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Chapter 1
Introduction and Examples

1.1 Objectives of Experimental Network Analysis
and Meta-analysis

Many experiments are performed each year to analyze the effects of agricultural
practices on production and the environment. An experiment consists of experimen-
tal treatments applied to experimental plots for one or several years. Depending on
the objective of the experiment, these experimental treatments may correspond to
different types of agricultural practices, such as pest control methods, fertilization
practices, different sowing dates, crop rotations or varieties. In these experiments,
one or several variables are measured for each treatment, with the aim of character-
izing the plant cover (yield, product quality, leaf area, etc.) or environment (soil
characteristics, greenhouse gas emissions, water pollution, impact on biodiversity,
etc.) of the crop. These experiments generate valuable results, providing insight into
the effects of agricultural practices on crops and environmental risks. They are
performed by various organizations: research institutes, technical institutes, cham-
bers of agriculture and companies.

The results of agronomic experiments are likely to differ strongly between sites
and between years. The effects of agricultural practices depend on local factors
linked, in particular, to climate and soil characteristics. Agronomic experiments are
often performed in networks, to make it possible to evaluate the variability of the
effects of agricultural practices. In such networks, the same set of experimental
treatments is tested at several sites, in several years, to assess the variability of effects
and to estimate mean effect size. Variety testing is a classic example of an experi-
mental network. In this particular case, different varieties are cultivated at several
sites, in several years, and their mean performances and variability are analyzed. In
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an experimental network, observations may be obtained in very different conditions
(soil type, climate, etc.). However, the global analysis of experimental networks
testing common hypotheses is very useful, because such an analysis makes it
possible:

• To consolidate the results of the experiment. The results of individual experi-
ments are sometimes obtained with only a small number of replicates, and may
therefore be imprecise. The analysis of several experiments increases the number
of replicates used to estimate the quantities of interest.

• To generalize conclusions. As the results of agronomic experiments vary between
sites and years, a synthesis of the results of several experiments can be used to
assess the robustness of conclusions and the extent to which conclusions can be
generalized to a set of environments.

• To understand variability. The analysis of experimental networks also provides
information about the origin of the variability for certain results. If each individ-
ual experiment is characterized by one or several covariables (e.g. precipitation,
temperature, soil type, pest incidence), then these covariables can be used to
identify the sources of variability of the effects of the experimental treatments
studied. Such an analysis sheds light on the effects of the treatments studied,
making it possible to refine recommendations concerning agronomic practices
according to the particular features of the local context.

The objective of meta-analysis is not dissimilar to that of experimental network
analysis. Meta-analysis makes it possible to analyze the results of a set of experi-
ments performed in different conditions but dealing with a common subject. Unlike
experimental networks, the experiments considered in meta-analyses were not
initially performed with the intention of synthesis and global analysis in mind. A
meta-analysis synthesizes the findings of experiments conducted independently,
generally by different institutions, and sometimes in very distant geographic regions.
These experiments are combined a posteriori, often well after their completion.

Unlike experimental network analysis, meta-analysis is not just a statistical
analysis of a set of experimental data obtained in different conditions; it includes a
preliminary step, in which the objective is to recover the largest possible number of
experiments performed to tackle a given question. This data collection step is very
important and makes use of specific approaches that may be time-consuming to
implement. For certain strategic subjects, many studies have been performed and
published independently, by different teams, from diverse institutions. This is the
case, for example, for studies aiming to compare “organic agriculture” and “con-
ventional agriculture” systems, and for those studying the impact of no-till tech-
niques or evaluating the performance of genetically modified crops or greenhouse
gas emissions due to nitrogen fertilization. For such subjects, tens, or even hundreds
of studies have been performed, over time periods of various lengths (generally
10–20 years) and the results have been published independently in reports and
scientific journals. The recovery of published data for these subjects is not simple
and requires the use of rigorous search and data extraction procedures.
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1.2 Data

The objectives of experimental network analysis and meta-analysis may be similar,
but the types of data used, and the collection and validation of these data may be very
different.

Type of Data
In the case of experimental networks, the elementary data are generally available. It
is therefore possible to use these data to analyze individual experiments or the entire
network.

In meta-analyses, the elementary data are often unavailable. Generally, only
aggregate data (e.g. means, frequencies and standard deviations) are available for
each individual experiment.

Data Collection
In experimental networks, the organization of data collection is described in an
experimental protocol that specifies the objective of the network, the treatments
studied, the number of experiments to be set up, the choice of experimental sites, the
conditions in which the experiments are performed (cropping practices, etc.), the
number of replicates and the experimental design, the type of measurements to be
performed, and so on.

In meta-analyses, the data are often extracted from scientific publications or
reports obtained through a systematic literature review of articles and/or reports
published on the study theme. The experimental protocols are thus described in each
individual reference and may differ considerably between references. The data
collection procedure requires a specific formalized approach, which may be very
time-consuming. In some meta-analyses, the data are obtained by directly contacting
the principal investigators of the experiments concerned and requesting the
crude data.

Data Validation
Data validation is designed to ensure that the data collected really do address the
question posed.

In experimental networks, all the experiments have the same experimental pro-
tocol and address the same objective. Data validation therefore consists of checking
that the experiments were performed in accordance with the protocol. The investi-
gators should identify all accidents and deviations from the protocol (heterogeneous
emergence due to soil aggregation, late nitrogen fertilization because the plot was
not accessible on the scheduled date, etc.) occurring during the experiment. At the
end of the experiment, the investigator determines whether the experiment meets the
objectives of the protocol.

In meta-analyses, the available information concerning the protocols of the
various experiments is generally less detailed. The person performing the meta-
analysis must use the available information to estimate, for each experiment, whether
the published results correspond to the objective of the meta-analysis.

1.2 Data 3



In practice, the difference between experimental network analysis and meta-
analysis may not always be so clear-cut. Indeed, the results for individual experi-
ments may not always be available in experimental networks, necessitating analyses
of aggregate data i.e., mean results. In such cases, the data for each experiment are
first analyzed and validated separately. The global analysis is then performed with
the mean values obtained, in the same way as for a meta-analysis.

In other cases, the protocol may differ between some of the experiments included
in a given experimental network. These differences may be linked to the way in
which experiments are performed, or the nature of the treatments studied. For
example, an experimental network aiming to evaluated the yield of wheat varieties
may consist of experiments testing the same varieties in different cropping condi-
tions, with different crop protection methods, for example. Some of the experiments
may thus be less well protected against diseases than others. Consequently, the
differences observed between varieties in some experiments may essentially reflect
true differences in yield potential, whereas, in other experiments, they may also
reflect the susceptibility of the varieties to disease. The experimental networks
evaluating organic waste products (OWPs; manure, slurry, etc.) constitute a partic-
ularly interesting example. OWPs have different origins in different experiments.
For example, “cattle manure” may differ considerably in composition between
experiments, according to the way in which it is produced. The interpretation of
results in these two situations is clearly more difficult than in ideal conditions in
which the same experimental protocol is applied rigorously in all the experiments.

In some cases, some of the experimental treatments may be absent from some
sites. This situation may affect both experimental networks and meta-analyses, and it
complicates the comparison of study treatments. Indeed, when two treatments are
tested in the same experiment, it is possible to compare their effects directly. By
contrast, the comparison of two treatments, each present in only one of two different
experiments, is necessarily indirect and involves comparisons with the other treat-
ments present in both experiments. In practice, comparisons between two treatments
may involve a combination of direct and indirect comparisons. However, before the
data are analyzed, attention should be paid to the reasons for the absence of certain
treatments in certain experiments. Indeed, if a treatment is absent from certain
experiments because it is unsuitable for the experimental conditions (pedoclimatic
conditions unsuitable for the treatment concerned, for example), then the absence of
the treatment cannot be considered to be independent of its expected value. Inter-
pretation of the results is particularly difficult in this situation.

1.3 Analysis

Analyses of experimental network data and meta-analyses can make use of many
different statistical methods, some descriptive and others inference-based.

In experimental network analysis, the analysis of interactions between the study
treatments and the experimental conditions (treatment � experiment interactions) is
of particular importance. This interaction leads to variability in the effect of the
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treatments between experiments, according to soil type or climate, for example. In
meta-analysis, the principal objective of the statistical analysis is to estimate the
mean effect size, but the analysis of interactions is also important in some cases.

Mixed models are often used as the basic statistical model for syntheses of series
of experimental results. Models of this type can take treatment � experiment inter-
actions into account and extend the validity of conclusions to a collection of
environments not restricted to those actually observed. Mixed models play a key
role in both experimental network analysis and meta-analysis. A simple but illustra-
tive example is presented in Sect. 1.6 of this chapter. Descriptive methods, many
of them graphic in nature, are also used in both types of analyses. Examples of
these methods include forest plots for meta-analysis and biplots for the analysis
of experimental networks. Graphs also play an important role in analyses of
treatment * experiment interactions.

1.4 Principal Steps

Both analyses of experimental networks and meta-analyses require the implemen-
tation of methodologies with several steps. The same steps are followed in both
cases, but with important differences between the two types of analysis for some of
these steps.

• Presentation of the hypotheses tested
The hypotheses tested in analyses of experimental networks or in meta-

analyses must be described as precisely as possible.
• Data collection

In experimental networks, the data are acquired to address a precise objective.
The protocol is developed with the goal of performing a global analysis of the
experiments, and the elementary data are often available. In meta-analyses, the
experiments are often heterogeneous and the data are less accessible. It is often
necessary to extract the data from articles and reports.

• Data validation
In experimental networks, data validation is based largely on the experiment

monitoring notes taken during field visits, and on an examination of the data for
individual experiments. In meta-analyses, data validation involves a profound
critical examination of the articles and reports collected, and it may be necessary,
in some cases, to contact the investigators directly to obtain more information.

• Data analysis
Various analytical methods may be used, but mixed models are probably the

most widespread, for both analyses of experimental networks and for meta-
analyses.

• Validation of the analysis
This step involves validation of the hypotheses associated with the model,

such as the normality of random effects, for example. In meta-analyses, the
conclusions may be affected by publication bias if only certain results are
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published, such as those showing a significant effect of the treatments studied.
The validation of meta-analysis therefore involves an analysis of the risk of
publication bias.

• Communication of the results
In any communication of the results, the way in which the steps listed here

were performed should be described, and the results should be presented in a
transparent manner, together with the uncertainty associated with them.

1.5 Objective of This Book

Our aim here is to present and illustrate the principal statistical methods that can be
used in the quantitative synthesis of data from experimental networks and scientific
publications. Each chapter presents one or more methods, illustrated by practi-
cal examples with the R software, which is freely available from the following
site: https://cran.r-project.org/. The data and R codes are provided and discussed, to
facilitate their adaptation to other practical situations. They can be used in the R
KenSyn package (https://cran.r-project.org/web/packages/KenSyn/index.html)
accompanying this book.

In the next part of this chapter, we present a first statistical model for the analysis
of simple experimental networks and standard meta-analyses. The first part of this
book (Chaps. 2, 3, 4 and 5) describes several extensions of this model and show how
they can be used to analyze different types of experimental networks. The second
part of the book (Chaps. 6 and 7) presents in detail the objectives and principal steps
of meta-analysis. Finally, the appendix presents the principal R packages that can be
used for statistical analysis. Each chapter can be read independently of the others.

1.6 A Simple Example of a Mixed Model

1.6.1 Definition

Random-effects models are a particular type of statistical model often used to take
several sources of variability into account (Laird and Ware 1982). These models
include a large number of variants generalizing classical linear and non-linear
regression models. Some of these variants may be complex and include both random
and fixed effects. Such models are often referred to as mixed models.

In this chapter, we present a very simple model with Gaussian random effects,
describing two sources of variability in the data: intraindividual and interindividual
variability. Each source of variability can be described by a random effect. This
model is often used in situations in which several measurements are collected for
each individual in the sample. Depending on the context, an “individual” may be an
animal, a person, or a plant, for example. In the example presented here, an
individual corresponds to a particular experimental study in which several

6 1 Introduction and Examples
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measurements have been collected. Despite its simplicity, this model can be used to
address several practical questions, including:

• Estimation of the mean value of the variable studied,
• Description of the variability of this variable between studies and within each

study,
• Obtaining “local” estimates (specific to the individual study concerned).

This model is often used for the analysis of experimental networks. It is also an
indispensable tool for meta-analyses (Mengersen et al. 2013). Here, we illustrate its
utility through an example in which the objective is to estimate the mean yield of a
crop in an agricultural region.

1.6.2 Data

The dataset consists of 45 measurements of wheat yield obtained at 15 experimental
sites (for a given year) in an agricultural region. In this dataset, a study corresponds
to a site-year comprising two to four plots. The yield of the crop (expressed in t ha�1)
was measured for each plot, and we therefore have two to four yield measurements
per study (Fig. 1.1).

In this example, the population corresponds to the set of wheat plots in the region
considered, for the year studied (Fig. 1.2). The sample is defined as the 15 sites and
45 yield measurements. In the next section, we will show how this sample can be
used:

• To estimate expected yield for the population (i.e. “mean” yield for the region)
• To estimate yield variability between sites and to compare this variability with

intra-site variability
• To estimate yield at each of the 15 sites.

1.6.3 Definition of the Model

The model was defined by Laird and Ware (1982), as follows:

yij ¼ μþ bi þ εij ð1:1Þ

where yij is the yield measured at site i for plot j, i ¼ 1, . . ., 15, j ¼ 1, . . ., ni
(2 � ni � 4), μ is the expected yield of the population, bi is the random effect of
“site”, μ + bi is the mean yield of site i, εij is the intra-site residual describing the
difference between yij and μ + bi. The quantities bi and εij are defined as independent
Gaussian random variables, such that bi � N 0; σ2b

� �
and εij � N 0; σ2ε

� �
. The random

variable bi is the difference between the yield at site i and the general mean yield for
the whole population.
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Fig. 1.1 Wheat yield measurements obtained at 15 sites in a given year. Two to four measurements
were made on different plots, at each site
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A site including
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Sample (N sites)

Population (wheat plots in a given region for a given year)

Fig. 1.2 Diagram of the population and the sample
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This model includes several parameters of unknown value:

• Population mean yield (μ),
• Intersite variance (σ2b),
• Intra-site variance (σ2ε).

According to this model, two yield values obtained at the same site are not

independent. Their covariance is σ2b and their correlation is
σ2b

σ2bþσ2ε
. The hypothesis

of the non-independence of measurements is consistent with the structure of our
dataset. Indeed, Fig. 1.1 shows that data collected at the same site show some
similarities; they group together such that each site is associated with a range of
values different from that at other sites. The fixed-effects model requires only two
parameters to describe correlations between measurements collected at the same site:
σ2b and σ2ε .

We show below how to estimate these parameters of the model (1.1) with R
software.

1.6.4 Estimation

If we assume that σ2b and σ
2
ε are known, the most precise (minimal variance) unbiased

estimator of μ is defined as follows:

μ̂ ¼
Pp

i¼1
wi�yi:

Pp

i¼1
wi

ð1:2Þ

where �yi: is the mean of the yields measured at site i, p is the number of sites in the
sample (here, p ¼ 15), and wi is a weight defined by wi ¼ 1

σ2bþσ2ε=ni
. The estimator

defined by (1.2) is a weighted mean of the mean yields observed at each site �yi:, i¼ 1,
. . ., p. The weight wi increases with the number ni of available measurements for site
i. Interestingly, weights are equal when exactly the same number of measurements is
available at each site. They tend to be similar if the intersite variance σ2b largely
outweighs the intra-site variance. In this case, the estimator (1.2) is equal (or nearly
equal) to the simple mean of p mean yields observed at the p sites. It should also be
noted that, when the intersite variance tends to zero, the estimator (1.2) is equal to the
mean of the values of �yi: weighted by the number of observations collected at the
various sites.

1.6 A Simple Example of a Mixed Model 9



The value of bi, the difference between the true yield at site i and the general mean
yield for the whole population, can be estimated as follows:

b̂i ¼ E
�
bij�yi:

� ¼ niσ2b
niσ2b þ σ2ε

�
�yi: � μ

� ð1:3Þ

This quantity corresponds to the expected value of bi based on the mean value
observed at site i. This estimator is often considered to be an empirical Bayesian
estimator because it corresponds to a posterior expectation. It is the estimator with
the smallest variance of all the unbiased estimators (the best linear unbiased predic-
tor or BLUP). In absolute terms, the value calculated with (1.3) is lower than �yi: � μ.
The estimator (1.3) is, therefore, closer to zero than �yi: � μ.

For the calculation of (1.2) and (1.3), we need to estimate the values of the
variances σ2b and σ2ε from data. These two variances can be estimated by restricted
maximum likelihood (REML) methods, with the nlme and lme4 packages of R. We
present some examples of R code below. Many other examples were presented by
Pinheiro and Bates (2000) and Bates et al. (2015).

The R code below can be used to estimate the parameters of the model (1.1) with
the nlme library:

#Reading of the external file including the data
TAB<-read.table("dataMod_1.txt", header=T)
#Loading of the nlme library
library(nlme)
#Adjustment of the model with the function lme
Mod<-lme(Rdt~1, random=~1|Site, data=TAB)
#Display of the results
summary(Mod)

The parameters of the model are estimated with the function lme. The results of
this estimation, visualized with the function summary, are presented in Fig. 1.3. The
estimated values of the standard deviations σb and σε are 1.09 and 0.22, respectively.
Variance is the square of standard deviation. The estimated value μ̂ of μ is 7.2
(Fig. 1.3). The standard deviation of μ̂ is 0.28 (Fig. 1.3). This standard deviation
describes the uncertainty on estimates of μ̂. It should not be confused with σb, which
describes the variability between sites.

The parameters of the model (1.1) can also be estimated with the lmer function of
the lme4 library, with the help of the following code:

#Loading of the lme4 library
library(lme4)
#Adjustment of the model with the lmer function
Mod_bis<-lmer(Rdt~1+(1|Site), data=TAB)
#Display of the results
summary(Mod_bis)
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The results are identical to those obtained with lme but are presented in a slightly
different format (Fig. 1.4).

Yield estimates for each of the 15 sites are presented in Fig. 1.5. These estimates
are equal to μ̂ þ b̂i, i ¼ 1, . . ., 15, where μ̂ is calculated from Eq. (1.2) and b̂i is
calculated from Eq. (1.3) by replacing σ2b and σ2ε with their estimated values. The
estimated yield values for each site are obtained with the predict function of the
nlme package.

1.6.5 Comparison with a Fixed-Effect Model

It is interesting to compare the results obtained with model (1.1) with those obtained
without a random effect of “site”. This fixed-effect model is defined as follows:

yij ¼ μþ εij ð1:4Þ

In (1.4), the residues εij are assumed to be independent, normally distributed, and
of equal variance, εij � N 0; σ2ε

� �
. This model does not distinguish between intra-site

and intersite variability and assumes that yield measurements obtained at the same

Fig. 1.3 Results obtained with the lme function of the nlme library. The symbol “^” indicates that
the values reported are estimates rather than real measured values
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Fig. 1.4 Results obtained with the lmer function of the lme4 library. The symbol “^” indicates that
the values reported are estimates rather than real measured values
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Fig. 1.5 Estimation of expected yield (horizontal line) in the population of sites and estimations
of yields at individual sites (triangles). The black dots are data points
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site are independent. This assumption is clearly unrealistic according to Fig. 1.5.
Observations collected at the same site tend to be either higher or lower than the
mean regional yield. If measurements at the same site were truly independent, they
would be randomly distributed on either side of the regional mean.

The model (1.4) can be adjusted to the data with the assistance of the lm function
of R:

#Adjustment of the model with the lm function
Mod0<-lm(Rdt~1,data=TAB)
#Display of the results
summary(Mod0)

With this model, the estimated value of mean regional yield is simply the mean of
the 45 measurements. Here, this estimate is close to that obtained with model (1.1)
(7.19 vs. 7.2), but the standard deviation of the estimator (which estimates the
imprecision of the estimate) is lower for the lm function than for the lme function
(0.17 vs. 0.28) (Fig. 1.6). Model (1.4) provides too optimistic a result. It over-
estimates the precision of the estimate, because it assumes that all the measurements
are independent, whereas this is not the case in reality. The lack of realism of the
hypothesis of residual independence is confirmed in Fig. 1.7. The residuals of model
(1.4) are all positive at some sites and all negative at others. The residuals of model
(1.4) are markedly larger than those of model (1.1) because they include two sources
of variability (inter- and intra-site).

In this example, the principal advantage of a random-effects model (1.1) is that it
provides more realistic information about the precision of the estimate.

Fig. 1.6 Results obtained with the lm function
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In the next chapter, we show how the random-effects model presented here can be
modified for the analysis of more complex experimental networks.
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Fig. 1.7 Distribution of the residues of the model without a site effect (1.4) and of the model with a
site effect (1.1)
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Part I
Analysis of Experimental Networks

This part deals with the planning and analysis of data from experimental networks.
Chapter 2 deals with the various basic notions that can help to explain the role of

experimental networks and their analysis.
Chapter 3 presents networks of randomized complete block experiments with one

factor. This experimental design is classically used in agronomy. This chapter
introduces general notions relating to the analysis of experimental networks that
users must master if they are to make use of the more complex methods.

Chapter 4 extends the analysis of experimental networks presented in Chap. 3, to
take more complex situations into account. The first part of this chapter presents a
two-step analysis of an experimental network, the method most widely used in
practice, particularly if the individual experiments of the network are performed
with different experimental designs. The second part of Chap. 4 presents the analysis
of a network in which precision differs between experiments. The third part shows
how missing data can be taken into account in network analyses. Finally, the fourth
part of Chap. 4 explains how to take the factors “site” and “year” into account in a
multisite, multiyear experimental network.

The planning of experimental networks involves deciding how many replicates
there should be per experiment, and the number of experiments to be included in the
network. However, it also concerns the way in which choices are made concerning
the environments in which the experiments are performed. Chapter 5 deals with
these questions and proposes a method for dimensioning a network.



Chapter 2
Basic Notions

2.1 Experimentation

In agricultural and environmental sciences, experiments aim to study the effect of
factors on a quantity of interest, in controlled conditions, in a given environment.

Each experiment is the subject of formalized planning based on an experimental
protocol that must include at least the following elements (Dagnelie 1981):

• Definition of the objective and conditions of the experiment,
• The factor(s) studied:

– Definition
– Choice of treatments for qualitative or quantitative factors (each different level

of a factor is considered to be a treatment)
– Implementation of a control or reference treatment

• Definition of the variable(s) of interest and of the secondary variables
• Definition of the experimental units: size and shape of the experimental units,

borders, etc.
• The experimental design: type of design and number of replicates

In agricultural research, the conclusions of a study are mostly destined to be
applied to the whole of a given region in the next cropping season or seasons. The
results obtained in a particular experiment performed in a given pedoclimatic context
must therefore be confirmed at other sites and in other years, in the framework of an
experimental network covering diverse pedoclimatic conditions.

© Éditions Quæ 2019
D. Makowski et al., From Experimental Network to Meta-analysis,
https://doi.org/10.1007/978-94-024-1696-1_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-94-024-1696-1_2&domain=pdf


2.2 Experimental Networks

2.2.1 Definition

An experimental network is a set of experiments with the same experimental
protocol, performed in a set of different environments.

Ideally, in an experimental network:

– The definition of factors and treatments is identical for all experiments,
– All the treatments should be present in all the experiments,
– The experimental design and the number of replicates should be identical for all

experiments.

2.2.2 Example

Figure 2.1 provides an illustration of an experimental network.

2.2.3 The Notion of “Environment”

The notion of “environment” may depend on the experimental context.
Thus, for example, in the case of evaluations of new wheat varieties, an environ-

ment is defined as the combination of a particular site and a particular climatic year.
In this case, the experimental network can take into account the experimental
variability linked to soil type, cropping history, or climate, for example.

Evaluations of anti-slug products are sometimes performed in growth chambers.
In these conditions, there is no climatic variability between two experiments. How-
ever, if the slugs used for the experiments come from natural populations present on
agricultural fields, two experiments performed on different dates may be conducted
with different slug populations, potentially leading to different results for anti-slug
product efficacy. In this case, the use of an experimental network makes it possible to
take into account the experimental variability linked to the origin of the slugs.

In the case of experimental networks for studies of the fattening of farm animals,
many factors are likely to vary between experiments:

• Even if performed in agricultural buildings, animal experiments are subjects to a
certain degree of climatic variability,

• It is possible to ensure that the basic feed supplied to the animals has the same
composition in different experiments and to check various criteria, including
energy and protein contents. Nevertheless, despite such precautions, two rations
of feed prepared from maize grown in two different climatic years can never be
absolutely identical,
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• It is possible to ensure that the animals used in two different experiments have the
same genetic background (e.g. Landrace � Duroc Blanc pigs), but there may still
be genetic variability between the animals used in different experiments, because
the parents of the animals used are not necessarily the same.

Fig. 2.1 Example of a network of experiments with the same protocol
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2.2.4 Objectives of an Experimental Network

Experimental networks may be set up to address three types of objectives:

• Consolidation of results
The results of experiments are sometimes obtained with only a small number

of replicates. These results may, therefore, be imprecise if based on a single
experiment. The consideration of results from several experiments makes it
possible to increase the number of replicates used to estimate the quantities of
interest.

• Generalization of conclusions
In a network, experiments performed in different environments are subject to

different experimental conditions. If the results of an experiment vary with the
experimental conditions used, then a synthesis of results from several experi-
ments can be used to analyze the robustness of the conclusions and to extend the
validity of the results to a broader set of environments.

• Description of variability
Experimental network analysis can also improve our understanding of the

variability of certain results. If each individual experiment is characterized by one
or several covariables (e.g. precipitation, temperature, soil type, pest incidence),
then it may be possible to link these covariables to the effects of the experimental
treatments studied. Such an analysis can improve our understanding of the effects
of these treatments, making it possible to refine recommendations concerning
agronomic practices according to the particular features of the local context.

2.3 Notion of a “Population of Environments”

A farmer wishing to make use of the results of experiments evaluating new varieties
may be located in an area in which no experiments took place. Even for farmers
located in the areas of experimentation, the varieties used will always be planted in a
climatic year other than that in which testing took place.

The principal aim of experimental networks is to make it possible to generalize
the conclusions of a study to a larger set of environments. The collection of possible
environments is called the population of environments. In practice, it is not possible
to perform an experiment in each of the environments of the population. A subset of
environments must therefore be chosen in which to conduct the experiments. This
subset constitutes a sample that must be as representative as possible of the popu-
lation. It is generally recommended, where possible, to choose the environments at
random, to ensure such representativeness (Dagnelie 1981). Figure 2.2 illustrates
this notion of the generalization of the results of an experimental network to a
population of environments.

Just as each individual experiment has its experimental protocol, so an experi-
mental network should have, in principle, a planned and governed experimental
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protocol. In this case, in addition to the elements classically included in the protocol
for a single experiment, it is also necessary to describe the objective of the network
and to define the population of environments and the criteria used to select the
environments to be observed in the network. It is also necessary to specify the
number of environments making up the network.

2.4 Notion of “Interaction”

The treatment � environment interaction reflects the differences between treatments
as a function of the environment in which the experiment was performed.

The aim of an experimental network is generally to compare the studied treat-
ments with each other. We are therefore interested in the difference between
treatments, rather than the absolute values obtained. In the absence of an interaction
between treatment and environment, the differences between treatments are inde-
pendent of the environment. In these conditions, only one experiment is required,
with a large enough number of replicates to take the experimental error into account,
making it possible to draw firm conclusions about the differences between treat-
ments at the scale of the population of environments.

Yield (q/ha)
V1 59.93
V2 60.49
V3 68.05
V4 62.72
V5 63.95
V6 64.08

The left part of Figure 2.2 represents a zone of pea production in which a network of 10 experiments has been
set-up, with each experiment conducted at a different site. The objective of the network is to evaluate the yields
of six varieties, to make it possible to recommend the best variety to cultivate in any part of the production zone,
i.e. at one of the sites of the experimental network or any other site in the pea production zone.

The right part of Figure 2.2 shows the mean yields of the six varieties estimated from the experimental network
data. These results can be used to choose a variety for cultivation at any site in the production zone if they
constitute an estimate of mean yield for the variety concerned over the production zone. For this to be the case,
the experimental sites used must be representative of the production zone.

Fig. 2.2 Generalization of the results of an experimental network to a population of environments
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In the presence of an interaction between treatment and environment, it is more
difficult to draw firm conclusions about the differences between treatments at the
scale of the population of environments. If the interaction is large, and if the number
of environments included in the network is small, the observed results are likely to
vary considerably depending on the sample of environments selected.

Figures 2.3 and 2.4 illustrate the notion of “interaction”.

Fig. 2.3 Illustration of the notion of “interaction”

Fig. 2.4 Quantitative vs. qualitative interactions
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Chapter 3
Analysis of a Network of Randomized
Complete Block Design Experiments
with One Factor

3.1 Objective of the Chapter

This chapter presents in detail the principal methods for analyzing networks of
experiments with a randomized complete block design including one factor
(Dagnelie 1981). In networks of this type, each experiment has a randomized
complete block design, within which the various experimental units are grouped
together in homogeneous blocks. Each block contains as many experimental units as
there are study treatments, and each treatment is tested in each block. Thus, in any
given experiment, each treatment is present only once in each block. Treatments are
distributed at random between the various experimental units, independently in each
block. In a randomized complete block design, the uncertainty on the difference
between the means of two treatments stems solely from the variability between
experimental units within blocks, and the precision of the experiment can be
increased by setting up the most homogeneous blocks possible (Cochran and Cox
1957). In agronomic experiments, two neighboring plots are often more similar than
two more distant plots, and it is usual practice to group neighboring plots together
within the same block (Cochran and Cox 1957; Zimmerman 1991; Kempton 1981).
The randomized complete block design is a popular experimental design in agro-
nomic experiments, and experimental networks based on this design are very
common.

In this chapter, we consider a complete network including several experiments
with a randomized complete block design, each with the same number of blocks. The
expression “complete network” indicates that all the treatments are present in each
experiment.

The second part of this chapter presents the results of an experimental network on
wheat varieties. These data will be used to illustrate the various theoretical notions
developed in this chapter.
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Experimental networks can be analyzed by considering the factor “experiment” to
have fixed or random effects. The two types of analysis are presented in the third part
of this chapter.

The interpretation of data from a network of experiments is based on a statistical
model. For the interpretation to be valid, the model used must best describe the
phenomenon studied. The fourth part of this chapter presents several model valida-
tion tools.

The principal objective of an experimental network is generally to compare
treatments with each other. The fifth part of this chapter presents different methods
for comparing means between treatments.

