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Preface
Python	Artificial	Intelligence	Projects	will	help	you	to	build	smart	and	practical
AI-based	systems	leveraging	deep	learning	and	reinforcement	learning.	The
projects	illustrated	in	this	book	cover	a	wide	range	of	domain	problems	related
to	healthcare,	e-commerce,	expert	systems,	surveillance	fashion	industry,
mobile-based	applications,	and	self-driving	cars	using	techniques	such	as
convolutional	neural	networks,	deep	reinforcement	learning,	LSTM-based
RNNs,	restricted	Boltzmann	machines,	generative	adversarial	networks,	machine
translation,	and	transfer	learning.	The	theoretical	aspects	of	building	the
intelligent	applications	illustrated	in	this	book	will	enable	the	reader	to	extend
the	projects	in	interesting	ways	and	get	them	up	to	speed	in	building	impactful
AI	applications.	By	the	end	of	this	book,	you	will	be	skilled	enough	to	build
your	own	smart	models	to	tackle	any	kind	of	problem	without	any	hassle.

	

	

	



Who	this	book	is	for
This	book	is	intended	for	data	scientists,	machine	learning	professionals,	and
deep	learning	practitioners	who	are	ready	to	extend	their	knowledge	of	AI.	If
you	want	to	build	real-life	smart	systems	that	play	a	crucial	role	in	every
complex	domain,	then	this	book	is	what	you	need.

	

	

	



What	this	book	covers
Chapter	1,	Foundations	of	Artificial	Intelligence	Based	Systems,	covers	the	basics
of	how	to	build	smart	artificial	systems	using	machine	learning,	deep	learning,
and	reinforcement	learning.	We	will	be	discussing	various	artificial	neural
networks,	including	CNNs	for	image	processing	purposes	and	RNNs	for	natural
language	processing	purposes.

Chapter	2,	Transfer	Learning,	covers	how	to	use	transfer	learning	to	detect
diabetic	retinopathy	conditions	in	the	human	eye,	and	to	determine	the
retinopathy's	severity.	We	will	explore	CNNs	and	learn	how	to	train	a	model
with	CNN	that	is	capable	of	detecting	diabetic	retinopathy	in	fundus	images	of
the	human	eye.

Chapter	3,	Neural	Machine	Translation,	covers	the	basics	of	recurrent	neural
network	(RNN)	architectures.	We	will	also	learn	about	three	different	machine
translation	systems:	rule-based	machine	translation,	statistical	machine
translation,	and	neural	machine	translation.

Chapter	4,	Style	Transfer	in	Fashion	Industry	using	GANs,	explains	how	to	create
a	smart	AI	model	to	generate	shoes	with	a	similar	style	to	a	given	handbag	and
vice	versa.	We	will	be	using	the	Vanilla	GAN	to	implement	the	project	using
customized	versions	of	the	GAN,	such	as	a	DiscoGAN	and	a	CycleGAN.

Chapter	5,	Video	Captioning	Application,	discusses	the	role	of	CNNs	and	LSTMs
in	video	captioning	and	explains	how	to	build	a	video	captioning	system
leveraging	the	sequence	to	sequence—video	to	text	architecture.

Chapter	6,	The	Intelligent	Recommender	System,	discusses	recommender	systems,
which	are	information	filtering	systems	that	deal	with	the	problem	of	digital	data
overload	to	pull	out	items	or	information	according.	We	will	be	using	latent
factorization	for	collaborative	filtering	and	use	a	restricted	Boltzmann	machine
to	build	recommendation	systems.	

Chapter	7,	Mobile	App	for	Movie	Review	Sentiment	Analysis,	explains	how
machine	learning	as	a	service	is	used	to	benefit	mobile	apps.	We	will	be	creating



an	Android	mobile	app	using	TensorFlow	that	will	take	reviews	of	movies	as
input	and	provide	a	rating	based	on	sentiment	analysis.

Chapter	8,	Conversational	AI	Chatbots	for	Customer	Service,	explains	how
chatbots	have	evolved	during	and	looks	at	the	benefits	of	having	conversational
chatbots.	We	will	also	be	looking	into	how	to	create	chatbots	and	what	LSTM
sequence-to-sequence	models	are.	We	will	also	be	building	a	sequence-to-
sequence	model	for	a	Twitter	support	chatbot.

Chapter	9,	Autonomous	Self-Driving	Car	Through	Reinforcement	Learning,
explains	reinforcement	learning	and	Q-learning.	We	will	also	be	crating	a	self-
driving	car	using	deep	learning	and	reinforcement	learning.

Chapter	10,	CAPTCHA	from	a	Deep-Learning	Perspective,	we	discusses	what
CAPTCHAs	are	and	why	they	are	needed.	We	will	also	be	creating	a	model	to
break	CAPTCHAs	using	deep	learning	and	then	how	to	generate	them	using
adversarial	learning.



To	get	the	most	out	of	this	book
The	readers	should	have	previous	knowledge	of	Python	and	artificial	intelligence
to	go	through	the	projects	in	the	book.
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Code	in	action
Visit	the	following	link	to	check	out	videos	of	the	code	being	run:
http://bit.ly/2Ru8rlU

http://bit.ly/2Ru8rlU


Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"Mount	the	downloaded	WebStorm-10*.dmg	disk	image
file	as	another	disk	in	your	system."

A	block	of	code	is	set	as	follows:

def	get_im_cv2(path,dim=224):

					img	=	cv2.imread(path)

					resized	=	cv2.resize(img,	(dim,dim),	cv2.INTER_LINEAR)

					return	resized

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the
relevant	lines	or	items	are	set	in	bold:

adam	=	optimizers.Adam(lr=0.00001,	beta_1=0.9,	beta_2=0.999,	epsilon=1e-08,	decay=0.0)

Any	command-line	input	or	output	is	written	as	follows:

Cross	Validation	Accuracy:	0.6383708345200797

Validation	Quadratic	Kappa	Score:	0.47422998110380984

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Select	System	info	from	the	Administration	panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.
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Foundations	of	Artificial	Intelligence
Based	Systems
Artificial	intelligence	(AI)	has	been	at	the	forefront	of	technology	over	the	last
few	years,	and	has	made	its	way	into	mainstream	applications,	such	as	expert
systems,	personalized	applications	on	mobile	devices,	machine	translation	in
natural	language	processing,	chatbots,	self-driving	cars,	and	so	on.	The
definition	of	AI,	however,	has	been	a	subject	of	dispute	for	quite	a	while.	This	is
primarily	because	of	the	so-called	AI	effect	that	categorizes	work	that	has
already	been	solved	through	AI	in	the	past	as	non-AI.	According	to	a	famous
computer	scientist:	Intelligence	is	whatever	machines	haven't	done	yet.

–	Larry	Tesler

Building	an	intelligent	system	that	could	play	chess	was	considered	AI	until	the
IBM	computer	Deep	Blue	defeated	Gary	Kasparov	in	1996.	Similarly,	problems
dealing	with	vision,	speech,	and	natural	language	were	once	considered
complex,	but	due	to	the	AI	effect,	they	would	now	only	be	considered
computation	rather	than	true	AI.	Recently,	AI	has	become	able	to	solve	complex
mathematical	problems,	compose	music,	and	create	abstract	paintings,	and	these
capabilities	of	AI	are	ever	increasing.	The	point	in	the	future	at	which	AI
systems	will	equal	human	levels	of	intelligence	has	been	referred	to	by	scientists
as	the	AI	singularity.	The	question	of	whether	machines	will	ever	actually	reach
human	levels	of	intelligence	is	very	intriguing.

Many	would	argue	that	machines	will	never	reach	human	levels	of	intelligence,
since	the	AI	logic	by	which	they	learn	or	perform	intelligent	tasks	is
programmed	by	humans,	and	they	lack	the	consciousness	and	self-awareness
that	humans	possess.	However,	several	researchers	have	proposed	the	alternative
idea	that	human	consciousness	and	self-awareness	are	like	infinite	loop
programs	that	learn	from	their	surroundings	through	feedback.	Hence,	it	may	be
possible	to	program	consciousness	and	self-awareness	into	machines,	too.	For
now,	however,	we	will	leave	this	philosophical	side	of	AI	for	another	day,	and
will	simply	discuss	AI	as	we	know	it.



Put	simply,	AI	can	be	defined	as	the	ability	of	a	machine	(generally,	a	computer
or	robot)	to	perform	tasks	with	human-like	intelligence,	possessing	such	as
attributes	the	ability	to	reason,	learn	from	experience,	generalize,	decipher
meanings,	and	possess	visual	perception.	We	will	stick	to	this	more	practical
definition	rather	than	looking	at	the	philosophical	connotations	raised	by	the	AI
effect	and	the	prospect	of	the	AI	singularity.	While	there	may	be	debates	about
what	AI	can	achieve	and	what	it	cannot,	recent	success	stories	of	AI-based
systems	have	been	overwhelming.	A	few	of	the	more	recent	mainstream
applications	of	AI	are	depicted	in	the	following	diagram:	

Figure	1.1:	Applications	of	AI

This	book	will	cover	the	detailed	implementation	of	projects	from	all	of	the	core
disciplines	of	AI,	outlined	as	follows:



Transfer	learning	based	AI	systems
Natural	language	based	AI	systems
Generative	adversarial	network	(GAN)	based	applications
Expert	systems
Video-to-text	translation	applications
AI-based	recommender	systems
AI-based	mobile	applications
AI-based	chatbots
Reinforcement	learning	applications

In	this	chapter,	we	will	briefly	touch	upon	the	concepts	involving	machine
learning	and	deep	learning	that	will	be	required	to	implement	the	projects	that
will	be	covered	in	the	following	chapters.



Neural	networks
Neural	networks	are	machine	learning	models	that	are	inspired	by	the	human
brain.	They	consist	of	neural	processing	units	they	are	interconnected	with	one
another	in	a	hierarchical	fashion.	These	neural	processing	units	are	called
artificial	neurons,	and	they	perform	the	same	function	as	axons	in	a	human
brain.	In	a	human	brain,	dendrites	receive	input	from	neighboring	neurons,	and
attenuate	or	magnify	the	input	before	transmitting	it	on	to	the	soma	of	the
neuron.	In	the	soma	of	the	neuron,	these	modified	signals	are	added	together	and
passed	on	to	the	axon	of	the	neuron.	If	the	input	to	the	axon	is	over	a	specified
threshold,	then	the	signal	is	passed	on	to	the	dendrites	of	the	neighboring
neurons.

An	artificial	neuron	loosely	works	perhaps	on	the	same	logic	as	that	of	a
biological	neuron.	It	receives	input	from	neighboring	neurons.	The	input	is
scaled	by	the	input	connections	of	the	neurons	and	then	added	together.	Finally,
the	summed	input	is	passed	through	an	activation	function	whose	output	is
passed	on	to	the	neurons	in	the	next	layer.

	

A	biological	neuron	and	an	artificial	neuron	are	illustrated	in	the	following
diagrams	for	comparison:



Figure	1.2:	Biological	neuron

An	artificial	neuron	are	illustrated	in	the	following	diagram:



Figure	1.3:	Artificial	neuron

Now,	let's	look	at	the	structure	of	an	artificial	neural	network,	as	illustrated	in	the
following	diagram:



Figure	1.4:	Artificial	neural	network

The	input,	x	∈	RN,	passes	through	successive	layers	of	neural	units,	arranged	in	a
hierarchical	fashion.	Each	neuron	in	a	specific	layer	receives	an	input	from	the
neurons	of	the	preceding	layers,	attenuated	or	amplified	by	the	weights	of	the

connections	between	them.	The	weight,	 ,	corresponds	to	the	weight
connection	between	the	ith	neuron	in	layer	l	and	the	jth	neuron	in	layer	(l+1).

Also,	each	neuron	unit,	i,	in	a	specific	layer,	l,	is	accompanied	by	a	bias,	 .
The	neural	network	predicts	the	output,	 ,	for	the	input	vector,	x	∈	RN.	If	the
actual	label	of	the	data	is	y,	where	y	takes	continuous	values,	then	the	neuron
network	learns	the	weights	and	biases	by	minimizing	the	prediction	error,	



.	Of	course,	the	error	has	to	be	minimized	for	all	of	the	labeled	data
points:	(xi,	yi)∀i	∈	1,	2,	.	.	.	m.

If	we	denote	the	set	of	weights	and	biases	by	one	common	vector,	W,	and	the
total	error	in	the	prediction	is	represented	by	C,	then	through	the	training
process,	the	estimated	W	can	be	expressed	as	follows:	

Also,	the	predicted	output,	 ,	can	be	represented	by	a	function	of	the	input,	x,

parameterized	by	the	weight	vector,	W,	as	follows:	

Such	a	formula	for	predicting	the	continuous	values	of	the	output	is	called	a
regression	problem.

For	a	two-class	binary	classification,	cross-entropy	loss	is	minimized	instead	of
the	squared	error	loss,	and	the	network	outputs	the	probability	of	the	positive
class	instead	of	the	output.	The	cross-entropy	loss	can	be	represented	as	follows:	

Here,	pi	is	the	predicted	probability	of	the	output	class,	given	the	input	x,	and	can
be	represented	as	a	function	of	the	input,	x,	parameterized	by	the	weight	vector,

as	follows:	

In	general,	for	multi-class	classification	problems	(say,	of	n	classes),	the	cross-
entropy	loss	is	given	via	the	following:

Here,	 	is	the	output	label	of	the	jth	class,	for	the	ith	datapoint.



Neural	activation	units
Several	kinds	of	neural	activation	units	are	used	in	neural	networks,	depending
on	the	architecture	and	the	problem	at	hand.	We	will	discuss	the	most	commonly
used	activation	functions,	as	these	play	an	important	role	in	determining	the
network	architecture	and	performance.	Linear	and	sigmoid	unit	activation
functions	were	primarily	used	in	artificial	neural	networks	until	rectified	linear
units	(ReLUs),	invented	by	Hinton	et	al.,	revolutionized	the	performance	of
neural	networks.

	

	

	



Linear	activation	units
A	linear	activation	unit	outputs	the	total	input	to	the	neuron	that	is	attenuated,
as	shown	in	the	following	graph:

Figure	1.5:	Linear	neuron

	If	x	is	the	total	input	to	the	linear	activation	unit,	then	the	output,	y,	can	be
represented	as	follows:



Sigmoid	activation	units
The	output	of	the	sigmoid	activation	unit,	y,	as	a	function	of	its	total	input,	x,	is

expressed	as	follows:	

Since	the	sigmoid	activation	unit	response	is	a	nonlinear	function,	as	shown	in
the	following	graph,	it	is	used	to	introduce	nonlinearity	in	the	neural	network:	

Figure	1.6:	Sigmoid	activation	function

Any	complex	process	in	nature	is	generally	nonlinear	in	its	input-output	relation,
and	hence,	we	need	nonlinear	activation	functions	to	model	them	through	neural



networks.	The	output	probability	of	a	neural	network	for	a	two-class
classification	is	generally	given	by	the	output	of	a	sigmoid	neural	unit,	since	it
outputs	values	from	zero	to	one.	The	output	probability	can	be	represented	as

follows:	

Here,	x	represents	the	total	input	to	the	sigmoid	unit	in	the	output	layer.



The	hyperbolic	tangent	activation
function
The	output,	y,	of	a	hyperbolic	tangent	activation	function	(tanh)	as	a	function

of	its	total	input,	x,	is	given	as	follows:	

The	tanh	activation	function	outputs	values	in	the	range	[-1,	1],	as	you	can	see	in
the	following	graph:	

Figure	1.7:	Tanh	activation	function

One	thing	to	note	is	that	both	the	sigmoid	and	the	tanh	activation	functions	are
linear	within	a	small	range	of	the	input,	beyond	which	the	output	saturates.	In	the



saturation	zone,	the	gradients	of	the	activation	functions	(with	respect	to	the
input)	are	very	small	or	close	to	zero;	this	means	that	they	are	very	prone	to	the
vanishing	gradient	problem.	As	you	will	see	later	on,	neural	networks	learn	from
the	backpropagation	method,	where	the	gradient	of	a	layer	is	dependent	on	the
gradients	of	the	activation	units	in	the	succeeding	layers,	up	to	the	final	output
layer.	Therefore,	if	the	units	in	the	activation	units	are	working	in	the	saturation
region,	much	less	of	the	error	is	backpropagated	to	the	early	layers	of	the	neural
network.	Neural	networks	minimize	the	prediction	error	in	order	to	learn	the
weights	and	biases	(W)	by	utilizing	the	gradients.	This	means	that,	if	the
gradients	are	small	or	vanish	to	zero,	then	the	neural	network	will	fail	to	learn
these	weights	properly.



Rectified	linear	unit	(ReLU)
The	output	of	a	ReLU	is	linear	when	the	total	input	to	the	neuron	is	greater	than
zero,	and	the	output	is	zero	when	the	total	input	to	the	neuron	is	negative.	This
simple	activation	function	provides	nonlinearity	to	a	neural	network,	and,	at	the
same	time,	it	provides	a	constant	gradient	of	one	with	respect	to	the	total	input.
This	constant	gradient	helps	to	keep	the	neural	network	from	developing
saturating	or	vanishing	gradient	problems,	as	seen	in	activation	functions,	such
as	sigmoid	and	tanh	activation	units.	The	ReLU	function	output	(as	shown	in
Figure	1.8)	can	be	expressed	as	follows:

The	ReLU	activation	function	can	be	plotted	as	follows:



Figure	1.8:	ReLU	activation	function

One	of	the	constraints	for	ReLU	is	its	zero	gradients	for	negative	values	of	input.
This	may	slow	down	the	training,	especially	at	the	initial	phase.	Leaky	ReLU
activation	functions	(as	shown	in	Figure	1.9)	can	be	useful	in	this	scenario,
where	the	output	and	gradients	are	nonzero,	even	for	negative	values	of	the
input.	A	leaky	ReLU	output	function	can	be	expressed	as	follows:

The	 	parameter	is	to	be	provided	for	leaky	ReLU	activation	functions,	whereas
for	a	parametric	ReLU,	 	is	a	parameter	that	the	neural	network	will	learn
through	training.	The	following	graph	shows	the	output	of	the	leaky	ReLU
activation	function:

Figure	1.9:	Leaky	ReLU	activation	function



The	softmax	activation	unit
The	softmax	activation	unit	is	generally	used	to	output	the	class	probabilities,
in	the	case	of	a	multi-class	classification	problem.	Suppose	that	we	are	dealing
with	an	n	class	classification	problem,	and	the	total	input	corresponding	to	the

classes	is	given	by	the	following:	

In	this	case,	the	output	probability	of	the	kth	class	of	the	softmax	activation	unit

is	given	by	the	following	formula:	

	

There	are	several	other	activation	functions,	mostly	variations	of	these	basic
versions.	We	will	discuss	them	as	we	encounter	them	in	the	different	projects
that	we	will	cover	in	the	following	chapters.



The	backpropagation	method	of
training	neural	networks
In	the	backpropagation	method,	neural	networks	are	trained	through	the	gradient
descent	technique,	where	the	combined	weights	vector,	W,	is	updated	iteratively,

as	follows:	

Here,	η	is	the	learning	rate,	W(t+1)	and	W(t)	are	the	weight	vectors	at	iterations
(t+1)	and	(t),	respectively,	and	∇C(W(t))	is	the	gradient	of	the	cost	function	or	the
error	function,	with	respect	to	the	weight	vector,	W,	at	iteration	(t).	The	previous
algorithm	for	an	individual	weight	or	bias	generalized	by	w	∈	W	can	be

represented	as	follows:	

As	you	can	gather	from	the	previous	expressions,	the	heart	of	the	gradient
descent	method	of	learning	relies	on	computing	the	gradient	of	the	cost	function
or	the	error	function,	with	respect	to	each	weight.

From	the	chain	rule	of	differentiation,	we	know	that	if	we	have	y	=	f(x),	z	=	f(y),
then	the	following	is	true:

This	expression	can	be	generalized	to	any	number	of	variables.	Now,	let's	take	a
look	at	a	very	simple	neural	network,	as	illustrated	in	the	following	diagram,	in
order	to	understand	the	backpropagation	algorithm:	



Figure	1.10:	A	network	illustrating	backpropagation

Let	the	input	to	the	network	be	a	two-dimensional	vector,	x	=	[x1	x2]T,	and	the

corresponding	output	label	and	prediction	be	 	and	 ,	respectively.	Also,	let's
assume	that	all	of	the	activation	units	in	the	neural	network	are	sigmoids.	Let	the
generalized	weight	connecting	any	unit	i	in	layer	(l-1)	to	unit	j	in	layer	l	be

denoted	by	 ,	while	the	bias	in	any	unit	i	in	layer	l	should	be	denoted	by	 .
Let's	derive	the	gradient	for	one	data	point;	the	total	gradient	can	be	computed	as
the	sum	of	all	of	the	data	points	used	in	training	(or	in	a	mini-batch).	If	the
output	is	continuous,	then	the	loss	function,	C,	can	be	chosen	as	the	square	of	the

error	in	prediction:	



The	weights	and	biases	of	the	network,	cumulatively	represented	by	the	set	W,
can	be	determined	by	minimizing	the	cost	function	with	respect	to	the	W	vector,

which	is	as	follows:	

To	perform	the	minimization	of	the	cost	function	iteratively	through	gradient
descent,	we	need	to	compute	the	gradient	of	the	cost	function	with	respect	to

each	weight,	w	∈	W,	as	follows:	

Now	that	we	have	everything	that	we	need,	let's	compute	the	gradient	of	the	cost

function,	C,	with	respect	to	the	weight,	 .	Using	the	chain	rule	of

differentiation,	we	get	the	following:	

Now	let's	look	at	the	following	formula:

As	you	can	see	in	the	previous	expression,	the	derivative	is	nothing	but	the	error
in	prediction.	Generally,	the	output	unit	activation	function	is	linear	in	the	case
of	regression	problems,	and	hence	the	following	expression	applies:	

So,	if	we	were	to	compute	the	gradient	of	the	cost	function	with	respect	to	the

total	input	at	the	output	unit,	it	would	be	 .	This	is	still	equal	to	the	error	in
prediction	of	the	output.

The	total	input	at	the	output	unit,	as	a	function	of	the	incoming	weights	and



activations,	can	be	expressed	as	follows:

This	means	that,	 	and	the	derivative	of	the	cost	function	with

respect	to	the	weight,	 ,	contributing	to	the	input	of	the	output	layer	is	given

via	the	following:	

As	you	can	see,	the	error	is	backpropagated	in	computing	the	gradient	of	the	cost
function,	with	respect	to	the	weights	in	the	layers	preceding	the	final	output
layer.	This	becomes	more	obvious	when	we	compute	the	gradient	of	the	cost

function	with	respect	to	the	generalized	weight,	 .	Let's	take	the	weight

corresponding	to	j=1	and	k=2;	that	is,	 .	The	gradient	of	the	cost	function,
C,	with	respect	to	this	weight	can	be	expressed	as	follows:	

Now,	 ,	which	means	that,	 .

So,	once	we	have	figured	out	the	gradient	of	the	cost	function	with	respect	to	the

total	input	to	a	neuron	as	 ,	the	gradient	of	any	weight,	w,	contributing	to	the
total	input,	s,	can	be	obtained	by	simply	multiplying	the	activation,	z,	associated
with	the	weight.



Now,	the	gradient	of	the	cost	function	with	respect	to	the	total	input,	 ,	can
be	derived	by	chain	rule	again,	as	follows:	

Since	all	of	the	units	of	the	neural	network	(except	for	the	output	unit)	are
sigmoid	activation	functions,	the	following	is	the	case:

Combining	(1),	(2),	and	(3),	we	get	the	following:

In	the	preceding	derived	gradient	expressions,	you	can	see	that	the	error	in

prediction,	 ,	is	backpropagated	by	combining	it	with	the	relevant
activations	and	weights	(as	per	the	chain	rule	of	differentiation)	for	computing
the	gradients	of	the	weights	at	each	layer,	hence,	the	name	backpropagation	in
AI	nomenclature.



Convolutional	neural	networks
Convolutional	neural	networks	(CNNs)	utilize	convolutional	operations	to
extract	useful	information	from	data	that	has	a	topology	associated	with	it.	This
works	best	for	image	and	audio	data.	The	input	image,	when	passed	through	a
convolution	layer,	produces	several	output	images,	known	as	output	feature
maps.	The	output	feature	maps	detect	features.	The	output	feature	maps	in	the
initial	convolutional	layer	may	learn	to	detect	basic	features,	such	as	edges	and
color	composition	variation.

The	second	convolutional	layer	may	detect	slightly	more	complicated	features,
such	as	squares,	circles,	and	other	geometrical	structures.	As	we	progress
through	the	neural	network,	the	convolutional	layers	learn	to	detect	more	and
more	complicated	features.	For	instance,	if	we	have	a	CNN	that	classifies
whether	an	image	is	of	a	cat	or	a	dog,	the	convolutional	layers	at	the	bottom	of
the	neural	network	might	learn	to	detect	features	such	as	the	head,	the	legs,	and
so	on.

Figure	1.11	shows	an	architectural	diagram	of	a	CNN	that	processes	images	of
cats	and	dogs	in	order	to	classify	them.	The	images	are	passed	through	a
convolutional	layer	that	helps	to	detect	relevant	features,	such	as	edges	and	color
composition.	The	ReLU	activations	add	nonlinearity.	The	pooling	layer	that
follows	the	activation	layer	summarizes	local	neighborhood	information	in	order
to	provide	an	amount	of	translational	invariance.	In	an	ideal	CNN,	this
convolution-activation-pooling	operation	is	performed	several	times	before	the
network	makes	its	way	to	the	dense	connections:



Figure	1.11:	CNN	architecture

As	we	go	through	such	a	network	with	several	convolution-activation-pooling
operations,	the	spatial	resolution	of	the	image	is	reduced,	while	the	number	of
output	feature	maps	is	increased	in	every	layer.	Each	output	feature	map	in	a
convolutional	layer	is	associated	with	a	filter	kernel,	the	weights	of	which	are
learned	through	the	CNN	training	process.

In	a	convolutional	operation,	a	flipped	version	of	a	filter	kernel	is	laid	over	the
entire	image	or	feature	map,	and	the	dot	product	of	the	filter-kernel	input	values
with	the	corresponding	image	pixel	or	the	feature	map	values	are	computed	for



each	location	on	the	input	image	or	feature	map.	Readers	that	are	already
accustomed	to	ordinary	image	processing	may	have	used	different	filter	kernels,
such	as	a	Gaussian	filter,	a	Sobel	edge	detection	filter,	and	many	more,	where	the
weights	of	the	filters	are	predefined.	The	advantage	of	convolutional	neural
networks	is	that	the	different	filter	weights	are	determined	through	the	training
process;	This	means	that,	the	filters	are	better	customized	for	the	problem	that
the	convolutional	neural	network	is	dealing	with.

When	a	convolutional	operation	involves	overlaying	the	filter	kernel	on	every
location	of	the	input,	the	convolution	is	said	to	have	a	stride	of	one.	If	we	choose
to	skip	one	location	while	overlaying	the	filter	kernel,	then	convolution	is
performed	with	a	stride	of	two.	In	general,	if	n	locations	are	skipped	while
overlaying	the	filter	kernel	over	the	input,	the	convolution	is	said	to	have	been
performed	with	a	stride	of	(n+1).	Strides	of	greater	than	one	reduce	the	spatial
dimensions	of	the	output	of	the	convolution.

Generally,	a	convolutional	layer	is	followed	by	a	pooling	layer,	which	basically
summarizes	the	output	feature	map	activations	in	a	neighborhood,	determined	by
the	receptive	field	of	the	pooling.	For	instance,	a	2	x	2	receptive	field	will	gather
the	local	information	of	four	neighboring	output	feature	map	activations.	For
max-pooling	operations,	the	maximum	value	of	the	four	activations	is	selected	as
the	output,	while	for	average	pooling,	the	average	of	the	four	activations	is
selected.	Pooling	reduces	the	spatial	resolution	of	the	feature	maps.	For	instance,
for	a	224	x	224	sized	feature	map	pooling	operation	with	a	2	x	2	receptive	field,
the	spatial	dimension	of	the	feature	map	will	be	reduced	to	112	x	112.

One	thing	to	note	is	that	a	convolutional	operation	reduces	the	number	of
weights	to	be	learned	in	each	layer.	For	instance,	if	we	have	an	input	image	of	a
spatial	dimension	of	224	x	224	and	the	desired	output	of	the	next	layer	is	of	the
dimensions	224	x	224,	then	for	a	traditional	neural	network	with	full
connections,	the	number	of	weights	to	be	learned	is	224	x	224	x	224	x	224.	For	a
convolutional	layer	with	the	same	input	and	output	dimensions,	all	that	we	need
to	learn	are	the	weights	of	the	filter	kernel.	So,	if	we	use	a	3	x	3	filter	kernel,	we
just	need	to	learn	nine	weights	as	opposed	to	224	x	224	x	224	x	224	weights.
This	simplification	works,	since	structures	like	images	and	audio	in	a	local
spatial	neighborhood	have	high	correlation	among	them.

The	input	images	pass	through	several	layers	of	convolutional	and	pooling



operations.	As	the	network	progresses,	the	number	of	feature	maps	increases,
while	the	spatial	resolution	of	the	images	decreases.	At	the	end	of	the
convolutional-pooling	layers,	the	output	of	the	feature	maps	is	fed	to	the	fully
connected	layers,	followed	by	the	output	layer.

The	output	units	are	dependent	on	the	task	at	hand.	If	we	are	performing
regression,	the	output	activation	unit	is	linear,	while	if	it	is	a	binary	classification
problem,	the	output	unit	is	a	sigmoid.	For	multi-class	classification,	the	output
layer	is	a	softmax	unit.

In	all	of	the	image	processing	projects	in	this	book,	we	will	use	convolutional
neural	networks,	in	one	form	or	another.



Recurrent	neural	networks	(RNNs)
Recurrent	neural	networks	(RNNs)	are	useful	in	processing	sequential	or
temporal	data,	where	the	data	at	a	given	instance	or	position	is	highly	correlated
with	the	data	in	the	previous	time	steps	or	positions.	RNNs	have	already	been
very	successful	at	processing	text	data,	since	a	word	at	a	given	instance	is	highly
correlated	with	the	words	preceding	it.	In	an	RNN,	at	each	time	step,	the
network	performs	the	same	function,	hence,	the	term	recurrent	in	its	name.	The
architecture	of	an	RNN	is	illustrated	in	the	following	diagram:	

Figure	1.12:	RNN	architecture

At	each	given	time	step,	t,	a	memory	state,	ht,	is	computed,	based	on	the
previous	state,	ht-1,	at	step	(t-1)	and	the	input,	xt,	at	time	step	t.	The	new	state,	ht,
is	used	to	predict	the	output,	ot,	at	step	t.	The	equations	governing	RNNs	are	as

follows:	



If	we	are	predicting	the	next	word	in	a	sentence,	then	the	function	f2	is	generally
a	softmax	function	over	the	words	in	the	vocabulary.	The	function	f1	can	be	any
activation	function	based	on	the	problem	at	hand.

In	an	RNN,	an	output	error	in	step	t	tries	to	correct	the	prediction	in	the	previous
time	steps,	generalized	by	k	∈	1,	2,	.	.	.	t-1,	by	propagating	the	error	in	the
previous	time	steps.	This	helps	the	RNN	to	learn	about	long	dependencies
between	words	that	are	far	apart	from	each	other.	In	practice,	it	isn't	always
possible	to	learn	such	long	dependencies	through	RNN	because	of	the	vanishing
and	exploding	gradient	problems.

As	you	know,	neural	networks	learn	through	gradient	descent,	and	the
relationship	of	a	word	in	time	step	t	with	a	word	at	a	prior	sequence	step	k	can	be

learned	through	the	gradient	of	the	memory	state	 	with	respect	to	the	gradient

of	the	memory	state	 ∀	i.	This	is	expressed	in	the	following	formula:	

If	the	weight	connection	from	the	memory	state	 	at	the	sequence	step	k	to

the	memory	state	 	at	the	sequence	step	(k+1)	is	given	by	uii	∈	Whh,	then

the	following	is	true:	

In	the	preceding	equation,	 	is	the	total	input	to	the	memory	state	i	at	the
time	step	(k+1),	such	that	the	following	is	the	case:	



Now	that	we	have	everything	in	place,	it's	easy	to	see	why	the	vanishing	gradient
problem	may	occur	in	an	RNN.	From	the	preceding	equations,	(3)	and	(4),	we

get	the	following:	

For	RNNs,	the	function	f2	is	generally	sigmoid	or	tanh,	which	suffers	from	the
saturation	problem	of	having	low	gradients	beyond	a	specified	range	of	values
for	the	input.	Now,	since	the	f2	derivatives	are	multiplied	with	each	other,	the

gradient	 	can	become	zero	if	the	input	to	the	activation	functions	is
operating	at	the	saturation	zone,	even	for	relatively	moderate	values	of	(t-k).
Even	if	the	f2	functions	are	not	operating	in	the	saturation	zone,	the	gradients	of
the	f2	function	for	sigmoids	are	always	less	than	1,	and	so	it	is	very	difficult	to
learn	distant	dependencies	between	words	in	a	sequence.	Similarly,	there	might

be	exploding	gradient	problems	stemming	from	the	factor	 .	Suppose
that	the	distance	between	steps	t	and	k	is	around	10,	while	the	weight,	uii,	is
around	two.	In	such	cases,	the	gradient	would	be	magnified	by	a	factor	of	two,
210	=	1024,	leading	to	the	exploding	gradient	problem.



Long	short-term	memory	(LSTM)
cells
The	vanishing	gradient	problem	is	taken	care	of,	to	a	great	extent,	by	a	modified
version	of	RNNs,	called	long	short-term	memory	(LSTM)	cells.	The
architectural	diagram	of	a	long	short-term	memory	cell	is	as	follows:	

Figure	1.13:	LSTM	architecture

LSTM	introduces	the	cell	state,	Ct,	in	addition	to	the	memory	state,	ht,	that	you
already	saw	when	learning	about	RNNs.	The	cell	state	is	regulated	by	three
gates:	the	forget	gate,	the	update	gate,	and	the	output	gate.	The	forget	gate
determines	how	much	information	to	retain	from	the	previous	cell	states,	Ct-1,
and	its	output	is	expressed	as	follows:	

The	output	of	the	update	gate	is	expressed	as	follows:



The	potential	new	candidate	cell	state,	 ,	is	expressed	as	follows:	

Based	on	the	previous	cell	state	and	the	current	potential	cell	state,	the	updated
cell	state	output	is	given	via	the	following:	

	

Not	all	of	the	information	of	the	cell	state	is	passed	on	to	the	next	step,	and	how
much	of	the	cell	state	should	be	released	to	the	next	step	is	determined	by	the
output	gate.	The	output	of	the	output	gate	is	given	via	the	following:	

Based	on	the	current	cell	state	and	the	output	gate,	the	updated	memory	state
passed	on	to	the	next	step	is	given	via	the	following:	

Now	comes	the	big	question:	How	does	LSTM	avoid	the	vanishing	gradient

problem?	The	equivalent	of	 	in	LSTM	is	given	by	 ,	which	can	be
expressed	in	a	product	form	as	follows:	

Now,	the	recurrence	in	the	cell	state	units	is	given	by	the	following:

From	this,	we	get	the	following:



	

As	a	result,	the	gradient	expression,	 ,	becomes	the	following:	

As	you	can	see,	if	we	can	keep	the	forget	cell	state	near	one,	the	gradient	will
flow	almost	unattenuated,	and	the	LSTM	will	not	suffer	from	the	vanishing
gradient	problem.

Most	of	the	text-processing	applications	that	we	will	look	at	in	this	book	will	use
the	LSTM	version	of	RNNs.



Generative	adversarial	networks
Generative	adversarial	networks,	popularly	known	as	GANs,	are	generative
models	that	learn	a	specific	probability	distribution	through	a	generator,	G.	The
generator	G	plays	a	zero	sum	minimax	game	with	a	discriminator	D	and	both
evolve	over	time,	before	the	Nash	equilibrium	is	reached.	The	generator	tries	to
produce	samples	similar	to	the	ones	generated	by	a	given	probability
distribution,	P(x),	while	the	discriminator	D	tries	to	distinguish	those	fake	data
samples	generated	by	the	generator	G	from	the	data	sample	from	the	original
distribution.	The	generator	G	tries	to	generate	samples	similar	to	the	ones	from
P(x),	by	converting	samples,	z,	drawn	from	a	noise	distribution,	P(z).	The
discriminator,	D,	learns	to	tag	samples	generated	by	the	generator	G	as	G(z)
when	fake;	x	belongs	to	P(x)	when	they	are	original.	At	the	equilibrium	of	the
minimax	game,	the	generator	will	learn	to	produce	samples	similar	to	the	ones
generated	by	the	original	distribution,	P(x),	so	that	the	following	is	true:	

The	following	diagram	illustrates	a	GAN	network	learning	the	probability
distribution	of	the	MNIST	digits:

Figure	1.14:	GAN	architecture

The	cost	function	minimized	by	the	discriminator	is	the	binary	cross-entropy	for
distinguishing	the	real	data	points	belonging	to	the	probability	distribution	P(x)
from	the	fake	ones	generated	by	the	generator	(that	is,	G(z)):	



The	generator	will	try	to	maximize	the	same	cost	function	given	by	(1).	This
means	that,	the	optimization	problem	can	be	formulated	as	a	minimax	player
with	the	utility	function	U(G,D),	as	illustrated	here:	

Generally,	to	measure	how	far	a	given	probability	distribution	matches	that	of	a
given	distribution,	f-divergence	measures	are	used,	such	as	the	Kullback–
Leibler	(KL)	divergence,	the	Jensen	Shannon	divergence,	and	the
Bhattacharyya	distance.	For	example,	the	KL	divergence	between	two
probability	distributions,	P	and	Q,	is	given	by	the	following,	where	the

expectation	is	with	respect	to	the	distribution,	P:	

Similarly,	the	Jensen	Shannon	divergence	between	P	and	Q	is	given	as	follows:

Now,	coming	back	to	(2),	the	expression	can	be	written	as	follows:

Here,	G(x)	is	the	probability	distribution	for	the	generator.	Expanding	the
expectation	into	its	integral	form,	we	get	the	following:

For	a	fixed	generator	distribution,	G(x),	the	utility	function	will	be	at	a	minimum
with	respect	to	the	discriminator	if	the	following	is	true:	



Substituting	D(x)	from	(5)	in	(3),	we	get	the	following:

Now,	the	task	of	the	generator	is	to	maximize	the	utility,	 ,	or	minimize

the	utility,	 .	The	expression	for	 	can	be	rearranged	as
follows:	

Hence,	we	can	see	that	the	generator	minimizing	 	is	equivalent	to
minimizing	the	Jensen	Shannon	divergence	between	the	real	distribution,	P(x),
and	the	distribution	of	the	samples	generated	by	the	generator,	G	(that	is,	G(x)).

Training	a	GAN	is	not	a	straightforward	process,	and	there	are	several	technical
considerations	that	we	need	to	take	into	account	while	training	such	a	network.
We	will	be	using	an	advanced	GAN	network	to	build	a	cross-domain	style
transfer	application	in	Chapter	4,	Style	Transfer	in	Fashion	Industry	using	GANs.



Reinforcement	learning
Reinforcement	learning	is	a	branch	of	machine	learning	that	enables	machines
and/or	agents	to	maximize	some	form	of	reward	within	a	specific	context	by
taking	specific	actions.	Reinforcement	learning	is	different	from	supervised	and
unsupervised	learning.	Reinforcement	learning	is	used	extensively	in	game
theory,	control	systems,	robotics,	and	other	emerging	areas	of	artificial
intelligence.	The	following	diagram	illustrates	the	interaction	between	an	agent
and	an	environment	in	a	reinforcement	learning	problem:	

Figure	1.15:	Agent-environment	interaction	in	a	reinforcement	learning	model



Q-learning
We	will	now	look	at	a	popular	reinforcement	learning	algorithm,	called	Q-
learning.	Q-learning	is	used	to	determine	an	optimal	action	selection	policy	for
a	given	finite	Markov	decision	process.	A	Markov	decision	process	is	defined
by	a	state	space,	S;	an	action	space,	A;	an	immediate	rewards	set,	R;	a	probability
of	the	next	state,	S(t+1),	given	the	current	state,	S(t);	a	current	action,	a(t);
P(S(t+1)/S(t);r(t));	and	a	discount	factor,	 .	The	following	diagram	illustrates	a
Markov	decision	process,	where	the	next	state	is	dependent	on	the	current	state
and	any	actions	taken	in	the	current	state:	

Figure	1.16:	A	Markov	decision	process

Let's	suppose	that	we	have	a	sequence	of	states,	actions,	and	corresponding
rewards,	as	follows:

If	we	consider	the	long	term	reward,	Rt,	at	step	t,	it	is	equal	to	the	sum	of	the



immediate	rewards	at	each	step,	from	t	until	the	end,	as	follows:	

Now,	a	Markov	decision	process	is	a	random	process,	and	it	is	not	possible	to	get
the	same	next	step,	S(t+1),	based	on	S(t)	and	a(t)	every	time;	so,	we	apply	a
discount	factor,	 ,	to	future	rewards.	This	means	that,	the	long-term	reward	can
be	better	represented	as	follows:	

Since	at	the	time	step,	t,	the	immediate	reward	is	already	realized,	to	maximize
the	long-term	reward,	we	need	to	maximize	the	long-term	reward	at	the	time	step
t+1	(that	is,	Rt+1),	by	choosing	an	optimal	action.	The	maximum	long-term
reward	expected	at	a	state	S(t)	by	taking	an	action	a(t)	is	represented	by	the
following	Q-function:	

At	each	state,	s	∈	S,	the	agent	in	Q-learning	tries	to	take	an	action,	 ,	that
maximizes	its	long-term	reward.	The	Q-learning	algorithm	is	an	iterative
process,	the	update	rule	of	which	is	as	follows:	

As	you	can	see,	the	algorithm	is	inspired	by	the	notion	of	a	long-term	reward,	as
expressed	in	(1).

The	overall	cumulative	reward,	Q(s(t),	a(t)),	of	taking	action	a(t)	in	state	s(t)	is
dependent	on	the	immediate	reward,	r(t),	and	the	maximum	long-term	reward
that	we	can	hope	for	at	the	new	step,	s(t+1).	In	a	Markov	decision	process,	the
new	state	s(t+1)	is	stochastically	dependent	on	the	current	state,	s(t),	and	the
action	taken	a(t)	through	a	probability	density/mass	function	of	the	form
P(S(t+1)/S(t);r(t)).

The	algorithm	keeps	on	updating	the	expected	long-term	cumulative	reward	by
taking	a	weighted	average	of	the	old	expectation	and	the	new	long-term	reward,



based	on	the	value	of	 .

Once	we	have	built	the	Q(s,a)	function	through	the	iterative	algorithm,	while
playing	the	game	based	on	a	given	state	s	we	can	take	the	best	action,	 ,	as	the
policy	that	maximizes	the	Q-function:	



Deep	Q-learning
In	Q-learning,	we	generally	work	with	a	finite	set	of	states	and	actions;	this
means	that,	tables	suffice	to	hold	the	Q-values	and	rewards.	However,	in
practical	applications,	the	number	of	states	and	applicable	actions	are	mostly
infinite,	and	better	Q-function	approximators	are	needed	to	represent	and	learn
the	Q-functions.	This	is	where	deep	neural	networks	come	to	the	rescue,	since
they	are	universal	function	approximators.	We	can	represent	the	Q-function	with
a	neural	network	that	takes	the	states	and	actions	as	input	and	provides	the
corresponding	Q-values	as	output.	Alternatively,	we	can	train	a	neural	network
using	only	the	states,	and	have	the	output	as	Q-values	corresponding	to	all	of	the
actions.	Both	of	these	scenarios	are	illustrated	in	the	following	diagram.	Since
the	Q-values	are	rewards,	we	are	dealing	with	regression	in	these	networks:	

Figure	1.17:	Deep	Q-learning	function	approximator	network

In	this	book,	we	will	use	reinforcement	learning	to	train	a	race	car	to	drive	by
itself	through	deep	Q-learning.



Transfer	learning
In	general,	transfer	learning	refers	to	the	notion	of	using	knowledge	gained	in
one	domain	to	solve	a	related	problem	in	another	domain.	In	deep	learning,
however,	it	specifically	refers	to	the	process	of	reusing	a	neural	network	trained
for	a	specific	task	for	a	similar	task	in	a	different	domain.	The	new	task	uses	the
feature	detectors	learned	from	a	previous	task,	and	so	we	do	not	have	to	train	the
model	to	learn	them.

Deep-learning	models	tend	to	have	a	huge	number	of	parameters,	due	to	the
nature	of	connectivity	patterns	among	units	of	different	layers.	To	train	such	a
large	model,	a	considerable	amount	of	data	is	required;	otherwise,	the	model
may	suffer	from	overfitting.	For	many	problems	requiring	a	deep	learning
solution,	a	large	amount	of	data	will	not	be	available.	For	instance,	in	image
processing	for	object	recognition,	deep-learning	models	provide	state-of-the-art
solutions.	In	such	cases,	transfer	learning	can	be	used	to	create	features,	based	on
the	feature	detectors	learned	from	an	existing	trained	deep-learning	model.	Then,
those	features	can	be	used	to	build	a	simple	model	with	the	available	data	in
order	to	solve	the	new	problem	at	hand.	So	the	only	parameters	that	the	new
model	needs	to	learn	are	the	ones	related	to	building	the	simple	model,	thus
reducing	the	chances	of	overfitting.	The	pretrained	models	are	generally	trained
on	a	huge	corpus	of	data,	and	thus,	they	have	reliable	parameters	as	the	feature
detectors.

When	we	process	images	in	CNNs,	the	initial	layers	learn	to	detect	very	generic
features,	such	as	curls,	edges,	color	composition,	and	so	on.	As	the	network
grows	deeper,	the	convolutional	layers	in	the	deeper	layers	learn	to	detect	more
complex	features	that	are	relevant	to	the	specific	kind	of	dataset.	We	can	use	a
pretrained	network	and	choose	to	not	train	the	first	few	layers,	as	they	learn	very
generic	features.	Instead,	we	can	concentrate	on	only	training	the	parameters	of
the	last	few	layers,	since	these	would	learn	complex	features	that	are	specific	to
the	problem	at	hand.	This	would	ensure	that	we	have	fewer	parameters	to	train
for,	and	that	we	use	the	data	judiciously,	only	training	for	the	required	complex
parameters	and	not	for	the	generic	features.



Transfer	learning	is	widely	used	in	image	processing	through	CNNs,	where	the
filters	act	as	feature	detectors.	The	most	common	pretrained	CNNs	that	are	used
for	transfer	learning	are	AlexNet,	VGG16,	VGG19,	Inception	V3,	and	ResNet,	among	others.
The	following	diagram	illustrates	a	pretrained	VGG16	network	that	is	used	for
transfer	learning:	

Figure	1.18:	Transfer	learning	with	a	pretrained	VGG	16	network

The	input	images	represented	by	x	are	fed	to	the	Pretrained	VGG	16	network,
and	the	4096	dimensional	output	feature	vector,	x',	is	extracted	from	the	last
fully	connected	layer.	The	extracted	features,	x',	along	with	the	corresponding
class	label,	y,	are	used	to	train	a	simple	classification	network,	reducing	the	data



required	to	solve	the	problem.

We	will	solve	an	image	classification	problem	in	the	healthcare	domain	by	using
transfer	learning	in	Chapter	2,	Transfer	Learning.



Restricted	Boltzmann	machines
Restricted	Boltzmann	machines	(RBMs)	are	an	unsupervised	class	of	machine
learning	algorithms	that	learn	the	internal	representation	of	data.	An	RBM	has	a
visible	layer,	v	∈	Rm,	and	a	hidden	layer,	h	∈	Rn.	RBMs	learn	to	present	the
input	in	the	visible	layer	as	a	low-dimensional	representation	in	the	hidden	layer.
All	of	the	hidden	layer	units	are	conditionally	independent,	given	the	visible
layer	input.	Similarly,	all	of	the	visible	layers	are	conditionally	independent,
given	the	hidden	layer	input.	This	allows	the	RBM	to	sample	the	output	of	the
visible	units	independently,	given	the	hidden	layer	input,	and	vice	versa.

The	following	diagram	illustrates	the	architecture	of	an	RBM:

Figure	1.19:	Restricted	Boltzmann	machines

The	weight,	wij	∈	W,	connects	the	visible	unit,	i,	to	the	hidden	unit,	j,	where	W	∈



Rm	x	n	is	the	set	of	all	such	weights,	from	visible	units	to	hidden	units.	The	biases
in	the	visible	units	are	represented	by	bi	∈	b,	whereas	the	biases	in	the	hidden
units	are	represented	by	cj	∈	c.

Inspired	by	ideas	from	the	Boltzmann	distribution	in	statistical	physics,	the	joint
distribution	of	a	visible	layer	vector,	v,	and	a	hidden	layer	vector,	h,	is	made
proportional	to	the	exponential	of	the	negative	energy	of	the	configuration:

	(1)

The	energy	of	a	configuration	is	given	by	the	following:

	(2)

The	probability	of	the	hidden	unit,	j,	given	the	visible	input	vector,	v,	can	be
represented	as	follows:

	(2)

Similarly,	the	probability	of	the	visible	unit,	i,	given	the	hidden	input	vector,	h,	is
given	by	the	following:

	(3)

So,	once	we	have	learned	the	weights	and	biases	of	the	RBM	through	training,
the	visible	representation	can	be	sampled,	given	the	hidden	state,	while	the
hidden	state	can	be	sampled,	given	the	visible	state.

Similar	to	principal	component	analysis	(PCA),	RBMs	are	a	way	to	represent
data	in	one	dimension,	provided	by	the	visible	layer,	v,	into	a	different
dimension,	provided	by	the	hidden	layer,	h.	When	the	dimensionality	of	the
hidden	layer	is	less	than	that	of	the	visible	layer,	the	RBMs	perform	the	task	of
dimensionality	reduction.	RBMs	are	generally	trained	on	binary	data.



RBMs	are	trained	by	maximizing	the	likelihood	of	the	training	data.	In	each
iteration	of	gradient	descent	of	the	cost	function	with	respect	to	the	weights	and
biases,	sampling	comes	into	the	picture,	which	makes	the	training	process
expensive	and	somewhat	computationally	intractable.	A	smart	method	of
sampling,	called	contrastive	divergence—which	uses	Gibbs	sampling—is	used
to	train	the	RBMs.

We	will	be	using	RBMs	to	build	recommender	systems	in	Chapter	6,	The
Intelligent	Recommender	System.



Autoencoders
Much	like	RBMs,	autoencoders	are	a	class	of	unsupervised	learning	algorithms
that	aim	to	uncover	the	hidden	structures	within	data.	In	principal	component
analysis	(PCA),	we	try	to	capture	the	linear	relationships	among	input	variables,
and	try	to	represent	the	data	in	a	reduced	dimension	space	by	taking	linear
combinations	(of	the	input	variables)	that	account	for	most	of	the	variance	in
data.	However,	PCA	would	not	be	able	to	capture	the	nonlinear	relationships
between	the	input	variables.

	

Autoencoders	are	neural	networks	that	can	capture	the	nonlinear	interactions
between	input	variables	while	representing	the	input	in	different	dimensions	in	a
hidden	layer.	Most	of	the	time,	the	dimensions	of	the	hidden	layer	are	smaller	to
those	of	the	input.	This	we	skipped,	with	the	assumption	that	there	is	an	inherent
low-dimensional	structure	to	the	high-dimensional	data.	For	instance,	high-
dimensional	images	can	be	represented	by	a	low-dimensional	manifold,	and
autoencoders	are	often	used	to	discover	that	structure.	The	following	diagram
illustrates	the	neural	architecture	of	an	autoencoder:



	

Figure	1.20:	Autoencoder	architecture

An	autoencoder	has	two	parts:	an	encoder	and	a	decoder.	The	encoder	tries	to
project	the	input	data,	x,	into	a	hidden	layer,	h.	The	decoder	tries	to	reconstruct
the	input	from	the	hidden	layer	h.	The	weights	accompanying	such	a	network	are
trained	by	minimizing	the	reconstruction	error	that	is,	the	error	between	the
reconstructed	input,	 ,	from	the	decoder	and	the	original	input.	If	the	input	is
continuous,	then	the	sum	of	squares	of	the	reconstruction	error	is	minimized,	in
order	to	learn	the	weights	of	the	autoencoder.

If	we	represent	the	encoder	by	a	function,	fW	(x),	and	the	decoder	by	fU	(x),
where	W	and	U	are	the	weight	matrices	associated	with	the	encoder	and	the
decoder,	then	the	following	is	the	case:



	(1)

	(2)

The	reconstruction	error,	C,	over	the	training	set,	xi,	i	=	1,	2,	3,	...m,	can	be
expressed	as	follows:

	(3)

The	autoencoder	optimal	weights,	 ,	can	be	learned	by	minimizing	the	cost
function	from	(3),	as	follows:

	(4)

Autoencoders	are	used	for	a	variety	of	purposes,	such	as	learning	the	latent
representation	of	data,	noise	reduction,	and	feature	detection.	Noise	reduction
autoencoders	take	the	noisy	version	of	the	actual	input	as	their	input.	They	try	to
construct	the	actual	input	that	acts	as	a	label	for	the	reconstruction.	Similarly,
autoencoders	can	be	used	as	generative	models.	One	such	class	of	autoencoders
that	can	work	as	generative	models	is	called	variational	autoencoders.
Currently,	variational	autoencoders	and	GANs	are	very	popular	as	generative
models	for	image	processing.



Summary
We	have	now	come	to	the	end	of	this	chapter.	We	have	looked	at	several	variants
of	artificial	neural	networks,	including	CNNs	for	image	processing	purposes	and
RNNs	for	natural	language	processing	purposes.	Additionally,	we	looked	at
RBMs	and	GANs	as	generative	models	and	autoencoders	as	unsupervised
methods	that	cater	to	a	lot	of	problems,	such	as	noise	reduction	or	deciphering
the	internal	structure	of	the	data.	Also,	we	touched	upon	reinforcement	learning,
which	has	made	a	big	impact	on	robotics	and	AI.

You	should	now	be	familiar	with	the	core	techniques	that	we	are	going	to	use
when	building	smart	AI	applications	throughout	the	rest	of	the	chapters	in	this
book.	While	building	the	applications,	we	will	take	small	technical	digressions
when	required.	Readers	that	are	new	to	deep	learning	are	advised	to	explore
more	about	the	core	technologies	touched	upon	in	this	chapter	for	a	more
thorough	understanding.

In	subsequent	chapters,	we	will	discuss	practical	AI	projects,	and	we	will
implement	them	using	the	technologies	discussed	in	this	chapter.	In	Chapter	2,
Transfer	Learning,	we	will	start	by	implementing	a	healthcare	application	for
medical	image	analysis	using	transfer	learning.	We	hope	that	you	look	forward
to	your	participation.



Transfer	Learning
Transfer	learning	is	the	process	of	transferring	the	knowledge	gained	in	one	task
in	a	specific	domain	to	a	related	task	in	a	similar	domain.	In	the	deep	learning
paradigm,	transfer	learning	generally	refers	to	the	reuse	of	a	pre-trained	model	as
the	starting	point	for	another	problem.	The	problems	in	computer	vision	and
natural	language	processing	require	a	lot	of	data	and	computational	resources,	to
train	meaningful	deep	learning	models.	Transfer	learning	has	gained	a	lot	of
importance	in	the	domains	of	vision	and	text,	since	it	alleviates	the	need	for	a
large	amount	of	training	data	and	training	time.	In	this	chapter,	we	will	use
transfer	learning	to	solve	a	healthcare	problem.

Some	key	topics	related	to	transfer	learning	that	we	will	touch	upon	in	this
chapter	are	as	follows:

Using	transfer	learning	to	detect	diabetic	retinopathy	conditions	in	the
human	eye,	and	to	determine	the	retinopathy's	severity
Exploring	the	advanced	pre-trained	convolutional	neural	architectures	that
can	be	used	to	train	a	convolutional	neural	network	(CNN)	that	is	capable
of	detecting	diabetic	retinopathy	in	fundus	images	of	the	human	eye
Looking	at	the	different	image	preprocessing	steps	required	for	the	practical
implementation	of	a	CNN
Learning	to	formulate	a	cost	function	that	is	appropriate	for	the	problem	at
hand
Defining	the	appropriate	metrics	for	measuring	the	performance	of	a	trained
model
Generating	additional	data	using	affine	transformations
Training	intricacies	related	to	the	appropriate	learning	rate,	the	selection	of
the	optimizer,	and	so	on
Going	over	an	end-to-end	Python	implementation

	

	



Technical	requirements
You	will	require	to	have	basic	knowledge	of	Python	3,	TensorFlow,	Keras	and
OpenCV.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter02

Check	out	the	following	video	to	see	the	code	in	action:
http://bit.ly/2t6LLyB

https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter02
http://bit.ly/2t6LLyB


Introduction	to	transfer	learning
In	a	traditional	machine	learning	paradigm	(see	Figure	2.1),	every	use	case	or
task	is	modeled	independently,	based	on	the	data	at	hand.	In	transfer	learning,	we
use	the	knowledge	gained	from	a	particular	task	(in	the	form	of	architecture	and
model	parameters)	to	solve	a	different	(but	related)	task,	as	illustrated	in	the
following	diagram:

Figure	2.1:	Traditional	machine	learning	versus	transfer	learning

Andrew	Ng,	in	his	2016	NIPS	tutorial,	stated	that	transfer	learning	would	be	the
next	big	driver	of	machine	learning's	commercial	success	(after	supervised
learning);	this	statement	grows	truer	with	each	passing	day.	Transfer	learning	is
now	used	extensively	in	problems	that	need	to	be	solved	with	artificial	neural
networks.	The	big	question,	therefore,	is	why	this	is	the	case.

Training	an	artificial	neural	network	from	scratch	is	a	difficult	task,	primarily



due	to	the	following	two	reasons:

The	cost	surface	of	an	artificial	neural	network	is	non-convex;	hence,	it
requires	a	good	set	of	initial	weights	for	a	reasonable	convergence.
Artificial	neural	networks	have	a	lot	of	parameters,	and	thus,	they	require	a
lot	of	data	to	train.	Unfortunately,	for	a	lot	of	projects,	the	specific	data
available	for	training	a	neural	network	is	insufficient,	whereas	the	problem
that	the	project	aims	to	solve	is	complex	enough	to	require	a	neural	network
solution.

In	both	cases,	transfer	learning	comes	to	the	rescue.	If	we	use	pre-trained	models
that	are	trained	on	a	huge	corpora	of	labeled	data,	such	as	ImageNet	or	CIFAR,
problems	involving	transfer	learning	will	have	a	good	set	of	initial	weights	to
start	the	training;	those	weights	can	then	be	fine-tuned,	based	on	the	data	at
hand.	Similarly,	to	avoid	training	a	complex	model	on	a	smaller	amount	of	data,
we	may	want	to	extract	the	complex	features	from	a	pre-trained	neural	network,
and	then	use	those	features	to	train	a	relatively	simple	model,	such	as	an	SVM	or
a	logistic	regression	model.	To	provide	an	example,	if	we	are	working	on	an
image	classification	problem	and	we	already	have	a	pre-trained	model—say,	a
VGG16	network	on	1,000	classes	of	ImageNet—we	can	pass	the	training	data
through	the	weights	of	VGG16	and	extract	the	features	from	the	last	pooling	layer.

If	we	have	m	training	data	points,	we	can	use	the	equation	 ,	where	x
is	the	feature	vector	and	y	is	the	output	class.	We	can	then	derive	complex
features,	such	as	vector	h,	from	the	pre-trained	VGG16	network,	as	follows:

Here,	W	is	the	set	of	weights	of	the	pre-trained	VGG16	network,	up	to	the	last
pooling	layer.

We	can	then	use	the	transformed	set	of	training	data	points,	 ,	to
build	a	relatively	simple	model.



Transfer	learning	and	detecting
diabetic	retinopathy
In	this	chapter,	using	transfer	learning,	we	are	going	to	build	a	model	to	detect
diabetic	retinopathy	in	the	human	eye.	Diabetic	retinopathy	is	generally	found	in
diabetic	patients,	where	high	blood	sugar	levels	cause	damage	to	the	blood
vessels	in	the	retina.	The	following	image	shows	a	normal	retina	on	the	left,	and
one	with	diabetic	retinopathy	on	the	right:

Figure	2.2:	A	normal	human	retina	versus	a	retina	with	diabetic	retinopathy

In	healthcare,	diabetic	retinopathy	detection	is	generally	a	manual	process	that
involves	a	trained	physician	examining	color	fundus	retina	images.	This
introduces	a	delay	in	the	process	of	diagnosis,	often	leading	to	delayed
treatment.	As	a	part	of	our	project,	we	are	going	to	build	a	robust	artificial
intelligence	system	that	can	take	the	color	fundus	images	of	the	retina	and
classify	the	severity	of	the	condition	of	the	retina,	with	respect	to	diabetic
retinopathy.	The	different	conditions	into	which	we	are	going	to	classify	the
retina	images	are	as	follows:

0:	No	diabetic	retinopathy



1:	Mild	diabetic	retinopathy
2:	Moderate	diabetic	retinopathy
3:	Severe	diabetic	retinopathy
4:	Proliferative	diabetic	retinopathy



The	diabetic	retinopathy	dataset
The	dataset	for	the	building	the	Diabetic	Retinopathy	detection	application	is
obtained	from	Kaggle	and	can	be	downloaded	from	following	the	link:	https://ww
w.kaggle.com/c/	classroom-diabetic-retinopathy-detection-competition/data.

Both	the	training	and	the	holdout	test	datasets	are	present	within	the
train_dataset.zip	file,	which	is	available	at	the	preceding	link.

We	will	use	the	labeled	training	data	to	build	the	model	through	cross-validation.
We	will	evaluate	the	model	on	the	holdout	dataset.

Since	we	are	dealing	with	class	prediction,	accuracy	will	be	a	useful	validation
metric.	Accuracy	is	defined	as	follows:

Here,	c	is	the	number	of	correctly	classified	samples,	and	N	is	the	total	number
of	evaluated	samples.

We	will	also	use	the	quadratic	weighted	kappa	statistics	to	determine	the
quality	of	the	model,	and	to	have	a	benchmark	as	to	how	good	the	model	is,
compared	to	Kaggle	standards.	The	quadratic	weighted	kappa	is	defined	as

follows:	

The	weight	(wi,j)	in	the	expression	for	quadratic	weighted	kappa	is	as	follows:

In	the	preceding	formula,	the	following	applies:

https://www.kaggle.com/c/%20classroom-diabetic-retinopathy-detection-competition/data


N	represents	the	number	of	classes
Oij	represents	the	number	of	images	that	have	been	predicted	to	have	class
i,	and	where	the	actual	class	of	the	image	is	j
Eij	represents	the	expected	number	of	observations	for	the	predicted	class
which	is	i,	and	the	actual	class	being	j,	assuming	independence	between	the
predicted	class	and	the	actual	class

To	better	understand	kappa	metrics	components,	let's	look	at	a	binary
classification	of	apples	and	oranges.	Let's	assume	that	the	confusion	matrix	of
the	predicted	and	actual	classes	is	as	shown	in	the	following	diagram:	

Figure	2.3:	Kappa	metric	terms

The	expected	count	of	predicting	Apple	when	the	true	label	is	Orange,	assuming
independence	between	the	labels,	is	given	by	the	following	formula:	

	

This	expected	count	is	the	worst	error	that	you	can	make,	given	that	there	is	no
model.

If	you're	familiar	with	the	chi-square	test	for	independence	between	two
categorical	variables,	the	expected	count	in	each	cell	of	the	contingency	table	is
computed	based	on	the	same	formula,	assuming	independence	between	the
categorical	variables.

