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Meta-Analytics. ht

# 2019 Steven Sim
It is a capital mistake to theorize before one has data

Arthur Conan Doyle (1887)

Numquam ponenda est pluralitas sine necessitate

William of Ockham, Duns Scotus, et al. (c. 1300)

E pluribus unum

US Motto
1.1 Introduction
We live in a world in which more data have been collected in the past 2–3 years than
were collected in the entire history of the world before then. Based on the trends of

the past few years, we’ll be saying this for a while. Why is this the case? The con-

fluence of nearly limitless storage and processing power has, quite simply, made it

far easier to generate and preserve data. The most relevant question is, perhaps, not

whether this will continue, but rather how much of the data will be used for anything

more than filling up storage space.

The machine intelligence community is, of course, interested in turning these

data into information and has had tremendous success to date albeit in somewhat spe-

cific and/or constrained situations. Recent advancements in hardware—from raw

processing power and nearly limitless storage capacity, to the architectural revolu-

tion that graphics processing units (GPUs) bring, to parallel and distributed

computation—have allowed software developers and algorithm developers to

encode processes that were unthinkable with the hardware of even a decade ago.

Deep learning and in particular convolutional neural networks, together with data-

flow programming, allow for an ease of rolling out sophisticated machine learning

algorithms and processes that is unprecedented, with the entire field having by all

means a bright future.

Taking the power of hybrid architectures as a starting point, analytic approaches

can be upgraded to benefit from all components when employing a plurality of ana-

lytics. This book is about how simple building blocks of analytics can be used in

aggregate to provide systems that are readily optimized for accuracy, robustness,

cost, scalability, modularity, reusability, and other design concerns. This book covers

the basics of analytics; builds on them to create a set of meta-analytic approaches;

and provides straightforward analytics algorithms, processes, and designs that will

bring a neophyte up to speed while augmenting the arsenal of an analytics authority.
tps://doi.org/10.1016/B978-0-12-814623-1.00001-0

ske. Published by Elsevier Inc. All rights reserved.
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The goal of the book is to make analytics enjoyable, efficient, and comprehensible to

the entire gamut of data scientists—in what is surely an age of data science.
1.2 Why is this book important?
First and foremost, this book is meant to be accessible to anyone interested in data

science. Data already permeate every science, technology, engineering, and mathe-

matics (STEM) endeavor, and the expectations to generate relevant and copious data

in any process, service, or product will only continue to grow in the years to come. A

book helping a STEM professional pick up the art of data analysis from the ground

up, providing both fundamentals and a roadmap for the future, is needed.

The book is aimed at supplying an extensive set of patterns for data scientists to

use to “hit the ground running” on anymachine-learning-based data analysis task and

virtually ensures that at least one approach will lead to better overall system behavior

(accuracy, cost, robustness, performance, etc.) than by using traditional analytic

approaches only. Because the book is “meta-” analytics, it also must cover general

analytics well enough for the reader to engage with and comprehend the hybrid

approaches, or “meta-” approaches. As such, the book aims to allow a relative novice

to analytics to move to an elevated level of competency and “fluency” relatively

quickly. It is also intended to challenge the data scientist to think more broadly

and more thoroughly than they might be otherwise motivated.

The target audience, therefore, consists of data scientists in all sectors—acade-

mia, industry, government, and NGO. Because of the importance of statistical

methods, data normalization, data visualization, and machine intelligence to the

types of data science included in this book, the book has relevance to machine trans-

lation, robotics, biological and social sciences, medical and health-care informatics,

economics, business, and finance. The analytic approaches covered herein can be

applied to predictive algorithms for everyone from police departments (crime pre-

diction) to sport analysts. The book is readily amenable to a graduate class on sys-

tems engineering, analytics, or data science, in addition to a course on machine

intelligence. A subset of the book could be used for an advanced undergraduate class

in intelligent systems.

Predictive analytics have long held a fascination for people. Seeing the future has

been associated with divinity, with magic, with the occult, or simply—and more in

keeping with Occam’s razor—with enhanced intelligence. But is Occam’s razor, or

the law of parsimony, applicable in the age of data science? It is no longer necessarily

the best advice to say “Numquam ponenda est pluralitas sine necessitate,” or “plu-

rality is never to be posited without necessity,” unless, of course, one uses “goodness

of fit to a model,” “output of sensitivity analysis,” or “least-squares estimation,”

among other quantitative artifacts, as proxies for “necessity.” The concept of predic-

tive analytics, used at the galactic level and extending many thousands of years into

the future, is the basis of the Foundation trilogy by Isaac Asimov, written in the mid-

dle of the 20th century. Futurist—or should we say mathematician?—Hari Seldon
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particularized the science of psychohistory, which presumably incorporated an

extremely multivariate analysis intended to remove as much uncertainty from the

future as possible for those privy to his output. Perhaps, the only prediction he

was unable to make was the randomness of the personality of the “Mule,” an

€uberintelligent, €ubermanipulative leader of the future. However, his ability to esti-

mate the future in probabilistic terms led to the (correct) prediction of the collapse

of the Galactic Empire and so included a manual to abbreviate the millennia of chaos

expected to follow. In other words, he may have foreseen not the “specific random-

ness” of the Mule, but constructed his psychohistory to be optimally robust to the

unforeseen. That is, Hari Seldon performed “preflight sensitivity analysis” of his pre-

dictive model. Kudos to Asimov for anticipating the value of analytics in the future.

But even more so, kudos for anticipating that the law of parsimony would be insuf-

ficient to address the needs of a predictive analytic system to be insensitive to such

“unpredictable” random artifacts (people, places, and things). The need to provide

for the simplest model reasonable—that is, the law of model parsimony—remains.

However, it is evident that hybrid systems, affording simplicity where possible but

able to handle much more complexity where appropriate, are more robust than either

extreme and ultimately will remain relevant longer in real-world applications.

This book is, consequently, important precisely because of the value provided by

both the Williams of Ockham and the Hari Seldon. The real world is dynamic and

ever-changing, and predictive models must be preadapted to change in the assump-

tions that underpin them, including but not limited to the drift in data from that used

to train the model; changes in the “measurement system” including sampling, filter-

ing, transduction, and compression; and changes in the interactions between the sys-

tem being modeled and measured and the larger environment around it. I hope that

the approaches revisited, introduced, and/or elaborated in this book will aid data sci-

entists in their tasks while also bringing non-data scientists to sufficient data “flu-

ency” to be able to interact intelligently with the world of data. One thing is

certain—unlike Hari Seldon’s Galactic Empire, the world of data is not about to

crumble. It is getting stronger—for good and for bad—every day.
1.3 Organization of the book
This, the first, is the critical chapter for the entire book and takes on a disproportion-

ate length compared with the other chapters intentionally, as this book is meant to

stand on its own, allowing the student, data enthusiast, and even data professional

to use it as a single source to proceed from unstructured data to fully tagged, clus-

tered, and classified data. This chapter also provides background on the statistics,

machine learning, and artificial intelligence needed for analytics and meta-analytics.

Additional chapters, then, elaborate further on what analytics provide. In

Chapter 2, the value of training data is thoroughly investigated, and the assumptions

around the long-standing training, validation, and testing process are revisited. In

Chapter 3, experimental design—from bias and normalization to the treatment of
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data experiments as systems of data—is considered. In Chapter 4, meta-analytic

approaches are introduced, with primary focus being on cumulative gain, or lift,

curves. Chapters 5–10 focus on other key aspects of systems around analytics,

including the broad but very approachable field of sensitivity analysis

(Chapter 5); the powerful family or “platform” of patterns for analytics loosely

described as predictive selection (Chapter 6); a consideration of models, model fit-

ting, and how to design models to be more robust to their environment (Chapter 7);

addition analytic design patterns (Chapter 8); the recursive use of analytics to explore

the efficacy of employed analytics (Chapter 9); and optimization of analytic system

design (Chapter 10), which is a natural follow-on to Chapter 9. Chapter 11 is used to

show how optimized system designs not only provide a better “buffer” to unantici-

pated random artifacts (these are called “aleatory techniques” here) but also do a bet-

ter job of ingesting domain expertise from decidedly nonrandom artifacts, that is,

from domain experts and requirements. In Chapters 12–13, the analytic approaches
introduced in the preceding chapters are applied to specific technical fields

(Chapter 12) and to some broader fields (Chapter 13). In Chapter 14, the contribu-

tions of this book are discussed in a larger context, and the future of data in the age of

data is described.

A note on what is meant by meta-analytics is worth providing. Essentially, “meta-

analysis” has two broad fields of study/application:

1. Meta- in the sense of meta-algorithmics, where we are combining two or more

analytic techniques (algorithms, processes, services, systems, etc.) to obtain

improved analytic output.

2. Meta- in the sense of being outside, additional, and augmentative to pure

analytics, which includes fields such as testing, ground truthing, training, and

sensitivity analysis and optimization of system design.

With this perspective, analytics is more than just simply machine learning: it is also

learning in the correct order. It is not only knowledge extraction but also extraction of

knowledge in the correct order. It is not only creating information but also creating

information in the correct order. This means that analytics is more than simple

descriptive or quantitative information. It is meant to extract and tell a story about

the data that someone skilled in the field would be able to provide, including mod-

ifying the analysis in light of changing data and context for the data.
1.4 Informatics
Occasionally, data science will be used interchangeably with the term “informatics.”

Informatics, however, is a branch of information engineering/science/systems con-

cerned with the impact of data on humans (and presumably the impact of humans on

data!). Informatics is concerned with the interaction between humans and relevant

information, particularly in how humans process information digitally. Thus, an

important aspect of informatics is the study of the social implications of information
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technologies. From this broad perspective, then, analytics gathered to determine how

digital technologies affect humans [Carr11] are an important part of informatics.

In this book, informatics will only be addressed peripherally, that is, as an inte-

grated part of the example, which is instead focused on the algorithmic, process, or

system approach to generating information from a data set. This does not mean we

are allowed to operate in a vacuum as data scientists; rather, it simply means that this

book will not have as a general concern the specific manner in which data are pre-

sented nor with which software the data are processed, etc.
1.5 Statistics for analytics
In this section, a quick summary (and, for many readers, a high-level recapitulation)

of statistics relevant to data science is given. The main topics covered will be value

(mean and estimate), variability, degrees of freedom, analysis of variance, and the

relationship of these statistics to information and inferences that can be drawn from

the data.
1.5.1 Value and variance
The value is an individual datum, typically binary, numerical, alphanumeric, or a

word, depending on the data-type definition. The first-order descriptor of a plurality

of values is the mean, μ, which is distinctly different from the “average”:

μ¼ x¼
Xnsamples

n¼1

xi
nsamples

(1.1)

For example, the “average” income, house price, or cost of goods is generally given

as the median, not the mean. The “average” day that the trash collector comes is usu-

ally the mode, not the mean. But in most analytics—that is, in parametric analytics—

the mean is our “average of choice.” In nonparametric statistics, the median is often

of concern, since the ranked order of values is important. Still on other occasions, the

mean does not need to be computed but is instead a specification that a system is

required to meet, for example, miles per gallon, cycles before failure, or bends before

fatigue. In these cases, a single type of event is monitored and its mean calculated,

and this mean is compared with this “specification as mean.”

Of course, two populations can share the same mean and still be quite different.

This is because most populations (and all nontheoretical populations) have variabil-

ity around the mean. The second moment of the distribution is the variance, usually

denoted by σ2, whose square root the standard deviation σ, defined in Eq. (1.2), is an
important characterizing datum of a distribution:

σ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnsamples

n¼1
xn�μ0ð Þ2

nsamples�1

vuut
(1.2)
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For a Gaussian, or normal, distribution, roughly 68% of the samples fall within the

range {μ�σ, μ+σ}. Note in Eq. (1.2) that the degrees of freedom, or df for short, are
equal to (number of samples)-1. This is intuitive since you can only choose the first

(number of samples)-1 samples and then the last one is already determined. Degrees

of freedom are always important in statistical analyses, since confidence in the result

is directly related to the number of times a result has been repeated. While “confi-

dence” is not a quantitative statistical measure (though confidence intervals are!),

generally, confidence increases with degrees of freedom and inversely with variabil-

ity. The highest possible confidence, then, comes when you repeat the exact same

result many, many times.

It is usually quite important to distinguish between comparing means and compar-

ing variances. For example, this distinguishes between weather and climate: if, in a

locale, the mean temperature is the same but the variance increases significantly over

time, then the mean “weather” does not change, but the climate does. Similarly, higher

variability in a genome more likely leads to new speciation than lower variability.

Another example may be for an engine used for transportation or for hauling

materials. For example, the modal and median engine revolutions per minute

(RPM), when measured over a day or even over a driving/on-cycle session, may

be well within the safety range. But this does not account for the variability. In some

short driving sessions, the standard deviation may be as high as the mean, and so, a

more important measure might be percent of time spent above a given value, which

may be, for example, 1.2 standard deviation above the mean. Here, the nature of the

distribution (the “shape” of the variance) is far more important than the mean. As a

general rule, for nonnegative data sets, whenever μ�σ, what you are measuring

requires further elaboration to be useful from an analytic viewpoint.
1.5.2 Sample and population tests
This type of confidence directly factors in when we consider the first quantitative

measurement for determining whether a sample belongs to a given population. This

measure, the z-score, is given in Eq. (1.3), where we see that the numerator is the

difference between the sample value, x, and the mean of the population, μ. The
denominator is the standard deviation, σ, divided by the square root of the number

of samples being compared with the population (which is effectively the degrees of

freedom for comparing the sample x to the population having n samples):

z¼ x�μ

σ
� ffiffiffi
n

p (1.3)

Note that the value of z can be positive or negative depending on whether x is greater
than the mean of the population. The z-score is used to decide with a given level of
confidence that a sample does not come from a population. As such, the absolute

value of the z-score in Eq. (1.3) is typically our concern. Table 1.3 provides a few

of the most important probabilities and their corresponding z-scores. Two-tailed
probability means that we do not know beforehand (a priori) whether a sample is

being tested to be above or below the mean of the population; one-tailed probability
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means that we a priori are testing in a single direction from the mean. For example, a

two-tailed test might be “it’s not a normal temperature for this day of the year,” while

a one-tailed test might be “it’s warmer than usual for this day of the year.” In general,

from a “conservative” statistical standpoint, it is better to use a two-tailed test than a

one-tailed test unless you already have a hypothesis, model, or regulation guiding

your comparison. You are less likely to have “false positives” for declaring a sample

statistically significantly different from a population this way. Note that the proba-

bility of a one-tailed test is halfway to 100% from that of a two-tailed test. Thus, for

z¼1.96, we are 95% certain that a sample did not come from a specific population,

and we are 97.5% certain that it comes from a second population with a higher mean

value if z¼1.96 (and not �1.96). This makes sense, because we are effectively get-

ting another 50% probability “correct” if the sign of the calculation z-value is correct.
In this case, had z been �1.96, we would not be able to support our hypothesis since

the direction from the mean of the population of size n to which we compare the

sample contradicts our hypothesis. (See Table 1.1.)

Eq. (1.3) relies on some assumptions that are worth discussing, as there are sev-

eral factors that affect the z-score in addition to the degrees of freedom. The first is

the possibility of non-Gaussian (nonnormal) behavior of the population with which

the sample is compared (and the population from which the sample actually comes,

although we may have no way of knowing/estimating this population yet). When we

consider third- and fourth-order moments such as skew and kurtosis, we may uncover

non-Gaussian behavior such as left skew (long tail left), right skew (long tail right),

bimodality (two clusters of data, implying that the population represents two subpop-

ulations with different attributes), and other non-Gaussian behaviors (e.g., exponen-

tial, uniform, logistic, Poisson, and symmetrical distributions). These distribution
deviations from assumed Gaussian behavior impact the interpretation of the z-score
(generally undermining the p-value, or probability). Secondly, a temporal drift in the
samples belonging to the population will undermine the z-score, since the sample

may be compared with data that are no longer relevant. For this reason, the popula-

tion and sample to compare should be time (and other experimental factor) matched

whenever possible. Thirdly, an imbalanced training set or population sample bias
Table 1.1 Z-scores (absolute values) and some important
probabilities

Absolute value of
z-score

Probability,
two-tailed

Probability,
one-tailed

1.645 0.90 0.95

1.96 0.95 0.975

2.326 0.98 0.99

2.576 0.99 0.995

The probability is not used to establish whether a sample belongs to a
population; rather, it provides the probability that a single sample was not
drawn from the population having mean μ and standard deviation σ per
Eq. (1.3)
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will impact the z-score. If the population is meant to cover a specific range of input

and does not, it can introduce distribution deviation and/or temporal drift or hide

the same.

In practice, z-scores are very important for process control and for identifying

outliers. A brief example is given here. Suppose we represent a surface-based foren-

sic, such as you might get using a high-resolution imager [Sims10] and image anal-

ysis that subtracts the actual postprinting or postmanufacturing micron-scale surface

texture to that of a model [Poll10]. The so-called forensic signature (derived from the

variations in electromagnetic spectrum, ultrasound, or other salient physical prop-

erty) of the surface is represented as a bitstream, with 1024 bits in the string. When

a new image is captured, its binary surface detail string is compared with that of the

candidate (matched) sample and with the population of (unmatched) samples. The

expected Hamming distance to the population of unmatched samples has an expected

value of 512 bits (i.e., with random guessing, precisely 50% of the bits should match,

and the other 50% should be in error). In our test of binary string descriptors for a

large set of surfaces, we obtained a mean Hamming distance to unmatched samples

of 509.7 (very close to the expected value of 512, with a standard deviation of 31.6).

The number of test samples in the population is 100. Next, we measure a value,

319.4, for the Hamming difference between a surface that we wish to prove is authen-

tic with a forensically relevant probability (typically p¼10�9, meaning there is one

chance in a billion of a false-positive match). Plugging into Eq. (1.3), we get

Eq. (1.4):

z¼ 319:4�509:7

31.6 ffiffiffi
1

p
� (1.4)

So, z¼�6.02. Note that we use n¼1 (not n¼100, which is the number of samples to

determine the population mean and standard deviation) here, since it is the number of

samples that we are comparing with the population. Since z¼�5.997932 corre-

sponds to p¼10�9, we have (just barely!) forensic authentication (p<10�9).

Even though there is a term for n, the number of samples, in the z-score, when the
number of samples in a second population increases, we generally employ another

statistical test for comparing two populations. This test, the t-test, is given by

Eq. (1.5):

t¼ μ1�μ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1�1ð Þσ21 + n2�1ð Þσ22

n1 + n2�2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
+

1

n2

r (1.5)

In the t-test statistic, the means of the two populations are denoted by the symbol μ,
the standard deviations by the symbol σ, and the number in each sample by the sym-

bol n (each with the appropriate numerical subscript). The overall degree of freedom

(df) for comparison is n1+n2�2 (this is needed when looking up the corresponding

probability, or p, value from a t-table). The �2 indicates the �1 degree of freedom

lost for selecting from each of the two populations. Statistical significance for one-

tailed and two-tailed comparisons is determined as for z-values. Generally, t-tables,
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whether online or in a text, require the three data: df, t-score, and tailedness (1 or 2).
For example, for df¼11, a two-tailed p¼0.01 requires j t j>3.106.

Next, we consider what happens when there are several populations to compare

simultaneously. In this case, we generally employ analysis of variance (or

“ANOVA”), which is a collection of statistical models and their associated proce-

dures (such as “variation” among and between groups) that are used to analyze

the differences among group means. As with many other statistical approaches,

ANOVAwas originally developed for quantitative biological applications. A conve-

nient means of calculating the necessary elements of an ANOVA is the tabular

arrangement shown in Table 1.2. Here, a particular variable’s variance (sum squared

variability about its mean) is partitioned into components attributed to the different

sources of the variation (usually from within the groups or from between the groups).

Groups can be clusters, classes, or other labeled sets. ANOVA provides a statistical

test for whether the means of several groups are equal, providing a logical extension

of the z-score (one dimension) to the t-test (two dimensions) to the comparing (test-

ing) of three or more means for statistical significance.

As shown in Table 1.2, the sums of squares (around the means) between groups

and within groups are calculated. Dividing these by the degrees of freedom gives us

the mean squared variance (akin to mean squared error), and the ratio of mean

squared error between and within groups gives us an F-score (named for Fisher,

who was the first to systematize the ANOVA) to test if there are groups statistically

significantly different from each other. High ratios of between-group to within-group

variance are the basis of clustering, segmentation, and optimized partitioning. Thus,

the F-score used for statistical analysis with the ANOVA is confluent with the aggre-

gation approaches used for clustering.

Additional calculations may be required for follow-on tests that determine the sta-

tistically significant differences between the groups, such as the Tukey; Student-New-

man-Keuls (SNK); Fisher’s least significant difference (LSD); and Dunnett, Holm,

Bonferroni, or Duncan’s multiple range test (MRT) [Ott08]. A variety of follow-on

tests allow the statistician to trade off between false positives and false negatives.

For example, Duncan’s MRT rank orders the clusters and compares each cluster pair

with a critical value determined from a studentized range distribution. This has greater
Table 1.2 Necessary (though not always sufficient) calculations for performing
an ANOVA

Source
of
variance

Sum of
squares

Degrees of
freedom
(df)

Estimate of
variance (mean
square)

F-score
(or F-
ratio)

Between
groups

SSB NG�1 MSB¼SSB/(NG�1) MSB/
MSW

Within
groups

SSW NS�NG MSW¼SSW/(NS�NG)

Total SST¼SSB+SSW NS�1

See text for details.
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statistical power than the SNKbut results in, statistically, more false positives. Tukey’s

test is based on the z-test and is functionally akin to pairwise z-tests. The SNK test

modifies Tukey’s test to have a more relaxed difference for more closely ranked sam-

ples, providing a bias toward false positives for closely ranked samples and the same

bias toward false negatives for less closely ranked samples.
1.5.3 Regression and estimation
Regression techniques [Hast09] are used to provide predictive output for input across

a broad range of values. There are many flavors of regression, including the familiar

linear, polynomial, and logistic regressions that match curve descriptors for the rela-

tionship between independent (covariate) and dependent variables. Ridge regression,
which is also known as weight decay, adds a regularization term that effectively acts

like a Lagrange multiplier to incorporate one or more constraints to a regression

equation. The least absolute shrinkage and selection operator (lasso) regression

and stepwise selection perform both feature selection (dimensionality reduction,

in which only a subset of the provided covariates are used in the final model, rather

than the complete set of them) and regularization (which allows the regression to

avoid overfitting by introducing, for example, interpolated information). Advanced

forms of lasso alter the coefficients of the regression rather than setting some to zero

as in stepwise selection. Finally, the elastic net adds penalty terms to extend lasso and

provides a combination of lasso and ridge functionality.

In this section, important aspects of regression for prediction—in particular sen-

sitivity of the estimation—will be discussed using linear and logistic regression as

the exemplars. Figs. 1.1 and 1.2 provide a simple linear and logistic, respectively,
Linear regression
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FIG. 1.1

Example linear regression where the line of best fit for the filled circular points is indicated.

The line is determined using least squared error as the cost function.
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curve, along with the sample points from which the curve was defined. For linear

regression, the line of best fit is described by Eq. (1.6):

ŷ¼ β0 + β1x (1.6)

For the logistic regression curve of Fig. 1.2, the relationship between the dependent

and independent variables is given by Eq. (1.7):

ŷ¼ 1

1 + e� β0 + β1xð Þ (1.7)

Once the regression curve (center curves in Figs. 1.3 and 1.4) is determined, the

curve is subtracted from the observations, and the mean and standard deviation of

the errors, jxi�μ j, is computed. The error bars shown in Figs. 1.3–1.6 are the

99% error bars, that is, 2.576 standard deviations above and below the regression

curves.

The 99% confidence interval in Fig. 1.3 should contain 99% of all samples as the

number of samples gets very large. The 20 data points collected are insufficient for

truly defining or testing these intervals for confidence—generally, it will take 10–20
times the inverse of the error to have statistical confidence in an error rate or in this

case 1000–2000 samples. But the lines are useful for determining sensitivity even

with the small number of samples. In Fig. 1.4, another curve, this time a logistic

curve, is provided along with its 99% confidence interval.

Elaborating on the confidence intervals of Figs. 1.3 and 1.4, the confidence inter-

val around an estimate of y is treated as “uncertainty” in Figs. 1.5 and 1.6. It is impor-

tant to remember that the regression curve is based on observing many values of x
and y and then building a model of y¼ f(x). However, when deployed, the regression
models are used for prediction, or estimation, of what x is given an observation y.
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Logistic regression

FIG. 1.2

Example logistic regression where the logistic curve of best fit for the filled circular points is

indicated. The curve is determined using least squared error as the cost function.
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FIG. 1.3

Example linear regression of Fig. 1.1 with 99% confidence interval lines indicated. These are

2.576 standard deviations to either side of the regression line.

Logistic regression
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FIG. 1.4

Example logistic regression of Fig. 1.2 with 99% confidence interval lines indicated. These are

2.576 standard deviations to either side of the regression curve.
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FIG. 1.5

Example linear regression of Fig. 1.1 with sensitivity lines indicated. See text for details.
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FIG. 1.6

Example logistic regression of Fig. 1.2 with sensitivity lines indicated. See text for details.
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That is, x¼g(y). This is an important consideration when it comes to uncertainty, as

the relative sensitivity of y¼ f(x) is the inverse of x¼g(y).
This is shown in Fig. 1.5 where the slope of the line y¼β0+β1x, meaning the

value β1, is roughly 6.75. The uncertainty in y, therefore, should be roughly 6.75

times uncertainty in x. In the “forward” direction, we can see that when x¼10,

we expect y to be in the domain 85–105 99% of the time (this is the “uncertainty

in y” in Fig. 1.5). For y¼95 (the middomain value), we expect to see x in the range

8.5%–11.5 99% of the time (this is the “error domain in x” in Fig. 1.5). As we see, the
ratio of (105–85) to (11.5–8.5) is 6.67 or roughly the predicted 6.75. The error

domain in x is the more important uncertainty when the model is deployed against

real (new) data.

For a linear regression such as that of Figs. 1.1, 1.3, and 1.5, the relative uncer-

tainty in x and y is uniform across the domain of y. The disparity in uncertainty alone
can put limitations on the utility of a regression model, as shown in a simple example.

Suppose that in our regression model, we find that the shoe size for a group of people

follows the equation size¼6+0.08(height in inches)�1.2. This seems reasonable—

given your height, we can estimate your shoe size within 1.2 sizes. However, now,

suppose we know that Bob wears size 13 shoes. Reversing the equation, we can only

predict that he is between 72.5 and 102.5 inches tall—not a very precise predictor!

Further complicating matters, when a nonlinear regression, such as the logistic

regression of Figs. 1.2, 1.4, and 1.6, is performed, we no longer have a uniform rel-

ative uncertainty across the domain. This is illustrated in Fig. 1.6, which shows two

distinct measures of uncertainty: One is centered around the point A(x,y)¼(10,89),

and the second is centered around the point B(x,y)¼(2.5,31). For point A, the ratio of

uncertainty in y to uncertainty in x is (98�80)/(11�9)¼9.0, and for point B, the ratio

of uncertainty in y to uncertainty in x is (40�22)/(5�0)¼3.6. We can see, therefore,

that our relative uncertainty in x is 2.5 times higher for a value of y¼31 than it is for a

value of y¼89.We can see that given an observation, y, for a logistic curve, its uncer-
tainty is complicated by the change in slope, or the derivative, across the domain of

the independent variable, particularly with saturation or “asymptotic behavior” at the

start and end of the domain. Such nonuniformity in uncertainty is even further exac-

erbated in functions with nonmonotonic or discontinuous behavior across the

domain.

When such complexities in the behavior occur, we may look to hybrid or sequen-

tial regression approaches that combine two or more regression models across sub-

sets of the range or domain. In general, an “optimal” regression is not necessarily the

one that results in the smallest confidence interval since this may be garnered through

overfitting. Instead, the best regression model may arguably be that that maximizes

the entropy of the residuals (measurements of the difference between the regression

estimates and the actual measurements), as shown in Eq. (1.8). This equation does

not specify how the individual p(i) are computed, but usually, this is done by sub-

dividing the range (or domain) into equal length partitions and computing the error

values by partition. When residual entropy is maximized, we have presumably done

the best we can to ensure that no part of the range is underrepresented:
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Residual_entropy¼
Xi¼N

i¼1

presidual ið Þ ln presidual iÞð Þð (1.8)

We can extend the utility of entropy further by modeling the residual with a noise

model. Here, the entropy is calculated on the residuals when the model is subtracted

from the data. Of course, a linear or logistic regression can be considered a form of

model, in which case Eq. (1.9) devolves into Eq. (1.8). But Eq. (1.9) allows for a

model of any complexity to be applied to data, with the model residual entropy

describing the goodness of fit of the model across the range or domain:

Model_residual_entropy¼
Xi¼N

i¼1

pmodel_residual ið Þ lnðpmodel_residual ið ÞÞ (1.9)

Finally, a data model and noise model can be combined in an overall objective func-

tion and optimized using, for example, a least-squared-error (LSE) approach as in

Eq. (1.10), wherein the lasso regression model is coupled with a noise model based

on noise η.

J¼ minβ0,β,η
1

Ns

XNs

i¼1

yi�β0�xTi β� xTi
� �2

η
� �2

( )
subject to βk k1 < threshold (1.10)

Linear and logistic regressions describe many trends. Linear regression is often used

to assess direct correlation, while logistic regression is used for assessment of growth

rates and saturation. Both are important for prediction, or “estimation.” As with the

F-score for the analysis of variance (ANOVA) above, the ability to estimate accuracy

is a function of “local variance” compared with “overall variance.” In Fig. 1.6, we see

that the ability to estimate the x-value from a given measured value of y is higher in
the middle portion of the logistic curve and much poorer at the beginning and end,

due to differences in slope. The overall predictability therefore depends on the sub-

range, and if our goal is to have equal predictability across the range of inputs, we

will need a hybrid regression model.

The usefulness of a regression model over time can be addressed by assessing the

drift in the data that the process/analytic system is meant to handle. This requires

training data to be organized based on its time of creation, and a predictive model
of when the data will drift far enough for the current system to no longer satisfactorily

handle the data should be gleaned. This is “introspective prediction” on the system

itself. That is, we predict the ability of a predictive system to predict well over time.

This is temporal prediction of the model’s domain predictive capabilities.

The usefulness of a predictive model when scaling is best addressed by “under-

training” the data. Ideally, this means using as small of a percentage of the ground

truth as training data as possible, so that a much larger percentage of the ground truth

can be used for validation and/or testing. This generally leads to greater robustness

for system scaling and allows the model to be tested for temporal drift (though it is

acceptable to “repurpose” the training data for testing of temporal drift anyway).

The usefulness of a regression model for distributed applications can be viewed

from the perspective of modularity. Themore modular an approach is, the more it can



16 CHAPTER 1 Introduction, overview, and applications
be distributed. For nearly any algorithmic task, there is domain specificity; for exam-

ple, text algorithms are generally quite different from those used for extracting infor-

mation from images or sensor information. Domain specificity is not, therefore, a

sign of nonmodularity. However, high sensitivity to context shifts (such as moving

to a different but related language or moving from one camera to another) are indi-

cators that an analytic approach is overfitted to its task. This may be acceptable for a

high-value, high-security, etc. process, but it should be understood in those over-

trained circumstances that the approach adopted is likely not generalizable.

Finally, the usefulness of a regression model for reliability can be tested by spe-

cific apportionment of training data. Training and validation sets that are not highly

correlated can be used to test the reliability of the analytic approach. This type of

robustness is almost certainly not garnered when a k-fold cross validation is used

to train and test the analytic approach, since in that case, too large of a portion of

the labeled (ground truth) data are used for the training and no ability to validate

the system for robustness is possible.
1.6 Algorithms for analytics
1.6.1 k-Means and k-nearest neighbor clustering
One of the most important tasks in analytics is the clustering of data. As described

above (Table 1.2), the task of clustering is analogous to the task of determining which

groups are statistically significantly different from each other in the finishing stage of

an analysis of variance (ANOVA).
FIG. 1.7

Example array of 12 points having two dimensions that will be assigned to clusters based on

their distances from other samples.
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For k-means clustering, an iterative algorithm called expectation-maximization is

generally employed. This iterative algorithm comprises two steps per iteration:

(1) assign every sample to the closest cluster centroid and (2) redefine the cluster

centroid based on the set of samples that are now assigned to it. There are several

issues with this process, however:

(a) How are the original set of centroids assigned?

(b) How many centroids should there be?

(c) How are the iterations terminated?

For (a), there are many reasonable means of initiating the centroids. Among the

methods that I have implemented with some success are to pick a sample at random

as the first centroid and then select k-1 more centroids as the samples the farthest

overall distance from the existing set of centroids. This approach works well when

a bit of “noise” is added to the centroids so chosen—for example, randomly add an

offset in each dimension equal to a small percentage (typically 10%–20% of the

mean intercentroid distance) after the entire initial set of centroids is defined.

Fig. 1.8 uses a different method of initiating the centroids. Here, a random number

generator (RNG) is used to create an n-tuple in the n dimensions of the data, and the

locations are identified by the n-tuple. In Fig. 1.8, the range in x¼[0.0, 6.0], and the

domain in y¼[0.0, 9.0]. This is typical—a “buffer” around the extrema of a range is

added inversely proportional to the number of samples and/or proportional to the mean

distances between samples. Regardless, for the initial centroid that eventually

became the “A” cluster in Fig. 1.8, the RNG delivered a value of [0.535, 0.590], result-

ing in an initial value of [3.21, 5.31] as shown where x¼0.0+0.535*(6.0�0.0)
FIG. 1.8

k-Means clustering of the 12 data points from Fig. 1.7 where k¼3. The solid circles are the

data samples, and the X-filled circles are the initial cluster centroids and the final cluster

centroids (arrow shows net progression of the centroid). Please see text for details.
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and y¼0.0+0.590*(9.0�0.0). Similarly, the RNG delivered [0.916, 0.763] for even-

tual B cluster centroid and [0.924, 0.144] for eventual C cluster centroid.

The same approach was taken for k¼4 in Fig. 1.9. Comparing Figs. 1.8 and 1.9

allows us to start addressing question (b), regarding how many clusters there should

be. The simplest answer is, given a reasonable range of k values tested, select the one
that provides the highest ratio of between-centroid variability to within-cluster var-

iability. Adding one or more regularization methods to provide an optimal k will be

discussed in Chapter 10. Finally, we need to answer question (c) and determine when

to terminate the iterating. Generally, this is accomplished by checking to see whether

the current set of clusters is a repeat of a previous set, in which case the iteration

having the highest ratio of between-centroid variability to within-cluster variability

between repeats is chosen.With very large data sets, a minimum change criterion can

be used, terminating the process when the iteration changes by less than this. In all

cases, an absolute maximum number of iterations should be set.

