verilog codes is shown in Example 4.23, and the simulation circuit
diagram is shown in Figure 4.8.10.

//Example 4.23

module inccase(a, b, c, d, e);

input a, b, c, d;

0
1

0

always0~0

rega

y

a
b

c

Figure 4.8.8: Synthesis result of Example 4.21.

D

ENA

PRE

CLR

Qalways0~0

rega

y
a

b

c

Figure 4.8.9: Simulation circuit diagram of Example 4.22.
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output e;

reg e;

always @(a or b or c or d)

case ({a,b}) //------------------------------------1

2’b11: e=d ;

2’b10: e=~c ;

Endcase

Endmodule

The “{ }” in program line 1 of Example 4.23 is a concatenation operator to create a
new binary number consisting of a and b.

In summary, the absence of the default item in the if statement and the case
statement may produce unnecessary latches. Thus, the default item cannot be
ignored in the design of combinational logic circuits with Verilog HDL.

4.8.4 Four-bit adders

The function of a four-bit adder is to realize the addition of two four-bit binary
numbers [36]. The Verilog codes consist of two modules: a full-adder module and a
top-layer module, as shown in Example 4.24.

//Example 4.24

//A full adder

module add_full(A,B,C,Carry,S);

input A,B,C;

SEL[1..0]

DATA[1..0]

OUT

SELECTOR

=
A[1..0]

B[1..0]

EQUAL

=
A[1..0]

B[1..0]

EQUAL

D
ENA

PRE

CLR

Q

Selector0

Equal0

2' h3 --

Equal1

2' h2 --

WideNor0

e$latch

a
b

c
d

e

Figure 4.8.10: Simulation circuit diagram of Example 4.23.
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output Carry,S; //Sum and carry of the full adder

assign S = A^B^C;

assign Carry = (A&B)|(B&C)|(A&C);

endmodule

//A 4-bit adder

module add_full4(A,B,C,S);

input[3:0] A,B;

output[3:0] S; // Sum of the four-bit adder

output[4:0] C; //Carry of the four-bit adder

assign C[0]=0;

add_full u1(A[0],B[0],C[0],C[1],S[0]), //------------------1

u2(A[1],B[1],C[1],C[2],S[1]),

u3(A[2],B[2],C[2],C[3],S[2]),

u4(A[3],B[3],C[3],C[4],S[3]);

endmodule

(1) Instance
The full adder in Example 4.24 is an instance whose name is add_full. It is a bottom-
layer module of the four-bit adder. Verilog codes must have a top-layer module that
cannot be instantiated but can instantiate many bottom-layer instances.

(2) Instantiation
The program line 1 in Example 4.24 means that the top-layer module add_full4
invokes the bottom-layermodule add_full. This process is referred to as instantiation,
and the instantiated modules are called instances. Every instance has its own name,
variables, and port list.

The first format of an instantiation is:

<module_name>< instance_name> <port_list>;

add_full u1(A[0],B[0],C[0],C[1],S[0]) indicates that a bottom-layer module named
add_full is invoked. The instant name is “u1” and the corresponding ports are A[0],
B[0], C[0], C[1], and S[0]. In Example 4.24, the full-adder module is invoked four
times. Note that the sequence of ports in the port_list of an instance should be the
same as the sequence of ports in the port_list of the corresponding bottom-layer
module.

The second format of an instantiation is:

<module_name> <instance_name> <instance_port1 (module_port 1), . instance_port (modu-

le_port2)>;
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For instance:

add_full u1(.A(A[0]),.B(B[0]),.C(C[0]),.Carry(C[1]),.S(S[0])),

u2(.A(A[1]),.B(B[1]),.C(C[1]),.Carry(C[2]),.S(S[1])),

u3(.A(A[2]),.B(B[2]),.C(C[2]),.Carry(C[3]),.S(S[2])),

u4(.A(A[3]),.B(B[3]),.C(C[3]),.Carry(C[4]),.S(S[3]));

In Verilog HDL, only one module can be defined within a module-and-endmodule
block. However, we can invoke other modules in a module by multiple instantiations.

The simulation circuit diagram of Example 4.24 is shown in Figure 4.8.11, and its
simulation waveform is shown in Figure 4.8.12, where we can find that the four-bit
adder consists of four full adders and realizes the addition of two four-bit binary
digits.

4.8.5 Display decoders of seven-segment LEDs

Assuming a seven-segment LED to be driven is a common-cathode LED, Example 4.25
shows the Verilog codes of a display decoder for the LED. The circuit has four inputs
and seven outputs.

Figure 4.8.11: Simulation circuit diagram of Example 4.24.

Figure 4.8.12: Simulation waveform of Example 4.24.
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//Example 4.25

module decode48(a,b,c,d,e,f,g,D3,D2,D1,D0);

output a,b,c,d,e,f,g;

input D3,D2,D1,D0; //Input a four-bit BCD code

reg a,b,c,d,e,f,g; //Output seven signals for the seven-segment LED

always @(D3 or D2 or D1 or D0)

begin

case({D3,D2,D1,D0}) // decoding with the case statement

4'd0: {a,b,c,d,e,f,g}=7'b1111110;

4'd1: {a,b,c,d,e,f,g}=7'b0110000;

4'd2: {a,b,c,d,e,f,g}=7'b1101101;

4'd3: {a,b,c,d,e,f,g}=7'b1111001;

4'd4: {a,b,c,d,e,f,g}=7'b0110011;

4'd5: {a,b,c,d,e,f,g}=7'b1011011;

4'd6: {a,b,c,d,e,f,g}=7'b1011111;

4'd7: {a,b,c,d,e,f,g}=7'b1110000;

4'd8: {a,b,c,d,e,f,g}=7'b1111111;

4'd9: {a,b,c,d,e,f,g}=7'b1111011;

default: {a,b,c,d,e,f,g}=7'bx;

endcase

end

endmodule

Concatenation operator ({}) concatenates the results of two or more expressions.
The syntax of a concatenation operation is:

{expression 1, expression 2, …}

For instance:

{a, b[1:2], c, 4’b0010}

{4{y}}

The first line is equivalent to {a, b[1], b[2], c, 1ʹb0, 1ʹb0, 1ʹb1, 1ʹb0} and the
second line is equivalent to {y, y, y, y}. The bit size of each operand should be
certain so that the program can calculate the total size of the result of a
concatenation operation.

The simulation circuit diagram of Example 4.25 is shown in Figure 4.8.13, and its
simulation waveform is shown in Figure 4.8.14, where we can find that, when the
inputs [D3, D2, D1, D0] are equal to 0001, the outputs [a, b, c, d, e, f, g] equal to 011000
and “1” can be displayed on the seven-segment LED.
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4.9 Summary

1. The outputs of combinational circuits depend only on the present inputs and not
any storage elements are included in the circuits.

2. Logic diagram, logic expression, truth table, and the Karnaugh map are four
methods of describing combinational digital circuits.

IN[3..0] OUT[15..0]

DECODER

a~0

b~0

WideOr4

WideOr6

WideOr10

a

b

c

d

e

f

gD0
D1
D2
D3

Decoder0

WideOr8

Figure 4.8.13: Simulation circuit diagram of Example 4.25.

Figure 4.8.14: Simulation waveform of Example 4.25.
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3. Analysis procedure of a combinational circuit is to write out logic expressions,
simplify the expression using the Boolean algebra or the Karnaugh map, derive
its truth table, and determine the implemented functions.

4. One method to design a combinatorial circuit is to construct its truth table, write
and simplify the expression using the Boolean algebra or the Karnaughmap, and
draw the logic diagram.

5. A full-adder performs the addition of two one-bit binary numbers and an input
carry. A multibit binary adder can be constructed by cascading multiple full
adders.

6. A look-ahead carry logic circuit is used to reduce excessive delays caused by
carry propagation.

7. The 74LS283/HC283 MSI chip is a four-bit binary adders with a look-ahead carry
logic circuit. It can be used to construct high-speed parallel adders, subtracters,
and code converters.

8. A BCD adder circuit implemented by using binary adders requires special correc-
tion circuitry whenever the sum of a digit position exceeds 9 (1001).

9. A binary encoder converts 2n noncoded information into n-bit binary code. Only
one of input signals of binary encoders is valid at any time.

10. A priority encoder allows multiple active inputs at the same time, but only one
input with the highest priority is encoded. The 74LS148 is an MSI 8-to-3 priority
binary encoder with eight active-LOW inputs and three active-LOW outputs.

11. Binary decoders and BCD-to-decimal decoders are also called variable decoders.
Each output of a variable decoder corresponds to a minterm of input variables. It
can be used as demultiplexers and the implementation of any combinational
logic circuits.

12. The 74LS138 is a commonly used MSI 3-to-8 decoder. It can be used for address
decoders, demultiplexers, and the implementation of any combinational logic
circuits.

13. Display decoders are to convert binary codes on their inputs and provide outputs
to drive display devices including LEDs and LCDs.

14. The 74LS48 and 74LS47 are two types of integrated decoders for driving seven-
segment LEDs. The 74LS48 is an active-HIGH for driving common-cathode LEDs
while the 74LS47 is an active-LOW for driving common-anode LEDs.

15. Dual 4-to-1 multiplexer 74LS153 and 8-to-1 multiplexer 74LS151 are commonly
used MSI multiplexers. They can be used for data transmission and implement-
ing any combinational logic circuit.

16. The basic function of a comparator in a digital circuit is to compare the magni-
tudes of two binary quantities to determine the relationship of those quantities.

17. The 74LS85 is an MSI four-bit magnitude comparator. It is easy to expand any
number of bits greater than four and to construct some special control circuit.
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18. Races and hazards usually take place during the transition of the states of
combinational digital circuits. Three methods of eliminating hazards is to add
a redundancy term, use absorption capacitors, and apply a strobing pulse.

19. Verilog HDL is a widely used HDL. A complex logic circuit can be divided into
several modules.

20. The default term should be included in the case statement and the if-else state-
ment to avoid generating unnecessary latches.

21. There are two types of assignments in Verilog HDL: continuous assignment and
procedural assignment.

22. The commonly used data types in Verilog are wire type and reg type.

Key terms

Encoder: A digital circuit that converts noncoded information, such as a decimal
number and alphabetic characters into a coded form.
Priority encoder: An encoder in which only the higher-order active input is encoded
and any other lower-order active inputs are ignored.
Decoder: A logic circuit that converts a coded information into a noncoded form.
Half-adder: A logic circuit that adds two one-bit binary numbers and generates a
sum and an output carry.
Full-adder: A logic circuit that adds two one-bit binary numbers and an input carry
to generate a sum and an output carry.
Ripple carry: A type of carry method that the carry output of each full-adder is
connected to the carry input of the next higher-order stage.
Look-ahead carry: A type of carry method that the output carry of each stage is
obtained directly from the input bits of each stage.
Multiplexer: A circuit that selects data from one of several inputs at a time to place it
on a single output line; also called data selector.
Demultiplexer: A circuit that distributes data from one input line to one of the
output lines at a time; also called data distributors.
Magnitude comparator: A circuit that performs the comparison of two quantities
and indicates whether or not they are equal.
Code converter: A logic circuit that converts a type of coded information into the
other type of coded form.
Race: A phenomenon that several input signals of a logic gate vary at the same time,
or a signal is transferred to a logic gate through different paths resulting in different
arrival time of signals.
Hazard: A phenomenon that glitches occur due to the existence of race in a logic
circuit.
Glitch: An unintentional or unwanted voltage or current spike with short duration.
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Self-test

4.1 The logic function implemented by the circuit shown in Figure T4.1 is.
(a) When the inputs are different, the output is 1; when the inputs are the same,

the output is 0.
(b) When the inputs are different, the output is 0; when the inputs are the same,

the output is 1.
(c)When the number of the inputs is odd, the output is 1; otherwise, the output is

0.
(d) When the number of the inputs is even, the output is 1; otherwise, the output

is 0.

4.2 Assuming a logic gate has two inputs A and B and an output Y, their waveforms
are shown in Figure T4.2. The logic function performed by this circuit is _______.
(a) AND (b) NAND (c) OR (d) NOR

4.3 Assuming a logic gate has three inputs A, B, and C and an output Y, their wave-
forms are shown in Figure T4.3. The logic function performed by this circuit is
_______.
(a) AND (b) NAND (c) OR (d) NOR

B
C

A Y

Figure T4.1

B
A

Y

Figure T4.2

A
B
C
Y

Figure T4.3
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4.4 Which one of logic diagrams in Figure T4.4 corresponds to the logic expression
Y = AB + BC _______.

4.5 Which one of logic diagrams in Figure T4.5 corresponds to the logic function
expression Y = A(B + C) + BC _______.

4.6 Which one of the following circuits in Figure T4.6 does not match with the
corresponding logic expression _______.

4.7 The logic expression corresponding to the circuit diagram shown in Figure T4.7
is _______.

A

Y
B

C

(a) (b)

A
YB

C

Figure T4.4

C
B
A Y

(a) (b)
C

B
A

Y

Figure T4.5

Y

A
B

C

(a) (b)

(c)

Y=AB+AC Y=A+B+C

Y

A
B

C

Y

A
B

Y=AB+(A+B)C

C

Figure T4.6
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(a) Y =A+B+AB
(b) Y =AB+AB
(c) Y = A+ �B

� �
�A+B

� �
(d) Y =A�B+ �AB

4.8 The logical function performed by the circuit shown in Figure T4.8 is _______.
(a) NAND (b) NOR (c) XNOR (d) XOR

4.9 Which circuit diagram in Figure T4.9 does not perform the logic XOR
function_____.

4.10 How many 74LS283 adders would be required to add two binary numbers each
representing decimal numbers up through 30010? _______
(a) 1 (b) 2 (c) 2 (d) 4

A
B

Y

Figure T4.7

A
B Y

Figure T4.8

A
B

Y

A

B Y

(a) (b)

(c) (d)

Y

A

B

A
B Y

Figure T4.9
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4.11 The binary numbers A = 1100 and B = 1001 are applied to the inputs of a 74HC85.
The outputs are _______.
(a) Y (A > B) = 1, Y (A < B) = 0, Y (A= B) = 0
(b) Y (A > B) = 0, Y (A < B) = 1, Y (A= B) = 0
(c) Y (A > B) = 0, Y (A < B) = 0, Y (A= B) = 1
(d) Y (A > B) = 1, Y (A < B) = 0, Y (A= B) = 1

4.12 How many data-select lines does it take to select eight inputs?
(a) 1 (b) 2 (c) 3 (d) 4

4.13 A decoder can be used as a demultiplexer by
(a) tying all enable pins LOW.
(b) tying all data-select lines LOW.
(c) tying all data-select lines HIGH.
(d) using the input lines for data selection and an enable line for data input.

4.14 Howmany outputs would two 74LS148 8-line-to-3-line encoders, expanded to a
16-line-to-4-line encoder, have?
(a) 3 (b) 4 (c) 5 (d) 6

4.15 Two four-bit comparators are cascaded to form an eight-bit comparator. The
cascading inputs of the most significant 4 bits should be connected to
(a) the cascading inputs of the least significant four-bit comparator.
(b) A = B to a logic high, A < B and A > B to a logic low.
(c) the outputs from the least significant four-bit comparator.
(d) ground.

4.16 The 74LS47 is a BCD to a seven-segment decoder with ripple blanking input and
output functions. The purpose of these lines is to _______.
(a) test the display to assure all segments are operational
(b) turn off the display for leading or trailing zeros
(c) turn off the display for any zero
(d) turn off the display for any nonsignificant digit

4.17 In Verilog HDL, if the else of the “if-else” statement is omitted, then the codes
_______
(a) generate latches and are suitable for combinational digital circuits
(b) do not generate latches and are suitable for combinational digital circuits
(c) generate latches and are not suitable for combinational digital circuits
(d) do not generate latches and are not suitable for combinational digital circuits
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Problems

4.1 Write the logic expression of the output, list the truth table, and describe the
function implemented by the circuit shown in Figure P4.1.

4.2 A circuit diagram is shown in Figure P4.2.
(1) Write the logic expressions of S, C, P, and L.
(2) What is the function of this circuit if S and C are treated as outputs?

4.3 A circuit consists of a 3-to-8 decoder 74LS138 and logic gates, as shown in Figure
P4.3.
(1) Write the expressions of P1 and P2.
(2) List the truth table and analyze the function performed by the circuit.

Y
A
B

C

Figure P4.1

S
X

Y
Z

C

L
P

Figure P4.2

Y0A0

A1

G1

G2A

G2B

A2

Y1

Y2

Y3

Y4

Y5

Y6

Y7

BIN/OCT

B
A

C

1
0
0

74LS138

P1

P2

Figure P4.3
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4.4 A circuit with an 8-to-1 multiplexer is shown in Figure P4.4. Write the logic
expressions of Y when G1G0 have different combinations of logic values.

4.5 Analyze the logic function of a circuit implemented with 74LS138 and logic
gates, as shown in Figure P4.5.

4.6 Write the logic expressions of F1, F2, F3, and F4 for a circuit shown in Figure
P4.6.

4.7 Write the logic expressions of F1 and F2 for a circuit shown in Figure P4.7.

4.8 Implement the following logic function expressions with the fewest NAND
gates.

P1 ¼
P

m 11; 12; 13; 14; 15ð Þ
P2 ¼

P
m 3; 7; 11; 12; 13; 15ð Þ

P3 ¼
P

m 3; 7; 12; 13; 14; 15ð Þ

8><
>:

Y Y

G1
G0
A

"1"

B

EN

MUX
74LS151

D0 D1 D2 D3 D4 D5 D6 D7

A2
A1
A0

Figure P4.4
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G2A
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Y1

Y2

Y3

Y4

Y5

Y6

Y7

Figure P4.5
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4.9 Design a logic circuit to control the operation of a big pumpM1 and a small pump
M2 in Figure P4.8. Two pumps are used to control the water level in a water tank.
When the water level is above H, both pumps start to work; when the water level
lies between H and M, only the big pump works; when the water level lies
between M and L, only the small pump works; when the water level is below L,
no pump works.

X
Y

Z

F1

F2

F3

F4

Ai

Bi
Ci–1

Si

Ci

Ai

Bi
Ci–1

Si

Ci

Ai

Bi
Ci–1
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Ci

Figure P4.6
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Figure P4.7
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M
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M2M1

Figure P4.8
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4.10 Design a full subtractor to perform a subtraction of three one-bit binary digits.
Suppose A is the minuend, B is the subtrahend, J0 is the borrow from the less
significant bit, D is the difference, and J is the borrow from the more significant
bit.
(1) List the truth table, and write the logic function expressions of D and J.
(2) Implement the subtractor with two-input NAND gates.
(3) Implement the subtractor with a 74LS138 3-to-8 decoder and a few logic gates.
(4) Implement the subtractor with a dual 4-to-1 multiplexer and a few logic

gates.

4.11 Design a combinational digital circuit with the inputs of four-bit binary codes
B3B2B1B0. When B3B2B1B0 is a 8421BCD code, the output Y = 1; otherwise, Y = 0.

4.12 Use NAND gates to design a display decoder to drive a common-anode LED. The
decoder has three inputs. The LED is required to display six fonts. The six fonts
can be chosen from 0 to 9 and A to Z.

4.13 Implement the following logic function expressions with a 74LS138 and a few
logic gates.

P1 A;Bð Þ ¼ P
m 0; 3ð Þ

P2 A;Bð Þ ¼ P
m 1; 2; 3ð Þ

(

4.14 Design a code converter to convert BCD8421 code into BCD5421 code. The con-
verter should be implemented by a 74LS283 four-bit adder and two-input NAND
gates.

4.15 Design a combinational logic circuit to realize logic functions shown in Table
P4.1, where C1 and C0 are two inputs for selecting different functions, A and B
are input variables, F is an output.
(1) List the truth table and write the logic expression of F.
(2) Implement the circuit with an 8-to-1 multiplexer and logic gates.

Table P4.1

C C F

  A+B
  AB
  A¯B
  A¯B
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4.16 A circuit diagram is shown in Figure P4.9(a).

(1) Write the function expressions of L, Q, and G; list the truth table, and analyze
what is the function performed by this circuit.

(2) Use the circuits shown in Figure P4.9(a) and (b) to design a five-bit magni-
tude comparator.

4.17 Design a logic circuit to control a room heating system. During the day time, the
heating system starts to work when the room temperature is below 20 oC; in the
evening, the system starts to work when the room temperature is below 17 oC.

4.18 Design a logic circuit using NAND gates to perform the agreement of passing the
final driver license. There is a chief examiner, A, and two assistant examiners, B
and C in a final test for driving license. A driver gets a license only when more
than two (including two) examiners give a pass and the chief examiner also
gives a pass.

4.19 Design a logic circuit using NAND gates to perform the judgment whether or not
a student gets the certification of graduate. A student needs to take final exams
of four courses to graduate. When the student passes the course, he can get
1 point for course A, 2 points for course B, 4 points for course C passes, and
5 points for course D; when the student fails in an exam, he gets 0 point for the
course. The student can graduate only if the points he gets are greater than
7 points.

4.20 A circuit diagram is shown in Figure P4.10. If only one input of A, B, C, and D
changes its state, are there any races and hazards phenomenon in this circuit? If
yes, what are the values of the rest three inputs when there is a hazard?

4.21 Design a logic circuit to control the indicator LED for monitoring the operation
of motors. Totally, there are four motors A, B, C, and D, in a factory. The
indicator LED is on only when motor A and at least two of three motors B, C,
and D are turned on; otherwise, the indicator LED is off.

(a) (b)

A
B Q

L

G

74LS85

YA<B YA=B YA>B

A2A3 A1 A0 B2B3 B1 B0

(A<B)i
(A=B)i
(A>B)i

Figure P4.9

Problems 161

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



4.22 Analyze the function of the circuit of which simulation result is shown in
Figure P4.11.

4.23 Verilog codes for a circuit are given below. Write the function table of the circuit
and simulate using QuartusII software.

module XXX_decoder(A,EN,Y);

output [7:0] Y;

input [2:0] A;

input EN;

reg[7:0] Y;

wire [3:0] temp={A,EN};

always

case (temp)

4'b0001 : Y=8'b00000001;

4'b0011 : Y=8'b00000010;

4'b0101 : Y=8'b00000100;

4'b0111 : Y=8'b00001000;

4'b1001 : Y=8'b00010000;

4'b1011 : Y=8'b00100000;

4'b1101 : Y=8'b01000000;

4'b1111 : Y=8'b10000000;

default : Y=8'b11111111;

endcase

endmodule

A

B

C

D

Y

Figure P4.10

0
0
0
0y

a
b
s

Name: Value: 500.0 ns 1.0 μs 1.5 μs 2.0 μs 2.5 μs 3.0 μs

Figure P4.11
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4.24 Verilog codes for a circuit are shown below. Write the function table of the
circuit and simulate it using QuartusII software.

module XXX_encoder(Y,A);

output [2:0] A;

input [7:0] Y;

reg [2:0] A;

wire [7:0] temp=Y;

always

case (temp)

8'b00000001: A=3'b000;

8'b00000010: A=3'b001;

8'b00000100: A=3'b010;

8'b00001000: A=3'b011;

8'b00010000: A=3'b100;

8'b00100000: A=3'b101;

8'b01000000: A=3'b110;

8'b10000000: A=3'b111;

default A=3'b000;

endcase

endmodule

4.25 There are three radars A, B, and C. The power dissipation of A and B are the
same, and the power dissipation of C is twice of the power dissipation of A. Two
generators X and Y supply power to the radars. The maximum output power of
generator X is the same as the power dissipation of radar A, and the maximum
output power of generator Y is three times of the output power of X. Design a
logic circuit to control the start and the stop of the generators X and Y ensuring
the output electric power minimized. The detailed requirements are:
(1) List the truth table and indicate the logic definition of the variables.
(2) Write Verilog HDL codes for the circuit.
(3) Simulate the logic function using QuartusII software.

Problems 163

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



5 Flip-flops and related devices

Combinational circuit introduced in Chapter 4 is a type of digital circuits, whose
outputs solely depend on the combination of current inputs, without storage being
involved. Another kind of digital circuits is sequential logic circuit, in which outputs
depend on not only the current inputs but also the previous inputs. Therefore, memory
and storage are necessary parts for a sequential logic circuit. This chapter introduces
bistable, monostable, and astable multivibration. Bistable multivibration has two
stable states called logic 0 (or RESET) and logic 1 (or SET); it can maintain either of
these states indefinitely, making it useful as memory devices. The monostable multi-
vibration, also called the one shot, only has one stable state. A single controlled-width
pulse is generated when a one shot is triggered. The astable multivibration has no
stable state and is used to produce a periodic of pulse signal that can be used as a clock
pulse source in a sequential logic circuit. In addition, Schmitt trigger and 555 timer are
introduced for pulse generating, pulse shaping, and pulse transforming.

The objectives of this chapter are to
– Explain the operation of a basic S-R latch
– Describe the difference between a flip-flop and a latch
– Identify four kinds of edge-triggered flip-flops, and their dynamic characteristics
– Discuss the application of flip-flops
– Explain how a one shot operates
– Explain the difference of retriggerable and nonretriggerable one shots
– Explain the operation and application of Schmitt trigger
– Explain the operation of an astable devices
– Describe the function of 555 timer
– Apply a 555 timer to construct a one shot and an astable device

5.1 Latches

Latch and flip-flop are two categories of bistable multivibrators. Both of them have
two stable states, that is, logic 0 and logic 1. Generally, a latch or a flip-flop can only
store one-bit binary digit. It is the basic storage element in sequential logic. The main
difference between latches and flip-flops is themethod used for changing their states.
This section mainly introduces the basic S-R latch and the gated D latch.

The objective of this section are to
– Explain the operation of a basic S-R latch
– Implement an S-R latch with logic gates
– Describe the logic function of basic S-R latch
– Explain the operation of a gated S-R latch and a gated D latch
– Describe the logic function of the gated D latch

https://doi.org/10.1515/9783110614916-005
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5.1.1 The S-R latch

The S-R latch consists of two cross-coupled NAND gates or NOR gates.

1. The S-R latch with NAND gates
A basic S-R latch formed with two cross-coupled NAND gates is shown in Figure 5.1.1(a).
It has two inputs, �Rd and �Sd, and two outputs, Q and �Q . Note that the output of each
gate is connected to an input of the opposite gate. This produces the regenerative
feedback that is a characteristic of all latches and flip-flops. Normally, two outputs of
a latch always complement each other. That is, when Q is LOW, �Q is HIGH, and when

Q is HIGH, �Q is LOW. A latch has two stable states: Q is LOW, called the RESET state,

and Q is HIGH, called the SET state. �Rd is the RESET input, and �Sd is the SET input.
Ususally, both inputs are HIGH and an activated input is a LOW when a latch is
triggered. Figure 5.1.1(b) shows the logic symbol for an S-R latch formed with two
cross-coupled NAND gates.

Let us begin with assuming that both inputs and output are HIGH, which is the
normal latched state. Since the Q output is connected back to an input of gate A and
the �Rd input is HIGH, the output of gate A must be LOW. This LOW output is coupled
back to an input of gate B, ensuring that its output is HIGH.

When theQ output is HIGH, the latch is in the SET state. It will remain in this state
indefinitely until a LOW is temporarily applied to the �Rd input. With a LOW on the �Rd

input and a HIGH on �Sd, the output of gate A is forced HIGH. This HIGH on the �Q

output is coupled back to an input of gate B, and since the �Sd input is HIGH, the
output of gate B goes LOW. This LOWon theQ output is then coupled back to an input

of gate A, ensuring that the �Q output remains HIGH even when the LOW on the �Rd

input is removed.
When the Q output is LOW, the latch is in the RESET state and the latch remains

in the RESET state until a LOW is temporarily applied to the �Sd input. With a LOW on

the �Sd input and a HIGH on �Rd, the output of gate B is forced HIGH. This HIGH on the

Q output is coupled back to an input of gate A, and since the �Rd input is HIGH, the

output of gate A goes LOW. This LOW on the �Q output is then coupled back to an

QQ

Rd Sd

A

(a) (b)

B R

S

Q

QSd

Rd

Figure 5.1.1: The basic S-R latch: (a) with NAND gates; (b) logic symbol.
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input of gate B, ensuring that the Q output remains HIGH even when the LOW on the
�Sd input is removed.

An invalid condition occurs when LOWs are applied to both �Sd and �Rd at the same
time. As long as the LOW levels are simutaneously held on the inputs, both the Q and
�Q outputs are forced HIGH, thus violating the basic complementary operation of the
outputs. If the LOWare released simutaneously, both outputs will attempt to go LOW.
Since there is always some difference in the propagation delay time of the gates, one
of the gates will dominate in its transition to the LOW output state. This, in turn,
forces the output of the slower gate to remain HIGH. In this situation, you cannot
reliably predict the next state of the latch.

The logic function of the S-R latch can be summarized in a characteristic table, as
listed in Table 5.1.1. Qn and �Qn represent the current state or present state. Qn+1 and
�Qn+ 1 represent new states after each clock pulse, also called as next state.

The logic function of an S-R latch can be also expressed by the characteristic
equation. The characteristic equation for an active-LOW input S-R latch formed
with two cross-coupled NAND gates is deduced as follows:

Qnþ1 ¼ Sd þ �RdQn

�Rd þ �Sd ¼ 1

(
(5:1:1)

Note that �Rd + �Sd = 1 is the constraint condition, whichmeans �Rd and �Sd cannot be 0 at
the same time when the latch is in the normal operation.

Example 5.1 If the �Rd and �Sd waveforms in Figure 5.1.2(a) are applied to the inputs of the latch in

Figure 5.1.1(a), determine the waveform of the Q and �Q outputs. Assume that Q is initially low.

Table 5.1.1: The characteristic table.

Inputs Outputs Comments

�Rd
�Sd Qn+ 1 �Qn+ 1

    RESET
    SET
  Qn �Qn No change

    Invalid condition

Rd

Sd

Q

Q

(a)

(b) Uncertain 
states

t1t2 t3 t4 t5 t6 t7 t8

Figure 5.1.2: (a) Input waveforms;
(b) output waveforms.
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Solution

The waveforms of the Q and �Q outputs can be determined with respect to the �Rd and �Sd inputs, as

shown in Figure 5.1.2(b). Note that the Q and �Q outputs are both HIGH since both �Rd and �Sd are LOWs

during the time interval between t5 and t6. At the time of t6, only one of the �Rd and �Sd inputs change

from LOW to HIGH; thus, the Q and �Q outputs can be in a certain state. However, the situation is

different at the time of t8. During the time interval between t7 and t8, the Q and �Q outputs are both

HIGH since both �Rd and �Sd are LOWs. If the LOWs are released on the �Rd and �Sd inputs simutaneously
at the time of t8, both outputs will attempt to go LOW. Because of the small difference in the
propagation delay time of the gates, one of the gates will dominate in its transition to the LOW
output state and then forces the output of the slower gate to remain HIGH. Therefore, the next state of
the latch is uncertain, which is indicated by the shadow.

2. The S-R latch with NOR gates
The basic S-R latch can also be formed with two cross-coupled NOR gates, as shown
in Figure 5.1.3. Table 5.1.2 is a characteristic table that illustrates the operation for
each of the four possible combinations of levels on the inputs. The logic function can
be analyzed with the similar method as described earlier.

According to the characteristic table, the characteristic equation for the latch shown
in Figure 5.1.3 can be expressed by

Qnþ1 ¼ Sd þ �RdQn

Rd Sd ¼ 0

(
(5:1:2)

Table 5.1.2: The characteristic table.

Inputs Outputs Comments

Rd Sd Qn+ 1 �Qn+ 1

  Q �Qn No change

    SET
    RESET
    Invalid condition

QQ

Rd Sd

(a) (b)

R

S Q

Q
Figure 5.1.3: The basic S-R latch: (a) with NOR
gates; (b) logic symbol.
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Note the constraint condition is that Sd and Rd cannot be HIGH at the same time
when the latch is in the normal operation.

5.1.2 The gated S-R latch

For a basic S-R latch, the outputs change as long as the input level of �Rd or �Sd
is changed. A gated latch adds two NAND gates, gate C and gate D, and an
enable control input, EN. Figure 5.1.4 shows the logic diagram and logic symbol for
a gated S-R latch. When a LOW is applied to the EN input, gate C and gate D are both
disabled and thus their outputs are both HIGH. The latch will maintain the current
state, that is, Qn+1=Qn. When a HIGH is applied to the EN input, the R and S inputs
control the state of the latch. Due to the inverter of gate C and gate D, the R and S
inputs are both active-HIGH. As long as the EN input remains a HIGH, the output of
the latch change with R and S inputs. In this circuit, the invalid state occurs when
both S and R are simultaneously HIGH. The characteristic table of the gated S-R latch
is the same as the basic S-R latch, as shown in Table 5.1.2. The characteristic equation
can be written as

Qnþ1 ¼ Sþ �RQn

RS ¼ 0

(
(5:1:3)

Note that when EN is HIGH, the outputs change as long as the input level of R or S
is changed. If there is an interference signal affecting the level of the input signals,
the output of the gated S-R latch will also be changed, as shown in Figure 5.1.5.
Therefore, the gated S-R latch has weak anti-interference capability.

Q

QR

S

EN

D
(a) (b)

B

AC

EN

S

R

Q

Q

Figure 5.1.4: A gated S-R latch: (a) logic diagram; (b) logic symbol.

Q
R

S

EN

Q Figure 5.1.5: The output waveform of a gated S-R latch.
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5.1.3 The gated D latch

The gated D latch is another kind of gated latch, which is very useful when a single
data bit (0 or 1) is to be stored [37]. Different from the gated S-R latch, it has only one D
input in addition to EN input. By adding an inverter between the R and S inputs, a
gated D latch can be implemented, as shown in Figure 5.1.6.

When the D input and the EN input are both HIGH, the Q output is HIGH and the
latch will be in a SET state. When the D input is LOW and EN is HIGH, the Q output is
LOW and the latch is in a RESET state. The SET state corresponds to store a 1, and the
RESET state corresponds to store a 0. When the EN input is LOW, the latch keeps no
change. That is, the output Q follows the input Dwhen EN is HIGH. The characteristic
equation can be expressed as

Qn+ 1 =D (5:1:4)

Example 5.2 If the D input waveform in Figure 5.1.7(a) is applied to the input of the gated D latch in
Figure 5.1.6, determine the waveform of the Q and �Q outputs. Assume that Q is initially low.

Solution

For the gated D latch, the Q output follows the D input when EN is HIGH and the Q output keeps no
change when EN is LOW. Therefore, the Q and �Q output waveforms are shown in Figure 5.1.7(b).

5.2 Flip-flops

As mentioned in the previous section, the main difference between latches and flip-
flops is the method used for changing their states. The latch is sensitive to the input

Q

Q

D
(a) (b)

EN

D B

AC

EN

D Q

Q

Figure 5.1.6: A gated D latch: (a) logic diagram; (b) logic symbol.

Q
D

EN

Q

(a) (b)

Figure 5.1.7: A Gated D latch: (a) input waveform and (b) output waveform.
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level. However, the output of a flip-flop only changes at a specified point on a
triggering input called the clock pulse, which is designated as a control input, CP.
Generally, a flip-flop is sensitive to the positive going or negative going edge of clock.
Classified by logic function, flip-flops can be categorized as S-R flip-flop, J-K flip-flop,
D flip-flop, and T flip-flop. Classified by trigger method, they can be divided into
master-slave flip-flops and edge-triggered flip-flops. This section introduces master-
slave flip-flops and edge-triggered flip-flops.

The objectives of this section are to
– Define the master-slave flip-flop
– Explain the operation of pulse-triggered master-slave flip-flop
– Define the edge triggered flip-flop
– Explain the operation of edge-triggered S-R, D, J-K, and T flip-flop
– Explain the difference between the master-slave flip-flops and edge-triggered

flip-flops
– Discuss the asynchronous inputs of a flip-flop
– Implement the transition of different kinds of flip-flops
– Recognize the dynamic characteristics of flip-flops

5.2.1 Master-slave flip-flops

Master-slave flip-flop is a kind of flip-flops with the pulse-triggered method. Data are
entered into the flip-flop at the leading edge of the clock pulses, but the output does
not reflect the input state until the trailing edge [38]. Two types of pulse-triggered
master-slave flip-flops, S-R and J-K flip-flops, are introduced here.

1. The S-R master-slave flip-flop
The S-R master-slave flip-flop consists of two cascading gated S-R latches, as shown
in Figure 5.2.1 [3]. One is the master flip-flop including four NAND gates, G1, G2, G3,

A

BR

S

(a) (b)

CP

G1

G2

G3

G4

G5

G6

G7

G8

Q

Q

Q

QR
C
S

CP
R

S

Figure 5.2.1: The S-R master-slave flip-flop: (a) logic diagram; (b) logic symbol.
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and G4 . Another is the slave flip-flop involving four NAND gates, G5, G6, G7, and G8.
The slave flip-flop has the same structure as the master flip-flop except that it is
clocked on the inverted clock pulse and controlled by the outputs of the master flip-
flop rather than the external S-R inputs.

When the positive-going edge of clock pulse arrives, the state of master flip-flop
is determined by the S and R inputs. Since the outputs of the master flip-flop are
connected to the inputs of the slave flip-flop, the state of themaster flip-flop is sent to
the slave flip-flop on the negative-going edge of clock pulse. At the negative-going
edge of clock pulse, the state of the slave flip-flop then appears in the Q and �Q

outputs. After the negative-going edge of clock pulse, the Q and �Q outputs will keep
no change because the outputs of the master flip-flop keep no change when the clock
pulse is a LOW. The characteristic of the S-R master-slave flip-flop is same as that of
the gated S-R latch, as listed in Table 5.2.1.

The characteristic equation for S-R master-salve flip-flop is the same as the gated
S-R latch as follows:

Qnþ1 ¼ Sþ �RQn

RS ¼ 0

(
(5:2:1)

The logic symbol for the S-Rmaster-slave flip-flop is shown in Figure 5.2.1(b). The
postponed output symbol (˥) at the Q and �Q output is the key to identify a master-
slave flip-flop. This symbol indicates that the output does not reflect the S-R input
until the occurrence of the clock edge (either positive-going or negative-going)
following the triggering edge.

2. The J-K master-slave flip-flop
Figure 5.2.2 shows the logic diagram for the J-Kmaster-slave flip-flop [3]. Based on the
S-R master-salve flip-flop, the J-K master-slave flip-flop has a slight change. Except
the J and K inputs, the Q and �Q output of the slave flip-flop is connected back as an
input of gate G1 and gate G2, respectively. The S and R inputs for S-Rmaster-salve flip-
flop become:

Table 5.2.1: The characteristic table.

Inputs Output Comments

S R Qn+ 1

  Qn No change
   RESET
   SET
  indeterminate Invalid condition
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S= J�Qn , R=KQn (5:2:2)

Substitute eq. (5.2.2) into the characteristic eq. (5.2.1), then the characteristic
equation for J-K master-salve flip-flop can be derived as follows:

Qn+ 1 = J�Qn +KQn � Qn = J�Qn + �KQn (5:2:3)

According to the characteristic equation, the characteristic table for J-Kmaster-slave
flip-flop is summarized in Table 5.2.2.

The logic operation of the J-K master-slave flip-flop is the same as that of the S-R
master-slave flip-flop in the SET, RESET, and no-change modes. The difference in
operation occurs when both J and K inputs are HIGH; the flip-flop changes its state to
the opposite state on each successive clock pulse. This operation mode is called
toggle operation. Note that there is no invalid state for J-K flip-flop, which is different
from the case for S-R master-slave flip-flop.

A limitation to the master-slave operation is that the J and K inputs should be
kept unchanged when the clock signal is a HIGH level because the state of master
latch can change during this time.

A

BK

J

CP

G1

G2

G3

G4

G5

G6

G7

G8

Q

(b)(a)

Q

Q

QK
C
J

CP
K

J

Figure 5.2.2: J-K master-slave flip-flop: (a) logic diagram and (b) logic symbol.

Table 5.2.2: The characteristic table.

Inputs Output Comments

J K Qn+ 1

  Qn No change
   Reset
   Set
  �Qn Toggle
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5.2.2 Edge-triggered flip-flops

An edge-triggered flip-flop changes its state either at the positive edge (rising edge) or
at the negative edge (failing edge) of the clock pulse and is sensitive to its inputs only
at this transition of the clock. Three types of edge-triggered flip-flops are covered in
this part [3]. They are S-R, D, and J-K flip-flops. The logic symbols for all of these flip-
flops are shown in Figure 5.2.3, in which each type can be either positive edge-
triggered (no bubble at C input) or negative edge-triggered (bubble at C input).
Especially, the “>”symbol at the C input, which is called the dynamic input indicator,
is also the key to identify an edge-triggered flip-flop by its logic symbol.

1. The Edge-triggered S-R Flip-flop
Figure 5.2.4 shows a positive edge-triggered S-R flip-flop. It contains three parts: a
basic NAND latch (gate G3 and gate G4), a pulse-steering circuit (gate G1 and gate G2),
and a pulse transition detector (or edge detector) circuit. The pulse transition detector
detects a rising (or falling) edge and produces a very short-duration (ns) spike.

When S is HIGH and R is LOW, the Q output goes HIGH on the triggering edge of
the clock pulse, and the flip-flop is SET. When S is LOW and R is HIGH, the Q output
goes LOW on the triggering edge of the clock pulse, and the flip-flop is RESET. When

C
S

R

Q

R

(a) (b)

(d) (f)

(c)

(e)

S

Q
CP C

D QD

Q
CP C

J

K

Q

K

J

Q
CP

C
S

R

Q

R

S

Q
CP C

D QD

Q
CP C

J

K

Q

K

J

Q
CP

Figure 5.2.3: Positive edge-triggered S-R (a), D (b) and J-K (c) flip-flops, and negative edge-triggered
S-R (d), D (e), and J-K (f) flip-flops.

Q

Q

R

S

CP
Pulse transition

detector

G3

G4

G1
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Figure 5.2.4: Positive edge-triggered S-R flip-
flop.
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both S and R are LOW, theQ output keeps no change andmaintains its previous state.
An invalid condition exists when both S and R are HIGH. The S and R inputs of the S-R
flip-flop are called synchronous inputs because data on these inputs are transferred to
the output of flip-flop only on the triggering edge of the clock pulse. The character-
istic table of this flip-flop is shown in Table 5.2.3.

The characteristic equation for the positive edge-triggered S-R flip-flop is the
same as that of gated S-R latch and can be expressed as

Qnþ1 ¼ Sþ �RQn

RS ¼ 0

(
(5:2:4)

Note that the flip-flop cannot change its state except on the triggering edge of a
clock pulse. The S and R inputs can be changed at any time when the clock input is
LOW or HIGH (except for a very short interval around the triggering transition of the
clock) without affecting the output. In addition, the operation and characteristic table
for a negative edge-triggered S-R flip-flop are the same as those for a positive edge-
triggered flip-flop except that the falling edge of the clock pulse is the triggering edge.

Since the S-R flip-flop is not available in IC form, the most common used edge-
triggered flip-flop is the D and J-K flip-flop.

2. The Edge-triggered D Flip-flop
The basic edge-triggered D flip-flop can be constructed by adding an inverter to the S-R
flip-flop, as shown in Figure 5.2.5. There is only one input, the D input, in addition to
the clock. If a HIGH is applied on the D input, the flip-flop will be in SET state at the
arrival of positive-triggered edge of the clock pulse. Thus, a HIGH on the D input is
stored by the flip-flop on the positive-going edge of the clock pulse. If a LOW is applied
on the D input, the flip-flop will be in RESET state at the arrival of positive-triggered
edge of the clock pulse. Thus, the LOW on the input is stored by the flip-flop on the
positive-going edge of the clock pulse. In the SET state, the flip-flop is storing a 1, and

Table 5.2.3: The characteristic table.

Inputs outputs Comments

CP S R Qn+ 1 �Qn+ 1

×   Qn �Qn No change

↑     RESET
↑     SET
↑     Invalid

“↑” represents the clock transition from LOW to HIGH.
“×” represents the “don’t care.”
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in the RESET state, it is storing a 0. That is, the output Q follows the input D at active
triggered-edge of clock pulse. Table 5.2.4 summarizes the logical operation of the
positive edge-triggered D flip-flop. The edge-triggered D flip-flop is very useful when
a single data bit (0 or 1) is to be stored.

The characteristic equation for the D flip-flop can be expressed as

Qn+ 1 =D (5:2:5)

Example 5.3 Given the waveform for the D input and the clock pulse in Figure 5.2.6, determine the Q
output waveform if the flip-flop starts at RESET state.

Solution

For the positive edge-trigger D flip-flop, the outputQ follows the input D at the arrival of positive edge
of the clock pulse. Hence, the resulting waveform of the output Q is shown in Figure 5.2.7.

C
S

R

QD

Q
CP

Figure 5.2.5: A positive edge-triggered D flip-flop.

Table 5.2.4: The characteristic table.

Inputs Outputs Comments

CP D Qn+ 1 �Qn+ 1

↑    RESET (store a )
↑    SET (store a )

D

CP

Figure 5.2.6: Input waveform for D flip-flop.

Q

D

CP

Figure 5.2.7: Output waveform for D flip-flop.
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3. The Edge-triggered J-K Flip-flop
The edge-triggered J-K flip-flop is versatile and a widely used type of flip-flop.
Figure 5.2.8 illustrates the basic internal logic for a positive edge-triggered J-K flip-
flop. Unlike the S-R edge-triggered flip-flop, the outputs of J-K flip-flop are fed back as
the input of the pulse steering NAND gates G1 and G2. The two inputs are labeled J and
K in honor of Jack Kilby, who invented the integrated circuit.

Assume that the flip-flop is RESET and that the J input is HIGH, the K input is
LOW. At the positive triggering edge of clock pulse, gate G1 is enabled. Since �Q and J
are both HIGH, the output of gate G1 is LOW. This LOW level is applied on the input of
gate G3 and thus theQ output of the flip-flop changes from LOW toHIGH. The flip-flop
is now SET.

If you now set J input as LOW and K input as HIGH, gate G2 is enabled at the
positive triggering edge of clock pulse. Since Q and K are both HIGH, the output of
gate G2 is LOW. This LOW level is applied on the input of gate G4 and thus the output
�Q of the flip-flop changes from LOW to HIGH and Q changes from HIGH to LOW. The
flip-flop is now RESET.

If you set both J input and K input LOW, the outputs of both gate G1 and G2 are
HIGH. The HIGH are applied on the inputs of gate G3 and G4 and thus the flip-flop
will stay in its present state at the arrival of positive triggering edge of the clock
pulse.

Assume that the flip-flop is RESET. If you set both J and K inputs HIGH, the HIGH
on �Q enables gate G1, and the output of G1 becomes LOW at the arrival of positive
triggering edge of the clock pulse; since this LOW is input to gate G3, the output Q is
HIGH and the flip-flop is SET. Now the HIGH on Q enable the gate G2, the output of G2

becomes LOW at the arrival of positive triggering edge of the clock pulse; and since

this LOW is input to gate G4, the output �Q is HIGH and the flip-flop is RESET.
Therefore, on each successive positive triggering edge of the clock pulse, the J-K
flip-flop changes its state to the opposite state, which is a toggle operation.

Table 5.2.5 summarizes the characteristic table of the positive edge-triggered
J-K flip-flop. The function of the J-K flip-flop is identical to that of the S-R flip-flop in
the SET, RESET, and no-change. The difference is that the J-K flip-flop has no
invalid state.

Q

Q

K

J

CP
Pulse transition

detector

G1

G2

G3

G4 Figure 5.2.8: The logic diagram for a positive
edge-triggered J-K flip-flop.
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According to the characteristic table, the characteristic equation can be expressed as

Qn+ 1 = J�Qn + �KQn (5:2:6)

The J-K flip-flop is a kind of versatile flip-flop. By choosing different connection, a
J-K flip-flop can form other types of flip-flop.

If the J and K inputs are tying together as an input T, a T flip-flop is formed, as
shown in Figure 5.2.9. When a HIGH is applied on the input T, this make J and K
inputs HIGH and thus the flip-flop is in toggle operation. T flip-flop changes its state
to the opposite state on each clock edge. When a LOW is applied on the input T, this
make J and K inputs both LOW and thus the flip-flop keeps its previous state. The
characteristic table for the positive edge-triggered T flip-flop is shown in Table 5.2.6.

The corresponding characteristic equation of T flip-flop can be deduced from that
of J-K flip-flop as follows:

Qn+ 1 = T�Qn + �TQn =T¯Qn (5:2:7)

Table 5.2.5: The characteristic table.

Inputs Outputs comments

CP J K Qn+ 1 �Qn+ 1

↑   Qn �Qn No Change

↑     RESET
↑     SET
↑   �Qn Qn Toggle

Table 5.2.6: The characteristic table.

Inputs Outputs Comments

CP T Qn+ 1 �Qn+ 1

↑  Qn �Qn No Change

↑  �Qn Qn Toggle

Q

QT

CP

(a) (b)

Pulse transition
detector

C
T

CP
Q

Q

T

Figure 5.2.9: Logic diagram (a) and logic symbol (b) for a positive edge-triggered T flip-flop.
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A J-K flip-flop connected for toggle operation is called as T′ flip-flop or “toggle”
flip-flop. T′ flip-flop changes its state to the opposite state on each clock edge, giving
an output that is half the frequency of the clock pulse, as shown in Figure 5.2.10. It is
useful for constructing binary counter, frequency divider, and general binary addi-
tion device.

If T = 1, that is, J = K = 1, a T flip-flop become a T′ flip-flop. The characteristic
equation of T′ flip-flop can be expressed as follows:

Qn+ 1 = �Qn (5:2:8)

5.2.3 Asynchronous inputs

For the flip-flops just discussed, the S-R, D, and J-K inputs are synchronous inputs, as
data on these inputs are transferred to the flip-flop’s output only on the triggered
edge of the clock pulse，which means the data are transferred synchronously with
the clock.

Most intergrated circuit flip-flops also have asynchronous inputs, which affect
the state of the flip-flop independent of the clock. Usually, asynchronous inputs
include preset (PRE), also called direct set (Sd), and clear (CLR), also called as direct
reset (Rd).

CP

Q Figure 5.2.10: The output waveform of T′ flip-flop.

CP C
J

K

Q

K

(a) (b)

J

Q

Sd

Rd

Sd

Rd

Q

Q

K

J

CP
Pulse transition

detector

Sd

Rd

Figure 5.2.11: A J-K flip-flop with direct reset and direct set inputs: (a) logic symbol;
(b) logic diagram.
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An active level on the preset (or direct set) input will set the flip-flop and an active
level on the clear (or direct reset) input will reset it. Figure 5.2.11 shows the logic
symbol and logic diagram for a J-K flip-flop with direct set and direct reset inputs.
These inputs are active-LOW, as indicated by the bubbles. Normally, when the flip-
flop is in the synchronous operation, both direct set and reset inputs must be HIGH.
As you can see from Figure 5.2.11(b), the inputs are connected so that they override
the effect of the synchronous inputs, J, K, and the clock. With asynchronous inputs,
the characteristic table for the J-K flip-flop can be revised as Table 5.2.7.

Example 5.4 For the positive edge-triggered J-K flip-flop with direct set and reset inputs in
Figure 5.2.11, when J and K inputs are both HIGH, determine the Q output for the inputs shown in
the timing diagram in Figure 5.2.12 if Q is initially LOW.

Solution

1. During clock pulses 1, 2, and 3, the direct set (�Sd) is LOW, keeping the flip-flop SET regardless of
the synchronous J and K inputs.

2. For clock pulses 4, 5, 6, and 7, the flip-flop is in toggle operation because J and K are both HIGH,
and �Sd and �Rd are both HIGH.

3. For clock pulses 8 and 9, the direct reset input (�Rd) is LOW, keeping the flip-flop RESET
regardless of the synchronous inputs.

The resulting waveform of the Q output is shown in Figure 5.2.13.

Table 5.2.7: The characteristic table.

Inputs Outputs Comments

cp �Rd
�Sd J K Qn+ 1 �Qn+ 1

×   × ×   Asynchronous RESET
×   × ×   Asynchronous SET
   × × Qn �Qn No Change

↑     Qn �Qn No Change

↑       Synchronous RESET
↑       Synchronous SET
↑     �Qn Qn Toggle

CP 1 2 3 4 5 6 7 8 9

Sd

Rd

Figure 5.2.12: Input waveforms in Example 5.4.
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5.2.4 Flip-flop conversion

Generally, mainstream ICs of edge-triggered flip-flops are D flip-flop and J-K flip-flop.
Other types of flip-flops can be implemented with D flip-flop and J-K flip-flop. The
implementing method is to use characteristic equation of different types of flip-flops
to determine the inputs of flip-flop.

Example 5.5 Use a D flip-flop to construct a T′ flip-flop.

Solution

The characteristic equation for D flip-flop is Qn+ 1 =D.
The characteristic equation for T′ flip-flop is Qn+ 1 = �Qn.

Compare the characteristic equation of two type of flip-flops, when D= �Qn, a T′ flip-flop
can be constructed by using a D flip-flop. That is, a T′ flip-flop can be implemented by connecting

the �Q output of D flip-flop with the D input. The logic diagram is shown in Figure 5.2.14(a).

C

D

CP

(a) (b)

Q

Q C

D

CP

Q
K

J

Q

Figure 5.2.14: The logic diagram.

CP 1 2 3 4 5 6 7 8 9

Sd

Rd

Q

SET Toggle RESET

Figure 5.2.13: Output waveform in Example 5.4.
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Example 5.6 Use a D flip-flop to construct a J-K flip-flop.

Solution

The characteristic equation for D flip-flop is Qn+ 1 =D.
The characteristic equation for J-K flip-flop is Qn+ 1 = J�Qn + �KQn.

Compare the characteristic equation of two types of flip-flops, when D= J�Qn + �KQn, a J-K flip-flop
can be constructed by using a D flip-flop and few logic gates. The logic diagram is shown in
Figure 5.2.14(b).

5.2.5 Flip-flop operating characteristics

The operation characteristics for flip-flops includes the time for data receiving, state
transition, propagation delay, or response. Generally, the specifications are applic-
able to all CMOS and TTL flip-flops. Here, the D flip-flop is taken as an example to
discuss the operating characteristics, as shown in Figure 5.2.15.

1. Set-up time
The set-up time (tset) is the minimum interval required for the logic levels to be
maintained constantly on the input prior to the triggering edge of the clock pulse
in order for the levels to be reliably clocked into the flip-flop.

2. Hold time
The hold time (th) is the minimum interval required for the logic levels to remain on
the inputs after the triggering edge of the clock pulse in order for the logic levels to be
reliably clocked into the flip-flop.

3. Propagation delay times
A propagation delay time is the interval of time required after an input signal has been
applied until the resulting output change to occur. tpLH represents the propagation
delay from the triggering edge of the clock pulse to the LOW-to-HIGH transition of the
output. tpHL represents the propagation delay from the triggering edge of the clock

D

CP

tset

Q

th

tpLH tpHL

50% point

50% point

Figure 5.2.15: Operation characteristics for
D flip-flop.
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pulse to the HIGH-to-LOW transition of the output. The average propagation delay can
be calculated as

tpd =
tpLH + tpHL

2
(5:2:9)

4. Maximum clock frequency
The maximum clock frequency (fCPMAX) is the highest rate at which a flip-flop can be
reliably triggered. At clock frequencies above the maximum, the flip-flop would be
unable to respond quickly enough, and its operation would be impaired.

Example 5.7 Determine the maximum operating frequency for a positive edge-triggered D flip-flop
with the set-up time tset, and the propagation delay times tpLH=tpHL=tpd.

Solution

The operation characteristic for D flip-flop in Example 5.7 is illustrated in Figure 5.2.16.

In order to guarantee the logic levels propagated reliably into the flip-flop, the time interval of the
LOW level of the clock pulse, TL, should be greater than the set-up time tset; the time interval of the
HIGH level of clock pulse, TH, should also be greater than the average propagation delay tpd. Thus, the
period of the clock pulse, Tcp, is at least equal to the sum of TL and TH. That is, Tcp = TL + TH ≥ tset+ tpd, so

fCP =
1

Tcp
≤ 1

tset + tpd
. Therefore, the maximum operating frequency is 1

tset + tpd
.

5.3 One shot

One shot is also calledamonostablemultivibration,whichhasonly one stable state and is
commonly used for timing circuits in electronics system. It is normally in its stable state
and will change its state from the stable state to an unstable state only when triggered.
Once it is triggered, the one shot could not stay at the unstable state for a long time and
will return automatically to its stable state for a predetermined length of time. The time
that the device stays in its unstable state determines the pulse width of its output.

The objectives of this section are to
– Describe the basic operation of a one shot
– Explain how a nonretriggerable one shot operates
– Explain how a retriggerable one shot operates
– Discuss the function of 74LS122

D

CP

tset

TL

TH

tpd

Figure 5.2.16: Operation waveforms.
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5.3.1 Structure and principle

A basic S-R latch formed with two cross-coupled NAND gates has two stable states,
Q=0 orQ=1, as shown in Figure 5.3.1(a). The output of each gate is directly fed back as
an input of the opposite gate. If an inverter is used to replace the NAND gates G2 in S-R
latch and the �Q output is fed back through a RC circuit instead of line feedback, the
resulting circuit is one shot, as shown in Figure 5.3.1(b). There are only one trigger
input and two complementary outputs, Q and �Q . The trigger pulse should be a
norrow negative pulse.

Normally, the trigger input is HIGH and the Q output of one shot is HIGH that is
a stable state. When a negative pulse is applied to the trigger input, the output of
gate G1 goes HIGH. This transition from LOW to HIGH is coupled through the
capacitor C to the input of gate G2. The apparent HIGH on G2 makes the Q output
go LOW. The one shot will change its state from the stable state, Q =1, to the
unstable state, Q =0. This LOW output goes back to the input of gate G1 and
makes the output of gate G1 keep HIGH. Once the one shot enter into the unstable
state, the capacitor immediately begins to charge through R toward the high voltage
level. The rate at which it charges is determined by the RC time constant. With the
charge of the capacitor, the voltage of point B (UB) falls. When the capacitor charges
to a certain level, the voltage of point B goes below a threshold voltage, and the Q
output goes back HIGH since there is a LOW input to G2. The one shot will return
automatically to its stable state. The time that the one shot stays in its unstable state
determines the pulse width of its output.

In summary, the Q output goes LOW in response to the trigger pulse. It remains
LOW for a time set by theRC time constant. At the end of this time, it goes HIGH. A one
shot produces a single pulse each time it is triggered. This operation is illustrated in
Figure 5.3.2.

The time duration of the output pulse, tw, is proportional to the time constant τ
(τ = RC) by tw = kRC, where k is a constant of proportionality and depends on the
particular device. For the one shot in Figure 5.3.1, it can be obtained by solving the

QQ

(a) (b)

Rd Sd

G1 G2

QQ

C R

Trigger

G1 G2
B

Figure 5.3.1: Comparison of S-R latch and
one shot: (a) S-R latch and (b) one shot.
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voltage transient equations of point B. The initial and final voltage of point B can
be expressed as follows:

UB 0+ð Þ=VDD ðInitial voltageÞ
UB ∞ð Þ=0 ðFinal voltageÞ

The transient value, UB(t), at the time t can be calculated by the voltage transient
equation as follows:

UB tð Þ=UB ∞ð Þ+ UB 0+ð Þ−UB ∞ð Þ½ �e− t
τ =VDDe− t

τ (5:3:1)

Assume that the threshold voltage of logic gates is denoted by Uth. When

UB tð Þ=Uth =VDDe− t
τ, the corresponding time is the output pulse width tW.

tW = τ ln
VDD

Uth
(5:3:2)

Especially, if Uth = 1
2VDD, then

tW � 0.7τ=0.7RC (5:3:3)

Except for the pulse width, another important parameter of the one shot is the
maximum operation frequency, which can be determined by

fmax ≤
1

tW + tre
(5:3:4)

where tre is the recovery time that is the discharge time of capacitor. Generally, the
input equivalent resistor of logic gate can be ignored; the recovery time can be
expressed by

tre = 3⁓5ð Þτre (5:3:5)

where τre is the discharge time constant of capacitor.

Q
Q

UB

Trigger

tw

Figure 5.3.2: The operation waveform of the one shot.
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5.3.2 Types of one shots

There are two basic types of one shots: one is the nonretriggerable one shot and
another is the retriggerable one shot.

A nonretriggerable one shot will not respond to any additional trigger pulse from
the time it is triggered into its unstable state until it returns to its stable state. That is,
it will neglect any triggered into its unstable state until it returns to its stable state.
Figure 5.4.3 shows the nonretriggerable one shot being triggered at intervals greater
than its pulse width and at intervals less than the pulse width. Note that in
Figure 5.3.3(b), three additional pulses are neglected.

A retriggerable one shot can be triggered before it times out. As a result of retrigger-
ing, the pulse width can be extended, as illustrated in Figure 5.3.4.

tw
Q

tw

Trigger

Q

Trigger

These pulses are 
neglected by one-shot

(a)

(b)

Figure 5.3.3: Nonretriggerable one shot action.

twQ
tw

Trigger

tw

Retriggers

Figure 5.3.4: Retriggerable one shot
action.
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5.3.3 Specific integrated one shot

The commonly used one shot ICs include 54/74LS121, 54/74LS122, 54/74LS123,
CD4098, CD4538, and many others [6].

For example, the 74LS122 is a retriggerable one shot, as shown in Figure 5.3.5. It
has one clear input (�R) and four trigger inputs (�A1, �A2, B1, and B2 ). It can be triggered

with either the negative pulse applied to the trigger inputs (�A1 or �A2) or the positive

pulse applied to the inputs (B1, B2, or �R), as shown in the function table of 74LS122 in
Table 5.3.1.

The pulse width formula for the 74LS122 is

tW =0.32RCext 1 +
0.7
R

� �
(5:3:6)

where the resistor R can be either the internal resistor (10 kΩ) or the external resistor
(Rext), Cext is the external capacitor, and 0.32(1+0.7/R) is the constant of proportion-
ality, k.

The connections for the 74LS122 to produce a pulse are shown in Figure 5.3.5. You
can adopt either the internal resistor or the external resistor to produce the required
pulse width. The value of the external resistor (Rext) is from 5 to 260 kΩ and the value
of the external capacitor (Cext) is from 10 pF to 10 μF. Note that although the external
capacitor (Cext) is already connected to ground internally, an external ground also
should be connected to the external capacitor in practical application to suppress the
interference.

One shot can be used for timing circuit, pulse shaping, pulse broadening, and so
on. For long distance transmission, it is a common for the pulse to produce a

(a) (b)

R

1
2
3
4

5

Q
8

6

9

7

RintCext Rext
/CextA1

A2
B1
B2 Q

141311
VCC

GND

Cext
VCC

VCC

uo

R

1
2
3
4

5

Q 8

6

9

7

RintCext Rext
/CextA1

A2
B1
B2 Q

141311
VCC
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Cext
VCC

Rext
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Figure 5.3.5: Connection of 74LS122 for a pulse generator: (a) using internal resistor and (b) using
external resistor.
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degeneration due to the presence of some interference and attenuation. The one shot
can be used for constructing the reshaping circuit. The degenerating pulse can be
used as a trigger input of one shot and the desired pulse can be generated by
controlling the time constant. Because the one shot can produce a rectangular
pulse with a fixed width and amplitude, it can also be used for timing and delay
circuits. In addition, by applying a narrow pulse to the trigger input of a one shot, a
wide pulse can be obtained from the Q output of a one shot.

5.4 Astable multivibrator

An astable multivibrator has no stable state and thus its output change back and
forth between two unstable states without the requirement of any external triggering
pulse. It is often used to produce a periodic of pulse signal as a pulse generator. This
section introduces astable multivibrator.

The objectives of this section are to
– Explain the basic operation of astable multivibrator
– Explain the difference between bistable, monostable, and astable multivibrator
– Describe how to construct a crystal oscillator

5.4.1 Astable multivibrator

In Section 5.3, you have learned that a simple one shot can be constructed by using an
RC circuit to replace one feedback loop in S-R latch, as shown in Figure 5.4.1(a) and (b).

Table 5.3.1: The function table.

0

0
0
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0
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0

0
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1
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1
1
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0
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If both two-feedback loops are replaced by RC circuits and two NAND gates are sub-
stituted by two inverters, the resulting circuit is an astable multivibrator, as shown in
Figure 5.4.1(c).

The astable multivibrator has no stable state, but it has two unstable states:Q = 0
andQ = 1. Assume that the astable multivibrator in the first unstable state isQ = 0 and
�Q=1; the HIGH output, �Q , allows the capacitor to begin charging through the
resistor. With the increase of voltage of the capacitor, the voltage of point B falls.
As soon as the voltage of point B falls below the threshold voltage of gate G2, the Q
output changes from LOW to HIGH immediately. Through the coupling of the capa-
citor, the voltage of point A also becomes HIGH and thus the �Q output goes LOW.

The circuit enters into the second unstable state, Q = 1 and �Q= 0. Because the �Q
output is HIGH, it allows the capacitor to begin charging through resistor and the
voltage of point A falls. As soon as the voltage of point A falls below the threshold
voltage of gate G1, the �Q output changes from LOW to HIGH immediately. Through
the coupling of the capacitor, the voltage of point B also becomes HIGH and thus the
Q output goes LOW. As a result, the astable multivibrator changes its state from the
second unstable state into the first unstable state. The state of astable multivibrator
changes back and forth between two unstable states without requirement of any
external triggering pulse. Figure 5.4.2 shows the voltage waveforms of the output,

Q

(a) (b) (c)

Q

Rd Sd

G1 G2

QQ

C R

Trigger

G1 G2

B

QQ

C R

G1 G2

CR
A B

Figure 5.4.1: Comparison of S-R latch (a), one shot (b), and astable multivibrator (c).
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Figure 5.4.2: The astable multivibrator in Figure 5.4.1: (a) waveforms and (b) equivalent circuit.
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point A and point B. The time that the astable multivibrator stays in each unstable
state can be deduced by solving the voltage transient equations of point B and point
A, respectively. If the circuit is symmetric and the threshold voltage of each inverter is
half of the supply voltage, the time interval of each unstable state is tw =0.7RC and the
period of the output waveform is T = 2tw = 1.4RC. In addition, the circuit of astable
multivibrator in Figure 5.4.1(c) can be equivalent to that in Figure 5.4.2(b) by con-
necting the resistor to the LOW output of the corresponding inverter instead of
connecting to ground.

There are also other types of astable multibrators, as shown in Figure 5.4.3. You
can analyze the operation principle by yourself. Note that the key to analyze this kind
of circuits including RC components is the charge and discharge process of the
capacitors.

5.4.2 Crystal oscillator

The threshold voltage of the multivibrator that contains the resistor, capacitors, or
logic circuit is sensitive to the environmental conditions, especially the temperature,
so it is difficult for this kind of multivibrator to achieve a frequency stability better
than 10−3. For high-frequency stability, crystal oscillators are widely used because
they can achieve a frequency stability higher than 10−9.

Figure 5.4.4 shows the symbol, equivalent electrical circuit, and impedance
characteristics of the quartz crystal. The equivalent electrical circuit contains a series
RLC circuit, which represents the mechanical vibrations of the crystal, in parallel
with a capacitance, Cp, which represents the electrical connections to the crystal [17].

There are two resonance frequency: series resonance frequency, fs, and parallel
resonance frequency, fp, for quartz. They can be expressed as

fs =
1

2π
ffiffiffiffiffiffiffiffiffi
LsCs

p (5:4:1)

fp =
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ls

CpCs
Cp +Cs

� 	r (5:4:2)

R C

uoA uoA

(a) (b) (c)

R

C

uo

A
B

Figure 5.4.3: Several astable multivibrators: (a) CMOS; (b) ring loop; and (c) modified ring loop.
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A typical quartz crystal oscillator circuit is shown in Figure 5.4.5. A quartz crystal
is used to replace the capacitor C2 in Figure 5.4.2(b). The frequency of quartz crystal
oscillators is determined by series resonance frequency since quartz crystal tends to
operate toward their “series resonance”. The role of the capacitor C1 acts as the
coupling capacitor between two inverters.

5.5 Schmitt trigger

A Schmitt trigger is named a “trigger” because the output retains its value until the
input changes sufficiently to trigger a change. Generally, the triggering input of
flip-flop and one shot require a rapid transition input voltage (pulse signal), but
Schmitt trigger can respond to a very slowly varying input voltage and belongs to
level-triggered circuit. It is widely used in pulse shaping and waveform transforma-
tion. This section introduces principle, characteristics, and applications of Schmitt
trigger.