The	observed	count	of	the	model	predicting	Apple	when	the	true	label	is	Orange



can	be	directly	traced	from	the	confusion	matrix,	and	is	equal	to	5,	as	follows:	

Hence,	we	can	see	that	the	error	the	model	makes	in	predicting	Orange	as	Apple
is	less	than	the	error	we	would	obtain	if	we	were	to	use	no	model.	Kappa
generally	measures	how	well	we	are	doing	in	comparison	to	predictions	made
without	a	model.

If	we	observe	the	expression	for	the	quadratic	weights,	(wi,j),	we	can	see	that	the
value	of	the	weights	is	higher	when	the	difference	between	the	actual	and	the
predicted	label	is	greater.	This	makes	sense,	due	to	the	ordinal	nature	of	classes.
For	example,	let's	denote	an	eye	in	perfect	condition	with	the	class	label	zero;	a
mild	diabetic	retinopathy	condition	with	one;	a	moderate	diabetic	retinopathy
condition	with	two;	and	a	severe	condition	of	diabetic	retinopathy	with	three.
This	quadratic	term	weight,	(wi,j),	is	going	to	be	higher	when	a	mild	diabetic
retinopathy	condition	is	wrongly	classified	as	severe	diabetic	retinopathy,	rather
than	as	moderate	diabetic	retinopathy.	This	makes	sense,	since	we	want	to
predict	a	condition	as	close	to	the	actual	condition	as	possible,	even	if	we	don't
manage	to	predict	the	actual	class.

We	will	be	using	sklearn.metrics.cohen_kappa_score	with	weights=	"quadratic"	to
compute	the	kappa	score.	The	higher	the	weights,	the	lower	the	kappa	score	will
be.



Formulating	the	loss	function
The	data	for	this	use	case	has	five	classes,	pertaining	to	no	diabetic	retinopathy,
mild	diabetic	retinopathy,	moderate	diabetic	retinopathy,	severe	diabetic
retinopathy,	and	proliferative	diabetic	retinopathy.	Hence,	we	can	treat	this	as	a
categorical	classification	problem.	For	our	categorical	classification	problem,	the
output	labels	need	to	be	one-hot	encoded,	as	shown	here:

No	diabetic	retinopathy:	[1	0	0	0	0]T
Mild	diabetic	retinopathy:	[0	1	0	0	0]T
Moderate	diabetic	retinopathy:	[0	0	1	0	0]T
Severe	diabetic	retinopathy:	[0	0	0	1	0]T
Proliferative	diabetic	retinopathy:	[0	0	0	0	1]T

Softmax	would	be	the	best	activation	function	for	presenting	the	probability	of
the	different	classes	in	the	output	layer,	while	the	sum	of	the	categorical	cross-
entropy	loss	of	each	of	the	data	points	would	be	the	best	loss	to	optimize.	For	a
single	data	point	with	the	output	label	vector	y	and	the	predicted	probability	of	p,
the	cross-entropy	loss	is	given	by	the	following	equation:

Here,	 	and	 .

Similarly,	the	average	loss	over	M	training	data	points	can	be	represented	as
follows:

During	the	training	process,	the	gradients	of	a	mini	batch	are	based	on	the
average	log	loss	given	by	(2),	where	M	is	the	chosen	batch	size.	For	the



validation	log	loss	that	we	will	monitor	in	conjunction	with	the	validation
accuracy,	M	is	the	number	of	validation	set	data	points.	Since	we	will	be	doing
K-fold	cross-validation	in	each	fold,	we	will	have	a	different	validation	dataset
in	each	fold.

Now	that	we	have	defined	the	training	methodology,	the	loss	function,	and	the
validation	metric,	let's	proceed	to	the	data	exploration	and	modeling.

Note	that	the	classifications	in	the	output	classes	are	of	an	ordinal	nature,	since
the	severity	increases	from	class	to	class.	For	this	reason,	regression	might	come
in	handy.	We	will	try	our	luck	with	regression	in	place	of	categorical
classification,	as	well,	to	see	how	it	fares.	One	of	the	challenges	with	regression
is	to	convert	the	raw	scores	to	classes.	We	would	use	a	simple	scheme	and	hash
the	scores	to	its	nearest	integer	severity	class.



Taking	class	imbalances	into	account
Class	imbalance	is	a	major	problem	when	it	comes	to	classification.	The
following	diagram	depicts	the	class	densities	of	the	five	severity	classes:

Figure	2.4:	Class	densities	of	the	five	severity	classes

As	we	can	see	from	the	preceding	chart,	nearly	73%	of	the	training	data	belongs
to	Class	0,	which	stands	for	no	diabetic	retinopathy	condition.	So	if	we	happen
to	label	all	data	points	as	Class	0,	then	we	would	have	73%	percent	accuracy.
This	is	not	desirable	in	patient	heath	conditions.	We	would	rather	have	a	test	say
a	patient	has	a	certain	heath	condition	when	it	doesn't	(false	positive)	than	have	a
test	that	misses	detecting	a	certain	heath	condition	when	it	does	(false	negative).
A	73%	accuracy	may	mean	nothing	if	the	model	learns	to	classify	all	points	as
belonging	to	Class	0.

Detecting	the	higher	severity	classes	are	more	important	than	doing	well	on	the
no	severity	class.	The	problem	with	classification	models	using	the	log	loss	or



the	cross	entropy	cost	function	is	that	it	favors	the	majority	class.	This	is	because
the	cross	entropy	error	is	derived	from	the	maximum	likelihood	principles	which
tends	to	assign	higher	probability	to	majority	classes.	We	can	do	two	things:

Discard	data	from	the	classes	with	more	samples	or	up	sample	the	low
frequency	classes	to	keep	the	distribution	of	samples	among	classes
uniform.
In	the	loss	function	assigns	a	weight	to	the	classes	in	inverse	proportion	to
their	densities.	This	will	ensure	that	the	low	frequency	classes	impose	a
higher	penalty	on	the	cost	function	when	the	model	fails	to	classify	them.

We	will	work	with	scheme	two	since	it	doesn't	involve	having	to	generate	more
data	or	throw	away	existing	data.	If	we	take	the	class	weights	to	be	proportional
to	the	inverse	of	the	class	frequencies,	we	get	the	following	class	weights:

Severity	classes Class	weights
Class	0 0.0120353863

Class	1 0.1271350558

Class	2 0.0586961973

Class	3 0.3640234214

Class	4 0.4381974727

	

We	will	use	these	weights	while	training	the	classification	network.



Preprocessing	the	images
The	images	for	the	different	classes	will	be	stored	in	different	folders,	so	it	will
be	easy	to	label	their	classes.	We	will	read	the	images	using	Opencv	functions,	and
will	resize	them	to	different	dimensions,	such	as	224	x	224	x	3.	We'll	subtract	the
mean	pixel	intensity	channel-wise	from	each	of	the	images,	based	on	the
ImageNet	dataset.	This	means	subtraction	will	bring	the	diabetic	retinopathy
images	to	the	same	intensity	range	as	that	of	the	processed	ImageNet	images,	on
which	the	pre-trained	models	are	trained.	Once	each	image	has	been
prepossessed,	they	will	be	stored	in	a	numpy	array.	The	image	preprocessing
functions	can	be	defined	as	follows:

def	get_im_cv2(path,dim=224):

					img	=	cv2.imread(path)

					resized	=	cv2.resize(img,	(dim,dim),	cv2.INTER_LINEAR)

					return	resized

	

	def	pre_process(img):

					img[:,:,0]	=					img[:,:,0]	-	103.939

					img[:,:,1]	=					img[:,:,0]	-	116.779

					img[:,:,2]	=					img[:,:,0]	-	123.68

					return	img

	

The	images	are	read	through	the	opencv	function	imread,	and	then	resized	to
(224,224,3)	or	any	given	dimension	using	an	interlinear	interpolation	method.	The
mean	pixel	intensity	in	the	red,	green,	and	blue	channels	for	the	ImageNet
images	are	103.939,	116.779,	and	123.68,	respectively;	the	pre-trained	models	are
trained	after	subtracting	these	mean	values	from	the	images.	This	activity	of
mean	subtraction	is	used	to	center	the	data.	Centering	the	data	around	zero	helps
fight	vanishing	and	exploding	gradient	problem,	which	in	turn	helps	the	models
converge	faster.	Also,	normalizing	per	channel	helps	to	keep	the	gradient	flow
into	each	channel	uniformly.	Since	we	are	going	to	use	pre-trained	models	for
this	project,	it	makes	sense	to	mean	correct	our	images	based	on	the	channel
wise	mean	pixel	values	before	feeding	them	into	the	pre-trained	networks.
However,	its	not	mandatory	to	mean	correct	the	images	based	on	the	mean
values	of	ImageNet	on	which	the	pre-trained	network	is	based	on.	You	can	very
well	normalize	by	the	mean	pixel	intensities	of	the	training	corpus	for	the
project.



Similarly,	instead	of	performing	channel	wise	mean	normalization,	you	can
choose	to	do	a	mean	normalization	over	the	entire	image.	This	entails
subtracting	the	mean	value	of	each	image	from	itself.	Imagine	a	scenario	where
the	object	to	be	recognized	by	the	CNN	is	exposed	under	different	lighting
conditions	such	as	in	the	day	and	night.	We	would	like	to	classify	the	object
correctly	irrespective	of	the	light	conditions,	however	different	pixel	intensities
would	activate	the	neurons	of	the	neural	network	differently,	leading	to	a
possibility	of	wrong	classification	of	the	object.	However,	if	we	subtract	the
mean	of	each	image	from	itself,	the	object	would	no	longer	be	affected	by	the
different	lighting	conditions.	So	depending	on	the	nature	of	the	images	that	we
work	with,	we	can	choose	for	ourselves	the	best	image	normalizing	scheme.
However	any	of	the	default	ways	of	normalization	tend	to	give	reasonable
performance.



Additional	data	generation	using
affine	transformation
We	will	use	the	keras	ImageDataGenerator	to	generate	additional	data,	using	affine
transformation	on	the	image	pixel	coordinates.	The	transformations	that	we
will	primarily	use	are	rotation,	translation,	and	scaling.	If	the	pixel	spatial
coordinate	is	defined	by	x	=	[x1x2]T	∈	R2,	then	the	new	coordinate	of	the	pixel
can	be	given	by	the	following:	

Here,	M	=	R2x2	is	the	affine	transformation	matrix,	and	b	=	[b1	b2]T	∈	R2	is	a
translation	vector.

The	term	b1	specifies	the	translation	along	one	of	the	spatial	directions,	while	b2
provides	the	translation	along	the	other	spatial	dimension.

These	transformations	are	required,	because	neural	networks	are	not,	in	general,
translational	invariant,	rotational	invariant,	or	scale	invariant.	Pooling	operations
do	provide	some	translational	invariance,	but	it	is	generally	not	enough.	The
neural	network	doesn't	treat	one	object	in	a	specific	location	in	an	image	and	the
same	object	at	a	translated	location	in	another	image	as	the	same	thing.	That	is
why	we	require	several	instances	of	an	image	at	different	translated	positions	for
the	neural	network	to	learn	better.	The	same	explanation	applies	to	rotation	and
scaling.



Rotation
The	following	is	the	affine	transformation	matrix	for	rotation,	where	θ	represents

the	angle	of	rotation:	

The	translation	vector,	b,	is	zero,	in	this	case.	We	can	get	rotation	followed	by
translation	by	selecting	a	non-zero	b.

As	an	example,	the	following	image	shows	a	photo	of	a	retina,	and	then	the	same
photo,	rotated	90	degrees:	

Figure	2.5:	Rotated	photo	of	the	retina



Translation
For	translation,	the	affine	transformation	matrix	is	the	identity	matrix,	and	the

translation	vector,	b,	has	a	nonzero	value:	

For	instance,	for	a	translation	of	five	pixel	positions	along	the	vertical	direction
and	three	pixel	positions	along	the	horizontal	direction,	we	can	use	b=	[5	3]T,
with	M	as	the	identity	matrix.

The	following	is	an	image	translation	of	a	retina	by	24	pixel	locations,	along
both	the	width	and	height	of	the	image:

Figure	2.5:	Image	translation	of	the	retina



Scaling
Scaling	can	be	performed	by	a	diagonal	matrix,	M	∈	R2x2,	as	shown	here:

Here,	Sv	denotes	the	scale	factor	along	the	vertical	direction,	and	Sh	denotes	the
scale	factor	along	the	horizontal	direction	(see	Figure	2.6	for	an	illustration).	We
can	also	choose	to	follow	up	the	scaling	with	a	translation,	by	having	a	nonzero
translation	vector,	b:

Figure	2.6	Image	scaling	of	the	retina



Reflection
The	reflection	about	a	line,	L,	making	an	angle	of	θ	with	the	horizontal,	can	be
obtained	by	the	transformation	matrix	T	∈	R2x2,	as	follows:

The	following	image	shows	a	horizontal	flip	of	a	retina	photo:

	Figure	2.7:	Horizontal	flip	of	a	retina	photo



datagen	=	ImageDataGenerator(<br/>	horizontal_flip	=	True,<br/>	vertical_flip
=	True,<br/>	width_shift_range	=	0.1,<br/>	height_shift_range	=	0.1,<br/>
channel_shift_range=0,<br/>	zoom_range	=	0.2,<br/>	rotation_range	=	20)

As	you	can	see	from	the	defined	generator,	we	have	enabled	horizontal	and
vertical	flipping,	which	is	nothing	but	a	reflection	of	the	images	along	the
horizontal	and	vertical	axes,	respectively.	Similarly,	we	have	defined	the	image
translations	along	the	width	and	the	height	to	be	within	10%	of	the	pixel
locations	along	those	directions.	The	range	of	rotation	is	confined	to	an	angle	of
20	degrees,	whereas	the	scale	factor	is	defined	to	be	within	0.8	to	1.2	of	the
original	image.

	



Network	architecture
We	will	now	experiment	with	the	pre-trained	ResNet50,	InceptionV3,	and	VGG16
networks,	and	find	out	which	one	gives	the	best	results.	Each	of	the	pre-trained
models'	weights	are	based	on	ImageNet.	I	have	provided	the	links	to	the	original
papers	for	the	ResNet,	InceptionV3,	and	VGG16	architectures,	for	reference.	Readers
are	advised	to	go	over	these	papers,	to	get	an	in-depth	understanding	of	these
architectures	and	the	subtle	differences	between	them.

The	VGG	paper	link	is	as	follows:

Title:	Very	Deep	Convolutional	Networks	for	Large-Scale	Image
Recognition
Link:	https://arxiv.org/abs/1409.1556

The	ResNet	paper	link	is	as	follows:

Title:	Deep	Residual	Learning	for	Image	Recognition
Link:	https://arxiv.org/abs/1512.03385

The	InceptionV3	paper	link	is	as	follows:

Title:	Rethinking	the	Inception	Architecture	for	Computer	Vision
Link:	https://arxiv.org/abs/1512.00567

To	explain	in	brief,	VGG16	is	a	16-layered	CNN	that	uses	3	x	3	filters	and	2	x	2
receptive	fields	for	convolution.	The	activation	functions	used	throughout	the
network	are	all	ReLUs.	The	VGG	architecture,	developed	by	Simonyan	and
Zisserman,	was	the	runner	up	in	the	ILSVRC	2014	competition.	The	VGG16
network	gained	a	lot	of	popularity	due	to	its	simplicity,	and	it	is	the	most	popular
network	for	extracting	features	from	images.

ResNet50	is	a	deep	CNN	that	implements	the	idea	of	residual	block,	quite	different
from	that	of	the	VGG16	network.	After	a	series	of	convolution-activation-pooling
operations,	the	input	of	the	block	is	again	fed	back	to	the	output.	The	ResNet
architecture	was	developed	by	Kaiming	He,	et	al.,	and	although	it	has	152	layers,

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.00567


it	is	less	complex	than	the	VGG	network.	This	architecture	won	the	ILSVRC
2015	competition	by	achieving	a	top	five	error	rate	of	3.57%,	which	is	better
than	the	human-level	performance	on	this	competition	dataset.	The	top	five	error
rate	is	computed	by	checking	whether	the	target	is	in	the	five	class	predictions
with	the	highest	probability.	In	principle,	the	ResNet	network	tries	to	learn	the
residual	mapping,	as	opposed	to	directly	mapping	from	the	output	to	the	input,
as	you	can	see	in	the	following	residual	block	diagram:

Figure	2.8:	Residual	block	of	ResNet	models

InceptionV3	is	the	state-of-the-art	CNN	from	Google.	Instead	of	using	fixed-
sized	convolutional	filters	at	each	layer,	the	InceptionV3	architecture	uses	filters
of	different	sizes	to	extract	features	at	different	levels	of	granularity.	The
convolution	block	of	an	InceptionV3	layer	is	illustrated	in	the	following
diagram:



Figure	2.9:	InceptionV3	convolution	block

Inception	V1	(GoogleNet)	was	the	winner	of	the	ILSVRC	2014	competition.	Its
top	5%	error	rate	was	very	close	to	human-level	performance,	at	6.67%.



The	VGG16	transfer	learning
network
We	will	take	the	output	from	the	last	pooling	layer	in	the	pre-trained	VGG16
network	and	add	a	couple	of	fully	connected	layers	of	512	units	each,	followed
by	the	output	layer.	The	output	of	the	final	pooling	layer	is	passed	from	a	global
average	pooling	operation	before	the	fully	connected	layer.	We	can	just	flatten
the	output	of	the	pooling	layer,	instead	of	performing	global	average	pooling—
the	idea	is	to	ensure	that	the	output	of	the	pooling	is	not	in	a	two-dimensional
lattice	format,	but	rather,	in	a	one-dimensional	array	format,	much	like	a	fully
connected	layer.	The	following	diagram	illustrates	the	architecture	of	the	new
VGG16,	based	on	the	pre-trained	VGG16:



Figure	2.10:	The	VGG16	transfer	learning	network

As	shown	in	the	preceding	diagram,	we	will	extract	the	output	from	the	last
max-pooling	layer	in	the	pre-trained	network	and	attach	two	fully	connected
layers	before	the	final	output	layer.	Based	on	the	preceding	architecture,	the
VGG	definition	function	can	be	defined	as	shown	the	following	code	block,
using	keras:

def	VGG16_pseudo(dim=224,freeze_layers=10,full_freeze='N'):

			#	model_save_dest	=	{}

				model	=	VGG16(weights='imagenet',include_top=False)

				x	=	model.output

				x	=	GlobalAveragePooling2D()(x)



				x	=	Dense(512,	activation='relu')(x)

				x	=	Dropout(0.5)(x)

				x	=	Dense(512,	activation='relu')(x)

				x	=	Dropout(0.5)(x)

				out	=	Dense(5,activation='softmax')(x)

				model_final	=	Model(input	=	model.input,outputs=out)

				if	full_freeze	!=	'N':

								for	layer	in	model.layers[0:freeze_layers]:

									layer.trainable	=	False

				return	model_final

We	are	going	to	use	the	weights	from	the	pre-trained	VGG16	trained	on	ImageNet
as	the	initial	weights	of	the	model,	and	then	fine-tune	the	model.	We	are	also
freezing	the	weights	of	the	first	few	layers	(10	is	the	default)	since,	in	a	CNN,	the
first	few	layers	learn	to	detect	generic	features,	such	as	edges,	color	composition,
and	so	on.	Hence,	the	features	will	not	vary	much	across	domains.	Freezing	a
layer	refers	to	not	training	the	weights	that	are	specific	to	that	layer.	We	can
experiment	with	the	number	of	layers	to	freeze,	and	take	the	one	that	provides
the	best	validation	score.	Since	we	are	performing	multi-class	classification,	the
softmax	activation	function	has	been	chosen	for	the	output	layer.



def	inception_pseudo(dim=224,freeze_layers=30,full_freeze='N'):<br/>	model	=
InceptionV3(weights='imagenet',include_top=False)<br/>	x	=
model.output<br/>	x	=	GlobalAveragePooling2D()(x)<br/>	x	=	Dense(512,
activation='relu')(x)<br/>	x	=	Dropout(0.5)(x)<br/>	x	=	Dense(512,
activation='relu')(x)<br/>	x	=	Dropout(0.5)(x)<br/>	out	=
Dense(5,activation='softmax')(x)<br/>	model_final	=	Model(input	=
model.input,outputs=out)<br/>	if	full_freeze	!=	'N':<br/>	for	layer	in
model.layers[0:freeze_layers]:<br/>	layer.trainable	=	False<br/>	return
model_final



def	resnet_pseudo(dim=224,freeze_layers=10,full_freeze='N'):<br/>	#
model_save_dest	=	{}<br/>	model	=
ResNet50(weights='imagenet',include_top=False)<br/>	x	=	model.output<br/>	x
=	GlobalAveragePooling2D()(x)<br/>	x	=	Dense(512,	activation='relu')(x)<br/>
x	=	Dropout(0.5)(x)<br/>	x	=	Dense(512,	activation='relu')(x)<br/>	x	=
Dropout(0.5)(x)<br/>	out	=	Dense(5,activation='softmax')(x)<br/>	model_final
=	Model(input	=	model.input,outputs=out)<br/>	if	full_freeze	!=	'N':<br/>	for
layer	in	model.layers[0:freeze_layers]:<br/>	layer.trainable	=	False<br/>	return
model_final<br/><br/><br/>



adam	=	optimizers.Adam(lr=0.00001,	beta_1=0.9,	beta_2=0.999,	epsilon=1e-08,
decay=0.0)

The	beta_1	parameter	controls	the	contribution	of	the	current	gradient	in	the
momentum	computation,	whereas	the	beta_2	parameter	controls	the	contribution
of	the	square	of	the	gradient	in	the	gradient	normalization,	which	helps	to	tackle
the	curvature	in	the	cost	function.



Cross-validation
Since	the	training	dataset	is	small,	we	will	perform	five-fold	cross-validation,	to
get	a	better	sense	of	the	model's	ability	to	generalize	to	new	data.	We	will	also
use	all	five	of	the	models	built	in	the	different	folds	of	cross-validation	in
training,	for	inference.	The	probability	of	a	test	data	point	belonging	to	a	class
label	would	be	the	average	probability	prediction	of	all	five	models,	which	is

represented	as	follows:	

Since	the	aim	is	to	predict	the	actual	classes	and	not	the	probability,	we	would
select	the	class	that	has	the	maximum	probability.	This	methodology	works
when	we	are	working	with	a	classification-based	network	and	cost	function.	If
we	are	treating	the	problem	as	a	regression	problem,	then	there	are	a	few
alterations	to	the	process,	which	we	will	discuss	later	on.



Model	checkpoints	based	on
validation	log	loss
It	is	always	a	good	practice	to	save	the	model	when	the	validation	score	chosen
for	evaluation	improves.	For	our	project,	we	will	be	tracking	the	validation	log
loss,	and	will	save	the	model	as	the	validation	score	improves	over	the	different
epochs.	This	way,	after	the	training,	we	will	save	the	model	weights	that
provided	the	best	validation	score,	and	not	the	final	model	weights	from	when
we	stopped	the	training.	The	training	will	continue	until	the	maximum	number
of	epochs	defined	for	the	training	is	reached,	or	until	the	validation	log	loss
hasn't	reduced	for	10	epochs	in	a	row.	We	will	also	reduce	the	learning	rate	when
the	validation	log	loss	doesn't	improve	for	3	epochs.	The	following	code	block
can	be	used	to	perform	the	learning	rate	reduction	and	checkpoint	operation:

reduce_lr	=	keras.callbacks.ReduceLROnPlateau(monitor='val_loss',	factor=0.50,

	patience=3,	min_lr=0.000001)

	

	callbacks	=	[

	EarlyStopping(monitor='val_loss',	patience=10,	mode='min',	verbose=1),

	CSVLogger('keras-5fold-run-01-v1-epochs_ib.log',	separator=',',	append=False),reduce_lr,

	ModelCheckpoint(

	'kera1-5fold-run-01-v1-fold-'	+	str('%02d'	%	(k	+	1))	+	'-run-'	+	str('%02d'	%	(1	+	1))	+	'.check',

	monitor='val_loss',	mode='min',	#	mode	must	be	set	to	max	or	keras	will	be	confused

	save_best_only=True,

	verbose=1)

	]

As	you	can	see	in	the	preceding	code	block,	the	learning	rate	reduces	to	half
(0.50)	if	the	validation	loss	hasn't	improved	in	3	(patience=3)	epochs.	Similarly,	we
stop	the	training	(by	performing	EarlyStopping)	if	the	validation	loss	is	not	reduced
in	10	(patience	=	10)	epochs.	The	model	is	saved	whenever	the	validation	log	loss
reduces,	as	shown	in	the	following	code	snippet:

'kera1-5fold-run-01-v1-fold-'	+	str('%02d'	%	(k	+	1))	+	'-run-'	+	str('%02d'	%	(1	+	1))	+	'.check'

The	validation	log	loss	in	each	epoch	of	the	training	process	is	tracked	in	the
keras-5fold-run-01-v1-epochs_ib.log	log	file,	and	is	referred	to	in	order	to	save	the
model	if	the	validation	log	loss	improves,	or	to	decide	when	to	reduce	the
learning	rate	or	stop	the	training.



The	models	in	each	fold	are	saved	by	using	the	keras	save	function	in	user-defined
paths,	while	during	inference,	the	models	are	loaded	into	memory	by	using	the
keras.load_model	function.



Python	implementation	of	the
training	process
The	following	Python	code	block	shows	an	end-to-end	implementation	of	the
training	process.	It	consists	of	all	of	the	functional	blocks	that	were	discussed	in
the	preceding	sections.	Let's	start	by	calling	all	of	the	Python	packages	that	are
required,	as	follows:

import	numpy	as	np

np.random.seed(1000)

import	os

import	glob

import	cv2

import	datetime

import	pandas	as	pd

import	time

import	warnings

warnings.filterwarnings("ignore")

from	sklearn.model_selection	import	KFold

from	sklearn.metrics	import	cohen_kappa_score

from	keras.models	import	Sequential,Model

from	keras.layers.core	import	Dense,	Dropout,	Flatten

from	keras.layers.convolutional	import	Convolution2D,	MaxPooling2D,	ZeroPadding2D

from	keras.layers	import	GlobalMaxPooling2D,GlobalAveragePooling2D

from	keras.optimizers	import	SGD

from	keras.callbacks	import	EarlyStopping

from	keras.utils	import	np_utils

from	sklearn.metrics	import	log_loss

import	keras

from	keras	import	__version__	as	keras_version

from	keras.applications.inception_v3	import	InceptionV3

from	keras.applications.resnet50	import	ResNet50

from	keras.applications.vgg16	import	VGG16

from	keras.preprocessing.image	import	ImageDataGenerator

from	keras	import	optimizers	

from	keras.callbacks	import	EarlyStopping,	ModelCheckpoint,	CSVLogger,	Callback

from	keras.applications.resnet50	import	preprocess_input

import	h5py

import	argparse

from	sklearn.externals	import	joblib

import	json

Once	we	have	imported	the	required	library,	we	can	define	the	TransferLearning
class:

class	TransferLearning:

		def	__init__(self):

				parser	=	argparse.ArgumentParser(description='Process	the	inputs')

				parser.add_argument('--path',help='image	directory')



				parser.add_argument('--class_folders',help='class	images	folder		

																								names')

				parser.add_argument('--dim',type=int,help='Image	dimensions	to	

																								process')

				parser.add_argument('--lr',type=float,help='learning	

																								rate',default=1e-4)

				parser.add_argument('--batch_size',type=int,help='batch	size')

				parser.add_argument('--epochs',type=int,help='no	of	epochs	to	

																								train')

				parser.add_argument('--initial_layers_to_freeze',type=int,help='the	

																								initial	layers	to	freeze')

				parser.add_argument('--model',help='Standard	Model	to	

																								load',default='InceptionV3')

				parser.add_argument('--folds',type=int,help='num	of	cross	

																								validation	folds',default=5)

				parser.add_argument('--outdir',help='output	directory')

				

				args	=	parser.parse_args()

				self.path	=	args.path

				self.class_folders	=	json.loads(args.class_folders)

				self.dim	=	int(args.dim)

				self.lr	=	float(args.lr)

				self.batch_size	=	int(args.batch_size)

				self.epochs	=	int(args.epochs)

				self.initial_layers_to_freeze	=	int(args.initial_layers_to_freeze)

				self.model	=	args.model

				self.folds	=	int(args.folds)

				self.outdir	=	args.outdir

Next,	let's	define	a	function	that	can	read	the	images	and	resize	them	to	a
suitable	dimension,	as	follows:

def	get_im_cv2(self,path,dim=224):

				img	=	cv2.imread(path)

				resized	=	cv2.resize(img,	(dim,dim),	cv2.INTER_LINEAR)

				return	resized

		#	Pre	Process	the	Images	based	on	the	ImageNet	pre-trained	model			

				Image	transformation

		def	pre_process(self,img):

				img[:,:,0]	=	img[:,:,0]	-	103.939

				img[:,:,1]	=	img[:,:,0]	-	116.779

				img[:,:,2]	=	img[:,:,0]	-	123.68

				return	img

					

		#	Function	to	build	X,	y	in	numpy	format	based	on	the			

				train/validation	datasets

		def	read_data(self,class_folders,path,num_class,dim,train_val='train'):

				print(train_val)

				train_X,train_y	=	[],[]	

				for	c	in	class_folders:

						path_class	=	path	+	str(train_val)	+	'/'	+	str(c)

						file_list	=	os.listdir(path_class)	

						for	f	in	file_list:

								img	=	self.get_im_cv2(path_class	+	'/'	+	f)

								img	=	self.pre_process(img)

								train_X.append(img)

								train_y.append(int(c.split('class')[1]))

				train_y	=	keras.utils.np_utils.to_categorical(np.array(train_y),num_class)	

				return	np.array(train_X),train_y



Following	that,	we	will	now	define	the	three	models	for	transfer	learning,
starting	with	InceptionV3:

def	inception_pseudo(self,dim=224,freeze_layers=30,full_freeze='N'):

				model	=	InceptionV3(weights='imagenet',include_top=False)

				x	=	model.output

				x	=	GlobalAveragePooling2D()(x)

				x	=	Dense(512,	activation='relu')(x)

				x	=	Dropout(0.5)(x)

				x	=	Dense(512,	activation='relu')(x)

				x	=	Dropout(0.5)(x)

				out	=	Dense(5,activation='softmax')(x)

				model_final	=	Model(input	=	model.input,outputs=out)

				if	full_freeze	!=	'N':

						for	layer	in	model.layers[0:freeze_layers]:

								layer.trainable	=	False

				return	model_final

Then,	we	will	define	the	ResNet50	Model	for	transfer	learning:

def	resnet_pseudo(self,dim=224,freeze_layers=10,full_freeze='N'):

				model	=	ResNet50(weights='imagenet',include_top=False)

				x	=	model.output

				x	=	GlobalAveragePooling2D()(x)

				x	=	Dense(512,	activation='relu')(x)

				x	=	Dropout(0.5)(x)

				x	=	Dense(512,	activation='relu')(x)

				x	=	Dropout(0.5)(x)

				out	=	Dense(5,activation='softmax')(x)

				model_final	=	Model(input	=	model.input,outputs=out)

				if	full_freeze	!=	'N':

						for	layer	in	model.layers[0:freeze_layers]:

								layer.trainable	=	False

				return	model_final

Lastly,	we	will	define	the	VGG16	model:

def	VGG16_pseudo(self,dim=224,freeze_layers=10,full_freeze='N'):

				model	=	VGG16(weights='imagenet',include_top=False)

				x	=	model.output

				x	=	GlobalAveragePooling2D()(x)

				x	=	Dense(512,	activation='relu')(x)

				x	=	Dropout(0.5)(x)

				x	=	Dense(512,	activation='relu')(x)

				x	=	Dropout(0.5)(x)

				out	=	Dense(5,activation='softmax')(x)

				model_final	=	Model(input	=	model.input,outputs=out)

				if	full_freeze	!=	'N':

						for	layer	in	model.layers[0:freeze_layers]:

								layer.trainable	=	False

				return	model_final

Now,	let's	define	the	training	function,	as	follows:

def	train_model(self,train_X,train_y,n_fold=5,batch_size=16,epochs=40,

dim=224,lr=1e-5,model='ResNet50'):



				model_save_dest	=	{}

				k	=	0

				kf	=	KFold(n_splits=n_fold,	random_state=0,	shuffle=True)

				for	train_index,	test_index	in	kf.split(train_X):

						k	+=	1	

						X_train,X_test	=	train_X[train_index],train_X[test_index]

						y_train,	y_test	=	train_y[train_index],train_y[test_index]

						

						if	model	==	'Resnet50':

								model_final	=					

								self.resnet_pseudo(dim=224,freeze_layers=10,full_freeze='N')

						

						if	model	==	'VGG16':

								model_final	=	

								self.VGG16_pseudo(dim=224,freeze_layers=10,full_freeze='N')	

						

						if	model	==	'InceptionV3':

								model_final	=	self.inception_pseudo(dim=224,freeze_layers=10,full_freeze='N')

						

						datagen	=	ImageDataGenerator(

										horizontal_flip	=	True,

										vertical_flip	=	True,

										width_shift_range	=	0.1,

										height_shift_range	=	0.1,

										channel_shift_range=0,

										zoom_range	=	0.2,

										rotation_range	=	20)

								

								

						adam	=	optimizers.Adam(lr=lr,	beta_1=0.9,	beta_2=0.999,	

								epsilon=1e-08,	decay=0.0)

						model_final.compile(optimizer=adam,	

							loss=	["categorical_crossentropy"],metrics=['accuracy'])

						reduce_lr	=	keras.callbacks.ReduceLROnPlateau(monitor='val_loss',			

								factor=0.50,	patience=3,	min_lr=0.000001)

						

						callbacks	=	[

												EarlyStopping(monitor='val_loss',	patience=10,	mode='min',			

													verbose=1),

								CSVLogger('keras-5fold-run-01-v1-epochs_ib.log',	

								separator=',',	append=False),reduce_lr,

												ModelCheckpoint(

																'kera1-5fold-run-01-v1-fold-'	+	str('%02d'	%	(k	+	1))	+	

																'-run-'	+	str('%02d'	%	(1	+	1))	+	'.check',

																monitor='val_loss',	mode='min',

																save_best_only=True,

																verbose=1)

										]

						

						model_final.fit_generator(datagen.flow(X_train,y_train,	

																																	batch_size=batch_size),

						steps_per_epoch=X_train.shape[0]/batch_size,	epochs=epochs,

									verbose=1,	validation_data=	(X_test,y_test),

									callbacks=callbacks,	class_weight=					

									{0:0.012,1:0.12,2:0.058,3:0.36,4:0.43})

					

						model_name	=	'kera1-5fold-run-01-v1-fold-'	+	str('%02d'	%	(k	+	

																				1))	+	'-run-'	+	str('%02d'	%	(1	+	1))	+	'.check'

						del	model_final

						f	=	h5py.File(model_name,	'r+')

						del	f['optimizer_weights']

						f.close()



						model_final	=	keras.models.load_model(model_name)

						model_name1	=	self.outdir	+	str(model)	+	'___'	+	str(k)	

						model_final.save(model_name1)

						model_save_dest[k]	=	model_name1

								

				return	model_save_dest

We	will	also	define	an	inference	function	for	the	holdout	dataset,	as	follows:

def	inference_validation(self,test_X,test_y,model_save_dest,

				n_class=5,folds=5):

				pred	=	np.zeros((len(test_X),n_class))

				for	k	in	range(1,folds	+	1):

						model	=	keras.models.load_model(model_save_dest[k])

						pred	=	pred	+	model.predict(test_X)

				pred	=	pred/(1.0*folds)	

				pred_class	=	np.argmax(pred,axis=1)	

				act_class	=	np.argmax(test_y,axis=1)

				accuracy	=	np.sum([pred_class	==	act_class])*1.0/len(test_X)

				kappa	=	cohen_kappa_score(pred_class,act_class,weights='quadratic')

				return	pred_class,accuracy,kappa	

Now,	let's	call	the	main	function,	to	trigger	the	training	process,	as	follows:

def	main(self):

				start_time	=	time.time()

				self.num_class	=	len(self.class_folders)

		if	self.mode	==	'train':

								print("Data	Processing..")

								file_list,labels=	

								self.read_data(self.class_folders,self.path,self.num_class,

																							self.dim,train_val='train')

								print(len(file_list),len(labels))

								print(labels[0],labels[-1])

								self.model_save_dest	=	

								self.train_model(file_list,labels,n_fold=self.folds,

																									batch_size=self.batch_size,

																									epochs=self.epochs,dim=self.dim,

																									lr=self.lr,model=self.model)

								joblib.dump(self.model_save_dest,f'{self.outdir}/model_dict.pkl')

								print("Model	saved	to	dest:",self.model_save_dest)

		else:

								model_save_dest	=	joblib.load(self.model_save_dest)

								print('Models	loaded	from:',model_save_dest)

												#	Do	inference/validation

								test_files,test_y	=	

								self.read_data(self.class_folders,self.path,self.num_class,

																							self.dim,train_val='validation')

						test_X	=	[]

						for	f	in	test_files:

								img	=	self.get_im_cv2(f)

								img	=	self.pre_process(img)

								test_X.append(img)

						test_X	=	np.array(test_X)

						test_y	=	np.array(test_y)

						print(test_X.shape)

						print(len(test_y))

						pred_class,accuracy,kappa	=					

						self.inference_validation(test_X,test_y,model_save_dest,

																																n_class=self.num_class,folds=self.folds)



						results_df	=	pd.DataFrame()

						results_df['file_name']	=	test_files

						results_df['target']	=	test_y

						results_df['prediction']	=	pred_class

						results_df.to_csv(f'{self.outdir}/val_resuts_reg.csv',index=False)

						

						print("-----------------------------------------------------")

						print("Kappa	score:",	kappa)

						print("accuracy:",	accuracy)	

						print("End	of	training")

						print("-----------------------------------------------------")

						print("Processing	Time",time.time()	-	start_time,'	secs')

We	can	change	several	parameters,	such	as	learning	rate,	batch	size,	image	size,
and	so	on,	and	we	can	experiment,	to	come	up	with	a	decent	model.	During	the
training	phase,	the	model	locations	are	saved	in	the	model_save_dest	dictionary	that
is	written	to	the	dict_model	file.

During	the	inference	phase,	the	model	just	makes	predictions	on	the	new	test
data,	based	on	the	trained	models.

The	script	for	transfer	learning	named	TransferLearning.py	can	be	invoked	as
follows:

python	TransferLearning.py	--path	'/media/santanu/9eb9b6dc-b380-486e-b4fd-c424a325b976/book	AI/Diabetic	Retinopathy/Extra/assignment2_train_dataset/'	--class_folders	'["class0","class1","class2","class3","class4"]'	--dim	224	--lr	1e-4	--batch_size	16	--epochs	20	--initial_layers_to_freeze	10	--model	InceptionV3	--folds	5	--outdir	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/'

The	output	log	of	the	script	is	as	follows:

Model	saved	to	dest:	{1:	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/categorical/InceptionV3___1',	2:	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/categorical/InceptionV3___2',	3:	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/categorical/InceptionV3___3',	4:	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/categorical/InceptionV3___4',	5:	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/categorical/InceptionV3___5'}

validation

-----------------------------------------------------

Kappa	score:	0.42969781637876836

accuracy:	0.5553973227000855

End	of	training

-----------------------------------------------------

Processing	Time	26009.3344039917	secs

As	we	can	see	from	the	results	in	the	log,	we	achieve	a	decent	cross	validation
accuracy	of	around	56%	and	a	quadratic	Kappa	of	around	0.43.

In	this	script,	we	have	loaded	all	the	data	into	memory	and	then	fed	the
augmented	images	from	the	ImageDataGenerator	to	the	model	for	training.	If	the	set
of	training	images	are	few	and/or	of	moderate	dimension,	then	loading	the	data
into	memory	might	not	be	of	great	concern.	However,	if	the	image	corpus	is
huge	and/or	we	have	limited	resources,	loading	all	the	data	into	memory	won't
be	a	viable	option.	Since	the	machine	on	which	these	experiments	have	been	run
has	64	GB	RAM,	we	were	able	to	train	these	models	without	issues.	Even	a	16



GB	RAM	machine	might	not	be	sufficient	to	run	these	experiments	by	loading
all	the	data	in	memory	and	you	might	run	into	a	memory	error.

The	question	is,	do	we	need	to	load	all	the	data	into	memory	at	once?

Since	neural	networks	work	with	mini-batches,	we	would	only	require	the	data
corresponding	to	one	mini-batch	to	train	the	model	through	back-propagation	at
one	time.	Similarly	for	the	next	back-propagation,	we	can	discard	the	data
corresponding	to	the	current	batch	and	process	the	next	batch	instead.	So	in	a
way	the	memory	requirement	at	each	mini-batch	is	only	the	data	corresponding
to	that	batch.	So	we	can	get	around	training	deep	learning	models	in	machines
with	less	memory	by	creating	dynamic	batches	at	training	time.	Keras	has	a	good
function	to	create	dynamic	batches	at	training	time	which	we	will	discuss	in	the
next	section.



Dynamic	mini	batch	creation	during
training
One	of	the	ways	to	only	load	the	data	corresponding	to	a	mini-batch	is	to
dynamically	create	mini-batches	by	processing	images	randomly	from	their
location.	The	number	of	images	to	be	processed	in	a	mini-batch	would	be	equal
to	the	mini-batch	size	we	specify.	Of	course	there	would	be	some	bottleneck	in
the	training	process	because	of	the	dynamic	mini-batch	creation	during	training
time	but	that	bottleneck	is	negligible.	Specially	packages	such	as	keras	have
efficient	dynamic	batch	creation	mechanism.	We	would	be	leveraging
flow_from_directory	functionality	in	keras	to	dynamically	create	mini-batches
during	training	to	reduce	the	memory	requirements	of	the	training	process.	We
will	still	continue	to	use	ImageDataGenerator	for	image	augmentation.	The	train
generator	and	the	validation	generator	can	be	defined	as	follows.

The	image	preprocessing	step	of	subtracting	the	mean	images	pixel	intensities
from	the	three	channels	is	done	by	feeding	the	pre_process	function	as	input	to	the
preprocessing_function	of	the	ImageDataGenerator:

def	pre_process(img):

												img[:,:,0]	=	img[:,:,0]	-	103.939

												img[:,:,1]	=	img[:,:,0]	-	116.779

												img[:,:,2]	=	img[:,:,0]	-	123.68

												return	img

								train_file_names	=	glob.glob(f'{train_dir}/*/*')

								val_file_names	=	glob.glob(f'{val_dir}/*/*')

								train_steps_per_epoch	=	len(train_file_names)/float(batch_size)

								val_steps_per_epoch	=	len(val_file_names)/float(batch_size)

								train_datagen	=	

								ImageDataGenerator(horizontal_flip	=

																											True,vertical_flip	=

																											True,width_shift_range	=

																											0.1,height_shift_range	=	0.1,

																											channel_shift_range=0,zoom_range	=	0.2,

																											rotation_range	=	20,

																											preprocessing_function=pre_process)

								val_datagen	=

								ImageDataGenerator(preprocessing_function=pre_process)

								train_generator	=

								train_datagen.flow_from_directory(train_dir,

																																										target_size=(dim,dim),

																																										batch_size=batch_size,

																																										class_mode='categorical')



								val_generator	=

								val_datagen.flow_from_directory(val_dir,

																																								target_size=(dim,dim),

																																									batch_size=batch_size,

																																									class_mode='categorical')

								print(train_generator.class_indices)

								joblib.dump(train_generator.class_indices,

								f'{self.outdir}/class_indices.pkl')

								

The	flow_from_directory	function	takes	in	an	image	directory	as	and	input	and
expects	a	folder	pertaining	to	a	class	within	the	image	directory.	It	then	infers	the
class	labels	from	the	folder	names.	If	an	image	directory	has	the	following
structure	for	the	image	directory	then	the	classes	are	inferred	as	0,	1,	2,	3,	4,
pertaining	to	the	class	folders	'class0','class1','class2','class3',	and	'class4'.

The	other	important	inputs	to	the	flow_from_directory	function	is	the	batch_size,
target_size	and	class_mode.	The	target_size	is	to	specify	the	dimension	of	the	image
to	be	fed	to	the	neural	network	while	class_mode	is	to	specify	the	nature	of	the
problem.	For	binary	classification	class_mode	is	set	to	binary	while	for	multi	class
classification	the	same	is	set	to	categorical.

We	will	next	train	the	same	model	by	creating	dynamic	batches	instead	of
loading	all	the	data	to	memory	at	once.	We	just	need	to	create	a	generator	using
flow_from_directory	option	and	tie	it	to	the	data	augmentation	object.	The	data
generator	object	can	be	generated	as	follows:

#	Pre	processing	for	channel	wise	mean	pixel	subtraction	

def	pre_process(img):

				img[:,:,0]	=	img[:,:,0]	-	103.939

				img[:,:,1]	=	img[:,:,0]	-	116.779

				img[:,:,2]	=	img[:,:,0]	-	123.68

				return	img

#	Add	the	pre_process	function	at	the	end	of	the	ImageDataGenerator,	

#rest	all	of	the	data	augmentation	options

#	remain	the	same.	

train_datagen	=	

ImageDataGenerator(horizontal_flip	=	True,vertical_flip	=	True,

																			width_shift_range	=	0.1,height_shift_range	=	0.1,

																			channel_shift_range=0,zoom_range	=																					

																			0.2,rotation_range	=	20,

																			preprocessing_function=pre_process)

	#	For	validation	no	data	augmentation	on	image	mean	subtraction	preprocessing

val_datagen	=	ImageDataGenerator(preprocessing_function=pre_process)

#	We	build	the	train	generator	using	flow_from_directory

train_generator	=	train_datagen.flow_from_directory(train_dir,



								target_size=(dim,dim),

								batch_size=batch_size,

								class_mode='categorical')

#	We	build	the	validation	generator	using	flow_from_directory

val_generator	=	val_datagen.flow_from_directory(val_dir,

								target_size=(dim,dim),

								batch_size=batch_size,

								class_mode='categorical')

In	the	preceding	code	we	pass	the	ImageDataGenerator	an	additional	task	of
performing	the	mean	pixel	subtraction	since	we	don't	have	any	control	of	loading
the	image	data	in	memory	and	passing	it	through	the	pre_process	function.	In	the
preprocessing_function	option,	we	can	pass	any	desired	custom	function	for	any
specific	preprocessing	task.

Through	train_dir,	and	val_dir	we	pass	the	training	and	validation	directories	to
the	train	and	validation	generator	that	we	created	with	flow_with_directory	option.
The	generators	identifies	the	number	of	classes	by	looking	at	the	number	of	class
folders	within	the	training	data	directory	(here	train_dir)passed.	During	training
time	based	on	the	target_size	the	images	are	read	into	memory	based	on	the
specified	batch_size

The	class_mode	helps	the	generator	identify	whether	its	a	binary	classification	or	a
multi	class('categotical')	one.

The	detailed	implementation	is	laid	down	in	the	TransferLearning_ffd.py	folder	on
GitHub	at	https://github.com/PacktPublishing/Python-Artificial-Intelligence-Projects/tre
e/master/Chapter02.

The	Python	script	TransferLearning_ffd.py	can	be	invoked	as	follows:

python	TransferLearning_ffd.py		--path	'/media/santanu/9eb9b6dc-b380-486e-b4fd-c424a325b976/book	AI/Diabetic	Retinopathy/Extra/assignment2_train_dataset/'	--class_folders	'["class0","class1","class2","class3","class4"]'	--dim	224		--lr	1e-4	--batch_size	32	--epochs	50	--initial_layers_to_freeze	10	--model	InceptionV3		--outdir	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/'

The	end	of	the	output	log	from	the	job	run	is	as	follows:

Validation	results	saved	at	:	/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/val_results.csv

[0	0	0	...	4	2	2]

[0	0	0	...	4	4	4]

Validation	Accuracy:	0.5183708345200797

Validation	Quadratic	Kappa	Score:	0.44422008110380984

As	we	can	see	by	reusing	an	existing	network	and	performing	transfer	learning

https://github.com/PacktPublishing/Python-Artificial-Intelligence-Projects/tree/master/Chapter02


on	the	same	we	are	able	to	achieve	a	decent	Quadratic	Kappa	of	0.44.



Results	from	the	categorical
classification
The	categorical	classification	is	performed	by	using	all	three	of	the	neural
network	architectures:	VGG16,	ResNet50,	and	InceptionV3.	The	best	results	were
obtained	using	the	InceptionV3	version	of	the	transfer	learning	network	for	this
diabetic	retinopathy	use	case.	In	case	of	categorical	classification	we	are	just
converting	the	class	with	the	maximum	predicted	class	probability	as	the
predicted	severity	label.	However	since	the	classes	in	the	problem	has	an	ordinal
sense	one	of	the	ways	in	which	we	can	utilize	the	softmax	probabilities	is	to	take
the	expectation	of	the	class	severity	with	respect	to	the	softmax	probabilities	and

come	up	with	an	expected	score	 	as	follows:

We	can	rank	order	the	scores	and	determine	three	thresholds	to	determine	which
class	the	image	belongs	to.	These	thresholds	can	be	chosen	by	training	a
secondary	model	on	these	expected	scores	as	features.	The	reader	is	advised	to
experiment	along	these	lines	and	see	if	it	reaps	any	benefit.

As	part	of	this	project	we	are	using	transfer	learning	to	get	reasonable	results	on	a	difficult
problem.	The	model	performances	could	have	very	well	been	better	by	training	a	network
from	scratch	on	the	given	dataset.



import	keras<br/>import	numpy	as	np<br/>import	pandas	as	pd<br/>import
cv2<br/>import	os<br/>import	time<br/>from	sklearn.externals	import
joblib<br/>import	argparse<br/><br/>#	Read	the	Image	and	resize	to	the	suitable
dimension	size<br/>def	get_im_cv2(path,dim=224):<br/>	img	=
cv2.imread(path)<br/>	resized	=	cv2.resize(img,	(dim,dim),
cv2.INTER_LINEAR)<br/>	return	resized<br/><br/>#	Pre	Process	the	Images
based	on	the	ImageNet	pre-trained	model	Image	transformation<br/>def
pre_process(img):<br/>	img[:,:,0]	=	img[:,:,0]	-	103.939<br/>	img[:,:,1]	=
img[:,:,0]	-	116.779<br/>	img[:,:,2]	=	img[:,:,0]	-	123.68<br/>	return	img<br/>
<br/>	<br/>#	Function	to	build	test	input	data<br/>def	read_data_test(path,dim):
<br/>	test_X	=	[]	<br/>	test_files	=	[]<br/>	file_list	=	os.listdir(path)	<br/>	for	f
in	file_list:<br/>	img	=	get_im_cv2(path	+	'/'	+	f)<br/>	img	=	pre_process(img)
<br/>	test_X.append(img)<br/>	f_name	=	f.split('_')[0]<br/>
test_files.append(f_name)<br/>	return	np.array(test_X),test_files

def	inference_test(test_X,model_save_dest,n_class):<br/>	folds	=
len(list(model_save_dest.keys()))<br/>	pred	=	np.zeros((len(test_X),n_class))
<br/>	for	k	in	range(1,folds	+	1):<br/>	model	=
keras.models.load_model(model_save_dest[k])<br/>	pred	=	pred	+
model.predict(test_X)<br/>	pred	=	pred/(1.0*folds)	<br/>	pred_class	=
np.argmax(pred,axis=1)	<br/>	return	pred_class	<br/><br/>def
main(path,dim,model_save_dest,outdir,n_class):<br/>	test_X,test_files	=
read_data_test(path,dim)<br/>	pred_class	=
inference_test(test_X,model_save_dest,n_class)<br/>	out	=	pd.DataFrame()
<br/>	out['id']	=	test_files<br/>	out['class']	=	pred_class<br/>	out['class']	=
out['class'].apply(lambda	x:'class'	+	str(x))<br/>	out.to_csv(outdir	+
"results.csv",index=False)<br/><br/>if	__name__	==	'__main__':<br/>	parser	=
argparse.ArgumentParser(description='arguments')<br/>	parser.add_argument('--
path',help='path	of	images	to	run	inference	on')<br/>	parser.add_argument('--
dim',type=int,help='Image	dimension	size	to	<br/>	process',default=224)<br/>
parser.add_argument('--model_save_dest',<br/>	help='location	of	the	trained
models')<br/>	parser.add_argument('--n_class',type=int,help='No	of	classes')
<br/>	parser.add_argument('--outdir',help='Output	DIrectory')<br/>	args	=
parser.parse_args()<br/>	path	=	args.path<br/>	dim	=	args.dim<br/>
model_save_dest	=	joblib.load(args.model_save_dest)<br/>	n_class	=
args.n_class<br/>	outdir	=	args.outdir<br/>
main(path,dim,model_save_dest,outdir,n_class)<br/><br/>



Performing	regression	instead	of
categorical	classification
One	of	the	things	that	we	discussed	in	the	Formulating	the	loss	function	section,
was	the	fact	that	the	class	labels	are	not	independent	categorical	classes,	but	do
have	an	ordinal	sense	with	the	increasing	severity	of	the	diabetic	retinopathy
condition.	Hence,	it	would	be	worthwhile	to	perform	regression	through	the
defined	transfer	learning	networks,	instead	of	classification,	and	see	how	the
results	turned	out.	The	only	thing	that	we	would	need	to	change	would	be	the
output	unit,	from	a	softmax	to	a	linear	unit.	We	will,	in	fact,	change	it	to	be	a
ReLU,	since	we	want	to	avoid	negative	scores.	The	following	code	block	shows
the	InceptionV3	version	of	the	regression	network:	def
inception_pseudo(dim=224,freeze_layers=30,full_freeze='N'):
model	=	InceptionV3(weights='imagenet',include_top=False)
x	=	model.output
x	=	GlobalAveragePooling2D()(x)
x	=	Dense(512,	activation='relu')(x)
x	=	Dropout(0.5)(x)
x	=	Dense(512,	activation='relu')(x)
x	=	Dropout(0.5)(x)
out	=	Dense(1,activation='relu')(x)
model_final	=	Model(input	=	model.input,outputs=out)
if	full_freeze	!=	'N':
for	layer	in	model.layers[0:freeze_layers]:
layer.trainable	=	False
return	model_final

Instead	of	minimizing	the	categorical	cross-entropy	(log	loss),	as	in	the
classification	network,	we	are	going	to	minimize	the	mean	square	error	for	the
regression	network.	The	cost	function,	minimized	for	the	regression	problem,	is

as	follows,	where	 	is	the	predicted	label:	



Once	we	predict	the	regression	scores,	we	would	round	up	the	scores	to	their
nearest	severity	condition	rank	(zero	to	four).



Using	the	keras	sequential	utils	as
generator
Keras	has	a	good	batch	generator	named	keras.utils.sequence()	that	helps	you
customize	batch	creation	with	great	flexibility.	In	fact,	with	keras.utils.sequence()
one	can	design	the	whole	epoch	pipeline.	We	are	going	to	use	this	utility	in	this
regression	problem	to	get	accustomed	to	this	utility.	For	the	transfer	learning
problem	we	can	design	a	generator	class	using	keras.utils.sequence()	as	follows:

class	DataGenerator(keras.utils.Sequence):

				'Generates	data	for	Keras'

				def	__init__(self,files,labels,batch_size=32,n_classes=5,dim=(224,224,3),shuffle=True):

								'Initialization'

								self.labels	=	labels

								self.files	=	files

								self.batch_size	=	batch_size

								self.n_classes	=	n_classes

								self.dim	=	dim

								self.shuffle	=	shuffle

								self.on_epoch_end()

				def	__len__(self):

								'Denotes	the	number	of	batches	per	epoch'

								return	int(np.floor(len(self.files)	/	self.batch_size))

				def	__getitem__(self,	index):

								'Generate	one	batch	of	data'

								#	Generate	indexes	of	the	batch

								indexes	=	self.indexes[index*self.batch_size:

																															(index+1)*self.batch_size]

								#	Find	list	of	files	to	be	processed	in	the	batch

								list_files	=	[self.files[k]	for	k	in	indexes]

								labels	=	[self.labels[k]	for	k	in	indexes]

								#	Generate	data

								X,	y	=	self.__data_generation(list_files,labels)

								return	X,	y

				def	on_epoch_end(self):

								'Updates	indexes	after	each	epoch'

								self.indexes	=	np.arange(len(self.files))

								if	self.shuffle	==	True:

												np.random.shuffle(self.indexes)

				def	__data_generation(self,list_files,labels):

								'Generates	data	containing	batch_size	samples'	#	X	:	(n_samples,	

																																																								*dim,	n_channels)

								#	Initialization

								X	=	np.empty((len(list_files),self.dim[0],self.dim[1],self.dim[2]))



								y	=	np.empty((len(list_files)),dtype=int)

					#	print(X.shape,y.shape)

								#	Generate	data

								k	=	-1

								for	i,f	in	enumerate(list_files):

												#	print(f)

												img	=	get_im_cv2(f,dim=self.dim[0])

												img	=	pre_process(img)

												label	=	labels[i]

												#label	=

													keras.utils.np_utils.to_categorical(label,self.n_classes)

												X[i,]	=	img

												y[i,]	=	label

							#	print(X.shape,y.shape)	

								return	X,y

In	the	preceding	code,	we	define	the	DataGenerator	class	using	keras.utils.Sequence.

We	define	the	data	generator	to	accept	the	image	filename,	labels,	batch	size,	the
number	of	classes,	and	the	dimension	we	want	the	images	to	be	resized	to.	Also,
we	specify	whether	we	want	the	order	in	which	the	images	are	to	be	processed	in
an	epoch	to	be	shuffled.

The	functions	that	we've	specified	are	inherited	from	the	keras.utils.Sequence	and
hence	the	specific	activities	in	each	of	these	functions	can't	be	specified
elsewhere.	The	len	function	is	to	compute	the	number	of	batches	in	an	epoch.

Similarly,	within	the	on_epoch_end	function,	we	can	specify	activities	that	are	to	be
performed	at	the	end	of	the	epoch	such	as	shuffling	the	order	in	which	the	inputs
are	to	be	processed	in	an	epoch.	We	can	create	a	different	set	of	dataset	in	each
epoch	to	process.	This	is	generally	useful	when	we	have	lot	of	data	and	we	don't
want	to	process	all	the	data	in	each	epoch.	The	__getitem__	function	helps	with
batch	creation	by	extracting	the	data	corresponding	to	all	data	point	indices	that
are	specific	to	a	batch.	If	the	data	creation	process	is	more	complex,	the
__data_generation	function	can	be	utilised	to	have	logic	specific	to	the	extraction	of
each	individual	data	point	in	the	batch.	For	instance	we	pass	the	files	names
corresponding	to	the	data	point	indices	in	the	batch	to	the	__data_generation
function	to	read	each	image	using	opencv	and	also	preprocess	them	using	the
preprocess	function	that	we	have	to	do	the	mean	pixel	subtraction.

The	train	functions	for	the	regression	based	transfer	learning	can	be	coded	as
follows:

def	train_model(self,file_list,labels,n_fold=5,batch_size=16,



epochs=40,dim=224,lr=1e-5,model='ResNet50'):

								model_save_dest	=	{}

								k	=	0

								kf	=	KFold(n_splits=n_fold,	random_state=0,	shuffle=True)

								for	train_index,test_index	in	kf.split(file_list):

	

												k	+=	1

												file_list	=	np.array(file_list)

												labels	=	np.array(labels)

												train_files,train_labels	=	

												file_list[train_index],labels[train_index]

												val_files,val_labels	=	

												file_list[test_index],labels[test_index]

												if	model	==	'Resnet50':

																model_final	=								

																self.resnet_pseudo(dim=224,freeze_layers=10,full_freeze='N')

												if	model	==	'VGG16':

																model_final	=	

																self.VGG16_pseudo(dim=224,freeze_layers=10,full_freeze='N')

												if	model	==	'InceptionV3':

																model_final	=		

																self.inception_pseudo(dim=224,freeze_layers=10,full_freeze='N')

												adam	=	

												optimizers.Adam(lr=lr,	beta_1=0.9,	beta_2=0.999,	epsilon=1e-08,	

																												decay=0.0)

												model_final.compile(optimizer=adam,	loss=["mse"],metrics=['mse'])

												reduce_lr	=	

												keras.callbacks.ReduceLROnPlateau(monitor='val_loss',	

																																														factor=0.50,patience=3,																																																																																

																																														min_lr=0.000001)

												early	=	

												EarlyStopping(monitor='val_loss',	patience=10,	mode='min',	

																										verbose=1)

												logger	=	

												CSVLogger('keras-5fold-run-01-v1-epochs_ib.log',	separator=',',	

																						append=False)

												checkpoint	=	

												ModelCheckpoint('kera1-5fold-run-01-v1-fold-'	

																												+	str('%02d'	%	(k	+	1))

																												+	'-run-'	+	str('%02d'	%	(1	+	1))	+	'.check',

																												monitor='val_loss',	mode='min',

																												save_best_only=True,

																												verbose=1)

												callbacks	=	[reduce_lr,early,checkpoint,logger]

												train_gen	=	

												DataGenerator(train_files,train_labels,batch_size=32,

												n_classes=

												len(self.class_folders),dim=(self.dim,self.dim,3),shuffle=True)

												val_gen	=				

												DataGenerator(val_files,val_labels,batch_size=32,

																										n_classes=len(self.class_folders),

																										dim=(self.dim,self.dim,3),shuffle=True)

												model_final.fit_generator(train_gen,epochs=epochs,verbose=1,

												validation_data=(val_gen),callbacks=callbacks)

												model_name	=

												'kera1-5fold-run-01-v1-fold-'	+	str('%02d'	%	(k	+	1))	+	'-run-

																																																'	+	str('%02d'	%	(1	+	1))	+	'.check'

												del	model_final

												f	=	h5py.File(model_name,	'r+')



												del	f['optimizer_weights']

												f.close()

												model_final	=	keras.models.load_model(model_name)

												model_name1	=	self.outdir	+	str(model)	+	'___'	+	str(k)

												model_final.save(model_name1)

												model_save_dest[k]	=	model_name1

								return	model_save_dest

As	we	can	see	from	the	preceding	code,	the	train	generator	and	the	validation
generator	have	been	created	using	the	DataGenerator,	which	inherits	the
keras.utils.sequence	class.	The	function	for	inference	can	be	coded	as	follows:

def	inference_validation(self,test_X,test_y,model_save_dest,n_class=5,

folds=5):

								print(test_X.shape,test_y.shape)

								pred	=	np.zeros(test_X.shape[0])

								for	k	in	range(1,folds	+	1):

												print(f'running	inference	on	fold:	{k}')

												model	=	keras.models.load_model(model_save_dest[k])

												pred	=	pred	+	model.predict(test_X)[:,0]

												pred	=	pred

												print(pred.shape)

												print(pred)

								pred	=	pred/float(folds)

								pred_class	=	np.round(pred)

								pred_class	=	np.array(pred_class,dtype=int)

								pred_class	=	list(map(lambda	x:4	if	x	>	4	else	x,pred_class))

								pred_class	=	list(map(lambda	x:0	if	x	<	0	else	x,pred_class))

								act_class	=	test_y

								accuracy	=	np.sum([pred_class	==	act_class])*1.0/len(test_X)

								kappa	=	cohen_kappa_score(pred_class,act_class,weights='quadratic')

								return	pred_class,accuracy,kappa

As	we	can	see	from	the	preceding	code,	the	mean	of	the	prediction	from	each
fold	is	computed	and	it	is	converted	to	the	nearest	severity	class	by	rounding	off
the	prediction	score.	The	Python	script	for	regression	is	in	the	GitHub	link	https:/
/github.com/PacktPublishing/Python-Artificial-Intelligence-Projects/tree/master/Chapter02.
with	the	name	TransferLearning_reg.py.	The	same	can	be	invoked	by	running	the
following	command:

python	TransferLearning_reg.py	--path	'/media/santanu/9eb9b6dc-b380-486e-b4fd-c424a325b976/book	AI/Diabetic	Retinopathy/Extra/assignment2_train_dataset/'	--class_folders	'["class0","class1","class2","class3","class4"]'	--dim	224	--lr	1e-4	--batch_size	32	--epochs	5	--initial_layers_to_freeze	10	--model	InceptionV3	--folds	5	--outdir	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/Regression/'

The	output	log	for	training	is	as	follows:

Model	saved	to	dest:	{1:	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/Regression/InceptionV3___1',	2:	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/Regression/InceptionV3___2',	3:	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/Regression/InceptionV3___3',	4:	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/Regression/InceptionV3___4',	5:	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/Regression/InceptionV3___5'}

As	we	can	see	the	5	models	corresponding	to	the	5	folds	have	been	saved	under
the	Regression	folder	that	we	have	specified.	Next,	we	can	run	inference	on	the
validation	dataset	and	see	how	the	regression	model	fares.	The	same	Python

https://github.com/PacktPublishing/Python-Artificial-Intelligence-Projects/tree/master/Chapter02


script	can	be	invoked	as	follows:

	python	TransferLearning_reg.py		--path	'/media/santanu/9eb9b6dc-b380-486e-b4fd-c424a325b976/book	AI/Diabetic	Retinopathy/Extra/assignment2_train_dataset/'	--class_folders	'["class0","class1","class2","class3","class4"]'	--dim	224		--lr	1e-4	--batch_size	32	--model	InceptionV3		--outdir	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/Regression/'	--mode	validation		--model_save_dest	--'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/Regression/model_dict.pkl'	--folds	5

The	results	of	inference	are	as	follows:

Models	loaded	from:	{1:	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/Regression/InceptionV3___1',	2:	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/Regression/InceptionV3___2',	3:	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/Regression/InceptionV3___3',	4:	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/Regression/InceptionV3___4',	5:	'/home/santanu/ML_DS_Catalog-/Transfer_Learning_DR/Regression/InceptionV3___5'}

-----------------------------------------------------

Kappa	score:	0.4662660860310418

accuracy:	0.661350042722871

End	of	training

-----------------------------------------------------

Processing	Time	138.52878069877625	secs

As	we	can	see	from	the	preceding	log,	the	model	achieves	a	decent	validation
accuracy	of	around	66%	and	a	quadratic	Kappa	score	of	0.466	given	we	have	just
used	the	regression	scores	to	map	it	to	the	nearest	severity	condition.	The	reader
is	advised	to	experiment	and	see	whether	a	secondary	model	based	on	the
prediction	scores	the	and	whether	the	eye	is	a	left	eye	or	a	right	eye	gives	better
results	than	this	naive	score	mapping	to	the	nearest	severity	class.