Once the clusters are formed, new points can be added to the existing clusters.

The simplest form of clustering new points, however, does not even rely on the

“between group” variance; instead, it simply tabulates the group membership of

the k-nearest neighbors to it in the overall population. Note the same letter, k, is used
here, but this is a different k entirely from the k-means k. There are two variables in

this clustering approach: (1) the number of nearest neighbors, k, and (2) the definition
of nearness. Each of these can be varied during the clustering process and

afford some type of goodness of fit measurement. The assignment of a new sample

can consider any of the following metrics for cluster belonging: (1) minimum L1-

norm (absolute value of differences), per Eq. (1.11); (2) minimum L2-norm
FIG. 1.9

k-Means clustering of the 12 data points from Fig. 1.7 where k¼4. The solid circles are the

data samples, and the X-filled circles are the initial cluster centroids and the final cluster

centroids (arrow shows net progression of the centroid). Please see text for details.
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(sum of squared differences), per Eq. (1.12); and (3) cluster with maximum number

of k-nearest neighbors to the sample:

min
Xnclusters
i¼1

xcluster ið Þ �xsample
		 		+ ycluster ið Þ �ysample

		 		+… (1.11)

min
Xnclusters
i¼1

xcluster ið Þ �xsample
� �2

+ ycluster ið Þ �ysample
� �2

+… (1.12)

Clustering will be revisited in a later chapter (Chapter 10) in the context of system

optimization. There, we will be optimizing system clustering by usingmultiple forms

of regularization.
1.6.2 Unclustering
One last item related to clustering will be covered in this section. This is the concept

of “unclustering,” in which 100% accuracy in clustering is obtained by adding child

clusters until every sample belongs to the correct family of clusters. This concept is

illustrated in Fig. 1.10, where two clusters that originally had a third-order curve as

the boundary (and incorrectly clustered 3 of the 35 samples) are replaced by two fam-

ilies of clusters having no clustering errors.

A convex hull subcluster model is chosen, and so, the parent clusters have four or

five subclusters, as shown. New samples are assigned to the subcluster to which they
FIG. 1.10

Example of a two-class distribution that is “unclustered,” in this case using a convex hull

approach. Please see text for details.
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are closest. While this “unclustering” approach is more complex of a model for the

data than a single boundary that distinguishes all the samples, it has the additional

advantage of allowing the individual subclusters to be “data mined” to see if they

actually should be splinter clusters. That is, the actual data may be more fairly repre-

sented as three or more classes, which themselves may comprise multiple clusters.

Various knowledge generation techniques suitable to determining the correct num-

ber of classes (e.g., by comparing the similarity of the subclusters) will be discussed

in later chapters. It is clear that the unclustering approach also has the advantage of

being preadapted to scaling, since as more samples are added, the statistical power of

being able to ascertain the similarity among a family of subclusters will only

increase.
1.6.3 Markov models
Markovmodels are convenient diagrams for illustrating systems with a finite number

of states, and from the transition probabilities, they are convenient for determining

how long a system resides in each state (or “node”). The state-state transitions are

given by conditional probabilities, with an entire sequence of length S having the

probability given in Eq. (1.13). Such Markov sequences are used extensively in lin-

guistics (part of speech detection, semantics, etc.) and are used to determine other

complicated sequences, like managing multiple queues simultaneously or control-

ling traffic flow for a large number of intersections:

p o1, o2,…, oSð Þ¼ p o1ð Þ
YS
k¼2

p okj ok�1ð Þ (1.13)

For our example, we will consider a four-state Markov model given in Fig. 1.11. In

this model, let us consider state A first. The arrows leading from state A are the mar-

ginal probabilities for state A to remain in state A (0.33), transition to state B (0.25),

transition to state C (0.22), or transition to state D (0.20). These marginal probabil-

ities, of course, sum to 1.0 for each state.

The 16 state-state transitions and some interesting column statistics are given in

Table 1.3. From the table, it is observed that the system has a positive “bias” toward

state A, with all four states having transition probabilities above the expected value

of 0.25. The lowest two columns in the table sum the transition probabilities for states

A, B, C, and D (row 7) and divide by 4 (the number of states) to get the first-order

estimate of time spent in each state (row 8).

However, this is indeed only a first-order estimate. In order to determine how

much time is actually spent in each state, a simple R program was written, and a sim-

ulation, using a randomly selected starting state for each individual run, was per-

formed for 102, 103, 104, 105, 106, and 107 iterations, as tabulated in Table 1.4.

The values were very near asymptotic by 105 iterations.

In Table 1.5, the predicted, observed, and corresponding difference between

predicted and observed times spent in each state after 107 iterations is tabulated.



FIG. 1.11

Markov model with four states. State-state transition probabilities are adjacent to the direction

of transition.

Table 1.3 Table for the Markov model with four states of Fig. 1.11, with all
state-state transition probabilities

State n

A B C D

State n�1 A 0.33 0.25 0.22 0.20

B 0.33 0.12 0.23 0.32

C 0.28 0.24 0.26 0.22

D 0.39 0.19 0.19 0.23

Simplest estimate 1.33 0.80 0.90 0.97

Percent 0.3325 0.20 0.225 0.2425

The lowest two rows indicate the first-order estimate of how much time the system will spend in each
state. Please see text for further details.
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The values are generally close to the first-order prediction, although state B was

observed 3.4% more than predicted and state D was observed 2.5% less than pre-

dicted. Not surprisingly, perhaps, these are the two states with the highest and second

highest variance, respectively, in their state transition probabilities (Table 1.3).



Table 1.4 Table for theMarkov model with four states of Fig. 1.11, with random
starting states and between 100 and 10 million iterations

State/
iterations 100 1000 10,000 100,000 1,000,000 10,000,000

A (pct) 0.340 0.327 0.338 0.332 0.333 0.3330

B (pct) 0.190 0.190 0.205 0.205 0.206 0.2068

C (pct) 0.260 0.215 0.222 0.223 0.224 0.2238

D (pct) 0.210 0.268 0.235 0.240 0.236 0.2364

Percent of time spent in each state is given. Results will vary depending on the seed for the random
number generator (RNG), but any simulation should asymptotically behave the same as the last column
here (this column is given to four decimal places to compare with the predicted values).

Table 1.5 Table for the Markov model with four states of Fig. 1.11, with the
predicted, observed, and absolute value of the difference between predicted
and observed time spent in each state indicated (107 iterations of the
simulation)

Pct/state A B C D

Predicted 0.3325 0.20 0.225 0.2425

Observed 0.3330 0.2068 0.2238 0.2364

jDifference j 0.0005 0.0068 0.0012 0.0061
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Markov models are useful for predicting how long a system will stay in different

states. If, for example, the four states in Table 1.3 correspond to four different gear

ratios in an engine, then we may need to focus our postmanufacturing inspection on

the gears engaged in state A, since all other factors being identical, these will wear

out 41% faster than those of any other gears (those corresponding to state D).
1.7 Machine learning
In this and the next section, many of the most familiar approaches in machine learn-

ing and artificial intelligence will be covered at a largely overview level. The key

here will not be to cover the topics exhaustively—as there are hundreds of new books

each year on these topics—but to provide the interested reader with enough famil-

iarity to talk intelligently on the topics, interact with experts on the topics, and know

which topics to pursue further in their own work going forward. I make a somewhat

arbitrary distinction between machine intelligence and artificial intelligence, not for

taxonomic reasons, as likely most machine learning experts would disagree with my

naming choice. For organizing these broad topics into two sections, I define machine

intelligence as the algorithms and processes for turning data into information with

known processes. Also, I define artificial intelligence as the processes for turning

data into information with “unknown,” nature-inspired processes. Thus, in this
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section, I cover entropy, probability, dimensionality reduction, information gain,

optimization, search, data mining, recognition, and ensemble learning. Each of these

is compatible with ingesting expert knowledge. In the next section, I address the

broad, nature-inspired areas of genetic algorithms, artificial neural networks, and

immunologically inspired algorithms.
1.7.1 Entropy
Entropy is a measurement that we have spent some time discussing above, particu-

larly as a means of measuring the goodness of fit of a model. Entropy as a tool for use

in information science and knowledge generation originated with Claude Shannon

and his groundbreaking work on information theory in communications [Shan48].

Entropy is related to the maximum amount of information that can be conveyed

by a certain number of bits. As such, a completely random distribution has maximum

entropy, because it cannot be compressed without the loss of some aspect of its infor-

mation. Entropy has, in some sense, made its fame in compression, where we can talk

about a compression ratio—for example, a compression ratio of 8:1, or 800%, indi-

cates that on the mean, we can represent a byte in a data set with a single bit. For a

given discrete distribution,D, with N elements, we compute the probabilities of each

event in the distribution as p(i). For a simple distribution where each event is mutu-

ally exclusive, the entropy e is defined as in Eq. (1.14):

e¼�
XN
i¼1

p Dið Þ ln p Dið Þð Þ (1.14)

For binary systems (e.g., in communications), the log base 2 is often used in place of

the natural log, and so here, the entropy is defined by Eq. (1.15):

e¼�
XN
i¼1

p Dið Þ log2 p Dið Þð Þ (1.15)

The maximum value of the entropy is therefore log2(N), which explains why the log
of 2 rather than the natural log is a convenient means of defining entropy.

As a simple example, suppose that you have a histogramwith 10 bins and in those

bins are distributed 100 events. The entropy associated with two different events has

a maximum value of 2.303 (for natural log) or 3.322 (for log base 2). Table 1.6 illus-

trates a poorly randomized distribution, in which the clear majority of events accu-

mulate in histogram bins 3, 4, and 5. The entropy of this distribution is 1.776, or

0.527 less than fully random (2.303). Table 1.7 illustrates a much more randomly

distributed event set. For this distribution, the entropy is 2.285, or 0.018 less than

fully random. From an entropy measurement, this is more than 29 times better than

for the Table 1.6 (since 0.527/0.018>29).

Entropy can be extended to multiple distributions (joint entropy) and to condi-

tional events (conditional entropy) readily. Since almost any analytic task is amena-

ble to some form of entropy measurement, it should always be considered as a tool

for assessment.



Table 1.6 Poorly randomized distribution with overall
entropy¼1.776, or 22.9% less than the theoretical
maximum of 2.303

Histogram bin # p(i) ln(p(i)) 2p(i)ln(p(i))

1 0.04 �3.219 0.129

2 0.02 �3.912 0.078

3 0.24 �1.427 0.343

4 0.33 �1.109 0.366

5 0.21 �1.561 0.328

6 0.05 �3.000 0.150

7 0.04 �3.219 0.129

8 0.02 �3.921 0.078

9 0.04 �3.219 0.129

10 0.01 �4.605 0.046

Sums 1.00 NA 1.776

Table 1.7 Effectively randomized distribution with
overall entropy¼2.285, or 0.8% less than the
theoretical maximum of 2.303

Histogram bin # p(i) ln(p(i)) 2p(i)ln(p(i))

1 0.12 �2.120 0.254

2 0.10 �2.303 0.230

3 0.08 �2.526 0.202

4 0.11 �2.207 0.243

5 0.13 �2.040 0.265

6 0.11 �2.207 0.243

7 0.08 �2.526 0.202

8 0.07 �2.659 0.186

9 0.11 �2.207 0.243

10 0.09 �2.408 0.217

Sums 1.00 NA 2.285
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1.7.2 SVM and kernels
Support vector machines (SVMs) are two-class, or binary, classifiers, although with

decision tree, voting, or other ensemble approaches, they can be used to perform any

level of classification. However, the manner in which multiple SVMs are aggregated

may have undesirable averaging, which might mean a different ensemble approach

(e.g., boosting or bagging) will perform better. Regardless, SVMs are designed to

provide an adaptable approach to decision boundaries between two classes. Support

vectors create boundaries for which the margin between the two classes is maxi-

mized, creating what is termed “optimal separation.” While this approach can
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provide excellent results in training data, it can also be highly sensitive to noise for

small- and medium-sized data sets. This is because the only relevant subset of input

data—the support vectors—are used to define the boundary and its margin (spacing

to either side of the decision boundary). In my experience, adjustment of the bound-

ary, for example, by weighting the proximity of the boundary based on the number of

samples nearby the boundary on either side (using a “repelling” force assigned to

each sample) produces a more robust boundary.

Overall, the solution of the optimization problem created by the search for an

optimum margin is highly complex—as a meta-analyst, you may prefer genetic,

near-exhaustive, and/or artificial neural network (ANN) approaches to the mathe-

matically precise approach of the SVM. The complexity can be moderated, however,

by reducing the SVM optimization equation to what is known as the canonical rep-

resentation of the decision hyperplane. This means the optimization is now recrafted

as a familiar quadratic programming problem—a second-order function is optimized

subject to a set of first-order inequality constraints.

As noted, the support vector machine originated from the need to determine an

optimal separation between two apposed classes. The margin is the largest region

with which we can separate two classes, and so, the data points closest to the margin

are the support vector. The “kernel trick” is used to effectively add “extra dimen-

sions” to the margin by introducing a kernel (Gram) matrix such as those provided

in Eqs. (1.16), (1.17), and (1.18):

K x, yð Þ¼ 1 + x � yð ÞS (1.16)
K x, yð Þ¼ tanh κx � y�δð Þ (1.17)
K x, yð Þ¼ exp � x�yð Þ2=2σ2
� �

(1.18)

In these kernels, s is the degree of the polynomial in the xk input elements. In

Eq. (1.17), K(x, y) is a sigmoid function in the xk input elements with parameters

к and δ. Finally, in Eq. (1.18), K(x, y) is a radial basis function (RBF) in the xk input
elements with parameter σ. The kernel trick allows us to apply an order (d) rather
than order (d2) matrix to the margin.
1.7.3 Probability
Bayesian statistics are probably the most popular approach to statistical inference in

the predeep learning days. The basic Bayesian probability equation is a simple rear-

rangement of the law of independence, Eq. (1.19):

P xj yð ÞP yð Þ¼P yj xð ÞP xð Þ (1.19)

Rearranged, the equation becomes

P x, yð Þ¼P yj xð ÞP xð Þ
P yð Þ (1.20)
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As a simple example, consider computing the probability of having a face card in a

standard deck of cards given the card is a king. Obviously, this should be true every

time. Here are the steps:

(1) Probability of king given a face card¼1/3¼P(K jFC)
(2) Probability of a face card¼3/13¼P(FC)
(3) Probability of a king¼1/13¼P(K)
(4) Probability of a face card given a king¼P(FC jK)

P FCj Kð Þ¼P Kj FCð ÞP FCð Þ
P Kð Þ ¼

1

3


 �
3

13


 �
1

13


 � ¼
1

13


 �
1

13


 �¼ 1 (1.21)

As expected, the probability P(FC jK) is exactly 1. We next consider a simple exam-

ple that may be less intuitive. Here, we wish to compute the probability that it was a

young driver, given a car accident occurred:

(1) Probability of a car accident given a young driver¼1/3000¼P(CA jYD)
(2) Probability of a young driver¼1/12¼P(YD)
(3) Probability of a car accident¼1/4500¼P(CA)
(4) Probability of a young driver given a car accident¼P(YD jCA)

P YDjCAð Þ¼P CAj YDð ÞP YDð Þ
P CAð Þ ¼

1

3000


 �
1

12


 �
1

4500


 � ¼
1

36000


 �
1

4500


 � ¼ 1

8


 �
(1.22)

We see from the example of Eq. (1.22) that even though young drivers may be more

likely to be in an accident, they are by no means in most of the accidents.

It is worth noting here that we can use two Bayesian equations together to find a

relative probability of two events. Two Bayesian probabilities, those of events A and

C occurring when event B occurs, are given in Eqs. (1.23) and (1.24):

p Aj Bð Þ¼ p Bj Að Þp Að Þ
p Bð Þ (1.23)

p Cj Bð Þ¼ p BjCð Þp Cð Þ
p Bð Þ (1.24)

Equating the p(B) terms in Eqs. (1.23) and (1.24), we obtain Eq. (1.25), which is a

ratio that can be used to assess the relative value of features for a Bayesian classifier:

p Aj Bð Þ
p Cj Bð Þ¼

p Bj Að Þp Að Þ
p BjCð Þp Cð Þ (1.25)

This rearrangement can be used readily to solve event probabilities, as well. In “per-

son in the crow” tracking, we are looking for “continuity items” that allow us to track
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people through space and time, even when we can’t see them for some of the time—

for example, moving through a tunnel and obfuscated by another object or person. So

in a large set of images, we note that a face shows up in 25% of images and a shirt

shows up in 30% of images. A woman is in 80% of the facial images and in 45% of

the shirt images. Given this, what are the odds of a woman’s face but not a woman’s

shirt being present in an image? This gives us the relative likely utility of using face

recognition versus clothing recognition as a tracking artifact. For this example,

A¼ face, C¼shirt, and B¼woman and p(A)¼0.25, p(C)¼0.30, and p(B)¼unknown.

We also see that p(B jA)¼0.80 and p(B jC)¼0.45. Eq. (1.26) performs the calculation

for us:

p Aj Bð Þ
p Cj Bð Þ¼

p Bj Að Þp Að Þ
p Bj Cð Þp Cð Þ¼

0:80ð Þ 0:25ð Þ
0:45ð Þ 0:30ð Þ¼ 1:48 (1.26)

Thus, if each of the events measured is independent (which may well be the case for a

large image set), the woman’s face occurs in 0.48 without a shirt and 1.00 with a shirt,

so 32.4% of the time a woman’s face is identified, but no shirt is identified.
1.7.4 Dimensionality reduction and information gain
A fundamental, though perhaps glib, rule of thumb for analytics is that “just because

you measure something doesn’t mean you should use it.” In this section, we consider

dimensionality reduction, which is the means to remove measurements or at least

dimensions that do not contribute significantly to the analysis. Dimensionality reduc-

tion reduces the number of dependent variables under consideration by obtaining a

set of principal variables (either selected or composed somehow of the dependent

variables). For feature selection, we rank order the features and attach a value to each

feature indicative of its overall contribution to the decision. This enables a straight-

forward feature extraction process, wherein the remaining set of features defines the

order of the dimensionality. For feature selection and extraction, at least three strat-

egies are relevant and often deployed:

(1) Filtering, in which information gain, driven by measurements of entropy, is used

as the decision criterion (see Eq. 1.27 below).

(2) Wrapping, for example, based on accuracy ranking, is used to rank order and

then extract features (e.g., any feature with more than N times the error rate may

be pruned).

(3) Embedding, in which features are added/removed during model construction

based on the prediction errors, can be a dynamic selection process, updated

based on the overall statistics over time.

If the information can be described using a histogram, with each element, i, in the

histogram having probability p(i), then the information gain can be viewed as the

absolute value of the change of the entropy, per Eq. (1.27). Typically, information

gain is due to an increase in entropy, but in the case of correctly assigning samples to
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their classes, a perfect classification has no entropy, and so, in that case, information

gain is due to a decrease in entropy:

Information gain¼
					
X
final

pi ln pið Þ�
X
initial

pi ln pið Þ
					 (1.27)

A simple example of information gain is illustrated in Table 1.8. Information gain is

here determined based on how well three different classifiers (row results) do on

assigning samples to three different clusters A, B, and C, corresponding to Classes

a, b, and c. The original cluster has 10 samples each from Classes a, b, and c, and so,

the entropy of three such clusters¼3.300. The maximum information gain is thus

3.300 if a classifier perfectly assigns each sample, generating cluster A¼
{10,0,0}, cluster B¼{0,10,0}, and cluster C¼{0,0,10}. Actual (realized) informa-

tion gain is 3.300 (entropy sum), or 0.507 for distribution 1, 1.081 for distribution 2,

and 1.535 for distribution 3. Distribution 3 thus has the maximum information gain

and therefore performs the best classification. Note that these values correlated with

the observed accuracies of 60%, 70%, and 77%, respectively, for distributions 1, 2,

and 3, respectively.
1.7.5 Optimization and search
Much research has been performed in optimization, and it will be revisited in

Section 1.8 with regard to genetic algorithms. Suffice it to say that this is a huge area

of research, and its scope is often underestimated. Elements of optimization that are

often underappreciated include considerations of (a) sensitivity analysis of the opti-

mal algorithm or system design; (b) the robustness and relevance of the ground truth,

or training data; (c) determining the breadth of the search space and performing an

exhaustive “presearch” (usually as part of the training or validation); and (d) estimat-

ing the lifetime of the system and periodically ensuring that prediction meets
Table 1.8 Information gain for a classification problem

Original cluster5 {10,10,10}
distribution among the three
classes

Cluster
A

Cluster
B

Cluster
C

Sum of
A,B,C

{a,b,c} Distribution 1 {6,2,1} {2,6,3} {2,2,6} {10,10,10}

Entropy of distribution 1 0.848 0.995 0.950 2.793

{a,b,c} Distribution 2 {7,0,3} {2,8,1} {1,2,6} {10,10,10}

Entropy of distribution 2 0.611 0.760 0.848 2.219

{a,b,c} Distribution 3 {8,1,1} {0,9,3} {2,0,6} {10,10,10}

Entropy of distribution 3 0.639 0.563 0.563 1.765

The original cluster comprises an equal amount (10 each) of samples from each of three classes. Three
different classifiers result in three different distributions of assignment, where a perfect assignment would
be {10,0,0}, {0,10,0}, and {0,0,10}, with a resulting entropy of 0.000 for the distribution. Distribution 3
clearly moves the distribution entropy closest to 0.000 and so is judged the best classifier.
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expectation. For (a), it is always recommended that the validation stage, if possible,

be used to determine which factor(s) the optimization is most sensitive to, which can

help in (b). For (b), a general rule is that the more highly optimized the system, the

more sensitive it is to data drift, and there is usually a trade-off between robustness

and the amount of detail provided in the description of the optimized system. For (c),

the validation data are checked for how well they explore the overall anticipated

range of input. Finally, for (d), the training and validation should be segmented wher-

ever possible to account for differences in time and other input variation.

Among the considerations for optimization is how to ensure that the means of

measuring/ensuring optimization does not bias the way in which optimization

occurs. This means that the objective function should be made, where possible, as

independent from the mechanisms for optimization as possible. This is the Stock-

holm syndrome of analytics, wherein an optimization approach can fall in love with

the means of assessing optimization. This could, at a more mundane level, be seen

analogous to teachers with “teach to the exam” rather than providing a broader set of

skills. Another term for this is the objective function paradox. As discussed next, this
is an important justification for the use of functional means of assessing

optimization.

As an example of functional means of assessing a given optimization instance, let

us consider functional search here. In this approach, after all the search queries have

been defined, they are performed on the one or search engines of interest. For exam-

ple, if the query set includes “Michigan” and “Michigan State,” we perform separate

searches for each of these two terms (one simple and one compound). All the queries

in the set are provided as input for the search engine, and the search engine returns the

web sites, documents, etc. that it determines to be best matches. These matches are

typically presented in order of relevance, utility, hit frequency, or other reasonable

metric and are presented to the user ranked from 1 to M, where M is the number of

“hits” or “matching pages” found. Note that the “hits” or “matching pages” can be

additional and otherwise ranked, for example, by their overall relevance in the data

set, akin to the page rank approach. Additionally, the following modifications of the

functional ranking can be employed:

(1) The engines themselves may be weighted by the relative confidence in the

engines—this can be discretized by subtopic, etc., as the amount of data and

confidence in the accuracy of the engines grow.

(2) The order of the results may be weighted by various manners, according to their

rank in the output set provided by the search engine.

Search behavior can then be compared with the behavior of the larger document cor-

pus, and we can determine the optimal search structure based on analyzing the dif-

ferences in behavior of one or more search responses with the linking behavior of the

document corpus. For example, the document corpus may be linked by metadata

(author name, author provided tag, etc.).

An example of how search behavior can be used as a functional measurement for

document corpus tagging is given in Table 1.9. Here, the documents have been



Table 1.9 Two different methods of comparing search behavior with the top 10
ranked documents in a corpus

Best rank
“Michigan”

Rank
Search1

Rank
Search2

Delta
rank
Search1

Delta
rank
Search2

Weighted
delta
Search1

Weighted
delta
Search2

1 (0.345) 1 (0.233) 2 (0.147) 0 1 0.112 0.198

2 (0.217) 4 (0.145) 1 (0.404) 2 1 0.072 0.187

3 (0.145) 2 (0.217) 3 (0.145) 1 0 0.072 0.000

4 (0.078) 3 (0.194) 4 (0.112) 1 0 0.116 0.034

5 (0.045) 6 (0.052) 5 (0.088) 1 0 0.007 0.043

6 (0.033) 5 (0.065) 6 (0.033) 1 0 0.032 0.000

7 (0.031) 7 (0.025) 7 (0.025) 0 0 0.006 0.006

8 (0.017) 9 (0.011) 9 (0.007) 1 1 0.006 0.010

9 (0.009) 10
(0.007)

8 (0.010) 1 1 0.002 0.001

10 (0.008) 8 (0.019) 10
(0.003)

2 0 0.011 0.005

Top 10
(0.928)

– (0.968) – (0 .974) 10 4 0.436 0.484

Based on raw ranking differences (fourth and fifth columns from the left), Search2 is the better search
engine, as its ranking difference is only 4, compared with a ranking difference of 10 for Search1.
However, when the actual weighting for each document is accounted for, the difference for Search2 is
now 0.484, more than the 0.436 for Search1.
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ranked for their relevance to the top document for a given search term (“Michigan”)

based on their metadata, which has been painstakingly entered by a human operator

as part of the process to establish the links between documents. Next, two distinct

search engines are used, and the top 10 documents are returned in order with ranking

(1–10) and relevance (summing to 1.000 for all documents in the database). As

shown in Table 1.9, the differences in ranking (sum of the absolute ranking differ-

ences in comparing the search results with the metadata results) indicate that the sec-

ond search engine is better; however, the differences in relevance indicate that the

first search engine is better. If the relevance values are reliable, using them is gen-

erally a more appropriate functional means of assessing optimization than simply

ranking results.
1.7.6 Data mining and knowledge discovery
The distinction between data mining and knowledge discovery is largely one of tim-

ing. Data mining is the process by which substantial amounts of data are organized,

normalized, tabulated, and categorized; in short, it is analyzing large databases in

order to generate additional information. Knowledge discovery, however, can be

associated with specific context (e.g., can be guided by the vernacular of a particular

specialty, organization, or practice), making it both quantitative and qualitative.
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Knowledge can—and should—be viewed as having a personality. For knowledge,

people are the primary resource: They provide the domain expertise that can be con-

verted into rules, and these rules are used to guide the manner in which the knowl-

edge is employed after its generation. Therefore, for knowledge generation, human

expertise guides the input and the manner in which the input is converted into useful,

actionable output. Knowledge generated is often the composite of several data

streams, for example, publications, patents, salubrious hiring decisions, and connect-

ing smart people in networks.

An often underappreciated part of knowledge generation is that it must be

archived carefully, such that it can be reused or repurposed, with different context

in the future. This requires the association of attributes and features with the data.

Attributes are tags or metadata that are generally reusable in processes such as search

and categorization. Features, on the other hand, can be derived (including long after

the data are collected) in light of new context. Generally, when data elements are

used as features, they are normalized, and missing data are filled in (a process called

imputation). Features also are usually considered together with other features. This

may involve principal component approaches that “dissolve” features into a mixed

solution, but it can also involve decision trees in which feature-based decisions are

used to reach conclusions about the data. The tree branches are often based on the

optimal reduction of entropy in the remaining data set. Feature-based decision trees

are particularly useful for deriving classification and association rules:

(a) Classification: if j and k, then it belongs to Class C.
(b) Association: if p and q, then it has attribute A.

For both of these, properly constructed tables allow the mapping of variables with

attributes, features, categories, clusters, partitions, and classes, as appropriate. For

our purposes, partitions are means of segmenting data based on a priori rules, while
clusters are data segmentation rules learned a posteriori. Partitions and clusters are

integral to recognition, the topic of the next section.
1.7.7 Recognition
Recognition is the assignment of data—usually compound data such as an image, a

video, an audio clip, and a document—to a partition of the overall domain to which

the data could possibly be assigned. Structured data will typically involve predefined

and thus generally well-understood partitions in the data space, while unstructured

data will typically require the generation of clusters. Classification is an advanced

partition in which the partition is labeled and represented by categorization descrip-

tives that allow it to be distinguished from other classes. Classes therefore provide

both absolute and relative partitioning. Classes can be related to clusters, but they

don’t have to be. Clusters need not be tagged and can be differentiated solely based

on absolute and relative location within a domain.
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Thus, we can cluster solely based on a set of ranged values (multithresholding).We

can follow clustering with the definition of classes, if we perform what I herein des-

ignate attribute-based a posteriori construction of classes (or, more simply, labeling).

The example of image recognition is illustrative of a broader set of recognition

approaches, and as such merits some discussion here. The first step in image recog-

nition is often the binarization, or thresholding, step. The threshold distinguishes

background (below threshold) from foreground (above threshold) and can be used

more generally with any type of signal, image, or volume processing. In 1-D signal

processing, for example, the DC level can be subtracted from the overall signal as a

threshold. The next step is segmentation, which can use the foreground (positive seg-

mentation) or the background (negative segmentation). Segmentation results in con-

nected components, which are often aligned with the particular elements of

classification (e.g., objects). However, these components can be parts of objects

or aggregates of objects depending on how well foreground and background are dis-

tinguishable and on the quality of the original images. For example, blurring can

merge objects, and oversaturation can break up objects.

Key-point detection is often an important next step in the image recognition prob-

lem. A common approach to image recognition currently is to use point clouds,

which are, for example, produced by 3-D scanners when they are mapping the sur-

faces of scanned objects. In some ways, this is analogous to a Monte Carlo simula-

tion, in which many events are accumulated and their statistics compared with a

model. The point cloud is readily compared with a model of the object to be recog-

nized. However, the key points to be detected need not be “randomly” distributed.

They can instead be part of the model for the object [Walk98], and as such recog-

nition can be turned into an optimization (e.g., least-squared-error comparison) exer-

cise. The object “recognized” is thereby the object whose model has the least squared

error for the salient points.

The approach just mentioned is confluent with the process of classification. For

image classification, there are, not surprisingly, multiple factors to be considered.

Among these are whether there are multiple images available including multiple per-

spectives or views on the object; whether the object has a specific, generic, or no

representation in the training data; and whether a single process or multiple analytic

processes should be used. Whatever the choice on these options, classification is a

process that benefits from continually updated training data. The number of features

that can be used for image classification is quite large, running the gamut from well

gamut to saturation, chroma, intensity, texture, edges, and many other image fea-

tures. An algorithm such as scale-invariant feature transform (SIFT) can be used

to determine the most salient features.

The training data can be used to “reset” the image recognition process in several

ways. First off, the new training data can be compared with the existing training data,

and nonrelevant training data can be pruned (more on this topic in Section 3.3). Sec-

ondly, the new training data can be used to “reset” the settings of the classification

algorithm(s). Thirdly, the new data can be used in synchrony with the prior training

data to determine if a new architecture for image recognition should be adopted.
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For example, if the amount of training data increases significantly, the analytics

architect may decide to adopt a deep learning approach instead of, for example,

an SVM or boosting approach. Fourthly, more training data allow additional recog-

nition steps—for example, skew and orientation detection and correction—to be

applied, which may significantly improve recognition accuracy.

New training data will also affect the existing analytic model, irrespective of any

decision to update the image recognition approach. The additional training data can

improve any recognition steps that are dependent on pattern matching, since presum-

ably better estimates of the salient points for object identification will result. Also,

non-pattern-based matching is almost certainly improved. Texture matching, albedo

determination, and optimization of the binarization settings are examples of match-

ing that does not involve an object recognition step.

Recognition is not, of course, limited to 2D images (photos, maps, and video).

Recognition in 1D includes voice and speech recognition (voice being a biometric

and speech being a linguistic recognition process), electrocardiograms (ECGs), elec-

troencephalograms (EEGs), telecommunications, and a wide variety of other envi-

ronmental sensors (thermistors, humistors, chemosensors, etc.). The concepts

applied to 2D image recognition are meaningful for 1D signal recognition. As men-

tioned above, subtracting out the “DC” or baseline value is a form of thresholding.

Filtering, separating signal-related information from noise (random, periodic, coher-

ent, drifting, etc.), is a form of segmentation.With the EEG, this is even more directly

analogous: the alpha, beta, delta, gamma, and theta bands correspond to segmenta-

tions in both frequency and in partitioning. Identifying specific temporal landmarks

(e.g., the P, Q, R, S, and T waves in an ECG) is a form of key-point detection. The

concepts of classification, pattern matching, and augmenting training data are

directly analogous for 1D, 2D, and 3D recognition.

Recognition in higher dimensions (3D and above, where 4D is, e.g., a 3D-over-

time model) has similar approaches as for 2D. Three-dimensional object and motion

recognition, for example, benefit from the same types of binarization as 2D object

recognition, although they can have the binarization change by each (tomographic)

slice or onion layer through the 3D object. This can incorporate a transparency

model, an albedo model, or even in the case of fluorescence an absorption/emission

model. Segmentation can be done in the 3D volume or can stitch together tomo-

graphic segments.
1.7.8 Ensemble learning
Ensemble learning is a form of hybrid learning system in which multiple analytics

are combined intelligently with the purpose of obtaining better (more accurate, more

robust, etc.) results than a single analytics can provide. Three types of ensemble

learning are overviewed here: bagging, boosting, and stacking. In some ways,

meta-algorithmic approaches [Sims13] can be considered specialized forms of

ensemble learning; however, in this book, both meta-algorithmics and meta-

analytics will be considered in their much broader system optimization context.
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In a bagging process, random sets of samples are drawn N times with replace-
ment, and nonpruned classification (decision) trees are created from these subsets.

Replacement is important as it ensures that each possible decision tree branching

has equal probability of being represented in the ensemble. This is meant to provide

optimal coverage of the domain space. This process is repeated N times, after which

the classification for each sample in the overall data set is decided by majority voting

of its classification from the decision trees. Incidentally, the many decision trees so

formed can be ranked for their overall accuracies and a subpopulation of them kept as

a model for the classifier (if needed). Overfitting during bagging is avoided by the

central limit theorem, which accompanies the averaging of the many decision trees.

If the domain space is large, it may happen that samples are not incorporated into

sufficient decision tree(s) for a classification to be assigned. Should this occur for

any samples, they can be assigned by nearest neighbor or other decisioning

approaches. Randomization (adding a small random bias to decision tree node splits)

can add further robustness and path coverage to this simple but often effective

design. Overall, bagging does not necessarily provide a significant improvement

in accuracy, but it usually provides excellent rank bias, moving the correct classifi-

cation higher up in ranking.