The objectives of this section are to
– Describe the basic operation of a Schmitt trigger
– Explain the hysteresis characteristics of a Schmitt trigger
– Discuss the application of a Schmitt trigger

R

uo

G1 G2C

R

Figure 5.4.5: Quartz crystal oscillator.

Cp

Ls

Cs

Rs

fs fp f

X

O

(a) (b) (c)

Figure 5.4.4: Quartz crystal’s symbol (a); equivalent circuit (b); and impedance as a function of
frequency (c).
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5.5.1 Hysteresis characteristics

The Schmitt trigger is a type of comparators with hysteresis characteristics, as shown
in Figure 5.5.1. It has two threshold voltages: upper threshold voltage, UT+, and lower
threshold voltage, UT−. For a inverting Schmitt trigger, when the input voltage, ui,
rises slightly above the upper threshold voltage, the output of Schmitt trigger pro-
duce a transition from HIGH to LOW; while the input voltage falls slightly below the
lower threshold voltage, the output produces a transition from LOW to HIGH. For a
noninverting Schmitt trigger, when the input voltage is slightly more positive than
the upper threshold voltage, the output is a transition from LOW to HIGH; while the
input voltage is slightly more negative than the lower threshold voltage, the output
produces a transition from HIGH to LOW. Generally, the upper threshold voltage is
greater than the lower threshold voltage. The difference between UT+ and UT− is
called hysteresis voltage denoted by ΔUT.

Different from the monostable multivibrator and flip-flop triggered by the pulse
edge, the Schmitt trigger can respond to a very slowly varying input voltage, which
belongs to level-triggered device. Assuming that the input signal is a triangular
wave, the corresponding output waveforms for the inverting Schmitt trigger and the
noninverting Schmitt trigger are shown in Figure 5.5.2, respectively. For example,
in the noninverting configuration, when the input is slightly above the upper
threshold voltage (UT+), the output produce a transition from LOW to HIGH; when
the input is slightly below the lower threshold voltage (UT−), the output changes
from HIGH to LOW. This dual threshold action is called hysteresis and implies that
the Schmitt trigger possesses memory and can act as a latch or flip-flop.

Logic symbols of the inverting and noninverting Schmitt trigger are shown in
Figure 5.5.3. Similar to the traditional symbols for an inverter, the symbol of an
inverting Schmitt trigger has an inverted hysteresis curve inside a buffer followed
by a bubble; a noninverting Schmitt trigger has a noninverted hysteresis curve inside
a buffer.

O

(a) (b)

UOH

UOL

ui

uo

UT+ UT+UT– UT–
O

UOH

UOL

ui

uo

Figure 5.5.1: Hysteresis characteristics of inverting (a) and noninverting (b) Schmitt trigger.

192 5 Flip-flops and related devices

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



5.5.2 Structure and principle

There are many ways to build Schmidt triggers. Figure 5.5.4 shows a circuit structure
of Schmitt trigger by using an operational amplifier with a positive feedback.

Two resistors R and Rf act as a voltage divider and offer a reference voltage to the
noninverting input of op-amplifier. When the Schmitt trigger is in high state, the
output voltage is the positive saturation voltage, that is, uo =+Usat, and the reference
voltage is expressed as

UREF1 =
R

R+Rf
uo =

R
R+Rf

Usat (5:5:1)

When the input voltage ui is less than UREF1, the Schmitt trigger will stay in the
high state. But when the input voltage rises slightly above UREF1, the Schmitt trigger
changes its state from HIGH to LOW and thus the output voltage becomes the
negative saturation voltage, that is, uo = −Usat. As a result, the reference voltage is
also changed, which can be expressed as

(a) (b)
Figure 5.5.3: The logic symbol of inverting
(a) and noninverting (b) Schmitt trigger.

Rf

uo

R

ui
+
–

UREF

Figure 5.5.4: Schmitt trigger circuit.
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Figure 5.5.2: Input and output waveforms of inverting (a) and noninverting (b) Schmitt trigger.
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UREF2 =
R

R+Rf
uo = −

R
R+Rf

Usat (5:5:2)

When the input voltage ui is greater thanUREF2, the Schmitt trigger will stay in the
low state. But when the input voltage falls slightly below UREF2, the Schmitt trigger
immediately changes its state from LOW back to HIGH. Therefore, the hysteresis
characteristics are produced and the hysteresis voltage can be obtained by the
difference of UT+ and UT−. Because UT+ = UREF1 and UT− = UREF2, the hysteresis voltage
can be deduced as follows:

ΔUT =UT+ −UT− =
2R

R+Rf
Usat (5:5:3)

5.5.3 Applications of schmitt trigger

Schmitt triggers are widely used in the field of pulse shaping, pulse conversion, and
pulse magnitude distinguishing.

1. Pulse shaping
In a digital system, the pulse signalmay be distorted during transmission, for example,
pulse edge deformation, oscillation on the rising or falling edge, and additional noise
appears on the pulse signal, as shown in Figure 5.5.5. An inverting Schmitt trigger can
be used for pulse shaping by setting a suitable value for UT+ and UT−.

2. Waveform conversion
Schmitt triggers can be used to transform a periodic signal to a pulse signal, as shown
in Figure 5.5.6. The width of pulse can be adjusted by changing the difference between
UT+ and UT−.
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uo
UOH

UOL
t

ui uo
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ui uo
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UT–

O t
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UOL t

(a) (b)

ui uo
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UT–

O t
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O

uo
UOH

UOL
t

(c)

Figure 5.5.5: Schmitt trigger used for pulse shaping: (a) pulse edge deformation; (b) oscillation on the
rising or falling edge; and (c) additional noise.
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3. Pulse magnitude distinguishing
Because the output of the Schmitt trigger depends on the magnitude of the input
voltage, we canmake use of this characteristic to distinguish the magnitude of pulse,
as shown in Figure 5.5.7. Only when pulse magnitude is higher than the value of UT+,
the pulse can be recognized.

4. Using as an astable multivibrator
A Schmitt trigger is a bistable multivibrator, and it can be used to implement the
astable multivibrator, also called as the relaxation oscillator. This is achieved by
connecting a single RC integrating circuit between the output and the input of an
inverting Schmitt trigger, as shown in Figure 5.5.8. If Schmitt trigger is in the high
state, the capacitor is charged and the input voltage increases. When the input
voltage is slightly more positive than the upper threshold voltage, the Schmitt trigger
changes its state from HIGH to LOW. When Schmitt trigger is in the LOW state, the
capacitor starts to discharge and makes the input voltage fall. When input voltage is
slightlymore negative than the lower threshold voltage, the Schmitt trigger goes back

UT+
UT–

O t

ui

O t

uo
UOH

UOL

ui uo

Figure 5.5.6: A Schmitt trigger used for waveform
conversion.
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Figure 5.5.7: A Schmitt trigger used for distinguishing the magnitude
of pulse.
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Figure 5.5.8: A multivibrator constructed with a Schmitt trigger.
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to the HIGH state. The output will be a continuous pulse wave whose frequency
depends on the values of R and C, and the threshold points of the Schmitt trigger.
Since multiple Schmitt trigger circuits can be provided by a single integrated circuit
(e.g., the 4,000 series CMOS device type No. CD40106 contains six of them), a spare
section of the IC can be quickly pressed into service as a simple and reliable oscillator
with only two external components.

5.6 555 timer

The 555 timer is a kind of versatile analog-to-digital hybrid integrated circuit. It can be
configured as a monostable multivibtrator, an astable multivibrator, and Schmitt
trigger, and is widely used in the field of pulse generation, pulse shaping, time
delay, and timing circuits. This section introduces the functions and applications of
555 timer.

The objectives of this section are to
– Describe the basic operation of 555 timer
– Set up a 555 timer operate as a one shot or an astable multivibrator
– Discuss the application of 555 timer

5.6.1 Basic operation

There are two types of 555 timer ICs in the market. A type of 555 timer ICs belonging to
the TTL family includes a single 555 timer named 555 and dual 555 timers named 556.
Another type of IC products belonging to CMOS family contains a single 555 timer
named 7555 and dual 555 timers named 7556. Irrespective of the family they belong to,
the 555 timers have the same function and external pin configuration. They have
several distinguished advantages when compared with other ICs. The dc supply
voltage has a wide range from 5 to 15 V for TTL family and from 3 to 18 V for CMOS
family; themaximum load current is offered up to 200mA for TTL family and 4mA for
CMOS family.

Let us take the 555 timer in TTL family, for example, to introduce the functions
and basic operations of the 555 timer. Figure 5.6.1 shows the pin diagram and the
functional diagram of the internal components of a 555 timer. The power connections
to the chip are through pins 1 (ground, GND) and 8 (+Vcc). The positive supply
voltage (+Vcc) should be between 5 and 15 V. It can be seen from the functional
diagram that a 555 timer consists of a few different elements: resistors, transistors,
comparators, a R-S latch, and an output stage.

A voltage divider is set up by three resistors connected between Vcc and ground.
Since three resistors have the same value of 5 kΩ, the voltage at the junctions between
the resistors are 2/3 Vcc and 1/3 Vcc used as reference voltages for two comparators.
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Two comparators are composed of two operational amplifiers with open loop.
The comparator compares an input with a reference voltage and outputs a LOW or
HIGH signal based on whether the input is a higher or lower voltage than the
reference. The comparator A2 connected to pin 2 compares the “trigger” input, TR,
to a reference voltage of 1/3Vcc and the comparator A1 connected to pin 6 compares
the “threshold (TH)” input to a reference voltage of 2/3Vcc. If you want to change the
value of reference voltage, the reference voltage can be externally input through pin 5
named control voltage (CV). If there is no external reference input, pin 5 is usually
connected to ground through a small capacitor of 0.01 μF, which can eliminate the
interference of high frequency noise.

A R-S latch is used to switch between two stable states. The latch outputs a HIGH
or LOW based on the states of the two comparators. It can be reset by applying a LOW
to pin 4 named the clear input or direct reset input, �R.

The transistor attached to pin 7 is an NPN transistor. Since pin 7 is connected
to the collector of the NPN transistor VT, this type of configuration is called as
open collector. This pin is usually connected to a capacitor and is used to discharge
the capacitor each time the output pin goes low. This is the reason why pin 7 is
named discharge (DIS) terminal and the transistor is called as the discharging
transistor.

The Q output of the latch passes through an output buffer G to the output pin 3.
Whether or not the latch outputs a HIGH or LOW is determined by the states of the two
comparators and direct reset input; let us discuss the basic operation of a 555 timer.

When the direct reset input is LOW, the latch is reset directly, causing the output
(pin 3) to go LOW and making the discharging transistor on.

When the direct reset input is HIGH, the output is determined by the trigger input
and threshold input. If the threshold input is higher than 2/3Vcc regardless of the
trigger input, the output of comparator A1 is HIGH and resets the latch, resulting in
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Figure 5.6.1: Pin diagram (a) and functional diagram (b) of a 555 timer.
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the output to go LOW and the discharge transistor turned on. If the trigger input is
lower than 1/3Vcc and the threshold input is also lower than 2/3Vcc, the output of
comparator A2 is HIGH and sets the R-S latch, causing the output to go HIGH and the
discharging transistor turned off. If trigger input is greater than 1/3Vcc and the
threshold input is lesser than 2/3Vcc, the output of two comparators are both LOW
and thus the latch keeps no change. The logic function of the 555 timer is shown in
Table 5.6.1.

5.6.2 One shot operation

A 555 timer can be used to construct a one shot by adding an external resistor (R) and
capacitor (C), as shown in Figure 5.6.2. The capacitor 0.01μF is introduced to elim-
inate the effect of high-frequency noise on the trigger and threshold levels. The
negative trigger pulse ui is applied to the triggering input. The high level of the
trigger pulse ui should be greater than 2/3Vcc, while the low level of the trigger pulse
ui should be less than 1/3Vcc. The output signal is gotten out from pin 3.

Before the trigger pulse is applied, the output is LOW and the discharged
transistor VT is turned on. This keeps C discharged and the voltage of capacitor, uc,
is around 0.3 V. The 555 timer operates at the stable state. When the negative-going
trigger pulse ui is applied, the output goes high and VT is turned off because the

VCC

τ =RCuo

R
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tW
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Figure 5.6.2: The 555 timer connected as a one shot: (a) circuit diagram; (b) voltage waveforms.

Table 5.6.1: The logic function.

�R TH �TR OUT VT

 × ×  on
 > /Vcc ×  on
 </Vcc > /Vcc No change No change
 </Vcc < /Vcc  off
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trigger input is less than 1/3Vcc and the threshold input is less than 2/3Vcc. The state
of the output changes from the stable state (LOW) to unstable state (HIGH). Since the
discharge transistor is off, the capacitor C starts to be charged through resistor R and
uc increases. When uc rises slightly more than 2/3Vcc, the output goes back LOW and
VT is turned on immediately, allowing the capacitor C to discharge through VT and
thus the output goes back to the stable state. The output pulse width, tw, can be
determined by solving the transient equation of uc as follows:

uc tð Þ= uc ∞ð Þ+ uc 0ð Þ− uc ∞ð Þ½ �e− t
τ (5:6:1)

where uc(0)=0V, uc(∞)=VCC, and τ = RC.
When t = tw, uc = 2/3Vcc. Thus, the output pulse width, tw, can be deduced from

eq. (5.6.1) as follows:

tw = 1.1RC (5:6:2)

Generally, the value of tw is several microseconds to several minutes, and the
stability and accuracy of the timer will decrease with the increase of tw.

5.6.3 Astable operation

A 555 timer can be also connected to operate as an astable multivibrator by adding
two external resistors and one capacitor, as shown in Figure 5.6.3. Note that the
threshold input TH is now connected to the trigger input. Initially, when the power is
turned on, C is uncharged, causing both trigger input and threshold input less than
the corresponding reference voltage. Hence, the output is HIGH and VT is off,
allowing the capacitor to begin charging through RA and RB and the voltage uc
increases. When uc reaches up to 2/3Vcc, the output uo changes from HIGH to LOW
and VT is on, allowing the capacitor to begin discharging through RB and VT. As soon
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Figure 5.6.3: The 555 timer connected as an astable multivibrator: (a) circuit diagram; (b) voltage
waveform.
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as uc falls down to 1/3Vcc, the output uo goes HIGH and VT is off, allowing C to begin
charging again through RA and RB and thus a new cycle begins.

The duration time, T1, of the HIGH output corresponds to the time interval that
the voltage of capacitor uc to be charged from 1/3Vcc to 2/3Vcc; the duration time, T2, of
the LOW output corresponds to the time interval that the voltage of capacitor uc to be
discharged from 2/3Vcc to 1/3Vcc. They can be deduced from the transient equation of
uc. The resulting duration time T1 and T2 are expressed as

T1 = 0.7 RA +RBð ÞC (5:6:3)

T2 = 0.7RBC (5:6:4)

Therefore, the period of the output pulse, T, can be deduced as follows:

T =T1 +T2 = 0.7 RA + 2RBð ÞC (5:6:5)

The duty circle (D) is

D=
T1

T
=

T1

T1 + T2
× 100%=

RA +RB

RA + 2RB
× 100% (5:6:6)

According to eqs. (5.6.5) and (5.6.6), the period and duty circle can be adjusted by
selecting RA and RB. Generally, the values of the resistors and capacitor for 555 timer
working as an astable multivibrator are as follows: RA ≥ 1kΩ, RB ≥ 1kΩ, RA +RB ≤ 3.3MΩ,
and C ≥ 500pF.

Example 5.8 The circuit is composed of two 555 timers, as shown in Figure 5.6.4. Determine the
frequencies of uo1 and uo2, and draw their waveforms.

Solution

Two 555 timers are connected to operate as astable operation (oscillator). The periods for timer I and
timer II can be calculated by using eq. (5.6.5):

T1 = 0.7ðRA1 + 2RB1ÞC1 = 14.7s

T2 = 0.7ðRA2 + 2RB2ÞC2 = 0.728ms

Thus, the frequencies of uo1 and uo2 are

VCC VCC

uo1

RA1

C1

12

3
4

56

7
8

555 uo2

12

3
4

56

7
8

555

+

RB1 RB2

RA2

C2

100 kΩ

1MΩ

10 μF

1kΩ

4.7 kΩ

0.1μF

(II)(I)

C5 C5

Figure 5.6.4: Circuit diagram.
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fo1 =
1
T1

=
1

0.7ðRA1 + 2RB1ÞC1 =
1

14.7s
=0.068Hz

fo2 =
1
T2

=
1

0.7ðRA2 + 2RB2ÞC2 =
1

0.728ms
= 1.37 kHz

When the output of the timer I, uo1, is LOW, reset the timer II and thus the uo2 output is LOW. Only
when the output of the timer I, uo1, is HIGH, timer II operates as astable multivibration and produces
the output pulse with a period of T2. The waveforms for uo1 and uo2 are shown in Figure 5.6.5.

5.6.4 Schmitt trigger

The Schmitt trigger can be constructed by using a 555 timer, as shown in Figure 5.6.6(a).
The input signal, ui, is sent to the trigger input TL (pin 2) and threshold input TH (pin 6)
and the output, uo, is from the output terminal (pin 3). The discharging terminal (pin
7) is connected to Vcc2 via a resistor R.

Assuming that the input voltage ui increases from 0 V, only if ui is lower than 2/3Vcc,
the output u01 keepsHIGH.When the input voltage ui reaches up to 2/3Vcc, the output u01

t / sO

O

uo2 

t / s

uo1 

VCC 

VCC 

77s.

Figure 5.6.5: Waveforms of uo1 and uo2.
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Figure 5.6.6: Schmitt trigger constructed with 555 timer (a) and its waveform (b).
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turns from HIGH to LOW and it will keep LOW until ui falls down to 1/3Vcc. When ui is
lower than 1/3Vcc, the output u01 goes back to HIGH. The input and output waveforms
are shown in Figure 5.6.6(b). It can be concluded that the two thresholds voltage for the
Schmitt trigger, VT+ and VT− are 2/3Vcc and 1/3Vcc, respectively.

5.6.5 Voltage-controlled oscillator

When the 555 timer is connected to operate as an astable multivibrator and the
control voltage input (pin 5) is connected to a control voltage Us, as shown in
Figure 5.6.7, the 555 timer will operate as a voltage-controlled oscillator. The opera-
tion principle is the same as the astable operation, where the only difference is that
the trigger voltage level is Us/2 and the threshold voltage level is Us. The period and
duty circle of output pulse can be tuned by adjusting Us.

T1 is the time duration that the capacitor is charged fromUs /2 toUs, which can be
expressed as

T1 = RA +RBð ÞC In
VCC −Us=2
VCC −Us

(5:6:7)

T2 is the time duration that the capacitor is discharged fromUs toUs /2, which can
be expressed as

T2 = 0.7RBC (5:6:8)

Therefore, the period of the output waveform can be expressed as

T =T1 +T2 = RA +RBð ÞC In
VCC −Us=2
VCC −Us

+ 0.7RBC (5:6:9)
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Figure 5.6.7: Voltage-controlled oscillator constructed with 555 timer (a) and its waveforms (b).
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5.7 Summary

1. Multivibrators contain bistable, monostable, and astable multivibrators.
2. A bistable multivibrators is a logic circuit with a memory characteristic such that

its Q outputs will go to a new state in response to an input pulse and will remain
in that new state after the input pulse is terminated.

3. Latch and flip-flop are two categories of bistable multivibrators. The main
difference between latch and flip-flop is the method used for changing their
state. The latch is sensitive to the input level. However, a flip-flop only changes
its state at a specified point of the clock pulse.

4. A NAND latch and a NOR latch are simple bistable multivibrators that respond to
logic levels on their SET and RESET asynchronous inputs.

5. Master-slave flip-flop is a kind of flip-flop with the pulse-triggered method. Data
are entered into the flip-flop at the leading edge of the clock pulses, but the
output does not reflect the input state until the trailing edge of the clock pulses.

6. Edge-triggered flip-flop changes its state either at the positive edge (rising edge)
or at the negative edge (failing edge) of the clock pulse and is sensitive to its
inputs only at this transition of the clock.

7. Most clocked flip-flops have asynchronous inputs that can set or reset the flip-
flops independent of the clock input.

8. Mainstream ICs are D and J-K edge-triggered flip-flops. Other types of flip-flops
can be implemented with D flip-flop and J-K flip-flop by using characteristic
equations of different types of flip-flops to determine the inputs.

9. The main applications of bistable multivibrators include data storage and trans-
fer, data shifting, counting, and frequency division.

10. The operation characteristic for flip-flops includes the time for data receiving,
state transition, propagation delay, or response.

11. A monostable multivibrators (one shot) is a logic circuit that can be triggered
from its stable state to its unstable state in which it remains for a time interval
proportional to an RC time constant.

12. Astable multivibrators have no stable state and are used to produce a period of
pulse signal as a pulse generator.

13. The Schmitt trigger, which also belongs to bistable multivibrator, can respond
reliably to slow-changing signals and will produce outputs with clean, sharp
edges.

14. The 555 timer is a kind of versatile analog to digital hybrid integrated circuit,
which can be configured as a monostable multivibtrator, an astable multivibra-
tor, Schmitt trigger by only adding the few external resistors and capacitor.

15. Various circuits can be used to generate clock signals at a desired frequency,
including Schmitt-trigger oscillators, a 555 timer, and a crystal-controlled oscillator.
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Key terms

Latch: A bistable logic circuit used for storing a bit.
SET: The state of a latch or flip-flop when the output is HIGH.
RESET: The state of a latch or flip-flop when the output is LOW.
Edge-triggered flip-flop: A type of flip-flops in which input data entes into the
output either at the positive edge or at the negative edge of the clock pulse.
Toggle: The action of a flip-flop in which it changes state on each clock pulse.
Preset: An asynchronous input used to set the flip-flop; also called as direct set.
Clear: An asynchronous input used to reset the flip-flop; also called as direct reset.
One shot: A monostable multivibrator.
Multivibrator: An electronic circuit used to implement a variety of simple two-state
devices such as relaxation oscillators, timers, and flip-flops.
Astable: Having no stable state.
Bistable: Having two stable states.
Monostable: Having only one stable state. A monostable multivibrator produces a
single pulse in response to a triggering input.
Timer: A multifunctional analog-to-digital hybrid integrated circuit, which can be
configured in two different modes as either a monostable multivibtrator (one shot) or
as an astable multivibrator (oscillator).
Hysteresis: A characteristic of a threshold-triggered circuit, such as the Schmitt
trigger where the device turns on and off at different input levels.

Self-test

5.1 A latch has _______ stable states.
(a) one (b) two (c) three (d) four

5.2 If a S-R latch has a 0 on the S input and a 1 on the R input, the latch will be _____
(a) set (b) reset (c) invalid (d) clear

5.3 The invalid state of a S-R latch occurs when _______
(a) S = 1, R = 0 (b) S = 0, R = 1 (c) S = 1, R = 1 (d) S = 0, R = 0

5.4 The output of gated D latch will be SET when _______
(a) EN = 1, D = 0 (b) EN = 1, D = 1 (c) EN = 0, D = 1 (d) EN = 0, D = 0

5.5 The purpose of the clock input to a flip-flop is to _______
(a) clear the device
(b) set the device
(c) cause the output to change states
(d) cause the output to assume a state dependent on the controlling inputs
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5.6 Flip-flops belongs to _______
(a) monostable multivibrators (b) bistable multivibrators
(c) astable multivibrators (d) one shot

5.7 A feature that distinguishes the J-K flip-flop from the S-R flip-flop is the _______
(a) toggle condition (b) preset input (c) type of clock (d) clear input

5.8 Fill the truth table in table T5.1 for a circuit shown in Figure T5.1.

5.9 A J-K flip-flop with J = K = 1 has a 20 kHz clock input, the Q output is _______
(a) a 10 kHz square wave (b) a 20 kHz square wave
(c) a 30 kHz square wave (d) a 40 kHz square wave

5.10 The one shot is a device with _______ stable state
(a) one (b) two (c) three (d) four

5.11 A one shot is a type of _______
(a) monostable multivibrator (b) astable multivibrator (c) timer
(d) answers A and C (e) answers B and C

5.12 The output pulse width of a nonretriggerable one shot depends on _______
(a) trigger intervals (b) supply voltage
(c) a resistor and capacitor (d) threshold voltage

5.13 An astable multivibrator _______
(a) require a periodic trigger input (b) has no stable state
(c) produces a periodic pulse output (d) is an oscillator
(e) answers A, B, C, and D (f) answers B, C, and D

R
C

D QS

CP

Figure T5.1

Table T5.1

R S Qn+
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5.14 A multivibrator constructed with a 555 timer is shown in Figure T5.2. The period
of the output waveform is _______.
(a) 0.7(RA+2RB)C (b) 0.7(RA+RB)C (c) (RA+2RB)C (d) 1.2(RA+RB)C

5.15 Duty circle of the output waveform for circuit shown in Figure T5.2 is _______

(a) D= 2RA +RB
RA + 2RB

× 100% (b) D= RA +RB
RA + 2RB

× 100%

(c) D= RA +RB
RA + 3RB

× 100% (d) D= RA + 3RB
RA + 2RB

× 100%

Problems

5.1 If the waveforms shown in Figure P5.1 are applied to an active-LOW input S-R
latch, draw the resulting Q output waveform. Assume that Q starts LOW.

5.2 Draw the resulting Q output waveform of an S-R latch, as shown in Figure P5.2.
Assume that Q is initially LOW.

VCC

uo

RA

RB

C C5

12

3
4

56

7
8

555

Figure T5.2

Q

Sd

Rd

Q

Figure P5.1

QQ

S

S
Q

Q

R

R

Figure P5.2
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5.3 List the truth table and the characteristic equation for the circuit shown in
Figure P5.3.

5.4 For a gated S-R latch, determine the Q output waveform in terms of the given
input waveforms in Figure P5.4.

5.5 Determine theQ output waveforms of each flip-flop in relation to the clock pulse
in Figure P5.5. Assume that Q starts LOW.

Q Q

D CP

Figure P5.3

S

CP

R

Figure P5.4

C
D Q1

Q
CP C

D
Q

QCP C
D

Q

QCP

(a) (b) (c)

C
J

K

Q

QCPC
J

K

Q1

Q
CP

(d) (e)

C
J

K

Q

1
QCP

(f)

Figure P5.5
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5.6 Write out the logic expressions of Qn+1 for each flip-flop in Figure P5.6 by using
characteristic equation of the flip-flop.

5.7 For the circuit shown in Figure P5.7, construct its state table and state diagram;
draw the timing diagram when a sequential input “1011100” is applied on the
input X.

5.8 For the circuit in Figure P5.8, draw the resulting output waveform. Assume that
Q0 and Q1 are initially LOW.

C

D

CP

Q
X

Z

Q

Figure P5.7

C

D

CP

Q
A

C

J

CP

Q
B

K

A

Q C

D

CP

Q

A
B

Q

(a) (b) (c)

Figure P5.6

C
D

CP

C
D

R

Z

Q0 Q1
FF0 FF1 CP

Q0

Z
Q1

(a) (b)

Figure P5.8
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5.9 For the circuit in Figure P5.9, determine the resulting output waveform. Assume
that Q0 and Q1 are initially LOW.

5.10 For the circuit in Figure P5.10, determine the resulting output wave form.
Assume that Q0 and Q1 are initially LOW.

5.11 A D flip-flop is connected as shown in Figure P5.11. Determine the Q output in
relation to the clock. What specific function does this device perform?

5.12 Calculate the output pulse width (tw) of the one shot circuit (74LS122) shown in
Figure P5.12 at the given the circuit parameters of Cext = 1,000 pF, Rext = 10 kΩ,
and VCC = 5.0 V.

C
DCP

Q

Figure P5.11

Q0

A C
J

K
Rd

CP C
J

K

1

1

Q1

FF0 FF1 A
Q0

Q1

CP

(a) (b)

Figure P5.10

C
D
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A C
D

CPFF0 FF1

Q0 Q1 CP

Q0

A

Q1

(a) (b)

Figure P5.9
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5.13 Design three circuits to implement the relation of input A and three outputs, B,
C, and D, respectively. The waveform of input A and three corresponding out-
puts, B, C, and D are shown in Figure P5.13.

5.14 A circuit consists of a 555 timer and a J-K flip-flop, as shown in Figure P5.14.
Assume that fCP = 10 Hz, R1C1≪ Tcp, R2 = 56 kΩ, C2 = 4.7 μF. Determine
the waveforms of Q, ui and uo, and calculate the frequency and duty circle of uo.

R

1
2
3
4

5

Q
8

6

9

7

RintCext Rext
/CextA1

A2
B1
B2 Q

141311
VCC

GND

Cext
VCC

Rext

VCC

uo

Figure P5.12

D

C

B

A

tw

Figure P5.13
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1
2

3

4

5
6
7

8

555
ui

VD
R1

C1

C1
1J

1K

Q

CP 0.01μF

Figure P5.14
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5.15 Figure P5.15(a) shows a circuit constructed by using a 555 timer with VCC = 5 V
and Us = 4 V. If the input waveform in Figure P5.12(b) is applied on the ui input,
determine the uo output waveform and explain the function of this circuit.

5.16 A electronic doorbell circuit constructed with 555 timer is shown in Figure P5.16.
When the switch S is on, the doorbell will ring until a predetermined time is out.
Determine the frequency of the doorbell and explain the function of the capa-
citors C2 and C3. In addition, modify the circuit to extend the time of doorbell
ringing.

5.17 Figure P5.17 shows an anti-incursion alarm circuit by using a 555 timer. When a
theft invades, the wire connected point a with point b will be cut off and output
an alarm signal. Determine the function of the circuit shown in Part I and Part II,
respectively. According to the values given in the Figure P5.13, calculate the
frequency of the alarm signal.

t

t

O

O

(a) (b)

5
4
3
2
1

ui / V

uo / V

VCC

uo

12

3
4
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7
8
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–

+
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Figure P5.15
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6 Sequential logic circuits

6.1 Introduction

A sequential logic circuit is a kind of digital circuits, in which the outputs depend on
not only the current inputs but also the previous inputs and outputs. That is, a
sequential logic circuit has state (memory) while a combinational logic circuit does
not. A sequential logic circuit is a finite state machine that has a finite state. Usually,
memory consists of a group of flip-flops. One flip-flop can store only one bit at a time.
The state of a sequential circuit is represented by the bits stored in the flip-flops. This
chapter mainly introduces analysis and design of a sequential logic circuit.

The objectives of this chapter are to
– Distinguish between sequential logic circuits and combinational logic circuits in

circuit configuration and logic functions
– Explain the basic concepts of sequential logic circuit
– Analyze the logic function of any given sequential logic circuit
– Design sequential logic circuit according to the given specification
– Explain how to simplify the states of sequential circuit

6.1.1 Structure of sequential logic circuit

Figure 6.1.1 shows a block diagram of a sequential logic circuit [21]. A sequential logic
circuit consists of a combinational logic and memory element. A memory element
usually includes a group of flip-flops. The state of sequential logic circuit can be
represented by the output states of the flip-flops. X(x1, x2, …, xj) and P(p1, p2, …, pj)
are part of inputs and outputs of the combinational circuit, respectively. They are
usually used as the interface signalswith the external.Q(q1, q2,…, qm) are part of inputs
of the combinational circuit, which are the outputs of the flip-flops in the memory
element and are used to represent the state of sequential logic circuit.W(w1, w2,…, wk)
are part of outputs of combinational circuit as the inputs of flip-flops in the memory
element. The logic relationship between the inputs and outputs can be expressed by
the following equations:

PðtnÞ= F½XðtnÞ,QðtnÞ� (6:1:1)

WðtnÞ=G½XðtnÞ,QðtnÞ� (6:1:2)

Qðtn+ 1Þ=H½XðtnÞ,QðtnÞ� (6:1:3)

where tn and tn+1 represent two adjacent discrete time, andQ(tn) and Q(tn+1) represent
current state and next state of the flip-flops, which are often written as Qn and Qn+1.
Equation (6.1.1) is called the output equation, which describes the relationship of the
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outputs of combinational logic with the inputs and the current states of the flip-flops.
Equation (6.1.2) is called the driving equation or exciting equation, which is the logic
expression for the flip-flop inputs. Equation (6.1.3) is called the state equation or
transition equation, which describes the relationship of next states of the flip-flops
with the inputs and current states of the flip-flops.

6.1.2 Classification of sequential circuits

Generally, a memory element consists of a group of flip-flops. According to the
mode that the flip-flops are clocked, sequential circuits can be divided into syn-
chronous sequential circuits (SSCs) and asynchronous sequential circuits. A SSC is a
digital circuit in which the changes in the state of all flip-flops are synchronized by
a global clock signal. This global clock signal is applied to every flip-flops and all
flip-flops change their states at the same type of clock signal, the rising edge or
falling edge of a clock signal. So in an ideal synchronous circuit, every change in the
logic levels of all flip-flops is simultaneous. An asynchronous circuit is a sequential
logic circuit that is not governed by a clock signal. In asynchronous circuits, there is
no global clock signal for all flip-flops, thus the state of the circuit changes as soon
as the inputs change. However, asynchronous circuits are more difficult to design.
This is because the resulting state of an asynchronous circuit can be sensitive to the
relative arrival times of inputs at gates. If transitions on two inputs arrive at almost
the same time, the circuit can go into the wrong state depending on slight differ-
ences in the propagation delays of the gates. Today, most digital devices use
synchronous circuits. Therefore, analysis and design of synchronous circuits are
mainly introduced in the following section.

A sequential logic circuit belongs to a finite state machine. Usually a state machine
includes a finite state in sequence. There are two basic models for the state machine.
One is called Moore model, where the outputs only depend on current state of the
sequential circuit. Another is called Mealy model, where the outputs depend on both
current state and the present values of the combinational inputs.

Memory 
element

x1

xi

p1

pj
Combinat

ional 
logic 

wk

w1q1

qm
CP

Figure 6.1.1: A structure of sequential circuits.
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6.1.3 SSC models

A sequential circuit is said to be a SSC if it satisfies the following conditions:
– There is at least one flip-flop in every loop
– All flip-flops have the same type of dynamic clock
– All clock inputs of all the flip-flops are driven by the same clock signal

Any SSC can be described using structural models and behavioral models. The
structural models include logic diagram, excitation equations, output equations,
and the behavioral models contain state equations, output equations, state table,
and state diagram. These twomodels can also be converted from one form to another.
To analyze a SSC, you can derive one of the behavioral models from the structural
models. On the contrary, you can also derive a structural model from the behavioral
models to design a SSC.

6.2 Analysis of sequential logic circuits

Analysis of a sequential circuit is to derive the behavior of a given sequential circuit
by looking for the rule of state transition and output change under the action of clock
signal and input signals. To achieve this objective, you can derive the behavioral
models from the structural models. This section introduces analysis procedure of a
sequential logic circuit. After completing this section, you should be able to analyze the
behavior of any given sequential logic circuit.

6.2.1 Analysis of synchronous sequential circuits

For SSC, all flip-flops are clocked by a global clock signal, so the analysis of SSC is
simpler than that of asynchronous sequential circuit. If the logic diagram of a
sequential circuit is given, the basic analysis procedure for a given SSC can be
summarized as follows:

Step 1 Derive the exciting equations and output equations directly from the logic
diagram of a given SSC.

Excitation equations are logic expressions for the flip-flop inputs and output
equations are logic expressions for the outputs of the SSC.

Step 2 Derive the state equation by substituting the excitation equations into the
characteristic equation of each flip-flop.

For a SSC, the characteristic equations of the flip-flops are the state equations of
the SSC since all flip-flops are clocked by the same clock pulse (CP). In fact, the state
equations of the SSC are logic expressions of next states of all flip-flop.
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Step 3 Construct the state transition table from the state equations and output
equations of the SSC.

The state transition table, state transition diagram, and timing diagram are three
ways to express the state transition of the sequential circuit. The state transition table
is a table showing what state a sequential circuit will move to, based on the current
state and other inputs. A state table is essentially a truth table in which some of the
inputs are the current state, and the outputs include the next state, along with other
outputs. A state transition diagram is a graphical representation of state transitions,
outputs, and inputs under the action of clock signal for a given sequential circuit.
A timing diagram is a waveform representation of a set of signals in the time domain.
A timing diagram can contain many signal waveforms, usually one of them being the
clock. The state diagram and timing diagram can more visually display the function
of sequential logic circuits.

Step 4 Draw the state diagram or timing diagram from state stable and deduce the
implementing functionality of the given sequential logic circuits.

Note that not all steps in the aforementioned analysis procedure must be per-
formed. You can determine which steps are necessary for a given sequential logic
circuit. For instance, some sequential circuits have no output signals and the output
equations can be omitted during the analysis process.

Let us take a look at the detailed analysis procedure through an example.

Example 6.1 Analyze the implementing functionality of a SSC, as shown in Figure 6.2.1.

Solution

Step 1 Derive the exciting equations and output equations directly from logic diagram in Figure 6.2.1.
There are two J-K flip-flops in the SSC. According to logic diagram, the exciting equations of

the two J-K flip-flops are

J1 = X � Q2n, K = 1 (6:2:1)

J

K
C

J

K
C

Q1
Q2

CP

X

1

Y

Q2Q1

FF1 FF2

Figure 6.2.1: A logic diagram of Example 6.1.
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J2 = XQ1n, K = X (6:2:2)

The output equation can be expressed as

Y = �XQ2n
�Q1n (6:2:3)

Step 2 Derive the state equation of each flip-flop by substituting the exciting equations into the
characteristic equation of each flip-flop.

The characteristic equation of J-K flip-flops is

Qn + 1 = J�Qn + �KQn (6:2:4)

By substituting the excitation eqs. (6.2.1) and (6.2.2) into the characteristic eq. (6.2.4), respec-
tively, two resulting state equations can be derived as follows:

Q1n+ 1 = J1 �Q1n + �K1Q1n = �X � �Q2n
�Q1n (6:2:5)

Q2n + 1 = J2 �Q2n + �K2Q2n = �XQ1n
�Q2n + �XQ2n = �XðQ1n + Q2nÞ (6:2:6)

Note that these eqs. (6.2.5) and (6.2.6), which express the next state as a function of present
states and inputs, are also called transition equations.

Step 3 Construct the state table from the state equations and output equation.
A state table is essentially a truth table in which some of the inputs are current states, and the

outputs include next state, along with other outputs. For each combination of the level of input X and
present state Q2n, Q1n, the corresponding next state Q2n+1, Q1n+1 can be calculated by using eqs.
(6.2.5) and (6.2.6), and the corresponding output Y can be also obtained from output eq. (6.2.3). The
resulting value of next state and the output corresponding each input combination are filled in the
corresponding row in the state table as shown in Table 6.2.1.

Alternatively, we can simply use Q and Q+ for representing present state and next state,
respectively, so the state table can be simplified as Table 6.2.2.

Step 4 Draw a state diagram from the state table and deduce the implementing functionality of the
given sequential logic circuits.

A state diagram is another way to illustrate the behavior of a SSC. Each state is denoted by a circle
in the state diagram. The number of states in a state table or a state diagram will equal 2m, where m
is the number of flip-flops. Each combination of the flip-flop values in a circle represents a state.

Table 6.2.1: A state table.

Input Present state Next state Output

X Qn Qn Qn+ Qn+ Y
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Each arrow stands for a state transition of the sequential circuit, corresponding to a row in the
state table. The number of arrows will equal to 2m × 2k, where k is the number of binary input signals.
A label of the form “X/Y” is attached to each arrow corresponding to this transition. Each arrow is
labeled with the “X/Y,” where X denotes the input while Y denotes the output of combinational
circuit, which cause the transition from present state (the source of the arrow) to next state (the
destination of the arrow). In case of Example 6.1, there are two J-K flip-flops in the SSC, so the number
of possible states is four. That is, Q2Q1 can be equal to 00, 01, 10, or 11. Each state is denoted by a
circle with the value of Q2Q1 inside, as shown in Figure 6.2.2. There are total eight arrows since the
given sequential circuit only has one input, X. Each arrow between two circles denotes a transition of
the sequential circuit, corresponding to a row in the state table. For example, the first row in the state
table represents one transition from present state 00 (Q2 Q1) to next state 01 (Q2 Q1) and the
corresponding output Y is a 0 when X is a 0. In the state diagram, one arrow attached to 0/0 starts
from state 00 and end at state 01. Similarly, you can draw the other transition in the state diagram.

Following these transition arrows, we can see that as long as X = 0, the sequential
circuit start from the initial state 00 and goes through the states in the following
sequence: 00, 01, 10, 10, … After three CP, the output, Y, will be a 1. Otherwise, the
output, Y, will be a 0. This means that only the Y output is a HIGH when three or more
consecutive zeros are applied to the X input in sequence. Thus, the implementing
functionality of the sequential logic circuits is a sequence detector that can detect three
or more consecutive zeros input sequence.

Table 6.2.2: A simplified state table.

Next state Output

Present state X =  X =  X =  X = 

Q Q Q
+ Q

+ Q
+ Q

+ Y Y

       

       

       

       

00 01

1011

0/0

0/0

0/01/0 1/0

1/0

0/1

1/0

Figure 6.2.2: A state diagram.
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Sometimes, a timing diagram is required to replace the state diagram.

Example 6.2 Analyze the implementing functionality of an SSC, as shown in Figure 6.2.3.

Solution

Step 1 Derive the exciting equations and output equations directly from the logic diagram shown in
Figure 6.2.3.

There are two J-K flip-flops in the circuit; the exciting equations are

J1 =K1 = 1 (6:2:7)

J2 =K2 =Q1 (6:2:8)

The output equation is

Y =Q1Q2 (6:2:9)

Step 2 Derive the state equation of each flip-flop by substituting the exciting equations into the
characteristic equation of each flip-flop.

The characteristic equation of J-K flip-flops is

Qn + 1 = J�Qn + �KQn (6:2:10)

Thus, the state equations can be expressed as

Q1
+
n = �Q1 (6:2:11)

Q2
+
n =Q1

�Q2 + �Q1Q2 =Q1¯Q2 (6:2:12)

Step 3 Construct a state table from the state equations and output equation.
The state table is shown as Table 6.2.3

J

K
C

J

K
C

Q1 Q2

CP

1
Y

Q2Q1
FF1 FF2

Figure 6.2.3: A sequential circuit
for Example 6.2.

Table 6.2.3: A state table.

Present state Next state Output

Q Q Q
+ Q

+ Y
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Step 4 Draw a state diagram from the state table and deduce the implementing functionality of the
given sequential logic circuits.

The state diagram is shown in Figure 6.2.4. It can be found that the sequential circuit goes
through the states in the following sequence: 00, 01,10, 11,00, 01, … When it counts to 11, the
output is a HIGH. When the next clock arrives, the circuit goes back to the initial state 00, and
start new count cycle again. Since this sequence is characteristic of modulus-4 counting, we
can conclude that the sequential circuit in Figure 6.2.3 is a modulus-4 counter and belongs to
the Moore model due to no input signal.

6.2.2 Analysis of asynchronous sequential logic circuit

The main difference between asynchronous sequential logic circuits and synchro-
nous sequential logic circuits is that all flip-flops do not share one clock signal, so the
flip-flops are not triggered simultaneously. In the analysis of asynchronous sequen-
tial circuit, the most important step is to write the clock equation of each flip-flop.
Only when the clock signal is active, the next state of the flip-flop can be obtained
from the corresponding state equation; otherwise, the state of flip-flop will remain
unchanged. The analysis procedure starts from the first flip-flop triggered by the
clock signal, and then step-by-step analyzing the following flip-flops. Since all flip-
flops do not share a clock signal, the state transition of asynchronous circuit has a
certain delay time. The analysis procedure of an asynchronous circuit that is com-
posed of flip-flops and logic gates is the same as that of synchronous circuit.

Let us take an example to help you understand analysis procedure of an
asynchronous sequential logic circuit.

Example 6.3 Analyze the implementing functionality of an asynchronous sequential circuit, as shown
in Figure 6.2.5.

00 01

11 10

/0

/0

/1 /0

Figure 6.2.4: A state diagram.

CP

Q2 Q1 Q0

D CD CD
FF0FF1FF2

C

Figure 6.2.5: A logic diagram of Example 6.3.

220 6 Sequential logic circuits

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



Solution

Step 1 Derive the clock equations and exciting equations directly from the logic diagram shown in
Figure 6.2.5.

The clock equations are

CP0 =CP CP1 =Q0n CP2 =Q1n (6:2:13)

The exciting equations for D flip-flops are

D0 = �Q0n D1 = �Q1n D2 = �Q2n (6:2:14)

Step 2 Derive the state equation of each flip-flop by substituting the exciting equations into
the characteristic equation of each flip-flop.

The characteristic equation of D flip-flops is

Qn+ 1 =D (6:2:15)

The state equations can be derived as

Q0n+ 1 = �Q0n Q1n+ 1 = �Q1n Q2n+ 1 = �Q2n (6:2:16)

Step 3 Construct the state table from the state equations and output equation.
The possible state transition of D flip-flop occurs at the arriving of the negative edge of the clock

signal. Thus, we use CP = 1 to represent the negative edge of the clock signal. For D flip-flops, the next
state can be solved by eq. (6.2.15) when CP = 1. While the next state is the same as the present state
when CP = 0. Assume that the initial state is Q2Q1Q0 = 000; the next state can be derived by the state
equations and clock equations. When the first clock signal arrives, CP0 = 1 and thus the next state of
FF0 can be calculated by eq. (6.2.16). Since Q0n is a 0, Q0n+1 is a 1. Then we turn to determine the next
state of FF1. SinceQ0 is changed from LOW toHIGH, CP1 = 0 and thusQ1 does not change. The next state
of FF1 is a 0.When theQ1 keeps no change, CP2 = 0 and thusQ2 also keeps no change. Sowhen the first
clock signal arrives, the next state of an asynchronous sequential circuit will be Q2Q1Q0 = 001.
Similarly, you can analyze the next state of an asynchronous sequential circuit when the sequential
clock signal arrives. The final state table is shown in Table 6.2.4. In the state table of an asynchronous
sequential circuit, the column of clock signal is added to represent if the flip-flop is clocked by negative
edge of the CP. If the flip-flop is clocked, CP = 1.

Step 4 Draw a timing diagram from the state table and deduce the implementing functionality of the
given sequential logic circuits.

Table 6.2.4: A state table.

CP Q Q Q CP CP CP
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All D flip-flops are triggered at the negative edge of their CP. According to the stable table, a
timing diagram is shown in Figure 6.2.6. It can be seen from the timing diagram, the asynchronous
sequential circuit in Figure 6.2.5 goes through the states in the following sequence: 000, 001, 010,
011, 100, 101, 110, 111, 000,… After eight CPs, the state of asynchronous sequential circuit goes back
to 000 and then starts a new count cycle again. Therefore, the asynchronous sequential circuit shown
in Figure 6.2.6 works as an asynchronous three-bit binary up counter.

6.3 Design of a sequential logic circuit

The design of sequential logic circuits is also referred to as the synthesis of sequential
logic circuits. The requirements of a logic circuit are generally described in words or
specification. The design procedure can be regarded a converse procedure of analysis.
This section introduces the basic procedure for designing a sequential logic circuit with
flip-flops and logic gates according to the word description or specification. After
completing this section, you should be able to design a synchronous sequential logic
circuit according to the word description or specification.

6.3.1 Design of an SSC

Themain objective for designing a sequential circuit with flip-flops and logic gates is to
reduce the cost, which means that the number of flip-flops and logic gates are used as
few as possible for the implementation of a sequential circuit. The basic procedure is as
follows.

Step 1 Construct an initial state diagram and initial state table according to the word
description or specification.

The state diagram and state table are the basis of designing the sequential logic
circuit. The state diagram and state table are a graph and table description that specify
the next state and output of the circuit for every possible combination of current state
and input, respectively. It is the most important step to derive the correct state diagram
and state table according to the word description or specification. By analyzing the
given logic requirement of the sequential logic, input variables, output variables, and
the required number of states are first determined. States can be denoted by the letters

1

0

0

0 0 0 0 1 1 1

0 0 0

0 0 0 0

0

0

1 1

1111

1 1

Q2

Q1

Q0

CP

Figure 6.2.6: A timing diagram.
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or numbers in the initial state diagram and initial state table. Then determine the
outputs and next states for each combination of input and current states and derive the
initial state diagram. Finally, convert the initial state diagram to the initial state table.

Step 2 Minimize the number of states in the state table by state reduction (optional).
The initial state table may contain some unnecessary states, which makes the

following design more complex. So the initial state diagram or state table should be
minimized by state reduction. State reduction is to find equivalent states and eliminate
unnecessary states. For eachpossible combination of input values, if two ormore current
states have the same next state and the same output, then these states are called the
equivalent states. A pair of equivalent states can be replaced by a single state. The
minimized state table can be obtained by eliminating equivalent states.

Step 3 Encoded states and determine the required number of flip-flops to represent
states.

Each state in the minimized state table is assigned to a unique binary code. This
process is called coded state or state assignment. Generally, there are several ways
to encode states. Different coded state method results in different complexity of the
resulting circuit. Hence, a good coded state method can make synthesis of sequen-
tial logic circuits simpler.

A flip-flop can store one-bit binary code, 0 or 1, which can represent two states. So
2n binary codes can be produced to represent at most 2n state with n flip-flops. If there
are M states in the minimized state table,M binary codes is necessary for encodingM
states. The required number of flip-flops, n, at least can be deduced as follows.

2n�1 <M ≤ 2n

The objective to choose a coded state method should be helpful for obtaining the
minimized excitation equation of flip-flops. Usually, a natural binary code is selected
to encode states and the adjacent binary code is assigned to the adjacent states.

Step 4 Choose the type of flip-flops and derive the excitation equations and output
equations.

Different types of flip-flops would lead to different complexity of the resulting
synthesis of sequential logic circuits. The aim is to use the number of flip-flops and
logic gates as few as possible for implementing a sequential circuit. According to the
encoding state table, an excitation table can be deduced according to the function of
flip-flop used. The excitation table shows the flip-flop excitation input values needed
to make the circuit go to the desired next coded state for each combination of coded
state and input. Then an excitation equation can be obtained by applying Karnaugh
map or Boolean algebra simplification. Alternatively, the output equations and state
equations can be directly derived from the coded state table. Then the excitation
equations can be derived by comparing the state equations with the characteristic
equations of the flip-flops.
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Step 5 Check if the synthesis of sequential logic circuits can be self-corrected. In the
state assignment, it is a common thing that the code combinations provided by the
flip-flops are great than the required number of states. There are some code combina-
tions unused corresponding to unused states. If the circuit is in these unused states, it
cannot automatically return to any used states and thus the circuit cannot work
normally. That is say, the circuit cannot be self-corrected. If the designing circuit
cannot be self-corrected, there are two effective methods to solve this problem. One is
to force the circuit entering into one of used states at the beginning of circuit
operation. Another is to modify the design and arrange an used state as the next
state of the unused state. A new state table can be constructed. Repeat step 4 and new
exciting equations can be deduced. As a result, the circuit can be self-corrected.

Step 6 Draw a logic diagram according to the resulting exciting equations and
output equations.

Example 6.4 Design a three-bit sequence detector for detecting a sequence input series “011.”

Solution

Step 1 Construct the initial state diagram and initial state table.
Sequence detection is a act of recognizing a predefined series of input bits. The bits are input

one by one. According to the requirement of detecting the predefined series of inputs “011,” we need
to see whether they match the given sequences “011” for each three bits that are input. Thus, one
sequential input variable, X, and one output variable, Y, are needed. X is the value of the input line in
a given clock cycle. The output, Y, goes high for one clock cycle as soon as it receives the third bit that
matches a pattern. There are at least four states required to construct the initial state diagram. State
A is a waiting state in which the state machine waits for the first input bit “0”; state B represents the
case detecting the first bit “0”; state C means the case detecting the continuous two bits “01”; and
state D represents the case detecting the continuous three bits “011.” The output, Y, goes high for
one clock cycle as soon as it receives the third bit that matches a pattern.

When the initial state is state A, the state transitions will depend onwhether the input X is a 0 or 1.
If the input X is a 1, the next state is still in state A; if the input X is a 0, the state transition will be from
state A to state B. This means the first bit “0” occurs. The output Y is a 0.

If in state B and the input X is a 0, the next state does not change with an output of a 0; if the
input X is a 1, the continuous two bits “01” are detected and the state will change from state B to state
C with the output of a 0.

If in state C and the input X is a 0, the state will turn back state Bwith an output of a 0; if the input
X is 1, the continuous three bits “011” are detected and the state will change from state C to state D
with the output of a 1.

If in state D and the input X is a 0, the state will turn back state B and start new sequence detector;
if the input X is 1, the state will turn to state A waiting for the first bit “0” with the output of a 0.

According the aforementioned analysis, the initial state diagram for detecting a sequence input
series “011” is shown in Figure 6.3.1. The initial state table can be deduced from the initial state
diagram, as listed in Table 6.3.1.

Step 2 Minimize the number of states in the state table by state reduction.
The initial state table may contain some unnecessary states, which makes the following design

more complex. So initial state diagram or state table should be minimized by state reduction. It can
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be seen from Table 6.3.1 that state A and state D have the same next state and the consistent output
for each input value. Thus, these two states can be called as equivalent states. If two or more states
are equivalent, they can be represented by one state. That is, state D can be taken place by state A.
Note that state A and state B lead to the same output, but they do not lead to the same next state for
each input value, and so state A and state B are not equivalent. The minimized state table is shown in
Table 6.3.2.

Step 3 Encode states and determine the required number of flip-flops to represent states.
To perform a state assignment, each state should be assigned a unique binary code. Since there

are three states, A, B, and C, there are at least two-bit binary codes required. There are several
schemes for coded three states with two-bit binary codes. Here, natural binary codes are chosen for
coded states A, B, and C. States A, B, and C can be assigned 00, 01, and 10, respectively. So the coded
state table can be deduced from Table 6.3.2 to Table 6.3.3. The state of flip-flops is represented by
Q1Q0. Since one flip-flop can store one-bit binary code, two flip-flops are required to store two-bit
binary codes.

A B

CD

0/0

1/1

1/0 1/00/0

1/0 0/0

0/0

Figure 6.3.1: The initial state diagram.

Table 6.3.1: The state table.

Current State Next state Output

X =  X=  Y(X = ) Y(X = )

A B A  

B B C  

C B D  

D B A  

Table 6.3.2: The minimized state table.

Present State Next state Output

X =  X =  Y(X = ) Y(X = )

A B A  

B B C  

C B A  
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Step 4 Choose the type of flip-flops and derive the excitation equations and output equation.
Different types of flip-flops would lead to different complexities of the resulting synthesis of

sequential logic circuits. Here, two T flip-flops are chosen for constructing the sequential circuit. In
order to derive the excitation equations and output equation, a new style state/output table should
be constructed by using the excitable table of T flip-flop and binary coded state stable as listed in
Table 6.3.3. The excitation table illustrates the excitation input values of the corresponding flip-
flop needed to make the circuit go to the desired next coded state for each combination of coded
state and input. Excitation table of T flip-flops can be deduced according to the function of T flip-
flop, as shown in Table 6.3.4.

A state transition table is shown in Table 6.3.5, which can be deduced by combining Tables 6.3.3
and 6.3.4.

Table 6.3.3: The binary coded state table.

Next state Output

Present State X =  X =  X =  X = 

QQ Q
+Q

+ Q
+Q

+ Y Y

    

    

    

Table 6.3.4: The excitable table of T flip-flop.

Current state Next state Input

Q Q+ T

  

  

  

  

Table 6.3.5: The state transition table.

Input Present state Next state Flip-flop Inputs Output

X Q Q Q
+ Q

+ T T Y
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According to Table 6.3.5, the Karnaugh maps of T1 and T0 are shown in Figure 6.3.2. State 11 is

the used state and the corresponding two cells are treated as “don’t care” terms.

The minimized excitation equations can be obtained by simplifying the Karnaugh map:

T1 =Q1 + XQ0 (6:3:1)

T0 = �X � �Q0 + XQ0 (6:3:2)

Since only one combination of current state and input make the output a 1, the output equation
can be directly written as

Y = XQ1
�Q0 (6:3:3)

Step 5 Check if the synthesis of sequential logic circuits can be self-corrected.
In the state assignment, state 11 is unused corresponding to the unused state. If the

circuit is in this unused state, it cannot automatically return to one of the used states and
thus the circuit cannot be self-corrected. According to the aforementioned simplification pro-
cess, the value of input T1 corresponding to two don’t care terms, 011 and 111, are both treated
as 1; the value of input T0 are treated as a 0 for the combination of 011 and a 1 for the
combination of 111. After state 11, the next state will be state 01 and state 00, which are listed
in the last two rows in Table 6.3.5. Both state 00 and state 01 are the used states, so the
design circuit can be self-corrected.

Step 6 Draw a logic diagram according to the resulting exciting equations and output equation.
According the excitation eqs. (6.3.1) and (6.3.2), and the output eq. (6.3.3), the logic

diagram of a 011 sequence detector is drawn with two T flip-flops and logic gates, as
shown in Figure 6.3.3.

00 01 11 10

0

0 11

0 0

T1

X

Q1
Q0

×

× 1

1

00 01 11 10

0

01 0

0

T0

X

Q1Q0

×

×

1

11

Figure 6.3.2: The Karnaugh map.

T
C

Q0

CP

T
C

Y

X

FF0 FF1

Q1

Figure 6.3.3: The logic diagram for detecting a sequence input series “011.”
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Example 6.5 Design a synchronous counter with J-K flip-flops. The timing diagram for the counter is
shown as Figure 6.3.4.

Solution

Step 1 Construct the state diagram and state table directly from time diagram in Figure 6.3.4. Then
determine the number of flip-flops.

The state diagram can be deduced by analyzing the timing diagram in Figure 6.3.4. The initial
state is 000. When the falling edge of the first CP arrives, the state transition occurs from state 000 to
state 001. Then the state will change from state 001 to state 100 at the falling edge of the second CP.
After six CPs, the counter returns to the initial state. Figure 6.3.5 shows the state diagram of the
synchronous counter. The state table can be obtained from the state diagram in Table 6.3.6. It can be
seen from Table 6.3.6 that the synchronous counter has six used states and thus at least three J-K
flip-flops are required.

Step 2 Derive the excitation equations.
Here, we choose another method to deduce the excitation equations of each flip-flop. First, the

state equations can be derived from the state table by Karnaugh map simplification. Karnaugh
maps of next state can be obtained from state table, as shown in Figure 6.3.6. Next states,
Q2n+ 1Q1n+ 1Q0n + 1, are listed in the cell of Karnaugh map.

In order to obtain the minimized next state equations, the Karnaugh map in Figure 6.3.6 are
divided into three Karnaugh maps, as shown in Figure 6.3.7.

By using Karnaugh map simplification in Figure 6.3.7, the minimized state equations can be
deduced as follows:

000 001 100

011101010

Q2Q1Q0

Figure 6.3.5: The state diagram.

C P

Q0

Q1

Q2

Figure 6.3.4: The timing diagram for Example 6.5.
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Q2nþ1 ¼ Q0n
�Q2n

Q1nþ1 ¼ Q2n
�Q1n

Q0nþ1 ¼ �Q1n
�Q0n þ Q1nQ0n

8>><
>>: (6:3:4)

Compare each state equation with the characteristic equation of J-K flip-flop, Qn+ 1 = J�Qn + �KQn;
the excitation equations for each J-K flip-flop are deduced as follows:

J2 ¼ Q0n

K2 ¼ 1
;

J1 ¼ Q2n

K1 ¼ 1
;

J0 ¼ �Q1n

K0 ¼ �Q1n

(((
(6:3:5)

Step 3 Check if the synthesis of sequential logic circuits can be self-corrected.
There are two unused states, 110 and 111. If in state 110, the next state is 000, which can

be obtained by substituting the current state 110 into state eq. (6.3.4). Similarly, if in state 111,
the next state is 001. The state diagram containing all states is shown in Figure 6.3.8. Since
both state 000 and state 001 are the used states, the design resulting circuit can be self-
corrected.

00 01 11 10

0

011 0101

101001 100 000

××× ×××

Q2n

Q1nQ0n

Figure 6.3.6: The Karnaugh map of the next state
Q2n+ 1Q1n + 1Q0n+ 1.

Q2n+1

00 01 11 10

0

0 01

10 1 0

× ×

Q1nQ0n

Q2n

Q1n+1

Q2n
00 01 11 10

0

1 11

00 0 0

× ×

Q1nQ0n

Q0n+1

Q2n

Q1nQ0n
00 01 11 10

0

1 01

11 0 0

× ×

Figure 6.3.7: The Karnaugh map.

Table 6.3.6: The state table.

Current state Next state

Qn Qn Qn Qn+ Qn+ Qn+
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Step 4 Draw a logic diagram according to the resulting exciting equations.
According the excitation eq. (6.3.5), the logic diagram of the synchronous counter is implemen-

ted with three J-K flip-flops, as shown in Figure 6.3.9.

6.3.2 Design of an asynchronous sequential circuit

The design procedure of an asynchronous sequential circuit is similar to that of SSC.
Only difference is that there is no global clock signal for all flip-flops in asynchronous
circuit, so the CP for each flip-flop should be considered in the design procedure.

Example 6.6 Design an 8421BCD asynchronous up counter with a ripple carry output.

Solution

Step 1 Construct the state table.
Because an 8421BCD counter has ten states represented by ten fixed binary code, the coded

state table can be listed directly, as shown in Table 6.3.7. Z is defined as the ripple carry output.

Step 2 Choose the type of flip-flops to be used. Derive the excitation equations and output equation.
The 8421BCD has four-bit binary codes and thus four flip-flops are required. Here, four J-K flip-

flops are chosen to construct the 8421BCD asynchronous up counter.
Since there is no global clock signal for all flip-flops in asynchronous circuit, the CP for each flip-

flop must be applied as long as the state of flip-flop produce a change .
According to Table 6.3.7, the outputQ1 of the first flip-flop changes state at each CP, so the input

CP as its clock input. That is, CP1 = CP and J1 = K1 = 1.
The output Q2 of the first flip-flop changes its state when Q1 changes from HIGH to LOW, that

is, at the negative going edge of Q1. Thus, Q1 is set as the input CP of the second flip-flop, CP2 = Q1.

000 001

010

100

101 011

110 111

Figure 6.3.8: The state diagram.

K

J
C

K

J
C

K

J
C

Q2 Q1 Q0

CP
1 1

Figure 6.3.9: The logic diagram.
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Note that at the 10th CP, althoughQ1 changes from HIGH to LOW, Q2 does not change. Thus, J2 and
K2 input for the second flip-flop shouldbe controlled to make sure that Q2 does not changeat the 10thCP.

The outputQ3 changes its state when Q2 changes from HIGH to LOW, so Q2 is set as the input CP
of the third flip-flop, CP3 = Q2 and J3 = K3 = 1.

The output Q4 changes state when Q1 changes from HIGH to LOW, so Q1 is set as the input CP of
the fourth flip-flop, CP4 =Q1. Note that the J4 and K4 input still need to be controlled sinceQ4 does not
change at its first three CP.

According to aforementioned analysis, Table 6.3.7 can be simplified as Table 6.3.8.

The state transition table is shown as Table 6.3.9.

Table 6.3.7: The state table.

CP Q Q Q Q Z

     

     

     

     

     

     

     

     

     

     

     

Table 6.3.8: The simplified state table.

CP Q Q Q

   

   

   

   

   

Table 6.3.9: The state transition table.

CP Present states Next states Excitation inputs

Qn Qn Qn Qn+ Qn+ Qn+ J K J K

        ×  ×
        × × 

        ×  ×
        × × 

       ×   ×
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According to Table6.3.9, the Karnaughmapsof the inputs of J-K flip-flops are shown in Figure6.3.10.
Excitation equations can be obtained by Karnaugh map simplification as follows:

J4 ¼ Q3Q2

K4 ¼ 1

(
;

J2 ¼ �Q4

K2 ¼ 1

(
(6:3:6)

Only when Q4 Q3 Q2 Q1 = 1001, Z = 1, the output equation is

Z =Q4
�Q3

�Q2Q1 (6:3:7)

Step 3 Check if the 8421BCD asynchronous up counter can be self-corrected.
There are six unused states from 1010 and 1111. Assume that the circuit is in state 1010, when

next CP is applied to the clock input of FF1, the next state of the outputQ1 changes from a 0 to a 1 since
the values of J and K inputs are both 1. With Q1 from LOW to HIGH, there is no falling edge of CP
applied to the clock input of FF2 and thus the outputQ2 still keeps a 1. Since the output ofQ2 does not
change, there is no effective CP applied to the clock input of FF3 and thus the output Q3 also keeps a
0. With Q1 from LOW to HIGH, there is no falling edge of CP applied to the clock input of FF4 and thus
the output Q4 does not change. Thus, after state 1010, the next state is state 1011.

Assume that the circuit is in state 1011; when next CP is applied to the clock input of FF1, the next
state of the outputQ1 changes from a 1 to a 0 since the values of J and K inputs are both 1. WithQ1 from
HIGH to LOW, there is a falling edge of CP applied to the clock input of FF2 and FF4. Therefore, the
output Q2 changes from a 1 to a 0 due to J2 = 0 and K2 = 1 and the output Q4 changes from a 1 to a 0

00 01 11 10

0

0 11

0 0

J4
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× × ×
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×
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Figure 6.3.10: The Karnaugh map.
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Figure 6.3.11: A state diagram.
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since J4 = 0 and K4 = 1. With Q2 from HIGH to LOW, there is a falling edge of CP applied to the clock
input of FF3 and thus the output Q3 changes from a 0 to a 1 since J3 = K3 = 1. It is clearly seen that the
next state is state 0100 after state 1011. Similarly, you can check the other four unused states. The
complete state diagram is shown in Figure 6.3.11. It can be seen from Figure 6.3.11 that the design
circuit can be self-corrected.

Step 3 Draw a logic diagram according to excitation equations and output equation.
According the excitation eq. (6.3.6) and output eq. (6.3.7), the logic diagram of the 8421BCD

asynchronous up counter is implemented with four J-K flip-flops, as shown in Figure 6.3.12.

6.4 State reduction

The complexity of designing a sequential circuit depends on the number of states in
the state table. In order to minimize the cost of a design circuit, the states in the state
table should be minimized as much as possible and thus the minimized state table
can be obtained. In fact, state reduction is to detect the equivalent states. If two or
more states are equivalent, they can be replaced by one state. Thus, the equivalent or
redundant states can be eliminated from a state table/diagram and the minimized
state table can be obtained. This chapter introduces two methods for state reduction:
row matching and implication chart.

The objectives of this chapter are to
– Explain the conditions for equivalent states
– Apply row matching method to determine the equivalent states
– Apply implication chart method for state reduction

6.4.1 Row matching

Row matching is the easiest method of state reduction. This method has the advan-
tage of ease use and is generally used to minimize simple state table.

The row matching method uses state equivalence theory. Two states are equiva-
lent if and only if the outputs are consistent and next states are equivalent for each
input combination. There are three situations for judging the equivalence of next
states, as shown in Figure 6.4.1.

K

J
C

K

J
C

K

J
C

Q1 Q2 Q3

CP
1 1

1

1
K

J
C

Z

Q4
FF1 FF2 FF3 FF4

Figure 6.3.12: A logic diagram for Example 6.6.
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The first situation of the equivalence of next states is that next states of two states
are the same or the same as their current states for each input combination, as
illustrated in Figure 6.4.1(a). For state A and state B, if input X is a 0, their outputs
are both 0 and their next states are the sameas their current states; if inputX is a 1, their
outputs are both 0 and their next states are both state C. Therefore, state A and state B
are a pair of equivalent states and denoted by [A, B].

The second situation of the equivalence of next states is that next states of two
states have crossed each other for each input combination, as shown in Figure 6.4.1
(b). For state A and state B, if input X is a 0, their outputs are both 0, and their next
states are the same as their current states; if input X is a 1, their outputs are both 0 and
their next states are crossed each other. Therefore, state A and state B are a pair of
equivalent states.