Summary
In	this	chapter,	we	went	over	the	practical	aspects	of	transfer	learning,	to	solve	a
real-world	problem	in	the	healthcare	sector.	The	readers	are	expected	to	further
build	upon	these	concepts	by	trying	to	customize	these	examples	wherever
possible.

The	accuracy	and	the	kappa	score	that	we	achieved	through	both	the
classification	and	the	regression-based	neural	networks	are	good	enough	for
production	implementation.	In	Chapter	3,	Neural	Machine	Translation,	we	will
work	on	implementing	intelligent	machine	translation	systems,	which	is	a	much
more	advanced	topic	than	what	was	presented	in	this	chapter.	I	look	forward	to
your	participation.

	

	

	



Neural	Machine	Translation
Machine	translation,	in	simple	terms,	refers	to	the	translation	of	text	from	one
language	to	another	using	a	computer.	It	is	a	branch	of	computer	linguistics	that
has	now	been	around	for	several	years.	Currently,	in	the	US,	translation	is	a	USD
40	billion	industry,	and	it	is	also	growing	at	a	fast	pace	in	Europe	and	Asia.
There	is	a	great	social,	governmental,	economic,	and	commercial	need	for
translation,	and	it	is	used	extensively	by	companies	such	as	Google,	Facebook,
eBay,	and	others,	in	their	applications.	Google's	neural	translation	system	in
particular	is	one	of	the	most	advanced	translation	systems	out	there,	capable	of
performing	translation	of	multiple	languages	with	just	one	model.

Early	machine	translation	systems	started	with	the	translation	of	mere	words	and
phrases	in	a	text	into	a	pertinent	substitute	in	the	desired	target	language.
However,	there	were	limitations	on	the	quality	of	translation	achieved	through
these	simple	techniques	for	the	following	reasons:

Word-to-word	mapping	from	the	source	language	to	the	target	language	is
not	always	available.
Even	if	exact	word-to-word	mappings	do	exist	between	the	source	and
target	languages,	the	syntactic	structures	of	the	languages	commonly	do	not
correspond	to	one	another.	This	problem	in	machine	translation	is
commonly	referred	to	as	misalignment.

However,	with	the	recent	advances	in	recurrent	neural	network	(RNN)
architectures,	such	as	LSTMs,	GRU,	and	so	on,	machine	translation	not	only
provides	an	improved	quality	of	translation,	but	also	the	complexity	of	such
systems	is	far	less	than	those	of	traditional	systems.

Machine	translation	systems	can	be	broadly	classified	into	three	classes:	rule-
based	machine	translation,	statistical	machine	translation,	and	neural	machine
translation.

In	this	chapter,	we	will	cover	the	following	topics:

Rule-based	machine	translation



Statistical	machine-learning	systems
Neural	machine	translation
Sequence-to-sequence	neural	translation
Loss	function	for	neural	translation



Technical	requirements
You	will	require	to	have	basic	knowledge	of	Python	3,	TensorFlow	and	Keras.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter03

Check	out	the	following	video	to	see	the	code	in	action:
http://bit.ly/2sXYX8A

https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter03
http://bit.ly/2sXYX8A


Rule-based	machine	translation
Classic	rule-based	machine	translation	systems	heavily	rely	on	rules	for
converting	text	from	the	source	language	to	the	target	language.	These	rules,
often	created	by	linguists,	generally	work	at	the	syntactic,	semantic,	and	lexical
levels.	A	classical	rule-based	machine	translation	system	typically	has	three
phases:

The	analysis	phase
The	lexical	transfer	phase
The	generation	phase

Illustrated	in	Figure	3.1	is	a	flow	diagram	of	a	typical	rule-based	machine
translation	system:	



Figure	3.1:	A	flow	diagram	of	a	rule-based	machine	translation	system



The	analysis	phase
The	first	phase	in	rule-based	machine	translation	is	the	analysis	phase,	in	which
the	source	language	text	is	analyzed	to	extract	information	related	to
morphology,	parts	of	speech,	named	entity	recognition,	as	well	as	word	sense
disambiguation.	Morphological	information	concerns	the	structure	of	words,
how	their	stems	are	derived,	the	detection	of	root	words,	and	so	on.	A	part-of-
speech	tagger	tags	each	word	in	the	text	with	a	possible	speech	tag,	such	as
noun,	verb,	adverb,	adjective,	and	so	on.	This	is	followed	by	a	named	entity
recognition	(NER)	task	that	tries	to	classify	named	entities	into	predefined
buckets	such	as	the	name	of	a	person,	location,	the	name	of	an	organization,	and
so	on.	NER	is	followed	by	word-sense	disambiguation,	which	tries	to	identify
how	a	particular	word	has	been	used	in	a	sentence.

	

	

	



Lexical	transfer	phase
The	lexical	transfer	phase	follows	the	analysis	phase	and	has	two	stages:

Word	translation:	In	word	translation,	the	source	root	words	derived	in	the
analysis	phase	are	translated	to	the	corresponding	target	root	words	using	a
bilingual	translation	dictionary.
Grammar	translation:	In	the	grammar	translation	phase,	syntactic
modification	is	performed,	including	translating	the	suffixes,	among	other
things.

	

	



Generation	phase
In	the	generation	phase,	the	translated	text	is	validated	and	corrected	so	that	it	is
correct	with	regard	to	the	parts	of	speech,	genders,	and	agreement	of	the	subject
and	object,	with	respect	to	the	verb,	before	the	final	translated	text	is	provided	as
an	output.	In	each	of	the	steps,	the	machine	translation	system	makes	use	of
predefined	dictionaries.	For	a	bare	minimal	implementation	of	a	rule-based
machine	translation	system,	the	following	dictionaries	are	required:

A	dictionary	for	source	language	morphological	analysis
A	bilingual	dictionary	containing	mappings	of	the	source	language	word	to
its	target	language	counterpart
A	dictionary	containing	target-language	morphological	information	for
target	word	generation

	

	



Statistical	machine-learning	systems
Statistical	machine	translation	systems	select	a	target	text	by	maximizing	its
conditional	probability,	given	the	source	text.	For	example,	let's	say	we	have	a
source	text	s	and	we	want	to	derive	the	best	equivalent	text	t	in	the	target

language.	This	can	be	derived	as	follows:	

The	formulation	of	P(t/s)	in	(1)	can	be	expanded	using	Bayes'	theorem	as
follows:

For	a	given	source	sentence,	P(s)	would	be	fixed,	and,	hence,	finding	the	optimal
target	translation	turns	out	to	be	as	follows:	

You	may	wonder	why	maximizing	P(s/t)P(t)	in	place	of	P(t/s)	directly	would
give	an	advantage.	Generally,	ill-formed	sentences	that	are	highly	likely	under
P(t/s)	are	avoided	by	breaking	the	problem	into	two	components,	that	is,	P(s/t)
and	P(t),	as	shown	in	the	previous	formula:	



Figure	3.2:	Statistical	machine	translation	architecture

As	we	can	see	from	the	preceding	diagram,	the	statistical	machine	translation
problem	has	been	broken	down	into	three	distinct	sub-problems,	as	mentioned:

Building	a	Language	Model	for	Target	that	allows	us	to	estimate	P(t)
Building	a	Translation	Model	from	the	target	to	the	source	language	that
allows	us	to	estimate	P(s/t)
Carrying	out	a	search	across	the	possible	target	translations	and	choosing
the	one	that	maximizes	P(s/t)P(t)

We	will	discuss	each	of	these	three	topics,	since	these	functions	are	inherent	to
any	machine	translation	problem.



Language	model
In	a	language	model,	the	probability	of	a	sentence	is	represented	as	a	product	of
the	conditional	probabilities	of	the	individual	words	or	phrases	as	appropriate.
Let's	say	the	sentence	t	consists	of	the	words	t1,	t2,	t3,	.	.	tn.	According	to	the
chain	rule	of	probability,	the	probability	of	the	sentence	t	can	be	represented	as
follows:	

Building	a	language	model	based	on	the	preceding	formula	would	require	us	to
estimate	conditional	probabilities	of	several	orders,	which	is	not	practically
possible.	To	make	the	problem	computationally	feasible,	one	simple	assumption
is	to	condition	a	word	based	on	just	the	previous	word,	and	not	on	all	the	words
prior	to	it.	This	assumption	is	also	known	as	the	Markov	assumption,	and	the
model	is	known	as	a	bigram	model.	The	conditional	probability	of	a	word	as
per	the	bigram	model	can	be	expressed	as	follows:	

To	improve	the	results	further,	we	may	use	a	trigram	model,	which	conditions	a
particular	word	in	a	sentence	on	the	two	words	preceding	it,	as	shown	here:

For	bigram	models,	the	conditional	probability	of	the	next	word	being	t2,	given
the	current	word	t1,	can	be	estimated	by	counting	the	total	number	of	a	pairs	of
(t1,	t2)	in	a	training	corpus	and	normalizing	that	by	the	total	occurrences	of	the

word	t1	in	the	corpus:	

For	a	trigram	model,	the	conditional	probability	of	a	current	word	t3	given	the
two	words	t1,	t2	preceding	it	can	be	estimated	as	follows:	



Going	beyond	trigram	models	generally	leads	to	sparsity.	Even	for	a	bigram
model,	we	might	have	conditional	probability	missing	for	several	bigrams,	since
they	don't	appear	in	the	training	corpus.	However,	those	missing	bigrams	might
be	very	relevant,	and	estimating	their	conditional	probability	is	very	important.
Needless	to	say,	the	n-gram	model	tends	to	estimate	high	conditional
probabilities	for	the	pair	of	words	that	appear	in	the	training	data,	and	neglects
the	ones	that	don't.



Perplexity	for	language	models
The	perplexity	metrics	are	used	to	evaluate	the	usefulness	of	a	language	model.
Let's	assume	that	we	have	trained	a	language	model	on	a	training	corpus	and	let
the	learned	probability	model	over	sentences	or	text	be	P(.).	The	perplexity	of
the	model	P(.)	is	evaluated	on	a	test	set	corpus	drawn	from	the	same	population
as	that	of	the	training	corpus.	If	we	represent	the	test	set	corpus	by	the	M	words,
say	(w1,	w2,	w3,	.	.	.	.	.	,	wM),	then	the	perplexity	of	the	model	over	the	test	set
sequence	is	represented	by	the	following:	

The	expression	for	H	as	shown	measures	the	per-word	uncertainty:

As	per	the	language	model,	we	can	break	up	the	probability	expression	for	the
test	corpus	as	follows:

If	we	represent	the	probability	of	the	ith	word	in	the	test	set	conditioned	on	the
previous	words	as	P(si),	then	the	probability	of	the	test	corpus	is	given	as

follows:	

Here,	P(si)	=	P(wi/w1	w2	.	.	.	wi-1).	Combining	(1)	and	(4),	the	perplexity	can	be

written	as	follows:	

Suppose	we	have	a	language	model	P(.)	and	a	test	set	I	love	Machine	Learning
to	evaluate.	According	to	the	language	model,	the	probability	of	the	test	set
would	be	as	follows:	



If	the	training	corpus	of	the	language	model	is	also	I	love	Machine	Learning,	the
probability	of	the	test	set	would	be	one,	leading	to	a	log	probability	of	zero,	and
a	perplexity	of	one.	This	means	the	model	can	generate	the	next	word	with	full
certainty.

If,	on	the	other	hand,	we	have	a	more	real-world	training	corpus	of	a	vocabulary
of	a	size	N	=	20,000	and	the	perplexity	of	the	trained	model	on	the	test	dataset	is
100,	then,	on	average,	to	predict	the	next	word	in	the	sequence,	we	have
narrowed	our	search	space	from	20,000	words	to	100	words.

Let's	look	at	the	worst-case	scenario,	in	which	we	manage	to	build	a	model	in
which	every	word	is	independent	of	the	previous	words	in	the	sequence:	

For	a	test	set	of	M	words,	the	perplexity	using	(5)	is	as	follows:

If	we	have	N	=	20,000	as	before,	then	to	predict	any	word	in	the	sequence,	all	the
N	words	of	the	vocabulary	need	to	be	considered,	since	they	are	equally
probable.	In	this	case,	we	haven't	been	able	to	reduce	the	average	search	space
over	words	to	predict	a	word	in	a	sequence.



Translation	model
The	translation	model	can	be	considered	the	heart	of	the	machine	translation
model.	In	the	translation	model,	we	are	required	to	estimate	the	probability
P(s/t),	where	s	is	the	source	language	sentence	and	t	is	the	target	language
sentence.	Here,	the	source	sentence	is	given,	while	the	target	is	the	one	that	we
seek	to	find	out.	Hence,	this	probability	can	termed	as	the	likelihood	of	the
source	sentence	given	the	target	sentence.	For	example,	let's	imagine	that	we	are
translating	a	source	text	from	French	to	English.	So,	in	the	context	of	P(s/t),	our
target	language	is	French	and	our	source	language	is	English,	while	in	the
context	of	the	actual	translation,	that	is,	P(s/t)P(t),	our	source	language	is	French
and	our	target	language	is	English.

The	translation	primarily	consists	of	three	components:

Fertility:	Not	all	words	in	the	source	language	have	a	corresponding	word
in	the	target	language.	For	example,	the	English	sentence	Santanu	loves
math	is	translated	in	French	as	Santanu	aim	les	maths.	As	we	can	see,	the
word	math	in	English	has	been	translated	to	two	words	in	French,	as	les
maths.	Formally,	fertility	is	defined	as	the	probability	distribution	over	the
number	of	words	generated	by	a	source-language	word	in	the	target
language,	and	can	be	represented	as	P(n/ws),	where	ws	stands	for	the	source
word.	Instead	of	having	a	hardcoded	number	n,	a	probability	distribution	is
used,	since	the	same	word	might	generate	translations	of	different	length
based	on	the	context.
Distortion:	A	word-to-word	correspondence	between	the	source	and	the
target	sentence	is	important	for	any	machine	translation	system.	However,
the	position	of	words	in	a	source-language	sentence	might	not	always	be	in
total	sync	with	its	corresponding	counterpart	in	the	target	language
sentence.	Distortion	covers	this	notion	of	alignment	through	a	probability
function,	P(pt/ps,	l),	where	pt	and	Ps	represents	the	position	of	the	target	and
source	word	respectively,	while	l	represents	the	length	of	the	target
sentence.	If	the	source	language	is	English	and	the	target	language	is
French,	then	P(pt/ps,	l)	represents	the	probability	that	an	English	word	at
position	ps	corresponds	to	a	French	word	at	position	ps	in	a	given	French



sentence	of	length	l.
Word-to-word	translation:	Finally,	we	come	to	the	word-to-word
translation,	which	is	generally	represented	by	a	probability	distribution	of
the	target	language	word	given	the	source-language	word.	For	a	given
source-language	word,	ws,	the	probability	can	be	represented	as	P(wt/ws),
where	wt	stands	for	the	target-language	word.

For	a	language	model,	the	fertility	probabilities,	the	distortion	probabilities,	and
the	word-to-word	translation	probabilities	need	to	be	estimated	during	the
training	process.

Now,	let's	come	back	to	the	original	problem	of	estimating	the	probability	P(s/t).
If	we	represent	the	English	sentence	by	E	and	the	French	sentences	by	F,	we
need	to	compute	the	probability	of	P(F/E).	To	take	the	alignment	of	the	words
into	account,	we	modify	the	probability	as	P(F,	a/E),	where	a	stands	for	the
alignment	of	the	target	sentence	in	French.	This	alignment	would	help	us	inject
the	information	related	to	distortion	and	fertility.

Let's	work	through	an	example	to	compute	the	probability	P(F,	a/E).	Let	a
specific	English	sentence	be	represented	by	a	five-word	sentence,	e	=	(e1,	e2,	e3,
e4,	e5),	which	is	in	fact	the	correct	translation	of	the	actual	French	sentence	f	=
(f1,	f2,	f3,	f4,	f5,	f6).	Also,	let	the	corresponding	alignments	of	the	words	be	as
follows:

e1	→	f6
e2	→	doesn't	correspond	to	any	word	in	French
e3	→	f3,	f4
e4	→	f1
e5	→	f2
f5	→	doesn't	correspond	to	any	word	in	English

Since	this	is	a	probabilistic	model,	the	algorithm	will	try	different	English
sentences	with	different	alignments,	out	of	which	the	correct	English	sentence
with	the	correct	alignment	should	have	the	highest	probability,	given	the	French
sentence.

Let's	take	the	first	English	word	into	consideration	as	e1—it	is	aligned	to	the



French	word	f6	and	also	emits	one	French	word,	as	follows:

Now,	let's	take	the	alignment	as	a	combination	of	two	components:	the
distortion,	ad,	and	the	fertility,	fd.	The	expression	in	(1)	can	be	re-written	as
follows:

If	we	observe	carefully,	P(f5/e1)	is	the	translation	probability,	P(af/e1)	is	the
fertility,	whereas	P(ad/e1,	f5)	is	the	distortion	probability.	We	need	to	do	this
activity	for	all	the	given	English	words	in	an	English	sentence	for	all	alignments
with	the	given	French	sentence	to	compute	P(F,	a/E).	Finally,	we	need	to	take
the	best	English	sentence,	 ,	and	alignment,	 ,	that	maximizes	the	probability
P(F,	a/E)P(E).	This	looks	as	follows:

One	thing	to	note	here	is	that	trying	different	alignments	and	different	possible
word	translations	in	pursuit	of	finding	the	best	translation	might	become
computationally	intractable,	and,	thus,	clever	algorithms	need	to	be	deployed	to
find	the	best	translations	in	minimal	time.



Neural	machine	translation
Neural	machine	translation	(NMT)	uses	deep	neural	networks	to	perform
machine	translation	from	the	source	language	to	the	target	language.	The	neural
translation	machine	takes	in	text	in	the	source	language	as	a	sequence	of	inputs
and	encodes	these	to	a	hidden	representation,	which	is	then	decoded	back	to
produce	the	translated	text	sequence	in	the	target	language.	One	of	the	key
advantages	of	this	NMT	system	is	that	the	whole	machine	translation	system	can
be	trained	from	end-to-end	together,	unlike	the	rule-based	and	statistical	machine
translation	systems.	Generally,	RNN	architectures	such	as	LSTMs	(long	short
term	memory)	and/or	gated	recurrent	units	(GRUs)	are	used	in	the	neural
translation	machine	architecture.

	

A	few	of	the	advantages	of	NMTs	over	other	traditional	methods	are	as	follows:

All	of	the	parameters	of	an	NMT	model	are	trained	end	to	end,	based	on	a
loss	function,	thus	reducing	the	complexity	of	the	model
These	NMT	models	use	a	much	larger	context	than	traditional	methods	and
thus	produce	a	more	accurate	translation
The	NMT	models	exploit	word	and	phrase	similarity	better
RNNs	allow	for	better	quality	text	generation,	and	so	the	translation	is	more
accurate	with	respect	to	the	syntax	of	the	translated	text

	

	



The	encoder–decoder	model
Illustrated	in	following	diagram	is	the	architecture	of	a	neural	translation
machine	that	uses	one	LSTM	as	the	encoder	to	encode	the	input	source	language
sequence	into	final	hidden	states	hf	and	final	memory	cell	states	cf.	The	final
hidden	states	and	cell	states	[hf,	cf]	will	capture	the	context	of	the	whole	input
sequence.	Thus,	[hf,	cf]	becomes	a	good	candidate	on	which	the	decoder	network
can	be	conditioned.

This	hidden	and	cell	state	information,	[hf,	cf],	is	fed	to	the	decoder	network	as
the	initial	hidden	and	cell	states	and	then	the	decoder	is	trained	on	the	target
sequence,	with	the	input	target	sequence	being	at	a	lag	of	one	with	respect	to	the
output	target	sequence.	As	per	the	decoder,	the	first	word	of	the	input	sequence
is	the	dummy	word	[START],	while	the	output	label	is	the	word	c'est.	The	decoder
network	is	just	trained	as	a	generative	language	model,	where	at	any	time	step	t,
the	output	label,	is	just	the	next	word	with	respect	to	the	input,	that	is,	yt	=	xt+1.
The	only	new	thing	is	that	the	final	hidden	and	cell	states	of	the	encoder	(that	is,
[hf,	cf])	is	fed	to	the	initial	hidden	and	cell	states	of	the	decoder	to	provide
content	for	the	translation.

	

This	means	the	training	process	can	be	thought	of	as	building	a	language	model
for	the	target	language	(represented	by	the	decoder)	conditioned	on	the	hidden
states	of	the	encoder	that	represent	the	source	language:



Figure	3.3:	High	level	encoder-decoder	architecture	of	a	neural	machine	translation	system

If	T	is	the	target	language	text	corresponding	to	the	source	language	text	 ,	then
for	training	we	are	just	trying	to	maximize	the	log	probability	of	Pw(Tt+1/S,T)
with	respect	to	W,	where	Ts+1	represents	the	target	language	text	shifted	by	one
time	step,	and	W	represents	the	encoder–decoder	architecture	model	parameters.

Now	that	we	have	discussed	the	training	procedure	for	encoder–decoder	NMTs,
we	will	now	look	at	how	to	use	the	trained	model	during	inference.

	



Inference	using	the	encoder–decoder
model
The	architectural	flow	for	running	inference	on	the	NMT	(neural	translation
machine)	is	a	little	different	than	that	of	training	the	NMT.	The	following	is	the
architectural	flow	for	performing	inference	using	the	NMT:

Figure	3.4:	Inference	from	an	encoder/decoder-based	neural	machine	translation

During	inference,	the	source	language	input	sequence	is	fed	to	the	encoder
network	and	the	final	hidden	and	cell	state	produced,	[hf,	cf],	is	fed	to	the
decoder	hidden	and	cell	states.	The	decoder	is	converted	into	a	single	time	step,
and	the	first	input	fed	to	the	decoder	is	the	dummy	[START]	word.	So,	based	on	[hf,
cf]	and	the	initial	dummy	word	[START],	the	decoder	will	output	a	word,	w,	and
also	new	hidden	and	cell	states,	[hd,	cd].	This	word	w	is	fed	to	the	decoder	again
with	the	new	hidden	and	cell	states,	[hd,	cd],	to	generate	the	next	word.	This
process	is	repeated	until	we	encounter	an	end-of-sequence	character.



Implementing	a	sequence-to-sequence
neural	translation	machine
We	are	going	to	build	a	neural	machine	translation	system	that	will	learn	to
translate	short	English	sentences	into	French.	To	do	this,	we	are	going	to	use	the
English-to-French	text	corpus	(fra-eng/fra.txt)	located	at	http://www.manythings.org/a
nki/.

http://www.manythings.org/anki/


Processing	the	input	data
Text	data	cannot	be	fed	directly	into	any	neural	network,	since	neural	networks
can	understand	only	numbers.	We	will	treat	each	word	as	a	one-hot	encoded
vector	of	a	length	that	is	equal	to	the	number	of	words	present	in	each	corpus.	If
the	English	corpus	contains	1,000	words,	the	one-hot	encoded	vectors	ve	would
be	of	a	dimension	of	1,000,	that	is,	ve	∈	R1000	x	1.

We	will	read	through	the	English	and	the	French	corpus	and	determine	the
number	of	unique	words	in	each	of	them.	We	will	also	represent	the	words	by
index,	and	for	a	one-hot	encoded	vector	for	the	word,	the	index	corresponding	to
the	word	would	be	set	to	one,	while	the	rest	of	the	indices	would	be	set	to	zero.
For	example,	let's	assume	that	in	the	English	corpus,	we	have	four	words:	Global
warming	is	real.	We	can	define	the	indices	of	each	of	the	words	as	follows:

Word Index

Global 0

warming 1

is 2

real 3

	

In	this	case,	we	can	define	the	one-hot	encoded	vector	of	the	word	Global	as
[1,0,0,0]T.	Similarly,	the	one-hot	encoded	vector	of	real	can	be	represented	as
[1,0,0,0]T.

Now,	turning	to	the	source	language	input	for	each	sentence	or	record,	we	will
have	a	sequence	of	words	represented	as	a	sequence	of	one-hot	encoded	vectors.
The	next	obvious	question	is	how	to	manage	the	sequence	length,	since	this
might	vary.	The	most	accepted	approach	is	to	have	a	fixed	sequence	length	either
equal	to	the	maximum	sequence	length	of	the	sentence	in	the	corpus,	or	a
predetermined	reasonable	length.	We	will	be	using	the	target	sentences	twice:



once	as	the	output	sequence	of	translation	from	the	decoder,	and	once	as	the
input	to	the	decoder,	with	the	only	difference	being	that	the	output	sequence	will
be	ahead	of	the	input	sequence	by	one	time	step.	So,	the	first	word	in	the	input
target	sequence	would	be	the	dummy	word	[START],	while	the	last	word	in	the
output	target	sequence	would	be	the	dummy	word	[END],	marking	the	end	of	the
sentence	sequence.

If	the	target	French	sentence	is	Je	m'appelle	Santanu,	the	input	target	and	the	output
target	sequence	in	the	decoder	would	be	as	follows:

[START],[Je],[m’appelle]	[Santanu]

[Je],[m’appelle]	[Santanu][END]

We	have	chosen	to	represent	[START]	by	the	tab	character	and	the	[END]	by	the	next
line	character.

	

We	divide	the	data	creation	activity	into	three	parts:

Reading	the	input	files	for	the	source	(English)	and	target	(French)	texts
Building	the	vocabulary	from	the	source	and	target	language	text
Processing	the	input	English	and	French	corpuses	to	their	numeric
representation	so	that	they	can	be	used	in	the	neural	machine	translation
network

The	read_input_file	function	illustrated	here	can	be	used	for	reading	the	source
and	target	language	texts:

def	read_input_file(self,path,num_samples=10e13):

								input_texts	=	[]

								target_texts	=	[]

								input_words	=	set()

								target_words	=	set()

				

				

								with	codecs.open(path,	'r',	encoding='utf-8')	as	f:

												lines	=	f.read().split('\n')

								for	line	in	lines[:	min(num_samples,	len(lines)	-	1)]:

												input_text,	target_text	=	line.split('\t')

														#	\t	as	the	start	of	sequence	

												target_text	=	'\t	'	+	target_text	+	'	\n'

														#	\n	as	the	end	of	sequence

												input_texts.append(input_text)

												target_texts.append(target_text)



												for	word	in	input_text.split("	"):

																if	word	not	in	input_words:

																				input_words.add(word)

												for	word	in	target_text.split("	"):

																if	word	not	in	target_words:

																				target_words.add(word)

								return	input_texts,target_texts,input_words,target_words

The	vocab_generation	function	can	be	used	for	building	the	vocabulary	set	of	words
for	both	the	source	and	target	languages:

def	vocab_generation(self,path,num_samples,verbose=True):

								input_texts,target_texts,input_words,target_words	=			

								self.read_input_file(path,num_samples)

								input_words	=	sorted(list(input_words))

								target_words	=	sorted(list(target_words))

								self.num_encoder_words	=	len(input_words)

								self.num_decoder_words	=	len(target_words)

								self.max_encoder_seq_length	=	

								max([len(txt.split("	"))	for	txt	in	input_texts])

								self.max_decoder_seq_length	=

								max([len(txt.split("	"))	for	txt	in	target_texts])

								if	verbose	==	True:

												print('Number	of	samples:',	len(input_texts))

												print('Number	of	unique	input	tokens:',

																		self.num_encoder_words)

												print('Number	of	unique	output	tokens:',

																			self.num_decoder_words)

												print('Max	sequence	length	for	inputs:',

																			self.max_encoder_seq_length)

												print('Max	sequence	length	for	outputs:',

																			self.max_decoder_seq_length)

								self.input_word_index	=

								dict([(word,	i)	for	i,	word	in	enumerate(input_words)])

								self.target_word_index	=	

								dict([(word,	i)	for	i,	word	in	enumerate(target_words)])

								self.reverse_input_word_dict	=	

								dict((i,	word)	for	word,	i	in	self.input_word_index.items())

								self.reverse_target_word_dict	=	

								dict((i,	word)	for	word,	i	in	self.target_word_index.items())

The	input	and	target	texts	and	the	vocabularies	built	in	the	previous	functions	are
leveraged	by	the	process_input	function	to	convert	the	text	data	into	numeric	form
that	can	be	used	by	the	neural	translation	machine	architecture.	The	code	for	the
process_input	function	is	as	follows:

def	process_input(self,input_texts,target_texts=None,verbose=True):

								encoder_input_data	=	

								np.zeros((len(input_texts),	self.max_encoder_seq_length,															

																	self.num_encoder_words),	dtype='float32')

				

								decoder_input_data	=	



									np.zeros((len(input_texts),	self.max_decoder_seq_length,	

																		self.num_decoder_words),	dtype='float32')

								decoder_target_data	=	

								np.zeros((len(input_texts),	self.max_decoder_seq_length,	

																	self.num_decoder_words),	dtype='float32')

				

								if	self.mode	==	'train':

												for	i,	(input_text,	target_text)	in	

												enumerate(zip(input_texts,target_texts)):

																for	t,	word	in	enumerate(input_text.split("	")):

																				try:

																								encoder_input_data[i,	t,	

																																										self.input_word_index[word]]	=	1.

																				except:

																								print(f'word	{word}	

																													encoutered	for	the	1st	time,	skipped')

																for	t,	word	in	enumerate(target_text.split("	")):

																#	decoder_target_data	is	ahead	of	decoder_input_data

																		by	one	timestep

																				decoder_input_data[i,	t,	

																				self.target_word_index[word]]	=	1.

																				if	t	>	0:

																				#	decoder_target_data	will	be	ahead	by	one	timestep

																				#and	will	not	include	the	start	character.

																								try:

																												decoder_target_data[i,	t	-	1,	

																												self.target_word_index[word]]	=	1.

																								except:

																												print(f'word	{word}	

																																		encoutered	for	the	1st	time,skipped')

												return	

												encoder_input_data,decoder_input_data,decoder_target_data,

												np.array(input_texts),np.array(target_texts)

								else:

												for	i,	input_text	in	enumerate(input_texts):

																for	t,	word	in	enumerate(input_text.split("	")):

																				try:

																								encoder_input_data[i,	t,	

																																										self.input_word_index[word]]	=	1.

																				except:

																								print(f'word	{word}	

																								encoutered	for	the	1st	time,	skipped')

												return	encoder_input_data,None,None,np.array(input_texts),None

The	encoder_input_data	variable	would	contain	the	input	source	data	and	would	be
a	three-dimensional	array	of	the	number	of	records,	the	number	of	time	steps,
and	the	dimensions	of	each	one-hot	encoded	vector.	Similarly,	decoder_input_data
would	contain	the	input	target	data,	while	decoder_target_data	would	contain	the
target	labels.	Upon	execution	of	the	preceding	functions,	all	the	relevant	input
and	output	required	to	train	the	machine	translation	system	would	be	generated.
The	following	code	block	contains	the	display	statistics	related	to	the	execution
of	the	vocab_generation	function	with	40000	samples:



('Number	of	samples:',	40000)

('Number	of	unique	input	tokens:',	8658)

('Number	of	unique	output	tokens:',	16297)

('Max	sequence	length	for	inputs:',	7)

('Max	sequence	length	for	outputs:',	16)

As	we	can	see	from	the	preceding	statistics,	the	number	of	input	English	words
in	the	corpus	of	40000,	and	the	number	of	text	sentences	is	8658,	while	the	number
of	corresponding	French	words	is	16297.	This	is	an	indication	of	the	fact	that	each
of	the	English	words	emits	around	two	French	words	on	average.	Similarly,	we
see	the	maximum	number	of	words	in	the	English	sentences	is	7,	while	in	the
French	sentences,	the	maximum	is	14	if	you	exclude	the	[START]	and	[END]
characters	we	have	added	to	the	French	sentences	for	training	purposes.	This
also	confirms	the	fact	that,	on	average,	each	English	sentence	being	translated	is
going	to	generate	double	the	number	of	words.

Let's	take	a	look	at	the	shape	of	the	inputs	and	targets	to	the	neural	translation
machine:

('Shape	of	Source	Input	Tensor:',(40000,	7,	8658))

('Shape	of	Target	Input	Tensor:',(40000,	16,	16297))

(Shape	of	Target	Output	Tensor:',(40000,	16,	16297))

The	encoder	data	is	of	the	shape	(40000,	7,	8658),	where	the	first	dimension	is	for
the	number	of	source-language	sentences,	the	second	dimension	for	the	number
of	time	steps	and	the	final	dimension	is	the	size	of	the	one-hot	encoded	vectors,
which	is	8658,	corresponding	to	the	8658	source	language	words	in	the	English
vocabulary.	Similarly,	we	see	for	the	target	input	and	output	tensor,	the	one-hot
encoded	vectors	are	of	a	size	of	16297,	corresponding	to	the	16297	words	in	French
vocabulary.	The	number	of	time	steps	for	the	French	sentences	is	16.



Defining	a	model	for	neural	machine
translation
As	stated	earlier,	the	encoder	will	process	the	source	input	sequence	through	an
LSTM	and	encode	the	source	text	into	a	meaningful	summary.	The	meaningful
summary	would	be	stored	in	the	final	sequence	step	hidden	and	cell	states	hf	and
cf.	These	vectors	together	(that	is,	[hf;	cf])	provide	a	meaningful	context	about
the	source	text,	and	the	decoder	is	trained	to	produce	its	own	target	sequence
conditioned	on	the	hidden	and	cell	state	vectors	[hf;	cf].

Illustrated	in	the	following	diagram,	Figure	3.5,	is	a	detailed	diagram	of	the
training	process	of	an	English-to-French	translation.	The	English	sentence	It's	a
beautiful	day	is	converted	to	a	meaning	summary	through	an	LSTM,	which	is
then	stored	in	the	hidden	and	cell	state	vectors	[hf;	cf].	The	decoder	is	then	made
to	generate	its	own	target	sequence,	conditioned	on	the	input	source	sentence
through	the	information	embedded	in	[hf;	cf].	The	decoder	at	time	step	t	is	made
to	predict	the	next	target	word,	that	is,	the	word	at	time	step	t	+	1,	given	the
source	sentence.	This	is	why	there	is	a	lag	of	one	time	step	between	target	input
words	and	target	output	words.	For	the	first	time	step,	the	decoder	doesn't	have
any	prior	words	in	the	target	text	sequence,	and	so	the	only	information	available
for	it	to	use	to	predict	a	target	word	is	the	information	encoded	in	[hf;	cf]	that	is
fed	as	the	initial	hidden	and	cell-state	vectors.	Like	the	encoder,	the	decoder	also
uses	an	LSTM,	and,	as	discussed,	the	output	target	sequence	is	ahead	of	the	input
target	sequence	by	one	time	step:



Figure	3.5:	Illustration	of	the	machine	translation	network	flow	while	training

We	define	the	encoder	decoder	end-to-end	model	for	training	in	the	function
model_enc_dec	based	on	the	architecture	illustrated	in	Figure	3.5.	Here,	the
Encoder	(LSTM	1)	takes	in	the	source-language	text	words	sequentially	and
captures	the	whole	context	of	the	source	language	sentence	or	text	in	the	final
sequence	step	of	the	Encoder	(LSTM	1).	This	context	from	the	encoder	is	fed	as
initial	state	for	the	Decoder	(LSTM	2),	which	learns	to	predict	the	next	word
based	on	the	current	word,	since	during	training	we	have	the	sentence/text	for
the	target	language,	and	hence	the	decoder	can	just	have	the	inputs	to	it	shifted
by	just	one	time	step	to	form	the	targets:

def	model_enc_dec(self):

								#Encoder	Model

								encoder_inp	=	

								Input(shape=(None,self.num_encoder_words),name='encoder_inp')

								encoder	=	LSTM(self.latent_dim,	return_state=True,name='encoder')

								encoder_out,state_h,	state_c	=	encoder(encoder_inp)

								encoder_states	=	[state_h,	state_c]

								#Decoder	Model

								decoder_inp	=	

								Input(shape=(None,self.num_decoder_words),name='decoder_inp')

								decoder_lstm	=	



								LSTM(self.latent_dim,	return_sequences=True,			

								return_state=True,name='decoder_lstm')

								decoder_out,	_,	_	=	

								decoder_lstm(decoder_inp,	initial_state=encoder_states)

								decoder_dense	=	

								Dense(self.num_decoder_words,	

								activation='softmax',name='decoder_dense')

								decoder_out	=	decoder_dense(decoder_out)

								print(np.shape(decoder_out))

								#Combined	Encoder	Decoder	Model

								model	=	Model([encoder_inp,	decoder_inp],	decoder_out)

								#Encoder	Model	

								encoder_model	=	Model(encoder_inp,encoder_states)

								#Decoder	Model

								decoder_inp_h	=	Input(shape=(self.latent_dim,))

								decoder_inp_c	=	Input(shape=(self.latent_dim,))

								decoder_input	=	Input(shape=(None,self.num_decoder_words,))

								decoder_inp_state	=	[decoder_inp_h,decoder_inp_c]

								decoder_out,decoder_out_h,decoder_out_c	=			

								decoder_lstm(decoder_input,initial_state=decoder_inp_state)

								decoder_out	=	decoder_dense(decoder_out)

								decoder_out_state	=	[decoder_out_h,decoder_out_c]

								decoder_model	=	Model(inputs	=	

								[decoder_input]	+	decoder_inp_state,output=

								[decoder_out]+	decoder_out_state)

								plot_model(model,show_shapes=True,	to_file=self.outdir	+	

																			'encoder_decoder_training_model.png')

								plot_model(encoder_model,show_shapes=True,	to_file=self.outdir	+	

																			'encoder_model.png')

								plot_model(decoder_model,show_shapes=True,	to_file=self.outdir	+	

																			'decoder_model.png')

								return	model,encoder_model,decoder_model

				

While	the	model	for	training	is	a	straightforward	end-to-end	model,	the	inference
models	are	not	so	straightforward,	since	we	don't	know	the	inputs	for	the
decoder	at	each	time	step	apriori.	We	talk	about	the	inference	model	in	more
detail	in	the,	Building	the	inference	model	section.



Loss	function	for	the	neural
translation	machine
The	loss	function	for	the	neural	translation	machine	is	the	average	cross-entropy
loss	for	prediction	of	each	target	word	in	the	model	sequence.	The	actual	target
word	and	the	predicted	target	word	can	be	any	of	the	16,297	words	in	the	French
corpus	that	we	have	taken.	The	target	label	at	time	step	t	would	be	a	one-hot
encoded	vector	yt	∈	{0,1}16297,	while	the	predicted	output	would	be	in	the	form
of	probability	for	each	of	the	16,297	words	in	the	French	vocabulary.	If	we
represent	the	predicted	output	probability	vector	as	pt	∈	(0,1)16297,	then	the
average	categorical	loss	in	each	time	step	of	a	particular	sentence	s	is	given	by

the	following:	

We	get	the	loss	for	the	entire	sentence	by	summing	up	the	losses	over	all	the
sequence	time	steps,	as	shown	here:	

Since	we	work	with	mini-batch	stochastic	gradient	descent,	the	average	cost	for
the	mini-batch	can	be	obtained	by	averaging	the	loss	over	all	the	sentences	in	the
mini-batch.	If	we	take	mini-batches	of	size	m,	the	average	loss	per	mini-batch	is

as	follows:	

The	mini-batch	cost	is	used	to	compute	the	gradients	for	the	stochastic	gradient
descent.



#	Run	training<br/><br/>	def	train(self,encoder_input_data,decoder_input_data,
<br/>	decoder_target_data):<br/>	print("Training...")<br/>	<br/>
model,encoder_model,decoder_model	=	self.model_enc_dec()<br/><br/>
model.compile(optimizer='rmsprop',	loss='categorical_crossentropy')<br/><br/>
model.fit([encoder_input_data,	decoder_input_data],<br/>	decoder_target_data,
<br/>	batch_size=self.batch_size,<br/>	epochs=self.epochs,<br/>
validation_split=0.2)<br/>	#	Save	model<br/>	model.save(self.outdir	+
'eng_2_french_dumm.h5')<br/>	return
model,encoder_model,decoder_model<br/>

def	train_test_split(self,num_recs,train_frac=0.8):<br/>	rec_indices	=
np.arange(num_recs)<br/>	np.random.shuffle(rec_indices)<br/>	train_count	=
int(num_recs*0.8)<br/>	train_indices	=	rec_indices[:train_count]<br/>
test_indices	=	rec_indices[train_count:]<br/>	return	train_indices,test_indices

	



Building	the	inference	model
Let's	try	to	recall	the	working	mechanisms	of	the	inference	model	and	see	how
we	can	use	components	of	the	already-trained	model	to	build	it.	The	encoder	part
of	the	model	should	work	by	taking	text	sentences	in	the	source	language	as	an
input,	and	provide	the	final	hidden	and	cell	state	vectors,	[hf;	cf],	as	an	output.
We	can't	use	the	decoder	network	as	is,	since	the	target	language	input	words	can
no	longer	be	fed	to	the	decoder.	Instead,	we	collapse	the	decoder	network	to
consist	of	a	single	step	and	provide	the	output	of	that	step	as	an	input	to	the	next
step.	We	start	with	the	dummy	word	[START]	as	the	first	input	word	to	the	decoder,
along	with	[hf;	cf],	serving	as	its	initial	hidden	and	cell	states.	The	target	output
word	w1	and	the	hidden	and	cell	state	[h1;	c1]	generated	by	the	decoder	with
[START]	and	[hf;	cf]	as	the	input	is	again	fed	to	the	decoder	to	generate	the	next
word,	and	the	process	repeats	until	the	decoder	outputs	the	dummy	word	[END].
The	following	diagram	illustrates	the	step-wise	representation	of	the	inference
procedure	for	easy	interpretation:



Figure	3.6:	Step-wise	illustration	of	the	inference	process

As	we	can	see	from	the	preceding	diagram,	the	output	of	the	first	step	of	the
decoder	is	C'est,	while	the	hidden	and	cell	states	are	 .	This	is	fed	to	the



decoder	again,	as	shown	by	the	dotted	line,	to	generate	the	next	word,	along	with
the	next	set	of	hidden	and	cell	states.	The	process	is	repeated,	since	the	decoder
outputs	the	dummy	end	character	[END].

For	inference,	we	could	take	the	encoder	part	of	the	network	as	is,	and	carry	out
some	modification	to	collapse	the	decoder	so	that	it	consists	of	one	time	step.	To
recap,	no	matter	whether	the	RNN	consists	of	one	time	step	or	several	time
steps,	the	weights	associated	with	the	RNN	don't	change,	since	all	the	time	steps
of	an	RNN	share	the	same	weights.

For	inference,	we	can	see	that	the	encoder	part	of	the	training	model	is	used	as
the	encoder_model	in	the	function	model_enc_dec.	Similarly,	a	separate	decoder_model	is
defined	using	the	same	decoder	LSTM	that	takes	in	input	as	hidden	state,	cell
state	and	the	input	word	and	outputs	the	target	word	and	an	updated	hidden	and
cell	state.	The	function	model_enc_dec	where	we	define	the	inference	models,	that	is
encoder_model	and	decoder_model,	is	again	repeated	for	clarity:

def	model_enc_dec(self):

								#Encoder	Model

								encoder_inp	=	

								Input(shape=(None,self.num_encoder_words),name='encoder_inp')

								encoder	=	LSTM(self.latent_dim,	return_state=True,name='encoder')

								encoder_out,state_h,	state_c	=	encoder(encoder_inp)

								encoder_states	=	[state_h,	state_c]

								#Decoder	Model

								decoder_inp	=	

								Input(shape=(None,self.num_decoder_words),name='decoder_inp')

								decoder_lstm	=	

								LSTM(self.latent_dim,	return_sequences=True,	

								return_state=True,name='decoder_lstm')

								decoder_out,	_,	_	=	

								decoder_lstm(decoder_inp,	initial_state=encoder_states)

								decoder_dense	=

								Dense(self.num_decoder_words,	

								activation='softmax',name='decoder_dense')

								decoder_out	=	decoder_dense(decoder_out)

								print(np.shape(decoder_out))

								#Combined	Encoder	Decoder	Model

								model		=	Model([encoder_inp,	decoder_inp],	decoder_out)

								#Encoder	Model	

								encoder_model	=	Model(encoder_inp,encoder_states)

								#Decoder	Model

								decoder_inp_h	=	Input(shape=(self.latent_dim,))

								decoder_inp_c	=	Input(shape=(self.latent_dim,))

								decoder_input	=	Input(shape=(None,self.num_decoder_words,))

								decoder_inp_state	=	[decoder_inp_h,decoder_inp_c]

								decoder_out,decoder_out_h,decoder_out_c	=			

								decoder_lstm(decoder_input,initial_state=decoder_inp_state)

								decoder_out	=	decoder_dense(decoder_out)

								decoder_out_state	=	[decoder_out_h,decoder_out_c]

								decoder_model	=	Model(inputs	=	

								[decoder_input]	+	decoder_inp_state,output=



								[decoder_out]+	decoder_out_state)

								plot_model(model,to_file=self.outdir	+	

																			'encoder_decoder_training_model.png')

								plot_model(encoder_model,to_file=self.outdir	+	'encoder_model.png')

								plot_model(decoder_model,to_file=self.outdir	+	'decoder_model.png')

								return	model,encoder_model,decoder_model

The	decoder	will	operate	one	time	step	at	a	time.	In	the	first	instance,	it	would
take	the	hidden	and	cell	state	from	the	encoder	and	guess	the	first	word	of	the
translation	based	on	the	dummy	word	[START].	The	word	predicted	in	the	first
step,	along	with	the	generated	hidden	and	cell	state,	is	fed	to	the	decoder	again	to
predict	the	second	word,	and	the	process	continues	till	the	end	of	sentence
denoted	by	the	dummy	word	[END]	is	predicted.

Now	that	we	have	defined	all	the	functions	required	for	translating	a	source
sentence/text	to	its	target	language	counterpart,	we	combine	them	to	build	a
function	that	would	generate	a	translated	sequence,	given	a	source-language
input	sequence	or	sentence:

def	decode_sequence(self,input_seq,encoder_model,decoder_model):

								#	Encode	the	input	as	state	vectors.

								states_value	=	encoder_model.predict(input_seq)

								#	Generate	empty	target	sequence	of	length	1.

								target_seq	=	np.zeros((1,	1,	self.num_decoder_words))

								#	Populate	the	first	character	of	target	sequence	

										with	the	start	character.

								target_seq[0,	0,	self.target_word_index['\t']]	=	1.

								#	Sampling	loop	for	a	batch	of	sequences

								stop_condition	=	False

								decoded_sentence	=	''

								while	not	stop_condition:

												output_word,	h,	c	=	decoder_model.predict(

																[target_seq]	+	states_value)

												#	Sample	a	token

												sampled_word_index	=	np.argmax(output_word[0,	-1,	:])

												sampled_char	=	

												self.reverse_target_word_dict[sampled_word_index]

												decoded_sentence	=	decoded_sentence	+	'	'	+	sampled_char

												#	Exit	condition:	either	hit	max	length

												#	or	find	stop	character.

												if	(sampled_char	==	'\n'	or

												len(decoded_sentence)	>	self.max_decoder_seq_length):

																stop_condition	=	True

												#	Update	the	target	sequence	(of	length	1).

												target_seq	=	np.zeros((1,	1,	self.num_decoder_words))

												target_seq[0,	0,	sampled_word_index]	=	1.

												#	Update	states



												states_value	=	[h,	c]

								return	decoded_sentence

Once	we	train	the	model,	we	run	inference	on	the	holdout	dataset	and	check	the
quality	of	translation.	An	inference	function	can	be	coded	as	follows:

def	inference(self,model,data,encoder_model,decoder_model,in_text):

								in_list,out_list	=	[],[]

								for	seq_index	in	range(data.shape[0]):

												input_seq	=	data[seq_index:	seq_index	+	1]

												decoded_sentence	=		

												self.decode_sequence(input_seq,encoder_model,decoder_model)

												print('-')

												print('Input	sentence:',	in_text[seq_index])

												print('Decoded	sentence:',decoded_sentence)

												in_list.append(in_text[seq_index])

												out_list.append(decoded_sentence)

								return	in_list,out_list

			

The	machine	translation	model	can	be	trained	and	validated	on	the	holdout
dataset	by	invoking	the	Python	Script	MachineTranslation.py	as	follows:

python	MachineTranslation.py	--path	'/home/santanu/ML_DS_Catalog/Machine	Translation/fra-eng/fra.txt'	--epochs	20	--batch_size	32	-latent_dim	128	--num_samples	40000	--outdir	'/home/santanu/ML_DS_Catalog/Machine	Translation/'	--verbose	1	--mode	train

The	results	of	the	translation	of	a	few	English	sentences	from	the	holdout	dataset
where	the	machine	translation	model	did	a	good	job	is	illustrated	as	follows	for
reference:

('Input	sentence:',	u'Go.')

('Decoded	sentence:',	u'	Va	!	\n')

('Input	sentence:',	u'Wait!')

('Decoded	sentence:',	u'	Attendez	!	\n')

('Input	sentence:',	u'Call	me.')

('Decoded	sentence:',	u'	Appelle-moi	!	\n')

('Input	sentence:',	u'Drop	it!')

('Decoded	sentence:',	u'	Laisse	tomber	!	\n')

('Input	sentence:',	u'Be	nice.')

('Decoded	sentence:',	u'	Soyez	gentil	!	\n')

('Input	sentence:',	u'Be	fair.')

('Decoded	sentence:',	u'	Soyez	juste	!	\n')

('Input	sentence:',	u"I'm	OK.")

('Decoded	sentence:',	u'	Je	vais	bien.	\n')

('Input	sentence:',	u'I	try.')

('Decoded	sentence:',	u'	Je	vais	essayer.')

There	are	cases,	however,	when	the	machine	translation	didn't	perform	so	well,
as	shown	here:

('Input	sentence:',	u'Attack!')

('Decoded	sentence:',	u'	ma	!	\n')



('Input	sentence:',	u'Get	up.')

('Decoded	sentence:',	u'	un	!	\n')

In	conclusion,	the	neural	machine	translation	implementation	illustrated
previously	did	a	decent	job	of	translating	the	relatively	short	English	sentences
to	French.	One	of	the	things	that	I	want	to	emphasize	is	the	use	of	the	one-hot
encoded	vectors	to	represent	input	words	in	each	of	the	languages.	As	we
worked	with	a	relatively	small	corpus	of	40,000	words,	the	vocabulary	was
reasonable,	and,	hence,	we	were	able	to	work	with	one-hot	encoded	vectors	of
sizes	of	8,658	and	16,297	for	the	English	and	French	vocabularies	respectively.
With	a	larger	corpus,	the	size	of	the	one-hot	encoded	word	vectors	would
increase	further.	Such	sparse	high-dimensional	vectors	don't	have	any	notion	of
similarity	when	two	words	are	compared,	since	their	cosine	product	is	going	to
be	zero,	even	if	two	words	have	almost	the	same	meaning.	In	the	next	section,
we	are	going	to	see	how	word	vector	embeddings	that	operate	in	much	lower
dimensions	can	be	used	to	solve	this	problem.



Word	vector	embeddings
Instead	of	one-hot	encoded	vectors,	word	vector	embeddings	can	be	used	to
represent	the	words	in	a	dense	space	of	dimensionality	much	lower	than	that	of
the	one-hot	encoded	vectors.	The	word	vector	embedding	for	a	word	w	can	be
represented	by	vw	∈	Rm,	where	m	is	the	dimensionality	of	the	word	vector
embeddings.	As	we	can	see,	while	each	component	of	a	one-hot	encoded	vector
can	take	up	only	binary	values	of	{0,1},	a	component	of	the	word	vector
embedding	can	take	up	any	real	number,	and	hence	has	a	much	denser
representation.	The	notions	of	similarity	and	analogy	are	also	related	to	word
vector	embeddings.

Word	vector	embeddings	are	generally	trained	through	techniques	such	as	the
continuous-bag-of-words	method,	skip-gram,	GloVe,	and	others.	We	are	not
going	to	dwell	much	on	their	implementation,	but	the	central	idea	is	to	define	the
word	vector	embeddings	in	such	a	way	that	similar	words	are	closely	placed	in
the	m-dimensional	Euclidean	space:



Figure	3.7:	Similarity	and	analogy	illustration	of	GloVe	embeddings

In	the	preceding	graph,	we	plot	the	2D	TSNE	view	of	the	GloVe	word	vector
embeddings	for	man,	woman,	king,	and	queen.	As	we	can	see,	man	and
woman	have	an	inherent	similarity,	as	is	the	case	for	king	and	queen.	Also,	we
see	the	vector	difference	between	king	and	man	is	almost	the	same	as	that	of
queen	and	women,	which	might	stand	for	some	notion	of	royalty.	As	we	can
see,	analogies	such	as	man:	king	woman:	queen	can	be	expressed	by	word	vector
embeddings,	in	addition	to	expressing	similarity	between	words.	In	the	next
section,	we	will	talk	about	using	the	embedding	layers	in	the	RNN	to	express
input	words	as	word	vector	embeddings,	instead	of	one-hot	encoded	vectors.



Embeddings	layer
The	embeddings	layer	takes	the	index	of	an	input	word	as	an	input	and	provides
the	word	vector	embeddings	of	the	word	as	output.	The	dimension	of	the
embeddings	layer	is	Rd	x	V,	where	d	is	the	dimensionality	of	the	word	vector
embedding	and	V	is	the	size	of	the	vocabulary.	The	embeddings	layers	can	learn
the	embeddings	themselves	based	on	the	problem,	or	you	can	provide	a
pretrained	embeddings	layer.	In	our	case,	we	will	let	the	neural	machine
translation	figure	out	what	the	embedding	vectors	should	be	for	both	the	source
and	target	language	to	achieve	a	good	translation.	As	a	result,	each	of	our
defined	functions	should	change	to	accommodate	the	embeddings	layer.

	

	

	



Implementing	the	embeddings-based
NMT
We	will	need	to	make	a	few	changes	to	the	existing	functions	to	cater	for	the
embeddings	layer.	Firstly,	process_input	would	process	the	input	to	have	word
indexes	in	different	time	steps,	instead	of	the	one-hot	encoded	vectors,	as
follows:

def	process_input(self,input_texts,target_texts=None,verbose=True):

								encoder_input_data	=	np.zeros(

												(len(input_texts),	self.max_encoder_seq_length),

												dtype='float32')

								decoder_input_data	=	np.zeros(

												(len(input_texts),	self.max_decoder_seq_length),

												dtype='float32')

								decoder_target_data	=	np.zeros(

												(len(input_texts),	self.max_decoder_seq_length,1),

												dtype='float32')

								if	self.mode	==	'train':

												for	i,	(input_text,	target_text)	in	

																				enumerate(zip(input_texts,target_texts)):

																for	t,	word	in	enumerate(input_text.split("	")):

																				try:

																								encoder_input_data[i,	t]	=	

																								self.input_word_index[word]

																				except:

																								encoder_input_data[i,	t]	=	

																								self.num_encoder_words

																for	t,	word	in	enumerate(target_text.split("	")):

																#	decoder_target_data	is	ahead	of	decoder_input_data

																		by	one	timestep

																				try:

																								decoder_input_data[i,	t]	=	

																								self.target_word_index[word]

																				except:

																								decoder_input_data[i,	t]	=	

																								self.num_decoder_words	

																				if	t	>	0:

																				#	decoder_target_data	will	be	ahead	by	one	timestep

																				#and	will	not	include	the	start	character.

																								try:

																												decoder_target_data[i,	t	-	1]	=	

																												self.target_word_index[word]

																								except:

																												decoder_target_data[i,	t	-	1]	=	

																												self.num_decoder_words	

												print(self.num_encoder_words)

												print(self.num_decoder_words)



												print(self.embedding_dim)

												self.english_emb	=	np.zeros((self.num_encoder_words	+	1,

																																								self.embedding_dim))

												self.french_emb	=	np.zeros((self.num_decoder_words	+	1,

																																								self.embedding_dim))

												return	encoder_input_data,decoder_input_data,decoder_target_data,np.array(input_texts),

np.array(target_texts)

								else:

												for	i,	input_text	in	enumerate(input_texts):

																for	t,	word	in	enumerate(input_text.split("	")):

																				try:

																								encoder_input_data[i,	t]	=	self.input_word_index[word]

																																																																																							

The	only	change	from	the	earlier	process_input	function	is	that	no	longer	are	we
representing	the	words	by	one-hot	encoded	vectors	but	instead	by	the	indices	of
the	words.	Also,	did	you	notice	we	are	adding	an	extra	word	index	for	words
which	are	not	present	in	the	vocabulary?	This	shouldn't	ideally	happen	for
training	data,	but	during	testing	a	completely	new	word	not	in	the	vocabulary
might	come	up.

The	following	are	the	statistics	from	input	processing:

Number	of	samples:	40000

Number	of	unique	input	tokens:	8658

Number	of	unique	output	tokens:	16297

Max	sequence	length	for	inputs:	7

Max	sequence	length	for	outputs:	16

('Shape	of	Source	Input	Tensor:',	(40000,	7))

('Shape	of	Target	Input	Tensor:',	(40000,	16))

('Shape	of	Target	Output	Tensor:',	(40000,	16,	1))

As	we	can	see,	the	source	and	the	target	input	tensors	now	have	7	and	16	time
steps,	but	don't	have	the	dimensions	for	the	one-hot	encoded	vectors.	Each	of	the
time	steps	houses	the	index	for	the	words.

The	next	change	would	be	with	respect	to	the	encoder	and	decoder	network,	to
accommodate	the	embedding	layers	before	the	LSTM	layers:

def	model_enc_dec(self):

								#Encoder	Model

								encoder_inp	=	Input(shape=(None,),name='encoder_inp')

								encoder_inp1	=	

								Embedding(self.num_encoder_words	+	1,

																		self.embedding_dim,weights=[self.english_emb])

																		(encoder_inp)

								encoder	=	LSTM(self.latent_dim,	return_state=True,name='encoder')

								encoder_out,state_h,	state_c	=	encoder(encoder_inp1)

								encoder_states	=	[state_h,	state_c]



								#Decoder	Model

								decoder_inp	=	Input(shape=(None,),name='decoder_inp')

								decoder_inp1	=	

								Embedding(self.num_decoder_words+1,self.embedding_dim,weights=			

																		[self.french_emb])(decoder_inp)

								decoder_lstm	=	

								LSTM(self.latent_dim,	return_sequences=True,	

														return_state=True,name='decoder_lstm')

								decoder_out,	_,	_	=	

								decoder_lstm(decoder_inp1,initial_state=encoder_states)

								decoder_dense	=	Dense(self.num_decoder_words+1,	

																								activation='softmax',name='decoder_dense')

								decoder_out	=	decoder_dense(decoder_out)

								print(np.shape(decoder_out))

								#Combined	Encoder	Decoder	Model

								model	=	Model([encoder_inp,	decoder_inp],	decoder_out)

								#Encoder	Model	

								encoder_model	=	Model(encoder_inp,encoder_states)

								#Decoder	Model

								decoder_inp_h	=	Input(shape=(self.latent_dim,))

								decoder_inp_c	=	Input(shape=(self.latent_dim,))

								decoder_inp_state	=	[decoder_inp_h,decoder_inp_c]

								decoder_out,decoder_out_h,decoder_out_c	=	

								decoder_lstm(decoder_inp1,initial_state=decoder_inp_state)

								decoder_out	=	decoder_dense(decoder_out)

								decoder_out_state	=	[decoder_out_h,decoder_out_c]

								decoder_model	=	Model(inputs	=	

																								[decoder_inp]	+	decoder_inp_state,output=

																								[decoder_out]+	decoder_out_state)

								return	model,encoder_model,decoder_model

The	training	model	needs	to	be	compiled	with	sparse_categorical_crossentropy,	since
the	output	target	labels	are	expressed	as	indices,	as	opposed	to	one-hot	encoded
word	vectors:

def	train(self,encoder_input_data,decoder_input_data,

														decoder_target_data):

								print("Training...")

								model,encoder_model,decoder_model	=	self.model_enc_dec()

								model.compile(optimizer='rmsprop',	

																						loss='sparse_categorical_crossentropy')

								model.fit([encoder_input_data,	decoder_input_data],

																		decoder_target_data,

																batch_size=self.batch_size,

																epochs=self.epochs,

																validation_split=0.2)

								#	Save	model

								model.save(self.outdir	+	'eng_2_french_dumm.h5')

								return	model,encoder_model,decoder_model

Next,	we	need	to	make	modifications	to	the	inference-related	functions	to
accommodate	the	embedding	related	changes.	The	encoder_model	and	the
decoder_model	for	inference	now	uses	the	embeddings	layer	for	English	and	French
vocabulary,	respectively.