Boosting is an alternative form of ensemble learning in which the weighting of

the samples changes over time to allow the system to optimize its decision by con-

sidering the results from the samples in proportion to their (positive) impact on over-

all system accuracy. In boosting, initially, the samples are equally weighted. After

each iteration of the algorithm, the samples that are correctly assigned are weighted

lower than the incorrectly assigned samples. This is analogous to the formation of a

support vector, except that in the case of a support vector, the samples are zero-

weighted unless they are abutting the boundary zone between two classes. With

boosting, the approach is innately scalable to any number of classes. Weighting fac-

tors often employed for the correctly classified samples are e/(1�e) and 1+log[e],
where e is the error rate of the current iteration classifier. These factors quickly scale
over the error range of 0.1–0.9, as shown in Table 1.10. The first, e/(1�e), has a
range of [0.0, +∞), whereas the second, 1+log10[e], has a range of [0.0, 1.0].
Table 1.10 Error rate, e, and two different weightings for a
boosting approach

Error rate e Weight5e/(12e) Weight51+log10[e]

0.1 0.111 0.000

0.3 0.429 0.477

0.5 1.000 0.699

0.7 2.333 0.845

0.9 9.000 0.954

Both weights are much higher for a higher error weight, except that e/(1�e)
scales from 0.0 to +infinity, whereas 1+log10[e] scales from 0.0 to 1.0.
Regardless, the overall sum of weights for all samples is scaled to 1.0 after the
weights in this table are computed and assigned.
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After computing the weights as in Table 1.10, the final weights for each sample

are normalized, for example, so that the sum of weights is 1.0. The boosting approach

is amenable to the multiplicity of decision trees as for bagging and like bagging tends

to provide good rank bias for intelligent systems.

The third ensemble approach discussed in this section is stacking, which is also

known as stacked generalization. This approach is difficult to analyze theoreti-

cally, as it is applied to multiple models that are built by two or more learning algo-

rithms—for example, a Bayesian and a decision tree approach. Stacking leads

toward the architectural approaches associated with meta-algorithms, except that

stacking does not provide specific design patterns to employ. Traditional stacking

approaches end with the application of output probabilities for every class and

weighted voting based on summing these probabilities for each sample and each

algorithm. As with bagging and boosting, stacking tends to provide good rank bias

for intelligent systems.

In addition to these well-known ensemble approaches, there are some other topics

to consider for ensemble or at least hybrid approaches to analytics. The first is to

employ sensitivity analysis wherever possible, to see where the analytic model is

most sensitive to changes in the input. This can be readily performed by adding slight

changes to the training data (e.g., by feature) and then analyzing the first derivative of

the model across the domain. The model with the smallest mean first derivative (best

when applied to data that has been normalized to have a mean of 0.0 and a standard

deviation of 1.0, of course) is generally the model least sensitive to changes in the

input. This then identifies the model that is “most robust” and complements the

ensemble methods of bagging, boosting, and stacking, which generally focus on

accuracy.

Another ensemble method is a spatial-continuity hybrid. Multiple models for a

data set are hypothesized, and among the domain of the input, the models are

weighted differently (still normalized to sum to 1.0 for all models) with any settings

(e.g., coefficients) adjusted to make the hybrid model behavior be contiguous across

the boundaries of the subdomain. In general, the “adjusting” needed for continuity

should be relatively minor: adjustments of more than a few percent of the standard

deviation of the variable or feature are generally indicative of a poor subdomain

boundary having been chosen. This ensemble method is generally used for classifi-

cation, but it can be applied to clustering, as well. With clustering, the settings that

are checked for continuity across the spatial subdomain boundaries are not the

weightings of the individual analytics, however. For clustering, a k-nearest neighbors
(kNN) approach may be used for cluster assignment, and an F-score computing the

ratio of within-cluster to between-cluster variance is used to determine the value of k.
For spatial ensemble methods, we may choose to provide a moving average of

F-score and/or k across subdomain boundaries. However, clustering also can be

guided by temporal continuity hybridization, wherein a moving average of F-score
and k over time is used to guide the reformation of clusters (unclustering andmerging

clusters).



36 CHAPTER 1 Introduction, overview, and applications
1.8 Artificial intelligence
As mentioned above, for purposes of organization of this chapter, I define artificial

intelligence (AI) as the processes for turning data into information employing nature-

inspired processes. A relative disadvantage of artificial intelligence compared with

the machine learning approaches of Section 1.7 is that we often do not have a good

understanding of how the AI is making its decision. This makes the pruning of train-

ing data, the selection of new features, and performing sensitivity analysis more dif-

ficult with AI than with machine learning. In this admittedly abbreviated/superficial

section, I consider genetic algorithms, artificial neural networks, and immunologi-

cally inspired analytics.
1.8.1 Genetic algorithms
Genetic algorithms incorporate concepts from the world of mitosis and meiosis.

Chromosomes, of which there are 23 pairs in most human cells (except germ and

anucleate cells), carry long strings of quaternary (two bits) base pairs, totaling

3�109 in the human genome. This corresponds to 6�109 bits, or 750 M bytes.

Effectively, then, DNA (and RNA, with simply one nucleotide, thymine, replaced

by uracil) is a long binary string. Individual locations in the string are called loci (sin-

gular locus), and different substrings occupying the same location within a chromo-

some are called alleles. The binary strings are readily altered from generation to

generation by the following mechanisms:

(1) Mutation, in which one of the loci is randomly altered to another of the allowed

elements. In DNA, this might mean a thymine is replaced by a guanine,

cytosine, or adenine. In a binary string, it can only mean that a “0” is replaced

by a “1” or a “1” is replaced by a “0.” However, in some advanced genetic

algorithms, we can change the length of the bit string, too. Thus, we can

allow insertions and deletions as well as substitutions for mutations in the

broadest sense. As an example, suppose that we have a string encoded by

“0001101011.” A mutation (substitution) at the fifth locus changes the string to

“0001001011.” An insertion of a “1” before the seventh locus changes the

string to “00011011011.” A deletion of the third locus changes the string

to “001101011.”

(2) Crossover, in which strings exchange substrings. Usually, the amount of

material exchanged is aligned and of the same length for the two chromosomes.

For the string “00011011011101010111” and the string

“11001110111101001000,” if we crossover loci 6–9, then the first string

becomes “00011110111101010111,” and the second string becomes

“11001011011101001000.” Crossover can result in several mutations

simultaneously—the expected value of the number of mutations is half the

length of the crossover for binary strings.
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(3) Inversion, in which substrings are reversed in order. For the string

“11001011011101001000” in the previous example, suppose that we invert loci

7–12. We thereby obtain “11001011101101001000” that only changes two of

the six bits in the run. In general, the expected number of loci changed during an

inversion is half of the length of the inversion range for binary strings.

(4) Alleles, which are highly related chromosomes differing only in short substrings

and which can also be designated “traits” or “genes.”

“11001011101101001000” and “11001011101101111010” are two alleles of

“11001011101101,” one with the allele (at the end) of “001000” and the other

with allele at the end of “111010.” Alleles are highly useful when a part of

the overall optimization space is “known good”—in this example, the

“11001011101101”—but the rest of the space is less optimized. The “known

good” substring can preferentially survive into the next iteration, which will

make sense after we see how a genetic algorithm (GA) works.

(5) The concepts of incomplete dominance and codominance also afford us with

differential survivability methods across iterations. Incomplete dominance

means that certain substrings—whether alleles (locked in a particular place) or

“peptides” (having the same sequence but not in a fixed location in the overall

string)—survive better into the next iteration. Codominance means that two

alleles or paired peptides survive with the same rate into the next iteration.

Wewill learn more about how genetic algorithms (hereafter “GAs”) by example. The

example given is extremely simplified, so the reader can focus on the main points,

rather than getting lost in the data.

Step 1 is creating a population of chromosomes. For our example, we will have

only five chromosomes per generation, each 15 bits in length. More typical applica-

tions may have hundreds of chromosomes, although the length of each chromosome

is somewhat domain-dependent. Our starting population of “randomly” defined

chromosomes is given here:

1. 100011000111101

2. 001001110110110

3. 110111010111011

4. 001011101000111

5. 101010100010100

These 15 loci represent a 15-element string. Although we do not know the “optimal

solution” before evaluating, let us suppose that the optimal solution is actually

“101110011000110” and that the “value” of having each of the loci correct is 5 each

for the first 5 loci, 10 each for the second 5 loci, and 20 each for the third 5 loci, that

is, getting the initial “10111” exactly right has a benefit of 25, getting the next

“00110” exactly right has a benefit of 50, and getting the final “00110” correct

has a benefit of 100. The maximum score obtainable is thus 25+50+100¼175,

although we cannot tell that a priori. This value, 175, is therefore the maximum fit-

ness of a chromosome, and the individual fitness can be determined by adding up the



Table 1.11 Iteration 1, original bit strings, their Hamming
distance from the ideal string of “101110011000110” (which we
have no way of computing until the ideal string is found, if indeed it
is, at the end of the iterations), and their measure of fitness, which
presumably can be measured at the end of each iteration

String Hamming distance Fitness

100011000111101 10 45

001001110110110 8 100

110111010111011 9 55

001011101000111 6 115

101010100010100 6 100
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5s, 10s, and 20s of the fitness whenever the value is correct. Table 1.11 tabulates the

Hamming distance (number of bits with different values—i.e., “1” instead of “0” or

“0” instead of “1”) of each of the five original bit strings and the fitness. While the

Hamming distance is unknown during the iterations, since we do not know the “opti-

mal” 15-bit sequence, the fitness can be measured after each iteration, and so, we

have a means of assessing the relative fitness for survival into the next iteration

of each of the strings. As we can see, Hamming distance does not always inversely

correlate with fitness, even though the optimal string has a Hamming distance of 0

and the worst possible string has a Hamming distance of 15.

Step 2 is determining which chromosomes survive to be the beginning pool of the

next iteration. Note that in this example problem, there are 15 bits in the string. For a

binary string, there are 2N unique chromosomes, where N¼ length or the number of

bits. Since N¼15, there are 32,768 different chromosomes—for example, corre-

sponding to 15 distinctive design choices by the system architect. We really do

not want to simulate (let alone build) all 32,768 systems, so we are hoping that

the optimization converges quickly. As such, we define and calculate a measure

of goodness of fit for each of the chromosomes produced. As mentioned above, get-

ting one of the optimal values in the first five loci adds 5 to the fitness; in the next 5

loci, 10 to the fitness; and in the last 5 loci, 20 to the fitness. All nonmatches con-

tribute 0 to the fitness. Table 1.11, column 3, tabulates these, and we see that they

range from 45 to 115, with a mean of 83.0. This fitness is slightly less than the

expected value of fitness for pure guessing, which is 175/2 ¼ 87.5. We also note

in Table 1.11 that the mean Hamming distance, 7.8, is just above the expected value

of 7.5 obtained for pure guessing. We have no way of knowing this until after the

optimal string is discovered, but it is a valuable means of assessing how the GA

works during the iterative process. We assign a survival weight to each of the five

chromosomes based on their relative fitness. In this simple example, we simply com-

pute the relative fitness of each chromosome, based on its percentage of the total

summed fitness of all chromosomes (Table 1.12).



Table 1.12 Iteration 1, fitness, relative fitness, and number surviving for each
of the five chromosomes

String Fitness Relative fitness Number surviving

100011000111101 45 0.108 0

001001110110110 100 0.241 1

110111010111011 55 0.133 0

001011101000111 115 0.277 2

101010100010100 100 0.241 2

In this iteration, one copy of chromosome 2 and two copies of chromosomes 4 and 5 survived for
modification and reiteration.
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Next, we use the relative fitness of each chromosome and a random number gen-

erator (RNG) to determine how many of each chromosome, if any, survive into the

next iteration. Our RNG produces a value between 0.0 and 1.0, and we therefore

assign the following ranges:

1. RNG output¼[0.0, 0.108]; chromosome 1 survives.

2. RNG output¼[0.108, 0.349]; chromosome 2 survives.

3. RNG output¼[0.349, 0.482]; chromosome 3 survives.

4. RNG output¼[0.482, 0.759]; chromosome 4 survives.

5. RNG output¼[0.759, 1.0]; chromosome 5 survives.

Running the RNG, we observed these five values: 0.511, 0.893, 0.277, 0.663, and

0.905, which means a copy of chromosomes 4, 5, 2, 4, and 5, respectively, survive.

Step 3 involves passing along somethinggood to the children. Survival of the fittest

does not usually imply parthenogenesis. That is, the genes are not passed along

unchanged to the offspring (why should they be? We already know what the fitness

will be!). Instead, they are modified somewhere in the range between minor and sub-

stantially, and these modified offspring are then the evaluated pool for the next gen-

eration. The alterations start with mutations (Table 1.13), where for purposes of
Table 1.13 Iteration 1 initial survivors, number of mutations, new string, and
the Hamming distance and fitness of the new string when compared with the
ideal string of “101110011000110”

String
No. of
mutations New string

Hamming
distance Fitness

001001110110110 1 001001110110111 9 80

001011101000111 3 101011111000110 3 150

001011101000111 1 001010101000111 5 125

101010100010100 2 101000110010100 6 105

101010100010100 2 101010100000110 4 140

The realized mutation rate was 12%. Mutated loci are indicated by boldface in column 3.
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illustration, we are using a highmutation rate of 10%. Randommutations with a prob-

ability of 0.10 in Table 1.13 led to a realized mutation rate of 0.12 (i.e., 12%). Even

before themutations, themean fitness of the surviving strings (two sets of which were

identical chromosomes) rose to 106 from83.After themutations shown in Table 1.13,

the mean fitness rose further to 120. The mean Hamming distance—which again

we cannot assess in real time since we still don’t know the actual optimal string—

dropped considerably to 5.4.

Mutation, of course, is only the first step in adding some genetic variability for the

next generation. In addition to mutation, we can consider crossover. Two crossover

events occur in Table 1.14, both of which swap four-bit substrings between two

strings. The first, designated crossover event A, is between the first and third chro-

mosomes, loci 7–10. The second crossover occurs between strings 4 and 5 (before

mutation, the same chromosomes), loci 6–9. Since crossovers exchange, but do

not change, the overall collective set of matching loci, the mean Hamming distance

(5.4) and mean fitness (120) do not change in Table 1.14 relative to Table 1.13. How-

ever, after crossover, two new strings have fitness of 150 or more. The overall cross-

over rate here is also quite high for purposes of illustration—16 out of 75 or 21.3% of

loci are involved in crossover.

The last operation to perform in this iteration is inversion, should one be indicated

by the output of the RNG. In this example, one inversion is indicated by the RNG,

and it affects loci 4–7 of string 2. As shown in Table 1.15, this further improves the

fitness of string 2 to 165.0.

At this point, iteration 1 is complete, and we can calculate how much an iteration

has brought us. The mean Hamming distance has improved from 7.8 to 5.0, and the

mean fitness has increased from 83.0 to 123.0. New goodness of fit for the output

strings of Table 1.15, based on their relative fitness, is 0.146, 0.268, 0.187, 0.154,

and 0.244, respectively. These are more uniform than for the original set of strings,

and the difference between the most fit string and the optimal string has dropped
Table 1.14 Iteration 1 survivors, after mutations, with two crossover events
(bold and italic) occurring between strings 1 and 3 (crossover A) and between
two mutated versions of the same surviving chromosome, strings 4 and 5
(crossover B)

String Crossover? New string
Hamming
distance Fitness

001001110110111 Yes (A) 001001101010111 8 90

101011111000110 No 101011111000110 3 150

001010101000111 Yes (A) 001010110100111 6 115

101000110010100 Yes (B) 101000100010100 7 95

101010100000110 Yes(B) 101010110000110 3 150

Since crossover exchanges substrings, it does not alter the mean Hamming distance (still 5.4) or the
mean fitness (still 120), though the individual string values for Hamming distance and fitness may
change.



Table 1.15 Iteration 1 survivors, after mutations and crossover occurring in
Tables 1.13 and 1.14, with a single inversion event affecting string 2, loci 4–7

String Inversion? New string
Hamming
distance Fitness

001001101010111 No 001001101010111 8 90

101011111000110 Yes 101111011000110 1 165

001010110100111 No 001010110100111 6 115

101000100010100 No 101000100010100 7 95

101010110000110 No 101010110000110 3 150

Since this event improved string 2’s fitness, the mean Hamming distance is now 5.0, and the mean
fitness is now 123.0. Moreover, the fitness of string 2 is now within 10 of the absolute optimum value
of 175.
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from 60 to 10. Continuing along this path, the optimal string might be obtained in 4–5
iterations, required only 20–25 candidates to be simulated and/or built and tested,

rather than the 32,768 required for exhaustive search.

This relatively simple example outlines some of the basics of a genetic approach,

particularly for optimization. However, as implemented, the GA is not going to be

particularly useful for a wide variety of optimization situations, since it requires them

to be reduced to a single binary string. However, we rarely need to use just a single

GA in a robust, hybrid system. There, we typically use the GA for one or more of the

following:

1. Separate out the decision tasks and use the genetic algorithms to optimize the

decisions against a reasonable cost function. Traditional clustering, classification,

and segmentation approaches can be used to identify the separable decision tasks

for the GA to tackle.

2. Ensure that the GA task space is as small as possible—whenever possible, break

up the overall optimization into multiple GA processes (genetic algorithms along

the lines of those illustrated herein do not generally scale well).

3. Use neural networks, boosting, SVM, and/or meta-algorithmic patterns for

classification, regression approaches for estimation, etc., and only deploy the GA

where absolutely needed. Genetic algorithms are not “one size fits all” and are a

useful tool, but not hardware store, for the analytic expert.

In this section, I have scratched the surface of genetic and evolutionary algorithms,

introducing the relatively straightforward processes of mutation, crossover, and

inversion. Clearly, the role of these processes is to provide “just enough” variability

in the offspring of a generation of chromosomes to allow these “child chromosomes”

to effectively explore both the local optima that might be near the higher-fitness par-

ent generation chromosomes while still searching for the global optima if it is distinct

from any of the local optima. There are many additional approaches in genetic and
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evolutionary programming, including specific replication of high-fitness strings

(rather than just using a “lottery” or RNG-based system for survival), which is a form

of codominance in which both direct and RNG-based inheritance is allowed. Substi-

tution, deletion, and insertion processes can be extended to nonbinary strings, if, for

example, evolutionary approaches are used on linguistic applications. Additional

means of hybridizing survival populations include regrouping, colonization-

extinction, and migration [Akba11]. In regrouping, there are several “groups” of

strings evaluated simultaneously (e.g., multiple sets of five strings using our exam-

ple), and all groups are mixed together, and then, new groups are formed. For migra-

tion, the same type of grouping is used, and at the end of each iteration, an individual

is encouraged to leave its own group and move to one of its neighbor groups. Finally,

for the extinction-colonization process, a group is selected as extinct (due to low fit-

ness) and replaced by offspring of a colonist group.

Evolutionary algorithms, of which genetic algorithms are a straightforward

example, are useful in optimization processes, especially when—as in the

example—the options at each step can be assigned to a small dictionary: binary

as used in the example being the simplest, but ASCII, alphanumeric, numeric,

and other dictionaries are acceptable, as well. These dictionaries should be as small

as possible for performance reasons, but the ability to support dictionaries of varied

sizes is a benefit of genetic and evolutionary approaches. Evolutionary approaches

are also useful in search, which can be viewed in some ways as an inverse process to

optimization. In search, the proximity of content can be used to weight the operators

(mutation, crossover, inversion, etc.).
1.8.2 Neural networks
Neural networks, or artificial neural networks (ANNs), are roughly based on the con-

nectivity within biological nervous systems. To understand some of the principles of

neural networks, we provide here an overview of the human visual system, as its

architecture and processes are used to model many ANNs, including convolutional

neural networks.

The retina, a sensory extension of the brain, comprises several special types of

cells, including the photoreceptor cells. These are the sensory cells of the visual sys-

tem, comprising the rods and cones. There is one type of rod, which is sensitive to

incident light of 400–700nm (510nm peak), and three types of cones: beta (blue,

420nm), gamma (green, 531nm), and rho (red, 558nm). The cones are not equally

distributed, with there being twice as many rho receptors as gamma receptors and

many less beta receptors. This is why people can read red text better than blue text.

The rods and cones are not evenly distributed, with their absolute and relative (to

rods) concentration decreasing with distance from the fovea.

After photoreception, the array of light on the photoreceptors forms a pattern,

matching the light pattern in the visual field. Each photoreceptor is effectively a

pixel in the 2-D array on the retina, which is a photosensor with a pixel resolution

of 400 pixels/mm (1.6�105 cones/mm2) or 10,000 pixels/inch in the fovea
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(the part of the retina normal “focused” best). This photoreceptor-level informa-

tion is then parallel processed with both a direct pathway and with “receptive

fields” that surround each photoreceptor (acting as a convolution window around

the photoreceptor). Anatomically, the direct path of visual information to the lat-

eral geniculate nucleus (LGN) of the thalamus follows the bipolar and ganglion

cells, while horizontal and amacrine cells lead to edge enhancement through lat-

eral inhibition and to ON/OFF “receptive fields” via excitatory/inhibitory inter-

connections. Interplexiform cells feedback information from the ganglion cell

level to the horizontal cell level. Thus, the architecture of the retina, while only

three cells thick, provides a powerful gain and feedback design.

Embryologically, an extension of the brain’s tissue, the retina, is architected

“inside out,” with the rod and cone pigment epithelium being the farthest from

the iris, where light enters the eye. The photoreceptor cells are just above the epithe-

lium, in the outer nuclear layer. The next layer is the outer plexiform layer, which

includes the horizontal cells, enabling convolution-like effects, which are called

the lateral pathway. The inner nuclear layer, comprising the bipolar cells, is the first

vertical pathway cells. Because they receive input from multiple cones, they may

blur or compress the information, particularly when farther from the fovea. Compres-

sion in the fovea is generally 1:1, but in the periphery of the retina (where you are

tested for “peripheral vision”), the compression may be as high as 1000:1. The

convolution-like effects are modulated by the inner plexiform layer, comprising

amacrine cells, which are also part of the lateral pathway. The third direct-in-line

cells are the ganglion cells, whose axons are bundled together into the optic nerve,

which exits the retina in the so-called blind spot.

From a signal processing standpoint, then, the photoreceptors are the sensors, the

bipolar and ganglion cells are compression algorithms, and the horizontal and ama-

crine cells are convolution algorithms. ANNs are at least roughly based on the con-

nectivity within biological nervous systems. The bipolar cells are effectively a

“hidden layer” between the photoreceptors as input layers and the ganglion cells

as output layers. Horizontal and amacrine cells are analogous to the weighted con-

nections of ANNs. Interplexiform cells are analogous to the back-propagation (of

error, used for training) functions in ANNs. In the human brain, of course, most

of the visual processing occurs in the occipital lobe, which is much more complex

than the retina (six-layered instead of three-layered). The visual cortex I and its

hypercolumns for massive series-parallel processing are where movement and color

are determined.

The concept of the receptive field is important for the retina and for the ANN. A

receptive field is defined as an area that affects a sensory cell. For the retina, this is

the set of photoreceptors that can affect the output of a subsequent bipolar, ganglion,

or other cell. Bipolar and ganglion cells near the fovea have much smaller receptive

fields than peripheral ones, and in general, ganglion cells have larger receptive fields

than bipolar cells. Convergence (or compression) is proportional to the receptive

field size and is >1000 in the periphery but 1 in the foveola. Divergence also occurs

simultaneously, due to overlap of the receptive fields of neighboring cells. However,
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simple compression is not sufficient—there must be intelligent compression taking

into account surrounding cells to incorporate motion across a receptive field as part

of the compressed data. The retina has ON-center and OFF-center ganglion cells,

which respond differently to provide the analogue of sharpening (ON center) and

blurring (OFF center). In the retina, these center/surround structures provide lateral

inhibition, edge and motion detection, and general light-intensity information at the

ganglion level.

For the purposes of our brief tutorial on ANNs, we need to consider the following

definitions:

(1) Inputs: An input vector is one input to the system usually written as vector x

where xi¼one element, i¼{1,…,m}.
(2) Weights: wij is the weighted connection between nodes i and j. Modeled after

synapses in a nervous system. Arranged as matrix W.

(3) Outputs: An output vector y is the output vector yi¼one element, j¼{1,…,n},
formally y(x,W) since the vector is a function of x and W.

(4) Targets: A target vector t contains extra data needed for supervised learning—

contains the “correct” or training data. Note that tj¼one element, j¼{1,…,n}.
(5) Activation function: A mathematical function, usually given as g() for gain or

conductance, describing the firing of the neuron in response to the weighted

inputs. Often a simple binary decision or threshold. If the sum of wijxi coming to

node yj exceed a threshold, provide output¼1; else, output¼0. Formally,

A¼ f(x,W).

(6) Error: Usually a function, E, which computes the inaccuracies of the network as

a function of targets t and outputs y; that is, E¼ f(t,y).

The interplay of these elements of an ANN is shown in Fig. 1.12.

We start with a small section of a relatively complicated neural network (the mul-

tilayer perceptron) and describe how it works next. The base network showing the

nodes (filled circles) and the connections (line segments with arrows pointing to

the output) are shown in Fig. 1.13.

The ANN of Fig. 1.13 has the input, connection weight, and output notation

added in Fig. 1.14. The input to y is x, and to z, it is y. The output to x is y, and

to y, it is z. Overall, x is the input, y the hidden layer, and z the output of the ANN.
Next, for the labeled ANN of Fig. 1.14, we compute the path gains. For one spe-

cific input vector x:

y1 ¼w11x1 +w21x2 +w31x3 +w41x4

y2 ¼w12x1 +w22x2 +w32x3 +w42x4

y3 ¼w13x1 +w23x2 +w33x3 +w43x4

And for the hidden layer vector y:

z1 ¼ ŵ11y1 + ŵ21y2 + ŵ31y3

z2 ¼ ŵ12y1 + ŵ22y2 + ŵ32y3



FIG. 1.12

Simple artificial neural network (ANN) illustrating two layers. The input vector is x, the output

vector y, and the weights w on the connections from the input nodes (circles on left) and

output nodes (circles on right).

FIG. 1.13

Section of a larger multilayered perceptron ANN illustrating input (left), hidden (center), and

output (right) nodes (filled circles) and the connections between them, shown as line

segments with arrows pointing from the input to the output of a stage in the ANN. The hidden

layer is the output to the input layer, and the output layer is the output to the hidden layer.
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FIG. 1.14

ANN of Fig. 1.13 with input layer, hidden layer, output layer, and weighting indicated.
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If we really wanted to write out the long calculations, we could compute z1 as follows
(and z2 in like fashion):

z1 ¼ ŵ11 w11x1 +w21x2 +w31x3 +w41x4ð Þ + ŵ21y w12x1 +w22x2 +w32x3 +w42x4ð Þ
+ ŵ31y w13x1 +w23x2 +w33x3 +w43x4ð Þ

Generally, however, the hidden layer makes some decisions of its own, which means

a closed-form expression for the relationship between x and z is not advantageous

and perhaps not possible.

Next, we need an algorithm for setting and updating the weights. First, we ini-

tialize the weights of the connections randomly in the range of �1/
ffiffiffiffi
m

p
to +1/

ffiffiffiffi
m

p
.

The value of m is often chosen to be 1. We then randomize the order of inputs from

one iteration to the next. Next, an input vector, x, is put into the input nodes, and the

inputs are fed forward through the network—the inputs and the w weights decide

whether the hidden nodes y fire or not. The activation function is often a sigmoid

function such as given in Eq. (1.28).

a jð Þ¼ g h jð Þ¼
Xm

i¼1
wixij j

� �
¼ 1

1 + e�βhj
(1.28)

The outputs of these neurons, either g(h) or usually the all-or-none (thresholded) ver-
sion of g(h), multiplied by the ŵweights, are then used to decide if the output z nodes

fire or not. The error is computed as the sum-of-squares difference between the train-

ing targets t and the output z nodes, and the error is back propagated (fed backward)

through the network so as to update the ŵ weights using Eq. (1.29):

δok ¼ tk�ykð Þyk 1�ykð Þ (1.29)
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The error in the y layer is computed using Eq. (1.30):

δhj ¼ aj 1�aj
� �X

k
ŵjkδok (1.30)

The ŵ weights are updated using Eq. (1.31):

ŵjk¼ ŵjk + ηδokaj (1.31)

Finally, update the w weights using Eq. (1.32):

wjk¼wjk + ηδhjxi (1.32)

Note that eta, η, is typically a small fraction, for example, 0.1, 0.2, or 0.3. An example

of how this comes together will be instructive. For this example, we consider the

ANN shown in Fig. 1.15. The input is the representation of the first third of a letter,

and so, for H, the input x¼[1 1 1 1], and for T, the input x¼[1 0 0 0].

The artificial neural network in Fig. 1.15 is then trained to recognize different

input sets, including those for T and H. The weights learned are shown in Fig. 1.16.

In Fig. 1.16, we see that the sums for y1 are 3.4 forH and 1.0 for T. This is because
y1¼(1.0)1+(0.8)1+(0.8)1+(0.8)1¼3.4 for H and y1¼(1.0)1+(0.8)0+(0.8)0+(0.8)

0¼1.0 for T. Similarly, the sums y2¼(0.5)1+(0.5)1+(0.5)1+(0.5)1¼2.0 for H,
and y2¼(0.5)1+(0.5)0+(0.5)0+(0.5)0¼0.5 for T; the sums y3¼(0.3)1+(0.2)1+

(0.1)1+(0.0)1¼0.6 for H, and y3¼(0.3)1+(0.2)0+(0.1)0+(0.0)0¼0.3 for T.
We then threshold the values for y to binarize each of {y1, y2, y3} to be 0 or 1. If

the threshold is in the range [2.0, 3.4], then y1¼1 and y2¼y3¼0 for H, and
y1¼y2¼y3¼0 for T. In this case, z1¼1.0 for H and 0.0 for T, and z2¼0.6 for H
and 0.0 for T. If instead the threshold on y is in the range [1.0, 2.0], then

y1¼y2¼1 and y3¼0 for H, and y1¼y2¼y3¼0 for T. In this case, z1¼2.0 for H
FIG. 1.15

ANN, for example, where the input is the first third of a character. For the H, it is all

1s since the first third of an H looks like “I.” For the T, it is all 0s except for the top

fourth since only the left side of the crossbar of the T is nonbackground. Regardless, the

input x¼ [1 1 1 1] for H, and x¼[1 0 0 0] for T.



FIG. 1.16

ANN of Fig. 1.15 after weights have been learned for distinguishing H, T, and some other

possible inputs for x. See text for details, please.
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and 0.0 for T, and z2¼0.9 for H and 0.0 for T. So, across a wide range of thresholds,
we readily distinguish H and T at z. Note that we can only distinguish a maximum of

four inputs (or input classes) at z since z is just two bits. We therefore must compress

a four-bit input to a three-bit hidden layer to a two-bit output.

We have several design options here—the number of nodes at input and output,

degree of connectivity between layers, number of hidden layers, gain and back-

propagation algorithm, etc. We can add more hidden layers for scalability and

robustness. We can also use it to prune some of the connections between layers,

sometimes speeding training. The back-propagation algorithm generally contains

terms that are meant to provide a good balance between fast convergence and con-

vergence to a nonglobal optimum. The error term can also include a regularization

term to prevent overtraining. Also, it is worth noting that the activation term often

uses tanh() in place of the sigmoid function described above. Another design option

worth noting is that we can use convolution at a hidden layer and at the input layer to

provide different “sharpness” or conversely “blur” to the training data. One reason

convolutional neural networks work well on very large data sets is because they

“expand” the amount of a convolved layer used to train on each sample, thereby pre-

venting overtraining through isolation of input within the net.

I finish this section with a quick overview of the connectivity of the ANN. Sup-

pose we have a single input layer, a single hidden layer, and a single output layer:

(1) Input layer: NInput nodes

(2) Hidden layer: NHidden nodes

(3) Output layer: NOutput nodes

Here, the total number of connections between input and hidden layers is NInput*
NHidden, and the total number of connections between hidden and output layers is

NHidden*NOutput. This means that there are NInput*(NHidden)
2*NOutput total pathways
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through the neural network. If this value,NInput*(NHidden)
2*NOutput, is greater than the

number of inputs, we have more degrees of freedom for the network than we have for

the problem space. If not, we have more degrees of freedom for the problem space

than for the network. Thus, two or more input samples will be recognized as “the

same.” In our example, we had 16 possible inputs but only four possible outputs.

Therefore, a mean value of four inputs would map to each output, and we cannot

distinguish every possible input. Regardless, in an ANN, by adding more layers,

we have a geometric increase in the number of pathways through the network and

can adjust the relative degrees of freedom based on the needs of the problem. In some

cases, we will want more outputs than inputs and vice versa. Clearly, ANNs provide

us with a tremendous amount of flexibility in analytic system design.
1.8.3 Immunological algorithms
Immunologic algorithms are based on the distributed, recognition-based, layered
system of memory that is your immune system. This system includes innate memory

(the family of complement proteins), collaborative memory (ligand-receptor bind-

ing), and learned memory (including unlearned memory). The immune system, in

fact, is capable of deep unlearning, which in physiological terms is called clonal

deletion and is how the immune system learns not to attack the self.

In this section, biological immune system concepts will be introduced, and AI

immune system architectures and processes inspired by these concepts will be

described. The goal is to stimulate further research in this area, because one thing

is certain—hundreds of millions of years of evolution have certainly made the nat-

ural immune systems robust.

The first of these is antigens (also haptens and epitopes), which are fragments of

information that can be recognized by the antigen-binding site on the antibody. Anti-

gens are often “residues” of the digestion of nonself particles (viruses, proteins, etc.),

or they can be surface-presented molecules of living nonself cells. In the context of

AI, an antigen is a specific element or combination of elements that trigger a set of

activities by the AI immune system. This may mean the occurrence of a rare event

triggers a different response—for example, a different analytics algorithm or design

pattern—to be applied. One example is a “trigger” word that indicates switching

between monolingual and bilingual analysis of text or speech.

The second concept of interest is that of antibodies. These are molecules with the

ability to recognize (antigen) and the ability to moderate behavior, location, and scal-

ability of the response to the antigen. That is, antibodies are molecules with different

sections, or sites, which enable them to participate in different chemical reactions, or

“binding.” The primary binding sites are the antigen-binding sets, which are at the

ends of the two prongs of the “Y” shape of an IgG antibody; the complement-binding

site in the middle part of the molecule, just below the fork of the “Y”; and the

receptor-binding site at the bottom of the “Y,” which allows the antigen binding

of multiple antibodies to trigger other reactions, such as macrophage cell endocytosis

of the antigen-antibody complex and the resultant destruction of the antigen-

presenting cells. Applied to AI, these are potentially powerful concepts, which
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can be used to guide the generation of hybrid algorithms that may be simultaneously

useful in search, recognition, clustering, and other knowledge generation. The AI

equivalent of antigen binding, for example, may be the detection of a specific pattern

of data in a sample. This antigen binding triggers a complement cascade of relevant

analytics, which are used to further validate that the antigen-antibody complex is a

correct match. The receptor-binding site then attaches the antibody as sample to its

category, cluster, and/or class set and adds its analytics to those of the set.