The third situation of the equivalence of next states is that next states of two states
have implied each other for each input combination, as shown in Figure 6.4.1(c). For
state A and state B, if input X is a 1, their outputs are both 0 and their next states are
both state C; if input X is a 0, their outputs are both 1. However, next state of state A is
state D and that of state B is state E. This means that the equivalence of state A and
state B depends on the equivalence of state D and state E. Let us turn to check the
equivalence of state D and state E. If input X is a 0, their outputs are both 0 and their
next states are the same as their current states; if input X is a 1, their outputs are both 1.
However, next state of stateD is stateA and that of stateE is state B. Therefore, whether
or not state D and state E is equivalent depends on the equivalence of state A and state
B. All in all, the equivalence of state A and state B is determined by the equivalence of
state D and state E, while the equivalence of state D and state E is determined by the
equivalence of state A and state B. That is, next states have implied each other. For this
situation, stateA and state B are thought as a pair of equivalent states; stateD and state
E are also considered as a pair of equivalent states.

Generally, in order to check the equivalence of two states, the first step is to check if
the outputs of two states are the same for each input combination. For each input
combination, if their outputs are different, then these two states are not a pair of equi-
valent states; if they are the same, then go to next step. The next step is to check if next
states are equivalent. If next states are also equivalent, then two states are equivalent.

A B

C
1/0 1/0

0/0

(a) (b) (c)

0/0X/Z

A B
1/0

1/00/0 0/0

X/Z

A B

C

1/0 1/0

0/0

X/Z

D E0/0

0/1 0/11/1 1/1

Figure 6.4.1: Illustration of three situations for the equivalence of next states.

234 6 Sequential logic circuits

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



According to state equivalence theory, row matching method must check the
equivalence for all input combination. Let us take an example of state reduction in
Table 6.4.1. It can be seen from Table 6.4.1 that there are totally seven states in the
state table. The first step is to check if the outputs are the same for each input
combination. For each input combination, the outputs of state A and state C are the
same and the outputs of state B, D, E, F, G are the same. This means that state A and
state C are possible equivalent and state B, D, E, F, G are possible equivalent. Hence,
the next step is to check the equivalence of next states.

For state B and state E, if input X = 0, their outputs are both 1 and their next state
are both state E; if the input X = 1, their outputs are both 0 and their next state are
both state C. This situation belongs to the first situation of the equivalence of next
states. Therefore, state B and state E are a pair of equivalent states expressed as [B, E].

For state F and state G, their outputs are both 0 and their next state are both E if
the input X = 1; if the input X = 0, their outputs are both 1 and their next states are
crossed each other. That is, irrespective of whether the circuit starts with state F or
state G, it will transform between state F and state G until the input X becomes a 1.
When the input X = 1, it will go to state E. This situation belongs to the third situation
of the equivalence of next states. Therefore, state F and stateG are a pair of equivalent
states represented by [F, G].

For state A and state C, their outputs are both 0 and their next states cross each
other if the input X = 1; if X = 0, their outputs are both 0 and their next states are state
B and stateD, respectively. Therefore, whether or not state A and state C is equivalent
depends on the equivalence of state B and state D. Let us turn to check state B and
state D. For state B and state D, their outputs and next states are both the same when
X= 0;whenX= 1, their outputs are the same and their next states are stateA and stateC,
respectively. This means that the equivalence of state B and state D depends on the
equivalence of state A and state C, and vice versa. Therefore, state B and state D are a
pair of equivalent states and state A and state C are also a pair of equivalent state,
which can be expressed as [A, C], [B, D].

Table 6.4.1: The state table.

Present state Next state Output

X =  X =  X =  X = 

A B C  

B E C  

C D A  

D E A  

E E C  

F G E  

G F E  
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Since state B and state D are equivalent, and state B and state E are equivalent,
then state D and state E can be regarded as equivalent states. Therefore, state B,
state D, and state E are equivalent to each other, which is expressed as [B, D, E].

From the above analysis, there are three pairs of equivalent states listed in
Table 6.4.1, which are [A, C], [F, G], and [B, D, E]. The equivalent states can be
replaced with one state, minimizing the state table. Therefore, state A and state C
can be expressed as state A; state F and state G can be denoted by state F; and state B,
stateD, and state E can be expressed as state B. Theminimized state table is shown as
Table 6.4.2.

6.4.2 Implication chart

The row matching method is suitable for minimizing simple state table. It is more
difficult to detect equivalent states for a complex state table since there is a large
number of states. The implication chart uses a graphical cell to systematically detect if
the states are equivalent, which is more practical to tackle with the complex states
table. Let us take an example to understand the implication charts method.

Example 6.6 Use the implication chart to minimize the state table shown in Table 6.4.3.

Table 6.4.2: The minimized state table.

Present state Next state Output

X =  X =  X =  X = 

A B A  

B B A  

F F B  

Table 6.4.3: The state transition table.

Present state Next state Output

X =  X =  X =  X = 
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Solution

Step 1 Construct an implication chart.
The implication chart is a chart in the form of right triangle, as shown in Figure 6.4.2(a). It can

be observed from Table 6.4.3 that there are eight states, so we can construct the implication chart
as shown in Figure 6.4.2(a). Note that there is no first state in the vertical direction, starting from
state 2 to state 8; there is no the final state in the horizontal direction, starting from state 1 to state
7. This organizing style can effectively avoid the repeat comparison. Each cell in the chart repre-
sents the pairs of next states corresponding to a pair of states determined by the vertical and
horizontal states.

Step 2 Fill the implication chart.
The chart is completed by comparing each pair of states in the state table to determine

whether they are equivalent. The comparing result can be filled in the corresponding cell.
Usually, there are three kinds of comparing results.

The first result is that two states can be directly determined to be a pair of equivalent states,
entering a tick “√” in the cells corresponding to these state pairs. For the state table in Table 6.4.3,
there is no pair of equivalent states that can be directly determined, so no tick occurs in the cells.

The second result is that two states are directly incompatible. If two states are not equiva-
lent, enter a cross “×” in the cells. For example, state 1 and state 3 do not have the same output
for each input value, so they are not equivalent and thus a cross “×” is filled into the corre-
sponding cell.

The third result is that two states are possible equivalent. For each input combination, if two
states have the same output, the equivalence of their next states must be determined by the
equivalence of other state pairs. For this situation, the implied state pairs represented by (a,b) are
listed in the corresponding cells. Let us check state 3 and state 8. For each input value, their
outputs are the same. So whether or not these two states are equivalent depends on the equiva-
lence of their next states. If X = 0, whether or not state 3 and state 8 are equivalent depends on the
equivalence of state 5 and state 8; if X = 1, whether or not state 3 and state 8 are equivalent
depends on the equivalence of state 1 and state 4. So state pairs (5,8) and (1,4) are the implied
equivalence of state 3 and state 8, which is filled in the corresponding cell. Similarly, the implica-
tion chart can be completed as shown in Figure 6.4.2(b).

Step 3 Perform the relevant comparison.
In this step, the implied equivalent pairs in the cell must be checked to determine if they are

equivalent. If they are equivalent, a tick “√” is filled in the cell; if they are not equivalent, a cross

(a)

2

3

5

7

6

8

4

54321 76

(c)

3,6

4,8
3,7

4,8
6,7

1,4
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4,8
1,5

4,8
1,2

1,8

1,5
4,8

1,4
5,8

1,4
2,8

4,5
2,4

2,5

4,5

2

3

5

7

6

8

4

54321 76

(b)

3,6

4,8 4,8
6,7

1,4
5,8

4,8
1,5

4,8
1,2

1,8

1,5
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1,4
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54321 76
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Figure 6.4.2: The implication chart.
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“×” is filled in the cell. For example, the implied pairs (1,8) corresponding state 3 and state 4 are not
equivalent because their outputs are not the same, so a cross “×” is filled in the corresponding cell.
The relevant comparison ends until all implied pairs are checked in the cell. Finally, any cell not
containing a cross “×” corresponds to an equivalent state pairs, as shown in Figure 6.4.2(c).

Step 4 Merge the equivalent states and minimize the state table.
As shown in Figure 6.4.2(c), each cell without a cross represents a pair of equivalent states. It

can be obtained from Figure 6.4.2(c) that all pairs of equivalent states are [1,2], [1,5], [2,5], [3,6],
[3,7], [4,8], and [6,7]. With [1,2] and [1,5], state 1, state 2, and state 5 are equivalent, which is
represented by [1, 2, 5]; So does [3, 6, 7]. That is, the equivalent pairs are [1, 2, 5], [3, 6, 7], and [4,8].
The resulting minimized state table is obtained as in Table 6.4.4.

6.5 Summary

1. A sequential logic circuit is a kind of digital circuits, in which the outputs depend
on not only the current inputs but also the previous inputs and outputs.

2. A sequential logic circuit is composed of combinational logic circuits and mem-
ory elements. Memory elements contain a series of flip-flops.

3. Sequential circuits can be divided into synchronous and asynchronous circuits.
In a synchronous circuit, all flip-flops are synchronized by a global clock signal.
While in an asynchronous circuit, there is no global clock signal for all flip-flops.

4. A sequential logic circuit is a finite state machine that has a finite state. There are
two basic models: Moore model and Mealy model.

5. Any SSC can be described using structural models and behavioral models. The
structure models include logic diagram, excitation equations, and output equa-
tions, and the behavioral models contain state equations, output equations, state
table, and state diagram.

6. Analysis procedure of an SSC includes deriving the exciting equations and out-
put equations, deriving the state equation, constructing the state transition
table, drawing the state diagram or timing diagram, and determining the imple-
menting functionality.

7. Design procedure of a synchronous sequential logic circuit includes constructing
initial state diagram and state table, minimizing the number of states and encoded
states, determining the required number and types of flip-flops, deriving the

Table 6.4.4: The minimized state table.

Present state Next state Output

X =  X =  X =  X = 
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excitation equations and output equations, checking whether the synthesis of
sequential logic circuits can be self-corrected, and drawing the logic diagram.

8. State reduction refers to the process of eliminating equivalent or redundant
states. Two methods for state reduction are row matching and implication chart.

9. The implication chart uses a graphical cell to systematically find equiva-
lences among the states, and is more practical to tackle with the complex
states table.

Key terms

Synchronous sequential logic circuit: A sequential logic circuit in which all flip-
flops have a global clock.
Asynchronous sequential logic circuit: A sequential logic circuit in which there is
no global clock for all flip-flops.
State diagram: A graphic depiction of a sequence of states or values.
State table: A table depiction of the rule of state change.
State machine: Any sequential circuit exhibiting a specified sequence of states.
Characteristic equation: A equation that specifies the flip-flop’s next state as a
function of its current states and inputs.
State/output table: A table that specifies the next state and output of the circuit for
every possible combination of current states and inputs.
Mealy machine: A sequential circuit whose output depends on both current states
and inputs.
Moore machine: A sequential circuit whose outputs only depends on current states.
Transition equation: An equation expressing the next states as a function of current
states and inputs.
Transition table: A table showing the next coded state for each combination of
current coded states and inputs.
Coded state: Process that a particular state is assigned a binary code combination.
Excitation table: A table showing the flip-flop excitation input values needed to make
the circuit go to the desired next state for each combination of current states and inputs.

Self-test

6.1 Sequential logic circuit is composed of ___________ and ___________
6.2 Sequential logic circuit can be divided into two categories:

___________ and ___________.
6.3 ___________,___________,___________ are three equations to describe the logic

function of a sequential logic circuit.
6.4 ___________ are Boolean equations that describe the input to the flip-flops.
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6.5 The state table of a sequential logic circuit is shown in Table T6.1. The function
of this circuit is ___________.

(a) Modulus-3 up/down counter (b) Modulus-4 up counter
(c) Modulus-4 down counter (d) Modulus-4 up/down counter

6.6 The state table of a sequential logic circuit is shown in Table T6.2. Assume the
initial state is S0, and the input series is X = 01011101, the output series F is
___________.

6.7 ___________ and ___________ are two methods for state reduction.
6.8 If two states have the same output and next states, they are ___________.

Problems

6.1 Analyze the implementing functionality of sequential logic circuit, as shown in
Figure P6.1. Assume that the initial state for the two flip-flops are both 0.

Table T6.1

Input Present State Next state Output

X Q Q Q
+ Q

+ Y

     

     

     

     

     

     

     

     

Table T6.2: The state table.

Present State Next state Output

X =  X =  X =  X = 

S S S  

S S S  

S S S  

S S S  
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6.2 Analyze the sequential logic circuit shown in Figure P6.2. Derive state table and
state diagram, and draw output waveform when the input X = 1011100. Assume
initial state is 0.

6.3 Derive state table and state diagram of sequential logic circuit in Figure P6.3 and
determine the modulus of counter. Assume the initial state is Q0Q1Q2 = 000.

6.4 Determine the sequence of counter in Figure P6.4

J

K
C

J

K
C

Q1 Q2

CP

X

Z1 FF1 FF2

Figure P6.1

D
C

Q0

CP
X

Z

Figure P6.2

J

K
C

J

K
C

J

K
C

Q0 Q1 Q2

CP

1

1 FF0 FF1 FF2

Figure P6.3

D
C

D

C

Q0 Q1

CP

D
C

Q2

FF0 FF1 FF2

Figure P6.4
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6.5 Analyze the logic behaviors of the SSC in Figure P6.5.

6.6 Analyze and complete the logic circuit shown in Figure P6.6(a). The waveform
of CP and u0 are given in Figure P6.6(b).

6.7 Design a counter to produce the following sequence by using J-K flip-flops.
00,10,01,11,00,…

6.8 Design a sequence detector to detect the sequential input series “111” without
overlapping.

6.9 Design a counter with different modulus. When the input X is a LOW, the
modulus is 3 and the modulus is 4 when X is a HIGH.

6.10 Design a sequential logic circuit with two input X1 and X2 to realize the function
that only when two input X1 and X2 are the same, if two or more than two
continuous CPs are applied, the output is HIGH.

6.11 A sequential signal generator in Figure P6.7 is composed of a counter and a
4-to-1 multiplexer. Analyze the sequence of the counter, list state table, and
determine the sequence of the F output by the control of the sequence of the
counter.

J

K
C

J

K
C

Q0 Q1

CP

1

FF0 FF1

X

Figure P6.5

D
C

D
C

Q0 Q1

CP
(a)

(b)

D
C

Q2

FF0 FF1 FF2
uo

uo

CP

Figure P6.6
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6.12 Use row matching method to minimize the state table shown in Table P6.1.

6.13 Use row matching method to minimize the state table shown in Table P6.2.

6.14 Use implication chart to simplify the state table shown in Table P6.3.
6.15 Design a sequence code detector to detect a sequential input series “0010”with

an overlapping mode.

Table P6.2

Present State Next state Output

X = I X = J X = K X = I X = J X = K

A A B E   

B B A F   

C A D E   

D F C A   

E A D E   

F B D F   

J

K
C

J

K
C

J

K
C

Q0 Q1 Q2

CP

FF0 FF1 FF2

0
1

0
1
2
3

MUX

F

Figure P6.7

Table P6.1

Present state Next state Output

X=  X=  X=  X= 

A A E  

B E C  

C A D  

D F G  

E B C  

F F E  

G A D  
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6.16 Analyze the circuit and draw the output waveforms (Q0, Q1, and Q2) for each
flip-flop shown in Figure P6.8. Thewaveform of CP is given, assume initial state
for each flip-flip is a 0.

6.17 A circuit is shown in Figure P6.9. Draw the output waveforms of Q0, Q1, and Z,
analyze the relationship between the output Z and the CP. The waveform of CP
is given, assume initial state for each flip-flip is a 0.

Table P6.3

Present State Next state Output

X =  X =  X =  X = 

A A C  

B D A  

C F F  

D E B  

E G G  

F C C  

G B H  

H H C  

J
C

T

C

Q0 Q1

CP

D
C

Q2

FF0 FF1 FF2

K

1

Rd

CP

Figure P6.8

D

C

D

C

Q0 Q1

CP

FF0 FF1

1

RdRd

Z

CP

Figure P6.9
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6.18 According to Table P6.4, design a counter with J-K flip-flops. X and Y shown in
Table P6.4 are the control inputs.

Table P6.4

Present state Next state

XY =  XY =  XY =  XY = 

Q Q Q
+ Q

+ Q
+ Q

+ Q
+ Q

+ Q
+ Q

+
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7 Counters

A counter is usually constructed of a number of flip-flops and cycles through a
specified number of states to count the number of clock pulses. There are two types
of counters: asynchronous (ripple) counter and synchronous (parallel) counter. The
difference is that asynchronous counters allow some flip-flop outputs to be used as a
source of clock for other flip-flops, while synchronous counters apply the same clock
to all flip-flops. Counters are widely used components in digital circuits that can be
manufactured as specific integrated circuits and can also be incorporated as parts of
larger integrated circuits. This chapter introduces asynchronous counters, synchro-
nous counters, cascaded counters, as well as medium-scale integration (MSI) coun-
ters and their related applications.

The objectives of this chapter are to
– Understand the difference between an asynchronous counter and a synchronous

counter
– Describe the operation of an asynchronous counter
– Describe the operation of a synchronous counter
– Develop counter timing diagrams
– Analyze counter circuits
– Determine the modulus of a counter
– Modify the modulus of a counter
– Analyze the sequence of a counter
– Apply cascaded counters to implement higher modulus
– Explain the logic function of several MSI counters
– Discuss the application of 74LS93, 74LS161, 74LS163, and 74HC190
– Describe how a digital clock operates

7.1 Asynchronous counters

Asynchronous counter is also called ripple counter because of theway the clock pulses
ripple through the flip-flops. For an asynchronous counter, the first flip-flop is
clocked by an external clock, and all subsequent flip-flops are clocked by the output
of the preceding flip-flop; hence, the flip-flops do not change states at the same time
since they do not have a common clock pulse.

This section introduces the operation of asynchronous binary counters and the
74LS93 four-bit asynchronous binary counter.

The objectives of this section are to
– Describe the operation of a n-bit asynchronous binary counter
– Explain how to design a modulus-n counter
– State the definition of a ripple in relation to counters
– Describe the 74LS93 four-bit asynchronous binary counter

https://doi.org/10.1515/9783110614916-007
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7.1.1 Asynchronous binary counters

A two-bit asynchronous binary counter consists of two J–K flip-flops, as shown in
Figure 7.1.1. Since the input J and K are both HIGH for each J–K flip-flop, both flip-
flops operate at a toggle operation. Therefore, the state transition of each flip-flop
depends on whether there is a clock pulse applied on the clock input. Notice that the
external clock is connected to the clock input of the first J–K flip-flop (FF0) and thus
FF0 changes its state at the falling edge of each clock pulse, but the Q1 output of FF1
changes only when it is triggered by the falling edge of the Q0 output of FF0. Because
of the inherent propagation delay time through a flip-flop, the transition of the input
clock pulse and a transition of the Q0 output of FF0 can never occur at exactly the
same time. Therefore, the two flip-flops are never simultaneously triggered, produ-
cing an asynchronous operation.

Let’s analyze the basic operation of the asynchronous counter by applying four
clock pulses to FF0 and observing the Q output of each flip-flop. Figure 7.1.2 illus-
trates the state changes of flip-flops in relation to the clock pulses. Assume that all
flip-flops are initially in the RESET state (Q is LOW).

The falling edge of CP1 (clock pulse 1) causes theQ0 output of FF0 to go HIGH. Due
to theQ0 output from LOW toHIGH, it has no effect on FF1 because a falling transition is
required to trigger the flip-flop FF1. After the falling edge of CP1, Q0 = 1 and Q1 = 0. The
falling edge of CP2 causes Q0 to go LOW and thus the flip-flop FF1 is triggered, causing
Q1 to go HIGH. After the negative-going edge of CP2, Q0 = 0 and Q1 = 1. The falling edge
of CP3 causes Q1 to go to HIGH again, which has no effect on FF1. Thus, after the falling
edge of CP3, Q0 = 1 and Q1 = 1. The falling edge of CP4 causes Q0 to go LOW. This makes
FF1 triggered, causingQ1 to go LOW. After the falling edge of CP4,Q0 = 0 and Q1 = 0. The
counter is now recycled to its initial state. The term recycle refers to the transition of the
counter from its final state back to its initial state [3].

1 2

Q1

Q0

CP 3 4

0

0

1

0

0

1

1

1

0

0 Figure 7.1.2: Timing diagram.

K

J
C

K

J
CCP

1

FF0 FF1

Q0 Q1

Figure 7.1.1: A two-bit asynchronous binary counter.
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It is found that the above two-bit ripple counter has 4 (22) different states. If Q0

represents the least significant bit (LSB) and Q1 represents the most significant bit
(MSB), the counting sequence presents a sequence of binary numbers as shown in
Figure 7.1.2 and Table 7.1.1. Since it goes through a binary sequence, the counter in
Figure 7.1.1 is a binary counter.

The number of states in a counter is known as its modulus (MOD) number. The
two-bit binary counter in Figure 7.1.1 has four states; thus it is a MOD-4 counter.
Similarly, a binary counter with n flip-flops can have 2n states; thus, it is a MOD-2n

counter. A MOD-n counter may also be described as a divide-by-n counter. This is
because the MSB flip-flop (the furthest flip-flop from the original clock pulse) pro-
duces one pulse for every n pulses at the clock input of the least significant flip-flop.
Thus, the above counter shown in Figure 7.1.1 is an example of a divide-by-4 counter,
which is also called as divide-by-4 frequency divider.

Figure 7.1.3 illustrates a three-bit asynchronous binary counter with three J–K
flip-flops triggered by the falling edge of clock pulse. The state sequence for the three-
bit binary counter is given in Table 7.1.2. It has 8(23) states and counts from 000 (0) to
111(7) for a cycle. It works exactly the sameway as a two-bit binary countermentioned
earlier and is an example of divide-by-8 counter. This counter can be easily expanded
for higher modulus by connecting additional toggle flip-flops.

Table 7.1.1: State sequence table.

CP Q Q

(Initially)  

  

  

  

(recycle)  

K

J
C

1

CP

CP

Q2

Q1

Q0

(a)

(b)

K

J
C

FF0 FF1

Q0 Q1 Q2

K

J
C

FF2

1 2 3 4 5 6 7 8

0

0

0

1

0

0

0

1

0

1

1

0

0

0

1

1

0

1

0

1

1

1

1

1

0

0

0

Figure 7.1.3: A three-bit
asynchronous binary counter:
(a) logic diagram;
(b) timing diagram.
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7.1.2 Asynchronous counters with a truncated sequence

The maximum number of states of a binary counter is 2n, where n is the number of
flip-flops used in the counter. Counters can be designed to have a number of states
less than the maximum of 2n. This type of sequence is called a truncated sequence.

A common modulus for counters with truncated sequence is ten, also called
MOD-10. Counters with ten states in their sequence are called decade counters. A
decade counter with a count sequence of zero (0000) through nine (1001) is a BCD
decade counter because its ten-state sequence produces the BCD code. This type of
counter is useful in display applications in which BCD is required for conversion to a
decimal readout.

To obtain a truncated sequence, it is necessary to force the counter to recycle
before going through all of its possible states. For example, the BCD decade counter
must recycle back to the 0000 state after the 1001 state. The MOD-10 counter requires
at least four flip-flops because three flip-flops can only afford the maximum of 23= 8
states. We can use a four-bit asynchronous counter and a few gates to modify its
sequence to illustrate the principle of a MOD-10 counter. One way to make the
counter recycle after the count of nine (1001) is to decode count ten (1010) with a
NAND gate and connect the output of the NAND gate to the direct set inputs of the
flip-flops, as shown in Figure 7.1.4.

Table 7.1.2: State sequence table.

CP Q Q Q

(Initially)   

   

   

   

   

   

   

   

(recycle)   

K

J
C

K

J
CCP

1
FF0 FF1

Q0 Q2Q1

K

J
C

FF2

Q3

K

J
C

FF3

Rd RdRdRd

Figure 7.1.4: A decade counter.
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Figure 7.1.4 shows that only Q1 and Q3 are connected to the NAND gate inputs.
This design is an example of partial decoding, because from 0000 to 1001, none of the
states have both Q1 and Q3 HIGH at the same time. When the counter goes into 1010,
the NAND output goes LOW and reset all the flip-flops immediately. So after the tenth
clock pulse, the stable state is state 0000 rather than state 1010. State 1010 only
occurs as a spike. This can be seen in the timing diagram shown in Figure 7.1.5.

Other truncated sequences can be realized in a similar way, and Example 7.1 shows
how to implement a MOD-12 counter.

Example 7.1 Design a MOD-12 asynchronous counter with J–K flip-flops to realize a binary sequence
counting from 0000 to 1011.

Solution

To design a MOD-12 asynchronous counter, four J–K flip-flops are required since they can afford any
modulus less than or equal to 16 (24). The counter counts up from 0000 to 1011, so when it goes to
1011, the next state should be 0000 to make the counter recycle back, as shown in Table 7.1.3.

Normally, the next state after 1011 is 1100, but now it must force the next state changing from
1011 to 0000. Figure 7.1.6 shows the MOD-12 counter, in which a NAND gate partially decodes count

1 2

Q0

Q1

Q2

Q3

CP
3 4 5 6 7 8 9 10

Rd

Figure 7.1.5: Timing diagram.

Table 7.1.3: State sequence for the counter in Example 7.1.

CP Q Q Q Q

(Initially)    

    

    

    

    

    

    

    

    

    

    

    

(recycle)    
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1100 and resets all flip-flops. Thus, when the 12th clock pulse is coming, the counter is forced to
recycle from 1011 to 0000.

7.1.3 MSI asynchronous counters

The 74LS93 is an example of a specific MSI asynchronous counter. As shown in
Figure 7.1.7, it consists of a J–K flip-flop in toggle operation and a three-bit asynchro-
nous binary counter. This arrangement offers the flexibility to expand. The 74LS93
can be used as a MOD-2 counter if only single J–K flip-flop FF0 is used, or it can be
used as a MOD-8 counter if only the three-bit counter portion is used. Except for the
two clock inputs, this device also provides asynchronous gated reset inputs R0(1) and
R0(2). When both of R0(1) and R0(2) are HIGH, the counter is reset to the 0000 state.

Figure 7.1.8 shows the logic symbol of 74LS93. If theQ0 output is connected to the
CPB input, the 74LS93 can be used as a four-bit binary counter with MOD-16, counting
from 0000 through 1111.

K

J
C

K

J
CCP

1
FF0 FF1

Q0 Q1

K

J
C

FF2

Q2

K

J
C

FF3

Q3

RdRd Rd Rd

Figure 7.1.6: A MOD-12 counter.
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J
C

K

J
CCPA

FF0 FF1

Q0 Q1

K

J
C

FF2

Q2

K

J
C

FF3

Q3

Rd

CPB

R0(1)
R0(2)

RdRdRd

Figure 7.1.7: Internal logic diagram of 74LS93.

Q0Q1Q2Q3
CPA
CPB

R0(2)R0(1)

74LS93

Figure 7.1.8: Logic symbol of 74LS93.
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Using the gated reset input, 74LS93 can be used to construct any counter with the
MOD less than 16, as mentioned in Example 7.2.

Example 7.2 Construct the MOD-10 counter with 74LS93

Solution

Using the gated reset inputs, R0(1), R0(2), partially decode count 1010. The first step is to construct aMOD-
16 counter by connectingQ0 output to the CPB input. Then the next step is to determine the connection of
reset input. For the MOD-10 counter, the counter counts up from 0000 to 1001, so when it goes to 1001,
the next state should be 0000 to make the counter recycle back, as shown in Table 7.1.4. Normally, the
next state after 1001 is 1010; it can be observed that Q0 and Q3 are both HIGH. Since Q3 and Q1 are both
HIGH when it counts 1010, the counter can recycle by connecting Q3, Q1 with R0(1), R0(2), respectively, as
shown in Figure 7.1.9. Notice that an extra state is needed for the asynchronous clear, and the counter
must go into the 1010 state for several nanoseconds before recycling.

7.2 Synchronous counters

A synchronous counter, also called as a parallel counter, is one in which all flip-flops
in the counter are clocked at the same time by a common clock pulse. This section
introduces synchronous counters and discusses the function and application of
several MSI synchronous counters.

Q0Q1Q2Q3
CPA
CPB

R0(1) R0(2)

74LS93

Figure 7.1.9: A 74LS93 connected as a MOD-10 counter.

Table 7.1.4: State sequence table.

CP Q Q Q Q

(Initially)    

    

    

    

    

    

    

    

    

    

(recycle)    
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The objectives of this section are to
– Describe the operation of an n-bit synchronous binary counter
– Discuss the 74LS161, 74LS163, and 74HC190 MSI counters
– Augment the capacity of MSI counters

7.2.1 Synchronous binary counters

Figure 7.2.1(a) shows a two-bit synchronous counter, which consists of two T flip-
flops. As mentioned in Chapter 5, a T flip-flop can be formed by connecting the J and
K inputs of a J–K flip-flop together. The T input of FF0 is connected to HIGH and the
Q0 output is connected to the T input of FF1. Assume that the counter is initially in the
state 00 (Q1Q0); when the positive edge of the first clock pulse is applied, FF0 is in
toggle operation and thus Q0 goes HIGH. While for FF1, at the positive-going edge of
CP1, the T input is LOW because there is a propagation delay from the triggering edge
of the clock pulse until the Q0 output actually makes a transition. When the leading
edge of the first clock pulse is applied, T1 = 0; thus, the Q1 output of FF1 keeps the
previous state.

After the first clock, Q0 = 1 and Q1 = 0. When the leading edge of CP2 occurs, Q0

changes from HIGH to LOW since T0 is HIGH. Since FF1 has a HIGH on its T1 input, at
the triggering edge of this clock pulse, FF1 is in the toggle operation and Q1 goes to
HIGH. After CP2, Q0 = 0 and Q1 = 1.

When the leading edge of CP3 occurs, FF0 toggles again with Q0 = 1 and Q1

remains HIGH. After the triggering edge of CP3, Q0 = 1 and Q1 = 1.
Finally, at the leading edge of CP4, bothQ0 andQ1 go to LOWbecause they have a

toggle condition on their inputs, as shown in Figure 7.2.1(b). Thus, the counter has
recycled to its initial state. Notice that the propagation delays are normally omitted
for simplicity in the timing diagram. However, in high-speed digital circuits, these
small delays are important considerations in design and troubleshooting.

Alternatively, you can use the design procedure of the sequential logic (covered
in Chapter 6) to design a synchronous binary counter. Let’s see Example 7.3.

T
C

T
C

CP
(a) (b)

1
FF0 FF1

Q0 Q1

Q1

1 2

Q1

Q0

CP 3 4

Figure 7.2.1: A three-bit synchronous counter: (a) logic diagram and (b) timing diagram.
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Example 7.3 Design a three-bit synchronous binary up counter by using T flip-flops.

Solution

The first step to design a counter is to create a state diagram. A state diagram shows the transition of
states through which the counter advances when it is clocked. Figure 7.2.2 shows a state diagram for
a three-bit synchronous binary up counter.

The second step is to derive a state table, which lists all the present states, next states, and the
inputs of T flip-flop as shown in Table 7.2.1. All possible output transitions are listed. Q and Q+

represent the present state and the next state.

The next step is to take use of the Karnaugh map to determine the excitation equation.
Figure 7.2.3 shows the Karnaugh maps for the three flip-flops used in the counter.

Table 7.2.1: State table.

Present states Next states Inputs

Q Q Q Q
+ Q

+ Q
+ T T T

        

        

        

        

        

        

        

        

T1

Q2 00 01

0

1

11 10

1

Q1Q0

1

1

1

Q2 00 01

0

1

11 10

1

Q1Q0

1

1

1

1

1

1

1

T0
Q2 00 01

0

1

11 10

1

Q1Q0

1

T2

Figure 7.2.3: The Karnaugh maps.

111
000

110

101
100

011

010

001

Figure 7.2.2: State diagram for a three-bit synchronous binary up
counter.
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From the Karnaugh maps, excitation equations of three flip-flops are

T2 =Q1Q0, T1 =Q0, T0 = 1 (7:2:1)

The last step is to construct the logic diagram, as shown in Figure 7.2.4.

7.2.2 Up/down synchronous counter

An up/down counter is a bidirectional counter that is capable of counting either up or
down. In order to choose the up or down operation mode, a control line UP=DOWN is
used to select the direction of counting. WhenUP=DOWN is HIGH, the counter counts
upward through its sequence, while UP=DOWN is LOW, the counter counts down-
ward across its counting sequence.

Let’s take a three-bit binary up/down counter, for example. For up operation
mode, the counter advances upward through its sequence, from 000 to 111, and then
recycles; for down operation mode, the counter goes through the sequence in the
opposite direction, from 111 to 000, and then recycles. So the up/down state sequence
table is listed in Table 7.2.2.

It can be observed from Table 7.2.2 that FF0 toggles on each clock pulse; thus, the
T0 input of FF0 should be

T0 = 1 (7:2:2)

T
C

T
C

CP

FF0 FF1

Q0 Q1

Q1

T
C

Q2

Q0

FF2

Q2

1

Figure 7.2.4: A three-bit synchronous binary up counter.

Table 7.2.2: Up/down state sequence table.

UP DOWN
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

CP Q2 Q1 Q0
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For the up sequence, Q1 changes the state on the next clock when Q0 = 1. For the
down sequence,Q1 changes the state on the next clockwhenQ0 = 0. Thus, the T1 inputs
of FF1 must be equal to a 1 under the conditions expressed by the following equation:

T1 = Q0UPð Þ+ �Q0DOWN
� �

(7:2:3)

For the up sequence, Q2 changes the state on the next clock pulse when Q0 = Q1 =
1. For the down sequence,Q2 changes the state on the next clock pulse whenQ0 =Q1 =
0. Thus the T2 inputs of FF2 must equal to a 1 under the condition expressed by the
following equation:

T2 = Q0Q1UPð Þ+ �Q0
�Q1DOWN

� �
(7:2:4)

By using the above excitation equations of three flip-flops, the logic diagram of
the three-bit up/down binary counter is implemented, as shown in Figure 7.2.5.
Notice that the UP=DOWN control input is HIGH for UP and LOW for DOWN.

7.2.3 MSI synchronous counters

1. Four-bit synchronous binary up counters
The 74LS161 is an example of a four-bit synchronous MSI binary up counter and the
corresponding logic symbol is shown in Figure 7.2.6. The functional table of 74LS161
is listed in Table 7.2.3. Except the clock input, it has four control inputs: asynchro-
nous clear (or reset) input �R, synchronous load input LD, two enable inputs CTT and
CTP. There are also four flip-flops integrated in the 74LS161 chip. D3D2D1D0 are the
four inputs, and Q3Q2Q1Q0 are the four corresponding outputs representing the state
of counter, and RCO is the ripple carry output indicating the time that the counter
counts to its maximum. The 74LS161 has four operation modes.

An operation mode is asynchronous clear or asynchronous reset, which is pre-
sented in the first row of the functional table. The counter can be asynchronous reset
by applying a LOW to the reset input �R. That is, when �R is an active LOW, the output
Q3Q2Q1Q0 is 0000 no matter what the other inputs are.

T
C

T
C

CP

FF0 FF1

Q0 Q1

Q1

T
C Q2

Q2

Q0

FF2

UP/DOWN
1

UP

Figure 7.2.5: A three-bit up/down synchronous counter.
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When LD is an active LOW, data inputs, D3D2D1D0, are loaded to the outputs,
Q3Q2Q1Q0, at the positive edge of the clock pulse; thus, the counter sequence can be
started with any four-bit binary number from 0000 to 1111. This operation mode is
called as synchronous load, which is indicated in the second row of the functional
table.

When �R and LD are both HIGH, if at least one of enable inputs (CTp, CTT) is an
active LOW, the outputs keep the present outputs. This operation mode corresponds
to the third and fourth rows in the functional table.

When all control inputs (�R, LD, CTp, CTT) are HIGH, the counter operates as a free-
running counter recycling from 0000 to 1111 (0 to 15), which is described in the last
row of the functional table. When the counter reaches the state of 1111, which is the
last state in its sequence and called the terminal count (TC), the RCO goes HIGH. The
RCO output can be connected to the enable inputs of the other counters, allowing to
cascade several counters to implement the counter with the higher modulus.

In addition to 74LS161, 74LS163 is also a four-bit MSI synchronous binary up
counter. By comparing the function table of 74LS161 in Table 7.2.3 and 74LS163
in Table 7.2.4, it can be seen that the only difference between 74LS161 and 74LS163
is the reset operation mode. The 74LS163 has a synchronous reset operation mode.
When the reset input �R is an active LOW, the output Q3Q2Q1Q0 is reset to 0000 only
at the positive edge of clock pulse. The logic symbol of 74LS163 is the same as that
of 74LS161.

R
LD
CTT
CTP
CP
D0
D1
D2
D3

R
LD
CTT
CTP
CP
D0
D1
D2
D3

RCO

Q0
Q1
Q2
Q3

RCO

Q0
Q1
Q2
Q3 Figure 7.2.6: Logic symbol of 74LS161.

Table 7.2.3: Function table of 74LS161.

Inputs Outputs

CP �R LD CTp CTT D D D D Q Q Q Q

×  × × × × × × ×    

↑   × × D D D D D D D D

×    × × × × × No change
×   ×  × × × × No change
↑     × × × × Count up
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2. Up/down synchronous counter
74HC190 is an example of an up/down MSI decade counter. Figure 7.2.7 shows
the logic symbol of 74HC190. The direction of the count is determined by the
level of the up/down input (�U=D). When the up/down input is HIGH, the counter
counts down from 1001 to 0000 at the positive edge of each clock pulse; when it is
LOW, the counter counts up from 0000 to 1001 at the positive edge of each clock
pulse. As the function table in Table 7.2.5, when the load input, LD, and the enable
input, CT, are both HIGH, the counter keeps the present state with no change. When
LD is an active LOW, data D3D2D1D0 inputs are loaded to the Q3Q2Q1Q0 output; thus,
this device can be preset to any desired BCD digit determined by the state of the
data inputs.

When the terminal counting nine (1001) is reached in the UP mode or when the
terminal counting zero (0000) is reached in the DOWNmode, the RCO is HIGH.When
the next clock pulse comes, the RCO turns to LOW.

3. Augment the capacity of MSI counters
A four-bit synchronous binary counter can be used to construct any counter with a
MOD less than 16. The design method uses clear input or load input to shorten the

Table 7.2.4: Function table of 74LS163.

Inputs Outputs

CP �R LD CTp CTT D D D D Q Q Q Q

↑  × × × × × × ×    

↑   × × D D D D D D D D

×    × × × × × No change
×   ×  × × × × No change
↑     × × × × Count up

74HC190
CT
LD
U/ D
CP

D0
D1
D2
D3

CT
LD
U/D
CP

D0
D1
D2
D3

RCO

Q0
Q1
Q2
Q3

RCO

Q0
Q1
Q2
Q3

Figure 7.2.7: Logic symbol of 74HC190.

7.2 Synchronous counters 259

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



normal sequence and augment the capacity of the counter. Example 7.4 shows the
two methods to design a MOD n (n≤16) counter with one MSI counter.

Example 7.4 Construct a MOD-10 counter with a four-bit binary MSI up counter.

Solution

Both 74LS161 and 74LS163 are four-bit binary MSI up counters. The 74LS161 has an asynchronous
reset input: if you use an asynchronous reset input to shorten the normal sequence and design a
MOD-10 counter, an extra unstable state (count 10, 1010) is needed to help the counter return to zero.
Whereas the 74LS163 has a synchronous reset input: if you use the synchronous reset input to design
a MOD-10 counter, a clear signal is produced when the final state (count 9, 1001) is reached, but the
counter will be reset at the next clock. Logic diagrams for MOD-10 counter constructed with a 74LS161
and a 74LS163 are shown in Figure 7.2.8. Tables 7.2.6 and 7.2.7 show the corresponding state table.

Another method to construct the MOD-10 counter is to use load input (LD) to augment the
capacity. When the load input LD is an active LOW, the data inputs are loaded to the outputs; thus,
the counter sequence can be started from any four-bit binary number. Assume that ten states from
0110 to 1111 are used to construct the MOD-10 counter with 74LS161, as shown in Table 7.2.8. The
initial state of the counter is set as 0110, and then the counter counts upward; after the tenth clock
pulse, the output state is 1111 and the counter reaches the TC. Thus, the RCO is HIGH. The HIGH level
emitted by the RCO is fed back to the load input via an inverter, so the load input LD is a LOW, making
the counter preset and recycle back to the initial state 0110.

Table 7.2.5: Function table of 74HC190.

Inputs Outputs

CT LD �U=D CP D D D D Q Q Q Q

  × × × × × × No change
×  × × D D D D D D D D

   ↑ × × × × Count up
   ↑ × × × × Count down

74LS161
R
LD
CTT
CTP
CP
D0
D1
D2
D3

1

(a) (b)

1
1

CP
D0
D1
D2
D3

RCORCO

Q0
Q1
Q2
Q3

74LS163
R
LD
CTT
CTP
CP
D0
D1
D2
D3

1
1
1

CP
D0
D1
D2
D3

RCORCO

Q0
Q1
Q2
Q3

Figure 7.2.8: Logic diagram for a MOD-10 counter.
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Table 7.2.6: State sequence table.

CP Q Q Q Q R

     

     

     

     

     

     

     

     

     

     

     

Table 7.2.7: State sequence table.

CP Q Q Q Q R

     

     

     

     

     

     

     

     

     

     

Table 7.2.8: state sequence table.

CP Q Q Q Q R
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Figure 7.2.9(a) shows the logic diagram for the MOD-10 counter with 74LS161 by selecting the
count sequence from 0110 to 1111. Similarly, the first ten states from 0000 to 1001 can be used for
implementing a MOD-10 counter with a 74LS161 and the corresponding logic diagram is shown in
Figure 7.2.9(b).

In terms of the above two methods of augmenting the capacity of the counter, notice that
whenever using the clear input, you should pay attention to the difference of synchronous clear and
asynchronous clear. If using load input, you should pay attention to the initial state and end state of
the design sequence, because initial state determines the connection of the data inputs and the end
state gives the production method of load signal.

4. Sequence generator
A sequence signal is a serial code with a certain period. A method of constructing a
sequence generator is to use the combination of counter and combinational circuit.
Let’s take a look at the design procedure through an example.

Example 7.5 Design a sequence generator that can generate a sequence code “110001001110.”

Solution

Step 1 Design a counter with the modulus which is equal to the length of the sequence code
The length of the given sequence code is 12, so a MOD-12 counter is required to control the code
output as the predetermined sequence. Here, a 74LS161 is used to construct a MOD-12 counter with a
synchronous load input and the count sequence is from 0100 to 1111.

Step 2 Construct the combinational circuit to implement the sequence code “110001001110”
In order to generate the output of the sequence code “110001001110,” one-bit code can be output one
by one at the control of the clock pulse. So a combinational circuit is required to implement the
output of the sequence code. The outputs of counter act as the inputs of this combinational circuit
and an output, F, are needed to output one-bit code at each clock input sequentially. After 12 o’clock

(a) (b)

74LS161
R
LD
CTT
CTP
CP
D0
D1
D2
D3

1

1
1

CP
0
1
1
0

RCO

Q0
Q1
Q2
Q3

74LS161
R
LD
CTT
CTP
CP
D0
D1
D2
D3

1

1
1

CP
0
0
0
0

RCO

Q0
Q1
Q2
Q3

Figure 7.2.9: Logic diagrams of MOD-10 counter with 74LS161.
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pulse, a group of sequence code “110001001110” is produced and recycles again. The truth table of
the combinational circuit is listed in Table 7.2.9.

This combinational circuit can implement with several methods. Here, an 8-to-1 multiplexer is
chosen to implement the logic function given in Table 7.2.9. IfQ3Q2Q1 are selected for selection input
lines, A2A1A0, the output expression can be obtained from Table 7.2.9 as follows:

F =m2Q0 +m2
�Q0 +m4Q0 +m6Q0 +m6

�Q0 +m7
�Q0 =m2 +m4Q0 +m6 +m7

�Q0 (7:2:5)

The data inputs D2 = D6 = 1, D4 = Q0, D7 =�Q0, D0 = D1 = D3 = D5 = 0. The logic circuit is shown in
Figure 7.2.10.

Table 7.2.9: Truth table.

Q Q Q Q F

    

    

    

    

    

    

    

    

    

    

    

    

74lLS161

1

1
1

1

0

0

0

CP

LD
RCO

R

CTT
CTP

CP
D0
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D2

D3

Q0
Q1
Q2

Q3

Q0
Q1
Q2
Q3

74lLS151
0

0
0

0

0

1

1

S
A0
A1
A2

D0
D1
D2
D3

D4
D5
D6

D7

F

F

F

Figure 7.2.10: Circuit diagram for Example 7.5.
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7.3 Cascaded counter

Counters can be connected to achieve higher-modulus operation. Cascadingmeans
that previous output of a counter drives the input of next counter. This section gives
a description on cascaded counter.

The objectives of this section are to
– Determine the overall modulus of a cascaded counter
– Use a cascaded counter as a synchronous frequency divider
– Use a cascaded counter to generate a truncated sequence

When operating synchronous counters in a cascaded configuration, it is neces-
sary to use count enable and TC to achieve higher-modulus operation. On some
devices, count enable is labeled simply as CT and TC is analogous to RCO on some IC
counters.

An example of the cascaded counter in which the two 74HC190s connected in
cascade is shown in Figure 7.3.1.

The terminal count (RCO) output of counter 1 is connected to count enable (CT)
input of counter 2. Counter 2 is inhibited by a HIGH on its CT input until counter 1
reaches its terminal state (1001) and its terminal count output (RCO) goes HIGH
and a LOW is applied on the CT of counter 2. This enables counter 2, so that when
the first clock pulse arrives after counter 1 reaches its TC, counter 2 goes from its
initial state to the second state. Upon the completion of the entire second cycle of
counter 1, counter 2 is enabled again and advances to next state. This count
sequence continues. Since they are the decade counters, counter 1 must go through
ten cycles before counter 2 completes its first cycle. That is say, for every 10 cycles
of counter 1, counter 2 goes through one cycle. Thus counter 2 completes the whole
cycle after 100 clock pulses. The overall modulus of these two cascaded counters is
10 ×10 = 100.

CP

74HC190(1)

CT
LD
U/D
CP

U/D RCO

D0

D1

D2

D3

Q0

Q1

Q2

Q3

74HC190(2)

CT
LD
U/D
CP

U/D RCO

D0

D1

D2
D3

Q0

Q1

Q2

Q3

0
0 0

Figure 7.3.1: A MOD-100 counter using two cascade decade counters.
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The cascaded counter can also be regarded as a frequency divider. The cascaded
counter shown in Figure 7.3.1 divides the input clock frequency by 100. With this
function, cascaded counters are often used to divide a high-frequency clock signal to
obtain highly accurate pulse frequencies.

The above discussion has shown how to achieve an overall modulus that is the
product of the individualmodulus of all the cascaded counters. This can be considered
full-modulus cascading. If an application requires a modulus that is less than that
achieved by full-modulus cascading, that is, a truncated sequence must be implemen-
ted with cascaded counters. To illustrate this method, we use the cascaded counter
configuration in Figure 7.3.2. Assume that a modulus 24 counter is required. This
circuit uses two 74LS161 four-bit synchronous binary up counters. If the two counters
(eight-bit total) are cascaded in a full-modulus arrangement, the modulus is 28= 256.
The technique used in the circuit of Figure 7.3.2 is to preset the cascaded counter to
1 each time it recycles, so that it will count from 1(0000001) to 24(00011000).

7.4 Counter application

7.4.1 Digital clock

A digital clock is a type of timing equipment to directly display time by digits. It is
often incorporated into all kinds of devices such as car, radio, television, microwave
oven, standard oven, computer, and cell phone. The digital clock system is made up
of crystal oscillator, frequency divider, counter, decoder, LED display circuit, cali-
brated circuit, and voltage source. Figure 7.4.1 shows the simplified logic diagram of
a digital clock system that displays seconds, minutes, and hours.

74LS161(1)

R
LD
CTT
CTP
CP
D0
D1
D2
D3

R
LD
CTT
CTP
CP
D0
D1
D2
D3

1

1

1

1
1

1
0
0
0

0
0

0
0

RCO RCO

Q0
Q1
Q2
Q3

Q0
Q1
Q2
Q3

74LS161(2)

CP

Figure 7.3.2: Modulus 24 counter counts from 1 to 24.
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As the key part of the digital clock, the crystal oscillator can generate an accurate
signal with high stability. The high-frequency signal is divided by using a frequency
divider to obtain a 1 Hz time base. This 1 Hz time base is used as the clock pulse of the
second counter.

To actually see the seconds, two counters produce binary numbers. The MOD-10
counter is used to produce a 0 through 9 sequence on its outputs, while the MOD-6
counter is to produce a 0 through 5 sequence on its outputs. The two counters
cascaded as a MOD-60 counter, counts from 0 to 59, and then recycles back to 0.
The TC, 59, needs to be decoded to enable the next counter. After each 60 s, the
minute section is triggered. And the minute section of the clock looks exactly the
same with the second section. Finally, the hour section looks almost the same except
the MOD-60 counter is replaced by a MOD-12 counter.

1. Generation of time base signal
To generate a time base signal, CD4060 as an MSI time base generator is generally
used. Figure 7.4.2 shows the logic diagram for CD4060. The input of gate 2 (G2) needs
two external resistors, two capacitors, and a quartz crystal to construct a crystal
oscillator with a oscillation frequency of 32,768 Hz. F1–F14 are asynchronous binary

Voltage
source

MOD 12

Decoder

Calibrated circuit Crystal oscillator Frequency divider

Hours display

Decoder

MOD 60 

MOD 6 MOD 10

Decoder

Minutes display

Decoder

MOD 60 

MOD 6 MOD10

Decoder

Seconds display

Decoder

Counters

Decoders

Display

Timebase

Figure 7.4.1: Simplified logic diagram of a digital clock system.

G1

F1

G2

F2 F13 F14

4 Hz

2 Hz

Figure 7.4.2: Logic diagram for CD4060.
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counters. The oscillation frequency divided by 214 cascaded binary counters is trans-
lated to 2 Hz. The 2 Hz pulse signal can be divided into the 1 Hz pulse as the time base
pulse by using the MOD-2 counter. The MOD-2 counter can be constructed by a flip-
flop operating at toggle state.

2. Counters
The counters used in the second counter and minute counter are both MOD-60
counters. They can be obtained by cascading a MOD-10 counter with a MOD-6
counter. Figure 7.4.3 shows the MOD-60 counter using two 74LS160 (four-bit counter)
in which the first 74LS160 (1) is connected as a MOD-10 counter and the second
74LS160(2) is connected as a MOD-6 counter.

The counter used in the hour section is aMOD-12 counter, as shown in Figure 7.4.4.
A feedback circuit constructed by G1 and G2 is used to help the counter return to zero
after one circle. When the output of G2 is LOW, which means the output of J–K flip-flop
and Q1 of the 74LS160 are both HIGH, the counter will recycle.

3. Decoder and display
We can use a decoder, also named as “binary number to seven-segment display
converter”, to convert a binary number between 0 and 9 to the appropriate signals to
drive a seven-segment LED.

4. Calibrated circuit
The calibrated circuit is used to correct the error of the digital clock and there are many
methods to realize a calibrated circuit. The simplest way is adding three switches, S1,
S2, and S3 to the second section, minute section, and hour section, respectively. The
function of S2 and S3 is used to cut off the second signal and use the time base signal to

74LS160(1)
R
LD
CTT
CTP
CP
D0
D1
D2
D3

1
1
1
1

CP

RCO1
RCO

Q0
Q1
Q2
Q3

R
LD
CTT
CTP
CP
D0
D1
D2
D3

RCO

Q0
Q1
Q2
Q3

74LS160(2)

Enable next 
counter

To next counter

RCO2

Figure 7.4.3: A MOD-60 counter using two 74LS160s.
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correct theminute and hour. The function of S1 is to clear up the counters in the second
section.

7.4.2 Implementation of a digital clock with Verilog HDL

1. Generation of a time base signal

//Generation of time base signal with a frequency of 1Hz

module clk_1Hz(clk,clk_1);

input clk;

output clk_1;

reg clk_1;

reg [24:0] count;

always@(posedge clk)

begin

if(count>=24999999)

begin

count<=0;

clk_1<=~clk_1;

end

else count<=count+1;

end

endmodule

74LS160
R
LD
CTT
CTP
CP
D0
D1
D2
D3

1

1
1

1
0
0
0

R C O

Q0
Q1
Q2
Q3

1K

1 J
C

CP

G1

G2

Figure 7.4.4: Logic diagram of a MOD-12 counter using 74LS160.
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2. Counters

//Counters for minutes and second section

module counter (clk,cnt,out,out_carry);

input clk;

input [3:0] cnt;

output [3:0] out;

output out_carry;

reg [3:0] out;

reg out_carry;

always@(posedge clk)

begin

if(out==cnt)

begin

out_carry<=1;

out<=0;

end

else

begin

out<=out+1;

out_carry<=0;

end

end

endmodule

The counting length of the counter can be changed according to the input signal
“cnt.” For instance, the sentence “cnt_second0=4ʹb0101” is a MOD-6 counter for the
second section.

//Counters for hour section

module counter_12(clk,cnt,out);

input clk;

input [3:0] cnt;

output [3:0] out;

reg [3:0] out;

always @(posedge clk)

begin

if(out==cnt)

out<=0;

else

out<=out+1;

end

endmodule
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3. Decoding and display

//Decoding for minute and second section

module decode(data,hex);

input [3:0] data;

output [7:0] hex;

reg [7:0] hex;

always @(data)

begin

case(data)

4'b0000:hex=8'b11000000;

4'b0001:hex=8'b11111001;

4'b0010:hex=8'b10100100;

4'b0011:hex=8'b10110000;

4'b0100:hex=8'b10011001;

4'b0101:hex=8'b10010010;

4'b0110:hex=8'b10000010;

4'b0111:hex=8'b11111000;

4'b1000:hex=8'b10000000;

4'b1001:hex=8'b10011000;

default:hex=8'b11111111;

endcase

end

endmodule

// Decoding for hour section

module decode_12(data,hex1,hex2);

input [3:0] data;

output [7:0] hex1;

output [7:0] hex2;

reg [7:0] hex1;

reg [7:0] hex2;

always @(data)

begin

case(data)

4'b0000:begin

hex1=8'b11000000;

hex2=8'b11000000;

end

4'b0001:begin

hex1=8'b11111001;

hex2=8'b11000000;

end

4'b0010:begin

hex1=8'b10100100;

hex2=8'b11000000;

end
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4'b0011:begin

hex1=8'b10110000;

hex2=8'b11000000;

end

4'b0100:begin

hex1=8'b10011001;

hex2=8'b11000000;

end

4'b0101:begin

hex1=8'b10010010;

hex2=8'b11000000;

end

4'b0110:begin

hex1=8'b10000010;

hex2=8'b11000000;

end

4'b0111:begin

hex1=8'b11111000;

hex2=8'b11000000;

end

4'b1000:begin

hex1=8'b10000000;

hex2=8'b11000000;

end

4'b1001:begin

hex1=8'b10011000;

hex2=8'b11000000;

end

4'b1010:begin hex1=8'b11000000;

hex2=8'b11111001;

end

4'b1011:begin hex1=8'b11111001;

hex2=8'b11111001;

end

default:begin

hex1=8'b11111111;

hex2=8'b11111111;

end

endcase

end

endmodule

// Display

module display(clk,hex0,hex1,hex2,hex3,hex4,hex5);//Display with six LEDs defined as

hex1~hex5

input clk;

output[7:0] hex0,hex1,hex2,hex3,hex4,hex5;
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wire [7:0] hex0,hex1,hex2,hex3,hex4,hex5;

wire clk_1;

wire [7:0] segment0,segment1,segment2,segment3,segment_hour;

wire [3:0] cnt_second0=4'b1001; // counters for second section

wire [3:0] cnt_second1=4'b0101;

wire [3:0] cnt_minute0=4'b1001; // counters for minute section

wire [3:0] cnt_minute1=4'b0101;

wire [3:0] cnt_hour=4'b1011;// counters for hour section

wire second0_carry;

wire second1_carry;

wire minute0_carry;

wire minute1_carry;

clk_1Hz M1(.clk(clk),.clk_1(clk_1));

counter second0(.clk(clk_1),.cnt(cnt_second0),.out(segment0),.out_carry

(second0_carry));

counter second1(.clk(second0_carry),.cnt(cnt_second1),.out(segment1),

.out_carry(second1_carry));

counter minute0(.clk(second1_carry),.cnt(cnt_minute0),.out(segment2),

.out_carry(minute0_carry));

counter minute1(.clk(minute0_carry),.cnt(cnt_minute1),.out(segment3),

.out_carry(minute1_carry));

counter_12 hour(.clk(minute1_carry),.cnt(cnt_hour),.out(segment_hour));

decode s0(.data(segment0),.hex(hex0));

decode s1(.data(segment1),.hex(hex1));

decode m0(.data(segment2),.hex(hex2));

decode m1(.data(segment3),.hex(hex3));

decode_12 h1(.data(segment_hour),.hex1(hex4),.hex2(hex5));

endmodule

The schematic diagram for codes is shown in Figure 7.4.5.

7.5 Summary

1. A counter use of a group of flip-flops to count the number of clock pulses with the
number of stable states in its counting cycle.

2. Asynchronous and synchronous counters differ only in the method they are
clocked. The maximum clock frequency for an asynchronous counter decreases
as the number of bits increases. For a synchronous counter, the maximum clock
frequency remains the same, regardless of the number of bits.

3. In asynchronous (ripple) counters, the clock signal is applied to the LSB flip-flop,
and all other flip-flops are clocked by the output of the preceding flip-flops.

4. A counter’s modulus (MOD) number is the number of stable states in its counting
cycle; it is also the maximum frequency-division ratio.
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5. The maximum modulus of a binary counter is the maximum number of possible
states and equal to 2n where n is the number of flip-flops in the counter.

6. One way to modify a counter’s MOD number is to add circuitry that forces it to
recycle before going through all of its possible states.

7. The 74LS93 is a specific MSI asynchronous counter, which can be configured as a
MOD-2, MOD-8, or MOD-16 counter.

8. A decade counter is referred to any MOD-10 counter. A BCD counter is a decade
counter that sequences through the ten BCD codes (0–9).

9. In a synchronous (parallel) counter, all of the flip-flops are simultaneously
clocked by a global clock input.

10. An up/down counter is a bidirectional counter that is capable of counting either
up or down. The 74HC190 is an up/down MSI decade counter.

11. The 74LS161 and the 74LS163 are both four-bit synchronous MSI binary up
counters, which have clear (or reset) input, synchronous load input, and two
enable inputs. The clear input is asynchronous for 74LS161 and synchronous for
74LS163.

12. By using the counter and combinational circuits, sequence generator can be
constructed to generate a serial code in the certain period.

13. Counters can be cascaded to produce a higher-modulus counter and frequency-
division. The overall modulus of cascaded counters is equal to the product of the
moduli of individual counters.

Key terms

Modulus: The number of states in a counter
Recycle: To undergo transition from final or terminal state back to initial state
Decade: Characterized by ten states or values
Terminal count: The final state in a counter’s sequence
Cascade: To connect “end to end” when several counters are connected from the TC
output of one counter to the enable input of the next counter

Self-test

7.1 An asynchronous counter is also known as _______ counter

7.2 A four-bit binary counter has a maximum modulus of _______.

7.3 A modulus-12 counter must have _______ flip-flops.

7.4 The modulus of a counter is _______.
(a) the number of flip-flops
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(b) the actual number of state in its sequence
(c) the number of times it recycles in a second
(d) the maximum possible number of state

7.5 An asynchronous counter differs from a synchronous counter in _______.
(a) the number of states in its sequence
(b) the method of clocking
(c) the type of flip-flops
(d) the value of the modulus

7.6 For the circuit shown in Figure T7.1, assume initial state isQ2Q1Q0 = 000, and the
circuit works as a MOD- _______ counter.
(a) 3 (b) 4 (c) 5 (d) 6

7.7 Three cascaded modulus-10 counters have an overall modulus of _______.

7.8 _______ is an example of a specific integrated circuit asynchronous counter.

7.9 The 74LS161 is an example of an integrated circuit _______ bit synchronous binary
counter.

7.10 A four-bit binary up/down counter is in the binary state of zero, and the next state
in the DOWN mode is _______.
(a) 0001 (b) 1111 (c) 1000 (d) 1100

7.11 The TC of a modulus-13 binary counter with initial state 0000 is _______.
(a) 0000 (b) 1111 (c) 1101 (d) 1100

Problems

7.1 Construct a MOD-5 and a MOD-12 counters with 74LS93.

7.2 For the ripple counter shown in Figure P7.1, sketch the timing diagram includ-
ing the waveform of the clock, Q0, Q1, and Q2 by applying 16 clock pulses.

J

K
C

J

K
C

J

K
C

Q0 Q1 Q2

CP

11 1

1

FF0 FF1 FF2

Figure T7.1
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7.3 Show how to connect a four-bit asynchronous counter for each of the following
moduli using the clear input:
(a) 9 (b) 11 (c) 13 (d) 14 (e) 15

7.4 Design a MOD-4 synchronous counter with D flip-flop.

7.5 Construct a MOD-12 counter with one 74LS161. The initial state is 0100.

7.6 Using asynchronous reset to construct a MOD-9 up counter with one 74LS161.

7.7 The waveforms in Figure P7.2 are applied to a 74LS163 counter. Determine the Q
outputs and the RCO waveforms. The inputs are D0 = 1, D1 = 1, D2 = 0, and D3 = 1,
CPT = 1.

7.8 Develop the Q output waveform for a 74HC190 up/down counter with input
waveforms in Figure P7.3. Binary 0s are on the data inputs and initial state
of counter is 0000.

7.9 Determine the sequence of the counter shown in Figure P7.4.

J
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C

J

K
C

J

K
C

Q0 Q1 Q2

CP

1

FF0

1 1

FF1 FF2

Figure P7.1
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R
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Figure P7.2

CT

CP
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U/D

Figure P7.3
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7.10 Design a counter to produce the following binary sequence by using J–K flip-
flops.1,4,3,5,7,6,2,1,. . . . . .

7.11 Determine the modulus of the following counters composed of 74LS161 and
74LS163, as shown in Figure P7.5. List the state sequence table.

7.12 Determine the modulus of the following counters composed of 74LS161 and
74LS163, as shown in Figure P7.6. List the state sequence table.
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Figure P7.4
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7.13 Determine the modulus of the following counters composed of 74LS161 and
74LS163, as shown in Figure P7.7. List the state sequence table.

7.14 Determine the modulus of the following counters composed of 74LS93, as
shown in Figure P7.8. List the state sequence table.

7.15 Determine the modulus of the following counters composed of 74LS161, as
shown in Figure P7.9.
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RCO

Q0
Q1
Q2
Q3

CP

(a) (b)

74LS161
R
LD
CTT
CTP
CP
D0
D1
D2
D3

RCO

Q0
Q1
Q2
Q3

74LS163

1
1
1

Figure P7.7

Q0Q0 Q1Q1 Q2Q2 Q3

(a) (b)

Q3
CPA
CPB

R0(1)R0(1) R0(2)R0(2)

74LS93CPA
CPB

74LS93

Figure P7.8
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CTT
CTP
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R
LD
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74LS161

1

1
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Figure P7.9
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7.16 Design a modulus-60 counter with 74LS161s and a few gates.

7.17 Design a modulus-462 counter with 74LS163s and a few gates.

7.18 Design a sequence generator that can generate a sequence code “10110001110101”
with a 74LS161, an 8-to-1 multiplexer, and a few gates.

7.19 A circuit is shown in Figure P7.10. The frequency of the clock pulse is 14 kHz.

(a) List the state table of the counter constructed by the 74LS161 and determine
the modulus of this counter.

(b) Analyze the synchronous counter constructed by the flip-flops FFe, FFf, and
FFg. Give the state table and draw the state diagram, and determine the
modulus of the counter.

(c) Determine the frequency of Qd and Qg.

FFg

J KC J KC J KC

1 1

QD

74LS161

RCOQC QB QA

CTTD C B A CTP LDCP

CP 1

Qg Qf Qe Qd Qc Qb Qa

1

FFf FFe

R

1

Figure P7.10
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8 Registers and shift registers

Registers and shift registers are commonly used sequential circuits in a digital
system. Registers are often used to store binary data or information. Shift register
consisting of a group of flip-flops not only stores binary data but also transfers data in
a digital system. Especially, shift registers can be applied to construct a specific
digital counter. This chapter introduces registers and shift registers. Several applica-
tions of shift registers are covered.

The objectives of this chapter are to
– Explain how register stores binary data
– Describe the basic form of data movement in shift register
– Explain the operation of four kinds of shift registers
– Explain the operation of bidirectional shift register
– Use shift registers to construct a ring counter
– Apply shift registers to construct a Johnson counter
– Apply shift registers to construct a sequence generator

8.1 Registers

In a digital system, data are normally stored in a group of bits that represent
numbers, codes, or other information. Register is a type of sequential circuits in
which binary data and information can be stored. A n-bit register consists of n flip-
flops, which is able to store n-bit binary data or information. The storage capability
of a register makes it an important type of memory device in digital systems. This
section introduces how register store binary data and several MSI registers.

Figure 8.1.1 shows the concept of storing a 0 or a 1 in a D flip-flop. Assume that the
D flip-flop is in the SET state and a 0 is applied to the data input; when the triggering
edge of the clock pulse is applied, a 0 can be transferred to the corresponding Q
output by resetting the flip-flop. Even if the 0 on the input is removed after the clock
pulse, the flip-flop remains in the RESET state, thereby storing the 0. A similar
procedure applies to the storage of the 1 and can be realized by applying a 1 to the
data input when the flip-flop is in the RESET state, as shown in Figure 8.1.1(b).

The storage capacity of a register is total number of bits of digital data it can
retain. Each flip-flop in a register represents one bit of storage capacity, so the
storage capacity of a register is determined by the number of flip-flops in the register.
A common requirement in digital system is to store several bits of data from parallel
lines simultaneously in a group of flip-flops. A 4-bit register is composed of four D
flip-flops, as illustrated in Figure 8.1.2. Each of the four parallel data lines is con-
nected to the D input of each flip-flop. The clock inputs of the flip-flops are connected

https://doi.org/10.1515/9783110614916-008

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM

https://doi.org/10.1515/9783110614916-008


together so that each flip-flop is triggered by the same clock pulse. Thereby, the
parallel data on the D inputs are stored simultaneously into the flip-flops on the
positive-going edge of the clock. In addition, the asynchronous reset inputs are
connected to a common �R line. When a LOW is initially applied on the �R line, all
flip-flops can be reset directly and the initial state of the register is 0000.

One of the commonusedMSI registers is the 74LS175. The 74LS175 is a high-speed
Quad D flip-flop with a common clock and an asynchronous clear input, which the
internal logic diagram is shown in Figure 8.1.2. The data on the D inputs is stored into
the corresponding outputs at the positive edge of clock pulse. Both true and com-
plemented outputs of each flip-flop are provided. Logic symbol of the 74LS175 is
shown in Figure 8.1.3.

Q

CP

0
D

C

Q
D

C

CP

1

(b)(a)
Figure 8.1.1: A flip-flop as a storage element:
(a) storing a 0; (b) storing a 1.

C

DD0

D1

D2

D3 Q3

Q2

Q1

Q0

Q0

Q1

Q2

Q3

C

D

C

D

C

D

R

CP

Figure 8.1.2: A 4-bit register for 4-bit parallel data
storage.
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Another commonly used MSI register is the 74LS273. The 74LS273 contains
8 edge-triggered D flip-flops with a common direct reset and a clock input. The
data input D immediately appears in the Q output when the positive going edge of
clock pulse arrives. The common direct reset is an active LOW input. When a LOW is
applied on the common direct reset, all D flip-flop is reset. Normally, the common
direct reset must be kept in HIGH, so that the function of D flip-flop can be used. The
74LS273 is widely used for industrial and consumer equipment. The logic symbol of
74LS273 is shown in Figure 8.1.4.

8.2 Shift registers

Data storage and data movement are two basic functions of the register. Shift register
has the shift capability, which permits data movement from stage to stage within the
register, into, or out of the register upon application of clock pulse. According to the
type of datamovement, shift registers can be divided into different types: serial in/serial
out, serial in/parallel out, parallel in/serial out, parallel in/parallel out shift registers[3].

74LS175

R
C

R

CP
D0

Q0Q0
Q0
Q1
Q1
Q2
Q2
Q3
Q3

D1

D2

D3

D0

D1

D2

D3

Q0
Q1
Q1
Q2

Q2

Q3

Q3

Figure 8.1.3: Logic symbol of 74LS175.
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R
C

 

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

Q0
Q1
Q2
Q3
Q4

Q5
Q6

Q7

R
CP
D0
D1
D2
D3
D4
D5
D6
D7

D0
D1
D2
D3
D4
D5
D6
D7

Figure 8.1.4: Logic symbol of 74LS273.
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In this section, the basic types of shift registers are introduced, such as serial in/
serial out, serial in/parallel out, parallel in/serial out, and bidirectional shift
registers.