Finally, the sixth part of this chapter presents a complete analysis of the “wheat”
example and the R script used for this analysis.

3.2 Example “Wheat”

The “wheat” example concerns the evaluation of wheat varieties in field experiments
including microplots. The grain yield of 10 wheat varieties was evaluated in five
experiments at five different sites. The sites were chosen so as to be representative of
the environmental variability observed in the study region. All the experiments were
performed in the same year, and all the experiments had a randomized com-
plete block design. Each experiment included three replicates corresponding to
three blocks.

The dataset includes experiment number, variety name, block number in the
experiment and observed yield (q/ha). Table 3.1 shows the first few lines of the
dataset.

Table 3.1 Excerpt from the
“wheat” dataset

Experiment Variety Block Yield

1 V1 1 71.5

1 V2 1 62.7

1 V3 1 74.7

1 V4 1 72.4

1 V5 1 76.7

1 V6 1 72.5

1 V7 1 68.8

1 V8 1 79.3

1 V9 1 80.6

1 V10 1 73.1

1 V1 2 71.9

1 V2 2 71.8

1 V3 2 81.0

. . . . . . . . . . . .
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3.3 Modeling

Two types of model can be used to analyze data from experimental networks: models
considering the effect of experiment to be random and models considering this effect
to be fixed. We present the application of these two types of models to the analysis of
individual data from a network, and illustrate the differences between them for the
“wheat” example. Recommendations are made concerning the choice of model.

In this book, we have generally chosen to consider the factor “treatment” to be
fixed, but the question as to whether the effects of this factor should be considered
fixed or random should be raised for each study. In the case of networks for the
evaluation of varieties, it is frequently considered to be a random factor. Interested
readers may wish to consult Piepho et al. (2008) to find out more.

3.3.1 Model with Experiment as a Random Effect

The following mixed model can be used for the analysis of individual data from a
network of experiments with a randomized block design including one factor
(Dagnelie 1998):

yijk ¼ μþ ti þ E j þ tEij þ BjE jk þ εijk ð3:1Þ

where yijk is the observed value of the quantity of interest for treatment i (i¼ 1, . . ., I )
in block k (k ¼ 1, . . ., K ) of experiment j ( j ¼ 1, . . ., J ) and μ, ti, Ej, tEij, BjEjk, and
εijk are the general mean, the effect of treatment i, the effect of experiment j, the
effect of the interaction between treatment i and experiment j, the effect of block k in
experiment j, and the residual associated with yijk, respectively. The residual εijk,
sometimes known as the “residual error”, is the sum of two components: a measure-
ment error and an intra-block “experimental unit” error.

The blocks are assumed to be representative of the experiment from which they
are taken and their effects are considered random in the model (3.1).

The environments in which the experiments take place are assumed to represent a
random sample of the population of possible environments. This implies that Ej is
random and, consequently, that the effects of treatment x experiment interaction are
also random.

The random effects Ej, tEij, BjEjk and εijk are assumed to be normally distributed,
with a mean of zero and a variance equal to σ2E, σ

2
tE, σ

2
B and σ2ε , respectively. In

addition, the various random effects are assumed to be independent.
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Variance of the Difference Between Two Treatments
As the objective of experimental networks is generally to compare treatment means,
it is interesting to examine the formula of the variance of the estimator used to
estimate the difference between the means of two treatments. In model (3.1), the
variance of the difference between the means of two treatments is (Littell et al.
1996):

Var
�
μ̂i � μ̂i0

� ¼ 2
σ2tE
J

þ σ2ε
JK

� �
ð3:2Þ

where the true mean (unknown) of treatment i is defined by μi ¼ μ + ti and the
estimate of this mean is denoted μ̂i. Var

�
μ̂i � μ̂i0

�
is the variance of the estimator of

the difference between treatment means i and i’, and σ2tE, σ
2
ε , J and K are the variance

of the treatment x experiment interaction, the variance of the residuals, the number of
experiments and the number of blocks per experiment.

The variance of the difference between two treatment means depends on the
variance of the treatment x experiment interaction, σ2tE, and the residual variance, σ

2
ε ,

but not on the variance between experiments, σ2E. The number of blocks per
experiment, K, affects only the part of the variance due to residual errors, whereas
the number of experiments, J, affects both components of the variance of the
difference between means.

3.3.2 Model with Experiment as a Fixed Effect

The following model can also be used for the analysis of individual data from a
network of experiments with a randomized complete block design including one
factor:

yijk ¼ μþ ti þ e j þ teij þ Bje jk þ εijk ð3:3Þ

where yijk is the observed value of the quantity of interest for treatment i (i¼ 1,. . .,I )
in block k (k ¼ 1,. . .,K ) of experiment j ( j ¼ 1,. . .,J ) and μ, ti, ej, teij, Bjejk, and εijk
are the general mean, the effect of treatment i, the effect of experiment j, the effect of
the interaction between treatment i and experiment j, the effect of block k in
experiment j, and the residual associated with yijk.

The difference between model (3.3) and model (3.1) lies in the terms relating to
the effect of experiment and of the interaction between treatment and experiment,
which are considered to be fixed in model (3.3) and random in model (3.1). The
blocks are assumed to be representative of the experiment from which they come,
and are thus considered to be random as with model (3.1). Model (3.3) is thus a
mixed model, because it considers the block effect to be random, whereas the effects
of treatment and treatment � experiment interaction are considered to be fixed.
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The random effects Bjejk and εijk are assumed to follow a normal distribution with
a mean of 0 and a variance of σ2B and σ2ε , respectively. Furthermore, the various
random effects are assumed to be independent.

Variance of the Difference Between Two Treatments
In model (3.3), the variance of the difference between the means of two treatments is
(Littell et al. 1996):

Var
�
μ̂i � μ̂i0

� ¼ 2
σ2ε
JK

� �
ð3:4Þ

where the mean for treatment i is μi ¼ μ + ti and the estimate of this mean is denoted
μ̂i.Var

�
μ̂i � μ̂i0

�
is the variance of the estimator of the difference between the means

of treatments i and i’, and σ2ε , J and K are the variance of the residuals, the number of
experiments and the number of blocks per experiment, respectively.

The variance of the difference between the means of two treatments is dependent
solely on the variance of the residual errors,σ2ε . It is not dependent on the variance of the
treatment x experiment interaction, σ2tE, unlike the variance obtained with model (3.1).

3.3.3 Example

We illustrate the difference between a model with experiment as a random effect and
a model with experiment as a fixed effect, in Figs. 3.1 and 3.2, in which we present
some results for the analysis of the data for the “wheat” example obtained with
models (3.1) and (3.3).

The first part of Fig. 3.1 shows the variance components table for model (3.1), as
estimated from the “wheat” dataset. The variance components shown are the vari-
ances of the random effects of the model. A high variance indicates that there are
large differences between the levels of the factor considered, whereas a low variance
indicates that there is little difference between these levels. A variance of zero
indicates that there is no difference between the levels of the factor, or equivalently,
that all the effects of the factor are zero. The “group” column in the table identifies
the effects and the “variance” column shows the estimated variances of these effects.
The terms “Experiment:variety”, and “Experiment:block”, “Experiment” and
“Residual” correspond to the effects of the experiment x variety interaction, the
effects of the experiment x block interaction, the effects of experiments and the
residuals of the model. As is frequently the case in experimental networks for variety
evaluation, the variance of the effects of experiments is markedly higher than the
other variance components.

The second part of Fig. 3.1 shows the results of a contrast, which is a particular
type of comparison of means. Here, we compare the mean value for variety V1 with
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that of variety V10. The “estimate”, “SE”, “df”, “lower.CL” and “upper.CL”
columns show the estimated contrast, the standard error of the estimator, the number
of degrees of freedom associated with the variance of the estimator and the lower and
upper limits of the confidence interval for the estimate with an alpha risk of 0.05. The
variance of the estimator can be calculated with equation (3.2). By replacing the

Variance components

Group               Variance

Experiment:block 5.0577

Residual               6.1034  

Comparison of two treatments

contrast   estimate        SE df     lower.CL   upper.CL

V1 - V10  2.3832329 0.9021032 90   0.59104735 4.1754184

Fig. 3.2 Analysis of the “wheat” example with mixed model (3.3) considering experiment as a
fixed effect

Variance component

Group                  Variance

Experiment:variety 6.5261 

Experiment:block 5.0578 

Experiment 77.3305 

Residual              6.1034

Comparison of two treatments

contrast   estimate      SE df    lower.CL    upper.CL

V1 - V10  2.3832329 1.85047 36  -1.3696950 6.13616077

Fig. 3.1 Analysis of the “wheat” example with the mixed model (3.1) considering experiment as a
random effect
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theoretical variances with the estimates in Fig. 3.1, bearing in mind that there are
J ¼ 5 experiments in the network, each with K ¼ 3 blocks, we obtain:
dVar�μ̂i � μ̂i0

� ¼ 2 6:5261
5 þ 6:1034

5�3
� � ¼ 3:42. The square root of this variance is 1.85,

corresponding to the standard error value indicated in Fig. 3.1. The lower and upper
limits of the confidence interval for the estimate are given by the following formula:

estimate� t0:975;36 SE

where SE is the standard error of the estimator and t0.975; 36 is the 97.5th percentile of
a Student’s t distribution with 36 degrees of freedom. The value of t0.975; 36 is
2.02809, and, using the values given in Fig. 3.1, we obtain:
2.3832329 � 2.02809 � 1.85047 ¼ � 1.3697 and 6.136, corresponding to the
confidence interval shown in Fig. 3.1.

The first part of Fig. 3.2 shows the table of variance components for model (3.3),
estimated with the “wheat” dataset. It does not include the “Experiment:variety” or
“Experiment” components, because these effects are fixed in model (3.3). By
contrast, the variances for the “Experiment:block” effects and “Residual” are
included in model (3.3), as in model (3.1). The variances of these effects are identical
for the two models.

The second part of Fig. 3.2 shows the results for the comparison of the mean
values of varieties V1 and V10. The variance of the estimator can be calculated with
Eq. (3.4), by replacing the theoretical variances with the estimates from Fig. 3.2,
bearing in mind that there are J ¼ 5 experiments in the network, each with K ¼ 3
blocks. We obtain: dVar�μ̂i � μ̂i0

� ¼ 2 6:1034
5�3

� � ¼ 0:814.
The square root of this variance is 0.902, corresponding to the value of the

standard error given in Fig. 3.2. The lower and upper limits of the confidence
interval for this contrast estimate are provided by the same equation as for model
(3.1), but using the 97.5th percentile of a Student’s t distribution with 90 degrees of
freedom: estimate � t0.975; 90 SE.

If we compare the results for models (3.1) and (3.2) presented in Figs. 3.1 and 3.2,
we can see that the estimated contrast is the same for the two models. By contrast, the
standard error of the estimator, the number of degrees of freedom associated with the
variance of the estimator and the limits of the confidence interval for the estimate are
different:

• The estimate provided by model (3.3) is more precise than that provided by model
(3.1), which has a standard error about twice that of model (3.3) for this example,

• The number of degrees of freedom associated with the variance of the estimator is
higher for model (3.3) than for model (3.1). For model (3.3), the variance of the
estimator is dependent solely on the residual variance. The number of degrees of
freedom of this variance can be calculated as follows: (I�1)*(K�1)*J ¼ (10�1)*
(3�1)*5 ¼ 90. For model (3.1), the variance of the estimator is dependent on the
residual variance, but also on the variance of the interaction between varieties and
experiments, and the number of degrees of freedom of the variance of the estimator
is that associated with the variance of the interaction between varieties and exper-
iments. It can be calculated as follows: (I�1)*(J�1) ¼ (10�1)*(5�1) ¼ 36.

3.3 Modeling 31



• The differences in standard error and degrees of freedom between models (3.1)
and (3.3) result in the calculation of a confidence interval for the difference in
mean values between varieties V1 and V10 that is narrower for model (3.3) than
for model (3.1). In this example, the confidence interval obtained with model
(3.3) does not include the value 0, and we can, therefore, conclude that there is a
significant difference between the two varieties, at an alpha risk of 0.05. By
contrast, for model (3.1), the confidence interval includes the value 0 and the
difference between the two varieties therefore appears to be non-significant.

3.3.4 Should Experiment Effect be Considered Fixed or
Random?

As shown above with the “wheat” example, very different conclusions may be
drawn from analyses based on a model with experiment effect considered fixed
and a model with experiment effect considered random. In general, it is easier to
demonstrate the existence of differences between treatments with the fixed-effects
model than with the random-effects model. However, the choice between the two
types of model should not be based on the conclusions drawn, but on the objectives
of the experimental network.

The choice between a model with experiment effect as fixed and a model
with experiment effect as random depends primarily on the way in which the
environments of the experiments are chosen, which itself depends on the objectives
of the experimental network. The choice between the two types of model may also
depend on the number of experiments included in the network.

The choice between model (3.1) and model (3.3) should be based on the way in
which the environments for the experiments are selected. If the environments are
chosen at random from a population of environments, then model (3.1) should be
used. In this case, the conclusions of the analysis can be extended to the population
of environments. If the environments are chosen deliberately on the basis of partic-
ular features, then model (3.3) should be used. In this case, the inference space
(i.e. the scope of the conclusions) is restricted to the selected environments. For
model (3.1), the objective of the network is to draw conclusions that apply at the
scale of the population of environments. The analysis of an experimental network
with model (3.1) provides estimates of theoretical means of treatments which are the
means over the entire population of environments. For model (3.3), the objective of
the network is to draw conclusions restricted to the environments observed in the
network. Experimental network analyses with model (3.3) generate estimates of the-
oretical means of treatments which are the means over the environments observed
only. The results obtained with this model therefore have a much narrower inference
space. Model (3.3) provides more accurate estimates than model (3.1), as illustrated
by the results for the “wheat” example presented in Figs. 3.1 and 3.2, but it should be
borne in mind that the two models are not designed to estimate the same quantities.
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In some situations, we wish to draw conclusions valid at the level of the
population of environments and we therefore choose environments at random to
constitute an experimental network, but the number of environments observed in the
network is small. In this case, an analysis of the data with model (3.1) may be
problematic. Indeed, in a mixed model, the smaller the number of levels of a random
factor available, the greater the uncertainty of the estimated variance of the effects of
this factor. Furthermore, it is also highly likely that the variance of the effects of this
factor will be estimated at zero, not because it really is zero, but because the data
contain too little information for the correct assessment of their variance. In exper-
imental networks, estimates of the variance between experiments are very imprecise
if the number of experiments is small. If, in addition, the number of treatments
studied is also small, estimation of the variance of the effects of the interaction
between treatments and experiments is also highly imprecise, with a high probability
of being estimated at zero, not because there is no interaction, but because the data
contain too little information for correct estimation. Thus, if the network includes
fewer than five experiments, we recommend the use of model (3.3) for analysis of
the data, bearing in mind that this decreases the scope of the conclusions.

3.4 Evaluation of the Model

Statistical models are used to interpret the data generated in experimental networks.
For the interpretation to be valid, the plausibility of the model used must be
evaluated.

Analyses of experimental networks based on model (3.1) require checks of the
hypotheses of normality, independence and homoscedasticity for the random effects
of the model. It is also important to check for the absence of aberrant data. These
checks are often limited to the residuals of the model, but for full rigor, they should
also be applied to the other random effects, such as the “experiment”, “block” and
“experiment x treatment” interaction effects for model (3.1).

3.4.1 Normality

Several different tests of normality can be used to test this hypothesis, including the
widely used Shapiro-Wilk test (Dagnelie 1998). It is also possible to calculate the
values of the symmetry and kurtosis coefficients and to compare them with the
theoretical values for a normal distribution (Dagnelie 1992; Dagnelie 1998). How-
ever, a visual validation, based on a histogram or a boxplot, for example, is often
considered sufficient.
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3.4.2 Homoscedasticity

Validation of the hypothesis of homoscedasticity involves checking that the residual
variance remains constant. Heteroscedasticity is the term used to describe situations
in which this is not the case. Heteroscedasticity occurs principally in two types of
situation. In the first, it arises because some treatments or experiments are more
heterogeneous than others, due to their specific characteristics. For example, an
experiment performed on a shallow soil is likely to display greater experimental
variability than an experiment performed on a deep soil. The other type of situation
in which heteroscedasticity is observed is that in which there is a link between the
variance of a variable and its mean, as for count data, for example. This situation
frequently arises in agricultural studies.

Several different homoscedasticity tests, including that of Bartlett (Dagnelie
1998), can be used to test for homoscedasticity, but a visual validation based on a
graph of the relationship between the residuals of the model and their predicted
values is often considered sufficient. The predicted values correspond to the
expected values of the variable of interest conditional on the random effects,
expressed as follows for model (3.1): μ + ti + Ej + tEij + BjEjk. A scatter plot can
be used to determine whether there is a link between the variance and the mean, as
shown in Fig. 3.3.

3.4.3 Independence

The hypothesis of independence can be tested by checking that the random effects
and residuals of the model are not dependent on the mode of data acquisition. For
example, in the case of a multiyear network, we might expect the experiments
performed in the same year to yield similar results, reflecting the year effect, and

Fig. 3.3 Plot of residuals against predicted values. On the left, the result expected in cases of
homoscedasticity. On the right, a graph revealing the existence of a relationship between the
variance and the mean
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the effects of these experiments would therefore not be considered independent.
Similarly, the results of experiments performed at the same or nearby sites would be
expected to more similar than those of experiments performed at sites farther apart.
Chapter 4 deals with the question of the factors “site” and “year”.

Generally, it is important to check that no external factor not taken into account
by the model used to describe the data is linked to the phenomenon studied:
chronology of data acquisition, researcher, etc.

3.4.4 Suspect Data

The problem of aberrant data is generally dealt with by checking for the absence of
suspect residuals, but this problem may also apply to other random effects. Here
again, a visual examination of the residuals is generally practiced, by checking on a
plot of the residuals against predicted values that none of the residuals is much
further away than the others. In addition to this visual examination, a test for suspect
data, such as the Grubbs test (Dagnelie 1998), can be used.

The detection of a suspect residual invariably raises questions about how best to
deal with it. Should it be retained or eliminated? In cases of doubt, it may be useful to
perform two analyses: one in which the suspect residual is retained, and another in
which it is eliminated.

3.5 Comparisons of Means

The principal objective of experimental networks is to compare the study treatments
with each other. In practice, this comparison involves an estimation of the means of
the treatments, hypothesis testing and the calculation of confidence intervals
(Dagnelie 1992).

3.5.1 Hypothesis Tests: Tests of Equality

At the end of an experiment, tests are classically performed to determine whether the
means of the study treatments are equal. In an experimental network, the number of
treatments studied is generally greater than two, and may even be very high, with
several tens of treatments studied. In situations in which there are more than two
treatments, the first hypothesis tested is generally that of the equality of all the
treatment means:

H0 : μ1 ¼ μ2 ¼ . . . ¼ μi ¼ . . . ¼ μI

where μi is the mean for treatment i and I is the total number of treatments.
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Fisher’s F test can be used to test whether all the treatment means are equal
(Dagnelie 1998).

The F test is a global test. When the hypothesis of equal treatment means is
rejected in this test, the next step is identifying which treatments are different from
the others. Many methods for comparing means exist and can be used for this
purpose, and the choice of method depends on the question addressed. The objective
of comparisons of means is often either to compare the various treatment means with
a reference treatment or to establish homogeneous groups of treatments with means
that are not significantly different. In both cases, the methods to be used are part of
the multiple comparison methods (Dagnelie 1998).

The common feature of multiple mean comparison methods is that they have to
manage the inflation of the type I error risk associated with multiple hypothesis tests
(Hothorn et al. 2008). Type I error or alpha risk is the probability of concluding that
there is a significant difference between treatments when, in reality, they are
identical. This risk is often set to 5% (alpha ¼ 0.05). If the probability of wrongly
concluding that there is a significant difference between two treatments is 0.05, then
the probability of not concluding that there is a significant difference between two
treatments that really are identical is 1–0.05 ¼ 0.95. Let us consider three
treatments, A, B, and C, for which we wish to perform all the possible pairwise
comparisons. We therefore need to test three hypotheses: μA ¼ μB, μA ¼ μC, and
μC ¼ μB. Each hypothesis is tested with an alpha risk of 0.05, or, put another way,
with a probability of not concluding there is a significant difference between two
treatments that are, in reality, identical, of 0.95. The risk of not concluding that there
is a significant difference between treatments that are, in reality, identical, for the
entire set of three tests, is equal to the risk of not concluding that there is a significant
difference in the first test, the second test or the third test. The overall probability is,
therefore, 0.95*0.95*0.95 ¼ 0.953 ¼ 0.857, if the three tests are independent. The
global type I error, the risk of concluding that there is a significant difference
between two treatments that are, in reality, identical, in at least one of the compar-
isons performed, is thus, 1�0.857 ¼ 0.143. This global alpha risk is much higher
than the nominal alpha risk of 0.05 chosen for each of the tests. If we compare
10 treatments, the number of pairwise comparisons to be performed is (102�10)/
2 ¼ 45, and the global alpha risk is 1�0.9545 ¼ 0.90! In other words, if we compare
10 treatments that are actually identical, there is a nine in ten chance of identifying at
least one significant difference between two treatments. In reality, pairwise compar-
ison tests are not independent, and the global alpha risk lies somewhere between the
upper limit calculated as shown above and the nominal alpha risk selected for each
test performed. Tests for the comparison of multiple means aim to provide the
highest possible level of power, whilst controlling the global alpha risk and
restricting it to the value chosen.

In this book, we use Dunnett’s method (Dagnelie 1998) to compare various
treatment means with a reference treatment, Tukey’s method for the establishment
of homogeneous groups and Sidak’s method to compare each treatment mean with
the general mean (SAS Institute Inc. 1989). Other methods are also available.
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3.5.2 Confidence Intervals

Many criticisms have been made of tests of equality between means. The p values
associated with such hypothesis tests are the tool most widely used for data inter-
pretation, but they are often misinterpreted (Littell et al. 2006; Madden et al. 2015;
Lew 2013).

One of the principal criticisms of tests of equality between means is that, in real
applications, the null hypothesis is never exactly true and will, therefore, always be
rejected if the number of observations is sufficiently large. It is therefore not relevant
to test whether there is a difference between two treatments, A and B, because there
always is one, even if it is extremely small (Tukey 1991).

Most experiments aim to estimate the difference between treatment means and to
quantify the uncertainty associated with the estimate, rather than to prove that there
is a difference between treatments. In this case, the information provided by the
p value obtained in a hypothesis test can be usefully complemented by the calcula-
tion of a confidence interval. The confidence interval provides information about the
precision of the estimate of the effect of a treatment or of the difference between two
treatments (SAS Institute Inc. 1989), even if this property is not always verified
(Morey et al. 2015). Figure 3.4 illustrates the value of calculating a confidence
interval when performing a test of equal means to compare two treatments. It
displays the difference between two treatments in five separate experiments. The
interval around each point corresponds to the 95% confidence interval for the
difference between treatments. The p values for tests of equality between two
treatments are not represented, but we can affirm that the difference is significant
with an alpha risk of 5% for the situations in which the confidence intervals do not
include the value zero (Dagnelie 1992). In situations 1 and 4, the difference between
the two treatments is not significant. We could come to this conclusion based on the
test of equality between means alone, but we can take the interpretation further based
on the confidence intervals obtained. In situation 1, we can affirm that if there is a
difference between treatments, this difference is probably small and would possibly
be of little interest in practice. By contrast, for situation 4, the difference is not
significant either, but if there is a real difference between treatments, it could be
large. We cannot, therefore draw any operational conclusions from experiment
4. The only valid conclusion for this experiment is that we do not have sufficient
information to determine the real size of the difference between the two treatments.
For experiments 2, 3 and 5, the confidence intervals do not contain zero, providing a
statistical demonstration of the existence of a significant difference between the two
treatments. However, the practical conclusions to be drawn from these three exper-
iments are very different. In experiment 2, the confidence interval is very narrow,
indicating that the real difference between treatments is probably small and unlikely
to be of interest in practice. In experiment 3, the confidence interval is very narrow
and indicates that the real difference between treatments is probably large and likely
to be of considerable interest. Finally, in experiment 5, the very large confidence
interval indicates that the real difference between the treatments could turn out to be
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very small, very large, or anything in between. Thus, as for experiment 4, we can
draw no firm conclusions given that we lack the necessary information to determine
the real difference between the two treatments.

3.5.3 Hypothesis Tests: Tests of Equivalence

Tests of equality are often used in an abusive manner to demonstrate equality
between the treatments studied. Tests of equality between means are performed
with the aim of proving that there are differences between treatments, but a
non-significant difference in such tests is not sufficient to affirm that two treatments
are identical. Such a result indicates only that we have not managed to prove that
they are different (Jaykaran et al. 2011). Indeed, a non-significant difference between
treatments may be due to a real absence of difference between the treatments
concerned, but it may also result from the experimental variability being too high
or from the use of too few replicates to be able to demonstrate a real difference
between treatments.

The objective of an experiment can be to prove that the effect of a treatment is not
different from that of another treatment. This is the case, for example, when trying to
show that a genetically modified crop has characteristics equivalent to those of a

Fig. 3.4 Estimated difference between two treatments and 95% confidence interval for this
difference in five experiments (situations)
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conventional crop. Another example is provided by tests of the efficacy of biological
control products, in which the aim may be to demonstrate an efficacy similar to that
for a classic fungicide treatment. In such situations, tests of equality are not appro-
priate to address the question posed. It is therefore preferable to use a test of
equivalence, with the aim of demonstrating the equality of treatments.

The principle of a test of equivalence is to define an equivalence bound, within
which the difference between two treatments is considered negligible. An equiva-
lence threshold Δ is selected by defining the largest difference, in absolute terms,
that can be accepted for two treatments to be considered equivalent. A difference
greater than Δ is considered to be large in practice.

Tests of equivalence are based on the following hypotheses:

H0 : μ1 � μ2 � �Δ or μ1 � μ2 � Δ

H1 : �Δ < μ1 � μ2 < Δ

where μ1 and μ2 are the theoretical means of the two treatments.
According to the null hypothesis H0, the two treatments are not equivalent.

According to the alternative hypothesis H1, the two treatments are equivalent. The
rejection of the null hypothesis in favor of the alternative hypothesis implies an
acceptance of the hypothesis of equivalence between the two treatments. The risk of
concluding that the two treatments are equivalent, when, in reality, the difference
between them, in absolute values, is greater thanΔ, is equal to the alpha risk or type I
error used to perform the test.

The most widely used procedure for equivalence tests is TOST procedure (two
one-sided t tests), which involves performing two one-tailed hypothesis tests
(Schuirmann 1987). In this procedure, equivalence is considered demonstrated if it
is possible to conclude that both μ1 � μ2 > � Δ and μ1 � μ2 < Δ.

In practice, the calculation of confidence intervals is recommended when
performing equivalence tests (Committee for Proprietary Medicinal Products
2001). Figure 3.5 illustrates the interpretation of an equivalence test performed
with the calculation of confidence intervals. If the confidence interval of the differ-
ence between treatments lies entirely within the equivalence bound, then the
two treatments can be considered equivalent. If not, the null hypothesis of non-
equivalence cannot be rejected (Robinson and Froese 2004). The conclusions on the
interpretation of a confidence interval are identical to those of the TOST test
performed with a type I error risk alpha in the case of an equal-tailed confidence
interval at the 100(1–2 alpha)% confidence level (Berger and Hsu 1996).

Certain similarities in interpretation can be noted between Figs. 3.4 and 3.5. One
of the advantages of the equivalence testing approach is that it obliges the user to
specify an equivalence threshold Δ beyond which a difference between two treat-
ments is considered practically relevant. An equivalence threshold is often used in
the interpretation of experimental results, whatever the approach used, but not
necessarily explicitly. Equivalence testing has the advantage of rendering the inter-
pretation of results more transparent.
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3.5.4 Example

We illustrate the different methods of comparing means here, by presenting, in
Figs. 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11, several results of data analyses for the
“wheat” example performed with model (3.1).

Figure 3.6 shows the results of an F test of the equality of the means for the
10 varieties. The “F” column shows the statistic generated by the test, which is
assumed to follow a Fisher distribution. The columns “Df” and “Df.res” show the
number of degrees of freedom of the numerator and denominator, respectively, of
the Fisher distribution, and the “Pr(>F)” column show the probability associated
with the test statistic. The row “Variety” tests the hypothesis that the mean yield of
the 10 varieties is identical. The probability associated with the test result, which is
well below 0.05, indicates that this hypothesis should be rejected: at least one of the
varieties clearly has a yield different from the others.

Figure 3.7 shows the results of a Dunnett test comparing the means of the
varieties with the mean of variety V2, used as a control. The “contrast” column
indicates the comparison performed, the “estimate” column shows the estimates of
the differences between the varieties and variety V2, and the “SE” and “df” columns
show the standard error of the estimator and the degrees of freedom associated with
the variance of the estimator. The “t.ratio” column show the value of the test statistic,

Fig. 3.5 Interpretation of an equivalence test based on confidence intervals

Response: yield

F Df Df.res    Pr(>F)    

variety 4.3791  9     36 0.0006507 ***

---

Fig. 3.6 Analysis of the “wheat” example: F test for the factor “variety”
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which is assumed to follow a Student’s t distribution, and the “p.value” column is the
probability associated with the test statistic. This probability is adjusted by Dunnett’s
method, to take multiple testing into account and to guarantee a global risk of error
equal to the risk chosen by the user. If the chosen global alpha risk is 0.05, then
differences with a probability of 0.05 or less are considered significant. In this
example, varieties V3, V4, V5, V7 and V8 are significantly different from variety
V2 at an alpha risk of 0.05.

Figure 3.8 shows the confidence intervals for the difference between each variety
and the control variety, V2. The “contrast” column indicates the comparison
performed, the “estimate” column shows the estimated differences between the
varieties and variety V2, the “SE” and “df” columns show the standard error of
the estimator and the degrees of freedom associated with the variance of the
estimator, respectively. The “lower.CL” and “upper.CL” columns show the lower
and upper limits, respectively, of the confidence interval for the difference between
each variety and the control variety, V2. The confidence intervals are adjusted by
Dunnett’s method to take into account the multiplicity of calculated intervals and to
guarantee a global level of confidence equal to that selected by the user.