Antigen-based sites are the sites of recognition for the antibody and the epitope

(attachment-specific portion) of the antigen or the hapten bound to a facilitating pro-

tein (on an antigen-presenting cell such as a macrophage or dendritic cell), simplified

in the previous discussion as being “antigens.” As the recognition sites, they are

important for clustering, classifying, and categorizing. In AI, the part of a search,

recognition, or knowledge-generating algorithm or process that extracts the specific

element and/or distinguishes its content relevance is a form of antigen-binding site.

One example used in text analytics is tf*idf, or term frequency times inverse docu-

ment frequency. This approach identifies terms that are rare in the overall corpus but

commonplace in a specific cluster, class, or category. As with the natural immune

system, there is the possibility of ectopic or false binding, but subsequent validation

steps can further assess the sample and ensure the correctness of the assignment.

Contextual reaction is an important concept in the immune system, and it is the

expression for the fact that different elements of the immune system have different

specificity of reaction. The process of inflammation is a good case study for this

specificity. Complement proteins attract neutrophils and macrophages and attach

to antigens, marking them for phagocytosis by macrophages in a process called opso-

nization. Neutrophils, basophils, and mast cells release chemical agents that cause

increased blood flow, swelling, and extravasation of other immune cells. Macro-

phages target the opsonized cells and perform cleanup of foreign bodies. Finally,

T and B memory cells recognize viruses and bacteria, and both prevent their spread

and lead to their destruction. This contextual reaction is readily borrowed by analytic

and AI approaches. Generic approaches, like tf*idf mentioned above and k-means

clustering, can be used to broadly tag data content. Based on the tags applied (anal-

ogous to opsonization), different analytics, algorithms, and processes can be brought

to bear on the data. The concept of tagging content with multiple descriptors allows

multiple hypotheses (models, classification, categorizations, etc.) about the data to

be tested simultaneously. Once the hypotheses have been tested, much more specific

analytics (akin to T and B cells) can be performed.

Complement, already mentioned herein, is a family of more than 30 proteins that

are involved in many innate immune processes, particularly in the activation of other

innate immune responses (inflammation) and labeling foreign elements for phago-

cytosis (opsonization). For analytics and AI, this concept is directly borrowed for

the meta-analytic approach, wherein a modular set of general tools or patterns for

approaching system problems is employed in order to efficiently roll out a hybrid

system comprising two or more processes. Obviously, meta-analytics are the primary

subject of this book.
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Another concept from the immune system is that of a learned response. For the

immune system, the T and B cells are the primary mediators of the learned response.

They learn, through their T-cell receptors and antibodies, respectively, about specific

elements (antigens) of a somatic threat and remembering these for future. They also

mediate unlearning where appropriate—the T and B cells that are exposed to their

specific antigen during their development undergo apoptosis, or programmed cell

death, so that they will not later mediate an autoimmune response. Learned specific-

ity for an analytic or AI problem will be tied to a general recognition of the context

first so the right refining response is taken.

Clusters of differentiation (CDs) are cell surface, usually transmembranous,

proteins that indicate a stage of maturation, differentiation, and/or functionality

of a cell. CDs differ by cell type, and so, the CDs on the surface are also short-

hand of sort for cell typing. In analytics, processes such as search, recognition,

or knowledge generation algorithms can come online at appropriate stages in a

project or learning process. CDs can represent how far along they are in the

analytic process and what degree of categorization confidence they have.

The concept of CDs can also be borrowed as a means of showing multicategory

membership.

Surface proteins are the superclass for clusters of differentiation, and in biol-

ogy, these are the proteins along the surface of a cell that are used to bind to spe-

cific ligands (other binding molecules) in the surrounding milieu. The binding of

ligand and receptor generally leads to additional reactivity, often mediated by

intracellular second messenger pathways. There is clearly a strong analogy here

for multistep, hybrid, meta-analytic approaches in analysis and AI. Secondary

algorithms or analytics specific to germane environment events, processes, sig-

nals, etc. can be triggered based on the positive or negative assignment of data

to a cluster, class, or category; in addition, these further downstream steps can

be indicated or contraindicated based on the overall statistics. For example, if

the goodness of fit of a data set to a particular category is above a particular

threshold, then we are comfortable with its membership and proceed with the

indexing, content extraction, and other operations consistent with membership

to be performed. If, however, the goodness of fit is below the threshold, we “mine

deeper” into the data set to further discriminate membership among the highest

ranked candidates.

The last concept borrowed from the immune system here is the concept of medi-

ated responses. In immunology, responses that are mediated are physiological events

that occur after the binding of surface receptors to ligands. These secondary events

are often metabolic, growth-related, or secretory (packaging of synthesized prod-

ucts) in nature. In analytics, downstream workflows, events, additional analytics,

etc., can be triggered by the positive recognition of events, processes, signals, and

other context. Analytic system designers can incorporate hard-won domain expertise

into downstream rules that are applied only when a certain set of (statistical) confi-

dence has been achieved for the data’s classification, cluster membership, categori-

zation, or other tagging.
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1.9 A platform for building a classifier from the ground up
(binary case)
In this section, I pull together a number of concepts to create a classifier from the

ground up. While this may not be a particularly elegant classifier from the aesthetics

of the design, it will provide very comparable results with top-level classification

approaches such as LDA, Adaboost, SVM and ANNs because of its innate flexibility

and its ability to ingest domain expertise into the composition of the feature set and

the feature weighting. We are most interested in a classifier that simultaneously

addresses five major desired attributes for a generalized classifier:

(1) Three or more classes can be distinguished. This is necessary to provide

functionality beyond that provided by a nonprobabilistic binary linear classifier

such as a support vector machine. The preferred classifier will be able to

distinguish as many classes as necessary, with linear scale-up if possible.

(2) Graded weighting of the samples based on their distance from the expected

values of each class. Samples should have nuanced classification probabilities,

such that the farther the samples are from a given class, the lower the probability

of belonging to the class. This means that sample assignment is graded, or

analogue, and not binary, or digital.

(3) Feature selection should have an unambiguous, easy-to-employ process.

Preferably, a single metric can be used to decide which feature(s) to include in

the overall classification set.

(4) Ability to create noncorrelated features from a smaller set of features. As

opposed to the determination of principal components that are weighted

combinations of multiple features and/or required to be orthogonal features, we

would like to have an uncomplicated way to generate a large set of potential

features from the measured data and then refine the set based on the degrees of

freedom in the measurement.

(5) Ability to ingest expert system rules from domain experts. If an observer,

analyst, or other domain expert, for example, notices that certain measurements

are correlated with specific classes or that there are requirements for specific

measurements to place the so-measured samples into specific classes, then these

rules should be readily incorporated into the overall classifier. This means that

the features used for classification can be tagged, or labeled, with a real name.

In order to address these attributes, we begin with a simple binary classification

model the rudimentary elements of which were first introduced in 2005. Before

we proceed to more than two classes, we show how a critical point (hereafter

“CPt”) between the populations that represent two classes is derived. The simple

set we will use for illustration is given in Table 1.16. This is a very simple clas-

sification design in which there are only two classes (a binary classification prob-

lem) and there are only two measurements made for each sample (the only simpler

design would be for one feature). For this example, we may be measuring both



Table 1.16 Statistics for two classes and two measured features

Sample
Feature1,
Class A

Feature1,
Class B

Feature2,
Class A

Feature2,
Class B

Feature
ratio,
Class A

Feature
ratio,
Class B

Feature
product,
Class A

Feature
product,
Class B

1 141 165 31 22 4.55 7.5 4.37 3.63

2 155 178 23 19 6.74 9.37 3.57 3.38

3 164 185 25 15 6.56 12.33 4.10 2.78

4 165 201 41 26 4.02 7.73 6.77 5.23

5 178 221 37 31 4.81 7.13 6.59 6.85

6 189 227 29 28 6.52 8.11 5.48 6.36

7 203 235 37 29 5.49 8.10 7.51 6.82

8 211 244 46 33 4.59 7.39 9.71 8.05

9 217 253 39 36 5.56 7.03 8.46 9.11

10 229 266 51 31 4.49 8.58 11.68 8.25

Data in the last two columns on the right are divided by 1000 simply for convenience in the table. The data are ordered for Feature1, as is evident from columns 2 and
3. Columns 4 and 5 are the corresponding measurements for Feature2, ordered identically as columns 2 and 3, respectively, so that columns 6–9, the ratios and
products of these features, can be readily calculated.
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temperature (Feature1) and volume (Feature2) in a chamber (e.g., an ideal gas

equation). We will consider only 10 samples from each class, so that the total num-

ber of samples is 20. In preparation for the classification task, we have ordered the

10 samples from Class A and, separately, from Class B so that they are in sorted

(ascending) order in columns 2 and 3 of Table 1.16. These are the columns corre-

sponding to Feature1.

We note that the two classes have different behavior for the two measured fea-

tures. The second measured feature is provided in columns 4 and 5 of Table 1.16. We

then provide two derived features from Feature1 and Feature2. The first, the ratio of

Feature1/Feature2, is presented in columns 6 and 7. This particular feature has a

physical meaning, since temperature/volume is proportional to pressure in the cham-

ber. The second derived feature, the product of Feature1 and Feature2, does not in

this case have a physical meaning in the example (where we are considering temper-

ature, pressure, and volume), but as it is not a linear combination of the two features

and the first derived feature, it may have some unique contribution to classification

accuracy from that of the other three features. In general, we can derive features from

measured features using a variety of mathematical transformations, including expo-

nential and logarithmic products and quotients; periodic functions; trigonometric

functions; and other products, quotient, and exponential series, so long as no derived

feature is a linear combination of existing measured or derived features. More will be

said on this later in this section.

For each measured and derived feature, we then determine a unique critical point,

CPt, for separating any two classes. For purposes of consistency, we define the means
CPt

A B

m1 m2

FIG. 1.17

Illustration demonstrating the critical point CPt (vertical line segment between A and B),

along with the “error areas” A and B. Thus, CPt is defined as the point between the twomeans

that is equidistant from the two means in multiples of their standard deviations (the two

populations need not have equal variance). As such, CPt is selected so that the distance

from the mean of each population to CPt is the same in terms of standard deviations of

the means. The number of standard deviations from each mean, nσCPt, and then the

actual value of the critical point, CPt, is determined by Eqs. (1.33), (1.34), and (1.35).

Please see text for details.
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of the sample populations of any two classes as μ1 and μ2, where the class with the

lower mean is assigned the index “1”; that is,

μ1 < μ2 (1.33)

This allows us to readily compute the number of standard deviations that the critical

point between the two classes is from the mean of each class, as in Eq. (1.34):

nσCPt ¼ μ2�μ1ð Þ= σ1 + σ2ð Þ (1.34)

Here, σ1 is the standard deviation of the class with mean μ1, and σ2 is the standard
deviation of the class with mean μ2. This critical point (CPt) is the value that is the
samemultiple of standard deviations away from the means of both classes in the stan-

dard deviation specific to that class. We can determine the value of CPt from either of

the two classes as follows:

CPt¼ μ1 + nσCPtσ1 ¼ μ2�nσCPtσ2 (1.35)

The relative “separation” of the two classes is defined by the single derived value,

nσCPt. Two classes are, in general, more readily distinguished by a (measured or

derived) feature when nσCPt is larger and less readily distinguished by a (measured

or derived) feature when nσCPt is smaller.

The next step in this classification approach is to compute the means and standard

deviations (“stds”) of each measured and derived feature for each class and, from

Eqs. (1.33), (1.34), and (1.35), compute the values CPt and nσCPt for each feature.

Table 1.17 provides these values for the data of Table 1.16. Note in Table 1.17 that

the two values for the critical point (CPt), as must be, are identical—for all four met-

rics, μ1+nσCPtσ1¼μ2�nσCPtσ2. This is in accord with Eq. (1.35).

In Table 1.17, the derived value, nCPt, can be used to compare the measured and

derived features for their likely utility in overall classification. Among the four fea-

tures Feature1, Feature2, feature ratio, and feature product, the nCPt values are 0.524,
0.563, 1.181, and 0.160, respectively. The largest value, 1.181, corresponds to Fea-

ture1/Feature2, which using our ideal gas example is directly proportional to pres-

sure. The nCPt values for Feature1 and Feature2 are similar, implying each of

these (both measured) features will have similar value for classification accuracy.

Finally, the derived feature, the product of temperature and volume, appears to have

limited value for classification accuracy, since its value for nCPt is 0.160.
In Table 1.18, we use the individual critical points to estimate the accuracy of

each feature, used by itself, for classification. Samples from the class with mean

μ1 are correctly assigned if they are below the critical point, and samples from

the class with mean μ2 are correctly assigned if they are above the critical point. Sam-

ples directly on the critical point are ignored. It is worth noting when looking at

Table 1.18 that the class with mean μ1 is not always Class A (e.g., for Feature2

and the feature product in Table 1.18, Class A have the higher mean values, and

so, Class A provides mean μ2 in the simple classification model).



Table 1.17 Statistics for two classes and two measured features

Statistic
Feature1,
Class A

Feature1,
Class B

Feature2,
Class A

Feature2,
Class B

Feature
ratio,
Class A

Feature
ratio,
Class B

Feature
product,
Class A

Feature
product,
Class B

Mean 185 218 36 27 5.33 8.33 6.82 6.05

Std 29 34 9 7 0.97 1.57 2.60 2.21

nσCPt 0.524 0.563 1.181 0.160

μ1+nσCPtσ1 200 31 6.48 6.40

μ2�nσCPtσ2 200 31 6.48 6.40

Physical
analogue

Temperature Volume Pressure No direct analogue

In our example, Feature1 is temperature, and Feature2 is volume, meaning the feature ratio is proportional to pressure and feature product does not have a simple
physical analogue. The relative values for nσCPt in the fourth row imply that pressure provides the best binary classification accuracy for the two classes among the
four features, with temperature and volume of intermediate binary classification accuracy, and the “feature product” having the lowest binary classification accuracy.
Rows 4 and 5 are identical since they are two means of computing the critical point, CPt.



Table 1.18 Predicted accuracy of each of the features on the training data

Sample
Feature1,
Class A

Feature1,
Class B

Feature2,
Class A

Feature2,
Class B

Feature
ratio,
Class A

Feature
ratio,
Class B

Feature
product,
Class A

Feature
product,
Class B

1 141 165 31 22 4.55 7.5 4.37 3.63

2 155 178 23 19 6.74 9.37 3.57 3.38

3 164 185 25 15 6.56 12.33 4.10 2.78

4 165 201 41 26 4.02 7.73 6.77 5.23

5 178 221 37 31 4.81 7.13 6.59 6.85

6 189 227 29 28 6.52 8.11 5.48 6.36

7 203 235 37 29 5.49 8.10 7.51 6.82

8 211 244 46 33 4.59 7.39 9.71 8.05

9 217 253 39 36 5.56 7.03 8.46 9.11

10 229 266 51 31 4.49 8.58 11.68 8.25

CPt 200 31 6.48 6.40

nCPt 0.524 0.563 1.181 0.160

Accuracy 13/20¼0.65 12/17¼0.71 17/20¼0.85 11/20¼0.55

Improved
Accuracy

0.30 0.42 0.70 0.10

Accuracy is the percent of correct assignments over the total number of assignments. Improved accuracy is the percentage above guessing (0.50) toward perfect
accuracy (1.00) as given in Eq. (1.36). In the case of Feature2, three samples are precisely on the critical point, and so are not assigned. Boldface data are assigned
to the incorrect class based solely on the critical point. Note that Class A has the lower mean for Feature1 and feature ratio and the higher mean for Feature2 and
feature product.
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Not surprisingly, the predicted accuracy of the features is correlated with the

value of nCPt in Table 1.18. In sorted order, the values for nCPt are ranked in the same

order as the accuracy. When we consider that accuracy is 50% for simple random

guessing for a binary classifier, we can further compute the improved accuracy as

given by Eq. (1.36):

Improved accuracy¼ Accuracy�0:50ð Þ= 1:0�0:50ð Þ (1.36)

These calculations are given in the last row of Table 1.18 and plotted against nCPt in
Fig. 1.18. The monotonic relationship (and linear regression R2 value of 0.97)

between accuracy and nCPt is encouraging for the use of nCPt as a metric for identi-

fying good features for classification, as will be described in more detail.

Once the accuracies are computed, we can compute and assign weights (coeffi-

cients) to each of the features so that they can be used together to make an overall

decision, with each feature contributing its appropriate relative share to the overall

decision. Customarily, the weights are normalized to sum to 1.0 for all the features,

as presented in Table 1.19. Two different sets of weights are computed, which we

will compare. The first makes the relative weighting proportional to the accuracy

of the feature, as given in Eq. (1.37):

Weightingaccuracy ið Þ ¼
accuracy ið ÞX
k
accuracy kð Þ (1.37)

The second set of weights is computed so that the weights are inversely proportional

to the error rate of the features, as given in Eq. (1.38).

Weightingerror ið Þ ¼
1
�
error ið ÞX

k

1
�
error kð Þ

(1.38)

The weights so computed are given in Table 1.19.
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FIG. 1.18

Percent improvement in accuracy (y-axis) versus nCPt (x-axis) for the data in Table 1.18. The

equation of the regression line is y¼0.583x+0.0261, with R2¼0.9687.



591.9 A platform for building a classifier from the ground up (binary case)
The weights in Table 1.19, as expected, are ordered identically to nCPt-based order-
ing for the features, being highest for the feature ratio and lowest for the feature prod-

uct. While this is a nice result, for a simple binary classification problem like this (two

classes and two measured features), where the weighting of the features is based on a

very simple binary boundary for each of the four metrics, even with relative weighting

approaches employed, we do not obtain a particularly sophisticated model for the clas-

sification. In fact, we can boil the classification down to one simple rule for both

weighting approaches: if the “feature ratio” and one other feature vote one way, the

overall classifier does. This is true since 0.308+(0.236 or 0.257 or 0.199)>0.500

for accuracyweighting and 0.439+(0.188 or 0.227 or 0.146)>0.500 for (inverse) error

weighting. Only if the other three features (Feature1, Feature2, and feature product)

agree will the opposing classification of the feature ratio be “overruled.”

Next, we compare what we have observed for nCPt and the weighting to the sim-

ple statistical analysis afforded by the t-test. The t-test is a good measurement choice

to validate the selection of features normally based on the number of standard devi-

ations to the critical point, CPt, or nCPt. Note that remapping the data to a normal

distribution before performing the t-test (e.g., when distributions are skewed and

bimodal and show kurtosis) is good practice before computing the t-statistics so that
the features will be ordered in a meaningful manner. Regardless, the t-statistics and
corresponding two-tailed p-values are provided in Table 1.20. The t-statistic is, of

course, computed according to Eq. (1.39):

t¼ μ1�μ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1�1ð Þσ21 + n2�1ð Þσ22

n1 + n2�2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
+

1

n2

r (1.39)

Unsurprisingly, the p-values of the t-tests track nicely with the features most useful

for the classification. The feature ratio is most significant, with a p-value of

0.000121. Next is the Feature2 feature, with a still statistically significant

p¼0.0293, followed by Feature1, which also has a statistically significant result

(p¼0.0399). Feature product is not statistically significant (p>0.05).

In this example, we see that the final choice of classification largely depends on

the binary decision for the “feature ratio”-derived feature, having the same perfor-

mance (85% accuracy) on the training data as any combination of features. In a real

classification problem, we would then test on a separate (validation or testing) set,

which we will formalize in the next section. Here, we did not weight the samples

additionally based on how far they are from the decision boundary (the CPt). As

noted in Fig. 1.19., the actual sample, S, would be weighted more heavily for pop-

ulation 1 the further left it is on the line graph, and by symmetry, it would be

weighted more heavily for population 2 the further right it is on the line graph.

For the example shown in Fig. 1.19, the “S” above would be weighted more heavily

for population 1 than if it was directly next to the CPt. This consideration will be very

important in the general case.

Wedidnot prune the features, even thoughweonlymeasured two features (Feature1

and Feature2) and derived the other two (feature ratio and feature product) from these



Table 1.19 Table showing the weighting of the features in Table 1.18, as determined by Eq. (1.37) (third row) and Eq. (1.38)
(fifth row)

Sample
Feature1,
Class A

Feature1,
Class B

Feature2,
Class A

Feature2,
Class B

Feature
ratio,
Class A

Feature
ratio,
Class B

Feature
product,
Class A

Feature
product,
Class B

Accuracy 13/20¼0.65 12/17¼0.71 17/20¼0.85 11/20¼0.55

Weighting 0.236 0.257 0.308 0.199

Error rate 1�0.65¼0.35 1�0.71¼0.29 1�0.85¼0.15 1�0.55¼0.45

Weighting 0.188 0.227 0.439 0.146

In both cases, the ranking of the weights is feature ratio followed by Feature2, Feature1, and feature product in that order.

Table 1.20 Mean, standard deviation (std), degrees of freedom (df), t-statistic, and two-tailed p-value for the data from
Table 1.18

Sample
Feature1,
Class A

Feature1,
Class B

Feature2,
Class A

Feature2,
Class B

Feature
ratio,
Class A

Feature
ratio,
Class B

Feature
product,
Class A

Feature
product,
Class B

Mean 185 218 36 27 5.33 8.33 6.82 6.05

Std 29 34 9 7 0.97 1.57 2.60 2.21

df¼n1+n2�2 18 18 18 18

t-Statistic 2.215 2.368 4.877 0.677

Two-tailed p-
value

0.0399 0.0293 0.000121 0.507

The order of the t-tests is the same as for nCPt and the weightings in Table 1.19.
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This represents Fig. 1.17 with an actual sample introduced. The sample S is to the left of the

critical point CPt, meaning that it will be assigned to the class with the smaller mean μ1.
However, in this section, we have no process for showing additional confidence that the

sample S belongs to one class versus the other as it moves further from the CPt—though we

certainly should.

611.10 A platform for building a classifier from the ground up (general case)
two. In reality,wewould likely drop two of the features… keepingFeature2 and feature

ratio. The number of retained features would equal the number of actual measurements

performed or less. Since we would still employ relative weighting, we would not lose

any of the benefit of the twomeasurements, and statistically, only two features aremer-

ited anyway. In the next section,wewill learn how to handlemore than two features and

how to weight the sample, S, for distance from the decision boundary.
1.10 A platform for building a classifier from the ground up
(general case)
As we move into an even more in-depth description of how to build a classifier from

the ground up, you may be wondering why so much time is being spent on this topic.

At the most expansive level, I would argue that what Shakespeare is to drama, what

the symphony is to music, what Jane Austen is to characterization, what the novel is

to writing, and what La Pieta is to sculpture—classifiers are to analytics. They are

where art, design, and understanding of data come together. In this section, we build

on the principles introduced in the previous section to describe how to build an “infi-

nitely scalable” classifier from the ground up, with separate training and validation in

addition to the testing and deployment.

1.10.1 Training and validation
For the training and validation stage, there are eight steps we will describe here that,

as an output, provide a fully characterized classification model that can then be

deployed on new data:

1. Collect feature data for all classes

2. Compute all μ and σ values

3. Order all populations by means

4. Determine critical points
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5. Compute all p-values for t-tests
6. Compute and compare t-test and nSTD-CPt
7. Validation: select the weightings to deploy

8. Define model for deploying

We begin with (Step 1) collecting feature data for all classes. In this example, we

expand the number of classes to three and simultaneously the number of measured

features to three. A physical interpretation of these features is not given here, but a

very simple example would be that the features are the mean values of the red, green,

and blue channels of an image. The data for Classes A, B, and C are given in

Tables 1.21, 1.22, and 1.23.
Table 1.21 Measured feature values for the 10 training samples for Class A

Class A measured feature values

Item Feature1 Feature2 Feature3

1 25.00 6.00 30.00

2 23.00 14.00 12.00

3 17.00 13.00 18.00

4 27.00 9.00 27.00

5 33.00 8.00 25.00

6 30.00 11.00 23.00

7 24.00 15.00 17.00

8 29.00 7.00 22.00

9 19.00 5.00 15.00

10 35.00 13.00 26.00

There are no missing or out-of-bound data, so no data imputation is required.

Table 1.22 Measured feature values for the 10 training samples for Class B

Class B measured feature values

Item Feature1 Feature2 Feature3

1 20.00 9.00 15.00

2 39.00 20.00 28.00

3 25.00 18.00 16.00

4 29.00 11.00 22.00

5 34.00 10.00 21.00

6 22.00 15.00 36.00

7 36.00 16.00 17.00

8 25.00 13.00 24.00

9 31.00 19.00 33.00

10 38.00 15.00 30.00

There are no missing or out-of-bound data, so no data imputation is required.



Table 1.23 Measured feature values for the 10 training samples for Class C

Class C measured feature values

Item Feature1 Feature2 Feature3

1 44.00 3.00 11.00

2 33.00 8.00 18.00

3 39.00 4.00 22.00

4 26.00 5.00 17.00

5 41.00 3.00 20.00

6 35.00 6.00 16.00

7 36.00 8.00 15.00

8 29.00 5.00 14.00

9 40.00 7.00 13.00

10 27.00 8.00 17.00

There are no missing or out-of-bound data, so no data imputation is required.

631.10 A platform for building a classifier from the ground up (general case)
As noted in Tables 1.21, 1.22, and 1.23, we have a complete data set for the admit-

tedly modest set of training samples. No imputation is required, and we have 10 sets

of three measurements for each of the three classes. If, for example, the classes were

images, then Class A might be a set of images from location A, Class B a set of

images from location B, and Class C a set of images from location C.

Next, we take the simplest equations containing two or more of the Features 1, 2,

and 3. These are the multiplication of two features, designated 1*2, 1*3, and 2*3, and
the ratio of three pairs of classes, designated 1/2, 1/3, and 2/3. There are other, more

complex, equations possible—for example, 1*2*3, 1*2/3, 1*3/2, and 2*3/1—but these

are generally only used if domain expertise input supports them, and the nine already

defined should suffice to hone in on three final features. A set of derived features for

Classes A, B, and C are shown in Tables 1.24, 1.25, and 1.26, respectively.
Table 1.24 Derived features 1*2, 1*3, 2*3, 1/2, 1/3, and 2/3 for the original
Features 1, 2, and 3 for Class A presented in Table 1.21

Class A derived feature values (computed from measured feature values)

Item
Product
1*2

Product
1*3

Product
2*3

Ratio
1/2

Ratio
1/3

Ratio
2/3

1 150.00 750.00 180.00 4.17 0.83 0.20

2 322.00 276.00 168.00 1.64 1.92 1.17

3 221.00 306.00 234.00 1.31 0.94 0.72

4 243.00 729.00 243.00 3.00 1.00 0.33

5 264.00 825.00 200.00 4.13 1.32 0.32

6 330.00 690.00 253.00 2.73 1.30 0.48

7 360.00 408.00 255.00 1.60 1.41 0.88

8 203.00 638.00 154.00 4.14 1.32 0.32

9 95.00 285.00 75.00 3.80 1.27 0.33

10 455.00 910.00 338.00 2.69 1.35 0.50



Table 1.25 Derived Features 1*2, 1*3, 2*3, 1/2, 1/3, and 2/3 for the original
Features 1, 2, and 3 for Class B presented in Table 1.22

Class B derived feature values (computed from measured feature values)

Item
Product
1*2

Product
1*3

Product
2*3

Ratio
1/2

Ratio
1/3

Ratio
2/3

1 180.00 300.00 135.00 2.22 1.33 0.60

2 780.00 1092.00 560.00 1.95 1.39 0.71

3 450.00 400.00 288.00 1.39 1.56 1.13

4 319.00 638.00 242.00 2.64 1.32 0.50

5 340.00 714.00 210.00 3.40 1.62 0.48

6 330.00 792.00 540.00 1.47 0.61 0.42

7 576.00 612.00 272.00 2.25 2.12 0.94

8 325.00 600.00 312.00 1.92 1.04 0.54

9 589.00 1023.00 627.00 1.63 0.94 0.58

10 570.00 1140.00 450.00 2.53 1.27 0.50

Table 1.26 Derived Features 1*2, 1*3, 2*3, 1/2, 1/3, and 2/3 for the original
Features 1, 2, and 3 for Class C presented in Table 1.23

Class C derived feature values (computed from measured feature values)

Item
Product
1*2

Product
1*3

Product
2*3

Ratio
1/2

Ratio
1/3

Ratio
2/3

1 132.00 484.00 33.00 14.67 4.00 0.27

2 264.00 594.00 144.00 4.13 1.83 0.44

3 156.00 858.00 88.00 9.75 1.77 0.18

4 130.00 442.00 85.00 5.20 1.53 0.29

5 123.00 820.00 60.00 13.67 2.05 0.15

6 210.00 560.00 96.00 5.83 2.19 0.38

7 288.00 540.00 120.00 4.50 2.40 0.53

8 145.00 406.00 70.00 5.80 2.07 0.36

9 280.00 520.00 91.00 5.71 3.08 0.54

10 216.00 459.00 136.00 3.38 1.59 0.47
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In Step 2 of the training and validation phase, we compute all of the μ and σ values
for the features. These values are provided in Table 1.27.

For Step 3, we order the populations by their means. These are indicated in the

parentheses in Table 1.28. In general, Class C has the highest values, followed by

Classes A and B.

From the ranked order of the means, we define pairs of classes to compute CPt
values. One example “data model,” for Feature2, is shown in Fig. 1.20. This figure



Table 1.27 The μ and σ values for the three measured and six derived features of Classes A, B, and C

Item Feature1 Feature2 Feature3
Product
1*2

Product
1*3

Product
2*3

Ratio
1/2

Ratio
1/3

Ratio
2/3

Class A

μ 26.2 10.1 21.5 264 582 210 2.92 1.28 0.53

σ 5.8 3.6 5.8 106 240 72 1.12 0.30 0.31

Class B

μ 29.9 14.6 24.2 446 731 364 2.14 1.32 0.64

σ 6.8 3.8 7.3 180 283 168 0.61 0.41 0.23

Class C

μ 35 5.7 16.3 194 568 92 7.26 2.25 0.36

σ 6.2 2.0 3.3 66 154 34 4.02 0.76 0.14



Table 1.28 Classes ranked by mean, with the rank of their means in parentheses

Item Feature1 Feature2 Feature3
Product
1*2

Product
1*3

Product
2*3

Ratio
1/2

Ratio
1/3

Ratio
2/3

Class A

μ 26.2 (1) 10.1 (2) 21.5 (2) 264 (2) 582 (2) 210 (2) 2.92 (2) 1.28 (1) 0.53 (2)

σ 5.8 3.6 5.8 106 240 72 1.12 0.30 0.31

Class B

μ 29.9 (2) 14.6 (3) 24.2 (3) 446 (3) 731 (3) 364 (3) 2.14 (1) 1.32 (2) 0.64 (3)

σ 6.8 3.8 7.3 180 283 168 0.61 0.41 0.23

Class C

μ 35 (3) 5.7(1) 16.3 (1) 194 (1) 568 (1) 92 (1) 7.26 (3) 2.25 (3) 0.36 (1)

σ 6.2 2.0 3.3 66 154 34 4.02 0.76 0.14

Class C has the highest values, followed by Classes A and B, for both Features 2 and 3. For Feature1, Class A is the highest and Class C the lowest. This
means that critical points between Classes A and C will not be computed for Feature1. Critical points between Classes B and C will not be computed for
Features 2 and 3.



FIG. 1.20

Datamodel for Feature2, showing the standard deviations (�2.0 for Class C,�3.6 for Class A,

and �3.8 for Class B) in the shorter horizontal bars above or below the longer axis and

showing themeans along the axis: 5.7 for Class C, 10.1 for Class A, and 14.6 for Class B. From

this, we can see that two CPt values will be computed, one between Classes C and A and the

other between Classes A and B.

671.10 A platform for building a classifier from the ground up (general case)
shows the standard deviations (which are �2.0 for Class C, �3.6 for Class A, and

�3.8 for Class B) in the shorter horizontal bars above or below the longer horizontal

bar representing the feature axis. Fig. 1.20 also shows the means along the axis: 5.7

for Class C, 10.1 for Class A, and 14.6 for Class B. From this, we can see that twoCPt
values will be computed, one between Classes C and A and the other between Classes

A and B.

As such, for Step 4, we compute the critical points. The critical points are an equal

multiple of standard deviations away from the means of their two defining classes, in

the specific standard deviation of each class. There are, in this model, N�1 critical

points, where N¼number of classes. The 18 CPt values, two for each feature, are

given in columns 3 and 6 of Table 1.29.

In Table 1.29, we can see that there is a third critical point that is between the

means of the classes in columns 2 and 8, which could be computed if desired. How-

ever, this critical point is not generally used for assessing which features to employ in

the classification model. The critical point generally has the least valuable input, the

exception being where the mean of one of the classes is relatively much farther from

the means of the other two classes than those two are from each other. Nevertheless,

it does constitute a “variation” on the classification model provided here and can be

considered when the classes are not evenly spaced in their means.

A key metric of interest is the sum of nSTD-CPts in columns 4 and 7 of

Table 1.29. Summing these two columns, the set of values in order from top to bot-

tom is {0.686, 1.394, 0.777, 1.043, 0.321, 1.755, 1.295, 0.865, 0.582}, with Features

2*3, 2, and 1/2 being the three largest values in order. This is {7, 2, 6, 4, 9, 1, 3, 5, 8}
in rank order (e.g., the sixth position, Feature2*3, with a sum of 1.752, has rank order

1 since it is the highest sum) and will be compared with the p-values of the tests,

which are described next.

In Step 5, we compute all p-values for t-tests. These are compiled in Table 1.30.

Note the p-values for the T-scores given in columns 3 and 6. If we choose p<0.05 as

an indicator of statistically significant differences, we see that 11 of the 20 compar-

isons are statistically significant. If we compared columns 2 and 8, we’d have another

9 of 10 comparisons that are statistically significant (this is another piece of evidence

for why we don’t need to compute a critical point between the highest and lowest



Table 1.29 Critical points (CPts) for the three measured features and the six derived features of the example

Feature μ�σ (Class) CPt1 nSTD-CPt1 μ�σ (Class) CPt2 nSTD-CPt2 μ�σ (Class)

1 26.2�5.8 (A) 27.9 0.294 29.9�6.8 (B) 32.6 0.392 35.0�6.2 (C)

2 5.7�2.0 (C) 7.3 0.786 10.1�3.6 (A) 12.3 0.608 14.6�3.8 (B)

3 16.3�3.3 (C) 18.2 0.571 21.5�5.8 (A) 22.7 0.206 24.2�7.3 (B)

1*2 194�66 (C) 221 0.407 264�106 (A) 331 0.636 446�180 (B)

1*3 568�154 (C) 573 0.036 582�240 (A) 650 0.285 731�283 (B)

2*3 92�34 (C) 130 1.113 210�72 (A) 256 0.642 364�168 (B)

1/2 2.14�0.61 (B) 2.42 0.451 2.92�1.12 (A) 3.87 0.844 7.26�4.02 (C)

1/3 1.27�0.30 (A) 1.29 0.070 1.32�0.41 (B) 1.65 0.795 2.25�0.76 (C)

2/3 0.36�0.14 (C) 0.41 0.378 0.53�0.31 (A) 0.59 0.204 0.64�0.23 (B)

There are two critical points for each feature. The third critical point, between the means of the classes in columns 2 and 8, is not generally used for assessing which
features to employ in the classification model.