The objectives of this section are to
– Explain how data bits enter into a shift register
– Describe how data bits shift through the register
– Explain how data bits are taken out of a shift register

8.2.1 Serial in/serial out shift registers

The serial in/serial out shift register accepts data entry serially and produces the
stored information on its output in serial form as well. Figure 8.2.1 shows a serial in/
serial out shift register with four D flip-flops, which can store 4-bit binary data. There
is a serial data input,Din, and a serial data output,Q3. The first flip-flop FF0 stores the
most significant bit (MSB) and FF4 stores the least significant bit (LSB). When clock
pulse is applied, the present state of high bit flip-flops are sent to the input of the next
low bit flip-flops as the output of next state.

If a 4-bit data 1101 is stored into the register, the data is sent to the serial data input
serially, beginning with the least significant bit. The first bit 1 is put onto the data
input line, making Din = 1 for FF0. When the first clock pulse is applied, FF0 is SET,
thus storing the 1.

Then the second bit 0 is applied to the inputmakingDin = 0 for FF0 andD1 =Q0n = 1
for FF1 because the input of FF1 is connected to the Q0 output. When the second clock
pulse is applied, the 0 on the data input is shifted into FF0 causing FF0 to RESET, and
the 1 stored in FF0 is shifted into FF1.

The third bit 1 is now put onto the data input and the third clock pulse is applied,
this time the 1 is entered into FF0, the 0 stored in FF0 is shifted into FF1 and the 1
stored in FF1 is shifted into FF2.

The last bit 1 is on the data input and a clock pulse is applied, this time the 1 is
entered into FF0, the 1 stored in FF0 is shifted to FF1, and the 0 stored in FF1 is shifted
to FF2, the 1 stored in FF2 is shifted into FF3. This completes the serial entry of the
four bits into the shift register. The stored process of 4-bit data 1101 is summarized in
the state table shown in Table 8.2.1. It can be seen that the present output state of

D
C

CP
FF0

D
C

FF1

D
C

FF2

D
C

FF3

Serial
data input

Serial
data outputDin

Q0 Q1 Q2 Q3

Figure 8.2.1: A serial in/serial out shift register.
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high bit flip-flops are sent to the input of next low bit flip-flops as the output of next
state when clock pulse is applied one by one. Because the register shifts begin with
LSB, this kind of registers is called as right shift register. In contrast, if a shift register
begins with MSB, it is called as left shift register.

If you want to get the data out of the register, the bits must be shifted out serially
and output from the LSB flip-flop. The first bit 1 can be output from Q3 after the four
clock pulse. When the fifth clock is applied, the second bit 0 appears on the Q3

output. Then the third bit 1 at the sixth clock pulse and the fourth bit 1 at the seventh
clock pulse are shifted to the Q3 output serially. Notice that while all 4-bit data are
being shifted out, more bits can be shifted in.

8.2.2 Serial in/parallel out shift registers

A serial in/parallel out shift register is similar to the serial in/serial out shift register.
Data bits are input into the register serially by a bit-by-bit mode. The difference is the
way in which the data bits output from the register. Therefore, a serial in/parallel out
shift register can convert data from serial format to parallel format. If four data bits
will shift into the register after four clock pulses, as shown in Figure 8.2.2, the data
becomes available simultaneously on the four outputs Q0 to Q3.

Table 8.2.1: Sate table.

CP Q Q Q Q

  x x x
   x x
    x
    

D

C

CP
FF0

D

C

FF1

D

C

FF2

D

C

FF3

Serial data
input

Parallel data
output

Din

Q0 Q1 Q2 Q3

Figure 8.2.2: A serial in/parallel out shift register.
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8.2.3 Parallel in/serial out shift registers

For a register with parallel data inputs, the bits enter into the register simultaneously
in their respective states occur at parallel lines. Figure 8.2.3 illustrates a parallel in/
serial out shift register. There are four inputs, D0, D1, D2 and D3, and the SHIFT=LOAD
input, which allows four bits of data to load in parallel into the register.

When SHIFT=LOAD input is LOW, each data bit is placed on the D input of its
respective flip-flop. When a clock pulse is applied, the flip-flops with D = 1 will SET
and those with D = 0 will RESET, thereby storing all four bits simultaneously.

When SHIFT=LOAD input is HIGH, the data bits shift right from one stage to the
next. The OR gates allow either the normal shifting operation or the parallel data-
entry operation, depending on which AND gates are enabled by the level of the

SHIFT=LOAD. The data bits can be taken out from the Q3 output serially by applying
four clock pulses.

8.2.4 Parallel in/parallel out shift registers

The parallel in/parallel out register is shown in Figure 8.2.4. There are four inputs,D0,
D1, D2 and D3, and four outputs, Q0, Q1, Q2 and Q3, which allows four bits of data to
load in parallel into the register. When the input bits are applied on the data inputs,
they simultaneously appear on the parallel outputs on the positive going edge of the
clock pulse.

D
C

CP
FF0

D
C

FF1

D
C

FF2

D
C

FF3

Serial output

SHIFT/LOAD

Parallel data inputs

D0 D1 D2 D3

Q0 Q1 Q2 Q3

Figure 8.2.3: A parallel in/serial out shift register.
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8.2.5 MSI shift registers

1. A 4-bit right shift register
The 74HC195 is an example of MSI shift registers. It has four parallel inputs,
D0D1D2D3, and four parallel outputs, Q0Q1Q2Q3, so the parallel in/parallel out opera-
tion can be implemented. Since it also has serial inputs, J and �K, it can be used for
serial in/serial out and serial in/parallel out operations. The parallel in/serial out
operation can also be implemented by taking the data out from the Q3 output. A

typical logic symbol for 74HC195 is shown in Figure 8.2.5. �R is an active-LOW

asynchronous clear input. When �R is LOW, the output Q0Q1Q2Q3 is reset to 0000.

The LD input (also marked as SHIFT=LOAD) can select the operation mode of shift

and load. When the LD is an active-LOW, the data on the parallel inputs are synchro-

nously sent to the parallel output on the positive edge of the clock. When LD is a
HIGH, the stored data will shift right, from Q0 to Q3 synchronously with the clock.

J and �K are the serial inputs to the first stage of the register (Q0), and Q3 can be used
for serial output. The function of 74HC195 is summarized in Table 8.2.2.

Parallel data output

D

C

CP

FF0

D

C

FF1

D

C

FF2

D

C

FF3

Parallel data input

D0

Q1 Q3Q2Q0

D1 D2 D3

Figure 8.2.4: A parallel in/parallel out shift register.
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Q0
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Q3
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Q3

D0
D1
D2
D3

Q3

Figure 8.2.5: Logic symbol for 74HC195.
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2. Bidirectional shift register
So far, the registers discussed involved only right shift operations. Each right shift
operation has the effect of successively dividing the binary number by two. If the
operation is reversed (left shift), this has the effect of multiplying the number by two.
Bidirectional shift register is one kind of register in which the data can be shift either
left or right. This register can be implemented with suitable gate logic that enables
the transfer of a data bit from one flip-flop to the next one using right shift mode or
left shift mode. The control lines are used to select the shift mode.

The 74HC194 is an example of universal bidirectional MSI shift registers. It is
4-bit multi-function device that can be used in either serial-to-serial, left shift, right
shift, serial-to-parallel, parallel-to-serial, or as a parallel-to-parallel multifunction
data register, hence named “Universal.” Figure 8.2.6 shows logic symbol of the
74HC194. Similar with 74HC195, D0, D1, D2, and D3 are parallel inputs, Q0, Q1, Q2

and Q3 are parallel outputs; the active-LOW clear input �R is an asynchronous clear
input. DSR is the serial input of right shift and DSL is the serial input of left shift. MA

andMB are mode control inputs. When theMA andMB inputs are both HIGH, parallel
loading, which is synchronous with a positive edge of the clock, is accomplished by
applying the four bits of data to the parallel inputs D0, D1, D2, and D3. When MA is

Table 8.2.2: Function table for 74HC195.

Inputs Outputs

CP �R LD J �K D D D D Q
+ Q

+ Q
+ Q

+

x  x x x x x x x    

↑   x x D D D D D D D D

   x x x x x x Q Q Q Q

↑     x x x x Q Q Q Q

↑     x x x x  Q Q Q

↑     x x x x  Q Q Q

↑     x x x x �Q0 Q Q Q

Q0
Q1
Q2
Q3

Q0
Q1
Q2
Q3

D0
D1
D2
D3

DSL

DSR

MB

MA

CP

D0
D1
D2
D3
DSL

DSR

MB

MA

CP
R

74HC194
R

Figure 8.2.6: Logic symbol for 74HC194.
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HIGH and MB is LOW, data shift right synchronously with the positive edge of the
clock, and new data are entered at the shift-right serial input (DSR). WhenMA is LOW
andMB is HIGH, data shift left synchronouslywith the positive edge of clock, and new
data are entered at the shift-left serial input (DSL). The function of 74HC194 is listed in
Table 8.2.3.

8.3 Application of shift registers

Shift registers have various applications apart from being used as data storage or data
movement. They can be used to develop specific counters, convert the data from
either serial-to-parallel or parallel-to-serial format, construct sequence code genera-
tor. This section introduces a few applications of shift registers.

The objectives of this section are to
– Explain the operation of a ring counter
– Explain the operation of a Johnson counter
– Use the shift register for converting data between a serial and parallel format
– Use the shift register to construct sequence code generator

8.3.1 Shift register counters

The most popular application of shift registers is to construct shift register counter. A
shift register counter is a shift register with the serial output connected back to the
serial input to produce a special sequence. These devices are often classified as
counters because they exhibit a specified sequence of states. Two of the most common
types of shift register counters are ring counter and Johnson counter.

Table 8.2.3: Function table for 74HC194.

Inputs Outputs

CP �R DSR DSL MA MB D D D D Q
+ Q

+ Q
+ Q

+

x  x x x x x x x x    

  x x x x x x x x No change
↑  x x   D D D D D D D D

↑   x   x x x x  Q Q Q

↑   x   x x x x  Q Q Q

↑  x    x x x x Q Q Q 

↑  x    x x x x Q Q Q 

x  x x   x x x x No change
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1. The ring counter
A ring counter is a type of counters composed of a type of circular shift register and it
has the advantage that decoding gates are not required. The ring counter utilizes one
flip-flop for each state in its sequence, a n-bit ring counter cycles through n states.

Figure 8.3.1 shows a 4-bit ring counter that is consisted of four D flip-flops. The
output of last flip-flop (FF3) is connected back with the D input of the first flip-flop
(FF0). This feedback arrangement produces a characteristic sequence of states, as
shown in Figure 8.3.2. If a 1 is preset into the first D flip-flop, and the rest of the flip-
flops are cleared. Then, the 1 is always retained in the counter and simply shifted
around the ring.

Figure 8.3.3 illustrates the 74HC195 connected as a 4-bit ring counter. Initially, a
LOW level must be applied on the LD input and data 1000 is applied to D0D1D2D3 so
that the counter begins with the state 1000. After the application of the clock pulse,
the 1 continues to circulate through the ring counter, as shown in Table 8.3.1. The
timing diagram is shown in Figure 8.3.4.

D

C

CP
FF0

D

C

FF1

D

C

FF2

D

C

FF3

Q0 Q1 Q2 Q3

Figure 8.3.1: A 4-bit ring counter.

1000 0100

00100010 Figure 8.3.2: State diagram.

74HC195
R
LD
CP
J
K

1

CP
J
K
1
0
0
0

Q0
Q1
Q2
Q3

Q0
Q1
Q2
Q3

D0
D1
D2
D3

Figure 8.3.3: A 74HC195 connected as a 4-bit ring counter.
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2. The Johnson counter
A Johnson counter is a ring counter with an inversion, where the complement of the
output of the last flip-flop is connected back to the input of the first flip-flop, so it is
also called as twisted-ring counter. The implementation of a 4-bit Johnson counter is
shown in Figure 8.3.5. TheQ output of each flip-flop is connected to theD input of the
next flip-flop. The single exception is that the �Q3 output of the last flip-flop is
connected back to the D input of the first flip-flop.

Figure 8.3.6 illustrates the 74HC195 connected as a 4-bit Johnson counter. The �Q3 is

connected to the J and �K inputs. The initial state of 74HC195 is in RESET state by

applying a negative pulse to the asynchronous clear input. This makes the �Q3 output
HIGH. For the first closk pulse, the register performs the shift right operation and Q0

goes to HIGH. After the fourth clock pulse, Q0, Q1, Q2 and Q3 are both HIGH, and �Q3

goes to LOW, so the inputs J and �K are LOW. With the following clock pluses, Q0, Q1,
Q2 and Q3 turn LOW one by one, as the sequences shown in Table 8.3.2. The counter

Table 8.3.1: 4-bit ring sequence.

CP Q3 Q2 Q1 Q0
0
1
2
3

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

Q0

Q1

Q2

Q3

CP
1 2 3 4 5 6 7 8

0 00 1 00 00 1

0 10 000 10 0

10 0 0 0 1 0 0 0

01 0 0 1 0 0 0 1

Figure 8.3.4: Timing diagram of a 4-bit ring
counter.
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Q3

DSR D
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CP
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D
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D

C

FF2

D

C

FF3

Figure 8.3.5: A 4-bit Johnson counter.
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will fill up with 1s from left to right and then fill up with 0s again. The modulus of the
4-bit Johnson counter is MOD 8. In general, a Johnson counter will produce a
modulus of 2n, where n is the number of flip-flops used in the counter, so it requires
fewer flip-flops than ring counters but more flip-flops than binary counters.

Notice that the 74HC195 consists of four J-K flip-flops, so it can provide at most 16
states, but only 8 states are used for the circuit shown in Figure 8.3.6. You can prove it
by yourself that the rest of the 8 states form another counter cycle, which is an unused
state cycle for the Johnson counter. The count cycle shown in Table 8.3.2 is regared as
the used state cycle. In order to make sure that the counter enter the used state cycle,
the counter must be reset at the beginning by applying a negative pulse to the
asynchronous clear input.

8.3.2 Frequency divider based on shift register

In viewpoint of clock pulse, a counter is actually a frequency divider. For example,
the Johnson counter with MOD 8. If the output pulse is taken out from Q0 or Q3, its
period is eight times of the period of the clock pulse. That is to say, the frequency of
the output pulse is one-eighth as that of clock pulse. Therefore, the Johnson counter

Table 8.3.2: 4-bit Johnson sequence.

CP Q Q Q Q

    

    

    

    

    

    

    

    

(recycle)    

74HC195
R
LD
CP
J
K

1
CP
J
K

Q0
Q1
Q2
Q3

Q0
Q1
Q2
Q3

Q3 Q3

D0
D1
D2
D3

D0
D1
D2
D3

Figure 8.3.6: 74HC195 connected as a 4-bit Johnson counter
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with MOD-8 is also called divide-by-8 frequency divider. Figure 8.3.7 shows different
frequency dividers by using shift register, in which frequency division signal is taken
out from the output representing by arrow.

It can be seen from Figure 8.3.6 that the counter with MOD 2n+1 can be con-
structed by using a NAND gate with Qn and Qn-1 as its inputs, forming odd number
frequency divider. Notice that the frequency divider based on Johnson counter must
be reset by applying a negative pulse to asynchronous clear input at the beginning of
the operation of the circuit.

8.3.3 Serial/parallel conversion

One of the most common applications of shift registers is to convert parallel data into
serial format for transmission or storage, and to convert serial data back to parallel
format for processing or displaying. For example, a computer or microprocessor-
based system commonly requires incoming data to be in parallel format, thus the
requirement for serial-to-parallel conversion.
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D2
D3
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D1
D2
D3

D0
D1
D2
D3
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D1
D2
D3
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Q1
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Q3
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Q1
Q2
Q3
Q3
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Q1
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Q3
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Q3
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(b)

(c)

Figure 8.3.7: Frequency divider.
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Figure 8.3.8 shows a 7-bit serial-to-parallel data converter with two 74LS194. The
serial input data (D6D5D4D3D2D1D0) is loaded into the serial input of shift right DSR

and the parallel input D0 of the first circuit 74LS194-1.

Table 8.3.3 illustrates the conversion procedure from serial-to-parallel data. It
can be seen from Table 8.3.3 that the circuit is RESET with MA=MB=1 before it starts
and then the data is parallel loaded into the shift register, the output data is shown as
the second row in the Table 8.3.3. After the positive edge of the first clock pulse is
coming, the output data changes to beD00111111. With the following clock pulses, the
register shifts to the right side. After the positive edge of the seventh pulse clock, the
output data is D6D5D4D3D2D1D0, which indicates the circuit accomplishes the serial-
to-parallel data conversion.

Notice that theQ7 output of 74LS194-2 can be regarded as a flag bit, which indicates
the transition state. When Q7 is HIGH, the circuit is converting the serial input data

74HC194-1

Serial input

74HC194-2

1

1
1
1
1

1

0
1
1

D0
D1
D2
D3
DSL

DSR

MB

MA

CP
R

D0
D1
D2
D3
DSL

DSR

MB

MA

CP
R

Q0
Q1
Q2
Q3

Q0
Q1
Q2
Q3

Q4
Q5
Q6
Q7

Q0
Q1
Q2
Q3

Figure 8.3.8: A 7-bit serial-to-parallel data converter with two 74LS194s.

Table 8.3.3: Transition table for 7-bit serial-to-parallel data converter.

CP Q Q Q Q Q Q Q Q MA MB= Q7 Comments

           Parallel load
 D          Right shift
 D D         Right shift
 D D D        Right shift
 D D D D       Right shift
 D D D D D      Right shift
 D D D D D D     Right shift
 D D D D D D D    Parallel load
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into parallel format, when Q7 is LOW, the circuit accomplishes the serial-to-parallel
data conversion.

Analogously, Figure 8.3.9 shows a 7-bit parallel-to-serial data converter. The
conversion procedure is shown in Table 8.3.4; you can analyze the function of the
circuit yourself.

8.3.4 Sequence generator

A predetermined sequence of binary code can be produced by using a sequence
generator. The sequence maybe has indefinite length or a predetermined fixed
length. Sequence generators are useful in a wide variety of coding and control

74HC194-1 74HC194-2

1

1
0

1 1

1

CP

Serial output
D0
D1
D2
D3
DSL

DSR

MB

MA

CP
R

D0
D1
D2
D3
DSL

DSR

MB

MA

CP
R

D0
D1
D2

Q0
Q1
Q2
Q3

Q0
Q1
Q2
Q3

D3
D4
D5
D6

Figure 8.3.9: A 7-bit serial-to-parallel data converter with two 74LS194s.

Table 8.3.4: Transition table for 7-bit parallel-to-serial data converter.

CP LS- LS-

Q Q Q Q Q (Q) Q (Q) Q (Q) Q (Q)

        

  D D D D D D D

   D D D D D D

    D D D D D

     D D D D

      D D D

       D D

        D
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applications. A binary counter is a special type of sequence generator, which is
already discussed in Chapter 7. In this section, we will discuss the linear feedback
shift-register (LFSR) counter to generate sequence outputs.

A linear feedback shift-register counter is consisted of an n-bit shift-register and a
feedback circuit. A n-bit linear feedback shift-register counter can generate the
maximum sequence codes of 2n−1. Such a counter is often called a maximum-length
sequence generator [40]. For the maximum-length sequence, the occurrence of 0 and
1 in the sequence should be approximately the same.

For the maximum-length sequence generator, the feedback circuit is constructed
by using the feedback equation for the n-bit linear feedback shift-register that can be
looked up in the table of feedback equation, as shown in Table 8.3.5. With this table,
we can design a maximum-length sequence generator by using n-bit shift register.

Example 8.1
Construct a maximum-length sequence generator with sequence-code length S = 7.

Solution

Step 1 Construct a n-bit linear feedback shift-register (LFSR) counter with 2n−1 states which equals to
generate sequence code length of 2n−1. So we can get n = 3 when the sequence code length S = 7
(2n−1).

Step 2 Determine the feedback equation.
From Table 8.3.5, when n = 3, the feedback equation is f (Q)= Q1 ⊕ Q2

Step 3 Draw the circuit diagram
A 74HC194 is employed to implement the circuit. Note that once the outputs are all 0s, the next state
will be all 0s. In order to avoid appearing all 0s, a term is added to the feedback equation.

f ðQÞ ¼ Q2¯Q1 þ �Q2
�Q1

�Q0 ¼ Q2 ¯Q1 þ Q2 þ Q1 þ Q0

The resulting circuit is shown in Figure 8.3.10.

Table 8.3.5: Feedback equations.

n f (Q) n f (Q)

 Q  Q⊕Q⊕Q⊕Q

 Q⊕Q  Q⊕Q⊕Q⊕Q

 Q⊕Q  Q⊕Q⊕Q⊕Q

 Q⊕Q  Q⊕Q

 Q⊕Q  Q⊕Q⊕Q⊕Q

 Q⊕Q  Q⊕Q

 Q⊕Q  Q⊕Q⊕Q⊕Q

 Q⊕Q⊕Q⊕Q  Q⊕Q⊕Q⊕Q

 Q⊕Q  Q⊕Q

 Q⊕Q  Q⊕Q

 Q⊕Q  Q⊕Q
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Another way to avoid all 0s is to use all 0s for producing the load signal. Once all 0s appears, a
LOW load signal allows the data inputs 100 to be loaded to the corresponding outputs, as shown in
Figure 8.3.11.

8.4 Summary

1. Register is a type of sequential circuits in which binary data and information can
be stored. A n-bit register consists of n flip-flops, which is able to store n-bits
binary data or information.

2. The 74LS175 is a high-speed 4-bit register for 4-bit parallel data storage and the
74LS273 is an 8-bit register with common direct reset and clock inputs.

3. Shift register not only stores binary data but also permits data movement from
one stage to another within the register or into or out of the register upon
application of clock pulse.

74HC194
1

1
0

CP

D0
D1
D2
D3
DSL

DSR

MB

MA

CP
R

Q0
Q1
Q2
Q3

Q0
Q1
Q2
Q3

Figure 8.3.10: A maximum-length sequence generator with sequence-code length S = 7.

74HC194
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1
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0
0

Q0
Q1
Q2
Q3

Q0
Q1
Q2
Q3

D0
D1
D2
D3
DSL

DSR

MB

MA

CP
R

Figure 8.3.11: Sequence generator circuit for Example 8.1.
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4. The common type of data movement in shift registers are serial in/serial out, serial
in/parallel out, parallel in/serial out and parallel in/parallel out shift registers.

5. The 74HC195 is a 4-bit MSI shift right registers with data movement of parallel in/
parallel out, serial in/serial out, serial in/parallel out, parallel in/serial out
operations.

6. The 74HC194 is a 4-bit MSI universal bidirectional shift register, which can be
used in either serial-to-serial, left shift, right shift, serial-to-parallel, parallel-to-
serial, or as a parallel-to-parallel multifunction data register.

7. Shift register counters are shift registers with feedback that implement special
sequences. The typical examples are ring counter and Johnson counter.

8. A ring counter is actually a n-bit shift register that recirculates a single 1 con-
tinuously, thereby having n states, where n is the number of stages.

9. A Johnson counter is a modified ring counter that has 2n states.
10. A maximum-length sequence generator can generate the maximum sequence

codes of 2n−1 by implementing with one n-bit shift register combined with a
feedback circuit.

Key terms

Register: One or more flip-flops that used to store and shift data.
Shift register: A type of register with the shift capability permitting data movement
from stage to stage within the register or into or out of the register upon application of
clock pulse.
Load: To enter data into a register
Bidirectional: Having two directions. In a bidirectional shift register, the stored data
can be shifted right or left.
Serial in/serial out shift register: A type of shift registers that accepts data entry
serially and produces the stored information on its output in serial form as well.
Serial in/parallel out shift register: A type of shift registers that accepts data entry
serially and produces the stored information on its output in parallel form.
Parallel in/serial out shift register: A type of shift registers that accepts data entry
in parallel and produces the stored information on its output in serial form.
Parallel in/parallel out shift register: A type of shift registers that accepts and
produces data both in parallel form.
Ring counter: A type of counter composed of a type of circular shift register. The
output of the last shift register is fed back to the input of the first register.
Johnson counter: A type of counter in which the complement of the output of the
last flip-flop is fed back to the input of the first flip-flop.
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Self-test

8.1 Two basic functions of a register are _______ and _______.

8.2 The storage capacity of a register is determined by _______.

8.3 Shift registers can be divided into the following four types, _______, _______,
_______, _______.

8.4 To serially shift a byte of data into a shift register, there must be _______.
(a) one clock pulse
(b) one load pulse
(c) eight clock pulses
(d) one clock pulse for each 1 in the data

8.5 To parallel load a byte of data into a shift register with a synchronous load, there
must be _______.
(a) one clock pulse
(b) one clock pulse for each 1 in the data
(c) eight clock pulses
(d) one clock pulse for each 0 in the data

8.6 The group of bits 10110101 is serially shifted (right-most bit first) into an 8-bit
parallel output shift register with an initial state of 11100100. After two clock
pulse, the register contains _______.
(a) 01011110
(b) 10110101
(c) 01111001
(d) 00101101

8.7 The 74HC194 is a _______ shift register.

8.8 A modulus-10 ring counter requires _______ at least
(a) ten flip-flops
(b) four flip-flops
(c) five flip-flops
(d) twelve flip-flops

8.9 A modulus-10 Johnson counter requires _______.
(a) ten flip-flops
(b) four flip-flops
(c) five flip-flops
(d) twelve flip-flops

8.10A linear feedback shift-register counter is consisted of _______ and _______.
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8.11 A n-bit linear feedback shift-register can generate themaximum sequence codes
of _______.

8.12 To generate a sequence code of 1110100 with a linear feedback shift register, the
minimum number of flip-flops used is _______ .
(a) 2
(b) 3
(c) 4
(d) 5

Problems

8.1 For the data inputs and clock pulse shown in Figure P8.1, determine the state of
each flip-flop in the shift register and draw the Q0Q1Q2Q3 waveforms. Assume
that the register contains all 1s initially.

8.2 For the data inputs and clock pulse shown in Figure P8.2, sketch a complete
timing diagram for all parallel outputs. Assume that the register is initially
RESET.

D

C

CP
FF0

D

C

FF1

D

C

FF2

D

C

FF3

CP

Q0Din

Din

Q1 Q2 Q3

Figure P8.1

D
C

CP
FF0

D
C

FF1

D
C

FF2

D
C

FF3

Din

CP

Q0 Q1 Q2 Q3

Din

Figure P8.2
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8.3 Determine the Q outputs of a 74HC194 with inputs shown in Figure P8.3. Inputs
D0, D1, D2 and D3 are all HIGH.

8.4 Construct the frequency division of 13 and 7 with 74HC195, respectively.

8.5 Use two 74HC195 shift registers to form an 8-bit shift register. Show the
connections.

8.6 Use two 74HC194 4-bit bidirectional shift registers to create an 8-bit bidirec-
tional shift register, show the connections.

8.7 Design an 8-bit ring counter and an 8-bit Johnson counter by using 74HC195,
respectively. Determine their modulus.

8.8 Design a 4-bit Johnson counter that can be self-corrected.

8.9 Draw logic diagram for a modulus-18 Johnson counter. Show the timing dia-
gram and write the sequence.

8.10 For the ring counter shown in Figure P8.4, draw the waveforms for each flip-
flop output with respect to the clock. Assume that FF0 is initially SET and that
the rest flip-flops are RESET. Show at least seven clock pulses.

CP

R

DSL

DSR

MB

MA

Figure P8.3
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FF0 FF1 FF2 FF3 FF4 FF5 FF6
CP

D
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D
C

D
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D
C

D
C

D
C

Q0 Q1 Q2 Q3 Q4 Q5 Q6

Figure P8.4
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8.11 Use 74HC195 4-bit shift register to implement a 16-bit ring counter. Show the
connections.

8.12 Determine the modulus of the following frequency divider composed of
74HC195, as shown in Figure P8.5.

8.13 Analyze the implementing function of the circuit shown in Figure P8.6.

8.14 Analyze the implementing function of the circuit shown in Figure P8.7.

74HC195
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74HC195
R
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74HC195
R
LD
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J
K
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J
K

1
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R
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J
K
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D1
D2
D3

(a) (b)
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Q2
Q3
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Q1
Q2
Q3
Q3
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Q1
Q2
Q3
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D1
D2
D3

K
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D1
D2
D3

D0
D1
D2
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Figure P8.5

74HC195

J
K
0
1
1
1

CP

1 R
LD
CP
J
K
D0
D1
D2
D3

Q0
Q1
Q2
Q3 Q3Q3

Figure P8.6
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8.15 Analyze the implementing function of the circuit shown in Figure P8.8 and list
the sequence from the Y output at the trigger of clock pulse.

8.16 Construct a sequence generator that can generate two groups of sequence code
‘110101ʹ and ‘010110ʹ simultaneously by using one 74HC194, a 3-to-8 decoder
and a few gates.

8.17 Construct a maximum-length sequence generator with sequence-code length
S=15 by using 74HC194 and a few gates.

8.18 Construct a maximum-length sequence generator with sequence-code length
S=63 by using the 74HC194s and a few gates.

74HC195
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R
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J
K
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D1
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Q1
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Q3 Q3Q3

Figure P8.7
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9 Semiconductor memory

9.1 Introduction

Memory and storage are essential functions of most digital systems, for example,
computer system and microprocessor-based system. They are used to retain binary
data or information for a period of time. Generally, memory refers to relatively short-
term data retention and storage refers to long-term data retention. A storage device
can store a bit or a group of bits as long as necessary. Storage includesmagnetic disks
(hard drives), optical disks (CDs), and magnetic tapes. Memories contain flip-flops,
registers, and semiconductor memories. The flip-flops and registers belong to a
small-scale memory. Semiconductor memories are devices typically used for storing
large number of data. Semiconductor memory is an electronic data storage device
implemented on a semiconductor-based integrated circuit. Most types of semicon-
ductor memories have the property of random access, whichmeans that they take the
same amount of time to access any memory location, so data can be efficiently
accessed in any random order. There are two types of semiconductor memories.
One is called the read only memory (ROM) in which the binary data or information
are permanently or semipermanently stored and cannot be readily changed. Another
is called random access memory (RAM) in which binary data or information are
temporarily stored and can be easily changed. This chapter mainly introduces semi-
conductor memories. ROM and RAM are also covered.

The objectives of this chapter are to
– Explain the concept of memory
– Explain what a ROM is and how it works
– Describe the classification of ROMs
– Explain what a RAM is and how it works
– Explain the difference between static RAM (SRAM) and dynamic RAM (DRAM)
– Discuss special types of RAM
– Describe the expansion of ROM and RAM to increase the word length and word

capacity

9.2 The concepts of memory

Memory can store binary data or information, which is an important part in a
computer and other digital systems. Today, the capacity of semiconductor memory
already reaches to the magnitude of order of TB (a terabyte is 1024 GB and a gigabyte
is one billion bytes). Such a large memory uses the same operating principles as the
smaller one, so we will use the smaller one for illustration to explain the concepts of
memory in this chapter.

https://doi.org/10.1515/9783110614916-009
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The objectives of this section are to
– Explain how a memory stores binary data
– Explain how a memory is organized
– Define memory cell
– Describe three basic operations: write, read, and addressing operations
– Define what a ROM is
– Define what a RAM is
– Explain the difference between ROM and RAM

9.2.1 Units of data

There are several basic units of binary data in memories. The commonly used units
are bit, byte, nibble, and word [5]. A bit is the smallest unit of binary data, which
represents one-bit binary number. A group of consecutive four bits is called a nibble.
A nibble is used to represent a BCD or hexadecimal digit. Byte is commonly used for a
computer system and other systems. A byte contains eight-bit binary numbers, which
is the smallest addressable data in memory. Multi-bytes can also be grouped into a
word. A word is defined as a group of bits or bytes acting as a single entity. In the
computer assembly language, a word is directly defined as two bytes involving a high
byte and a low byte. High-end (32-bit or 64-bit) microcomputers use double-word and
quad-word data structures. These wide data structures are used mainly in highly
pipelined and parallel microcomputers.

9.2.2 Memory organization

Memory cell is the smallest storage unit in a memory, which stores either a 1 or a 0.
Memory is constructed by the array ofmemory cells. Let’s take amemory with 64 cells
for example, as illustrated in Figure 9.2.1. Each block in the memory array represents
one memory cell, whose location can be determined by specifying a row and a
column or only a row [41].

1    2   3   4   5    6   7   8

1
2
3
4
5
6
7
8

(a) (b)

1
2
3
4
5
6
7
8

1    2   3   4   5    6   7   8 Figure 9.2.1: A memory array containing
64 cells.
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In Figure 9.2.1, the memory with 64 cells is organized as 8×8 array. The location
of a unit of data in a memory array is called address. If a unit of data is a bit, the
address of a bit in the two-dimensional array should be specified by row and
column. For example, the address of the white cell is row 4 and column 4 in
Figure 9.2.1(a). If a unit of data is a byte (eight bits), the address of a byte in memory
array is specified only by a row. In Figure 9.2.1(b), the address of a byte represented
by the white block is row 3. So, the address depends on how the memory is
organized into the unit of data. For the memory with 64 cells, it can also be
organized as 16 × 4 array.

The capacity of a memory is the total number of data units stored. For the bit-
organized memory in Figure 9.2.1(a), the capacity is 64 bits. For the byte-organized
memory, the capacity is eight bytes. Since each byte contains eight bits, the total
capacity is also 64 bits.

9.2.3 Basic memory operations

The basic operations of the memory include write operation, read operation, and
addressing operation.

Data in memory is accessed by means of a binary number called an address
code. Addressing is the process of accessing a specified location in memory.
Addressing operation can be realized by placing an address code on a set of lines
called address bus. The address code through a decoder called address decoder is
decoded and the specified location in memory is selected. For the single array in
Figure 9.2.2, since there are eight rows corresponding to eight words, each word
contains eight bits (a byte), the three-bit address codes through the address decoder
offers 23 =8 addresses to access eight locations storing eight words in the memory. If
the memory address consists of n-bit address codes, the number of addresses is 2n,
each word containing M bits. Consequently, the capacity of the memory is 2n × M
bits for the memory in Figure 9.2.2.

Address
decoderAddress bus Data bus

Memory
Array

Read Write

Figure 9.2.2: Block diagramof a single
memory.
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If a memory contains a large amount of memory cells, memory cells can be
organized as a multiple array. Two address decoders, row and column decoders,
can be used to access data in memory as shown in Figure 9.2.3. Let’s take a simple
memory array for example. A memory array containing 64 cells is arranged in a bit
as the unit of data, as shown in Figure 9.2.1(a). That is, each word contains one-bit
data. In order to access 64 locations, six-bit address codes are required. These six-
bit address codes are divided into two groups, three-bit code for row decoder and
three-bit code for column decoder. Each location in the memory is determined by
row address and column address. Row decoder can select eight rows and column
decoder can choose eight columns, so the access locations should be selected
simultaneously by rows and columns. The number of lines in the address bus
depends on the capacity of the memory. For example, an eight-bit address code
can select 28 (=256) locations. If each word is eight bits, the capacity of the memory
is 28 × 8. Similarly, a 16-bit address code can select 216 (=65,536) locations in the
memory. In personal computers, a 32-bit address bus can select 232 locations,
expressed as 4G.

Thewrite operation is the process of putting the data into a specific address in the
memory, while the read operation is to copy data from a specific address in the
memory. The specific memory address is determined by the address code. Data go
into the memory and come out of the memory with a set of lines called data bus.
Generally, data bus is bidirectional, which means that data can go into the memory
and also come out from the memory.

Let’s take a practical memory as an example for a better understanding of the
concept and operation of the semiconductor memory.

Row
address
decoder

Memory Array

ReadWrite

Column address 
decoder Figure 9.2.3: Block diagram of a

multiple array.
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Example 9.1 Design a memory to store the states of eight switches of a circuit system. The state of
each switch is represented by a 0 (LOW) or a 1 (HIGH). The switch changes its state one time each
hour. For the continuous eight hours, the states of the switches should be stored each hour in the
memory.

Solution

The state of each switch is represented by one bit, a 0 (LOW) or a 1 (HIGH). So the states of
eight switches can be stored by using eight bits, that is, one byte. According to the require-
ment, the states of the switches should be stored every hour for the continuous eight hours.
Totally, there are eight bytes required and thus the capacity of the memory is eight bytes. In
order to access eight locations, a three-bit address code is required and thus a 3-to-8 decoder
is required to act as the address decoder. The memory array with the address is constructed in
Figure 9.2.4.

For thememory array, an 8-bit D latch is used to store the states of eight switches and thus eight
8-bit D latches are required to store the states of the switches each hour for the continuous eight
hours. Figure 9.2.5 shows a design memory circuit to store the states of eight switches of a circuit
system.

Eight eight-bit latches (74LS373) are used to store eight words; one 3-to-8 decoder (74LS138) is
employed as the address decoder to select eight words; D0~D7 are eight-bit data bus for data inputs;
and A2A1A0 are eight-bit address lines. An active LOW write operation signal,WRITE, is applied to the
“enable input” of the address decoder. When the WRITE input is LOW, the decoder is enabled,
otherwise, the decoder is disabled.

The write process can be performed as the following steps. When data are to be stored into the
memory, the address code stored in the address register is placed on the address bus, and the data
stored in the data register is placed on the data bus. Then a LOW is applied on the write input and the
address decoder is enabled. The address decoder will decode the address and select the correspond-
ing 74LS373 in the specified location. The data on data bus considered as the data inputs of 74LS373
is latched to the output of the enabled 74LS173. That’s the end for a write operation.

Figure 9.2.6 shows the timing diagram of a write operation. New data and its storing address
must be placed on the data bus and address bus in advance before the active LOW write signal is
applied. This time interval between new address (or data) and the active LOWwrite input must be less
than the duration ts, called the setup time. When the falling edge of the write pulse comes, the
address decoder is enabled and decodes the address information. This makes the corresponding
74LS373 enabled and allows the data on data bus loaded into the latch. The new data is latched into
the latch after the delay time tp relative to the falling edge of the write pulse.

000
001
010
011
100
101
110
111

3-bit address 8-bit data

8-byte
data

Figure 9.2.4: Memory array.
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Figure 9.2.5: An 8-byte memory with eight D latches and a 3-to-8 decoder.
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9.2.4 Types of semiconductor memories

There are two types of semiconductor memories. One is read only memory (ROM) and
another is random access memory (RAM).

ROMs are used to store the binary data or information permanently or semiper-
manently. Generally, data can only be read from the ROM. Although some types of
data can be written into, the writing process is slow and usually all the data in the
chips must be rewritten at the same time. A ROM stores data that are used repeatedly
in system, such as tables, conversions, or programed instructions for system initi-
alization and operation. Especially, it can be used to store system software, which
must be immediately accessible to the computer, such as the BIOS program using for
the start up of computer, and the software (microcode) for portable devices and
embedded computers such as microcontrollers. Because ROMs maintain the stored
data even if power is turned off, they belong to the nonvolatile memories.

In contrast to ROMs, RAMs have both read and write capacities. Because RAMs
lose stored data when the power is turned off, they belong to volatile memories.
Although the volatile memory loses its stored data when the power to the memory
chip is turned off, it can be faster and less expensive than nonvolatile memory. It is
widely used for the main memory in most computers and other digital systems.

9.3 Read only memory

AROM stores permanent or semipermanent data, which can be read from thememory
but either cannot be changed at all or cannot be changed without specialized
equipment. In terms of electronic components used as memory cells, semiconductor
memory can be divided into two categories: bipolar memory and metal-oxide-
semiconductor (MOS) memory (also called unipolar memory). Bipolar memory is

Old address

New data
Data bus
D0 ~ D7

tpts

WRITE

Old data

Old data

New address

New data

Address bus
A0 ~ A2

Stored data
Q0 ~ Q7

Figure 9.2.6: Timing Diagram of a
write operation.
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generally composed of transistors with the advantage of high speed. But it has some
disadvantages of high power consumption, low integration, and high cost, so it is
seldom used in large-scale integrated circuits, but often used in the small and
medium-sized registers. Compared with bipolar memory, MOS memory is composed
of MOS field effect transistor (MOSFET). Although MOSFET has the disadvantage of
low speed, it has some distinguished advantages, such as low power consumption,
high integration, and low cost. At present, most ROMs use MOSFET as memory cells.

The objectives of this section are to
– Define a ROM
– Describe the classification of ROMs
– Describe the structure of a ROM
– Explain how data are read from a ROM
– Explain the operation modes of ROM chips
– Discuss the application of a ROM

9.3.1 Structure and operational principle of a ROM

Figure 9.3.1 shows the block diagram of a ROM. A ROM contains address input buffer,
address decoder, memory array, and data output buffer [42].

The address decoder is a binary decoder with n-bit address inputs and N (N = 2n)
outputs, W0, W1,. . ., WN-1. For ROM array, the N input lines, W0, W1,. . ., WN-1, are
usually called the word lines; the M output lines, D0, D1,. . ., DM-1, are called the
bit lines; the cross of a word line and a bit line is a memory cell. The number of
memory cells represents the capacity of ROM array. The storage capacity of ROM
is represented by N×M. The output buffer is used to increase the load capacity of
ROM and provides the tristate output in order to connect the ROM with the data
bus. Furthermore, it can convert the nonstandard logic levels to the standard
logic levels. The input buffer has the similar role as the output buffer to some
extent.

Input
buffer

Address
decoder

W0
W1

WN–1

D1 DM–1

. ..

. ..

.
.

.

.
.

.

.
.

.

A0
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Figure 9.3.1: Block diagram of a ROM.
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Let’s take a 4 × 4 ROM as an example. Figure 9.3.2 shows exploded views of a
ROM, which can clearly illustrate the concept of the ROM. The ROM array has four
word lines and four bit lines. The memory cell in the ROM array is composed of the N-
channel enhancement type of MOSFETs, as shown in Figure 9.3.2(a). The address
decoder is shown in Figure 9.3.2(b), and its outputs correspond to minterms of the
address inputs that can be expressed as

W0 = �A1
�A0, W1 = �A1A0, W2 =A1

�A0, W3 =A1A0

There are 16 memory cells (MOS transistors) in the cross of word lines and bit
lines. The source of MOS transistor is connected to the ground and the drain is
connected to the bit line through an inverter. The presence, or absence, of a
connection from a word line to the gate of MOS transistor determines the stored
data at that location. If a word line is addressed and appears a HIGH, all
transistors with the gate connection to that word line turn on and the output
from the drain is a LOW. Then the LOW output passes through an inverter as the
output buffer and thus a HIGH is placed on the associated bit lines. That is to say,
memory cell stores a 1 when the transistor has its gate connection to the word
line, otherwise, a memory cell stores a 0. Assum that the address input is A1A0 =
00, the word line W0 is HIGH. So the MOS transistors with the gate connection to
the word line W0 store 1. Others without the gate connection to W0 store 0. The
stored data in the ROM in Figure 9.3.2 are listed in Table 9.3.1.

W3

D3

D2

D0

D1

W0 W1 W2

VDD

W0 W1 W2 W3

D0

VDD

D0

W0
W1
W2
W3

A0

A1

W2

W3

(b)

W0

W1

Bit lines

Word
lines

Word lines
(a) (c)

Address
Input
lines

Address
decoder

Figure 9.3.2: Relation between word lines and bit lines in ROM array: (a) ROM array; (b) address
decoder; (c) logic relation between a bit line and word lines.
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Theword lines connecting to the bit lineD0 are shown separately in Figure 9.3.2(c).
Obviously, the relation between each bit line and word line can be deduced from
Table 9.3.1 as follows:

D0 ¼ W0 þW1 þW2 þW3 ¼ �A1
�A0 þ �A1A0 þ A1

�A0 þ A1A0

D1 ¼ W1 þW2 þW3 ¼ �A1A0 þ A1
�A0 þ A1A0

D2 ¼ W0 þW1 ¼ �A1
�A0 þ �A1A0

D3 ¼ W1 þW3 ¼ �A1A0 þ A1A0

It can be seen from the above four equations that the relation of each bit line
Di (i = 0, 1, 2, 3) and the word line Wj (j = 0, 1, 2, 3) is OR logic; the relation of
each word line Wj (j = 0, 1, 2, 3) and the address input (A1, A0) is AND logic.
Therefore, the relation of bit lines and address inputs is AND-OR logic. The
address decoder is equivalent to an AND logic array and the ROM array is
equivalent to an OR logic array, therefore the ROM can be equivalent to an
AND-OR logic array. In general, AND logic array produces all minterms of the
address inputs and thus it is fixed, but OR logic array is programmable.

For simplicity, MOS transistor in the cross of the word line and bit line can be
omitted, and a black dot represents theMOS transistor with the gate connection to the
corresponding word line. The simplified ROM array diagram of Figure 9.3.2(a) is
shown in Figure 9.3.3.

Table 9.3.1: Stored data in the ROM.

Address lines Word
lines

Stored data

A A D D D D

  W    

  W    

  W    

  W    

W0

W1

W2

W3

A1

A0

D0 D2D1 D3

Address
decoder

Figure 9.3.3: Simplified ROM array.
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9.3.2 Types of ROMs

Classified by write mode, ROM is usually divided into fixed ROM (MASK ROM), one-
time programmable ROM (OTP ROMor PROM), andmultiple times programmable ROM
(MTP ROM). Multiple times programmable ROM can be divided into erasable pro-
grammable ROM (EPROM), electrically erasable programmable ROM (EEPROM), and
flash memory.

1. Mask ROM
Mask ROM (MROM) is a simple ROM. Its contents are programmed by the integrated
circuit manufacturer rather than by the user. Once the memory is programmed, it
cannot be changed. The terminology “mask” comes from integrated circuit fabrica-
tion, where regions of the chip are masked off during the process of photolithogra-
phy. Memory cell in a MROM can be either bipolar transistor or unipolar MOS
transistor. Figure 9.3.4 shows a MOS ROM cell. A connection between a word line
and the gate of a transistor represents a 1 at that location. This can explain that all
transistors with the gate connection to that word line turn on and connect HIGH (1) to
the associated bit line when the word line is addressed and appears a HIGH. If there is
not a connection between a word line and the gate of a transistor, the bit line retains
LOW. It utilizes the presence or absence of a transistor connection at a word/bit
junction to represent a 1 or a 0. The example of the ROM using MOS transistor as
memory illustrated in the previous section is shown in Figure 9.3.2.

Let’s take another example of a fixed ROM array using diode as memory cell. A
fixed ROM is shown in Figure 9.3.5. Diodes are used to act as memory cells. There is a
diode connection between a word line and a bit line, which represents a 1 at that
location because when the word line is addressed and appears a HIGH, the diode
conducts and connects HIGH on the word line to the associated bit line. If there is not
a diode connection between a word line and a bit line, the bit line retains LOW when

Bit lines

Word lines
VDDVDD

Bit lines

Word lines

Gate Gate

Storing a 1 Storing a 0

Figure 9.3.4: MOS ROM cells.
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the word line is addressed. It utilizes the presence or absence of a diode connection at
a word/bit junction to represent a 1 or a 0. Therefore, the fixed ROM stores four words
and each word has four bits, thus the total capacity is 16 bits. The storing data are
listed in Table 9.3.2.

MROM is programmed during manufacture, so it is only used for large produc-
tion, and new data cannot be rewritten into MROM. The main advantage of MROM is
low cost. Since the cost of an integrated circuit strongly depends on its size, MROM is
significantly cheaper than any other kind of semiconductor memory. It is widely used
in the computer and other digital devices to store system software, which must be
immediately accessible to the computer, for example, the BIOS program that starts
the computer. However, the one-time masking cost is high, and there is a long turn-
around time from design to product phase. Design errors are also expensive. If an
error in the data or code is found, the MROM is useless and must be replaced in order
to change the code or data.

2. Programmable ROM (PROM)
PROMs are basically the same as MROMs once they have been programmed. The
difference is that PROMs are not programmed when they are produced by manufac-
turer, and they are left to customer and are programmed in field to satisfy the user’s

W0

W1

W2

W3

D3 D2 D1 D0

Word lines

Bit lines Figure 9.3.5: A fixed ROM using diode as memory cell.

Table 9.3.2: Stored data in the ROM.

Word lines Stored data

D D D D

W    

W    

W    

W    
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demands. A PROM uses some type of fusing process to store bits. There are fusible
links in all memory cells after manufacturing process. So the initial storing data in
memory cell are all 0s or all 1s. Customers can reprogram PROM to meet their needs
by burning the fuse open or leaving the fuse intact to represent a 0 or a 1. Since the
fusing process is irreversible, it cannot be changed once programmed.

Figure 9.3.6 shows a 4 × 4 unprogrammed and programmed MOS PROM array
with fusible links, respectively. All memory cells have the fusible links connecting
the source of MOS transistor and the associate bit lines after manufacturing process.
So the unprogrammed data stored in memory cells are all 1s. If you want to store the
data shown in Table 9.3.2, the fusible links in the memory cells storing 0s should be
burned open by injecting sufficient current through a fusible links. To write data onto
a PROM chip, you need a special device called a PROM programmer or PROM burner.
The process of programming a PROM is sometimes called burning the PROM.

3. EPROM
EPROM is the abbreviation of erasable programmable read only memory. The stored
data in EPROM can be erased and rewritten, but the data in EPROM cannot be
rewritten in the circuit board. In order to rewrite the data in EPROM, the EPROM
must be removed from the circuit board and exposed to an ultraviolet (UV) light for
several minutes to erase the existing data. The IC package has a small transparent
“window” in the top to admit the UV light. The UV light clears its contents, making it
possible to reprogram the memory. To write and erase an EPROM, you need a special
device for programming.

The memory cell of the EPROM uses an MOSFET with the floating gate (FAMOS),
as shown in Figure 9.3.7. A floating gate is embedded in highly resistive material
(silicon dioxide) and thus the charge contained in it remains unchanged for long

DDV

Word lines

Fusible links

Bit lines

W0

W1

W2

W3

W0

W1

W2

W3

D3 D2 D1

Unprogrammed

D0

VDD

Word lines

Fusible links

Bit lines

D3 D2 D1

programmed

D0

Figure 9.3.6: A 4×4 MOS PROM array.
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periods of time. The data bits can be represented by the presence or absence of a
stored gate charge. Erasure of a data bit is a process that removes the gate charge.

4. EEPROM
Although EPROM is a high-density, nonvolatile memory, it can be erased only by
removing it from the system and using UV light. It can be reprogrammed only with
specialized equipment. This makes the erasing and writing operation complex and
inconvenient.

Electrically erasable programmable ROM (EEPROM) is a kind of ROM that can be
both erased and programmedwith electrical pulse. Because it can be both electrically
written into and electrically erased, EEPROM can be rapidly programmed and erased
in-circuit for reprogramming.

A floating gate tunnel oxide MOS transistor (Flotox) is used as a memory cell in
the EEPROM. The structure of Flotox is shown in Figure 9.3.8. There is a tunnel region
formedwith a thin oxide layer about 20 nm between the floating gate and the drain of
the Flotox transistor. When a strong electric field is applied in this tunnel region, the
tunneling effect appears at this region between the floating gate and the drain. As a
result, a current path is formed and the floating gate can be charged or discharged.

EEPROMhas amore complex cell structure than either ROM or EPROM and so the
density is not as high. Due to the lower density, the cost per bit is higher than ROM or
EPROM. But it can be reprogrammed in-circuit, so it is much more convenient to use
than EPROM.

N+N+

P type substrate

source
gate

drain

f loating gate

D

S

G

Figure 9.3.7: FAMOS transistor structure and
symbols.

D

S

GN+N+

P type substrate

source
gate

drain

tunnelf loating gate

Figure 9.3.8: Flotox transistor structure and symbols.
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5. Flash memory
Flash memories are high-density read/write memories that are nonvolatile, which
means that data can be stored indefinitely without power [43]. The MOS transistor
used in the flash memory is called the flash stacked gate MOS transistor. A storage
cell in the flash memory consists of a single flash stacked gate MOS transistor shown
in Figure 9.3.9. It has a simpler structure than the Flotox, but its operation is similar
to the Flotox. Since the source region is enlarged, this leads the tunnel region to form
directly by using the oxide layer between the larger source N+ and the floating gate.
When the data is written into flash memory, the floating gate is charged using hot
electron injection; when the data is erased, the floating gate is discharged using high-
voltage tunneling effect. A data bit is stored as charge or the absence of charge on the
floating gate depending if a 0 or a 1 is stored. Because the charges on the floating gate
cannot be leaked, the data can be saved after the power is turned off.

Flash memory is a variant of EEPROM; data in EEPROM is erased or rewritten in
units of byte, but data in flash memory is only erased in units of sector. Usually, the
size of flash memory sector is from 256 KB to 20MB. Except for most features of
EEPROM, flash memory also has higher density and higher read/write speed. The
simpler structure of flash memory makes it suitable for large-scale integration and
highly reliable, and thus the cost can be further reduced.

There are two types of flash memories: NOR-type and NAND-type. NOR-type is
very different from NAND-type flash memory. More like RAM, NOR-type flash mem-
ory has independent address lines and data lines, but it is more expensive and has
smaller capacity. While NAND-type is more like a hard disk, its address lines and data
lines are shared as input/output (I/O) lines, and all the information on the hard disk
are transmitted through one hard disk lines. Compared with NOR-type flash memory,
NAND-type flash memory has lower cost and larger capacity. Therefore, NOR-type
flash memory is more suitable for frequently random read and write. The program
code can be stored and directly run in the flash memory. NAND-type flash memory is
mainly used to store information. The commonly used flash memory products, such
as flash drives and digital memory cards, are both NAND-type flash memory.

In addition to different types of flashmemory products, flashmemory is expanding
to other applications. For example, the removable hard disk, equipped in a computer,

N+

P type substrate

source gate
drain

floating gate

D

S

GN+

tunnel
Figure 9.3.9: Structure and symbol of the flash
stacked gate MOS transistor.
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has replaced the floppy (soft) disk. According to the recent report, flash memory with
the capacity of TB will come out in the year of 2018. That means that it can replace the
hard disk of computer in the near future. Flashmemory has USB interface and supports
the hot plug with the advantages of high operation speed and convenient usage.

The ideal memory has high storage capacity, nonvolatility, in-system read/write
capability, comparatively fast operation, and cost effectiveness. Flash memory has
all these desired characteristics.

ROM is a nonvolatile memory; the data in ROM can be permanently memorized.
“Nonvolatile” and “permanentmemory” are only relative concepts, that is, data in ROM
are not permanently undamaged. The important technical indicator of ROM is the
“number ofwrite”. Once the rewritten number of ROM reaches or is close to the “number
of write”, the damage probability of ROM will greatly increase. The average number of
write of EEPROM is about 100,000 times and that of the flash is about onemillion times.

9.3.3 Typical IC ROMs

Among ROMs, EEPROM and flash memory are the most commonly used in digital
systems. Here, several typical IC EEPROMs and flash memories are introduced.

1. EEPROM
There aremany typical IC EEPROMs, for example, the 2816A/2817Awith the capacity of
2k × 8 bits, 2864A with 8k × 8 bits, 28010 with 128k × 8 bits, and many others. Let’s take
2864A as an example. Pin diagram of EEPROM Intel 2864A is shown in Figure 9.3.10. It
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Figure 9.3.10: Pin diagram of EEPROM Intel 2864A.
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has 13 address lines (A0 through A12) that can select 8k (213) word lines, and each word
contains eight-bit data corresponding to eight I/Os (I/O0 through I/O7). There are three
control inputs for determining the read/write operation, in which CE is an active-LOW
input for chip selection,WE is also an active-LOW input for enabling write operation,
and OE is an active-LOW input for enabling read operation. When the chip select
input CE is HIGH, the access operation is disabled and all I/Os are in high impedance
state. When the chip select input CE and the write input WE are both LOW, the chip
performs the write operation. When a 13-bit address code (A0 through A12) is applied,
eight-bit data from the data inputs (I/O0 through I/O7) are written to the memory cells
in the specific word line. Similarly, when the chip select input CE and the read input
OE are both LOW, the chip performs the read operation. When a 13-bit address code
(A0 through A12) is applied, eight-bit data appears on the data outputs (I/O0 through
I/O7).

The timing diagram of EEPROM 2864A illustrates thewrite operation and the read
operation, as shown in Figure 9.3.11. To write the data to the chip, a LOW is applied
on the chip select input and then a valid address code is sent on the address lines.
Next, the low level pulse is applied to theWE input; the eight-bit data from the inputs
(I/O0 through I/O7) can be programmed into a given address after a short delay. To
read the data from the chip, a LOW is applied on the chip select input and then a valid
address code is sent on the address lines. Next, the LOW level pulse is applied to the
OE input, the valid output data appears on the outputs (I/O0 through I/O7) from a
given address after a short delay.

2. Flash memory
Typical flashmemory chips include 29C010 (128 k × 8 = 1 M bits), 29LV020 (256 k × 8 =
2 M bits), 29F040 (512 k × 8 = 4M bits), etc.

AT29LV020 is a flash memory chip (256 k × 8 = 2M bits) manufactured by Atmel
company. Its internal structure is CMOS type with 3.3V power supply. AT29LV020 has
1024 sectors, in which each sector includes 256 bytes. As a typical NOR-type flash

Address input
Addr0A0~A12

I/O0~I/O7

CE

WE

OE

Z Z/Data in Data in Z/Data in Z Data output Z
To Addr1

Addr2

From Addr2

Addr1
Address input Address input

Figure 9.3.11: Timing diagram for illustrating the write operation and read operation.
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memory chip, AT29LV020 has 18 separate address lines (A0 through A17) that can select
256 kword lines, andeachword contains eight data lines corresponding to eight IOs (I/O0

through I/O7), as shown in Figure 9.3.12. There are three active-LOW control inputs (CE,
WE, andOE) for determining the read/write operation. Towrite the data into the chip,
a LOW is applied on the chip select input and then a valid address code is sent on the
address lines. Next the LOW level pulse is applied to theWE input, the eight-bit data
from the inputs (I/O0 through I/O7) can be programmed into a given address after a
short delay. To read the data from the chip, a LOW is applied on the chip select input
and then a valid address code is sent on the address lines. Next the LOW level pulse is
applied to theOE input, the valid output data appears on the outputs (I/O0 through I/
O7) from given address after a short delay. The timing diagram of AT29LV020
illustrates the write operation and the read operation, as shown in Figure 9.3.13.
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Figure 9.3.12: The Pin diagram for AT29LV020.
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Figure 9.3.13: Timing diagram for illustrating the write operation and read operation.
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9.3.4 ROM applications

The main applications of ROM are to store data and program in the computer and
other digital systems. But these are just the tip of an iceberg. There are many other
applications of ROM. Basically, ROM belongs to the combinational logic circuit and
thus any combinational circuit can be implemented by ROM. In addition, the sequen-
tial logic circuit can be constructed with ROM by adding some sequential logic
components.

1. Design a combinational logic circuit using ROM
In Section 9.3.1, you have learned that the logic relation between each bit line
and word line is OR logic and that between each word line and address line is
AND logic. Therefore, the logic relations between bit lines and address lines are
AND-OR logic. The address decoder is equivalent to an AND logic array produ-
cing all minterms; the ROM array is equivalent to an OR logic array producing
several sum terms, thus the entire memory is an AND-OR logic array and form
the output expression of the sum of minterms. For any combinational logic
circuits, its output expression can be transformed into the form of sum of
minimum terms. Therefore, the ROM can be used to implement any combina-
tional logic circuits.

Example 9.2 Use ROM to implement a full adder.

Solution

Step 1 Determine the input and output variables and list the truth table.
The full adder has three inputs including the summand Ai, the addend Bi, and the carry input Ci-1

and two outputs, the sum Si and the carry output Ci. So the truth table of the full adder is listed in
Table 9.3.3.

Table 9.3.3: Truth table of full adder.

Ai Bi Ci- Si Ci
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Step 2 Write the logic expression from the truth table.
Since the output expression of the ROM is the sum ofminterms, you can directly deduce the sum

of minterms from the truth table in Table 9.3.3.
The output expressions are deduced from Table 9.3.3 as follows:

Si Ai,Bi, Ci− 1ð Þ= �Ai
�BiCi− 1 + �AiBi

�Ci − 1 +Ai
�Bi
�Ci − 1 +AiBiCi− 1 =m1 +m2 +m4 +m7 (9:3:1)

Ci Ai,Bi, Ci− 1ð Þ= �AiBiCi− 1 +Ai
�BiCi − 1 +AiBi

�Ci − 1 +AiBiCi− 1 =m3 +m5 +m6 +m7 (9:3:2)

Step 3 Draw logic diagram from the logic expression.
In order to use ROM to implement a full adder, three input variables are arranged as three

address lines (Ai, Bi, Ci−1) of a 3-to-8 address decoder and output eight word lines representing
eight minterms m0~m7 of Ai, Bi, Ci−1; the ROM array has eight word lines as its address inputs
and two bit lines as its outputs representing the sum Si and the carry output Ci. The ROM array
with the capacity of 8 × 2 is needed to implement a full adder, as shown in Figure 9.3.14. From
eq. (9.3.1), the sum Si of the full adder is the sum of the minterms m1, m2, m4, and m7, so the
cross between word lines m1, m2, m4, and m7 and bit line Si must have the memory cells
connecting the word lines and bit line, and thus the black dots at the corresponding locations
represent these programming connections in the simplified ROM array. Similarly, the carry
output Ci can be implemented by programming the ROM array.

2. Construct the sequence generator using ROM
Sequence generator is used to produce a serial code in the certain period. Sequence
codes are widely applied for digital systems, such as radar, communications, remote
control, telemetry, and so on. In Chapter 7, you have learned how to design sequence
code generator by using the combination of counter and combinational circuit. Since
ROM belongs to the combinational circuit, sequence code generator can also be
constructed by using the combination of a counter and a ROM.

Example 9.3 Design a sequence pulse generator by using the ROM and the counter to produce the
sequence pulse, as shown in Figure 9.3.15.

Solution

Step 1 Design a counter with a modulus that is equal to the length of sequence code.
It can be obviously seen from Figure 9.3.15 that the sequence generator is needed to produce

two groups of sequence pulses. One sequence pulse is output from P1 and another is output from P2.

Ai

Si Ci

m0
m1
m2
m3
m4
m5
m6
m7

3-to-8 
address
decoder

Bi

Ci–1

Figure 9.3.14: The ROM array to implement a full
adder.
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By checking the P1 waveform in relation to the clock pulse, you can find that the output sequence of P1
is 01100010 from initial clock pulse to the seventh clock pulse and then recycle when the eighth clock
pulse arrives. Similarly, by checking the P2 waveform in relation to the clock pulse, you can find that
the output sequence of P2 is 10001110 from initial clock pulse to the seventh clock pulse and then
recycle at the arrival of the eighth clock pulse. Therefore, the length of sequence code from P1 and P2
are both eight. So a counter of MOD 8 is needed to produce an eight-bit long sequence code. The
counter of MOD 8 can be implemented by using a three-bit counter, which has been introduced in
Chapter 7. Here, the design process of a three-bit counter is omitted.
Step 2 Construct the combinational circuit to implement the sequence code “01100010” and
“10001110”.

The outputs of counter Q0 through Q2 act as the inputs of this combinational circuit and
two outputs, P1 and P2, are needed to output the sequence code “01100010” and “10001110”,
respectively. After eighth clock pulse, a group of sequence codes “01100010’ and “10001110”
is produced and recycle again. The truth table of the combinational circuit is listed in
Table 9.3.4.

This combinational circuit can be implemented with several methods. Here, the ROM is
selected to implement the logic function shown in Table 9.3.4. As you know, the logic expres-
sion of the output should be expressed as the sum of minterms when the ROM is used to
implement the combinational circuit. So the sum of minterms of the output can be deduced
from Table 9.3.4 as follows:

P1 =m1 +m2 +m6, P2 =m0 +m4 +m5 +m6 (9:3:3)

where mi is the minterm of three input variables Q2 Q1Q0.

151413121110987654321
CP

P1 0100011001000110

P2 0111000101110001

0

Figure 9.3.15: Timing diagram of a sequence pulse generator.

Table 9.3.4: Truth table.
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In order to use ROM to implement the above combinational circuit, three input variables
are arranged as three address lines Q2Q1Q0 of a 3-to-8 address decoder and output eight word
lines representing eight minterms m0 through m7 of Q2Q1Q0; ROM array has eight word lines as
its inputs and two bit lines as its outputs represented by P1 and P2. The capacity of the ROM
array is 8 × 2. From eq. (9.3.3), put the black dots at the corresponding locations to represent
these programming connection in the simplified ROM array. The resulting logic diagram of the
sequence pulse generator, which produces the sequence pulse in Figure 9.3.15 by using the
ROM and the counter, is shown in Figure 9.3.16.

3. Construct lookup table using ROM
Suppose we have a ROM circuit written, or programmed, with certain data, such
that the address lines of the ROM are served as inputs and the data lines of the
ROM are served as outputs, generating the characteristic response of a particular
logic function. Theoretically, we could program this ROM chip to emulate what-
ever logic function we wanted without alternation of any wire connections or
gates. For example, if you want to use the ROM to generate the sine wave, the
sine wave data should be written into ROM in advance. You can use the angle as
the address lines of the ROM served as inputs and the data lines of the ROM served
as outputs, generating the value of sine function. A lookup table (LUT) means that
definite outputs can be looked up for every given input by constructing the data
table with ROM.

Example 9.4 Design the code convertor to convert the four-bit binary code into Gray code by using
ROM.

Solution

The code convertor has four inputs (B3 through B0) representing four-bit binary code and four outputs
(G3 through G0) on behalf of four-bit Gray code. So the truth table of the converted code is shown in
Figure 9.3.17(a).

When the ROM is used to implement the truth table, we get the address lines of the ROM served
as four-bit binary code inputs and the data lines of the ROM served as four-bit Gray code outputs. So
the capacity of the ROM array is 24× 4 bits. A 4-to-16 address decoder is needed to provide 24 word

CP

Q2

P1 P2

m0
m1
m2
m3
m4
m5
m6
m7

Reset

MOD-8
counter Q1

Q0

A 3-to-8
Address
decoder

Figure 9.3.16: A sequence pulse
generator using the ROM.
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lines. According to the truth table in Figure 9.3.17(a), the ROM array can be directly programmed to
store a 1 by placing a black dot on the cross of the word line and bit line. For example, when the
address inputs is 0010, the output is 0011 and thus you can place two black dots on the cross points
of the word lineW2 and the bit linesG1 andG0; when the address inputs is 0101, the output is 0111 and
thus you can place three black dots on the cross points of the word line W5 and the bit lines G2, G1,
and G0. The resulting lookup table for the code convertor is constructed to convert the four-bit binary
code into Gray code by using the ROM, as shown in Figure 9.3.17(b).

If you want to construct the lookup table to produce sinewave, square wave, triangular wave, saw
tooth wave, and other waveforms, you should store the waveform data into EPROM array by the
dedicated programmer. Except that, a counter is needed to implement the scan of the address inputs
by driving the clock pulse, and the corresponding outputs from EPROM are the waveform data that are
converted into analog signal uo through the D/A converter. As a result, the required waveform can be
produced. Figure 9.3.18 shows the block diagram of the signal generator by using counter and EPROM.

0    0    0    0        0    0    0    0
0    0    0    1        0    0    0    1
0    0    1    0        0    0    1    1
0    0    1    1        0    0    1    0
0    1    0    0        0    1    1    0
0    1    0    1        0    1    1    1
0    1    1    0        0    1    0    1
0    1    1    1        0    1    0    0
1    0    0    0        1    1    0    0
1    0    0    1        1    1    0    1
1    0    1    0        1    1    1    1
1    0    1    1        1    1    1    0
1    1    0    0        1    0    1    0
1    1    0    1        1    0    1    1
1    1    1    0        1    0    0    1
1    1    1    1        1    0    0    0

Inputs
Binary code

Outputs
Gray code

Address inputs of 
ROM

Data output in 
specified address

B3 B2 B1 B0 G3 G2 G1 G0

(a)

B2

W0

A 4-to-16
Address
decoder

B3

B1

B0

Address
inputs

G2G3 G1 G0

Data outputs

W1
W2
W3
W4
W5
W6
W7
W8
W9
W10
W11
W12
W13
W14
W15

Bit lines

(b)

Figure 9.3.17: The programmed ROM array: (a) truth table; (b) ROM array.