Figure 3.9 shows the results of a Tukey test comparing the means of varieties two
by two. The “contrast” column indicates the comparison performed, the “estimate”
column shows the estimated difference between the varieties and the “SE” and “df”
columns show the standard error of the estimator and the degrees of freedom
associated with the variance of the estimator, respectively. The “t.ratio” column

contrast estimate SE df t.ratio p.value

V1 - V2

V10 - V2

V3 - V2

V4 - V2

V5 - V2

V6 - V2

V7 - V2

V8 - V2

V9 - V2

3.595430 1.85047 36 1.943 0.3095

1.212197 1.85047 36 0.655 0.9612

5.859157 1.85047 36 3.166 0.0230

7.828792 1.85047 36 4.231 0.0012

5.978395 1.85047 36 3.231 0.0196

4.879941 1.85047 36 2.637 0.0811

6.348242 1.85047 36 3.431 0.0116

8.812733 1.85047 36 4.762 0.0003

4.584436 1.85047 36 2.477 0.1143

P value adjustment: dunnettx method for 9 tests 

Fig. 3.7 Analysis of the “wheat” example: comparison with a control. Dunnett’s test
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shows the value of the test statistic, which is assumed to follow a Student’s
t distribution, and the “p-value” column is the probability associated with the test
statistic. This probability is adjusted by the Tukey method, to take multiple testing
into account and to guarantee a global risk of error equal to that chosen by the user. If
the global alpha risk selected is 0.05, then all differences with a corresponding
probability value of 0.05 or below should be considered significant. In this example,
none of the differences shown is significant with an alpha risk of 0.05. The results of
these pairwise comparisons can be used to generate a compact representation in the
form of homogeneous groups identified by letters. A compact representation of this
type is shown in Fig. 3.10.

Figure 3.11 shows the confidence intervals for the effect of variety: the difference
between each variety and the general mean. The “contrast” column indicates the
comparison performed, the “estimate” column shows the estimated effect of variety,

contrast estimate SE df lower.CL upper.CL

V1 - V2  3.595430 1.85047 36 -1.6763394  8.867199

V10 - V2 1.212197 1.85047 36 -4.0595723  6.483966

V3 - V2  5.859157 1.85047 36  0.5873882 11.130927

V4 - V2  7.828792 1.85047 36  2.5570226 13.100561

V5 - V2  5.978395 1.85047 36  0.7066256 11.250164

V6 - V2  4.879941 1.85047 36 -0.3918278 10.151711

V7 - V2  6.348242 1.85047 36  1.0764732 11.620012

V8 - V2  8.812733 1.85047 36  3.5409640 14.084502

V9 - V2  4.584436 1.85047 36 -0.6873328  9.856206

Confidence level used: 0.95 

Conf-level adjustment: dunnettx method for 9 estimates

Fig. 3.8 Analysis of the “wheat” example: comparison with a control. Calculation of confidence
intervals
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and the “SE” and “df” columns show the standard error of the estimator and the
degrees of freedom associated with the variance of the estimator, respectively. The
“lower.CL” and “upper.CL” columns show the lower and upper limits, respectively,
of the confidence interval for the variety effect. The confidence intervals were
adjusted by Sidak’s method, to take the multiplicity of calculated intervals into
account and to guarantee a global level of confidence identical to that chosen by
the user.

contrast estimate SE df t.ratio p.value

V1 - V10  2.3832329 1.85047 36   1.288   0.9501

V1 - V2   3.5954297 1.85047 36   1.943   0.6415

V1 - V3  -2.2637277 1.85047 36  -1.223   0.9635

V1 - V4  -4.2333621 1.85047 36  -2.288   0.4207

V1 - V5  -2.3829651 1.85047 36  -1.288   0.9501

V1 - V6  -1.2845117 1.85047 36  -0.694   0.9994

V1 - V7  -2.7528127 1.85047 36  -1.488   0.8883

V1 - V8  -5.2173035 1.85047 36  -2.819   0.1681

V1 - V9  -0.9890067 1.85047 36  -0.534   0.9999

V10 - V2  1.2121969 1.85047 36   0.655   0.9996

...

V7 - V9   1.7638060 1.85047 36   0.953  0.9932

V8 - V9   4.2282968 1.85047 36   2.285  0.4223

P value adjustment: Tukey method for comparing a family of 10 

estimates

Fig. 3.9 Analysis of the “wheat” example: Tukey’s test
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3.6 Analysis of the “Wheat” Example and R Script

We propose here an R script for the analysis of individual data in a network of
experiments with a randomized complete block design.

variety lsmean SE df lower.CL upper.CL .group

V2      75.39573 4.185144 4.8 64.50405 86.28740  A    

V10     76.60792 4.185144 4.8 65.71625 87.49959  AB   

V1      78.99116 4.185144 4.8 68.09948 89.88283  ABC  

V9      79.98016 4.185144 4.8 69.08849 90.87183  ABC  

V6      80.27567 4.185144 4.8 69.38400 91.16734  ABC  

V3      81.25488 4.185144 4.8 70.36321 92.14656  ABC  

V5      81.37412 4.185144 4.8 70.48245 92.26579  ABC  

V7      81.74397 4.185144 4.8 70.85230 92.63564   BC  

V4      83.22452 4.185144 4.8 72.33285 94.11619    C  

V8      84.20846 4.185144 4.8 73.31679 95.10013    C

Confidence level used: 0.95 

P value adjustment: Tukey method for comparing a family of 10

estimates 

significance level used: alpha = 0.05

Fig. 3.10 Analysis of the “wheat” example: representation of the results of Tukey’s test as
homogeneous groups
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R Script and Commentary on the Analysis

# R version 3.4.3
# loading of packages
library(lme4) # version 1.1-14
library(emmeans) # version 1.0
library(car) # version 2.1-6
library(outliers) # Version: 0.14

The lme4 library is used for adjustment of the mixed model, the emmeans
library is used to calculate the mean for each variety and to compare these means, the
car library is used to calculate the analysis of variance table and the outliers
library is used to detect suspect residuals.

contrast estimate SE df lower.CL upper.CL

V1 effect  -1.31450267 1.241333 36 -5.0157761  2.386770802

V10 effect -3.69773553 1.241333 36 -7.3990090  0.003537938

V2 effect  -4.90993241 1.241333 36 -8.6112059 -1.208658942

V3 effect   0.94922501 1.241333 36 -2.7520485  4.650498481

V4 effect 2.91885941 1.241333 36 -0.7824141  6.620132884

V5 effect   1.06846240 1.241333 36 -2.6328111  4.769735868

V6 effect  -0.02999101 1.241333 36 -3.7312645  3.671282463

V7 effect   1.43830999 1.241333 36 -2.2629635  5.139583455

V8 effect   3.90280082 1.241333 36

V9 effect  -0.32549601 1.241333 36 -4.0267695  3.375777455

Confidence level used: 0.95 

Conf-level adjustment: Sidak method for 10 estimates

0.2015274  7.604074292

Fig. 3.11 Analysis of the “wheat” example: comparison with the general mean. Calculation of
confidence intervals
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# Model adjustment

res.lmer <- lmer(rendement ~ variete + (1|experimentation) + (1|
experimentation:variete) + (1|experimentation:bloc), data=DF,

na.action=na.exclude)
res.lmer

The lmer function of the lme4 library is used to adjust the mixed model. With
the lmer function, the random factors are indicated in brackets, preceded by the
number “1” and a vertical bar “|”. This syntax indicates that a random effect specific
to each level of the factor is considered. The res.lmer command displays the
result for model adjustment in the R console presented in Fig. 3.12. An estimate of
the standard deviation is shown for the effects of “experiment” (8.794), “experiment:
block” (2.249), “experiment:variety” (2.555), and the residuals of the model (2.471).

Estimated values of the fixed effects are also provided. With the contrasts used by
default for model adjustment in R, the intercept corresponds to the mean for the first
variety in alphabetical order, and the other estimates are the differences between the
first variety and the other varieties. This constraint on the effect of first variety is an
identifiability constraint essential for estimation of the model parameters (Venables
and Ripley 1998). Other types of contrasts for model adjustment, implying other
identifiability constraints, can also be specified (Galecki and Burzykowski 2013).

# Validation of the model
plot(fitted(res.lmer),residuals(res.lmer), abline(h=0))
hist(residuals(res.lmer))

The functions plot and hist generate graphs of the residuals of the model, for
the validation of certain hypotheses concerning these residuals. These graphs are
presented in Fig. 3.13. The residuals of the model are assumed to follow a normal
distribution, with the same variance, and to be independent. These graphs provide no
evidence to suggest that the hypotheses of normality and homoscedasticity do not
apply. A similar validation should be performed for the other random effects.

DF$residus <- residuals(res.lmer)
grubbs.test(DF$residus)
DF[which.max(DF$residus),]

The “residuals” function stores the residuals of the mixed model as a new
variable called “residus”. The grubbs.test function of the outliers
library can be used to detect the presence of suspect residuals, and the “which.
max” function displays the observation corresponding to the residual with the
highest value.
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Grubbs’ test, for which results are presented in Fig. 3.14, detected no suspect
residuals. Figure 3.15 shows the observation corresponding to the residual with the
highest value.

# ANOVA table
anova(res.lmer, test.statistic="F")

Linear mixed model fit by REML ['lmerMod']

Formula: 

rdt ~ variete + (1 | experimentation) + (1 | experimentation:variete) +  

(1 | experimentation:bloc)

Data: DF

REML criterion at convergence: 775.5289

Random effects:

Groups Name        Std.Dev.

experimentation:variete (Intercept) 2.555   

experimentation:bloc    (Intercept) 2.249   

experimentation         (Intercept) 8.794   

Residual                            2.471   

Number of obs: 150, groups:  

experimentation:variete, 50; experimentation:bloc, 15; experimentation, 5

Fixed Effects:

(Intercept)   varieteV10    varieteV2    varieteV3    varieteV4    varieteV5  

78.991 -2.383       -3.595        2.264        4.233        2.383  

varieteV6    varieteV7    varieteV8    varieteV9  

1.285        2.753        5.217        0.989  

Fig. 3.12 Information about the mixed model
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The Anova function of the car library can be used to calculate the analysis of
variance (ANOVA) table used for F tests. The results are shown in Fig. 3.16. In the
framework of a mixed model with “experiment” as a random factor, the means tested
correspond to the means of the varieties in the entire population of experiments, of
which the 10 experiments observed are considered representative. The probability of
the F statistic, 0.0006507, is very low, indicating that the differences between the
varieties are highly significant.

# Adjusted means
moy_var <- lsmeans(res.lmer, ~variete)
moy_var

The lsmeans function of the emmeans library can be used to calculate the
means of the varieties, as shown in Fig. 3.17. These means are adjusted, as indicated
by the name “lsmean” (least squares means), although in this case, the adjusted

Fig. 3.13 Model validation graphs. On the left: scatterplot of residuals against predicted values. On
the right: histogram of residuals

data:  DF$residus

G = 2.5253, U = 0.9569, p-value = 0.8108

alternative hypothesis: highest value 5.10177381601873 is an outlier

Fig. 3.14 Grubbs’ test

year site experiment variety block yield residuals

2003 L3 75.14778 5.101774643 V4 1

Fig. 3.15 Observation corresponding to the residual with the highest value
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means are identical to the crude means because the data table is complete. The notion
of an “adjusted mean” will be presented in detail in Chap. 4.

# Pairwise comparisons

pairs(moy_var, adjust="tukey")
cld(moy_var, Letters=c(LETTERS))

Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)

Response: yield

F Df Df.res    Pr(>F)    

variety 4.3791  9     36 0.0006507 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Fig. 3.16 F test

variety lsmean SE df lower.CL upper.CL

V1       78.99116  4.185144  4.8  68.09948  89.88283

V10      76.60792  4.185144  4.8  65.71625  87.49959

V2       75.39573  4.185144  4.8  64.50405  86.28740

V3       81.25488  4.185144  4.8  70.36321  92.14656

V4       83.22452  4.185144   4.8  72.33285  94.11619

V5       81.37412  4.185144  4.8  70.48245  92.26579

V6       80.27567  4.185144  4.8  69.38400  91.16734

V7       81.74397  4.185144  4.8  70.85230  92.63564

V8       84.20846  4.185144  4.8  73.31679  95.10013

V9       79.98016  4.185144  4.8  69.08849  90.87183

Confidence level used: 0.95

Fig. 3.17 Adjusted means
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The pairs function of the emmeans library performs all possible pairwise
comparisons between means, using the “tukey”method to adjust the probability to
take multiple testing into account. Finally, the cld function of the emmeans library
can be used to establish homogeneous groups.

Figure 3.18 shows pairwise comparisons between the means of the varieties. The
estimated differences are indicated in the “estimate” column. A statistical test is
performed to test the hypothesis of an absence of difference. The probability of the
tests is adjusted to take multiple testing into account and to keep the global type I
error at the level selected by the user. This means, for example, that, if we decide to
consider differences with a p value of 0.05 or less significant, then there is a global
type I risk of error of 5%.

Figure 3.19 presents pairwise comparisons of the means of varieties in the form of
homogeneous groups indicated by letters, assuming an alpha risk of 5%. Two
varieties that have no letter in common are considered to be significantly different,
with an alpha risk of 5%. This is the case, for example, for varieties V2 and V7. By
contrast, varieties V10 and V7 are not significantly different because they have the
letter “B” in common.

# Comparisons with the general mean
contrast(moy_var, method="eff", adjust="sidak")
confint(contrast(moy_var, method="eff", adjust="sidak"))

The contrast function of the emmeans library, used with the “eff” method,
calculates all the differences between each variety and the general mean. The
“sidak” method adjusts the probability of tests to take multiple testing into
account. The confint function of the emmeans library can be used to calculate
confidence intervals for “variety” effects.

Figure 3.20 presents “variety” effects, the difference between the mean for each
variety and the general mean. The “contrast” column indicates the comparison
performed, the “estimate” column shows the estimated variety effects and the
“SE” and “df” columns show the standard error of the estimator and the degrees of
freedom associated with the variance of the estimator, respectively. The “t.ratio”
column shows the test statistic, for testing whether the “variety” effect is equal to
zero, and the “p.value” column indicates the probability associated with the test
statistic. The test probabilities are adjusted by the Sidak method to take multiple
testing into account and to guarantee a global alpha risk equal to that chosen by the
user. At the alpha risk threshold of 0.05, variety V2 has a mean significantly lower
than the general mean, whereas the mean of variety V8 is significantly higher than
the general mean.

Figure 3.21 presents the “variety” effects, i.e. the differences between the mean of
each variety and the general mean, and the confidence intervals of these effects,
calculated with 95% confidence. The “contrast” column indicates the comparison
performed, the “estimate” column shows the estimated variety effect and the
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contrast estimate SE df t.ratio p.value

V1 - V10  2.3832329  1.85047  36   1.288   0.9501

V1 - V2   3.5954297  1.85047  36   1.943   0.6415

V1 - V3  -2.2637277  1.85047  36  -1.223   0.9635

V1 - V4  -4.2333621  1.85047  36  -2.288   0.4207

V1 - V5  -2.3829651  1.85047  36  -1.288   0.9501

V1 - V6  -1.2845117  1.85047  36  -0.694   0.9994

V1 - V7  -2.7528127  1.85047  36  -1.488   0.8883

V1 - V8  -5.2173035  1.85047  36  -2.819   0.1681

V1 - V9  -0.9890067  1.85047  36  -0.534   0.9999

V10 - V2  1.2121969  1.85047  36   0.655   0.9996

V10 - V3 -4.6469605  1.85047  36 -2.511   0.2966

V10 - V4 -6.6165949  1.85047  36  -3.576   0.0301

V10 - V5 -4.7661979  1.85047  36  -2.576   0.2655

V10 - V6 -3.6677445  1.85047  36  -1.982   0.6162

V10 - V7 -5.1360455  1.85047  36  -2.776   0.1833

V10 - V8 -7.6005364  1.85047  36  -4.107   0.0074

V10 - V9 -3.3722395  1.85047  36  -1.822   0.7173

V2 - V3  -5.8591574  1.85047  36  -3.166   0.0802

V2 - V4  -7.8287918  1.85047  36  -4.231   0.0052

V2 - V5  -5.9783948  1.85047  36 -3.231   0.0692

V2 - V6  -4.8799414  1.85047  36  -2.637   0.2379

V2 - V7  -6.3482424  1.85047  36  -3.431   0.0431

V2 - V8  -8.8127332  1.85047  36  -4.762   0.0011

V2 - V9  -4.5844364  1.85047  36  -2.477   0.3138

Fig. 3.18 Pairwise comparisons of variety means
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V3 - V4  -1.9696344 1.85047 36  -1.064  0.9852

V3 - V5  -0.1192374 1.85047 36  -0.064  1.0000

V3 - V6   0.9792160 1.85047 36   0.529  0.9999

V3 - V7  -0.4890850 1.85047 36  -0.264  1.0000

V3 - V8  -2.9535758 1.85047 36  -1.596  0.8413

V3 - V9   1.2747210 1.85047 36   0.689  0.9994

V4 - V5   1.8503970 1.85047 36   1.000  0.9904

V4 - V6   2.9488504 1.85047 36   1.594  0.8425

V4 - V7   1.4805494 1.85047 36   0.800  0.9981

V4 - V8  -0.9839414 1.85047 36  -0.532  0.9999

V4 - V9   3.2443554 1.85047 36   1.753  0.7583

V5 - V6   1.0984534 1.85047 36 0.594  0.9998

V5 - V7  -0.3698476 1.85047 36  -0.200  1.0000

V5 - V8  -2.8343384 1.85047 36  -1.532  0.8703

V5 - V9   1.3939584 1.85047 36   0.753  0.9988

V6 - V7  -1.4683010 1.85047 36  -0.793  0.9983

V6 - V8  -3.9327918 1.85047 36  -2.125  0.5228

V6 - V9   0.2955050 1.85047 36   0.160  1.0000

V7 - V8  -2.4644908 1.85047 36  -1.332  0.9392

V7 - V9   1.7638060 1.85047 36   0.953  0.9932

V8 - V9   4.2282968 1.85047 36   2.285  0.4223

P value adjustment: Tukey method for comparing a family of 10 estimates

Fig. 3.18 (continued)
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columns “SE” and “df” correspond to the standard error of the estimator and the
degrees of freedom associated with the variance of the estimator. The “lower.CL”
and “upper.CL” columns show the lower and upper limits, respectively, of the
confidence interval for the variety effect. The confidence intervals are adjusted by
the Sidak method, to take the multiplicity of calculated intervals into account and to
guarantee a global confidence level equal to that chosen by the user.

# Comparison with a control

contrast(moy_var, method="trt.vs.ctrl", ref=2)
confint(contrast(moy_var, method="trt.vs.ctrl", ref=2))

The contrast function with the method¼"trt.vs.ctrl" argu-
ment and ref¼2 can be used to compare all the varieties to the second variety in
alphabetical order, V10 in this case, which is treated as the control. The confint

variety lsmean       SE  df lower.CL upper.CL .group

V2      75.39573 4.185144 4.8 64.50405 86.28740  A    

V10     76.60792 4.185144 4.8 65.71625 87.49959  AB   

V1      78.99116 4.185144 4.8 68.09948 89.88283  ABC  

V9      79.98016 4.185144 4.8 69.08849 90.87183  ABC  

V6      80.27567 4.185144 4.8 69.38400 91.16734  ABC  

V3      81.25488 4.185144 4.8 70.36321 92.14656  ABC  

V5      81.37412 4.185144 4.8 70.48245 92.26579  ABC  

V7      81.74397 4.185144 4.8 70.85230 92.63564   BC  

V4      83.22452 4.185144 4.8 72.33285 94.11619    C  

V8      84.20846 4.185144 4.8 73.31679 95.10013    C  

Confidence level used: 0.95 

P value adjustment: Tukey method for comparing a family of 10 estimates 

significance level used: alpha = 0.05

Fig. 3.19 Homogeneous groups
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function of the emmeans library can be used to calculate the confidence intervals for
differences between the varieties and the control variety, V10.

In practice, the choice between pairwise comparisons to generate homogeneous
groups and comparisons with a control depends on the objectives of the study. Only
one test is generally used, but both tests are presented here as an illustration.

Figure 3.22 shows the comparisons between variety means and the mean of the
control variety, V10. The estimated differences are shown in the “estimate” col-
umn. A statistical test is performed to test the hypothesis of an absence of difference.
The probability of the test is adjusted to take multiple testing into account and to
maintain the type I error at the level chosen by the user. That means, for example,
that if we decide to consider differences with a p value of 0.05 or lower significant,
then there is a global risk of error of 5%. With a global alpha risk of 5%, only
varieties V4 and V8 are significantly different from variety V10.

Figure 3.23 reports the confidence intervals for the differences between each
variety and the control variety, V10. The “contrast” column indicates the comparison
performed, the “estimate” column shows the estimated difference between each
variety and variety V10 and the “SE” and “df” columns show the standard error of
the estimator and the degrees of freedom associated with the variance of the
estimator, respectively. The “lower.CL” and “upper.CL” columns show the lower
and upper limits, respectively, of the confidence interval for the difference between
each variety and the control variety, V10. The confidence intervals are adjusted by
Dunnett’s method, to take the multiplicity of calculated intervals into account and to
guarantee a global level of confidence equal to that chosen by the user. The Dunnett

contrast      estimate       SE df t.ratio p.value

V1 effect  -1.31450267 1.241333 36  -1.059  0.9704

V10 effect -3.69773553 1.241333 36  -2.979  0.0504

V2 effect  -4.90993241 1.241333 36  -3.955  0.0034

V3 effect   0.94922501 1.241333 36   0.765  0.9974

V4 effect   2.91885941 1.241333 36   2.351  0.2180

V5 effect   1.06846240 1.241333 36   0.861  0.9934

V6 effect  -0.02999101 1.241333 36  -0.024  1.0000

V7 effect   1.43830999 1.241333 36   1.159  0.9468

V8 effect   3.90280082 1.241333 36   3.144  0.0328

V9 effect  -0.32549601 1.241333 36  -0.262  1.0000

P value adjustment: Sidak method for 10 tests

Fig. 3.20 Comparisons of
variety means with the
general mean
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test shown in Fig. 3.22 indicates that varieties V4 and V8 are significantly different
from variety V10. However, an examination of the confidence intervals associated
with these two varieties reveals a high level of uncertainty on the true value of the
difference between varieties V4 and V8 on the one hand, and variety V10 on the other.

# Random effects
ranef(res.lmer)

The ranef function of the lme4 library can be used to display random effects.
Figure 3.24 shows the estimated random effects of the experiments. These effects are
assumed to follow a normal distribution, to have the same variance and to be
independent. For example, from Fig. 3.24, we can see that in experiment e1, mean
yield was 4.81 q/ha lower than the mean for the population of environments, or that
there was a difference in yield of 18.22 q/ha between experiments e2 and e3.

In summary, we can consider the model used to be appropriate for describing the
results for the “wheat” example, because there is no evidence to call its validity into
question. We can, therefore, use this model to interpret the data. The objective of the
analysis is, above all, to compare the mean values of the varieties, and the results of

contrast      estimate       SE df   lower.CL     upper.CL

V1 effect  -1.31450267 1.241333 36 -5.0157761  2.386770802

V10 effect -3.69773553 1.241333 36 -7.3990090  0.003537938

V2 effect  -4.90993241 1.241333 36 -8.6112059 -1.208658942

V3 effect   0.94922501 1.241333 36 -2.7520485  4.650498481

V4 effect   2.91885941 1.241333 36 -0.7824141  6.620132884

V5 effect   1.06846240 1.241333 36 -2.6328111  4.769735868

V6 effect  -0.02999101 1.241333 36 -3.7312645  3.671282463

V7 effect   1.43830999 1.241333 36 -2.2629635  5.139583455

V8 effect   3.90280082 1.241333 36  0.2015274  7.604074292

V9 effect  -0.32549601 1.241333 36 -4.0267695  3.375777455

Confidence level used: 0.95 

Conf-level adjustment: Sidak method for 10 estimates

Fig. 3.21 Confidence intervals for variety effects
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contrast estimate SE t.ratio p.value

V1 - V10   2.383233  1.85047  36   1.288   0.6974

V2 - V10  -1.212197  1.85047  36  -0.655   0.9612

V3 - V10   4.646961  1.85047  36   2.511   0.1065

V4 - V10   6.616595  1.85047  36   3.576   0.0079

V5 - V10   4.766198  1.85047  36   2.576   0.0927

V6 - V10   3.667745  1.85047  36   1.982   0.2904

V7 - V10   5.136046  1.85047  36   2.776   0.0593

V8 - V10   7.600536  1.85047  36   4.107   0.0018

V9 - V10   3.372240  1.85047  36   1.822   0.3730

P value adjustment: dunnettx method for 9 tests

dfFig. 3.22 Comparisons
with the control variety
V10: Dunnett’s test

contrast  estimate      SE df   lower.CL  upper.CL

V1 - V10  2.383233 1.85047 36 -2.8885363  7.655002

V2 - V10 -1.212197 1.85047 36 -6.4839661  4.059572

V3 - V10  4.646961 1.85047 36 -0.6248086  9.918730

V4 - V10  6.616595 1.85047 36  1.3448258 11.888364

V5 - V10  4.766198 1.85047 36 -0.5055713 10.037967

V6 - V10  3.667745 1.85047 36 -1.6040247  8.939514

V7 - V10  5.136046 1.85047 36 -0.1357237 10.407815

V8 - V10  7.600536 1.85047 36  2.3287672 12.872306

V9 - V10  3.372240 1.85047 36 -1.8995297  8.644009

Confidence level used: 0.95 

Conf-level adjustment: dunnettx method for 9 estimates

Fig. 3.23 Comparisons with the control variety V10: confidence intervals
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the F test indicate that, in general, the variety means are not identical. Multiple
comparison tests can then be used to refine this overall conclusion. For example,
comparisons with the control variety V10 show that the means of varieties V4 and
V8 are significantly higher than the mean for variety V10. None of the varieties has a
mean significantly lower than that of variety V10. The confidence intervals of the
differences between the varieties and the control variety V10 are, however, relatively
large, indicating that the precision of these comparisons is relatively low. Thus, the
real difference between varieties V4 and V10, or, to a lesser extent, between varieties
V8 and V10, might not be very relevant in practice. Similarly, we cannot rule out the
possibility that there is, in reality, a large difference between variety V10 and the
other varieties. A larger network, with a larger number of experiments, would be
required to draw more precise conclusions. The problem of the dimensions of
experimental networks is dealt with in detail in Chap. 5.
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Chapter 4
Advanced Methods for Network Analysis

4.1 Analysis of Mean Data

In analyses of experimental networks, it is always advisable to begin by analyzing
the various individual experiments separately. In an experimental network, different
experimental designs may be used in different experiments. In such cases, the model
for the analysis of individual experiments should take into account the specific
experimental design for each experiment.

The models used to analyze individual experiments may also differ between
experiments, even in cases in which the experimental designs used are identical
(e.g. for a randomized complete block design, such as that for the “wheat” example
in Chap. 3). Indeed, in some experiments, the initial experimental design chosen to
control for the experimental variability may prove unsuitable to describe the exper-
imental variability actually observed. For example, in experiments with a random-
ized complete block design, a fertility gradient is often observed within blocks
during analyses of the results (Monod 2001). Another example would be an exper-
iment in which damage occurs due to the passage of game animals or a hailstorm.
These events may occur in a highly sporadic manner during an experiment and may
thus increase the uncontrolled experimental variability. It is sometimes possible to
take these unpredicted variability factors into account by adapting the statistical
model used. Spatial analysis and analysis of covariance are frequently used for this
purpose (Gilmour 2000; Kempton and Fox 1997). These unpredicted variability
factors, which may occur in some experiments but not in others, and which may
differ between experiments when they do occur, may necessitate the use of different
analysis models for different individual experiments.

In the two situations described above (mixture of experimental designs and/or
mixture of analysis models for individual experiments), the analysis of experimental
networks based on individual data becomes highly complicated. In such situations, it
is therefore simpler to perform an experimental network analysis based on the mean
treatment values calculated in each experiment. This analysis of mean data is
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performed in two steps: in the first, the treatment means are calculated for each
experiment, and in the second, these mean data are analyzed. This two-step analysis
is generally simpler, but it may perform less well than a single-step analysis based on
individual values (Smith et al. 2001a).

4.1.1 Step 1: Analysis of Individual Experiments to Estimate
Treatment Means

The objective of this first step is to validate each experiment from an agronomic and
statistical viewpoint and to calculate, for each experiment, the means of the treat-
ments studied and the precision of these means.

The agronomic validation involves checking that the experimental protocol has
been followed correctly and that the experiment can be used to address the questions
posed in the protocol.

The statistical analysis of individual experiments can be used for statistical
validation of the experiment and calculation of the means of the treatments studied
and the precision of these means. The statistical validation of the experiment is
based, in particular, on an examination of the residuals of the model. In particular,
suspect residuals potentially indicating an incident occurring in one or several
experimental units are sought, and the precision of the experiments is assessed, as
this is an important element for validation.

In certain cases, a network may be constituted from experiments performed
without repetitions across experiments. In this case, the statistical analysis of data
by experiment is not possible. As no analysis of the individual experiments is
feasible, it is not possible to validate the data statistically or to calculate their
precision.

4.1.2 Step 2: Analysis of Mean Data

Step 2 is the analysis of the mean data obtained in step 1. In networks of experiments
without repetition across experiments, the elementary data are used directly. In
individual experiments leading to the calculation of adjusted means, it is these
means that are used in this second step.

The following mixed model is widely used for the analysis of mean data from
experimental networks (Piepho 1996):

yij ¼ μþ ti þ E�
j þ ε�ij ð4:1Þ
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where yij is the mean value of the variable of interest for treatment i (i ¼ 1,. . .,I ) in
experiment j ( j¼ 1,. . .,J ) and μ, ti,E�

j ,ε
�
ij are the general mean, the effect of treatment

i, the effect of experiment j and the residual associated with yij.
The observed experiments are assumed to constitute a random sample from a

population of possible experiments. This implies that E�
j is a random effect.

The random effects E�
j and ε

�
ij are assumed to follow a normal distribution with a

mean of zero and a variance of σ2E� and σ2ε� , respectively. Furthermore, the different
random effects are assumed to be independent of each other.

4.1.3 Example

We will now come back to the “wheat” example presented in Chap. 3, which we will
analyze in two steps. Just to recap, this example concerns a network of experiments
with a randomized complete block design. There are three blocks per experiment and
the dataset is complete.

4.1.3.1 Step 1: Analysis of the Individual Experiments

The first step is the calculation of treatment means for each experiment and estima-
tion of the precision of these means.