Finally,	we	can	create	the	sequence	generator	function	as	follows,	using
decoder_model	and	encoder_model:

def	decode_sequence(self,input_seq,encoder_model,decoder_model):

								#	Encode	the	input	as	state	vectors.

								states_value	=	encoder_model.predict(input_seq)

								#	Generate	empty	target	sequence	of	length	1.

								target_seq	=	np.zeros((1,	1))

								#	Populate	the	first	character	of	target	sequence

										with	the	start	character.

								target_seq[0,	0]	=	self.target_word_index['\t']

								#	Sampling	loop	for	a	batch	of	sequences

								stop_condition	=	False

								decoded_sentence	=	''

								while	not	stop_condition:

												output_word,	h,	c	=	decoder_model.predict(

																[target_seq]	+	states_value)

												#	Sample	a	token

												sampled_word_index	=	np.argmax(output_word[0,	-1,	:])

												try:

																sampled_char	=	

																self.reverse_target_word_dict[sampled_word_index]

												except:

																sampled_char	=	'<unknown>'

												decoded_sentence	=	decoded_sentence	+	'	'	+	sampled_char

												#	Exit	condition:	either	hit	max	length

												#	or	find	stop	character.

												if	(sampled_char	==	'\n'	or

												len(decoded_sentence)	>	self.max_decoder_seq_length):

																stop_condition	=	True

												#	Update	the	target	sequence	(of	length	1).

												target_seq	=	np.zeros((1,	1))

												target_seq[0,	0]	=	sampled_word_index

												#	Update	states

												states_value	=	[h,	c]

								return	decoded_sentence

The	training	of	the	model	can	be	invoked	by	running	the	script	as	follows:

python	MachineTranslation_word2vec.py	--path	'/home/santanu/ML_DS_Catalog-/Machine	Translation/fra-eng/fra.txt'	--epochs	20	--batch_size	32	--latent_dim	128	--num_samples	40000	--outdir	'/home/santanu/ML_DS_Catalog-/Machine	Translation/'	--verbose	1	--mode	train	--embedding_dim	128

The	model	is	trained	on	GeForce	GTX	1070	GPU,	and	it	approximately	takes	around	9.434
minutes	to	train	on	32,000	records	and	run	inference	on	8,000	records.	Users	are	highly
recommended	to	use	a	GPU,	since	RNNs	are	computation	heavy	and	might	take	hours	to	train
the	same	model	on	CPU.

We	can	run	the	train	the	machine	translation	model	and	perform	validation	on
the	holdout	out	dataset	by	running	the	python	script	MachineTranslation.py	as
follows:



python	MachineTranslation.py	--path	'/home/santanu/ML_DS_Catalog/Machine	Translation/fra-eng/fra.txt'	--epochs	20	--batch_size	32	-latent_dim	128	--num_samples	40000	--outdir	'/home/santanu/ML_DS_Catalog/Machine	Translation/'	--verbose	1	--mode	train

The	results	obtained	from	the	embeddings	vector	approach	are	similar	to	those	of
the	one-hot	encoded	word	vectors.	A	few	translations	from	the	inference	of	the
holdout	dataset	are	provided	here:

Input	sentence:	Where	is	my	book?

Decoded	sentence:		Où	est	mon	Tom	?

-

Input	sentence:	He's	a	southpaw.

Decoded	sentence:		Il	est	en	train	de

-

Input	sentence:	He's	a	very	nice	boy.

Decoded	sentence:		C'est	un	très	bon

-

Input	sentence:	We'll	be	working.

Decoded	sentence:		Nous	pouvons	faire

-

Input	sentence:	May	I	have	a	program?

Decoded	sentence:		Puis-je	une	?	

-

Input	sentence:	Can	you	make	it	safe?

Decoded	sentence:		Peux-tu	le	faire

-

Input	sentence:	We	walked	to	my	room.

Decoded	sentence:		Nous	avons	devons

-

Input	sentence:	Don't	stand	too	close.

Decoded	sentence:		Ne	vous	en	prie.

-

Input	sentence:	Where's	the	dog?

Decoded	sentence:		Où	est	le	chien	?

-

Input	sentence:	He's	a	hopeless	case.

Decoded	sentence:		Il	est	un	fait	de

-

Input	sentence:	Where	were	we?

Decoded	sentence:		Où	fut	?	



Summary
The	reader	should	now	have	a	good	understanding	of	several	machine	translation
approaches	and	how	neural	translation	machines	are	different	than	their
traditional	counterparts.	We	should	also	now	have	gained	an	insight	into	how	to
build	a	neural	machine	translation	system	from	scratch	and	how	to	extend	that
system	in	interesting	ways.	With	the	information	and	implementation
demonstrations	provided,	the	reader	is	advised	to	explore	other	parallel	corpus
datasets.

In	this	chapter,	we	defined	embedding	layers	but	didn't	load	them	with	pretrained
embeddings,	such	as	GloVe,	FastText,	and	so	on.	The	reader	is	advised	to	load
the	embedding	layers	with	pretrained	word	vector	embeddings	and	see	whether
this	yields	better	results.	In	Chapter	4,	Style	Transfer	in	Fashion	Industry	using
GANs,	we	are	going	to	work	through	a	project	related	to	style	transfer	in	the
fashion	industry	using	generative	adversarial	networks,	a	modern	revolution	in
the	field	of	artificial	intelligence.

	

	

	



Style	Transfer	in	Fashion	Industry
using	GANs
The	concept	of	style	transfer	refers	to	the	process	of	rendering	the	style	of	a
product	into	another	product.	Imagine	that	your	fashion-crazy	friend	bought	a
blue-printed	bag	and	wanted	to	get	a	pair	of	shoes	of	a	similar	print	to	go	with	it.
Up	until	2016,	this	might	not	have	been	possible,	unless	they	were	friends	with	a
fashion	designer	who	would	first	have	to	design	a	shoe	before	it	was	approved
for	production.	With	the	recent	progress	in	generative	adversarial	networks,
however,	this	kind	of	design	process	can	be	carried	out	easily.

A	generative	adversarial	network	is	a	network	that	learns	by	playing	a	zero	sum
game	between	a	generator	network	and	a	discriminator	network.	Let's	say	that	a
fashion	designer	wants	to	design	a	handbag	of	a	specific	structure	and	is
exploring	different	prints.	The	designer	might	sketch	the	structure	of	the	bag	and
then	feed	the	sketch	image	into	a	generative	adversarial	network	to	come	up	with
several	possible	final	prints	for	the	handbag.	This	process	of	style	transfer	can
make	a	huge	impact	on	the	fashion	industry	by	enabling	customers	to	map
product	designs	and	patterns	themselves,	without	the	need	to	have	extensive
designer	input.	Fashion	houses	can	also	benefit	by	recommending	products	of	a
similar	design	and	style	to	complement	those	that	the	customer	already	has.

In	this	project,	we	will	build	a	smart	artificial	intelligence	system	that	will
generate	shoes	with	a	similar	style	to	a	given	handbag	and	vice	versa.	The
vanilla	GAN	that	we	discussed	previously	is	not	going	to	be	enough	to
implement	this	project;	what	we	need	are	customized	versions	of	the	GAN,	such
as	a	DiscoGAN	and	a	CycleGAN.

In	this	chapter,	we	will	cover	the	following	topics:

We	will	discuss	the	working	principles	and	mathematical	foundations
behind	DiscoGAN
We	will	compare	and	contrast	DiscoGAN	with	CycleGAN,	which	are	very
similar	in	architecture	and	working	principles
We	will	train	a	DiscoGAN	that	learns	to	generate	images	of	bags	from	some



given	sketches	of	the	bags
Finally,	we	will	discuss	the	intricacies	associated	with	training	a	DiscoGAN



Technical	requirements
The	readers	should	have	basic	knowledge	of	Python	3	and	artificial	intelligence
to	go	through	the	projects	in	this	chapter.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter04

Check	out	the	following	video	to	see	the	code	in	action:
http://bit.ly/2CUZLQb

https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter04
http://bit.ly/2CUZLQb


DiscoGAN
A	DiscoGAN	is	a	generative	adversarial	network	that	generates	images	of
products	in	domain	B	given	an	image	in	domain	A.	Illustrated	in	the	following
diagram	is	an	architectural	diagram	of	a	DisoGAN	network:





Figure	4.1:	Architectural	diagram	of	a	DiscoGAN

The	images	generated	in	domain	B	resemble	the	images	in	domain	A	in	both
style	and	pattern.	This	relation	can	be	learned	without	explicitly	pairing	images
from	the	two	domains	during	training.	This	is	quite	a	powerful	capability,	given
that	the	pairing	of	items	is	a	time-consuming	task.	On	a	high	level,	it	tries	to
learn	two	generator	functions	in	the	form	of	neural	networks	GAB	and	GBA	so
that	an	image	xA,	when	fed	through	the	generator	GAB,	produces	an	image	xAB,
that	looks	realistic	in	domain	B.	Also,	when	this	image	xAB	is	fed	through	the
other	generator	network	GBA,	it	should	produce	an	image	xABA	which	should
ideally	be	the	same	as	the	original	image	xA.	With	respect	to	the	generator
function,	the	following	relation	should	hold	true:

In	practice,	however,	it	is	not	possible	for	the	generator	functions	GAB	and	GBA
to	be	inverses	of	each	other,	so	we	try	to	minimize	the	loss	between	the
reconstructed	image	and	the	original	image	as	much	as	possible	by	choosing
either	a	L1	or	L2	normed	loss.	L1	normed	loss	is	basically	the	sum	of	the
absolute	error	for	each	data	point	while	L2	normed	loss	represents	the	sum	of	the
squared	loss	for	each	data	point.	We	can	represent	the	L2	normed	loss	for	a
single	image	as	follows:

Merely	minimizing	the	preceding	loss	is	not	going	to	be	enough.	We	have	to
ensure	that	the	image	xB	that	is	created	looks	realistic	in	domain	B.	For	instance,
if	we	are	mapping	clothes	in	domain	A	to	shoes	in	domain	B,	we	would	have	to
ensure	that	xB	resembles	a	shoe.	A	discriminator	DB	on	the	domain	B	side	is
going	to	detect	xB	as	fake	if	the	image	is	not	realistic	enough	as	a	shoe	and	hence
a	loss	pertaining	to	the	same	also	has	to	be	taken	into	account.	Generally,	during
training,	the	discriminator	is	fed	with	both	generated	images	xAB	=	GAB(xA)	and
original	images	in	domain	B,	which	we	choose	to	represent	here	by	yB,	so	that	it
learns	to	classify	real	images	from	fake	ones.	As	you	might	recall,	in	a	GAN,	the
generator	and	the	discriminator	play	a	zero-sum	minimax	game	against	each
other	to	keep	getting	better	until	an	equilibrium	is	reached.	The	discriminator



penalizes	the	fake	images	if	they	don't	look	realistic	enough,	meaning	the
generators	have	to	learn	to	produce	better	images	xAB	given	an	input	image	xA.
Taking	all	of	this	into	consideration,	we	can	formulate	the	loss	the	generator	we
would	like	to	minimize	as	the	reconstruction	loss	and	the	loss	with	respect	to	the
discriminator	identifying	xAB	as	fake.	The	second	loss	will	attempt	to	make	the
generator	produce	realistic	images	in	domain	B.	The	generator	loss	of	mapping
an	image	xA	in	domain	A	to	an	image	in	domain	B	can	be	expressed	as	follows:

The	reconstruction	loss	under	the	L2	norm	can	be	expressed	as	follows:

Since	we	are	dealing	with	an	image,	we	can	assume	that	xA	is	a	flattened	vector
of	all	the	pixels	to	do	justice	to	the	L2	norm	terminology.	If	we	assume	xA	is	a

matrix,	it	would	be	better	to	term	 	as	the	Frobenius	norm.	However,	these
are	just	mathematical	terminologies,	and	in	essence	we	are	just	taking	the	sum	of
the	square	of	the	pixel	value	differences	between	the	original	image	and	the
reconstructed	image.

Let's	think	about	the	cost	that	the	generator	would	try	to	minimize	in	its	pursuit
of	making	the	transformed	image	xAB	look	realistic	to	the	discriminator.	The
discriminator	would	try	to	tag	the	image	as	a	fake	image,	and	hence	the
generator	GAB	should	produce	xAB	in	such	a	way	that	the	log	loss	of	it	being	a
fake	image	is	as	small	as	possible.	If	the	discriminator	DB	in	domain	B	tags	real
images	as	1	and	fake	images	as	0	and	the	probability	of	an	image	being	real	is
given	by	DB	(.),	then	the	generator	should	make	xAB	highly	probable	under	the
discriminator	network,	so	that	DB(xB)	=	DB(GAB(xA))	is	as	close	to	1	as	possible.
In	terms	of	log	loss,	the	generator	should	minimize	the	negative	log	of	the
preceding	probability,	which	basically	gives	us	CD(AB),	as	shown	here:



Combining	(3)	and	(4),	we	can	get	the	total	generator	cost	C_GAB	of	mapping	an
image	from	domain	A	to	domain	B,	as	shown	here:

	

The	big	question	is,	shall	we	stop	here?	Since	we	have	images	from	two
domains,	to	get	a	better	mapping,	we	can	take	images	from	domain	B	as	well
and	map	them	to	domain	A	through	a	generator	GBA.	If	we	take	an	image	xB	in
domain	B	and	transform	it	into	an	image	xBA	through	the	generator	GBA	and	the
discriminator	at	domain	A	is	given	by	DA,	then	the	cost	function	associated	with
such	a	transformation	is	given	by	the	following:

	

If	we	sum	over	the	entire	population	of	images	in	both	the	domains,	the
generator	loss	would	be	given	by	the	sum	of	(5)	and	(6),	as	shown	here:

Now,	let's	build	the	cost	functions	the	discriminators	would	try	to	minimize	to
set	up	the	zero-sum	min/max	games.	The	discriminators	in	each	domain	would
try	to	distinguish	the	real	images	from	the	fake	images,	and	hence	the
discriminator	GB	would	try	to	minimize	the	cost	C_DB,	as	shown	here:

Similarly,	the	discriminator	DA	would	try	to	minimize	the	cost	C_DA	as	shown
here:



Combining	(8)	and	(9)	the	overall	discriminator	cost	is	given	by	CD,	as	follows:

If	we	denote	the	parameters	of	the	GAB,	GBA,	DA,	and	DB	as	 , , ,

and	 ,	then	the	optimized	parameters	of	the	networks	can	be	represented	as
follows:

Stochastic	gradient	descent,	such	as	Adam,	is	performed	on	the	cost	functions	to
arrive	at	the	optimal	solution.	Please	note	that,	as	illustrated	before,	the	solution
for	a	generative	adversarial	network	is	a	saddle	point	with	respect	to	the	cost
function	being	optimized.



CycleGAN
A	CycleGAN	is	fundamentally	similar	to	a	DiscoGAN	with	one	small
modification.	In	a	CycleGAN,	we	have	the	flexibility	to	determine	how	much
weight	to	assign	to	the	reconstruction	loss	with	respect	to	the	GAN	loss	or	the
loss	attributed	to	the	discriminator.	This	parameter	helps	in	balancing	the	losses
in	correct	proportions	based	on	the	problem	at	hand	to	help	the	network
converge	faster	while	training.	The	rest	of	the	implementation	of	a	CycleGAN	is
the	same	as	that	of	the	DiscoGAN.

	

	

	



Learning	to	generate	natural
handbags	from	sketched	outlines
In	this	chapter,	we	are	going	to	generate	handbags	from	sketched	outlines
without	using	explicit	pair	matching	using	DiscoGAN.	We	denote	the	sketch
images	as	belonging	to	domain	A,	while	the	natural	handbag	images	to	belong	to
domain	B.	There	will	be	two	generators:	one	that	takes	the	images	of	domain	A
and	maps	them	to	images	that	would	look	realistic	under	domain	B,	and	another
that	does	the	opposite:	one	that	maps	handbag	images	from	domain	B	to	images
that	will	look	realistic	under	domain	A.	The	discriminators	would	try	to	identify
the	generator	generated	fake	images	from	those	of	the	authentic	images	in	each
domain.	The	generators	and	the	discriminator	would	play	a	minimax	zero-	sum
game	against	each	other.

To	train	this	network,	we	will	require	two	sets	of	images,	sketches,	or	outlines	of
handbags	and	natural	images	of	handbags.	The	images	can	be	downloaded	from
the	following	link:	https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/
edges2handbags.tar.gz.

In	the	next	few	sections,	we	will	go	through	the	process	of	defining	the
DiscoGAN	network	in	TensorFlow	and	then	training	it	to	generate	realistic
handbag	images	using	handbag	sketches	that	act	as	the	edges	of	an	image.	We
will	start	by	defining	the	architecture	of	the	generator	network.

https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/edges2handbags.tar.gz


#	-*-	coding:	utf-8	-*-<br/>"""<br/>Created	on	Fri	Apr	13	00:10:12	2018<br/>
<br/>@author:	santanu<br/>"""<br/><br/>import	numpy	as	np<br/>import
os<br/>from	scipy.misc	import	imread<br/>from	scipy.misc	import
imsave<br/>import	fire<br/>from	elapsedtimer	import	ElapsedTimer<br/>from
pathlib	import	Path<br/>import	shutil	<br/>'''<br/>Process	the	images	in	Domain
A	and	Domain	and	resize	appropriately<br/>Inputs	contain	the	Domain	A	and
Domain	B	image	in	the	same	image<br/>This	program	will	break	them	up	and
store	them	in	their	respecective	folder<br/><br/>'''<br/><br/>def
process_data(path,_dir_):<br/>	os.chdir(path)<br/>	try:	<br/>
os.makedirs('trainA')<br/>	except:<br/>	print(f'Folder	trainA	already	present,
cleaning	up	and	recreating	empty	folder	trainA')<br/>	try:<br/>
os.rmdir('trainA')<br/>	except:<br/>	shutil.rmtree('trainA')<br/>	<br/>
os.makedirs('trainA')<br/><br/>	try:	<br/>	os.makedirs('trainB')<br/>	except:
<br/>	print(f'Folder	trainA	already	present,	cleaning	up	and	recreating	empty
folder	trainB')<br/>	try:<br/>	os.rmdir('trainB')<br/>	except:<br/>
shutil.rmtree('trainB')<br/>	os.makedirs('trainB')<br/>	path	=	Path(path)	<br/>
files	=	os.listdir(path	/_dir_)<br/>	print('Images	to	process:',	len(files))<br/>	i	=
0<br/>	for	f	in	files:<br/>	i+=1	<br/>	img	=	imread(path	/	_dir_	/	str(f))<br/>
w,h,d	=	img.shape<br/>	h_	=	int(h/2)<br/>	img_A	=	img[:,:h_]<br/>	img_B	=
img[:,h_:]<br/>	imsave(f'{path}/trainA/{str(f)}_A.jpg',img_A)<br/>
imsave(f'{path}/trainB/{str(f)}_B.jpg',img_A)<br/>	if	((i	%	10000)	==	0	&	(i	>=
10000)):<br/>	print(f'the	number	of	input	images	processed	:	{i}')<br/>	files_A
=	os.listdir(path	/	'trainA')<br/>	files_B	=	os.listdir(path	/	'trainB')<br/>
print(f'No	of	images	written	to	{path}/trainA	is	{len(files_A)}')<br/>	print(f'No
of	images	written	to	{path}/trainA	is	{len(files_B)}')<br/>	<br/>	<br/>with
ElapsedTimer('process	Domain	A	and	Domain	B	Images'):<br/>
fire.Fire(process_data)<br/><br/>

<strong>python	image_split.py	--path	/media/santanu/9eb9b6dc-b380-486e-
b4fd-c424a325b976/edges2handbags/	--_dir_	train</strong>

<strong>Folder	trainA	already	present,	cleaning	up	and	recreating	empty	folder
trainA</strong><br/><strong>Folder	trainA	already	present,	cleaning	up	and
recreating	empty	folder	trainB</strong><br/><strong>Images	to	process:
138569<br/></strong><strong>the	number	of	input	images	processed	:
10000</strong><br/><strong>the	number	of	input	images	processed	:
20000</strong><br/><strong>the	number	of	input	images	processed	:
30000</strong><br/><br/><strong>.....</strong>



The	generators	of	the	DiscoGAN
The	generators	of	the	DiscoGAN	are	feed-forward	convolutional	neural
networks	where	the	input	and	output	are	images.	In	the	first	part	of	the	network,
the	images	are	scaled	down	in	spatial	dimensions	while	the	number	of	the	output
feature	maps	increases	as	the	layers	progress.	In	the	second	part	of	the	network,
the	images	are	scaled	up	along	the	spatial	dimensions,	while	the	number	of
output	feature	maps	reduce	from	layer	to	layer.	In	the	final	output	layer,	an
image	with	the	same	spatial	dimensions	as	that	of	the	input	is	generated.	If	a
generator	that	converts	an	image	xA	to	xAB	from	domain	A	to	domain	B	is

represented	by	GAB,	then	we	have	 .

Illustrated	here	is	the	build_generator	function,	which	can	we	used	to	build	the
generators	for	the	DiscoGAN	network:

def	build_generator(self,image,reuse=False,name='generator'):

				with	tf.variable_scope(name):

								if	reuse:

												tf.get_variable_scope().reuse_variables()

								else:

												assert	tf.get_variable_scope().reuse	is	False

																

												"""U-Net	generator"""

								def	lrelu(x,	alpha,name='lrelu'):

												with	tf.variable_scope(name):

																return	tf.nn.relu(x)	-	alpha	*	tf.nn.relu(-x)

																

																				

				"""Layers	used	during	downsampling"""

								def	common_conv2d(layer_input,filters,f_size=4,

																										stride=2,padding='SAME',norm=True,

																										name='common_conv2d'):

												with	tf.variable_scope(name):

																if	reuse:

																				tf.get_variable_scope().reuse_variables()

																				

																else:

																				assert	tf.get_variable_scope().reuse	is	False

																				

																d	=	

															tf.contrib.layers.conv2d(layer_input,filters,

																																								kernel_size=f_size,

																																								stride=stride,padding=padding)

																if	norm:

																				d	=	tf.contrib.layers.batch_norm(d)

																				

																d	=	lrelu(d,alpha=0.2)

																return	d



				

									"""Layers	used	during	upsampling"""

							def	common_deconv2d(layer_input,filters,f_size=4,

																											stride=2,padding='SAME',dropout_rate=0,

																											name='common_deconv2d'):

												with	tf.variable_scope(name):

																if	reuse:

																				tf.get_variable_scope().reuse_variables()

																				

																else:

																				assert	tf.get_variable_scope().reuse	is	False

																u	=	

																tf.contrib.layers.conv2d_transpose(layer_input,

																																																			filters,f_size,

																																																			stride=stride,

																																																			padding=padding)

																if	dropout_rate:

																				u	=	tf.contrib.layers.dropout(u,keep_prob=dropout_rate)

																				

																u	=	tf.contrib.layers.batch_norm(u)

																u	=	tf.nn.relu(u)

																return	u	

												

								#	Downsampling

								#		64x64	->	32x32

								dwn1	=	common_conv2d(image,self.gf,stride=2,norm=False,name='dwn1')	

								#		32x32	->	16x16

							dwn2	=	common_conv2d(dwn1,self.gf*2,stride=2,name='dwn2')											

								#		16x16			->	8x8

							dwn3	=	common_conv2d(dwn2,self.gf*4,stride=2,name='dwn3')											

								#		8x8			->	4x4	

							dwn4	=	common_conv2d(dwn3,self.gf*8,stride=2,name='dwn4')												

								#		4x4			->	1x1	

							dwn5	=	common_conv2d(dwn4,100,stride=1,padding='valid',name='dwn5')	

								

								#	Upsampling

								#		4x4				->	4x4

								up1	=	

							common_deconv2d(dwn5,self.gf*8,stride=1,

																							padding='valid',name='up1')						

								#		4x4				->	8x8

								up2	=	common_deconv2d(up1,self.gf*4,name='up2')																		

								#		8x8				->	16x16

								up3	=	common_deconv2d(up2,self.gf*2,name='up3')																		

								#		16x16				->	32x32	

								up4	=	common_deconv2d(up3,self.gf,name='up4')																				

							out_img	=	tf.contrib.layers.conv2d_transpose(up4,self.channels,

																																																				kernel_size=4,stride=2,																																																																																																																																						

																																																				padding='SAME',

																																																				activation_fn=tf.nn.tanh)	

							#	32x32	->	64x64

								return	out_img

Within	the	generator	function,	we	define	a	leaky	ReLU	activation	function	and
use	a	leak	factor	of	0.2.	We	also	define	a	convolution	layer	generation	function,
common_conv2d,	which	we	use	for	down-sampling	the	image,	and	a	common_deconv2d,
which	is	used	for	up-sampling	the	down-	sampled	image	to	its	original	spatial



dimensions.

We	define	the	generator	function	with	the	reuse	option	by	using
tf.get_variable_scope().reuse_variables().	When	the	same	generator	function	is
called	multiple	times,	the	reuse	option	ensures	that	we	reuse	the	same	variables
that	are	used	by	a	specific	generator.	When	we	remove	the	reuse	option,	we
create	a	new	set	of	variables	for	the	generator.

For	instance,	we	might	use	the	generator	function	to	create	two	generator
networks	and	so	we	would	not	use	the	reuse	option	while	creating	these	networks
for	the	first	time.	If	that	generator	function	is	referred	to	again,	we	use	the	reuse
option.	The	activation	function	during	convolution	(down	sampling)	and
deconvolution	(up	sampling)	is	leaky	ReLU	preceded	by	batch	normalization	for
stable	and	fast	convergence.	

The	number	of	output	feature	maps	in	the	different	layers	of	the	network	is	either
self.gf	or	a	multiple	of	it.	For	our	DiscoGAN	network,	we	have	chosen	self.gf	to
be	64.

One	important	thing	to	notice	in	the	generator	is	the	tanh	activation	function	of
the	output	layer.	This	ensures	that	the	pixel	values	of	the	images	produced	by	the
generators	would	be	in	the	range	of	[-1,	+1].	This	makes	it	important	for	the	input
images	to	have	pixel	intensities	in	the	range	of	[-1,	+1],	which	can	be	done	by	a
simple	element-wise	transformation	on	the	pixel	intensities,	as	follows:

Similarly,	to	convert	the	image	to	be	in	a	displayable	0-255	pixel	intensity
format,	we	need	to	apply	an	inverse	transformation,	as	follows:



def	build_discriminator(self,image,reuse=False,name='discriminator'):<br/>	with
tf.variable_scope(name):<br/>	if	reuse:<br/>
tf.get_variable_scope().reuse_variables()<br/>	else:<br/>	assert
tf.get_variable_scope().reuse	is	False<br/>	<br/>	def	lrelu(x,	alpha,name='lrelu'):
<br/>	<br/>	with	tf.variable_scope(name):<br/>	if	reuse:<br/>
tf.get_variable_scope().reuse_variables()<br/>	else:<br/>	assert
tf.get_variable_scope().reuse	is	False<br/><br/>	return	tf.nn.relu(x)	-	alpha	*
tf.nn.relu(-x)<br/>	<br/>	<br/>	"""Discriminator	layer"""<br/>	<br/>	def
d_layer(layer_input,filters,f_size=4,stride=2,norm=True,<br/>	name='d_layer'):
<br/>	with	tf.variable_scope(name):<br/>	if	reuse:<br/>
tf.get_variable_scope().reuse_variables()<br/>	else:<br/>	assert
tf.get_variable_scope().reuse	is	False<br/><br/>	d	=	<br/>
tf.contrib.layers.conv2d(layer_input,<br/>	filters,kernel_size=f_size,<br/>
stride=2,	padding='SAME')<br/>	if	norm:<br/>	d	=
tf.contrib.layers.batch_norm(d)<br/>	<br/>	d	=	lrelu(d,alpha=0.2)<br/>	return
d<br/>	<br/>	#64x64	->	32x32	<br/>	down1	=	d_layer(image,self.df,
norm=False,name='down1')	<br/>	#32x32	->	16x16<br/>	down2	=
d_layer(down1,self.df*2,name='down2')	<br/>	#16x16	->	8x8<br/>	down3	=
d_layer(down2,self.df*4,name='down3')	<br/>	#8x8	->	4x4<br/>	down4	=
d_layer(down3,self.df*8,name='down4')	<br/>	#4x4	->	1x1<br/>	down5	=	<br/>
tf.contrib.layers.conv2d(down4,1,kernel_size=4,stride=1,<br/>	padding='valid')
<br/>	<br/>	return	down5

The	number	of	output	feature	maps	in	the	different	layers	of	the	discriminator
networks	is	either	self.df	or	a	multiple	of	it.	For	our	network,	we	have	taken
self.df	to	be	64.



Building	the	network	and	defining	the
cost	functions
In	this	section,	we	are	going	to	build	the	entire	network	using	the	generator	and
the	discriminator	functions	and	also	define	the	cost	function	to	be	optimized
during	the	training	process.	The	TensorFlow	code	is	as	follows:

def	build_network(self):

				def	squared_loss(y_pred,labels):

								return	tf.reduce_mean((y_pred	-	labels)**2)

			def	abs_loss(y_pred,labels):

								return	tf.reduce_mean(tf.abs(y_pred	-	labels))		

			def	binary_cross_entropy_loss(logits,labels):

								return	tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(

																																								labels=labels,logits=logits))

					self.images_real	=	tf.placeholder(tf.float32,[None,self.image_size,self.image_size,self.input_dim	+	self.output_dim])

								

				self.image_real_A	=	self.images_real[:,:,:,:self.input_dim]

				self.image_real_B	=	

				self.images_real[:,:,:,self.input_dim:self.input_dim	+	self.output_dim]

				self.images_fake_B	=	

				self.build_generator(self.image_real_A,

																									reuse=False,name='generator_AB')

				self.images_fake_A	=	

				self.build_generator(self.images_fake_B,

																									reuse=False,name='generator_BA')

				self.images_fake_A_	=	

				self.build_generator(self.image_real_B,

																									reuse=True,name='generator_BA')

				self.images_fake_B_	=	

				self.build_generator(self.images_fake_A_,

																									reuse=True,name='generator_AB')

								

				self.D_B_fake	=	

				self.build_discriminator(self.images_fake_B	,

																													reuse=False,	name="discriminatorB")

				self.D_A_fake	=	

				self.build_discriminator(self.images_fake_A_,

																													reuse=False,	name="discriminatorA")	

				self.D_B_real	=	

				self.build_discriminator(self.image_real_B,

																													reuse=True,	name="discriminatorB")

				self.D_A_real	=	

				self.build_discriminator(self.image_real_A,

																													reuse=True,	name="discriminatorA")

				self.loss_GABA	=	

				self.lambda_l2*squared_loss(self.images_fake_A,self.image_real_A)	+

				binary_cross_entropy_loss(labels=tf.ones_like(self.D_B_fake),

				logits=self.D_B_fake)

				self.loss_GBAB	=	

				self.lambda_l2*squared_loss(self.images_fake_B_,

				self.image_real_B)	+	

				binary_cross_entropy_loss(labels=tf.ones_like(self.D_A_fake),



				logits=self.D_A_fake)

				self.generator_loss	=	self.loss_GABA	+	self.loss_GBAB

																

				self.D_B_loss_real	=					

				binary_cross_entropy_loss(tf.ones_like(self.D_B_real),self.D_B_real)

				self.D_B_loss_fake	=	

				binary_cross_entropy_loss(tf.zeros_like(self.D_B_fake),self.D_B_fake)

				self.D_B_loss	=	(self.D_B_loss_real	+	self.D_B_loss_fake)	/	2.0

								

				self.D_A_loss_real	=	

				binary_cross_entropy_loss(tf.ones_like(self.D_A_real),self.D_A_real)

				self.D_A_loss_fake	=	

				binary_cross_entropy_loss(tf.zeros_like(self.D_A_fake),self.D_A_fake)

				self.D_A_loss	=	(self.D_A_loss_real	+	self.D_A_loss_fake)	/	2.0

								

				self.discriminator_loss	=	self.D_B_loss	+	self.D_A_loss

				self.loss_GABA_sum	=	tf.summary.scalar("g_loss_a2b",	self.loss_GABA)

				self.loss_GBAB_sum	=	tf.summary.scalar("g_loss_b2a",	self.loss_GBAB)

				self.g_total_loss_sum	=	tf.summary.scalar("g_loss",	self.generator_loss)

				self.g_sum	=	tf.summary.merge([self.loss_GABA_sum,

																																			self.loss_GBAB_sum,self.g_total_loss_sum])

				self.loss_db_sum	=	tf.summary.scalar("db_loss",	self.D_B_loss)

				self.loss_da_sum	=	tf.summary.scalar("da_loss",	self.D_A_loss)

				self.loss_d_sum	=	tf.summary.scalar("d_loss",self.discriminator_loss)

								

				self.db_loss_real_sum	=	tf.summary.scalar("db_loss_real",	self.D_B_loss_real)

				self.db_loss_fake_sum	=	tf.summary.scalar("db_loss_fake",	self.D_B_loss_fake)

				self.da_loss_real_sum	=	tf.summary.scalar("da_loss_real",	self.D_A_loss_real)

				self.da_loss_fake_sum	=	tf.summary.scalar("da_loss_fake",	self.D_A_loss_fake)

				self.d_sum	=	tf.summary.merge(

												[self.loss_da_sum,	self.da_loss_real_sum,	self.da_loss_fake_sum,

													self.loss_db_sum,	self.db_loss_real_sum,	self.db_loss_fake_sum,

													self.loss_d_sum]

								)

				trainable_variables	=	tf.trainable_variables()

				self.d_variables	=	

				[var	for	var	in	trainable_variables	if	'discriminator'	in	var.name]

				self.g_variables	=

				[var	for	var	in	trainable_variables	if	'generator'	in	var.name]

						

				print	('Variable	printing	start	:'		)

				for	var	in	self.d_variables:	

								print(var.name)

												

				self.test_image_A	=	

				tf.placeholder(tf.float32,[None,	self.image_size,

																			self.image_size,self.input_dim],	name='test_A')

				self.test_image_B	=

				tf.placeholder(tf.float32,[None,	self.image_size,

																			self.image_size,self.output_c_dim],	name='test_B')

				self.saver	=	tf.train.Saver()

In	the	build	network,	we	first	define	the	cost	functions	for	an	L2-normed	error
and	a	binary	cross	entropy	error.	The	L2-normed	error	will	be	used	as	the
reconstruction	loss,	while	the	binary	cross	entropy	will	be	used	as	the
discriminator	loss.	We	then	define	the	placeholder	for	the	images	in	the	two
domains	and	also	the	TensorFlow	ops	for	the	fake	images	in	each	domain	by
using	the	generator	function.	We	also	define	the	ops	for	the	discriminator	output



by	passing	the	fake	and	real	images	that	are	specific	to	the	domain.	As	well	as
this,	we	define	the	TensorFlow	ops	for	the	reconstructed	images	in	each	of	the
two	domains.

Once	the	ops	have	been	defined,	we	use	them	to	compute	the	loss	function
considering	the	reconstruction	loss	of	the	images	and	the	loss	attributed	to	the
discriminator.	Note	that	we	have	used	the	same	generator	function	to	define	the
generator	from	domain	A	to	B	and	also	for	the	generator	from	B	to	A.	The	only
thing	that	we	have	done	differently	is	to	provide	different	names	to	the	two
networks:	generator_AB	and	generator_BA.	Since	the	variable	scope	is	defined	as	name,
both	these	generators	would	have	different	sets	of	weights	prefixed	by	the
provided	name.

The	following	table	shows	the	different	loss	variables	that	we	need	to	keep	track
of.	All	of	these	losses	need	to	be	minimized	with	respect	to	the	parameters	of	the
generators	or	the	discriminators:

Variables	for
different
Losses

Description

self.D_B_loss_real

The	discriminator	DB	binary	cross	entropy	loss	in
classifying	real	images	in	domain	B.

(This	loss	is	to	be	minimized	with	respect	to	the
parameters	of	the	discriminator	DB.)

self.D_B_loss_fake

The	discriminator	DB	binary	cross	entropy	loss	in
classifying	fake	images	in	domain	B.

(This	loss	is	to	be	minimized	with	respect	to	the
parameters	of	the	discriminator	DB.)

The	discriminator	DA	binary	cross	entropy	loss	in



self.D_A_loss_real classifying	real	images	in	domain	A.

(This	loss	is	to	be	minimized	with	respect	to	the
parameters	of	the	discriminator	DA.)

self.D_A_loss_fake

The	discriminator	DA	binary	cross	entropy	loss	in
classifying	fake	images	in	domain	A.

(This	loss	is	to	be	minimized	with	respect	to	the
parameters	of	the	discriminator	DA.)

self.loss_GABA

The	reconstruction	loss	of	mapping	an	image	in	domain	A
to	B	and	then	back	to	A	through	the	two	generators	GAB
and	GBA)	plus	the	binary	cross	entropy	of	the	fake	images
GAB	(xA)	labeled	as	real	images	by	discriminator	in
domain	B.

(This	loss	is	to	be	minimized	with	respect	to	the
parameters	of	the	generators	GAB	and	GBA.)

self.loss_GBAB

The	reconstruction	loss	of	mapping	an	image	in	domain	B
to	A	and	then	back	to	B	through	the	two	generators	GBA
and	GAB	plus	binary	cross	entropy	of	fake	images	GBA
(xB)	labeled	as	real	images	by	discriminator	in	domain	A.

(This	loss	is	to	be	minimized	with	respect	to	the
parameters	of	the	generators	GAB	and	GBA.)

	

The	first	four	losses	make	up	the	discriminator	loss,	which	needs	to	be
minimized	with	respect	to	the	parameters	of	discriminators	DA	and	DB.	The	last
two	losses	make	up	the	generator	loss,	which	needs	to	be	minimized	with	respect
to	the	parameters	of	the	generators	GAB	and	GBA.



The	loss	variables	are	tied	to	TensorBoard	through	tf.summary.scaler	so	that	these
losses	can	be	monitored	during	training	to	ensure	that	the	losses	are	reducing	in
the	desired	manner.	Later	on,	we	will	see	how	these	loss	traces	look	in
TensorBoard	while	the	training	progresses.

	



Building	the	training	process
In	the	train_network	function,	we	first	define	the	optimizers	for	both	the	generator
and	the	discriminator	loss	functions.	We	use	the	Adam	optimizer	for	both	the
generators	and	the	discriminators,	since	this	is	an	advanced	version	of	the
stochastic	gradient	descent	optimizer	that	works	really	well	in	training	GANs.
Adam	uses	a	decaying	average	of	gradients,	much	like	momentum	for	steady
gradient,	and	a	decaying	average	of	squared	gradients	that	provides	information
about	the	curvature	of	the	cost	function.	The	variables	pertaining	to	the	different
losses	defined	by	tf.summary	are	written	to	the	log	files	and	can	therefore	be
monitored	through	TensorBoard.	The	following	is	the	detailed	code	for	the	train
function:

def	train_network(self):

								

								self.learning_rate	=	tf.placeholder(tf.float32)

								self.d_optimizer	=	tf.train.AdamOptimizer(self.learning_rate,beta1=self.beta1,beta2=self.beta2).minimize(self.discriminator_loss,var_list=self.d_variables)

								self.g_optimizer	=	tf.train.AdamOptimizer(self.learning_rate,beta1=self.beta1,beta2=self.beta2).minimize(self.generator_loss,var_list=self.g_variables)	

								

								self.init_op	=	tf.global_variables_initializer()

								self.sess	=	tf.Session()

								self.sess.run(self.init_op)

								#self.dataset_dir	=	'/home/santanu/Downloads/DiscoGAN/edges2handbags/train/'

								self.writer	=	tf.summary.FileWriter("./logs",	self.sess.graph)

								count	=	1

								start_time	=	time.time()

								

								for	epoch	in	range(self.epoch):

												data_A	=	os.listdir(self.dataset_dir	+	'trainA/')

												data_B	=	os.listdir(self.dataset_dir	+	'trainB/')

												data_A	=	[	(self.dataset_dir	+	'trainA/'	+	str(file_name))	for	file_name	in	data_A	]	

												data_B	=	[	(self.dataset_dir	+	'trainB/'	+	str(file_name))	for	file_name	in	data_B	]	

												np.random.shuffle(data_A)

												np.random.shuffle(data_B)

												batch_ids	=	min(min(len(data_A),	len(data_B)),	self.train_size)	//	self.batch_size

												lr	=	self.l_r	if	epoch	<	self.epoch_step	else	self.l_r*(self.epoch-epoch)/(self.epoch-self.epoch_step)

												

												for	id_	in	range(0,	batch_ids):

																batch_files	=	list(zip(data_A[id_	*	self.batch_size:(id_	+	1)	*	self.batch_size],

																																						data_B[id_	*	self.batch_size:(id_	+	1)	*	self.batch_size]))

																batch_images	=	[load_train_data(batch_file,	self.load_size,	self.fine_size)	for	batch_file	in	batch_files]

																batch_images	=	np.array(batch_images).astype(np.float32)

				

																				#	Update	G	network	and	record	fake	outputs

																fake_A,	fake_B,	_,	summary_str	=	self.sess.run(

																								[self.images_fake_A_,self.images_fake_B,self.g_optimizer,self.g_sum],

																								feed_dict={self.images_real:	batch_images,	self.learning_rate:lr})

																self.writer.add_summary(summary_str,	count)

																[fake_A,fake_B]	=	self.pool([fake_A,	fake_B])

				



																				#	Update	D	network

																_,	summary_str	=	self.sess.run(

																								[self.d_optimizer,self.d_sum],

																								feed_dict={self.images_real:	batch_images,

																															#	self.fake_A_sample:	fake_A,

																															#	self.fake_B_sample:	fake_B,

																																			self.learning_rate:	lr})

																self.writer.add_summary(summary_str,	count)

				

																count	+=	1

																print(("Epoch:	[%2d]	[%4d/%4d]	time:	%4.4f"	%	(

																								epoch,	id_,	batch_ids,	time.time()	-	start_time)))

				

																if	count	%	self.print_freq	==	1:

																				self.sample_model(self.sample_dir,	epoch,	id_)

				

																if	count	%	self.save_freq	==	2:

																				self.save_model(self.checkpoint_dir,	count)

As	we	can	see	at	the	end	of	the	code,	the	sample_model	function	is	invoked	from
time	to	time	during	training	to	check	the	quality	of	the	images	generated	in	a
domain	based	on	input	images	from	the	other	domain.	The	model	is	also	saved	at
regular	intervals,	based	on	save_freq.

The	sample_model	function	and	the	save_model	function	that	we	referred	to	in	the
previous	code	are	illustrated	here	for	reference:

def	sample_model(self,	sample_dir,	epoch,	id_):

				if	not	os.path.exists(sample_dir):

								os.makedirs(sample_dir)

				data_A	=	os.listdir(self.dataset_dir	+	'trainA/')

				data_B	=	os.listdir(self.dataset_dir	+	'trainB/')	

				data_A	=	[	(self.dataset_dir	+	'trainA/'	+	str(file_name))	for	

														file_name	in	data_A	]

				data_B	=	[	(self.dataset_dir	+	'trainB/'	+	str(file_name))	for	

														file_name	in	data_B	]

			np.random.shuffle(data_A)

				np.random.shuffle(data_B)

				batch_files	=	

				list(zip(data_A[:self.batch_size],	data_B[:self.batch_size]))

				sample_images	=	

				[load_train_data(batch_file,	is_testing=True)	for	

					batch_file	in	batch_files]

				sample_images	=	np.array(sample_images).astype(np.float32)

				fake_A,	fake_B	=	self.sess.run(

												[self.images_fake_A_,self.images_fake_B],

												feed_dict={self.images_real:	sample_images}

								)

				save_images(fake_A,	[self.batch_size,	1],

																				'./{}/A_{:02d}_{:04d}.jpg'.format(sample_dir,	epoch,	id_))

				save_images(fake_B,	[self.batch_size,	1],

																				'./{}/B_{:02d}_{:04d}.jpg'.format(sample_dir,	epoch,	id_))

In	this	sample_model	function,	randomly	selected	images	from	domain	A	are	taken
and	fed	to	the	generator	GAB	to	produce	images	in	domain	B.	Similarly,



randomly	selected	images	from	domain	B	are	fed	to	the	generator	GBA	to
produce	images	in	domain	A.	These	output	images	are	generated	by	the	two
generators	over	different	epochs,	and	batches	are	saved	in	a	sample	folder	to	see
if	the	generators	are	improving	over	time	in	the	training	process	to	produce	a
better	image	quality.

The	save_model	function	that	uses	the	TensorFlow	saver	capabilities	for	saving
models	is	shown	as	follows:

def	save_model(self,checkpoint_dir,step):

				model_name	=	"discogan.model"

				model_dir	=	"%s_%s"	%	(self.dataset_dir,	self.image_size)

				checkpoint_dir	=	os.path.join(checkpoint_dir,	model_dir)

				

				if	not	os.path.exists(checkpoint_dir):

								os.makedirs(checkpoint_dir)

				

				self.t(self.sess,

																				os.path.join(checkpoint_dir,	model_name),

																				global_step=step)



Important	parameter	values	for	GAN
training
In	this	section,	we	will	discuss	the	different	parameter	values	that	are	used	for
training	the	DiscoGAN.	These	are	presented	in	the	following	table:

Parameter
name

Variable
name	and
Value	set

Rationale

Learning	rate
for	Adam
optimizer

self.l_r	=	2e-4

We	should	always	train	a	GAN	network
with	a	low	learning	rate	for	better	stability
and	a	DiscoGAN	is	no	different.

Decay	rates
for	Adam
optimizer

self.beta1	=

0.5

self.beta2	=

0.99

The	parameter	beta1	defines	the	decaying
average	of	gradients,	while	the	parameter
beta2	defines	the	decaying	average	of	the
square	of	the	gradients.

Epochs self.epoch	=

200

200	epochs	is	good	enough	for	the
convergence	of	the	DiscoGAN	network	in
this	implementation.

Batch	size self.batch_size

=	64

A	batch	size	of	64	works	well	for	this
implementation.	However,	because	of
resource	constraint,	we	may	have	to	chose	a
smaller	batch	size.

Epoch
beyond	which
learning	rate
falls	linearly

epoch_step	=	10

After	the	number	of	epochs	specified	by
epoch_step,	the	learning	rate	falls	linearly,	as
determined	by	the	following	scheme:

lr	=	self.l_r	if	epoch	<	self.epoch_step	else

self.l_r*(self.epoch-epoch)/(self.epoch-

self.epoch_step)



	



Invoking	the	training
All	the	functions	we	illustrated	previously	are	created	inside	a	DiscoGAN()	class
with	the	important	parameter	values	declared	in	the	__init__	function,	as	shown	in
the	following	code	block	that	follows.	The	only	two	parameters	that	needs	to	be
passed	while	training	the	network	are	the	dataset_dir	and	the	number	of	epochs	for
which	the	training	needs	to	be	run

def	__init__(self,dataset_dir,epochs=200):

								#	Input	shape

								self.dataset_dir	=	dataset_dir

								self.lambda_l2	=	1.0

								self.image_size	=	64

								self.input_dim	=	3

								self.output_dim	=	3

								self.batch_size	=	64	

								self.df	=	64

								self.gf	=	64

								self.channels	=	3

								self.output_c_dim	=	3

								self.l_r	=	2e-4

								self.beta1	=	0.5

								self.beta2	=	0.99

								self.weight_decay	=	0.00001

								self.epoch	=	epochs

								self.train_size	=	10000

								self.epoch_step	=	10

								self.load_size	=	64

								self.fine_size	=	64	

								self.checkpoint_dir	=	'checkpoint'

								self.sample_dir	=	'sample'

								self.print_freq	=	5

								self.save_freq	=	10	

								self.pool	=	ImagePool()

									

								return	None

Now	that	we	have	defined	everything	required	to	train	the	model,	we	can	invoke
the	training	through	a	process_main	function	as	follows:

def	process_main(self):

								self.build_network()

								self.train_network()

The	end	to	end	code	that	we	have	illustrated	previously	for	the	training	is	in	the
script	cycledGAN_edges_to_bags.py.	We	can	train	the	model	by	running	the	python
script	cycledGAN_edges_to_bags.py	as	follows:

	



python	cycledGAN_edges_to_bags.py	process_main		--dataset_dir	/media/santanu/9eb9b6dc-b380-486e-b4fd-c424a325b976/edges2handbags/	epochs	100

The	output	log	of	the	script	cycledGAN_edges_to_bags.py	execution	is	as	follows:

Epoch:	[	0]	[	0/	156]	time:	3.0835

Epoch:	[	0]	[	1/	156]	time:	3.9093

Epoch:	[	0]	[	2/	156]	time:	4.3661

Epoch:	[	0]	[	3/	156]	time:	4.8208

Epoch:	[	0]	[	4/	156]	time:	5.2821

Epoch:	[	0]	[	5/	156]	time:	6.2380

Epoch:	[	0]	[	6/	156]	time:	6.6960

Epoch:	[	0]	[	7/	156]	time:	7.1528

Epoch:	[	0]	[	8/	156]	time:	7.6138

Epoch:	[	0]	[	9/	156]	time:	8.0732

Epoch:	[	0]	[	10/	156]	time:	8.8163

Epoch:	[	0]	[	11/	156]	time:	9.6669

Epoch:	[	0]	[	12/	156]	time:	10.1256

Epoch:	[	0]	[	13/	156]	time:	10.5846

Epoch:	[	0]	[	14/	156]	time:	11.0427

Epoch:	[	0]	[	15/	156]	time:	11.9135

Epoch:	[	0]	[	16/	156]	time:	12.3712

Epoch:	[	0]	[	17/	156]	time:	12.8290

Epoch:	[	0]	[	18/	156]	time:	13.2899

Epoch:	[	0]	[	19/	156]	time:	13.7525

.......



Monitoring	the	generator	and	the
discriminator	loss
The	loss	can	be	monitored	in	the	TensorBoard	dashboard.	The	TensorBoard
dashboard	can	be	invoked	as	follows:

1.	 From	the	terminal,	run	the	following	command:

						tensorboard	--logdir=./logs

./logs	is	the	destination	where	the	Tensorboard	logs	specific	to	the
program	are	stored	and	should	be	defined	in	the	program	as	follows:

						self.writer	=	tf.summary.FileWriter("./logs",	self.sess.graph)

2.	 Once	the	command	in	step	1	is	executed,	navigate	to	the	localhost:6006	site
for	TensorBoard:

Illustrated	in	the	following	screenshot	are	a	few	traces	of	the
generator	and	discriminator	losses	as	viewed	in	TensorBoard	during
the	training	of	the	DiscoGAN	implemented	in	the	project:

Figure	4.2:	Tensorboard	Scalars	section	containing	the	traces	for	different	losses

The	following	screenshot	shows	the	loss	components	of	the	discriminator	in



Domain	A	as	the	training	progresses:





Figure	4.3:	Losses	of	discriminator	in	domain	A

From	the	preceding	screenshot,	we	can	see	the	losses	of	the	discriminator	in
domain	A	over	the	different	batches.	The	da_loss	is	the	sum	of	the	da_loss_real	and
da_loss_fake	losses.	The	da_loss_real	decreases	steadily,	since	the	discriminator
readily	learns	to	identify	real	images	in	domain	A	while	the	loss	for	the	fake
images	is	held	steady	at	around	0.69,	which	is	the	logloss	you	can	expect	when	a
binary	classifier	outputs	a	class	with	1/2	probability.	This	happens	because	the
generator	is	also	learning	simultaneously	to	make	the	fake	images	look	realistic,
therefore	making	it	tough	for	the	discriminator	to	easily	classify	the	generator
images	as	fake.	The	loss	profiles	for	the	discriminator	at	domain	B	look	similar
to	the	ones	illustrated	in	the	previous	screenshot	for	domain	A.

Let's	now	take	a	look	at	the	loss	profiles	for	the	generators,	as	shown	here:





Figure	4.4:	Loss	profiles	for	the	generators	of	the	DiscoGAN

The	g_loss_a2b	is	the	combined	generator	loss	of	reconstructing	an	image	from
domain	A	to	domain	B	and	back	and	also	the	binary	cross	entropy	loss
associated	with	making	the	transformed	image	look	realistic	in	the	domain	of	B.
Similarly,	g_loss_b2a	is	the	combined	generator	loss	of	reconstructing	an	image
from	domain	B	to	domain	A	and	back	and	also	the	binary	cross	entropy	loss
associated	with	making	the	transformed	image	look	realistic	in	the	domain	of	A.
Both	these	loss	profiles,	along	with	their	sum,	which	is	g_loss,	have	a	steady	loss
decrease	as	the	batches	progress,	as	we	can	see	from	the	TensorBoard	visuals	in
the	previous	screenshot.

Since	training	generative	adversarial	networks	is	generally	quite	tricky,	it	makes
sense	to	monitor	the	progress	of	their	loss	profiles	to	understand	whether	the
training	is	proceeding	as	desired.



Sample	images	generated	by
DiscoGAN
As	we	come	to	the	end	of	the	chapter,	let's	look	at	some	of	the	images	that	were
generated	by	the	DiscoGAN	in	both	domains:	



Figure	4.5:	Handbag	images	generated	given	the	sketches

The	following	screenshot	contains	the	Generated	Images	of	Hand	Bag	Sketches	(Domain	A):	

Figure	4.6:	Sketches	generated	given	the	handbag	images	We	can	see	that	the	DiscoGAN	has	done	a	great	job	of	converting	images	in
either	domain	to	high	quality	realistic	images	in	the	other	domain.



Summary
We	have	now	come	to	the	end	of	this	chapter.	You	should	now	be	well-versed
with	the	technicalities	and	the	implementation	intricacies	of	a	DiscoGAN.	The
concepts	we	explored	in	this	chapter	can	be	used	to	implement	varieties	of
generative	adversarial	networks	with	subtle	changes	that	are	appropriate	to	the
problem	in	hand.	The	end-to-end	implementation	of	this	DiscoGAN	network	is
located	in	the	GitHub	repository,	at	https://github.com/PacktPublishing/Intelligent-Pro
jects-using-Python/tree/master/Chapter04.

In	Chapter	5,	Video	Captioning	Application,	we	are	going	to	look	at	video-to-text
translation	applications,	which	fall	under	the	category	of	expert	systems	in
artificial	intelligence.

	

	

	

https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter04


Video	Captioning	Application
As	the	rate	of	video	production	increases	at	an	exponential	rate,	videos	have
become	an	important	medium	of	communication.	However,	videos	remain
inaccessible	to	a	larger	audience	because	of	a	lack	of	proper	captioning.

Video	captioning,	the	art	of	translating	a	video	to	generate	a	meaningful
summary	of	the	content,	is	a	challenging	task	in	the	field	of	computer	vision	and
machine	learning.	Traditional	methods	of	video	captioning	haven't	produced
many	success	stories.	However,	with	the	recent	boost	in	artificial	intelligence
aided	by	deep	learning,	video	captioning	has	recently	gained	a	significant
amount	of	attention.	The	power	of	convolutional	neural	networks,	along	with
recurrent	neural	networks,	has	made	it	possible	to	build	end-to-end	enterprise-
level	video-captioning	systems.	Convolutional	neural	networks	process	the
image	frames	in	the	video	to	extract	important	features,	which	are	processed	by
the	recurrent	neural	networks	sequentially	to	generate	a	meaningful	summary	of
the	video.	A	few	important	applications	of	video	captioning	systems	are	as
follows:

Automatic	surveillance	of	industrial	plants	for	safety	measures
Clustering	of	videos	based	on	their	content	derived	through	video
captioning
Better	security	systems	in	banks,	hospitals,	and	other	public	places
Video	searching	in	websites	for	a	better	user	experience

Building	an	intelligent	video-captioning	system	through	deep	learning	requires
primarily	two	types	of	data:	videos	and	captions	in	text	that	act	as	the	labels	for
training	the	end-to-end	system.

	

As	part	of	this	chapter	we	are	going	to	discuss	the	following:

Discuss	the	roles	of	CNN	and	LSTM	in	video	captioning
Explore	the	architecture	of	a	sequence-to-sequence	video	captioning	system
Build	a	video	captioning	system	leveraging	the	sequence-to-sequence—



video	to	text	architecture

In	the	next	section,	we	will	go	through	how	convolutional	neural	networks	and
the	LSTM	version	of	recurrent	neural	networks	can	be	used	to	build	an	end-to-
end	video	captioning	system.



Technical	requirements
You	will	require	to	have	basic	knowledge	of	Python	3,	TensorFlow,	Keras	and
OpenCV.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter05

Check	out	the	following	video	to	see	the	code	in	action:
http://bit.ly/2BeXK1c

https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter05
http://bit.ly/2BeXK1c


CNNs	and	LSTMs	in	video	captioning
A	video	minus	the	audio	can	be	thought	of	as	a	collection	of	images	arranged	in
a	sequential	manner.	The	important	features	from	those	images	can	be	extracted
using	a	convolutional	neural	network	trained	on	specific	image	classification
problems,	such	as	ImageNet.	The	activations	of	the	last	fully	connected	layer	of
a	pre-trained	network	can	be	used	to	derive	features	from	the	sequentially
sampled	images	from	the	video.	The	frequency	rate	at	which	to	sample	the
images	sequentially	from	the	video	depends	on	the	type	of	content	in	the	video
and	can	be	optimized	through	training.

	

Illustrated	in	the	following	diagram	(Figure	5.1)	is	a	pre-trained	neural	network
used	for	extracting	features	from	a	video:





Figure	5.1:	Video	image	feature	extraction	using	pre-trained	neural	networks

As	we	can	see	from	the	preceding	diagram,	the	sequentially	sampled	images
from	the	video	are	passed	through	a	pre-trained	convolutional	neural	network
and	the	activations	of	the	4,096	units	in	the	last	fully	connected	layer	are	taken	as
an	output.	If	the	video	image	at	time	t	is	represented	as	xt	and	the	output	at	the
last	fully	connected	layer	is	represented	by	ft	∈	R4096	then	ft	=	fw	(xt).	Here,	W
represents	the	weights	of	the	convolution	neural	network	up	to	the	last	fully
connected	layer.

	

These	series	of	output	features	f1,	f2,	.	.	.	.	.	ft	.	.	.	fN	can	be	fed	as	inputs	to	a
recurrent	neural	network	that	learns	to	generate	text	captions	based	on	the	input
features,	as	illustrated	in	the	following	diagram	(Figure	5.2):





Figure	5.2:	LSTM	in	the	processing	of	the	sequential	input	features	from	CNN

As	we	can	see	from	the	preceding	diagram,	the	generated	features	f1,	f2,	.	.	.	.	.	ft	.	.
.fN	from	the	pre-trained	convolutional	neural	is	processed	sequentially	by	the
LSTM	to	produce	the	text	outputs	o1,	o2,	.	.	.	.	.	ot	.	.	.oN,	which	are	the	text	captions
for	the	given	video.	For	instance,	the	caption	for	the	video	in	the	preceding
diagram	could	be	A	man	in	a	yellow	helmet	is	working:

o1,	o2,	.	.	.	.	.	ot	.	.	.	oN	=	{	"A	","man"	"in"	"a"	"yellow"	"helmet"	"is"
"working"}

Now	that	we	have	a	good	idea	of	how	video	captioning	works	in	a	deep-learning
framework,	let's	discuss	a	more	advanced	video-captioning	network	called
sequence-to-sequence	video	captioning	in	the	next	section.	We	will	be	using	the
same	network	architecture	in	this	chapter	for	building	a	Video-captioning	system.

	



A	sequence-to-sequence	video-
captioning	system
The	sequence-to-sequence	architecture	is	based	on	a	paper	called	sequence	to
sequence—Video	to	Text	authored	by	Subhashini	Venugopalan,	Marcus
Rohrbach,	Jeff	Donahue,	Raymond	Mooney,	Trevor	Darrell,	and	Kate	Saenko.
The	paper	can	be	located	at	https://arxiv.org/pdf/1505.00487.pdf.

In	the	following	diagram	(Figure	5.3),	a	sequence-to-sequence	video-captioning
neural	network	architecture	based	on	the	preceding	paper	is	illustrated:

https://arxiv.org/pdf/1505.00487.pdf




Figure	5.3:	Sequence-to-sequence	video-captioning	network	architecture

The	sequence-to-sequence	model	processes	the	video	image	frames	through	a
pre-trained	convolutional	neural	network	as	before	and	the	output	activations	of
the	last	fully	connected	layer	are	taken	as	the	features	to	be	fed	to	the	LSTMs
that	follow.	If	we	denote	the	output	activations	of	the	last	fully	connected	layer
of	the	pre-trained	convolutional	neural	network	at	time	step	t	as	ft	∈	R4096,	then
we	would	have	N	such	feature	vectors	for	the	N	image	frames	from	the	video.
These	N	feature	vectors	f1,	f2,	.	.	.	.	.	ft	.	.	.	fN	are	fed	to	the	LSTMs	in	sequence
to	generate	the	text	caption.

There	are	two	LSTMs	back	to	back,	and	the	number	of	sequences	in	the	LSTMs
is	the	sum	of	the	number	of	image	frames	from	the	video	and	the	maximum
length	of	the	text	captions	in	the	captions	vocabulary.	If	the	network	is	trained	on
N	image	frames	of	the	video	and	the	maximum	text	caption	length	in	the
vocabulary	is	M	then	the	LSTMs	are	trained	on	(N+M)	time	steps.	In	the	N	time
steps,	the	first	LSTM	processes	the	feature	vectors	f1,	f2,	.	.	.	.	.	ft	.	.	.	fN
sequentially,	and	the	hidden	states	generated	by	it	are	fed	to	the	second	LSTM.
No	text	output	target	is	required	by	the	second	LSTM	in	these	N	time	steps.	If
we	represent	the	hidden	state	of	the	first	LSTM	at	time	step	t	as	ht,	the	input	to
the	second	LSTM	for	the	first	N	time	steps	is	ht.	Do	note	that	the	input	to	the
first	LSTM	from	the	N+1	time	step	is	zero	padded	so	that	the	input	has	no	effect
of	the	hidden	state	ht	for	t	>	N.	Do	note	that	this	doesn't	guarantee	that	the
hidden	state	ht	for	t	>	N	is	always	going	to	be	same.	In	fact	we	can	chose	to	feed
ht	as	hT	to	the	second	LSTM	for	any	time	step	t	>	N.

From	the	(N+1)	time	step,	the	second	LSTM	requires	a	text	output	target.	The
input	to	it	at	any	time	step	t	>	N	is	[ht,	wt-1],	where	ht	is	the	hidden	state	of	the
first	LSTM	at	time	step	t	and	wt-1	is	the	text	caption	word	at	time	step	(t-1).

At	the	(N+1)	time	step,	the	word	wN	fed	to	the	second	LSTM	is	the	start	of
sentence	denoted	by	<bos>.	The	network	is	trained	to	stop	generating	caption
words	once	the	end	of	sentence	symbol	<eos>	is	generated.	To	summarize,	the	two
LSTMs	are	set	up	in	such	a	way	that	they	start	producing	text	caption	words

once	they	have	processed	all	the	video	image	frame	features	 .



One	of	the	other	ways	to	handle	the	second	LSTM	input	for	time	step	t	>	N	is	to
just	feed	[wt-1]	instead	of	[ht,	wt-1]	and	pass	on	the	hidden	and	cell	state	of	the
first	LSTM	at	time	step	T	that	is	[hT,	cT]	to	the	initial	hidden	and	the	cell	state	of
the	second	LSTM.	The	architecture	of	such	a	video	captioning	network	can	be
illustrated	as	follows	(see	Figure	5.4):

Figure	5.4:	An	alternate	architecture	for	sequence	to	sequence	model

The	pre-trained	convolution	neural	networks	are	generally	of	a	common
architecture	such	as	VGG16,	VGG19,	ResNet	and	are	pre-trained	on	ImageNet.	However,
we	can	retrain	these	architectures	based	on	images	extracted	from	videos	in	the
domain	for	which	we	are	building	the	video	captioning	system.	We	can	also
choose	a	completely	new	CNN	architecture	and	train	it	on	the	video	images
specific	to	the	domain.

So	far,	we	have	covered	all	the	technical	pre-requisites	to	develop	a	video-
captioning	system	using	the	sequence-to-sequence	architecture	illustrated	in	this
section.	Do	note	that	the	alternate	architectural	designs	suggested	in	this	section
are	to	encourage	the	readers	to	experiment	with	several	designs	and	see	which
one	works	best	for	a	given	problem	and	dataset.

From	the	next	section	onward,	we	work	towards	building	the	intelligent	video
caption	system.