Counter EPROM
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.
.

.

.
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.

D/A
convertor

CP
Figure 9.3.18: Block diagram of waveform genera-
tor based on EPROM.
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ROM stores data that are used repeatedly in system applications, such as tables, conversions,
or programmed instructions, for system initialization and operation. ROM keeps the stored data
when the power is turned off, therefore ROM is nonvolatile memory.

9.4 Random access memory

Unlike ROM, RAM is also called read/write memory, in which data can be written into
or read from any selected address in any sequence. When the power is turned off, the
stored data in RAM will be lost, so RAM is a volatile memory and is mainly used to
store short-term data and temporary programs.

The objectives of this section are to
– Explain the basic structure of RAM
– Explain the difference between static RAM and dynamic RAM
– Describe the SRAM stage cell
– Describe the dynamic RAM stage cell
– Explain the operation modes of the IC RAMs
– Discuss some special RAMs

9.4.1 Basic structure of RAM

The basic structure of RAM contains three parts: address decoder, memory array, and
read/write control circuit, as shown in Figure 9.4.1. The address lines A0 through An-1

are applied on the address decoder and 2n addresses are produced. The read and write
control circuit is used to select the read/write operation. In READmode, the data stored
in a selected address appears on the data output lines. In WRITE mode, the data
applied to the data input lines is stored at a selected address. The data input and
output lines share the same lines. During READ, they act as output lines. During
WRITE, they act as input lines. Therefore, the data lines are bidirectional. If the RAM

Read/write
control circuit

Memory array

A0
A1

An–1

Data linesChip select
Read/write control

.
.

.

.
.

.

Address
decoder

Address
lines

Figure 9.4.1: Basic structure of RAM.
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has a larger capacity, dual address decoders containing row decoder and column
decoder are adopted in RAM organization to simplify the RAM structure.

9.4.2 Types of RAMs

The two widely used types of RAM are static RAM (SRAM) and dynamic RAM
(DRAM) [44].

SRAM generally uses latches as storage elements and can store data infinitely as
long as power is turned on. SRAM is more expensive to manufacture, but is generally
faster and requires less dynamic power than DRAM. In modern computers, SRAM is
often used as cache memory for the CPU.

DRAM stores a bit of data using a transistor and capacitor pair, which
comprises a DRAM cell together. The capacitor holds a high or low charge (1 or 0,
respectively), and the transistor acts as a switch that lets the control circuitry on
the chip read the capacitor’s state of charge or charge it. DRAMs can store much
more data than SRAM for a given physical size and cost due to their simple
memory cell, thus they are widely used in the system with larger storage capa-
city. So far, the major memory in the microcomputer uses DRAMs. Due to the use
of capacitor as storage elements, data cannot be retained very long and thus the
capacitors should be recharged to recover the stored data for a period of time.
This recharging process is called refreshing. Both SRAMs and DRAMs will lose
stored data when power is removed, therefore, they are classified as volatile
memories.

The basic types of SRAM are asynchronous SRAM and synchronous SRAMwith a
burst feature. The basic types of DRAM are fast page mode DRAM (FPM DRAM),
extended data out DRAM (EDO DRAM), Burst EDO DRAM (BEDO DRAM), and
synchronous DRAM (SDRAM).

9.4.3 Memory cell

1. Static Memory Cell
SRAM generally uses latches as storage elements. A typical SRAM cell with six
MOSFETs is shown in Figure 9.4.2. Each bit in a SRAM is stored by a basic S-R latch
formed by two cross-coupled inverters that are made up of four MOSFETs, VT1
through VT4. This storage cell has two stable states that are used to denote a 0 or a
1. Two additional access transistors VT5 and VT6 serve to control the access to a
storage cell during read and write operations. When an active level is applied on the
row selection line Xi, the transistors VT5 and VT6 are turned on, and a data bit (1 or 0)
is written into the cell by placing it on the bit line. Similarly, a data bit is read out by
taking it off the bit line. In memory array, two gate control transistors VT7 and VT8 are
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added to control each column of memory cells, and the states of VT7 and VT8 are
controlled by the column selection line Yj. If an active level is applied on the column
selection line Yj, VT7 and VT8 are turned on, the dataD and �D connect the bit line to be
read out or written into.

2. DRAM Memory Cell
Unlike SRAM cell, a DRAM memory cell stores a data bit in a small capacitor rather
than in a latch.

A typical DRAM cell consists of a single MOSFET and a capacitor. In this type of
cell, the transistor actually acts as a switch. Figure 9.4.3 is a simplified schematic
diagram of a single dynamic memory cell. The stored data come from the Din input in
the write mode, and the data is output to the Dout output in the read mode. The data
input Din and the data output Dout are independent. In write operation, a write pulse
is applied to the gate of MOSFET, causing the MOSFET to turn on. If the Din input is a
1(+ Vcc), the capacitor is charged to the high level and thus a 1 is stored by the
capacitor. In read operation, a read pulse is applied to the gate of MOSFET, causing
the MOSFET to turn on. If the capacitor stores a 1, the 1 will be sent to the Dout output.
This is equivalent to reading out the stored data.

VT1

VT2

VT3

VT4

VDD

VT5VT6

VT8

D

Xi

BjBj

D

Yj Column line

Storage cell

Row line

QQ

VT7

B
ti B

line

B
it line

Figure 9.4.2: A SRAM cell with six MOSFETs.

Storage 
capacitance

Write
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Din=1

Read
pulse

Dout=1
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VT VT

Storage 
capacitance Figure 9.4.3: Simplified DRAM memory

cell.
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Due to high impedance of gate of MOS transistor, the charge stored in the gate
capacitor is not able to discharge within a short time and thus the data can be stored
into dynamicmemory cell. The charge stored in the capacitor cannot retain very long.
It will be discharged slowly, causing stored information disappear. So the dynamic
memory must be supplemented by the charge to the gate capacitance for a period of
time; this operation is called refresh. Therefore, DRAM needs to be equipped with the
refresh circuit and the corresponding control circuit, which causes the circuit to be
more complex.

DRAM can also be constructed by using three MOS transistors as its storage cell,
as shown in Figure 9.4.4. The data is stored in the gate capacitance Cg of the VT2
transistor, and the voltage on Cg can control the VT2 to turn on or off. Read control
line and write control line are separated. So do read bit line and write bit line. Read
control line controls VT3 transistor and write control line controls VT1 transistor. The
VT4 transistor is a pre-charged transistor for sharing with a number of memory cells
in the same column.

In the read operation, the capacitor CD on the bit line is charged to VCC, and
then a HIGH is applied on the read control line causing the VT3 transistor to
turn on. If Cg is charged and the voltage on the Cg exceeds the threshold voltage
of the VT2 transistor, VT2 and VT3 are both turned on. As a result, CD will be
discharged to LOW through VT3 and VT2. If there is no charge on Cg, VT2
transistor cuts off and CD retains HIGH due to lack of discharge path. It can
be seen that the level obtained on the read bit line is opposite to the level on
the gate capacitance Cg. The data on the read bit line can be sent to the output
of the memory via the output amplifier.

In the write operation, the write control line is HIGH and VT1 transistor is
turned on. The data coming from the memory input is transferred to the write bit
line. If the data is a 1, the Cg is charged to a high level equivalent to store a 1; if the
data is a 0, the Cg is discharged through VT1 transistor to a low level equivalent to

Vcc

DC

Cg

VT3

VT2

VT1

VT4

Read control line

Write bit line

Write  control  line

Read bit line

Pre-charge pulse

Figure 9.4.4: A dynamic memory cell using three
transistors.
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store a 0. So whether or not the stored data is a 1 or a 0 depends on if the Cg has
stored the charge.

Because it is inevitable for the charge on Cg to be discharged slowly, the charge
on the Cg must be replenished for a period of time to retain the data. The data stored
on Cg will be periodically read out to the read control line, performing the inverter
operation to control write operation so that the refresh operation is completed by
charging the Cg.

Dynamic memory cells store a data bit in a gate capacitor rather than a latch. The
advantage of this type of cell is that it is very simple, thus allowing very largememory
array to be constructed on a chip at a lower cost per bit. The disadvantage is that the
storage capacitor cannot hold its charge for a long time and will lose the stored data
bit unless its charge is refreshed periodically. The implementation of refreshing
operation requires additional memory circuitry, therefore, DRAM becomes more
complex.

DRAM is widely used in digital electronics where low-cost and high-capacity
memory are required. One of the largest applications for DRAM is the main memory
(colloquially called the “RAM”) in modern computers and graphics cards (where the
“main memory” is called the graphics memory). It is also used in many portable
devices and video game consoles. In contrast, SRAM, which is faster and more
expensive than DRAM, is typically used where speed is of greater concern than
cost, such as the cache memory in processors.

9.4.4 Typical IC RAMs

There aremany typical IC RAMs, such as the traditional SRAM chips 6264 (8k × 8) and
62256 (32k × 8), the new SRAM chips 61LV25608 (256k × 8) and 61LV51216 (512 k × 16),
DRAM chips 57V641620 (8MB), etc. Let’s take 61LV25616 as an example to introduce
the functions of a typical RAM.

IS61LV25616 is high-speed CMOS SRAM of ISSI company with 3.3 V power supply,
and the minimum processing time can reach 10 ns. Figure 9.4.5 is the pin diagram of
IS61LV25616 (44 feet TSOP package). It has 18 address lines (A0 through A17) that can
select 218 word lines, and each word line contains 16-bit data corresponding to 16 I/Os
(I/O0 through I/O15), thus the storage capacity is 2

18 × 16 bits = 256 k × 16 bits. There are
three control inputs for determining the read/write operation, inwhich CE is an active-
LOW input for chip selection, WE is also an active-LOW input for enabling write
operation, and OE is an active-LOW input for enabling read operation. Additionally,
61LV25616 has two data control inputs, UB and LB, where UB is the high eight-bit
data control and LB is the low eight-bit data control. The use of LB and UBmakes the
61LV25616 chip to be flexibly used for either eight-bit data bus or 16-bit data bus
without any external circuit. Table 9.4.1 is a function table for the 61LV25616 chip.
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Figure 9.4.6 is the timing diagram of IS61LV25616. In write mode, the low eight-
bit data and the high eight-bit data can be separately written into the selected
addresses Addr1_L and Addr2_U; also, all 16-bit data are simultaneously written
into the selected address Addr3. In read mode, the low eight-bit data and the high
eight-bit data can be separately read from the selected addresses Addr4 and Addr5;
also, all 16-bit data are simultaneously read from the selected address Addr6.
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Figure 9.4.5: Pin diagram of IS61LV25616.

Table 9.4.1: Function Table of IS61LV25616.

Operation mode CE WE OE LB UB I/O-I/O I/O-I/O

Disable H X X X X Z Z

Output disable L H H X X Z Z
L X X H H Z Z

Read L H L L H DOUT Z
L H L H L Z DOUT

L H L L L DOUT DOUT

Write

L L X L H DIN Z
L L X H L Z DIN

L L X L L DIN DIN

Z represents High impedance.
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9.4.5 Special RAMs

In addition to general RAMs, there are some RAMs with special structure, such as
dual-ported RAM (DPRAM), first in–first out (FIFO), and ferroelectric RAM (FRAM).

1. Dual-ported random access memory
DPRAM is a type of random access memory that allows multiple reads or writes to
occur at the same time, or nearly the same time, unlike single-ported RAM that allows
only one access at a time.

Generally, single-ported RAM has a set of data, address, and control circuit,
while DPRAM has two sets of each of I/O buffers, address decoders, and control
lines. It allows two sets of circuits to control a RAM memory array. The typical
feature of DPRAM is the storage data for sharing. In Figure 9.4.7, a DPRAM is
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Figure 9.4.6: Timing diagram of the IS61LV25616.
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Figure 9.4.7: Block diagram of the DPRAM.
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equipped with two separate address decoders and data I/O control circuits,
which allow two independent CPUs or controllers to access the memory cells
asynchronously at the same time. Due to data sharing, the internal dual-port
arbitration control circuit is required for determining access timing sequence and
access right of memory cell arrays. The timing of the two sets of circuits is the
same as the timing of the ordinary SRAM. The typical DPRAM chips are CY7C130
and CY7C131.

DPRAM ismostly used for video RAM (VRAM) as videomemory, allowing the CPU
to draw the image while the video hardware is reading it out to the screen.

2. First in–first out (FIFO) memory
This type of memory is formed by an arrangement of shift registers. The term FIFO
refers to the basic operation of this type ofmemory, inwhich the first data written into
the memory is the first to be read out.

The difference between ordinary memory and FIFO is that there are no external
read and write address lines in FIFO. The address is controlled by the internal read–
write pointer, which can automatically add a 1 for each read/write operation. FIFO
is easy to use, but its disadvantage is that the data should be written and read in
order.

FIFO width refers to the bits by one read and write operation. FIFO width is
fixed or optional in a single IC product. If FIFO is implemented by the program-
mable logic device, the FIFO width (data bits) can be defined by itself. FIFO depth
refers to the number of data with specified width that FIFO can store. For an eight-
bit FIFO, if the depth is 8, it can store eight-bit data; if the depth is 12, it can store 12
eight-bit data.

According to the operating clock, FIFO can be divided into synchronous FIFO
and asynchronous FIFO. The synchronous FIFOmeans that the read and write clocks
are the same clock and thus the read and write operations occur synchronously at the
clock edge. Asynchronous FIFO means that the read and write clocks do not use the
same clock.

The internal structure of FIFO consists of the dual-port RAM matrix, read and
write control circuit, read and write address pointer, and other parts, as shown in
Figure 9.4.8. RCLK is the read clock; WCLK is the write clock; FF and EF are the
flag bit of output signal; WEN1 and WEN2 are the write enable signals; REN1 and
REN2 are the read enable signals; and OE is the output enable signal.

In the READ mode, FIFO reads out data at each clock edge of RCLK. After each
read operation, the read pointer of FIFO points to the next read address by auto-
matically adding 1. In the WRITE mode, FIFO writes in data at each clock edge of
WCLK. After each write operation, the write pointer of FIFO points to the next write
address by automatically adding 1. Read and write pointers are equivalent to read
and write address, but this address must be selected continuously.
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When the FIFO is full, the write pointer points to the last element of the FIFO and
the flag bit logic circuit sends a full flag (FF) signal; when the FIFO is empty, the read
pointer points to the last element of the FIFO and the flag bit logic circuit sends an
empty flag (EF) signal.

Typical FIFO chips include CY7C4201 (256 × 9), CY7C4211 (512 × 9), CY7C4231 (2k × 9),
CY7C4251 (8k × 9), etc.

9.5 Memory expansion

If one memory chip does not have enough capacity to store data, the capacity of
memory can be expanded by increasing an appropriate number of memory chips.
Generally, there are two kinds of expansion methods: word-length expansion and
word-capacity expansion.

The objectives of this section are to
– Define the word-length expansion
– Apply the word-length expansion to increase capacity
– Define the word-capacity expansion
– Apply the word-capacity expansion to increase capacity

Input register

Programmable
flag  register
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logical circuit

Read pointer

Write pointer

Write control 
circuit

Read control
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output buffer

WCLK WEN1 WEN2
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RAM

storage
Array

OE

D0 ~ D7

Q0 ~ Q7

Figure 9.4.8: Schematic diagram of the internal structure of the FIFO.
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9.5.1 Word-length expansion

If the word length of a memory is not enough, the number of bits in the data bus must
be expanded by increasing the number of memories. This expansion is called as bit
expansion or word-length expansion. To implement the bit expansion, the correspond-
ing address lines, chip select signal, read andwrite control signal of all memory chips
are connected together, but the data outputs of each chip can be combined as parallel
outputs to obtain the required word length. For example, the memory of 1024 × 8 bits
can be composed of two RAM chips 2114 with the capacity of 1024 × 4 bits, as shown in
Figure 9.5.1. It can be seen from Figure 9.5.1 that the ten-bit address lines are
connected together to guarantee the same number of addresses (210=1024) as each
memory; all chip select signals are also connected together so that two memories can
be accessed simultaneously. When a ten-bit address is applied on the address lines
and a LOW is applied to the chip select signal, an eight-bit data is produced on the
data bus and each memory chip provides four-bit data outputs.

9.5.2 Word-capacity expansion

If a memory does not have enough word capacity, the number of addresses must be
expanded by increasing the number of memories. This expansion is called as word-
capacity expansion. To implement theword-capacity expansion, the key issue is how to
deal with the increased addresses. One alternative method is to use the chip select
input,CS, or to enable inputs act as the increased addresses. For example, the
memory of 2048 × 4 bits is composed of two RAM chips 2114 with the capacity of
1024 × 4 bits, as shown in Figure 9.5.2. Each 2114 has ten address bits to select its 1024
addresses. The expanded memory has 2048 addresses and thus need 11 address bits.
The eleventh address bit A10 is connected to the chip select input of 2114(1) and its

A9.

D2

2114 (1)
D3D1D0

A0 CSR/W

D2

2114 (2)
D3D1D0

R/W

A9

A0

D0
D1
D2
D3

A9 A0 CSR/W

CS

D5
D6
D7

D4

.
..

.. .. .

Figure 9.5.1: Expansion of two
1024 × 4 RAMs to a 1024 × 8 RAM.
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complement is connected to CS of 2114(2). The ten lower-order address bits (A0

through A9) and the read/write control line are connected together. The data lines
for the expanded memory remain four-bit width. When the eleventh address bit (A10)
is LOW, RAM 2114(1) is selected and RAM 2114(2) is disabled. The ten lower-order
address bits (A0 through A9) access each address in RAM 2114(1). When the eleventh
address bit (A10) is HIGH, RAM 2114(2) is enabled by a LOW on the inverter output and
RAM 2114(1) is disabled. The ten lower-order address bits (A0 through A9) access each
address in RAM 2114(2).

9.6 Summary

1. Semiconductor memories are electronic data storage devices for storing large
number of data on a semiconductor-based integrated circuit. Read only mem-
ory (ROM) and random access memory (RAM) are two types of semiconductor
memories.

2. All memory devices store data or information by the array of memory cells.
Memory cell is the smallest storage unit in a memory, which stores binary logic
level of either a 1 or a 0. The size of each binary word that is stored varies
depending on the memory device.

3. The location in the memory device where any binary data stored is accessed by
another binary number referred to as an address. Each memory location has a
unique address.

4. All memory devices operate in the same general way. The basic operations of
the memory include write operation, read operation, and addressing
operation.

5. ROMs are semiconductor memories to store the binary data or information
permanently or semipermanently. They do not lose their data when power is
removed from the device, belonging to the nonvolatile memories.

A9

D2

2114 (1)

D3D1D0

A0 CSR/W

D2

2114 (2)

D3D1D0

R/W

A9

A0

D0
D1
D2
D3

A10

A9. A0 CSR/W

.
..

.. . ..

Figure 9.5.2: Illustration of word-
capacity expansion.
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6. MROMs are programmed during the manufacturing process. PROMs are pro-
grammed one time by the user. EPROMs are just like PROMs but can be erased
using UV light. EEPROMs and flash memory devices are electrically erasable and
their contents can be altered after programming.

7. ROMs belong to the combinational logic circuit, so they are not only used to store
data and program but also implement any combinational circuit. Moreover, a
sequential circuit can be constructed with a ROM by adding some sequential
logic components.

8. RAMs are semiconductormemories inwhich data can bewritten into or read from
any selected address in any sequence. They lose the stored data when the power
is turned off, belonging to a volatile memory, so RAMs are mainly used to store
short-term data and temporary programs.

9. Static RAM (SRAM) generally uses latches as storage elements. Once the data are
stored, they will remain unchanged as long as power is turned on. SRAM is easier
to use but more expensive per bit and consumes more power than dynamic RAM.

10. Dynamic RAM (DRAM) stores data by capacitors rather than latches. The simpli-
city of the storage cell allows DRAMs to store a great deal of data with low cost.
Because the charge on the capacitors must be refreshed regularly, DRAMs are
more complicated to use than SRAMs.

11. Dual-ported RAM (DPRAM) is a type of RAM with special structure that allows
multiple reads or writes to occur at the same time, or nearly the same time, unlike
single-ported RAM that allows only one access at a time.

12. First in–first out (FIFO) memory is also a special type of memory formed by an
arrangement of shift registers. The term FIFO refers to the basic operation of this
type of memory, in which the first data bit written into the memory is the first to
be read out.

13. When the capacity of one memory chip is not large enough to store data, the
capacity of memory can be expanded byword-length expansion or wore-capacity
expansion.

Key terms

Memory: The portion of a computer or other digital systems that stores binary data.
ROM: Read only memory; a nonvolatile random access semiconductor memory.
RAM: Random access memory; a volatile read/write semiconductor memory.
Address: The location of a given storage cell or a group of cells in a memory.
Bus: One or more interconnections that interface one or more devices based on a
standardized specification.
Byte: A group of eight bits.
Capacity: The total number of data units (bits, bytes, words) that amemory can store.
Memory cell: A single storage element in a memory.
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DRAM: Dynamic random access memory; a type of semiconductor memory that uses
capacitors and transistors as the storage elements and is a volatile read/write
memory.
EPROM: Erasable programmable ROM; a type of semiconductor memory device that
typically uses ultraviolet light to erase data.
FIFO: First in–first out memory.
Flash memory: A nonvolatile read/write random access semiconductor memory in
which data are stored as charges on the floating gate of a certain type of FET.
PROM: Programmable ROM; a type of semiconductor memory.
Read: The process of retrieving data from a memory.
Write: The process of storing data into a memory.

Self-test

1. The semiconductor memory is divided into _______ and _______.
(a) EPROM and RAM
(b) ROM and RAM
(c) PROM and RAM
(d) PROM and ROM

2. Two main parts of ROM are _______
(a) Address decoders and memory array
(b) Address decoders and flip-flops
(c) Encoders and counters
(d) Decoders and counters

3. If an EPROM has eight data lines and 13-bit address lines, then the storage
capacity is_______.
(a) 16 k bytes (b) 8 bytes (c) 8 k bits (d) 64 k bits

4. If a RAM has eight data lines and eight-bit address lines, then its storage capacity
is_______.
(a) 16 k bytes (b) 8 bytes (c) 2 k bits (d) 64 k bytes

5. ROM must store _______ data in the work, the data is_______ after power is off;
data can be random read and written into RAM in the work, the data is _______
after power is off.
(a) In, not lost; lost
(b) Before, not lost; lost
(c) Before, no loss; no loss
(d) Before, lost; lost

6. Which one of the following description of the EPROM is correct?
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(a) After programming, you can erase the data with UV light and then rewrite the
data.

(b) Its data can be erased with electrical signals.
(c) In the microcontroller system, it is often used as data storage.
(d) After power is off, data is lost.

7. In the following memory, the _______ can ensure that the stored data is not lost
after power is off.
(a) EEPROM (b) DRAM (c) SRAM (d) FIFO

8. FIFO is _______ (first, later) in _______ -(first, later) out _______ (random, read
only) memory.

9. DRAM is _______ (nonvolatile, volatile) memory

10. DRAM is a _______ RAM, it _______ (needs, doesn’t need) refresh circuit; SRAM is
_______ RAM, it _______ (needs, doesn’t need) refresh circuit.

Problems

9.1 What are the types of ROM families available?

9.2 What are the types of RAM families available?

9.3 Draw a basic logic diagram for a 512 × 8 bits static RAM, showing all the inputs
and outputs.

9.4 Determine the logic expression ofD3,D2,D1, andD0 for the ROMwith capacity of
16×4 bits, as shown in Figure T9.1, in which A3A2A1A0 are four-bit address lines
and D3D2D1D0 are four-bit data outputs.

9.5 Use a 16 × 4 bits ROM to implement two two-bit binary multiplications (A1A0 ×
B1B0). List the truth table and draw the array diagram of memory array.

A3

A2

A1

A0

D3 D2 D1 D0

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Figure T9.1
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9.6 A circuit consisting of a three-bit binary up counter and a ROM is shown in
Figure T9.2(a).
(a) Write the logic expression of F1, F2, and F3
(b) Draw the waveform of F1, F2, and F3 in relation to the clock pulse. Assume that

initial state of the counter is 000.

9.7 Design a full subtractor using a ROM and draw the programmed ROM array.

9.8 For the ROM array in Figure T9.3, determine the outputs for all possible input
combinations and summarize in truth table (white cell is a 1, gray cell is a 0).

9.9 List the truth table for the ROM in Figure T9.4 (white cell is a 1, gray cell is a 0).

·

CP 

(a) (b)
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Q1
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Figure T9.2
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9.10 What is the total bit capacity of a ROM that has 14 address lines and eight data
output lines?

9.11 Use 16k × 4 DRAMs to construct a 64k × 8 DRAM. Show the logic diagram.

9.12 Use 64k × 1 DRAMs to construct a 256k × 4 DRAM. Show the logic diagram.

9.13 Figure T9.5 shows a ROM array in which the inputs (A3 through A0) are the 8421
BCD.
(a) List the truth table of the ROM array.
(b) Explain what code the outputs Y3 Y2 Y1 Y0 are.

9.14 Use an EPROM to implement the following logic function and draw a programmed
ROM array.

F1 ¼ �A�B�C þ �BC þ AB

F2 ¼ �Aþ �Bþ �C

F3 ¼ �A�Bþ AB

F4 ¼ Aþ Bþ Cþ ABC

8>>>><
>>>>:

9.15 Use EPROM to design a code convertor to convert 8421 BCD to Excess-3 code.
Draw the programmed ROM array.

9.16 Use EPROM and a 74161 four-bit binary up counter to design a sequence
generator that can produce the sequence code “1001110111” and “0001001011”
simultaneously. Draw the logic diagram.

9.17 Use EPROMand a 74161 four-bit binary up counter to design a sequence generator
that can produce the sequence code “A356789FB456.” Draw the logic diagram.

9.18 Use EPROM to construct a character “H” generator, draw the programmed ROM
array.
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10 Programmable logic device

10.1 Introduction

Programmable logic devices (PLDs) are one type of electronic components used to
build reconfigurable digital circuits. Unlike a logic gate, which has a fixed function,
a PLD has an undefined function at the time of manufacture. Before applying PLD to
a circuit, it must be programmed, that is, reconfigured. The earlier PLDs were
programmable read-only memory (PROM) and programmable logic array (PLA),
which were manufactured in the earlier 1970s. PROM has a fixed AND gate array
linked to a programmable OR gate array. While the AND gate array and OR gate
array in PLA are both programmable.

Besides PROM and PLA, programmable array logic (PAL) and generic array logic
(GAL) are two major types of simple programmable logic devices (SPLDs). PAL has a
programmable AND gate array connected to a fixed OR gate array. Compared with
PLA, PAL omit the programmable OR array and thus its architecture is simpler,
which makes the PAL faster, smaller and cheaper. However, PAL belongs to one-
time programmable (OTP) device, which could not be updated and reused once
programmed, confining the application of PAL. GAL, invented by Lattice
Semiconductor in 1985, is a revised version of the PAL. GAL has the same logical
properties as the PAL does, but GAL can be erased and reprogrammed. Although
SPLDs have the simple structure and the flexible design, PALs and GALs are
available only in small size, equivalent to a few hundred logic gates. This makes
them difficult to implement large scale and complex logic circuits.

Complex programmable logic devices (CPLDs) can be used to implement
larger scale logic circuits. For most practical purposes, a CPLD can be thought
as multiple PLDs linked by programmable interconnections in a single chip,
which can replace hundreds of thousands, even several millions of logic gates.
The higher density of CPLD allows you to implement either more logic functions
or more complicated designs. When PALs were being developed into GALs and
CPLDs, a separate stream of development was happening. This type of device is
based on gate array technology, called as the field-programmable gate array
(FPGA). The term “field-programmable” means the device is programmed by the
customer, not the manufacturer. FPGA was first launched by Xilinx Company in
1985. Different from the architecture of CPLD, FPGA consists of many indepen-
dent programmable logic modules that can be flexibly connected to each other.
This architecture of FPGA is much more flexible than that of a CPLD, so FPGA is
meant for more complex designs and often used to implement all hardware
design in place of a processor-plus-software solution.

With rapid development of PLDs, several hardware description languages
(HDLs) are developed to help the PLD programmer. PALASM, Advanced Boolean
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Expression Language (ABEL) and CUPL are frequently used for low-complexity
devices, while Verilog and VHDL are popular higher-level description languages
for more complex devices. Now, VHDL and Verilog are more popular, even for low-
complexity designs. Today the boundary between hardware and software
becomes more and more blurred. Hardware engineers create the bulk of their
new digital circuitry by using programming languages such as VHDL and
Verilog. A quiet revolution is taking place. Over the past few years, the density
of the average PLD has begun to skyrocket. The maximum number of gates in an
FPGA is currently over the order of millions and doubling every 18 months.
Meanwhile, the price of these chips is dropping quickly. Many types of program-
mable logic are available. Some system designers try to eliminate the processor
and software altogether instead of choosing an alternative hardware-only design.
In addition to this incredible difference in size, there are also much variations in
architecture. This chapter introduces the most common type of PLD and highlights
the most important features of each type.

The objectives of this chapter are to
– Describe the basic structures and features of PALs and GALs
– Explain the basic structures and features of PLAs
– Explain how a macrocell works
– Describe the basic structures and features of CPLDs
– Describe the differences between CPLDs and FPGAs
– Explain the basic operation of the look-up table (LUT)
– Draw a basic software design flow for PLDs

10.2 Simple Programmable Devices (SPLDs)

Besides PROM and PLA, programmable array logic (PAL) and generic array logic
(GAL) are two major types of simple programmable logic devices (SPLDs). PAL
is one-time programmable (OTP) device, which could not be updated and
reused once programmed. GAL is an improvement version based on PAL.
GAL has the same logical properties as the PAL but can be erased and
reprogrammed. The basic structure of both PAL and GAL is a programmable
AND array linked to a fixed OR array, which is a basic sum of the product of
the architecture.

The objectives of this section are to
– Explain the architecture of PAL and GAL
– Apply PAL or GAL to implement the sum of product expression
– Explain the simplified PAL/GAL logic diagram
– Describe a basic PAL/GAL macrocell
– Explain the difference of PAL and GAL
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10.2.1 The PAL

Programmable array logic (PAL) is a family of programmable logic device used to
implement logic functions in digital circuits introduced by Monolithic Memories, Inc.
(MMI) in 1978. A PAL consists of a programmable AND array connected to a fixed
OR array. The programmable OR array is omitted in the architecture of PALs, and a
bipolar fuse process technology are used as the memory cell in a programmable AND
array of PALs. All these make the PALs faster, smaller and cheaper. But PALs belong
to one-time programmable (OTP) devices, which could not be updated and reused
after initial programmed.

In Chapter 4, you have learned that any combinational logic function can be
expressed in the sum-of-product (SOP) form. The PAL structure allows the imple-
mentation of logical expressions of any SOP form with a certain number of variables.
Figure 10.2.1 shows a simple PAL structure that includes three inputs and one output.
There are four AND gates forming a program AND array. Each row is connected to the
input of an AND gate and each column is linked to an input variable or its comple-
ment. There is a fuse called as a memory cell connecting the row and the column. If
there is a fuse link, the input variables or complemented variables can be an input of
the corresponding AND gate. In the initial PAL chip, all fuse links exist at each cross
point between each row and each column. Only if the PAL is programmed, some fuse
links are burned on. Therefore, according to the requirement of combinational logic
circuit, you can determine which fuse links should be retained to connect the desired
variables or complemented variables as the inputs of the AND gate, and you can
select which fuse links should be burned on by programming the AND array of PAL.
The resulting desired product term is formed from the AND gates. The outputs of AND
gates are applied on the OR gate, and thus the resulting SOP output can be obtained.
Most of PALs has multiple inputs and multiple outputs.

Figure 10.2.2 is an example of the programmed PAL to implement the SOP
expression. The top AND gate generates a product term A�B, the next top AND gate

generates a product term �A�C, the next bottom AND generates a product term �AB, and

A B

F

A B C C

Figure 10.2.1: Basic AND/OR structure of a PAL.
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the bottom AND gate produces a product term BC. It can be seen that the fuses are left
intact to connect the desired variables or complemented variables to the input of AND
gate, and the fuses are burned off where the variables and complemented variables
are not used in a given product term. The resulting output from the OR gate is the SOP
expression as

F =A�B+ �A�C + �AB+BC

10.2.2 Simplified notation for PLD diagrams

The practical PAL has many AND gates and OR gates and is capable of handling
multiple variables and their complements. Most of the PAL diagrams on the data
sheet use simplified notations to make the schematic diagram much clearer.

1. Buffer notation
In PLD, the input buffer is often used to provide an enough driving capacity, which
allows to connect multiple inputs of AND gates. Usually, a triangle symbol represents
a buffer that gives both the variable and its complement as its outputs, as shown in
Figure 10.2.3.

2. AND gate and OR gate notation
Generally, there are a large number of programmable interconnection lines in the
PLD chip. Each AND gate in the PLD has multiple inputs. The typical logic diagrams
for PLD use a special AND gate symbol to represent a multi-input AND gate, as shown
in Figure 10.2.4 (a). The multi-input AND gate has a single input line with a slash and
a digit representing the actual number of input lines. Sometimes a slash and a digit
can be omitted. A black solid dot “∙” at the cross point represents a fixed connection

A B

F

A B C C

Figure 10.2.2: A PAL programmed to implement a
SOP expression.

A A
A Figure 10.2.3: Buffer notation.
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and a “×” at the cross point indicates a programmable connection. No mark indicates
no connection. Similarly, the multi-input OR gate can be represented by the same
way as the multi-input AND gate, as shown in Figure 10.2.4(b). The corresponding
traditional logic diagram is shown in Figure 10.2.5.

The output logic expressions ofANDgate andORgate in Figure 10.2.4 are expressed as

F1 =BCD, F2 =B+C

Figure 10.2.2 can be redrawn with the simplified notation in Figure 10.2.6 (a).
Sometimes the buffer can also be omitted; variables and its complements are directly
labeled in the simplified logic diagram, as shown in Figure 10.2.6 (b).

Example 10.1 Show how a PAL is programmed for the following 4-variable logic function.

F =A�BC�D+A�B�C�D+ �AB�C +BC.

Solution
The programming array is shown in Figure 10.2.7. The intact fuse links are represented by the “×”.
The absence of a “×” means that the fuse is open.

A B

F1

C D
(a) (b)

4

A B

F2

C D

4

Figure 10.2.4: Simplified notation in PLD:
(a) AND gate; (b) OR gate.

B
F1C

D

(a) (b)

B

C
F2

Figure 10.2.5: Traditional logic
diagram: (a) AND gate; (b) OR gate.

A B

F

CA B C

A B C

(a) (b)

A B

F

CA B C

Figure 10.2.6: Simplified logic diagram of the programmable PAL in Figure 10.2.2.
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10.2.3 The GAL

Generic array logic (GAL) is an improvement version of the PAL. It has the same
logical properties as the PAL but can be erased and reprogrammed repeatedly,
which belongs to multiple times programmable device. The basis difference is that a
GAL uses a reprogrammable memory cell, for instance, a floating gate MOSFET
replacing fuse link in Figure 10.2.1. A GAL usually consists of input buffer,
programmable AND logic array, fixed OR gate array, and output logic
macrocell.

Figure 10.2.8 shows a partial logic diagram in a GAL. The actual GAL structure is
more complex than it. IN1 and IN2 are two input variables, which pass through the
buffers to form the variables and their complements as the inputs of the AND array.
The AND array is programmable, the OR array is fixed. The programmable AND
array produces the product terms that is the AND of input variabes and their
complements labeled with a “×”. Then the product terms pass through the OR
gate and a SOP expression can be produced.

A B

F

CA B C D D

Figure 10.2.7: Logic diagram of programmable PAL for Example 10.1.

1
MUXD

Q

Control signal A 

Control signal B

Programmble
AND array

Fixed OR gate

Output

input

0

Output logic macrocell

C

CP

I/O

IN1 IN2

Figure 10.2.8: Partial logic diagram in a GAL.
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The internal control signal A is used to control the output of a 2-to-1 MUX (multi-
plexer). If A is 0, the output of MUX is determined by the output of a fixed OR gate,
which is called as the combinational output mode. If A is a 1, the output of the MUX
comes from the output of flip-flop, which is called as the sequential output mode.

The control signal B controls a tristate buffer. If B is a 1, the tristate gate is
enabled, the I/O pin is selected as the output pin; if B is a 0, the tristate buffer is
disabled, and the I/O pin is selected as the input pin. The state of control signal B is
generated automatically by computer programming.

In essence, a GAL is a PAL that can be erased and reprogrammed. It has the same
type of AND/OR organization as a PAL.

10.2.4 PAL/GAL general block diagram

Figure 10.2.9 shows a general block diagram of PAL and GAL. Both of them have the
programmable AND array and the fixed OR array [21]. The main difference between a
PAL and GAL is the reprogrammable process technology E2CMOS and flexible output
logic macrocell (OLMC) is used in the output part of a GAL. Since there are flip-flops
in an OLMC, GAL can implement both combinational logic and sequential logic by
programming the OLMC.

10.2.5 Macrocell

Amacrocell is usually composed of an OR gate and some associated output logic. The
various macrocells are not the same in complexity depending on the particular

Input 
circuit

Inputs 
AND
array

complements

Variables

OR
array

Output 
circuit

OLMC and OR
array

Product
terms

Product
terms

Sum
terms

PAL structure

GAL structure

Output 

Output Feedback
inputs

Figure 10.2.9: A general block diagram of PAL or GAL.
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type of GAL. For example, a GAL chip, type No. GAL16V8, where 16 refers to the
number of the inputs, 8 represents the number of the outputs, and V refers to the
flexible form of the output. There are eight same OLMCs in a GAL16V8. Figure 10.2.10
shows the functional block diagram of GAL16V8, and the internal logic of one OLMC.
The XOR(n) signal of each macrocell controls the output polarity. When XOR(n) =1,
the XOR gate is equivalent to an inverter. The output of OR gate passes throughXOR
gate and an inverter output buffer and then the final output is the active high level.
When XOR(n) = 0, the output XOR gate is the same as its input. It continues to pass
through the inverter output buffer and the final output is active-LOW output. There are
two global bits, SYN and AC0, control the mode configuration for all macrocells to select
three global OLMC configuration modes possible: simple, complex and registered. The
control bit, SYN, selects the output mode of GAL and the use of clock input (CLK) and
enable input (OE). If SYN=1, all outputs are the combinational output without using

any flip-flop. The clock input (CLK) and enable input (OE) can be configured as the
common inputs; if SYN=0, at least one OLMC is configured as the sequential output.

At this situation, the CLK input and OE input must be used for the clock pulse input
and the enable control of the tristate gate rather than for common inputs. AC1(n) of
each macrocell controls the input/output configuration. All control signals of the
OLMC include SYN, AC0, AC1(n), XOR(n), which are corresponding to programmable
bits in structure control word. The structure control word can be configured by
software complier. According to the programmable bits in the structure control
word, the GAL can be configured as five basic operation modes as follows.

1. Dedicated input configuration
Dedicated input configuration is shown in Figure 10.2.11. At this configuration, the
control bits are set as SYN=1, AC1=1, AC0=0, making the tristate inverter disconnec-
tion and the OLMC configured as dedicated input.

2. Dedicated combinational output configuration
Combinational output configuration is shown in Figure 10.2.12. At this configuration,
the control bits are set as SYN=1, AC1=0, AC0=0, making the tristate inverter connec-
tion and the OLMC configured as combinational output. At this situation, the clock
input (CLK) and enable input (OE) can be configured as the common inputs.

3. Combinational Input/Output (I/O) configuration
Combinatorial I/O configuration is shown in Figure 10.2.13. At this configuration, the
control bits are set as SYN=1,AC1=1,AC0=1, themacrocell is configured as output only
or I/O functions. When it is used as an input, the tristate inverter is disabled, and the
input goes to the buffer that is connected to the AND array. The clock input (CLK) and
enable input (OE) can be configured as the common inputs.
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4. Registered configuration
Registered configuration is shown in Figure 10.2.14. At this configuration, the control
bits are set as SYN = 0, AC1 = 0, AC0= 1, then macrocell is configured as sequential
output. The clock input (CLK) and enable input (OE) must be configured as the clock
pulse input and enable input for the registered output rather than common inputs.

5. Registered combinational I/O configuration
Registered combinational I/O configuration is shown in Figure 10.2.15. At this con-
figuration, the control bits are set as SYN=0, AC1=1, AC0=1, the macrocell is config-
ured as combinational I/O output. When it is used as an input, the tristate inverter is

Figure 10.2.11: The OLMC configured as dedicated input.

XOR

Vcc

Figure 10.2.12: The OLMC configured as combinatorial output.

XOR

Figure 10.2.13: The OLMC configured as combinational I/O.
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disabled, and the input goes to the buffer that is connected to the AND array.
Although the logic diagram is similar with that of combinational I/O configuration,
the clock input (CLK) and enable input (OE) must be configured as the clock pulse
input and enable input rather than common inputs.

10.2.6 Features of the PAL and GAL

PAL and GAL both consist of the programmable AND logic array and fixed OR
gate array. The memory cells in PAL use bipolar fuse, thus PAL has simple
structure and high speed. But PAL belongs to one-time programmable device,
which limits the application of PAL. GAL is an innovation of the PAL. With
the floating gate MOS as memory cell, GAL is erasable and reprogrammable,
making prototyping and design change easier for engineers. This brings many
advantages of the GAL over the PAL. Due to the adoption of the advanced
CMOS technology, GAL consumes lower power about 50% to 75% reduction in

XOR

D

Q

Figure 10.2.14: The OLMC configured as register mode.

XOR

Figure 10.2.15: The OLMC configured as registered Combinational I/O
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comparison to PAL. Although the speed of GAL is about half or a fourth of PAL,
GAL can be erased and reprogrammable. It has high speed electrical erasure
(<100 ms) and can be reprogrammable in the ratio up to 100%.

Usually, a GAL can be reprogrammable near one hundred times. By configuring
OLMC, GAL can be configured as a sequential form to assure the programming
process tested in the ratio up to 100%. In addition, the stored data can be retained
over two decades due to the use of E2COM process technology. These high perfor-
mancesmake GALwidely applied for DMA control, state machine control, high speed
graphics processing, and standard logic speed upgrade.

10.3 CPLD

As IC technology advances, there is naturally great interest in creating larger PLD
architecture to take advantage of higher chip density. CPLD packagesmultiple SPLDs
into a single chip to get more capacity for larger-scale logic designs. The fully
programmable AND/OR array and a bank of macrocells are combined in a CPLD.
Macrocells are functional blocks that perform combinatorial or sequential logic, and
also have the added flexibility for variables or their complements, along with varied
feedback paths. This section introduces the traditional CPLD architecture, remem-
bering that CPLDs may be slightly different in architecture and parameters, such as
density, process technology, power consumption, voltage and speed.

The objectives of this section are to
– Explain the basic structure of CPLD
– Describe how to generate the product terms in the CPLD

10.3.1 CPLD architecture

CPLD architecture is mainly composed of multiple SPLD arrays, a programma-
ble interconnection and multiple I/O control blocks [45]. Each SPLD is called a
logical array block (LAB), sometimes using other names such as function blocks,
logical blocks, or generic blocks. Programmable interconnections are often referred
to as programmable interconnect array (PIA), which is also called advanced inter-
connect matrix (AIM) or similar names by other manufacturers, for example, Xilinx
Inc. Although CPLD products manufactured by different companies have their own
characteristics, they have the similar architecture.

Let’s take an EPM7128S chip in MAX 7000s as an example to illustrate CPLD
architecture. The EPM7128S is a typical CPLD with high density and high perfor-
mance, which is manufactured by ALTERA Company. It has totally 84 pins with
PLCC package and the corresponding pin arrangement as shown in Figure 10.3.1.
The pin description of EPM7128S is listed in Table 10.3.1. Among them, four
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specified pins including TDI, TMS, TCK, and TDO are used not only for in-system
programming but also for the chip test. There are also four dedicated inputs that can
be used as general-purpose inputs or as high-speed, global control signals (clock,
clear and two output enable signals) for each macrocell and I/O pin. Figure 10.3.2
shows the architecture of MAXEPM7128S.

In EPM7128S, there are eight LABs, one PIA and multiple I/O control blocks.
Figure 10.3.2 only shows 4 LABs. Each LAB consists of 16 macrocells, and LABs
can be connected together via PIA. PIA is a programmable global bus structure,
which can connect all LABs, to connect the general inputs, I/O control blocks and
macrocells. The internal interconnection between LABs can be programmed with

Figure 10.3.1: 84-pin PLCC package pin-out diagram.

10.3 CPLD 357

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



software. CPLD can be programmed to implement more complex logic functions.
These complex logic functions are SOP structures based on a single LAB (actually
SPLD). The inputs can be connected to any LAB, and the outputs can be inter-
connected via the PIA to any other LABs.

Table 10.3.1: Pin description of MAXEPM7128S.

Pin names Pin No. Pin description

INPUT/GCLK  Input/global clock 

INPUT/GCLRn  Input/global clear
INPUT/OE  Input/output enable control
INPUT/OE/GCLK  Input/output enable control/global clock 

TDI  Programming data input
TMS  Programming mode selection
TCK  Programming clock
TDO  Programming data output
GNDINT , Ground of V dc supply voltage
GNDIO ,,,,, Ground of input/output
VCCINT(.V Only) , V dc supply voltage
I/O ,,,⋅⋅⋅  input/output pins

PIA

Macrocells
1 to 16 

LAB A

Macrocells
17 to 32 

LAB B

Macrocells
33 to 48

Macrocells
49 to 64 

LAB C LAB D

3636

36 36

I/O
Control
Block

16

8 to16

16

I/O
Control
Block

I/O
Control
Block

I/O
Control
Block

8 to16

8 to16 8 to16

16

8 to16

8 to16

16

8 to16

8 to16

8 to16
I/Opins

8 to16
I/Opins8 to16

I/O pins 

8 to16
I/O pins

INPUT/GLCK1
INPUT/GCLRn
INPUT/OE1
INPUT/OE2

Figure 10.3.2: Block diagram of EPM7128S.
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10.3.2 Macrocell

Each LAB in EPM7128S has 16 macrocells. Macrocell can be individually configured
for either sequential or combinational logic operations. Figure 10.3.3 shows a macro-
cell of EPM7128S device. Themacrocell mainly consists of three functional blocks: the
logic array, the product-term select matrix, and the programmable register. The logic
array contains a small AND programmable gate array with five AND gates, an OR
gate, a XOR gate for choosing the output polarity, and a product term selectionmatrix
used to connect the outputs of AND gate to the OR gate. The other associate logic and
the programmable registers can be programmed as input, combined logic output or
register output [3].

Combinational logic is implemented in the logic array,which provides five product
terms per macrocell. The product-term select matrix allocates these product terms for
using as either primary logic inputs (to the OR and XOR gates) to implement combi-
natorial function, or as secondary inputs to the macrocell’s register clear, preset, clock
and clock enable control functions. Two kinds of expander product terms (“expan-
ders”) are available to supplement the lack of macrocell logic resources: one is share-
able expanders, which are inverted product terms fed back into the logic array; another
is parallel expanders, which are product terms borrowed from adjacent macrocells.
These two expanders will be introduced in detail later. The Altera development system
automatically optimizes product-term allocation according to the logic requirements of
the design.

1D

Product-
Term

Select 
Maxtrix

AND Logic Array

36 Signals
from PIA

16 Expander
Product Terms

Parallel
Logic

Expanders
(from other
macrocells)

Shared
Logic

Expanders

Global
Clear

Clear
Select

Global
Clocks

2

Clock/
Enable
Select

Vcc

>C
1

From I/O
pins

Fast Input
Select

Programmable
Register

Register
Bypass

To I/O
Control
Block

To PIA

0

Figure 10.3.3: EPM7128S device macrocell.
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For registered functions, each macrocell flip-flop can be individually pro-
grammed to implement D, T, J-K, or S-R operation with programmable clock control.
The flip-flop can be bypassed for combinatorial operation. During design entry, the
designer specifies the desired flip-flop type; Altera development software then selects
themost efficient flip-flop operation for each registered function to optimize resource
utilization.

Each register also supports asynchronous preset and clear function. As shown in
Figure 10.3.3, the product-term selection matrix allocates product terms to control
these operations. Although the product-term-driven preset and clear of the register
are active high, active-low control can be obtained by inverting the signal within the
logic array. In addition, the clear function of registers can be individually driven by
the active-low dedicated global clear pin

This macrocell in CPLD is slightly different from that of the SPLD because it
contains a portion of the programmable AND gate array and a product selection
matrix. As shown in Figure 10.3.3, the inputs of five AND gates come from PIA,
and the output of AND gate is sent to the product selection matrix. The product of
the bottom AND array is inverted and sent back to the programmable array for the
extension of sharing with other macrocells. This parallel expander entry allows
the use of other product terms in the adjacent macrocells to extend an SOP
expression. The product term selection matrix is an array of programmable con-
nections, which connects the selection outputs from the AND gate array and the
expander entry to the OR gate.

10.3.3 Expander product terms

Although most logic functions can be implemented with the five product terms
available in each macrocell, the more complex logic functions require additional
product terms. The architecture of EPM7128S allows both shareable and parallel
expander product terms (“expanders”) that provide additional product terms
directly to any macrocell in the same LAB. These expanders help you ensure
that logic is synthesized with the fewest logic resources to obtain the fastest
speed.

1. Shareable expander
Each LAB in an EPM7128S chip has 16 shareable expanders and each macrocell has
one sharable expander. The sharable expander term is an inverted product term
that is fed back into the logic array to increase the number of product terms for
building complex logic function. Figure 10.3.4 shows how shareable expanders can
feed multiple macrocells.
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Each shareable expander can be shared by any or all macrocells in the LAB. Each
macrocell can produce five product terms, and these product terms are generated from
the AND gate array. If a macrocell requires more than five product terms to get the SOP
output, the macrocell can use an extension of adjacent macrocells in the same LAB.

Assume that a design requires a SOP expression containing six product terms,
Figure 10.3.5 illustrates that the product term of adjacent macrocell is used to increase
an SOP output. The unused macrocell 2 generates a shared expander (E + F) which
connects to the fifth AND gate in macrocell 1, resulting in a SOP expression with 6
product terms.

2. Parallel expander
Parallel expander is another way to increase the number of macrocell product
terms. Parallel expanders are unused product terms that can be allocated to a
neighboring macrocell to implement fast and complex logic function. Parallel expan-
ders allow up to 20 product terms to directly feed the macrocell OR logic, with five
product terms provided by the macrocell and 15 parallel expanders provided by
neighboring macrocells in the LAB. Figure 10.3.6 shows how parallel expanders
can be borrowed from a neighboring macrocell.

36 Signals
from PIA

16 Shared 
Expander 

Shared Logic 
Expanders

Macrocell
Product-Term

Logic

Macrocell
Product-Term

Logic

Product-Term Select Matrix

Figure 10.3.4: Shared expander.
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Figure 10.3.7 shows how amacrocell borrows a parallel expander from neighbor-
ing macrocell to increase the SOP output. The macrocell 2 uses three product terms
from the macrocell 1 to generate an 8-item SOP expression.

10.3.4 Programmable interconnect array

Logic is routed between LABs via the programmable interconnect array (PIA). This
global bus is a programmable path that connects any signal source to any destination
on the device. All EPM7128S dedicated inputs, I/O pins, andmacrocell outputs feed the
PIA, which make the signals available throughout the entire device. Only the signals
required by each LAB are actually routed from the PIA into the LAB. Figure 10.3.8
shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input
to a 2-input AND gate, which selects a PIA signal to drive into the LAB.

10.3.5 I/O control blocks

The I/O control block allows each I/O pin to be individually configured for input,
output, or bidirectional operation. All I/O pins have a tristate buffer that is individually

A

Product-Term 
Select Matrix

B C D E F
Expander term E + F 
to Macrocell 1 

Product-Term
Select Matrix

Macrocell 2

Macrocell 1

EF

ABCD+ABCD+ABCD

ABCD+ABCD+ABCD
+ABCD+ABCE+ABCF

Expander Term 

×

×× ××

×× ××

×× ××

×× ××

×× × ×

×× × ×

×× × ×

×× × ×

×

Figure 10.3.5: Sketch of using a shared expander term from adjacent macrocell to increase an SOP
expression.
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controlled by one of the global output enable signals or directly connected to ground or
VCC. Figure 10.3.9 shows the I/O control block of the EPM7128S. The I/O control block of
EPM7128S device has two global output enable signals that are driven by two dedicated
active-low output enable pins (OE1 and OE2). The I/O control block has six global
output enable signals that are driven by the trues or complements of two output enable
signals, or a subset of the I/O pins, or a subset of the I/O macrocells.

When the tristate buffer control is connected to the ground, the output is
tristated (high impedance) and the I/O pin can be used as a dedicated input.
When the tristate buffer control is connected to VCC, the output is enabled. The
output buffer for each I/O pin has an adjustable output slew rate that can be
configured for low-noise or high-speed performance. A faster slew rate provides
high-speed transition for high-performance system. However, these fast transi-
tion may introduce noise transients into the system. A slow slew rate reduces
system noise, but adds a nominal delay of 4 to 5 ns. For MAX 7000S devices,
each I/O pin has an individual EEPROM bit that controls the slew rate, allowing
designers to specify the slew rate on a pin-by-pin basis.

36 Signals
from PIA

16 Shared Expander  
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Macrocell

Macrocell
Product-Term

Logic 
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Matrix
Clock
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From
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Figure 10.3.6: Parallel Expanders.
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10.3.6 PLA

As you have learned earlier, the structure of CPLD refers to the organization and
arrangement of internal units. Some PLDs’ structures use PLA-based structures
instead of the PAL-based structures that are discussed above.

A

Product-Term 
Select Matrix

B C D E F

Macrocell 1 

Parallel expander terms 
loaned to Macrocell 2

×× ××

×× ××

×× × ×

×× × ×

×× × ×

×

×× ××

×× ××

×× ××

Product-Term 
Select Matrix

Macrocell 2

ABCD+ABCD+ABCD
+ABCD+ABCD+
ABCD+ABCD+ABCD

ABCD+ABCD+ABCD×

Figure 10.3.7: Sketch of using parallel expander terms from another macrocell to increase an SOP
expression.

PIA Signals

to LAB

Figure 10.3.8: PIA routing.
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Figure 10.3.10 compares a simple PAL structure with a simple PLA structure. PAL
has a programmable AND array followed by a fixed OR array to produce an SOP
expression, as shown in Figure 10.3.10 (a). PLA has a programmable AND array
followed by a programmable OR array, as shown in Figure 10.3.10 (b).

10.3.7 Combination mode and register mode

When a macrocell is programmed to produce a SOP combinatorial logic function, the
logical unit in the data path is marked with dash squares and double lines as shown
in Figure 10.3.11, as we can see, the only one multiplexer is used and the flip-flop is
bypassed.

When a macrocell is programmed to implement the register mode, the SOP
output of combinational logic is sent to the input of the register and the global
clock is used as clock-drive signal. The logical unit in the data path is marked with
the dashed square and double lines in Figure 10.3.12. It can be seen that the four
multiplexers are used in the figure, and the flip-flop is valid.

PIA

Six Global Output Enable 
Signals

Vcc

GND
The other I/O pins

From 
Macrocell Open-Drain 

Output(1)
Slew-Rate 
Control

To PIA

Fast Input to 
Macrocell 
Register

Figure 10.3.9: I/O control block in EPM7128S.
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Figure 10.3.10: Comparison of a basic (a) PAL-type array and (b) PLA -type array.
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Figure 10.3.11: A macrocell configured for generation of an SOP logic function, dash squares and
double lines indicate the data path.
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Figure 10.3.13 shows a complete macrocell containing the flip-flop. The SOP
output of the OR gate is reversed by the XOR gate, and then we can get the function
in the form of product of sum (POS). For the input of XOR gate, if the input is 1, the
XOR gate output is reversed; if the input is 0, the XOR output is directly output (SOP
form). MUX1 selects the XOR output or the input from the I/O terminal as the input of
flip-flop. MUX2 can be programmed to implement a global clock signal or a clock
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Figure 10.3.12: A macrocell configured for generation of a registered logic function, dashed square
and double lines indicate data path.
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Figure 10.3.13: A CPLD macrocell.
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signal based on a product term as a clock signal of the flip-flop. MUX3 can be
programmed to implement a high level or a product term for enabling the flip-flop.
MUX4 can be chosen as global clear or the product term clear. MUX5 is used to select
the bypass flip-flop to connect the output of combinational logic to I/O, or connect
the output of the register to the I/O. The flip-flop can be programmed to implement D,
T flip-flop or J-K flip-flop.

10.3.8 In-system programmability (ISP)

MAX 7000S devices are in-system programmable via an industry-standard 4-pin Joint
Test Action Group (JTAG) interface (IEEE Std. 1149.1-1990). The MAX 7000S architec-
ture internally generates high programming voltage required to program EEPROM
cells, allowing in-system programming with only a single 5.0 V power supply. During
in-system programming, the I/O pins are tristated and pulled-up to eliminate board
conflicts. The pull-up value is nominally 50kΩ. ISP simplifies the manufacturing flow
by allowing devices to be mounted on a printed circuit board with standard in-circuit
test equipment before they are programmed. MAX 7000S devices can be programmed
by downloading the information via in-circuit testers (ICT), embedded processors, or
the Altera MasterBlaster, ByteBlasterMV, ByteBlaster, BitBlaster download cables.
Now, the ByteBlaster cable is obsolete and is replaced by the ByteBlasterMV cable,
which can program and configure 2.5V, 3.3V, and 5.0V devices. Programming the
devices after placed on the board, which eliminates lead damage on high-pin-count
packages due to device handling and allows devices to be reprogrammed after a
system has already shipped to the field. For example, product upgrades can be
performed in the field via software or modem.

During in-system programming, instructions, addresses, and data are shifted
into the MAX 7000S device through the TDI input pin. Data is shifted out through the
TDO output pin and compared against the expected data.

10.3.9 Features of the CPLD

Compared with PAL and GAL with low density, the CPLD has many advantages as
follows.
1. The CPLD has high density. A CPLD consists of multiple SPLD arrays with

programmable internal connections. Some CPLD chip contains the logic gates
reaching up to the order of millions. In addition, CPLD has a large amount of I/O
pins to avoid the fact that the I/O pins have been completely occupied before the
logic elements exhausted in the low-density devices.

2. The CPLD has high speed and low power consumption. The designer can program
each individual macrocell in a CPLD device for either high-speed or low-power
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operation. As a result, speed-critical paths in the design can run at high speed,
while the remaining paths can operate at reduced power. Some CPLDs, for
instance MAX 7000 devices, offer a power-saving mode that supports low-power
operation. This feature allows total power dissipation to be reduced by 50% or
more, because most logic applications require only a small fraction of all gates to
operate at maximum frequency.

3. CPLD has the capacity of in-system programmability. CPLD can be programmed
in-system by using an industry-standard 4-pin Joint Test Action Group (JTAG)
interface (IEEE Std. 1149.1-1990). This can avoid physical loss caused by plugging
in and pulling out the programmed chip for specified programmer. The CPLD
architecture internally generates high programming voltage required to program
EEPROM cells, allowing in-system programming with only a single 5.0 V power
supply. During in-system programming, the I/O pins are tristated and pulled-up
to eliminate board conflicts.

4. The internal logic of the CPLD can be tested and programmed. Most CPLDs
contain the built-in JTAG boundary-scan test (BST) circuitry. This makes the
internal logic of CPLD testable, allowing for not only the troubleshooting but
also determining the error location.

5. The CPLD has the sharable product terms. The most product terms of PAL and
GAL is fifteen; while CPLD allows providing up to 32 product terms for each
macrocell by parallel expander and sharable expander.

6. CPLD has asynchronous clock and clear function. PAL and GAL must use the
same clock and can construct synchronous sequential logic circuit. However
CPLD can construct both asynchronous and synchronous sequential logic circuit.

7. CPLD has programmable security bit for protection of proprietary designs and
also provide open-drain output option allowing the wired-OR operation.

10.4 Field programmable gate arrays (FPGAs)

A field-programmable gate array (FPGA) is an integrated circuit designed to be config-
ured by a customer or a designer after manufacturing – hence “field-programmable”.
Unlike CPLD using PAL/GAL arrays in architecture, FPGA contains a large number of
programmable logic blocks that are individually smaller than a PLD. They are distrib-
uted to form a square array across the entire chip in a sea of programmable inter-
connections, and a hierarchy of reconfigurable interconnection that allow the blocks to
be “wired together”, like many logic gates that can be internally wired in different
configurations. Therefore, the equivalent gates in a typical FPGA are many times as
that in a typical CPLD. The logic generation unit of the FPGA is usually smaller in size
and greater in amount than that of the CPLD.
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Xilinx Company invented FPGAs. This section we will use one of their popular
families, the XC4000 series, to illustrate FPGA architecture and highlight the most
important features of FPGA.

The objectives of this section are to
– Describe the basic structure of FPGA
– Explain the difference between FPGA and CPLD
– Discuss look up tables (LUTs)
– Describe FPGA core

10.4.1 FPGA architecture

The programmable logic blocks in FPGA architecture are called configurable logic
blocks (CLBs). Generally, FPGA consists of configurable logic block (CLB), input/
output block (I/OB), programmable interconnection (PI) and programmable switch
matrix (PWM), as shown in Figure 10.4.1.
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Figure 10.4.1: The structure of FPGA.
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CLB in the FPGA is simpler than the LAB in the CPLD, but the number of CLBs in
the FPGA are usually more than that of LAB. When the structure of CLB is relatively
simple, the FPGA structure is called the fine-grained structure; when the CLB volume
is relatively large and more complex, the FPGA structure is called the coarse-grained
structure. I/O blocks are arranged the outside on the perimeter of the structure and
provide a single selectable input, output or bidirectional access to the outside world.
Programmable switch matrix of programmable interconnection provides the inter-
connections between different CLBs and connections to inputs and outputs.

10.4.2 Configurable logic block (CLB)

Configurable logic block implement most of the logic in an FPGA. Since an FPGA can
have lots of CLBs, it is important for you to understand it. Figure 10.4.2 shows the
internal structure of an XC4000 series CLB [46]. The CLB contains three logic function
generators, two D flip-flops, multiple programmable multiplexers represented by the
trapezoidal boxes, and RAMs that are not shown in Figure 10.4.2.

1. Combinational and sequential logic
Themost important programmable elements are the logic function generator F, G and
H. Two 4-input function generators (F and G) offer unrestricted versatility. Four
independent inputs are provided to each of two function generators (F1–F4 and
G1–G4). These function generators, with outputs labeled F’ and G’, are individually
capable of implementing any arbitrarily defined Boolean function of four inputs or
fewer inputs. The third function generator, labeled H’, can implement any Boolean
function of its three inputs. Two of these inputs can select the output of F’ and G’
functional generator. Alternatively, one or both of these inputs can come from out-
side the CLB (H2, H0). The third input must come from outside the block (H1). The CLB
can, therefore, implement certain functions of up to nine variables.

Let’s think about how to build a universal function generator for 4-input logic
function. It’s a hard problem if you think about it at the gate level, but pretty easy if
you think about it from another point of view. Any 4-input logic function can be
described by its truth table, which has 16 rows corresponding to 16 input combina-
tions. If we apply the function’s four input bits to the memory’s address lines, its data
output is the value of the function for that input combination. That is to say, the
function generators are implemented as memory look-up table (LUT). A LUT (look-up
table) is a type of memory that is programmable and can be used to generate SOP
expression of combinational logic. In fact, the LUT can implement the same function
as the PAL does.

Generally, a LUT structure contains 2n memory cells; n is the number of input
variables. For example, a LUT with four input variables as the address lines can
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offer 16 addresses to select 16 memory cells at most, thus a LUT with four input
variables can form an SOP expression with 16 product terms at most. When you
program 1s and 0s into different memory cells in a LUT, a SOP expression is formed,
in which each 1 represents the corresponding product term in the SOP expression
and each 0 indicates the corresponding product term that does not appear in the
SOP expression. For example, Figure 10.4.3 shows a programmed LUT with four
input variables. There are four memory cells programmed as 1s, so the resulting SOP
expression is.

�A3
�A2

�A1
�A0 + �A3

�A2A1A0 +A3
�A2

�A1
�A0 +A3

�A2A1A0

The above logic function of four inputs can be implemented by function gen-
erator F or G. Signals from the function generators can exit the CLB on two outputs. F’
can be connected to the X output. G’ can be connected to the Y output.

There are two D flip-flops in one CLB. Sequential logic can be implemented by
combing D flip-flops and combinational logic. The outputs of two flip-flops can be
output from two independent outputs YQ and XQ.
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Figure 10.4.3: Example of the basic concept of an LUT programmed for a particular SOP output.
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2. Fast Carry Logic
Each CLB contains dedicated arithmetic logic for the fast generation of carry logic and
borrow signals. This extra output is passed on to the function generator in the
adjacent CLB. The carry chain in XC4000E devices can run either up or down. At
the top and bottom of the columns where there are no CLBs above or below, the carry
is propagated to the right, as shown in Figure 10.4.4.

The carry chain is independent of normal routing resources. Dedicated fast carry
logic greatly increases the efficiency and performance of adders, subtractors, accu-
mulators, comparators and counters. It also opens the door tomany new applications
involving arithmetic operation, where the previous generations of FPGAs were not
fast enough or not efficient. There are two typical applications: high-speed address
offset calculations in microprocessors or graphics systems, and high-speed addition
in digital signal processing.

3. RAM
The function generators in any CLB can be configured as RAM arrays in the following
sizes:
– Two 16 × 1 RAMs. F and G are used as SRAMswith independent address andwrite-

data inputs. However, they share a common write-enable input.
– One 32 × 1 RAM. The same four address bits are used for F and G, and the fifth

address bits is applied to H function generator for the write-enable circuitry to
select F and G as the upper and lower halves of the memory.

– Synchronous or asynchronous. For write operation, the SRAMs above can be
configured to have normal asynchronous latching behavior, or they can be
configured to occur on a designated edge of the clock signal.

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

Figure 10.4.4: Available XC4000E carry propagation paths.
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– One 16 × 1 dual-port SRAM. The two sets of address inputs are used to indepen-
dently read and write different locations in the same SRAM. Only synchronous
write operations are supported in this mode.

In these modes, function inputs F1–F4 and G1–G4 supply address, other CLB
inputs H0-H2 provide data inputs and the write-enable signal, and data outputs are
produced by the F and G function generator and can be loaded into two D flip-flops.
The outputs of two flip-flops can be output from two independent outputs YQ and XQ.
Furthermore, the F’ output of the F function generator can be connected to the X’
output; the G’ output of the G function can be connected to the Y’ output.

The versatility of the CLB function generators significantly improves system
speed. In addition, the design-software tools can deal with each function generator
independently. This flexibility improves the usage of cells.

10.4.3 Input/output block (I/OB)

Programmable I/OBs are arranged the outside on the perimeter of the structure, as
shown in Figure 10.4.1. It can be flexibly programmed to connect the device pins and
different logic interfaces of the internal circuit. An I/O pin can be used for input or
output or both. The structure of the XC4000 I/OB is shown in Figure 10.4.5. The main
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Figure 10.4.5: Simplified block diagram of XC4000E I/OB.
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parts include control circuit, combinational I/O circuit, sequential I/O circuit and
other associated circuits.

The XC4000 I/OB has more “logic” controls. In particular, its input and output
paths contain D flip-flops selected by multiplexers M5-M7. The output enable (T)
controls the tristate output buffer, allowing the data output can be transferred to the
output pin. Multiplexer M1 can select the activate level (LOW or HIGH) to enable the
tristate buffer. The clock enable (CE) controls the clock of D flip-flop. When it is a
LOW, the flip-flops are disabled and thus only combinational input or output circuit
can be built. The input clock and the output clock are individually control the input
and the output D flip-flops. The D flip-flops triggered by the rising edge or the falling
edge are determined by the multiplexer M3 and M6. An input register can be pro-
grammed as either an edge-triggered flip-flop or a level-sensitive latch. This cap-
ability makes the FPGA highly synthesis compatible.