Table 1.30 Statistical p-values for the t-tests comparing populations on either side of the 18 critical points reported in
Table 1.29

Feature μ�σ (Class) p(t) nSTD-CPt1 μ�σ (Class) p(t) nSTD-CPt2 μ�σ (Class)

1 26.2�5.8 (A) 0.103 0.294 29.9�6.8 (B) 0.048 0.392 35.0�6.2 (C)

2 5.7�2.0 (C) 0.002 0.786 10.1�3.6 (A) 0.007 0.608 14.6�3.8 (B)

3 16.3�3.3 (C) 0.012 0.571 21.5�5.8 (A) 0.187 0.206 24.2�7.3 (B)

1*2 194�66 (C) 0.046 0.407 264�106 (A) 0.007 0.636 446�180 (B)

1*3 568�154 (C) 0.442 0.036 582�240 (A) 0.110 0.285 731�283 (B)

2*3 92�34 (C) 0.000 1.113 210�72 (A) 0.008 0.642 364�168 (B)

1/2 2.14�0.61 (B) 0.035 0.451 2.92�1.12 (A) 0.002 0.844 7.26�4.02 (C)

1/3 1.27�0.30 (A) 0.380 0.070 1.32�0.41 (B) 0.002 0.795 2.25�0.76 (C)

2/3 0.36�0.14 (C) 0.070 0.378 0.53�0.31 (A) 0.190 0.204 0.64�0.23 (B)

Column 3 represents p-values for t-test comparing columns 2 and 5, while column 6 represents p-values for t-test comparing columns 5 and 8. t-Tests comparing
columns 2 and 8 are not needed for the classifier model, but are statistically significant (p<0.05) for all but Feature1*3.



Table 1.31 In this table, the sum of nSTD-CPt values {0.686,
1.394, 0.777, 1.043, 0.321, 1.755, 1.295, 0.865, 0.582}
shows that Features 2*3, 2, and 1/2 have themaximum values,
indicating these are the three best features for classification

Feature nSTD-CPt1+nSTD-CPt2 p(t-score1)+p(t-score2)

1 0.686 0.151

2 1.394 0.009

3 0.777 0.199

1*2 1.043 0.053

1*3 0.321 0.552

2*3 1.755 0.008

1/2 1.295 0.037

1/3 0.865 0.382

2/3 0.582 0.260

The sum of p(t-score) values {0.151, 0.009, 0.199, 0.053, 0.552, 0.008, 0.037,
0.382, 0.260} also shows that Features 2*3, 2, and 1/2 have the minimum values,
indicating these are the three best features for classification.
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mean populations). The sum of the two t-tests is, from top to bottom, {0.151, 0.009,

0.199, 0.053, 0.552, 0.008, 0.037, 0.382, 0.260}, which gives a rank order of {5, 2, 6,

4, 9, 1, 3, 8, 7}, similar to those for sum of nSTD-CPts (and exactly the same for ranks

1, 2, 3, and 4).

In Step 6, we compute and compare the t-tests and the nSTD-CPt. Discussed
above, these are tabulated in Table 1.31.

In Step 7, the weightings to deploy are selected. We only measured three features

(1–3), and deriving the other six. As such, we will keep only three of the measured

and derived features. Both nSTD-CPt and p-value of t-test indicated keeping Fea-

tures 2, 2*3, and 1/2. Nicely, these three incorporate Features 1, 2, and 3, so that none
are left out. Feature2 is represented in all of them.

There are several ways of selecting the relative weights for the surviving features,

involving nSTD-CPt, the p-value of t-tests, or even other methods (e.g., F-score for
classes as clusters). We choose the relatively simple sum of squares of the nSTD-CPt
values, shown in Table 1.32. The last column normalizes the weights to sum to 1.0.
Table 1.32 Features selected and their relative weights as determined by the
sum of squares of the nSTD-CPt values, normalized to sum to 1.0

Feature
nSTD-
CPt1

nSTD-
CPt2

(nSTD-
CPt1)

2+(nSTD-
CPt2)

2
nSTD�CPt1ð Þ2 + nSTD�CPt2ð Þ2P
nSTD�CPt1ð Þ2 + nSTD�CPt2ð Þ2ð Þ

2 0.786 0.608 0.987 0.987/3.554¼0.278

2*3 1.113 0.642 1.651 1.651/3.554¼0.464

1/2 0.451 0.844 0.916 0.916/3.554¼0.258



Table 1.33 Model for deployment (features and weights, in columns 1 and 2)

Feature Weight Coefficient of variance {Classes A, B, C}

2 0.278 {0.351, 0.356, 0.260}

2*3 0.464 {0.370, 0.343, 0.462}

1/2 0.258 {0.285, 0.384, 0.554}

The third column gives the coefficient of variance (ratio of standard deviation to mean) for each selected
feature by class.

711.10 A platform for building a classifier from the ground up (general case)
In Step 8, the model is defined for deploying. Based on the training data, the

model for deployment is capture succinctly in Table 1.33. The measured feature

is used with weight 0.278, and the two derived Features 2*3 and 1/2 are used with

weights 0.464 and 0.258, respectively. Note that for the purposes of this particular

classification process, we used the results from the training set for the validation step,

also. We could have chosen to keep aside a portion of the original data set to deter-

mine the weights of Features 2, 2*3, and 1/2, after using the (different) training data
to determine which features to keep. However, given the problem at hand, we would

just as likely have merely combined the training and validation data, anyway, to

obtain a better estimate of weight on as much of the labeled (ground truth, training,

and validation) data as possible. This is one of the advantages of this classification

approach—training and validation data can be combined since the two processes are

related to each other. Regardless, we now have our features and their weights and can

now use this for testing and deployment in the field.
1.10.2 Testing and deployment
For testing and deployment, we also have an eight-step process. These eight steps are

given here and described in detail in this section:

1. Compute all μ and σ values.

2. Ensure test data have not drifted.

3. Compute z-value for each sample’s features.

4. Compute f(z) for each sample’s features.

5. Weight the f(z) by feature weights.

6. Sum the weighted feature f(z) values for each class.

7. Assign the class based on max sum.

8. Testing and proofing: feedback test results.

For Step 1, we compute all of the μ and σ values here for the model testing data.

These data are 10 new samples for each of the three classes, which we did not

use for training. Note that in the binary classifier example (Section 1.9), we per-

formed the so-called testing on the same samples used for training, which is both

overfitting and statistically irrelevant. However, “testing on training” data do give

a nice upper limit of accuracy for which to aim. The data sets for the test data are

shown in Tables 1.34, 1.35, and 1.36 for Classes A, B, and C, respectively.



Table 1.34 Measured feature values for the 10 test samples for Class A

Class A measured feature values

Item Feature1 Feature2 Feature3

1 19.00 8.00 13.00

2 25.00 5.00 27.00

3 22.00 14.00 28.00

4 16.00 11.00 21.00

5 34.00 10.00 25.00

6 18.00 9.00 17.00

7 31.00 13.00 18.00

8 24.00 12.00 19.00

9 29.00 6.00 13.00

10 30.00 15.00 22.00

There are no missing or out-of-bound data, so no data imputation is required.

Table 1.35 Measured feature values for the 10 test samples for Class B

Class B measured feature values

Item Feature1 Feature2 Feature3

1 24.00 21.00 14.00

2 34.00 8.00 19.00

3 39.00 20.00 28.00

4 21.00 15.00 22.00

5 41.00 16.00 18.00

6 36.00 14.00 33.00

7 34.00 12.00 29.00

8 35.00 18.00 24.00

9 24.00 10.00 17.00

10 29.00 19.00 29.00

There are no missing or out-of-bound data, so no data imputation is required.
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Next, the derived features are computed for all of the test samples. These are com-

puted as above for the training data and are tabulated in Tables 1.37, 1.38, and 1.39.

Computing the mean and standard deviation of each feature for the data for each

class is next. These values are compiled in Table 1.40.

Step 2 of the deployment and testing phase is to ensure that the test data have not

drifted. Here, we use t-tests for comparing the combined training+validation data

with the test data. The t-test values computed for comparing these sets are given

in Table 1.41.



Table 1.36 Measured feature values for the 10 test samples for Class C

Class C measured feature values

Item Feature1 Feature2 Feature3

1 29.00 5.00 15.00

2 46.00 6.00 16.00

3 34.00 7.00 12.00

4 33.00 6.00 16.00

5 39.00 4.00 17.00

6 31.00 5.00 10.00

7 28.00 6.00 23.00

8 26.00 8.00 17.00

9 41.00 9.00 20.00

10 43.00 4.00 19.00

There are no missing or out-of-bound data, so no data imputation is required.

Table 1.37 Derived Features 1*2, 1*3, 2*3, 1/2, 1/3, and 2/3 for the original
Features 1, 2, and 3 for Class A presented in Table 1.34

Class A derived feature values (computed from measured feature values)

Item
Product
1*2

Product
1*3

Product
2*3

Ratio
1/2

Ratio
1/3

Ratio
2/3

1 152.00 247.00 104.00 2.38 1.46 0.62

2 125.00 675.00 135.00 5.00 0.93 0.19

3 308.00 616.00 392.00 1.57 0.79 0.50

4 176.00 336.00 231.00 1.45 0.76 0.52

5 340.00 850.00 250.00 3.40 1.36 0.40

6 162.00 306.00 153.00 2.00 1.06 0.53

7 403.00 558.00 234.00 2.38 1.72 0.72

8 288.00 456.00 228.00 2.00 1.26 0.63

9 174.00 377.00 78.00 4.83 2.23 0.46

10 450.00 660.00 330.00 2.00 1.36 0.68

731.10 A platform for building a classifier from the ground up (general case)
Interestingly, in Table 1.41, every statistical p-value is≫0.200. For two-tailed t-
tests, setting alpha¼0.20 and df¼18, we need a t-value of 1.330 to declare a statis-

tically significant difference even with this paltry 80% confidence that it is real. We

are fairly confident, therefore, that the training and testing samples are drawn

from the same, larger, population and they are not biased one way or the other

comparatively. In Table 1.42, the calculations for the nSTDs apart, given by

nσCPt¼jμ2�μ1 j/(σ1+σ2), are shown for comparison with the p-values of Table 1.41.



Table 1.38 Derived Features 1*2, 1*3, 2*3, 1/2, 1/3, and 2/3 for the original
Features 1, 2, and 3 for Class B presented in Table 1.35

Class B derived feature values (computed from measured feature values)

Item
Product
1*2

Product
1*3

Product
2*3

Ratio
1/2

Ratio
1/3

Ratio
2/3

1 504.00 336.00 294.00 1.14 1.71 1.50

2 272.00 646.00 152.00 4.25 1.79 0.42

3 780.00 1092.00 560.00 1.95 1.39 0.71

4 315.00 462.00 330.00 1.40 0.95 0.68

5 656.00 738.00 288.00 2.56 2.28 0.89

6 504.00 1188.00 462.00 2.57 1.09 0.42

7 408.00 986.00 348.00 2.83 1.17 0.41

8 630.00 840.00 432.00 1.94 1.46 0.75

9 240.00 408.00 170.00 2.40 1.41 0.59

10 551.00 841.00 551.00 1.53 1.00 0.66

Table 1.39 Derived Features 1*2, 1*3, 2*3, 1/2, 1/3, and 2/3 for the original
Features 1, 2, and 3 for Class C presented in Table 1.36

Class C derived feature values (computed from measured feature values)

Item
Product
1*2

Product
1*3

Product
2*3

Ratio
1/2

Ratio
1/3

Ratio
2/3

1 145.00 435.00 75.00 5.80 1.93 0.33

2 276.00 736.00 96.00 7.67 2.88 0.38

3 238.00 408.00 84.00 4.86 2.83 0.58

4 198.00 528.00 96.00 5.50 2.06 0.38

5 156.00 663.00 68.00 9.75 2.29 0.24

6 155.00 310.00 50.00 6.20 3.10 0.50

7 168.00 644.00 138.00 4.67 1.22 0.26

8 208.00 442.00 136.00 3.25 1.53 0.47

9 369.00 820.00 180.00 4.56 2.05 0.45

10 172.00 817.00 76.00 10.75 2.26 0.21
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In Table 1.42, the largest value of nSTD-CPt is only 0.170. For a normal distri-

bution, this means that 57% of the distribution is to one side of the critical point and

43% of the distribution is to the other side of the critical point. Thus, in no case is

there even a 4:3 ratio of guessing correctly whether a sample came from the training

or testing class based solely on a single feature. As for Table 1.41, then, Table 1.42

provides strong support for the training and test sets having been drawn from the

same larger population.



Table 1.40 The mean (μ) and standard deviation (σ) values for the three measured and six derived features of Classes A, B,
and C, test data sets

Item Feature1 Feature2 Feature3
Product
1*2

Product
1*3

Product
2*3

Ratio
1/2

Ratio
1/3

Ratio
2/3

Class A

μ 24.8 10.3 20.3 258 508 214 2.70 1.29 0.53

σ 6.1 3.3 5.3 115 195 99 1.28 0.45 0.16

Class B

μ 31.7 15.3 23.3 486 754 359 2.26 1.43 0.70

σ 6.8 4.3 6.3 177 291 142 0.90 0.41 0.32

Class C

μ 35 6 16.5 208 580 100 6.30 2.22 0.38

σ 6.9 1.6 3.7 70 181 40 2.39 0.60 0.12



Table 1.41 Statistical t-tests comparing the training and test data as compiled
in Tables 1.27 and 1.40

Feature 1 2 3 1*2 1*3 2*3 1/2 1/3 2/3

Class A 0.53 0.13 0.48 0.12 0.76 0.10 0.41 0.06 0.00

Class B 0.59 0.39 0.30 0.50 0.18 0.07 0.35 0.60 0.48

Class C 0.00 0.37 0.13 0.46 0.16 0.48 0.65 0.10 0.34

In spite of 27 t-tests being performed, none are even “borderline” statistically significant (p>0.20 for all
comparisons). Note that every t-value here is ≪1.330, which the minimum t-value for confidence
p¼0.200 (two-tailed). Thus, there is no statistically significant difference between two populations. We
are fairly confident, then, that the training and testing samples are drawn from the same, larger,
population.

Table 1.42 Number of standard deviations apart from the critical point, nSTD-
CPt, for the training and test data as compiled in Tables 1.27 and 1.40

Feature 1 2 3 1*2 1*3 2*3 1/2 1/3 2/3

Class A 0.118 0.029 0.108 0.027 0.170 0.023 0.092 0.013 0.000

Class B 0.132 0.086 0.066 0.112 0.040 0.016 0.080 0.134 0.109

Class C 0.000 0.083 0.029 0.103 0.036 0.108 0.150 0.022 0.077

In spite of 27 t-tests being performed, the largest number of standard deviations apart for any
comparison is 0.170, a value at which a critical point only separates 43% of the distribution from 57% of
the distribution.
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In Step 3, the task is to compute the z-value for each sample’s features. This is the

first real break from the procedures used on the training set, and so, it requires some

additional attention. In order for the classification approach to be scalable, univer-

sally applicable, and easy to use, we perform the classification by computing a com-

parative measurement for the following:

1. Each sample

2. Each feature employed for each sample

3. Each possible class

By this, we mean that every test sample is treated as if we don’t know which class it

came from (an absolute necessity for deployment, since we really don’t know what

class each sample belongs to in the deployment of the system). For each of the

remaining features (recall that we reduced the set of measured and derived features

back to the same number as the measured features in the model defining the end of

the training and validation process), we compute a z-distance to (the mean of) each of

the possible classes to which we can assign the data. In our example, this means that

we compute a zA, zB, and zC, defined by Eqs. (1.40), (1.41), and (1.42):

zA ¼ S�μAj j
σA= ffiffiffiffi

nA
p ¼ S�μAj j ffiffiffiffiffi

nA
p

σA
(1.40)
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zB ¼ S�μBj j
σB= ffiffiffiffi

nB
p ¼ S�μBj j ffiffiffiffiffi

nB
p

σB
(1.41)

zC ¼ S�μCj j
σC= ffiffiffiffi

nC
p ¼ S�μCj j ffiffiffiffiffi

nC
p

σC
(1.42)

where zA is the z-value of the distance from the sample value, S, and the mean of the

feature for Class A training data. Similarly, zB is the z-value of the distance from the

sample value, S, and the mean of the feature for Class B training, and zC is the z-value
of the distance from the sample value, S, and the mean of the feature for Class C

training data. This set of z-values for the new test samples is given in Table 1.43

(for test samples that are actually from Class A), Table 1.44 (for test samples that

are actually from Class B), and Table 1.45 (for test samples that are actually from

Class C).

The z-scores computed are used as input for the next step, but that does not mean

that the z-score is the only reasonable metric to use as input. There are other “inde-

pendent” and “dependent” scores that can be used in place of the z-score. By inde-

pendence, we mean measurements that are computed independently for each class.

The z-score measurements are independent of each other, since zA does not consider
anything in common with zB or zC in its calculation (except of course the single sam-

ple S). Other independent scores include the simple distance (L1) or squared distance
(L2) between S and the means of (training) Classes A, B, and C. These distances

appear less satisfactory than z-scores, since they do not account for the standard devi-
ation; however, if the classes are expected/assumed to have the same variance, then

the L2 distance should work rather well. Other independent measurements can take

into account any non-Gaussian behavior in the distribution of the classes, and so

replace the variance with the area under the (empirical or modeled) distribution

curve. Dependent scores, on the other hand, depend on the other measurements

for their calculations. This is different than simple normalization; for example, divid-

ing the z-scores by the sum of all the z-scores so that they sum to 1.0 does not make

them dependent. A dependent score will often be a conditional score and thus involve

a conditional (e.g., if/else if/else) expression. One example is setting one of the z-
score values to a maximum value if it exceeds it or to a minimum value if it is below

it. This is useful if and only if multiple features are being used, and the features have

widely different weights. In our example, the weights are 0.294, 0.433, and 0.273, so

this may have limited benefit. However, if the weights were widely different—say,

0.6, 0.3, and 0.1—then we may wish to “limit the bias” that a single feature can do by

restricting the z-score to a given range such as [0.1, 3.0]. Another example of a

dependent score is adjusting the z-score for one class based on the z-score of another
class. This can be done when two features are highly correlated, and we wish to

penalize large distances between their z-scores.
In Step 4, we create a function of the z-score (or a suitable replacement for the z-

score, as just described), designated here as f(z). This is computed by feature, and so,



Table 1.43 Distances from themeans of Classes A, B, and C in terms of z-score for samples that actually came from the Class
A test set

Feature Feature2 z-values Feature2*3 z-values Feature1/2 z-values

Sample zA zB zC zA zB zC zA zB zC

1 1.845 5.492 3.637 4.656 4.894 1.116 1.525 1.244 3.839

2 4.480 7.989 1.107 3.294 4.310 3.999 5.873 14.826 1.778

3 3.426 0.499 13.123 7.994 0.527 27.902 3.812 2.955 4.476

4 0.791 2.996 8.380 0.922 2.503 12.928 4.150 3.577 4.570

5 0.088 3.828 6.799 1.757 2.146 14.695 1.355 6.532 3.036

6 0.966 4.660 5.218 2.503 3.972 5.673 2.598 0.726 4.138

7 2.547 1.331 11.542 1.054 2.447 13.207 1.525 1.244 3.839

8 1.669 2.164 9.961 0.791 2.560 12.649 2.598 0.726 4.138

9 3.601 7.157 0.474 5.798 5.383 1.302 5.393 13.945 1.912

10 4.304 0.333 14.705 5.270 0.640 22.136 2.598 0.726 4.138

The zA, zB, and zC values are defined by Eqs. (1.40), (1.41), and (1.42), and here, μA, μB, and μC are themeans of the training data (see Table 1.27). If the classification
is proceeding accurately, then the values for zA should be lower than the values for zB and zC.



Table 1.44 Distances from themeans of Classes A, B, and C in terms of z-score for samples that actually came from the Class
B test set

Feature Feature2 z-values Feature2*3 z-values Feature1/2 z-values

Sample zA zB zC zA zB zC zA zB zC

1 9.575 5.326 24.191 3.689 1.318 18.788 5.026 5.184 4.814

2 1.845 5.492 3.637 2.547 3.990 5.580 3.755 10.938 2.368

3 8.696 4.494 22.610 15.372 3.689 43.528 2.739 0.985 4.177

4 4.304 0.333 14.705 5.270 0.640 22.136 4.292 3.836 4.610

5 5.183 1.165 16.286 3.426 1.431 18.230 1.016 2.177 3.697

6 3.426 0.499 13.123 11.068 1.845 34.413 0.988 2.229 3.689

7 1.669 2.164 9.961 6.061 0.301 23.810 0.254 3.577 3.485

8 6.939 2.829 19.448 9.750 1.280 31.623 2.767 1.037 4.185

9 0.088 3.828 6.799 1.757 3.652 7.255 1.468 1.348 3.823

10 7.818 3.662 21.029 14.977 3.520 42.691 3.935 3.162 4.507

The zA, zB, and zC values are defined by Eqs. (1.40), (1.41), and (1.42), and here, μA, μB, and μC are themeans of the training data (see Table 1.27). If the classification
is proceeding accurately, then the values for zB should be lower than the values for zA and zC.



Table 1.45 Distances from themeans of Classes A, B, and C in terms of z-score for samples that actually came from the Class
C test set

Feature Feature2 z-values Feature2*3 z-values Feature1/2 z-values

Sample zA zB zC zA zB zC zA zB zC

1 4.480 7.989 1.107 5.929 5.440 1.581 8.132 18.974 1.148

2 3.601 7.157 0.474 5.007 5.045 0.372 13.411 28.668 0.323

3 2.723 6.325 2.055 5.534 5.270 0.744 5.478 14.101 1.888

4 3.601 7.157 0.474 5.007 5.045 0.372 7.285 17.418 1.384

5 5.358 8.821 2.688 6.237 5.572 2.232 19.284 39.451 1.959

6 4.480 7.989 1.107 7.027 5.910 3.906 9.261 21.047 0.834

7 3.601 7.157 0.474 3.162 4.254 4.278 4.941 13.116 2.037

8 1.845 5.492 3.637 3.250 4.292 4.092 0.932 5.754 3.154

9 0.966 4.660 5.218 1.318 3.463 8.185 4.630 12.545 2.124

10 5.358 8.821 2.688 5.885 5.421 1.488 22.108 44.635 2.745

The zA, zB, and zC values are defined by Eqs. (1.40), (1.41), and (1.42), and here, μA, μB, and μC are themeans of the training data (see Table 1.27). If the classification
is proceeding accurately, then the values for zC should be lower than the values for zA and zB.
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we first explain how f(z) was selected. First, since we chose z-score as the computed

metric to factor into this function, it is important to realize that z-score is linear in the
distance from the means of each class. This means that a function in z will be in the

order of the distance from the means to each class. Since Gaussian curves have den-

sity that is infinitely differentiable, with “supersmoothness” of order 2, we are

encouraged to model f(z) with order 2. Because the z-score grows the farther the sam-

ple gets from the mean, we need an inverse function. So, the simplest order 2 inverse

function is f(z)¼1/z2, which we choose to employ here. The values of f(z) for the test
data of Classes A, B, and C are given in Tables 1.46, 1.47, and 1.48, respectively.

Next, we normalize the values of f(z) to sum to 1.0 for every sample and for each

of the features for every sample. This means f(zA)+ f(zB)+ f(zC)¼1.0 for every feature.

These values are tabulated in Tables 1.49, 1.50, and 1.51 for test samples originating

from Classes A, B, and C, respectively.

In Step 5, we weight the f(z) values by the feature weights as derived in

Table 1.32. The feature weights are {0.278, 0.464, 0.258} for Features 2, 2*3,
and 1/2, respectively. After this weighting, then, f(zA)+ f(zB)+ f(zC)¼0.278 for

Feature2, f(zA)+ f(zB)+ f(zC)¼0.464 for Feature2*3, and f(zA)+ f(zB)+ f(zC)¼0.258

for Feature1/2. These values are shown in Tables 1.52, 1.53, and 1.54, for Classes

A, B, and C, respectively.

In Step 6, we sum the weighted feature f(z) values for each class. From

Tables 1.52, 1.53, and 1.54, we compare the following sums:

Sumweight Að Þ¼ f zAð ÞFeature2 + f zAð ÞFeature2*3 + f zAð ÞFeature1=2

Sumweight Bð Þ¼ f zBð ÞFeature2 + f zBð ÞFeature2*3 + f zBð ÞFeature1=2

Sumweight Cð Þ¼ f zCð ÞFeature2 + f zCð ÞFeature2*3 + f zCð ÞFeature1=2
For Step 7, the maximum value of (1.), (2.), and (3.) is used to select the class assign-

ment for the test data. The sums and the classification results for test samples from

Classes A, B, and C are tabulated in Tables 1.55, 1.56, and 1.57.

The final step in the testing process is in tabulating the results and feeding back

the test results. The confusion matrix for the test results is provided in Table 1.58.

From the data in Table 1.58, the sum of the diagonals (21) divided by the total

number of samples (30) yields the overall accuracy, which is 70%. The recall is com-

puted from the rows and is 50% for Class A, 80% for Class B, and 80% for Class C.

Precision is computed from the columns and is 56% for Class A, 80% for Class B,

and 73% for Class C. Thus, these data indicate that Class A overlaps the other two

classes rather pronouncedly and that Classes B and C have very little overlap. The

lack of confusion between Classes B and C is emphasized in Table 1.59, where the

confusion matrix is the normalized sum of weighted feature f(z) values from sum-

ming Tables 1.55, 1.56, and 1.57 and dividing by 10. In Table 1.59, the off-diagonal

confusion values for Classes B and C are only 0.065 and 0.069. These are less than a



Table 1.46 Values of f(z)¼1/z2, calculated for the z-scores of Table 1.43 (Class A)

Feature Feature2 f(z) values Feature2*3 f(z) values Feature1/2 f(z) values

Sample f(zA) f(zB) f(zC) f(zA) f(zB) f(zC) f(zA) f(zB) f(zC)

1 0.294 0.033 0.076 0.046 0.042 0.803 0.430 0.646 0.068

2 0.050 0.016 0.816 0.092 0.054 0.063 0.029 0.005 0.316

3 0.085 4.016 0.006 0.016 3.601 0.001 0.069 0.115 0.050

4 1.598 0.111 0.014 1.176 0.160 0.006 0.058 0.078 0.048

5 129.132 0.068 0.022 0.324 0.217 0.005 0.545 0.023 0.108

6 1.072 0.046 0.037 0.160 0.063 0.031 0.148 1.897 0.058

7 0.154 0.564 0.008 0.900 0.167 0.006 0.430 0.646 0.068

8 0.359 0.214 0.010 1.598 0.153 0.006 0.148 1.897 0.058

9 0.077 0.020 4.451 0.030 0.035 0.590 0.034 0.005 0.274

10 0.054 9.018 0.005 0.036 2.441 0.002 0.148 1.897 0.058



Table 1.47 Values of f(z)¼1/z2, calculated for the z-scores of Table 1.44 (Class B)

Feature Feature2 f(z) values Feature2*3 f(z) values Feature1/2 f(z) values

Sample f(zA) f(zB) f(zC) f(zA) f(zB) f(zC) f(zA) f(zB) f(zC)

1 0.011 0.035 0.002 0.073 0.576 0.003 0.040 0.037 0.043

2 0.294 0.033 0.076 0.154 0.063 0.032 0.071 0.008 0.178

3 0.013 0.050 0.002 0.004 0.073 0.001 0.133 1.031 0.057

4 0.054 9.025 0.005 0.036 2.442 0.002 0.054 0.068 0.047

5 0.037 0.737 0.004 0.085 0.489 0.003 0.968 0.211 0.073

6 0.085 4.011 0.006 0.008 0.294 0.001 1.024 0.201 0.073

7 0.359 0.214 0.010 0.027 11.025 0.002 15.486 0.078 0.082

8 0.021 0.125 0.003 0.011 0.610 0.001 0.131 0.930 0.057

9 129.6 0.068 0.022 0.324 0.075 0.019 0.464 0.550 0.068

10 0.016 0.075 0.002 0.004 0.081 0.001 0.065 0.100 0.049



Table 1.48 Values of f(z)¼1/z2, calculated for the z-scores of Table 1.45 (Class C)

Feature Feature2 f(z) values Feature2*3 f(z) values Feature1/2 f(z) values

Sample f(zA) f(zB) f(zC) f(zA) f(zB) f(zC) f(zA) f(zB) f(zC)

1 0.050 0.016 0.816 0.028 0.034 0.400 0.015 0.003 0.758

2 0.077 0.020 4.444 0.040 0.039 7.225 0.006 0.001 9.614

3 0.135 0.025 0.237 0.033 0.036 1.806 0.033 0.005 0.281

4 0.077 0.020 4.444 0.040 0.039 7.225 0.019 0.003 0.522

5 0.035 0.013 0.138 0.026 0.032 0.201 0.003 0.001 0.261

6 0.050 0.016 0.816 0.020 0.029 0.066 0.012 0.002 1.438

7 0.077 0.020 4.444 0.100 0.055 0.055 0.041 0.006 0.241

8 0.294 0.033 0.076 0.095 0.054 0.060 1.152 0.030 0.100

9 1.071 0.046 0.037 0.576 0.083 0.015 0.047 0.006 0.222

10 0.035 0.013 0.138 0.029 0.034 0.452 0.002 0.001 0.133



Table 1.49 Normalized f(z) values for test samples for Class A as presented in Table 1.46

Feature Feature2 normalized f(z) values Feature2*3 normalized f(z) values Feature1/2 normalized f(z) values

Sample
Weight
(A)

Weight
(B)

Weight
(C)

Weight
(A)

Weight
(B)

Weight
(C)

Weight
(A)

Weight
(B)

Weight
(C)

1 0.730 0.082 0.188 0.052 0.047 0.901 0.376 0.565 0.059

2 0.057 0.018 0.925 0.440 0.258 0.302 0.083 0.014 0.903

3 0.021 0.978 0.001 0.005 0.995 0.000 0.295 0.491 0.214

4 0.928 0.064 0.008 0.876 0.119 0.005 0.315 0.424 0.261

5 0.999 0.001 0.000 0.593 0.398 0.009 0.806 0.034 0.160

6 0.928 0.040 0.032 0.630 0.248 0.122 0.070 0.902 0.028

7 0.212 0.777 0.011 0.839 0.156 0.005 0.376 0.565 0.059

8 0.616 0.367 0.017 0.910 0.087 0.003 0.070 0.902 0.028

9 0.017 0.004 0.979 0.046 0.053 0.901 0.109 0.016 0.875

10 0.006 0.993 0.001 0.015 0.985 0.001 0.070 0.902 0.028

After normalization, f(zA)+ f(zB)+ f(zC)¼1.0 for every feature.



Table 1.50 Normalized f(z) values for test samples for Class B as presented in Table 1.47

Feature Feature2 normalized f(z) values Feature2*3 normalized f(z) values Feature1/2 normalized f(z) values

Sample
Weight
(A)

Weight
(B)

Weight
(C)

Weight
(A)

Weight
(B)

Weight
(C)

Weight
(A)

Weight
(B)

Weight
(C)

1 0.229 0.729 0.042 0.112 0.883 0.005 0.333 0.308 0.358

2 0.730 0.082 0.189 0.618 0.253 0.129 0.276 0.031 0.693

3 0.200 0.769 0.031 0.051 0.936 0.013 0.109 0.844 0.047

4 0.006 0.994 0.001 0.015 0.985 0.001 0.320 0.402 0.278

5 0.048 0.947 0.005 0.147 0.847 0.005 0.773 0.169 0.058

6 0.021 0.978 0.001 0.026 0.970 0.003 0.789 0.155 0.056

7 0.616 0.367 0.017 0.002 0.997 0.000 0.990 0.005 0.005

8 0.141 0.839 0.020 0.018 0.981 0.002 0.117 0.832 0.051

9 0.998 0.001 0.000 0.775 0.179 0.045 0.429 0.508 0.063

10 0.172 0.806 0.022 0.047 0.942 0.012 0.304 0.467 0.229

After normalization, f(zA)+ f(zB)+ f(zC)¼1.0 for every feature.



Table 1.51 Normalized f(z) values for test samples for Class C as presented in Table 1.47

Feature Feature2 normalized f(z) values Feature2*3 normalized f(z) values Feature1/2 normalized f(z) values

Sample
Weight
(A)

Weight
(B)

Weight
(C)

Weight
(A)

Weight
(B)

Weight
(C)

Weight
(A)

Weight
(B)

Weight
(C)

1 0.057 0.018 0.925 0.061 0.074 0.866 0.019 0.004 0.977

2 0.017 0.004 0.979 0.005 0.005 0.989 0.001 0.000 0.999

3 0.340 0.063 0.597 0.018 0.019 0.963 0.103 0.016 0.881

4 0.017 0.004 0.979 0.005 0.005 0.989 0.035 0.006 0.960

5 0.188 0.070 0.742 0.100 0.124 0.776 0.011 0.004 0.985

6 0.057 0.018 0.925 0.174 0.252 0.574 0.008 0.001 0.990

7 0.017 0.004 0.979 0.476 0.262 0.262 0.142 0.021 0.837

8 0.730 0.082 0.189 0.455 0.258 0.287 0.899 0.023 0.078

9 0.928 0.040 0.032 0.855 0.123 0.022 0.171 0.022 0.807

10 0.188 0.070 0.742 0.056 0.066 0.878 0.015 0.007 0.978

After normalization, f(zA)+ f(zB)+ f(zC)¼1.0 for every feature.