In Chap. 3, we presented an analysis of a network of experiments with a random-
ized complete block design in which the “block” effect was considered to be a random
effect. This approach can be justified by considering the observed blocks to be
representative of the plot or site at which the experiment is performed. However, in
individual experiments, analyses are generally performed assuming the “block” effect
to be fixed. This approach is recommended when the number of blocks per experiment
is small (fewer than five or 10), which is often the case in practice. Indeed, in such
cases, estimations of variance between blocks are highly imprecise if the “block”
effect is considered to be random, with estimated between-block variances of zero
frequently obtained. In these conditions, mixed-model estimation by the REML
approach is not optimal, and it is preferable to use a model in which the “block” effect
is considered to be fixed (Piepho et al. 2003). This does not modify the variance of the
differences between treatments and, thus, has no effect on comparisons between
treatments, which is generally the objective of the experiment (Spike et al. 2005).
The model classically used for randomized complete block experiments is thus:

yik ¼ μþ ti þ bk þ εik ð4:2Þ

where yik is the observed value for the variable of interest for treatment i (i¼ 1,. . .,I )
in block k (k ¼ 1,. . .,K) and μ, ti, bk, and εik are the general mean, the effect of
treatment i, the effect of block k, and the residual associated with yik, respectively.
The random effects εik are assumed to be independent and to follow a normal
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distribution with a mean of zero and a variance of σ2ε . In model (4.2), the estimators
of treatment means have the same variance and are independent. The variance of the

treatment means is given by σ2ε
K .

σ2ε
K is the effective variance of the treatment means,

i.e. the variance used for comparisons between treatments.
In the case of the “wheat” example, the dataset is complete and the treatment

means for each experiment are simply the arithmetic means of the three replicates.
These mean data are summarized in Table 4.1. The residual variance estimates
obtained following the adjustment of model (4.2) are 7.095, 5.658, 4.758, 7.273,
and 5.733, for experiments 1 to 5, respectively. If we consider the theoretical residual
variances of the different experiments to be identical, we can easily estimate this
residual variance for the “wheat” example, as the dataset is complete and the number
of blocks is identical for all experiments. Indeed, in this case, the estimate of the

common residual variance is given by σ̂2
ε ¼

∑J
j¼1MSE j

J , where MSEj is the estimated
residual variance of experiment j and J is the number of experiments. In the case of

the “wheat” example, we have:
∑J
j¼1MSE j

J ¼ 7:095þ5:658þ4:758þ7:273þ5:733
5 ¼ 6:1034. This

value is identical to that obtained in the single-step analysis of individual data
(Fig. 3.1). Still assuming that all the experiments have the same theoretical residual

variance, the variance of the treatment means of experiment j can be estimated as: σ̂
2
ε

K j
,

where Kj is the number of blocks in experiment j. In the case of the “wheat” example,
the number of blocks per experiment K is 3 and the variance of the treatment means

is identical in all experiments and is estimated by: σ̂ 2
ε
K ¼

∑J
j¼1

MSE j

J
K ¼ 6:1034

3 ¼ 2:0345.
This variance represents the uncertainty on the values presented in Table 4.1
resulting from these data being estimates rather than the true treatment means of
the experiments.

4.1.3.2 Step 2: Analysis of Mean Data

We illustrate here the difference between the one-step analysis of individual data and
the two-step analysis by presenting a few results of the analysis of mean data for the
“wheat” example.

Table 4.1 Mean data for the “wheat” example

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

E1 72.3 68.5 77.5 77.6 78.6 74.6 72.4 80.7 79.2 71.9

E2 89.7 87.4 89.7 93.7 86.3 90.9 95.7 94.0 85.8 86.6

E3 72.2 66.4 72.9 73.4 76.2 70.7 72.8 70.4 69.7 66.9

E4 71.8 67.5 77.4 77.7 78.7 74.3 72.1 80.7 80.4 71.2

E5 88.9 87.1 88.9 93.7 87.1 91.0 95.7 95.2 84.7 86.3

The rows correspond to experiments and the columns to varieties, and individual cells contain the
mean yield, in q/ha, of the varieties in the experiments. Each mean is calculated from three observations
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The first part of Fig. 4.1 shows the table of variance components for model (4.1)
for the “wheat” dataset.

The between-experiment variance estimated from mean data is slightly higher
than that obtained for the analysis of individual data presented in Fig. 3.1, because it
also includes between-block variability. Indeed, in the analysis of mean data with
model (4.1), the random effect E�

j includes the effect of experiment, but also, as the
analysis is based on the mean data for K blocks, the (mean) block effects. The
between-experiment variance of the model based on mean data is, thus, equal to the
sum of the between-experiment variance of the model for individual data plus the
between-block variance, divided by the number of blocks per experiment:

σ2E� ¼ σ2E þ σ2B
K

ð4:3Þ

where σ2E� , σ2E, σ
2
B and K are the between-experiment variance for the model based on

mean data, the between-experiment variance for the model based on individual
data, the between-block variance for the model based on individual data and the
number of blocks per experiment. We can obtain, within the range of rounding
errors, the value of the between-experiment variance indicated in Fig. 4.1, by
replacing the variances σ2E and σ2B in formula 4.3 with the estimated values shown
in Fig. 3.1: 79.0164 ¼ 77.3305 + 5.0578/3.

The residual variance estimated from the mean data is different from that obtained
from the analysis of individual data presented in Fig. 3.1. Indeed, ε�ij, the residual
associated with the mean yij, is the sum of two combined effects, an effect of the
interaction between treatment i and experiment j, and an estimation error on the
mean of treatment i in experiment j due to experimental errors (Frensham et al. 1997;
Smith et al. 2001b). The effects of the interaction between treatments and experi-
ments are assumed to be independent of the estimation errors on the mean, and the
variance of the residuals.

Variance component

Group            Variance

Experiment 79.0165 

Residual          8.5606

Comparison of two treatments

contrast   estimate      SE df    lower.CL    upper.CL

V1 - V10  2.3832329 1.85047 36  -1.3696951  6.13616080

Fig. 4.1 Analysis of the “wheat” example based on mean data, with mixed model (4.1)
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ε�ij is thus equal to the sum of the variance of the interaction between treatments
and experiments and the variance of the estimation errors for the mean data. The

variance of the estimation errors on the mean data is given by σ2ε
K , where σ2ε is the

variance of the experimental errors for individual data and K is the number of blocks
per experiment. The variance of the residues ε�ij is therefore:

σ2ε� ¼ σ2tE þ σ2ε
K

ð4:4Þ

We can obtain the value for residual variance indicated in Fig. 4.1, by replacing
the variances σ2tE and σ2ε in Eq. 4.4 with the estimated values from Fig. 3.1:
8.5606 ¼ 6.5261 + 6.1034/3.

The variance of the means in Eq. (4.4) is the effective variance, that used for
comparisons between means within an experiment. There is no between-block
variance in Eq. (4.4) because, in the analysis of mean data, the block means are
confounded with the effect of experiment.

The second part of Fig. 4.1 shows the result of the comparison of the mean of
variety V1 with that of variety V10. This result is identical to that obtained with
mixed model (3.1) applied to the individual data. Indeed, in model (4.1), the variance
of the difference between the two treatment means is given by:

Var
�
μ̂i � μ̂i0

� ¼ 2
σ2ε�
J

ð4:5Þ

where Var
�
μ̂i � μ̂i0

�
is the variance of the estimator of the difference between

treatment means i and i0, and σ2ε� and J are the residual variance of model (4.1) and
the number of experiments, respectively.

By replacing the residual variance σ2ε� in Eq. (4.5) with its expression in Eq. (4.4),
we obtain:

Var
�
μ̂i � μ̂i0

� ¼ 2
σ2tE
J

þ σ2ε
JK

� �

corresponding to Eq. (3.2), which gives the variance of the difference between two
treatment means obtained by the analysis of individual data with model (3.1).

In the case of a network of experiments with a complete block design and
identical numbers of blocks in each experiment, the two-step analysis with model
(4.1) is equivalent to a one-step analysis on the individual data with model (3.1).
Comparisons between treatments are performed in the same manner whether the
individual or mean data are used.

In the case of experimental networks with a complete block design in which the
individual experiments are analyzed with model (4.2), the two-step analysis with
model (4.1) is not really justified and it is simpler to analyze the network based on
the individual data. This analysis of individual data is even preferable in cases in which
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the number of blocks per experiment varies between experiments. The two-step
analysis with model (4.1) is used mostly in cases in which the network includes a
mixture of experimental designs and/or a mixture of analysis models for individual
experiments. However, in such cases, the results of an analysis of mean data with
model (4.1) are generally different from those obtained in analyses of individual data.

4.1.4 A Variant: Analysis of Mean Data with a Fixed-Effects
Model

The analysis of mean data for experimental networks is usually based on mixed
model (4.1), but the following fixed-effects model can also be used:

yij ¼ μþ ti þ e j þ ε�ij ð4:6Þ

where yij is the mean value for the variable of interest for treatment i (i ¼ 1,. . .,I ) in
experiment j ( j ¼ 1,. . .,J ) and μ, ti, ej, and ε�ij are the general mean, the effect of
treatment i, the effect of experiment j and the residual associated with yij,
respectively.

The random effect ε�ij is assumed to follow a normal distribution with a mean of
zero and a variance of σ2ε� . These residual random effects are also assumed to be
independent of each other.

In a complete network, the estimated treatment means obtained with model (4.6)
are identical to those obtained with mixed model (4.1). Similarly, the variance of the
differences between treatments, which is not dependent on the differences between
experiments, as shown by Eq. (4.5), is identical for the two models. In an experi-
mental network, the principal objective is generally to estimate the differences
between treatment means. The conclusions obtained are, thus, the same with a
mixed model or a fixed-effects model. It should be noted that, for analyses of
mean data, the analysis based on a fixed-effects model does not change the scope
of the conclusions, which still relate to a population of environments.

Figure 4.2 summarizes the results of the analysis of mean data with a fixed-effects
model. The only difference with respect to the results of the analysis of mean data
with a mixed model (Fig. 4.1) is the absence of a variance component for the variable
“experiment”.

4.1.5 Estimation of Variance for the Treatment� Experiment
Interaction

In analyses of mean data with model (4.1), ε�ij, the residual associated with the mean
yij, is the sum of two combined effects, an effect of the interaction between treatment
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i and experiment j, and the estimation error for the mean of treatment i in experiment
j. Estimation of the variance of the treatment � experiment interaction requires
knowledge of the variance of estimation errors for the mean data.

4.1.5.1 Calculation of the Variance of Mean Data

The effective variance of the mean data for each experiment can be estimated with
the following formula:

Vmeanj ¼ 0:5 VMC j ð4:7Þ

where VMCj is an estimate of the mean variance for pairwise comparisons of
treatments for experiment j.

An estimate of the common variance of mean data for the experimental network
can be obtained by calculating the mean of the variances of mean data by experi-
ment, as follows:

Vmean ¼

PJ
j¼1

Vmeanj

J
ð4:8Þ

4.1.5.2 Estimation of the Variance of the Treatment � Experiment
Interaction

The variance of the treatment � experiment interaction can be obtained by calcu-
lating the following difference:

Variance component

Group               Variance

Residual            8.5606

Comparison of two treatments

contrast   estimate      SE df    lower.CL    upper.CL

V1 - V10  2.3832329 1.85047 36  -1.3696951  6.13616080

Fig. 4.2 Analysis of the “wheat” example, for mean data and a fixed-effects model
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σ̂2
tE ¼ σ̂2

ε� � Vmean ð4:9Þ

where σ̂2
ε� is the estimated residual variance of model (4.1).

4.1.5.3 Case of a Network of Randomized Complete Block Experiments

In the case of an experiment with a randomized complete block design analyzed with
model (4.2), we have:

VMC j ¼ 2MSE j

K j
, where MSEj and Kj are the estimated residual variance and the

number of blocks in experiment j, respectively. Equation (4.7) thus becomes:
Vmeanj ¼ MSE j

K j
, which corresponds to an estimate of the effective variance of

treatment means, i.e. the variance used in comparisons between treatments (see
Sect. 4.1.3.1).

In the cases of networks of experiments with a randomized complete block

design, Eq. (4.8) thus becomes: Vmean ¼ ∑J
j¼1

MSE j
K j

J , where MSEj and Kj are the
estimated residual variance and the number of blocks in experiment j, respectively.
For the “wheat” example presented in Chap. 3, the estimated residual variances are
7.095, 5.658, 4.758, 7.273, and 5.733 for experiments 1 to 5, respectively. For a
constant number of three blocks per experiment we therefore obtain:
Vmean ¼ 7:095þ5:658þ4:758þ7:273þ5:733ð Þ=3

5 ¼ 2:0345. This value is identical to that
obtained in Sect. 4.1.3.1. The estimated residual variance of the model for mean
data, σ̂2

ε� , is 8.5606 (Fig. 4.1). The estimated variance of the treatment � experiment
interaction is, therefore, 8.5606–2.0345 ¼ 6.5261. This value is identical to that
obtained in the analysis of individual data (Fig. 3.1).

For a network of experiments with a randomized complete block design and
identical numbers of blocks in each experiment, the Eqs. (4.7, 4.8 and 4.9) yield an
estimate of the variance of the treatment � experiment interaction identical to that
obtained in a one-step analysis of individual data with model (3.1). This is a
particular case and, generally, the values obtained with Eqs. (4.7, 4.8 and 4.9) are
approximations of the value obtained in a one-step analysis of individual data.

4.1.6 R Script

We present here a script for the analysis of an experimental network in two steps.
The script presented concerns only the second step of this analysis, the analysis of
mean data. Most of this script is identical to that presented in Chap. 3 for the analysis
of individual data. The only differences concern the rubrics relating to model
adjustment and calculation of the variance of the treatment� experiment interaction.
The outputs of this script are described in detail in Chaps. 3 and 4 and are therefore
not reported here.
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# R version 3.4.3
# loading of the packages
library(lme4) # version 1.1-14
library(emmeans) # version 1.0
library(car) # version 2.1-6
library(outliers) # Version: 0.14

# adjustment of the model
res.lmer <- lmer(rendement ~ variete + (1|experimentation),

data=DFmoy, na.action=na.exclude)
res.lmer

# validation of the model
plot(fitted(res.lmer),residuals(res.lmer), abline(h=0))
hist(residuals(res.lmer))

DFmoy$residus <- residuals(res.lmer)
grubbs.test(DFmoy$residus)
DFmoy[which.max(DFmoy$residus),]

# ANOVA table
Anova(res.lmer, test.statistic="F")

# Adjusted means
moy_var <- lsmeans(res.lmer, ~variete)
moy_var

# Pairwise comparisons
pairs(moy_var, adjust="tukey")
cld(moy_var, Letters=c(LETTERS))

# Comparisons with the general mean
contrast(moy_var, method="eff", adjust="sidak")
confint(contrast(moy_var, method="eff", adjust="sidak"))

# Comparison with a control
contrast(moy_var, method="trt.vs.ctrl", ref=2)
confint(contrast(moy_var, method="trt.vs.ctrl", ref=2))

# Random effects
ranef(res.lmer)

# Variance of the means and variance of the interaction
Vmoy <- 0.5*mean(VMCj) # VMCj = VMC vector per experiment
Vmoy

var_intera <- summary(res.lmer)$sigma^2 – Vmoy
var_intera
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4.2 Experiments with Heterogeneous Variances

4.2.1 Introduction

The model (4.1) used to analyze mean data considers the means of all experiments to
have the same precision. Indeed, in the two-step analysis, one of the assumptions of
model (4.1) is that the residuals of the model have the same variance. The residuals
of this model are the sum of an effect of the interaction between treatment i and
experiment j and the estimation error on the mean of treatment i in experiment j due
to experimental errors. If we assume that the effects of the treatment � experimenta-
tion interaction are independent of the estimation errors on the means, this implies
that we also assume that the variance of the errors of estimation on the means is
constant.

In a network of experiments with a randomized complete block design, the
treatment means estimated in each experiment have the same precision between
experiments if the variance of the experimental errors on individual data σ2ε is
identical for all experiments and if the number of blocks K is also identical in all
experiments (actually, for the variance of the means to remain constant, all that is

required is that σ
2
ε
K remains constant).

The assumption that the variance of the estimation errors on mean data is identical
for all the experiments in a network is not always realistic. Indeed, we can envisage
situations in which the variance of the experimental errors on individual data σ2ε
varies between experiments. For example, a field experiment in a deep soil might be
expected to yield more precise results than an experiment in a superficial soil, which
would probably be more heterogeneous. In networks of experiments with a random-
ized complete block design, the number of blocks may also differ between experi-
ments. Model (4.1) assumes that the means of all experiments have the same
precision. This model thus accords equal weightings to all experiments. If one
experiment is less precise than the others, or includes a smaller number of replicates,
it should have a lower weighting than the other experiments in the calculation of
treatment means. In this section, we consider the analysis of an experimental
network based on mean data for which precision varies between experiments.

If, in a network of experiments with a randomized complete block design, the
number of blocks K varies between experiments but the variance of the experimental
errors on individual data σ2ε is approximately constant, then model (3.1) can be used
for the analysis of individual data. Indeed, differences in the number of blocks
between experiments pose no problem in the analysis of individual data with the
mixed model (3.1), because the effect of “block”, and thus of the number of blocks
per experiment, is taken into account explicitly in the model.
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4.2.2 Example “Wheat”

We will now come back to the “wheat” example presented in Chap. 3, for which we
will perform a two-step analysis, by considering the variance of the means known in
the second step.

4.2.2.1 Analysis of the “Wheat” Example, with Uniform Variances
Between Experiments

For comparison of the results with those obtained in Chap. 3, we will first consider
the variances of the means to be identical between experiments.

The variance of the means can be obtained with the following formula, initially

presented in Sect. 4.1.5.3: Vmean ¼ ∑J
j¼1

MSE j
K j

J . In the “wheat” example from chapter
three, the estimated residual variances are 7.095, 5.658, 4.758, 7.273, 5.733 for
experiments 1 to 5, respectively. For a constant number of three blocks per exper-
iment, we therefore obtain: Vmean ¼ 7:095þ5:658þ4:758þ7:273þ5:733ð Þ=3

5 ¼ 2:03447.

R Script and Annotated Analysis

# R version 3.4.3
# loading of the packages
library(metafor) # Version : 2.0-0

The metafor library can be used to adjust a mixed model for mean data by
assuming a known variance-covariance matrix for the residuals of the model, i.e., for
an experimental network, the variance-covariance matrix of the treatment means by
experiment.

V1 <- diag(2.03447, nrow(DFmoy))

V1 is the variance-covariance matrix of the means. Here, we consider V1 to be a
scalar matrix such that V1 ¼ 2.03447 I, where I is an identity matrix with a
dimension equal to the number of means analyzed during the second step of the
two-step analysis. For the “wheat” example, this number is 50.

res_metafor <- rma.mv(rendement ~ -1 + variete, V1, random=list(~
1|experimentation, ~ 1|variete:experimentation),rho=0,
data=DFmoy)
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The rma.mv function can be used to adjust the mixed model. The first argument
of the function describes the fixed part of the model. The “�1” eliminates the
intercept of the model such that when there is a single fixed factor, as in this case,
the estimates of the effects of each level of the factor correspond to the means for
these levels. The second argument specifies the variance-covariance matrix of the
means. The argument random describes the random part of the model. This random
part of the model differs from model (4.1) in that it includes the variety� experiment
interaction. It is possible to estimate the variance of the variety � treatment interac-
tion directly because the variance-covariance matrix of the means is assumed to be
known.

res_metafor$sigma2

The object res_metafor contains the results of the adjustment of the mixed
model. The command res_metafor$sigma2 can be used to recover the
between-experiment variance, 79.0165. This value is identical to that in Fig. 4.1
obtained with model (4.1). This variance includes the between-experiment and
between-block variances.

res_metafor$tau2

The command res_metafor$tau2 can be used to recover the variance of the
variety x experiment interaction, 6.5261. This value is identical to that in Fig. 3.1
obtained with model (3.1).

res_metafor$b

The command res_metafor$b can be used to recover the fixed effects. In our
case, the fixed effects correspond to the variety means, which are shown in Fig. 4.3.
These means are identical to those shown in Fig. 3.17 obtained with model (3.1).

# contrast
var1 <- c(1,0,0,0,0,0,0,0,0,0)
var10 <- c(0,1,0,0,0,0,0,0,0,0)
var1moinsvar10 <- var1 - var10
covb <- vcov(res_metafor)
theta <- res_metafor$b
estimate <- var1moinsvar10%*%theta
stderr.est <- sqrt(t(var1moinsvar10)%*%covb%*%var1moinsvar10)
estimate
stderr.est
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Comparisons between particular varieties can be performed with the commands
shown in the example above for the comparison of varieties V1 and V10. The
estimated difference between these two varieties is 2.383233 and the standard
error of this estimate is 1.85047. These values are identical to those in Fig. 4.1
obtained with model (4.1).

4.2.2.2 Analysis of the “Wheat” Example with Heterogeneous Variances
Between Experiments

We will now consider the variances of the means to be different between experi-
ments. These variances are calculated with Eqn. (4.7): Vmeanj ¼ 0.5 VMCj. For a
network of experiments with a randomized complete block design, VMC j ¼ 2MSE j

K j
,

where MSEj and Kj are the estimated residual variance and the number of blocks in
experiment j, respectively. In the “wheat” example from Chap. 3, the estimated
residual variances are 7.095, 5.658, 4.758, 7.273, and 5.733 for experiments 1 to
5, respectively. Thus, for a constant number of three blocks per experiment, we
obtain the following variances for experiments 1 to 5, respectively: 2.365, 1.886,
1.586, 2.424, 1.911.

R Script and Annotated Analysis

# R version 3.4.3
# loading of packages

(continued)

V1  78.99116

V10 76.60792

V2  75.39573

V3  81.25488

V4  83.22452

V5  81.37412

V6  80.27567

V7  81.74397

V8  84.20846

varieteV9  79.98016

Fig. 4.3 Variety means
obtained with homogeneous
variances for mean data
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library(metafor) # Version : 2.0-0
Vmoyj <- c(2.365, 1.886, 1.586, 2.424, 1.911)
V2 <- diag(rep(Vmoyj, each=10)) # 10 = number of treatments

V2 is the variance-covariance matrix of the means. Here, we consider V2 to be a
diagonal matrix with a dimension equal to the number of means analyzed during the
second step of the two-step analysis. For the “wheat” example, this number is 50.
The values of this diagonal matrix are given by the vector Vmoyj, based on the
estimated variances of the means in each experiment.

res_metafor2 <- rma.mv(rendement ~ -1 + variete, V2, random=list(~
1|experimentation, ~ 1|variete:experimentation), rho=0,
data=DFmoy)

The function rma.mv can be used to adjust the mixed model.

res_metafor2$b

The command res_metafor2$b can be used to recover the fixed effects,
which, in this example, correspond to the variety means. Figure 4.4 shows these
means and Fig. 4.5 compares them with the means obtained with the model
assuming the variance of the mean data to be identical between experiments. For
this example, there is little difference between the two sets of means. The use of
heterogeneous variances does not modify the conclusions of the analysis.

4.2.3 Going Further. . .

4.2.3.1 Variance-Covariance Matrix for Treatment Means

Generally, in experimental networks, the variance-covariance matrix V for the
treatment means analyzed in the second step of a two-step analysis is a block
diagonal matrix (Möhring and Piepho 2009). The diagonal of this matrix consists
of as many blocks as there are experiments in the network, each block being the
variance-covariance matrix of the treatment means for the corresponding experi-
ment. Outside of the diagonal are zeros, the experimental errors of the different
experiments being considered independent. Different variance-covariance matrices
for mean data can be envisaged for the second step in two-step analyses of mean
data. We present here three variance-covariance models, but others could be used
(Möhring and Piepho 2009).
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Rus:j Matrix

The most general form for the variance-covariance matrix for mean data is a block
diagonal matrix V ¼ Rus. j, in which each block is an Rus matrix in which Rus is any
type of variance-covariance matrix. An example of this type of variance-covariance
matrix is shown in Fig. 4.6 for a network of four experiments with three treatments.

Variance-covariance matrices of this type are suitable, in particular, for experi-
mental networks in which the individual experiments are analyzed with a spatial

V1  79.05309

V10 76.60438

V2  75.45154

V3  81.23428

V4  83.23115

V5  81.35333

V6  80.29065

V7  81.84678

V8  84.13694

V9  79.85983

Fig. 4.4 Variety means
obtained with
heterogeneous variances for
mean data

Fig. 4.5 Comparison of the
variety means estimated
with a model assuming
homogeneous variances and
those obtained with a model
assuming heterogeneous
variances between
experiments. Each point
corresponds to a variety and
the straight line corresponds
to the first bisector

74 4 Advanced Methods for Network Analysis



analysis model or a covariance analysis model (Gilmour 2000; Kempton and Fox
1997). Indeed, in these situations, the analysis of individual experiments results in
estimators of treatment means that are not necessarily independent or have the same
variance.

Rid:j Matrix

A second type of variance-covariance matrix is the block diagonal matrix Rid. j, in
which each block is an Rj ¼ 0.5 VMCj I matrix, where I is an identity matrix with a
dimension equal to the number of treatments, and VMCj is the mean variance of
pairwise comparisons of treatments in experiment j. An example of this type of
variance-covariance matrix is shown in Fig. 4.7, for a network of four experiments
with three treatments.

V= 

Fig. 4.6 Example of a block diagonal variance-covariance matrix Rus. j. The rectangles correspond
to the different experiments

Fig. 4.7 Example of a
block diagonal variance-
covariance matrix Rid.j. The
rectangles correspond to
different experiments
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An Rid. j matrix is suitable for networks of experiments with a randomized
complete block design analyzed with model (4.2), for which the experimental
error on individual data and/or the number of blocks differs between experiments.
In this situation, this type of variance-covariance matrix provides an exact calcula-
tion of comparisons between treatments (Möhring and Piepho 2009). This is the
variance-covariance matrix used in Sect. 4.2.2.2 for analysis of the “wheat” example.

Rid Matrix

The third example of a variance-covariance matrix is that of the Rid matrix, in
which Rid ¼ 0:5 VMC j I, I is an identity matrix with a dimension equal to the
number of treatments multiplied by the number of experiments, and VMC j is the
mean for all experiments of the mean variances of pairwise comparisons of treat-
ments for each experiment j. An example of this type of variance-covariance matrix
is shown in Fig. 4.8 for a network of four experiments with three treatments.

This type of matrix is the type assumed in model (4.1), in which the variance of
the experimental error associated with the mean data is assumed to be the same in all
the experiments of the network. This type of model is suitable for networks of
experiments with a randomized complete block design analyzed with model (4.2),
for which the variance of the experimental errors on individual data σ2ε and the
number of blocks K are the same in all experiments. In this situation, this type of
variance-covariance matrix provides an exact calculation of comparisons between
treatments. This is the type of variance-covariance matrix used in Sect. 4.2.2.1 for
the analysis of the “wheat” example.

4.2.3.2 Choice of a Variance-Covariance Matrix for Treatment Means

The mixed model can take into account the variance-covariance matrix of treatment
means in the two-step analysis of mean data.

The choice of a variance-covariance matrix for the means analyzed in the second
step of the analysis of an experimental network depends on the experimental design
and the method of analysis used to analyze the results of individual experiments.

Fig. 4.8 Example of a
block diagonal variance-
covariance matrix Rid. The
rectangles correspond to
different experiments
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However, in situations in which the variance-covariance matrix used for the
means should, in theory, be an Rus. jmatrix, the two-step analysis of the experimental
network is not much simpler than a single-step analysis, and a simpler variance-
covariance matrix, such as an Rid. j or Rid matrix, is frequently used to facilitate
calculations. For further information on this subject, see Möhring and Piepho (2009).

4.2.3.3 Variance-Covariance Matrix for Random Effects

Different types of variance-covariance matrix can be considered for random effects
other than residual errors: “environment” effects, and effects of “environment x
studied factor” interaction. For example, certain authors have suggested that varietal
experimental networks should be analyzed with a model considering the variance of
the variety � experiment interaction to be non-constant and a function of covariates
(Frensham et al. 1997).

4.3 Missing Data

Experimental networks are often incomplete, with some treatments absent from
some experiments. For example, in an evaluation of wheat varieties performed
over several years, the varieties tested may differ from year to year, because new
varieties emerge each year. This situation results in an incomplete data table with a
certain number of missing data. In this case, comparisons of the treatments studied
are more complicated. Indeed, when two treatments are tested in the same experi-
ment, their effects can be compared directly. By contrast, the comparison of two
treatments present in different experiments is indirect, requiring the comparison of
each treatment with other treatments present in both experiments. In practice, the
comparison of two treatments may consist of a combination of direct and indirect
comparisons. The analysis of a table of incomplete data involves the calculation of
adjusted means. However, before analyzing such data, it is important to consider the
reasons for the absence of certain data.

4.3.1 Origin of Missing Data

Missing data may follow any of the following three patterns:

• MCAR (missing completely at random): the missing data are completely inde-
pendent of observed or missing values. The missing data can thus be considered a
random sample of the entire set of data.
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• MAR (missing at random): the missing data are a function of the observed values
but not of the missing values. Conditional on the observed values, the missing
data are random.

• MNAR (missing not at random): the missing data are a function of the missing
values. The values of the non-observed data are the cause of the missing data.

These different situations can be illustrated with the example of a network of
experiments evaluating wheat varieties.

• For MCAR, a list of n varieties is tested at p different sites. Purely by chance, the
seeds of one or several varieties are not delivered to certain sites in time for the
experiment. The resulting missing data are MCAR because we can assume that
the missing data are independent of variety and site.

• For MAR, let us consider the case of a network running over several years. Each
year, the 50% of varieties giving the best results are maintained for testing in the
next year. The other varieties are replaced by new varieties. The worst varieties
are rapidly excluded from the network, whereas the best varieties are tested over
longer periods to confirm the good results obtained in the first few years. The
missing data may be considered MAR, because they are functions of the observed
values but not of the (non-observed) missing values.

• For MNAR, we can consider a situation in which varieties are tested at p sites
throughout France. Some varieties are tested at all sites, some only in the north
and others only in the south. The varieties tested only in the north are late-
flowering varieties, because it is known that such varieties generally perform
less well in the south. By contrast, the varieties tested only in the south are earlier
varieties, because such varieties are known to perform less well in the north. The
varieties tested throughout the country generally behave well in all regions. The
missing data are thus MNAR because they are a function of the (non-observed)
missing values.

Experimental network data are classically analyzed with a mixed model, the param-
eters of which are generally estimated by the restricted maximum likelihood (REML)
method (Pinheiro and Bates 2000). It has been shown that inferences based on the
REML method are valid for missing data of the MCAR and MAR types (Piepho and
Möhring 2006). Missing data of theMNAR type are more difficult to handle, because, in
this case, the missing data are considered to be informative. The analysis thus requires a
particular approach involving the modeling of the origin of the missing data.