Data	for	the	video-captioning	system
We	build	the	video-captioning	system	by	training	the	model	on	the	MSVD	dataset—
a	pre	captioned	YouTube	video	repository	from	Microsoft.	The	required	data	can
be	downloaded	from	the	following	link:	http://www.cs.utexas.edu/users/ml/clamp/video
Description/YouTubeClips.tar.	The	text	captions	for	the	videos	are	available	at	the
following	link:	https://github.com/jazzsaxmafia/video_to_sequence/files/387979/video_corp
us.csv.zip.

There	are	around	1,938	videos	in	the	MSVD	dataset.	We	will	use	these	to	train	the
sequence-to-	sequence	video-captioning	system.	Also	note	that	we	would	be
building	the	model	on	the	sequence	to	sequence	model	illustrated	in	Figure	5.3.
However	readers	are	advised	to	try	and	train	a	model	on	the	architecture
presented	in	Figure	5.4	and	see	how	it	fares.

	

	

	

http://www.cs.utexas.edu/users/ml/clamp/videoDescription/YouTubeClips.tar
https://github.com/jazzsaxmafia/video_to_sequence/files/387979/video_corpus.csv.zip


Processing	video	images	to	create
CNN	features
Once	we	have	downloaded	the	data	from	the	specified	location,	the	next	task	is
to	process	the	video	image	frames	to	extract	features	out	of	the	last	fully
connected	layers	of	a	pre-trained	convolutional	neural	network.	We	use	a	VGG16
convolutional	neural	network	that	is	pre-trained	on	ImageNet.	We	take	the
activations	out	of	the	last	fully	connected	layer	of	the	VGG16.	Since	the	last	fully
connected	layer	of	VGG16	has	4096	units,	our	feature	vector	ft	for	each	time	step	t	is
a	4096,	dimensional	vector	that	is	ft	∈	R4096	.

Before	the	images	from	the	videos	can	be	processed	through	the	VGG16,	they	need
to	be	sampled	from	the	video.	We	sample	images	from	the	video	in	such	a	way
that	each	video	has	80	frames.	After	processing	the	80	image	frames	from	VGG16,
each	video	will	have	80	feature	vectors	f1,	f2,	.	.	.	.	.	ft	.	.	.	f80	.	These	features	will
be	fed	to	the	LSTMs	to	generate	the	text	sequences.	We	use	the	pre-trainedVGG16
model	in	Keras.	We	create	a	VideoCaptioningPreProcessing	class	which	first	extracts
80	video	frames	as	images	from	each	video	through	the	function	video_to_frames
and	then	those	video	frames	are	processed	by	a	pre-trained	VGG16	convolutional
neural	network	in	the	function	extract_feats_pretrained_cnn.

The	output	of	the	extract_feats_pretrained_cnn	are	the	CNN	features	of	dimension
4096	for	each	video	frame.	Since	we	are	dealing	with	80	frames	per	video	we
would	have	80	such	4096	dimensional	vectors	for	each	video.

The	video_to_frames	function	can	be	coded	as	follows:	def
video_to_frames(self,video):

with	open(os.devnull,	"w")	as	ffmpeg_log:
if	os.path.exists(self.temp_dest):
print("	cleanup:	"	+	self.temp_dest	+	"/")
shutil.rmtree(self.temp_dest)
os.makedirs(self.temp_dest)
video_to_frames_cmd	=	["ffmpeg",'-y','-i',	video,	



'-vf',	"scale=400:300",	
'-qscale:v',	"2",	
'{0}/%06d.jpg'.format(self.temp_dest)]
subprocess.call(video_to_frames_cmd,
stdout=ffmpeg_log,	stderr=ffmpeg_log)

From	the	preceding	code,	we	can	see	that	in	the	video_to_frames	function,	the	ffmpeg
tool	is	used	to	convert	the	video-to-image	frames	in	JPEG	format.	The
dimension	specified	to	ffmpeg	for	the	image	frames	is	300	x	400.	For	more
information	on	the	ffmpeg	tool,	please	refer	to	the	following	link:	https://www.ffmpeg
.org/.

The	pre-trained	CNN	model	to	extract	the	features	out	of	the	last	fully	connected
layer	has	been	set	up	in	the	extract_feats_pretrained_cnnfunction.	The	code	for	the
function	is	as	follows:	#	Extract	the	features	from	the	pre-trained	CNN	
def	extract_feats_pretrained_cnn(self):

model	=	self.model_cnn_load()
print('Model	loaded')

if	not	os.path.isdir(self.feat_dir):
os.mkdir(self.feat_dir)
#print("save	video	feats	to	%s"	%	(self.dir_feat))
video_list	=	glob.glob(os.path.join(self.video_dest,	'*.avi'))
#print	video_list	

for	video	in	tqdm(video_list):

video_id	=	video.split("/")[-1].split(".")[0]
print(f'Processing	video	{video}')

#self.dest	=	'cnn_feat'	+	'_'	+	video_id
self.video_to_frames(video)

image_list	=	
sorted(glob.glob(os.path.join(self.temp_dest,	'*.jpg')))
samples	=	np.round(np.linspace(

https://www.ffmpeg.org/


0,	len(image_list)	-	1,self.frames_step))
image_list	=	[image_list[int(sample)]	for	sample	in	samples]
images	=	
np.zeros((len(image_list),self.img_dim,self.img_dim,
self.channels))
for	i	in	range(len(image_list)):
img	=	self.load_image(image_list[i])
images[i]	=	img
images	=	np.array(images)
fc_feats	=	model.predict(images,batch_size=self.batch_cnn)
img_feats	=	np.array(fc_feats)
outfile	=	os.path.join(self.feat_dir,	video_id	+	'.npy')
np.save(outfile,	img_feats)
#	cleanup
shutil.rmtree(self.temp_dest)

We	first	load	the	pre-trained	CNN	model	using	the	model_cnn_load	function	and
then	for	each	video	we	extract	several	video	frames	as	images	using	the
video_to_frames	function	based	on	the	sampling	frequency	specified	to	ffmpeg.	We
don't	process	all	the	image	frames	from	the	video	created	through	ffmpeg,	but
instead	we	have	taken	80	equally	spaced	image	frames	using	the	np.linspace
function.	The	images	generated	by	ffmpeg	are	resized	to	a	spatial	dimension	of	224
x	224	using	the	load_image	function.	Finally	these	resized	images	are	passed
through	the	pre-trained	VGG16	Convolutional	Neural	Network	(CNN)	and	the
output	of	the	last	fully	connected	layer	prior	to	the	output	layer	is	extracted	as
features	.	These	extracted	feature	vectors	are	stored	in	numpy	arrays	and	are
processed	by	the	LSTM	network	in	the	next	stage	to	produce	video	captions.	The
function	model_cnn_load	function	defined	in	this	section	are	defined	as	follows:	def
model_cnn_load(self):
model	=	VGG16(weights	=	"imagenet",	include_top=True,input_shape	=	
(self.img_dim,self.img_dim,self.channels))
out	=	model.layers[-2].output
model_final	=	Model(input=model.input,output=out)
return	model_final

As	can	be	seen	from	the	preceding	code,	we	are	loading	a	VGG16	convolutional
neural	network	pre-trained	on	ImageNet	and	we	are	extracting	the	output	of	the



second	last	layer(	indexed	as	-2)	as	our	feature	vector	of	dimension	4096.

The	image	read	and	resize	function	load_image	that	processes	the	raw	ffmpeg	images
before	feeding	to	the	CNN	is	defined	as	follows:	def	load_image(self,path):
img	=	cv2.imread(path)
img	=	cv2.resize(img,(self.img_dim,self.img_dim))
return	img

The	pre-processing	script	can	be	run	by	invoking	the	following	command:

	python	VideoCaptioningPreProcessing.py	process_main	--video_dest	'/media/santanu/9eb9b6dc-b380-486e-b4fd-c424a325b976/Video	Captioning/data/'

The	output	of	this	pre-processing	step	are	80	feature	vectors	of	dimension	4096
written	as	a	numpy	array	object	of	extension	npy.	Each	video	would	have	its	own
numpy	array	object	stored	in	the	feat_dir.	The	pre-processing	step	runs	for	around
28	mins	as	we	can	see	from	the	log	as	follows:	Processing	video
/media/santanu/9eb9b6dc-b380-486e-b4fd-c424a325b976/Video
Captioning/data/jmoT2we_rqo_0_5.avi
100%|
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▋|
1967/1970	[27:57<00:02,	1.09it/s]Processing	video	/media/santanu/9eb9b6dc-
b380-486e-b4fd-c424a325b976/Video
Captioning/data/NKtfKR4GNjU_0_20.avi
100%|
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▊|
1968/1970	[27:58<00:02,	1.11s/it]Processing	video	/media/santanu/9eb9b6dc-
b380-486e-b4fd-c424a325b976/Video	Captioning/data/4cgzdXlJksU_83_90.avi
100%|
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▉|
1969/1970	[27:59<00:01,	1.08s/it]Processing	video	/media/santanu/9eb9b6dc-
b380-486e-b4fd-c424a325b976/Video	Captioning/data/0IDJG0q9j_k_1_24.avi
100%|
█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████|
1970/1970	[28:00<00:00,	1.06s/it]
28.045	min:	VideoCaptioningPreProcessing

In	the	next	section	we	deal	with	the	pre-processing	of	the	labelled	captions	of	the
video.



	



Processing	the	labelled	captions	of	the
video
The	corpus.csv	file	contains	the	description	of	the	videos	in	the	form	of	text
captions	(see	Figure	5.5).	A	snippet	of	the	data	is	shown	in	the	following
screenshot.	We	can	remove	a	few	[VideoID,Start,End]	combination	records	and
treat	these	as	test	files	for	evaluation	later	on:





Figure	5.5:	A	snapshot	of	the	format	of	the	captions	file

The	VideoID,	Start	and	End	columns	combine	to	form	the	video	name	in	the
following	format:	VideoID_Start_End.avi.	Based	on	the	video	name,	the	features
from	the	convolutional	neural	network	VGG16	has	been	stored	as
VideoID_Start_End.npy.	Illustrated	in	the	following	code	block	is	the	function	to
process	the	text	captions	for	the	video	and	create	the	path	cross	reference	to	the
video	image	features	from	VGG16:

def	get_clean_caption_data(self,text_path,feat_path):

								text_data	=	pd.read_csv(text_path,	sep=',')

								text_data	=	text_data[text_data['Language']	==	'English']

								text_data['video_path']	=

								text_data.apply(lambda	row:	

									row['VideoID']+'_'+str(int(row['Start']))+'_'+str(int(row['End']))+'.npy',				

									axis=1)

								text_data['video_path']	=	

								text_data['video_path'].map(lambda	x:	os.path.join(feat_path,	x))

								text_data	=	

								text_data[text_data['video_path'].map(lambda	x:	os.path.exists(x))]

								text_data	=	

								text_data[text_data['Description'].map(lambda	x:	isinstance(x,	str))]

								

								unique_filenames	=	sorted(text_data['video_path'].unique())

								data	=

								text_data[text_data['video_path'].map(lambda	x:	x	in	unique_filenames)]

								return	data

In	the	defined	get_data	function	we	remove	from	the	video_corpus.csv	file	all
captions	that	are	not	in	English	.	Once	done,	we	form	the	link	to	the	video
features	by	first	constructing	the	video	name	(as	a	concatenation	of	VideoID,	Start
and	End	features)	and	prefixing	the	features	directory	name	to	it.	We	then	remove
all	video	corpus	file	records	that	doesn't	point	to	any	actual	video	feature	vector
in	the	features	directory	or	have	invalid	non	text	descriptions.

The	data	comes	out	as	illustrated	in	the	following	diagram	(Figure	5.6):





Figure	5.6:	Caption	data	after	preprocessing



def	train_test_split(self,data,test_frac=0.2):<br/>	indices	=	np.arange(len(data))
<br/>	np.random.shuffle(indices)<br/>	train_indices_rec	=	int((1	-
test_frac)*len(data))<br/>	indices_train	=	indices[:train_indices_rec]<br/>
indices_test	=	indices[train_indices_rec:]<br/>	data_train,	data_test	=	<br/>
data.iloc[indices_train],data.iloc[indices_test]<br/>
data_train.reset_index(inplace=True)<br/>	data_test.reset_index(inplace=True)
<br/>	return	data_train,data_test

Generally	reserving	20%	of	the	data	for	evaluation	is	a	fair	practice.



Building	the	model
In	this	section,	the	core	model-building	exercise	is	illustrated.	We	first	define	a
embedding	layer	for	words	in	the	vocabulary	of	the	text	captions	followed	by	the
two	LSTMs.	The	weights	self.encode_W	and	self.encode_b	are	used	to	reduce	the
dimension	of	the	features	ft	from	the	convolutional	neural	network.	For	the
second	LSTM	(LSTM	2),	one	of	the	other	inputs	at	any	time	step	t	>	N	is	the
previous	word	wt-1	along	with	the	output	ht	from	the	first	LSTM	(LSTM	1).	The
word	embedding	for	wt-1	is	fed	to	the	LSTM	2	instead	of	the	raw	one	hot
encoded	vector.	For	the	first	N	(self.video_lstm_step),	the	LSTM	1	processes	the
input	features	ft	from	the	CNN,	and	the	output	hidden	state	ht(output1)	is	fed	to
the	LSTM	2.	During	this	encoding	phase,	the	LSTM	2	doesn't	receive	any	word
wt-1	as	an	input.

From	the	(N+1)	time	step,	we	enter	the	decoding	phase,	where,	along	with	the
ht(output1)	from	LSTM	1,	the	previous	time	step	word	embedding	vector	wt-1	is
fed	to	the	LSTM	2.	In	this	phase,	there	is	no	input	to	the	LSTM	1,	since	all	the
features	ft	are	exhausted	at	time	step	N.	The	number	of	time	steps	for	the
decoding	phase	is	determined	by	self.caption_lstm_step.

Now,	if	we	represent	the	activity	of	the	LSTM	2	by	a	function	f2,	then	f2(ht,	wt-1)
=	h2t,	where	h2t	is	the	hidden	state	of	the	LSTM	2	at	time	step	t.	This	hidden
state	h2t	at	time	t	is	translated	to	a	probability	distribution	over	the	output	words
through	a	softmax	function	and	the	one	that	has	the	highest	probability	is	chosen
as	the	next	word	 :

	=	

These	weights,	Who	and	b,	are	defined	in	the	following	code	block	as
self.word_emb_W	and	self.word_emb_b.	Refer	to	the	build_model	function	for	more
granular	details.	The	build	function	has	been	broken	down	into	3	parts	for	easy
interpretation.	The	build	model	has	3	main	units



Definition	stage:	Defining	the	variables,	the	embedding	layer	for	the
caption	words	and	the	two	LSTMs	for	the	sequence	to	sequence	model.
Encoding	stage:	In	this	stage	we	pass	the	video	frame	image	features
through	the	time	steps	of	LSTM1	and	the	hidden	state	of	each	time	step	is
passed	onto	the	LSTM	2.	This	activity	is	carried	out	till	time	step	N	where
N	is	the	number	of	sampled	video	frame	images	from	each	video.
Decoding	stage:	In	the	decoding	stage	the	LSTM	2	starts	generating	the
text	captions.	With	respect	to	time	steps	Decoding	Stage	start	from	step	N
+1.	The	generated	word	from	each	time	step	of	LSTM	2	is	fed	as	input	to
the	next	state	along	with	the	hidden	state	of	the	LSTM	1.

	



Defining	the	weights	associated	with	the	Network<br/>	with	tf.device('/cpu:0'):
<br/>	self.word_emb	=	<br/>	tf.Variable(tf.random_uniform([self.n_words,
self.dim_hidden],<br/>	-0.1,	0.1),	name='word_emb')<br/><br/>	self.lstm1	=
<br/>	tf.nn.rnn_cell.BasicLSTMCell(self.dim_hidden,	state_is_tuple=False)
<br/>	self.lstm2	=	<br/>	tf.nn.rnn_cell.BasicLSTMCell(self.dim_hidden,
state_is_tuple=False)<br/>	self.encode_W	=	<br/>	tf.Variable(
tf.random_uniform([self.dim_image,self.dim_hidden],<br/>	-0.1,	0.1),
name='encode_W')<br/>	self.encode_b	=	<br/>	tf.Variable(
tf.zeros([self.dim_hidden]),	name='encode_b')<br/><br/>	self.word_emb_W	=
<br/>	tf.Variable(tf.random_uniform([self.dim_hidden,self.n_words],	<br/>
-0.1,0.1),	name='word_emb_W')<br/>	self.word_emb_b	=	<br/>
tf.Variable(tf.zeros([self.n_words]),	name='word_emb_b')<br/><br/>	#
Placeholders	<br/>	video	=	<br/>	tf.placeholder(tf.float32,	[self.batch_size,
<br/>	self.video_lstm_step,	self.dim_image])<br/>	video_mask	=	<br/>
tf.placeholder(tf.float32,	[self.batch_size,	self.video_lstm_step])<br/><br/>
caption	=	<br/>	tf.placeholder(tf.int32,	[self.batch_size,
self.caption_lstm_step+1])<br/>	caption_mask	=	<br/>	tf.placeholder(tf.float32,
[self.batch_size,	self.caption_lstm_step+1])<br/><br/>	video_flat	=
tf.reshape(video,	[-1,	self.dim_image])<br/>	image_emb	=	tf.nn.xw_plus_b(
video_flat,	self.encode_W,self.encode_b	)<br/>	image_emb	=	<br/>
tf.reshape(image_emb,	[self.batch_size,	self.lstm_steps,	self.dim_hidden])<br/>
<br/>	state1	=	tf.zeros([self.batch_size,	self.lstm1.state_size])<br/>	state2	=
tf.zeros([self.batch_size,	self.lstm2.state_size])<br/>	padding	=
tf.zeros([self.batch_size,	self.dim_hidden])

All	the	relevant	variables	along	with	the	placeholders	is	defined	by	the	previous
code.



Encoding	stage
In	the	encoding	stage	we	process	each	video	image	frame	features	(from	CNN
last	layer)	sequentially	by	passing	them	through	the	time	steps	of	LSTM	1.	The
dimension	of	the	video	image	frame	is	4096.	Before	feeding	those	high
dimensional	video	frame	feature	vectors	to	the	LSTM	1,	they	are	downsized	to	a
smaller	size	of	512.

LSTM	1	processes	the	video	frame	images	and	passes	the	hidden	state	to	the
LSTM	2	at	each	time	step	and	this	process	continues	till	the	time	step	N	(
self.video_lstm_step)	.	The	code	for	the	encoder	is	as	follows:

probs	=	[]

								loss	=	0.0

								#	Encoding	Stage	

								for	i	in	range(0,	self.video_lstm_step):

												if	i	>	0:

																tf.get_variable_scope().reuse_variables()

												with	tf.variable_scope("LSTM1"):

																output1,	state1	=	self.lstm1(image_emb[:,i,:],	state1)

												with	tf.variable_scope("LSTM2"):

																output2,	state2	=	self.lstm2(tf.concat([padding,	output1],1),	state2)

	



#	Decoding	Stage	to	generate	Captions	<br/>	for	i	in	range(0,
self.caption_lstm_step):<br/><br/>	with	tf.device("/cpu:0"):<br/>
current_embed	=	tf.nn.embedding_lookup(self.word_emb,	caption[:,	i])<br/>
<br/>	tf.get_variable_scope().reuse_variables()<br/><br/>	with
tf.variable_scope("LSTM1"):<br/>	output1,	state1	=	self.lstm1(padding,	state1)
<br/><br/>	with	tf.variable_scope("LSTM2"):<br/>	output2,	state2	=	<br/>
self.lstm2(tf.concat([current_embed,	output1],1),	state2)



Building	the	loss	for	each	mini-batch
The	loss	optimized	is	the	categorical	cross	entropy	loss	with	respect	to	predicting
the	correct	word	out	of	the	whole	corpus	of	caption	words	at	each	time	step	of
the	LSTM	2	.	The	same	is	accumulated	in	each	step	of	the	Decoding	phase	for
all	the	data	points	in	the	batch.	The	code	associated	with	the	loss	accumulation
during	the	decoding	phase	is	as	follows:

labels	=	tf.expand_dims(caption[:,	i+1],	1)

												indices	=	tf.expand_dims(tf.range(0,	self.batch_size,	1),	1)

												concated	=	tf.concat([indices,	labels],1)

												onehot_labels	=	

												tf.sparse_to_dense(concated,	tf.stack

																														([self.batch_size,self.n_words]),	1.0,	0.0)

												logit_words	=	

												tf.nn.xw_plus_b(output2,	self.word_emb_W,	self.word_emb_b)

								#	Computing	the	loss	

												cross_entropy	=			

												tf.nn.softmax_cross_entropy_with_logits(logits=logit_words,

												labels=onehot_labels)

												cross_entropy	=	

												cross_entropy	*	caption_mask[:,i]

												probs.append(logit_words)

												current_loss	=	tf.reduce_sum(cross_entropy)/self.batch_size

												loss	=	loss	+	current_loss

The	loss	can	be	optimised	with	any	of	the	reasonable	gradient	descent	optimizers
such	as	Adam,	RMSprop,	and	so	on.	We	will	chose	Adam	for	out	experiment	since
it	performs	well	for	most	of	the	deep	learning	optimizations.	We	can	define	the
train	op	using	Adam	optimizer	as	follows:

with	tf.variable_scope(tf.get_variable_scope(),reuse=tf.AUTO_REUSE):

				train_op	=	tf.train.AdamOptimizer(self.learning_rate).minimize(loss)	



Creating	a	word	vocabulary	for	the
captions
In	this	section,	we	create	the	word	vocabulary	for	the	video	captions.	We	create
some	additional	words	that	are	required	as	follows:	eos	=>	End	of	Sentence
bos	=>	Beginning	of	Sentence	
pad	=>	When	there	is	no	word	to	feed,required	by	the	LSTM	2	in	the	initial	N
time	steps
unk	=>	A	substitute	for	a	word	that	is	not	included	in	the	vocabulary

The	LSTM	2,	in	which	a	word	is	an	input,	would	require	these	four	additional
symbols.	For	the	(N+1)	time	step,	when	we	start	generating	the	captions,	we
feed	the	word	of	the	previous	time	step	wt-1.	For	the	first	word	to	be	generated,
there	is	no	valid	previous	time	step	word,	and	so	we	feed	the	dummy	word	<bos>,
which	signifies	the	start	of	sentence.	Similarly,	when	we	reach	the	last	time	step,
wt-1	is	the	last	word	of	the	caption.	We	train	the	model	to	output	the	final	word	as
<eos>,	which	denotes	the	end	of	the	sentence.	When	the	end	of	sentence	is
encountered,	the	LSTM	2	stops	emitting	any	further	words.

To	illustrate	this	with	an	example,	let's	take	the	sentence	The	weather	is
beautiful.	The	following	are	the	input	and	output	labels	for	LSTM	2	from	the
time	step	(N+1):

Time
step Input Output

N+1 <bos>,	hN+1 The

N+2 The,	hN+2 weather

N+3
weather,
hN+3

is

N+4 is,hN+4 beautiful



N+5 beautiful,
hN+5 <eos>

The	create_word_dict	function	to	create	the	word	vocabulary	is	illustrated	in	detail
as	follows:	def	create_word_dict(self,sentence_iterator,
word_count_threshold=5):

word_counts	=	{}
sent_cnt	=	0

for	sent	in	sentence_iterator:
sent_cnt	+=	1
for	w	in	sent.lower().split('	'):
word_counts[w]	=	word_counts.get(w,	0)	+	1
vocab	=	[w	for	w	in	word_counts	if	word_counts[w]	>=	word_count_threshold]

idx2word	=	{}
idx2word[0]	=	'<pad>'
idx2word[1]	=	'<bos>'
idx2word[2]	=	'<eos>'
idx2word[3]	=	'<unk>'

word2idx	=	{}
word2idx['<pad>']	=	0
word2idx['<bos>']	=	1
word2idx['<eos>']	=	2
word2idx['<unk>']	=	3

for	idx,	w	in	enumerate(vocab):
word2idx[w]	=	idx+4
idx2word[idx+4]	=	w

word_counts['<pad>']	=	sent_cnt
word_counts['<bos>']	=	sent_cnt
word_counts['<eos>']	=	sent_cnt
word_counts['<unk>']	=	sent_cnt



return	word2idx,idx2word

	



Training	the	model
In	this	section,	we	put	all	the	pieces	together	to	build	the	function	for	training	the
video-captioning	model.

First,	we	create	the	word	vocabulary	dictionary,	combining	the	video	captions
from	the	training	and	test	datasets.	Once	this	is	done,	we	invoke	the	build_model
function	to	create	the	video-captioning	network,	combining	the	two	LSTMs.	For
each	video	with	a	specific	start	and	end,	there	are	multiple	output	video
captions.	Within	each	batch,	the	output	video	caption	for	a	video	with	a	specific
start	and	end	is	randomly	selected	from	the	multiple	video	captions	available.
The	input	text	captions	to	the	LSTM	2	are	adjusted	to	have	the	starting	word	at
the	time	step	(N+1)	as	<bos>,	while	the	end	word	of	the	output	text	captions	are
adjusted	to	have	the	final	text	label	as	<eos>.	The	sum	of	the	categorical	cross
entropy	loss	over	each	of	the	time	steps	is	taken	as	the	total	cross	entropy	loss
for	a	particular	video.	In	each	time	step,	we	compute	the	categorical	cross
entropy	loss	over	the	complete	word	vocabulary,	which	can	be	represented	as
follows:

Here,	 	is	the	one	hot	encoded	vector	of	the

actual	target	word	at	time	step	t	and	 	is	the
predicted	probability	vector	from	the	model.

The	loss	is	captured	in	each	epoch	during	training	to	see	the	nature	of	the	loss
reduction.	Another	important	thing	to	note	here	is	that	we	are	saving	the	trained
model	using	TensorFlow's	tf.train.saver	function	so	that	we	can	restore	the	model
to	carry	out	inference.

The	detailed	code	for	the	train	function	is	illustrated	here	for	reference:

def	train(self):



								data	=	self.get_data(self.train_text_path,self.train_feat_path)

								self.train_data,self.test_data	=	self.train_test_split(data,test_frac=0.2)

								self.train_data.to_csv(f'{self.path_prj}/train.csv',index=False)

								self.test_data.to_csv(f'{self.path_prj}/test.csv',index=False)

								print(f'Processed	train	file	written	to	{self.path_prj}/train_corpus.csv')

								print(f'Processed	test	file	written	to	{self.path_prj}/test_corpus.csv')

																

								train_captions	=	self.train_data['Description'].values

								test_captions	=	self.test_data['Description'].values

				

								captions_list	=	list(train_captions)	

								captions	=	np.asarray(captions_list,	dtype=np.object)

				

								captions	=	list(map(lambda	x:	x.replace('.',	''),	captions))

								captions	=	list(map(lambda	x:	x.replace(',',	''),	captions))

								captions	=	list(map(lambda	x:	x.replace('"',	''),	captions))

								captions	=	list(map(lambda	x:	x.replace('\n',	''),	captions))

								captions	=	list(map(lambda	x:	x.replace('?',	''),	captions))

								captions	=	list(map(lambda	x:	x.replace('!',	''),	captions))

								captions	=	list(map(lambda	x:	x.replace('\\',	''),	captions))

								captions	=	list(map(lambda	x:	x.replace('/',	''),	captions))

				

								self.word2idx,self.idx2word	=	self.create_word_dict(captions,	

																																						word_count_threshold=0)

								

								np.save(self.path_prj/	"word2idx",self.word2idx)

								np.save(self.path_prj/	"idx2word"	,self.idx2word)

								self.n_words	=	len(self.word2idx)

				

								tf_loss,	tf_video,tf_video_mask,tf_caption,tf_caption_mask,	tf_probs,train_op=	

								self.build_model()

								sess	=	tf.InteractiveSession()

								

								saver	=	tf.train.Saver(max_to_keep=100,	write_version=1)

								tf.global_variables_initializer().run()

				

				

								loss_out	=	open('loss.txt',	'w')

								val_loss	=	[]

				

								for	epoch	in	range(0,self.epochs):

												val_loss_epoch	=	[]

				

												index	=	np.arange(len(self.train_data))

												self.train_data.reset_index()

												np.random.shuffle(index)

												self.train_data	=	self.train_data.loc[index]

				

												current_train_data	=	

												self.train_data.groupby(['video_path']).first().reset_index()

				

												for	start,	end	in	zip(

																				range(0,	len(current_train_data),self.batch_size),

																				range(self.batch_size,len(current_train_data),self.batch_size)):

				

																start_time	=	time.time()

				

																current_batch	=	current_train_data[start:end]

																current_videos	=	current_batch['video_path'].values

				



																current_feats	=	np.zeros((self.batch_size,	

																																self.video_lstm_step,self.dim_image))

																current_feats_vals	=	list(map(lambda	vid:	np.load(vid),current_videos))

																current_feats_vals	=	np.array(current_feats_vals)	

				

																current_video_masks	=	np.zeros((self.batch_size,self.video_lstm_step))

				

																for	ind,feat	in	enumerate(current_feats_vals):

																				current_feats[ind][:len(current_feats_vals[ind])]	=	feat

																				current_video_masks[ind][:len(current_feats_vals[ind])]	=	1

				

																current_captions	=	current_batch['Description'].values

																current_captions	=	list(map(lambda	x:	'<bos>	'	+	x,	current_captions))

																current_captions	=	list(map(lambda	x:	x.replace('.',	''),	

																																				current_captions))

																current_captions	=	list(map(lambda	x:	x.replace(',',	''),	

																																			current_captions))

																current_captions	=	list(map(lambda	x:	x.replace('"',	''),	

																																			current_captions))

																current_captions	=	list(map(lambda	x:	x.replace('\n',	''),	

																																			current_captions))

																current_captions	=	list(map(lambda	x:	x.replace('?',	''),	

																																			current_captions))

																current_captions	=	list(map(lambda	x:	x.replace('!',	''),	

																																			current_captions))

																current_captions	=	list(map(lambda	x:	x.replace('\\',	''),	

																																			current_captions))

																current_captions	=	list(map(lambda	x:	x.replace('/',	''),	

																																			current_captions))

				

																for	idx,	each_cap	in	enumerate(current_captions):

																				word	=	each_cap.lower().split('	')

																				if	len(word)	<	self.caption_lstm_step:

																								current_captions[idx]	=	current_captions[idx]	+	'	<eos>'

																				else:

																								new_word	=	''

																								for	i	in	range(self.caption_lstm_step-1):

																												new_word	=	new_word	+	word[i]	+	'	'

																								current_captions[idx]	=	new_word	+	'<eos>'

				

																current_caption_ind	=	[]

																for	cap	in	current_captions:

																				current_word_ind	=	[]

																				for	word	in	cap.lower().split('	'):

																								if	word	in	self.word2idx:

																												current_word_ind.append(self.word2idx[word])

																								else:

																												current_word_ind.append(self.word2idx['<unk>'])

																				current_caption_ind.append(current_word_ind)

				

																current_caption_matrix	=	

																sequence.pad_sequences(current_caption_ind,	padding='post',	

																																							maxlen=self.caption_lstm_step)

																current_caption_matrix	=	

																np.hstack(	[current_caption_matrix,	

																										np.zeros([len(current_caption_matrix),	1]	)	]	).astype(int)

																current_caption_masks	=

																np.zeros(	(current_caption_matrix.shape[0],	

																											current_caption_matrix.shape[1])	)

																nonzeros	=	

																np.array(	list(map(lambda	x:	(x	!=	0).sum()	+	1,	

																									current_caption_matrix	)	))

				



																for	ind,	row	in	enumerate(current_caption_masks):

																				row[:nonzeros[ind]]	=	1

				

																probs_val	=	sess.run(tf_probs,	feed_dict={

																				tf_video:current_feats,

																				tf_caption:	current_caption_matrix

																				})

				

																_,	loss_val	=	sess.run(

																								[train_op,	tf_loss],

																								feed_dict={

																												tf_video:	current_feats,

																												tf_video_mask	:	current_video_masks,

																												tf_caption:	current_caption_matrix,

																												tf_caption_mask:	current_caption_masks

																												})

																val_loss_epoch.append(loss_val)

				

																print('Batch	starting	index:	',	start,	"	Epoch:	",	epoch,	"	loss:	",	

																loss_val,	'	Elapsed	time:	',	str((time.time()	-	start_time)))

																loss_out.write('epoch	'	+	str(epoch)	+	'	loss	'	+	str(loss_val)	+	'\n')

				

												#	draw	loss	curve	every	epoch

												val_loss.append(np.mean(val_loss_epoch))

												plt_save_dir	=	self.path_prj	/	"loss_imgs"

												plt_save_img_name	=	str(epoch)	+	'.png'

												plt.plot(range(len(val_loss)),val_loss,	color='g')

												plt.grid(True)

												plt.savefig(os.path.join(plt_save_dir,	plt_save_img_name))

				

												if	np.mod(epoch,9)	==	0:

																print	("Epoch	",	epoch,	"	is	done.	Saving	the	model	...")

																saver.save(sess,	os.path.join(self.path_prj,	'model'),	global_step=epoch)

				

								loss_out.close()

As	we	can	see	from	the	preceding	code	we	create	each	batch	by	randomly
selecting	a	set	of	videos	based	on	the	batch_size.

For	each	video	the	labels	are	chosen	randomly	since	the	same	video	has	been
labelled	by	multiple	taggers.	For	each	of	the	selected	caption	we	clean	up	the
caption	text	and	convert	them	words	in	them	to	their	word	indexes.	The	target
for	the	captions	are	shifted	by	1	time	step	since	at	each	step	we	predict	the	word
from	the	previous	word	in	the	caption.	The	model	is	trained	for	the	specified
number	of	epochs	and	the	model	is	check	pointed	at	specified	intervals	of	epoch
(	9	here).



Training	results
The	model	can	be	trained	using	the	following	command:	python
Video_seq2seq.py	process_main	--path_prj	'/media/santanu/9eb9b6dc-b380-
486e-b4fd-c424a325b976/Video	Captioning/'	--caption_file	video_corpus.csv
--feat_dir	features	--cnn_feat_dim	4096	--h_dim	512	--batch_size	32	--
lstm_steps	80	--video_steps=80	--out_steps	20	--learning_rate	1e-4--
epochs=100

Parameter Value

Optimizer Adam

learning	rate 1e-4

Batch	size 32

Epochs 100

cnn_feat_dim 4096

lstm_steps 80

out_steps 20

h_dim 512

	

The	output	log	of	the	training	is	as	follows:	Batch	starting	index:	1728	Epoch:
99	loss:	17.723186	Elapsed	time:	0.21822428703308105
Batch	starting	index:	1760	Epoch:	99	loss:	19.556421	Elapsed	time:



0.2106935977935791
Batch	starting	index:	1792	Epoch:	99	loss:	21.919321	Elapsed	time:
0.2206578254699707
Batch	starting	index:	1824	Epoch:	99	loss:	15.057275	Elapsed	time:
0.21275663375854492
Batch	starting	index:	1856	Epoch:	99	loss:	19.633915	Elapsed	time:
0.21492290496826172
Batch	starting	index:	1888	Epoch:	99	loss:	13.986136	Elapsed	time:
0.21542596817016602
Batch	starting	index:	1920	Epoch:	99	loss:	14.300303	Elapsed	time:
0.21855640411376953
Epoch	99	is	done.	Saving	the	model	...
24.343	min:	Video	Captioning

As	we	can	see	it	takes	around	24	minutes	to	train	the	model	on	100	epochs	using
a	GeForce	Zotac	1070	GPU.

The	training	loss	reduction	over	each	epoch	is	as	represented	as	follows	(Figure
5.7):	



Figure	5.7	Loss	profile	during	training	As	we	can	see	from	the	preceding	graph	(Figure	5.7),	the	loss	reduction	is	high	in	the	initial	few
epochs,	and	then	it	gradually	reduces	around	epoch	80.	In	the	next	section,	we	will	illustrate	how	the	model	performs	in	generating

captions	for	unseen	videos.



def	build_generator(self):<br/>	with	tf.device('/cpu:0'):<br/>	self.word_emb	=
<br/>	tf.Variable(tf.random_uniform([self.n_words,	self.dim_hidden],<br/>	-0.1,
0.1),	name='word_emb')<br/><br/><br/>	self.lstm1	=<br/>
tf.nn.rnn_cell.BasicLSTMCell(self.dim_hidden,	state_is_tuple=False)<br/>
self.lstm2	=	<br/>	tf.nn.rnn_cell.BasicLSTMCell(self.dim_hidden,
state_is_tuple=False)<br/><br/>	self.encode_W	=	<br/>
tf.Variable(tf.random_uniform([self.dim_image,self.dim_hidden],	<br/>	-0.1,
0.1),	name='encode_W')<br/>	self.encode_b	=	<br/>
tf.Variable(tf.zeros([self.dim_hidden]),	name='encode_b')<br/><br/>
self.word_emb_W	=	<br/>
tf.Variable(tf.random_uniform([self.dim_hidden,self.n_words],<br/>	-0.1,0.1),
name='word_emb_W')<br/>	self.word_emb_b	=	<br/>
tf.Variable(tf.zeros([self.n_words]),	name='word_emb_b')<br/>	video	=	<br/>
tf.placeholder(tf.float32,	[1,	self.video_lstm_step,	self.dim_image])<br/>
video_mask	=	<br/>	tf.placeholder(tf.float32,	[1,	self.video_lstm_step])<br/>
<br/>	video_flat	=	tf.reshape(video,	[-1,	self.dim_image])<br/>	image_emb	=
tf.nn.xw_plus_b(video_flat,	self.encode_W,	self.encode_b)<br/>	image_emb	=
tf.reshape(image_emb,	[1,	self.video_lstm_step,	self.dim_hidden])<br/><br/>
state1	=	tf.zeros([1,	self.lstm1.state_size])<br/>	state2	=	tf.zeros([1,
self.lstm2.state_size])<br/>	padding	=	tf.zeros([1,	self.dim_hidden])<br/><br/>
generated_words	=	[]<br/><br/>	probs	=	[]<br/>	embeds	=	[]<br/><br/>	for	i	in
range(0,	self.video_lstm_step):<br/>	if	i	>	0:<br/>
tf.get_variable_scope().reuse_variables()<br/><br/>	with
tf.variable_scope("LSTM1"):<br/>	output1,	state1	=	self.lstm1(image_emb[:,	i,
:],	state1)<br/><br/>	with	tf.variable_scope("LSTM2"):<br/>	output2,	state2	=
<br/>	self.lstm2(tf.concat([padding,	output1],1),	state2)<br/><br/>	for	i	in
range(0,	self.caption_lstm_step):<br/>	tf.get_variable_scope().reuse_variables()
<br/><br/>	if	i	==	0:<br/>	with	tf.device('/cpu:0'):<br/>	current_embed	=	<br/>
tf.nn.embedding_lookup(self.word_emb,	tf.ones([1],	dtype=tf.int64))<br/><br/>
with	tf.variable_scope("LSTM1"):<br/>	output1,	state1	=	self.lstm1(padding,
state1)<br/><br/>	with	tf.variable_scope("LSTM2"):<br/>	output2,	state2	=
<br/>	self.lstm2(tf.concat([current_embed,	output1],1),	state2)<br/><br/>
logit_words	=	<br/>	tf.nn.xw_plus_b(	output2,	self.word_emb_W,
self.word_emb_b)<br/>	max_prob_index	=	tf.argmax(logit_words,	1)[0]<br/>
generated_words.append(max_prob_index)<br/>	probs.append(logit_words)
<br/><br/>	with	tf.device("/cpu:0"):<br/>	current_embed	=<br/>
tf.nn.embedding_lookup(self.word_emb,	max_prob_index)<br/>	current_embed
=	tf.expand_dims(current_embed,	0)<br/><br/>	embeds.append(current_embed)



<br/><br/>	return	video,	video_mask,	generated_words,	probs,	embeds



def	inference(self):<br/>	self.test_data	=
self.get_test_data(self.test_text_path,self.test_feat_path)<br/>	test_videos	=
self.test_data['video_path'].unique()<br/>	<br/>	self.idx2word	=	<br/>
pd.Series(np.load(self.path_prj	/	"idx2word.npy").tolist())<br/>	<br/>
self.n_words	=	len(self.idx2word)<br/>	video_tf,	video_mask_tf,	caption_tf,
probs_tf,	last_embed_tf	=	<br/>	self.build_generator()<br/>	<br/>	sess	=
tf.InteractiveSession()<br/>	<br/>	saver	=	tf.train.Saver()<br/>
saver.restore(sess,self.model_path)<br/>	<br/>	f	=
open(f'{self.path_prj}/video_captioning_results.txt',	'w')<br/>	for	idx,
video_feat_path	in	enumerate(test_videos):<br/>	video_feat	=
np.load(video_feat_path)[None,...]<br/>	if	video_feat.shape[1]	==
self.frame_step:<br/>	video_mask	=	np.ones((video_feat.shape[0],
video_feat.shape[1]))<br/>	else:<br/>	continue<br/>	<br/>	gen_word_idx	=
<br/>	sess.run(caption_tf,	feed_dict={video_tf:video_feat,	<br/>
video_mask_tf:video_mask})<br/>	gen_words	=	self.idx2word[gen_word_idx]
<br/>	<br/>	punct	=	np.argmax(np.array(gen_words)	==	'<eos>')	+	1<br/>
gen_words	=	gen_words[:punct]<br/>	<br/>	gen_sent	=	'	'.join(gen_words)<br/>
gen_sent	=	gen_sent.replace('<bos>	',	'')<br/>	gen_sent	=	gen_sent.replace('
<eos>',	'')<br/>	print(f'Video	path	{video_feat_path}	:	Generated	Caption
{gen_sent}')<br/>	print(gen_sent,'\n')<br/>	f.write(video_feat_path	+	'\n')<br/>
f.write(gen_sent	+	'\n\n')<br/><br/>

<strong>python	Video_seq2seq.py	process_main	--path_prj
'/media/santanu/9eb9b6dc-b380-486e-b4fd-c424a325b976/Video	Captioning/'	--
caption_file	'/media/santanu/9eb9b6dc-b380-486e-b4fd-c424a325b976/Video
Captioning/test.csv'	--feat_dir	features	--mode	inference	--model_path
'/media/santanu/9eb9b6dc-b380-486e-b4fd-c424a325b976/Video
Captioning/model-99'</strong>



Results	from	evaluation
The	results	of	evaluation	are	very	promising.	The	inference	results	on	two	videos
from	the	test	set	0lh_UWF9ZP4_82_87.avi	and	8MVo7fje_oE_139_144.avi	is	presented	as
follows:

In	the	following	screenshot,	we	illustrate	the	results	of	inference	on	video
video0lh_UWF9ZP4_82_87.avi:

Inference	on	video	0lh_UWF9ZP4_82_87.avi	using	the	trained	model

	

	

In	the	following	screenshot,	we	illustrate	the	results	of	inference	on	another
video8MVo7fje_oE_139_144.avi:



Inference	on	a	video/8MVo7fje_oE_139_144.avi	using	the	trained	model

From	the	preceding	screenshots,	we	can	see	that	the	trained	model	has	done	a
good	job	of	coming	up	with	a	good	caption	for	the	provided	test	videos.

The	code	for	the	project	can	be	found	in	the	GitHub	location	https://github.com/Pac
ktPublishing/Python-Artificial-Intelligence-Projects/tree/master/Chapter05	.	The
VideoCaptioningPreProcessing.py	module	can	be	used	to	pre-process	the	videos	and
create	the	convolutional	neural	network	features,	while	the	Video_seq2seq.py
module	can	be	used	to	train	an	end-to-end	video-captioning	system	and	run
inference	it.

https://github.com/PacktPublishing/Python-Artificial-Intelligence-Projects/tree/master/Chapter05


Summary
Now	we	have	reached	the	end	of	our	exciting	video-captioning	project.	You
should	be	able	to	build	your	own	video-captioning	system	using	TensorFlow	and
Keras.	You	should	also	be	able	to	use	the	technical	know-hows	explained	in	this
chapter	to	develop	other	advanced	models	involving	convolutional	neural
networks	and	recurrent	neural	networks.	The	next	chapter	will	build	an
intelligent	recommender	system,	using	restricted	Boltzmann	machines.	I	look
forward	to	your	participation!

	

	

	



The	Intelligent	Recommender	System
With	the	huge	amount	of	digital	information	available	on	the	internet,	it	becomes
a	challenge	for	users	to	access	items	efficiently.	Recommender	systems	are
information	filtering	systems	that	deal	with	the	problem	of	digital	data	overload
to	pull	out	items	or	information	according	to	the	user's	preferences,	interests,	and
behavior,	as	inferred	from	previous	activities.

In	this	chapter,	we	will	cover	the	following	topics:

Introducing	recommender	systems
Latent	factorization-based	collaborative	filtering
Using	deep	learning	for	latent	factor	collaborative	filtering
Using	the	restricted	Boltzmann	machine	(RBM)	for	building
recommendation	systems
Contrastive	divergence	for	training	RBMs
Collaborative	filtering	using	RBMs
Implementing	a	collaborative	filtering	application	using	RBMs

	

	



Technical	requirements
The	readers	should	have	basic	knowledge	of	Python	3	and	artificial	intelligence
to	go	through	the	projects	in	this	chapter.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter06

Check	out	the	following	video	to	see	the	code	in	action:
http://bit.ly/2Sgc0R3

https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter06
http://bit.ly/2Sgc0R3


What	is	a	recommender	system?
Recommender	systems	are	ubiquitous	in	today's	world.	Be	it	movie
recommendations	on	Netflix	or	product	recommendations	on	Amazon,
recommender	systems	are	making	a	significant	impact.	Recommender	systems
can	be	broadly	classified	into	content-based	filtering	systems,	collaborative
filtering	systems,	and	latent	factor-based	filtering	recommender	systems.
Content-based	filtering	relies	on	hand-coding	features	for	the	items	based	on
their	content.	Based	on	how	the	users	have	rated	existing	items,	a	user	profile	is
created	and	the	ranks	provided	by	the	user	are	given	to	those	items:

Figure	6.1:	Content-based	filtering	illustration

As	we	can	see	in	the	preceding	diagram	(Figure	6.1),	User	A	has	bought	books
named	Deep	Learning	and	Neural	Networks.	Since	the	content	of	the	book
Artificial	Intelligence	is	similar	to	the	two	books,	the	content-based
recommender	system	has	recommended	the	book	Artificial	Intelligence	to	User



A.	As	we	can	see,	in	content-based	filtering,	the	user	is	recommended	items
based	on	their	preferences.	This	doesn't	involve	how	other	users	have	rated	the
book.

Collaborative	filtering	tries	to	identify	similar	users	pertaining	to	a	given	user,
and	then	recommends	the	user	items	that	similar	users	have	liked,	bought,	or
rated	highly.	This	is	generally	called	user-user	collaborative	filtering.	The
opposite	is	to	find	items	similar	to	a	given	item	and	recommend	items	to	users
who	have	also	liked,	bought,	or	rated	other	similar	items	highly.	This	goes	by	the
name	item-item	collaborative	filtering:

Figure	6.2:	item-item	collaborative	filtering	illustration

In	the	preceding	diagram	(Figure	6.2),	User	A	and	User	B	are	very	similar	in
terms	of	their	taste	in	buying	books.	User	A	has	recently	bought	the	books	Deep
Learning	and	Neural	Networks.	Since	User	B	is	very	similar	to	User	A,	the
user-user	collaborative	recommender	system	recommends	these	books	to	User	B
as	well.



Latent	factorization-based
recommendation	system
Latent	factorization-based	filter	recommendation	methods	attempt	to	discover
latent	features	to	represent	user	and	item	profiles	by	decomposing	the	ratings.
Unlike	the	content-based	filtering	features,	these	latent	features	are	not
interpretable	and	can	represent	complicated	features.	For	instance,	in	a	movie
recommendation	system,	one	of	the	latent	features	might	represent	a	linear
combination	of	humor,	suspense,	and	romance	in	a	specific	proportion.
Generally,	for	already	rated	items,	the	rating	rij	given	by	an	user	i	to	an	item	j

can	be	represented	as	 .	where	ui	is	the	user	profile	vector	based	on
the	latent	factors	and	vi	is	the	item	vector	based	on	the	same	latent	factors:



Figure	6.3:	Latent	factor-based	filtering	illustration

Illustrated	in	the	previous	diagram	(Figure	6.3)	is	a	latent-factor	based
recommendation	method,	where	the	ratings	matrix	Rm	x	n	has	been	decomposed
into	the	product	of	user	profile	matrix	Um	x	k	and	the	transpose	of	the	item	profile
matrix	Pn	x	k	where	k	is	the	number	of	the	latent	factors	of	the	model.	Based	on
these	profiles,	we	can	recommend	items	that	have	so	far	not	been	bought	by	the
user	by	computing	the	inner	product	of	the	user	profile	and	the	item	profile.	The
inner	product	gives	a	tentative	rating	that	the	user	might	have	given	had	they
bought	the	product.



One	of	the	ways	these	user	and	item	profiles	can	be	created	is	by	performing
singular	value	decomposition	(SVD)	on	the	ratings	matrix	after	filling	in	the
missing	values	by	some	form	of	mean	values	across	the	users	and	items	as
appropriate.	According	to	SVD,	the	rating	matrix	R	can	be	decomposed	as
follows:

We	can	take	the	user	profile	matrix	as	US1/2	and	then	transpose	of	the	item
profile	matrix	as	S1/2	VT	to	form	the	latent	factor	model.	You	might	have	a
question	as	to	how	to	perform	SVD	when	there	is	missing	entries	in	the	ratings
matrix	corresponding	to	the	movies	that	are	not	rated	by	the	users.	Common
approaches	are	to	impute	the	missing	ratings	by	the	average	rating	of	the	user,	or
by	the	global	ratings	average,	before	performing	SVD.



Deep	learning	for	latent	factor
collaborative	filtering
Instead	of	using	SVD,	you	can	leverage	deep	learning	methods	to	derive	the	user
and	item	profile	vectors	of	given	dimensions.

For	each	user	i,	you	can	define	a	user	vector	ui	∈	Rk	through	an	embedding	layer.
Similarly,	for	each	item	j,	you	can	define	a	item	vector	vj	∈	Rk	through	another
embedding	layer.	Then,	the	rating	rij	of	a	user	i	to	an	item	j	can	be	represented	as

the	dot	product	of	ui	and	vj	as	shown:	

You	can	modify	the	neural	network	to	add	biases	for	users	and	items.	Given	that
we	want	k	latent	components,	the	dimensions	of	the	embedding	matrix	U	for	m
users	would	be	m	x	k.	Similarly,	the	dimensions	of	the	embedding	matrix	V	for	n
items	would	be	n	x	k.

In	the	The	deep	learning-based	latent	factor	model	section,	we	will	use	this
embedding	approach	to	create	a	recommender	system	based	on	the	100K	Movie	Lens
dataset.	The	dataset	can	be	downloaded	from
https://grouplens.org/datasets/movielens/.

We	will	be	using	the	u1.base	as	the	training	dataset	and	u1.test	as	the	holdout	test
dataset.



The	deep	learning-based	latent	factor
model
The	deep	learning-based	latent	factor	model	discussed	in	the	Deep	learning	for
latent	factor	collaborative	filtering	section	can	be	designed	as	illustrated	in
Figure	6.4:

Figure	6.4:	Deep	learning-based	latent	factor	model	on	Movie	Lens	100	K	dataset

The	user_ID	and	the	movie_ID	picks	up	the	user	and	the	movie	embedding	vector



from	their	corresponding	embedding	matrices.	In	the	diagram,	embedding_1
represents	the	embedding	layer	for	the	user	IDs,	while	embedding_2	represents
the	embedding	layer	for	movie	IDs.	The	dot	product	of	the	user	embedding
vector	and	the	movie	embedding	vector	is	performed	in	the	dot_1	layer	to	output
the	ratings	score	(one	to	five).	The	code	to	define	the	model	is	illustrated	as
follows:

def	model(max_users,max_movies,latent_factors):

				user_ID	=	Input(shape=(1,))

				movie_ID	=	Input(shape=(1,))

				x	=	Embedding(max_users,latent_factors,	input_length=1)(user_ID)

				y	=	Embedding(max_movies,latent_factors,	input_length=1)(movie_ID)

				out	=	dot([x,y],axes=2,normalize=False)

				out=	Reshape((1,))(out)

				model	=	Model(inputs=[user_ID,movie_ID],outputs=out)

				print(model.summary())

				return	model

In	the	preceding	model	function,	the	max_users	and	max_movies	determine	the	size	of
the	user	and	the	movie-embedding	matrices,	respectively.	The	parameters	of	the
model	are	nothing	but	the	components	of	the	user	and	movie	embedding
matrices.	So	if	we	have	m	users	and	n	movies,	and	we	chose	a	latent	dimension
of	k	then	we	have	m	x	k	+	n	x	k	=	(m	+	n)k	parameters	to	learn.

The	data-processing	functions	can	be	coded	as	follows:

data_dir	=	Path('/home/santanu/ML_DS_Catalog-/Collaborating	Filtering/ml-100k/')

outdir	=	Path('/home/santanu/ML_DS_Catalog-/Collaborating	Filtering/ml-100k/')

#Function	to	read	data	

def	create_data(rating,header_cols):

				data	=	pd.read_csv(rating,header=None,sep='\t')

				#print(data)

				data.columns	=	header_cols

				return	data

	

#Movie	ID	to	movie	name	dict	

def	create_movie_dict(movie_file):

				print(movie_file)

				df	=	pd.read_csv(movie_file,sep='|',	encoding='latin-1',header=None)

				movie_dict	=	{}

				movie_ids	=	list(df[0].values)

				movie_name	=	list(df[1].values)

				for	k,v	in	zip(movie_ids,movie_name):

								movie_dict[k]	=	v	

				return	movie_dict

#	Function	to	create	training	validation	and	test	data

def	train_val(df,val_frac=None):

				X,y	=	df[['userID','movieID']].values,df['rating'].values

				#Offset	the	ids	by	1	for	the	ids	to	start	from	zero

				X	=	X	-	1	

				if	val_frac	!=	None:



								X_train,	X_test,	y_train,	y_val	=	train_test_split(X,	y,	test_size=val_frac,random_state=0)

								return	X_train,	X_val,	y_train,	y_val

				else:

								return	X,y

One	thing	to	note	is	that	1	has	been	subtracted	from	both	the	user_ID	and	the
movie_ID	to	ensure	the	IDs	start	from	0	and	not	from	1	so	that	they	can	properly	be
referenced	by	the	embedding	layers.

The	code	to	invoke	the	data	processing	and	training	is	as	follows:

#Data	processing	and	model	training	

train_ratings_df	=	create_data(f'{data_dir}/u1.base',['userID','movieID','rating','timestamp'])	

test_ratings_df	=	create_data(f'{data_dir}/u1.test',['userID','movieID','rating','timestamp'])	

X_train,	X_val,y_train,	y_val	=	train_val(train_ratings_df,val_frac=0.2)

movie_dict	=	create_movie_dict(f'{data_dir}/u.item')

num_users	=	len(train_ratings_df['userID'].unique())

num_movies	=	len(train_ratings_df['movieID'].unique())

print(f'Number	of	users	{num_users}')

print(f'Number	of	movies	{num_movies}')

model	=	model(num_users,num_movies,40)

plot_model(model,	to_file='model_plot.png',	show_shapes=True,	show_layer_names=True)

model.compile(loss='mse',optimizer='adam')

callbacks	=	[EarlyStopping('val_loss',	patience=2),	

													ModelCheckpoint(f'{outdir}/nn_factor_model.h5',	save_best_only=True)]

model.fit([X_train[:,0],X_train[:,1]],	y_train,	nb_epoch=30,	validation_data=([X_val[:,0],X_val[:,1]],	y_val),	verbose=2,	callbacks=callbacks)

The	model	has	been	set	up	to	store	the	best	model	with	respect	to	the	validation
error.	The	model	converged	on	a	validation	RMSE	of	around	0.8872	as	we	can	see
from	the	training	log	as	follows:

Train	on	64000	samples,	validate	on	16000	samples

Epoch	1/30

	-	4s	-	loss:	8.8970	-	val_loss:	2.0422

Epoch	2/30

	-	3s	-	loss:	1.3345	-	val_loss:	1.0734

Epoch	3/30

	-	3s	-	loss:	0.9656	-	val_loss:	0.9704

Epoch	4/30

	-	3s	-	loss:	0.8921	-	val_loss:	0.9317

Epoch	5/30

	-	3s	-	loss:	0.8452	-	val_loss:	0.9097

Epoch	6/30

	-	3s	-	loss:	0.8076	-	val_loss:	0.8987

Epoch	7/30

	-	3s	-	loss:	0.7686	-	val_loss:	0.8872

Epoch	8/30

	-	3s	-	loss:	0.7260	-	val_loss:	0.8920

Epoch	9/30

	-	3s	-	loss:	0.6842	-	val_loss:	0.8959

We	now	evaluate	the	performance	of	the	model	on	the	unseen	test	data	set.	The



following	code	can	be	invoked	to	run	inference	on	the	test	dataset:

#Evaluate	on	the	test	dataset	

model	=	load_model(f'{outdir}/nn_factor_model.h5')

X_test,y_test	=	train_val(test_ratings_df,val_frac=None)

pred	=	model.predict([X_test[:,0],X_test[:,1]])[:,0]

print('Hold	out	test	set	RMSE:',(np.mean((pred	-	y_test)**2)**0.5))

pred	=	np.round(pred)

test_ratings_df['predictions']	=	pred

test_ratings_df['movie_name']	=	test_ratings_df['movieID'].apply(lambda	x:movie_dict[x])

The	holdout	test	RMSE	is	around	0.95	as	we	can	see	from	the	log	as	follows:

Hold	out	test	set	RMSE:	0.9543926404313371

Now,	we	evaluate	the	performance	of	the	model	for	the	user	with	ID	1	in	the	test
dataset	by	invoking	the	following	line	of	code:

#Check	evaluation	results	for	the	UserID	=	1	

test_ratings_df[test_ratings_df['userID']	==	1].sort_values(['rating','predictions'],ascending=False)

We	can	see	from	the	following	results	(Figure	6.5)	that	the	model	has	done	a
good	job	at	predicting	the	ratings	on	movies	unseen	during	training:

Figure	6.5:	Results	of	evaluation	for	UserID	1



The	code	related	to	the	deep	learning	method	latent	factor	method	can	be	found
at	https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapte
r06.

https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter06


SVD++
Generally,	SVD	doesn't	capture	the	user	and	item	biases	that	may	exist	in	the
data.	One	such	method	that	goes	by	the	name	SVD++	considers	user	and	item
biases	in	the	latent	factorization	method	and	has	been	very	popular	in
competitions	such	as	the	Netflix	challenge.

The	most	common	way	to	carry	out	latent	factor-based	recommendation	is	to
define	the	user	profile	and	biases	as	ui	∈	Rk	and	bi	∈	R	and	the	item	profiles	and

biases	as	vi	∈	Rk	and	bj	∈	R.	The	rating	 	provided	by	user	i	to	item	j	is	then
defined	to	be	as	follows:

µ	is	the	global	mean	of	all	the	ratings.

The	user	profiles	and	the	item	profiles	are	then	determined	by	minimizing	the
sum	of	the	square	of	the	errors	in	predicting	the	ratings	for	all	the	items	rated	by
the	users.	The	squared	error	loss	to	be	optimized	can	be	represented	as	follows:

Iij	is	an	indicator	function	that	is	one	if	the	user	i	has	a	rated	item	j;	otherwise,	it
is	zero.

The	cost	is	minimized	with	respect	to	the	parameters	of	the	user	and	the	item
profiles.	Generally,	this	kind	of	optimization	leads	to	over-fitting,	and	hence	the
norm	of	the	user	and	the	item	profiles	are	used	as	regularizes	in	the	cost
function,	as	shown	here:



Here,	λ1	and	λ2	are	the	regularization	constants.	Generally,	a	popular	gradient
descent	technique	named	alternating	least	squares	(ALS)	is	used	for
optimization,	which	alternates	updating	the	user	profile	parameters	by	keeping
the	item	parameters	fixed	and	vice	versa.

The	surprise	package	has	a	good	implementation	of	SVD++.	In	the	next	section,
we	will	train	a	model	with	SVD++	on	the	100K	movie	lens	dataset	and	look	at
performance	metrics.



Training	model	with	SVD++	on	the
Movie	Lens	100k	dataset
The	surprise	package	can	be	downloaded	through	conda	using	the	following
command:

conda	install	-c	conda-forge	scikit-surprise	

The	algorithm	corresponding	to	SVD++	is	named	as	SVDpp	in	surprise.	We	can
load	all	the	required	packages	as	follows:

import	numpy	as	np

from	surprise	import	SVDpp	#	SVD++	algorithm

from	surprise	import	Dataset

from	surprise	import	accuracy

from	surprise.model_selection	import	cross_validate

from	surprise.model_selection	import	train_test_split

The	100K	Movie	lens	dataset	can	be	downloaded	and	made	available	to	the	code
using	the	Dataset.load_builtin	utility	in	surprise.	We	split	the	data	into	training	and
holdout	test	set	in	the	80	to	20	ratio.	The	data-processing	code	lines	are	as
follows:

#	Load	the	movie	lens	10k	data	and	split	the	data	into	train	test	files(80:20)

data	=	Dataset.load_builtin('ml-100k')

trainset,	testset	=	train_test_split(data,	test_size=.2)

Next,	we	will	do	5	fold	cross	validations	on	the	data	and	look	at	the	cross-
validation	results.	We	chose	a	learning	rate	of	0.008	for	stochastic	gradient
descent.	Also	to	guard	against	over-fitting,	we	chose	a	regularization	constant	of
0.1	for	both	L1	and	L2	regularization.	Details	of	these	code	lines	are	as	follows:

#Perform	5	fold	cross	validation	with	all	data	

algo	=	SVDpp(n_factors=40,	n_epochs=40,	lr_all=0.008,	reg_all=0.1)

#	Run	5-fold	cross-validation	and	show	results	summary

cross_validate(algo,data,	measures=['RMSE',	'MAE'],	cv=5,	verbose=True)

The	results	from	the	cross-validation	are	as	follows:

Evaluating	RMSE,	MAE	of	algorithm	SVDpp	on	5	split(s).	Fold	1	Fold	2	Fold	3	Fold	4	Fold	5	Mean	Std	RMSE	(testset)	0.9196	0.9051	0.9037	0.9066	0.9151	0.9100	0.0062	MAE	(testset)	0.7273	0.7169	0.7115	0.7143	0.7228	0.7186	0.0058	Fit	time	374.57	374.58	369.74	385.44	382.36	377.34	5.72	Test	time	2.53	2.63	2.74	2.79	2.84	2.71	0.11

We	can	see	from	the	preceding	results	that	the	5	fold	cv	RMSE	of	the	model	is	0.91.



The	results	are	impressive	on	the	Movie	Lens	100K	dataset.

Now	we	will	train	the	model	on	just	the	training	dataset	trainset	and	then
evaluate	the	model	on	the	test	set.	The	relevant	code	lines	are	as	follows:

model	=	SVDpp(n_factors=40,	n_epochs=10,	lr_all=0.008,	reg_all=0.1)

model.fit(trainset)

Once	the	model	has	been	trained,	we	evaluate	the	model	on	the	holdout	test
dataset	test	set.	The	relevant	code	lines	are	as	follows:

#validate	the	model	on	the	testset

pred	=	model.test(testset)

print("SVD++	results	on	the	Test	Set")

accuracy.rmse(pred,	verbose=True)			

The	output	of	the	validation	is	as	follows:

SVD++	results	on	the	test	set

RMSE:	0.9320

As	we	can	see	from	the	preceding	results,	the	SVD++	model	does	really	well	on
the	test	dataset	with	a	RMSE	of	0.93.	The	results	are	comparable	to	the	deep
learning-based	model	latent	factor	model	(hold	out	RMSE	of	0.95)	that	we
trained	prior	to	this.