Table 1.52 Normalized f(z) values multiplied by the feature weights

Feature Feature2 (total weight50.278) Feature2*3 (total weight50.464) Feature1/2 (total weight50.258)

Sample
Weight
(A)

Weight
(B)

Weight
(C)

Weight
(A)

Weight
(B)

Weight
(C)

Weight
(A)

Weight
(B)

Weight
(C)

1 0.202 0.023 0.053 0.024 0.021 0.419 0.098 0.145 0.015

2 0.016 0.005 0.257 0.204 0.120 0.140 0.022 0.004 0.232

3 0.006 0.272 0.000 0.002 0.462 0.000 0.076 0.127 0.055

4 0.258 0.018 0.002 0.406 0.056 0.002 0.081 0.110 0.067

5 0.278 0.000 0.000 0.276 0.184 0.004 0.208 0.009 0.041

6 0.258 0.011 0.009 0.293 0.114 0.057 0.018 0.232 0.008

7 0.059 0.216 0.003 0.389 0.073 0.002 0.098 0.145 0.015

8 0.171 0.102 0.005 0.422 0.041 0.001 0.018 0.232 0.008

9 0.005 0.001 0.272 0.021 0.024 0.419 0.029 0.004 0.225

10 0.002 0.276 0.000 0.006 0.458 0.000 0.018 0.232 0.008

After this weighting, f(zA)+ f(zB)+ f(zC)¼0.278 for Feature2, f(zA)+ f(zB)+ f(zC)¼0.464 for Feature2*3, and f(zA)+ f(zB)+ f(zC)¼0.258 for Feature1/2. This table includes
feature weight multiplied values from Table 1.49, for test data samples from Class A.



Table 1.53 Normalized f(z) values multiplied by the feature weights

Feature Feature2 (total weight50.278) Feature2*3 (total weight50.464) Feature1 /2 (total weight50.258)

Sample
Weight
(A)

Weight
(B)

Weight
(C)

Weight
(A)

Weight
(B)

Weight
(C)

Weight
(A)

Weight
(B)

Weight
(C)

1 0.063 0.204 0.011 0.051 0.411 0.002 0.086 0.079 0.093

2 0.203 0.023 0.052 0.287 0.117 0.060 0.071 0.008 0.179

3 0.056 0.213 0.009 0.023 0.435 0.006 0.028 0.218 0.012

4 0.002 0.276 0.000 0.006 0.458 0.000 0.082 0.105 0.071

5 0.013 0.263 0.002 0.069 0.393 0.002 0.198 0.044 0.016

6 0.006 0.272 0.000 0.012 0.451 0.001 0.206 0.038 0.014

7 0.171 0.102 0.005 0.001 0.463 0.000 0.256 0.001 0.001

8 0.038 0.234 0.006 0.008 0.455 0.001 0.030 0.217 0.011

9 0.278 0.000 0.000 0.359 0.084 0.021 0.111 0.131 0.016

10 0.048 0.224 0.006 0.021 0.438 0.005 0.078 0.121 0.059

After this weighting, f(zA)+ f(zB)+ f(zC)¼0.278 for Feature2, f(zA)+ f(zB)+ f(zC)¼0.464 for Feature2*3, and f(zA)+ f(zB)+ f(zC)¼0.258 for Feature1/2. This table includes
feature weight multiplied values from Table 1.50, for test data samples from Class B.



Table 1.54 Normalized f(z) values multiplied by the feature weights

Feature Feature2 (total weight50.278) Feature2*3 (total weight50.464) Feature1/2 (total weight50.258)

Sample
Weight
(A)

Weight
(B)

Weight
(C)

Weight
(A)

Weight
(B)

Weight
(C)

Weight
(A)

Weight
(B)

Weight
(C)

1 0.016 0.005 0.257 0.028 0.034 0.402 0.005 0.001 0.252

2 0.005 0.001 0.272 0.002 0.002 0.460 0.000 0.000 0.258

3 0.095 0.018 0.165 0.009 0.009 0.446 0.026 0.004 0.228

4 0.005 0.001 0.272 0.002 0.002 0.460 0.009 0.002 0.247

5 0.052 0.020 0.206 0.046 0.057 0.361 0.003 0.001 0.254

6 0.016 0.005 0.257 0.080 0.117 0.267 0.002 0.000 0.256

7 0.005 0.001 0.272 0.222 0.121 0.121 0.036 0.006 0.216

8 0.203 0.023 0.052 0.211 0.120 0.133 0.232 0.006 0.020

9 0.259 0.011 0.008 0.396 0.058 0.010 0.044 0.006 0.208

10 0.052 0.020 0.206 0.025 0.031 0.408 0.005 0.001 0.252

After this weighting, f(zA)+ f(zB)+ f(zC)¼0.278 for Feature2, f(zA)+ f(zB)+ f(zC)¼0.464 for Feature2*3, and f(zA)+ f(zB)+ f(zC)¼0.258 for Feature1/2. This table includes
feature weight multiplied values from Table 1.51, for test data samples from Class C.



Table 1.55 Sum of weights (from Table 1.52) for the assignment of test
samples belonging to Class A for each of the possible classes: Classes A, B,
and C

Sample

Sum
weight
(A)

Sum
weight
(B)

Sum
weight
(C) Classification Result

1 0.324 0.189 0.487 C INCORRECT

2 0.242 0.129 0.629 C INCORRECT

3 0.084 0.861 0.055 B INCORRECT

4 0.745 0.184 0.071 A CORRECT

5 0.762 0.193 0.045 A CORRECT

6 0.569 0.357 0.074 A CORRECT

7 0.546 0.434 0.020 A CORRECT

8 0.611 0.375 0.014 A CORRECT

9 0.055 0.029 0.916 C INCORRECT

10 0.026 0.966 0.008 B INCORRECT

The classification (column 5) is given to the class belonging to the maximum summed weight.
The result (CORRECT or INCORRECT) is given in column 6. The accuracy is 50%, which is above
the “random guessing” value of 33.3%.

Table 1.56 Sum of weights (from Table 1.53) for the assignment of test
samples belonging to Class B for each of the possible classes: Classes A, B,
and C

Sample

Sum
weight
(A)

Sum
weight
(B)

Sum
weight
(C) Classification Result

1 0.200 0.694 0.106 B CORRECT

2 0.561 0.148 0.291 A INCORRECT

3 0.107 0.866 0.027 B CORRECT

4 0.090 0.839 0.071 B CORRECT

5 0.280 0.700 0.020 B CORRECT

6 0.224 0.761 0.015 B CORRECT

7 0.428 0.566 0.006 B CORRECT

8 0.076 0.906 0.108 B CORRECT

9 0.748 0.215 0.037 A INCORRECT

10 0.147 0.783 0.070 B CORRECT

The classification (column 5) is given to the class belonging to the maximum summed weight. The result
(CORRECT or INCORRECT) is given in column 6. The accuracy is 80%, well above the “random
guessing” value of 33.3%.

911.10 A platform for building a classifier from the ground up (general case)
third of the confusion between Classes A and C and less than a fourth of the confu-

sion between Classes A and B.

As part of the analytic assessment, we then compare the testing and training accu-

racy across the three selected features. The confusion matrix results for the training



Table 1.57 Sum of weights (from Table 1.54) for the assignment of test
samples belonging to Class C for each of the possible classes: Classes A, B,
and C

Sample

Sum
weight
(A)

Sum
weight
(B)

Sum
weight
(C) Classification Result

1 0.049 0.040 0.911 C CORRECT

2 0.007 0.003 0.990 C CORRECT

3 0.130 0.031 0.839 C CORRECT

4 0.016 0.005 0.979 C CORRECT

5 0.101 0.078 0.821 C CORRECT

6 0.098 0.122 0.780 C CORRECT

7 0.263 0.128 0.609 C CORRECT

8 0.646 0.149 0.205 A INCORRECT

9 0.699 0.075 0.226 A INCORRECT

10 0.082 0.052 0.866 C CORRECT

The classification (column 5) is given to the class belonging to the maximum summed weight. The result
(CORRECT or INCORRECT) is given in column 6. The accuracy is 80%, well above the “random
guessing” value of 33.3%.

Table 1.58 Confusion matrix for the test results of this example

Normalized confusion matrix

Classifier output (computed
classification) prediction

A B C

True class of the samples (input) A 5 2 3

B 2 8 0

C 2 0 8

Recall is determined from the rows and precision from the columns. Class A has 50% recall, and Classes
B and C have 80% recall. Class A has 56% precision, Class B has 80% precision, and Class C has 73%
precision.

Table 1.59 Confusion matrix for the test results of this example, where instead
of using the binary classification results, we are summing the weighted feature
f(z) values from Tables 1.55, 1.56, and 1.57 and normalizing (just dividing
by 10)

Normalized confusion matrix

Classifier output (computed
classification) prediction

A B C

True class of the samples (input) A 0.396 0.372 0.232

B 0.286 0.648 0.075

C 0.209 0.068 0.723

Recall is determined from the rows and precision from the columns. Class A has 40% recall, Class B has
65% recall, and Class C has 72% recall. Class A has 44% precision, Class B has 60% precision, and
Class C has 70% precision.



Table 1.60 Confusion matrix for Feature2 only, training data

Normalized confusion matrix

Classifier output (computed
classification) prediction

A B C

True class of the samples (input) A 3 4 3

B 3 7 0

C 3 0 7

Based on the diagonals, the accuracy is 57%.

Table 1.61 Confusion matrix for Feature2 only, testing data

Normalized confusion matrix

Classifier output (computed
classification) prediction

A B C

True class of the samples (input) A 5 3 2

B 3 7 0

C 2 0 8

Based on the diagonals, the accuracy is 67%.

Table 1.62 Confusion matrix for Feature2*3 only, training data

Normalized confusion matrix

Classifier output (computed
classification) prediction

A B C

True class of the samples (input) A 8 1 1

B 3 7 0

C 2 0 8

Based on the diagonals, the accuracy is 77%.

931.10 A platform for building a classifier from the ground up (general case)
data (which is of course overfitting) and the testing data are shown for Feature2 in

Tables 1.60 and 1.61, respectively. The accuracy on the training data is 57%, and on

the testing data, it is 67%. This is an interesting result, as usually, the training data

would outperform the testing data since the model is built from the training data.

The confusion matrix results for the training data (reported here just for compar-

ative purposes) and the testing data are shown for Feature2*3 in Tables 1.62 and

1.63, respectively. The accuracy on the training data is 77%, and on the testing data,

it is 70%. This result is consistent with expectations, with the training data outper-

forming the testing data.

Finally, the confusion matrix results for the training data (reported here just for

comparative purposes) and the testing data are shown for Feature1/2 in Tables 1.64

and 1.65, respectively. The accuracy on the training data is 67%, and on the testing



Table 1.63 Confusion matrix for Feature2*3 only, testing data

Normalized confusion matrix

Classifier output (computed
classification) prediction

A B C

True class of the samples (input) A 6 2 2

B 2 8 0

C 3 0 7

Based on the diagonals, the accuracy is 70%.

Table 1.64 Confusion matrix for Feature1/2 only, training data

Normalized confusion matrix

Classifier output (computed
classification) prediction

A B C

True class of the samples (input) A 4 3 3

B 3 7 0

C 1 0 9

Based on the diagonals, the accuracy is 67%.

Table 1.65 Confusion matrix for Feature1/2 only, testing data

Normalized confusion matrix

Classifier output (computed
classification) prediction

A B C

True class of the samples (input) A 1 7 2

B 3 5 2

C 1 0 9

Based on the diagonals, the accuracy is 50%.
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data, it is 50%. This result is consistent with expectations, with the training data out-

performing the testing data.

With the data in Table 1.65, we see quite a change in the confusion matrix in

comparison with any of the three “training” sets (Tables 1.60, 1.62, and 1.64) and

the other two testing sets (Tables 1.61 and 1.63). This confusion matrix is very noisy,

and for Class A, the recall is only 10%, and the precision is only 20%. Also, there are

two “Class C for Class B” confusions, two more than in the other five confusion

matrices combined. The mean accuracy of the three training sets is 67%

(Table 1.66), and the mean accuracy of the testing sets is 62% (Table 1.67).

The overall classifier, using the three features together, had an accuracy of 70%,

which outperformed the mean for the three features separately for both the testing



Table 1.66 Summed confusion matrix for all three features used separately,
training data

Normalized confusion matrix

Classifier output (computed
classification) prediction

A B C

True class of the samples (input) A 15 8 7

B 9 21 0

C 6 0 24

The overall accuracy is the sum of the diagonals (60) divided by the sum of all matrix elements (90), or
67%.

Table 1.67 Summed confusion matrix for all three features used separately,
testing data

Normalized confusion matrix

Classifier output (computed
classification) prediction

A B C

True class of the samples (input) A 12 12 6

B 8 20 2

C 6 0 24

The overall accuracy is the sum of the diagonals (56) divided by the sum of all matrix elements (90), or
62%.

951.10 A platform for building a classifier from the ground up (general case)
and the training data. Outperforming the training data is unexpected but is definitely

a feature of the model.
1.10.3 Comparing training and testing data set results
In the past section, we performed quick checking on each feature to determine if (a)

the features performed better on the training than the testing data, (b) the set of fea-

tures performed better than the mean performance of the features individually, and

(c) the testing data performed better than the mean accuracy of the training features.

Indeed, for (a), the mean accuracy of the features on the training data was 67%, com-

pared with 62% on the testing data. This should be the case, since the size of the

training data set was small and the training and testing data weren’t cross validated.

Also, the fact that the three features provided higher accuracy than any individual

feature is encouraging. This is in spite of the fact that one (derived) feature provided

much better accuracy than the other two surviving features and support the choice of

the same number of features as are measured. The combination of three features
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applied to the testing data outperforming the individual features applied to the train-

ing data exemplifies the utility of the multifeature approach.

Overall, then, it is clear from Section 1.10 that there is a tremendous benefit from

separating out training and testing. This benefit increases when the size of the testing

set grows larger. Some of the principles learned in this section will be used to drive

the overall meta-analytic approaches in the rest of the book: using multiple analytic

techniques together generally provides more robust, more generalizable, and more

accuracy analytic output.
1.11 Summary
This chapter provided a wide and occasionally deep overview of the field of analyt-

ics. Informatics and statistics were covered, as well as in particular the normalization

of features, sample and population tests, and regression and estimation. One goal

with estimation was to compare uncertainty in the independent and dependent vari-

ables, which is directly related to sensitivity analysis. The concept of residual

entropy was introduced and applied to model definition sensitivity as model residual

sensitivity. Next, k-means and k-nearest neighbor clustering are considered in

enough detail to introduce the reader to these important processes for converting

unstructured data into structured data. The addition of regularization approaches

to clustering to “optimize” the clustering will be considered in a later chapter

(Chapter 10). The counterintuitive concept of unclustering is introduced as a possible

step in optimizing the cluster over time.

A four-state Markov model was introduced as a way of introducing how overall

system optimization can be garnered from the behavior of individual states and their

transitions. Machine learning approaches distinct from the more biologically

inspired artificial intelligence (AI) approaches were overviewed. In particular, the

concept of entropy was elaborated as a means of assessing how far in the path to

optimal system design and/or behavior the system architect has proceeded. Support

vector machines (SVMs) and the kernel were then described, and the salient elements

of probability theory—specifically the Bayesian approaches—were reviewed.

Dimensionality reduction was shown to be useful for assessing the order or complex-

ity of a system (usually tied to information gain). Optimization was introduced, tied

to search in this case, and the broader data mining and knowledge discovery

approaches were at least superficially covered (more on them in later chapters).

Recognition was covered in greater depth because, like classification and clus-

tering, it is an integrative analytic involving several types of algorithmic approaches.

The example of image processing outlined important recognition approaches such as

binarization, segmentation, key-point detection, classification, and the consideration

of training data—all processes applicable to virtually any form of recognition. This

latter point was supported by a brief consideration of 1D and 3D recognition in addi-

tion to the 2D image recognition. Next, the three main forms of ensemble learning

(bagging, boosting, and stacking) were introduced, and a novel ensemble method, the



971.11 Summary
spatial-continuity hybrid, was described. The artificial intelligence (AI) approaches

covered in this chapter were genetic algorithms (GAs), artificial neural networks

(ANNs), and immunologic approaches. For the GA discussion, only the simplest

evolutionary approaches were covered, but the basics of populations, mutations,

crossovers, and inversions were discussed in depth. For ANNs, multilayer percep-

trons were used to illustrate the concepts of nodes, gains, back-propagation, and

thresholding at each consecutive layer. Finally, for the immunology-inspired

approaches, many potential research areas were identified.

The chapter concluded with an exhaustive coverage of a simple but very adapt-

able classifier approach. The degenerate binary case was covered first. Then, the gen-

eral case was described, in which training and testing, weighting samples based on

distances from all class populations, and the derivation of features from measured

features are considered.

A wide array of introductory analytics books is available that can augment the

content in this chapter [Negn04, Sewe08]. This chapter introduces, however, addi-

tional analytic approaches—which will be elaborated in the chapters to come—over

that of existing publications on analytics, including the following:

(1) Design patterns and approaches for combining a multiplicity of analytic

approaches

(2) Application to a wide range of fields

(3) Pragmatically, statistics-, and heuristic-driven evaluation approaches (such as

for the ground-up classifier in Section 1.10)

Taken together, these approaches are intended to provide the means for all practi-

tioners of data analytics—from the student to novice and from young engineer to

system veteran—to build better systems. This chapter outlines some of the most

important technologies used in intelligent systems. As can be seen from this material,

this book is aimed at allowing one with a moderate understanding of statistics, cal-

culus, logic, linear systems, and design patterns to be able to architect and deploy

more intelligent systems than even the best individual intelligent algorithm designer

can achieve—by using such a superior algorithm as the starting point, not the end

point. This meta-architect must understand both the relative advantages and disad-

vantages and both the flexibility and the limitations of each of the component sys-

tems. The meta-architect need not understand these individual technologies well

enough to improve them as they are; rather, she must understand how to make them

more valuable within a larger system involving two or more intelligent components.

Let us now consider the types of systems that will require these new system-based

analysis skills. Let us move, then, from this lengthy introduction on analytics to

the meta.
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CHAPTER
Ground truthing
 2

Meta-Analytics. ht

# 2019 Steven Sim
Stories are the common ground that allow people to connect, despite all our

defences and all our differences

Kate Forsyth (2014)

Truth is truth to the end of reckoning

William Shakespeare (1604)
2.1 Introduction
One of the key purposes of meta-analytics, at the algorithmic level, is to compare and

contrast two or more approaches. The common ground of multiple approaches to ana-

lytics is, of course, the story the data would tell if we had perfect insight into the

data’s purpose, creation, sources of error, and future uses. The differences between

the analytic approaches, in fact, help explore the data’s story more fully, allowing us

to more fully reckon the ground truth. Sometimes, reckoning is pruning from the

ground truth; other times, reckoning is amplifying or “boosting” some of the ground

truth. Such reckoning of ground truth is the subject of this chapter.

At the system level, however, a key purpose is to compare and contrast two or

more frameworks for approach. The latter consideration is the concern of this chap-

ter, and this is not a small item of discussion. While flexibility at the algorithm level

is essential for machine learning and scalability, it is flexibility at the system (or,

roughly equivalently, at the architectural, design, and structural) level that affords

systems to be retroactively optimized for cost, robustness/adaptability, accuracy,

parallelism, etc. This assumes a perspective in which the algorithmic design is used

to allow the current settings to be optimized, whereas the system design is used to

allow the future settings to be optimized.

I make a further argument here, which one need not agree with to appreciate the

content of this chapter (though it wouldn’t hurt). Consider security and privacy:

experts in these important technological areas share the mantra that “security and

privacy measures must be built into the original design.” It is well known (and

reported by respected authorities such as the Institute of Electrical and Electronics

Engineers (IEEE)) that the costs of security breaches are several orders of magnitude

more than the costs of building security into the design in the first place. Now, con-

sider meta-analytics. Analogous to security, I argue that the costs of trying to add

meta-analytic approaches after the fact will also be much more difficult (and thus

expensive) than building them in by design. There are several reasons for this.
tps://doi.org/10.1016/B978-0-12-814623-1.00002-2
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Firstly, downstream uses of the meta-analytic output will already be in place, and

many of these systems will, for a variety of reasons (cost, availability of software

developers, product deadlines, market inertia, etc.), be relatively inflexible to

changes in the type and structure of data created. Creation of a standard would

add further intransigence. Secondly, algorithms and other machine learning proces-

sing—including how data are structured and pipelined—may be optimized for the

current set of analytic output. Thirdly, there is a tendency among algorithm and arti-

ficial/machine intelligence (A/MI) system designers, including me, to feel that they

have high sunk costs in the existing A/MI algorithms, software, and systems for

them. One could argue that this third consideration could be readily overcome with

a healthy change in attitude and that may well be the case. However, the first and

second concerns are likely to remain irrespective of attitude adjustment. Therefore,

providing a readily modifiable intelligent data structure—that is, the means to create

information from the current and future data sets—is one of the key roles for the

meta-analytic engineer. This is beyond analytics—it is analytics over time and scale.

Easier said than done, the approach outlined above requires upfront diligence,

intelligence, and convergence. In this chapter, I provide a set of patterns for

approaching “analytics around analytics,” which comprises three separate

considerations:

1. Prevalidation

2. Optimizing settings from training data

3. Learning how to learn

Each of these represents, in at least one way, a break with the traditional (training,

validation, and testing) approach to specific analytics-related workflows (clustering,

classification, etc.) and is meant to provide the same type of mixing of potential train-

ing data that meta-analytic approaches provide on the analysis end.
2.2 Pre-validation
An earlier version of this section was originally published and presented elsewhere

[Sims17]. Here, it is extended to consider the broader use of prevalidation and put in

content of degrees of freedom and other ensemble considerations.

In the world of analytics, the algorithms and intelligent systems employed are

usually rated based on the accuracy of their output on test data. However, suppose

you gave a history test to the world’s top mathematicians, and whoever performed

best on the Napoleonic Wars would be awarded the Fields Medal. Obviously, in this

case, the wrong set of testing data is being used. In the related world of big data, it is

not always this easy to discern what test data to use for validation—and which to

ignore. Using k-fold cross validation, for example, may introduce redundancy or cor-

relation within the data set, so that overtraining occurs. With large labeled data sets,

certain events may occur with low frequency, resulting in class imbalance. We can

address the former by keeping the training and validation sets separate from the test

set. We address the latter by pruning the training and test sets so that they are uniform
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in size. But, what if, even after these approaches, certain data have significantly dif-

ferent clustering and/or classification behavior from the rest of the data. Surely, some

amount of difference is acceptable. However, in some cases, the classes (irrespective

of their labels) are simply of too poor quality to use in the validation process, that is,

in relatively assessing which deployment classifier to employ [Mali11]. Alterna-

tively, some classes may have dominant effects on overall measures like variance

and entropy, and so, when ensemble methods (such as boosting) are used for clas-

sification, a small subset of classes will mislead the weak classifiers.

In such cases, an unbiased, automated, and efficient way of eliminating suspect

classes from the validation set (and reintroducing them, of course, in the training set)

is needed so that we can more reasonably assess the relative accuracies of the deploy-

ment classifier(s). This is particularly valuable when an ensemble of simple classi-

fiers is to be used: We use a (majority) subset of the training data for validation of the

deployment classifier before proceeding with training and testing; we employ vali-

dation➔training➔testing rather than the usual training➔validation➔testing. The

“prevalidation” does not affect training; it simply determines what ensemble of

simple classifiers will be used for the actual training.

For the example in this section, we focus on text classification based on the word

statistics in the documents to be classified. That is, for every document and for all the

documents in each class, we compute the term frequency (TF) for every word in the

document/class. Term frequency times inverse document frequency, or TF*IDF
[Salt88][Robe04], is commonly used in information retrieval and classification tasks

[Kwok90][Ramo03] [Karb06]. We previously introduced a total of 112 TF*IDF
methods for use as ensemble classifiers of text: 14 inverse document frequency

methods for each of 8 term document frequency methods. This provides 14

+8�2¼20 degrees of freedom in choosing the paired TF and IDF methods, which

is a better estimate for the number of independent TF*IDF measurements than 112

for this set. That is, of the 112 TF*IDF approaches, there are an equivalent of approx-
imately 20 independent approaches.

These TF*IDF measures were computed for a set of articles originally posted on

the CNN.com website, each of which were manually assigned to one of 12 classes.

Within each class, articles were assigned to two equally sized groups: one for training

and one for testing. To avoid class imbalance, we were able to have 98 files per class:

49 for the validation and training steps and 49 for testing. To build a measure, we

multiply one of the TF measures by one of the IDF equations, providing the afore-

mentioned ensemble of 112 simple classifiers.

A validation or training experiment consists of preprocessing each document and

creating a stream of tokens composed of individual words using the sharpNLP

[Code13] C# open-source project. The token stream is then converted into a bag

of words consisting of all nonstop words in each file. Stop words consist of common

words that add no value to the calculation (e.g., “the,” “of,” and “but”). Once the

TF*IDF measures are generated for each word in the file, a master list of words

for all the files in a given class is created. We create this master list by summing

all the TF*IDF values for each word and dividing this sum by the number of files

in which the word is found (normalization). This gives us a single TF*IDF measure

http://cnn.com
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for each word found in a class that we can then use for classifying articles from the

test set of document classes.

During testing, we first determine the TF*IDF measure values for all the words in

a document. We then compare them with the normalized values for that word in each

of the classes using the dot product of the TF*IDF value for the word in the test file

with that of the normalized TF*IDF value for the word in each training class. The

class that produces the highest dot product value sum with the file is then assigned

as the class for that document. This procedure is used for all the test files in each class

for each of the 112 TF*IDF measures.

A TF*IDF measure will classify a file or document set as one of the 12 CNN-

provided classes (business, health, justice, living, opinion, politics, showbiz, sport,

tech, travel, the United States, and world). The confusion matrix is constructed by

creating a two-dimensional matrix in which the rows represent the “true” or “actual”

class, while the columns represent the class assigned by the classification algorithm

described above. To determine the accuracy of the TF*IDF measure, we divide the

sum of values in the diagonal of the confusion matrix by the total number of files in

all test files for all classes:

Accuracy¼
X

a1,1…an,nð Þ� XnClasses
i¼1

nfiles

(2.1)

We then sort the TF*IDF measures by accuracy from highest to lowest accuracy and

set a minimum accuracy to identify a subset of the 112 TF*IDF measures that best

classify the files. We found that no single TF*IDF could classify all the documents

with high accuracy [Vans17]. We did achieve relatively high-accuracy “validation”

classifiers by combining the individual TF*IDF measures.

We defined a figure of merit metric to address the elimination of suspect or “out-

lier classes” during validation (i.e., before training). The CNN corpus [Lins12] con-

sists of news texts extracted from the CNNwebsite (www.cnn.com). This test corpus

consists of articles written by professional news writers in English, reporting on 12

general interest classes. The set we used consisted of 1176 documents assigned

equally to 12 classes (98 documents per class). The news articles obtained from

the CNN website were carefully chosen in order to contain only text; thus, news arti-

cles with figures, videos, tables, and other multimedia elements were discarded (such

articles may have unintentionally represented salient information in nontext form

only). Sentence segmentation was performed by the Stanford CoreNLP [Stan17].

Stop words [Silv03] were removed although this had little effect on classification

since TF*IDF methods were used. Word stemming [Frak92] converts each word into

its root form, removing its prefix and suffix. After this stage, the text is structured in

XML and included in the XML file that corresponds to the news article.

We used the 112 simple TF*IDF classifiers and weighted combinations of them

(a form of boosting) for the weak and ensemble classification [Vans16]. On the train-

ing data, the poorest-performing classes are consistently those of the classes travel,

http://www.cnn.com
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living, opinion, the United States, and tech, in that order. We next used the top

TF*IDF classifiers in weighted voting [Sims13]. The best classification results were

generally obtained with six TF*IDF weak classifiers in combination. We devised a

metric, the “figure of merit,” to automatically determine when to stop removing clas-

ses from the validation set, defined in Eq. (2.2):

Figure of merit¼%error reduction

%errorremaining=df
(2.2)

The numerator is the amount of overall error reduced by removing the most suspect

class. The denominator is the error remaining divided by the degrees of freedom (df)
of the number of classes being compared, which is the (number of classes)-1. The

denominator is the expected value of error reduction if all of the classes are equally

useful. So, if the figure of merit is greater than unity, there is reason to believe that the

current “suspect” class may be removed from the validation set (though of course

reintroduced for the subsequent training set). It is an outlier for validation only

(not for training).

Other novel, quantitative methods for providing sensitivity analysis on the con-

fusion matrix during validation were computed. Imbalance in the confusion matrix

during validation was determined using confusion matrix entropy [Sims13]:

e1 ¼
�
X
i

X
j

cij
cij + cji

� �
∗ ln

cij
cij + cji

� �� �

N N�1ð Þ and

e2 ¼
�
X
i

X
j

cji
cij + cji

� �
∗ ln

cji
cij + cji

� �� �

N N�1ð Þ and e¼ e1 + e2 (2.3)

Because many of the elements in the confusion matrix are 0 (i.e., the matrix is

sparsely populated), two new metrics to describe nonuniformity in the confusion

matrix were also introduced. These new metrics, taken together, should provide

as much rigor as confusion matrix entropy and have the additional advantage of

being appropriate for sparse matrices. The first metric is the Relative Absolute Trans-

position Difference (RATD), which is given by

RATD¼

XN
i¼1

XN
j¼i + 1

cij�cji
�� ��

XN
i¼1

XN
j¼1, j6¼i

cij

(2.4)

where Cij¼confusion matrix element at position (i,j). This value gives a meaningful

measure of how much variability is contained in erroneously assigning two classes

with respect to each other. Higher values for RATD imply greater imbalance in clas-

ses, referred to as “attractor” and “repeller” classes [Sims13]. The RATD is further

modified to have logarithmic behavior using
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RATD¼� ln

XN
i¼1

XN
j¼i + 1

cij�cji
�� ��

XN
i¼1

XN
j¼1, j6¼i

cij

0
BBBBB@

1
CCCCCA (2.5)

The second new metric helps describe the overall variability in the confusion matrix,

irrespective of the existence of attractor and/or repeller classes. The mean difference

of off-diagonal expected values of elements, or MDODEV, is given by

MDODEV¼

XN
i¼1

XN
j¼1, j6¼i

cij�μ
�� ��

XN
i¼1

XN
j¼1, j6¼i

cij

(2.6)

This value uses the confusion matrix expected value, μ:

μ¼

XN
i¼1

XN
j¼1, j6¼i

cij

N N�1ð Þ (2.7)

Validation and training, therefore, proceed as shown in Fig. 2.1. After training on

all 12 classes, testing was performed on the remaining 50% of the articles. The

accuracy of the best-performing individual TF*IDF was found to be 0.4473, while

the accuracy of the worst-performing individual TF*IDF was found to be 0.1650.

After this full-class-set training, we next performed training on 11, 10, 9, 8, and 7

classes after removing travel, living, opinion, the United States, and tech classes,

respectively and cumulatively. Removing these classes was used to further evalu-

ate the ground truth data (validation before training). The best and worst-

performing individual TF*IDF measures were, in each case, similar to those with

all 12 classes. Obviously, removing a class with poor accuracy should increase the

overall classification accuracy, but more importantly, we established that the figure

of merit is above unity for the removal of the first three suspect classes and then

drops well below unity (Table 2.1).

Table 2.2 presents the measurements of RATD and MDODEV. These measures

are much higher, as expected, for the confusion matrices corresponding to poor clas-

sification accuracy—the so-called (worst) examples. The higher values for RATD

confirm the higher variability in comparing transposed values for poor classifiers.

Similarly, the higher MDODEV values confirm the higher variability in confusion

matrix misassignment for poor classifiers. However, for the purposes of validation

before training, we are primarily concerned with how the elimination of the poor-

quality classes affects RATD and MDODEV for good classifiers. Thus, we wish

to mainly compare RATD and MDODEV for 12 (best) and 9 (best) classes. Here,

RATD decreases by 46.3%, and MDODEV decreases by 26.0%, indicating that

the removal of the classes results in more entropic intraclass behavior.



Table 2.1 Figure of merit for sequential removal of five most suspect classes

Classes removed Peak accuracy Figure of merit

None 0.655 N/A

Travel 0.688 1.06

Travel, living 0.727 1.29

Travel, living, opinion 0.773 1.62

Travel, living, opinion, the United States 0.791 0.60

Travel, living, opinion, the United States, tech 0.808 0.53

Obtain Original
Set of  Classes

Compute:

1. Figure of  Merit

2. Confusion Matrix Entropy

3. RATD

4. MDODEV

YES

PERFORM
TRAINING

DEPLOY CLASSIFIER

NO SELECT DEFAULT
CLASSIFIER

DETERMINE DEFAULT
CLASSIFIER ARCHITECTURE

Are
There Outlier

Classes?

DETERMINE CLASSIFIER
ARCHITECTURE
WITHOUT OUTLIER
CLASSES

FIG. 2.1

Diagram of the validation➔training➔testing approach as outlined in Section 2.3.

Table 2.2 RATD (Eq. 2.5) andMDODEV (Eq. 2.6) for the best and worst TF*IDF
classifiers with all 12 classes and the 9 classes remaining after pruning with the
figure of merit (Eq. 2.1)

Number of classes (best/worst) RATD (Eq. 2.5) MDODEV (Eq. 2.6)

12 (best) 1.0832 0.9819

12 (worst) 3.5579 1.6366

9 (best) 0.5814 0.7267

9 (worst) 3.2016 1.5569

1052.2 Pre-validation
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Training and validation were performed using all 12 classes or the “best” 9 clas-

ses. Each approach selected TF*IDF measures providing 100% accuracy on the 588

documents in the training set. For training on 12 classes, there were 10 such TF*IDF
measures, named TFIDF-12; for training on 9 classes, there were 19 such TF*IDF
measures, named TFIDF-9 (a superset of TFIDF-12).

Because of the 100% success on the training data, we achieved identical accuracy

improvement for both TFIDF-12 and TFIDF-9 on the test data, making any conclu-

sion on the utility of the validation➔training➔testing approach impossible on the

grounds of accuracy alone. However, both degrees of freedom and probability of

superset can be used to support the approach. Firstly, the minimum expected degrees

of freedom for the 112 TF*IDF measures are the number of IDF-1+the number of

TF-1, that is, 14�1+8�1¼20. This implies that the 19members of TFIDF-9 almost

certainly cover the TF*IDF space better than the 10 members of TFIDF-12. Sec-

ondly, the odds of TFIDF-9 being a superset of TFIDF-12 is given by the following

ratio of combinations (102!19!/9!112!):

p supersetð Þ¼ 102

9

� �
=

112

19

� �
¼ 1:767�10�14 (2.8)

With this very small probability of the extra nine TFIDF values in TFIDF-9

being chosen by chance over those in TFIDF-12, we may conclude that some

additional insight into optimizing the ensemble classifier has been gained by the

validation➔training➔testing approach.