4.3.2 Adjusted Means

In incomplete networks, treatments cannot be compared on the basis of the observed
means. Indeed, as not all the treatments are observed in the same experiments, the
observed differences between treatments may be confounded with the differences
between experiments. Treatment comparisons therefore require the adjustment of
treatment means for the effects of the experiments in which they were observed.
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The calculation of adjusted means is illustrated below with a simple example
including five treatments and three experiments, for which treatment means are
available for each experiment. The data for this example are provided in Table 4.2.

The data are represented in a symbolic manner by yij, where y is the observed
value, the index i corresponds to the treatment and the index j corresponds to the
experiment. The symbolic representation of the data for the example studied here is
shown in Table 4.3.

For complete experimental networks, the analysis of mean data leads to estimates
of treatment means and of variances of comparisons between treatments identical
with a fixed-effects or mixed models (see Sect. 4.1.4). By contrast, the same cannot
be said for incomplete experimental networks. In an incomplete experimental
network, adjusted means are calculated differently for fixed-effects models and for
mixed models, which assume the “experiment” effect to be random, and the variance
of treatment comparisons is also generally different. The estimation of treatment
means by mixed models is generally more precise than that achieved with fixed-
effects models, because the mixed model allows the extraction of more information
about the data than a fixed-effects model.

Experimental networks are generally analyzed with mixed models, but, for
pedagogic reasons, we will first describe the calculation of adjusted means for a
fixed-effects model.

4.3.2.1 Fixed-Effects Model

The calculation of adjusted means is based on model (4.6), which can be written as
follows, omitting the “*” for the sake of clarity:

yij ¼ μþ ti þ e j þ εij

Table 4.2 Example of an
incomplete data table

e1 e2 e3

t1 72 86 85

t2 79 87 86

t3 82 90

t4 80 85

t5 76 82

Table 4.3 Symbolic
representation of the data for
the example

e1 e2 e3

t1 y11 y12 y13
t2 y21 y22 y23
t3 y31 y33
t4 y42 y43
t5 y51 y52
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where yij is the mean value of the quantity of interest for treatment i (i ¼ 1,. . .,5) in
experiment j ( j ¼ 1,. . .,3) and μ, ti, ej, and εij are the general mean, the effect of
treatment i, the effect of experiment j and the residual associated with yij,
respectively.

The ti and ej effects are fixed and only the residual εij is random. The residual εij is
assumed to follow a normal distribution with a mean of zero and a variance of σ2ε .
The residuals are also assumed to be independent.

The parameters of the model are estimated by the ordinary least squares method,
which consists of using as estimates for unknown parameters the values that
minimize the residuals sum of square. The adjusted means are then calculated with
the model. For example, the theoretical mean of treatment t3, μ3, is defined as:

μ3 ¼
μþ t3 þ e1ð Þ þ μþ t3 þ e2ð Þ þ μþ t3 þ e3ð Þ

3

In the case of the example given here, by introducing the estimated values of the
parameters into the equation, we obtain:

μ̂3 ¼
82:5þ 4:71� 6ð Þ þ 82:5þ 4:71þ 2:43ð Þ þ 82:5þ 4:71þ 3:57ð Þ

3
¼ 87:2

Note that the calculation of the adjusted mean for treatment t3 involves estimating
the value for this treatment in all the experiments and then calculating the arithmetic
mean of these estimates. The adjusted mean for treatment t3 is, thus, the mean value
for this treatment “as if” it had been observed in all the experiments.

The adjusted means of the five treatments, obtained as shown above, are
presented in Table 4.4.

We can check that, for treatments t1 and t2, which were observed in all the
experiments, the adjusted means are identical to the unadjusted crude means.

Treatment Comparisons
When we wish to compare two treatments, which is the principal objective of most
experimental networks, the estimation of the difference between the two treatments

Table 4.4 Adjusted means Treatment Adjusted mean

t1 81.00

t2 84.00

t3 87.21

t4 79.50

t5 80.79
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combines a direct and an indirect comparison. For example, for treatments t3 and t4,
it is possible to estimate the difference between the two treatments on the basis of a
direct comparison in experiment e3:

δdirect ¼ y33 � y43

By replacing the data by their expression in the model, we obtain:

δdirect ¼ μþ t3 þ e3 þ ε33 � μ� t4 � e3 � ε43
¼ t3 � t4 þ ε33 � ε43

This comparison involves no confounding with an experiment effect, and its
variance is 2 σ2ε .

It is also possible to compare t3 and t4 indirectly, by comparing the difference
between t3 and t2 in experiment e1 with the difference between t4 and t2 in experi-
ment e2:

δ1indirect ¼ y31 � y21ð Þ � y42 � y22ð Þ

Replacing the data with their expression in the model, we obtain:

δ1indirect ¼ μþ t3 þ e1 þ ε31 � μ� t2 � e1 � ε21
�μ� t4 � e2 � ε42 þ μþ t2 þ e2 þ ε22

¼ t3 � t4 þ ε31 � ε21 � ε42 þ ε22

In this case too, there is no confounding with an experiment effect. However,
other indirect comparisons are also possible, such as comparing the difference
between t3 and t1 in experiment e1 with the difference between t4 and t1 in experi-
ment e2, or the difference between t3 and t5 in experiment e1 with the difference
between t4 and t5 in experiment e2. It is also possible to perform a single indirect
comparison relative to the mean of treatments t1, t2 and t5:

δindirect ¼ y31 �
y11 þ y21 þ y51

3

� �
� y42 �

y12 þ y22 þ y52
3

� �

By replacing the data with their expression in the model, we obtain:

δindirect ¼ t3 � t4 þ ε31 � ε42 � ε11 þ ε21 þ ε51
3

þ ε12 þ ε22 þ ε52
3

Again, this comparison is not confounded with an experiment effect. The vari-
ance of the estimator δindirect is 2 σ2ε þ 6

9 σ2ε ¼ 24
9 σ2ε .
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It is possible to combine the direct and indirect comparisons in a single estimator,
known as the intra-estimator because it is based exclusively on intra-experiment
comparisons:

δintra ¼ θ1 y33 � y43ð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Direct comparison

þθ2 y31 � y42 �
y11 þ y21 þ y51

3
þ y12 þ y22 þ y52

3

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Indirect comparison

δintra is a linear combination of observations. It is therefore straightforward to
calculate its variance from the model. We then look for the values of θ1 and
θ2minimizing the variance of δintra, with the constraint θ1 + θ2 ¼ 1 as a condition
of non-bias. We are now dealing with a problem of optimization under constraint,
which can be resolved by the method of Lagrange multipliers. For this example, we
obtain values for θ1 and θ2 of 0.5714 and 0.4286, respectively. By inserting the
corresponding numerical values into the expression above, we obtain a value of 7.71
for δintra, corresponding to the difference between the adjusted means of treatments
3 and 4 presented in Table 4.2.

The notion of indirect comparisons is, thus, equivalent to the notion of adjusted
means obtained by the ordinary least squares method (Kempton and Fox 1997).

The statistical model used for the analysis can be used to calculate varδintra , the
variance of the estimator δintra. In the example given, the variance of the difference
between t3 and t4 is: varδintra ¼ 7:13.

4.3.2.2 Mixed Model

This time, the calculation of adjusted means is based on the mixed model (4.1),
which can be expressed as follows, omitting the “*” for the sake of clarity:

yij ¼ μþ ti þ E j þ εij

where yij is the mean value for the quantity of interest for treatment i (i ¼ 1,. . .,5) in
experiment j ( j ¼ 1,. . .,3) and μ, ti, Ej, and εij are the general mean, the effect of
treatment i, the effect of treatment j and the residual associated with yij, respectively.

The observed experiments are assumed to represent a random sample of the
population of possible experiments. This implies that the effect Ej is considered to
be random.

The random effects Ej and εij are assumed to follow a normal distribution with a
mean of zero and a variance of σ2E and σ2ε , respectively. In addition, the different
random effects are assumed to be independent of each other.

The parameters of the model are estimated by the REML method. The adjusted
means are then calculated from the model, as for the fixed-effects model.

82 4 Advanced Methods for Network Analysis



Comparisons Between Treatments
The comparison between two treatments is based on an intra-estimator combining
direct and indirect comparisons, as for the fixed-effects model. However, in addition
to this intra-estimator, the mixed model also makes use of an inter-estimator based
on the difference between the sum of the values for variable y in the experiments in
which we observe the compared treatments. These totals contain information about
the difference between treatments that can be recovered during analysis with a mixed
model.

For example, for treatments t3 an t4, the inter-estimator is given by:

δinter ¼ y11 þ y21 þ y31 þ y51ð Þ � y12 þ y22 þ y42 þ y52ð Þ,

Expressed in the model as:

δinter
¼ μþ t1 þ E1 þ ε11 þ μþ t2 þ E1 þ ε21 þ μþ t3 þ E1 þ ε31 þ μþ t5 þ E1 þ ε51ð Þ
� μþ t1 þ E2 þ ε12 þ μþ t2 þ E2 þ ε22 þ μþ t4 þ E2 þ ε42 þ μþ t5 þ E2 þ ε52ð Þ
¼ t3 � t4 þ 4E1 þ ε11 þ ε21 þ ε31 þ ε51ð Þ � 4E2 þ ε12 þ ε22 þ ε42 þ ε52ð Þ

This comparison includes experiment effects but, in the framework of a mixed
model, these effects are considered random and contribute to the variance of the
estimator. The variance of δinter is varδinter ¼ 32 σ2E þ 8 σ2ε . For the example given,
we obtain: varδinter ¼ 32 � 25:54þ 8 � 6:25 ¼ 867:28.

We can combine the intra- and inter-estimators to obtain a estimator of minimum
variance. This estimator, known as δcombin, is the mean of the estimators δintra and
δinter weighted according to their respective precisions (Kempton and Fox 1997):

δcombin ¼ γ1δintra þ γ2δinter

with γ1 ¼
1=varδintra

1
varδintra

þ 1
varδinter

and γ2 ¼
1=varδinter

1
varδintra

þ 1
varδinter:

For the example given, we obtain: γ1 ¼ 1=7:13
1

7:13þ 1
867:3

¼ 0:9918 and

γ2 ¼ 1=867:3
1

7:13þ 1
867:3

¼ 0:0082.

Thus, for this example, most of the information is provided by the intra
comparison.

From the statistical model used for the analysis, it is also possible to calculate the
precision of the combined estimator. For the example given, the variance of the
difference between t3 and t4 estimated with the mixed model is varδcombin ¼ 7:08.

The estimate obtained with the mixed model is, thus, slightly more precise than
that obtained with the fixed-effects model in this case.

Estimation of the difference between two treatments has been presented as two
different operations, with intra-environment information taken into account through
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the δintra estimator, and inter-environment information taken into account through
the δinter estimator. The two sources of information are then combined. In practice,
the effects of treatment are estimated in a single procedure, by the REML method.

If the number of experiments is sufficiently high (at least 5–10), the use of mixed
models is recommended for the calculation of adjusted means, which are generally
more precise when obtained with mixed models than when obtained with fixed-
effects models.

4.4 The Factors “Site” and “Year”

4.4.1 Objective

In a network running over several years, experiments performed in the same year
have a common characteristic that is the year effect. In a variety evaluation network,
relatively dry years, in which the crops suffer from a strong water deficit, tend to
result in yields below the general mean value, for all the experiments performed in
the year concerned.

Similarly, in multisite networks, all the experiments performed at the same site
have a common characteristic that is the site effect.

In a multisite network running over several years analyzed with model (4.1), the
interenvironment variability is described by the “experiment” factor alone, and the
effects of the different experiments are considered to be independent. However, this
hypothesis of independence is not always realistic, because the effects of experi-
ments performed in the same year or at the same site tend to be more similar than the
effects of experiments performed in different years or at different sites.

In this section, we present the analysis of a multisite network run over several
years, using a model taking site and year effects into account. This model is an
extension of model 4.1. We consider only the analysis of treatment means by
experiment, i.e. step 2 in a two-step analysis.

4.4.2 The “Wheat_Multi” Example

Each year, about 30 new winter wheat varieties are registered in France. Arvalis-
Institut du Végétal is responsible for evaluating the agronomic and technological
value of these varieties in field experiments, with a view to making
recommendations.

Each variety is generally tested in 2 years, but the varieties with the worst
performance may be tested in only 1 year, and those with the best performance
may be tested in more than 2 years. Certain control varieties are also followed over a
longer period. The varieties are observed for only a limited number of years, to
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provide an opportunity to evaluate the newly registered varieties experimentally. In
experiments of this type, no individual experiment includes all the varieties tested.

The dataset corresponds to the results for 80 varieties in 113 experiments. These
experiments were performed over a period of 6 years, at 54 different sites. Over the
period covered by the dataset, there were, therefore, on average, about two exper-
iments per site, and just under 20 experiments per year.

For each variety in each experiment, the data table shows the adjusted mean for
the variety obtained by analysis of the data of that experiment. The data table also
shows the name of the variety, the name of the experiment, the name of the site, the
year and the variance of the mean data for each experiment, calculated with Eq. (4.7).

The total number of observations is 1942. If all the varieties had been present in
all the experiments, the dataset would have included 80*113 ¼ 9040 observations.
The proportion of cells filled in the dataset is thus 1942/9040 ¼ 0.21. Table 4.5
shows the first few lines of the dataset.

The missing data in this dataset are missing at random (MAR) because the
missing data depend on the observed data and not on the (non-observed) missing
data. The analysis of these data with a mixed model is therefore valid (Piepho and
Möhring 2006).

4.4.3 Model for the Analysis of Mean Data

The factors “year” and “site” are crossed factors and variability between experiments
is described as the sum of the effects of year, site and the interaction between year
and site (Dagnelie 1998).

In model (4.1), the effects of the variety � experiment interaction are completely
confounded with the experimental errors. In the model breaking down the effect of
an experiment in terms of year and site, it is also possible to break down the effect of
the variety � experiment interaction into the sum of the variety � year interaction,
the variety� site interaction and a variety� year� site interaction. In this case, only
the variety � year � site interaction is confounded with the experimental error.

This model can, thus, be used to describe some of the variability between
experiments, and the variety � experiment interaction, using the factors “year”
and “site”.

Table 4.5 Excerpt from the data set for the “wheat_pluri” example

Yield Variety Experiment Site Year Vmoyj

87.8 V4 OBERNAI_2005 OBERNAI 2005 5.14

99.3 V8 OBERNAI_2005 OBERNAI 2005 5.14

94.6 V13 OBERNAI_2005 OBERNAI 2005 5.14

93.1 V17 OBERNAI_2005 OBERNAI 2005 5.14

90.2 V19 OBERNAI_2005 OBERNAI 2005 5.14

. . . . . . . . . . . . . . . . . .
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The model used for data analysis is as follows:

yirs ¼ μþ ti þ Ar þ Ls þ ALrs þ tAir þ tLis þ ε�irs ð4:10Þ

where yirs is the mean value for treatment i (i¼ 1,. . .,I ), in year r (r¼ 1,. . .,R) at site
s (s¼ 1,. . .,S) and μ, ti, Ar, Ls, ALrs, tAir, tLis, and ε�irs are the general mean, the effect
of treatment i, the effect of year r, the effect of site s, the effect of the interaction
between year r and site s, the effect of the interaction between treatment i and year r,
the effect of the interaction between treatment i and site s and the residual associated
with yirs, respectively. This residual includes both the experimental error and a
treatment � year � site interaction effect.

The observed sites are assumed to be a random sample of a population of possible
sites. The years are assumed to be a random sample of the population of possible
years, although, in practice, the years are generally successive and, thus, never really
chosen at random. Nevertheless, in practice, it is usually assumed that the effect of
year is random. If we consider the effects of “year” and “site” to be random, this
implies that all the interactions involving these factors are also random.

The effects Ar, Ls, ALrs, tAir, tLis and εirs are considered to be random and
assumed to follow a normal distribution with a mean of zero and a variance of, σ2A,
σ2L, σ

2
AL, σ

2
tA, σ

2
tL and σ2ε� , respectively. Furthermore, the various random effects are

assumed to be independent of each other.

4.4.4 Estimation of the Variance
of the Treatment � Year � Site Interaction

The residual ε�irs encompasses both the experimental error associated with the mean
yirs and the effect of the treatment � year � site interaction. We can obtain an
estimate of the variance of the treatment � year � site interaction by calculating the
difference between the variance of the residuals ε�irs and the variance of the estimation
errors of the mean data:

σ̂2
tAL ¼ σ̂2

ε� � Vmean

where σ̂2
ε� is the estimated residual variance of model (4.10) and Vmean is calculated

with Eq. (4.8).
Generally, the value for the variance of the treatment � year � site interaction

obtained by difference, as described above, is an approximation and will be different
from the estimate obtained in a single-step analysis of individual data.
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4.4.5 Variance of the Difference Between Two Treatments

For model (4.10), the variance of the difference between two treatment means is
given by the following formula:

Var
�
μ̂i � μ̂i0

� ¼ 2
σ2tL
S

þ σ2tA
R

þ σ2ε�
SR

� �

In the case of a network of experiments with a randomized complete block design
and the same number of blocks in each experiment, we have:

σ2ε� ¼ σ2tAL þ
σ2ε
K

where σ2tAL is the variance of the treatment� year� site interaction,σ2ε is the variance
of the experimental errors for the individual data and K is the number of blocks per
experiment (σ2ε and K are assumed to be identical in all experiments). The variance of
the difference between two treatment means is thus given by the following equation
(Kempthorne 1960):

Var
�
μ̂i � μ̂i0

� ¼ 2
σ2tL
S

þ σ2tA
R

þ σ2tAL
SR

þ σ2ε
SRK

� �
ð4:11Þ

Equation (4.11) will be used in Chap. 5 for the dimensioning of a multisite
network of experiments run over several years.

4.4.6 Analysis of the “Wheat_Multi” Example, with R Script

The R script used to analyze the “wheat_multi” example is very similar to that used
to analyze the “wheat” example in Chap. 3. For this reason, we present the entire
script for the analysis of the “wheat_multi” example, but we do not comment on the
parts of the script common to the two examples, or on outputs equivalent to those for
the “wheat” example.

# R version 3.4.3
# loading of the packages
library(lme4) # version 1.1-14
library(emmeans) # version 1.0
library(car) # version 2.1-6
library(outliers) # Version: 0.14
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# adjustment of the model

res.lmer <- lmer(rendement ~ variete + (1|annee) + (1|lieu) +

(1|annee:lieu) + (1|variete:annee) + (1|variete:lieu),
data=DFmoy,

na.action=na.exclude)
res.lmer

The result of the adjustment of the model is presented in Fig. 4.9. This adjustment
includes an estimation of the standard deviation of the different random effects and
an estimation of the fixed effects, only some of which are shown in this figure.

# Validation of the model
plot(fitted(res.lmer),residuals(res.lmer), abline(h=0))
hist(residuals(res.lmer))

Linear mixed model fit by REML ['lmerMod']

Formula: yield ~ variety + (1 | year) + (1 | site) + (1 | year:site) +  

(1 | variety:year) + (1 | variety:site)

Data: DF

REML criterion at convergence: 11468.3

Random effects:

Groups   Name        Std.Dev.

variety:site (Intercept) 1.888

variety:year (Intercept) 1.517

year:site (Intercept) 8.756

site (Intercept)  8.180

year (Intercept)  4.208

Residual                  3.802

Number of obs: 1942, groups:  

variety:site, 1410; variety:year, 184; year:site, 113; site, 54; year, 6

Fixed Effects:

(Intercept)   V10   V11   V12   V13   V14  

94.13293      0.72601      1.35587      2.02108      2.38906     -4.06531  

Fig. 4.9 Information about the mixed model
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Figure 4.10 provides a graphical representation of the model residuals. These
graphs reveal the presence of one or several suspect data points worthy of further
investigation to check that there is no error affecting the value of these data.

DFmoy$residus <- residuals(res.lmer)
grubbs.test(DFmoy$residus)
DFmoy[which.min(DFmoy$residus),]

Grubbs’ test, the results of which are shown in Fig. 4.11, revealed the presence of
a suspect residual, and Fig. 4.12 shows the observation corresponding to the residual
with the lowest value.

par(mfrow=c(2,2))
hist(ranef(res.lmer)$lieu[,"(Intercept)"])
hist(ranef(res.lmer)$`annee:lieu`[,"(Intercept)"])
hist(ranef(res.lmer)$`variete:annee`[,"(Intercept)"])
hist(ranef(res.lmer)$`variete:lieu`[,"(Intercept)"])
par(mfrow=c(1,1))

The lines of code above are new relative to the script for the analysis of the
“wheat” example. They can be used to display histograms of the random effects of
“site” and of the year � site, variety � year and variety � site interactions. These
effects are centered on zero and are assumed to follow a normal distribution. The
number of effects is sufficient, in the “wheat_multi” example, for the graphs shown
in Fig. 4.13 to be plotted.

Fig. 4.10 Graphical representations for model validation. On the left: scatter plot of the residuals as
a function of predicted values. On the right: histogram of the residuals
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Figure 4.14 shows the result of an F test of the equality of the means of the
80 varieties. The probability associated with the test statistic (2.974e-11) indicates
that the differences between the varieties are highly significant.

Grubbs test for one outlier

data:  DF$residus

G = 6.7033, U = 0.9768, p-value = 1.52e-08

alternative hypothesis: lowest value -21. 6932254973021 is an outlier

Fig. 4.11 Grubbs’ test

yield variety experiment site year Vmoyj

95253.71 -21.693233.63V53 LONGVIC_2008 LONGVIC 2008

residuals

Fig. 4.12 Observation corresponding to the residual with the lowest value

Fig. 4.13 Histograms of the different random effects
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# ANOVA table
Anova(res.lmer, test.statistic="F")

# Adjusted means
moy_var <- lsmeans(res.lmer, ~variete)
moy_var

Figure 4.15 shows the start of the adjusted means table for the varieties.

# Comparisons with the general mean
contrast(moy_var, method="eff", adjust="sidak")

We do not use the pairs function of the emmeans library, which performs all
the possible pairwise comparisons, here because, with 80 varieties, such an analysis
would involve (80*80–80)/2 ¼ 3160 comparisons, and would entail the use of an
excessive amount of computer time. Instead, we use the contrast function with
the argument method ¼ “eff” to compare each variety with the general mean.
This approach requires 80 tests in total for this example. The difference between the
variety mean and the general mean corresponds to the effect of the variety. The first
few results for this approach are shown in Fig. 4.16. A statistical test is performed to
test the null hypothesis of an absence of variety effect. The probability value for each
test is adjusted to account for multiple testing.

# Comparisons with a control
contrast(moy_var, method="trt.vs.ctrl", ref=2)

Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)

Response: yield

F Df Df.res    Pr(>F)    

variety 4.2039 79 95.601 2.974e-11 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Fig. 4.14 F test
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Figure 4.17 shows comparisons between variety means and the mean of the
control variety V10.

# Random effects
ranef(res.lmer)

The ranef function of the lme4 library can be used to display the random
effects. We do not show this output here to avoid overloading the text.

# Variances of the means and of the interaction
Vmoy <- mean(by(DFmoy$Vmoyj, DFmoy$expérimentation, unique))
Vmoy

var_intera <- summary(res.lmer)$sigma^2 – Vmoy
var_intera

variety lsmean   SE        df    lower.CL upper.CL

V1      94.13293 2.948956  22.88 88.03079 100.23506

V10     94.85893 2.468206  11.89 89.47585 100.24201

V11     95.48879 3.514057  46.21 88.41621 102.56137

V12     96.15400 2.898815  21.27 90.13018 102.17782

V13     96.52198 2.405186  10.78 91.21485 101.82912

V14     90.06761 2.697724  16.72 84.36863  95.76659

V15     96.05092 2.460441  11.74 90.67702 101.42481

V16     95.21234 2.898815  21.27 89.18852 101.23616

V17     94.17538 2.630766  15.34 88.57886  99.77191

V18     74.64226 3.416976  43.22 67.75228  81.53224

V19     92.47296 2.398402  10.65 87.17315  97.77277

...

Confidence level used: 0.95

Fig. 4.15 Adjusted means
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contrast estimate SE df t.ratio p.value

V1 - V10   -0.72600686 2.099362  61.74  -0.346  1.0000

V11 - V10   0.62986049 2.843741 199.53   0.221  1.0000

V12 - V10   1.29507131 2.029242  53.59   0.638  1.0000

V13 - V10   1.66305206 1.256569  70.67   1.323  0.9820

V14 - V10  -4.79132151 1.732767  75.76  -2.765  0.2448

V15 - V10   1.19198514 1.332355  65.10   0.895  0.9995

V16 - V10   0.35340465 2.029242  53.59   0.174  1.0000

V17 - V10  -0.68354899 1.683198  92.91  -0.406  1.0000

V18 - V10 -20.21667097 2.740451 396.15  -7.377  <.0001

V19 - V10  -2.38597465 1.243528  67.77  -1.919  0.7839

...

Fig. 4.17 Comparison with the control variety V10

contrast        estimate        SE      df t.ratio p.value

V1 effect    1.130022531 1.8758398   61.50   0.602  1.0000

V10 effect   1.856029391 0.9860050   72.07   1.882  0.9949

V11 effect   2.485889880 2.6595996  238.98   0.935  1.0000

V12 effect   3.151100706 1.7901772   51.23   1.760  0.9991

V13 effect   3.519081447 0.8197594   78.88   4.293  0.0040

V14 effect  -2.935292120 1.4586923   81.15  -2.012  0.9796

V15 effect   3.048014529 0.9669837   66.73   3.152  0.1768

V16 effect   2.209434039 1.7901772   51.23   1.234  1.0000

V17 effect   1.172480400 1.3357035  109.33   0.878  1.0000

V18 effect -18.360641577 2.5361994  584.81  -7.239  <.0001

V19 effect  -0.529945261 0.8011623   72.18  -0.661  1.0000

...

Fig. 4.16 Comparison of variety means with the general mean
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The first line of the script shown above calculates a common estimate of the
variance of the mean data and stores this value in the object Vmoy. In the case of this
example, we obtain Vmoy ¼ 3.107889.

The residual variance of the mixed model is obtained with the summary(res.
lmer)$sigma^2 command. It is thus possible to calculate the variance of the
variety � year � site interaction, var_intera, by simple subtraction, using the
residual variance of the mixed model and Vmoy, the variance of the mean data. For
the sample studied here, we obtain var_intera¼ 11.34765. This estimate will be
used to dimension a network of experiments in Chap. 5.
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Chapter 5
Planning an Experimental Network

5.1 Objective

When planning a network of experiments, it is generally important to know how
many experiments should be performed. However, it is often forgotten that it is just
as important to know how to choose the environments in which the experiments will
be performed.

This question of how to choose environments is both simple and complex. If the
objective of the experimental network is to obtain conclusions that can be general-
ized to a population of environments, then the environments included in the network
should be chosen at random from the population of possible environments. This
involves the definition of the target population of environments, which is not as
simple as it might first appear. Furthermore, it is not always possible to select the
environments at random, essentially for practical reasons. So, for example, costs are
often limited by performing experiments in areas close to the experimental station.
Another example concerns the choice of farmers whose land will be used for the
experiments, in situations in which the farmer will be required to act during the
experiment. In such cases, it is common for researchers to collaborate regularly with
the same farmers, to guarantee the success of the experiments.

The question of how many experiments should be performed is more straight-
forward but its resolution requires some idea of the experimental variability at the
various scales observed. Where possible, an existing dataset is used as a basis for
estimating this variability, to make it possible to plan the acquisition of new data.

The question of the number of replicates is multi-faceted. In a multisite network,
the number of replicates per experiment and the number of experiments must be
determined. In the case of a multi-local and multi-year network, the number of years
must also be determined.

Generally, the dimensions of an experiment or a network of experiments are
determined so as to satisfy an objective in terms of statistical power (Gozé 1992).
Power is the capacity of the experiment or network of experiments to detect a
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difference between treatments, if there is one. However, the calculation of power
requires the formulation of hypotheses concerning the real differences between treat-
ments, which is generally difficult to achieve in a realistic manner. In addition,
calculations of power are more complicated for mixed models than for linear fixed-
effects models. Readers can obtain more information about this approach from Littell
et al. (2006).

We describe below a simpler approach involving calculation of the variance of
the difference between two treatments. The principle is simple. The variance of the
difference between two treatments depends on the experimental variability at the
different scales observed, and the variances at these different scales must therefore
first be estimated. The variance of the difference between two treatments is then
calculated from the estimated variances obtained in the first step, by varying the
number of replicates. Finally, these simulations are used to determine the number of
replicates providing the best compromise between the precision of the comparisons
and the cost of the network. The precision of the comparisons is estimated as the
least significant difference (LSD) at 5%, which is about equal to twice the standard
deviation of the difference between two treatments:

LSD ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar�μ̂i � μ̂i0

�
:

q

This approach is applied, in Sects. 5.2.1 and 5.2.2 to the case of a multisite
network and a multisite multiyear network of experiments with a randomized
complete block design. Section 5.3 shows how to optimize an experimental network
based on the calculation of the variance of a contrast other than the difference
between two treatments.

In this chapter, we assume that the residual variance of individual experiments is
identical for all the experiments of the network. We also restrict this approach to the
dimensioning of a complete network, i.e. one in which all the treatments are present
in all the experiments. However, we think that this approach should provide in most
cases, even if these conditions are not fulfilled, an order of magnitude of the number
of replicates to be performed within the network, which is, in practice, often
sufficient.

5.2 Comparison of Two Treatments

5.2.1 Case of a Multisite Network

5.2.1.1 Variance of the Difference Between Two Treatments

The variance of the difference between two treatments in the case of a multisite
network described by model (3.1) is given by Eq. (3.2), which we recall here:
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Var
�
μ̂i � μ̂i0

� ¼ 2
σ2tE
J

þ σ2ε
JK

� �

where Var
�
μ̂i � μ̂i0

�
is the variance of the estimator of the difference between the

means of treatments i and i0, and σ2tE, σ
2
ε , J and K are the variance of the treatment x

experiment interaction, the variance of the residuals, the number of experiments and
the number of blocks per experiment, respectively.

σ2ε and σ
2
tE can be estimated with model (3.1), by analyzing the individual data of a

network of experiments with a complete randomized block design. In a two-step
analysis, σ2tE can be estimated with Eq. (4.9), and σ2ε can be estimated with the

following formula:
∑J
j¼10:5 n j VMC j

J , where VMCj, nj and J are the mean variance of
pairwise comparisons of treatments for experiment j, the number of replicates in
experiment j (i.e. the number of blocks for an experiment with a complete random-
ized block design) and the number of experiments, respectively.