In	the	Restricted	Boltzmann	machines	for	recommendation	section,	we	will	look
at	a	restricted	Boltzmann	machine	for	building	recommender	systems.	This
method	has	gained	lot	of	popularity	in	collaborative	filtering	since	it	can	scale	to
large	datasets.	Most	of	the	datasets	in	the	collaborative	filtering	domain	are
sparse	leading	to	difficult	non-convex	optimization	problems.	RBMs	are	less
prone	to	suffer	from	this	sparsity	issue	in	datasets	than	other	factorization
methods	such	as	SVD.



Restricted	Boltzmann	machines	for
recommendation
Restricted	Boltzmann	machines	are	a	class	of	neural	networks	that	fall	under
unsupervised	learning	techniques.	Restricted	Boltzmann	machines	(RBMs),	as
they	are	popularly	known,	try	to	learn	the	hidden	structure	of	the	data	by
projecting	the	input	data	into	a	hidden	layer.

The	hidden	layer	activations	are	expected	to	encode	the	input	signal	and	recreate
it.	Restricted	Boltzmann	machines	generally	work	on	binary	data:

Figure	6.6:	Restricted	Boltzmann	machines	for	binary	data

Just	to	refresh	our	memory,	the	preceding	diagram	(Figure	6.6)	is	an	RBM	that
has	m	inputs	or	visible	units.	This	is	projected	to	a	hidden	layer	with	n	units.

Given	the	visible	layer	inputs	 ,	the	hidden	units	are	independent	of
each	other	and	hence	can	be	sampled	as	follows,	where	 	represents	the



sigmoid	function:	

Similarly,	given	the	hidden	layer	activations	 ,	the	visible	layer
units	are	independent	and	can	be	sampled	as	follows:	

The	parameters	of	the	RBM	are	the	generalized	weight	connections	wij	∈	Wm	x	n
between	the	visible	layer	unit	i	and	the	hidden	layer	unit	j,	the	bias	ci	∈	b	at	the
visible	unit	i,	and	the	bias	cj	∈	c	at	the	hidden	layer	unit	j.

These	parameters	of	the	RBM	are	learned	by	maximizing	the	likelihood	of	the
visible	input	data.	If	we	represent	the	combined	set	of	parameters	by	

	and	we	have	a	set	of	T	training	input	data	points	then	in	the	RBM,
we	try	to	maximize	the	likelihood	function:	

Instead	of	working	with	the	product	form,	we	generally	maximize	the	log	of	the
likelihood,	or	minimize	the	negative	of	the	log	likelihood,	to	make	the	function
mathematically	more	convenient.	If	we	represent	the	negative	of	the	log

likelihood	as	our	cost	function	C	then:	

The	cost	function	is	generally	minimized	by	gradient	descent.	The	gradient	of
the	cost	function	with	respect	to	the	parameters	consists	of	expectation	terms	and

is	expressed	as	follows:	



The	term	 	denotes	the	expectation	of	any	given	quantity	over	the
joint	probability	distribution	of	the	hidden	and	the	visible	units.	Also,	 	denotes
the	sampled	hidden	layer	outputs	given	the	visible	units	v.	Computing	the
expectation	over	the	joint	probability	distribution	within	each	iteration	of
gradient	descent	is	computationally	intractable.	We	resort	to	an	intelligent
method	called	contrastive	divergence,	discussed	in	the	next	section,	to	compute
the	expectations.



Contrastive	divergence
One	of	the	ways	to	compute	the	expectation	of	a	joint	probability	distribution	is
to	generate	a	lot	of	samples	from	the	joint	probability	distribution	by	Gibbs
sampling	and	then	take	the	mean	value	of	the	samples	as	the	expected	value.	In
Gibbs	sampling,	each	of	the	variables	in	the	joint	probability	distribution	can	be
sampled,	conditioned	on	the	rest	of	the	variables.	Since	the	visible	units	are
independent,	given	the	hidden	units	and	vice	versa,	you	can	sample	the	hidden
unit	as	 	and	then	the	visible	unit	activation	given	the	hidden	unit	as	

.	We	can	then	take	the	sample	 	as	one	sampled	from	the
joint	probability	distribution.	In	this	way,	we	can	generate	a	huge	number	of
samples,	say	M,	and	take	their	mean	to	compute	the	desired	expectation.
However,	doing	such	extensive	sampling	in	each	step	of	gradient	descent	is
going	to	make	the	training	process	unacceptably	slow,	and	hence,	instead	of
computing	the	mean	of	many	samples	in	each	step	of	the	gradient	descent,	we
generate	only	one	sample	from	the	joint	probability	distribution	that	is	supposed
to	represent	the	desired	expectation	over	the	entire	joint	probability	distribution:

Figure	6.7:	Contrastive	divergence	illustration



As	we	can	see	from	the	illustration	in	the	preceding	diagram	(Figure	6.7),	we
start	with	the	seen	visible	input	v(t)	and	sample	the	hidden	layer	activation	
based	on	the	conditional	probability	distribution	P(h/v	=	v(t)).	Again,	using	the
conditional	probability	distribution	P(v/h	=	h′),	we	sample	v′.	The	next	sampling
of	the	hidden	unit	based	on	the	conditional	probability	distribution	P(h/v	=	v′)

gives	us	 ,	and	then	sampling	visible	unit	activation	using	 	gives	us	

.	The	sample	 	is	taken	to	the	representative	sample	for	the	entire	joint
probability	distribution	of	v	and	h,	that	is,	 .	The	same	is	used	for
computing	the	expectation	of	any	expression	containing	v	and	h.	This	process	of
sampling	is	known	as	contrastive	divergence.

Starting	with	a	visible	input	and	then	successively	sampling	from	a	conditional
distribution	P(v/h)	and	P(v/h)	constitutes	one	step	of	Gibbs	sampling	and	gives
us	one	sample	(v/h)	from	the	joint	distribution.	Instead	of	picking	the	sample
(v/h)	at	every	step	of	Gibbs	sampling,	we	can	choose	to	pick	the	sample	after
several	successive	sampling	iterations	from	the	conditional	probability
distribution.	If,	after	k	steps	of	Gibbs	sampling,	the	representative	element	is
chosen,	the	contrastive	divergence	is	termed	CD-k.	The	contrastive	divergence
illustrated	in	Figure	6.7	can	be	termed	CD-2,	since	we	choose	the	sample	after
two	steps	of	Gibbs	sampling.



Collaborative	filtering	using	RBMs
Restricted	Boltzmann	machines	can	be	used	to	carry	out	collaborative	filtering
when	making	recommendations.	We	will	be	using	these	RBMs	to	recommend
movies	to	users.	They	are	trained	using	ratings	provided	by	the	different	users
for	different	movies.	A	user	would	not	have	watched	or	rated	all	the	movies,	so
this	trained	model	can	be	used	to	recommend	unseen	movies	to	a	user.

One	of	the	first	questions	we	should	have	is	how	to	handle	ranks	in	RBMs,	since
ranks	are	ordinal	in	nature,	whereas	RBMs	work	on	binary	data.	The	ranks	can
be	treated	as	binary	data,	with	the	number	of	units	to	represent	a	rank	being
equal	to	the	number	of	unique	values	for	each	rank.	For	example:	in	a	rating
system,	where	the	ranks	vary	from	one	to	five,	and	there	would	be	five	binary
units,	with	the	one	corresponding	to	the	rank	set	to	one	and	the	rest	as	zero.	The
unit	visible	to	the	RBM	would	be	the	rank	provided	for	the	user	to	different
movies.	Each	rank	would	be	represented	in	binary,	as	discussed,	and	there	would
be	weight	connections	from	all	the	binary	visible	units,	corresponding	to	the
movie	rating,	for	each	of	the	visible	units.	Since	each	user	would	have	rated	a
different	set	of	movies,	the	input	for	each	user	will	be	different.	However,	the
weight	connections	from	the	movie	rating	units	to	the	hidden	units	are	common
for	all	users.

Illustrated	in	the	following	diagrams	(Figure	6.8a	and	Figure	6.8b)	are	the	RBM
views	for	User	A	and	User	B.	User	A	and	User	B	have	rated	a	different	set	of
movies.	However,	as	we	can	see,	the	weight	connections	to	the	hidden	units	from
each	movie	are	the	same	for	each	user.	The	RBM	rating	with	respect	to	User	A
is	as	follows:



Figure	6.8a:	RBM	for	collaborative	filtering	User	A	view

The	RBM	rating	with	respect	to	User	B	is	as	follows:



Figure	6.8b:	RBM	for	collaborative	filtering	User	B	view

One	more	thing	to	note	is	that	if	there	are	M	movies	and	if	k	ranks	are	possible
for	each	movie,	then	the	number	of	visible	units	to	the	RBM	is	M	*	k.	Also,	if
the	number	of	binary	hidden	units	is	n,	then	the	number	of	weight	connections	in
[W]	is	equal	to	M	*	k	*	n.	Each	hidden	unit	hj	can	be	sampled	independently	of
the	other	hidden	units	given	the	visible	layer	inputs	as	follows:

Here,	m	=	M	*	k.

Unlike	in	a	traditional	RBM,	the	binary	units	in	visible	layers	in	this	network
cannot	be	independently	sampled	given	the	hidden	layer	activations.	Each	of	the



k	binary	units	with	respect	to	the	rank	of	a	movie	are	tied	through	a	k-way
softmax	activation	function.	If	the	inputs	to	the	visible	units	for	a	specific	movie
given	the	hidden	units	are	 ,	then	the	general	input	of
the	rank	l	for	a	movie	i	is	calculated	as	follows:

Here,	(i	-	1)k	+	l	is	the	index	of	the	visible	unit	of	the	movie	i	for	rank	l.
Similarly,	the	visible	units	for	any	particular	movie	can	be	sampled	based	on
their	probabilities	given	by	the	soft-max	function,	as	shown	here:

One	more	thing	that	is	important	in	defining	the	outputs	of	both	the	hidden	and
the	visible	units	is	the	need	for	probabilistic	sampling	instead	of	defaulting	the
output	to	be	one	with	the	maximum	probability.	If	the	probability	of	the	hidden
unit	activation	given	the	visible	units	is	P,	then	the	random	number	r	in	the	range
[0,1]	is	uniformly	generated,	and	if	(P>r)	then	the	hidden	unit	activation	is	set	to
true.	This	scheme	will	ensure	that	over	a	long	period	of	time	the	activations	are
set	to	true	with	probability	P.	Similarly,	the	visible	units	for	a	movie	are	sampled
from	a	multinational	distribution	based	on	their	probabilities	given	the	hidden
units.	So,	if	for	a	specific	movie,	the	probabilities	for	different	ratings	range
from	one	to	five,	given	the	hidden	unit	activations	are	(p1,	p2,	p3,	p4,	p5),	then	the
value	of	the	rating	to	choose	out	of	the	five	possible	values	can	be	sampled	from
the	multinomial	distribution,	the	probability	mass	function	of	which	follows:

Here:



We	are	now	equipped	with	all	the	technical	knowledge	required	to	create	a
restricted	Boltzmann	machine	for	collaborative	filtering.



Collaborative	filtering
implementation	using	RBM
In	the	next	few	sections,	we	will	be	implementing	a	collaborative	filtering
system	using	a	restricted	Boltzmann	machine	with	the	technical	principles	laid
out	in	the	earlier	section.	The	dataset	that	we	will	be	using	is	the	MovieLens
100K	dataset	that	contains	ratings	from	one	to	five	provided	by	users	for
different	movies.	The	dataset	can	be	downloaded	from	https://grouplens.org/dataset
s/movielens/100k/.

The	TensorFlow	implementation	of	this	collaborative	filtering	system	is	laid	out
in	the	next	few	sections.

	

	

	

https://grouplens.org/datasets/movielens/100k/


Processing	the	input
The	input	ratings	file	records	in	each	row	contain	the	fields	userId,	movieId,	rating,
and	timestamp.	We	process	each	record	to	create	a	training	file	in	the	form	of	a
numpy	array	with	the	three	dimensions	pertaining	to	the	userId,	the	movieId,	and	the
rating.	The	ratings	from	one	to	five	are	one-hot	encoded,	and	hence	the	length
along	the	rating	dimension	is	five.	We	create	the	training	data	with	80%	of	the
input	records	while	the	remaining	20%	is	reserved	for	test	purposes.	The	number
of	movies	that	the	users	have	rated	is	1682.	The	training	file	contains	943	users	and
hence	the	dimension	for	the	training	data	is	(943,1682,5).	Each	user	in	the	training
file	is	a	training	record	to	the	RBM	and	will	contain	a	few	movies	that	the	user
has	rated	and	a	few	that	the	user	hasn't.	A	few	movie	ratings	have	also	been
removed	to	be	included	in	the	test	file.	The	RBM	will	be	trained	on	the	available
ratings,	capture	the	hidden	structure	of	the	input	data	in	the	hidden	unit,	and	then
try	to	reconstruct	the	input	ratings	for	all	movies	for	each	user	from	the	hidden
structure	captured.	We	also	create	a	couple	of	dictionaries	to	store	the	cross
references	of	the	the	actual	movie	IDs	with	their	indices	in	training/test	datasets.
Following	is	the	detailed	code	for	creating	the	training	and	test	files:

"""

@author:	santanu

"""

import	numpy	as	np

import	pandas	as	pd

import	argparse

'''

Ratings	file	preprocessing	script	to	create	training	and	hold	out	test	datasets

'''

def	process_file(infile_path):

				infile	=	pd.read_csv(infile_path,sep='\t',header=None)

				infile.columns	=	['userId','movieId','rating','timestamp']

				users	=	list(np.unique(infile.userId.values))

				movies	=	list(np.unique(infile.movieId.values))

				test_data	=	[]

				ratings_matrix	=	np.zeros([len(users),len(movies),5])

				count	=	0	

				total_count	=	len(infile)

				for	i	in	range(len(infile)):

								rec	=	infile[i:i+1]

								user_index	=	int(rec['userId']-1)

								movie_index	=	int(rec['movieId']-1)

								rating_index	=	int(rec['rating']-1)

								if	np.random.uniform(0,1)	<	0.2	:



												test_data.append([user_index,movie_index,int(rec['rating'])])

								else:

												ratings_matrix[user_index,movie_index,rating_index]	=	1	

								count	+=1	

								if	(count	%	100000	==	0)	&	(count>=	100000):

												print('Processed	'	+	str(count)	+	'	records	out	of	'	+	str(total_count))

				np.save(path	+	'train_data',ratings_matrix)

				np.save(path	+	'test_data',np.array(test_data))

if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser()

				parser.add_argument('--path',help='input	data	path')

				parser.add_argument('--infile',help='input	file	name')

				args	=	parser.parse_args()

				path	=	args.path

				infile	=	args.infile

				process_file(path	+	infile)

				

The	training	file	is	a	numpy	array	object	of	dimensions	m	x	n	x	k	where	m	is	the
total	number	of	users,	n	is	the	total	number	of	movies,	and	k	is	the	number	of
discrete	rating	values	(one	to	five).	To	build	the	test	set,	we	randomly	select	20%
of	the	m	x	n	rating	entries	from	the	training	dataset.	So	all	the	k	rating	values	for
the	test	set	rating	samples	are	marked	as	zero	in	the	training	dataset.	In	the	test
set	we	don't	expand	the	data	into	the	three-dimensional	numpy	array	format	so	it
can	be	used	for	training.	Rather,	we	just	save	the	userid,	movieid	and	the	assigned
rating	in	three	columns.	Do	note	that	the	userid	and	movieid	stored	in	the	train	and
the	test	files	are	not	the	actual	IDs	in	the	raw	ratings	data	file	u.data.	They	are
offset	by	1	to	cater	for	Python	and	numpy	indexing	that	starts	from	0	and	not	from	1

The	following	command	can	be	used	to	invoke	the	data	pre-processing	script:

python	preprocess_ratings.py	--path	'/home/santanu/ML_DS_Catalog-/Collaborating	Filtering/ml-100k/'	--infile	'u.data'



Building	the	RBM	network	for
collaborative	filtering
The	following	function,	_network,	creates	the	desired	RBM	structure	for
collaborative	filtering.	First,	we	define	the	weights,	the	biases,	and	the
placeholders	for	the	inputs.	The	sample_hidden	and	sample_visible	functions	are	then
defined	to	sample	the	hidden	and	the	visible	activations	respectively,	based	on
the	probabilities.	The	hidden	units	are	sampled	from	Bernoulli	distributions	with
the	probabilities	provided	by	the	sigmoid	function,	whereas	the	visible	units
pertaining	to	each	movie	are	sampled	from	multinomial	distribution	based	on	the
probabilities	provided	by	the	softmax	function.	The	softmax	probabilities	need
not	be	created	since	the	tf.multinomial	function	can	directly	sample	from	the	logits
instead	of	the	actual	probabilities.

We	follow	this	up	by	defining	the	logic	for	contrastive	divergence	based	on
Gibbs	sampling.	The	gibbs_step	function	implements	one	step	of	Gibbs	sampling
and	then	utilizes	this	to	achieve	a	contrastive	divergence	of	order	k.

Now	that	we	have	all	the	necessary	functions,	we	create	the	TensorFlow	ops	to
sample	the	hidden	state	self.h	given	the	visible	inputs	and	to	sample	the	visible
units	self.x	given	the	sampled	hidden	state.	We	also	use	contrastive	divergence	to
sample	(self.x_s,self.h_s)	as	a	representative	sample	from	the	joint	probability
distribution	of	v	and	h,	that	is,	P(v,h/model),	for	computing	the	different
expectation	terms	in	the	gradients.

The	final	step	of	the	_network	function	updates	the	weights	and	biases	of	the	RBM
model	based	on	the	gradients.	The	gradients,	as	we	have	seen	earlier,	are	based
on	the	hidden	layer	activations	self.h	given	the	visible	layer	inputs,	and	the
representative	samples	from	the	joint	probability	distribution	P(v,h/model)	derived
through	contrastive	divergence,	which	is	(self.x_s,self.h_s).

The	TensorFlow	ops	self.x_,	which	refers	to	the	visible	layer	activations	given
the	hidden	layer	activations	self.h	would	be	useful	during	inference	to	derive	the
ratings	for	the	movies	that	have	not	been	rated	by	each	user:



def	__network(self):

				

								self.x	=	tf.placeholder(tf.float32,	[None,self.num_movies,self.num_ranks],	name="x")	

								self.xr	=	tf.reshape(self.x,	[-1,self.num_movies*self.num_ranks],	name="xr")	

								self.W	=	tf.Variable(tf.random_normal([self.num_movies*self.num_ranks,self.num_hidden],	0.01),	name="W")	

								self.b_h	=	tf.Variable(tf.zeros([1,self.num_hidden],	tf.float32,	name="b_h"))	

								self.b_v	=	tf.Variable(tf.zeros([1,self.num_movies*self.num_ranks],tf.float32,	name="b_v"))	

								self.k	=	2	

##	Converts	the	probability	into	discrete	binary	states	i.e.	0	and	1	

								def	sample_hidden(probs):

												return	tf.floor(probs	+	tf.random_uniform(tf.shape(probs),	0,	1))	

								def	sample_visible(logits):

				

												logits	=	tf.reshape(logits,[-1,self.num_ranks])

												sampled_logits	=	tf.multinomial(logits,1)	

												sampled_logits	=	tf.one_hot(sampled_logits,depth	=	5)

												logits	=	tf.reshape(logits,[-1,self.num_movies*self.num_ranks])

												print(logits)

												return	logits	

##	Gibbs	sampling	step

								def	gibbs_step(x_k):

										#	x_k	=	tf.reshape(x_k,[-1,self.num_movies*self.num_ranks])	

												h_k	=	sample_hidden(tf.sigmoid(tf.matmul(x_k,self.W)	+	self.b_h))

												x_k	=	sample_visible(tf.add(tf.matmul(h_k,tf.transpose(self.W)),self.b_v))

												return	x_k

##	Run	multiple	gives	Sampling	step	starting	from	an	initital	point	

								def	gibbs_sample(k,x_k):

												for	i	in	range(k):

																x_k	=	gibbs_step(x_k)

#	Returns	the	gibbs	sample	after	k	iterations

												return	x_k

#	Constrastive	Divergence	algorithm

#	1.	Through	Gibbs	sampling	locate	a	new	visible	state	x_sample	based	on	the	current	visible	state	x	

#	2.	Based	on	the	new	x	sample	a	new	h	as	h_sample	

								self.x_s	=	gibbs_sample(self.k,self.xr)

								self.h_s	=	sample_hidden(tf.sigmoid(tf.matmul(self.x_s,self.W)	+	self.b_h))

#	Sample	hidden	states	based	given	visible	states

								self.h	=	sample_hidden(tf.sigmoid(tf.matmul(self.xr,self.W)	+	self.b_h))

#	Sample	visible	states	based	given	hidden	states

								self.x_	=	sample_visible(tf.matmul(self.h,tf.transpose(self.W))	+	self.b_v)

#	The	weight	updated	based	on	gradient	descent	

								#self.size_batch	=	tf.cast(tf.shape(x)[0],	tf.float32)

								self.W_add	=	tf.multiply(self.learning_rate/self.batch_size,tf.subtract(tf.matmul(tf.transpose(self.xr),self.h),tf.matmul(tf.transpose(self.x_s),self.h_s)))

								self.bv_add	=	tf.multiply(self.learning_rate/self.batch_size,	tf.reduce_sum(tf.subtract(self.xr,self.x_s),	0,	True))

								self.bh_add	=	tf.multiply(self.learning_rate/self.batch_size,	tf.reduce_sum(tf.subtract(self.h,self.h_s),	0,	True))

								self.updt	=	[self.W.assign_add(self.W_add),	self.b_v.assign_add(self.bv_add),	self.b_h.assign_add(self.bh_add)]

The	data	from	the	pre-processing	step	can	read	during	training	and	inference
using	the	read_data	function	illustrated	as	follows:

def	read_data(self):

				

								if	self.mode	==	'train':

											self.train_data	=	np.load(self.train_file)



											self.num_ranks	=	self.train_data.shape[2]

											self.num_movies	=	self.train_data.shape[1]

											self.users	=	self.train_data.shape[0]

				

								else:

											self.train_df	=	pd.read_csv(self.train_file)

											self.test_data	=	np.load(self.test_file)

											self.test_df	=	pd.DataFrame(self.test_data,columns=['userid','movieid','rating'])

											if	self.user_info_file	!=	None:

															self.user_info_df	=	pd.read_csv(self.user_info_file,sep='|',header=None)

															self.user_info_df.columns=['userid','age','gender','occupation','zipcode']

											if	self.movie_info_file	!=	None:

															self.movie_info_df	=	pd.read_csv(self.movie_info_file,sep='|',encoding='latin-1',header=None)

															self.movie_info_df	=	self.movie_info_df[[0,1]]	

															self.movie_info_df.columns	=	['movieid','movie	Title']

Also,	during	the	inference	process,	along	with	the	test	file	we	read	in	a
prediction	file	CSV	(self.train_file	here	in	the	inference	part	of	the	previous
code)	for	all	movies	and	ratings	irrespective	of	whether	they	have	been	rated.
The	prediction	is	performed	once	the	model	has	been	trained.	Since	we	already
have	the	ratings	predicted	after	training,	all	we	need	to	do	during	inference	time
is	combine	the	rating	prediction	information	with	the	test	file's	actual	rating
information	(more	details	in	the	train	and	inference	sections	to	follow).	Also,	we
read	information	from	the	user	and	movie	meta	data	file	for	later	use.



Training	the	RBM
The	_train	function	illustrated	here	can	be	used	to	train	the	RBM.	In	this
function,	we	first	invoke	the	_network	function	to	build	the	RBM	network
structure	and	then	we	train	the	model	for	a	specified	number	of	epochs	within	an
activated	TensorFlow	session.	The	model	is	saved	at	specified	intervals	using
TensorFlow's	saver	function:

def	_train(self):

								self.__network()

							#	TensorFlow	graph	execution

								with	tf.Session()	as	sess:

												self.saver	=	tf.train.Saver()

												#saver	=	tf.train.Saver(write_version=tf.train.SaverDef.V2)	

												#	Initialize	the	variables	of	the	Model

												init	=	tf.global_variables_initializer()

												sess.run(init)

												total_batches	=	self.train_data.shape[0]//self.batch_size

												batch_gen	=	self.next_batch()

												#	Start	the	training	

												for	epoch	in	range(self.epochs):

																if	epoch	<	150:

																				self.k	=	2

																if	(epoch	>	150)	&	(epoch	<	250):

																				self.k	=	3

																if	(epoch	>	250)	&	(epoch	<	350):

																				self.k	=	5

																if	(epoch	>	350)	&	(epoch	<	500):

																				self.k	=	9

																				#	Loop	over	all	batches

																for	i	in	range(total_batches):

																				self.X_train	=	next(batch_gen)

																				#	Run	the	weight	update	

																				#batch_xs	=	(batch_xs	>	0)*1

																				_	=	sess.run([self.updt],feed_dict={self.x:self.X_train})

																#	Display	the	running	step	

																if	epoch	%	self.display_step	==	0:

																				print("Epoch:",	'%04d'	%	(epoch+1))

																				print(self.outdir)

																				self.saver.save(sess,os.path.join(self.outdir,'model'),	

																																				global_step=epoch)

											#	Do	the	prediction	for	all	users	all	items	irrespective	of	whether	they	

													have	been	rated

												self.logits_pred	=	tf.reshape(self.x_,

											[self.users,self.num_movies,self.num_ranks])

												self.probs	=	tf.nn.softmax(self.logits_pred,axis=2)

												out	=	sess.run(self.probs,feed_dict={self.x:self.train_data})



												recs	=	[]

												for	i	in	range(self.users):

																for	j	in	range(self.num_movies):

																				rec	=	[i,j,np.argmax(out[i,j,:])	+1]

																				recs.append(rec)

												recs	=	np.array(recs)

												df_pred	=	pd.DataFrame(recs,columns=

												['userid','movieid','predicted_rating'])

												df_pred.to_csv(self.outdir	+	'pred_all_recs.csv',index=False)

												print("RBM	training	Completed	!")

An	important	thing	to	highlight	in	the	preceding	function	is	the	creation	of
random	batches	using	a	custom	next_batch	function.	The	function	is	as	defined	in
the	following	code	snippet	and	it	is	used	to	define	an	iterator	batch_gen	that	can	be
invoked	by	the	next	method	to	retrieve	the	next	mini-batch:

def	next_batch(self):

				while	True:

								ix	=	np.random.choice(np.arange(self.data.shape[0]),self.batch_size)

								train_X	=	self.data[ix,:,:]	

								yield	train_X

One	thing	to	note	is	that	at	the	end	of	the	training,	we	predict	the	ratings	for	all
movies	from	all	users,	irrespective	of	whether	they	are	rated.	The	ratings	with
the	maximum	probability,	which	will	be	given	out	of	the	five	possible	ratings
(that	is	from	one	to	five)	as	the	final	rating.	Since	in	Python	the	indexing	starts
from	zero	we	add	one	to	get	the	actual	rating	after	using	argmax	to	get	the	location
of	the	rating	with	the	highest	probability.	So,	at	the	end	of	the	training,	we	have	a
pred_all_recs.csv	file	containing	the	predicted	rating	for	all	the	training	and	test
records.	Do	note	that	the	test	records	are	embedded	in	the	training	records	with
all	the	indices	of	the	rating	for	from	one	to	five	being	set	to	zero.

However,	once	we	have	trained	the	model	sufficiently	from	the	hidden
representation	of	the	movies	that	the	user	has	watched	it	learns	to	generate
ratings	from	the	movies	that	the	user	hasn't	seen.

The	model	can	be	trained	by	invoking	the	following	commands:

python	rbm.py	main_process	--mode	train	--train_file	'/home/santanu/ML_DS_Catalog-/Collaborating	Filtering/ml-100k/train_data.npy'	--outdir	'/home/santanu/ML_DS_Catalog-/Collaborating	Filtering/'	--num_hidden	5	--epochs	1000

Training	the	model	for	1000	epochs	with	just	5	hidden	layers	takes	around	52
seconds,	as	we	can	see	from	the	log:

RBM	training	Completed	!

52.012	s:	process	RBM

Note	that	the	Restricted	Boltzmann	Machine	Network	has	been	trained	on	an	Ubuntu	machine



with	a	GeForce	Zotac	1070	GPU	and	64	GB	of	RAM.	Training	time	may	vary	based	on	the
system	used	to	train	the	network.



Inference	using	the	trained	RBM
Inference	for	the	RBM	is	pretty	straightforward	given	that	we	have	already
generated	the	file	pred_all_recs.csv	with	all	the	predictions	during	training.	All	we
need	to	do	is	just	extract	the	test	records	from	the	pred_all_recs.csv	based	on	the
provided	test	file.	Also,	we	resort	to	the	original	userid	and	movieid	by	adding	1	to
their	current	values.	The	purpose	of	going	back	to	the	original	ID	is	to	be	able	to
add	the	user	and	movie	information	from	the	u.user	and	u.item	files.

The	inference	block	is	as	follows:

def	inference(self):

								self.df_result	=	self.test_df.merge(self.train_df,on=['userid','movieid'])

								#	in	order	to	get	the	original	ids	we	just	need	to	add	1	

								self.df_result['userid']	=	self.df_result['userid']	+	1

								self.df_result['movieid']	=	self.df_result['movieid']	+	1

								if	self.user_info_file	!=	None:

												self.df_result.merge(self.user_info_df,on=['userid'])

								if	self.movie_info_file	!=	None:

												self.df_result.merge(self.movie_info_df,on=['movieid'])

								self.df_result.to_csv(self.outdir	+	'test_results.csv',index=False)

								print(f'output	written	to	{self.outdir}test_results.csv')

								test_rmse	=	(np.mean((self.df_result['rating'].values	-	

								self.df_result['predicted_rating'].values)**2))**0.5

								print(f'test	RMSE	:	{test_rmse}')

Inference	can	be	invoked	as	follows:

	python	rbm.py	main_process	--mode	test	--train_file	'/home/santanu/ML_DS_Catalog-/Collaborating	Filtering/pred_all_recs.csv'	--test_file	'/home/santanu/ML_DS_Catalog-/Collaborating	Filtering/ml-100k/test_data.npy'	--outdir	'/home/santanu/ML_DS_Catalog-/Collaborating	Filtering/'	--user_info_file	'/home/santanu/ML_DS_Catalog-/Collaborating	Filtering/ml-100k/u.user'	--movie_info_file	'/home/santanu/ML_DS_Catalog-/Collaborating	Filtering/ml-100k/u.item'

	

By	using	only	5	hidden	units	in	the	RBM	we	achieve	a	test	RMSE	of	around	1.19
which	is	commendable	given	that	we	have	chosen	such	a	simple	network.	The
output	log	of	inference	is	provided	in	the	following	code	block	for	reference:

output	written	to	/home/santanu/ML_DS_Catalog-/Collaborating	Filtering/test_results.csv

test	RMSE	:	1.1999306704742303

458.058	ms:	process	RBM

We	look	at	the	inference	results	for	userid	1	from	the	test_results.csv	as	follows
(see	Figure	6.9):





Figure	6.9:	Holdout	data	validation	results	on	userid	1

We	can	see	from	the	predictions	in	the	preceding	screenshot	(Figure	6.9)	that	the
RBM	has	done	a	good	job	of	predicting	the	holdout	set	of	movies	for	userid	1.

You	are	advised	to	take	the	final	rating	prediction	as	the	expectation	of	the
ratings	over	the	multinomial	probability	distribution	for	each	movie-rating
prediction	and	see	how	it	fares	in	comparison	to	the	approach,	where	we	are
taking	the	final	rating	as	the	one	with	the	highest	probability	over	the
multinomial	distribution.	The	RBM	paper	for	collaborative	filtering	can	be
located	at	https://www.cs.toronto.edu/~rsalakhu/papers/rbmcf.pd.	The	code	related	to
the	restricted	Boltzmann	machine	can	be	located	at	https://github.com/PacktPublishi
ng/Intelligent-Projects-using-Python/blob/master/Chapter06/rbm.py.

https://www.cs.toronto.edu/~rsalakhu/papers/rbmcf.pd
https://www.cs.toronto.edu/~rsalakhu/papers/rbmcf.pdf
https://github.com/PacktPublishing/Intelligent-Projects-using-Python/blob/master/Chapter06/rbm.py


Summary
After	going	through	this	chapter,	you	should	now	be	able	to	build	an	intelligent
recommender	system	using	restricted	Boltzmann	machines	and	extend	it	in
interesting	ways	based	on	your	domain	and	requirements.	For	a	detailed
implementation	of	the	project	illustrated	in	this	chapter,	refer	to	the	GiHub	link
for	this	project	at	https://github.com/PacktPublishing/Intelligent-Projects-using-Python/b
lob/master/Chapter06.

In	the	next	chapter,	we	will	deal	with	the	creation	of	a	mobile	app	to	perform
sentiment	analysis	of	movie	reviews.	I	look	forward	to	your	participation.

	

	

	

https://github.com/PacktPublishing/Intelligent-Projects-using-Python/blob/master/Chapter06


Mobile	App	for	Movie	Review
Sentiment	Analysis
In	this	modern	age,	sending	data	to	AI-based	applications	in	the	cloud	for
inference	is	commonplace.	For	instance,	a	user	can	send	an	image	taken	on	a
mobile	phone	to	the	Amazon	Rekognition	API,	and	the	service	can	tag	the
various	objects,	people,	text,	scenes,	and	so	on,	present	in	the	image.	The
advantage	of	employing	the	service	of	an	AI-based	application	that's	hosted	in
the	cloud	is	its	ease	of	use.	The	mobile	app	just	needs	to	make	an	HTTPS
request	to	the	AI-based	service,	along	with	the	image,	and,	within	a	few	seconds,
the	service	will	provide	the	inference	results.	A	few	of	these	machine	learning
as	a	service	providers	are	as	follows:

Amazon	Rekognition
Amazon	Polly
Amazon	Lex
Microsoft	Azure	Cognitive	Services
IBM	Watson
Google	Cloud	Vision

The	following	diagram,	Figure	7.1,	illustrates	the	architecture	of	this	kind	of
application	as	it's	hosted	on	the	cloud,	and	how	it	interacts	with	a	mobile	device:



Figure	7.1:	Mobile	app	communicating	with	an	AI	model	hosted	on	the	cloud

As	you	can	see	in	the	preceding	diagram,	the	mobile	app	sends	an	image
localization	and	classification	request	to	the	model	hosted	on	the	cloud,	along
with	an	image,	and	the	model	sends	back	the	results,	after	running	inference	on
the	provided	image.	The	advantages	of	using	such	a	service	on	the	cloud	are	as
follows:

There	is	no	need	to	gather	data	for	training	this	kind	of	model
There	is	no	pain	associated	with	hosting	the	AI	model	as	a	service
There	is	no	need	to	worry	about	re-training	the	model

All	of	the	preceding	will	be	taken	care	of	by	the	service	provider.	However,
using	this	kind	of	AI	application	on	the	cloud	does	have	several	disadvantages,
as	well,	which	include	the	following:

The	user	cannot	run	inference	on	the	mobile	device	locally.	All	inference
needs	to	be	done	by	sending	a	network	request	to	the	server	where	the	AI
application	is	hosted.	The	mobile	app	won't	work	in	the	absence	of	network
connectivity.	Also,	there	may	be	some	delays	in	getting	the	predictions	from
the	model	through	the	network.
If	it	is	not	a	freely	hosted	cloud	application,	the	user	typically	pays	for	the
number	of	inferences	they	run.
The	models	hosted	on	the	cloud	are	very	generic,	and	the	user	has	no
control	over	training	those	models	with	their	own	data.	If	the	data	is	unique,
this	kind	of	application,	which	is	trained	on	generic	data,	might	not	provide



great	results.

	

The	preceding	shortcomings	of	AI	applications	deployed	on	the	cloud	can	be
overcome	by	running	inference	on	the	mobile	device	itself,	instead	of	sending
the	data	to	the	AI	application	over	the	internet.

The	model	can	be	trained	on	any	system	with	the	appropriate	CPU	and	GPU,
using	training	data	specific	to	the	problem	that	the	mobile	app	is	designed	for.
The	trained	model	can	then	be	converted	to	an	optimized	file	format,	with	only
the	weights	and	ops	required	to	run	the	inference.	The	optimized	model	can	then
be	integrated	with	the	mobile	app,	and	the	whole	project	can	be	loaded	as	an	app
on	the	mobile	device.	The	optimized	file	for	the	trained	model	should	be	as	light
in	size	as	possible,	since	the	model	is	going	to	be	stored	on	the	mobile	itself,
along	with	the	rest	of	the	mobile	app	code.	In	this	chapter,	we	are	going	to
develop	an	Android	mobile	app,	using	TensorFlow	mobile.



Technical	requirements
You	will	require	to	have	basic	knowledge	of	Python	3,	TensorFlow,	and	Java

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter07

Check	out	the	following	video	to	see	the	code	in	action:
http://bit.ly/2S1sddw

https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter07
http://bit.ly/2S1sddw


Building	an	Android	mobile	app
using	TensorFlow	mobile
In	this	project,	we	will	be	using	TensorFlow's	mobile	capabilities	to	optimize	a
trained	model	as	a	protocol	buffer	object.	We	will	then	integrate	the	model	with
an	Android	app,	the	logic	of	which	will	be	written	in	Java.	We	need	to	carry	out
the	following	steps:

1.	 Build	a	model	in	TensorFlow	and	train	it	with	the	relevant	data.
2.	 Once	the	model	performs	satisfactorily	on	the	validation	dataset,	convert

the	TensorFlow	model	to	the	optimized	protobuf	object	(for	example,
optimized_model.pb).

3.	 Download	Android	Studio	and	its	prerequisites.	Develop	the	core
application	logic	in	Java	and	the	interfacing	pages	using	XML.

4.	 Integrate	the	TensorFlow	trained	model	protobuf	object	and	its	associated
dependencies	in	the	assets	folder	within	the	project.

5.	 Build	the	project	and	run	it.

The	implementation	of	this	Android	app	is	illustrated	in	the	following	diagram
(Figure	7.2):





Figure	7.2:	Mobile	app	deployment	architectural	diagram
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Preprocessing	the	movie	review	text
The	movie	review	text	needs	to	be	preprocessed	and	converted	to	numerical
tokens,	corresponding	to	different	words	in	the	corpus.	The	Keras	tokenizer	will
be	used	to	convert	the	words	into	numerical	indices,	or	tokens,	by	taking	the	first
50000	frequent	words.	We	have	restricted	the	movie	reviews	to	have	a	maximum
of	1000	word	tokens.	If	a	movie	review	has	less	than	1000	word	tokens,	the	review
is	padded	with	zeros	at	the	beginning.	After	the	preprocessing,	the	data	is	split
into	train,	validation,	and	test	sets.	The	Keras	Tokenizer	object	is	saved	for	use
during	inference.

The	detailed	code(preprocess.py)	for	preprocessing	the	movie	reviews	is	as
follows:

#	-*-	coding:	utf-8	-*-

"""

Created	on	Sun	Jun	17	22:36:00	2018

@author:	santanu

"""

import	numpy	as	np

import	pandas	as	pd

import	os

import	re

from	keras.preprocessing.text	import	Tokenizer

from	keras.preprocessing.sequence	import	pad_sequences

import	pickle

import	fire	

from	elapsedtimer	import	ElapsedTimer

#	Function	to	clean	the	text	and	convert	it	into	lower	case	

def	text_clean(text):

				letters	=	re.sub("[^a-zA-z0-9\s]",	"	",text)

				words	=	letters.lower().split()

				text	=	"	".join(words)

				

				return	text

def	process_train(path):

				review_dest	=	[]

				reviews	=	[]

				train_review_files_pos	=	os.listdir(path	+	'train/pos/')

				review_dest.append(path	+	'train/pos/')

				train_review_files_neg	=	os.listdir(path	+	'train/neg/')

				review_dest.append(path	+	'train/neg/')

				test_review_files_pos	=	os.listdir(path	+	'test/pos/')	

				review_dest.append(path	+	'test/pos/')

				test_review_files_neg	=	os.listdir(path	+	'test/neg/')

				review_dest.append(path	+	'test/neg/')

				



				sentiment_label	=	[1]*len(train_review_files_pos)	+	\

																						[0]*len(train_review_files_neg)	+	\

																						[1]*len(test_review_files_pos)	+	\

																						[0]*len(test_review_files_neg)

																						

				review_train_test	=	['train']*len(train_review_files_pos)	+	\

																								['train']*len(train_review_files_neg)	+	\

																								['test']*len(test_review_files_pos)	+	\

																								['test']*len(test_review_files_neg)

				

				reviews_count	=	0	

				

				for	dest	in	review_dest:

								files	=	os.listdir(dest)

								for	f	in	files:

												fl	=	open(dest	+	f,'r')

												review	=	fl.readlines()

												review_clean	=	text_clean(review[0])

												reviews.append(review_clean)

												reviews_count	+=1

												

				df	=	pd.DataFrame()

				df['Train_test_ind']	=	review_train_test

				df['review']	=	reviews

				df['sentiment_label']	=	sentiment_label

				df.to_csv(path	+	'processed_file.csv',index=False)

				print	('records_processed',reviews_count)

				return	df

				

def	process_main(path):

				df	=	process_train(path)

				#	We	will	tokenize	the	text	for	the	most	common	50000	words.

				max_fatures	=	50000

				tokenizer	=	Tokenizer(num_words=max_fatures,	split='	')

				tokenizer.fit_on_texts(df['review'].values)

				X	=	tokenizer.texts_to_sequences(df['review'].values)	

				X_	=	[]

				for	x	in	X:

								x	=	x[:1000]	

								X_.append(x)	

				X_	=	pad_sequences(X_)

				y	=	df['sentiment_label'].values

				index	=	list(range(X_.shape[0]))

				np.random.shuffle(index)

				train_record_count	=	int(len(index)*0.7)

				validation_record_count	=	int(len(index)*0.15)

				train_indices	=	index[:train_record_count]

				validation_indices	=	index[train_record_count:train_record_count	+	

																														validation_record_count]

				test_indices	=	index[train_record_count	+	validation_record_count:]

				X_train,y_train	=	X_[train_indices],y[train_indices]

				X_val,y_val	=	X_[validation_indices],y[validation_indices]

				X_test,y_test	=	X_[test_indices],y[test_indices]

		

				np.save(path	+	'X_train',X_train)

				np.save(path	+	'y_train',y_train)

				np.save(path	+	'X_val',X_val)

				np.save(path	+	'y_val',y_val)

				np.save(path	+	'X_test',X_test)

				np.save(path	+	'y_test',y_test)

				

				



				#	saving	the	tokenizer	oject	for	inference

				with	open(path	+	'tokenizer.pickle',	'wb')	as	handle:

								pickle.dump(tokenizer,	handle,	protocol=pickle.HIGHEST_PROTOCOL)

if	__name__	==	'__main__':

				with	ElapsedTimer('Process'):

								fire.Fire(process_main)

						

The	code	preprocess.py	can	be	invoked	as	follows:

python	preprocess.py	--path	/home/santanu/Downloads/Mobile_App/aclImdb/				

The	output	log	for	the	same	would	be	as	follows:

Using	TensorFlow	backend.

records_processed	50000

24.949	s:	Process



def	_build_model(self):<br/>	<br/>	with	tf.variable_scope('inputs'):<br/>	self.X
=	tf.placeholder(shape=[None,	self.sentence_length],dtype=tf.int32,name="X")
<br/>	print	(self.X)<br/>	self.y	=	tf.placeholder(shape=[None,1],
dtype=tf.float32,name="y")<br/>	self.emd_placeholder	=
tf.placeholder(tf.float32,shape=[self.n_words,self.embedding_dim])	<br/><br/>
with	tf.variable_scope('embedding'):<br/>	#	create	embedding	variable<br/>
self.emb_W	=tf.get_variable('word_embeddings',[self.n_words,
self.embedding_dim],initializer=tf.random_uniform_initializer(-1,	1,
0),trainable=True,dtype=tf.float32)<br/>	self.assign_ops	=
tf.assign(self.emb_W,self.emd_placeholder)<br/>	<br/>	#	do	embedding
lookup<br/>	self.embedding_input	=
tf.nn.embedding_lookup(self.emb_W,self.X,"embedding_input")	<br/>	print(
self.embedding_input	)<br/>	self.embedding_input	=
tf.unstack(self.embedding_input,self.sentence_length,1)	<br/>	#rint(
self.embedding_input)<br/><br/>	#	define	the	LSTM	cell<br/>	with
tf.variable_scope('LSTM_cell'):<br/>	self.cell	=
tf.nn.rnn_cell.BasicLSTMCell(self.hidden_states)<br/><br/>	<br/>	#	define	the
LSTM	operation<br/>	with	tf.variable_scope('ops'):<br/>	self.output,	self.state	=
tf.nn.static_rnn(self.cell,self.embedding_input,dtype=tf.float32)<br/>	<br/>
<br/>	with	tf.variable_scope('classifier'):<br/>	self.w	=
tf.get_variable(name="W",	shape=[self.hidden_states,1],dtype=tf.float32)<br/>
self.b	=	tf.get_variable(name="b",	shape=[1],	dtype=tf.float32)<br/>	self.l2_loss
=	tf.nn.l2_loss(self.w,name="l2_loss")<br/>	self.scores	=
tf.nn.xw_plus_b(self.output[-1],self.w,self.b,name="logits")<br/>
self.prediction_probability	=
tf.nn.sigmoid(self.scores,name='positive_sentiment_probability')<br/>	print
(self.prediction_probability)<br/>	self.predictions	=
tf.round(self.prediction_probability,name='final_prediction')<br/>	<br/><br/>
self.losses	=
tf.nn.sigmoid_cross_entropy_with_logits(logits=self.scores,labels=self.y)<br/>
self.loss	=	tf.reduce_mean(self.losses)	+	self.lambda1*self.l2_loss<br/>
tf.summary.scalar('loss',	self.loss)<br/>	<br/>	self.optimizer	=
tf.train.AdamOptimizer(self.learning_rate).minimize(self.losses)<br/>	<br/>
<br/>	self.correct_predictions	=	tf.equal(self.predictions,tf.round(self.y))<br/>
print	(self.correct_predictions)<br/>	<br/>	self.accuracy	=
tf.reduce_mean(tf.cast(self.correct_predictions,	"float"),	name="accuracy")<br/>
tf.summary.scalar('accuracy',	self.accuracy)



def	_train(self):<br/>	<br/>	self.num_batches	=
int(self.X_train.shape[0]//self.batch_size)<br/>	self._build_model()<br/>
self.saver	=	tf.train.Saver()<br/>	<br/>	<br/>	with	tf.Session()	as	sess:<br/>	init
=	tf.global_variables_initializer()<br/>	sess.run(init)	<br/>
sess.run(self.assign_ops,feed_dict=
{self.emd_placeholder:self.embedding_matrix})	<br/>
tf.train.write_graph(sess.graph_def,	self.path,	'model.pbtxt')	<br/>	print
(self.batch_size,self.batch_size_val)<br/>	for	epoch	in	range(self.epochs):<br/>
gen_batch	=	self.batch_gen(self.X_train,self.y_train,self.batch_size)<br/>
gen_batch_val	=	self.batch_gen(self.X_val,self.y_val,self.batch_size_val)<br/>
<br/>	for	batch	in	range(self.num_batches):<br/>	X_batch,y_batch	=
next(gen_batch)	<br/>	X_batch_val,y_batch_val	=	next(gen_batch_val)<br/>
sess.run(self.optimizer,feed_dict={self.X:X_batch,self.y:y_batch})<br/>	c,a	=
sess.run([self.loss,self.accuracy],feed_dict={self.X:X_batch,self.y:y_batch})
<br/>	print("	Epoch=",epoch,"	Batch=",batch,"	Training	Loss:	","
{:.9f}".format(c),	"	Training	Accuracy=",	"{:.9f}".format(a))<br/>	c1,a1	=
sess.run([self.loss,self.accuracy],feed_dict=
{self.X:X_batch_val,self.y:y_batch_val})<br/>	print("	Epoch=",epoch,"
Validation	Loss:	","{:.9f}".format(c1),	"	Validation	Accuracy=",	"
{:.9f}".format(a1))<br/>	results	=	sess.run(self.prediction_probability,feed_dict=
{self.X:X_batch_val})<br/>	print(results)<br/><br/>	if	epoch	%
self.checkpoint_step	==	0:<br/>	self.saver.save(sess,
os.path.join(self.path,'model'),	global_step=epoch)	<br/>	<br/>
self.saver.save(sess,self.path	+	'model_ckpt')<br/>	results	=
sess.run(self.prediction_probability,feed_dict={self.X:X_batch_val})<br/>
print(results)



The	batch	generator
In	the	train	function,	we	will	use	a	batch	generator	to	produce	random	batches,
based	on	the	batch	sizes	passed.	The	generator	functions	can	be	defined	as
follows.	Note	that	the	functions	use	yield	in	place	of	return.	By	calling	the
functions	with	the	required	parameters,	an	iterator	object	of	batches	will	be
created.	The	batches	can	be	retrieved	by	applying	the	next	method	to	the	iterator
object.	We	will	call	the	generator	functions	at	the	start	of	each	epoch,	so	that	the
batches	will	be	random	in	each	epoch.

The	following	code	snippet	illustrates	the	function	used	to	generate	the	batch
iterator	object:

def	batch_gen(self,X,y,batch_size):

														

								index	=	list(range(X.shape[0]))

								np.random.shuffle(index)

								batches	=	int(X.shape[0]//batch_size)

											

								

								for	b	in	range(batches):

												X_train,y_train	=	X[index[b*batch_size:	(b+1)*batch_size],:],

																																						y[index[b*batch_size:	(b+1)*batch_size]]

												yield	X_train,y_train

The	detailed	code	for	the	model	training	activity	is	present	in	the	script
movie_review_model_train.py	.	The	training	for	the	same	can	be	invoked	as	follows:

python	movie_review_model_train.py	process_main	--path	/home/santanu/Downloads/Mobile_App/	--epochs	10

The	output	from	training	is	as	follows:

Using	TensorFlow	backend.

(35000,	1000)	(35000,	1)

(7500,	1000)	(7500,	1)

(7500,	1000)	(7500,	1)

no	of	positive	class	in	train:	17497

no	of	positive	class	in	test:	3735

Tensor("inputs/X:0",	shape=(?,	1000),	dtype=int32)

Tensor("embedding/embedding_lookup:0",	shape=(?,	1000,	100),	dtype=float32)

Tensor("positive_sentiment_probability:0",	shape=(?,	1),	dtype=float32)

.....

25.043	min:	Model	train



	



Freezing	the	model	to	a	protobuf
format
The	saved,	trained	model,	in	the	form	of	the	model.pbtxt	and	model_ckpt	files,	cannot
be	used	by	the	Android	app	directly.	We	need	to	convert	it	to	an	optimized
protobuf	format	(a	.pb	extension	file),	which	can	be	integrated	with	the	Android
app.	The	file	size	of	the	optimized	protobuf	format	will	be	much	smaller	than	the
combined	size	of	the	model.pbtxt	and	model_ckpt	files.

The	following	code(freeze_code.py)	will	create	the	optimized	protobuf	model	from
the	model.pbtxt	and	the	model_ckpt	files:

#	-*-	coding:	utf-8	-*-

import	sys

import	tensorflow	as	tf

from	tensorflow.python.tools	import	freeze_graph

from	tensorflow.python.tools	import	optimize_for_inference_lib

import	fire

from	elapsedtimer	import	ElapsedTimer

#path	=	'/home/santanu/Downloads/Mobile_App/'

#MODEL_NAME	=	'model'

def	model_freeze(path,MODEL_NAME='model'):

				#	Freeze	the	graph

				input_graph_path	=	path	+	MODEL_NAME+'.pbtxt'

				checkpoint_path	=	path	+	'model_ckpt'

				input_saver_def_path	=	""

				input_binary	=	False

				output_node_names	=	'positive_sentiment_probability'

				restore_op_name	=	"save/restore_all"

				filename_tensor_name	=	"save/Const:0"

				output_frozen_graph_name	=	path	+	'frozen_'+MODEL_NAME+'.pb'

				output_optimized_graph_name	=	path	+	'optimized_'+MODEL_NAME+'.pb'

				clear_devices	=	True

				freeze_graph.freeze_graph(input_graph_path,	input_saver_def_path,

																												input_binary,	checkpoint_path,	output_node_names,

																												restore_op_name,	filename_tensor_name,

				output_frozen_graph_name,	clear_devices,	"")

				input_graph_def	=	tf.GraphDef()

				with	tf.gfile.Open(output_frozen_graph_name,	"rb")	as	f:

								data	=	f.read()

								input_graph_def.ParseFromString(data)



				output_graph_def	=	optimize_for_inference_lib.optimize_for_inference(

												input_graph_def,

												["inputs/X"	],#an	array	of	the	input	node(s)

												["positive_sentiment_probability"],

												tf.int32.as_datatype_enum	#	an	array	of	output	nodes

												)

				#	Save	the	optimized	graph

				f	=	tf.gfile.FastGFile(output_optimized_graph_name,	"w")

				f.write(output_graph_def.SerializeToString())

if	__name__	==	'__main__':

				with	ElapsedTimer('Model	Freeze'):

								fire.Fire(model_freeze)

As	you	can	see	in	the	preceding	code,	we	first	declare	the	input	tensor	and	the
output	tensor,	by	referring	to	their	names	as	defined	while	declaring	the	model.
Using	the	input	and	the	output	tensors,	as	well	as	the	model.pbtxt	and	model_ckpt
files,	the	model	is	frozen	by	utilizing	the	freeze_graph	function	from
tensorflow.python.tools.	In	the	next	step,	the	frozen	model	is	further	optimized,
using	the	optimize_for_inference_lib	function	from	tensorflow.python.tools	to	create
the	protobuf	model,	named	optimized_model.pb.	This	optimized	protobuf	model,
optimized_model.pb,	will	be	integrated	with	the	Android	app,	for	inference.

The	freeze_code.py	model	can	be	invoked	to	create	the	protobuf	format	file	as
follows:

python	freeze_code.py	--path	/home/santanu/Downloads/Mobile_App/	--MODEL_NAME	model

The	output	of	the	execution	of	the	preceding	command	is	as	follows:

39.623	s:	Model	Freeze



import	keras	<br/>import	pickle	<br/>import	fire<br/>from	elapsedtimer	import
ElapsedTimer<br/><br/>#path	=
'/home/santanu/Downloads/Mobile_App/aclImdb/tokenizer.pickle'<br/>#path_out
=	'/home/santanu/Downloads/Mobile_App/word_ind.txt'<br/>def
tokenize(path,path_out):<br/>	with	open(path,	'rb')	as	handle:<br/>	tokenizer	=
pickle.load(handle)<br/><br/><br/><br/>	dict_	=	tokenizer.word_index<br/>
<br/>	keys	=	list(dict_.keys())[:50000]	<br/>	values	=	list(dict_.values())
[:50000]<br/>	total_words	=	len(keys)<br/>	f	=	open(path_out,'w')<br/>	for	i	in
range(total_words):<br/>	line	=	str(keys[i])	+	','	+	str(values[i])	+	'\n'<br/>
f.write(line)<br/><br/>	f.close()<br/><br/>if	__name__	==	'__main__':<br/>
with	ElapsedTimer('Tokeize'):<br/>	fire.Fire(tokenize)

<strong>python	tokenizer_2_txt.py	--path
'/home/santanu/Downloads/Mobile_App/aclImdb/tokenizer.pickle'	--path_out
'/home/santanu/Downloads/Mobile_App/word_ind.txt'</strong><br/><br/>

<strong>Using	TensorFlow	backend.</strong><br/><strong>165.235	ms:
Tokenize</strong>



App	interface	page	design
A	simple	mobile	app	interface	can	be	designed	using	Android	Studio,	and	the
relevant	code	will	be	generated	as	an	XML	file.	As	you	can	see	in	the	following
screenshot	(Figure	7.3),	the	app	consists	of	a	simple	movie	review	textbox,
where	the	users	can	input	their	movie	reviews,	and,	once	done,	press	the
SUBMIT	button.	Once	the	SUBMIT	button	is	pressed,	the	review	will	be	passed
to	the	core	app	logic,	which	will	process	the	movie	review	text	and	pass	it	to	the
TensorFlow	optimized	model	for	inference.

As	a	part	of	the	inference,	a	sentiment	score	will	be	computed,	which	will	be
displayed	on	the	mobile	app	and	also	showcased	as	a	star	rating:



Figure	7.3:	Mobile	app	user	interface	page	format

The	XML	file	required	to	generate	the	previously	mentioned	view	of	the	mobile
app	is	illustrated	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<android.support.constraint.ConstraintLayout	xmlns:android="http://schemas.android.com/apk/res/android"

	xmlns:app="http://schemas.android.com/apk/res-auto"

	xmlns:tools="http://schemas.android.com/tools"

	android:layout_width="match_parent"

	android:layout_height="match_parent"

	tools:context=".MainActivity"

	tools:layout_editor_absoluteY="81dp">



				<TextView

	android:id="@+id/desc"

	android:layout_width="100dp"

	android:layout_height="26dp"

	android:layout_marginEnd="8dp"

	android:layout_marginLeft="44dp"

	android:layout_marginRight="8dp"

	android:layout_marginStart="44dp"

	android:layout_marginTop="36dp"

	android:text="Movie	Review"

	app:layout_constraintEnd_toEndOf="parent"

	app:layout_constraintHorizontal_bias="0.254"

	app:layout_constraintStart_toStartOf="parent"

	app:layout_constraintTop_toTopOf="parent"

	tools:ignore="HardcodedText"	/>

				<EditText

	android:id="@+id/Review"

	android:layout_width="319dp"

	android:layout_height="191dp"

	android:layout_marginEnd="8dp"

	android:layout_marginLeft="8dp"

	android:layout_marginRight="8dp"

	android:layout_marginStart="8dp"

	android:layout_marginTop="24dp"

	app:layout_constraintEnd_toEndOf="parent"

	app:layout_constraintStart_toStartOf="parent"

	app:layout_constraintTop_toBottomOf="@+id/desc"	/>

				<RatingBar

	android:id="@+id/ratingBar"

	android:layout_width="240dp"

	android:layout_height="49dp"

	android:layout_marginEnd="8dp"

	android:layout_marginLeft="52dp"

	android:layout_marginRight="8dp"

	android:layout_marginStart="52dp"

	android:layout_marginTop="28dp"

	app:layout_constraintEnd_toEndOf="parent"

	app:layout_constraintHorizontal_bias="0.238"

	app:layout_constraintStart_toStartOf="parent"

	app:layout_constraintTop_toBottomOf="@+id/score"

	tools:ignore="MissingConstraints"	/>

				<TextView

	android:id="@+id/score"

	android:layout_width="125dp"

	android:layout_height="39dp"

	android:layout_marginEnd="8dp"

	android:layout_marginLeft="96dp"

	android:layout_marginRight="8dp"

	android:layout_marginStart="96dp"

	android:layout_marginTop="32dp"

	android:ems="10"

	android:inputType="numberDecimal"

	app:layout_constraintEnd_toEndOf="parent"

	app:layout_constraintHorizontal_bias="0.135"

	app:layout_constraintStart_toStartOf="parent"

	app:layout_constraintTop_toBottomOf="@+id/submit"	/>

				<Button

	android:id="@+id/submit"

	android:layout_width="wrap_content"



	android:layout_height="35dp"

	android:layout_marginEnd="8dp"

	android:layout_marginLeft="136dp"

	android:layout_marginRight="8dp"

	android:layout_marginStart="136dp"

	android:layout_marginTop="24dp"

	android:text="SUBMIT"

	app:layout_constraintEnd_toEndOf="parent"

	app:layout_constraintHorizontal_bias="0.0"

	app:layout_constraintStart_toStartOf="parent"

	app:layout_constraintTop_toBottomOf="@+id/Review"	/>

</android.support.constraint.ConstraintLayout>

One	thing	to	note	is	that	the	variables	through	which	the	user	and	the	mobile	app
core	logic	interact	with	each	other	are	declared	in	the	XML	file,	in	the	android:id
option.	For	instance,	the	movie	review	that	the	user	provides	will	be	handled	by
the	Review	variable,	as	is	defined	in	the	XML	file	shown	here:

android:id="@+id/Review"



package	com.example.santanu.abc;<br/>import
android.content.res.AssetManager;<br/>import
android.support.v7.app.AppCompatActivity;<br/>import	android.os.Bundle;
<br/>import	android.view.View;<br/>import	android.widget.RatingBar;
<br/>import	android.widget.TextView;<br/>import	android.widget.Button;
<br/>import	android.widget.EditText;<br/>import	java.io.BufferedReader;
<br/>import	java.io.FileReader;<br/>import	java.io.IOException;<br/>import
java.io.InputStreamReader;<br/>import	java.util.HashMap;<br/>import
java.util.Map;<br/>import
org.tensorflow.contrib.android.TensorFlowInferenceInterface;<br/><br/>
<br/>public	class	MainActivity	extends	AppCompatActivity	{<br/><br/>
private	TensorFlowInferenceInterface	mInferenceInterface;<br/>	private	static
final	String	MODEL_FILE	=	"file:///android_asset/optimized_model.pb";<br/>
private	static	final	String	INPUT_NODE	=	"inputs/X";<br/>	private	static	final
String	OUTPUT_NODE	=	"positive_sentiment_probability";<br/><br/><br/>
@Override<br/>	protected	void	onCreate(Bundle	savedInstanceState)	{<br/>
super.onCreate(savedInstanceState);<br/>
setContentView(R.layout.activity_main);<br/>	//	Create	references	to	the	widget
variables<br/><br/>	final	TextView	desc	=	(TextView)
findViewById(R.id.desc);<br/>	final	Button	submit	=	(Button)
findViewById(R.id.submit);<br/>	final	EditText	Review	=	(EditText)
findViewById(R.id.Review);<br/>	final	TextView	score	=	(TextView)
findViewById(R.id.score);<br/>	final	RatingBar	ratingBar	=	(RatingBar)
findViewById(R.id.ratingBar);<br/><br/>	//String	filePath	=
"/home/santanu/Downloads/Mobile_App/word2ind.txt";<br/>	final
Map<String,Integer>	WordToInd	=	new	HashMap<String,Integer>();<br/>
//String	line;<br/><br/>	//reader	=	new	BufferedReader(new
InputStreamReader(getAssets().open("word2ind.txt")));<br/><br/>
BufferedReader	reader	=	null;<br/>	try	{<br/>	reader	=	new
BufferedReader(<br/>	new
InputStreamReader(getAssets().open("word_ind.txt")));<br/><br/>	//	do	reading,
usually	loop	until	end	of	file	reading<br/>	String	line;<br/>	while	((line	=
reader.readLine())	!=	null)<br/>	{<br/>	String[]	parts	=	line.split("\n")
[0].split(",",2);<br/>	if	(parts.length	>=	2)<br/>	{<br/><br/>	String	key	=
parts[0];<br/>	//System.out.println(key);<br/>	int	value	=
Integer.parseInt(parts[1]);<br/>	//System.out.println(value);<br/>
WordToInd.put(key,value);<br/>	}	else<br/><br/>	{<br/>
//System.out.println("ignoring	line:	"	+	line);<br/>	}<br/>	}<br/>	}	catch



(IOException	e)	{<br/>	//log	the	exception<br/>	}	finally	{<br/>	if	(reader	!=
null)	{<br/>	try	{<br/>	reader.close();<br/>	}	catch	(IOException	e)	{<br/>	//log
the	exception<br/>	}<br/>	}<br/>	}<br/><br/>	//line	=	reader.readLine();<br/>
<br/><br/><br/><br/>	//	Create	Button	Submit	Listener<br/><br/>
submit.setOnClickListener(new	View.OnClickListener()	{<br/><br/>
@Override<br/>	public	void	onClick(View	v)	{<br/>	//	Read	Values<br/>	String
reviewInput	=	Review.getText().toString().trim();<br/>
System.out.println(reviewInput);<br/><br/>	String[]	WordVec	=
reviewInput.replaceAll("[^a-zA-z0-9	]",	"").toLowerCase().split("\\s+");<br/>
System.out.println(WordVec.length);<br/><br/>	int[]	InputVec	=	new	int[1000];
<br/>	//	Initialize	the	input<br/>	for	(int	i	=	0;	i	<	1000;	i++)	{<br/>	InputVec[i]
=	0;<br/>	}<br/>	//	Convert	the	words	by	their	indices<br/><br/>	int	i	=	1000	-	1
;<br/>	for	(int	k	=	WordVec.length	-1	;	k	>	-1	;	k--)	{<br/>	try	{<br/>	InputVec[i]
=	WordToInd.get(WordVec[k]);<br/>	System.out.println(WordVec[k]);<br/>
System.out.println(InputVec[i]);<br/><br/>	}<br/>	catch	(Exception	e)	{<br/>
InputVec[i]	=	0;<br/><br/>	}<br/>	i	=	i-1;<br/>	}<br/><br/>	if
(mInferenceInterface	==	null)	{<br/>	AssetManager	assetManager	=
getAssets();<br/>	mInferenceInterface	=	new
TensorFlowInferenceInterface(assetManager,MODEL_FILE);<br/>	}<br/><br/>
<br/>	float[]	value_	=	new	float[1];<br/><br/><br/>
mInferenceInterface.feed(INPUT_NODE,InputVec,1,1000);<br/>
mInferenceInterface.run(new	String[]	{OUTPUT_NODE},	false);<br/>
System.out.println(Float.toString(value_[0]));<br/>
mInferenceInterface.fetch(OUTPUT_NODE,	value_);<br/>	<br/>	<br/>	double
scoreIn;<br/>	scoreIn	=	value_[0]*5;<br/>	double	ratingIn	=	scoreIn;<br/>
String	stringDouble	=	Double.toString(scoreIn);<br/>
score.setText(stringDouble);<br/>	ratingBar.setRating((float)	ratingIn);<br/>
<br/><br/>	}<br/><br/>	});<br/><br/>	}<br/>}

<span>org.tensorflow:tensorflow-android:1.7.0</span>



Testing	the	mobile	app
We	will	test	the	mobile	app	with	the	reviews	of	two	movies:	Avatar	and
Interstellar.	The	Avatar	movie	review	has	been	taken	from	https://www.rogerebert.c
om/reviews/avatar-2009,	and	is	as	follows:

"Watching	Avatar,	I	felt	sort	of	the	same	as	when	I	saw	Star	Wars	in	1977.	That
was	another	movie	I	walked	into	with	uncertain	expectations.	James	Cameron's
film	has	been	the	subject	of	relentlessly	dubious	advance	buzz,	just	as	his	Titanic
was.	Once	again,	he	has	silenced	the	doubters	by	simply	delivering	an
extraordinary	film.	There	is	still	at	least	one	man	in	Hollywood	who	knows	how
to	spend	$250	million,	or	was	it	$300	million,	wisely.