The improved deployment accuracy justifies leaving out the three classes (living,

opinion, and travel) from the training set per the figure of merit, RATD, and MDO-

DEV. If we analyze the original confusionmatrix (data not shown), we find that these

three classes have a combined 6.1% accuracy, compared with the 57.6% accuracy for

the other nine classes. These three classes distribute their errors similarly to the dis-

tribution of errors of the other classes, that is, sending most of their errors to the clas-

ses with highest recall (the so-called attractor classes [Sims13])—business, justice,

showbiz, and world. The classes removed in the validation phase have both low recall

and (relatively) high precision, meaning they are “repeller” classes and so distribute

their error across other classes. Combined, these three classes had only three false-

positive assignments compared with 222 false-positive assignments for the other

nine classes: attracting false positives at 1/25 the rate of the other classes. These three

“outlier” classes therefore act as an independent set of ground truth from the other

nine classes. This means that subsequent evaluation of deployed ensemble classifiers

determines how well the classifiers handle two relatively independent ground truth

sets and not a continuum of ground truth. This may not preclude a deployment clas-

sifier from performing well on this more complex data set, but it does pose a different

“pattern” of classification challenge, which in itself is of value for determining

whether to use the methods shown herein. Table 2.2 provides another window on

the improved cohesiveness of the nine classes after removing the living, opinion,

and travel classes from the training set. The measurements of RATD and MDODEV

decrease by 46.3% and 26.0%, respectively, for the best initial classifier after reduc-

ing the number of classes. The values of RATD andMDODEV do not change for the
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worst of the initial classifiers after validation, which emphasizes the assertion that the

nine classes are a different type of class set from the 12 classes—not simply a reduc-

tion in the number of classes.

Training the deployment classifiers on a more cohesive ground truth set (nine

classes) constitutes a different ensemble configuration from training the deployment

classifiers on the original set of 12 classes. A different deployment classifier is

recommended for these two cases (i.e., an ensemble of 19 rather than 10 simple clas-

sifiers). It may be that the 12-class deployment classifier better handles discontinu-

ous data sets than they do continuous data sets. This may be disadvantageous when,

after deployment, the amount of data to be handled is generally much more extensive

than the training data and as such is likely to require a more robust classifier that can

handle largely overlapping classes. The “validation before training” approach and its

direct measurement through the figure of merit support what was observed for the

confusion matrix, RATD, andMDODEV.We believe we ended up with a differently

behaving 9-class training set than the original 12-class training set. Three suspect

classes were culled from the training set, and the figure of merit sharply increased

until the last of these was removed, after which it then sharply dropped below unity.

Discontinuities such as these are generally rare and outline a means of determining

when ground truth data contain discontinuities. Much remains to be established both

theoretically and empirically, but the data presented in this section support the

hypothesis that both validation-before-training classification accuracy and analytics

of the validation-before-training confusion matrix can be used to provide a set of

ground truthing data that may lead to enhanced ensemble classifier sets. Finally,

the approach can be viewed as a specialized form of dimensionality reduction of

the training set where the primary classes are pruned rather than using principal com-

ponent analysis (PCA) or related methods. In the previous work [Sims17], noisy

training data are removed from all labeled classes, rather than considering labeled

classes as units to be inappropriate for training purposes. Future work will focus

on comparing and contrasting these approaches.

This section proposes a new ordering for validation, training, and testing in

classification. The approach is not about optimizing the classification accuracy,

performance, or robustness per se; rather, it is about ensuring that the data used

to later optimize the classification are not misdirecting or even contradicting that

purpose. Therefore, it is about optimizing the architecture of the classifier to be

deployed. Suppose that a minority subset of classes used in the training data have

much higher variability than the majority remainder of the classes. These classes

may make it difficult to assess how well the later-evaluated deployment classifiers

will work on the other classes of data, but how do we decide which classes of

ground truth are likely better to remove than keep? We propose that the figure

of merit and the histogram, RATD, and MDODEV analytics give us a set of tools

for deciding how to optimize an ensemble classifier on a reduced set of ground

truth. Will this work on all data sets? That is unlikely, but it is likely to help in early

learning in many cases. This is valuable, since a tenet of this book is that a learning

algorithm is just the starting point. The real goal is a learning system, including its

architecture.
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2.3 Optimizing settings from training data
The use of validation➔training➔testing as an alternative to trai-

ning➔validation➔testing is in some ways analogous to the use of boosting

[Freu96][Scha99] as an ensemble method for classification. Boosting, in short, uses

a panoply of weak classifiers in combination to create a strong classifier. This is gen-

erally done through the weighting strategy. Originally [Freu96], different weights

were assigned to the training observations: those that were misclassified were

weighted more heavily in the next iteration. Alternatively, after each iteration, a

new classifier is added that focuses on the training observations that were incorrectly

assigned in the iteration.

Fig. 2.2 outlines a system approach to boosting, in which the boosting approach is

chosen as part of a predictive selection [Sims13] pattern. Predictive selection relies

on a training phase in which an attribute of the training observation, or “training

datum,” is used to select the configuration of the machine intelligence thereafter used

during deployment (or testing). The “prediction” is that one or more attributes of the

datum allow the “selection” of a more custom machine intelligence approach than

simply employing the same machine intelligence approach to all of the data. In clas-

sification, regression, and other machine learning processes, predictive selection is a

powerful pattern. This is due to the “separability” of attributes: For example, some

attributes are suited for assigning data to clusters, while others are more suitable for

classification. As such, one set of attributes can be used to configure how the remain-

ing attributes are used. For example, attributes A and B assign a training observation

TO1 to use attributes C, D, and E as input for classifier configuration CC3, while the

same attributes (with different values from those of TO1) assign a training observa-

tion TO1 to use attributes C, D, and E as input for classifier configuration CC7. For

the specific example of the boosting approach, the boosting approach category CC3

may boost the weights of misclassified training observations using a logistic func-

tion, while the boosting approach category CC7 may boost the weights of misclassi-

fied data using a staircase function (i.e., a step function with multiple thresholds).

This innate degree of variation is, of course, a powerful motivation for a validation

phase. However, it should be noted that the assignment of observations to boosting

approach categories is in effect a form of run-time validation, as noted in Fig. 2.2.

The original boosting approaches focused on dynamically altering the weights of

the training observations. In this way, the same ground truth data can be reused even

as the set of weak classifiers grows in size. Another approach is for the number of

weak classifiers to be relatively weighted based on their performance. In this

approach, the relative value of each weak classifier is dynamically assigned based

on one or more strategies. The number of weak classifiers can therefore be fixed

beforehand, and the strategies tested for suitability for run-time assignment to boost-

ing approach category (“strategy”). Here, the simplest strategy is for the weighting to

be proportional to the accuracy or inversely proportional to the error rate of the weak

classifier on training data. However, in some cases, the nature of the training



FIG. 2.2

Predictive selection as applied to boosting classification. The boosting approach can be based

on weighting the training observations, weighting the weak classifiers, weighting both of these,

and other methods.

1092.3 Optimizing settings from training data



110 CHAPTER 2 Ground truthing
(and later run-time) data is such that weighting according to the weak classifier’s

correlation—or noncorrelation—with the other weak classifiers may lead to better

overall outcomes. Thus, the optimal—or at least ostensibly optimal—weighting

strategy generally varies with the data set and/or domain of the data. Boosting the

more accurate weak classifiers does not always result in better overall system per-

formance than boosting the less accurate weak classifiers [Hast09]. This is not sur-

prising once one considers that consensus among weak classifiers, while surely

following the central limit theorem, does not mathematically have to provide

improved accuracy; rather, it may come down to secondary mathematical consider-

ations such as the nature of the distribution (relative amount of clustering, relative

size of the clusters, relative distribution of the clusters from small to large, etc.).

Next, examples are provided showing how the optimization of settings from

training data can be assessed for accuracy using different configurations but the same

set of weak classifiers. In order to illustrate the extension of the predictive selection

[Sims13] pattern to validation, a modest set of weak classifiers (here, three of them)

are assessed for their accuracy when applied to a three-class classification problem.

The confusion matrices for classifiers 1, 2, and 3 are given in Tables 2.3, 2.4, and 2.5.

The classification accuracies are 77.0%, 68.7%, and 76.3%, respectively.

Next, we consider three predictive selection approaches or “architectures.” For

Table 2.6, we consider the simplest predictive selection approach, that is, where there

is no actual selection, and we simply apply equal weighting to each of the weak clas-

sifiers. Our expected value is simply the average of the three classifiers. The
Table 2.3 Confusion matrix for the first classifier in the example

Actual
class

Assigned to Class
A

Assigned to Class
B

Assigned to Class
C

Class A 0.72 0.22 0.06

Class B 0.13 0.83 0.04

Class C 0.13 0.11 0.76

For this classifier, the misclassification, or “confusion,” is highest between Classes A and B
(mean¼17.5%) and much lower for Classes A and C (mean¼9.5%) and Classes B and C
(mean¼7.5%). For equal-sized classes, the overall accuracy is 0.770.

Table 2.4 Confusion matrix for the second classifier in the example

Actual
class

Assigned to Class
A

Assigned to Class
B

Assigned to Class
C

Class A 0.70 0.09 0.21

Class B 0.14 0.67 0.19

Class C 0.23 0.08 0.69

For this classifier, themisclassification, or “confusion,” is highest between Classes A andC (mean¼22%)
and much lower for Classes A and B (mean¼11.5%) and Classes B and C (mean¼13.5%). For equal-
sized classes, the overall accuracy is 0.687.



Table 2.5 Confusion matrix for the third classifier in the example

Actual
class

Assigned to Class
A

Assigned to Class
B

Assigned to Class
C

Class A 0.77 0.11 0.12

Class B 0.06 0.79 0.15

Class C 0.09 0.18 0.73

For this classifier, the misclassification, or “confusion,” is highest between Classes B and C
(mean¼16.5%) and much lower for Classes A and B (mean¼8.5%) and Classes A and C
(mean¼10.5%). For equal-sized classes, the overall accuracy is 0.763.

Table 2.6 Confusion matrix for the equal weighting of the three classifiers of
Tables 2.3, 2.4, and 2.5

Actual
class

Assigned to Class
A

Assigned to Class
B

Assigned to Class
C

Class A 0.73 0.14 0.13

Class B 0.11 0.763 0.127

Class C 0.15 0.123 0.727

This is simply the average of the confusion matrices for the three classifiers (linear addition). In most real-
world combinations of classifiers, there will be nonlinear behavior (even though the mean accuracy will
generally be the mean of the three classifiers). For equal-sized classes, the overall accuracy is 0.740.
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weighted average of the three weak classifiers is shown in Table 2.6. With real-world

data, there would be some deviation from the averages due to uncorrelated behavior

of the three weak classifiers, but in general, the overall accuracy would be the mean

of the three classifiers—that is, 74.0% accuracy—as obtained in Table 2.6.

Table 2.6 is an unsatisfying result, of course, as its accuracy is actually less than

that of two of the three weak classifiers. This means that the equally weighted com-

bination of several weak classifiers, the simplest “ensemble classifier,” is often itself

a weak classifier. The central limit theorem, of course, applies, so that even if the

overall accuracy does not improve, the correct answer is likely to have a higher rank

for this ensemble classifier than it does in the majority of the weak classifiers. This is

a very important system aspect of using multiple analytic approaches simulta-

neously, since the time to verify the correct answer is often substantially reduced

[Sims13]. However, for this section, we are more concerned with the accuracy,

and so, we continue with more advanced predictive selection patterns.

Table 2.7 presents the expected results for a “perfect” predictive selection archi-

tecture, in which only the single best weak classifier is used to distinguish between

each of the three binary classification pairs in the set, that is, between A and B, A and

C, and B and C. The perfection of this architecture lies in its ability to select the best

weak classifier for each pair from some attribute of the data, which is the same as

being able to eliminate one of the three classes from consideration with 100% accu-

racy. Thus, it is an upper-end limit of the overall accuracy for predictive selection



Table 2.7 Confusion matrix for the “perfect” ensemble classifier where
classifier 1 (Table 2.3) is chosen every time for comparing Classes A and C
and for comparing Classes B and C and 3 (Table 2.5) is chosen every time
for comparing Classes A and B. For equal-sized classes, the overall accuracy
is 0.83

Actual
class

Assigned to Class
A

Assigned to Class
B

Assigned to Class
C

Class A 0.83 0.11 0.06

Class B 0.06 0.90 0.04

Class C 0.13 0.11 0.76
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(ignoring for now emergence that is possible with extensive nonlinearity in the class

domains). In Table 2.7, the overall accuracy is 83.0%, which corresponds to an error

rate of 17.0%. This is an absolute reduction in error rate of 9.0% from the ensemble

classifier of Table 2.6 and an absolute reduction of 6.0% in error rate from that of the

best weak classifier (Table 2.3). The relative reduction in error rate is thus 34.6%,

from 9.0%/(9.0%+17.0%), when compared with Table 2.6, and 26.1%, from

6.0%/(6.0%+17.0%), when compared with the best weak classifier. These are quite

large reductions in error for most application domains. However, they are unrealistic,

since being able to eliminate one class from consideration with 100% accuracy is a

form of omniscience generally not possible.

A more realistic predictive selection situation is provided in Table 2.8. For this

architecture, our predictive insight is simply to eliminate one of the weak classifiers

from consideration for each of the binary classifications. This also is a form of

“omniscience” but based on the central limit theorem that is likely to be far more

robust than trying to find the single best weak classifier each time. The accuracy

on training data (Table 2.8) is reduced to 79.7%. This is an absolute reduction in error

rate of 5.7% from the ensemble classifier of Table 2.6 and an absolute reduction of

2.7% in error rate from that of the best weak classifier (Table 2.3). The relative reduc-

tion in error rate is thus 21.9% compared with Table 2.6 and 11.7% compared with

the best weak classifier, computed as in the previous paragraph.
Table 2.8 Confusion matrix for the more realistic ensemble classifier where
classifier 1 (Table 2.3) is left out from comparing Classes A and B, classifier 2
(Table 2.4) is left out from comparing Classes A and C, and classifier 3
(Table 2.5) is left out from comparing Classes B and C

Actual
class

Assigned to Class
A

Assigned to Class
B

Assigned to Class
C

Class A 0.81 0.10 0.09

Class B 0.10 0.785 0.115

Class C 0.11 0.095 0.795

For equal-sized classes, the overall accuracy is 0.797.
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As discussed earlier in this chapter, the performance on training data is not

enough to make the decision as to which architecture to deploy. A validation step

is required: in the case of having three predictive selection approaches, the validation

step consists of applying each approach to the “reserved” training data (or validation

data) and selecting the one with the highest accuracy. Tables of validation data for

Tables 2.6, 2.7, and 2.8 are shown in Tables 2.9, 2.10, and 2.11, respectively. These

illustrate nicely the differences in how well validation (and later testing/deployment)

does or does not follow the behavior of the training results.

Table 2.9 illustrates the averaging effect of combining the three classifiers (with

equal weighting). The off-diagonal entries in the confusion matrix have much less

variability than for the original data. However, the overall accuracy is not improved

over Table 2.6. In fact, accuracy is reduced from 74.0% to 72.7%. Generally, such

behavior is encouraging—if the accuracy of the validation set is as good as or better

than the training set, there is a strong possibility that the algorithm is overtrained.
Table 2.9 Validation results for the equal weighting of the three classifiers of
Tables 2.3, 2.4, and 2.5

Actual
class

Assigned to Class
A

Assigned to Class
B

Assigned to Class
C

Class A 0.71 0.15 0.14

Class B 0.12 0.75 0.13

Class C 0.14 0.14 0.72

For equal-sized classes, the overall accuracy is 0.727.

Table 2.10 Validation results for the “perfect” ensemble classifier of Table 2.7

Actual
class

Assigned to Class
A

Assigned to Class
B

Assigned to Class
C

Class A 0.78 0.13 0.09

Class B 0.10 0.82 0.08

Class C 0.15 0.16 0.69

Table 2.11 Validation results for the more realistic ensemble classifier of
Table 2.8

Actual
class

Assigned to Class
A

Assigned to Class
B

Assigned to Class
C

Class A 0.79 0.11 0.10

Class B 0.09 0.79 0.12

Class C 0.13 0.10 0.77

For equal-sized classes, the overall accuracy is 0.783.
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Table 2.10 shows the validation results for the “perfect” ensemble classifier. The

accuracy drops from 83.0% to 76.3%, which indicates a lack of overtraining. The

drop (6.7%) is greater than that in comparing Tables 2.6 and 2.9, consistent with

the increased sensitivity of the algorithm to changes in the data set. Since the “per-

fect” ensemble selects only one classifier for each class, differences between the

training and the validation classes will, generally, lead to greater differences in

behavior for a select-single-classifier approach (Table 2.7) than for an averaging

approach (Table 2.6), as illustrated by the 6.7% drop in accuracy for the former com-

pared with a 1.3% drop for the latter.

For equal-sized classes, the overall accuracy is 0.763.

The final classifier architecture (Table 2.8) illustrated in this section is chosen to

be more intelligent than the averaging classifier of Table 2.6 and less sensitive to

changes in the data than the “perfect” ensemble classifier of Table 2.7. The accuracy

results for the classifier are 79.7%, which is less than the “perfect” ensemble clas-

sifier (83.0%) but significantly better than the averaging classifier (74.0%). How-

ever, as illustrated in Table 2.11, the validation set results in nearly as high

accuracy (78.3%), with only a 1.4% drop in accuracy compared with the training

data. Thus, the ensemble architecture shares the high accuracy of the “perfect”

ensemble classifier (and it actually tops it by 2.0% on validation data) along with

the high robustness of the averaging classifier (dropping only 1.4% between

Tables 2.8 and 2.11 compared with 1.3% between Tables 2.6 and 2.9 for the aver-

aging classifier) on validation data.

What does this mean in practical terms? In this section, we set out to optimize the

settings from training data. We did this by considering both a training set and a sub-

sequent validation set, per the normal algorithmic machine learning approach. The

validation set was not used, as it usually is, to determine the settings of the algorithm;

rather, it was used to select the architecture for an ensemble classifier. In this exam-

ple, the best validation results were obtained for the classifier that was both robust

(each selected ensemble from the training phase consisted of two simple classifiers

instead of just one) and accurate (the accuracy was much higher than the very robust

but nondiscerning “equal weighting” classifier). In general, predictive selection

approaches (Fig. 2.2) tend to identify an architecture that provides a good combina-

tion of robustness and accuracy, as shown here.
2.4 Learning how to Learn
Meta-analytic approaches are valuable for allowing us to learn how to learn, that is,

in selecting the correct algorithm (or pattern of algorithms) therefore used for learn-

ing and, when deployed, solving the relevant analysis. Meta-algorithmic theory

[Sims13] is also useful for intermediate analysis of the classes. Section 2.3 intro-

duced several methods that allow suspect classes to be pruned from the prevalidation

set for optimizing the architecture. In this section, we consider the attractor/repeller



Table 2.12 Example confusionmatrix for a five-class problem, with the sums in
each row and column given

#Actual class
\assigned class➔ A B C D E SUMS

A 0.65 0.13 0.09 0.07 0.06 1.00

B 0.17 0.57 0.13 0.05 0.08 1.00

C 0.06 0.11 0.78 0.02 0.03 1.00

D 0.13 0.08 0.12 0.42 0.25 1.00

E 0.06 0.03 0.08 0.22 0.61 1.00

SUMS 1.07 0.92 1.20 0.78 1.03 5.00

PRECISION p (e.g.,
0.65/1.07)

0.607 0.620 0.650 0.538 0.592 0.601

F-score¼2pr/(p+ r) 0.628 0.594 0.709 0.472 0.601 0.601

The columns sum the samples assigned to each class, and the diagonal elements divided by these sums
are the precision values. The diagonal elements represent the recall values. The harmonic mean of
precision and recall, or F-value, is shown in the lowest row.
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theory from meta-algorithmics for its utility in validating the analytics architecture.

We will consider the confusion matrix shown in Table 2.12.

The sums of the rows in Table 2.12 are all 1.00, because each sum represents

100% of the elements in a particular class. The columns, on the other hand, can devi-

ate significantly from 1.00 depending on whether a class is an attractor (more sam-

ples than expected are assigned to this class) or a repeller (less samples than expected

are assigned to this class). In this data set, Class C is the strongest net attractor, with

20% more than expected samples assigned to it. Class D is the strongest net repeller,

with 22% less than expected samples assigned to it. The other three classes are much

closer to unity, with no more than 8% deviation from expected value.

From this table, then, attractor/repeller theory suggests that Classes C and D are

anomalous. To further discuss this thread, we consider the precision and F-score
(harmonic mean of precision and recall), and specifically the variability in these

scores, between the five classes. The mean�standard deviation of the precision is

0.601�0.041, and the mean�standard deviation of the F-score is 0.601�0.085.

The two Classes C and D are thus 2.73 standard deviations apart in precision and

2.79 standard deviations apart in F-score. The corresponding two-tailed p-values
are p<0.00633 and p<0.00544, respectively. This confusion matrix-driven analysis

is not proof of any anomaly in the ground truth, but it is certainly a scent that needs to

be tracked down.

Following the rules of Section 2.3, we may then decide to compute the figure of

merit (Eq. 2.2), RATD (Eq. 2.5), and MDODEV (Eq. 2.6) metrics for the reduced set

of classes with either or both of Classes C and D removed. In order to determine

the figure of merit, we compute the accuracy of both confusion matrices, which is

the mean of the diagonals. For Table 2.12, the accuracy is 0.606; for Table 2.13,

the accuracy is 0.718. Thus, the figure of merit is 0.112/(0.282/3)¼1.19. This is



Table 2.13 The confusionmatrix of Table 2.12, example confusionmatrix for a
five-class problem, with the sums in each row and column given

#Actual class\assigned
class➔ A B C E SUMS

A 0.70 0.14 0.10 0.06 1.00

B 0.17 0.60 0.14 0.09 1.00

C 0.07 0.12 0.78 0.03 1.00

E 0.07 0.04 0.10 0.79 1.00

SUMS 1.01 0.90 1.12 0.97 4.00

PRECISION p (e.g., 0.70/1.01) 0.693 0.667 0.696 0.814 0.718

F-Score¼2pr/(p+ r) 0.696 0.632 0.735 0.802 0.716

The columns sum the samples assigned to each class, and the diagonal elements divided by these sums
are the precision values. The diagonal elements represent the recall values. The harmonic mean of
precision and recall, or F-value, is shown in the lowest row.
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above 1.0 and so indicates that reducing the validation set to four classes is worth

pursuing. We therefore compute RATD (Eq. 2.5) and MDODEV (Eq. 2.6) for both

Tables 2.12 and 2.13. The values are more similar than for the example in

Section 2.3: RATD changes from 1.57 to 1.68, and MDODEV changes from 4.72

to 3.42 in moving from five classes to four classes.

The figure of merit and MDODEV changes indicate that omitting Class D may

provide a validation set that leads to an improved classifier architecture (the change

in RATD is less promising). So, coming back to attractor/repeller theory, after drop-

ping Class D, the new Table 2.13 represents only 80% of the ground truth data. Once

again, we compute the variability in the precision and F-scores of these four classes.
The mean�standard deviation of the precision is 0.718�0.066, and the mean-

�standard deviation of the F-score is 0.716�0.071. The two Classes B and E are

now the farthest apart: B and E are 2.23 standard deviations apart in precision

and 2.39 standard deviations apart in F-score. The corresponding two-tailed p-values
are p<0.0257 and p<0.0168, respectively. These p-values are statistically signifi-

cant but with far less confidence than for the original Table 2.12. As expected (data

not shown here), removing another class (in this case, Class B) results in a figure of

merit below 1.0 and does not appear to provide a useful further pruning of the

validation set.

Of course, the precision and F-score for Table 2.13 are higher than for Table 2.12
(0.718 and 0.716 for Table 2.13 while only 0.601 and 0.601 for Table 2.12); however,

these results do not represent a better overall classifier; instead, they represent the

possibility of using only those four classes (i.e., Classes A, B, C, and E) to determine

the overall classifier settings before performing training and testing.

Table 2.14 represents a “best case” scenario for pruning the number of classes

used for training. F-score improves from 60.1% to 61.8% and overall accuracy from

60.6% to 62.2%. Thus, attractor/repeller theory can be used to identify potential clas-

ses to omit for determining the architecture of the deployed classifier. Of course,



Table 2.14 Improved confusion matrix for a five-class problem, where the
classifier was chosen based only on the behavior of a four-class problem
(Classes A, B, C, and E)

#Actual class
\assigned class➔ A B C D E SUMS

A 0.66 0.12 0.08 0.08 0.06 1.00

B 0.15 0.58 0.12 0.06 0.09 1.00

C 0.07 0.09 0.77 0.03 0.04 1.00

D 0.13 0.09 0.10 0.46 0.22 1.00

E 0.06 0.04 0.07 0.19 0.64 1.00

SUMS 1.07 0.92 1.14 0.82 1.05 5.00

PRECISION p (e.g.,
0.66/1.07)

0.617 0.630 0.675 0.561 0.610 0.619

F-Score¼2pr/(p+ r) 0.638 0.604 0.719 0.506 0.625 0.618

The data shown are just as in Table 2.12. Amodest improvement in overall classification precision and F-
score is observed (from 0.601 to 0.619 for precision and from 0.601 to 0.618 in F-score).
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pruning classes from the training set is not for the increased accuracy on a subset of

the classes as evidenced in Table 2.13, since eventually all five classes have to be

classified simultaneously. Rather, it is for improved training or “good meta-analytic

citizenship.”

However, meta-algorithmic theory affords a different type of “dimensionality

reduction” when a highly accurate classifier for a subset of the classes exists. In

Table 2.15, we have a very-high-accuracy binary classifier available for distinguish-

ing between Class D and Class E. This classifier is 96% accurate, which is well above

the mean accuracy for the five-class problem (Table 2.12), which implies that it is

worth exploring the five-class classification problem as a four-class (three regular

classes and one aggregate class), two-stage classification architecture: The first stage

assigns the individual sample to one of the four classes, and the second stage assigns

any sample assigned to the aggregate class to the correct original class.

As mentioned in Table 2.15 caption, Classes D and E originally introduced in

Table 2.12 are combined into a single class because a very good binary classifier

(96% accuracy) for distinguishing between these two classes exists. Classes D and

E have “high internal confusion,” that is, their misclassification rate within the

five-class problem is high (confusion matrix entries are 0.22 and 0.25). So, an accu-

rate binary classifier for these two classes has promise for the overall five-class

problem. Indeed, the overall results (in which the accuracy of classification for

Classes D and E is the product of the accuracy of aggregate and binary class accu-

racies) are a significant improvement over Table 2.12: precision improves from

60.1% to 67.9%, F-score from 60.1% to 68.2%, and overall accuracy from

60.6% to 68.0%.

As a quick note on the assessment of a “very good binary classifier,” we summa-

rize the confusion matrix techniques of the reference [Sims13], pp. 273–279.



Table 2.15 The confusion matrix of Table 2.12, using meta-algorithmic theory
for aggregate classes, where Classes D and E are combined into a single class
because a very good binary classifier for distinguishing between these two
classes exists

#Actual class\assigned
class➔ A B C D+E SUMS

A 0.65 0.13 0.09 0.13 1.00

B 0.17 0.57 0.13 0.13 1.00

C 0.06 0.11 0.78 0.05 1.00

D+E 0.095 0.055 0.10 0.72
(0.75)

1.00

SUMS 0.975 0.865 1.10 1.06 4.00

PRECISION p (e.g., 0.65/
0.975)

0.667 0.659 0.709 0.679 0.679

F-Score¼2pr/(p+ r) 0.658 0.611 0.743 0.699 0.682

The number of samples in D and E is normalized in the confusion matrix but must be remembered to be
twice as large as the other classes in the final tally. The columns sum the samples assigned to each class,
and the diagonal elements divided by these sums are the precision values. The diagonal elements
represent the recall values. The harmonic mean of precision and recall, or F-value, is shown in the lowest
row. Note that precision and F-score must be double-weighted for the aggregate class. Also, the 0.75
value for aggregate class D+E is corrected for the accuracy of the binary classifier, which in this case has
0.96 accuracy (percent correctly assigned). Since 0.96(0.75)¼0.72, this is the value used for precision
and F-score calculations for the aggregate class (before double weighting).
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The accuracy of the two independent classes, D and E, is the mean of their individual

accuracies, that is, (46+64%)/2¼55%. Therefore, the accuracy, abinary, of the binary
classifier should provide a product, 0.75abinary>0.55. Thus, so long as the binary

classifier for Classes D and E has an accuracy of 0.733 or higher, it will provide over-

all improved accuracy for the hybrid classification system. Thus, in this case, a “very

good” classifier is 73.3% accurate, which, while well above the 55% average for the

two classes in the five-class problem, is probably not particularly difficult in most

classification problems.

When meta-algorithmics [Sims13] is concerned, the most noticeable (statistically

most probable) improvement was the mean number of ranked classification attempts

until success, hereafter abbreviated μ(nRCAUS). Because consensus approaches gen-
erally follow the central limit theorem (some exceptions being poor cluster, class or

taxonomic definition, or mislabeling), μ(nRCAUS) typically improves greatly as the

number of algorithms providing the intelligence increases. Consensus, therefore,

results in convergence toward correctness.

In this book, we are still concerned with μ(nRCAUS) but only where we need output
in the form of assignment (classification, clustering, search relevance, etc.). Analyt-

ics, however, are concerned with more general tasks than just assignment. Analytics

are concerned with arrangement (sorting), ranking, linking, relating (relevance, sim-

ilarity, etc.), syntax, semantics, and/or proximity, with or without the need for
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assignment. For meta-analytics, then, the single best measurement may well be the

uniformity of behavior in ground truth (training and validation) and testing. This can

be assessed in several ways:

1. Entropy and other measures of randomness

2. Similarities in distribution

3. Functional means

Entropy is a powerful technique for assessing the randomness of a data set that can

belong to one of N different discrete values. Entropy is defined by Eq. (2.9) as

e¼�
XN
i¼0

pi logB pið Þ (2.9)

Note that if the base of the logarithm, B, is equal to 2, then the entropy, e, is in bits of
information, per the large body of Claude Shannon’s information theory work. The

probabilities for each bin, pi, are equal to each other and to 1/N when the distribution

across theN discrete values has maximum entropy. A condition of maximum entropy

does not prove randomness; for example, if the samples belong to bins 1, 2, 3,…,N in

sequence, then all pi¼1/N, but the sequence is entirely predictable. This means that

maximum entropy is a necessary but not sufficient condition for randomness in

general.

Fortunately, when generating ground truth data, sequential randomness is usually

not an issue. More importantly, the assignment of items to ground truth should result

in an entropic distribution to the discrete values (bins, clusters, classes, etc.). Entropy

can be used in other important stages of ground truthing and, more generally, ana-

lytics. For example, an excess of ground truth data can be pruned by iteratively

removing the sample that most increases the entropy of the ground truth upon

removal and continue until the entropy stops increasing or is below some small abso-

lute difference, ε. Entropy can also be measured in a confusion matrix for classifi-

cation problems, and ground truth data can be pruned by iteratively removing the

sample that most increases the entropy of the confusion matrix upon removal, con-

tinuing in the same iterative fashion.

In addition to entropy measures, similarities in distributions can be used to deter-

mine if ground truth data are optimized for its purpose in assessing analytic

approaches. One distribution that can be generated for an assignment-type analytic

problem is the distribution of ranks for assignment. These are shown for a five-class

assignment task in Table 2.16.

The results in Table 2.16 are shown graphically in Fig. 2.3. The ranking behavior

for the incorrect Classes B, C, D, and E is highly correlated, as can be assessed by

inspection. The relationship between these four classes can be assessed automati-

cally using Pearson product-moment correlation. The relationship between the cor-

rect Class A and rank can be assessed by Spearman’s rank correlation. The

distribution of the ranks in the table for the incorrect classes is, a priori, expected

to be evenly distributed across these classes. Of course, in most actual assignment



0
20

0
40

0
60

0
80

0

N
um

be
r 

In
 R

an
k

Rank in Classification
1 2 3 4 5

FIG. 2.3

Results for Table 2.16 shown graphically. Note the correlated ranking behavior of the four

incorrect classes and the monotonic ranking behavior of the correct class (which has the

highest value for rank in classification¼1).

Table 2.16 Ranks of classes for assignment to Class A

Class Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

A 755 134 88 17 6

B 60 207 231 243 251

C 54 212 229 233 241

D 71 234 251 277 280

E 50 213 201 230 222

There are 1000 samples in Class A.
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problems, the ranks of the incorrect classes will not correlate well, and the entropy of

the incorrect assignments will not be as high as shown. However, from the goal of

having an even playing field from the ground truth data, we can prioritize the behav-

ior of the ground truth with the following preference: if possible, all incorrect classes

will have the same number of entries for the same rank, each of which is the number

of samples minus the number of times the correct class is ranked for this rank, the

remainder divided by the number of classes minus 1.

To the extent that the ground truth deviates from the preferred behavior just

described, we may design a system to accommodate the desired behavior. We are

also allowed to subsample reasonably from the ground truth to create individual

instances of the analytic generator (whether it be a clustering algorithm, a classifier,

an index generator, etc.) to create different intelligent systems geared for different

purposes—for example, robustness, adaptiveness, accuracy, and consistency. Then,

we may decide to have a final training performed with a different relative amount of,

for example, robustness and accuracy. Interestingly, this approach generally comes
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along with robustness “for free.” If, for example, a system is built to be both inex-

pensive and accurate, it will usually consist of several approaches with incomplete

overlap in behavior, thus making it more robust (since the domain of the combined

approaches will typically be greater than that of any single approach). Of course,

with a large set of approaches, a system can be designed to have relatively uniform

coverage of an entire domain, in effect normalizing for discrepancies in the density of

ground truth.

The third means of assessing the uniformity of behavior in ground truth (training

and validation) and testing are functional means. Functional assessment does not

directly (e.g., mathematically) assess the ground truth, searching for differences

in entropy or other nonrandom error behavior, as described above. Nor does it gen-

erally concern itself with the architecture and order of training and validation.

Instead, it uses the behavior in the end application to feed back to the ground truth

set. The simplest but still often useful functional means of pruning ground truth is the

equalization algorithm, outlined here:

1. Perform analytic task (search assignment, clustering, classification, indexing,

etc.).

2. Determine desired distribution of assignment to search, cluster, class, index,

summarizations, etc.

3. Prune the overassigned groupings according to the strategy (e.g., remove themost

redundant samples, remove the most borderline samples, and remove the sample

most like others in the grouping) to match desired distribution.

4. Perform the analytic task and decide whether to roll back to the beginning of step

3, accept the pruning, or scale back pruning ambitiousness (e.g., reduce the

amount pruned by a percentage and turn steps 3 and 4 into an iterative procedure).

This is a relatively simple procedure, but it allows a lot of approaches. If the desired

distribution is to have search behavior that closely follows Zipf’s Law [Mann99]—

for example, document search—then the actual search behavior can be plotted and a

maximum element Zipf curve fitted to the data such that it does not exceed the actual

data meaningfully (error less than some small difference, ε). Then, documents can be

subtracted to make the curve fit within ε of the desired Zipf curve.