5.2.1.2 “Wheat” Example

The analysis of the “wheat” example in Chap. 3 provided estimates of σ2ε and σ2tE :
σ̂2
ε ¼ 6:10 and σ̂2

tE ¼ 6:53 (Fig. 3.12; N.B., this figure shows the standard devia-
tions). By replacing the theoretical values with these estimates in Eq. (3.2), we
obtain: dVar�μ̂i � μ̂i0

� ¼ 2 6:53
J þ 6:10

JK

� �
.

Figure 5.1 shows the LSD between two treatments for a number of experiments
J ranging from 3 to 20, and a number of blocks K ranging from 2 to 5. If we know the
precision desired, we can simply refer to this graph to determine the size of the
network required to achieve this level of precision. It is also possible to obtain a
certain amount of information from Fig. 5.1 that can then be used to guide the design
of an experimental network. For example, this figure indicates that the gain in
precision provided by each additional block decreases as the number of blocks
increases. A similar observation can be made concerning the number of experiments.
In addition, it shows that for a given total number of blocks, it is better to perform a
large number of experiments with only a few blocks per experiment than a small
number of experiments with a large number of blocks. Thus, for example, it is better
to perform five experiments with three blocks per experiment than three experiments
with five blocks per experiment.
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5.2.2 Case of a Multisite and Multiyear Network

5.2.2.1 Variance of the Difference Between Two Treatments

The variance of the difference between two treatments in a multisite and multiyear
network of experiments with a randomized complete block design is given by
Eq. (4.11), which we recall here:

Var
�
μ̂i � μ̂i0

� ¼ 2
σ2tL
S

þ σ2tA
R

þ σ2tAL
SR

þ σ2ε
SRK

� �

where Var
�
μ̂i � μ̂i0

�
is the variance of the estimator of the difference between the

means of treatments i and i0, and σ2tL, σ
2
tA, σ

2
tAL, σ

2
ε , S, R and K are the variance of the

treatment � site interaction, the variance of the treatment � year interaction, the
variance of the treatment � site � year interaction, the variance of the experimental
errors on the individual data, the number of sites, the number of years and the
number of blocks per experiment, respectively.
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Fig. 5.1 LSD between two varieties as a function of the number of blocks per experiment and the
number of experiments. Simulations based on the “wheat” example
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5.2.2.2 The “Wheat_Multi” Example

The analysis of the “wheat_multi” example shown in Sect. 4.4.6 provides estimates
of σ2tL, σ2tA and σ2tAL. We can estimate σ2ε with the following formula:

σ̂2
ε ¼

∑J
j¼10:5 n j VMC j

J , where VMCj, nj and J are the mean variance of pairwise treat-
ment comparisons for experiment j, the number of replicates of experiment j (i.e. the
number of blocks for an experiment with a randomized complete block design), and
the number of experiments, respectively. For the “wheat_multi” example, we obtain
σ̂2
ε ¼ 9:94. By replacing the theoretical values with these estimates in formula

(4.11), we obtain: dVar�μ̂i � μ̂i0
� ¼ 2 3:56

S þ 2:30
R þ 11:35

SR þ 9:94
SRK

� �
.

The variance components used above were estimated from an incomplete dataset,
but that does not prevent them from being used to plan a complete experimental
network.

Figure 5.2 shows the LSD between two treatments for a number of sites S ranging
from 3 to 20, a number of years R ranging from 1 to 4 and a number of blocks per
experiment ranging from 1 to 4. If we know the precision desired, we can simply
refer to this graph to determine the size of the network required to achieve this level
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Fig. 5.2 LSD between two varieties as a function of the number of blocks per experiment, the
number of sites and the number of years. Simulations based on the “wheat_multi” example
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of precision. It can be noted that the gain in precision provided by an additional
replicate decreases as the number of replicates increases. The gain in precision is
small when we pass from three to four blocks. Four-block experiments do not,
therefore, appear to be justified, and we could even reasonably pose the question
as to the relevance of including more than two blocks per experiment. A similar sort
of reasoning can be applied to the number of sites and the number of years.

5.3 Other Contrasts

It is possible to optimize an experimental network based on a calculation of the
variance of a contrast other than the difference between two treatments. For example,
we may wish to compare the mean of a particular treatment with the mean of several
control treatments. Another frequently used type of comparison involves comparing
the mean of a treatment with the general mean, defined as the mean of the treatment
means. This type of contrast is called the effect of treatment. Whatever the type of

contrast chosen, the LSD is defined as follows: ppds ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarcontrast

q
, where

dVarcontrast is the estimated variance for the contrast chosen.

5.3.1 Comparison to the Mean of Several Controls

5.3.1.1 Case of a Multisite Network

The variance of the difference between a treatment and the mean of several control
treatments in a multisite network described by model (3.1) is given by the following
formula:

Var
�
μ̂i �dtem� ¼ 1þ 1

ntem

� �
σ2tE
J

þ σ2ε
JK

� �

where μ̂i,dtem, ntem,σ2tE,σ
2
ε , J and K are the estimated mean of treatment i, the mean of

the estimated means of the control treatments, the number of control treatments, the
variance of the treatment x experiment interaction, the variance of the residuals, the
number of experiments and the number of blocks per experiment, respectively. If
there is only one control treatment, we obtain the variance of the difference between
two treatments given by Eq. (3.2).
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The LSD for this contrast can be calculated by replacing the theoretical values of
the variances σ2tE, σ

2
ε by their estimates from a dataset.

5.3.1.2 Case of a Multisite and Multiyear Network

The variance of the difference between a treatment and the mean of several control
treatments in a multisite and multiyear network of experiments with a randomized
complete block design is given by the following formula:

Var
�
μ̂i �dtem� ¼ 1þ 1

ntem

� �
σ2tL
S

þ σ2tA
R

þ σ2tAL
SR

þ σ2ε
SRK

� �

where μ̂i,dtem, ntem, σ2tL, σ
2
tA, σ

2
tAL, σ

2
ε , S, R and K are the estimated mean of treatment i,

the mean of the estimated means of the control treatments, the number of control
treatments, the variance of the treatment � site interaction, the variance of the
treatment � year interaction, the variance of the treatment � site � year interaction,
the variance of the experimental errors on the individual data, the number of sites, the
number of years and the number of blocks per experiment, respectively. When there
is only one control treatment, we obtain the variance of the difference between two
treatments given by Eq. (4.11).

The LSD for this contrast can be obtained by replacing the theoretical values of
the variances σ2tL, σ

2
tA, σ

2
tAL,and σ2ε by their estimates based on a dataset.

5.3.2 Comparison with the General Mean

5.3.2.1 Case of a Multisite Network

The variance of the difference between a treatment and the general mean in the case
of a multisite network described by model (3.1) is given by the following equation:

Var
�
μ̂i � dGM� ¼ 1� 1

ntrait

� �
σ2tE
J

þ σ2ε
JK

� �

where μ̂i, dGM , ntrait, σ2tE , σ
2
ε , J and K are the estimated mean of treatment i, the

estimated general mean, the total number of treatments, the variance of the treat-
ment � experiment interaction, the variance of the residuals, the number of exper-
iments and the number of blocks per experiment, respectively.
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The LSD for this contrast can be calculated by replacing the theoretical values of
the variances σ2tE and σ2ε with their estimates from a dataset.

5.3.2.2 Case of a Multisite and Multiyear Network

The variance of the difference between a treatment and the general mean in the case
of a multisite and multiyear network of experiments with a randomized complete
block design is given by the following formula:

Var
�
μ̂i � dGM� ¼ 1� 1

ntrait

� �
σ2tL
S

þ σ2tA
R

þ σ2tAL
SR

þ σ2ε
SRK

� �

where μ̂i, dGM , ntrait, σ2tL, σ
2
tA, σ

2
tAL, σ

2
ε , S, R and K are the estimated mean for treatment

i, the estimated general mean, the total number of treatments, the variance of the
treatment � site interaction, the variance of the treatment � year interaction, the
variance of the treatment � site � year interaction, the variance of the experimental
errors on the individual data, the number of sites, the number of years and the
number of blocks per experiment, respectively.

As in the previous cases, the LSD for this contrast can be calculated by replacing
the theoretical values of the variances σ2tL, σ

2
tA, σ

2
tAL, and σ

2
ε with their values estimated

from a dataset.
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Part II
Meta-analysis

This second part has two chapters and concerns meta-analysis.
Chapter 6 presents the objectives and principal steps of a meta-analysis. This

chapter explains the importance of defining precisely the quantity to be estimated by
the meta-analysis and of performing a rigorous systematic search to identify the
studies available. This chapter then describes two statistical approaches for analyz-
ing the data extracted from the selected studies: (i) estimation of mean effect size and
(ii) meta-regression. These two approaches are illustrated with several examples.

Chapter 7 deals with several specific problems relating to meta-analysis: the
definition of effect size and the various associated biases, the analysis of count
data with generalized linear models and the analysis of non-linear responses. Finally,
this chapter presents an alternative statistical approach based on the use of Bayesian
models. These subjects are illustrated with real data.



Chapter 6
Basic Concepts in Meta-analysis

6.1 Definition, Origin and Principal Steps of Meta-analysis

Meta-analysis is one of the methods used for synthetic analyses of knowledge. It
combines two approaches:

– Systematic literature review
– Statistical analysis

Chalmers et al. (2002) defined a “systematic review” as the application of
strategies to limit bias in the collection, critical evaluation and synthesis of all the
relevant studies dealing with a particular subject. ANSES recently (2016) identified
10 different definitions of “systematic review” and proposed the following defini-
tion: “A systematic review of the literature involves the exhaustive assembly,
evaluation and synthesis of all the relevant studies dealing with a specific question,
even if these studies are contradictory. Systematic reviews should be based on a
detailed protocol established in advance, favoring a transparent and reproducible
approach.”

Systematic reviews are frequently performed in the framework of academic
research and in analyses of health and environmental risks. One of the principal
limitations of such reviews is their qualitative nature: the result of a systematic
review is a narrative conclusion summarizing the studies reviewed. Such analyses
provide no quantitative results concerning the force of causal relationships, the size
of the effects studied or the level of uncertainty.

Meta-analysis combines statistical analysis with systematic review. This has two
advantages: it limits the risks of bias by recovering all the relevant studies on the
basis of an explicit protocol and it provides results in a quantitative form. Meta-
analysis has been defined in a number of different ways. Glass (1976) defined meta-
analysis as the statistical analysis of a large collection of results from individual
studies for the purpose of integrating the findings. Other definitions have been
proposed, including those of Chalmers et al. (2002) and Koricheva et al. (2013).
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All stress the notion of combining different studies with common objectives, with
the goal of estimating a quantity of interest.

Historically, meta-analysis was first used at the start of the twentieth century. Karl
Pearson (1904) collected and analyzed the results of different studies evaluating the
efficacy of a vaccine against typhoid. Yates and Crowther (1941) is often presented
as the first paper reporting results of an agronomic meta-analysis (Chalmers et al.
2002). The objective was to determine the optimal dose of phosphate fertilizer in the
context of a trade blockade and shortages during the Second World War. A large
number of trials testing the effects of various doses of fertilizer on crop yield were
collected and a global analysis was performed to calculate, as accurately as possible,
the dose of fertilizer required. Meta-analysis became a standard method in the
medical domain in the 1990s, under the impetus of the Cochrane Organization in
particular, which promoted this approach and organizes workshops on systematic
reviews and meta-analyses (www.cochrane.org). Meta-analysis has become an
essential technique for identifying risk factors for disease and evaluating the efficacy
of medical treatments (Sutton et al. 2000; Borenstein et al. 2009). Certain authors
consider meta-analysis to be an approach for limiting the risks of false discovery
(Ioannidis 2005). Meta-analysis is increasingly being used outside the medical
domain, particularly in ecology, environmental science and agronomy (Philibert
et al. 2012a, b; Koricheva et al. 2013; Makowski et al. 2014a, b).

There are two major types of meta-analysis. The first aims to estimate the mean
size of a treatment effect (e.g. for a method of disease control or the effect of a
cropping system) on a variable of interest (e.g. yield), using all the available relevant
studies (see Hossard et al. 2016 for a recent example from the domain of agronomy).
The second type of meta-analysis (often referred to as meta-regression) aims to
estimate the relationship between a response variable and one or more explanatory
variables, making use of a collection of experimental studies including observed
values for the variables considered (Philibert et al. 2012b; Yu et al. 2015). These two
types of meta-analysis have a number of steps in common:

• Definition of the objective of the meta-analysis: definition of the effect size,
response variables, explanatory variables and population.

• Systematic review: definition of the protocol for bibliographic research, identifi-
cation of relevant studies.

• Selection of studies and data extraction: definition of the selection criteria,
application of the criteria to the studies, extraction of data from the selected
studies.

• Statistical analysis: definition of one or several statistical models, estimation of
parameters, estimation of the quantities of interest, analysis of uncertainty.

• Critical analysis: analyses of sensitivity and of publication bias.
• Communication of the results.

These steps are presented in detail below and are illustrated with examples.
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6.2 Estimation of Mean Effect Size

6.2.1 Objective

In this type of meta-analysis (which is by far the most common), the objective is to
estimate the effect of an experimental treatment E on a variable of interest X relative
to a control C. This requires the definition of several elements:

– The variable of interest X,
– The control C,
– The experimental treatment E,
– The population of studies,
– The effect size allowing comparison of C and E.

Depending on the subject of the meta-analysis, the quantity X may be a contin-
uous variable, such as crop yield, or a discrete variable, such as the number of
diseased plants in a given sample. In agronomy, the treatments C and E generally
correspond to agricultural practices (e.g. C ¼ plot not treated with pesticides,
E ¼ treated plot) or cropping systems (e.g. C ¼ conventional cropping system and
E ¼ organic system).

The effect of treatment E is studied by defining a quantity called “effect size”,
which compares the value of X obtained when the experimental treatment E is
applied (XE) with that obtained when the control treatment is applied (XC). Different
effect sizes combining XE and XC are widely used, including, in particular, the
difference between XE and XC, XE � XC, and the XE

XC
ratio. This ratio can be used to

manage data expressed in different units, which is often the case when studies of
different origins are used.

It is important to define the population for which the effect size must be estimated
as precisely as possible. This population includes all the studies that we wish to
include for the estimation of mean effect size. In practice, only a subset of these
studies is recovered. This subset constitutes a sample that is used to make inferences
for the total population (Fig. 6.1). For example, if the objective of the meta-analysis
is to estimate the mean yield loss to be expected when switching from conventional
to organic maize production in Europe, then the population corresponds to all

Fig. 6.1 Estimation of mean effect size from a sample of studies from a population
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European studies that have measured maize yield in at least one organic and one
conventional cropping system (treatment). In practice, a sample of available studies
is recovered and used to estimate the mean loss in Europe. This loss is determined by
estimating the expected difference in yield or the expected ratio of yields for organic
and conventional treatments.

6.2.2 Systematic Search for Studies, Selection of References
and Data Extraction

Systematic searches for studies are generally performed with bibliographic data-
bases. It is important to describe the search strategy used as transparently and
precisely as possible, to ensure that the procedure used is repeatable. It is therefore
necessary to present the search equation, the time period covered and the type of
documents sought. The use of two databases or more is recommended (Efsa 2010;
Anses 2016).

Studies should then be selected according to explicit criteria concerning the study
subject, the quality of the experimental protocol used and the data available. If
sufficient time is available, it is often recommended to have two different people
apply the selection procedure (Efsa 2010; Anses 2016). However, as the study
selection procedure can be long (several weeks or months in practice) it is not
always possible to have the studies analyzed, one-by-one, by two different people.
If the number of studies identified is large (several hundreds), an initial selection is
frequently made on the basis of the titles and abstracts of the articles. A second
selection is then applied, based on the entire texts of the studies selected during the
first round of screening. The different steps in the selection process should be
described, with a Prisma-type diagram (www.prisma-statement.org), for example.
Such a diagram can be used to present:

– The number of studies recovered from bibliographic databases,
– The studies from other sources,
– The studies eliminated on the basis of their titles or abstracts,
– The studies eliminated during the reading of the entire text,
– The studies eliminated due to a lack of availability of data essential for the

analysis.

The data must then be extracted from the selected studies. All the data required for
the calculation of effect size should be extracted (i.e. all data corresponding to
measured values of XE and XC). When available, data providing information about
the precision of the measurements of XE and XC (standard deviation, sample size)
should also be extracted. The data may be extracted from the tables or figures
presented in the studies. Specialist software is required to extract data from figures
(e.g. https://automeris.io/WebPlotDigitizer/). The extracted data should be archived
in computer files. In general, standard spreadsheets are used for this purpose. For
complex data structures, it may be useful to archive the data in a relational database.
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Certain programs facilitate the steps of study identification, selection and data
extraction. For example, the metagear package of R (Lajeunesse 2016) includes
functions for analyzing article abstracts, for drawing Prisma diagrams and for the
automatic extraction of data from graphs.

6.2.3 Estimation of Mean Effect Size with a Fixed-Effects
Model

6.2.3.1 Description of the Individual Effect Sizes

The first step is to calculate individual effect sizes from the data extracted from the
studies. In most cases, the studies provide mean values of XE and XC, denoted �XE and
�XC, respectively. For each study, it is thus possible to estimate different effect sizes,
including, in particular, the ratio defined by R ¼ �XE

�XC
. In practice, the logarithm of this

ratio is frequently used, rather than the ratio itself. The logarithm of the ratio is easier
to manipulate mathematically and its distribution is often more symmetric than that

of the ratio itself. The log ratio is defined as follows: L ¼ ln
�XE
�XC

� �
. Another effect

size, known as Hedges’ g (Hedges and Olkin 1985), is sometimes used to quantify
the difference between �XE and �XCwhilst taking into account measurement variability
and sample sizes for the experimental treatment E and the control C, but the values of
this effect size are more difficult to interpret than those of the ratio. The examples
presented in this chapter are based on the ratio R (or its logarithm), but other types of
effect size are presented in Chap. 7.

When the standard deviations of XE and XC and the sample sizes used to calculate
the mean values are available for the studies considered, it is possible to estimate the

standard deviation of the log ratio L as follows: σL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2C

nC �X2
C
þ σ2E

nE �X2
E

r
(Hedges et al.

1999), where nE and nC are the sample sizes and σE and σC are the standard
deviations of XE and XC. The standard deviation of the log ratio can then be used
to estimate a confidence interval for L. For example, the 95% confidence interval can
be approximated as follows: CI95 % ¼ (L � 1.96σL; L + 1.96σL). The confidence
interval of the ratio can be obtained by taking the exponential of the limits.

This procedure must be applied study-by-study. If P studies are available, we
obtain a series of P ratios (R1, R2, . . ., RP), a series of P log ratios (L1, L2, . . ., LP), and
the associated confidence intervals. The distributions of the ratios, log ratios and
confidence intervals are often described graphically, on a particular type of graph
known as a “forest plot”. This type of graph is illustrated in an example below.

Example: Ratio of the Yields of Organic and Conventional Cropping Systems
We consider here 65 studies used in the meta-analysis of Seufert et al. (2012). Each
study includes experimental values for yield obtained with conventional and organic
cropping systems. The studies cover different sites, different years and different
crops. The effect size is the following ratio: organic yield/conventional yield. Yields,
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sample sizes and standard deviations were extracted from each study. The values
were used to calculate log ratios and their 95% confidence intervals (Fig. 6.2).

6.2.3.2 Test of the Heterogeneity of Effect Size

The null hypothesis isH0:L1¼ L2¼ . . .¼ LP. If this hypothesis is correct, then effect
size is the same in each of the studies considered in the meta-analysis. This null
hypothesis is generally tested in Q tests, as described by Hedges et al. (1999) and
Borenstein et al. (2009), for example. Q tests are based on the quantity Q defined as
follows:

Fig. 6.2 Logarithms of estimated organic yield/conventional yield ratios for 65 studies. The
horizontal bars indicate the 95% confidence intervals. The data used were obtained from the
database of Seufert et al. (2012). Study 36 is missing
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According to the null hypothesis H0, the statistic Q is distributed according to a
Chi2 distribution with P-1 degrees of freedom: Qeχ2P�1. The null hypothesis is
rejected if Q > qα, where qαis the quantile 1-α. If the null hypothesis is not rejected,
we cannot rule out the possibility that effect size is identical in the various studies
and, in this case, it is possible to estimate mean effect size with a fixed-effects model
(see Sect. 6.2.3.3). If the null hypothesis is rejected, we can conclude that effect size
differs between studies. In this case, it is preferable to use a random-effects model to
estimate mean effect size (see Sect. 6.2.4).

Example: Ratio of Organic Yield to Conventional Yield (Continued)
The Q test was applied to the difference between the 65 log ratios presented in
Fig. 6.2. The Q value obtained was 1982.31. This value is much higher than the 95th
percentile of a Chi2 distribution with 64 degrees of freedom (84.82). We can
therefore reject the null hypothesis that these 65 log ratios for yield are equal.
Here is the R code used:

#Calculation of vectors, weights and log ratios

w<-1/TAB$Var_lnR

L<-TAB$lnR

#Calculation of the Q statistic

Q<-sum(w*(L)^2)-((sum(w*L))^2)/sum(w)

#Calcuation of the p-value
1-pchisq(Q,length(L)-1)

6.2.3.3 Estimation of the Weighted Mean Effect Size

If we assume that the effect sizes are homogeneous, then we can consider all the
studies included in the meta-analysis to have the same effect size. The true value of
this effect size is unknown but can be estimated from the sample of P studies
available, using the following very simple statistical model:
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Li ¼ μþ εi

where Li is the estimated individual effect size for study i (e.g. log ratio), μ is the true
effect size, εi is the difference between Li and μ (residual error) and var Lið Þ ¼ var
εið Þ ¼ σ2i is the variance of the residual error. In practice, this variance is assumed to
be known and is estimated from the data extracted from the studies, according to the
method indicated in 6.2.3.1. The value of μ can be estimated by calculating a
weighted mean, as follows:

μFE
est ¼

XP
i¼1

wiLi

XP
i¼1

wi

wi ¼ 1

σ2i

The variance of this estimator and its 95% confidence interval are estimated as
follows:

var μFE
est

� � ¼ 1PP
i¼1

wi

CI95% ¼ μFE
est � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var μFE

est

� �
;

q
μFE
est þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var μFE

est

� �q� �

Example: Yield Ratios for Organic and Conventional Cropping Systems
(Continued)
Although the Q test is significant, we use here the fixed-effects model for illustrative
purposes. The value of the log ratio estimated with the fixed-effects model described
below is �0.25. Its standard deviation is 0.0082. The estimated yield ratio is 0.78
and its 95% confidence interval is (0.76–0.79). This result reveals that the loss of
yield is probably between 21 and 24%, according to the fixed-effects model. The R
code used for the statistical analysis is presented below:

#Calculation of weights from the inverse of the variances of the log ratios

from the TAB file

w<-1/TAB$Var_lnR

#Creation of a vector including the log ratios

L<-TAB$lnR

#Calculation of the weighted mean log ratio

MEF<-sum(w*L)/sum(w)

#Calculation of the standard error of the mean

SE<-sqrt(1/(sum(w)))
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#Estimated ratio

R<-exp(MEF))

#Calculation of the upper and lower limits of the 95% confidence interval

R_lb<-exp(MEF-1.96*SE)

R_ub<-exp(MEF+1.96*SE)

6.2.4 Estimation of the Mean Effect Size with a Random-
Effects Model

In the presence of heterogeneity, the hypothesis underlying the previous model is not
realistic. We cannot consider all the studies included in the meta-analysis to have the
same effect size μ. In this case, it is preferable to use a random-effects model, defined
as follows:

Li ¼ μþ bi þ εi

where Li is the estimated individual effect size for study i (e.g. log ratio), μ is the
expected effect size for all the studies of the population considered, bi is a random
effect of study describing the difference in effect size between study i (μ + bi) and the
expected value μ, and εi is the difference between Li and μ + bi (residual error). With
this model, each study has a true individual effect size (unknown) equal to μ + bi.
This model includes one fixed term (μ) and three random terms (bi, εi and Li), with
variances equal to:

var bið Þ ¼ σ2b
var εið Þ ¼ σ2i
var Lið Þ ¼ σ2b þ σ2i

The principle underlying this random-effects model is presented in the diagram in
Fig. 6.3.

Fig. 6.3 Diagram
illustrating the principle of
the random-effects model.
The black points correspond
to individual studies. The
red point corresponds to the
estimated expected effect
size. The horizontal bars
represent the 95%
confidence intervals
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As for the previous model, the first step is to calculate the individual effect sizes Li
(e.g. the log ratios) and their variances σ2i from the data extracted from the individual
studies. The individual sizes P are then used to estimate the two unknown parameters
of the model: μ and σ2b. Two methods are widely used to estimate σ2b: the method of
Dersimonian and Laird (the method of moments), and the restricted maximum
likelihood method. The first of these methods is non-iterative and based on applica-
tion of the following formula:

σ2est,b ¼
Q� P� 1ð Þ

PP
i¼1

wi �
PP
i¼1

w2
iPP

i¼1

wi

, where wi ¼ 1

σ2i

where Q is the same quantity as that used to test the homogeneity of effect size (see
above).

The second method (restricted maximum likelihood) is iterative and can be
applied with statistical software, such as the lme function of the nlme R package
(Pinheiro and Bates 2000), the lmer function of the lme4 R package (Bates et al.
2015), or the rma function of the metafor R package (Viechtbauer 2010). This
second method can give more precise results and is increasingly frequently used in
practice.

The parameter μ is estimated by calculating a weighted mean individual effect
size

μFE
est ¼

PP
i¼1

wiLi

PP
i¼1

wi

where wi ¼ 1
σ2bþσ2i

. Note that the weight, wi, is different from that used in the fixed-

effects model. It depends on two variances: the variances of bi and εi. If the variance
of bi tends toward zero, then the fixed-effect and random-effect models yield the
same result. If the variance of εi tends toward zero, then the weights wi are
all approximately equal (wi ! 1

σ2b
) and μ can be estimated by calculating the simple

mean of individual effect size:

μFE
est ! 1

P

XP
i¼1

Li

In practice, the variance of bi is generally located somewhere between these two
extreme cases.
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Example: Yield Ratios for Organic and Conventional Cropping Systems
(Continued)
The value of the expected log ratio estimated with the random-effects model
described above is �0.25 and its standard deviation is 0.054, when the method of
Dersimonian and Laird is used. The estimated expected value is, therefore, similar to
the mean effect size estimated with the fixed-effects model, but with a much larger
standard deviation of the estimator. The yield ratio estimated with the random-
effects model is 0.78, with a 95% confidence interval of (0.70–0.87), which is
much larger than that obtained with the fixed-effects model. This result indicates
that the uncertainty is underestimated when a fixed-effects model is used in the
presence of strong heterogeneity. The results obtained with the random-effects
model indicate that the yield loss associated with a shift from conventional to organic
cropping systems is probably between 13 and 30%.

The restricted maximum likelihood method, implemented in lme, yields a con-
fidence interval similar to that obtained with the method of moments (0.73–0.85),
and an estimated ratio identical to that obtained with the method of moments (0.78).

Here is the R code used:

##Method of Dersimonian and Laird##

#Estimation of interstudy variance

Vb<-(Q-(length(L)-1))/(sum(w)-(sum(w^2)/sum(w)))

#Calculation of weights

wT<-1/(TAB$Var_lnR+Vb)

#Estimation of the mean effect size

MEF<-sum(wT*L)/sum(wT)

#Estimation of the standard error of the estimated mean effect size

SE<-sqrt(1/(sum(wT)))

#Estimated ratio

R<-exp(MEF))

#Upper and lower limits of the 95% confidence interval (95%)

R_lb<-exp(MEF-1.96*SE)

R_ub<-exp(MEF+1.96*SE)

##Use of the lme function of the nlme package##

library(nlme)

#Definition of the structure of the data with the groupedData function

#The observed variable is lnR and the data are grouped according to the

variable “Study”

Data<-groupedData(lnR~1|Study, data¼TAB)

#Estimation of parameters with lme

Fit<-lme(lnR~1, random ¼ ~ 1, data¼Data, weight¼ varFixed(~Var_lnR),

method¼"REML")

summary(Fit)

#Estimated ratio and 95% confidence interval

R<-exp(Fit$coefficients$fixed)

R_lb<-exp(Fit$coefficients$fixed-1.96*sqrt(Fit$varFix))

R_ub<-exp(Fit$coefficients$fixed+1.96*sqrt(Fit$varFix))
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The residual variances σ2i , i¼ 1, . . ., P, are not estimated in exactly the same way
with the Dersimonian and Laird method and the lme function of R. With the

Dersimonian and Laird method, the value of each σ2i is estimated as follows: σ2i

¼ σ2Li ¼ σ2Ci
nCi �X2

Ci
þ σ2Ei

nEi �X2
Ei
(Hedges et al. 1999), i.e. by a quantity calculated directly from

the available data for study i. With the lme function and the argument
weight¼varFixed, the residual variances σ2i are assumed to be proportional to the

values of σ2Li ¼ σ2Ci
nCi �X2

Ci
þ σ2Ei

nEi �X2
Ei
, i.e. σ2i ¼ Kσ2Li, where K is a parameter estimated by

lme. This difference in definition may partly explain the small difference in the
results obtained with the DerSimonian and Laird method and those obtained
with lme.

The restricted maximum likelihood method can be applied with σ2i ¼ σ2Li (rather
than σ2i ¼ Kσ2Li) with the rma function of the metafor package (Viechtbauer 2010).
The R code for the use of rma is as follows:

library(metafor)

Fit<-rma(yi¼Data$lnR, vi¼Data$Var_lnR, method¼"REML")

summary(Fit)

R<-exp(Fit$b)

R_lb<-exp(Fit$ci.lb)

R_ub<-exp(Fit$ci.ub)

For our example, the results are identical to those obtained with lme. However,
one of the advantages of the metafor package is that it can be used to perform
many relevant graphical analyses. The rma function can also be used to estimate the
mean effect size by the Dersimonian and Laird method, by replacing the argument
method¼“REML” with method¼“DL”. The forest function of metafor can be
used to display individual effect sizes (as in Fig. 6.2), the associated confidence
intervals and the mean effect size estimated from all the studies simultaneously in a
single figure (Fig. 6.4).

6.3 Meta-regression

6.3.1 Objective

The objective of meta-regression is to explain a part of the interstudy variability
(called heterogeneity) of a variable of interest (generally an effect size) using one or
several covariables describing the characteristics of the individual studies. As in
classical regression, the covariables may be continuous (e.g. rainfall, soil depth) or
discrete (e.g. variety, type of climate). The data extracted from the individual studies
are used to estimate the parameters of a regression model linking the variable “effect
size” to the covariables. For a continuous covariable, the model can be used to
calculate the impact on effect size of increasing the covariable by one or several
units. For categorical covariables, the regression model can be used to estimate the
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value of effect size for subgroups of studies corresponding to the different catego-
ries. The regression parameters can be estimated with statistical models with and
without random effects.