"Avatar	is	not	simply	a	sensational	entertainment,	although	it	is	that.	It's	a
technical	breakthrough.	It	has	a	flat-out	Green	and	anti-war	message.	It	is
predestined	to	launch	a	cult.	It	contains	such	visual	detailing	that	it	would
reward	repeating	viewings.	It	invents	a	new	language,	Na'vi,	as	Lord	of	the
Rings	did,	although	mercifully	I	doubt	this	one	can	be	spoken	by	humans,	even
teenage	humans.	It	creates	new	movie	stars.	It	is	an	Event,	one	of	those	films	you
feel	you	must	see	to	keep	up	with	the	conversation."

The	reviewer	has	given	the	movie	a	rating	of	4/5,	while	the	the	mobile	app	gives
a	rating	of	around	4.8/5,	as	illustrated	in	the	following	screenshot	(Figure	7.4):

https://www.rogerebert.com/reviews/avatar-2009


Figure	7.4.	Mobile	app	review	rating	of	the	movie	Avatar

Similarly,	we	will	evaluate	the	rating	provided	by	the	app	for	the	movie
Interstellar,	with	a	review	taken	from	https://www.rottentomatoes.com/m/interstellar_2
014/.	The	review	is	as	follows:

"Interstellar	represents	more	of	the	thrilling,	thought-provoking,	and	visually
resplendent	film	making	moviegoers	have	come	to	expect	from	writer-director
Christopher	Nolan,	even	if	its	intellectual	reach	somewhat	exceeds	its	grasp."

The	average	rating	of	the	movie	on	Rotten	Tomatoes	is	7/10,	which,	when	scaled
to	5,	gives	a	score	of	3.5/5,	while	the	mobile	app	predicts	a	rating	of	3.37,	as
illustrated	in	the	following	screenshot	(Figure	7.5):

https://www.rottentomatoes.com/m/interstellar_2014/




Figure	7.5.	Mobile	app	review	rating	of	the	movie	Interstellar

As	you	can	see	in	the	two	preceding	illustrations,	the	mobile	movie	review	rating
app	does	a	great	job	of	providing	a	reasonable	rating	for	movie	reviews.

	

	



Summary
Having	finished	this	chapter,	the	reader	should	have	a	fair	idea	of	how	to	deploy
deep	learning	models	in	an	Android	app,	using	TensorFlow's	mobile	capabilities.
The	technicalities	and	the	implementation	details	that	were	touched	upon	in	this
chapter	should	be	beneficial	for	the	reader,	helping	them	to	build	smart	Android
mobile	applications	and	extend	them	in	interesting	ways.	The	detailed	code	for
this	project	is	located	at	https://github.com/PacktPublishing/Python-Artificial-Intelligen
ce-Projects/Chapter07.

In	the	next	chapter,	we	will	build	a	conversational	AI	chatbot	for	customer
service.	We	look	forward	to	your	participation.

	

	

	

https://github.com/PacktPublishing/Python-Artificial-Intelligence-Projects/Chapter07


Conversational	AI	Chatbots	for
Customer	Service
Conversational	chatbots	have	produced	a	lot	of	hype	recently	because	of	their
role	in	enhancing	customer	experience.	Modern	businesses	have	started	using
the	capabilities	of	chatbots	in	several	different	processes.	Because	of	the	wide
acceptance	of	conversational	AIs,	the	tedious	task	of	filling	out	forms	or	sending
information	over	the	internet	has	become	much	more	streamlined.	One	of	the
desired	qualities	of	a	conversational	chatbot	is	that	it	should	be	able	to	respond
to	a	user	request	in	the	current	context.	The	players	in	a	conversational	chatbot
system	are	the	user	and	the	bot	respectively.	There	are	many	advantages	of	using
conversational	chatbots,	as	shown	in	the	following	list:

Personalized	assistance:	Creating	a	personalized	experience	for	all
customers	might	be	a	tedious	task,	but	not	doing	so	can	make	a	business
suffer.	Conversational	chatbots	are	a	convenient	alternative	to	providing	a
personalized	experience	to	each	and	every	customer.
Around-the-clock	support:	Using	customer	service	representatives	24/7	is
expensive.	Using	chatbots	for	customer	service	out	of	office	hours	removes
the	need	to	hire	extra	customer	representatives.
Consistency	of	responses:	Responses	provided	by	the	chatbot	are	likely	to
be	consistent,	whereas	responses	given	to	the	same	questions	by	different
customer	service	representatives	are	likely	to	vary.	This	removes	the	need
for	a	customer	to	call	multiple	times	if	they	are	not	satisfied	with	the	answer
provided	by	a	customer	service	representative.
Patience:	While	customer	service	representatives	might	lose	their	patience
when	attending	to	a	customer,	this	is	not	a	possibility	for	a	chatbot.
Querying	records:	Chatbots	are	much	more	efficient	in	querying	records
than	human	customer	service	representatives.

Chatbots	are	not	a	recent	thing,	and	their	origin	can	be	traced	back	to	the	1950s.
Just	following	World	War	II,	Alan	Turing	developed	the	Turing	test	to	see
whether	a	person	can	distinguish	a	human	from	a	machine.	Years	later,	in	1966,
Joseph	Weizenbaum	developed	some	software	named	Eliza,	which	imitated	the
language	of	a	psychotherapist.	The	tool	can	be	still	located	at	http://psych.fullerto

http://psych.fullerton.edu/mbirnbaum/psych101/Eliza.htm


n.edu/mbirnbaum/psych101/Eliza.htm.

Chatbots	can	perform	a	varied	set	of	tasks,	a	few	of	which	are	shown	in	the
following	list	to	emphasize	their	versatility:

Answering	to	queries	regarding	products
Providing	recommendations	to	customers
Performing	sentence-completion	activities
Conversational	chatbots
Negotiating	prices	with	customers	and	taking	part	in	bidding

Many	times,	businesses	have	a	hard	time	figuring	out	whether	they	need	a
chatbot	or	not.	Whether	a	business	needs	a	chatbot	can	be	determined	by	the
flowchart	in	Figure	8.1:

Figure	8.1:	Customer	engagement	model

As	part	of	this	chapter,	we	will	be	covering	the	following	topics:

Chatbot	architecture
LSTM	sequence-to-sequence	model	for	chatbots
Building	a	sequence-to-sequence	model	for	a	Twitter	support	chatbot



Technical	requirements
You	will	require	to	have	basic	knowledge	of	Python	3,	TensorFlow	and	Keras

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter08

Check	out	the	following	video	to	see	the	code	in	action:
http://bit.ly/2G9AyoB

https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter08
http://bit.ly/2G9AyoB


Chatbot	architecture
The	core	component	of	a	chatbot	is	its	natural-language	processing	framework.
Chatbots	process	data	presented	to	them	using	natural-language	processing
through	a	process	commonly	known	as	parsing.	The	parsed	user	input	is	then
interpreted	and	an	appropriate	response	is	sent	back	to	the	user	based	on	what
the	user	wants,	as	deciphered	from	the	input.	The	chatbot	might	need	to	seek
help	from	a	knowledge	base	and	historical	transaction	data	store	to	deal	with	the
user's	request	appropriately.

Chatbots	can	be	broadly	grouped	into	the	following	two	categories:

Retrieval-based	models:	These	models	generally	rely	on	lookup	tables	or	a
knowledge	base	to	select	an	answer	from	a	predefined	set	of	answers.
Although	this	method	might	seem	naive,	most	chatbots	in	production	are	of
this	kind.	Of	course,	there	can	be	various	degrees	of	sophistication	with
regard	to	selecting	the	best	answer	from	the	lookup	tables	or	knowledge
base.
Generative	models:	Generative	models	generate	responses	on	the	fly
instead	of	adopting	a	lookup-based	approach.	They	are	mostly	probabilistic
models	or	models	based	on	machine	learning.	Up	until	recently,	Markov
chains	were	mostly	used	as	generative	models;	however,	with	the	recent
success	of	deep	learning,	recurrent	neural	network-based	approaches	have
gained	popularity.	Generally,	the	LSTM	version	of	RNNs	is	used	as	a
generative	model	for	chatbots,	since	it	is	better	at	handling	long	sequences.

Both	retrieval-based	models	and	generative	models	come	with	their	own	set	of
pros	and	cons.	Since	retrieval-based	models	answer	from	a	fixed	set	of	answers,
they	are	not	able	to	handle	unseen	questions	or	requests	for	which	there	are	no
appropriate	predefined	responses.	Generative	models	are	much	more
sophisticated;	they	can	understand	the	entities	in	the	user	input	and	generate
human-like	responses.	However,	they	are	harder	to	train	and	generally	require
much	more	data	to	train.	They	are	also	prone	to	making	grammatical	mistakes,
which	retrieval-based	models	cannot	make.

	



	

	



A	sequence-to-sequence	model	using
an	LSTM
The	sequence-to-sequence	model	architecture	is	well	suited	for	capturing	the
context	of	the	customer	input	and	then	generating	appropriate	responses	based
on	that.	Figure	8.2	shows	a	sequence-to-sequence	model	framework	that	can
respond	to	questions	just	as	a	chatbot	would:

	

	

Figure	8.2:	Sequence-to-sequence	model	using	an	LSTM

We	can	see	from	the	preceding	diagram	(Figure	8.2)	that	the	Encoder	LSTM
takes	the	input	sequence	of	words	and	encodes	it	into	a	hidden	state	vector,	 ,

and	a	cell	state	vector,	 .	The	vectors,	 ,	and	 	are	the	hidden	and	cell	states	of
the	last	step	of	the	LSTM	encoder.	They	would	essentially	capture	the	context	of
the	whole	input	sentence.



The	encoded	information	in	the	form	of	 	and	 	is	then	fed	to	the	Decoder
LSTM	as	its	initial	hidden	and	cell	states.	The	Decoder	LSTM	in	each	step	tries
to	predict	the	next	word	conditioned	on	the	current	word.	This	means	that,	the
input	to	each	step	of	the	Decoder	LSTM	is	the	current	word.

To	predict	the	first	word,	the	LSTM	would	be	provided	with	a	dummy	start
keyword	<BOS>	that	represents	the	beginning	of	the	sentence.	Similarly,	the
<EOS>	dummy	keyword	represents	the	end	of	the	sentence,	and	once	this	is
predicted,	the	output	generation	should	stop.

During	the	training	of	a	sequence-to-sequence	model	for	each	target	word,	we
know	apriori	the	previous	word	that	is	an	input	to	the	Decoder	LSTM.
However,	during	inference,	we	won't	have	these	target	words,	and	so	we	would
have	to	feed	the	previous	step	as	an	input.



Building	a	sequence-to-sequence
model
The	architecture	of	the	sequence-to-sequence	model	that	we	will	be	using	for
building	the	chatbot	will	have	slight	modifications	to	the	basic	sequence-to-
sequence	architecture	illustrated	previously	in	Figure	8.2.	The	modified
architecture	can	be	seen	in	the	following	diagram	(Figure	8.3):

Figure	8.3:	Sequence-to-sequence	model

Instead	of	feeding	the	hidden	state	 	and	the	cell	state	 	of	the	last	step	of	the
encoder	to	the	initial	hidden	and	cell	states	of	the	Decoder	LSTM,	we	feed	the
hidden	state	 	at	each	input	step	of	the	decoder.	To	predict	the	target	word	wt	at
any	step	t,	the	inputs	are	the	previous	target	word,	wt-1,	at	any	step,	t-1,	and	the
hidden	state	 .

	



	



Customer	support	on	Twitter
Now	that	we	have	some	idea	of	how	to	build	a	chatbot	using	a	recurrent	neural
network,	we	will	build	a	chatbot	using	the	customer	service	responses	of	20	big
brands	to	tweets	posted	by	customers.	The	dataset	twcs.zip	can	be	located	at	https:
//www.kaggle.com/thoughtvector/customer-support-on-twitter.	Each	tweet	is	identified	by
the	tweet_id	and	the	tweet	content	is	in	the	text	field.	The	tweets	posted	by	the
customers	can	be	identified	by	the	in_response_to_tweet_id	field.	This	should
contain	null	values	for	customer	tweets.	For	customer	service	tweets,	this
in_response_to_tweet_id	field	should	point	to	the	customer	tweet_id	to	which	this
tweet	is	directed.

	

	

	

https://www.kaggle.com/thoughtvector/customer-support-on-twitter


def	process_data(self,path):<br/>	data	=	pd.read_csv(path)<br/><br/>	if
self.mode	==	'train':<br/>	data	=	pd.read_csv(path)<br/>
data['in_response_to_tweet_id'].fillna(-12345,inplace=True)<br/>	tweets_in	=
data[data['in_response_to_tweet_id']	==	-12345]<br/>	tweets_in_out	=	<br/>
tweets_in.merge(data,left_on=['tweet_id'],right_on=<br/>
['in_response_to_tweet_id'])<br/>	return	tweets_in_out[:self.num_train_records]
<br/>	elif	self.mode	==	'inference':<br/>	return	data<br/><br/>

	



def	tokenize_text(self,in_text,out_text):<br/>	count_vectorizer	=
CountVectorizer(tokenizer=casual_tokenize,	max_features=self.max_vocab_size
-	3)<br/>	count_vectorizer.fit(in_text	+	out_text)<br/>	self.analyzer	=
count_vectorizer.build_analyzer()<br/>	self.vocabulary	=	<br/>	{key_:	value_	+
3	for	key_,value_	in	count_vectorizer.vocabulary_.items()}<br/>
self.vocabulary['UNK']	=	self.UNK<br/>	self.vocabulary['PAD']	=
self.PAD<br/>	self.vocabulary['START']	=	self.START<br/>
self.reverse_vocabulary	=	<br/>	{value_:	key_	for	key_,	value_	in
self.vocabulary.items()}<br/>	joblib.dump(self.vocabulary,self.outpath	+
'vocabulary.pkl')<br/>	joblib.dump(self.reverse_vocabulary,self.outpath	+
'reverse_vocabulary.pkl')<br/>	joblib.dump(count_vectorizer,self.outpath	+
'count_vectorizer.pkl')<br/>
#pickle.dump(self.count_vectorizer,open(self.outpath	+	<br/>
'count_vectorizer.pkl',"wb"))

def	words_to_indices(self,sent):<br/>	word_indices	=	<br/>
[self.vocabulary.get(token,self.UNK)	for	token	in	self.analyzer(sent)]	+	<br/>
[self.PAD]*self.max_seq_len<br/>	word_indices	=
word_indices[:self.max_seq_len]<br/>	return	word_indices

def	indices_to_words(self,indices):<br/>	return	'
'.join(self.reverse_vocabulary[id]	for	id	in	indices	if	id	!=	self.PAD).strip()	<br/>
<br/>

	



def	replace_anonymized_names(self,data):<br/><br/>	def	replace_name(match):
<br/>	cname	=	match.group(2).lower()<br/>	if	not	cname.isnumeric():<br/>
return	match.group(1)	+	match.group(2)<br/>	return	'@__cname__'<br/>	<br/>
re_pattern	=	re.compile('(\W@|^@)([a-zA-Z0-9_]+)')<br/>	if	self.mode	==
'train':<br/><br/>	in_text	=	data['text_x'].apply(lambda
txt:re_pattern.sub(replace_name,txt))<br/>	out_text	=
data['text_y'].apply(lambda	<br/>	txt:re_pattern.sub(replace_name,txt))<br/>
return	list(in_text.values),list(out_text.values)<br/>	else:<br/>	return
map(lambda	x:re_pattern.sub(replace_name,x),data)<br/><br/><br/>



Defining	the	model
The	LSTM	version	of	the	RNN	is	used	to	build	the	sequence-to-sequence	model.
This	is	because	LSTMs	are	much	more	efficient	in	remembering	long-term
dependencies	in	long	sequences	of	text.	The	three	gates	in	the	LSTM
architecture	enable	it	to	remember	long-term	sequences	efficiently.	A	basic	RNN
is	unable	to	remember	long-term	dependencies	because	of	the	vanishing	gradient
problems	that	are	associated	with	its	architecture.

In	this	model,	we	are	using	two	LSTMs.	The	first	LSTM	would	encode	the	input
tweet	into	a	context	vector.	This	context	vector	is	nothing	but	the	last	hidden
state	 	of	the	encoder	LSTM,	n	being	the	dimension	of	the	hidden	state
vector.	The	input	tweet	 	is	fed	into	the	encoder	LSTM	as	a	sequence	of
word	indices,	k	being	the	sequence	length	of	the	input	tweet.	These	word	indices
are	mapped	to	word	embedding	w	∈	Rm	before	being	fed	to	the	LSTM.	The
word	embeddings	are	housed	in	an	embedding	matrix,	[W	∈	Rm	x	N],	where	N
denotes	the	number	of	the	words	in	the	vocabulary.

The	second	LSTM	works	as	the	decoder.	It	tries	to	decode	the	context	vector	
created	by	the	encoder	LSTM	into	a	meaningful	response.	As	part	of	this
approach,	we	feed	the	context	vector	at	each	time	step	along	with	the	previous
word	to	generate	the	current	word.	At	the	first	time	step,	we	don't	have	any
previous	word	to	condition	the	LSTM	on,	and	so	we	use	the	proxy	START	word	to
start	the	process	of	generating	the	sequence	of	words	from	the	decoder	LSTM.
How	we	input	the	previous	word	at	a	current	time	step	during	inference	differs
from	the	method	we	use	during	training.	In	training,	since	we	know	the	previous
words	apriori,	at	each	time	step,	we	don't	have	any	problems	feeding	them
accordingly.	However,	during	inference,	since	we	don't	have	the	actual	previous
word	at	the	current	time	step,	the	predicted	word	at	the	previous	time	step	is	fed.

The	hidden	state	 	of	each	time	step	t	is	fed	through	a	few	fully	connected
layers	before	the	final	big	softmax	N.	The	word	that	gets	the	maximum
probability	in	this	softmax	layer	is	the	predicted	word	for	the	time	step.	This
word	is	then	fed	to	the	input	of	the	next	step,	which	is	step	t	+	1	of	the	decoder
LSTM.



The	TimeDistributed	function	in	Keras	allows	for	an	efficient	implementation	of
getting	a	prediction	at	each	time	step	of	the	decoder	LSTM,	as	shown	in	the
following	code:

def	define_model(self):

								

								#	Embedding	Layer

								embedding	=	Embedding(

												output_dim=self.embedding_dim,

												input_dim=self.max_vocab_size,

												input_length=self.max_seq_len,

												name='embedding',

								)

								

								#	Encoder	input

				

								encoder_input	=	Input(

												shape=(self.max_seq_len,),

												dtype='int32',

												name='encoder_input',

								)

								

								embedded_input	=	embedding(encoder_input)

				

								encoder_rnn	=	LSTM(

												self.hidden_state_dim,

												name='encoder',

												dropout=self.dropout

								)

								#	Context	is	repeated	to	the	max	sequence	length	so	that	the	same	context	

								#	can	be	feed	at	each	step	of	decoder

								context	=	RepeatVector(self.max_seq_len)(encoder_rnn(embedded_input))

				

								#	Decoder				

								last_word_input	=	Input(

												shape=(self.max_seq_len,),

												dtype='int32',

												name='last_word_input',

								)

								

								embedded_last_word	=	embedding(last_word_input)

								#	Combines	the	context	produced	by	the	encoder	and	the	last	word	uttered	as	

								inputs

								#	to	the	decoder.

								

								decoder_input	=	concatenate([embedded_last_word,	context],axis=2)

								#	return_sequences	causes	LSTM	to	produce	one	output	per	timestep	instead	of	

								one	at	the

								#	end	of	the	intput,	which	is	important	for	sequence	producing	models.

								decoder_rnn	=	LSTM(

												self.hidden_state_dim,

												name='decoder',

												return_sequences=True,

												dropout=self.dropout

								)

								

								decoder_output	=	decoder_rnn(decoder_input)

				

								#	TimeDistributed	allows	the	dense	layer	to	be	applied	to	each	decoder	output				



							per	timestep

								next_word_dense	=	TimeDistributed(

												Dense(int(self.max_vocab_size/20),activation='relu'),

												name='next_word_dense',

								)(decoder_output)

								

								next_word	=	TimeDistributed(

												Dense(self.max_vocab_size,activation='softmax'),

												name='next_word_softmax'

								)(next_word_dense)

								

								return	Model(inputs=[encoder_input,last_word_input],	outputs=[next_word])

	



Loss	function	for	training	the	model
The	model	is	trained	on	categorical	cross-entropy	loss	to	predict	the	target	words
in	each	time	step	of	the	decoder	LSTM.	The	categorical	cross-entropy	loss	in
any	step	would	be	over	all	the	words	of	the	vocabulary,	and	can	be	represented
as	follows:

The	label	 	represents	the	one	hot-encoded	version	of	the	target	word.	Only
the	label	corresponding	to	the	actual	word	would	be	one;	the	rest	would	be	zero.
The	term	Pi	represents	the	probability	that	the	actual	target	word	is	the	word
indexed	by	i.	To	get	the	total	loss,	C,	for	each	input/output	tweet	pair,	we	need	to
sum	up	the	losses	over	all	the	time	steps	of	the	decoder	LSTM.	Since	the
vocabulary	size	might	get	very	large,	creating	a	one	hot-encoded	vector	

	for	the	target	label	in	each	time	step	would	be	costly.	The
sparse_categorical_crossentropy	loss	becomes	very	beneficial	here,	since	we	don't
need	to	convert	the	target	word	into	a	one	hot-encoded	vector,	but	instead	we	can
just	feed	the	index	of	the	target	word	as	the	target	label.



Training	the	model
The	model	can	be	trained	with	the	Adam	optimizer,	since	it	reliably	provides
stable	convergence.	Since	RNNs	are	prone	to	exploding	gradient	problems
(although	this	is	not	so	problematic	for	LSTMs),	it	is	better	to	clip	the	gradients
if	they	become	too	large.	The	given	model	can	be	defined	and	compiled	with	the
Adam	optimizer	and	sparse_categorical_crossentropy,	as	shown	in	the	following
code	block:

def	create_model(self):

								_model_	=	self.define_model()

								adam	=	Adam(lr=self.learning_rate,clipvalue=5.0)

								_model_.compile(optimizer=adam,loss='sparse_categorical_crossentropy')

								return	_model_

Now	that	we	have	looked	at	all	the	basic	functions,	the	training	function	can	be
coded	as	follows:

def	train_model(self,model,X_train,X_test,y_train,y_test):

								input_y_train	=	self.include_start_token(y_train)

								print(input_y_train.shape)

								input_y_test	=	self.include_start_token(y_test)

								print(input_y_test.shape)

								early	=	EarlyStopping(monitor='val_loss',patience=10,mode='auto')

								checkpoint	=	

								ModelCheckpoint(self.outpath	+	's2s_model_'	+	str(self.version)	+	

								'_.h5',monitor='val_loss',verbose=1,save_best_only=True,mode='auto')

								lr_reduce	=

								ReduceLROnPlateau(monitor='val_loss',factor=0.5,	patience=2,	verbose=0,	

									mode='auto')

								model.fit([X_train,input_y_train],y_train,	

														epochs=self.epochs,

														batch_size=self.batch_size,	

														validation_data=[[X_test,input_y_test],y_test],	

														callbacks=[early,checkpoint,lr_reduce],	

														shuffle=True)

								return	model

At	the	beginning	of	the	train_model	function,	we	create	input_y_train	and
input_y_test,	which	are	copies	of	y_train	and	y_test	respectively	and	are	shifted
from	them	by	one	time	step	so	that	they	can	act	as	the	input	for	the	previous
word	at	each	time	step	of	the	decoder.	The	first	word	of	these	shifted	sequences
is	the	START	keyword	that	is	fed	at	the	first	time	step	of	the	decoder	LSTM.	The
include_start_token	custom	utility	function	is	as	follows:



def	include_start_token(self,Y):

				print(Y.shape)

				Y	=	Y.reshape((Y.shape[0],Y.shape[1]))

				Y	=	np.hstack((self.START*np.ones((Y.shape[0],1)),Y[:,	:-1]))

				return	Y

Coming	back	to	the	training	function,	train_model,	we	see	that	early	stopping	is
enabled	using	the	EarlyStopping	callback	facility	if	the	loss	doesn't	decrease	in	10
epochs.	Similarly,	the	ReduceLROnPlateau	callback	would	reduce	the	existing
learning	rate	by	half	(0.5)	if	the	error	doesn't	reduce	in	two	epochs.	The	model	is
saved	through	the	ModelCheckpoint	callback	whenever	the	error	reduces	in	an
epoch.

	

	



def	respond_to_input(self,model,input_sent):<br/>	input_y	=
self.include_start_token(self.PAD	*	np.ones((1,self.max_seq_len)))<br/>	ids	=
np.array(self.words_to_indices(input_sent)).reshape((1,self.max_seq_len))<br/>
for	pos	in	range(self.max_seq_len	-1):<br/>	pred	=	model.predict([ids,
input_y]).argmax(axis=2)[0]<br/>	#pred	=	model.predict([ids,	input_y])[0]<br/>
input_y[:,pos	+	1]	=	pred[pos]<br/>	return
self.indices_to_words(model.predict([ids,input_y]).argmax(axis=2)[0])<br/>



def	main(self):<br/>	if	self.mode	==	'train':<br/><br/>	X_train,	X_test,	y_train,
y_test,test_sentences	=	self.data_creation()<br/>
print(X_train.shape,y_train.shape,X_test.shape,y_test.shape)<br/>	print('Data
Creation	completed')<br/>	model	=	self.create_model()<br/>	print("Model
creation	completed")<br/>	model	=
self.train_model(model,X_train,X_test,y_train,y_test)<br/>	test_responses	=
self.generate_response(model,test_sentences)<br/>	print(test_sentences)	<br/>
print(test_responses)<br/>	pd.DataFrame(test_responses).to_csv(self.outpath	+
<br/>	'output_response.csv',index=False)<br/><br/>	elif	self.mode	==
'inference':<br/><br/>	model	=	load_model(self.load_model_from)<br/>
self.vocabulary	=	joblib.load(self.vocabulary_path)<br/>
self.reverse_vocabulary	=	joblib.load(self.reverse_vocabulary_path)<br/>
#nalyzer_file	=	open(self.analyzer_path,"rb")<br/>	count_vectorizer	=
joblib.load(self.count_vectorizer_path)<br/>	self.analyzer	=
count_vectorizer.build_analyzer()<br/>	data	=	self.process_data(self.data_path)
<br/>	col	=	data.columns.tolist()[0]<br/>	test_sentences	=	list(data[col].values)
<br/>	test_sentences	=	self.replace_anonymized_names(test_sentences)<br/>
responses	=	self.generate_response(model,test_sentences)<br/>	print(responses)
<br/>	responses.to_csv(self.outpath	+	'responses_'	+	str(self.version)	+	<br/>
'_.csv',index=False)



<strong>python	chatbot.py	--max_vocab_size	50000	--max_seq_len	30	--
embedding_dim	100	--hidden_state_dim	100	--epochs	80	--batch_size	128	--
learning_rate	1e-4	--data_path	/home/santanu/chatbot/data/twcs.csv	--outpath
/home/santanu/chatbot/	--dropout	0.3	--mode	train	--num_train_records	50000	--
version	v1</strong>

	

	

The	following	are	some	of	the	important	arguments,	along	with	their	description
and	used	values	for	invoking	the	training	of	the	chatbot	sequence-to-sequence
model:

Parameters Description Values	used	for
training

max_vocab_size
Number	of	words	to	take	in	the
vocabulary

50,000

max_seq_len

The	maximum	length	the	tweets	are
to	be	restricted	to	for	feeding	to	the
LSTM

30

hidden_state_dimHidden	state	 	dimension	of	the
LSTM

100

embedding_dim Dimension	of	the	word	embedding 100

learning	rate
Starting	learning	rate	to	be	used	for
the	optimizer

0.0001

dropout
Dropout	to	be	used	for
regularization	purposes

0.3

Mode Train/inference
For	training	use	train
for	inference	use
inference



<strong>python	chatbot.py	--max_vocab_size	50000	--max_seq_len	30	--
embedding_dim	100	--hidden_state_dim	100	--data_path
/home/santanu/chatbot/data/test.csv	--outpath	/home/santanu/chatbot/	--dropout
0.3	--mode	inference	--version	v1	--load_model_from
/home/santanu/chatbot/s2s_model_v1_.h5	--vocabulary_path
/home/santanu/chatbot/vocabulary.pkl	--reverse_vocabulary_path
/home/santanu/chatbot/reverse_vocabulary.pkl	--count_vectorizer_path
/home/santanu/chatbot/count_vectorizer.pkl</strong>

The	results	of	the	inference	are	shown	in	the	following	table:

Tweet	in Tweet	out

@sprintcare	is	the	worst	customer	service.

@__cname__	Hey	there!	Can	you	dm
us	your	account's	email	address?
We'll	take	a	look	backstage	/	dn
https://t.co/ldfdzrinat.

@__cname__	Y'all	lie	about	your	great
connection.	5	bars	LTE,	still	won't	load
something.	Smh.

@__cname__	We	apologize	for	the
trouble.	Please	send	us	a	dm	with
your	email	address	so	we	can
connect.

@__cname__	Whenever	I	contact	customer
support,	they	tell	me	I	have	shortcode
enabled	on	my	account,	but	I	have	never	in
the	4	years	I've	tried
https://t.co/0G98RtNxPK.

@__cname__	Hi	there,	we	are	sorry
to	hear	this.	Please	send	us	a	dm
with	your	email	address	and	phone
number	so	we	can	look	into	this	for.

Actually	that's	a	broken	link	you	sent	me
and	incorrect	information
https://t.co/V4yfrHR8VI.

@__cname__	Hi,	we	are	sorry	to	hear
this.	Please	dm	us	your	contact	info
and	we'll	be	happy	to	help.	^	kk

Yo	@Ask_Spectrum,	your	customer	service
reps	are	super	nice—	but	imma	start	trippin
if	y'all	don't	get	my	service	going!

@__cname__	We	apologize	for	the
trouble.	Please	send	us	a	dm	with
your	email	address	so	we	can
connect.

My	picture	on	@Ask_Spectrum	pretty	much
every	day.	Why	should	I	pay	$171	per
month?	https://t.co/U6ptkQa5Ik.

@__cname__	Hi,	we	are	sorry	to	hear
this.	Please	dm	us	your	contact	info
and	we'll	be	happy	to	help.	^	kk

Somebody	from	@VerizonSupport	please
help	me	��������	I'm	having

@__cname__	We	apologize	for	the
trouble.	Please	dm	us	your	contact

https://t.co/ldfdzrinat
https://t.co/0G98RtNxPK
https://t.co/V4yfrHR8VI
https://t.co/U6ptkQa5Ik


the	worst	luck	with	your	customer	service. info	and	phone	number	so	we	can
assist.

@VerizonSupport	My	friend	is	without
internet	we	need	to	play	video	games
together	please	our	skills	diminish	every
moment	without	internetz.

@__cname__	Hey	there!	Can	you	dm
us	your	account's	email	address?
we'll	take	a	look	backstage	/	dn
https://t.co/ldfdzrinat

@__cname__	tried	to	pay	a	bill	for	60	days.
No	service,	rude	CS,	and	several	transfers.
Look	up	my	equipment	#	and	give	me	an
acct	#!

@__cname__	Hi,	we	are	sorry	to	hear
this.	Please	dm	us	your	contact	info
and	we'll	be	happy	to	help.	^	kk

@__cname__	is	the	worst	ISP	I've	ever	had.

@__cname__	Hey	there!	Can	you	dm
us	your	account's	email	address?
We'll	take	a	look	backstage	/	dn
https://t.co/ldfdzrinat

@__cname__	fix	your	app	it	won't	even
open.

@__cname__	Hi	there!	We	don't	have
any	info	on	this	issue.	Please	send
us	a	dm	with	your	name	and	phone
number	and	the	full	service	address.

https://t.co/ldfdzrinat
https://t.co/ldfdzrinat


Summary
And	now,	we	come	to	the	end	of	the	chapter.	Having	looked	through	the	various
concepts	related	to	chatbots	and	sequence-to-sequence	models	illustrated	in	this
chapter,	the	reader	should	now	be	able	to	build	a	chatbot	implementation	of	their
own	and	extend	it	in	interesting	ways.	Sequence-to-sequence	models,	as	we
know,	not	only	apply	to	chatbots,	but	to	a	whole	range	of	natural-language
processing	domains,	such	as	machine	translation.	The	code	for	this	chapter	can
be	located	at	the	GitHub	location	https://github.com/PacktPublishing/Python-Artificial
-Intelligence-Projects/tree/master/Chapter08.

In	the	next	chapter,	we	are	going	to	use	reinforcement	learning	to	get	a	racing	car
to	learn	to	drive	by	itself.	We	look	forward	to	your	participation.

	

	

	

https://github.com/PacktPublishing/Python-Artificial-Intelligence-Projects/tree/master/Chapter08


Autonomous	Self-Driving	Car
Through	Reinforcement	Learning
Reinforcement	learning,	in	which	an	agent	learns	to	make	decisions	by
interacting	with	the	environment,	has	really	taken	off	in	the	last	few	years.	It	is
one	of	the	hottest	topics	in	artificial	intelligence	and	machine	learning	these
days,	and	research	in	this	domain	is	progressing	at	a	fast	pace.	In	reinforcement
learning	(RL),	an	agent	converts	their	actions	and	experiences	into	learning	to
make	better	decisions	in	the	future.

Reinforcement	learning	doesn't	fall	under	the	supervised	or	unsupervised
machine	learning	paradigm,	as	it	is	a	field	in	its	own	right.	In	supervised
learning,	we	try	to	learn	a	mapping	F:	X	→	Y	that	maps	input	X	to	output	Y,
whereas	in	reinforcement	learning,	the	agent	learns	to	take	the	best	action
through	trial	and	error.	When	an	agent	performs	a	task	well,	a	reward	is
assigned,	whereas	when	the	agent	performs	poorly,	it	pays	a	penalty.	The	agent
tries	to	assimilate	this	information	and	learns	not	to	repeat	these	mistakes	under
similar	conditions.	These	conditions	that	the	agent	is	exposed	to	are	referred	to
as	states.	Figure	9.1	shows	the	interaction	of	an	agent	in	an	environment	in	a
reinforcement	learning	framework:

Figure	9.1:	Illustration	of	agent	and	environment	interaction



Technical	requirements
You	will	require	to	have	basic	knowledge	of	Python	3,	TensorFlow,	Keras	and
OpenCV.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter09

Check	out	the	following	video	to	see	the	code	in	action:
http://bit.ly/2WxfwpF

https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter09
http://bit.ly/2WxfwpF


Markov	decision	process
Any	reinforcement	learning	problem	can	be	viewed	as	a	Markov	decision
process,	which	we	briefly	looked	at	in	Chapter	1,	Foundations	of	Artificial
Intelligence	Based	Systems.	We	will	look	at	this	again	in	more	detail	for	your
benefit.	In	the	Markov	decision	process,	we	have	an	agent	interacting	with	an
environment.	At	any	given	instance,	the	t	agent	is	exposed	to	one	of	many	states:
(s(t)	=	s)	∈	S.	Based	on	the	agent's	action	(a(t)	=	a)	∈	A	in	the	state	s(t)	the	agent
is	presented	with	a	new	state	(s(t+1)	=	s′)	∈	S.	Here,	S	denotes	the	set	of	all	states
the	agent	may	be	exposed	to,	while	A	denotes	the	possible	actions	the	agent	can
partake	in.

You	may	now	wonder	how	an	agent	takes	action.	Should	it	be	random	or	based
on	heuristics?	Well,	it	depends	how	much	the	agent	has	interacted	with	the
environment	in	question.	In	the	initial	phase,	the	agent	might	take	random
actions,	since	they	have	no	knowledge	of	the	environment.	However,	once	the
agent	has	interacted	with	the	environment	enough,	based	on	the	rewards	and	the
penalties,	the	agent	learns	what	might	be	a	suitable	action	to	take	in	a	given
state.	Similar	to	how	people	tend	to	take	actions	that	benefit	the	long	term
rewards,	an	RL	agent	also	takes	his	action,	which	maximizes	the	long-term
reward.

Mathematically,	the	agent	tries	to	learn	a	Q	value	Q(s,	a)	for	every	state	action
pair	(s	∈	S,	a	∈	A).	For	a	given	state	s(t)	an	RL	agent	selects	the	action	a,	which
gives	the	maximum	Q	value.	The	action	a(t)	taken	by	the	agent	can	be	expressed

as	follows:	

Once	the	agent	takes	an	action	a(t)	in	the	state	s(t),	a	new	state	s(t+1)	is	presented
to	the	agent	to	be	dealt	with.	This	new	state	s(t+1)	is	generally	not	deterministic
and	is	generally	expressed	as	a	probability	distribution	condition	on	the	current
state	s(t)	and	action	a(t).These	probabilities	are	referred	to	as	state	transition
probabilities	and	can	be	expressed	as	follows:	



Whenever	an	agent	takes	an	action	a(t)	at	state	s(t)	and	reaches	a	new	state	s(t+1)
an	immediate	reward	is	awarded	to	the	agent	that	can	be	expressed	as	follows:	

Now	we	have	everything	we	need	to	define	a	Markov	decision	process.	A
Markov	decision	process	is	a	system	that	is	characterized	by	the	four	elements	as
follows:

A	set	of	states	S
A	set	of	actions	A
A	set	of	rewards	R
State	transition	probability	P(s(t+1)	=	s′/s(t)	=	s,	a(t)	=	a):

Figure	9.2:	Illustration	of	a	Markov	decision	process	with	three	states

	



Learning	the	Q	value	function
For	an	RL	agent	to	make	a	decision,	it	is	important	for	the	agent	to	learn	the	Q
value	function.	The	Q	value	function	can	be	learned	iteratively	via	Bellman's
equation.	When	the	agent	starts	to	interact	with	the	environment,	it	starts	with	a
random	state	s(0)	and	random	state	of	Q	values	for	every	state	action	pair.	The
agent's	action	would	also	be	somewhat	random,	since	it	has	no	state	Q	values	to
make	informed	decisions.	For	each	action	taken,	the	environment	would	return	a
reward	based	on	which	agent	starts	to	build	the	Q	value	tables,	and	improves
over	time.

At	any	exposed	state	s(t)	at	iteration	t	the	agent	would	take	an	action	a(t)	that
maximizes	its	long-term	reward.	The	Q	table	holds	the	long-term	reward	values,
and	hence	the	chosen	a(t)	would	be	based	on	the	following	heuristics:	

The	Q	value	table	is	also	indexed	by	iteration	t,	since	the	agent	can	only	look	at
the	Q	table	build	so	far	which	is	going	to	improve	as	the	agent	interacts	with	the
environment	more.

Based	on	the	action	a(t)	taken	the	environment	will	present	the	agent	with	a
reward	r(t)	and	a	new	state	s(t+1).	The	agent	will	update	the	Q	table	in	such	a	way
that	its	total	long-term	expected	reward	is	maximized.	The	long	term	reward	r′(t)

can	be	written	as	follows:	

Here,	 	is	a	discount	factor.	As	we	can	see,	the	long	term	reward	combines	the
immediate	reward	r(t)	and	the	cumulative	future	reward	based	on	the	next	state
s(t+1)	presented.

Based	on	the	computed	long-term	reward,	the	existing	Q	value	of	the	state	action
pair	(s(t),	a(t))	is	updated	as	follows:





Deep	Q	learning
Deep	Q	learning	leverages	deep	learning	networks	in	learning	the	Q	value
function.	Illustrated	in	the	following	diagram,	Figure	9.3,	is	the	architecture	of	a
deep	Q	learning	network:

Figure	9.3:	Illustration	of	a	deep	Q	network

The	diagram	learns	to	map	every	pair	of	states	(s,	a)	and	actions	into	an	output	Q
value	output	Q(s,	a),	while	in	the	diagram	on	the	right,	for	every	state	s,	we	learn
Q	values	pertaining	to	every	action	a.	If	there	are	n	possible	actions	for	every
state,	the	output	of	the	network	produces	n	outputs	Q(s,	a1),	Q(s,	a2),	.	.	.	.	.	.	Q(s,
an).

The	deep	Q	learning	networks	are	trained	with	a	very	simple	idea	called
experience	replay.	Let	the	RL	agent	interact	with	the	environment	and	store
experience	in	the	tuple	form	of	(s,	a,	r,	s′)	in	a	replay	buffer.	Mini-batches	can	be
sampled	from	this	replay	buffer	to	train	the	network.	In	the	beginning,	the	replay
buffer	is	stored	with	random	experiences.



Formulating	the	cost	function
It	is	easier	to	work	with	the	architecture	where	we	get	the	Q	values	for	all	the
actions	for	a	given	state	the	network	is	fed	with.	The	same	is	illustrated	in	the
right-hand	side	of	Figure	9.3.	We	would	let	the	agent	interact	with	the
environment	and	collect	states	and	rewards	based	on	which	we	will	learn	the	Q
functions.	In	fact,	the	network	would	learn	the	Q	function	by	minimizing	the
predicted	Q	values	for	all	actions	 	for	a	given	state	s	with	those	of	the
target	Q	values.	Each	training	record	is	a	tuple	(s(t),	a(t),	r(t),	s(t+1)).

Bear	in	mind	that	the	target	Q	values	are	to	be	computed	based	on	the	network
itself.	Let's	consider	the	fact	that	the	network	is	parametrized	by	the	W	∈	Rd
weights	and	we	learn	mapping	from	the	states	to	the	Q	values	for	each	action
given	the	state.	For	n	set	of	actions	 	the	network	would	predict	i	Q	values
pertaining	to	each	of	the	actions.	The	mapping	function	can	be	denoted	as

follows:	

This	mapping	is	used	to	predict	the	Q	values	given	a	state	s(t)	and	this	prediction	
	goes	to	the	cost	function	we	are	minimizing.	The	only	technicality	to

consider	here	is	that	we	would	just	need	to	take	the	predicted	Q	value
corresponding	to	the	action	a(t)	observed	at	the	instance	t.

We	can	use	the	same	mapping	to	build	the	target	Q	values	based	on	the	next	state
s(t+1).	As	illustrated	in	the	prior	section,	the	candidate	update	to	the	Q	value	is	as

follows:	

Consequently,	the	target	Q	values	can	be	calculated	like	so:



To	learn	the	functional	mapping	from	the	states	to	the	Q	values,	we	minimize	the
squared	loss	or	other	relevant	loss	with	respect	to	the	weights	of	the	neural

network:	



Double	deep	Q	learning
One	of	the	issues	with	deep	Q	learning	is	that	we	use	the	same	network	weights
W	to	estimate	the	target	and	the	Q	value.	As	a	result,	there	is	a	large	correlation
between	the	Q	values	we	are	predicting	and	the	target	Q	values,	since	they	both
use	the	same	changing	weights.	This	makes	both	the	predicted	and	the	target	Q
values	shift	at	every	step	of	training,	leading	to	oscillations.

To	stabilize	this,	we	use	a	copy	of	the	original	network	to	estimate	the	target	Q
values	and	the	weights	of	the	target	network	is	copied	from	the	original	network
at	specific	intervals	during	the	steps.	This	variant	of	the	deep	Q	learning	network
is	called	double	deep	Q	learning	and	generally	leads	to	stable	training.	The
working	mechanics	of	the	double	deep	Q	learning	is	illustrated	in	the	following
diagrams	Figure	9.4A	and	Figure	9.4B:



Figure	9.4A:	Illustration	of	double	deep	Q	learning



Figure	9.4B:	Illustration	of	double	deep	Q	learning

In	the	preceding	diagram,	we	can	see	two	networks:	Network	A,	which	learns	to
predict	the	actual	Q	values	given	a	state,	and	Network	B	which	helps	in
computing	the	target	Q	values.	Network	A	improves	by	minimizing	the	loss
function	of	the	target	and	the	predicted	Q	values.	Since	the	Q	values	are
generally	continuous	in	nature,	some	of	the	valid	loss	functions	are	mean	squared
error,	mean	absolute	error,	Huber	Loss,	log-cosh	loss,	and	so	on.

Network	B	is	basically	a	copy	of	Network	A,	and	hence	they	share	the	same



architecture.	The	weights	from	Network	A	are	generally	copied	to	Network	B
at	specified	intervals.	This	is	to	ensure	that	the	same	set	of	network	weights	are
not	used	to	predict	the	Q	values	and	also	formulate	the	target	Q	values,	as	it
leads	to	unstable	training.	Given	the	single	training	tuple	(s(t)	=	s,	a(t)	=	a,	r(t)	=
r,	s(t+1)	=	s′),	the	Network	A	gives	the	prediction	for	the	Q	values	given	the	state
s(t)	=	s	for	all	the	possible	actions.	Since	we	know	the	actual	action	a(t)	=	a,	we
choose	the	Q	value	Q(t)	(s(t)	=	s,	a(t)	=	a).	This	will	act	as	our	predicted	Q	value	
.

Computing	the	target	is	now	a	little	more	difficult,	since	it	involves	both
networks.	We	know	the	candidate	Q	value	at	any	state	s(t)	at	step	t	is	the
immediate	reward	r(t)	at	time	t	plus	the	maximum	Q	value	at	the	next	step	(t	+	1)
given	the	new	state	s(t+1).	The	candidate	Q	value	can	be	expressed	as	follows:

This	is	the	case	when	 	is	a	constant	discount	factor.	The	reward	r	is	already	a
part	of	the	training	tuple.	Consequently,	the	only	thing	that	we	need	to	compute
the	target	is	the	action	a′	that	gives	the	maximum	Q	and	takes	the	corresponding

Q	value	to	that	corresponding	action	a′.	This	problem	of	computing	
is	broken	down	into	two	parts:

Network	A	determines	the	action	a′	that	gives	the	maximum	Q	value	given
the	state	s′.	However,	we	won't	take	the	Q	value	corresponding	to	the	action
a′	and	state	s′	from	Network	A.
Network	B	is	used	to	extract	the	Q	value	Q(t-k)	(s′,	a′)	corresponding	to	the
state	s′	and	action	a′.

This	leads	to	much	stable	training	in	comparison	to	that	of	a	basic	DQN.



Implementing	an	autonomous	self-
driving	car
We	will	now	look	at	implementing	an	autonomous	self-driving	racing	car	that
learns	to	drive	by	itself	on	a	racing	track	using	deep	Q	networks.	The	driver	and
the	car	will	act	as	the	agent,	while	the	racing	track	and	its	surroundings	act	as	the
environment.	We	will	be	using	an	OpenAI	Gym	CarRacing-v0	framework	as	the
environment.	The	states	and	the	rewards	are	going	to	be	presented	to	the	agent
by	the	environment,	while	the	agent	will	act	upon	those	by	taking	appropriate
actions.	The	states	are	in	the	form	of	images	taken	from	a	camera	in	front	of	the
car.	The	actions	that	the	environment	accepts	are	in	the	form	of	the	three-
dimensional	vector	a	∈	R3	where	the	first	component	is	used	for	turning	left,	the
second	component	is	used	for	moving	forward	and	the	third	component	is	used
for	moving	right.	The	agent	will	interact	with	the	environment	and	will	convert

the	interaction	into	tuples	of	the	form	 .	These	interaction	tuples
will	act	as	our	training	data.

	

The	architecture	would	be	similar	to	what	we	have	illustrated	on	the	right	side	of
the	diagrams	(Figure	9.4A	and	Figure	9.4B).

	

	

	



Discretizing	actions	for	deep	Q
learning
Discretizing	actions	for	deep	Q	learning	is	very	important,	since	a	three-
dimensional	continuous	action	space	can	have	infinite	Q	values,	and	it	would	not
be	possible	to	have	separate	units	for	each	of	them	in	the	output	layer	of	the
Deep	Q	network.	The	three	dimensions	of	the	actions	space	are	as	follows:
Steering:	∈	[-1,	1]

Gas:	∈	[0,	1]

Break:	∈	[0,	1]

We	convert	this	three	dimensional	action	space	into	four	actions	of	interest	to	us
as	follows:	Brake	:	[0.0,	0.0,	0.0]	
Sharp	Left:	[-0.6,	0.05,	0.0]	
Sharp	Right:	[0.6,	0.05,	0.0]	
Straight:	[0.0,	0.3,	0.0]



Implementing	the	Double	Deep	Q
network
The	network	architecture	of	the	Double	Deep	Q	network	is	illustrated	as
follows.	The	networks	have	CNN	architecture	to	process	the	states	as	images
and	output	Q	values	for	all	possible	actions.	The	detailed	code(DQN.py)	is	as
follows:

import	keras

from	keras	import	optimizers

from	keras.layers	import	Convolution2D

from	keras.layers	import	Dense,	Flatten,	Input,	concatenate,	Dropout

from	keras.models	import	Model

from	keras.utils	import	plot_model

from	keras	import	backend	as	K

import	numpy	as	np

'''

Double	Deep	Q	Network	Implementation

'''

learning_rate	=	0.0001

BATCH_SIZE	=	128

class	DQN:

				def	__init__(self,num_states,num_actions,model_path):

								

								self.num_states	=	num_states

								print(num_states)

								self.num_actions	=	num_actions

								self.model	=	self.build_model()	#	Base	Model	

								self.model_	=	self.build_model()	

							#	target	Model	(copy	of	Base	Model)

								self.model_chkpoint_1	=	model_path	+"CarRacing_DDQN_model_1.h5"

								self.model_chkpoint_2	=	model_path	+"CarRacing_DDQN_model_2.h5"

								

								save_best	=	keras.callbacks.ModelCheckpoint(self.model_chkpoint_1,

																																																monitor='loss',

																																																verbose=1,

																																																save_best_only=True,

																																																mode='min',

																																																period=20)

								save_per	=	keras.callbacks.ModelCheckpoint(self.model_chkpoint_2,

																																																monitor='loss',

																																																verbose=1,

																																																save_best_only=False,

																																																mode='min',

																																																period=400)

								

								self.callbacks_list	=	[save_best,save_per]

		

				#	Convolutional	Neural	Network	that	takes	in	the	state	and	outputs	the	Q	values	for	all	the	possible	actions.	



				def	build_model(self):

								states_in	=	Input(shape=self.num_states,name='states_in')

								x	=	Convolution2D(32,(8,8),strides=(4,4),activation='relu')(states_in)

								x	=	Convolution2D(64,(4,4),	strides=(2,2),	activation='relu')(x)

								x	=	Convolution2D(64,(3,3),	strides=(1,1),	activation='relu')(x)

								x	=	Flatten(name='flattened')(x)

								x	=	Dense(512,activation='relu')(x)

								x	=	Dense(self.num_actions,activation="linear")(x)

								model	=	Model(inputs=states_in,	outputs=x)

								self.opt	=	optimizers.Adam(lr=learning_rate,	beta_1=0.9,	beta_2=0.999,	epsilon=None,decay=0.0,	amsgrad=False)

								model.compile(loss=keras.losses.mse,optimizer=self.opt)

								plot_model(model,to_file='model_architecture.png',show_shapes=True)

								return	model

	

				#	Train	function

				def	train(self,x,y,epochs=10,verbose=0):

								self.model.fit(x,y,batch_size=(BATCH_SIZE),	epochs=epochs,	verbose=verbose,	callbacks=self.callbacks_list)

								

			#Predict	function

				def	predict(self,state,target=False):

								if	target:

												#	Return	the	Q	value	for	an	action	given	a	state	from	thr	target	Network

												return	self.model_.predict(state)

								else:

												#	Return	the	Q	value	from	the	original	Network

												return	self.model.predict(state)

				

				#	Predict	for	single	state	function

				def	predict_single_state(self,state,target=False):

								x	=	state[np.newaxis,:,:,:]

								return	self.predict(x,target)

				

				#Update	the	target	Model	with	the	Base	Model	weights

				def	target_model_update(self):

								self.model_.set_weights(self.model.get_weights())

As	we	can	see	in	the	preceding	code	we	are	having	two	models	where	one	is	a
copy	of	the	other.	The	base	and	the	target	models	are	saved
asCarRacing_DDQN_model_1.h5	and	CarRacing_DDQN_model_2.h5.