Each I/OB can be configured as combination logic or sequential logic. The main
difference of combination logic and the sequential logic is determined whether or not
the flip-flops are used. Figure 10.4.6 shows the typical configurations of input and
output.
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Figure 10.4.6: Four typical configurations of input and output: (a) combinational input;
(b) combinational input/output; (c) register input; (d) register input/output.
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Other associated circuits include slew-rate control and the pull-up/pull-down
circuit. The I/OB output buffers have a slew-rate control, which is by default reduced
to minimize power bus transients when switching noncritical signals. For critical
signals, we attach a FAST attribute or property to the output buffer or flip-flop.
Programmable pull-up and pull-down resistors are useful for tying unused pins to
Vcc or Ground to minimize power consumption and reduce noise sensitivity.

10.4.4 Programmable interconnect

The XC4000 programmable interconnect architecture is a fascinating example of a
structure that provides rich, symmetric connectivity in a small silicon area.

In an FPGA, each CLB is embedded in the interconnect structure, which is really
just wires with programmable connections to them. Wires are not really “owned” by
any one CLB and they are distributed among the CLBs and between the CLBs and I/OBs.
All internal connections are composed of metal segments with programmable switch-
ing points and switching matrices to implement the desired routing. A structured
hierarchical matrix of routing resources is provided to achieve efficient automated
routing.

Different types of the chips have different interconnection line types. According
to the length of interconnection lines, the internal lines in XC4000E can be divided
into several types. The first type of lines is single-length lines, as shown in
Figure 10.4.7. Single-length lines provide the greatest interconnect flexibility and
fast routing between adjacent blocks. There are eight vertical and eight horizontal

PSM PSM

PSM PSM

CLB CLB

CLBCLBCLB

CLB

CLB CLB CLB

Doubles
Singles
Doubles

Figure 10.4.7: Single- and double-length lines, with PSMs.
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single-length lines associated with each CLB. These lines connect the switching
matrices that are located in every row and column of CLBs. The second is double-
length lines also shown in Figure 10.4.7. The double-length lines, which are twice as
the length of the single-length lines, consist of a grid of metal segments. They run
past two CLBs before entering a switch matrix. Double-length lines are grouped in
pairs with the switch matrices staggered, so that each line goes through a switch
matrix at every other row or column of CLBs. There are four vertical and four
horizontal double-length lines associated with each CLB. These lines provide faster
signal routing over intermediate distances, while retaining routing flexibility.
Double-length lines are connected by way of the programmable switch matrices.
The third is longlines as shown in Figure 10.4.8. Longlines form a grid of metal
interconnect segments that run the entire length or width of the array. Each longline
is split into two segments by a PSM and form two individual routing regions. The
input of the CLB can be driven directly by the longlines and the output of the CLB can
be connected to the longlines through tristate output buffer or single-length lines.
These longlines are intended for high fan-out, time-critical signal nets, or nets that
are distributed over long distances. The interconnection between single-length lines
and longlines can be controlled by programmable points. There is no connection
between double-length lines and longlines.

CLB

F4 C4 G4 YQ

Y

G3

C3

F3

XQ F2 C2 G2

C1

K

F1

G1

X

Figure 10.4.8: Longlines in XC4000E.
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The horizontal and vertical single-and double-length lines intersect at a box
called a programmable switch matrix (PSM). Each switch matrix consists of program-
mable pass transistors used to establish connections between the lines, as shown in
Figure 10.4.9. For example, a single-length signal entering on the right side of the
switch matrix can be routed to a single-length line on the top, left, or bottom sides, or
any combination. If multiple branches are required, similarly, a double-length signal
can be routed to a double-length line on any or all of the other three edges of the
programmable switch matrix.

10.4.5 Storage cell in FPGA

The storage cell in FPGAs adopts antifuse technology and SRAM technology. FPGAs
based on antifuse technology are nonvolatile, while FPGAs based on SRAM technol-
ogy are volatile. Therefore, SRAM-based FPGAs should be reconfigured each time
when power is turned back on or they use an external memory with data transfer
controlled by a host processor.

10.4.6 FPGA core

As discussed in previous section, FPGA is actually like “blank board,” the end users
can program FPGA to implement any logic design. The hard-core logic is part of the
logic in the FPGA and is embedded by the manufacturer according to specific
functions and cannot be rewritten. For example, if the customer needs a small

Six Pass Transistors
Per Switch Matrix
Interconnect PointSingles

Double

Double

Figure 10.4.9: Programmable Switch Matrix (PSM).
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microprocessor to be a part of the system design, the microprocessor can be pro-
grammed by the customer and then implanted in the FPGA, or can be achieved with
the hard-core provided by the manufacturer. Soft-core is the embedded functions
with programmable features.

One of the advantages of hard-core approach is that hard-core takes less space of
the FPGA than that of the user’s on-site programming for implementing the same
design. Therefore, hard-core reduces the space in the chip and saves the user’s
development time. Furthermore, the hard-core has been fully tested. The disadvan-
tage of the hard-core is that specific function has been fixed and the user can only use
the existing hardware which is not allowed to be changed later.

Hard-core is often adopted to implement functions that frequently used in digital
systems, such as microprocessors, standard I/O interfaces and digital signal proces-
sors. Multiple hardcore functions can be programmed into an FPGA. Figure 10.4.10
illustrates the concept of a hard-core that is surrounded by configurable logic
implemented by user programming. Since this hard-core is embedded into the
user’s programming logic, this is a basic embedded system.

10.4.7 Features of FPGA

Compared with CPLD, FPGA has the following features.
1. The programming unit of most FPGA adopts SRAM as memory, so FPGA can be

programmed infinitely. Because SRAM belongs to the volatile component, the

Hard core:
portion of CLBs

programmed 
during 

manufacturing for 
a specific function  

Remaining 
CLBs  are 

programmed 
by user

Figure 10.4.10: Basic idea of a hard-core function embedded in an FPGA.
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information within the chip will be lost once power-down; therefore, each time
the power is turned on, FPGA need to be configured again.

2. FPGA is different from typical CPLD architectures. In FPGA, the size of CLB is
smaller than the LAB in CPLD. This makes the number of CLB much greater
than that of LAB. Therefore, FPGA has much larger density than CPLD. In
addition, the number of flip-flops in the FPGA is greater than that of the
CPLD, which makes the FPGA perform better than CPLD in the implementation
of sequential circuit.

3. FPGA has various programmable interconnection lines, which surround the
CLBs. There is various signal paths from one CLB to another, thus the logic
occupancy rate in FPGA can reach to a higher level than that in CPLD. But the
speed of the system based on FPGA cannot be predicted accurately.

4. The power consumption of CPLD is generally between 0.5 and 2.5 W. However,
FPGA has very lower power consumption from 0.25 mW to 5mW, so FPGA is
usually called zero-power device.

5. Hard-core is a part of the logic embedded in the FPGA, which is embedded into
the FPGA by the manufacturer to provide specific functionality and not allowed
reprogramming. Soft-core is embedded in part of the logic of the FPGA, it has
some programmable characteristics.

10.5 The programming process

An SPLD，CPLD, or FPGA can be thought of as a “blank slate” on which you imple-
ment a specified design by using a certain process. This process requires a software
development package installed on a computer to implement a circuit design in the
programmable chip. These software packages are in category of software known as
computer-aided design (CAD) software. In this section, the programming process in
terms of design are briefly introduced. Tutotials for Altera Quartus II and Xinlinx ISE
are provided on the website. You can download them for reference.

Before you begin to design functionality into a CPLD or a FPGA, you should have
four necessary things: a computer or work station, the development software run on
windows-based PCs as well as workstation, a PLD chip, and a way to connect the PLD
chip to computer. For different PLD chipmanufactured by different company, there are
the corresponding development software. Electronic design automation (EDA), also
referred to as electronic computer-aided design (ECAD), is a category of software tools
for designing electronic systems such as integrated circuits. Now Xilinx and Altera Inc.
are twomainmanufacturers to offer high desity CPLD and FPGA. They provide the EDA
tool including Altera Quertus II and Xilinx ISE. There are demo software versions that
can be downloaded from their website. The PLD chip can be programmed through
connecting a computer via cable by using either the programming fixture in which the

10.5 The programming process 381

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



chip is inserted or the development board on which the chip is mounted. After the
software has been installed on your computer, you can start to design.

The programming process is usually called as design flow. The design flow
diagram for implementing a logic design in a PLD chip is shown in Figure 10.5.1[3].

1. Design entry
When you perform design entry, you do not need to know the information about the
target device, that is, design entry is device independent. You can enter your designs
by using text entry, graphic entry, or state machine entry in the aided design
application software enviorment. Text-based entry is finished by using hardware
description languages (HDLs) such as VHDL, Verilog or AHDL. Verilog has been
introduced in Chapter 4. Figure 10.5.2 shows the design of the logic function

X = �AB+BC by using verilog HDL description. Graphic entry usually refers to sche-
matic entry. Schematic entry allows you to place symbols of logic gates and other
logic functions from a library on the screen and connect them as required.

Figure 10.5.3 shows the schematic design of X = �AB+BC by logic diagram. State
machine entry requires specification of both the state through which a sequential
logic circuit progressed and the conditions that produce each state change.

Design entry

Functional
simulation 

Synthesis

Implementation

Timing
simulation 

Download

Compiler

Design 
library

Figure 10.5.1: Basic Programming flow block diagram.
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Once a design has been entered, it is compiled. A compiler is a program that
controls the design flow process and translates source code into object code in a
format that can be logically tested or downloaded to a target device. The source code
is created during design entry and the object code is final code that actually makes
the design to be implemented in the programmable device.

2. Funtional simulation
Funtional simulation is to verify if the design can implement the required logic

function by checking the relation of the outputs and the inputs. A waveform editor is
used to funtional simulation. The errors found by the simulation would be corrected by
returnning back to design entry and making the appropriate changes. Figure 10.5.4
shows the outputwaveform in relation to the inputs for logic functionX = �AB+BC. It can
be seen from the waveform diagram that the output waveform is correct for the given
inputs, verifying that the logic function implemented is correct.

Figure 10.5.2: Design entry with Verilog.

Figure 10.5.3: Schematic entry.
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3. Synthesis
Synthesis is used to translate the design into a netlist, which is also device inde-
pendent. During symthesis, the design is optimized in terms of minimizing the
number of gates, replacing logic elements with other logic elements that can per-
form the same function more effectively, and eliminating any redundant logic. The
final output from the synthesis phase is a netlist that describes the optimized
version of the logic circuit.

4. Implementation
Implementation is used to map the logic structures described by the netlist into the
real structure of the given target device being programmed. Note that the implemen-
tation process is device dependent. You must select the target device and assign pin
configurations. The implementation process is called fitting or place and route and
thus produce an output called a bitstream.

5. Timing simulation
This step comes after the design is mapped into the given target device. The timing
simulation is basically used to confirm if there are no design error or timing problems
due to propagation delays that will affect the overall operation. The above functional
simulation is to verify if the design circuit can work properly from a logic point of
view and the specification of the target device has no been considered. But for the
timing simulation, the target device must be selected. Similar to functional simula-
tion, the waveform editor can be used to observe the result of the timing simulation.

Figure 10.5.4: The output waveform in relation to the inputs after the functional simulation.
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6. Download
After the functional simulation and timing simulation have been verified that the
design circuit operates correctly. Once a bitstream has been produced for a given
programmable device, it has to be downloaded to the device to implement the
software design in hardware. Some programmable devices have to be installed in
a special piece of equipment called a device programmer or on a development
board. Other types of devices can be programmed while in a system programming
(ISP)—using a standard JTAG interface. Some devices are volatile, the bitstream
data must be stored in a memory and reloaded into the device after each reset or
power-on. Also, the contents of an ISP device can be manipulated or upgraded
while it is operating in a system. This is called “on-the-fly” reconfiguration.
Figure 10.5.5 shows the basic concept of downloading.

10.6 Summary

1. PLD is a semi-custom IC, which can be programned by users to realize the
required logic relationship between inputs and outputs. Accoding to the internal
stucture, PLD can be categoried as SPLD, CPLD and FPGA.

2. SPLDs includes PROMs, PLAs, PALs, and GALs.
3. The PAL is one-time programmable (OTP) device, which could not be updated

and reused once programmed. It consists of a programmable AND array that
connects to a fixed OR array.

4. The GAL has the same logical properties as the PAL does, but GAL can be erased
and reprogrammed.

Figure 10.5.5: Downloading a design to the target device.
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5. The macrocell is usually composed of an OR gate and some associated output
logic in PAL or GAL. Macrocell can be set to two modes: combinatorial mode and
register mode.

6. CPLD is a complex programmable logic device that is mainly composed of multi-
ple SPLD arrays, a programmable interconnection and multiple I/O control
blocks.

7. Each SPLD array in a CPLD is called a logical array block (LAB).
8. CPLDs are based on the AND/OR logic to realize combnational logic function.
9. Unlike CPLD using PAL/GAL arrays in architecture, FPGAs contain a large

number of programmable logic blocks and have much greater density than
CPLDs.

10. FPGA mainly consists of configurable logic block (CLB), input/output block (I/
OB), programmable interconnection (PI) and programmable switch matrix
(PWM). The CLB in the FPGA is simpler than the LAB in the CPLD, but the number
of CLB in the FPGA is usually more than that of LAB in the CPLD.

11. FPGAs are based on LUT architecture. LUT stands for look-up table, which is a
type of memory that is programmable and used to generate SOP expression.

12. The hard-core is part of the logic in the FPGA and is embedded by the manufac-
turer according to specific functions and cannot be rewritten.

13. The programming process is usually called as design flow.

Key Terms

PLD: A programmable logic device produced as a semi-custom integrated circuit.
PROM: A form of digital memory where the setting of each bit is locked by a fuse or
antifuse; one type of ROM (read-only memory).
PAL: A type of SPLD that belongs to one-time programmable device and has a
programmable AND array connected to a fixed OR array.
GAL: A type of SPLD that is similar to a PAL except that it uses the reprogrammable
storage cells, such as a floating gate MOSs, instead of fuses.
ISP: A kind of PLD programming method that a PLD chip can be programmed in the
installed circuie system, rather than requiring the chip to be programmed prior to
installing it into the system.
SPLD: Simple programmable logic devices.
CPLD: Complex programmable logic device(CPLD) that contains multiple SPLD and
programmable interconnection.
FPGA: Field programmable gate array(FPGA) that use LUT as logic element.
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OTP: One-time programmable(OTP) that means the circuit can only be programmed
once.
PIA: Programmable interconnect array (PIA) that offer the route between LABs.
AIM: Advanced Interconnect Matrix(AIM).
LUT: Look up table (LUT) that is a type of memory that is programmable and used to
generate SOP expression.
CLB: Configurable logic blocks(CLB) that is a important parts of a FPGA.

Self-test

10.1 Two types of SPLD are______.
(a) CPLD and PAL
(b) PAL and FPGA
(c) PAL and GAL
(d) GAL and SRAM

10.2 The structure of PAL is______.
(a) a programmable AND gate array and a programmable OR gate array
(b) a programmable AND gate array and a fixed OR gate array
(c) a fixed AND gate array and a programmable OR gate array
(d) a fixed AND gate and OR gate array

10.3 The organization of the macrocell is______.
(a) a fixed OR gate and other associated logic
(b) a programmable OR gate array and other associated logic
(c) a fixed AND gate and other associated logic
(d) a fixed AND gate and OR gate array with flip-flop

10.4 Which of the following devices is not a PLD device______.
(a) CPLD (b) GAL (c) ROM (d) FPGA

10.5 The term LAB stands for______.
(a) logic AND blocks
(b) logical array blocks
(c) final judgment bit
(d) logical assembly block

10.6 In which of the following modes the macrocell is configured to generate SOP
functions______.
(a) combnational mode
(b) parallel mode
(c) hosting mode
(d) sharing mode
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10.7 Typical macrocells include______.
(a) gate, multiplexer and flip-flop
(b) gate and shift register
(c) gray code counter
(d) fixed logic array

10.8 Based on the complexity of configurable logic blocks (CLBs) in FPGAs, they can
be divided into______.
(a) volatile or nonvolatile
(b) programmable or reproducible
(c) fine-grained or coarse-grained
(d) platform type or embedded type

10.9 Volatile FPGAs are usually based on______.
(a) fuse technology
(b) non-fuse technology
(c) EEPROM technology
(d) SRAM technology

10.10 Which of the following FPGAs with embedded logic function cannot be pro-
grammed______.
(a) Volatile (b) Platform type (c) Hard-core (d) Soft-core

10.11 Hard core design is usually designed and developed by FPGA vendors, and
owned by FPGA manufacturers. These designs are called______.
(a) intellectual property
(b) special logic
(c) user design
(d) IEEE standard

10.12 Text input as a logical design______.
(a) must use logical symbols
(b) must use HDL
(c) can only use boolean algebra
(d) must use specific code

10.13 In the functional simulation, the user must specify______.
(a) the specific target device
(b) output waveform
(c) input waveform
(d) HDL
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Problems

10.1 How does a PLA differ from a PAL?

10.2 Explain how a programmed polarity output in a PAL works.

10.3 Basically, what does a macrocell contain?

10.4 Describe how a CPLD differs from an SPLD.

10.5 When a macrocell is configured to produce an SOP function, which mode is it
in?

10.6 How does an FPGA differ from a CPLD?

10.7 Describe a LUT and discuss its purpose?

10.8 What is a FPGA core?

10.9 Determine the Boolean output expression for the simple PAL array in
Figure P10.1. The “×” represent connected links.

10.10 Show how the PAL-type array in Figure 10.2 should be programmed to
implement each of the following SOP expressions. Use “×” to indicate a
connected link.
(a) Y =A�BC + �AB�C +ABC
(b) Y =A�BC + �A�BC + �ABC

10.11 Determine the product term for the AND gate in a CPLD array shown in
Figure P10.3 (a). If the AND gate is expanded, as shown in Figure P10.3 (b),
determine the SOP output.

A B CA B C

X

×

×

×
×

×
×

×

×

×

Figure P10.1
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10.12 Determine the output of the macrocell logic in figure P10.4 if AB�CD+ �ABCD is
applied to the parallel expander input.

A B CA B C

X

Figure P10.2

Parallel
expander

input

B
C

A

D

F
G

E

H

Figure P10.4

B
C

A

D

(a) (b)

X B
C

A
X

DE

Figure P10.3
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10.13 Determine the output of the array in Figure P10.5. The “×” represents
connected links.

10.14 Modify the array in Figure P10.5 to produce an output

X = �A�B�C + �AB�C +ABC +A�BC.

10.15 Show a logic module configured in the normal mode to produce one 4-
variable SOP function and one 2-variable SOP function.

10.16 Determine the final SOP output function for the logic module shown in Figure
P10.6.

10.17 Determine the output expression of the LUT for the internal conditions shown
in Figure P10.7.

4-input
LUT

4-input
LUT

A5A3A2A1 + A5A3A2A1+A5A3A2A1

A4A3A2A1 + A4A3A2A1

Figure P10.6

BA BA

×

×

×

×

×

×

×

×

×

×

X

Figure P10.5
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10.18 Show how to reprogram the LUT in Figure P10.8 to produce the following SOP
output:

�AB�C +A�B�C +ABC

10.19 Show how to reprogram the LUT in Figure P10.9 to produce the following SOP
output: Y =A�BCD+ �AB�CD+A�BCD+ �A�B�C�D.

Selection logic

B

C

A

?

?

?

?

?

?

?

?

SOP output

Memory
cells

ABC

ABC

LUT

ABC

ABC
ABC

ABC

ABC

ABC

Figure P10.8

0

1

2

3

4

5

6

7

Selection logic

B

C

A

1

1

0

1

0

1

1

0

SOP output

Memory
cells

Figure P10.7
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10.20 Use the PLA and D flip-flop to design a 4-bit Johnson ring counter.

Y = ABCD + ABCD + ABCD + ABCD.

Selection logic

B

C

A

1

0

0

1

0

0

0

0
SOP output

Memory
cells

DCBA

DCBA

DCBA

LUT

D

1

0

0

1

0

0

0

0

DCBA
DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA

DCBA
DCBA

DCBA

DCBA
DCBA

Figure P10.9
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11 Analog-to-digital and digital-to-analog converter

11.1 Introduction

With the rapid development of digital technology, digital technology has already
been applied to a wide range of areas besides computer system. Such applica-
tions include communication systems, radar, navigation and guidance systems,
military systems, medical instrumentation, industrial process control, and many
others. However, digital circuits and digital systems deal with digital quantity.
From physics point of view, a digital quantity is the one having a discrete set of
values. Most things that can be measured quantitatively in nature with analog
form. In order to process these analog quantities with digital technique, it is
necessary to convert the analog quantity to a digital one. The device that
converts an analog signal to a digital signal is called the analog-to-digital
converter (ADC). Moreover, most electronic instruments are driven by analog
signals and thus the processed digital quantity must be converted back to
analog signal to drive the electronic equipment. The circuit that converts the
digital signal to an analog signal is called the digital-to-analog converter (DAC).
This chapter first introduces the basic concepts and then the operating princi-
ples of DAC and ADC. Several typical integration DAC and ADC chips and their
applications are also covered.

The objectives of this chapter are to
– Explain how analog signals are converted to digital forms
– Describe the sample process
– State the purpose of digital-to-analog conversion
– Explain the operating process of several types of DACs
– State the purpose of analog-to-digital conversion
– Explain the operating process of several types of ADCs

11.2 Digital-to-Analog Converter (DAC)

In electronics, a digital-to-analog converter (DAC, D/A, or D-to-A) is a circuit that
converts a digital signal into an analog signal. DAC is an important part of a digital
processing system. After the digital data are processed, they need to be converted
back to analog form. In fact, there are several types of DACs. This section mainly
introduces two types of DACs: binary-weighted-input DAC and the R/2R ladder DAC.

The objectives of this section are to
– Explain how binary-weighted input DAC works
– Explain how the R/2R ladder DAC works
– Understand the accuracy representation of the DAC

https://doi.org/10.1515/9783110614916-011
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11.2.1 Basic concepts of ADC and DAC

In real world, most of the physical parameters involved are analog signals, such as
temperature, angle, speed, pressure, and so on, which have infinite continuous
values. To use the digital processing technique, these physical parameters must be
converted into their corresponding continuous voltage or current signals using the
sensor, then the voltage or current signals are converted into discrete digital signals
so that it can be processed by digital signal process (DSP) system. The circuit that
converts an analog signal to a digital signal is called the ADC. After digital signals are
processed, digital signals should be converted back to analog signals to drive the
actuator completing the required operations. The circuit that converts a digital signal
to an analog signal is called the DAC. The measuring and controlling systems with
analog-to-digital and digital-to-analog conversion can be roughly sketched by the
block diagram as shown in Figure 11.2.1.

The sensor first converts physical parameters into electrical signals, which are
amplified by the amplifier and sent to ADC. Then, ADC converts the amplified signals
into digital signals and sends them to the DSP system through which the digital
signals are processed and sent to DAC to generate analog signals for driving the
actuator.

For example, noisy sound signals are picked up by the microphone and are
changed into analog (voltage or current) signals. Then, the analog signals are
amplified by the voltage or current amplifier to a certain magnitude and then sent
to the ADC, converting the analog signal into the digital signal. Usually, the acquired
sound signals contain noises, which would affect the quality of sound signals. The
noisy sound signals are processed by the DSP system to remove or reduce the noise in
the sound signals. Next, the sound signals, without noise, are sent to the DAC to
convert digital signals back to analog signals. In succession, analog signals should be
amplified by the power amplifier to drive the loud-speaker (or actuator) playing the
noiseless (clean without noise) analog sound signals.

11.2.2 Digital-to-analog conversion method

The DAC is used to convert an n-bit binary number, Dn−1Dn−2⋅⋅⋅D1D0, to the corre-
sponding analog signal represented by A. In Chapter 2, you have already seen that

Sensor Amplif ier Power 
amplif ier ActuatorDACDSPADC

Figure 11.2.1: A general block diagram of the measuring and controlling systems.
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any n-bit binary number can be expanded by the sum of the digits after each digit has
been multiplied by its weight.

D=Dn− 1 × 2n− 1 +Dn− 2 × 2n− 2 + � � � +D1 × 21 +D0 × 20 =
Xn-1
i=0

Di × 2i (11:2:1)

The equivalent decimal number, D, can be directly obtained by using eq. (11.2.1)
and thus the corresponding analog value should be proportional to the input digital
signal, which can be expressed as

A=KD=K
Xn− 1
i=0

Di × 2i (11:2:2)

where the conversion parameter K is constant.
The conversion features of a DAC are illustrated in Figure 11.2.2. Note that the

output analog quantities are not continuous and they only have the discrete specified
values corresponding to the input digital quantities. There is a basic quantitative unit
corresponding to the least significant bit (LSB) of the input binary number. The
analog signals are K times basic quantitative unit.

The key issue of the DAC is how to implement the sum of the digits after each digit
has been multiplied by its weight so that the digital signal represented by
Dn−1Dn−2⋅⋅⋅D1D0 can be converted into an analog signal A with a certain propor-
tional relation. Therefore, resistor networks, analog switches, and amplifier can be
used to construct the DAC.

11.2.3 Binary-weighted-input DAC

Amethod of DAC uses a resistor network with resistor values representing the weights
of input bits of binary number. Figure 11.2.3 shows a four-bit binary-weight-input DAC .

Digital quantity  D 

A
na

lo
g 

qu
an

tit
y 

A

LSBO
Figure 11.2.2: Illustration of the
conversion characteristics of a DAC.
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Each input resistor may or may not have current, depending entirely on whether the
input bit is a 1. The low level is 0 V and the high level is represented by the voltage V. If
the input level is LOW (binary 0), the current is 0. If the input level is HIGH (binary 1),
the current can be determined by the input resistor value.

Since the inverting input level is 0 V (virtual ground), the noninverting input
level is approximately equal to the inverting input level for the op-amp with negative
feedback. Thus, the noninverting input level is also 0 V so the current of each path
can be deduced as

i0 =
V
8R

D0 =
V
23R

D0, i1 =
V
4R

D1 =
V
22R

D1;

i2 =
V
2R

D2; i3 =
V
R
D3 =

V
20R

D3

Since the current entering the inverting input of the op-amp is approximately
equal to zero, the current if going through the feedback resistor Rf can be expressed as

if = i0 + i1 + i2 + i3 =
V
23R

ðD323 +D222 +D121 +D020Þ= V
23R

X3
i=0

Di2i

The output voltage Vout can be deduced as

Vout = − if Rf = −
VRf

23R

X3
i=0

Di2i (11:2:3)

Thus, the output voltage is proportional to the sum of the digits after each digit
has been multiplied by its weights.

The input resistor value is inversely proportional to the binary weight of the
corresponding input bit. The lowest value resistor (R) corresponds to the highest
binary weight input (23). The other resistor values are multiples of 2R, 4R, and 8R,
representing the binary weights of 22, 21, and 20, respectively. The input current is
also proportional to the binary weight, since the sum of the input current flows
through Rf, so the output voltage is proportional to the sum of the digits after each
digit has been multiplied by its weights.

–

+

8R

4R

2R

R

Rf

Vout

D0

D1

D2

D3

i0

i1

i2

i3

if

Figure 11.2.3: A four-bit DAC with binary-weighted inputs.
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The disadvantage of this type of DAC is the use of multiple different resistor
values. An eight-bit converter requires eight resistors ranging from R to 128R in
the binary-weighted steps. In order to convert accurately, the resistor requires
accuracy of 1/255 (less than 0.5%). This makes the mass production of this DAC
very difficult.

Example 11.1  Determine the output waveform of DAC in Figure 11.2.4(a). The input four-digit
sequence waveforms are shown in Figure 11.2.4(b), where the input D0 is the LSB.

Solution
First, the input current for each weight is obtained. Since the inverting input of the op-amp is 0 V
(virtual ground), the binary 1 represents the voltage of 5 V, so the current flowing through each
resistor is equal to 5 V divided by the corresponding resistance values. Since the input current of
the op-amp’s inverting input is about zero, all current flows across the feedback resistor Rf.
Therefore, the current flows across the resistor Rf can be obtained as follows:

if =
V
23R

X3
i =0

Di2
i

Because the voltage drop across the resistor R

f

is equal to the output voltage, the output voltage
is negative relative to the virtual ground, which can be expressed as

Vout = − if Rf = −
VRf
23R

X3
i=0

Di2
i = −0:25

X3
i =0

Di2
i

From Figure 11.2.4(b), the first input code is 0000; the corresponding output voltage is 0 V. The
second input code is 0001; the corresponding output voltage is −0.25 V. The third input code is 0010;
the corresponding output voltage is −0.5 V. Then the input code becomes 0011; the corresponding
output voltage is −0.75 V. The output of each adjacent binary code is increased by −0.25 V for this
continuous binary sequence from 0000 to 1111 at the inputs; the output is a stair waveform from 0 to
−3.75 V with a stair step of −0.25 V, as shown in Figure 11.2.5. The basic quantitative unit is –0.25 V.
The output voltage is the product of digital quantity and basic quantitative unit.

-
+ Vout

200 kΩ
100 kΩ
50 kΩ
25 kΩ

Rf

10 kΩD0

D1

D2

D3

D0

D1

D2

D3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+5V

0
+5V

0
+5V

0
+5V

0

Figure 11.2.4: (a) A four-bit DAC with binary-weighted inputs, (b) the input four-bit sequare waveforms.
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11.2.4 The R/2R ladder DAC

The R/2R ladder DAC is another commonly used DAC. The R/2R ladder resistor
network is used to implement the weights of input bits of binary number.

Figure 11.2.6 shows a four-bit R/2R ladder DAC. The R/2R ladder DAC consists of
an R/2R resistor network, a reference voltageVREF, a group analog switches that can
be controlled by the input bits of digital signal, and an integrated op-amp that can
convert the current to the voltage. The R/2R resistor network contains only two
resistor values, R and 2R. Since only two resistor values are required, this method
can overcome the disadvantage of multiple resistor values for the binary-weighted
resistor network DAC, which is greatly convenient for design and manufacture of
the integrated circuit. The positions of analog switches S3–S0 are controlled by
input digitals D3–D0, respectively. When the input digital bit is 1, the corresponding
analog switch connects the branch to the inverting input of the op-amp; otherwise,

–0.25

–0.50

–0.75

–1.00

–1.25

–1.50

–1.75

–2.00

–2.25

–2.50

–2.75

–3.00

–3.25

–3.50

–3.75

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
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11
01

11
10

11
11

00
00

0 Binary input

Vout(V)

Figure 11.2.5: Output of the DAC in Figure 11.2.4.
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the branch is connected to the noninverting input (to ground) of the op-amp. Op-
amp is connected to a negative feedback form with the noninverting input directly
connected to ground and the inverting input is a “virtual ground.” In fact, irrespec-
tive of the position the analog switch is connected to, it is equivalent to a “ground.”

From the leftmost side of the resistor network to the rightmost of Figure 11.2.6, 2R
and 2R are first connected in parallel to get the resistor value of R, and then R and R
are connected in series to get 2R, repeating the former equivalent process until the
rightmost of the resistor network. The final equivalent resistor value between
the reference voltage and ground equals to R and thus the total current I supplied
by the reference voltage can be deduced as follows:

I =
VREF

R

As long as VREF is fixed, the total current I is constant. The currents flowing
through each branch from right to left are divided by two, so the currents flowing
through each branch are I/21, I/22, I/23, and I/24, respectively. When input bit of the
digital signal is a 1, the current flows to the inverting input of the op-amp; otherwise,
it flows to the noninverting input of the op-amp. Hence, the current i0 can be
expressed by the sum of all currents flowing to the inverting input as follows:

iΣ =
I
21
D3 +

I
22
D2 +

I
23

D1 +
I
24

D0 =
I
24

ðD3 × 23 +D2 × 22 +D1 × 21 +D0 × 20Þ

=
I
24

X3
i=0

Di × 2i

Since the input current of the op-amp’s inverting input is about zero, the current
iΣ flows through the feedback resistor Rf, that is, if = iΣ. Because the voltage drop
across the resistor Rf is equal to the output voltage, the output voltage is negative
relative to the virtual ground, which can be expressed as

+

–

I

2R
R

D3 i∑

Vout

2
I

S3

VREF

D2D1D0

2
I

2R
R

4
I

S2

4
I

2R 8
I

S1

I
8

R
2R 16

I

S0

2R

I
16

1111 0000

Rf

if

Figure 11.2.6: The R/2R ladder DAC.
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Vout = − if Rf = − iΣRf = −
IRf

24
X3
i=0

Di2i = −
VREFRf

24R

X3
i=0

Di2i Di 2 ð0, 1Þ

The input bits of the digital signal can be expanded to the n-bit binary number,
Dn−1Dn−2⋅⋅⋅D1D0, the corresponding analog output can be expressed as

Vout = −
VREFRf

2nR

Xn− 1
i=0

Di2i Di 2 0; 1ð Þ (11:2:4)

Assuming that the VREF=10 V, n = 4, Rf = R, and the input digital signal varied
from 0000 to 1111, the corresponding analog voltage can be solved by eq. (11.2.4) as
listed in Table 11.2.1.

Figure 11.2.7 shows the analog outputVout versus the digital inputs, which increases
from0000 to 1111. Each successive binary input increases the output voltage by−0.625V,
so for this particular straight binary sequence from0000 to 1111 on the inputs, the output
is a stair step waveform going from 0 to −9.375 V.

The AD7524 is a typical CMOS low-power eight-bit integrated DAC based on an
R/2R ladder network manufactured by Analog Devices in the United States. Its
internal circuit diagram and pin diagram are shown in Figure 11.2.8.

The DC supply voltage VDD is from + 5 to +15 V; data inputs (DB7 through DB0)
can be the TTL/CMOS level; CS is the chip select signal; WR is the write control
signal; VREF is a reference voltage that can be either positive or negative value; and

Table 11.2.1: DAC conversion table.

Inputs Output

D D D D Vout / V

    .
    –.
    –.
    –.
    –.
    –.
    –.
    –.
    –.
    –.
    –.
    –.
    –.
    –.
    –.
    –.
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OUT1 and OUT2 are two current output. Generally, OUT1 is connected to the inverting
input of external op-amp, and OUT2 is connected to the noninverting input of
external op-amp; RFB is the access terminal for a feedback resistor. The output of
the external op-amp can be connected to pin 16 using an internal feedback resistor
RFB or can also be connected to pin 1 using an external feedback resistor.

The typical applicationofAD7524 is shown inFigure 11.2.9. Theoutputof theexternal
op-amp is connected directly to pin 16 using the internal feedback resistor RFB (10 kΩ).
When the chip select signal CS and the write control signal WR are both active LOW,
the AD7524 operates at the write state. In this case, the data from data inputs (DB7

through DB0) are loaded into the data latch and then converted to the analog output
voltage. The relation between the output voltage and the data input is expressed as

Vout = −
VREF

28
X7
i=0

DBi × 2i (11:2:5)

11.2.5 Performance characteristics of DACs

1. Conversion precision
There are two ways to represent the conversion precision of DAC: resolution and
conversion error.

(1) Resolution
There are two representation methods for the resolution of DAC. First, the number of
bits in the digital input is used to represent the resolution. The DAC with n-bit
resolution outputs the maximum 2n different analog voltages. The more the number
of bits in the digital input, the smaller the basic quantitative unit of the analog
quantity is and thus higher the resolution of the DAC is.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

4-bit binary input

A
na

lo
g 

ou
tp

ut
 V

ou
t /

 V

–9.375

0.000
–0.625
–1.250
–1.875
–2.500
–3.125
–3.750
–4.375
–5.000
–5.625
–6.250
–6.875
–7.500
–8.125
–8.750 Figure 11.2.7: Output of DAC for four-bit

binary input increases from 0000 to 1111.
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In addition, the resolution of DAC can also be defined as the ratio of theminimum
output voltage ULSB to the maximum output voltage Um, which can be expressed as

Resolution =
ULSB

Um
=

−
VREF
2n � 1

−
VREF
2n � 2n − 1ð Þ

=
1

2n − 1
(11:2:6)

where ULSB refers to the corresponding analog output voltage when only LSB input is
a 1 and the remaining bits are 0.

For example, the resolution of ten-bit DAC is

1
210 − 1

=
1

1023
� 0:000978

Equation (11.2.6) characterizes the sensitivity of DAC to the minimum digital input.
For the DAC, the more the number of bits in the data input is, the smaller the resolution
is. As a result, DAC has a higher conversion precision and more sensitive to the digital
input.

(2) Conversion Error
The conversion error is used to describe the conversion accuracy that the DAC can
actually achieve. The conversion error can be expressed as a percentage of the full
scale of the output voltage, or as multiples of the minimum output voltage ULSB.
For example, the conversion error is ULSB/2, indicating that the absolute error of
the output analog voltage is equal to one-half of the minimum output voltage ULSB.
The conversion error is divided into static error and dynamic error. The reasons for
the static error are the instability of the reference power VREF, the zero drift of the
op-amp, the internal resistor and voltage drop during the analog switch on, and
the deviation of the resistor values in the resistor network. Dynamic error is the
additional error generated in the dynamic process of conversion, which is due to
the influence of the distribution parameters in the circuit.

+

–
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9
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11

12
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14

Vout

AD7524

VDD

DB7
DB6

DB3

DB1

DB5
DB4

DB2

DB0

CS
WR

VREF

OUT1

OUT2

RFB

Figure 11.2.9: Typical practical circuit of AD7524.
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2. Conversion speed
There are two ways to access the conversion speed of DAC. The first is the settling
time tset to represent the conversion speed. The settling time is defined as the time it
takes a DAC to settle within ± ULSB/2 of its final value when a change occurs in the
input code, as shown in Figure 11.2.10. If the DAC only contains a resistor network
and analog switch, its typical settling time is less than or equal to 0.1 μs; if the DAC
also contains a reference power and a sum op-amp except for the resistor network
and analog switched, its shortest settling time tset is about 1.5 μs.

The second is to use the conversion rate SR to represent the conversion speed.
When a change occurs in the input code, the maximum rate of the output voltage
changing into the new steady output voltage is called as conversion rate. This
parameter is similar to the slew rate of the op-amp.

Example 11.2 Determine the resolution of the following DACs, expressed by a percentage.
(a) an eight-bit DAC (b) a 12-bit DAC

Solution
For the eight-bit DAC, the resolution can be solved by using eq. (11.2.6) as follows:

1
28 − 1

× 100%=
1

255
× 100%=0:392%

For the 12-bit DAC, the resolution is

1
212 − 1

× 100%=
1

4095
× 100%=0.0244%

11.2.6 Types of conversion errors

Take four-bit DAC for an example to illustrate several DAC conversion errors, as
shown in Figure 11.2.11. The four-bit DAC has 15 discrete steps and each graph with an
ideal step slope is given for comparison with the fault output [47].

Nonmonotonicity:The reversal step in Figure 11.2.11(a) represents nonmonotoni-
city, which is also a form of nonlinearity. In the specific case, this error occurs
because the 21 bit in the binary code is always a 0, that is, the short circuit causes
the input stuck in the LOW.

uO

t

Steady-state
value

tset

ULSB

Figure 11.2.10: DAC settling time.
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Nonlinearity: Figure 11.2.11(b) illustrates the differential nonlinearity, where the
step amplitudes are lower than the corresponding step of a given input code. This
kind of output may be due to a faulty input resistor and results in the 22 bit having an
insufficient weight. If the binary weights are higher than that it should be, the steps
with amplitudes will be higher than normal.

High or low gain: Figure 11.2.11(c) shows the output errors caused by high or low
gain. In low gain, all step amplitudes are lower than the ideal one. In high gain, all
step amplitudes are higher than the ideal one. This error is generally caused by a
feedback resistor fault in the op-amp.

Offset error: Figure 11.2.11(d) shows the offset error. Note that when the input is
0000, the output voltage is not 0 V and the offset in the conversion process is the
same for each step. The situation is usually caused by op-amp errors.
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Figure 11.2.11: Illustrations of several digital-to-analog conversion errors.

11.2 Digital-to-Analog Converter (DAC) 407

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



Example 11.3 When a continuous four-bit binary sequence is added to the input of the DAC, the
observed output is shown in Figure 11.2.12. Identify the type of error and give a method of isolating
the fault.

Solution
In this case, the DAC is nonmonotonic. Analysis of the output reveals that the device is converted in
the following sequence, rather than actually the input binary sequence added.

0010, 0011, 0010, 0011, 0110, 0111, 0110, 0111, 1010, 1011, 1010, 1011, 1110, 1111, 1110, 1111
Obviously, the position of 21 is kept at a high level. In order to find the problem, we first detect

the bit input pin to the device. If it changes states, then the error is inside the DAC and it should be
replaced. If the external pin does not change its states and is always high, check for an external short
to +V that may be caused by a solder bridge somewhere on the circuit board.

11.3 Converting analog signals to digital

The input analog signals must be converted to digital forms in order to process
signals using digital techniques. The ADC is the device that converts analog signal
to the digital in a certain proportion. The ADC digitizes the analog signal in the time
and amplitude, including four steps: sampling, holding, quantization, and encoding.
This section introduces the method of converting an analog signal to a digital one.
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Figure 11.2.12: The observed output wavefoms of DAC.
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The objectives of this section are to
– Explain how to convert an analog signal to digital
– Describe what sampling, holding, quantization, and encoding are
– Explain the Nyquist frequency
– Explain how to improve the conversion accuracy

11.3.1 Sampling

Usually, an analog signal has the infinite continuous values. It is impossible to
convert all analog values to digital signals. Therefore, the analog signal must be
discrete in time and amplitude so that they can be represented by digital signal.
Sampling is a process to use enough number of discrete values at point on a wave-
form and the discrete values will essentially represent the shape of waveform, as
shown in Figure 11.3.1. The more the number of sample points, the higher the
accuracy is. Sampling is performed by acquiring the value of the analog signal at a
certain time interval, T, which is called the sampling interval or the sampling period.

In order to accurately represent the original analog signal, it is required that the
sampling period must satisfy the Nyquist sampling theorem. The Nyquist sampling
theorem defines a sample frequency fsample that must be at least twice the highest
frequency component fa(max) of the analog signal. In other words, the maximum
frequency fa(max) of the analog signal is not greater than half of the sample frequency
fsample, where fa(max) is called the Nyquist frequency and is expressed by the following
equation. In practice, the sample frequency is greater than the twice as the highest
analog frequency.

fsample > 2faðmaxÞ (11:3:1)

In digital audio system, the sample rates used are 32, 44.1, or 48 kHz. The rate of
44.1 kHz is often used for audio CDs and tapes. According to the Nyquist frequency,
the sample frequencymust be twice higher than the audio signal. Therefore, 44.1 kHz
can be used to sample the signal with the maximum frequency about 22 kHz.

us

0
t

ui
Sample 

point

Figure 11.3.1: Analog signal sample.
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11.3.2 Hold the sample value

The second step is the hold operation after the sample pulse. The hold operation is to
keep the sampling value constant for a period of time so that ADC has enough time to
convert the sampling value into the corresponding digital signal. The process of
sample-and-hold operation is shown in Figure 11.3.2. The initial analog signal is
sampled at the control of sampling pulse and become a series of impulses, each
representing the amplitude of the signal at a given instant time. Each sampling
impulse must be kept constant for a certain time interval that usually equals to a
sampling period. After the hold operation, the resulting signal waveform appears a
“stair step waveform.” The outline of the stair steps is close to the initial analog input
waveform.

Usually, the sample-and-hold operation can be implemented within a circuit
called as sample-and-hold circuit. Figure 11.3.3 shows a kind of sample-and-hold
circuit including two noninverting input op-amps, in which uI is the analog input
signal, uO is the output signal after sample-and-hold operation, and the sampling
switch is controlled by the control signal S. The capacitor C is used to retain the
input analog quantity. The op-amp A1 is used to provide high input impendence for
the analog input signal, and A2 is to isolate the capacitor C and offer the enough output
current. When the switch is closed, the capacitor C is charged, which corresponds to
the sampling process. While the switch is opened, the charge in the capacitor can be
retained because the input impendence of the op-amp A2 is very high, which corre-
sponds to the holding sample value. In fact, the input impendence of the op-amp A2 is
not infinitely high, so the charge in the capacitor has a drop with a small magnitude.

Sample Hold

Sample version of
input signal

Sample-and-hold Sample-and-hold 
approximation of input signal

Analog signal

Sample pulse

Figure 11.3.2: Illustration of a sample-and-hold operation.

S
C

uI

uo
+
A1 +

A2

+uc

–

–

–

Figure 11.3.3: An example of the sample-and-
hold circuit.
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11.3.3 Quantization and encoding

Quantization refers to the process of representing a continuously analog signal with a
discrete set of points. Usually the value of analog signal can have any value between
two limits, but a discrete set of points only represent a limited number of possible
values and information. Hence, the values between the points are lost. This unavoid-
ably creates error called as quantization error. Quantization error is the difference
between the actual sampled value and the quantized value. In order to improve the
performance of the ADC process, much of efforts are related to minimizing these
errors. Encoding refers to the process of using a group of binary code to represent the
quantized value. The number of the quantized levels depends on how many bits in
the binary code. The more the bits that are used to represent a sampled value, the
more accurate the representation is.

Let us take a three-bit ADC as an example. The three-bit ADC converts the analog
signal to a three-bit binary code. Assume that the analog signal is between 0 and 1 V.
Because the three-bit binary code can only represent eight (23) possible values, the
input analog signal should be uniformly quantized with eight quantization levels: 0
V, 1/8 V, 2/8 V, 3/8 V, 4/8 V, 5/8 V, 6/8 V, and 7/8 V, as shown in Figure 11.3.4(a). Each
quantized level corresponding to a segment of analog voltage region can be encoded
by using a unique three-bit binary code. If the analog sampled value is between 0 and
1/8 V, the quantized level is 0 V encoded as 000; if the analog sampled value is
between 1/8 and 2/8 V, the quantized level is 1/8 V encoded as 001; and the rest can
be done in the same manner. Due to the difference between the actual sampled value
and the quantized value, the maximum quantization error is 1/8 V. This quantization
process is called uniform quantization. In order to minimize the quantization error, an
optional method is adopted for nonuniform quantization. The input analog signal
between 0 and 1 V should be quantized with eight quantization levels: 0 V, 2/15 V, 4/
15 V, 6/15 V, 8/15 V, 10/15 V, 12/15 V, and 14/15 V, as shown in Figure 11.3.4(b). The
first quantized level of 0 V represents the analog sampled value between 0 and 1/15 V,
which is different from the other quantized levels. The maximal quantization error in
this region is 1/15 V. The second quantized level of 2/15 V represents the analog
sampled value between 1/15 and 3/15 V. Themaximal quantization error in this region
is also 1/15 V; the rest can be done in the samemanner. Although the voltage range of
the first quantized region is different from that of others, the maximal quantization
error is the same for all quantized segments. This quantization process is called as
nonuniform quantization . Because 1/15 V is less than 1/8 V, the nonuniform quantiza-
tion can further reduce the quantization error. Obviously, the more the bits that are
used to represent a sampled value, the less the maximal quantization error is and
thus the more accurate the representation is.

To illustrate the quantization process of the analog signal, an analog waveform is
quantized into four levels (0–3), where two bits are required for encoding four levels.
As shown in Figure 11.3.5, the sample intervals in the horizontal axis are labeled by
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numbers; the quantization level in the vertical axis is represented by a two-bit binary
code. The sampled data remain unchanged throughout the sample period. The data
are quantized as adjacent lower levels as shown in Table 11.3.1.

The waveform shown in Figure 11.3.6 is reconstructed by using two-bit digital
code; this process is called encoding. It can be seen from Figure 11.3.6 that the
accuracy of the reconstructed signal waveform is quite low if only two-bit binary
code is used to represent the sample value.

In order to improve the conversion accuracy, more bits are selected to encode the
analog signal. Figure 11.3.7 shows the quantization process and Figure 11.3.8 shows
the corresponding reconstruction process with 16 levels, that is, four-bit binary code.
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Figure 11.3.4: The quantization process of a three-bit ADC: (a) uniform quantization and
(b) nonuniform quantization.
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Figure 11.3.5: Sample-and-hold output waveform with four quantization levels. The original analog
waveform is also shown for reference.
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The waveform in Figure 11.3.8 is the original waveform reconstructed by using
four-bit binary codes. It can be seen that the result ismore approximate to the original
waveform than that by only using two-bit digital codes. However, the reconstructed
waveform is still deviating from the original waveform. This illustrates that the higher
accuracy is achieved with more bits. For most of the integrated ADCs, the bits in the
output digital code are from 8 to 24 bits, and the sample-and-hold circuit is often
integrated inside the ADC chip.

11.4 Analog-to-digital converter (ADC)

Analog-to-digital conversion is the process by which an analog signal is converted
into a digital signal. The conversion involves quantization of the input, so it

Table 11.3.1: Two-bit quantization for the waveform in
Figure 11.3.5.

Sample interval Quantization level Code
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Binary
values

Original analog waveform

Reconstructed waveform

Figure 11.3.6: The reconstructed waveform of Figure 11.3.5 with four quantization levels. The original
analog waveform is also shown for reference.

11.4 Analog-to-digital converter (ADC) 413

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



necessarily introduces a small amount of error or noise. Furthermore, instead of
continuously performing the conversion, an ADC performs the conversion periodi-
cally, limiting the allowable bandwidth of the input signal. This chapter introduces
several commonly used types of ADCs including the flash ADC, successive-approx-
imation ADC, dual-slope ADC, and sigma-delta ADC.
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level (Code)
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Sample
intervals
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2(0010)
3(0011)
4(0100)
5(0101)
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10(1010)
11(1011)
12(1100)
13(1101)
14(1110)
15(1111)

Original analog waveform Analog sampled waveform

Figure 11.3.7: Sample-and-hold output waveform with 16 quantization levels. The original analog
waveform is also shown for reference.
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Figure 11.3.8: The reconstructed waveform of Figure 11.3.7 with 16 quantization levels. The original
analog waveform is also shown for reference.
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The objectives of this section are to
– Describe the basic function of the ADCs
– Explain how the flash ADCs works
– Describe the operation of successive-approximation ADC
– Discuss how dual-slope ADC works
– Explain how sigma-delta ADC works
– Discuss performance characteristics of ADCs

ADC is to convert the analog sampled value of the sample-and-hold circuit to a
series of binary codes that represent the amplitude of analog signal at each sample
time. The sample-and-hold process keeps the amplitude of the analog signal constant
between sample pulses, so ADC can complete analog-to-digital conversion by using a
constant value instead of time-varying analog signal values during a conversion
interval, which corresponds to the time between sample pulses. Figure 11.4.1 shows
the basic function of an ADC circuit that performs analog-to-digital conversion. The
sample intervals are indicated by dashed lines.

11.4.1 Flash (simultaneous) ADC

Figure 11.4.2 show a three-bit flash ADC converting analog signal, uI, to a series of
three-bit binary codes，D2 through D0. The three-bit flash ADC consists of a resistive
voltage-divider, seven comparators, seven flip-flops, and a priority encoder. The
analog signal, uI, is between 0 and + VREF. Eight resistors are used to construct a
resistive voltage-divider, which divides VREF into eight voltage region and provides
seven reference voltages to seven comparators. The corresponding reference voltage
value is labeled in Figure 11.4.2. In fact, the resistive voltage-divider plays a role of
quantizing the analog signal between 0 V and + VREF into eight quantization levels:
0, 2/15 VREF, 4/15 VREF, 6/15 VREF, 8/15 VREF, 10/15 VREF, 12/15 VREF, and 14/15 VREF.
This quantization process is a nonuniform quantization, with the maximal quantiza-
tion error of 1/15 VREF. Seven comparators are adopted to compare input analog
voltagewith the reference voltage to determinewhich voltage region the input analog
voltage belongs to, that is, judge which quantization level the input analog voltage
should be converted to. When the conversion clock pulse arrives, the outputs of

ADC
 1 00 0 1 0 11 1 0 0 1

Figure 11.4.1: Basic function of an ADC.
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seven comparators (CO7–CO1) are sent to the output of seven D flip-flops (Q7–Q1), and
then passed to the priority encoder. The resulting output from the priority encoder is
a three-bit binary code, which corresponds to the quantization level of the input
analog signal.

A comparator is composed of an op-amp with open loop. The inverting input of
op-amp is a reference voltage provided by the resistor voltage-divider and the non-
inverting input is the input analog voltage. If the input analog voltage is greater than
its reference voltage, the output of the op-amp is a HIGH. Otherwise, the output is a
LOW. The priority order of the priority encoder is from input Q7 (the highest order) to
input Q1 (the lowest order) and the activate level is HIGH. Therefore, the conversion
table of a flash ADC is listed in Table 11.4.1.

The flash ADC is to compare the input analog voltage with the reference voltage by
using the specified high-speed comparators. A three-bit flashADC converter uses 7 (23−1)
comparators. A four-bit flash ADC needs 15 (24−1) comparators. In general, an n-bit flash
ADC needs 2n−1 comparators. The number of bits used in the ADC determines its
resolution. Therefore, the flash ADC with high resolution requires a large number of
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Figure 11.4.2: The three-bit flash ADC.
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comparators, which make the integrated circuit scale difficult to be enlarged. The main
advantage of the flash ADC is the fast conversion because of high throughput measured
in samples per second.

There are many monolithic integrated flash ADC products such as AD10012
(8-bit), AD10002 (8-bit), and AD10020 (10-bit) manufactured by the AD Company.

Example 11.4 Determine the binary code output of the three-bit flash ADC with uniform quantization
level for the input signal and conversion clock pulse as shown in Figure 11.4.3. Assume the reference
voltage VREF = +8V.

Solution
Since the input analog signal is between 0 and 8 V and the three-bit code have eight states, eight
uniform quantization level is 0 V, 1 V, 2 V, 3 V, 4 V, 5 V, 6 V, and 7 V, which correspond to eight voltage
region, that is, [0 V, 1 V], (1 V, 2 V], (2 V, 3 V], (3 V, 4 V], (4 V, 5 V], (5 V, 6 V], (6 V, 7 V], and (7 V, 8 V]. Each
voltage region has the unique binary code. Therefore, the resulting binary code sequence is listed as
follows and the corresponding waveforms is shown in Figure 11.4.4 associated with the clock pulse.

100,110,111,110,100,010,000,001,011,101,110,111

Table 11.4.1: Conversion table of three-bit flash ADC.

Input analog voltage Outputs of comparators Binary code

uI CO CO CO CO CO CO CO D D D

≤uI<VREF/          

VREF/≤uI<VREF/          

VREF/≤uI<VREF/          

VREF/≤uI<VREF/          

VREF/≤uI<VREF/          

VREF/≤uI<VREF/          

VREF/≤uI<VREF/          

VREF/≤uI<VREF          

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9 10 11 12

t

V

Enable 
pulses

Analog
input

Figure 11.4.3: Sampling of values on a waveform for converting to binary code.
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11.4.2 Successive-approximation ADC

1. Operating principle
The successive-approximation ADC is one of themost widely used ADCs. Figure 11.4.5
shows the typical successive-approximation ADC circuit that consists of four main
subcircuits: a sample-and-hold circuit, a voltage comparator, a successive-approx-
imation register (SAR) , and an n-bit internal DAC. A sample-and-hold circuit is to
acquire the input sampled voltage, uI. The analog voltage comparator compares the
input voltage uI to the output of the internal DAC and outputs the comparison result
to the SAR. A SAR is designed to supply an approximate digital code of the input
voltage uI to the internal DAC. The internal reference DAC, for comparison with VREF,
supplies the comparator with an analog voltage equal to the digital code output of the
SAR.

D0

D1

D2

100

Enable
pulses

1 2 3 4 5 6 7 8 9 10 11 12

110 111 110 100 010 000 001 011 101 110 111

Figure 11.4.4: The final digital output for sample-and-hold values.
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Figure 11.4.5: Schematic diagram of n-bit successive-approximation ADC.
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The conversion process of the successive-approximation ADC is similar to the
process of weighting object with a balance. Note that the digit at different position is
equivalent to apply different weights on a balance. The SAR is initialized so that the
most significant bit (MSB) is equal to a digit “1”. This code is fed into the DAC, which
then supplies the analog equivalent of this digital code (VREF/2) into the comparator
circuit for comparison with the sampled input voltage. If this analog voltage exceeds
uI, the comparator causes the SAR to reset this bit; otherwise, the 1 of the bit is left.
Then the next bit is set to a 1 and the same test is done, continuing this binary search
until every bit in the SAR has been tested. The resulting code is the digital approx-
imation of the sampled input voltage and is finally output by the SAR at the end of
conversion (EOC). The system starts from the MSB, then the next MSB, then the next,
and so on. When all the bits in the DAC have been compared, the conversion cycle is
completed.

In order to better understand the operation of successive-approximation ADC, we
take an example of an eight-bit conversion, which has the reference voltage (VREF) of
8 V and input analog voltage of 5.27 V. Table 11.4.2 lists the output of the DAC at
different bit input.

When a negative pulse is applied on the start input, the ADC begins to work and
all bits in the SAR is cleared at the beginning of each cycle. The conversion starts with
the MSB in SAR; let the 27 bit equals to a 1 in the first conversion clock pulse and the
output of DAC is half of the reference voltage, that is, 4 V. The output of DAC uO is fed
back to the inverting input of a comparator and compared with the input voltage uI.
Because uO is less than uI, the output of the comparator is HIGH; the 1 in MSB should
be retained in the SAR. In the second clock pulse, let the 26 bit equal to a 1. The output
of the DAC is 6 V because there is a 1 on the 27 bit input and on the 26 bit input: 4 V + 2
V = 6 V. Since this output of 6 V is greater than the input of 5.27 V, the output of the
comparator become LOW, making the 26 bit reset in the SAR. In the third clock pulse,

Table 11.4.2: The output of the DAC corresponding to different bit input.

Inputs Output

D D D D D D D D uo

        V
        V
        V
        .V
        .V
        .V
        .V
        .V
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let the 25 bit equal to a 1. The output of the DAC is 5 V because there is a 1 on the 27 bit
input and on the 25 bit input: 4 V + 1 V = 5 V. Since this output of 5 V is less than the
input of 5.27 V, the output of the comparator becomes HIGH, making the 1 in 25 bit
retained in the SAR. The test can be done in the same manner until all eight bits have
been tried, thus completing the conversion cycle. The resulting binary code in the
register is 10101000 that corresponds to the analog voltage of 5.25 V, and there is 0.02
V error compared with 5.27 V. The timing waveform generated during conversion is
shown in Figure 11.4.6. When one conversion cycle is completed, the next conversion
cycle begins and repeats the aforementioned process. Note that the SAR should be
reset at the beginning of each cycle.

2. Typical integrated successive-approximation ADC
The ADC0809 is a typical integrated ADC for data acquisition component, which is a
monolithic CMOS device with an eight-bit ADC, eight-channel multiplexing analog
switches, and microprocessor compatible control logic. The eight-bit ADC uses suc-
cessive approximation as the conversion technique. The converter features a high
impedance chopper stabilized comparator, a 256R voltage divider with analog switch
tree and a SAR. The eight-channel multiplexer can directly access any of the eight-
single-ended analog signals. The device eliminates the need for external zero and
full-scale adjustments. Easy interfacing tomicroprocessors is provided by the latched
and decoded multiplexer address inputs and latched TTL tristate outputs. The
ADC0809 offers high speed, high accuracy, minimal temperature dependence,
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Figure 11.4.6: Timing waveform of one conversion cycle for a successive-approximation ADC.
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excellent long-term accuracy, and repeatability, as well as consumesminimal power.
These features make this device ideally suited for applications from process and
machine control to consumer and automotive applications. The internal block dia-
gram and dual-in-line package with 28 pins are shown in Figure 11.4.7.

(1) Multiplexer
The device contains an eight-channel single-ended analog signal multiplexer. A
particular input channel is selected by using the address decoder. Table 11.4.3 lists
the input states for the address lines to select any channel. The address is latched into
the decoder on the low-to-high transition of the address latch enable signal.

(2) The eight-bit ADC
The eight-bit ADC is the heart of ADC0809. The converter is designed to give fast,
accurate, and repeatable conversions over a wide range of temperatures. The
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Figure 11.4.7: An eight-bit integrated ADC ADC0809: (a) internal block diagram and (b) pin diagram.

Table 11.4.3: Channel selection.

Selected analog
channel

Address lines Selected
analog
channel

Address lines

ADDC ADDB ADDA ADDC ADDB ADDA

IN    IN   

IN    IN   

IN    IN   

IN    IN   
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converter is partitioned into three major sections: the 256R ladder network, the SAR,
and the comparator. The 256R ladder network approach is chosen over the conven-
tional R/2R ladder because of its inherent monotonicity, which guarantees no miss-
ing digital codes. Monotonicity is particularly important in closed-loop feedback
control systems. A nonmonotonic relationship can cause oscillations that will be
catastrophic for the system. Additionally, the 256R network does not cause load
variations on the reference voltage.

(3) Control and timing
The SAR is reset on the positive edge of the start conversion pulse (START) into the
ADC. The conversion begins on the falling edge of the start conversion pulse. A
conversion in process will be interrupted by receiving a new start conversion pulse.
Continuous conversion may be accomplished by tying the EOC output to the START
input. If used in this mode, an external start conversion pulse should be applied after
power up. EOC will go low between 0 and 8 clock pulses after the rising edge of start
conversion. When the conversion is finished, EOC goes high and the resulting digital
code is latched into the “tristate output latch.”

(4) Power line and others
VCC is +5 V power supply and GND is connected to the ground. +VREF and −VREF are
reference voltage inputs, which are used to supply reference voltages to DAC. +VREF is
often connected with VCC and −VREF is often connected to the ground. CLOCK is the
clock input for ADC0809 to provide a 640 kHz clock pulse for successive comparisons.

11.4.3 Dual-slope ADC

1. Operating Principle
Dual-slope ADC is commonly used in digital voltmeters and other types of measure-
ment instruments. It is a kind of indirect converter. Generally, it converts the input
analog signal into an intermediate variable “time”, then quantizes and encodes the
time to obtain digital signal. This kind of ADC is all called the voltage–time conver-
sion. Because the integrator generates two different ramps, one with the unknown
analog input voltage VI and another with a known reference voltage −VREF. Hence,
this ADC is called as dual-slope ADC. Since two integral processes are required in one
conversion cycle, this ADC is also called as dual-integral ADC. The block diagram of
the dual-slope ADC is shown in Figure 11.4.8.

When the dual-slope conversion starts, the binary counter is initially reset; the
output of integrator is reset to 0 V. The switch S1, which is controlled by control logic, is
switched to the positive input voltageVI, so the positive input voltageVI is applied to the
inverting input of the integrator through the resistor R. Assume that the positive input
voltage is constant for a period of time T1. Since the inverting input of the integrator is a
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virtual ground, the capacitor can be charged by the VI through the input resistor R.
Because the charging current is fixed, the charge on the capacitor Cwill increase linearly
and thus a negative-going linear ramp is on the output of the integrator. At the same
time, the output of comparator is HIGH and the clock is passed through the AND gate
driving the binary counter to count up. The negative ramp continues for a fixed time
period T1, which is determined by a count detector for the time period T1. At the end of
the fixed time period T1, the ramp output of integrator can be deduced as

VO1 =
1
C

ðT1
0

ð− VI

R
Þdt = −

T1

RC
VI (11:4:1)

When the counter reaches the fixed count at time period T1, it will be reset and
the control logic switches the integrator input to a negative reference voltage (−VREF).
Now the ramp generator starts with the initial value VO1 and increases in positive
direction until the output voltage of the integrator reaches 0 V; at the same time, the
counter is advanced. When VO1 reaches 0 V, the output of comparator becomes LOW
(i.e., logic 0) and thus AND gate is deactivated. This results in no further clock are
applied through AND gate. Now, the conversion cycle end and the positive ramp
voltage can be deduced as

VO1j j= T2

RC
VREF =

T1

RC
VI (11:4:2)

Therefore,

T2 =
T1

VREF
VI (11:4:3)

Figure 11.4.9 shows two linear integral processes, where T1 is the charging time
interval in which the voltage on capacitor increases until theMSB of the counter is a 1,
and T2 is the discharging time interval during which the capacitor is discharged until
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Figure 11.4.8: Block diagram of the dual-slope ADC.
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the voltage on the capacitor is 0 V. Assume that the period of the clock pulse is
represented by Tcp, then the time interval T1 can be expressed as

T1 = 2nTCP (11:4:4)

where 2n is the count value of the binary counter when the MSB of the counter is a 1.
The actual conversion of analog voltage VI into a digital count occurs during time

interval T2. The binary counter gives the corresponding digital value for time interval
T2. The clock is connected to the counter at the beginning of T2 and is disabled at the
end of T2. So the time interval T2 can be expressed as

T2 =DTCP (11:4:5)

where D is the count digital output of the counter at the end of T2.
By substituting eqs. (11.4.4) and (11.4.5) into eq. (11.4.3), the digital output of the

counter can be deduced as follows.

D=
T1

TCPVREF
VI =

2n

VREF
VI (11:4:6)

The digital output D of the counter is proportional to the input voltage VI. Now
the voltage-to-time conversion is complete.

Compared with the successive-approximation ADC, the dual-slope ADC can only
respond to the average of the input signal because of the existence of integrator.
Therefore, the outstanding advantages of dual-slope ADC are stable operating per-
formance and strong anti-interference ability. From the aforementioned analysis, it
can be seen that as long as the integrator’s time constants of the two integrations are
equal, the counting result of the counter is independent of RC. Thus, the requirement
of the circuit for RC accuracy is not strict, and the structure of the circuit is relatively
simple. The dual-slope ADC belongs to the low-speed ADC, with the single conversion
time of 1–2 ms; however, the successive-approximation ADC can reach 1 μs. In many
industrial control systems, the millisecond conversion time is enough.
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Figure 11.4.9: Waveform of dual-slope ADC.
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2. Typical Integrated Dual-slope ADC
There are many IC products of dual-slope ADCs, such as ICL7107, 7109, 5G14433, and
so on. Figure 11.4.10 shows the block diagram of a typical dual-slope ADC chip
(ICL7107). ICL7107 is high performance, low power, the 31/2 digits ADC, including
seven segment decoders, display drivers, a reference, and a clock. It can directly drive
an instrument size common anode light-emitting diode (LED) display. Four BCD digit
readings can be directly displayed by using four seven-segment LED display. The
maximal reading is 1999, in which the 3 refers to the rear three 7-segment display can
display ten BCD digits from 0 to 9 and 1/2 refers to the headmost one 7-segment
display can only display 1 or no display. ICL7107 can directly drive the common
anode LED displayer and can display the analog voltage directly by decimal numbers
from 0000 to 1999.

The advantages of this dual-slope ADC are that it can achieve high accuracy with
fewer components, and can achieve strong anti-interference performance for the gen-
eral input, which is a direct current (DC) or a slow changing DC. Dual-slope ADC is
widely used in digital measuring instruments, panel of industrial control cabinets,
automobile instruments, and so on.

11.4.4 Sigma-delta ADC

Sigma-delta is a widely used conversion method in analog-to-digital conversion[39],
especially in the area of communication using audio signals. In the conventional
ADC, an analog signal is sampled with a sampling frequency and subsequently

Decoder
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CLOCK Control logic

Integral 
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Input uI

Benchmark 
powerThousand Hundred Ten Bit

DecoderDecoder

Figure 11.4.10: A block diagram of dual-slope ADC ICL7107.
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quantized by using the multilevel quantizer. This process introduces quantization
noise. Sigma-delta ADC is based on delta modulation , which quantizes the difference
(increase or decrease) between two consecutive samples and the change in the signal
(delta) is encoded, rather than the absolute value like in the other ADCs. The result is
a stream of pulses, as opposed to a stream of numbers. Delta modulation is a one-bit
quantization method. In sigma-delta modulation, the accuracy of the modulation is
improved by passing the digital output through a one-bit DAC and adding (sigma) the
resulting analog signal to the input signal (the signal before delta modulation),
thereby reducing the error introduced by the delta modulation.

The output of the delta modulator is a single-bit data stream, that is, a stream of
pulses. The number of 1s in a stream of pulses represents the level or amplitude of the
input signal. When the number of 1s exceeds the given number of clock cycles, the
number exceeded determines the amplitude during that interval. The maximum
number of 1s corresponds to the maximum value of the positive input voltage. Half
of the maximum number of 1s corresponds to input voltage of zero. No 1s, that is, all
0s correspond to the maximum value of the negative input voltage. Figure 11.4.11
illustrates the quantization process in a simplified way. For example, suppose that if
the input signal is a positive maximum, there will be 4096 1s occurring during the
interval. Then when the input signal is zero, there are 2048 1s during the interval;
when the input signal is negative maximum, there is no 1s during the interval. For the
signal level between the negative maximum and the positive maximum, the number
of 1s is proportional to the level of the input signal.