Fig. 6.4 Individual effect sizes of the 65 studies (log ratios for organic vs. conventional yields),
associated confidence intervals and mean effect size estimated with a random effects model
(diamond at the base of the graph, and associated confidence interval on the right). These results
were generated with the rma function of the R package metafor (method¼“REML”)
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6.3.2 Example

We present here an example consisting of a set of virtual data including the results of
eight studies with a continuous covariable (X1) and a binary covariable (X2 ¼ 0 or
X2 ¼ 1). For each of the eight studies, the estimated effect size is reported, together
with its standard error (SE), a value of X1 and a value of X2. This example was
inspired by a real meta-analysis published by Van de Putte et al. (2010). The effect
size corresponds to a ratio of yields obtained without soil tillage and after conven-
tional soil tillage. SE is the standard error of this ratio, the covariable X1 is water
balance (in mm) and X2 is a binary variable indicating the type of crop (0 for a winter
cereal, 1 for a spring cereal).

The data file is displayed as shown below (“effect” is the yield ratio and “SE” is
its standard error):

X1 X2 Effect SE
�101 0 0.55 0.07
�75 0 0.59 0.05
�52 1 0.61 0.09
55 0 0.78 0.06
10 1 0.81 0.02
82 0 0.91 0.08
75 1 0.95 0.07
98 1 0.99 0.09

Figure 6.5a reveals the existence of considerable variability in effect size between
studies. The Q statistic (Hedges et al. 1999) is 45. In a test of the null hypothesis that
all the studies have the same effect size, the p-value (calculated assuming a chi2

distribution with 7 degrees of freedom) is below 1.4 � 10�7. The interstudy
variability is, therefore, highly significant and it would be reasonable to consider
the interstudy variability presented in Fig. 6.5a to reflect real variability between
studies rather than estimation errors for the effect sizes of individual studies. This
figure suggests that a large part of this heterogeneity can be explained by the X1

values (Fig. 6.5b). The individual effect sizes seem to be strongly correlated with X1.
The relationship between effect size and X2 is less clear (Figs. 6.5c, d). Below, we
show how to perform a formal test for the existence of a relationship between effect
size and X1 or X2 by meta-regression analysis.

6.3.3 Regression Models with and Without Random Effects

Meta-regression can be performed with fixed-effects or random-effects models. A
fixed-effects model is appropriate if the covariables explain all of the variability
between studies. Conversely, a random-effects model should be used if only part of
this variability can be explained by the covariables included in the regression model
(Borenstein et al. 2009; Mergensen et al. 2013; Thompson and Higgins 2002).
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The Gaussian linear fixed-effects regression model can be defined as follows:

yi ¼ β0 þ
Xp
k¼1

βkxki þ εi, where εieN 0; σ2i
� �

:

β0 is the intercept, βk, k¼ 1, . . ., p, are the p coefficients of regression, yi is the effect
size of study i, xki is the value of the k

th covariable of study i, εi is the random residual
term, and σi is the standard deviation of study i, i ¼ 1, . . ., n. In meta-regression,
intra-study standard deviations σi are assumed to be known and are fixed as the
standard errors of the individual effect sizes obtained during the data extraction step.
The parameters β0 and βk, k ¼ 1, . . ., p, can, therefore, be estimated by the weighted
least squares method, with the glm function of R, for example.

Individual effect size
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Fig. 6.5 Description of the dataset. (a): Forest plot showing the individual effect sizes and their
95% confidence intervals. (b): Bubble plot showing the individual effect sizes as a function of X1

(circle size proportional to 1/SE, i.e., to precision). (c): Bubble plot showing individual effect sizes
as a function of X2. (d): Bubble plot showing individual effect sizes as a function of X1 and X2

(X2 ¼ 0 corresponds to the black circles, X2 ¼ 1 corresponds to the red circles)
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The Gaussian random-effects linear regression model is defined as follows:

yi ¼ β0 þ
Xp
k¼1

βkxki þ bi þ εi, where bieN 0; τ2
� �

and εieN 0; σ2i
� �

:

This model includes a random effect of study, bi, with a variance of τ2. This study
effect describes the proportion of the interstudy variability not explained by the
p covariables of the regression model. As for the fixed-effects model, the intra-study
standard deviations, σi, are generally assumed to be known. By contrast, the
interstudy variance, τ2, must be estimated from data. In practice, the variance τ2

can be estimated by the restricted maximum likelihood method, and β0, βk, k ¼ 1,
. . ., p, can be estimated by the generalized least squares method (Lindstrom and
Bates 1988), with, for example, the lme function of R (package nlme, Pinheiro and
Bates 2000).

Different approaches can be used to determine whether to use a fixed-effects
model or a random-effects model. One approach involves first adjusting a fixed-
effects model and testing the residual interstudy variability with, for example, a
statistical test based on the sum of residual squares of the model (Borestein et al.
2009). This test is a modified version of the Q test described above. Another
approach involves adjusting the two types of model and comparing them on the
basis of different model choice criteria, such as Akaïke’s information criterion
(AIC).

The random-effects model described above constitutes an extension of the model
presented in Sect. 6.2.4 for classical meta-analysis. Indeed, if we remove the
covariables of the model, we obtain the model defined in the framework of classical
meta-analysis:

yi ¼ β0 þ bi þ εi,

where bi ~ N(0, τ2) εieN 0; σ2i
� �

, and β0 is mean effect size. The Gaussian random-
effects linear regression model described above can be made more complex by
defining the regression coefficients βk, k ¼ 1, . . ., p, as random variables. In this
case, the effects of the covariables are assumed to vary between studies. This
amounts to considering there to be interactions between the effects of study and
the effects of the covariables.

The Gaussian linear model presented above can be used in many situations, but is
not always appropriate for analyses of effect sizes defined on the basis of count data
(e.g. disease incidence, presence/absence of a pest organism on an agricultural plot),
such as odds ratios. In this case, the use of generalized linear models (with or without
random effects) is recommended (see, for example, Makowski et al. 2014b). The
Gaussian linear model may also be inappropriate if the covariables are related to
effect size in a non-linear manner. In this case, it is preferable to use non-linear
regression models, with or without random effects (see, for example, Philibert et al.
2012b).
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6.3.4 Example (Continued)

Here, we will develop meta-models to explain part of the variability of the individual
effect sizes presented in Figure 6.5a, using the covariables X1 and X2. Three fixed-
effects models are first adjusted for the data:

– Model M1 linking effect size to X1, defined by yi ¼ β0 + β1x1i + εi,
– Model M2 linking effect size to X2, defined by yi ¼ β0 + β2x2i + εi,
– Model M3 linking effect size to X1 and X2, defined by yi ¼ β0 + β1x1i + β2x2i + εi,

The results obtained for the three models are presented in Fig. 6.6a, b, c.
Figure 6.6a shows the result of the adjustment of M1. The estimated value of β1 is
0.002 ( p < 0.01), indicating that the effect size increases by 0.002 units for each
additional unit of X1 (water balance). As X2 is binary, the result of the adjustment of
M2 is not a curve, but two mean effect size values, one for X2 ¼ 0 (equal to β0) and
one for X2 ¼ 1 (equal to β0 + β2) (Fig. 6.6b). The difference between these two
values is not significant ( p > 0.1). Model M3 generates two regression lines, one for
X2¼ 0 and the other for X2¼ 1 (Fig. 6.6c). These two lines have a slope β1 of 0.0019
( p < 0.01) and, with this model, the effect of covariable X2 is significant ( p < 0.05).

A statistical test based on the weighted sum of the residuals is performed for each
model, to determine whether a proportion of the interstudy variability remains
unexplained by the covariables. The p-values for M1, M2 and M3 are 0.6,
3.2 � 10�5, and 0.87, respectively. Thus, M1 and M3 can explain almost all the
interstudy variability, whereas M2 is not able to do so.

These results indicate that the use of a random-effects model is not entirely
justified in this case when X1 is taken into account. However, for the purposes of
illustration, we have also developed a random-effects model (M4) including the
covariable X2 and defined by yi ¼ β0 + β2x2i + bi + εi, where bi ~ N(0, τ2) and
εieN 0; σ2i

� �
. Like M2, model M4 generates two mean values for effect size, one for

X2 ¼ 0 (equal to β0) and one for X2 ¼ 1 (equal to β0 + β2) (Fig. 6.6d). These two
values are very similar to those obtained with M2 (Fig. 6.6b).

Here is the R code used:

#Adjustment of the fixed-effects models with the glm function

#W is a vector including the weights associated with the Y data (inverse of

the variance)

W<-1/V

mod4<-glm(Y~X2,weights¼W)

summary(mod4)

#Adjustment of the random-effects models with the lme function of the nlme

package

Data<-groupedData(Y~X1+X2|Studies)

mod4RE<-lme(Y~X2, random¼~1,weights¼varFixed(~V), data¼Data)

summary(mod4RE)
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As indicated in Sect. 6.2.4, it is difficult to set predefined residual variances with
the lme function. When the argument weight¼varFixed(~V) is used in lme, the
residual variances σ2i are assumed to be proportional to the variance values of the
individual studies, but not strictly equal to those values. It is possible to fix the
residual variances at predefined values with the rma function of the metafor

package, with the following R code:
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Fig. 6.6 Meta-models adjusted for the data from eight studies. Bubble plots showing individual
effect sizes as a function of the covariable X1 (a, c), and the covariable X2 (b, c). Circle size is
proportional to 1/SE. X2 ¼ 0 corresponds to the black circles, X2 ¼ 1 corresponds to the red circles.
(a): The black line corresponds to the fixed-effects meta-model including covariable X1. (b): The
blue points are the estimated mean effect sizes for X2¼ 0 and X2¼ 1 based on a fixed-effects model.
(c): The black and red lines show the fixed-effects meta-model including both X1 and X2 (X2 ¼ 0 in
black, X2 ¼ 1 in red). (d): The blue points indicate the estimated mean effect sizes for X2 ¼ 0 and
X2 ¼ 1 with a random-effects regression model
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Mod4rma<-rma(yi¼Y, vi¼V, mods¼~factor(X2),method¼"REML")

summary(mod2rma)

The results obtained with lme and rma are very similar. The estimated values of
β0 and β2 are 0.68 and 0.14, respectively, with lme, and 0.70 and 0.14, respectively,
with rma (REML method). The effect of X2 is non-significant with both lme

and rma.

6.4 Critical Analysis of the Results

The critical analysis of the results includes several aspects. The first relates to the
choice of the studies. It is important to ensure that the systematic bibliographic
review was correctly performed. In particular, the study search and selection pro-
cedures must be described in a transparent manner, and the selection criteria used
must not be likely to bias the conclusions. Certain scientific journals (e.g. PLoS One
and Environmental Evidence) have requirements in terms of the traceability of the
studies selected. These high standards help to increase the quality of systematic
reviews and of the meta-analyses performed by scientists.

Even if the systematic review was well-performed, some studies presenting
particular characteristics may have been excluded by the publication process. Such
exclusions can generate a specific bias often referred to as publication bias. This bias
exists when, due to imperfections in the process of dissemination for research results,
the effect sizes taken into account in the meta-analysis lead to conclusions different
from those that would have been drawn if all the correctly calculated effect sizes had
been taken into account (Duval and Tweedie 2000; Koricheva et al. 2013). Such a
bias can lead, in particular, to the non-publication of results that are not statistically
significant. These missing data can result from self-censoring by the authors or from
a rejection of non-significant results by scientific journals (contentious, but unfortu-
nately quite common behavior).

One approach frequently used to detect the existence of a publication bias
involves the plotting of a particular type of graph called a funnel plot. This type of
graph represents the effect sizes of individual studies on the x axis, and the level of
precision associated with the effect sizes (the inverse of sample size, inverse of
variance or inverse of the standard error of effect sizes) on the y axis. In a funnel plot,
the most precise studies are shown at the top, and the least precise appear at the
bottom. In the absence of a publication bias, the graph is symmetric around the mean
effect size. By contrast, a publication bias would tend to result in an asymmetric
funnel plot characterized by missing effect sizes at the bottom of the graph, generally
corresponding to the side opposite to the effect of interest. Thus, if the effect sought
is expected to be positive, a meta-analysis presenting a publication bias would be
characterized by a funnel plot for which the most extreme effect sizes would be
located at the bottom on the right, whereas some of the least extreme effect sizes
would be missing at the bottom on the left. Such a bias would lead to an
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overestimation of mean effect size. This asymmetry can be assessed statistically with
Egger’s method (Koricheva et al. 2013). This method involves adjusting the regres-
sion between a normalized effect size (effect size divided by its standard error) and
the precision of effect size (inverse of the standard error of effect size). A publication
bias is detected if the intercept value of the regression line is significantly different
from zero. Another approach consists in estimating the number of missing studies
that might exist in a meta-analysis (Duval and Tweedie 2000).

Example: Yield Ratios for Organic and Conventional Cropping Systems
(Continued)
Figure 6.7 shows a funnel plot describing effect size (log ratio, x axis) and the
precision of effect size (inverse of the standard error, y axis). The relationship
between normalized effect size and precision is not significant ( p > 0.1). The
calculations were performed with the following R code (note that funnel plots can
also be drawn with the function funnel of the R package metafor):

LogRatio<-TAB$lnR

Precision<-1/sqrt(TAB$Var_lnR)

plot(LogRatio,Precision, xlab¼"log ratio", ylab¼"Precision")

abline(v¼Fit$coefficients$fixed)

LRnorm<-LogRatio*Precision

summary(lm(LRnorm~Precision))

In addition to attending to the points mentioned above, care is required in
evaluations of the validity of the hypotheses underlying the statistical models
used. The question of the choice between a fixed-effects and a random-effects
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Fig. 6.7 Funnel plot for the yield ratio example. Each point corresponds to a study. The vertical bar
indicates the mean effect size estimated with the lme function of R
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model is often posed in meta-analyses. The Q test presented above provides useful
elements for justifying this choice. In addition to the Q test, it is recommended to
compare the results of different types of models, to determine whether the choice of a
particular model is likely to affect the conclusions of the meta-analysis (Hossard
et al. 2016). The AIC can also be used to determine what kind of statistical model to
use. In addition to criteria of this type, the choice of model must also take into
account the context in which the meta-analysis is being performed. If strong hetero-
geneity between studies is suspected, it may be preferable to use a random-effects
model by default for quantitative analyses of the variability between studies.

An analysis of the residuals is strongly recommended when a meta-regression is
performed. This type of analysis can be used to evaluate the validity of the hypoth-
eses underlying the regression model adjusted for the data, particularly those
concerning the linearity of the data and the distribution of residuals. It is also
recommended to check for the existence of influential data or studies. Jackknife
approaches are useful in this respect (Philibert et al. 2012a). In such approaches, the
studies (or data) are removed one-by-one, with re-estimation of the quantities of
interest without the study (or datum) concerned.

Philibert et al. (2012a) proposed a list of eight criteria for the analysis of meta-
analysis quality:

– Presentation of a repeatable study selection procedure
– Presentation of a complete list of the studies selected
– Analysis of the interstudy variability of effect size
– Analysis of the sensitivity of the conclusions to the statistical method and data

used
– Studies weighted according to their precision
– Analysis of publication bias
– Accessibility of the data
– Accessibility of the computer code used.

This list makes it possible to check rapidly that the principal quality criteria are
satisfied when performing a meta-analysis.
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Chapter 7
Statistical Problems Specific
to Meta-analysis

7.1 Definition of Effect Size

The definition of effect size and its estimation study-by-study are important steps in
meta-analysis. In Chap. 6, effect size was defined as the log ratio of the mean for
observations for treatment E and for the control C. We present here other effect sizes
that may prove useful in certain contexts, and we explain how they can be estimated,
study-by-study.

7.1.1 Correction of Biases Linked to the Use of Ratios

The log ratio of the mean for the experimental treatment E and the mean for the
control C is frequently used in meta-analysis. As indicated in Chap. 6, the classic

estimator of this effect size is L ¼ ln XE

XC

� �
and the variance of the estimator can be

estimated as σ2L ¼ σ2C
nC �X

2
C þ σ2E

nE �X
2
E.

For small sample sizes (i.e. when only small numbers of data are available for
calculating each mean), these estimators are biased. It is possible to correct this bias
by using variants of the classic estimators, as defined by Lajeunesse (2015):

Lb ¼ ln
XE

XC

� �
þ 1
2

σ2E
� �
nEX2

E

� σ2C
� �
nCX2

C

" #
,with σ2Lb ¼ σ2L þ

1
2

σ4E

nE2X4
E

þ σ4C

nC2X4
C

" #
:

It is, however, less straightforward to interpret the estimator Lb than to interpret L,
because Lb is also dependent on the variance of the observations and sample size. A
value of Lb greater than 1 does not necessarily indicate that the mean of the
observations for treatment E is greater than that for the control C.
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Another problem concerns the correlations between log ratios based on the same
mean XC . This situation arises when at least two experimental treatments are
compared with the same control in an experiment. These log ratios cannot be
considered independent if they share the same control. It is, therefore, useful to
take into account the correlation between log ratios based on the same control in the
statistical analysis. The methods proposed by Lajeunesse (2011) make it possible to
do this. They can be applied with the assistance of the
covariance_commonControl() function of the R package metagear (Lajeunesse
2016).

7.1.2 Difference Between Observation Means

In addition to the log ratio presented in Chap. 6, the effect of a treatment on a
continuous variable (e.g. yield) can be measured by calculating the difference
between the mean of observations for treatment E and the mean of observations
for the control C, in other words, by calculating D ¼ XE � XC . If the theoretical
standard deviation for measurements of X is the same for C and E, then the standard

deviation of D can be estimated as S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nE�1ð ÞS2Eþ nC�1ð ÞS2C

nEþnC�2

q
, where SE and SC are the

standard deviations of measurements of X for E and C, respectively.
The use of D is justified when all the data of the various studies are expressed at

the same scale. If this is not the case, it is preferable to normalize D by dividing it by
S, and, thus, to use the effect size d defined as d ¼ D/S. Unlike D, the quantity d has
no units. Its standard deviation can be expressed as Sd ¼ nEþnC

nEnC
þ d2

2 nEþnCð Þ.
The quantity d defined above is biased (it overestimates the treatment effect if the

sample size is small). This bias can be corrected by multiplying d by a corrective
factor. This correction yields an effect size generally referred to as g (Hedges and
Olkin 1985) and defined as g ¼ Jd, where J ¼ 1� 3

4 nEþnC�2ð Þ�1. The standard

deviation of g is estimated as Sg ¼ JSd. However, the interpretation of g is not
straightforward, because its value depends on the observation means, their standard
deviations and sample size.

7.1.3 Effect Sizes for Binary and Count Data

Count data, corresponding to the number of occurrences of an event of interest, are
widely used. This is the case, in particular, when the objective is to analyze the
results of experiments testing one or several treatments for the control of a disease or
pest. In this case, the data for each experiment are presented as a contingency table of
the type presented in Table 7.1.
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It is possible to calculate different effect sizes to measure the efficacy of treatment
from the data presented in Table 7.1. For example, it is possible to estimate the
difference in the proportion of diseased plants, defined asDP ¼ PE � PC ¼ D

nE
� C

nC
,

and its standard deviation, σDP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PE 1�PEð Þ

nE
þ PC 1�PCð Þ

nC

q
.

It is also possible to calculate the logarithm of the ratio of proportions, defined as

LRP ¼ ln PE=PCð Þ ¼ ln D
nE
= C
nC

� �
and its standard deviation,

σLRP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PE 1�PEð Þ

nEPE
þ PC 1�PCð Þ

nCPC

q
.

Odds ratios (OR) are another type of effect size often used to measure the efficacy
of a treatment. The odds ratio is the ratio of the odds for the treatment E to the odds
for the control C: OR ¼ OE

OC
where OE ¼ PE

1�PEð Þ and OC ¼ PC
1�PCð Þ.

For example, with the data from Table 7.1, PE ¼ 0.05, PC ¼ 0.75, OE ¼ 0.053,
and OC ¼ 3. This means that, in the control group, a plant is three times more likely
to be diseased than to be healthy. The odds in the experimental group (E) are much
lower, just over 0.05. We can also say that a plant has a 19 times higher chance (0.95/
0.05) of not being diseased than of being diseased in the treatment group (E). The
odds ratio is equal to 0.053/3¼ 0.018 and thus lower than one, which indicates that a
plant has a markedly lower chance of being diseased in the treatment group (E) than
in the control group (C).

In general, we work with the logarithm of the OR. The standard deviation of log
OR (LOR) can be calculated in several ways, the simplest being
σLOR ¼ 1

A þ 1
B þ 1

C þ 1
D.

In a meta-analysis, the effect sizes presented above and their standard deviations
must be calculated study-by-study. The results can be presented as forest plots, as
explained in Chap. 6, and it is then possible to estimate the mean effect size with
fixed-effects or random-effects models, depending on the heterogeneity between
studies.

7.1.4 Correlation Coefficient

In some meta-analyses, it is useful to define the effect size as a coefficient of
correlation between two variables. This is the case when the objective is to quantify

Table 7.1 Hypothetical results of an experiment to test the effect of a treatment on the number of
diseased plants

Control (untreated
plants)

Experimental treatment (treated
plants)

Number of healthy
plants

A ¼ 5 B ¼ 19 A + B ¼ 24

Number of diseased
plants

C ¼ 15 D ¼ 1 C + D ¼ 16

nC ¼ A + C ¼ 20 nE ¼ B + D ¼ 20
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the strength of a relationship between two variables studied in different individual
studies. Each study reports a correlation coefficient estimated from a certain number
of data, and the meta-analysis makes it possible to combine the various correlation
coefficients.

Several precautions are required for the analysis of correlation coefficients. In
particular, when their values are close to one, their distribution tends to deviate
strongly from the Gaussian. For this reason, it is preferable to transform them by
calculating the following quantity (known as Fisher’s z): z ¼ 1

2 ln
1þr
1�r

� �
, where r is

Pearson’s correlation coefficient. The standard deviation of z can be estimated as
σz ¼ 1

n�3, where n is the number of data used to calculate r (Sokal and Rohlf 1995).
The values of z and σz can be analyzed with the models presented in Chap. 6.

7.1.5 Effect Sizes Based on Variance

Most meta-analyses study the effect of treatments on the mean response of a variable
of interest. However, several recent studies have highlighted the value of not
concentrating solely on studies of mean values, but of also studying the effect of
treatments on variance (Nakagawa et al. 2015; Lesur et al. 2017). For example, Lesur
et al. (2017) studied the differences in the interannual variability of yield between
organic and conventional cropping systems, with the aim of determining whether
organic systems resulted in higher or lower levels of yield stability.

Various metrics can be used for this purpose, including, in particular, the log ratio
of variances or the log ratio of coefficients of variation. The calculation and
weighting of these quantities were described by Nakagawa et al. (2015). It is also
possible to take the relationship between variance and mean into account with the
following statistical model based on the Taylor’s power law:

ln
�
σ̂ ij

� ¼ β0 þ b0i þ β1 þ b1ið ÞXij þ β2ln μij
� �þ εij

where σ̂ ij is the estimated standard deviation of the response variable studied in
treatment j of study i ( j¼ 1 for the control C, j¼ 2 for the experimental treatment E),
μij is the mean value of the response variable, β0, β1, and β2 are fixed effects, b0i and
b1i are random study effects, Xij is a binary variable (equal to zero for the control
C and equal to one for the experimental treatment E), and εij is the residual error. An
unbiased estimate of ln

�
σ̂ ij

�
can be obtained by calculating

ln
�
σ̂ ij

� ¼ ln sij
� �þ 1

2 n�1ð Þ, where s is the empirical standard deviation and n is

sample size. This estimate must be calculated for each study i and treatment j, and
weighted for its variance s2

ln
�
σ̂ ij
� ¼ 1

2 n�1ð Þ. This model is a mixed meta-regression

model (including both fixed and random effects). It can be fitted to the set of values
of ln

�
σ̂ ij

�
calculated for all studies with the procedures described in Chap. 6 using

the nlme or metafor R packages. The estimated value of β2 measures the effect of the
treatment on the variance of the response; a positive (negative) estimated value
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indicates that the treatment increases (decreases) the variance. Several variants of
this model can be developed to take into account the interaction between the effect of
the treatment and the mean effect, for example.

7.2 Generalized Linear Models for the Analysis
of Discrete Data

Generalized linear models generalize those presented in Chap. 6, for the analysis of
data with a non-Gaussian distribution, including discrete and count data in particular
(Agresti 2002). We raised the issue of this type of data in Sect. 7.1.3 and we have
already presented several quantities that can be computed from count data in Table 7.1.

For data corresponding to measurements of proportions, such as those presented
in Table 7.1, one widely used approach involves calculating odds ratios for each
individual study and then analyzing all the odds ratios together with a Gaussian
model of the linear mixed model type. However, the Gaussian approximation is not
always realistic, particularly when the observed proportions are close to zero or one.
In such cases, it is preferable to analyze all the data with a generalized linear model.

Below, we present a particular type of generalized linear model: the binomial
logit random-effects model. This model is useful for analyses of the effects of
treatments on the proportion of diseased individuals (plants, animals, humans)
(Makowski and Monod 2011; Makowski et al. 2014), and for analyses of epidemi-
ological surveillance networks (Michel et al. 2016, 2017).

7.2.1 Binomial Logit Random-Effects Model for Analyzing
the Effect of a Treatment

This model has two levels. The first describes the distribution of count data within a
study (e.g. measurements of the proportion of diseased plants in a plot), and the
second describes the variability of the true proportion between studies
(e.g. variability of the true proportion of diseased plants between plots) as a function
of treatment type. The model can be expressed formally in the following fashion:

YijeBinomial Nij; πij
� �

i ¼ 1, . . . ,I,j ¼ 1,2 ð7:1Þ

logit πij
� � ¼ ln

πij
1� πij

� �
¼ αi þ βiXij, with

αi
βi

� �eN μα
μβ

� �
;Σ

	 

ð7:2Þ

where Nij is the number of measurements collected for the jth treatment of the ith

study, Yij is the number of positive cases (e.g. the number of diseased plants among
the Nij plants observed in the ith study), πij is the true proportion (unknown) of
positive cases in the ith study, Xij is a binary variable equal to 1 if Yij was collected in
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the experimental treatment and equal to zero if Yij was collected in the control plot
(untreated),αi and βi are the parameters determining the value of πij for the control
and treatment in the ith study, respectively, μα and μβ are the expected values of the
parameters αi and βi (the “mean” values for all studies), and Σ is the two-by-
two variance-covariance matrix of αi and βi (which determines the between-study
variability of these parameters).

In this model, the odds ratio for the treatment relative to the control is exp(βi) for
the ith study, and the mean odds ratio for all studies is exp(μβ). The parameters of
model (7.1 and 7.2) can be estimated by maximum likelihood methods, taking into
account all the measurements from all the studies, with the glmer function of the R
package lme4, for example. The estimated values of the parameters can then be used
to estimate the odds ratios, both study-by-study, and as a mean value for all studies.
It is also possible to use the model to estimate the incidence study-by-study
exp αiþβiXð Þ

1þexp αiþβiXð Þand the global incidence
exp μαþμβXð Þ

1þexp μαþμβXð Þ.
Several variants of model (7.1 and 7.2) can be defined. It is, for example, possible

to include different types of covariable X, describing the characteristics of the
environment (variety, soil type, climatic conditions etc.), for example (Michel
et al. 2016, 2017). It is also possible to include additional random effects, to
distinguish site and year effects, for example (Michel et al. 2016, 2017). Finally, it
is sometimes useful to replace the binomial probability distribution by a Poisson
distribution when the measurements are not proportions but counts without fixed
upper limit (e.g. the number of insects observed on a plot).

7.2.2 Example

The objective of this example is to estimate the efficacy of a fungicide treatment for
controlling Phyllosticta citricarpa, a fungus that infects citrus crops (Makowski
et al. 2014). For this purpose, we will use the results of 16 trials performed in
different citrus groves located in different regions of the world. Each trial included
two treatments: a control treatment (untreated, X ¼ 0) and a fungicide treatment
(X ¼ 1). For each treatment, 300 to 2000 fruits were observed, and the number of
diseased fruits was determined.

The proportions of diseased fruits, the odds and odds ratios were calculated from
the observations, as indicated in Sect. 7.1.3. The results are presented in Fig. 7.1.
According to the trial results, between 14 and 94% of the fruits in the untreated
zones, and between 0 and 60% of those in the treated zones were diseased. The odds
are almost all greater than one for the controls (indicating a higher probability of
obtaining a diseased fruit than a healthy fruit), whereas they are almost all below one
in the treated zones (indicating a higher probability of obtaining a healthy fruit than a
diseased fruit).

The fungicide treatment systematically decreased the proportion of diseased fruits
(the odds ratios are all markedly lower than one on Fig. 7.1d), but the efficacy of
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fungicide treatment appears to vary considerably between situations. In some cases,
the proportion of diseased fruits was zero or close to zero, whereas, in others, it
remained high (Fig. 7.1a).