By	invoking	the	target_model_update	the	target	model	is	updated	to	have	the	same
weights	as	the	base	model.



import	math<br/>from	Memory	import	Memory<br/>from	DQN	import
DQN<br/>import	numpy	as	np<br/>import	random<br/>from	helper_functions
import	sel_action,sel_action_index<br/><br/>#	Agent	and	Random	Agent
implementations	<br/><br/>max_reward	=	10<br/>grass_penalty	=
0.4<br/>action_repeat_num	=	8<br/>max_num_episodes	=
1000<br/>memory_size	=	10000	<br/>max_num_steps	=	action_repeat_num	*
100<br/>gamma	=	0.99	<br/>max_eps	=	0.1<br/>min_eps	=	0.02
<br/>EXPLORATION_STOP	=	int(max_num_steps*10)	<br/>_lambda_	=	-
np.log(0.001)	/	EXPLORATION_STOP
<br/>UPDATE_TARGET_FREQUENCY	=	int(50)	<br/>batch_size	=	128<br/>
<br/><br/><br/>class	Agent:<br/>	steps	=	0<br/>	epsilon	=	max_eps<br/>
memory	=	Memory(memory_size)<br/>	<br/>	def	__init__(self,
num_states,num_actions,img_dim,model_path):<br/>	self.num_states	=
num_states<br/>	self.num_actions	=	num_actions<br/>	self.DQN	=
DQN(num_states,num_actions,model_path)<br/>	self.no_state	=
np.zeros(num_states)<br/>	self.x	=	np.zeros((batch_size,)+img_dim)<br/>	self.y
=	np.zeros([batch_size,num_actions])	<br/>	self.errors	=	np.zeros(batch_size)
<br/>	self.rand	=	False<br/>	<br/>	self.agent_type	=	'Learning'<br/>
self.maxEpsilone	=	max_eps<br/>	<br/>	def	act(self,s):<br/>	print(self.epsilon)
<br/>	if	random.random()	<	self.epsilon:<br/>	best_act	=
np.random.randint(self.num_actions)<br/>	self.rand=True<br/>	return
sel_action(best_act),	sel_action(best_act)<br/>	else:<br/>	act_soft	=
self.DQN.predict_single_state(s)<br/>	best_act	=	np.argmax(act_soft)<br/>
self.rand=False<br/>	return	sel_action(best_act),act_soft<br/><br/>	def
compute_targets(self,batch):<br/>	<br/>	#	0	->	Index	for	current	state<br/>	#	1	-
>	Index	for	action	<br/>	#	2	->	Index	for	reward<br/>	#	3	->	Index	for	next
state<br/>	<br/>	states	=	np.array([rec[1][0]	for	rec	in	batch])<br/>	states_	=
np.array([(self.no_state	if	rec[1][3]	is	None	else	rec[1][3])	for	rec	in	batch])<br/>
<br/>	p	=	self.DQN.predict(states)<br/>	<br/>	p_	=
self.DQN.predict(states_,target=False)<br/>	p_t	=
self.DQN.predict(states_,target=True)<br/>	act_ctr	=	np.zeros(self.num_actions)
<br/>	<br/>	for	i	in	range(len(batch)):<br/>	rec	=	batch[i][1]<br/>	s	=	rec[0];	a	=
rec[1];	r	=	rec[2];	s_	=	rec[3]<br/>	<br/>	a	=	sel_action_index(a)<br/>	t	=	p[i]
<br/>	act_ctr[a]	+=	1<br/>	<br/>	oldVal	=	t[a]<br/>	if	s_	is	None:	<br/>	t[a]	=
r<br/>	else:<br/>	t[a]	=	r	+	gamma	*	p_t[i][	np.argmax(p_[i])]	#	DDQN<br/>
<br/>	self.x[i]	=	s<br/>	self.y[i]	=	t<br/>	<br/>	if	self.steps	%	20	==	0	and	i	==
len(batch)-1:<br/>	print('t',t[a],	'r:	%.4f'	%	r,'mean	t',np.mean(t))<br/>	print	('act
ctr:	',	act_ctr)<br/>	<br/>	self.errors[i]	=	abs(oldVal	-	t[a])<br/><br/>	return



(self.x,	self.y,self.errors)<br/><br/><br/>	def	observe(self,sample):	#	in	(s,	a,	r,
s_)	format<br/>	_,_,errors	=	self.compute_targets([(0,sample)])<br/>
self.memory.add(errors[0],	sample)<br/><br/>	if	self.steps	%
UPDATE_TARGET_FREQUENCY	==	0:<br/>
self.DQN.target_model_update()<br/>	self.steps	+=	1<br/>	self.epsilon	=
min_eps	+	(self.maxEpsilone	-	min_eps)	*	np.exp(-1*_lambda_	*	self.steps)
<br/><br/>	<br/><br/>	def	replay(self):	<br/>	batch	=
self.memory.sample(batch_size)<br/>	x,	y,errors	=	self.compute_targets(batch)
<br/>	for	i	in	range(len(batch)):<br/>	idx	=	batch[i][0]<br/>
self.memory.update(idx,	errors[i])<br/><br/>	self.DQN.train(x,y)<br/>
<br/>class	RandomAgent:<br/>	memory	=	Memory(memory_size)<br/>	exp	=
0<br/>	steps	=	0<br/><br/>	<br/>	def	__init__(self,	num_actions):<br/>
self.num_actions	=	num_actions<br/>	self.agent_type	=	'Learning'<br/>
self.rand	=	True<br/><br/>	def	act(self,	s):<br/>	best_act	=
np.random.randint(self.num_actions)<br/>	return	sel_action(best_act),
sel_action(best_act)<br/><br/>	def	observe(self,	sample):	#	in	(s,	a,	r,	s_)
format<br/>	error	=	abs(sample[2])	#	reward<br/>	self.memory.add(error,
sample)<br/>	self.exp	+=	1<br/>	self.steps	+=	1<br/>	<br/>	def	replay(self):
<br/>	pass



import	gym<br/>from	gym	import	envs<br/>import	numpy	as	np<br/>from
helper_functions	import
rgb2gray,action_list,sel_action,sel_action_index<br/>from	keras	import	backend
as	K	<br/><br/>seed_gym	=	3<br/>action_repeat_num	=	8<br/>patience_count
=	200<br/>epsilon_greedy	=	True<br/>max_reward	=	10<br/>grass_penalty	=
0.8<br/>max_num_steps	=	200	<br/>max_num_episodes	=
action_repeat_num*100<br/><br/>'''<br/>Enviroment	to	interact	with	the
Agent<br/>'''<br/><br/>class	environment:<br/>	<br/>	def	__init__(self,
environment_name,img_dim,num_stack,num_actions,render,lr):<br/>
self.environment_name	=	environment_name<br/>
print(self.environment_name)<br/>	self.env	=
gym.make(self.environment_name)<br/>	envs.box2d.car_racing.WINDOW_H	=
500<br/>	envs.box2d.car_racing.WINDOW_W	=	600<br/>	self.episode	=
0<br/>	self.reward	=	[]	<br/>	self.step	=	0<br/>	self.stuck_at_local_minima	=
0<br/>	self.img_dim	=	img_dim<br/>	self.num_stack	=	num_stack<br/>
self.num_actions	=	num_actions<br/>	self.render	=	render<br/>	self.lr	=	lr<br/>
if	self.render	==	True:<br/>	print("Rendering	proeprly	set")<br/>	else:<br/>
print("issue	in	Rendering")<br/>	<br/>	#	Agent	performing	its	task	<br/>	def
run(self,agent):<br/>	self.env.seed(seed_gym)	<br/>	img	=	self.env.reset()<br/>
img	=	rgb2gray(img,	True)<br/>	s	=	np.zeros(self.img_dim)<br/>	#Collecting
the	state<br/>	for	i	in	range(self.num_stack):<br/>	s[:,:,i]	=	img<br/><br/>	<br/>
s_	=	s	<br/>	R	=	0<br/>	self.step	=	0<br/>	<br/>	a_soft	=	a_old	=
np.zeros(self.num_actions)<br/>	a	=	action_list[0]<br/>	#print(agent.agent_type)
<br/>	while	True:	<br/>	if	agent.agent_type	==	'Learning'	:	<br/>	if	self.render
==	True	:<br/>	self.env.render("human")<br/>	<br/><br/>	if	self.step	%
action_repeat_num	==	0:<br/>	<br/>	if	agent.rand	==	False:<br/>	a_old	=
a_soft<br/>	<br/>	#Agent	outputs	the	action<br/>	a,a_soft	=	agent.act(s)<br/>
<br/>	#	Rescue	Agent	stuck	at	local	minima<br/>	if	epsilon_greedy:<br/>	if
agent.rand	==	False:<br/>	if	a_soft.argmax()	==	a_old.argmax():<br/>
self.stuck_at_local_minima	+=	1<br/>	if	self.stuck_at_local_minima	>=
patience_count:<br/>	print('Stuck	in	local	minimum,	reset	learning	rate')<br/>
agent.steps	=	0<br/>	K.set_value(agent.DQN.opt.lr,self.lr*10)<br/>
self.stuck_at_local_minima	=	0<br/>	else:<br/>	self.stuck_at_local_minima	=
<br/>	max(self.stuck_at_local_minima	-2,	0)<br/>
K.set_value(agent.DQN.opt.lr,self.lr)<br/>	#Perform	the	action	on	the
environment	<br/>	img_rgb,	r,done,info	=	self.env.step(a)<br/>	<br/>	if	not
done:<br/>	#	Create	the	next	state<br/>	img	=	rgb2gray(img_rgb,	True)<br/>	for
i	in	range(self.num_stack-1):<br/>	s_[:,:,i]	=	s_[:,:,i+1]<br/>



s_[:,:,self.num_stack-1]	=	img<br/>	<br/>	else:<br/>	s_	=	None<br/>	#
Cumulative	reward	tracking	<br/>	R	+=	r<br/>	#	Normalize	reward	given	by	the
gym	environment	<br/>	r	=	(r/max_reward)	<br/>	if	np.mean(img_rgb[:,:,1])	>
185.0:<br/>	#	Penalize	if	the	car	is	on	the	grass<br/>	r	-=	grass_penalty	<br/>	#
Keeping	the	value	of	reward	within	-1	and	1	<br/>	r	=	np.clip(r,	-1	,1)<br/>
#Agent	has	a	whole	state,action,reward,and	next	state	to	learn	from<br/>
agent.observe(	(s,	a,	r,	s_)	)<br/>	agent.replay()	<br/>	s	=	s_<br/>	<br/>	else:
<br/>	img_rgb,	r,	done,	info	=	self.env.step(a)<br/>	if	not	done:<br/>	<br/>	img
=	rgb2gray(img_rgb,	True)<br/>	for	i	in	range(self.num_stack-1):<br/>	s_[:,:,i]	=
s_[:,:,i+1]<br/>	s_[:,:,self.num_stack-1]	=	img<br/>	else:<br/>	s_	=	None<br/>
<br/>	R	+=	r<br/>	s	=	s_<br/>	<br/>	if	(self.step	%	(action_repeat_num	*	5)	==
0)	and	<br/>	(agent.agent_type=='Learning'):<br/>	print('step:',	self.step,	'R:
%.1f'	%	R,	a,	'rand:',	agent.rand)<br/>	<br/>	self.step	+=	1<br/>	<br/>	if	done	or
(R	<-5)	or	(self.step	>	max_num_steps)	or	<br/>	np.mean(img_rgb[:,:,1])	>
185.1:<br/>	self.episode	+=	1<br/>	self.reward.append(R)<br/>	print('Done:',
done,	'R<-5:',	(R<-5),	'Green	<br/>	>185.1:',np.mean(img_rgb[:,:,1]))<br/>
break<br/><br/>	print("Episode	",self.episode,"/",
max_num_episodes,agent.agent_type)	<br/>	print("Average	Episode	Reward:",
R/self.step,	"Total	Reward:",	<br/>	sum(self.reward))<br/>	<br/>	<br/>	def
test(self,agent):<br/>	self.env.seed(seed_gym)<br/>	img=	self.env.reset()<br/>
img	=	rgb2gray(img,	True)<br/>	s	=	np.zeros(self.img_dim)<br/>	for	i	in
range(self.num_stack):<br/>	s[:,:,i]	=	img<br/><br/>	R	=	0<br/>	self.step	=
0<br/>	done	=	False<br/>	while	True	:<br/>	self.env.render('human')<br/>	<br/>
if	self.step	%	action_repeat_num	==	0:<br/>	if(agent.agent_type	==	'Learning'):
<br/>	act1	=	agent.DQN.predict_single_state(s)<br/>	act	=
sel_action(np.argmax(act1))<br/>	else:<br/>	act	=	agent.act(s)<br/>	<br/>	if
self.step	<=	8:<br/>	act	=	sel_action(3)<br/>	<br/>	img_rgb,	r,	done,info	=
self.env.step(act)<br/>	img	=	rgb2gray(img_rgb,	True)<br/>	R	+=	r<br/>	<br/>
for	i	in	range(self.num_stack-1):<br/>	s[:,:,i]	=	s[:,:,i+1]<br/>
s[:,:,self.num_stack-1]	=	img<br/>	<br/>	if(self.step	%	10)	==	0:<br/>
print('Step:',	self.step,	'action:',act,	'R:	%.1f'	%	R)<br/>
print(np.mean(img_rgb[:,:,0]),	np.mean(img_rgb[:,:,1]),	<br/>
np.mean(img_rgb[:,:,2]))<br/>	self.step	+=	1<br/>	<br/>	if	done	or	(R<	-5)	or
(agent.steps	>	max_num_steps)	or	<br/>	np.mean(img_rgb[:,:,1])	>	185.1:<br/>
R	=	0<br/>	self.step	=	0<br/>	print('Done:',	done,	'R<-5:',	(R<-5),	'Green>	<br/>
185.1:',np.mean(img_rgb[:,:,1]))<br/>	break<br/><br/><br/>

The	run	function	in	the	above	code	denotes	the	activity	of	the	agent	in	the
context	of	the	environment.



import	sys<br/>#sys.path.append('/home/santanu/ML_DS_Catalog-/Python-
Artificial-Intelligence-Projects_backup/Python-Artificial-Intelligence-
Projects/Chapter09/Scripts/')<br/>from	gym	import	envs<br/>from	Agents
import	Agent,RandomAgent<br/>from	helper_functions	import
action_list,model_save<br/>from	environment	import	environment<br/>import
argparse<br/>import	numpy	as	np<br/>import	random<br/>from	sum_tree
import	sum_tree<br/>from	sklearn.externals	import	joblib<br/><br/>'''<br/>This
is	the	main	module	for	training	and	testing	the	CarRacing	Application	from
gym<br/>'''<br/><br/>if	__name__	==	"__main__":<br/>	#Define	the
Parameters	for	training	the	Model<br/><br/>	parser	=
argparse.ArgumentParser(description='arguments')<br/>	parser.add_argument('--
environment_name',default='CarRacing-v0')<br/>	parser.add_argument('--
model_path',help='model_path')<br/>	parser.add_argument('--
train_mode',type=bool,default=True)<br/>	parser.add_argument('--
test_mode',type=bool,default=False)<br/>	parser.add_argument('--
epsilon_greedy',default=True)<br/>	parser.add_argument('--
render',type=bool,default=True)<br/>	parser.add_argument('--
width',type=int,default=96)<br/>	parser.add_argument('--
height',type=int,default=96)<br/>	parser.add_argument('--
num_stack',type=int,default=4)<br/>	parser.add_argument('--
lr',type=float,default=1e-3)<br/>	parser.add_argument('--
huber_loss_thresh',type=float,default=1.)<br/>	parser.add_argument('--
dropout',type=float,default=1.)<br/>	parser.add_argument('--
memory_size',type=int,default=10000)<br/>	parser.add_argument('--
batch_size',type=int,default=128)<br/>	parser.add_argument('--
max_num_episodes',type=int,default=500)<br/>	<br/>	<br/>	args	=
parser.parse_args()<br/>	<br/>	environment_name	=
args.environment_name<br/>	model_path	=	args.model_path<br/>	test_mode	=
args.test_mode<br/>	train_mode	=	args.train_mode<br/>	epsilon_greedy	=
args.epsilon_greedy<br/>	render	=	args.render<br/>	width	=	args.width<br/>
height	=	args.height<br/>	num_stack	=	args.num_stack<br/>	lr	=	args.lr<br/>
huber_loss_thresh	=	args.huber_loss_thresh<br/>	dropout	=	args.dropout<br/>
memory_size	=	args.memory_size<br/>	dropout	=	args.dropout<br/>	batch_size
=	args.batch_size<br/>	max_num_episodes	=	args.max_num_episodes<br/>
max_eps	=	1<br/>	min_eps	=	0.02	<br/>	seed_gym	=	2	#	Random	state<br/>
img_dim	=	(width,height,num_stack)<br/>	num_actions	=	len(action_list)<br/>
<br/>	<br/>if	__name__	==	'__main__':<br/><br/>	environment_name	=
'CarRacing-v0'<br/>	env	=



environment(environment_name,img_dim,num_stack,num_actions,render,lr)
<br/>	num_states	=	img_dim<br/>	print(env.env.action_space.shape)<br/>
action_dim	=	env.env.action_space.shape[0]	<br/>	assert	action_list.shape[1]	==
<br/>	action_dim,"length	of	Env	action	space	does	not	match	action	buffer"
<br/>	num_actions	=	action_list.shape[0]<br/>	#	Setting	random	seeds	with
respect	to	python	inbuilt	random	and	numpy	random<br/>	random.seed(901)
<br/>	np.random.seed(1)<br/>	agent	=	Agent(num_states,
num_actions,img_dim,model_path)<br/>	randomAgent	=
RandomAgent(num_actions)<br/><br/>	print(test_mode,train_mode)<br/>
<br/>	try:<br/>	#Train	agent<br/>	if	test_mode:<br/>	if	train_mode:<br/>
print("Initialization	with	random	agent.	Fill	memory")<br/>	while
randomAgent.exp	<	memory_size:<br/>	env.run(randomAgent)<br/>
print(randomAgent.exp,	"/",	memory_size)<br/>	<br/>	agent.memory	=
randomAgent.memory<br/>	randomAgent	=	None<br/>	<br/>	print("Starts
learning")<br/>	<br/>	while	env.episode	<	max_num_episodes:<br/>
env.run(agent)<br/>	<br/>	model_save(model_path,	"DDQN_model.h5",	agent,
env.reward)<br/>	<br/>	else:<br/>	#	Load	train	Model	<br/>	<br/>	print('Load
pre-trained	agent	and	learn')<br/>
agent.DQN.model.load_weights(model_path+"DDQN_model.h5")<br/>
agent.DQN.target_model_update()<br/>	try	:<br/>	agent.memory	=
joblib.load(model_path+"DDQN_model.h5"+"Memory")<br/>	Params	=
joblib.load(model_path+"DDQN_model.h5"+"agent_param")<br/>
agent.epsilon	=	Params[0]<br/>	agent.steps	=	Params[1]<br/>	opt	=	Params[2]
<br/>	agent.DQN.opt.decay.set_value(opt['decay'])<br/>	agent.DQN.opt.epsilon
=	opt['epsilon']<br/>	agent.DQN.opt.lr.set_value(opt['lr'])<br/>
agent.DQN.opt.rho.set_value(opt['rho'])<br/>	env.reward	=
joblib.load(model_path+"DDQN_model.h5"+"Rewards")<br/>	del	Params,
opt<br/>	except:<br/>	print("Invalid	DDQL_Memory_.csv	to	load")<br/>
print("Initialization	with	random	agent.	Fill	memory")<br/>	while
randomAgent.exp	<	memory_size:<br/>	env.run(randomAgent)<br/>
print(randomAgent.exp,	"/",	memory_size)<br/>	<br/>	agent.memory	=
randomAgent.memory<br/>	randomAgent	=	None<br/>	<br/>
agent.maxEpsilone	=	max_eps/5<br/>	<br/>	print("Starts	learning")<br/>	<br/>
while	env.episode	<	max_num_episodes:<br/>	env.run(agent)<br/>	<br/>
model_save(model_path,	"DDQN_model.h5",	agent,	env.reward)<br/>	else:
<br/>	print('Load	agent	and	play')<br/>
agent.DQN.model.load_weights(model_path+"DDQN_model.h5")<br/>	<br/>
done_ctr	=	0<br/>	while	done_ctr	<	5	:<br/>	env.test(agent)<br/>	done_ctr	+=
1<br/>	<br/>	env.env.close()<br/>	#Graceful	exit	<br/>	except



KeyboardInterrupt:<br/>	print('User	interrupt..gracefule	exit')<br/>
env.env.close()<br/>	<br/>	if	test_mode	==	False:<br/>	#	Prompt	for	Model
save<br/>	print('Save	model:	Y	or	N?')<br/>	save	=	input()<br/>	if	save.lower()
==	'y':<br/>	model_save(model_path,	"DDQN_model.h5",	agent,	env.reward)
<br/>	else:<br/>	print('Model	is	not	saved!')



"""<br/>Created	on	Thu	Nov	2	16:03:46	2017<br/><br/>@author:	Santanu
Pattanayak<br/>"""<br/>from	keras	import	backend	as	K<br/>import	numpy	as
np<br/>import	shutil,	os<br/>import	numpy	as	np<br/>import	pandas	as
pd<br/>from	scipy	import	misc<br/>import	pickle<br/>import	matplotlib.pyplot
as	plt<br/>from	sklearn.externals	import	joblib<br/><br/>
<br/>huber_loss_thresh	=	1	<br/>action_list	=	np.array([<br/>	[0.0,	0.0,	0.0],
#Brake<br/>	[-0.6,	0.05,	0.0],	#Sharp	left<br/>	[0.6,	0.05,	0.0],	#Sharp
right<br/>	[0.0,	0.3,	0.0]]	)	#Staight<br/><br/>rgb_mode	=	True<br/>
<br/>num_actions	=	len(action_list)<br/>	<br/>def	sel_action(action_index):
<br/>	return	action_list[action_index]<br/><br/>def	sel_action_index(action):
<br/>	for	i	in	range(num_actions):<br/>	if	np.all(action	==	action_list[i]):<br/>
return	i<br/>	raise	ValueError('Selected	action	not	in	list')<br/><br/>def
huber_loss(y_true,y_pred):<br/>	error	=	(y_true	-	y_pred)<br/><br/>	cond	=
K.abs(error)	<=	huber_loss_thresh<br/>	if	cond	==	True:<br/>	loss	=	0.5	*
K.square(error)<br/>	else:<br/>	loss	=	0.5	*huber_loss_thresh**2	+
huber_loss_thresh*(K.abs(error)	-	huber_loss_thresh)<br/>	return	K.mean(loss)
<br/><br/><br/>def	rgb2gray(rgb,norm=True):<br/>	<br/>	gray	=
np.dot(rgb[...,:3],	[0.299,	0.587,	0.114])<br/>	<br/>	if	norm:<br/>	#
normalize<br/>	gray	=	gray.astype('float32')	/	128	-	1	<br/><br/>	return
gray<br/><br/>def	data_store(path,action,reward,state):<br/><br/>	if	not
os.path.exists(path):<br/>	os.makedirs(path)<br/>	else:<br/>	shutil.rmtree(path)
<br/>	os.makedirs(path)<br/>	<br/>	df	=	pd.DataFrame(action,	columns=
["Steering",	"Throttle",	"Brake"])<br/>	df["Reward"]	=	reward<br/>
df.to_csv(path	+'car_racing_actions_rewards.csv',	index=False)<br/>	<br/>	for	i
in	range(len(state)):<br/>	if	rgb_mode	==	False:<br/>	image	=	rgb2gray(state[i])
<br/>	else:<br/>	image	=	state[i]<br/><br/>	misc.imsave(	path	+	"img"	+	str(i)
+".png",	image)<br/><br/><br/>def	model_save(path,name,agent,R):<br/>	'''
Saves	actions,	rewards	and	states	(images)	in	DataPath'''<br/>	if	not
os.path.exists(path):<br/>	os.makedirs(path)<br/>	agent.DQN.model.save(path	+
name)<br/>	print(name,	"saved")<br/>	print('...')<br/>	<br/>
joblib.dump(agent.memory,path+name+'Memory')<br/>
joblib.dump([agent.epsilon,agent.steps,agent.DQN.opt.get_config()],
path+name+'AgentParam')<br/>	joblib.dump(R,path+name+'Rewards')<br/>
print('Memory	pickle	dumped')

<strong>python	main.py	--environment_name	'CarRacing-v0'	--model_path
'/home/santanu/Autonomous	Car/train/'	--train_mode	True	--test_mode	False	--
epsilon_greedy	True	--render	True	--width	96	--height	96	--num_stack	4	--



huber_loss_thresh	1	--dropout	0.2	--memory_size	10000	--batch_size	128	--
max_num_episodes	500</strong>



Results	from	the	training
Initially,	the	self-driving	car	makes	mistakes,	but	after	a	period	of	time,	the	car
learns	from	its	mistakes	through	training,	and	therefore	gets	better.	This
screenshot	shows	images	of	the	car's	activity	during	the	initial	part	of	the
training	and	then	from	the	later	part	of	the	training	when	it	has	learned	from	its
previous	mistakes.	This	has	been	illustrated	in	the	following	screenshots	(Figure
9.5(A)	and	Figure	9.5(B)):	

Figure	9.5(A):	The	car	making	mistakes	in	the	initial	part	of	the	training

The	following	result	shows	the	car	driving	successfully	after	enough	training:



Figure	9.5(B):	The	car	driving	successfully	after	sufficient	training



Summary
With	this,	we	come	to	the	end	of	this	chapter.	The	topics	discussed	in	this
chapter	will	help	you	to	get	up	to	speed	with	the	reinforcement	learning
paradigm	as	well	as	enable	you	to	build	intelligent	RL	systems.	Also,	the	reader
is	expected	to	apply	the	technicalities	learned	in	this	project	to	other	RL-based
problems.

In	the	next	chapter	we	are	going	to	look	at	CAPTCHAs	from	a	deep	learning
perspective	and	build	some	interesting	projects	around	it.	Look	forward	to	your
participation.

	

	

	



CAPTCHA	from	a	Deep-Learning
Perspective
The	term	CAPTCHA	is	an	acronym	for	completely	automated	public	Turing
test	to	tell	computers	and	humans	apart.	This	is	a	computer	program	designed
to	distinguish	between	a	human	user	and	a	machine	or	a	bot,	typically	as	a
security	measure	to	prevent	spam	and	data	misuse.	The	concept	of	CAPTCHA
was	introduced	as	early	as	1997,	when	the	internet	search	company	AltaVista
was	trying	to	block	automatic	URL	submissions	to	the	platform	that	were
skewing	their	search	engine	algorithms.	To	tackle	this	problem,	AltaVista's	chief
scientist,	Andrei	Broder,	came	up	with	an	algorithm	to	randomly	generate
images	of	text	that	could	easily	be	identified	by	humans,	but	not	by	bots.	Later,
in	2003,	Luis	von	Ahn,	Manuel	Blum,	Nicholas	J	Hopper,	and	John	Langford
perfected	this	technology	and	called	it	CAPTCHA.	The	most	common	form	of
CAPTCHA	requires	a	user	to	recognize	the	letters	and	numbers	in	a	distorted
image.	This	test	is	done	in	the	hope	that	humans	would	easily	be	able	to
distinguish	the	characters	in	the	distorted	image,	while	an	automated	program	or
bot	will	not	be	able	to	distinguish	them.	The	CAPTCHA	test	is	sometimes	called
a	reverse	Turing	test	since	it	is	performed	by	a	computer	as	opposed	to	a	human.

As	of	recently,	CAPTCHA	has	started	to	serve	a	much	bigger	role	than	just
preventing	bot	frauds.	For	instance,	Google	used	CAPTCHA	and	one	of	its
variants,	reCAPTCHA,	when	they	digitized	the	archives	of	New	York	Times	and
some	books	in	Google	Books.	This	is	typically	done	by	asking	the	user	to
correctly	enter	the	characters	of	more	than	one	CAPTCHA.	Only	one	of	the
CAPTCHAs	is	actually	labelled	and	used	to	validate	whether	the	user	is	human.

The	rest	of	the	CAPTCHAs	are	labelled	by	the	user.	Currently,	Google	uses
image-based	CAPTCHA	to	help	label	its	autonomous	car-driving	dataset	as
shown	in	the	following	screenshot:



Figure	10.1:	Some	common	CAPTCHAs	on	various	websites

In	this	chapter,	we	will	cover	the	following	topics:

What	are	CAPTCHAs
Breaking	CAPTCHAs	using	deep	learning	to	expose	their	vulnerability
Generating	CAPTCHAs	using	adversarial	learning



Technical	requirements
You	will	require	to	have	basic	knowledge	of	Python	3,	TensorFlow,	Keras	and
OpenCV.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter10

Check	out	the	following	video	to	see	the	code	in	action:
http://bit.ly/2SgwR6P

https://github.com/PacktPublishing/Intelligent-Projects-using-Python/tree/master/Chapter10
http://bit.ly/2SgwR6P


Breaking	CAPTCHAs	with	deep
learning
With	the	recent	success	of	convolutional	neural	networks	(CNNs)	in	computer
vision	tasks,	breaking	basic	CAPTCHAs	in	a	few	minutes	is	a	relatively	easy
task.	Consequently,	CAPTCHAs	need	to	be	much	more	evolved	than	they	have
in	the	past.	In	the	first	part	of	this	chapter,	we	are	going	to	expose	the
vulnerability	of	basic	CAPTCHAs	being	automatically	detected	using	bots	with
a	deep-learning	framework.	We	are	going	to	follow	this	up	by	exploiting	GAN	to
create	CAPTCHAs	that	are	harder	for	bots	to	detect.

	

	

	



Generating	basic	CAPTCHAs
CAPTCHAs	can	be	generated	using	the	Claptcha	package	in	Python.	We	use	this
to	generate	CAPTCHA	images	of	four	characters	consisting	of	numbers	and	text.
Consequently,	each	character	can	be	any	one	of	26	letters	and	10	digits.	The
following	code	can	be	used	for	generating	CAPTCHAs	with	a	random	selection
of	letters	and	digits:

alphabets	=	'abcdefghijklmnopqrstuvwxyz'

alphabets	=	alphabets.upper()

font	=	"/home/santanu/Android/Sdk/platforms/android-28/data/fonts/DancingScript-Regular.ttf"

#	For	each	of	the	4	characters	determine	randomly	whether	its	a	digit	or	alphabet

char_num_ind	=	list(np.random.randint(0,2,4))

text	=	''

for	ind	in	char_num_ind:

				if	ind	==	1:

				#	for	indicator	1	select	character	else	number	

								loc	=	np.random.randint(0,26,1)

								text	=	text	+	alphabets[np.random.randint(0,26,1)[0]]

								

				else:

								text	=	text	+	str(np.random.randint(0,10,1)[0])

c	=	Claptcha(text,font)

text,image	=	c.image

plt.imshow(image)

					

The	following	screenshot	(Figure	10.2)	is	the	random	CAPTCHA	generated	by
the	preceding	code:

Figure	10.2:	Random	CAPTCHA	with	the	characters	26UR

Along	with	the	text,	the	Claptcha	tool	requires	the	font	in	which	to	print	the	text	as



input.	As	we	can	see,	it	has	added	noise	to	the	image	in	the	form	of	a	somewhat
distorted	line	across	the	horizontal	axis.



Generating	data	for	training	a
CAPTCHA	breaker
In	this	section,	we	are	going	to	generate	several	CAPTCHAs	using	the	Claptcha
tool	for	training	a	CNN	model.	The	CNN	model	will	learn	to	identify	the
characters	in	the	CAPTCHA	through	supervised	training.	We	are	going	to
generate	a	training	and	validation	set	for	training	the	CNN	model.	In	addition	to
this,	we	are	going	to	generate	a	separate	test	set	to	evaluate	its	ability	to
generalize	unseen	data.	The	CaptchaGenerator.py	script	can	be	coded	as	follows	to
generate	CAPTCHA	data:

from	claptcha	import	Claptcha

import	os

import	numpy	as	np

import	cv2

import	fire	

from	elapsedtimer	import	ElasedTimer

def	generate_captcha(outdir,font,num_captchas=20000):

				alphabets	=	'abcdefghijklmnopqrstuvwxyz'

				alphabets	=	alphabets.upper()

				try:

								os.mkdir(outdir)

				except:

								'Directory	already	present,writing	captchas	to	the	same'

				#rint(char_num_ind)

				#	select	one	alphabet	if	indicator	1	else	number	

				for	i	in	range(num_captchas):

								char_num_ind	=	list(np.random.randint(0,2,4))

								text	=	''

								for	ind	in	char_num_ind:

												if	ind	==	1:

																loc	=	np.random.randint(0,26,1)

																text	=	text	+	alphabets[np.random.randint(0,26,1)[0]]

												else:

																text	=	text	+	str(np.random.randint(0,10,1)[0])

								c	=	Claptcha(text,font)

								text,image	=	c.image

								image.save(outdir	+	text	+	'.png')

def	main_process(outdir_train,num_captchas_train,

																	outdir_val,num_captchas_val,

																	outdir_test,num_captchas_test,

																font):

				generate_captcha(outdir_train,font,num_captchas_train)

				generate_captcha(outdir_val,font,num_captchas_val)

				generate_captcha(outdir_test,font,num_captchas_test)

if	__name__	==	'__main__':



				with	ElasedTimer('main_process'):

								fire.Fire(main_process)

One	thing	to	note	is	that	most	of	the	CAPTCHA	generators	use	a	ttf	file	to	get	a
font	pattern	for	the	CAPTCHA.

We	can	generate	training	set,	validation,	and	the	test	set	of	size	16000,	4000,	and
4000,	by	using	the	CaptchaGenerator.py	script	as	follows:

python	CaptchaGenerator.py	--outdir_train	'/home/santanu/Downloads/Captcha	Generation/captcha_train/'	--num_captchas_train	16000	--outdir_val	'/home/santanu/Downloads/Captcha	Generation/captcha_val/'	--num_captchas_val	4000	

--outdir_test	'/home/santanu/Downloads/Captcha	Generation/captcha_test/'	--num_captchas_test	4000	--font	"/home/santanu/Android/Sdk/platforms/android-28/data/fonts/DancingScript-Regular.ttf"

The	script	took	3.328	mins	to	generate	16000	training	CAPTCHAs,	4000	validation
CAPTCHAs,	and	4000	test	CAPTCHAs,	as	we	can	see	from	the	following	log	of
the	script:

3.328	min:	main_process

In	the	next	section,	we	are	going	to	discuss	the	CAPTCHA	breaker's
convolutional	neural	network	architecture.



Captcha	breaker	CNN	architecture
We	are	going	to	use	a	CNN	architecture	to	identify	the	characters	in	the
CAPTCHA.	The	CNN	would	have	two	pairs	of	convolution	and	pooling	before
the	dense	layers.	Instead	of	feeding	the	whole	CAPTCHA	to	the	network,	we	are
going	to	break	the	CAPTCHA	into	four	characters	and	feed	them	individually	to
the	model.	This	requires	the	final	output	layer	of	the	CNN	to	predict	one	of	the
36	classes	pertaining	to	the	26	letters	and	10	digits.

The	model	can	be	defined	as	shown	in	the	following	code	by	the	function	_model_:

def	_model_(n_classes):

				#	Build	the	neural	network

				input_	=	Input(shape=(40,25,1))	

				

				#	First	convolutional	layer	with	max	pooling

				x	=	Conv2D(20,	(5,	5),	padding="same",activation="relu")(input_)

				x	=	MaxPooling2D(pool_size=(2,	2),	strides=(2,	2))(x)

				x	=	Dropout(0.2)(x)

				#	Second	convolutional	layer	with	max	pooling

				x	=	Conv2D(50,	(5,	5),	padding="same",	activation="relu")(x)

				x	=	MaxPooling2D(pool_size=(2,	2),	strides=(2,	2))(x)

				x	=	Dropout(0.2)(x)

				#	Hidden	layer	with	1024	nodes

				x	=	Flatten()(x)

				x	=	Dense(1024,	activation="relu")(x)

				#	Output	layer	with	36	nodes	(one	for	each	possible	alphabet/digit	we	predict)

				out	=	Dense(n_classes,activation='softmax')(x)

				model	=	Model(inputs=[input_],outputs=out)

				model.compile(loss="sparse_categorical_crossentropy",	optimizer="adam",	metrics=

				["accuracy"])

				return	model	

The	CAPTCHA	breaker	CNN	model	can	be	pictorially	depicted	as	shown	in	the
following	diagram	(Figure	10.3):





Figure	10.3:	The	CAPTCHA	breaker	CNN	architecture



def	load_img(path,dim=(100,40)):<br/>	img	=
cv2.imread(path,cv2.IMREAD_GRAYSCALE)<br/>	img	=	cv2.resize(img,dim)
<br/>	img	=	img.reshape((dim[1],dim[0],1))<br/>	#print(img.shape)<br/>	return
img/255.



def	create_dict_char_to_index():<br/>	chars	=
'abcdefghijklmnopqrstuvwxyz0123456789'.upper()<br/>	chars	=	list(chars)<br/>
index	=	np.arange(len(chars))<br/>	char_to_index_dict,index_to_char_dict	=	{},
{}<br/>	for	v,k	in	zip(index,chars):<br/>	char_to_index_dict[k]	=	v	<br/>
index_to_char_dict[v]	=	k	<br/><br/>	return
char_to_index_dict,index_to_char_dict



class	DataGenerator(keras.utils.Sequence):<br/>	'Generates	data	for	Keras'<br/>
def	__init__(self,dest,char_to_index_dict,batch_size=32,n_classes=36,dim=
(40,100,1),shuffle=True):<br/>	'Initialization'<br/>	self.dest	=	dest<br/>
self.files	=	os.listdir(self.dest)<br/>	self.char_to_index_dict	=
char_to_index_dict<br/>	self.batch_size	=	batch_size<br/>	self.n_classes	=
n_classes<br/>	self.dim	=	(40,100)<br/>	self.shuffle	=	shuffle<br/>
self.on_epoch_end()<br/><br/>	def	__len__(self):<br/>	'Denotes	the	number	of
batches	per	epoch'<br/>	return	int(np.floor(len(self.files)	/	self.batch_size))<br/>
<br/>	def	__getitem__(self,	index):<br/>	'Generate	one	batch	of	data'<br/>	#
Generate	indexes	of	the	batch<br/>	indexes	=	self.indexes[index*self.batch_size:
(index+1)*self.batch_size]<br/><br/>	#	Find	list	of	files	to	be	processed	in	the
batch<br/>	list_files	=	[self.files[k]	for	k	in	indexes]<br/><br/>	#	Generate
data<br/>	X,	y	=	self.__data_generation(list_files)<br/><br/>	return	X,	y<br/>
<br/>	def	on_epoch_end(self):<br/>	'Updates	indexes	after	each	epoch'<br/>
self.indexes	=	np.arange(len(self.files))<br/>	if	self.shuffle	==	True:<br/>
np.random.shuffle(self.indexes)<br/><br/>	def	__data_generation(self,list_files):
<br/>	'Generates	data	containing	batch_size	samples'	#	X	:	<br/>	(n_samples,
*dim,	n_channels)<br/>	#	Initialization<br/>	dim_h	=	dim[0]<br/>	dim_w	=
dim[1]//4<br/>	channels	=	dim[2]<br/>	X	=
np.empty((4*len(list_files),dim_h,dim_w,channels))<br/>	y	=
np.empty((4*len(list_files)),dtype=int)<br/>	#	print(X.shape,y.shape)<br/><br/>
#	Generate	data<br/>	k	=	-1<br/>	for	f	in	list_files:<br/>	target	=	list(f.split('.')
[0])<br/>	target	=	[self.char_to_index_dict[c]	for	c	in	target]<br/>	img	=
load_img(self.dest	+	f)<br/>	img_h,img_w	=	img.shape[0],img.shape[1]<br/>
crop_w	=	img.shape[1]//4<br/>	for	i	in	range(4):<br/>	img_crop	=
img[:,i*crop_w:(i+1)*crop_w]<br/>	k+=1<br/>	X[k,]	=	img_crop<br/>	y[k]	=
int(target[i])<br/><br/>	return	X,y



Training	the	CAPTCHA	breaker
The	CAPTCHA	breaker	model	can	be	trained	by	invoking	the	train	function	as
follows:

def	train(dest_train,dest_val,outdir,batch_size,n_classes,dim,shuffle,epochs,lr):

				char_to_index_dict,index_to_char_dict	=	create_dict_char_to_index()

				model	=	_model_(n_classes)

				train_generator	=		DataGenerator(dest_train,char_to_index_dict,batch_size,n_classes,dim,shuffle)

				val_generator	=		DataGenerator(dest_val,char_to_index_dict,batch_size,n_classes,dim,shuffle)

				model.fit_generator(train_generator,epochs=epochs,validation_data=val_generator)

				model.save(outdir	+	'captcha_breaker.h5')

	

For	the	CAPTCHAs	in	the	batch,	all	four	characters	are	considered	for	training.
We	define	the	train_generator	and	val_generator	object	using	the	DataGenerator	class.
These	data	generators	dynamically	provide	batches	for	training	and	validation.

The	training	can	be	invoked	by	running	the	captcha_solver.py	script	with	the	train
argument	as	follows:

python	captcha_solver.py	train	--dest_train	'/home/santanu/Downloads/Captcha	Generation/captcha_train/'	--dest_val	'/home/santanu/Downloads/Captcha	Generation/captcha_val/'	--outdir	'/home/santanu/ML_DS_Catalog-/captcha/model/'	--batch_size	16	--lr	1e-3	--epochs	20	--n_classes	36	--shuffle	True	--dim	'(40,100,1)'

In	just	20	epochs	of	training,	the	model	achieves	a	validation	accuracy	of	around
98.3%	per	character	level	of	the	CAPTCHA,	as	seen	from	the	following	output
log	as	follows:

Epoch	17/20

1954/1954	[==============================]	-	14s	7ms/step	-	loss:	0.0340	-	acc:	0.9896	-	val_loss:	0.0781	-	val_acc:	0.9835

Epoch	18/20

1954/1954	[==============================]	-	13s	7ms/step	-	loss:	0.0310	-	acc:	0.9904	-	val_loss:	0.0679	-	val_acc:	0.9851

Epoch	19/20

1954/1954	[==============================]	-	13s	7ms/step	-	loss:	0.0315	-	acc:	0.9904	-	val_loss:	0.0813	-	val_acc:	0.9822

Epoch	20/20

1954/1954	[==============================]	-	13s	7ms/step	-	loss:	0.0297	-	acc:	0.9910	-	val_loss:	0.0824	-	val_acc:	0.9832

4.412	min:	captcha_solver

The	training	time	for	20	epochs	with	roughly	16000	98.3s	(that	is,	64000	CAPTCHA	characters)
is	around	4.412	min	using	a	GeForce	GTX	1070	GPU.	Readers	are	advised	to	use	a	GPU	based
machine	for	faster	training.



Accuracy	on	the	test	data	set
The	inference	of	the	test	data	can	be	run	by	invoking	the	evaluate	function.	The
evaluate	function	is	illustrated	as	follows	for	reference.	Do	note	that	the	evaluate
should	be	designed	to	look	at	the	accuracy	from	the	overall	CAPTCHA
perspective	and	not	on	the	character	level	of	the	CAPTCHA.	So,	only	when	all
four	characters	of	the	CAPTCHA	target	matches	the	prediction	can	we	flag	the
CAPTCHA	as	being	correctly	identified	by	the	CNN.

	

The	evaluate	function	for	running	inference	on	test	CAPTCHAs	can	be	coded	as
follows:

def	evaluate(model_path,eval_dest,outdir,fetch_target=True):

				char_to_index_dict,index_to_char_dict	=	create_dict_char_to_index()

				files	=	os.listdir(eval_dest)

				model	=	keras.models.load_model(model_path)

				predictions,targets	=	[],[]

				

				for	f	in	files:

								if	fetch_target	==	True:

												target	=	list(f.split('.')[0])

												targets.append(target)

								pred	=	[]

								img	=	load_img(eval_dest	+	f)

								img_h,img_w	=	img.shape[0],img.shape[1]

								crop_w	=	img.shape[1]//4

								for	i	in	range(4):

												img_crop	=	img[:,i*crop_w:(i+1)*crop_w]

												img_crop	=	img_crop[np.newaxis,:]

												pred_index		=	np.argmax(model.predict(img_crop),axis=1)

												#print(pred_index)

												pred_char			=	index_to_char_dict[pred_index[0]]

												pred.append(pred_char)

								predictions.append(pred)

				df	=	pd.DataFrame()

				df['files']	=	files

				df['predictions']	=	predictions

				if	fetch_target	==	True:

								match	=	[]

				

								df['targets']	=	targets

								accuracy_count	=	0	

								for	i	in	range(len(files)):

												if	targets[i]	==	predictions[i]:

																accuracy_count+=	1



																match.append(1)

												else:

																match.append(0)

								print(f'Accuracy:	{accuracy_count/float(len(files))}	')

				

								eval_file	=	outdir	+	'evaluation.csv'

								df['match']	=	match

								df.to_csv(eval_file,index=False)

								print(f'Evaluation	file	written	at:	{eval_file}	')

	

The	following	command	can	be	run	to	invoke	the	evaluate	function	of	the
captcha_solver.py	script	for	inference:	python	captcha_solver.py	evaluate	--
model_path	/home/santanu/ML_DS_Catalog-
/captcha/model/captcha_breaker.h5	--eval_dest
'/home/santanu/Downloads/Captcha	Generation/captcha_test/'	--outdir
/home/santanu/ML_DS_Catalog-/captcha/	--fetch_target	True

The	accuracy	achieved	on	the	test	dataset	of	4000	CAPTCHAs	is	around	93%.
The	output	of	running	the	evaluate	function	is	as	follows:	Accuracy:
0.9320972187421699	
Evaluation	file	written	at:	/home/santanu/ML_DS_Catalog-
/captcha/evaluation.csv	
13.564	s:	captcha_solver

We	can	also	see	that	the	inference	on	those	4000	CAPTCHAs	took	around	14
seconds	and	the	output	of	the	evaluations	is	written	in	the
/home/santanu/ML_DS_Catalog-/captcha/evaluation.csv	file.	

We	will	look	at	some	of	the	targets	and	predictions	where	the	model	has	not
done	well	in	the	following	screenshot	(Figure	10.4):	



Figure	10.4:	CAPTCHAs	where	the	CAPTCHA	solver	model	failed



CAPTCHA	generation	through
adversarial	learning
In	this	section,	we	are	going	to	work	through	creating	CAPTCHAs	through	a
generative	adversarial	network.	We	are	going	to	generate	images	similar	to	those
in	the	Street	View	House	Numbers	dataset	(SVHN	dataset).	The	idea	is	to	use
these	GAN	generated	images	as	CAPTCHAs.	Only	when	we	have	trained	the
GAN	would	they	be	easy	to	sample	from	a	noise	distribution.	This	would
alleviate	the	need	to	create	CAPTCHAs	through	a	more	complicated	method.	It
would	also	provide	some	variety	to	the	SVHN	street	numbers	used	in
CAPTCHAs.

The	SVHN	is	a	real	world	dataset	that	is	very	much	popular	in	the	machine
learning	and	deep-learning	field	for	its	use	in	the	object	recognition	algorithm.
As	its	name	suggests,	the	dataset	contains	real	images	of	house	numbers
obtained	from	Google	Street	View	Images.	The	dataset	can	be	downloaded	from
the	following	link:	http://ufldl.stanford.edu/housenumbers/.

We	are	going	to	work	with	the	resized	house	numbers	dataset	where	the	images
have	been	resized	to	dimension	(32,32).	The	dataset	of	interest	to	us	is
train_32x32.mat.

Through	this	generative	adversarial	network	(GAN)	we	are	going	to	generate
house	number	images	from	random	noise	and	the	generated	images	would	be
much	like	those	in	the	SVHN	dataset.

Just	to	recap,	in	a	GAN	we	have	a	generator	(G)	and	a	discriminator(D),	which
play	a	zero	sum	minimax	game	with	each	other	with	respect	to	a	loss	function.
Over	time,	both	the	generator	and	the	discriminator	get	better	at	their	jobs	until
we	reach	a	stationary	point	where	both	cannot	improve	any	further.	This
stationary	point	is	the	saddle	point	with	respect	to	the	loss	function.	For	our
application,	the	Generator	G	is	going	to	convert	a	noise	z	from	a	given
distribution	P(z)	into	a	house	number	image	x	such	that	x	=	G(z).

This	generated	image	is	passed	through	the	discriminator	D	which	tries	to	detect

http://ufldl.stanford.edu/housenumbers/


this	generated	image	x	as	fake	and	the	real	house	number	images	from	the
SVHN	dataset	as	real.	At	the	same	time	the	generator	would	try	to	create	the
image	x	=	G(z)	in	such	a	way	that	the	discriminator	finds	the	images	to	be	real.
If	we	tag	the	real	images	as	1	and	the	fake	images	generated	by	the	generator	as	0
then	the	discriminator	would	try	to	minimize	the	binary	cross	entropy	loss	as	a
classifier	network	given	two	classes.	The	loss	minimized	by	the	discriminator	D
can	be	written	as	follows:

In	the	preceding	expression	D(.)	is	the	discriminator	function,	and	its	output
denotes	the	probability	of	tagging	an	image	as	real.	Pz(z)	denotes	the	distribution
of	the	random	variable	noise	z,	while	PX	(x)	denotes	the	distribution	of	the	real
house	number	images.	G(.)	and	D(.)	denotes	the	generator	network	function	and
the	discriminator	network	function	respectively.	These	would	be	parameterized
by	the	weights	of	the	network	that	we	have	conveniently	skipped	for	the	clutter
of	notation.	If	we	denote	the	parameters	of	the	generator	network	weights	by	
and	those	of	the	discriminator	network	by	 	then	the	discriminator	would	learn
to	minimize	the	loss	in	(1)	with	respect	to	 	while	the	generator	would	aim	to
maximize	the	same	loss	in	(1)	with	respect	to	 .	We	can	refer	to	the	loss
optimized	in	(1)	as	a	utility	function	that	both	the	generator	and	the	discriminator
are	optimizing	with	respect	to	their	parameters.	The	utility	function	U	can	be
written	as	a	function	of	the	parameters	of	the	generator	and	discriminator	as
follows:

From	the	game	theory	perspective,	the	generator	G	and	the	discriminator	D	plays
a	zero	sum	minmax	game	with	each	other	with	the	utility	function	 	and
the	optimization	problem	of	the	minimax	game	can	then	be	expressed	as	follows:



At	a	point	in	the	parameter	space,	if	a	function	is	a	local	maxima,	with	respect	to
some	parameters	and	a	local	minima,	with	respect	to	the	rest	of	the	parameters,
then	the	point	is	called	a	saddle	point.	Consequently,	the	point	given	by	
would	be	a	saddle	point	for	the	utility	function	 .	This	saddle	point	is	the
nash	equilibrium	of	the	minimax	zero	sum	game	and	the	parameters	 	are	the
most	optimal	with	respect	to	utility	the	generator	and	discriminator	is
optimizing.	In	terms	of	the	problem	at	hand,	the	generator	G	would	produce	the
most	difficult	CAPTCHAs	for	the	discriminator	to	detect	with	 	as	its
parameters.	Similarly,	the	discriminator	is	most	adapted	to	detect	fake

CAPTCHAs	with	 	as	its	parameters.

The	simplest	of	functions	that	has	a	saddle	point	is	x2	-	y2	and	the	saddle	point	is
the	origin:	(0,0).



Optimizing	the	GAN	loss
In	the	previous	section,	we	have	seen	that	the	optimal	state	of	the	generator	and
the	discriminator	with	respect	to	the	parameters	of	their	respective	networks	is
given	by	this:	

For	maximizing	an	objective	function,	we	generally	use	gradient	ascent,	whereas
for	minimizing	a	cost	function,	we	use	gradient	descent.	The	preceding
optimization	problem	can	be	broken	down	into	two	parts:	the	generator	and	the
discriminator	optimizing	the	utility	function	in	turns	by	gradient	ascent	and
gradient	descent	respectively.	At	any	step	t	during	the	optimization,	the
discriminator	would	try	to	move	to	a	new	state	by	minimizing	the	utility	as
follows:	

Alternatively,	the	generator	would	try	to	maximize	the	same	utility.	Since	the
discriminator	D	doesn't	have	any	parameters	of	the	generator,	the	second	term	of
the	utility	doesn't	influence	the	generator's	optimization.	The	same	can	be
expressed	as	follows:	

We	have	converted	both	the	generator	and	the	discriminator	optimization
objective	as	a	minimization	problem.	The	optimization	by	both	the	discriminator
and	generator	is	performed	using	gradient	descent	until	we	reach	the	saddle	point
of	the	objective	function.



Generator	network
The	generator	network	would	take	in	random	noise	and	try	to	output	images
similar	to	the	SVHN	images	as	output.	The	random	noise	is	a	100	dimensional
input	vector.	Each	of	the	dimensions	is	a	random	variable	following	the	standard
normal	distribution	with	a	mean	of	0	and	a	standard	deviation	of	1.

The	initial	dense	layer	has	8192	units,	which	is	reshaped	to	a	three-dimensional
tensor	of	a	shape	4	x	4	x	512	.	The	tensor	can	be	thought	of	as	a	4	x	4	image	with
512	filters.	To	increase	the	spatial	dimensions	of	the	tensor,	we	do	a	series	of
transpose	2D	convolutions	with	a	stride	of	2	and	a	kernel	filter	size	of	the
dimensions	5	x	5.	The	stride	size	determines	the	scaling	of	the	transpose
convolution.	For	instance,	a	stride	of	2	doubles	each	of	the	spatial	dimensions	of
the	input	image	followed	by	the	transpose	convolutions	are	generally
accompanied	by	batch	normalization	for	better	convergence.	The	network	uses
LeakyReLU	as	the	activation	function	except	for	the	activation	layer.	The	final
output	of	the	network	is	an	image	of	dimension	32	x	32	x	3.

The	tanh	activation	is	used	in	the	final	layer	in	order	to	normalize	the	image	pixel
values	in	the	range	of	[-1,1].

The	generator	can	be	coded	as	illustrated	as	follows:

def	generator(input_dim,alpha=0.2):

				model	=	Sequential()

				model.add(Dense(input_dim=input_dim,	output_dim=4*4*512))

				model.add(Reshape(target_shape=(4,4,512)))

				model.add(BatchNormalization())

				model.add(LeakyReLU(alpha))

				model.add(Conv2DTranspose(256,	kernel_size=5,	strides=2,

																														padding='same'))

				model.add(BatchNormalization())

				model.add(LeakyReLU(alpha))

				model.add(Conv2DTranspose(128,	kernel_size=5,	strides=2,	

																														padding='same'))	

				model.add(BatchNormalization())

				model.add(LeakyReLU(alpha))

				model.add(Conv2DTranspose(3,	kernel_size=5,	strides=2,

																														padding='same'))	

				model.add(Activation('tanh'))

				return	model

The	network	architecture	of	the	generator	is	depicted	in	the	following	diagram



(Figure	10.5)	for	reference:





Figure	10.5:	Generator	network	graph



Discriminator	network
The	discriminator	will	be	a	classic	binary	classification	convolutional	neural
network	that	can	classify	the	generator	images	as	fake	and	the	actual	SVHN
dataset	images	as	real.

The	discriminator	network	can	be	coded	as	follows:

def	discriminator(img_dim,alpha=0.2):

				model	=	Sequential()

				model.add(

												Conv2D(64,	kernel_size=5,strides=2,

												padding='same',

												input_shape=img_dim)

												)

				model.add(LeakyReLU(alpha))

				model.add(Conv2D(128,kernel_size=5,strides=2,padding='same'))

				model.add(BatchNormalization())

				model.add(LeakyReLU(alpha))

				model.add(Conv2D(256,kernel_size=5,strides=2,padding='same'))

				model.add(BatchNormalization())

				model.add(LeakyReLU(alpha))

				model.add(Flatten())

				model.add(Dense(1))

				model.add(Activation('sigmoid'))

				return	model

The	defined	discriminator	network	in	the	previous	code	block	takes	the	fake
generator	images,	and	the	real	SVHN	images	as	input	and	passes	them	through	3
sets	of	2D	convolutions	before	the	final	output	layer.	The	convolutions	in	this
network	are	not	followed	by	pooling	but	by	batch	normalization	and	LeakyReLU
activations.

The	network	architecture	of	the	discriminator	is	represented	in	the	following
diagram	(Figure	10.6):





Figure	10.6:	Discriminator	network	graph

The	output	activation	function	of	the	discriminator	is	a	sigmoid.	This	aids	the
binary	classification	of	the	fake	generated	images	from	the	real	SVHN	images.



Training	the	GAN
Setting	up	a	training	flow	for	a	generative	adversarial	network	is	not	straight
forward,	as	it	demands	a	lot	of	technical	considerations.	We	define	three
networks	for	training	as	follows:

The	generator	network	g	with	parameters	

The	discriminator	network	d	with	parameters	
The	combined	generator	discriminator	network	denoted	by	g_d	with	weights

and	

The	generator	g	creates	fake	images	that	the	d	discriminator	would	evaluate	and
try	to	label	as	fake.

In	the	g_d	network,	the	g	generator	creates	fake	images	and	then	tries	to	fool	the	d
discriminator	into	believing	them	as	real.	The	discriminator	network	is	compiled
with	the	binary	cross-entropy	loss,	and	the	loss	is	optimized	with	respect	to	the
discriminator	parameters	 ,	whereas	the	g_d	network	is	compiled	with	respect	to
the	parameters	 	of	the	g	generator	in	order	to	fool	the	discriminator.
Consequently,	the	g_d	network	loss	is	the	binary	cross	entropy	loss	related	to	the
discriminator	tagging	all	fake	images	as	real.	In	each	mini-batch	the	generator
and	the	discriminator	weights	are	updated	based	on	the	optimization	of	the	loss
associated	with	the	g_d	and	d	networks:

def	train(dest_train,outdir,

								gen_input_dim,gen_lr,gen_beta1,

								dis_input_dim,dis_lr,dis_beta1,

								epochs,batch_size,alpha=0.2,smooth_coef=0.1):

				#X_train,X_test	=	read_data(dest_train),read_data(dest_test)

				train_data	=	loadmat(dest_train	+	'train_32x32.mat')

				X_train,	y_train	=	train_data['X'],	train_data['y']

				X_train	=	np.rollaxis(X_train,	3)	

				print(X_train.shape)

				#Image	pixels	are	normalized	between	-1	to	+1	so	that	one	can	use	the	tanh	activation	function

				#_train	=	(X_train.astype(np.float32)	-	127.5)/127.5

				X_train	=	(X_train/255)*2-1

				g	=	generator(gen_input_dim,alpha)

				plot_model(g,show_shapes=True,	to_file='generator_model.png')

				d	=	discriminator(dis_input_dim,alpha)

				d_optim	=	Adam(lr=dis_lr,beta_1=dis_beta1)

				d.compile(loss='binary_crossentropy',optimizer=d_optim)



				plot_model(d,show_shapes=True,	to_file='discriminator_model.png')

				g_d	=	generator_discriminator(g,	d)

				g_optim	=	Adam(lr=gen_lr,beta_1=gen_beta1)

				g_d.compile(loss='binary_crossentropy',	optimizer=g_optim)

				plot_model(g_d,show_shapes=True,	to_file=

				'generator_discriminator_model.png')

				for	epoch	in	range(epochs):

								print("Epoch	is",	epoch)

								print("Number	of	batches",	int(X_train.shape[0]/batch_size))

								for	index	in	range(int(X_train.shape[0]/batch_size)):

												noise	=	

												np.random.normal(loc=0,	scale=1,	size=(batch_size,gen_input_dim))

												image_batch	=	X_train[index*batch_size:(index+1)*batch_size,:]

												generated_images	=	g.predict(noise,	verbose=0)

												if	index	%	20	==	0:

																combine_images(generated_images,outdir,epoch,index)

																#	Images	converted	back	to	be	within	0	to	255	

																

												print(image_batch.shape,generated_images.shape)

												X	=	np.concatenate((image_batch,	generated_images))

												d1	=	d.train_on_batch(image_batch,[1	-	smooth_coef]*batch_size)

												d2	=	d.train_on_batch(generated_images,[0]*batch_size)

												y	=	[1]	*	batch_size	+	[0]	*	batch_size

												#	Train	the	Discriminator	on	both	real	and	fake	images	

												make_trainable(d,True)

												#_loss	=	d.train_on_batch(X,	y)

												d_loss	=	d1	+	d2

												print("batch	%d	d_loss	:	%f"	%	(index,	d_loss))

												noise	=	

												np.random.normal(loc=0,	scale=1,	size=(batch_size,gen_input_dim))

												make_trainable(d,False)

												#d.trainable	=	False

												#	Train	the	generator	on	fake	images	from	Noise	

												g_loss	=	g_d.train_on_batch(noise,	[1]	*	batch_size)

												print("batch	%d	g_loss	:	%f"	%	(index,	g_loss))

												if	index	%	10	==	9:

																g.save_weights('generator',	True)

																d.save_weights('discriminator',	True)

The	Adam	optimizer	is	used	for	the	optimisation	of	both	networks.	One	thing	to
note	is	that	the	network	g_d	needs	to	be	compiled	to	optimize	the	loss	with
respect	to	parameters	of	generator	G	only.	Consequently,	we	need	to	disable	the
training	of	the	parameters	of	the	discriminator	D	in	network	g_d.

We	can	use	the	following	function	to	disable	or	enable	learning	of	the	parameters
of	the	network:

def	make_trainable(model,	trainable):

				for	layer	in	model.layers:

								layer.trainable	=	trainable

We	can	disable	learning	of	the	parameters	by	setting	the	trainable	to	False,
whereas	if	we	want	to	enable	the	training	of	these	parameters,	we	need	to	set	it
to	True.



Noise	distribution
The	noise	that	is	input	to	the	GAN	needs	to	follow	a	specific	probability
distribution.	generally	uniform	distribution	U[-1,1]	or	standard	normal
distribution	that	is,	normal	distribution	with	mean	0	and	standard	deviation	1	is
used	to	sample	each	dimension	of	the	noise	vector.	Empirically	it	has	been	seen
that	sampling	noise	from	standard	normal	distribution	seems	to	work	better	than
sampling	from	uniform	distribution.	We	would	be	using	standard	normal
distribution	to	sample	random	noise	in	this	implementation.

	

	

	



Data	preprocessing
As	discussed	previously,	we	would	be	working	with	the	SVHN	dataset	images	of
dimensions	32	x	32	x	3.

The	dataset	images	are	readily	available	in	matrix	data	form.	The	raw	pixel	of
the	images	are	normalized	within	the	range	of	[-1,1]	for	faster	and	stable
convergence.	Because	of	this	transformation,	the	final	activation	of	the	generator
is	kept	tanh	to	ensure	the	generated	image	has	pixel	values	within	[-1,1].

The	read_data	can	be	used	to	process	the	input	data.	The	dir_flag	is	used	to
determine	whether	we	have	the	raw	processed	data	matrix	file	or	the	image
directory.	For	instance,	when	we	work	with	the	SVHN	dataset,	the	dir_flag
should	be	set	to	False,	since	we	already	have	a	pre-processed	data	matrix	file
named	train_32x32.mat.

However,	it	is	better	to	keep	the	read_data	function	generic,	since	this	allows	us	to
reuse	the	script	for	other	datasets.	The	loadmat	function	from	scipy.io	can	be	used
for	reading	the	train_32x32.mat.

If	the	inputs	are	raw	images	placed	in	a	directory,	then	we	can	read	the	image
files	available	in	the	directory	and	read	them	through	opencv.	The	load_img	function
can	be	used	to	read	the	raw	images	using	opencv.

Finally,	the	pixel	intensity	is	normalized	to	be	in	the	range	of	[-1,1]for	better
convergence	of	the	network:

def	load_img(path,dim=(32,32)):

				img	=	cv2.imread(path)

				img	=	cv2.resize(img,dim)

				img	=	img.reshape((dim[1],dim[0],3))

				return	img

def	read_data(dest,dir_flag=False):

	if	dir_flag	==	True:

	files	=	os.listdir(dest)

	X	=	[]

	for	f	in	files:

	img	=	load_img(dest	+	f)



	X.append(img)

	return	X

	else:

	train_data	=	loadmat(path)

	X,y	=	train_data['X'],	train_data['y']

	X	=	np.rollaxis(X,3)	

	X	=	(X/255)*2-1

	return	X



<strong>python	captcha_gan.py	train	--dest_train
'/home/santanu/Downloads/<span>train_32x32.mat</span>'	--outdir
'/home/santanu/ML_DS_Catalog-/captcha/SVHN/'	--dir_flag	False	--batch_size
100	--gen_input_dim	100	--gen_beta1	0.5	--gen_lr	0.0001	--dis_input_dim
'(32,32,3)'	--dis_lr	0.001	--dis_beta1	0.5	--alpha	0.2	--epochs	100	--smooth_coef
0.1</strong>

The	preceding	script	uses	the	fire	Python	package	to	invoke	a	user	specified
function,	which	is	train	in	our	case.	The	good	thing	about	fire	is	that	all	the
inputs	to	the	function	can	be	supplied	by	the	user	as	arguments	as	we	can	see
from	the	previous	command.

GANs	are	notoriously	hard	to	train	and	therefore	these	parameters	need	to	be
tuned	in	order	for	the	model	to	function	properly.	Following	are	a	few	of	the
important	parameters:

Parameters Values Comment

batch_size 100
The	batch	size	for	mini	batch	stochastic	gradient
descent.

gen_input_dim 100 The	input	random	noise	vector	dimension.
gen_lr 0.0001 Generator	learning	rate.

gen_beta1 0.5
beta_1	is	the	parameter	for	the	Adam	optimizer	for
the	generator.

dis_input_dim (32,32,3)
Shape	of	the	real	and	fake	housing	number	images	to
the	discriminator.

dis_lr 0.001 Learning	rate	of	the	discriminator	network.

dis_beta1 0.5
beta_1	is	the	parameter	for	the	Adam	optimizer	for
discriminator.

This	is	the	leak	factor	of	the	LeakyReLU	activation.
This	helps	to	provide	a	gradient	(0.2	here)	when	the
input	to	the	activation	function	is	negative.	It	helps



alpha 0.2

solve	the	dying	ReLU	problem.	The	gradient	of	the
output	of	the	ReLU	function	with	respect	to	its	input
is	0	if	the	input	is	less	than	or	equal	to	0.	The	back-
propagated	error	from	later	layers	gets	multiplied	by
this	0	and	no	error	passes	to	the	earlier	layers	though
the	neuron	associated	with	this	ReLU.	The	ReLU	is
said	to	have	died	and	many	such	dead	ReLUs	can
affect	the	training.	LeakyReLU	overcomes	this
problem	by	providing	small	gradient	even	for
negative	input	values,	thus	ensuring	that	the	training
never	stops	due	to	lack	of	gradient.

epochs 100 This	is	the	number	of	epochs	to	run.

smooth_coef 0.1

This	smooth	coefficient	is	designed	to	reduce	the
weight	of	the	loss	of	real	samples	to	the
discriminator.	For	instance,	the	smooth_coef	of	0.1
would	reduce	the	loss	attributed	to	the	real	images	to
90%	of	the	original	loss.	This	helps	the	GANs	to
converge	better.

Training	the	GAN	with	these	parameters	takes	around	3.12	hours,	using	a
GeForce	GTX	1070	GPU.	Readers	are	advised	to	use	a	GPU	for	faster	training.



The	quality	of	CAPTCHAs	during
training
Let's	now	investigate	the	quality	of	the	CAPTCHAs	generated	at	various	epochs
during	training.	The	following	are	the	images	of	CAPTCHAs	after	epoch	5	(see
Figure	10.7a),	epoch	51	(see	Figure	10.7b),	and	epoch	100	(see	Figure	10.7c).	We
can	see	that	the	quality	of	the	CAPTCHA	images	has	improved	as	the	training
progresses.	The	following	screenshot	shows	the	result	for	sample	CAPTCHAs
generated	at	epoch	5:	



Figure	10.7a:	Sample	CAPTCHAs	generated	at	epoch	5

The	following	screenshot	shows	the	result	for	sample	CAPTCHAs	generated	at
epoch	51:	



Figure	10.7b:	Sample	CAPTCHAs	generated	at	epoch	51

	

The	following	screenshot	shows	the	result	for	sample	CAPTCHAs	generated	at
epoch	100:	



Figure	10.7c:	Sample	CAPTCHAs	generated	at	epoch	100

	



Using	the	trained	generator	to	create
CAPTCHAs	for	use
The	trained	GAN	network	can	be	loaded	at	run	time	to	generate	street	view
housing	numbers	like	CAPTCHA	for	use.	The	generate_captcha	function	can	be
used	to	generate	CAPTCHAs	for	use,	illustrated	as	follows:

def	generate_captcha(gen_input_dim,alpha,

													num_images,model_dir,outdir):

				g	=	generator(gen_input_dim,alpha)

				g.load_weights(model_dir	+	'generator')

				noise	=	

				np.random.normal(loc=0,	scale=1,	size=(num_images,gen_input_dim))

				generated_images	=	g.predict(noise,	verbose=1)

				for	i	in	range(num_images):

								img	=	generated_images[i,:]

								img	=	np.uint8(((img+1)/2)*255)

								img	=	Image.fromarray(img)

								img.save(outdir	+	'captcha_'	+	str(i)	+	'.png')	

				

You	may	be	wondering	how	it	is	possible	to	have	the	label	for	these	generated
CAPTCHAs,	since	they	are	required	to	verify	whether	the	user	is	a	human	or	a
bot.	The	idea	is	very	simple:	send	the	unlabelled	CAPTCHAs	along	with	some
labelled	CAPTCHAs	so	that	the	user	doesn't	know	which	CAPTCHA	is	going	to
be	evaluated.	Once	you	have	enough	labels	for	the	generated	CAPTCHA	take
the	majority	label	as	the	actual	label	and	use	it	for	evaluation	henceforth.

The	generate_captcha	function	can	be	invoked	from	the	captcha_gan.py	script	by
invoking	the	following	command:

python	captcha_gan.py	generate-captcha	--gen_input_dim	100	--num_images	200	--model_dir	'/home/santanu/ML_DS_Catalog-/captcha/'	--outdir	'/home/santanu/ML_DS_Catalog-/captcha/captcha_for_use/'	--alpha	0.2

The	following	screenshot	(Figure	10.8)	depicts	a	few	of	the	CAPTCHAs
generated	by	invoking	the	generate_captcha	function.	We	can	see	that	the	images
are	decent	enough	to	be	used	as	CAPTCHAs:



Figure	10.8:	Generated	CAPTCHAs	using	the	generator	of	the	trained	GAN	network



Summary
With	this,	we	come	to	the	end	of	the	chapter.	All	the	code	related	to	this	chapter
can	be	located	in	the	GitHub	link	found	at:	https://github.com/PacktPublishing/Intelli
gent-Projects-using-Python/tree/master/Chapter10.	You	will	now	have	a	fair	idea	about
how	deep	learning	can	influence	CAPTCHAs.	At	one	end	of	the	spectrum,	we
can	see	how	easily	CAPTCHAs	can	be	solved	by	bots	with	deep-learning	AI
applications	in	them.	However,	at	the	other	end,	we	see	how	deep	learning	can
be	used	to	leverage	a	given	dataset	and	create	new	CAPTCHAs	from	random
noise.	You	can	extend	the	technicalities	learned	about	generative	adversarial
networks	in	this	chapter	to	build	a	smart	CAPTCHA	generation	system,	using
deep	learning.	And	now,	we	come	to	the	end	of	this	book.	I	hope	that	this
journey	through	the	nine	practical	artificial	intelligence-based	applications	has
been	an	enriching	one.	All	the	best!
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Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:	

Artificial	Intelligence	By	Example
Denis	Rothman

ISBN:	978-1-78899-054-7

Use	adaptive	thinking	to	solve	real-life	AI	case	studies
Rise	beyond	being	a	modern-day	factory	code	worker
Acquire	advanced	AI,	machine	learning,	and	deep	learning	designing	skills
Learn	about	cognitive	NLP	chatbots,	quantum	computing,	and	IoT	and
blockchain	technology
Understand	future	AI	solutions	and	adapt	quickly	to	them
Develop	out-of-the-box	thinking	to	face	any	challenge	the	market	presents

Artificial	Intelligence	for	Big	Data
Anand	Deshpande,	Manish	Kumar

ISBN:	978-1-78847-217-3
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Manage	Artificial	Intelligence	techniques	for	big	data	with	Java
Build	smart	systems	to	analyze	data	for	enhanced	customer	experience
Learn	to	use	Artificial	Intelligence	frameworks	for	big	data
Understand	complex	problems	with	algorithms	and	Neuro-Fuzzy	systems
Design	stratagems	to	leverage	data	using	Machine	Learning	process
Apply	Deep	Learning	techniques	to	prepare	data	for	modeling
Construct	models	that	learn	from	data	using	open	source	tools
Analyze	big	data	problems	using	scalable	Machine	Learning	algorithms



Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!
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