The basic block diagram of the dashed rectangle shown in Figure 11.4.12 com-
pletes the conversion shown in Figure 11.4.11. The analog input signal and the analog
signal from the converted quantized bit stream from the ADC in the feedback loop are
applied to the summation (∑) point. The difference (Δ) signal out of the ∑ is integrated.
The one-bit ADC increases or decreases the number of 1s according to the change of
the difference signal. The purpose of this is to keep the quantized signal that is fed

+MAX

–MAX

0

2048 1s 4096 1s 0 1s

Input signal 
from sample-

and-hold

Quantized 
output from 
sigma-delta

Figure 11.4.11: A simplified illustration of sigma-delta ADC.
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back equals to the incoming analog signal. The one-bit quantizer is essentially a
comparator followed by a latch.

To accomplish the sigma-delta conversion, a special method is used to convert a
single-bit stream into a series of binary codes, as shown in Figure 11.4.12. The counter
counts the 1s in the quantized data stream for successive intervals. The code in the
counter then represents the amplitude of the analog input signal for each interval.
These codes are shifted out into the latch for temporary storage. The output of the
latch is a series of n-bit codes that completely represent this analog signal.

11.4.5 Analog-to-digital conversion errors

When analyzing the ADC errors, a four-bit conversion is used to illustrate the basic
principle, assuming that the test input is an ideal linear ramp signal[47].

Missing codes: Figure 11.4.13(a) shows that the binary code 1001 that does not
appear on the output of ADC. Note that the signal 1000 stays for two cycles, and then
the output jumps directly to 1010. In a flash ADC, a failure of one of the op-amp
comparators may cause errors of missing coding.

Incorrect codes: Figure 11.4.13(b) shows that several binary codes from the ADC
output are incorrect. The results of the analysis show that 21 bit has been stuck in
LOW and resulted in errors.

Offset: The offset is shown in Figure 11.4.13(c). In this case, the analog output
voltage of the ADC is always higher than the actual value.

11.5 Summary

1. DACwith n bits divides a range of analog values (voltage or current) into 2n steps.
The size or magnitude of each stairs step is the analog equivalent weight of the
LSB. This is called the resolution or step size.

2. DAC usually consists of reference voltage or current, the resistor networks,
analog switches, and amplifier. Two kinds of DACs are the binary-weighted-
input DAC and R/2R ladder DAC.

Integrator 1-bit 
quantizer∑ Δ

DAC

–

+Analog 
input 
signal

Summing
point

Binary code 
output n-bit

counter

Latch

Quantized output 
is a single bit data 

stream

Figure 11.4.12: A partial function block diagram of a sigma-delta ADC.
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3. The binary-weighted-input DAC uses a resistor network where resistor values
represent the weights of the input bits of the binary number.

4. The R/2R ladder DAC uses a resistor network with only two resistor values with R
and 2R, which is greatly convenient for design and manufacture of integrated
circuit and overcomes the disadvantage of multiple resistor values for binary-
weighted-input DAC.

5. The ADC is the device that converts an analog signal to a digital one in a certain
proportion. Analog-to-digital conversion is generally divided into four steps:
sampling, holding, quantization, and encoding.

6. Sampling is the process to use an enough number of discrete values at point on a
waveform and the discrete values that will essentially represent the shape of
waveform. In practice, the sample frequency is at least greater than the twice as
the highest analog frequency.

7. The hold operation is to keep the sampling value constant for a period of time so
that ADC has enough time to convert the sampling value into the corresponding
digital signal.

8. Quantization refers to the process of representing a continuous analog signal
with a discrete set of points called as quantized levels that only represent a
limited number of possible values. The difference between the actual sampled
value and the quantized value is called as quantization error.

9. Encoding refers to the process of using a group of binary code to represent the
quantized value. The number of the quantized levels depends on how many bits
in the binary code. The more bits that are used to represent a sampled value, the
more accurate is the representation.

10. The development of ADC and DAC is facilitated by the widespread use of digital
systems such as microprocessors and computers in a variety of instrumentation
and control systems. Accuracy and conversion speed are the two important
parameters of ADC and DAC that are the main factors determining the accuracy
and operating speed of the entire system.
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Figure 11.4.13: Illustrations of analog-to-digital conversion errors: (a) missing code; (b) incorrect
codes; and (c) offset.
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11. The DAC can convert the digital signal to analog signal. The resistor network of
R/2R ladder DAC contains only two resistor values with R and 2R. Since only two
resistors are required, this method overcomes the disadvantage of multiple
resistor values for binary-weighted-input DAC, which is greatly convenient for
the design and manufacture of the integrated circuit.

12. Four types of ADCs are flash ADC, successive-approximation ADC, dual-slope
ADC, and sigma-delta ADC.

13. Flash converters use analog comparators and an encoder to assign a digital value
to the analog input. These are the fastest converters because the only delays
involved are propagation delays.

14. A successive-approximation converter has a constant conversion time and is
probably the most common general-purpose converter.

15. Dual-slope ADC is a kind of indirect converter. Generally, it converts the input
analog signal into an intermediate variable–time and thus the conversion speed
is slow.

16. Sigma-delta ADC is based on delta modulation, which quantizes the difference
(increase or decrease) between two consecutive samples and the change in the
signal (its delta) is encoded, rather than the absolute value like in the other ADCs.

Key terms

Analog-to-digital converter (ADC): A circuit that converts analog signal to a digital
signal.
Digital to analog converter (DAC):A circuit that converts the digital signal back to a
analog signal.
Sample: The process of taking a sufficient number of discrete values at points on a
waveform that will define the shape of waveform.
Quantization: The process of converting an analog signal in a quantized level
represented by a binary code.
Nyquist frequency: The highest signal frequency that can be sampled at a specified
sampling frequency; a frequency equal to or less than half the sampling frequency.
Missing codes: The binary codes disappearing on the output of ADC.
Offset: The phenomenon that the analog output voltage of the ADC is always higher
or lower than the actual value.
Resolution: The number of bits in the digital input; the ratio of the minimum output
voltage to the maximum output voltage.
Conversion error: A percentage of the full scale of the output voltage, or asmultiples
of the minimum output voltage.
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Self-test

11.1 An ADC refers to an ______________
(a) alphanumeric data code (b) analog-to-digital converter
(c) analog device carrier (d) analog-to-digital comparator

11.2 A DAC refers to a ______________
(a) digital-to-analog computer (b) digital analysis calculator
(c) data accumulation converter (d) digital-to-analog converter

11.3 In a digital representation of voltages using an eight-bit binary code, howmany
values can be defined?
(a) 16 (b) 64 (c) 128 (d) 256

11.4 In a digital reproduction of an analog curve, accuracy can be increased
by______________
(a) sampling the curve more often
(b) sampling the curve less often
(c) decreasing the number of bits used to represent each sampled value
(d) (a), (b), and (c)

11.5 In a binary-weighted DAC, the resistors on the inputs______________
(a) determine the amplitude of the analog signal
(b) determine the weights of the digital inputs
(c) limit the power consumption
(d) prevent loading on the source

11.6 A four-bit R/2R ladder DAC uses______________
(a) one resistor value (b) two resistor values
(c) three resistor values (d) four resistor values

11.7 Sampling of an analog signal produces______________
(a) a series of impulses that are proportional to the amplitude of the signal
(b) a series of impulses that are proportional to the frequency of the signal
(c) digital codes that represent the analog signal amplitude
(d) digital codes that represent the time of each sample

11.8 According to the sampling theorem, the sampling frequency should
be______________
(a) less than half the highest signal frequency
(b) greater than twice the highest signal frequency
(c) less than half the lowest signal frequency
(d) greater than the lowest signal frequency
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11.9 Generally, an analog signal can be reconstructed more accurately
with______________
(a) more quantization levels (b) fewer quantization levels
(c) a higher sampling frequency (d) a lower sampling frequency
(e) either answer (a) or (c)

11.10 The resolution of a 6-bit DAC is______________
(a) 63% (b) 64% (c) 15.8% (d) 1.58%

11.11 For a four-bit DAC, the LSB is______________
(a) 6.25% of full scale (b) 0.625% of full scale
(c) 12% of full scale (d) 1.2% of full scale

11.12 A flash ADC use______________
(a) counters (b) op-amps
(c) an integrator (d) flip-flops
(e) answers (a) and (c)

11.13 A dual-slope ADC uses______________
(a) a counter (b) op-amps
(c) an integrator (d) a differentiator
(e) answers (a) and (c)

Problems

11.1 Determine the resolution of the following DACs, expressed by a percentage.
(a) a four-bit DAC (b) an eight-bit DAC
(c) a ten-bit DAC (d) an 24-bit DAC

11.2 Determine the output waveform of the binary-weighted input DAC in Figure
P11.1 (a) for a given input waveforms in Figure P11.1(b).

(a) when the sequence of four-bit numbers in part
(b) is applied to the inputs. Assume that a low level is 0 V and a high level is +5 V.

–
+

Vout

200 kΩ

100 kΩ
50 kΩ

25 kΩ

10 k
D0

D1

D2

D3

(a) (b)

D0

D1

D2

D3

Figure P11.1
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11.3 Determine the output of the R/2R ladder DAC in Figure P11.2 when the digital
input is (0FDA)16. Assume that VREF =10 V.

11.4 Analyze the implementing function of a circuit that consists of an AD5724 and
an op-amp, as shown in Figure P11.3, where VI is analog input voltage and Vout

is the output voltage.

11.5 Figure P11.4 shows an R/2R ladder DAC, where the outputs of the counter are
connected to the digital inputs. The state sequence of the counter is listed in
Table P11.1. Complete Table P11.1 by filling the corresponding output of DAC
and draw the waveform of output Vout in relation to the clock pulse. Assume
that the high level is 8 V, the low level is 0 V, and the initial state (Q1Q0) of the
counter start from the state 00.
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11.6 Explain the operating principle and draw thewaveform of output voltage uO for
the logic circuit shown in Figure P11.5. The stored data in EPROM 2716 are given
in Table P11.2.

+

–R

Vout

3R

2R

2R2R2R

CounterCP

Q1Q0

CP

t
O

Table P11.1 State sequence table 
Q1 Q0 Vout/ V

0          0
0          1
1          0
1          1

0          0
0          1
1          0

Figure P11.4

Table P11.2: Stored data in EPROM 2716.

Address inputs Data contents

A A A A D D D D
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11.7 Determine the binary code output of the three-bit flash ADC circuit in Figure 11.4.2
when the input signal is applied to its input at the clock pulses shown in
Figure P11.6. Assume that the reference voltage VREF = +8 V.
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RF

CS

VRE FVDD

D6D7

D7 D6 D5 D4 D3 D2 D1 D0

D5 D4 D3 D2 D1 D0
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Figure P11.6: Sample values on a waveform for conversion to binary code.
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11.8 Show the output of the sample circuit when the waveform shown in Figure P11.7
is applied to a sample circuit and the sampled period is a 1ms interval. Assume a
one-to-one correspondence between the input and output.

11.9 The output of the sample circuit in Problem 11.8 is applied to a hold circuit.
Show the output of the hold circuit.

11.10 If the output of the hold circuit in Problem 11.9 is quantized using two bits,
what is the resulting sequence of binary codes.

11.11 When using four-bit quantization, repeat Problem 11.9.

11.12 How many comparators are required to form an eight-bit flash ADC?

11.13 Determine the binary output code of a three-bit flash ADC for the analog input
signal in Figure P11.8.
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Figure P11.8
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11.14 For a certain two-bit successive-approximation ADC, the maximum ladder out-
put is +8V. If a constant voltage of + 6V is applied to the analog input, determine
the sequence of binary states for the SAR.

11.15 Repeat Problem 11-14 for a four-bit successive-approximation ADC.

11.16 Figure P11.9 shows the timing waveform of one conversion cycle for a certain
eight-bit successive-approximation ADC with the clock frequency of 250 kHZ.
Determine the time required for one conversion cycle and the resulting digital
output.

11.17 The maximum output voltage uomax equal to 12.276 V for a certain ten-bit
successive-approximation ADCwith the clock frequency of 500 kHz. Determine
the resulting digital output and the requiring time for one conversion cycle
when the input voltage uI is 4.32 V.

11.18 A dual slope ADC is shown in Figure P11.10.
(a) Analyze its operating principle.
(b) If the maximum of the unknown input voltage VI is 2 V and the minimum

voltage distinguished is 0.1 mV, determine what the maximum count of
binary counter is and how many bits is required in binary counter.

(c) Determine the sampling time T1, taking the clock frequency as 200 kHz.
(d) Determine the integral time constant RC when the maximal output voltage

of integrator is 5 V at the input voltage of 2 V and clock frequency of
200 kHz.
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Figure P11.9
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11.19 A circuit is shown in Figure P11.11, where 74LS190 is an 8421BCD up/down
counter and AD5724 is eight-bit DAC chip.
(a) Explain the function of the circuit.
(b) Determine the maximum of the output.
(c) Sketch the output waveform of uo in relation to the clock pulse.
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11.20 Analyze the function of a circuit that consists of eight-bit ADC0809, four-bit
binary counter, and RAM with capacity 16 × 8, as shown in Figure P11.12.
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12 Integrated gate circuit

12.1 Introduction

Gate circuit is the unit circuit that can implement both the basic logic operation and
combinational logic operation. Basic logic gates include AND, OR and inverter, and
combinational logic gates involve NAND, NOR, XOR, XNOR, etc. Gate circuits can be
constructed with multiple diodes, transistors and other components. In 1960s, the
invention of the integrated circuit (IC) allowed multiple diodes, transistors, resistors
and other components to be fabricated on a single chip. Also the first integrated-
circuit logic families were introduced.

A logic family is a collection of different integrated-circuit chips that have similar
inputs, outputs, and internal circuit characteristics, but they perform different logic
functions [20]. Now the most successful logic families are bipolar logic family and
metal-oxide semiconductor field-effect transistor (MOSFET) logic family. Bipolar
logic family is one based on bipolar junction transistors called transistor-transistor
logic (TTL). TTL now is actually a family of logic families that are compatible with
each other but differ in speed, power consumption, and cost. With TTL, small- and
medium-scale applications can be implemented with the relative high speed. In this
chapter, the basic operation characteristics and parameters of TTL are introduced in
Section 12.2. After that, we briefly introduce the basic structures of diode logic in
Section 12.3 and then focus on the introduction of TTL families in Section 12.4.

Metal oxide semiconductor (MOS) includes n-channel MOS (NMOS), p-channel
MOS (PMOS) and complementedMOS (CMOS). Among them, CMOS logic family is the
most commonly used to construct large-scale integrated circuits, such as micropro-
cessors and memories due to their lower power consumption and higher integration
level. Now CMOS circuits occupy a vast majority of the worldwide IC market. So, we
focus on introducing the basic structures of CMOS logic gate circuits and the most
commonly used commercial CMOS logic families in Section 12.5.

Chips from different logic families may not be compatible; they may use different
power supply voltages or different input or output conditions to represent logic
values. Lots of circuit systems include chips of TTL families and CMOS families. In
Section 12.6, we introduce how TTL and CMOS families can be mixed within a single
system.

The objectives of this chapter are to
– Understand the performance characteristics of integrated logic families.
– Describe how basic TTL and CMOS gates operate at the component level.
– Recognize the difference between TTL totem-pole outputs and TTL open-collec-

tor outputs
– Connect circuits in a wired-AND configuration.
– Explain how tristate gate operates.
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– Properly deal with unused gate inputs.
– Compare the performance of TTL and CMOS families.
– Describe how TTL and CMOS families can be mixed within a single system.

12.2 Basic operational characteristics and parameters

When you work with digital integrated circuits, you should understand not only their
operations but also some important operational properties such as voltage levels,
noise immunity, power dissipation, fan-out, and propagation delay time [47]. This
section introduces basic operational characteristics and parameters. These opera-
tional properties and parameters guarantee you use digital ICs correctly.

The objectives of this section are to
– Explain the logic levels for CMOS and TTL
– Discuss noise immunity
– Determine the power dissipation of a logic circuit
– Define the propagation delay time of a logic gate
– Discuss speed-power product and explain its significance
– Explain what the fan-out of a gate means

12.2.1 DC supply voltage

Every digital IC has DC supply voltage and ground distributed internally to all
elements within the package, as shown in Figure 12.2.1. The nominal value of the
DC supply voltage for TTL devices is +5 V. For CMOS devices, there are different
supply voltages, for example, +5 V, +3.3 V, +2.5 V, and +1.2 V. For simplicity, DC
supply voltage and ground are usually omitted from logic diagram.

GND

GND

14

7

VCC

VCC

(a) (b)

Figure 12.2.1: Single gate (a), VCC and ground connection and distribution (b) in an IC dual in-line
package. Other pin connections are omitted for simplicity.
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12.2.2 Logic levels

Logic elements process binary digits, 0 and 1. But real logic circuits process
electrical signals such as voltage levels. In any logic circuit, it is a range of voltages
that is interpreted as a logic 0, and a non-overlapping range that is interpreted as
logic 1. Usually there are four different logic-level specifications i.e. UIL, UIH, UOL

and UOH for a logic circuit. UIL and UIH are input low voltage and input high voltage,
respectively. UOL is output low voltage and UOH is output high voltage. Different
logic families accept different range of voltage levels as the input and the output
voltages.

Figure 12.2.2 shows the range of input and output voltages for +5 V CMOS family
and +5 V TTL family, respectively.

For +5 V CMOS circuit, the range of input low voltage (UIL) that represents a
valid LOW (logic 0) is from 0 V to 1.5 V. The range of input high voltage (UIH)

Logic1 (HIGH)
Logic 1(HIGH)

Logic 0(LOW)Logic 0(LOW)

5 V

3.5 V

1.5 V

0V 0V

0.33V

4.4V

5 V

UIH(min)

UOH(min) UOH
UIH

UIL
UOL

UNH

UNL

UIL(max)

UOL(max)

Unallowed Unallowed

Input Output

(a)

UIH

UIL UOL

UOH

UOL(max)

UOH(min)

UIH(min)

UIL(max)

Logic 1(HIGH)
Logic 1(HIGH)

Logic 0(LOW)
Logic 0(LOW)

5 V

2 V

0.8 V

0V 0V

0.4V

2.4V

5 V

Unallowed Unallowed

Input Output

(b)

Figure 12.2.2: Input and output logic levels for + 5 V CMOS (a) and + 5 V TTL (b).
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that represents a valid HIGH (logic 1) is from 3.5 V to 5 V. When an input
voltage is in one of these ranges, it can be interpreted as either HIGH or LOW by
the logic circuit. The range of values from 1.5 V to 3.5 V is an unallowed region.
CMOS gates cannot be operated reliably when the input voltage is in the
unallowed range. The ranges of CMOS output voltages (UOL and UOH) for 5 V
logic are shown in Figure 12.2.2(a). Notice that the minimum high level output,
UOH(min) is greater than the minimum high level input, UIH(min). Also, notice that
the maximum low level output, UOL(max), is less than the maximum low level
input, UIL(max).

For +5 V TTL family, the ranges of input and output voltages, as shown in
Figure 12.2.2(b), are different from that of CMOS family. Generally, the range of
input low voltages (UIL) is from 0 V to 0.8 V and input high voltages (UIH) range
from 2 V to 5 V.

12.2.3 Noise immunity

Noise is the unwanted voltage level induced in electrical circuits and may bring a
trouble to the proper operation of the circuit. In order to resist the effect from noise, a
logic circuit should have a certain amount of noise immunity. That represents the
ability to tolerate a certain amount of unwanted voltage level fluctuation on the input
without changing the output.

Noise margin is used to measure a circuit’s noise immunity and assure that
the highest LOW output is always lower than the highest voltage value that can
be reliably interpreted as LOW, and the lowest HIGH output is always higher
than the lowest voltage value that can be interpreted as HIGH. There are two
values of noise margin specified for a given logic circuit, i.e. the HIGH-level
noise margin (UNH) and the LOW-level noise margin (UNL). These two parameters
are defined as

UNH =UOHðminÞ −UIHðminÞ (12:2:1)

UNL =UILðmaxÞ −UOLðmaxÞ (12:2:2)

UNH is the difference between the lowest possible HIGH output from a driving
gate (UOH(min)) and the lowest possible HIGH input that the load gate can tolerate
(UIH(min)). Noise margin, UNL, is the difference between the maximum possible LOW
input (UIL(max)) that a gate can tolerate and the maximum possible LOW output
(UOL(max)) of the driving gate. Noise margins are illustrated in Figure 12.2.2.
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Example 12.1 Determine the HIGH-level and LOW-level noise margins for +5 V CMOS and for +5 V TTL
circuits by using the information in Figures 12.2.2.

Solution

For 5V CMOS, UIHðminÞ ¼ 3:5V

UILðmaxÞ ¼ 1:5V

UOHðmaxÞ ¼ 4:4V

UOLðmaxÞ ¼ 0:33V
UNH ¼ UOHðminÞ � UIHðminÞ ¼ 4:4V � 3:5V ¼ 0:9V

UNL ¼ UILðmaxÞ � UOLðmaxÞ ¼ 1:5V � 0:33V ¼ 1:17V

For TTL,
UIHðminÞ ¼ 2V

UILðmaxÞ ¼ 0:8V

UOHðminÞ ¼ 2:4V

UOLðmaxÞ ¼ 0:4V
UNH ¼ UOHðminÞ � UIHðminÞ ¼ 2:4V � 2V ¼ 0:4V

UNL ¼ UILðmaxÞ � UOLðmaxÞ ¼ 0:8V � 0:4V ¼ 0:4V

It can be seen from the results of Example 12.1, the noise margin of a CMOS gate is greater than
that of a TTL gate. This means that CMOS family has stronger noise immunity than TTL family. That is
to say, CMOS family is more suitable for a high-noise environment than TTL family.

12.2.4 Power dissipation

The power consumed by a logic gate depends on a number of factors, including its
internal structure, the input signals, the devices that it drives, and how often its output
changes between LOW and HIGH. Figure 12.2.3 shows the current drawn from the DC
supply voltage in a NAND gate. When the output of a logic gate is a HIGH, the DC supply
voltage source offers an amount of current designated by ICCH. At that time, the power
dissipation is the product of the DC supply voltage, VCC, and ICCH. When the output of a
logic gate is a LOW, the DC supply voltage source offers a different amount of current
designated by ICCL. At this situation, power dissipation is the product of VCC and ICCL.

LOW
HIGH

HIGH

(b)(a)

LOW
HIGH

ICCL

+VCC

ICCH

+VCC

Figure 12.2.3: Current from the DC supply in a HIGH (a) and a LOW output state (b)
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When a pulse signal is applied to the input, its output switches back and forth
between HIGH and LOW, and the amount of supply current varies between ICCH and
ICCL. The average power dissipation depends on the duty cycle of the pulse signals. If
the duty cycle is 50%, then the average supply current is therefore

ICC =
ICCH + ICCL

2
(12:2:3)

The average power dissipation is

PD =VCCICC (12:2:4)

The operating frequency also affects the power dissipation of a logic gate.
Figure 12.2.4 shows the power dissipation versus frequency. For a TTL circuit, the
power dissipation is essentially constant over its operating frequency range. But for a
CMOS circuit, the power dissipation is frequency dependent. Power dissipation is
extremely low under static (DC) conditions and increases as the frequency increases
under dynamic operation. For example, the power dissipation of a low-power
Schottky (LS) TTL gate is a constant of 2.2 mW. The power dissipation of an HCMOS
gate is 2.75 μW under static conditions and 170 μW at 100 kHz.

12.2.5 Propagation delay time

When a signal propagates through a logic circuit, it always experiences a time delay,
as illustrated in Figure 12.2.5. When the input level has a transition fromHIGH to LOW

f

PD

TTL

CM
OS

0
Figure 12.2.4: Power versus frequency curves for TTL and CMOS.

Input

Output

Input Output

H

H

L

L tpHL tpLH

H = HIGH
L = LOW

Figure 12.2.5: A basic illustration of propagation delay time.
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for an inverter, the output level changes from LOW to HIGH after a short delay time
called the propagation delay time and denoted by tpd.

There are two propagation delay times specified for logic gates:
tpHL: The delay time between an input change and the corresponding output

change from HIGH to LOW.
tpLH: The delay time between an input change and the corresponding output

change from LOW to HIGH.

These propagation delay times are determined by the 50% points on the pulse
edges used as references. The propagation delay time tpd of a logic circuit can be
determined by the average time of tpHL and tpLH

tpd =
tpHL + tpLH

2
(12:2:5)

The propagation delay time of a gate limits its operating frequency. Generally,
the greater the propagation delay time is, the lower the maximum frequency is. Thus,
a higher speed circuit is one that has a smaller propagation delay time. For example,
a gate with a delay of 10 ns is faster than one with a delay of 40 ns.

12.2.6 Speed-power product

Propagation delay time and power dissipation are two important parameters for logic
circuits. Speed-power product is defined as the product of propagation delay time
and power dissipation. It provides a basis for the comparison of logic circuits and
allows you to simultaneously consider the effect of the propagation delay time and
the power dissipation with only one parameter in the selection of the type of logic
gates to be used in a certain application. The lower the speed-power product is, the
better the performance of logic circuits is. The unit of speed-power product is the
picojoule (pJ). For example, HCMOS has a speed-power product of 1.2 pJ at 100 kHz
while LS TTL has a value of 22 pJ.

12.2.7 Loading and fan-out

This refers to the number and the type of inputs that are connected to a given output.
As shown in Figure 12.2.6, the output of a NAND gate G1 is connected to the same type
inputs of three NAND gates. Gate G1 is called as a driving gate, and Gates G2, G3, G4,
are called as the load gates. Generally, there is a limit to the number of load gate
inputs that a given gate can drive. This limit is called the fan-out of the gate. Fan-out
is the maximum number of load gate inputs that can be connected to a certain output
without affecting the specified operational characteristics of the gate.
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1. CMOS Loading
Loading in CMOS differs from that in TTL because MOSFET in CMOS logic presents a
predominantly capacitive load to the driving gate, as illustrated in Figure 12.2.7. In
this case, the limitations are the charging and discharging times associated with the
output resistance of the driving gate and the input capacitance of the load gates.
When the output of the driving gate is HIGH, the input capacitance of the load gate is
charging through the output resistance of the driving gate, as indicated in
Figure 12.2.7(a). When the output of the driving gate is LOW, the capacitance is
discharging, as indicated in Figure 12.2.7(b).

When more load gate inputs are added to the driving gate output, the total
capacitance increases because the input capacitances effectively appear in parallel.
The increase in capacitance results in the long charging and discharging times, thus
reduces the maximum frequency at which the gate can be operated. Therefore, the
fan-out of a CMOS gate depends on the operation frequency. The fewer the load gate
input is, the greater the maximum operation frequency is.

2. TTL Loading
Loading in TTL presents a resistive load to the driving gate, as illustrated in
Figure 12.2.8.

As more load gates are connected to the driving gate, the loading on the driving
gate increases. For a TTL driving gate in a HIGH output state, each load gate input
need a current IIH and thus the total source current I increases with the number of

A
B

G4

Driving gate Load gates

G1 G2

G3

Figure 12.2.6: Illustration of a driving gate and load gates.

HIGH

+5V

ICHANGE IDISCH

LOW

(a) (b)

Figure 12.2.7: Capacitive loading of a CMOS gate: (a) charging; (b) discharging.
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load gate inputs, as illustrated in Figure 12.2.9(a). With the increase of total source
current I, the voltage drop on the internal resistor of driving gate becomes high,
causing the output UOH drops below UOH(min). Due to the output UOH out of high level
noise margin, thus the logic operation may be wrong. In addition, as the total source
current increases, the power dissipation of the driving gate increases, accordingly.

For a TTL driving gate in a LOW output state, each load gate input injects a
current IIL sinking into the driving gate and thus the total sink current I rises with the
increase of load gates, as illustrated in Figure 12.2.9(b). As the total sink current
increases, the voltage drop on the internal resistor of the driving gate increases,
causing UOL increase. If an excessive number of load gates are added, UOL exceeds
UOL(max). This may cause logic wrong.

HIGH
Driver LOW

HIGH

HIGH

Load

LOW

(b)(a)

+5V
+5V

IIH
IIL

Figure 12.2.8: Illustration of current sourcing (a) and current sinking (b) in logic gates.

I

HIGH
Current
Source

Current
Sink

I

LOWLOW

HIGH

HIGH

(a) (b)

IIHn

IIH2

IIH1 IIL1

IIL2

IILn

VOL

VOH

+5V
+5V

+5V

+5V

Figure 12.2.9: Illustration of a TTL gate drivingmore load gates in a HIGH (a) and LOW output state (b).
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One input of the same logic family for the driving gate is called a unit load. For
example, the low-power Scottky (LS) TTL has a fan-out of 20 unit loads. In TTL, the
current-sinking capability (LOWstate) is themain limit factor in determining the fan-out.

12.3 Diode logic

Bipolar logic families use semiconductor diodes and bipolar junction transistors as
the basic building blocks of logic circuits. The simplest bipolar logic elements use
diodes and resistors to complete logic functions, therefore, called diode logic. This
section introduces the basic operation of the diode logic.

The objectives of this section are to
– Understand the current switch characteristics of a diode.
– Explain how AND logic function can be implemented with diode logic.

12.3.1 Diode

In analogic circuit, you have learned the transfer characteristic of a diode. If the
anode-to-cathode voltage, V, is negative, the diode is said to be reverse biased and
the current I through the diode is near zero. At this moment, the diode acts like an
open circuit. If the V is positive, the diode is said to be forward biased and the current
I can be a large positive value. The diode acts like a short circuit. This means that the
diode acts like a switch element that is controlled by the anode-to-cathode voltage.

A real diode has a resistance that is less than infinity when reverse biased and
greater than zero when forward biased. Therefore, the forward-biased voltage is
usually greater than or equal to 0.7 V and the reverse-biased voltage is considered
with the value less than 0.7 V, as shown in Figure 12.3.1.

12.3.2 Diode logic

Diodes can be used to perform the logic operation. Figure 12.3.2 shows a diode AND
gate with two diodes and one resistor. In this circuit, there are two inputs A and B,
one output P with a 5 V power supply voltage Vcc.

Anode cathode

+ –V < 0.7V

Anode cathode

+ –V ≥ 0.7 V

Rf Vd = 0.7 V
(a) (b)

Figure 12.3.1: Model of a real diode: (a) reverse biased; (b) forward biased.
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Suppose that the diode voltage drop is 0.7 V at the forward biased state.When the
input A or B is connected, the LOW voltage of 0.3 V, diode VDA or VDB is forward
biased and thus the voltage of the output P is limited to 1 V. When the input A and B
are all connected to the HIGH voltage of 5 V, diode VDA and VDB are reverse biased
and thus the voltage of the output P is approximate to the supply voltage.

Assume that 5 V is a HIGH that is represented by logic 1, and the voltage less than
1 V is considered to be LOW denoted by logic 0, the function table and truth table can
be summarized in Figure 12.3.2 (c) and (d). It can be found that the output P is the
result of AND operation of input A and input B and the corresponding logic symbol is
given in Figure 12.3.2 (b).

12.4 Transistor-transistor logic

The most commonly used bipolar logic family is transistor-transistor logic (TTL).
Actually, there are several TTL families with different speed, power consumption,
and other characteristics. This section introduces some typical TTL gate circuits,
which include TTL NAND gates, TTL gates with open-collector output and tristate
TTL gates. Also TTL families are briefly introduced.

The objectives of this section are to
– Describe the switch action of a bipolar junction transistor.
– Describe how basic TTL gates operate at the component level
– Recognize the difference between TTL totem-pole output and TTL open-collector

output
– Connect circuits in a wired-AND configuration
– Describe the operation of a gate with tristate output
– Properly deal with unused gate inputs

B

P

R

A

VCC = +5V

VDA

VDB

A
B P

(a) (b)

(c) (d)

UA       UB   UP A   B P
LOW     LOW LOW 0   0 0
LOW     HIGH LOW 0   1 0
HIGH    LOW  LOW 1   0 0
HIGH    HIGH HIGH 1   1 1

Figure 12.3.2: AND gate constructed with Diode: (a) circuit diagram; (b) logic symbol; (c) function table;
(d) truth table.
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12.4.1 Transistor logic

In digital switching application, bipolar transistors are often operated at either cutoff
or saturation acting like a current-controlled switch. If a small current is put into the
base, the switch is “on” and current flows between the collector and the emitter. If no
current is put into the base, the switch is “off” and no current flows between the
collector and the emitter. The switching characteristics of bipolar transistors can be
used to construct a simple logic.

Figure 12.4.1 shows a transistor logic circuit with a npn transistor using a
common-emitter configuration. Except for the single npn transistor, there are two
resistors Rb and Rc in the configuration. The switch characteristics of the circuit are
explained as the following.

If uI is LOW with the voltage less than 0.7 V, then the base-to-emitter diode
junction is reverse biased. Therefore, no base current (Ib) and thus no collector
current (Ic) flows between the collector and the emitter. At this moment, the
transistor is said to be cut off (OFF); the emitter and the collector is disconnected
i.e. open. And the output voltage uO is approximate to the supply voltage (VCC); the
output is in a HIGH state.

If uI is HIGH with the voltage of 5 V, then the base-to-emitter diode junction is
forward biased. As a result, a biased current is injected into the base and thus the
transistor operates in saturation region. By choosing suitable values of resistor Rb

and Rc, the transistor is said to be saturated (ON) and hence the output voltage uO ≈

UCES i.e. 0.3 V. Thus the output uO is LOW. At this situation, the saturated threshold of
collector current ICS can be calculated by

Rc

Rb

VCC

–

+

–

+
VT

(a) (b) (c)

uI
uO

tO

tO

uI

uO

5V

5V

0.3V

Figure 12.4.1: Transistor logic with common-emitter configuration of a npn transistor: (a) circuit
diagram; (b) waveform diagram; and (c) logic symbol.
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ICS =
VCC −UCES

RC
� VCC

RC
. (12:4:1)

The corresponding saturated threshold of base current IBS is

IBS =
ICS
β

� VCC

βRc
(12:4:2)

where β is the gain coefficient of the transistor.
For the common-emitter configuration, the transistor starts to enter into the

saturation region when the base current iB increases to the saturated threshold of
base current IBS.

In terms of the relation between the output uO and the input uI, the waveform of
output uO can be drawn as shown in Figure 12.4.1 (b). When the input voltage is LOW,
the output voltage is HIGH, and vice versa. Obviously, the transistor logic in Figure
12.4.1 is an inverter.

12.4.2 Basic TTL NAND gate

1. Circuit
The circuit diagram of a 2-input TTL NAND gate, part of number 7400-series in
standard TTL family, is shown in Figure 12.4.2. The circuit is consisted of three stages
i.e. input stage, phase splitter and output stage.

The input stage includes a multiple-emitter transistor VT1, a resistor R1 and two
clamp diodes VD1 and VD2. The multiple-emitter transistor contains two base-emitter
junctions and one base-collector junction. It can be compared to the diode arrangement,
as shown in Figure 12.4.3. Obviously, the input stage forms a diode AND gate and
implement ANDoperation of inputA and inputB. Clampdiodes VD1 andVD2 do nothing
in normal operation, but limit undesirable negative excursion on two inputs A and B.

R4

R3

R2R1

B
A

VCC (+5 V)

VT1
VT2

VT3

VT5

Input stage Phase splitter Output stage

(a) (b)

F (uo)

B1 2C

E2

VD4

VD1 VD2

0.3 V
3.6 V

4kΩ 1.6kΩ 130Ω

1kΩ

C1

A
B

F

Figure 12.4.2: Two-input standard TTL NAND gate: (a) circuit diagram; (b) logic symbol.
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Transistor VT2 and its surrounding resistorsR2, R3 form a phase splitter that offers
two opposite voltage levels to control the output stage. The phase splitter is a basic
common-emitter amplifier as an inverting buffer amplifier. Depending on whether
VC1 is at a “LOW” or a “HIGH” voltage, VT2 is either cutoff or turned on.

The output stage has two transistors VT3 and VT4, only one of which is on at any
time. This TTL output stage is called a totem-pole or push-pull output, which is helpful
for improving the switching speed and the load capacity. Diode VD4 ensures that VT3
will turn off when VT2 is on.

2. Operational Principle
For TTL AND gate, the ideal voltage level of LOW is 0.3 V and that of HIGH is 3.6 V.
When all inputs are HIGH, two base-emitter junctions of VT1 are reverse biased, and
the base-collector junction of VT1 is forward biased. The supply voltage VCC can offer
a current iB2 through R1 and the base-collector junction of VT1 into the base of VT2.
This current can drive VT2 into saturation. Then VT2 goes on driving VT5 into satura-
tion and thus the output uO is LOW (uO=UCES≈0.3V). At the same time, the potential of
the collector of VT2 to the ground is equal to the sum of the potential of the emitter of
VT2 to ground and the saturated voltage drop UCES2 of collector-emitter of VT2 i.e.
uC2 = uE2+UCES2 ≈ 0.7 + 0.3 = 1V. The voltage level of 1 V is too low to simultaneously
keep VT3 and VD4 on. So VT3 and VD4 are cut off.

When at least one input is LOW (0.3 V), the corresponding base-emitter junction
of VT1 is forward biased and the base-collector junction of VT1 is reverse biased. The
supply voltage VCC can offer a current IIL through R1 and the base-emitter junction of
VT1 to the LOW input. Then a LOW input offers a current path to ground. So the
potential of the base of VT1 to ground is 1 V i.e. uB1 = 0.3 + 0.7 = 1V. The voltage level of
1 V is too low to simultaneously keep the base-collector of VT1, the base-emitter of VT2
and VT5 on. There is no current into the base of VT2, so VT2 is off. The supply voltage
VCC can offer a current through R2 into the base of VT3. This current can drive VT3 into
saturation. A saturated VT3 provides a low-resistance path fromVcc to the output. The
output voltage level uo can be deduced as below:

uo � Vcc − uBE3 − uD4 = 5−0.7−0.7 = 3.6V (12:4:3)

We therefore have a HIGH output for at least one LOW on the inputs. At the same
time, the emitter of VT2 is at ground potential, keeping VT5 off.

R1

VCC

A

B

B1

1C

R1

B
A

B1

C1

VCC

VT1

Figure 12.4.3:Multiple-emitter transistor and its
analogical structure of diode arrangement.
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The function operation of the TTL NAND gate is summarized in Table 12.4.1. The
corresponding truth table is given in Table 12.4.2. It can be seen from Table 12.4.2 that
the gate does indeed perform the NAND function. The corresponding logic symbol is
shown in Figure 12.4.2(b). TTL NAND gate can be designed with any desired number
of inputs simply by increasing the number of base-emitter junction of VT1.

3. Special characteristics and parameters
Section 12.2 already introduces basic operational properties and parameters, such as
voltage levels, noise immunity, power dissipation, fan-out and propagation delay
time. Here, we further emphasize several special characteristics and parameters of
TTL NAND gate.

(1) Transfer characteristics
Transfer characteristics refer to the relation between the output voltage and input
voltage. The relation can be measured with the circuit as shown in Figure 12.4.4(a)
and the measured result is shown in Figure 12.4.4(b).

Transfer characteristics curve in Figure 12.4.4 can be divided into four segments.
Segment AB: uB1 < 1.3 V when uI < 0.6 V, then VT2 and VT5 cutoff. The output is
HIGH, i.e. uO= 3.6 V. Therefore, segment AB is called cutoff region or NAND gate off
region.
Segment BC：1.3 V ≤ uB1 < 2.1 V when 0.6 V ≤ uI < 1.3 V, then VT2 on and VT5 off. At
this condition, part of input current begins to flow into the base of VT2. This causes
VT2 entering into amplifier region and thus uC2 falls with uB1 rises. Therefore, segment
BC is called linear region.

Table 12.4.1: Function table.

A B VA VB VT VT VT VP P

L L .V . V off on off . V H
L H .V . V off on off . V H
H L .V . V off on off . V H
H H .V . V on off on . V L

Note: LOW(L), HIGH(H)

Table 12.4.2: Truth table.

A B P

  

  

  

  

12.4 Transistor-transistor logic 453

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



Segment CD：When uI ≥ 1.3 V, the output voltage falls rapidly even if input voltage
slightly rises. At this moment, VT5 starts turning on and VT2 does not enter into
saturation. That result in VT2, VT3 and VT5 all entering the amplifier region. Hence,
with slight rising of uI, uO will fall rapidly to low-level. Segment CD is usually called
the transition region.
Segment DE：When uI continues rising, both VT2 and VT5 are on, and VT3 and VD4

are off. Therefore, the output is in a LOW state i.e. uO= 0.3 V. At this situation, the
output voltage would keep constant in spite of the rise in input voltage.

From the transfer characteristics curve, you can obtain some key voltage para-
meters, such as UIL(max), UIH(min), UNH and UNL. For a standard TTL NAND gate, UOH

(MIN) = 2.4 V and UOLMAX= 0.4 V. UIL(max) is the maximum of input low level voltage
which can ensure the output in a HIGH state, i.e, uO > UOH(MIN). UIH(min) is a minimum
of input high level voltage which can allow the output in a LOW state, i.e. uO <
UOLMAX. From the transfer characteristics curve, you can also get the parameter
values UIL(max) = 0.8 V and UIH(min) = 1.8 V. From the practical effects of engineering,
a redundancy should be considered to guarantee the correct implementation of logic
function. Parameters of commercial products areUIL(max)= 0.8 V andUIH(min) = 2 V. So

UNH =UOH MINð Þ −UIHðminÞ =0.4V

UNL =UILðmaxÞ −UOLMAX = 0.4V.

Another key voltage is threshold voltage, UT, which generally refers to the input
voltage corresponding to the middle point of transition region i.e. segment CD. For
standard TTL NAND gate, UT = 1.3 ~ 1.4 V. Threshold voltage can be used to approxi-
mately analyze operation of the gate. If uI > UT, VT5 is on and the output is a LOW
level. If uI < UT, VT5 is off and the output is a HIGH level.

+

VCC

V V
_

R

uOuI

+

_
O

4

3

2

1

(b)(a)
UT

A B

C

D E

uI / V

uO / V

2

.

1

Figure 12.4.4: Measurement circuit (a) and transfer characteristics curve (b) of a TTL NAND Gate.
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(2) Input characteristics
Input characteristics refer to the relation between input current (ii) and input voltage
(ui), which can be described by the function equation of ii=f(ui) as shown in
Figure 12.4.5. The relation is very important for considering TTL loading. The current
flowing into a TTL input is defined to be positive while the current flowing out of a
TTL input is defined to be negative.

The amount of current required in a TTL input depends on which the input is
LOW, HIGH, or connected to ground (short circuit), and is specified by the following
three parameters.

IIS refers to the input current when an input is connected to ground i.e. uI = 0V. If
the input A in Figure 12.4.4 (a) is connected to the ground, there is a current (IIS) from
Vcc, through R1, through base-emitter of VT1, out of input A into the ground. Due to
the current flowing out of the input lead, IIS is a negative value, which can be
calculated by

IIS = −
VCC −UBE1

R1
= −

5−0.7
4

�− 1.1mA (12:4:4)

IIL is the input current when an input is in a LOW state i.e. uI = 0.3 V. If the input A
in Figure 12.4.4 (a) is a LOW. IIL is from Vcc, through R1, through base-emitter of VT1,
out of input A, and then through the driving gate to ground. Since the current flows
out of the input lead, IIL is a negative value which can be deduced as follows:

IIL = −
VCC −UBE1 −0.3

R1
= −

5−0.7−0.3
4

= − 1.0mA (12:4:5)

Obviously, the absolute value of IIL is slightly less than that of IIS. In general case,
IIS can be instead of IIL for an approximate analysis. When the TTL gate works as a
load gate, IIL is the current sinking to the driving gate.

IIH refers to the input current when the inputs are HIGH i.e. uI = 3.6 V. IIH comes
from the driving gate, through the input leads and flows into VT1. Generally, IIH has a
very small value (~40 μA for a standard TTL gate). When the TTL gate works as a load
gate, IIH is the current sourcing from the driving gate.

R2R1

B
A

VT1
VT2

B1

4kΩ

(a) (b)

1.6kΩ

C1
iI

VCC (+5 V)

–1.5

0.05 

iI / mA

uI / V
O 1 2

Figure 12.4.5: input circuit part (a) and characteristics curve (b) of the TTL NAND gate.
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(3) Fan-out
As we defined it in Section 12.2.5, fan-out is the maximum number of load gate inputs
that can be connected to and driven by a single output without affecting the specified
operational characteristics of the gate.

TTL driving gate can source or sink a certain amount of current depending on
the output state, HIGH or LOW. IOLmax is the maximum current which a driving gate
can sink in LOW state and maintain an output voltage no more than UOLmax. Since
current flows into the output, IOLmax has a positive value. IOHmax is the maximum
current which an output can source in HIGH state and maintain an output voltage
no more than UOHmin. Since current flows out of the output, IOHmax has a negative
value. Therefore, fan-out is denoted by NOH when a driving gate is in a HIGH output
state and by NOL when a driving gate is in LOW output state. They can be deduced
from

NOH =
IOHMAX

IIHMAX










 (12:4:6)

NOL =
IOLMAX

IILMAX










 (12:4:7)

where IILmax is the maximum of IIL and IIHmax is the maximum of IIH.
In order not to affect the specified operational characteristics of the gate, the

overall fan-out should be the minimum integer of NOH and NOL i.e. NO = min{NOH,
NOL}. Since IILmax is two orders of IIHmax, the fan-out of a TTL driving gate is mainly
determined by NOL. Generally, the fan-out of standard TTL circuit is ten.

Example 12.2Determine the fan-out of a TTL gate with the following current parameters: IIS= −1.4 mA,
IIHMAX= 0.02mA, IOLMAX= 15 mA and IOHMAX= −0.4mA

Solution

Due to IIL≈IIS = −1.4 mA, so
NOL =

IOLMAX

IILMAX










= 15mA

1.4mA
= 10.7

The integer of 10 should be reserved.
NOH =

IOHMAX

IIHMAX










= 0.4

0.02
=20

NO =min NOH,NOLf g= 10

Loading a TTL output withmore than its rated fan-out has deleterious effects. Noisemarginsmay
be reduced, transition times and delays may increase, and the device may overheat.

(4) Input load characteristics
It is a common thing to connect a resistor between the input and the ground for
practical engineering. This would result in the change of input voltage due to the
introduction of input resistor, as shown in Figure 12.4.6 (a). When the input current
flows through Ri, the input voltage (ui) is formed. Within a certain range, ui would
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increase with increase in Ri. Figure 12.4.6(b) shows the curve of the input voltage as
the function of the input resistor i.e. ui=f(Ri), which is called the curve of input load
characteristics.

It can be found that ui is approximately proportional to Ri for small Ri. When ui ≤
UILmax, the output of TTL NAND gate stay steadily in a HIGH state. VT2 and VT5 are off,
thus the requirement of Ri can be deduced from

ui =
Ri

Ri +R1
VCC − uBE1ð Þ ≤UILmax (12:4:8)

Therefore,

Ri ≤
UILmax

VCC − uBE1 −UILmax
R1 (12:4:9)

The resistor calculated from eq. (12.4.9) is written as Roff. For example, ifUILmax =0.8
V, then Roff ≤ 0.9 kΩ. That is to say, only if Ri ≤ Roff, TTL NAND gate can stay steadily at a
HIGH output state.

If the value of Ri increases further, ui continues increasing. When ui increases
to 1.4 V, VT2 and VT5 are both into saturation and thus the potential of the base of
VT1 (uB1) is confined to 2.1 V. Even if Ri continues increasing, ui stays at the fixed value
of 1.4 V. When ui =1.4 V, the corresponding Ri is written as Ron. For standard TTL
NAND gate in Figure 12.4.5, Ron can be deduced from

ui =
Ri

Ri +R1
VCC − uBE1ð Þ= 1.4V (12:4:10)

Therefore, Ron=2 kΩ. Only if Ri ≥ Ron, TTL NAND gate can stay at a LOW output state.
If the inputs of TTL NAND gate are empty, the current flows from the power

supply VCC, through R1 into the VT2 and VT5. That makes VT2 and VT5 into saturation

Ri R3

R1

VCC (+5 V)

VT1
VT2

(a) (b)

VT5

4kΩ

1kΩ

+

–

ui

IB1

0 1 2 3

ui/V

R / kΩ

UILmax

1.4 V

Figure 12.4.6: Input load characteristics of standard TTL NAND gate: (a) input load circuit;
(b) characteristics.
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and thus the output is LOW. At the same time, the potential of the base of VT1 is
confined to 2.1 V. If you measure the voltage of empty input with a multimeter, which
is equivalent to connecting a high resistor between the empty input and ground, ui =
2.1–0.7 = 1.4 V which is equivalent to a HIGH input level.

Example 12.3 Determine the output expression of F1, F2 and F3 for TTL NAND gate circuits as shown in
Figure 12.4.7.

Solution

For the TTL NAND gate as shown in Figure 12.4.7(a), there is an empty input. This is equivalent to a
HIGH input level, thus F1 =A � 1 = �A.

For the TTL NAND gate as shown in Figure 12.4.7(b), a resistor of 100Ω, less than Roff (900Ω), is
connected between an input and the ground. This is equivalent to input a LOW level, so F2 =A � 0= 1.

For the TTL NAND gate as shown in Figure 12.4.7(c), Ri =10 kΩ, greater than Ron (2 kΩ). This input
is equivalent to a HIGH level, thus F3 =A � 1 = �A.

12.4.3 TTL family

Since 1963, the original TTL family of logic gates was introduced by Sylvania. It was
popularized by Texas Instruments, whose 7400-series for gates and other TTL
components quickly became an industry standard. TTL families have evolved
over the years in response to the demands of digital designers for better perfor-
mance [20].

The earliest TTL family is 74-series TTL. Through changing the resistor values in
74-series TTL, 74H (high-speed TTL) and 74L (Low-power TTL) were developed. The
74H family uses lower resistor values to reduce propagation delay at the expense of
an increase in power consumption. The 74L family uses higher resistor values to
reduce power consumption at the expense of an increase of propagation delay. Due to
the contradiction between propagation delay and power consumption, three TTL
families have gone. Today, there have been five surviving families which are compa-
tible as they use the same power supply voltage and logic levels, but each family has
its own advantages in terms of speed, power consumption and cost.

Aiming at solving the contradiction between propagation delay and power con-
sumption, the first family to make use of Schottky transistors was 74S (Schottky TTL) .
With Schottky transistors and low resistor values, this family has much higher speed,

A F2

100Ω

(b)

A F1

(a) (c)

A F3

10kΩ

Figure 12.4.7: TTL NAND gate circuits
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but higher power consumption, than the original 74-series TTL. After 74S, 74LS (Low
power Schottky TTL) was developed. By combining Schottky transistors with higher
resistor values, 74LS TTLmatches the speed of 74series TTL but has about one-fifth of
its power consumption.

With the development of IC processing, circuit innovations gave rise to two more
Schottky logic families. The 74AS (Advanced Schottky TTL) family offers speeds
approximately twice as fast as 74S with approximately the same power consumption.
The 74ALS (Advanced Low-power Schottky TTL) family offers both lower power and
higher speed. Its delay time is about one third of 74-series TTL and power consump-
tion is one eighth of 74-series TTL. The 74F (Fast TTL) family is positioned between
74AS and 74ALS in the speed/power tradeoff and is probably themost popular choice
for high-speed requirements in new TTL design. Till date, 74LS is still a preferred
logic family for TTL designs. Table 12.4.3 lists delay time, power consumption and
speed-power product of five TTL families.

Table 12.4.4, 12.4.6 list some product parameters of several common used TTL NAND
gates so that you can overall understand the parameters of TTL circuits. 7400: four
two-input NAND gates; 7404: six inverts; 7410: three three-input NAND gates; 7420:
two four-input NAND gates; 7430: one eight-input NAND gate. The 54-series TTL
listed in the table is identical to the 74-series, except that it is specified to operate
over the full military temperature and voltage range, and it is more expensive than
74-series.

12.4.4 Open-collector gate

TTL gate circuits introduced in the previous sections all have the totem-pole output.
Another type of output available in TTL integrated circuits is the open-collector
output.

Table 12.4.3: Parameters of the typical TTL gates.

Family Delay
time/ns

Power
dissipation/mW

Speed-power
product/pW·s

   

S   

LS   

ALS   

F .  
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1. Circuit
A standard TTL NAND gate with an open collector output is shown in Figure 12.4.8(a).

Notice that the output is the collector of transistor VT5 with nothing connected to
it, hence getting the name open collector. When VT5 is on, the output is LOW. While
VT5 is off, there is no path to provide a HIGH output due to nothing connected to the
collector of VT5. Therefore, in order to get a proper HIGH logic level out of the circuit,
an external resistor must be connected to Vcc or an external power supply voltage
from the collector of VT5, as shown with dotted line part in Figure 12.4.8. When VT5 is
off, the output is pulled up to the power supply through the external resistor and then
gets a HIGH output state. This external resistor is also called pull-up resistor. The logic
symbol that designates a NAND gate with open-collector output is shown in
Figure 12.4.8(b).

Notice that the pull-up resistor can be also connected to an external supply voltage
Vc which can be up to +30 V. Therefore, compared to TTL gates with totem-pole output,
TTL gates with open-collector output have a higher power supply voltage and thus
stronger current-handling capability. And, they are generally used for driving the

Table 12.4.6: Propagation delay time of TTL gates (VCC=5V,TA=25℃).

tPLH(ns) tPHL(ns)model Test conditions

TYP MAX TYP MAX


CL=pF
RL=Ω

   

,    

    

LS,LS
CL=pF
RL=kΩ

   

LS,LS    

LS    

Table 12.4.5: Current parameters of TTL gates (VCC = 5 V,TA = 25℃)

model ICCH(mA) ICCL(mA) ICC(mA) %
duty circle TYP

TYP MAX TYP MAX

     

     

     

     

LS . . . . .
LS . . . . .
LS . . . . .
LS . .  . .
LS . . . . .
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heavy current loads, such as LEDs, lamps, and relays. Typically, the output current of
an open-collector gate can reach to 40mA. While the amount of current sinking in the
LOW state (IOLmax) is limited to 16mA for standard TTL and 8mA for LS TTL. Typical
ICs of open-collector gates include the inverter 7406 and the buffer 7407.

2. Wired-AND operation
The outputs of open-collector gates can be wired together to form a wired AND
configuration. Figure 12.4.9 illustrates that the outputs of two open-collector gates
are wired together to implement a wired AND operation. A single external pull-up
resistor, Rc, and an external power supply voltage, VC (or VCC), are required in all
wired AND circuits.

Individual outputs of two open-collector gates are F1 =AB and F2 = CD, respectively.
When the outputs of two open-collector gates are wired together, F = F1 � F2 =AB � CD.

Notice that totem-pole outputs cannot be wired together because such a connec-
tionmight produce excessive current and result in damage to the devices. For example,
the outputs of two standard TTL gates (G1 and G2) are wired together in Figure 12.4.10.

When the F1 output of G1 is a HIGH state and the F2 output of G2 is LOW, there is a
large current from VCC, through R4, VT3 and VD4 of G1, and then through VT5 of G2 to
ground. Such a large current might result in both low-level output of G2 beyond the
specification logic level and damage to the devices.

A

B

F1

C

D

F2

VC

F

Figure 12.4.9: A wired AND operation of two open-collector gates.

(b)(a)

R3

R2R1

B
A

VCC (+5 V) 

VT1
VT2

VT5

F(uo)

B1

E2
VD1 VD2

4kΩ 1.6kΩ

1kΩ

C1
R (external)

A

B
F

Figure 12.4.8: TTL NAND gate with open-collector output: (a) circuit diagram; (b) logic symbol.
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Example 12.4 Three open-collector AND gates are connected in a wired-AND configuration as shown in
Figure 12.4.11. Assume that the wired-AND circuit is driving four standard TTL inputs with IIL= −1.6mA
(each).

(a) Write the logic expression for X.
(b) Determine the minimum value of R if IOL(max) for each open-collector gate is 30 mA and
UOL(max) is 0.4 V.

Solution

(a) Since three open-collector AND gates are connected in a wired-AND configuration, the final
output, X, can be expressed by

X =ABCDEF

(b) When an open-collector AND gate is in a LOW output state, every load input sinks a IIL into this
driving gate and thus four load inputs sink 4IIL into this driving gate.

F1

R4R2

VCC

VT3

VT5

VD4

F2

R4 R2

VT3

VD4

G1 G2 Figure 12.4.10: Totem-pole outputs wired
together.

A

B

C

D

+5V

X

E

F

R I

Figure 12.4.11: Logic diagram.
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4IIL = 4 × 1.6 mA=6.4 mA
I= IOL maxð Þ − 4IIL = 23.6 mA

Therefore,

R=
VCC −UOLðmaxÞ

I
= 195Ω

12.4.5 Tristate gates

The tristate gates are different from general gates. Besides a HIGH state and a LOW
state, the outputs of the tristate gates include the third state called high-impedance
state (high-Z). The tristate gates combine the advantage of totem-pole and open-
collector output.

1. Circuit
Figure 12.4.12 illustrates a TTL tristate NAND gate. In fact, this tristate NAND gate is
composed of a TTL inverter, a TTL NAND gate and a diode VD. The TTL inverter in
dashed frame is the control circuit of the tristate gate. Its input, EN, is called the
enable input. The right part out of the dashed frame is a standard TTL NAND gatewith
three inputs.

If a LOW is applied to EN input, the output of the inverter is a HIGH level, which is
one input of the next NAND gate. At this situation, diode VD is reverse biased. The
circuit implements the normal NAND operation i.e. F =AB.

When a HIGH is applied to EN input, the output of the inverter is a LOW level
(0.3 V). That causes VT’2 and VT’5 to be turned off and VD is forward biased. The

R1

R4

R3

VT5

VT2

VT3

R2

VT1
EN

R4
'

R3
'

VT3
'

VD4
'

VT5
'

VT2
'

VT1
'

R2
'R1

'

VD4

VD

(a) (b)

A
B

VCC

P

EN

A
B P

Figure 12.4.12: A tristate NAND gate with a LOW-level enable input: (a) circuit diagram;
(b) logic symbol.
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potential of the base of VT’3 is 1V, which is not enough to keep VT’3 and VD’4 on.
Thus, VT’3 and VD’4 is also off. When both totem-pole output transistors are off, they
are effectively open, and the output is completely disconnected from the internal
circuitry. The output is in a high-impedance state written as high-Z. The logic symbol
for the NAND gate with a tristate output is shown in Figure 12.4.13(b). The inverted
triangle (▽) designates a tristate output.

The above tristate gate has a low-level enable input. It is possible to use high-
level as the enable input. By omitting the inverter part in dashed frame, a tristate gate
with a high-level enable input can be constructed as shown in Figure 12.4.13.

2. Applications of the tristate gates
The tristate gate is an important device in digital circuits. It can be widely applied for
computer system as bidirectional data transfer and data bus, as shown in
Figure 12.4.14.

Figure 12.4.14 (a) shows the application of two tristate gates in the bidirectional
data transfer. When the enable input, C, is a LOW, the tristate gate, G1, is enabled and
the tristate gate, G2, is disabled. Data can be transmitted from the input A to the
output B.While the enable input, C, is a HIGH, the tristate gate, G2, is enabled and the
tristate gate, G1, is disabled. Data can be transmitted from the input B to the output A.

Figure 12.4.14 (b) shows the application of a group of tristate gates connected to
data bus for transferring data between different digital devices. A group of tristate
gates are connected to the same data bus. By controlling the sequence of each enable
input, only one device can transfer data to data bus while other devices are in high
impedance state. Therefore, all devices connected to data bus can operate and
transfer data to data bus at time division mode by controlling the enable input of
each tristate gate. This prevents data collision from different devices with each other
on data bus.

VD

A
B F

E

R4
'

R2
'R1

'

VT3
'

VT5
'

VT2
' VD4

'

VT1
'

R3
'

(a) (b)

A
B F

Figure 12.4.13: A tristate NAND gate with a high-level enable input: (a) circuit Diagram;
(b) logic symbol.
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12.4.6 Unused TTL inputs

The rule of dealing with unused inputs is that the logic operation of gate circuits
could not be affected. For a TTL gate, there are several ways to deal with unused
inputs. The most commonly used method is to connect them to a used input of the
same gate. For AND gates and NAND gates, all tied-together inputs count as a unit
load in the LOW state. This is because the NAND gate uses a multiple-emitter input
transistor; so no matter how many inputs are low, the total LOW-state current is
limited to a fixed value. While for OR gates and NOR gates, each input tied to another
input counts as a separate unit load in LOW state; this is because the OR gates and
NOR gates use a separate transistor for each input; therefore, the LOW-state current is
the sum of the currents from all the tied-together inputs. In the HIGH state, each tied-
together input counts as a separate unit load for all types of TTL gates.

Also, unused inputs of AND gates and NAND gates can be connected toVCC through
a pull-up resistor. The connection pulls the unused inputs to a HIGH level.While unused
inputs of OR gates and NOR gates can be connected to a LOW level or ground.

For TTL NAND gates, unused inputs can be left open since an unconnected input
on a TTL gate acts as a HIGH level. This is already analyzed in the part of 12.4.2.
However, due to noise sensitivity, it is best not to leave unused TTL inputs open.
Another alternative method is to connect the unused input with any used input of the
gate together.

12.5 CMOS logic circuits

MOS integrated circuits include three kinds of integrated circuits i.e. PMOS, NMOS
and CMOS. Due to the higher speed and the lower power consumption, CMOS
integrated circuits have already become the current mainstream of digital integrated
circuits and analog-digital hybrid integrated circuits. They are widely applied to
memory and microprocessor.

Basic internal CMOS circuitry and its operation are discussed in this section. The
abbreviation CMOS stands for complementary MOS. The term complementary refers

BA

C

G1

G2

G1

B1 B2 B3A1 A2 A3C1 C2 C3

Data bus

(b)(a)

To receiver

G2 G3

Figure 12.4.14: Application of the tristate gates: (a) bidirectional data transfer;
(b) application on data bus.
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to two types of MOS transistors, that is, N-channel MOSFET (MOS field-effect transis-
tor) and p-channel MOSFET that are used in pairs.

The objectives of this section are to
– Discuss the switching action of a MOSFET
– Explain the basic operation of a CMOS inverter, CMOS NAND and NOR gate
– Describe the operation of a CMOS gate with an open-drain output
– Explain the operation of tristate CMOS gate
– List the precautions required when handling CMOS devices

12.5.1 Switching action of MOSFET

In digital circuit, only enhancement MOSFET is used to play a role of a voltage-
controlled switch. There are two types of enhancement MOSFET, n-channel and
p-channel, as shown in Figure 12.5.1. The control voltage is applied to the gate, the
resistance between drain and source can be controlled.

In digital applications, a MOSFET operates whether its resistance is always either
very high (and the MOSFET is “off”) or very low (and the MOSFET is “on”). The switch
circuit with n-channel MOSFET is shown in Figure 12.5.2(a). When the gate voltage of an
n-channel MOSFET is positive and enoughhigher than the source i.e.UGS >UT (threshold
voltage), the MOSFET is on; this is equivalent to an ideally closed switch between the
drain and the source. When the gate-to-source voltage is zero or UGS < UT, the MOSEFT

Source (S)

Drain (D)

n-channel

Gate (G)

Source (S)

Drain (D)

p-channel

Gate (G)

Figure 12.5.1: MOSFET symbols.

on

RD

D

VDD

VDD
G

S

VDD

RD

off

RD

D

VDD

G

S

VDD

RD

0 V on

RD

VDD

VDD
G

VDD

RD

off

RD

VDD

G

VDD

RD

0 V

S

D

(b)(a)

S

D

S

D

S

D

Figure 12.5.2: Switching action of a MOSFET: (a) n-channel; (b) p-channel.
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is off (cutoff); this is equivalent to an ideally open switch between the drain and the
source. So does the switch circuit with p-channel MOSFET. The p-channel MOSFET
operates with opposite voltage polarities, as shown in Figure 12.5.2 (b).

Notice that only enhancement MOSFETs can be used as a switch in digital circuits.

12.5.2 CMOS invertor

1. Circuit and operating principle
Complementary MOS (CMOS) logic uses the MOSFET in complementary pairs as its
basic elements. A complementary pair uses both p-channel and n-channel enhance-
ment MOSFETs, as shown in CMOS inverter in Figure 12.5.3. For two MOSFETs, their
gates are connected together as an input and drains are linked together as an output.
The source and substrate of PMOS are connected to the positive supply voltage, +VDD,
and those of NMOS are linkedwith the ground. In order to assure CMOS inverter in the
normal operation, the supply voltage should be greater than the sum of absolute
values of two threshold voltage i.e. VDD＞|UTP|+|UTN|.

When a HIGH level (+VDD) is applied to the input (uI), as shown in Figure 12.5.4(a),
n-channel MOSFET VTN is on since UGSN > UTN and p-channel MOSFET VTP is off since
|UGSP| < |UTP|. Thus the output is connected to ground through the on resistance of VTN,
resulting in a LOW output. When a LOW level (0 V) is applied to the input (uI),
as shown in Figure 12.5.4(b), VTN is off and VTP is on. Thus the output is connected

VDD

VTP

VTN

uI uO

Figure 12.5.3: A CMOS inverter.

VDD

VTP

VTN

HIGH

(a) (b)

OFF

ON

LOW

VDD
VTP

VTN
HIGH

OFF

ON
LOW

Figure 12.5.4: Operation of a CMOS inverter: (a) HIGH input; (b) LOW input.
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to + VDD through the on resistance of VTP, resulting in a HIGH output. Therefore, an
inverter operation is implemented by the circuit in Figure 12.5.3.

Since at least one MOS transistor is turned on in the normal operation of
CMOS inverter and the on resistance is very small, the charge and the discharge
time to load capacitance are efficiently decreased. This results in accelerating
the switching speed of CMOS inverter, which can even be compared to that of
the TTL gate. Moreover, because at least one of VTP and VTN is turned off in the
normal operation and the off resistance is very high, current from VDD, through
VTP and VTN to ground is nearly zero and thus static power dissipation is very
low. Generally, static power dissipation is in the magnitude of order of nW. In
addition, the input impedance of CMOS gate is extremely high and thus fan-out
is very large when CMOS gate is cascaded.

2. Transfer characteristics
For the CMOS inverter in Figure 12.5.3, VTP and VTN have the same parameters.
That is to say, |UTP|=UTN, on resistance and off resistance of VTP and VTN are
identical. The transfer characteristics curve is shown in Figure 12.5.5, which can
be divided into three parts: segment AB, BC and CD.

Segment AB: Since uI = UGSN < UTN and |UGSP|> |UTP|, VTN is off and VTP is on. So the
output is a HIGH, i.e UOH ≈ VDD.
Segment CD: Since uI = UGSN > UTN and |UGSP|< |UTP|, VTN is on and VTP is off. So the
output is a LOW, i.e UOL ≈ 0 V.
Segment BC: SinceUTN < uI < VDD - |UTP|, UGSN > UTN and |UGSP|>|UTP|. So VTN and VTP
are both on. If uI = 1/2 VDD, then uO = 1/2 VDD since VTP and VTN have the same
parameters. It is corresponding to the middle point of the transition region i.e.
threshold voltage UTH =1/2 VDD. Therefore, CMOS inverter has a higher noise margin
than TTL counterpart.

O

A B

C D

uI

uO

1/2VDD

1/2VDD

VDD

UTN
|UTP|

Figure 12.5.5: Transfer characteristics of CMOS
inverter.
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3. Noise margin
Compared with TTL gate, CMOS inverter has the stronger noise immunity. Noise
margin of the CMOS inverter increases with an increase in power supply voltage
VDD. Usually, UNL = UNH for a given power supply voltage. For CMOS 4000-series, the
measurement result shows that UNL = UNH ≥ 30% VDD.

4. Propagation delay time
Although CMOS inverter does not exist the carrier accumulation and diffusion like
the TTL gate, it still occurs propagation delay coming from the IC internal resistor and
load capacitance.

Since the output resistor of CMOS inverter is higher than TTL gate, the load
capacitances have a distinct effect on propagation delay time.

For CMOS inverter, tpHL = tpLH due to its complementary circuit structure. The
average propagation delay time is about tens of ns.