We will use model (4.1 and 4.2) here to estimate the mean efficacy of fungicide
treatment. The model was adjusted for the data from the 16 trials with the glmer

function of the R package lme4, with the following code:

Mod<-glmer(cbind(NbDiseasedF, NbFruits-NbDiseasedF)~Fung_Gp+(1

+Fung_Gp|Code), family¼binomial, data¼DataSetT)

summary(Mod)

The results obtained with the summary() function are presented below:

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: cbind(NbDiseasedF, NbFruits - NbDiseasedF) ~ Fung_Gp + (1 +

0.0 0.2 0.4 0.6 0.8 1.0

Proportion of diseased fruits

A.                                                  

0 5 10 15

Odds in control groups

B.                                                  

0.0 0.5 1.0 1.5

Odds in treatment groups

C.                                                  

0.00 0.05 0.10 0.15

Odds ratio

D.                                                  

Fig. 7.1 Proportions of diseased fruits in the control (white points) and fungicide-treated (black
points) zones (a), odds for the control zones (b), odds for the treated zones (c), and odds ratios (d).
Each horizontal line on each graph corresponds to a trial including an untreated zone (control) and a
zone treated with fungicide to control Phyllosticta citricarpa. Odds ¼ proportion of diseased fruits/
proportion of healthy fruits. Odds ratio ¼ odds in the treated zone/odds in the untreated zone
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Fung_Gp | Code)
Data: DataSetT

AIC BIC logLik deviance df.resid
372.9 380.2 -181.4 362.9 27

Scaled residuals:
Min 1Q Median 3Q Max
-1.02235 -0.08930 0.00707 0.03915 0.45596

Random effects:
Groups Name Variance Std.Dev. Corr
Code (Intercept) 1.241 1.114

Fung_Gp 2.317 1.522 -0.02
Number of obs: 32, groups: Code, 16

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.0221 0.2798 3.653 0.000259 ***
Fung_Gp -3.8618 0.3932 -9.822 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
(Intr)

Fung_Gp -0.028

The values indicated in the Random effects section correspond to the values of
two variances, standard deviations and the correlation of the random effects αi and βi
(i.e. the content of the matrix Σ). The values indicated in the Fixed effects section
correspond to estimates of μα and μβ, the standard deviations of the estimators and
the results of tests of equality to zero for μα and μβ. These tests clearly indicate, in
this case, that the estimated values are significantly different from zero. The value of
�3.8618 corresponds to the log odds ratio. The negative sign indicates that the
fungicide treatment decreases the risk of disease. The odds ratio is equal to the
exponential of �3.8618, i.e. 0.021. Its 95% confidence interval can be calculated
with the following R code:

exp(fixef(Mod)[2]-1.96*sqrt(vcov(Mod)[4]))

exp(fixef(Mod)[2]+1.96*sqrt(vcov(Mod)[4]))

We obtain a 95% confidence interval of [0.0097–0.045] for this example. As this
interval does not include the value 1, the odds ratio can be considered to be
significantly lower than one, confirming the ability of the fungicide to decrease the
incidence of the disease. It is also possible to estimate the mean proportion of
diseased fruits in the treated and untreated zones, and their associated 95% confi-
dence intervals:
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##Untreated

#Estimated incidence

exp(fixef(Mod)[1])/(1+exp(fixef(Mod)[1]))

#Lower limit of the 95% CI

exp(fixef(Mod)[1]-1.96*sqrt(vcov(Mod)[1]))/(1+exp(fixef(Mod)[1]-1.96*sqrt

(vcov(Mod)[1])))

#Upper limit of the 95% CI

exp(fixef(Mod)[1]+1.96*sqrt(vcov(Mod)[1]))/(1+exp(fixef(Mod)[1]

+1.96*sqrt(vcov(Mod)[1])))

##Treated

#Variance of the estimated expected logit value

VAR<-vcov(Mod)[1]+vcov(Mod)[4]+2*vcov(Mod)[2]

#Estimated incidence

exp(fixef(Mod)[1]+fixef(Mod)[2])/(1+exp(fixef(Mod)[1]+fixef(Mod)[2]))

#Lower limit of the 95% CI

exp(fixef(Mod)[1]+fixef(Mod)[2]-1.96*sqrt(VAR))/(1+exp(fixef(Mod)[1]

+fixef(Mod)[2]-1.96*sqrt(VAR)))

#Upper limit of the 95% CI

exp(fixef(Mod)[1]+fixef(Mod)[2]+1.96*sqrt(VAR))/(1+exp(fixef(Mod)[1]

+fixef(Mod)[2]+1.96*sqrt(VAR)))

The estimated proportion of diseased plants is 0.74 [0.62, 0.83] for the untreated
zone and 0.06 [0.02, 0.13] for the treated zone. We would therefore expect there to
be, on average, about 2–13% diseased fruits after the application of a fungicide
treatment. Although the treatment is able to reduce the disease incidence substan-
tially, it cannot completely control the disease.

7.3 Non-linear Mixed Models

7.3.1 Utility and Definition

Non-linear mixed models are another type of extension of the linear mixed models
presented in Chap. 6. Like linear models, they can be used to analyze measurements
of a continuous response variable, but non-linear models can also be used to take the
non-linear relationships between one or several explanatory variables X and the
response variable of interest Y, into account when modeling. If linear models provide
an unrealistic description of the relationship between X and Y, it may be interesting to
use a non-linear model. Such models can be formulated in different ways. We
provide a simple formulation below:
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Yij ¼ f Xij; θi
� �þ Eij i ¼ 1, . . . ,I;j ¼ 1, . . . , ni ð7:3Þ

θieN μ;Σð Þ EijeN 0; σ2E
� � ð7:4Þ

where Yij is the j
th measurement obtained in the ith study, f() is a non-linear function,

θi is a parameter vector specific to the ith study, Xij is a variable vector (for
continuous or discrete variables) with an effect on the response variable, μ is the
vector for the expected values of the parameters θi (“mean” values of the parameters
in the population of studies), Σ is the variance-covariance matrix of θi (which
determines the between-study variability of the parameters), and σ2E is the residual
intra-study variance (representing the variability unexplained by X in the studies).

Equation (7.3) describes the response to Y as a function of X in each study i.
Eq. (7.4) describes the between-study variability. There are many variants of model
(7.3 and 7.4) based on other hypotheses concerning the distribution of the parameters
and the residual error, but model (7.3 and 7.4) is appropriate for use in numerous
situations (see the example below). The parameters of non-linear mixed models can
be estimated with the nlme package (function nlme()) or with the saemix package.

7.3.2 Example

The objective is to estimate the response, in terms of N2O (a greenhouse gas
produced in large amounts by agricultural activities, including the application of
nitrogen fertilizer in particular) emissions, to the dose of nitrogen fertilizer applied
(Philibert et al. 2012; Gerber et al. 2016). We use here measurements of N2O
emissions collected in 203 experimental studies (corresponding to different site-
years). In each study, several doses of fertilizer were applied to different experimen-
tal plots and N2O emissions were measured (in kg ha�1 year�1) on each plot. In total,
985 values for N2O emission are available. As an illustration, the measurements
obtained in nine of the 203 experimental studies are presented in Fig. 7.2. This figure
shows that the form of the emission response to fertilizer dose varies considerably
between studies. The response is very strong in some studies and quite weak in
others. The response does not seem to be linear: the emissions increase strongly for
doses above 200 or 250 kg.ha�1.

For estimation of the response, we adjust model (7.3 and 7.4) for the data, using
an exponential function (Philibert et al. 2012; Gerber et al. 2016) defined as follows:

f Xij; θi
� � ¼ exp θ0i þ θ1iX1ij þ μ2X2ij

� � ð7:5Þ

where X1ij is a continuous variable representing the dose of fertilizer applied to the j
th

plot of the ith study, and X2ij is a binary variable indicating whether the crop
implemented in the ith study is inundated rice. An “inundated rice” effect was
added to the model because N2O emissions are known to be lower for this crop.
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With this model, θ0i and θ1i follow a normal distribution, with expected values
μ0 and μ1. The “rice” effect is assumed to be fixed. Other variants have been tested,
but the results showed them to be less satisfactory (Philibert et al. 2012; Gerber et al.
2016). According to Eq. (7.5), the mean emission response to fertilizer application at
dose X1 is exp(μ0 + μ1X1 + μ2) for rice crops, and exp(μ0 + μ1X1) for other crops.

The model was adjusted for the data with the nlme function, with the code below:

#Definition of dataset structure

groupedTAB <- groupedData(N20 ~ N_rate+Rice | Ref_num, data ¼ TAB)

#Adjustment of the model

model<-nlme(N20~exp(theta0+theta1*N_rate+theta2*Rice),

data¼groupedTAB,

fixed¼theta0+theta1+theta2~1,random¼pdDiag(theta0+theta1~1),

start¼c(theta0¼ 1.46, theta1¼ 0.002, theta2¼0))

By contrast to linear models and generalized linear models, it is necessary to
initialize the estimation algorithm of the non-linear model with initial values. In
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Fig. 7.2 Examples of the measurements of N2O emissions obtained in nine experiments, following
the application of various doses of N fertilizer
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nlme, these values are specified with the argument start. The estimated values of μ0,
μ1 and μ2 are 0.24, 0.0038, and � 1.14, respectively. All these values are signifi-
cantly different from zero ( p < 0.01). The positive sign of the value estimated for μ1
indicates that the emissions increase with the dose of N fertilizer. The negative sign
of the value estimated for μ2 indicates that the emissions are lower for inundated rice,
as expected. These results are presented in Fig. 7.3, which shows the estimated
responses for the two types of crop.

7.4 Bayesian Models

7.4.1 Definition

There are many works describing the principles of Bayesian statistics and the
methods for their use (e.g. Gelman et al. 2014; Biobayes 2015). We provide here
only a few basic elements.

The Bayesian approach can be used to integrate two types of information for
estimation of the parameters of interest: (i) prior information (available before the
data are obtained), which may originate from an expert opinion, the scientific
literature or previous analyses, for example, and (ii) the data.

In Bayesian statistics, the parameters are not considered to be fixed, but are
instead treated as random variables distributed according to certain probability
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Fig. 7.3 Estimated responses of N2O emissions to the dose of N fertilizer, for rice and for other
crops
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distributions. These probability distributions describe our uncertainty about the
values of the parameters. Each parameter is characterized by two probability distri-
butions: the prior and posterior distributions. The prior distribution represents the
initial uncertainty on the value of the parameter (before the acquisition of data).
When little information other than the collected data is available, the prior distribu-
tion is considered to be poorly informative, as it can provide little information about
the possible values of the parameter or parameters to be estimated. The posterior
distribution describes the final uncertainty, once the data have been taken into
account. The posterior distribution is calculated from a combination of the prior
distribution and the available data, in the framework of probability theory, using
Bayes’ theorem.

All the statistical models described in Chaps. 2, 3, 4, 5 and 6 can be formulated in
a Bayesian framework. This formulation requires definition of the prior distribution
of the parameters. We illustrate this approach here for the random-effects model
defined in Sect. 6.2.4 to calculate mean effect size in a meta-analysis. As in classical
statistics, this model is defined as follows:

Li ¼ μþ bi þ εi

where Li is the estimated effect size for study i (e.g. log ratio), μ is the expected effect
size across all the studies of the population considered, bi is a random effect of
“study” describing the difference between the effect size of study i (μ + bi) and the
expected effect size μ, and εi is the difference between Li and μ + bi (residual error).
The variances of bi, εi and Li are:

var bið Þ ¼ σ2b
var εið Þ ¼ σ2i
var Lið Þ ¼ σ2b þ σ2i

For estimation of the parameters of this model in a Bayesian framework, we need
to define the prior distribution for each unknown parameter. For example, the prior
distribution of μ may be defined as a normal distribution. If we know nothing about
μ, then the expected mean of the normal distribution can be fixed at zero and its
variance can be fixed at a very large value (e.g. 108), so as to define a very flat
distribution. The prior distribution of σ2b cannot be defined as a normal distribution
because the variance can only take positive values (normal distributions have no
bound). An inverse-gamma distribution is often used to define the prior distributions
of variances, because such distributions are defined for [0, +1), making it possible
to have a weakly informative distribution provided an appropriate parametrization is
chosen (see the example below). If the intra-study variances σ2i are assumed to be
known (which is often the case in meta-analyses, in which they are extracted from
the articles), it is not necessary to define a prior distribution for these parameters. By
contrast, if these variances are unknown, a prior distribution must be defined for
each, as for σ2b.
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Once the model has been defined, the posterior distribution is calculated from the
data, for all the unknown parameters. In practice, the posterior distribution can only
rarely be calculated analytically, and this determination requires an algorithm.
Markov-chain Monte Carlo (MCMC) methods are the most widely used algorithms
for this purpose. They can be implemented with statistical software, such as the
MCMCglmm package (Hadfield 2010). This package can be used to adjust the
linear and generalized models described in Chaps. 2, 3, 4, 5, 6 and 7 in a Bayesian
framework. An application is presented below.

7.4.2 Example: Meta-analysis with MCMCglmm

We will come back here to the problem of estimating yield losses due to a switch
from conventional to organic cropping systems based on the data from 65 studies
extracted from the scientific literature (see Chap. 6). We will use here the random-
effects model defined above (Sect. 7.4.1) to estimate mean effect size (yield ratio) in
a Bayesian framework, with the MCMCglmm package (Hadfield 2010).

The prior distribution for the expected mean log yield ratio (μ) is defined as a
normal distribution with an expected mean value of zero and a variance of 108. This
variance is sufficiently large for the prior distribution to be weakly informative. The
prior distribution of the interstudy variance (σ2b) is defined as a weakly informative
inverse-gamma distribution with parameters fixed at 0.5 (V ¼ 1 and nu ¼ 1,
according to the parameterization used by Hadfield 2010). The intra-study variances
(σ2i ) should be set equal to the variances of the log yield ratios extracted from the
articles (as in Sect. 6.2.4). Nevertheless, theMCMCglmm package adds, by default,
an additive Gaussian overdispersion defined by a residual variance estimated from
the data (denoted R in MCMCglmm). The prior distribution of this variance is also
defined as a gamma distribution, with parameters fixed at 0.5 here.

During the use of MCMCglmm, certain parameters must be specified to tune the
MCMC algorithm, including, in particular, the total number of iterations (argument
nitt), the burn-in period (argument burnin, indicating the number of iterations
eliminated from the front of the chain), and the number of consecutive iterations
eliminated along the entire length of the chain, to decrease autocorrelation (argument
thin). The values of these regulatory parameters can be fixed on the basis of a
diagnosis performed with the gelman.plot and autocorr functions of the coda

package (see below).
The model is adjusted with the following code:

library(MCMCglmm)

#Definition of priors, B for mu, R for residual variance and G for the

#interstudy variance

prior1<-list(B¼list(mu¼0,V¼10^8), R¼list(V¼1,nu¼1),G¼list(G1¼list(V¼1,

nu¼1)))

#Adjustment of the model with 50000 iterations of MCMC, a burn-in period of
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#10000 iterations, and the elimination of 90% of the iterations to reduce auto-

correlations

Mod_mcmc<-MCMCglmm(lnR~1,random¼~Study, mev¼Data$Var_lnR,

data¼Data, verbose¼F, nitt¼50000, thin¼10, burnin¼10000,

prior¼prior1,pr¼TRUE)

#Visualization of the adjustment summary

summary(Mod_mcmc)

#Graph of the value chain for the parameter mu

plot(Mod_mcmc)

The results obtained for the parameter μ are presented in Fig. 7.4. The values
presented in this figure are the values of μ generated by the MCMC algorithm. These
values can be extracted from the object Sol generated by MCMCglmm

(Mod_mcmc$Sol[,1]). They can be used to describe the prior distribution of
yield (the exponential of μ), including, in particular, its mean and quantiles:

mean(exp(Mod_mcmc$Sol[,1]))

quantile(exp(Mod_mcmc$Sol[,1]), 0.025)

quantile(exp(Mod_mcmc$Sol[,1]), 0.975)

These results were obtained with 4000 values from the MCMC presented in
Fig. 7.4 (50,000 values in total – 10,000 values for the burn-in period ¼ 40,000;
40,000/10 ¼ 4000). The results obtained are similar to those obtained with the
Dersimonian and Laird method (Chap. 6; the posterior mean is 0.78 and the 95%
interval of credibility is [0.70–0.87]).

Fig. 7.4 Values generated by MCMCglmm for the parameter μ (log ratio for yield) (graph on the
left) and visualization of the posterior probability density of μ (graph on the right)
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The convergence of the MCMC algorithm should be checked by the generation of
several chains of values (at least three) and the comparisons of variances within and
between chains with the gelman.plot function of the coda package. An example
based on three chains is presented below, and the results are presented in Fig. 7.5:

Mod_mcmc_1<-MCMCglmm(lnR~1,random¼~Study, mev¼Data$Var_lnR,

data¼Data, verbose¼F, nitt¼50000, prior¼prior1)

Mod_mcmc_2<-MCMCglmm(lnR~1,random¼~Study, mev¼Data$Var_lnR,

data¼Data, verbose¼F, nitt¼50000, prior¼prior1)

Mod_mcmc_3<-MCMCglmm(lnR~1,random¼~Study, mev¼Data$Var_lnR,

data¼Data, verbose¼F, nitt¼50000, prior¼prior1)

ChainList<-mcmc.list(Mod_mcmc_1$Sol,Mod_mcmc_2$Sol,

Mod_mcmc_3$Sol)

gelman.plot(ChainList)

In Bayesian statistics, it is recommended to analyze the sensitivity of the results to
the posterior distributions. Here, we repeat the analysis with a prior distribution that

Fig. 7.5 Graph of the Gelman and Rubin factor for the diagnosis of chain convergence. A value
below 1.02 is considered satisfactory. Here, the algorithm converges after a few thousand iterations.
In this case, a burn-in period of 10,000 iterations is, thus, largely sufficient
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is slightly more informative for the two variances, corresponding to a gamma
distribution with nu/2 ¼ 0.001:

prior1<- list(B¼list(mu¼0,V¼10^8), R¼list(V¼1,nu¼0.002),G¼list(G1¼list

(V¼1,nu¼0.002)))

The results are very similar. The posterior mean is 0.78 and the 95% credibility
interval is [0.72–0.85].

One of the advantages of the Bayesian approach is that it can be used for
sophisticated analyses of uncertainty. It is, thus, possible to describe the posterior
distribution of any quantity dependent on the parameters of the model considered.
For example, Fig. 7.6 presents the ranks of the 65 studies according to their
estimated yield ratios (organic/conventional). The studies were ranked with the aid
of 4000 values of μ + bi, i ¼ 1, . . ., 65, generated by MCMCglmm. This approach
generated 4000 classifications, corresponding to 4000 ranks for each study. Each
rank distribution can therefore be summarized by the median rank, and the first and
third quartile ranks (other choices are also possible). The code used is described
below and the results are presented in Fig. 7.6:

SolRank<-apply(Mod_mcmc$Sol[,2:65],1,rank)

ResultSolRank<-matrix(nrow¼64,ncol¼3)

for (i in 1:64) {

ResultSolRank[i,]<-c(median(SolRank[i,]), quantile(SolRank[i,],0.25),

quantile(SolRank[i,], 0.75))

}

TABrank<-data.frame(row.names(SolRank),ResultSolRank)

TABrank<-TABrank[order(TABrank[,2]),]

dotchart(TABrank[,2],labels¼TABrank[,1], xlim¼c(0,65),xlab¼"Ranking of

experimental studies", pch¼19)

for (i in 1:64) {

lines(c(TABrank[i,3],TABrank[i,4]),c(i,i))

}

Figure 7.6 shows that the ranks are generally uncertain. Some studies tend to
better ranked than others. Studies 33, 56 and 43 are the highest ranked because their
estimated ratios are the highest. Studies 9, 27 and 41 are the lowest ranked because
they have lower ratios (i.e. greater yield losses associated with the switch to organic
cropping systems). However, most of the studies cannot be ranked relative to each
other with a high degree of confidence.
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Fig. 7.6 Ranks of the 65 studies according to the ratio of organic to conventional yields. The
studies with the highest ratios are the highest ranked. The points correspond to the median rank and
the bars indicate the interquartile range
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Appendix: R Resources to Implement Network
Analysis and Meta-analysis Methods

This appendix presents the computer resources used in this book to implement
network analysis and meta-analysis methods. It details the content of the KenSyn
R package (R Core Team 2019), developed specifically for this book. This package
contains both the data sets used in the examples and the R functions used in the
statistical analyses. Some of the functions presented here are essential to implement
the mixed model. Other functions facilitate the extraction of information from
adjusted models, the analysis of uncertainties associated with estimates or the
formatting of results according to conventional standards.

KenSyn Package: R Code and Data Sets of the Examples
Presented in the Different Chapters

All the examples presented in this book have been gathered together into a KenSyn
R package for “Knowledge Synthesis in Agriculture”.

Installation

You can install the KenSyn package from the CRAN repository (http://cran.r-
project.org/web/packages/KenSyn), if you have an Internet connection, by following
these instructions:

• Step 1: click on “Packages” in the R menu and select “Install the package(s).... ”.
• Step 2: Choose the "0-Cloud" location or a location near you from the list of

mirror download sites.
• Step 3: Choose “KenSyn” from the list of available packages.
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• Step 4: Check the message in the console window indicating that this installation
has been successful. Any dependencies are installed.

Another way to install the KenSyn package is to execute the following instruc-
tion in the R console.

install.packages ("KenSyn", rest = "http://cran.rstudio.com")

You can also use an R editor like Rstudio (https://www.rstudio.com), which
makes it easier to write code, explore results and install R packages.

The current version of KenSyn is version 0.3 (April 2019). It is fully functional
with the current version of R (version 3.5.3). As nlme and lmer packages have
evolved very regularly, it is recommended to have a recent version of R and it is
possible that slightly different results may be obtained depending on the versions of
R and the different packages.

In addition to KenSyn, depending on the examples, you may need to install other
packages used in the different example of this book. They are then loaded at the
beginning of the various scripts by the function library(package_name). To do this,
proceed in the same way as for KenSyn package.

Content and Use

The KenSyn package is an R package (a library) that brings together data sets,
examples, and functions in a shareable and documented form. This package includes
the code in the form of a demo for all the examples that are provided in this book
(thus you can run them yourself) and the necessary data sets.

Examples in the Form of Demos
To see all the demo scripts, you can run the following lines

library(KenSyn)

demo(package="KenSyn")

A table similar to the one presented in Table 1 will be displayed. The beginning of
the name (chxxx_) allows you to match the chapters of this book.

Then, to execute a demo script, you must specify the name and execute the
following instruction.

demo(ch01_mixedmodel_nlme, package="KenSyn")
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The script is then executed step by step in an interactive way. Simply press the
Enter key on the keyboard in the console area to execute the following instructions
and see the results appear as they are computed, either in the console area or in the
graphics area.

It is quite convenient to get the r script directly. This script is stored in the
installation directory of the package on your computer, you can know the path
with the following instruction, remembering to add the extension .r after the name
of the example.

system.file("demo", "ch01_mixedmodel_nlme.r", package = "KenSyn")

[1] "D:/XXXXXX/Documents/R/win-library/3.5/KenSyn/demo/
ch01_mixedmodel_nlme.r"

Table 1 List of scripts containing the examples as R demo files in the KenSyn package

Name of the demo Description

ch01_mixedmodel_nlme ch01. Simple mixed-effects model example on wheat yield
(with nlme and lme4)

ch03_network_compblock ch03. Network of experiments: complete blocks. Wheat vari-
eties on a single year

ch04a_network_mean_data Ch04a. Network of experiments: Wheat varieties on a single
year. Analysis of means of data

ch04b_network_hetero_var ch04b. Network of experiments: Wheat varieties on a single
year. Heterogeneous variances

ch04c_network_pluriannual ch04c. Network of experiments: Wheat varieties on several
years

ch06a_metaanalysis_organic ch06. Meta-analysis comparing organic vs conventional
cropping system with (nlme and metafor)

ch06b_metaanalysis_metareg ch06. Meta-analysis: code for illustrating the main principles
of meta-regression (with nlme)

ch06c_metaanalysis_metareg_m ch06. Meta-analysis: code for illustrating the main principles
of meta-regression (with metafor)

ch07a_metaanalysis_citrus ch07. Meta-analysis to estimate the effectiveness of a fungi-
cidal treatment to control Phyllosticta citricarpa, a citrus
disease (with lme4)

ch07b_metaanalysis_N2O ch07. Meta-analysis to estimate the response of N2O emis-
sions to the applied N fertilizer rate (with nlme)

ch07c_metaanalysis_bayesian ch07. Meta-analysis with Bayesian approach: comparing
organic vs conventional cropping system (with MCMCglmm)

others_network_machines Others. Network of experiments: complete blocks. Test of
worker performance on machine

others_network_var_itk Others. Network of experiments: Wheat varieties with differ-
ent crop managements

others_network_var_soil Others. Network of experiments: Wheat varieties with 2 dif-
ferent soils
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You can then open it in your code editor and save it in your working directory.
Another way is to access the example code via the R help interface. To do this,

you execute the instruction.

help(KenSyn)

The package help page appears in your browser. You must then go to the very
bottom of this page, to access the index. Then a “Code Demo” link allows you to
access the entire list of examples as a demo. This script can then be copied to work
on it. Note that this access does not work under current R studio version.

Data Sets
To see all the data sets used in the different examples and mobilized in the demo
scripts, you can execute the following instruction.

library(KenSyn)

data(package="KenSyn")

A table similar to the one presented in Table 2 is then displayed.
Then by launching a specific dataset help, you have a brief description of the

origin and structure of the data.

help(wheat_var)

Table 2 List of data sets in the KenSyn package

Data set Description

N2O Meta-analysis dataset to estimate the response of N2O emissions to the
applied N fertilizer rate

Citrus Meta-analysis dataset: estimation the effectiveness of a fungicidal treatment to
control Phyllosticta citricarpa, a citrus fungus

machines Workers testing a new machine.

Organic Meta-analysis dataset on comparison of organic to conventional crop systems.

wheat_var Network of experiment to evaluate Wheat varieties on one single year

wheat_var_itk Network of experiment to evaluate Wheat varieties on one single year with
different cropping systems

wheat_var_soil Network of experiment to evaluate Wheatvarieties on two contrasted soils

wheat_var_years Network of experiment to evaluate Wheat varieties on several years (2005–
2010)

wheatyield Wheat Yield at a regional scale (fake data)
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The data set is accessible as soon as the package is loaded and can be used, for
example, as follows:

# see the structure

str(wheat_var)

# see the first lines of the data set

head(wheat_var)

# or a histogram with the values of all the yields

hist(wheat_var$rendement)

Implement the Mixed-Effects Model Under R

Adjust a Mixed-Effects Model

Two main R packages are available to implement the mixed-effects model under
R. These are packages that are widely used and well maintained by the community.
Nevertheless, the evolution dynamics of these packages has remained strong in
recent years and in a number of cases we regularly face code problems related to
incompatibilities between versions.

To fit a mixed-effect model, there are two packages that are widely used in the R
community.

nlme Package
The package nlme (Nonlinear Mixed-Effects Models, Pinheiro et al. 2017) is
dedicated to the adjustment and comparison of linear and non-linear Gaussian
mixed-effects models.

• The generic lme function (Linear Mixed-Effects Models) allows non-linear
mixed-effects models (fixed and random) to be adjusted according to the formu-
lation described by Laird and Ware (1982) by allowing nested random effects.
Intra-group errors can be correlated and/or have unequal variances. It returns an
object containing the fitted model.

In the example above, we model the variable Rdt by an intercept with a random
effect on this intercept by Site. The data set containing the variables is wheatyield.

lme(Rdt~1, random=~1|Site, data= wheatyield)
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• The groupedData function allows you to structure a dataset according to a
precise formula and the object created is then directly usable by modeling
functions as lme.

In the example above, we have the same example as before, but with the
preliminary step of structuring the data.

gData= groupedData(Rdt~1|Site, data= wheatyield)

lme(gData)

lme4 Package
The lme4 package (Linear, generalized linear, and nonlinear mixed models, Bates
et al. 2015) is dedicated to the adjustment and analysis of mixed-effect models, with
different functions for each type of model.

• The lmer function is used to adjust linear mixed-effect models.

The example shows you the same simple model with the lmer function.

lmer(Rdt~1+(1|Site), data= wheatyield)

• The glmer function is used to adjust generalized linear models with mixed
effects.

• The nlmer function is used to adjust non-linear mixed-effect models.

Work with the Results of the Mixed Models Under R

Basic Features
Various generic functions allow to extract useful information in a readable format
from objects resulting from mixed-effect model adjustments (but also from other
models)

Let’s save the result of the adjustment of a model defined with nlme or lmer into an
object named fit.

fit = lme(Rdt~1, random=~1|Site, data= wheatyield)
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• summary formats the main results of a fitted model in a readable form.

summary(fit)

• fitted retrieves the adjustments by the model.

fitted(fit)

• residuals retrieves the residuals.

residuals(fit)

• ranef display random effects.

ranef(fit)

• predict make predictions with the model, on the same data as used for the
adjustment. In this case, this corresponds to the results of the fitted function.

predict(fit)

Or predict with new data, with in this case, the site effect that can be taken into
account if the site was in the data set used to fit the model. Thus, in the example, the
prediction for data from site 3 is computed.

predict(fit, newdata= data.frame(Site=3,Rdt=NA))

Emmeans Package
The emmeans package (Lenth 2017) computes the estimated marginal means
(EMM) for specified factors or combinations of factors in a linear model and,
possibly, comparisons or contrasts between them. EMMs are also known as "least
square means". It replaces the obsolete Ismeans package.
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• emmeans calculates adjusted means for each level of a factor.
• pairs performs all 2–2 comparisons between means using the "tukey" method to

adjust the probability of tests to take into account the multiplicity of tests.
• cld build homogeneous groups.
• contrast, used with the "eff" method, calculates all the differences between each

level and the overall mean. The "sidak" adjustment method adapts the probability
of tests to take into account the multiplicity of tests. Used with the argument
method¼"trt.vs.ctrl" and ref¼n, contrast allows to compare all levels to level n.

• confint computes confidence intervals of the differences between the levels and a
control level or the confidence intervals for the effects of a variable, depending on
the contrast method.

This package requires the pbkrtest and lmerTest packages for some tests.

Car Package
The car package (Companion to Applied Regression) contains functions and exam-
ple of a book (Fox and Weisberg 2011). The Anova function is mainly used to
calculate the analysis of variance table (with a capital A, different from the basic
anova function).

Outliers Package
The outliers package (Komsta 2011) contains tests commonly used to identify
outliers and in our case it can be used to detect suspicious residues.

The Metafor Package, to Performing Meta-analyses Under R

The metafor package (A Meta-Analysis Package for R) provides a complete
collection of functions for performing meta-analyses in R (Viechtbauer 2010). The
package includes functions to calculate different effect sizes or results frequently
used in meta-analyses. It allows the user to adjust different models with fixed,
random or mixed-effects. Finally, it provides analyses and graphs traditionally
used in meta-analyses.

• escalc is used to calculate the effect size.
• rma.uni adjusts linear models for meta-analyses with fixed, random or mixed-

effects.
• forest allows you to plot the forest graph with the effect sizes very often used in

meta-analysis.
• funnel allows you to draw a plot to evaluate possible publication biases.
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Bayesian Approach with the Mixed-Effect Model

MCMCglmm Package
The MCMCglmm package (MCMC Generalised Linear Mixed Models, Hadfield
2010) is used to implement generalised linear mixed-effects models in a Bayesian
framework using Markov Chain Monte Carlo (MCMC). TheMCMCglmm function
applies the Markov Chain Monte Carlo sampler to adjust generalized linear mixed-
effects models.

Coda Package
The coda package (Plummer et al. 2006) provides functions to summarize and plot
the chains sampled by Markov Chain Monte Carlo methods and to perform diag-
nostic tests of convergence to the equilibrium distribution of the Markov chain. The
gelman.plot function plots the evolution of the Gelman and Rubin factor as a
function of the number of iterations to diagnose graphically the convergence of the
MCMC algorithm.
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