12.5.3 CMOS NAND gate and NOR gate

CMOS inverter is the basic element of CMOS gate. Based on CMOS inverter, you
can construct CMOS NAND gate and CMOS NOR gate. Generally, CMOS gate
circuit can be constructed with NMOS logic block circuit and PMOS logic block
circuit substituting single NMOS and PMOS in a CMOS inverter. For NMOS logic
block circuit, follow the rules of “NMOS in serial for AND logic operation, and in
parallel for OR logic operation”. For PMOS logic block circuit, follow the rules of
“PMOS in parallel for AND logic operation, and in serial for OR logic operation”
[48]. You should remember that the number of PMOS are equal to that of NMOS
in CMOS gate circuit.

1. CMOS NAND gate
Figure 12.5.6 shows a CMOS NAND gate with two inputs. Each input is connected to a
pair of PMOS and NMOS. Two NMOS transistors are in serial and PMOS transistors are
in parallel.

The operations of CMOS NAND gate are as follows:
– When both inputs are LOW, VTN1 and VTN2 are off, and VTP1 and VTP2 are on. The

output is pulled up to HIGH through the on resistance of VTP1 and VTP2 in parallel
to the power supply voltage.

– When input A is LOW and input B is HIGH, VTP1 and VTN2 are on, and VTN1 and
VTP2 are off. The output is pulled up to HIGH through the on resistance of VTP1.

– When input A is HIGH and input B is LOW, VTN1 and VTP2 are on, and VTP1
and VTN2 are off. The output is pulled up to HIGH through the on resistance
of VTP2.
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– Finally, when both inputs are HIGH, VTN1 and VTN2 are on, and VTP1 and VTP2 are
off. The output is pulled down to LOW through the on resistance of VTN1 and VTN2
to ground.

It can be found from the function table in Figure 12.5.6(b) that circuit in Figure 12.5.6
(a) implements NAND operation i.e. F =AB

2. CMOS NOR gate
Figure 12.5.7 shows a CMOS NOR gate with two inputs. Each input is connected to a
pair of PMOS and NMOS. Two NMOS transistors are in parallel and two PMOS
transistors are in serial.

A B VTP1 VTP2 VTN1 VTN2 F

L ON OFFOFFONL H
L ON OFFOFF ONH H

L ON OFFOFF ONH H
H ONOFFOFF ONH L

HIGH = H 

(a)

LOW = L 

VDD

VTP2

VTN2VTN1

F

B

A
VTP1

(b)

Figure 12.5.7: A CMOS NOR gate with two inputs: (a) circuit diagram; (b) function table

VTN2

VTN1

VDD

F

A
VTP2

B

(a) (b)

VTP1

A B VTP1 VTP2 VTN1 VTN2 F

L ON OFFOFFONL H
L ON OFFOFF ONH H

L ON OFFOFF ONH H
H ONOFFOFF ONH L

HIGH = H LOW = L 

Figure 12.5.6: A CMOS NAND gate with two inputs: (a) circuit diagram; (b) function table.
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The operations of CMOS NOR gate are as follows:
– When both inputs are LOW, VTN1 and VTN2 are off, and VTP1 and VTP2 are on. The

output is pulled up to HIGH through the on resistance of VTP1 and VTP2 in serial to
the power supply voltage.

– When input A is LOW and input B is HIGH, VTP1 and VTN2 are on, and VTN1 and
VTP2 are off. The output is pulled down to LOW through the on resistance of VTN2
to ground.

– When input A is HIGH and input B is LOW, VTN1 and VTP2 are on, and VTP1 and
VTN2 are off. The output is pulled down to LOW through low on resistance of
VTN1.

– Finally, when both inputs are HIGH, VTN1 and VTN2 are on, and VTP1 and VTP2 are
off. The output is pulled down to LOW through the on resistance of VTN1 and VTN2
to ground.

Therefore, the circuit in Figure 12.5.7 implements a NOR logic operation i.e. F =A+B
For a CMOS NAND gate, if the number of inputs increases, the number of NMOS

in serial and PMOS in parallel increases. When all inputs are HIGH, all NMOS in serial
are on and the equivalent on resistance to ground increases. As a result, low-level
output voltage rises, which might exceed the UOLmax and thus makes logic operation
wrong. In order to control voltage level in the allowed region, input buffers for each
input and output buffer can be used to avoid voltage level inconsistence when input
terminals increase. A CMOS NAND gate with the inverters as input and output buffers
is shown in Figure 12.5.8. Due to using the inverters as input and output buffers, the
original structure of NAND gate must be replaced with NOR gate to implement NAND
operation. The corresponding effective logic circuit is also shown in Figure 12.5.8(b).
So does a CMOS NOR gate with the inverters as input and output buffers in as shown
Figure 12.5.9.

VTP

VTNVTN

VTP

VTN

VDD

VTP

VTN

(a) (b)

VTP

VTN

P

B

A
VTP

B

A

Q
A

B

P
Q

Figure 12.5.8: A CMOS NAND gate with buffers (a) and its effective logic diagram (b)
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Example 12.5 Write the output logic expression and explain logic function of the CMOS logic circuit
shown in Figure 12.5.10.

Solution

It can be found that the circuit consists of a 2-input NOR gate and an inverter. The output expression
of the 2-input NOR gate is Q=A+B. The output Q is the input of the inverter, and thus the output
expression of the inverter is P= �Q=A+B. So the final output expression of the circuit is

P =A+B

Therefore, the circuit in Figure 12.5.10 isORgate andperform theORoperationof inputAand inputB.

12.5.4 CMOS transfer gate

Based on the switching action of single NMOS and PMOS, a CMOS transfer gate is
constructed with a NMOS and a PMOS in parallel, as shown in Figure 12.5.11. Two

VTP

VTNVTN

VTP

VTN

VDD

VTP

(a) (b)

VTN

VTP

VTN

P

B

A
VTP

B

A

Q

A

B

P
Q

Figure 12.5.9: A CMOS NOR gate with buffers (a) and its effective logic diagram (b)
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Figure 12.5.10: Circuit diagram.
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sources are connected together as an input (uI) and two drains are linked as an output
(uO). A pair of complementary signals, C and �C, control the gate of a NMOS and a
PMOS, respectively. Figure 12.5.11(c) shows the operation schematic diagram of
transfer gate. Transfer gate can be equivalent to a voltage-controlled switch, in
which the state of the switch is controlled by the voltage level of input C.

CMOS transfer gate requires that VDD ≥ UTPj j+ UTNj j and 0 ≤ uI ≤VDD. Assume that
VDD = 10V， UTPj j= UTNj j= 3V.

A 10 V voltage is applied to the control input C, and the complementary input �C is
0V, as shown in Figure 12.5.12 (a). When uI varies in the range from 0 V to 3 V, only
VTN is on；when uI varies in the range from 3 V to 7 V, both VTN andVTP are on; when
uI varies in the range from 7 V to 10 V, only VTP is on. Therefore, there is at least one
MOS transistor turned on when uI varies in the range from 0 V to 10 V. This is
equivalent to the closed switch. As a result, uO = uI. This means that the data can
be transferred from the input to the output.

A 0 V voltage is applied to the gate of VTN and 10 V to the gate of VTP, as shown in
Figure 12.5.12 (b). When uI varies in the range from 0 V to 10 V, both VTN and VTP is
off, which is equivalent to the open switch. The input signal uI could not be trans-
ferred to the output uO. The output is in high impedance state.

C

C

TG

C

C
VTP

VTN

(a)

uI uO

VDD

uI uO uI uO

C

(b) (c)

Figure 12.5.11: CMOS transfer gate: (a) circuit diagram; (b) logic symbol; (c) operational schematic
diagram.

0V

10V

0 ~10V

C

C
VTP

VTN

uI uO

VDD

uI

10V

0V

0 ~ 10V

C

C
VTP

VTN

uI uO

VDD

Z

(a) (b)

Figure 12.5.12: CMOS transfer gate as a closed switch for transmitting the signal (a) and an open
switch to cutoff the transmission (b).
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In a word, the voltage level of the control input C determines whether CMOS
transfer gate is turned on or off. The transfer gate is turned onwhen a HIGH is applied
on the input C, and off when a LOW is applied on the input C. CMOS transfer gate is
approximate to an ideal switch since it has very low on resistance (several hundreds
of ohm) and very high off resistance greater than 107Ω. In addition, source and drain
of MOS transistor have the same structure so that the input of CMOS transfer gate can
be used as the output and the output can be used as the input. Therefore, CMOS
transfer gate is also called as bidirectional switch.

12.5.5 Open-drain gate

An open-drain gate is the CMOS counterpart of an open-collector TTL gate. The term
open-drainmeans the drain of the output MOS transistor with nothing connected to it.
When you use an open-drain gate, an external load must be connected from the drain
terminal to power supply voltage. An open-drain gate with a single n-channel MOSFET
is shown in Figure 12.5.13(a). An external pull-up resistor must be used, as shown in
Figure 12.5.13(b), to provide a HIGH output state. Also open-drain outputs can be
connected in a wired-AND configuration that is discussed in the previous section.

12.5.6 Tristate CMOS gate

Tristate outputs are also available in CMOS gates. As you recall, three output states
are HIGH, LOW, and high-Z [47]. A tristate CMOS inverter is shown in Figure 12.5.14.

The operation of tristate CMOS inverters is illustrated in Figure 12.5.15.
– When enable input is a LOW (logic 0), the device is enabled for normal logic

operation. The output is NOT A.
– When enable input is a HIGH (logic 1), VTP and VTN are both cutoff. The output is

in a high-Z state.

VTN

output

Input VTN

output

+V

Rp

Input

(a) (b) 

Figure 12.5.13: Open-drain CMOS gates: (a) unconnected output; (b) with pull-up resistor.
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Therefore, the logic expression of the tristate CMOS inverter is described as follows:

F =
�A EN =0

Z EN = 1

(

12.5.7 CMOS family

The first commercial CMOS family is 4000-series CMOS. Although 4000-series
circuits have low power dissipation and strong noise immunity, their switching
speed and driving capacity need to be improved. To improve the switching speed
and the driving capacity, a series of upgrade products come out from 4000B to high-
speed 74HC and 74HCT; in succession, from low supply voltage 74LVC to ultra-low
supply voltage 74AUC. In the recent years, BiCMOS is developed to push CMOS gate
toward high speed and strong driving capacity. With CMOS circuits as the logic part
and TTL totem structure as the output part, BiCMOS has not only the advantages of
high speed and strong driving capacity of TTL gates, but also the advantages of high
integrated level, low power dissipation and low cost of CMOS gates. These advan-
tages make it a potential application of developing integrated digital circuit and
analogic circuit. Table 12.5.1 lists the parameters of the commonly used typical
series [47].

ENA

(a) (b)

VDD

VTP

VTN

F

EN

Figure 12.5.14: A tristate CMOS inverter: (a) circuit diagram; (b) logic symbol.
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1 High-Z
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Figure 12.5.15: Illustration of tristate CMOS inverter when EN is a LOW (a) and a HIGH (b).
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12.5.8 Comparison of CMOS and TTL Circuits

There are some differences between CMOS circuits and TTL circuits. The main
differences are described as below.
1. TTL gate circuits are consisted of bipolar junction transistors and CMOS gate

circuits constructed with single polar MOSFETs.
2. CMOS gate circuits have a wide supply voltage range from 1.2 V to 18 V while the

supply voltage of TTL gate circuits is usually 5 V.
3. Empty input is equivalent to high level input for TTL gate circuits. But empty

input is not allowed for CMOS gate circuits. Since the input impedance of
CMOS circuits is extremely high, the induced charge in gate capacitance
discharge slowly, which results in the output in an unknown state. Due to
the existence of induced charge in gate capacitance, MOSFET is easy to be
damaged.

4. For TTL circuits, when there is an input resistor, R, connected between the input
and ground, the input voltage changes with the value of resistor. If R ≥Ron, the
input is a high level. If R ≤Roff, the input is equivalent to a low level. While input
resistor is accessed between the input and ground for CMOS circuit, the input is a
low level due to near zero input current.

5. Fan-out of a CMOS circuit can be evaluated with a different method from that of a
TTL circuit. If the evaluating method of a TTL circuit is adopted for a CMOS
circuit, fan-out of a CMOS circuit would be a very large number. However, the
more the number of load gates is, the higher the equivalent load capacitance is.
That affects the operation frequency of CMOS circuits. Therefore, fan-out of a
CMOS circuit is determined by the operational frequency. Fan-out can be
increased for low operational frequency and decreased for high operational
frequency for a CMOS circuit. Usually, fan-out of a TTL circuit is smaller than
that of a CMOS circuit.

6. CMOS circuits have very small static power dissipation, but dynamic power
dissipation increases with the operational frequency increasing.When the opera-
tional frequency reaches around 1MHz, the power dissipation of a CMOS circuit is

Table 12.5.1: Parameters of typical CMOS circuit series.

Series Propagation
delay time/ns

Power
dissipation/mW

Speed-power
product/pW·s

B  (MHz) 

HC  .(MHz) 

BCT . .~. .~
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approximate to that of a TTL circuit. CMOS circuits are suitable for large-scale
integrated circuit.

7. Noise margin of CMOS circuit is higher than that of TTL circuit. Thus, CMOS
circuit has the stronger noise immunity.

8. CMOS circuits have the better thermal stability than TTL circuits.

12.6 CMOS/TTL interfacing

In previous sections, various logic circuits in different family are introduced. These
offer the freedom for a digital designer to select the requiring logic gates for
designing a digital system based on general requirements of speed, power dissipa-
tion and cost. It is possible to select the logic gates from the same or different logic
family. If logic gates in a system are from different logic family i.e. some from TTL
family and the others from CMOS family, it is important for a designer to understand
the implications of connecting TTL outputs to CMOS inputs, and vice versa. Since
logic circuits from different family have different requirement of voltage and cur-
rent, the interface must consider the matches of voltage and current between TTL
and CMOS.

There are two main factors to be considered in TTL/CMOS interfacing. The first
factor is that output voltage of a driving gate should be in the range of the requiring
voltage of the load gate. Logic level between a driving gate and a load gate must
satisfy the following requirement.

UOHðminÞ ≥UIHðminÞ
UOLðmaxÞ ≤UILðmaxÞ

(
(12:6:1)

The other factor to be considered is if a driving gate owns the ability of meeting
the current requirement to the load gates. The current requirements between a driver
gate and the load gates are expressed as follows:

IOHðmaxÞ ≥mIIHðmaxÞ
IOLðmaxÞ ≥ nIILðmaxÞ

(
(12:6:2)

wherem and n are the number of load gates that a driving gate is sourcing current to
and sinking current from, respectively. Voltage and current parameters of logic gates
are main parameters for a designer to consider the interface between TTL and CMOS.
The above four equations must be satisfied to ensure the logic correctness of the
design system. Table 12.6.1 lists the main characteristic parameters for the design
reference.
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12.6.1 TTL driving CMOS interface

When a TTL gate as a driving gate drives a CMOS gate as a load gate, the interfacing
circuit can be divided into two categories in terms of supply voltage. One is for the
same supply voltage and the other is for different supply voltage [21].

1. Interface for the chips with the same supply voltage
TTL 74LS series and CMOS 74HC series have the same supply voltage of 5 V. If a TTL
gate in 74LS series drives a CMOS gate in 74HC series, two gates can be directly
connected together. Through checking the match condition in eqs. (12.6.1), (12.6.2)
and parameters in Table 12.6.1, you can find that only one required condition could
not be satisfied. The minimum of high-level output voltage of the TTL gate is 2.7 V
while the minimum of high-level input voltage of the CMOS gate is 3.5 V. This means
that the output high-level voltage of the TTL gate could not satisfy the requirement of
the input high-level voltage of the CMOS gate if two gates are directly connected.

Onemethod of solving the above problem is to connect a pull-up resistor from the
output of the TTL gate to supply voltage, as shown in Figure 12.6.1. This pull-up
resistor can increase the high-level output voltage of TTL gate so that the high-level

Table 12.6.1: Main parameters of TTL and CMOS.

Series
Parameter

TTL 
series

TTL
LS

CMOS 

series
CMOS HC CMOS HCT

UIH(min)/V   . . 

UIL(max)/V . . .  .
IIH(max)/μA   . . .
IIL(max)/mA −. −. −.×− −.×− −.×−

UOH(min)/V . . . . .
UOL(max)/V . . . . .
IOH(max)/mA −. −. −. − −

IOL(max)/mA   .  

TTL
(a) (b)

VCC

Rx

CMOS TTL

VCC

Rx

CMOS

VDD

Figure 12.6.1: A TTL gate driving a CMOS gate: (a) with the same supply voltage; (b) with different
supply voltages.
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output voltage of TTL gate is compatible with the high-level input voltage of CMOS
gate. The pull-up resistor can be determined by the following equation.

RxðminÞ ≥
UCC −UOLðmaxÞ
IOLðmaxÞ − nIIL

; RxðmaxÞ ≥
UCC −UIHðminÞ
nIIH + IOHðmaxÞ

. (12:6:3)

where UOL(max), IOL(max) and IOH(max) are the parameters for TTL driving gate, IIL and
IIH are the parameters for CMOS load gate, and n is the number of the load gates.

If a TTL gate in 74LS series is used for a driving gate and the CMOS gates in 74HCT
series for the load gate, the parameters of two series is completely compatible for each
other. Therefore, no additional interfacing circuit is required. In digital system, CMOS
gates in 74HCT series are generally selected to eliminate the demandof pull-up resistor.

Therefore, another optimum method is that a CMOS gate in 74HCT series is used
as the transition interface between TTL 74LS series and CMOS 74HC series. A TTL gate
in 74LS series drives a CMOS gate in 74HCT series first. Then a CMOS gate in 74HCT
continues to drive a CMOS gate in 74HC series.

2. Interface for the chips with different supply voltage
There are two methods of designing the interface when the supply voltage of CMOS
load gate is higher than that of TTL driving gate.

One method is to use the CMOS gate with voltage level offset. For example,
CD40109 has two supply voltage inputs, VCC and VDD. When VCC = 5 V and VDD =
10 V, the input of CD40109 can receive the TTL logic level of 1.5 V/3.5 V and the output
logic level is 9 V/1 V which can satisfy the requirement of CMOS load gate. The
connection between TTL gate and CMOS gate of CD40109 is shown in Figure 12.6.1(b).

Another method is to use open-collector gate as a driving gate. Since the supply
voltage of open-collector gate is allowed to be higher than the supply voltage VDD of
CMOS gate, the external pull-up resistor can be directly connected to the supply
voltage VDD of CMOS gate.

12.6.2 CMOS driving TTL interface

When a CMOS gate drive a TTL gate , the characteristics of the driving gate and the
load gate in series should be considered.

For the case of CMOS 4000 series driving TTL 74 series with the same supply
voltage, the interface should consider not only the match of the voltage level but also
the match of the current. It can be found from Table 12.6.1 that CMOS driving gate can
accept the sinking current of 0.51 mA while the low-level input current of TTL load
gate is 1.6 mA. Obviously, the sinking current of the CMOS driving gate is not able to
satisfy the requirement of TTL load gate. If you still use this CMOS gate to drive TTL

480 12 Integrated gate circuit

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



gate, the low-level output of CMOS gate would be rising and thus the logic operation
error might occur.

In order to improve the current sinking capacity of the CMOS driving gate, there
are several schemes for selection. The simple method is to increase the number of
driving gates in parallel for lifting current sinking capacity. The other common used
method is to insert a CMOS driver between a CMOS driving gate and a TTL load gate
to increase the current sinking capacity. For example, an in-phase driver of cc4010,
which has the same supply voltage with the CMOS driving gate, is inserted to
complement current sinking capacity for the CMOS driving gate. The connection
of the circuit is shown in Figure 12.6.2(a). Also an open-drain CMOS gate, for
example, CC40107 can be inserted in Figure 12.6.2(b). CC40107 can drive ten TTL
load gates in 74 series. In addition, the output current of the CMOS driving gate can
be amplified by using a transistor amplifier to drive the TTL load gate, as shown in
Figure 12.6.2(c).

12.6.3 Gate circuit loading interface

In digital application, it is a common thing to use a gate circuit to drive a heavy current
load, such as motor, relay, and LED. Thus the interface between a gate circuit and a
heavy current load should be designed according to the parameters of data sheet of IC.

Take a common example of a gate circuit driving LED. Usually, there are two
kinds of connection for a gate circuit driving LED, as shown in Figure 12.6.3.

VCCVDD

TTLCMOS
(a) (b) (c)

CC4010

VCCVDD

TTLCMOS CC40107

VCCVDD

Figure 12.6.2: CMOS gate driving TTL gate: (a) with an in-phase driver; (b) with an open drain gate;
(c) with a transistor amplifier.

Input
LED

R
Input

(b)(a)

VCC

R

LED

Figure 12.6.3: Circuits of a gate driving LED.
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Assume that the operating current of LED is denoted by ID and the voltage drops
for LED forward biased is VD. Current limiting resistor, R, is selected as follows.

When the output of the gate circuit is a HIGH output, current limiting resistor is
selected by the following equation

R=
VOH −VD

ID
(12:6:4)

When the output of gate circuit is a LOW output, current limiting resistor is
determined as follows.

R=
VCC −VD −VOL

ID
(12:6:5)

12.7 Summary

1. The most successful logic families are bipolar logic family and metal-oxide
semiconductor field-effect transistor (MOSFET) logic family.

2. Bipolar logic family is one based on bipolar junction transistors called transistor-
transistor logic (TTL). The TTL family of logic devices offers many SSI logic gates,
and MSI devices.

3. Metal oxide semiconductor (MOS) includes n-channel MOS (NMOS), p-channel
MOS (PMOS) and Complemented MOS (CMOS). CMOS logic family is most com-
monly used to construct large-scale integrated circuits and captured the market
due to its very low power and competitive speed.

4. To correctly use digital integrated circuits, you should understand some impor-
tant operational properties such as voltage levels, noise immunity, power dis-
sipation, fan-out, and propagation delay time.

5. When you are connecting devices together, it is vital to know howmany inputs a
given output can drive without compromising reliability. This is referred to as
fan-out.

6. Noise margins are the parameters related to voltage parameter, which represent
noise immunity ability of gate circuit.

7. Totem-pole outputs of TTL cannot be directly connected for implementing wired-
AND.

8. Open-collector and open-drain outputs can be wired together to implement a
wired-AND function.

9. Tristate outputs can be wired together to allow numerous devices to share a
group of data bus. At any one time, only one device is allowed to assert a logic
level on the data bus.
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10. CMOS transfer gate is an ideal bidirectional switch which can transfer not only
digital signal but also analogue signal. These devices can pass or block an analog
signal, depending on the digital logic level that controls it.

11. Logic devices that use various technologies cannot always be directly connected
together and operated reliably. The voltage and current characteristics of inputs
and outputs must be considered and precautions need to be taken.

Key terms

Gate circuit: The unit circuit who can implement basic logic operation and combina-
tional logic operation.
Logic family: A collection of different integrated circuits that have similar input,
output, and internal circuit characteristics, but that perform different logic function.
TTL: Transistor-transistor logic; a type of integrated circuit that uses bipolar junction
transistors.
CMOS: A type of integrated circuit that uses pairs of complementary MOS transistors.
Noise immunity: The ability to tolerate a certain amount of unwanted voltage
fluctuation on its inputs without changing its output.
Noise margin: The parameters for measuring noise immunity of gate circuits.
Propagation delay time: The amount of time that a gate takes for a change to produce
a change in the output signal.
Speed-power product: The product of propagation delay time and power
dissipation.
Current sourcing: The action of a logic circuit in which it sends current from its
output to a load.
Current sinking: The action of a logic circuit in which it accepts current into its
output from a load.
Fan-out: themaximum number of load gate inputs that can be connected to a certain
output without affecting the specified operational characteristics of the driving gate.
Totem-pole or push-pull: a type of output in TTL circuits. The output stage has two
transistors, only one of them is on at any time.
Open-collector: A type of output for a TTL circuit in which the collector of the output
transistor is left internally disconnected and is available for connection to an external
load that requires relatively high current or voltage.
Pull-up resistor: A resistor with one end connected to the dc supply voltage used to
keep a given point in a logic circuit HIGH when in the inactive state.
Tristate:A type of output in logic circuits that have three operational states: HIGH,
LOW, high-Z.
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Self-test

12.1 Which of the following is not a TTL circuit?
(a) 74F00 (b) 74AS00 (c) 74HC00 (d) 74ALS00

12.2 If two unused inputs of a LS TTL gate are connected to an input being driven by
another LS TTL gate, the total number of remaining unit loads that can be
driven by this gate is
(a) seven (b) eight (c) eighteen (d) unlimited

12.3 In a TTL circuit, if an excessive number of load gate inputs are connected,
(a) UOH(min) drops below UOH

(b) UOH drops below UOH(min)

(c) UOH exceeds UOH(min)

(d) UOH and UOH(min) are unaffected

12.4 An open-collector output requires ______________.
(a) a pull-down resistor
(b) a pull-up resistor
(c) no output resistor
(d) an output resistor

12.5 When the frequency of the input signal to a CMOS gate is increased, the average
power dissipation ______________.
(a) increases
(b) decreases
(c) does not change
(c) decreases exponentially

12.6 CMOS operates more reliably than TTL in a high-noise environment because of
its ______________.
(a) lower noise margin
(b) input capacitance
(c) higher noise margin
(d) smaller power dissipation

12.7 Which factor does not affect CMOS loading?
(a) Charging time associated with the output resistance of the driving gate
(b) Discharging time associated with the output resistance of the driving gate
(c) Output capacitance of the load gates
(d) Input capacitance of the load gates

12.8 Proper handling of a CMOS device is necessary because of ______________.
(a) fragile construction
(b) high noise margin
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(c) susceptibility to electrostatic discharge
(d) low power dissipation

12.9 It is best not to leave unused TTL inputs unconnected (open) because of
TTL’s ______________.
(a) noise sensitivity
(b) low-current requirement
(c) open-collector outputs
(d) tristate construction

12.10 One output structure of a TTL gate is often referred to as a ______________.
(a) totem-pole arrangement
(b) diode arrangement
(c) JBT arrangement
(d) base, emitter, collector arrangement

12.11 A certain gate draws 1.8 µA when its output is HIGH and 3.3 µA when its output
is LOW. VCC is 5 V and the gate is operated on a 50% duty cycle. What is the
average power dissipation (PD)?
(a) 2.55 µW (b) 1.27 µW (c) 12.75 µW (d) 5 µW

12.12 If ICCH is specified as 1.1 mA when VCC is 5 V and if the gate is in a static
(noncharging) HIGH output state, the power dissipation (PD) of the gate is
(a) 5.5 mW (b) 5.5W (c) 5 mW (d) 1.1 mW

Problems

12.1 A certain logic gate has a UOH(min) = 2.2 V, and it is driving a gate with a UIH(min)

= 2.5 V. Are these gates compatible for HIGH-state operation? Why?

12.2 A certain logic gate has aUOL(max) =0.45 V, and it is driving a gate withUIL(max) =
0.8 V. Are these gates compatible for LOW-state operation? Why?

12.3 Voltage specifications for three types of logic gates are given in the following
table. Which gates would you select for use in a high-noise industrial
environment?

UOH(min) UOL(max) UIH(min) UIL(max)

Gate A . V . V . V . V
Gate B . V . V  V . V
Gate C . V . V . V . V
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12.4 A certain gate draws 1.8 µA when its output is HIGH and 3.3 µA when its output
is LOW. VCC is 5 V and the gate operates on a 50% duty cycle. What is the
average power dissipation (PD)?

12.5 Parameters for three types of gates are listed in the following table. Considering
the speed-power product, which one would you select for best performance? If
you wanted the gate to operate at the highest possible frequency, which gate
would you select?

12.6 For a given circuit with five NAND gates in Figure P12.1, if the propagation of
gates G1, G2，G3 and G4 is 30 ns and the frequency of output F is 3.2 MHz,
determine the average propagation delay time, tpd5, of gate G5.

12.7 Write the logic expression for each circuit in Figure P12.2.

CMOS

A F1

10kΩ

(a)

100kΩ

TTL
A

F2B

(b)

51Ω

CMOS
A

F3B

(c)

100kΩ

TTL
A

F4B

(d)

10kΩ

CMOS
A

F5B

(e)

100kΩ

TTL

(f)

A
F6

B

Figure P12.2

FG5G4G3G2G1

Figure P12.1

tPLH tPHL PD

Gate A  ns . ns .mW
Gate B  ns  ns mW
Gate C  ns  ns .mW
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12.8 Which TTL circuits in Figure P12.3 can implement NOT operation?

12.9 Which CMOS circuits in Figure P12.4 can implement NOT operation?

12.10 For each part of the circuits in Figure P12.5, determine whether each part can
implement the required logic expression. If not, indicate the change that
should be made to implement the required logic. All gates are standard TTL.

A
5V

A

100Ω

A A

1 A

1M

(a) (e)(b) (c) (d)

Figure P12.3

A

1MΩ

A B TG
A

1

VDD
A

(a) (b) (c) (d)

Figure P12.4

A
B 1

ABF=

C
B
A

CBAF=

A
B

C
D

CDAB+F=

(a) (b)

(c)

X

A

100kΩ

XBX+AF=
B

(d)

Figure P12.5
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12.11 The input waveforms are applied to the inputs of the TTL tristate circuits, as
shown in Figure P12.6. Show the output waveform in proper relation to the
inputs with timing diagram.

12.12 For a CMOS circuit in Figure P12.7 (a), the input waveforms in Figure P12.7 (b)
are applied to inputs A, B and C, and R = 10 kΩ. Show the output waveform in
proper relation to the inputs with timing diagram.

12.13 Figure P12.8 (a) shows a circuit consisting of two transfer gates and an inverter.
uI1 = 10 V and uI2 = 5 V. If the input waveform in Figure P12.8 (b) is applied to the
input C, draw out the waveform of the output uO in proper relation to the inputs
with a timing diagram.

F

A

(a) (b)

B
C

A

B

C

Figure P12.6

A

(a) (b)

B

C

F

R

A
B

C

Figure P12.7
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12.14 Write the logic expression of each part of logic circuit in Figure P12.9.

12.15 Write the logic expression for each of TTL circuits in Figure P12.10 (a) and (b). If
the input waveforms in Figure P12.10 (c) are applied to inputs A, B, and C, show
the output waveforms in proper relation to the inputs with a timing diagram.

TG

C

TG

uI1

uI2

uo

O

C

t

O

uO

t

10V

(a) (b)

Figure P12.8

B

(a) (b)

F
A

C
1

F

A

B

Figure P12.9

C

F
A

B F
C

B
A

(a) (b)

C

B

A

(c)

Figure P12.10
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12.16 For a circuit in Figure P12.11 (a) to (g), input waveforms in figure (h) are applied
to input A and B. Determine the corresponding output waveforms in proper
relation to inputs with timing diagram.

12.17 Write the logic expression for each of CMOS circuits in Figure P12.12, and
explain what the similarities are and what the difference is between the
two circuits.

12.18 Design a CMOS circuit for implementing the logic expression as follows:

F =AB+C

(d)

F1

A
B

(a)

TTL

100Ω 100KΩ

(c)

10Ω

F3

A
B

CMOS

(b)

100KΩ

F2

A
B

TTL

F4

A
B

CMOS

F5
A

CMOS

100 KΩ

(e)

B

A F6

+5V

(f)

B

A

(g)

Figure P12.11

A

VDD

F1

EN

A

VDD

F1

EN

(a) (b)

Figure P12.12
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12.19 In viewpoint of voltage level match, explain the function of RP for the TTL/
CMOS interface in Figure P12.13.

12.20 Explain the reason why two CMOS inverters are in parallel in Figure P12.14.

12.21 Determine which driving circuits in Figure P12.15 is wrong. Indicate the change
that should be made to get the correct driving circuit.

TTL

+5V

RP

CMOS
uI

uO

Figure P12.13

VDD=VCC

TTLCMOS
uI uo

CMOS

Figure P12.14

A
B

(a)

VCC

A
B

(b)

C
D

A
B

(c)

Figure P12.15
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Appendix I: Quartus II software guide

Quartus II is an Electronic design automation (EDA) software for implementing a
digital circuit design, which is a software development package of Alrera Inc. The
programming hardware adopts Altera DE2 Development and Education Board. Taking
a 4-bit adder design as an example, this appendix introduces how to use Quartus II
software for implementing a digital circuit design. Figure A1 shows the block diagram
of a 4-bit adder, in which A3A2A1A0 and B3B2B1B0 are two 4-bit binary addends, C0 is
a carry input, S3S2S1S0 are 4-bit sum outputs, and C1 is carry output.

Step 1 Creat a New Project
Run Quartus II 7.2 software and enter into the initial interface, as shown in Figure A2.

4-bit  adder

C0

C1

A0
A1
A2
A3

B0
B1
B2
B3

S0
S1
S2
S3

Figure A1: Block diagram of a 4-bit adder.

Figure A2: Initial interface of Quartus II.
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Select File>NewProjectWizard and appear a dialog box of NewProjectWizard, as
shown in Figure A3. This dialog box lists all steps to help you creat a new project.

Click Next and appear a dialog box as shown in Figure A4.
Type the working directory of the project: “d:\DE2\example” or other directory

name. The project namemust be the same as the name of top-level design entity, here
“adder” is used and click “Next.” If the assigned directory “d:\DE2\example” does
not exist, the message box pops out, as shown in Figure A5.

Click “Yes” and a new dialog box pops out, as shown in Figure A6. Then the user-
specified design files can be added to the current project.

Click Next and appear a dialog box shown in Figure A7. Select the target program-
mable device ‘EP2C35F672C6ʹ in available device list, which is a FPGA device in DE2
board.

Click “Next” and appear a dialog box as shown in Figure A8. The dialog box give
the prompting message for the user to select the third party design tools that will be
used in the new project. Because all the design inputs, synthesis, simulation and time
sequence analysis tools provided by Quartus II are used in this design, no the third
party design tool is used in this project. Then click “Next” to go to the next step.

Figure A3: New Project Wizards.
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Figure A9 show a summary dialog box, and click “Finish” to complete new project
creation.

Step 2 Design Entry
In the current project directory, select File > New to open a dialog box shown in
Figure A10.

SelectVerilog HDL File and clickOK to open Text Editor. Then select File>Save as
to open a dialog box as shown in Figure A11.

Enter the file name “adder” and save as the type of “Verilog HDL File”. Select the
tick of “Add file to current project” and add the file “adder.v” to the current project.

Figure A5: Create a new directory for the project.

Figure A4:Window for entering the working directory, the project name, and the top-level design entity.
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Then in the Text Editor, you can input the program code of 4-bit adder in Example
A1 into the file “adder.v.”

–Example A1 Edit input file (adder.v)
module adder (A, B, C0, S, C1);

input [3:0] A, B;
input C0;
output [3:0] S;
output C1;reg [3:0] S;
reg C1;
always@(A or B or C0)
begin

S=A+B+C0;
if(A+B+C0>15)

C1=1;
else

C1=0;
end

end module

Figure A6: Adding the user-specified design files for the project.
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The next is to compile the input file of Verilog HDL description. Select
Processing>start compilation, or click the toolbar button and enter into the
process of the code analysis, synthesis and implementation for the target chip. The
successful compilation will pop out a message box to tell the success message. After
pressing the “OK” button, Quartus II displays the interface shown in Figure A12. At
the bottom of the interface, various compilation messages are displayed. Once errors
occur during the compiling process, the compilation quit and the error message will
be displayed in the “Message”window. When the compilation is finished, the system
will open a “Compilation Report” window automatically and report the chip’s
resource occupancy of the compiled design for the target FPGA chip.

Step 3 Assigning Pins
Select Assignments>Pins to assign pins as the inputs and outputs of the design
circuit. Table A1 shows the corresponding relation between input/output variables of
the file adder.v, input control switches and output LED display on the board DE2, and
the pins of target FPGA devices.

Figure A7: Selecting the target programmable logic device.
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In terms of Table A1, assign pins of FPGA to input/output variables, and the final
result is shown in Figure A13.

Step 4 Simulation
To check the correctness of the design, the function implemented by the program
need be simulated. Select File>New and appear a dialog box shown in Figure A14.
Click “Other File” item and select “Vector Waveform File.”

Click OK and go into the Waveform editor window shown in Figure A15.
Select File > Save as and enter the filename “adder” to save the file as “adder.vwf.”

ChooseEdit>EndTime to set the simulation end time of 200 ns, and selectView>Fit in
Window to display the entire simulation time range in the menu window.

Next, the input/output nodes need to be added into the waveform. Select Edit>
Insert>Insert Node or Bus and open a dialog box shown in Figure A16.

Click “Node Finder” and select Filter item as “Pins: all” in the Node Finder
window shown in Figure A17. Then click “List” and all nodes and buses are displayed
in the Nodes Found window.

Figure A8: Select the third part tools.
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Select all nodes and then click button. This makes all nodes added into
“Selected Nodes” window. Click OK and return to waveform editor window. Use
the select icon and thewaveform edit icon to edit the input waveform. Figure A18
shows the waveform of A[3:0]=[0000], B[3:0]=[0000] to [1111], and C0 = 0.

The following step is to perform functional simulation. SelectAssignments>Settings
to open the “Setting” window shown in Figure A19.

Select “Simulator Settings” and set “Simulation mode” as “Functional”. Click
“OK” to finish the settings. Then, selectProcessing>Generate Functional Simulation
Netlist to generate the netlist for functional simulation, and select Processing>Start
Simulation or press the icon to start functional simulation. The result is shown in
Figure A20.

Step 5 Configuration and Programming
Configuration and programming is to configure the 4-bit adder design into the FPGA
chip. Select the ALTERA’s DE2 board, which contains a Cyclone II chip.

Quartus II offer two kinds of configuration and programming mode. One is JTAG
(Join Test Action Group) mode, in which FPGA device is in-system programming (ISP)

Figure A9: Summary dialogue message of the new project.
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Figure A10: Creating a new Verilog file.

Figure A11: Dialog box of “Save as” and creating the file name.
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Figure A12: Compilation report.

Table A1: Pins assignment.

I/Os Variables Signal name of DE
board

FPGA
pin No.

Inputs

A[] SW PIN_AF
A[] SW PIN_AE
A[] SW PIN_P
A[] SW PIN_N
B[] SW PIN_B
B[] SW PIN_C
B[] SW PIN_AC
B[] SW PIN_AD
C SW PIN_N

Outputs

S[] LEDG PIN_V
S[] LEDG PIN_W

S[] LEDG PIN_AF
S[] LEDG PIN_AE
C LEDG PIN_U
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through the “USB Blaster.” Since FPGA belong to volatile device, the configuring data
will be lost when the power is turned off. Therefore, FPGA device must be repro-
grammed each time the power is turned on. Another is AS (active serial configuration)
mode, in which a serial EPROM chip (EPCS16) is used to configure FPGA device on the
DE2 board. In AS mode, the programming data is written into EPCS16 through the USB

Figure A13: Pin assignment.

Figure A14: Creating a new Vector Waveform File.
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Blaster. Then the data in EPCS16 is configured into FPGA device when the power is
turned on. SW19 on DE2 board is used to select the configuration mode. When SW19 is
switched to the RUN position, JTAG mode is selected; when SW19 is switched to the
PROG position, AS mode is selected.

The detailed steps to configure or program a device with JTAG mode as fellows.
(1) Connect USB port of the host computer to BLASTER port on the DE2 board, and

turn on the power of DE2 board.
(2) Switch SW19 to RUN position.
(3) Select Tool>Programmer or click to open the programming window shown in

Figure A21. Double Click “USB Blaster” and then Click “Close” to configure the
hardware.

Figure A15: Waveform editor window.

Figure A16: Dialog box of Insert Node or Bus.
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Figure A17: Node Finder dialog box.

Figure A18: Waveform editor window with all nodes.
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(4) If “No Hardware” is displayed, click “Hardware Setup” to open the Hardware
Setup window in Figure A22.

(5) Click Add File to add the “add.sof” file to the programmer. Notice that this step
can be omitted if the file is already displayed. Set Device as EP2C35F672 and
select “Program/Configure.”

Figure A19: Simulation Settings.

Figure A20: Simulation waveforms.
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(6) Click “Start” button and start programming. After programming, the LED
“GOOD” on DE2 is turned on.

The detailed steps to configure or program a device with AS mode as fellows.
(1) Select Settings>Device to open the setting window in Figure A23.

Figure A21: Programming window.

Figure A22: Hardware setup window.

506 Appendix I: Quartus II software guide

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 9:54 AM



(2) Click “Device & Pin Options” in Figure A23 and select “Configuration” item and
choose EPCS16 in the “Configuration Device” window as shown in Figure A24.
Click “OK” and return to the previous interface. Then click “OK” to end the
configuration setting and recompile.

(3) If the power of DE2 board is on, turn it off. Switch SW19 to PROG position and
connect DE2 board to the host computer by USB cable, and then turn on the
power of DE2 board;

(4) Select Tools>Programmer or Click to open the programming window in
Figure A21 and choose Mode as “Active Serial Programmer.”

(5) Click “Add File” to add the “adder.sof” file to the programmer and select
“Program/Configure” item shown in Figure A25.

Figure A23: Device configuration window.
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Figure A24: Selecting configuration device.

Figure A25: Programming and configuration window in AS mode.
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(6) Click “Start” button to start programming. After programming, the LED “GOOD”
on DE2 board is turned on.

Step 6 Circuit Test
Switch SW19 to RUN position. The circuit function can be tested by observing the
variation of LEDG0 to LEDG4 with the state of SW0 to SW8
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Appendix II: Introduction to Altera DE2 board

The purpose of the Altera DE2 Development and Education board is to provide the
ideal vehicle for learning about digital logic, computer organization and FPGAs. It
uses the state-of-the-art technology in both hardware and CAD tools to expose
students and professionals to a wide range of topics. The board offers a rich set of
features that make it suitable for use in a laboratory environment for university and
college courses, for a variety of design projects, as well as for the development of
sophisticated digital systems. Altera provides a suite of supporting materials for the
DE2 board, including tutorials, “ready-to-teach” laboratory exercises, and illustrative
demonstrations. You can download from the website of Altera Inc [49].

1. DE2 Board Features
The DE2 board features a state-of-the-art Cyclone® II 2C35 FPGA in a 672-pin package,
as shown in Figure A26.

All important components on the board are connected to pins of this chip, allowing the
user to control all aspects of the board’s operation. For simple experiments, the DE2
board includes a sufficient number of robust switches (of both toggle and push-button
type), LEDs, and 7-segment displays. Formore advanced experiments, there are SRAM,
SDRAM, and Flashmemory chips, as well as a 16 × 2 character display. For experiments
that require a processor and simple I/O interfaces, it is easy to instantiate Altera’s Nios
II processor and use interface standards such as RS-232 and PS/2. For experiments that

Figure A26: The DE2 board.
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involve sound or video signals, there are standard connectors for microphone, line-in,
line-out (24-bit audio CODEC), video-in (TV Decoder) and VGA (10-bit DAC); these
features can be used to create CD-quality audio applications and professional-looking
video. For larger design projects, the DE2 provides USB 2.0 connectivity (both host and
device), 10/100 Ethernet, an infrared (IrDA) port, and an SD memory card connector.
Finally, it is possible to connect other user defined boards to the DE2 board bymeans of
two expansion headers.

2. Main Pin Table
Table A2 lists part of main pin of Altera DE2 board for reference.

Table A2: Main pin table.

Signal
Name

FPGA Pin No. Description Signal
Name

FPGA Pin
No.

Description

SW[] PIN_N Toggle switches
Up: HIGH
Down: LOW

LEDR[] PIN_AE

RED LED

SW[] PIN_N LEDR[] PIN_AF

SW[] PIN_P LEDR[] PIN_AB

SW[] PIN_AE LEDR[] PIN_AC

SW[] PIN_AF LEDR[] PIN_AD

SW[] PIN_AD LEDR[] PIN_AD

SW[] PIN_AC LEDR[] PIN_AD

SW[] PIN_C LEDR[] PIN_AC

SW[] PIN_B LEDR[] PIN_AA

SW[] PIN_A LEDR[] PIN_Y

SW[] PIN_N LEDR[] PIN_AA

SW[] PIN_P LEDR[] PIN_AC

SW[] PIN_P LEDR[] PIN_AD

SW[] PIN_T LEDR[] PIN_AE

SW[] PIN_U LEDR[] PIN_AF

SW[] PIN_U LEDR[] PIN_AE
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Table A2 (continued)

Signal
Name

FPGA Pin No. Description Signal
Name

FPGA Pin
No.

Description

SW[] PIN_V LEDR[] PIN_AE

SW[] PIN_V LEDR[] PIN_AD

KEY[] PIN_G

 Push-button
switches, which can be
uses as manual clock.

LEDG[] PIN_AE

GREEN LED

KEY[] PIN_N LEDG[] PIN_AF

KEY[] PIN_P LEDG[] PIN_W

KEY[] PIN_W LEDG[] PIN_V

CLOCK_ PIN_D MHz clock LEDG[] PIN_U

CLOCK_ PIN_N MHz clock LEDG[] PIN_U

EXT_CLOCK PIN_P External clock LEDG[] PIN_AA

HEX[] PIN_AF

-Seg display LED 

LEDG[] PIN_Y

HEX[] PIN_AB LEDG[] PIN_Y

HEX[] PIN_AC HEX[] PIN_T

-Seg display LED 

HEX[] PIN_AD HEX[] PIN_P

HEX[] PIN_AE HEX[] PIN_P

HEX[] PIN_V HEX[] PIN_T

HEX[] PIN_V HEX[] PIN_R

HEX[] PIN_V

-Seg display LED 

HEX[] PIN_R

HEX[] PIN_V HEX[] PIN_R

HEX[] PIN_W HEX[] PIN_R

-Seg display LED 

HEX[] PIN_Y HEX[] PIN_P

HEX[] PIN_AA HEX[] PIN_P

HEX[] PIN_AA HEX[] PIN_M

HEX[] PIN_AB HEX[] PIN_M

(continued)
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Table A2 (continued)

Signal
Name

FPGA Pin No. Description Signal
Name

FPGA Pin
No.

Description

HEX[] PIN_AB

-Seg display LED 

HEX[] PIN_M

HEX[] PIN_V HEX[] PIN_M

HEX[] PIN_AC HEX[] PIN_L

-Seg display LED 

HEX[] PIN_AC HEX[] PIN_L

HEX[] PIN_AB HEX[] PIN_L

HEX[] PIN_AB HEX[] PIN_L

HEX[] PIN_Y HEX[] PIN_L

HEX[] PIN_Y

-Seg display LED 

HEX[] PIN_P

HEX[] PIN_AA HEX[] PIN_N

HEX[] PIN_AA

HEX[] PIN_Y

HEX[] PIN_Y

HEX[] PIN_U

HEX[] PIN_W

HEX[] PIN_U

-Seg display LED 

HEX[] PIN_U

HEX[] PIN_U

HEX[] PIN_T

HEX[] PIN_R

HEX[] PIN_R

HEX[] PIN_T
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Appendix III: Abbreviations

ABEL Advanced Boolean Expression Language
ADC Analog-to-Digital Converter
AIM Advanced Interconnect Matrix
ALE Address Latch Enable
ASCII American Standard Code for Information Interchange
ASIC Application-Specific Integrated Circuit
BCD Binary Coded Decimal
BEDO DRAM Burst Extended Data Out Dynamic Random Access Memory
BGA Ball Grid Array
BIOS Basic Input/Output System
BJT Bipolar Junction Transistor
BST Boundary-Scan Test
CAD Computer-Aided Design
CD Compact Disc
CLB Configurable Logic Blocks
CLR Clear
CMOS Complemented Metal Oxide Semiconductor
CP Clock Pulse
CPLD Complex Programmable Logic Device
CPU Central Processing Unit
CV Control Voltage
DAC Digital-to-Analog Converter
DC Direct Current
DEMUX Demultiplexer
DIP Dual Inline Package
DIS Discharge
DPRAM Dual-Ported Random Access Memory
DSP Digital Signal Process
ECAD Electronic Computer-Aided Design
EDA Electronic Design Automation
EDO DRAM Extended Data Out Dynamic Random Access Memory
EEPROM Electrically Erasable Programmable Read-Only Memory
EN Enable Port
EOC End of the Conversion
EPROM Erasable Programmable Read-Only Memory
FF Flip-Flop
FIFO First In First Out
FPGA Field Programmable Gate Array
FPM DRAM Fast Page Mode Dynamic Random Access Memory
FRAM Ferroelectric Random Access Memory
GAL Generic Array Logic
GDA Gateway Design Automation
GND Ground
HDL Hardware Description Language
I/O Input/Output
I/OB Input/Output Block
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IC Integrated Circuit
ICT In-Circuit Testers
IEEE Institute of Electrical and Electronic Engineers
ISO International Standard Organization
ISP In-System Programmability
JTAG Joint Test Action Group
K-map Karnaugh map
LAB Logical Array Block
LCD Liquid Crystal Display
LED Light Emitting Diode
LFSR Linear Feedback Shift Register
LQFP Low-Profile Quad Flat Package
LS Low Power Scottky
LSB Least Significant Bit
LSI Large-Scale Integrated Circuits
LUT Look-Up Table
MOD Modulus
MOS Metal Oxide Semiconductor
MOSFET Metal Oxide Semiconductor Field Effect Transistor
MROM Mask Read-Only Memory
MSB Most Significant Bit
MSI Medium-Scale Integration
MTP ROM Multiple Times Programmable Read-Only Memory
MUX Multiplexer
NAND Not And (Electronic Logic Gate)
NMOS N-Channel Metal Oxide Semiconductor
NPN Negative-Positive-Negative Transistor
OLMC Output Logic Macro Cell
OTP One-Time Programmable
OTP ROM One-Time Programmable Read-Only Memory
PAC Pad Array Carrier
PAL Programmable Array Logic
PCB Printed Circuit Board
PI Programmable Interconnection
PLA Programmable Logic Array
PLCC Plastic Leaded Chip Carrier
PLD Programmable Logic Device
PMOS P-Channel Metal Oxide Semiconductor
POS Product of Sum
PRE Preset
PROM Programmable Read-Only Memory
PWM Programmable Switch Matrix
QFP Quad Flat Package
RAM Random Access Memory
RC Resistance–Capacitance Circuits
RCLK Read Clock
RLC Resistance–Inductor–Capacitance Circuits
ROM Read-Only Memory
S/H Sample and Hold Circuit
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SAR Successive Approximation Register
SDRAM Synchronous Dynamic Random Access Memory
SMT Surface-Mount Technology
SOIC Small Outline Integrated Circuit
SOP Sum of Products
SPLD Simple Programmable Logic Devices
SSC Synchronous Sequential Circuits
SSI Small-Scale Integration
TB Terabyte
TH Threshold
TQFP Thin Quad Flat Package
TSOP Thin Small Outline Plastic
TTL Transistor–Transistor Logic
ULSI Ultra Large-scale Integration
USB Universal Serial Bus
VHSIC Very High-Speed Integrated Circuit
VHDL Hardware Description Language
VLSI Very Large-Scale Integration
VRAM Video Random Access Memory
V-T Voltage-to-Time
VT Vacuum Tube
WCLK Write Cloc
XNOR Exclusive-NOR
XOR Exclusive-OR
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Index

absorption capacitor 132
active level 99
ADC conversion errors 427
– incorrect codes 427
– missing code 427
– offset 427
adders 79, 89
– full-adder 91
– half-adder 90
– look-ahead carry adder 94
– ripple carry adder 94
address 109, 307
address bus 307
address code 307
address decoder 307, 312
addressing operation 307
advanced Interconnect Matrix (AIM) 356
– also called as PIA 356
alphanumeric codes 32
analog to digital hybrid integrated circuit 196
– 555 timer 196
analog-to-digital converter (ADC) 395, 408, 414
– dual-slope ADC 422
– flash ADC 415
– sigma-delta ADC 426
– successive-approximation ADC 418
analysis of combinational logic circuits 80
AND gate 39, 40
– logic expression 40
– logic symbol 39
antifuse 379
Application of Schmitt trigger 194
– pulse conversion 194
– pulse magnitude distinguishing 195
– pulse shaping 194
applications of ROM 323
– to construct lookup table 326
– to implement any combinational logic

circuits 323
ASCII code 32
– 7-bit binary code 32
– has 128 characters and symbols 32
asynchronous clear 257
asynchronous counter 247
– 2-bit asynchronous binary counter 248
– 3-bit asynchronous binary counter 249
– also called ripple counter 247

– has not a common clock pulse 247
– MSI asynchronous counter 252, 253
– truncated sequence 250
asynchronous reset 257
asynchronous SRAM 329
augment the capacity of MSI counters 259
– using clear input 259
– using load input 259

basic arithmetic operations 27
– binary addition 27
– binary division 27
– binary multiplication 27
– binary subtraction 27
basic arithmetic operations 27
– binary addition 27
– binary division 27
– binary multiplication 27
– binary subtraction 27
basic operational characteristics and

parameters 440
– DC supply voltage 440
– fan-out 445
– logic-level specifications 441
– noise immunity 442
– power dissipation 443
– propagation delay time 445
– speed-power product 445
basic operations of the memory 307
– addressing operation 307
– read operation 307
– write operation 308
BCD-to-decimal decoders 104
begin-end block 143
behavioral description 133
BiCMOS 9, 476
bidirectional counter 256
binary code 29
– a group of binary bits 29
Binary coded decimal (BCD) 29
– 2421BCD 29
– 5421BCD 29
– 8421BCD 29
– Excess-3 code 29
binary decoder 104
binary encoder 99
– 2n-to-n binary encoders 99
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binary encoders 99
– 4-to-2 binary encoder 99
binary number system 21
– two digits, 0 and 1 21
– weight of 2i 21
binary-weighted-input DAC 395, 397, 400
bipolar memory 311
bit 306
bitstream 385
Boolean algebra 37, 57
Boolean expression 49
Boolean multiplication 45
– equivalent to AND operation 45
Burst EDO DRAM (BEDO DRAM) 329
byte 306

capacity of a memory 307
cascaded counter 264
– also regarded as a frequency divider 265
– overall modulus 264
– truncated sequence 265
Cascading 264
characteristic table XE S-R latch 167
– characteristic table 167
characteristics of DACs 403
– conversion error 405
– conversion speed 406
– resolution 403
chip select 109
CMOS family 476
– 4000-series 476
– high speed 74HC -series 476
– high speed 74HCT -series 476
– ultra-low supply voltage 74AUC series 476
CMOS integrated circuits 466
– CMOS inverter 468
– CMOS NAND gate 470
– CMOS NOR gate 471
– CMOS transfer gate 473
– open-drain gate 475
– tristate CMOS inverter 475
CMOS inverter 468
– noise margin 470
– propagation delay time 470
– transfer characteristics 469
CMOS logic family 439
CMOS NAND gate 470
CMOS NOR gate 471
CMOS transfer gate 473

coarse-grained structure 371
code converters 104
Coding 29
combinational logic circuits 79, 104, 120, 125,

126, 129, 133
– adder 89
– decoder 104
– demultiplexer 125
– encoder 99
– magnitude comparator 126
– multiplexer 120
– races and hazards 129
– with Verilog HDL Description 133
combinational logic operations 43
– XOR 43
comments 135
compiler 383
complex programmable logic devices

(CPLDs) 6, 345, 356
– CPLD architecture 356
conditional_expression 135
– false_expression 135
– true_expression 135
configurable logic blocks (CLBs) 370, 371
– logic function generator 371
conversion 23
– from binary to decimal 23
– from binary to octal 26
– from decimal to binary 23
– from octal to binary 26
conversion error 403
– high or low gain 407
– non-monotonicity 406
– nonlinearity 407
conversion offset error 407
conversion speed 406
counter 247
– asynchronous counter 247
CPLD architecture 356
– I/O control blocks 356
– logical array block (LAB) 356
– programmable interconnection 356
– SPLD arrays 356
current state 167

data bus 110, 308
data distributors 120, 125
dataflow description 133
date selectors 120
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DC supply voltage 440
decade counter 250
decimal number system 20
– ten digits, 0 through 9 20
– weight of 10i 20
decimal number to equivalent binary 23
– fractional number conversion 23
– repeated multiplication-by-2 method 23

– whole number conversion 23
– repeated division-by-2 method 23

decimal-to-BCD priority encoder 102
decoders 79, 104
– display decoders 104
– general-purpose decoders 104
Decoding 98, 104
Decoding 98, 104
delta modulation 426
DeMorgan’s theorems 47
demultiplexer (DEMUX) 120, 125
– also called as data distributor 120
design entry 382
– graphic entry 382
– hardware description language (HDLs) 382
– state machine entry 382
– text entry 382
design flow 382
design of combinational logic circuits 84
digital clock 265
– calibrated circuit 267
– counter 267
– crystal oscillator 266
– decoder and display 267
– generating time base signal 266
– Verilog HDL description 268
digital-to-analog converter (DAC) 395
– binary-weighted-input DAC 397, 400
display decoders 104, 113
– design 114
– MSI display decoders 116
divide-by-n counter 249
don’t care terms 70
dot-matrix display 112
down operation mode 256
DRAM 329
– BEDO DRAM 329
– EDO DRAM 329
– FPM DRAM 329
– SDRAM 329
DRAM memory cell 330

driving gate 445
dual-integral ADC 422
Dual-ported RAM (DPRAM) 334
dual-slope ADC 414, 422
– also called as dual-integral ADC 422
dynamic RAM (DRAM) 329

EEPROM 318
– rapidly programmed and erased in-circuit for

reprogramming 318
Electrically Erasable Programmable ROM

(EEPROM) 315
electronic computer-aided design (ECAD) 10, 381
electronic design automation (EDA) 10, 381
enable input 110
encoder 98, 99, 101
– binary encoder 99
– priority encoder 101
encoders 79
encoding 98, 411
EPROM 317
Erasable Programmable ROM (EPROM) 315
Extended Data Out DRAM (EDO DRAM) 329

fan-out 445
Fast Page Mode DRAM (FPM DRAM) 329
field-programmable gate array (FPGA) 6, 345, 370
– FPGA Architecture 370
FIFO 335
– First In-First Out (FIFO) memory 335
fine-grained structure 371
fixed ROM 315
flash ADC 414, 415, 416
– n-bit flash ADC needs 2n-1 comparators 416
flash memory 315, 319
– NAND-type 319
– NOR-type 319
flip-flop conversion 181
floating gate 317, 318
floating gate tunnel oxide MOS transistor

(Flotox) 318
– a memory cell in the EEPROM 318
FPGA architecture 370
– configurable logic blocks (CLBs) 370
– input/output block (I/OB) 375
– programmable interconnect 377
FPGA architecture 370
– configurable logic blocks (CLBs) 370
– input/output block (I/OB) 375
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– programmable interconnect 377
free-running counter 258
frequency divider 249
full-adder 91
funtional simulation 383

gate circuits 439
gated D latch 170
general-purpose decoders 104
– BCD-to-decimal decoders 104
– binary decoders 104
– code converters 104
generic array logic (GAL) 345, 350
– logic macrocell (OLMC) 351
– output logic macrocell 350
– programmable AND logic array, fixed

OR gate array 350
gigabyte 305
graphic entry 382
group 70
– group 0s 70

half-adder 90
hardware description languages 133
hardware description languages (HDLs) 345,

346, 382
– ABEL 346
– Verilog HDL 346
– VHDL 346
hazards 129, 130
– static ‘0’ hazard 130
– static ‘1’ hazard 130
hexadecimal number system 22
– sixteen digits, 0 through 9 and A through F 22
– weight of 16i 22
high or low gain 407
high-impedance state 464
hold 410
hysteresis voltage 194

if-else statement 143
if-else-if statement 143
input buffer 312
input/output block (I/OB) 370, 375
input/output (I/O) 109
in-system programmable 368, 369
integrated circuit (IC) 439
inverting Schmitt trigger 192
I/O control blocks 356, 362

JTAG interface 385

Karnaugh map 69
Karnaugh map POS minimization 69
– mapping POS expression 69
Karnaugh map simplification 70
– with don’t care terms 70
Karnaugh map SOP minimization 63, 64
– mapping a nonstandard SOP expression 63
– mapping from a truth table 64

latch 166, 170
– gated D latch 170
– S-R latch 166
LED display devices 113
– common anode 113
– common cathode 113
left shifting register 285
light-emitting-diodes (LEDs) 112
liquid-crystal displays (LCDs) 112
load gates 445
loading 446
– CMOS loading 446
– TTL loading 446
logic circuits 79
– combinational logic circuits 79
– sequential logic circuits 79
logic expression 40
logic family 439
logic function generator 371
– configured as RAM arrays) 374
– fast carry logic 374
– implemented as memory look-up tables

(LUT) 371
logic gates 37
logic macrocell (OLMC) 351
– combinatorial I/O configuration 352
– combinatorial output configuration 352
– dedicated input configuration 352
– registered combinatorial I/O

configuration 354
– registered configuration 354
logic symbol 37, 39
logical algebra 37
logical array block (LAB) 356
– macrocell 359
logical operations 37
logic-level specifications 441
longlines 378
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look-ahead carry 94
look-ahead carry adder 94
look-up table (LUT) 326, 371
– structure：contains 2n memory cells 371
low-power Scottky (LS) TTL 448

magnetic disks 305
magnetic tape 305
magnitude comparator 126
– 1-bit magnitude comparator 126
– 4-bit MSI magnitude comparator 127
– expand the comparator 128
MASK ROM 315
maximum frequency 409
maxterm expression 53, 57
maxterms 51
– standard sum terms 51
medium-scale adder 95
memory 305
– flip-flops 305
– register 305
– semiconductor memory 305
memory array 312
memory cell 306, 347
– fuse 347
– the smallest storage unit 306
method of converting an analog signal to

digital 408
– emcoding 411
– hold 410
– quantization 411
– sampling 409
minimized POS expression 69
minimum SOP expression 68
minterm expression 52, 57
MOD-n counter 249
– also called as divide-by-n counter 249
module 134
modulus 249
– the number of states in a counter 249
MOS memory 312
MSI asynchronous counter 252, 253
MSI binary up counter 257
– 74LS161 257
– 74LS163 258
– asynchronous clear 257
– asynchronous reset 257
– synchronous load 258
MSI decoder 106

– 8421BCD-to-decimal 108
MSI display decoders 116
MSI multiplexers 121
MSI priority encoders 102
– decimal-to-BCD 102
multiple times programmable ROM(MTP

ROM) 315
multiplexer (MUX) 119
– 4-to-1 multiplexer 120
– also called data selector 119
– implement combinational logic functions 122
– MSI multiplexers 121

next state 167
nibble 306
noise immunity 442
noise margin 442
– HIGH-level noise margin 442
– LOW-level noise margin 442
non-inverting Schmitt trigger 192
nonlinearity 407
non-monotonicity 406
nonstandard SOP expressions 52
– to standard SOP expression 52
nonuniform quantization 411
nonvolatile 319
Nyquist frequency 409

octal number system 22
– weight of 8i 22
offset error 407
one times programmable ROM (OTP ROM or

PROM) 315
open-collector 459
open-drain gate 475
optical disks (CDs) 305
output buffer 312
overall modulus 264

parallel counter 253
parallel expanders 361
partial decoder 105
partial decoding 251
peripherals 109
– modems 109
– printers 109
– scanner 109
ports 134
– inout 134
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– input 134
– output 134
POS expression 55
– from truth table 55
power dissipation 443
present state 167
priority 101
– highest-order priority 101
– lowest-order priority 101
priority encoder 101
product-of-sums expression 49
product-of-sums (POS) 50
– also called OR-AND form 50
programmable array logic (PAL) 345, 347
– implementation SOP expression 347
– one-time programmable (OTP) devices 347
– programmable AND array and fixed OR

array 347
– with a fuse as a memory cell 347
programmable interconnect array (PIA) 356, 362
– also called as AIM 356
programmable interconnection 356
– referred to as programmable interconnect

array (PIA) 356
programmable interconnection (PI) 370, 377
– longlines 378
Programmable Logic Array (PLA) 345, 365
– programmable AND array followed by a

programmable OR array 365
programmable logic devices (PLDs) 345
programmable read-only memory (PROM) 345
programmable switch matrix (PSM) 378
programmable switch matrix (PWM) 370
programming process of PLD 382
– design entry 382
– download 385
– funtional simulation 383
– implementation 384
– synthesis 384
– timing simulation 384
PROMs 316
propagation delay time 445

quantization 411
– nonuniform quantization 411
– uniform quantization 411
quantization error 411
quantization process 411
quartz crystal 190

– parallel resonance frequency 190
– series resonance frequency 190

R/2R ladder DAC 395
– AD7524 403
races 129, 130
races 129, 130
RAM 328
– DRAM 329
– SRAM 329
random access memory (RAM) 305, 328
– also called read/ write memory 328
– volatile memory 328
read operation 307
read/ write memory 328
read-only memory (ROM) 305
recycle 248
redundancy term 132
registers 281
resolution 403
right shifting register 285
ripple carry 94
ripple carry adder 94
ripple counter 247
ROM 312
– memory cell 313

sample frequency 409
sample-and-hold circuit 410
sampling 409
– maximum frequency 409
– Nyquist frequency 409
– sample frequency 409
Schmitt trigger 201
– constructed by 555 timer 201
segment display 112
semiconductor memory 305
– RAM 305
– ROM 305
sequence generator 262
– producing the sequential signal 262
– using the counter and combinational

circuit 262
sequential logic circuits 79
seven-segment LED 113
shareable expanders 360
shift register 281
– left shifting register. 285
– right shifting register 285
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sigma-delta 425
sigma-delta ADC 414, 426
– based on delta modulation 426
simple programmable logic devices (SPLDs) 345
– PAL 347
simplification using Boolean algebra 57
– use the laws, the rules, and the theorems 57
single-length lines 377
sink current 447
SOP expression 53
– to truth table format 53
source current 446
speed-power product 445
S-R latch 166
– with two cross-coupled NOR gates 168
SRAM 329
– asynchronous SRAM 329
– synchronous SRAM 329
SRAM cell 329
stairsteps 410
standard Boolean expressions 53
– to truth table format 53
standard POS expression 53, 57
– referred to as a maxterm expression 53
standard product term 52
standard product-of-sums expression 49
standard product-of-sums term 49
standard SOP expression 52, 57
– also called minterm expression 52
standard sum-of-products expression 49
standard sum-of-products term 49
state machine entry 382
static RAM (SRAM) 329
storage 305
– magnetic disks 305
– magnetic tape 305
– optical disks 305
strobing pulse 133
structural description 133
successive-approximation ADC 414, 418
successive-approximation register

(SAR) 418
sum-of-products expression 49
sum-of-products (SOP) 50
– also called AND-OR form 50
synchronous counter 247
– 2-bit synchronous counter 254
– 3-bit synchronous binary up counter 255
– up/down counter 256

synchronous DRAM (SDRAM) 329
synchronous load 258
synchronous SRAM 329

terabyte 305
timing simulation 384
totem-pole or push-pull output 452
transistor-transistor logic (TTL) 439
transistor-transistor logic(TTL) 449
– open-collector gate 459
– tristate gates 464
– TTL NAND gate 451
tristate CMOS inverter 475
tristate gates 464
– used as bidirectional data transfer 465
– used in data bus 465
truncated sequence 250
– a number of states less than the maximum of

2n 250
TTL family 458
– 74-series TTL 458
– 74ALS (Advanced Low-power Schottky

TTL) 459
– 74AS (Advanced Schottky TTL) 459
– 74F (Fast TTL) 459
– 74H (high-speed TTL) 458
– 74L (Low-power TTL) 458
– 74LS (Low power Schottky TTL) 459
– 74S (Schottky TTL) 458
TTL NAND gate 451
– fan-out 456
– input characteristics 455
– input load characteristics 457
– transfer characteristics 453
TTL/CMOS interfacing 478
– COMS gate drive a TTL gate 480
– gate circuit load interface 481
– TTL gate drive a CMOS gate 479
two-valued algebraic system 37
– called as Boolean algebra 37
– called as logic algebra 37

uniform quantization 411
unit load 448
units of binary data 306
– bit 306
– byte 306
– nibblet 306
– word 306
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up operation mode 256
up/down counter 256
– down operation mode 256
– up operation mode 256
up/down MSI decade counter 259
– 74HC190 259

variable decoder 104, 105
– n-to-2n decoder 105
– partial decoder 105
vector 139
Verilog HDL 79, 133
– behavioral description 133
– dataflow description 133
– structural description 133
VHDL 11, 133

volatile memory 328

waveform editor 383
weight 22
weighted code 29
– 2421BCD 29
– 5421BCD 29
– 8421BCD 29
wired AND 462
word 306
word-length expansion 336
wore-capacity expansion 336
write operation 307

XOR gate 43
– exclusive-OR 43
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