A second example of functional means for assessing the value of a ground truth-

ing set is determining how well the set performs in a task not used to assign the

ground truth. An example of this is described in [Sims14], wherein the best transla-

tion engine is determined through measurement of which corpus of translated doc-

uments provides search behavior most closely matching that of the corpus of original

(untranslated) documents. Ground truth documents for which search behavior in

translation is poorest can be weighted more highly in the training phase (the feedback

for weighting effectively comprises the validation phase), enriching the value of the

translation by first selecting the best translation (based on the similarity of search)

and then optimizing the search behavior by enhancing the weights of the documents

for which search performed the most poorly.
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Language-based analytics, in general, are rich grounds for the automated optimi-

zation of ground truth because they feature so many different analytic functions.

Among these are summarization, indexing, translation, keyword generation, text

clustering, text classification, most closely related document, search, tagging, and

other linguistic tasks. These can be paired together as were translation and searching

in the above example to optimize simultaneously the two (or more) analytic tasks for

a corpus. Further examples of text-based analytics will be provided in the following

chapters; for this chapter, suffice it to say that when one text analytic is used for

ground truthing and another is used for functional measurement, a dual-task “system

optimization” can emerge in a manner similar to expectation-maximization.
2.5 Deep learning to deep unlearning
Natural (i.e., real) biological intelligent systems are notoriously difficult to untrain,

since development largely consists of the carving of neural pathways, that is, the

removal of topically irrelevant connections to strengthen the particular set of path-

ways associated with a given memory, behavior, movement, etc. Further carving is

engendered through the process of reentrancy, that is, when different clusters of

information map content between themselves in a predictable temporal manner. Fine

muscle tuning required for gymnastics, playing an instrument, or singing are good

examples of this. Intuitively, it is easy to see the value of such “deep learning.” Once

training has occurred, a person can “chunk” trained activities and specialize even

further, by adding esthetics, musicality, vibrato, etc. We have all had the experience

of being able to recall trivial information from childhood with higher accuracy than

names and events much more recently—this is the nature of neural training.

However, a possibility with machine learning that has not yet been taken full

advantage of is the ability to do “deep unlearning,” that is, being able to forget infor-

mation in direct proportion to the age of the information. This “nonbiological” capa-

bility ismost easily implemented on ground truth data, wherein the relative weighting

given to training and validation sets diminishes over time. Effectively, a “time stamp”

is placedondata,withweighting following an exponentially decreasing function.This

is, intuitively, different fromhowhumans learn, since they often remember “old facts”

better than new facts, particularly as they age. However, in reality, a human brain is

almost always storing a lot more recent information than it appears—it is just that this

information is more distributed once the brain reaches adulthood. Thus, the “deep

unlearning” concept for analytics is actually biologically inspired: it can be viewed

as ameans of internalizing the unlearning that we are generally not consciously aware

of while we fit new experiences and ideas into our neural connections.

Generally speaking, the amount of deep unlearning is selected based on the

desired trade-off between adaptiveness and robustness. When previous ground truth

data are more aggressively “unlearned,” the system is highly adaptive to new data.

When previous ground truth data are only begrudgingly unlearned, the system is

highly robust to data across the history of the system. In the next chapter, this topic

will be taken up more under the consideration of “designs for pruning of aging data.”
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2.6 Summary
In this chapter, we operated under the assumption that ground truth data are not
sacred. This does not mean that we get to prejudicially eliminate ground truth data

and certainly not that we get to reduce the size of the problem space that the ground

truth is being used to train an intelligent system to understand. Instead, we are

employing a similar approach to boosting, wherein different weighting of the ground

truth is used to better train and validate an intelligent system.

Why is this a concern? One reason is that many training instances use k-fold cross

validation, wherein
k�1ð Þ100%

k of the ground truth is used for training, and the k subsets

of the training data are used for testing. The k tests are then averaged to report the

(usually over trained) test accuracy. Such a system may be very accurate, but it is

usually not robust, since by definition the test set is much smaller than the training

set except when k<3. Thus, k-fold systems are prebiased to being nonrobust but

highly problem-focused systems.

Another aspect of ground truthing is that the ground truth set can be used for dif-

ferent system objectives. For example, the first round of training can be used for the

optimization of accuracy, while the second round (or “validation”) of training can be

used for robustness. In Section 2.3, we used prevalidation such that pruning ground

truth data led to a larger set of weak classifiers (improved robustness) and then rein-

troduced all of the ground truth for training to ensure accuracy across the entire

data set.

A question to keep in mind as we explore meta-analytic approaches in the chap-

ters to come is the following: “Does the sequential consideration of meta-analytic

patterns on a ground truth set constitute a validation?” I will, unsurprisingly, argue

that this is the case and that this approach is a new, more relevant form of “k-fold
cross validation,” where k¼ the number of patterns explored on the training

+validation set.

A second form of meta-analytics is when two or more meta-algorithmic

approaches are used together for an analytic task. Here, the training sets are used

to evaluate the individual meta-algorithmic patterns as described in the previous par-

agraph. The validation set is then used for evaluating paired meta-algorithmic behav-

ior. The possibilities are many, but one thing is certain: meta-analytic patterns open

the door for approaches other than the traditional (training, validation, and testing)

sequence. For example, iterative training on multiple meta-algorithmic patterns can

be followed by using the validation set for robustness rather than accuracy. Here, the

mean number of ranked classification attempts until success, μ(nRCAUS), or the equiv-
alent measure for clustering and other intelligent tasks can be optimized irrespective

of the accuracy. Another optimization can be approached if the assignment is non-

binary, that is, assignment is weighted across many possible outcomes. Then, the val-

idation set can be used for exploring which meta-analytics results in the most energy

being assigned to the right outcome. This is often not the same as optimized accu-

racy. These approaches will be explored in more depth in later chapters.
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CHAPTER
Experimental design
 3

Meta-Analytics. ht

# 2019 Steven Sim
Today’s scientists have substituted mathematics for experiments, and they

wander off through equation after equation, and eventually build a structure

which has no relation to reality

Nikola Tesla (1934)

All life is an experiment. The more experiments you make the better

Ralph Waldo Emerson (1844)
3.1 Introduction
As seen in the previous chapter, Nikola Tesla need not be concerned: meta-analytics

does not substitute mathematics for experiments. In fact, for ground truth data, meta-

analytics can be used to substitute experiments for the mathematics. Following

Emerson’s advice, the more experiments, the better the meta-analytic system will

perform. Meta-analytic systems incorporate empirical data readily and avoid some

of the overtraining traps of many traditional approaches to the two broad areas of

clustering classification (learning or assignment) and prediction regression (estima-

tion). Most importantly, however, meta-analytics allows two or more experimental
designs to be compatible within an overall system.

The resulting “system of systems” that can be considered a hybrid of these mul-

tiple system designs uses one or more—and preferably all—of the following as the

logical tools/processes for combining two or more systems:

1. Data normalization

2. Pruning of aging data

3. Interfaces

4. Gain

5. Domain normalization

6. Sensitivity analysis

System design as addressed by meta-analytics is a topic discussed in some depth in

Chapter 10, and in Chapter 4, we introduce the distinction between rank-biased sys-

tems and accuracy-biased systems, among others. In this chapter, we simply introduce

the means of combining multiple systems into what is designated a “system of sys-

tems,” that is, a meta-analytic system. We start with data normalization and then con-

sider data aging and data death. Finally, we borrow from linear system theory to

optimize data systems. Specifically, we define interfaces and gains, allowing data
tps://doi.org/10.1016/B978-0-12-814623-1.00003-4
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systems to be combined in series and parallel. We then discuss domain normalization,

allowing different sets of data to cooperate rather than compete. Finally, we consider

the foundational topic of sensitivity analysis and system-of-system optimization.
3.2 Data normalization
3.2.1 Simple (unambiguous) normalization
At the simplest level, data normalization is concerned only with the treatment of the

data as data (and not, e.g., the interrelationships among the data). For example, unit

normalization is given by

d̂¼ d

dj j (3.1)

Here, jd j is the Euclidean norm of the data vector, designated d.
Unit-normalized data are interesting when applied to estimation (i.e., regression)

approaches. We consider one example comparison here. Data set one, D1, has five

(x, y) pairs given by

D1¼ 1, 1ð Þ, 2, 2ð Þ, 3, 3ð Þ, 4, 4ð Þ, 5, 5ð Þf g (3.2)

Meanwhile, data set D2 is given by

D2¼ 1, 2ð Þ, 2, 4ð Þ, 3, 6ð Þ, 4, 8ð Þ, 5, 10ð Þf g (3.3)

When each set of y-values is normalized, we get

D1norm ¼ 1,
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D2norm ¼ 1,
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(3.5)

Thus, even though the original two sets of data had a linear regression equation of

For D1! y¼ x (3.6)

For D2! y¼ 2x (3.7)

we get the same normalized equation when they pass through the origin (and have the

same discrete set of x-values).
Another means of normalizing data is to make two sets have the same mean. For a

set of features, we can use zero-mean centering (ZMC) by computing the mean of

each data set (or dimension in the case of clustering/classification features), and sub-

tracting it from the original data set/dimension:

d0 ¼ d�μ (3.8)

For the original data sets D1 and D2, we get
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D1ZMC ¼ 1, �2ð Þ, 2, �1ð Þ, 3, 0ð Þ, 4, 1ð Þ, 5, 2ð Þf g (3.9)

D2ZMC ¼ 1, �4ð Þ, 2, �2ð Þ, 3, 0ð Þ, 4, 2ð Þ, 5, 4ð Þf g (3.10)

For unit-normalized data,

d̂0 ¼ d̂�μ (3.11)

which for the original data sets gives

D1norm+ZMC ¼D2norm+ZMC ¼ 1,
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(3.12)

Finally, scaling, or standardizing data, involves zero-mean centering and then divid-

ing the difference by the standard deviation:

d0 ¼ d�μ

σ
(3.13)

For previously unit-normalized data,

d̂0 ¼ d̂�μ

σ
(3.14)

After standardization, a data set has mean¼0.0 and standard deviation¼1.0. This is

helpful so that one feature does not overwhelm another feature solely based on

its scale.
3.2.2 Bias normalization
A more complicated, but perhaps more important, form of data normalization

considers the interaction between the several data sets. The unit normalization,

zero-mean centering, and standardization approaches above are unambiguous

and are within a single data set. This intra-set form of normalization, which

I term bias normalization, is not only ambiguous but also in some circum-

stances even contentious. I begin the exploration of bias normalization with

an example.

Suppose you are interested in the outcome of an election and that you poll 100

people of which 1 is Black, 99 are non-Black, 35 are women, and 65 are men. Then,

you wish to normalize the data to represent a population that is 13% black and 52%

women. How do you normalize the votes? For the process, we define B¼1, NB¼99,

M¼65, and F¼35. This simple two-parameter example will illustrate the ambiguity

nicely. Suppose that we wish to bias normalize for gender. In this case, we use a mul-

tiplication factor M for the male data such that it normalizes to its proper represen-

tation, that is,

M¼ k1Mwhere k1 ¼ 48=65¼ 0:738 (3.15)

With this bias normalization approach, we also adjust the female data using

F¼ k2Fwhere k2 ¼ 52=35¼ 1:486 (3.16)



Table 3.1 Ideal distribution of people based on the example given, where 52%
of the represented group are female and 13% are Black

Male Female

Black 6.24 6.76

Non-Black 41.76 45.24

Since there is only 1 Black person in the (poorly sampled) 100 interviewees, at least one table cell (“Black
male” or “Black female”) will be unrepresented.

Table 3.2 Actual distribution of people for the example given, representing a
higher percentage of females for Black than for non-Black people

Male Female

Black 5.88 7.12

Non-Black 42.12 44.88

This is interaction, meaning deviation from dimensional independence.

128 CHAPTER 3 Experimental design
This is all well and good for gender, but we clearly have a problem for Black indi-

viduals, since they are either 100% male or 100% female (one person!). If male, we

have no way of representing Black females; if female, we have no way of represent-

ing Black males. This is indeed a worst-case scenario, as illustrated by Table 3.1,

which shows that the expected values for “Black male” and “Black female,” assum-

ing that race and gender are independent, are 6.24 and 6.76, respectively. Both are

nonzero, but one of them is certainly zero in our poll set.

In general, the expected entry for any element in an N-dimensional matrix will be

the product of the category probabilities of each of the N-dimensions. This is simply

based on independence of the individual dimensions. In Table 3.1, then, the expected

percent of “Black females” is simply the product of the expected value of “Black”

(i.e., 0.13) and the expected value of females (i.e., 0.52), which comes to 6.76 out of

100. In reality, there will often be interactions between one or more dimensions, and

so, the individual cells of the table will not have the expected values for independent

dimensions. For example, suppose there is a higher percentage of females among

Black people than among non-Black people. We may then see an actual distribution

as shown in Table 3.2.

We next consider four important aspects of experimental design as they relate to

bias normalization. The higher the number of the design considerations, the better it

is for data integrity and ultimately system robustness, but in some cases, collecting

data is not possible due to cost, time, availability of representative data, and other

reasons. Regardless, it is important to understand what should be done, even when

it cannot be done, since this will help the data scientist to explain her results more

fairly, credibly, and fully:

1. For the first design consideration, we need to ensure that each element in the

N-dimensional matrix is represented by at least one sample. Depending on the
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scarcity of the data, this may have to suffice, but in general—and particularly in

the age of big data—wewould want enough samples to have the data in the matrix

element sufficiently represent the statistical distribution that all the data in this

intersection of N-dimensions would follow. But, certainly, there needs to be at

least one sample for any of the following (#2, #3, and #4) experimental design

considerations to be addressed. In our example, we returned to polling and made

sure at least 10 each of Black male and Black female individuals were

interrogated. This augmented set is shown in Table 3.3.

2. For design consideration #2, we proportionately scale each matrix element based

on the expected values for independent variables (or data-guided variable, if, e.g.,

a higher percentage of Blacks are women).With the addition of “Black male” and

“Black female” individuals to their groups in Table 3.3, we are closer to

proportional representation. Assuming that we have not the time, money,

inclination, and/or opportunity to poll more people, however, we must still

“weigh” the group “Black females” by 42.4% more than their numbers. That

means we multiply each of their inputs by 1.424 in the final tally. The other three

groups are weighted just under unity (from 0.957 to 0.997). This is illustrated in

Table 3.4.

3. For design consideration #3, instead of using weighting coefficients to correct for

underrepresented and overrepresented groups, we explicitly collect more data to

make the experimental design matrix balance as it should for proportional

representation. Effectively, we augment the matrix based on holding the most
Table 3.3 Augmented distribution where another 100 people were polled and a
minimum of 10 people were included in each of the four matrix elements.
Design consideration #1

Male Female

Black 12 10

Non-Black 88 90

Table 3.4 Scaling factor for Table 3.3 to achieve matrix elements correctly
proportional to the distribution given in Table 3.2

Male Female

Black 0.98 1.424

Non-Black 0.957 0.997

All groups are now only slightly overrepresented (by 0.3%–4.3%) with the exception of Black females,
who are still underrepresented by 42.4% compared with their relative percent of the overall population.
Design consideration #2.
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overrepresented group (MORG) to its current value and adding to each of the

other groups until it has the right number in comparison with the MORG. The

application of this design consideration to Table 3.4 is shown in Table 3.5. This is

a “parsimonious” approach, requiring only nine samples to be added to the

overall polling set to achieve balance. This number, divided by the size of the

original matrix, is in fact an excellent indicator of the imbalance in the original

data collection (designated IODC). Here, IODC¼9/200¼0.045. High values of

IODC imply higher bias in the original data collection, and low values of IODC

imply lower bias, or at least better effective balance, in the original data set.

4. If possible, this design consideration should be employed. For this consideration,

we must also augment the MORG to ensure that we are not sampling from a

statistically different set of data during the matrix augmentation (this is described

in more detail in subsequent text and in Fig. 3.1). This is very important, since

otherwise we cannot combine the new data with the old. Spatial (location),

temporal (age and time of year), sensing (how collected), and storing (including

filtering and compression) are among the many factors that could vary, drift, or

even be intentionally changed from the original collection period to the

augmented collection period. In our example, the “non-Black male” group is

augmented by 16, and thus, each of the other groups needs to be augmented to

provide a proportional final set of groups, as shown in Table 3.6.

Some discussion around how we arrived at the values for Table 3.6 will be helpful.

As mentioned in the design consideration #4 text, we need to augment the MORG so

that we are assured that the augmented data do not drift significantly from the orig-

inal data. We meanwhile collect augmenting data for each of the other groups to

bring the final (original+augmenting) table (Table 3.6) into proportion.

Fig. 3.1 shows the curve representing the augmentation termination protocol for

the MORG. The termination occurs when the computed value for sample size is less

than the number of samples in the augmentation group for two consecutive new sam-

ple additions to the augmentation set. The value for n is computed as follows, in

Eq. (3.17), which repurposes a metric used for determining the sample size needed

to show a given difference between two means (this is used for sample size calcu-

lations in [Ott84], pp. 166–167):

n¼ zα=2
� �2

σaug2

E2
(3.17)
Table 3.5 Desired number of people to poll for each group to match
proportionally (per Table 3.2) with the most overrepresented group (rounded to
nearest integer), which in this case is “non-Black male”

Male Female

Black 12 15

Non-Black 88 94

In this example, five extra “Black female” and four extra “non-Black female” individuals needed to be
polled so that the proportions matched that of Table 3.3. Design consideration #3.



FIG. 3.1

Curve used to limit the number of new samples of themost overrepresented group (MORG) to

add. The values for alpha (α¼0.01) and E and the acceptable difference between the means

of the original and the augmented data sets are set beforehand based on acceptable

probability of error and acceptable difference in the data, respectively. We set zα/2¼2.58

since α¼0.01, and E¼0.5 since this is “half a person” difference. The estimated sample size

needed is given by n¼ zα=2ð Þ2σaug 2
E2 [Ott84]. We are using this here differently than originally

intended, that is, once enough samples have been added to the original set for the value of n

in Eq. (3.17), we are confident that the two data sets can be combined without “temporal

bias.” We terminate the augmented data once the value for n is less than the number of

augmented samples twice in a row (this happens for number of new samples¼15 and 16).

Table 3.6 Desired number of people to poll for each group to match
proportionally (per Table 3.2) with the most overrepresented group along with
adding enough new individuals to the most overrepresented samples, which in
this case is “non-Black male”

Male Female

Black 15 18

Non-Black 104 111

Values rounded off to integers. In this example, 16 “non-Black males” were added to ensure sufficiently
small differences between the added and original data sets. This led to the addition of 3 extra “Black
male,” 8 extra “Black female,” and 21 extra “Non-Black female” individuals so that the proportions
matched that of Table 3.3. Design consideration #4.

1313.2 Data normalization
The values for alpha (α¼0.01) and E, the acceptable difference between the means

of the original and the augmented data sets are set beforehand. We wished to be

99.5% certain that the populations were statistically indistinguishable so that adding

extra samples was worth the extra time, effort, and cost. We therefore set zα/2¼2.58
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since α¼0.01. Then, we needed to decide on E, the error in the means. Since the

example problem is actually a discrete one, in which an integral number of individ-

uals must be assigned to each group. Therefore, the smallest reasonable E is 0.5, “half

a sample.” We chose this value since it is “statistically conservative,” that is, the

smaller the value of E, the larger the augmentation set. We’d best be conservative

here since it’s our last chance to do what’s proper statistically—we are, after all,

on design consideration #4 of 4. So, we let E¼0.5, which means that the estimated

sample size needed is given by Eq. (3.17) and can be computed after each new sam-

ple is added to the augmentation set. Note that for the first augmentation value, we

cannot compute the variance of the augmentation data, σaug, so we set it arbitrarily

high (in this case to 100): so long as it is not less than 1, it does not initiate a termi-

nation test. We terminate the augmented data once the computed value for n is less

than the number of augmented samples twice in a row (this happens for number of

new samples¼15 and 16, as shown in Fig. 3.1).
3.2.3 Normalization and experimental design tables
The normalization approaches above are focused on the data groups relative to one

another. The data can also be looked at collectively. This is typically accomplished

through entropy measurements. In a sense, shoring up underrepresented or unrepre-

sented groups removes entropy that is viewed as a deviation from a proportional

experimental design. In the discussion for design consideration #3, a single metric,

the IODC, was used to indicate the relative imbalance of one experimental design

compared with another. There, it was shown that IODC for Table 3.3 was 0.045.

Computing the same value for the original data set, where Black males¼1, Black

females¼0, non-Black males¼64, and non-Black females¼35 and where the dis-

tribution should be that of Table 3.2, yields a final set of Black males¼9, Black

females¼11, non-Black males¼64, and non-Black females¼68. This means an

additional 52 individuals must be polled, and IODC¼52/100¼0.52, more than

ten times that of the IODC for Table 3.3. High values of IODC imply higher bias

in the original data collection, and this is clearly the case for the very poorly balanced

original design. Low values of IODC imply that the actual experimental design rep-

resents no additional error over the intended experimental design and so should have

the same entropy.

In addition, direct measurements can be computed from the subtraction of two

experimental design matrices. One example is given in Table 3.7, which represent

the differences between Tables 3.2 and 3.1. The mean absolute value difference,

or MAVD, is 0.36, wherein the mean value of a cell is 25.0, which yields a mean

difference of 0.36/25.0¼0.0144, or 1.44%.

Low values of MAVD when comparing an experimental design to a matrix in

which each dimension is assumed independent (such as Table 3.1) imply highly inde-

pendent data dimensions, in which case the MAVD is a measure of deviation from

independence.



Table 3.7 Differences between Tables 3.2 and 3.1. The sum of the cells in the
original tables is 100.0, meaning the mean absolute value difference is
0.0144, or 1.44%

Male Female

Black �0.36 0.36

Non-Black 0.36 �0.36

1333.3 Designs for the pruning of aging data
The experimental designs in this section are relatively simple: they are, after all,

2�2 matrices. In larger data systems, of course, the experimental design matrices

will be larger—even much larger—in dimension. There, the differences between

experimental design matrices will more properly be assigned to further analysis, such

as histograms, which are more predisposed to direct entropy measurements. We will

revisit entropy often in subsequent chapters.
3.3 Designs for the pruning of aging data
We’ve seen how to normalize data, for ensuring that different dimensions do not start

off with either the advantage of scale or the advantage of numbers. In the latter case,

we considered bias normalization as a means of preventing a MORG from hiding the

rightly proportional input of other groups. We rightly corrected imbalance in the

original data collection, or IODC. However, our discussion of bias normalization

in Section 3.3 only scratched the surface of the temporal concerns we naturally have

about any data set worth investigating, that is, any data set that is augmented over

time. Bias normalization was shown to address some aspects of the forward-in-time
(FIT) concerns of the data set. In this section, we are concerned with the backward-
in-time (BIT) direction and the FIT. We might say that we are using a FIT-BIT to

monitor the health of our data (we might not say that, either, as there may be some

vaguely unpleasant trademark concerns!). We will start off here with the BIT and

then come back to the FIT-BIT. BIT aging of data makes no assumptions about what

type of data drift we will see in the future, while FIT-BIT aging of data projects into

the future to more effectively hone the relevant data set in a real-time fashion.

Backward-in-time (BIT) aging of data in its simplest form uses the sample size

calculation approach introduced in the previous section, culminating in Eq. (3.17)

and Fig. 3.1. Here, we can consider this a form of temporal k-fold cross validation

wherein the k-folds divide the relevant data set into k partitions of time, with the first

partition being the oldest and the kth partition being the newest. Once so divided, the
data can be evaluated using standard two-group statistical approaches, including at

the onset the simple t-test:

t¼
μoldest�μ k�1ð Þnewest
			 			ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

noldest
+

1

n k�1ð Þnewest

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
noldest�1ð Þσ2oldest + n k�1ð Þnewest�1ð Þσ2k�1ð Þnewest

.
N�2

r (3.18)
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where hereN is the total number of samples, noldest is the number in the first partition,

and n(k�1)newest is the number in all of the other partitions. Thus, noldest+n(k�1)new-

est¼N. If the t-statistic is significant at the desired α, for example, with 99% certainty

(α¼0.01), then we can conclude the oldest partition is significantly different from

the (k�1) partitions since and may decide to deprecate these data from the data

set if, for example, it is to be used for training purposes.

Other approaches to BIT include matrix-based approaches and clustering-/clas-

sification-based approaches. With matrix-based approaches, we simply plot the

mean and standard deviations for what we consider to be the most significant feature

of an analytic task and then identify the outliers. If a large portion of the outliers

belong to one or more of the data “partitions”—and in particular to the oldest par-

tition of data—wemay decide it is time to prune that data set. This is illustrated in the

data presented in Table 3.8.

In Table 3.8, the simplest possible means of assessing the oldest partition is to

perform a t-test for the oldest partition (n¼1, first data row from the top) compared

with the second oldest. For the four features (% road surface, no. of vehicles, no. of

intersections, and road width), the t-statistics for comparing partitions 1 and 2 are

6.31, 3.50, 3.71, and 1.01, respectively, with respective two-tailed p-values of less
than 10�5, 5.93�10�4, 2.8�10�4, and 0.314. Since three of these are very highly

significant for p-values of 0.01 or less, we can say that in the oldest image set, there

was a lower percentage of road surface, less vehicles, and less intersections in the

images. These changes, combined, may indicate that partition 1 is no longer relevant

to the same set of traffic monitoring problems as the other partitions.
Table 3.8 Data sets (mean � standard deviation) where k¼10 (864 total
images in original set) for a number of important features and boldface for the
mean of the overall data set

n\Feature
% Road
surface

No. of
vehicles

No. of
intersections

Road width
(m)

1 (87 samples) 12.3�4.3 17.2�8.3 4.7�3.3 5.4�2.1

2 (87 samples) 15.7�2.6 22.2�10.4 6.5�3.1 5.7�1.8

3 (87 samples) 17.1�3.3 25.4�13.4 5.8�3.6 5.6�2.5

4 (87 samples) 17.9�2.9 25.6�11.3 6.5�3.9 6.2�3.1

5 (86 samples) 19.9�3.5 23.4�8.8 5.8�3.6 6.2�2.7

6 (86 samples) 19.3�4.5 32.1�9.7 6.7�2.8 6.1�2.3

7 (86 samples) 19.6�4.8 29.5�5.7 6.1�2.8 6.4�3.3

8 (86 samples) 20.7�5.3 30.1�7.7 6.9�3.9 6.5�2.9

9 (86 samples) 20.4�3.9 26.8�10.9 6.7�4.4 6.7�3.0

10 (86 samples) 22.5�6.0 33.1�9.7 7.3�2.9 6.8�2.8

Overall μ�σ 18.5�5.2 26.5�10.7 6.3�3.7 6.2�2.4

The features here are for traffic monitoring.
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As discussed in Chapter 1, analysis of variance (ANOVA) is a means of partition-

ing the sources of variation in a particular variable. The simple ANOVA and a

follow-on test such as Tukey’s, Dunnett’s, or Scheff�e’s method effectively general-

ize the t-test to three or more groups, allowing paired group-group comparisons of

statistical significance. Effectively, ANOVA is an on-ramp for clustering. In this sec-

tion, we are concerned with partitioning in time and treating each partition as a single

group for the 1�NANOVA design. Effectively, we “force” the oldest partition to be

a group and likewise either partition the remainder or perform k-means clustering on

the rest using, for example, expectation-maximization approaches. The size of the

partition can be varied somewhat based on refining approaches, for example,

N-mean clustering using the partition centroids as the initial condition.

The transition from “BIT” to “FIT-BIT” is relatively straightforward. Regression

or other predictive (e.g., Bayesian) techniques can be used to project current trends

into the future. In Table 3.8, linear regression of each of the four features has a pos-

itive slope with statistically significant Pearson correlation coefficient (p<0.001 for

each of the features). Thus, we can predict with high confidence that the percent of

road surface in the images, the number of vehicles in the images, the number of inter-

sections in the images, and the mean road width are likely to be higher than in the

other groups. In general, groups two or more apart in partition number have two or

more highly statistically significant differences among these four metrics. This indi-

cates that noticeable changes occur over a period which is only a fraction of the total

time that data is collected for the table. Given that, we can say with relatively high

confidence that partition 11 is likely to have higher values than partition 9, partition

12 is likely to have higher value than partition 10, etc. In order to prove it, we can use

the same ANOVA as cluster-analysis technique that we used for the BIT

problem above.
3.4 Systems of systems
In this section, we borrow from linear system theory to optimize data systems in the

manner of control systems, wherein the data analytics are the variable or variables

controlled. To that end, we define interfaces and gains, allowing data systems to be

combined in series and parallel. We then discuss domain normalization, allowing

different sets of data to cooperate rather than compete together. Finally, we consider

the foundational topic of sensitivity analysis and system-of-system optimization.
3.4.1 Systems
What is a system? The simplest definition is that a system is combination of multiple

objects that in combination provide an overall set of behaviors or outputs that none of

the components can provide alone. For our purposes, an analytic system is a combi-

nation of two or more analytic components that leads to analytic output—that is,

knowledge generation—that none of the individual analytic components are capable
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of providing by themselves. The reason for employing system theory is to give the

reader a set of patterns, or “meta-analytics,” for bringing analytic primitives together.

For a system to be valuable, it must provide the following three functionalities:

1. Componentization. Different elements, or components, of the system must be

readily identifiable. Preferably, each element can act as either a black box

(described only by its inputs and outputs—the transfer function is simply a

mapping of the former to the latter) or a white box (full visibility into the internal

structure of the component) as appropriate. This allows the system designer to be

a relative novice (black box) or an expert (white box) on the individual

component, as appropriate to her role in the overall system design and

development task.

2. Modularity. Different components can, as reasonable, be swapped out with other

components that provide the same functionality. For example, a convolutional

neural network (CNN) used to classify images can be interchanged with a pattern

matching system that is specifically geared for iris recognition when the task is

specific to biometrics and not the more general image recognition for which the

CNN was trained. Modularity is ensured by the adherence of the modules to

interface (input and output) and gain (transfer function, including input and

output “impedance”). An example of input impedance is the ratio of input terms

to keywords generated in a text analytic task; in other words, the impedance is a

ratio of two meaningful data streams in the module.

3. Series and parallel construction. This imposes a design constraint on the input and

output of each module: the output provided is suitable to hand off to one (series)

or multiple (parallel) modules as input. As such, the module cannot be tightly

coupled to the subsequent module or modules, meaning the interfaces are clean

and comprehensive. The possibility of having parallel uses of the output of the

module also means that appropriate metadata useful for tagging any states,

probabilities, or completed processes must be provided.

We now consider the application of these principles to systems that are adaptive in

space (hybrid systems) and/or time (dynamically updated systems).
3.4.2 Hybrid systems
A hybrid system is simply a system composed of mixed elements. This includes the

modular components introduced in the previous subsection. The simple mixing of

elements, utilizing their input and output characteristics, is not enough to warrant

the name “hybrid.” Instead, hybrid systems engage the possibility of mixed design

intentionally during training, validation, and in some cases testing, to continually

optimize the system architecture—in light of the very real possibility of the pruning

of irrelevant data and the anticipation of new data characteristics in the future.

The types of hybrid systems available depend on the quantity of interchangeable

modules available for each component, the number of relevant components in the

system, and the series/parallel design choices. While this set of tools for



FIG. 3.2

Simple five-component (A, B, C, D, and E) hybrid system capable of modularity (nA, nB, nC,

nD, and nE) and different series-parallel pathways (ABC, ABE, ADE, ABE jjADE, ABC jjABE,
ABC jjADE, and ABC jjABE jjADE). See text for details.

1373.4 Systems of systems
hybridization may seem somewhat limited, the number of possible system designs

quickly becomes quite large. We consider this by example using Fig. 3.2. Suppose

that we have a five-component system, for example, a security system in which one

component is authentication (component A); one is biometric evaluation (compo-

nent B), one is consumer downstream services (component C), one is contextual

assessment (component D), and one is enterprise account access (component E).

Furthermore, suppose that authentication is modular such that any of four authen-

tication protocols can be used (LDAP, PKI, username/password, and access card);

any one of four biometric protocols (e.g., face recognition, voice recognition, fin-

gerprint recognition, and iris recognition, or four combinations) can be chosen;

four different downstream consumer services can provide the user’s needs; context

can be selected in three ways (e.g., GPS, device ID, and proximity); and enterprise

accounts can be accessed as restricted, confidential, private, or public (four

versions).

Summing up the modularity possibilities by component, we have the following:

1. For A, there are four choices (nA¼4).

2. For B, there are four choices (nB¼4).

3. For C, there are four choices (nC¼4).

4. For D, there are three choices (nD¼3).

5. For E, there are four choices (nE¼4).

The overall system combines series-parallel architecture with the modularity of com-

ponents. There are three-component pathways to either consumer or enterprise ser-

vices/accounts, as shown in Fig. 3.2. Assuming a user might wish to obtain consumer

services and enterprise services together, there are seven different series-parallel

paths through this system: ABC, ABE, ADE, ABE jjADE, ABC jjABE, ABC jjADE,
and ABC jjABE jjADE, where jj implies parallel. These have, respectively, 64, 64,

48, 192, 256, 768, and 768 different configurations, not including the crossover: both

ABC jjADE and ABC jjABE jjADE have 768 configurations, but the latter has cross-

over from B to E. The inner details of how these pieces plug in together are not dis-

cussed here; however, the 2160 configurations are possible in even this relatively

simple-looking five-component system.
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3.4.3 Dynamically-updated systems
As discussed in Chapter 2, the ground truth data (used most importantly for training

and validation purposes) in a “living” system are updated in real time. We are also

concerned with how the system—and the pathways traversing the system—can be

updated dynamically. At the simplest level, dynamic update of the system replaces

one module with another within a single component, resulting in no change in the

component-to-component pathway but perhaps significantly improving the system

from one or more of the usual metrics of importance, that is, cost, accuracy, perfor-

mance, robustness, or availability. If, for example, we are using the system of Fig. 3.2

described in the previous section, wemay see an advancement in two biometrics such

that their combination is far more accurate than any single biometric or combination.

We then prune the single biometrics from consideration and dynamically update the

component.

Other forms of dynamic updating include incorporating new analytics into a sys-

tem where none were before (the addition of modules). Such a system may trigger a

complete reconsideration of the training and validation data and approaches. Impor-

tantly, the new system can be directly compared initially to the individual modules

already part of the component of interest without too much trouble, assuming that the

same data is used for integrating the new analytic.

Another type of dynamic system is simply a “FIT-BIT” architected system, as

described in Section 3.4. Here, the system’s training data is projected into the future

(FIT) and considered in partitions extending back to the oldest data (BIT). Dynamic

update of the ground truth is a dynamic system.

The final type of dynamic system to outline in this section is one where the com-

ponents themselves change. In the system of Fig. 3.2, for example, we may decide to

add in a notification/approval component that can be invoked in parallel to the

authentication. This would add manymore possible configurations to the overall sys-

tem and perhaps allow the system to be used in previously nonallowed situations

(where auditing, certification, multifactor authentication, role-based access control,

or specific approval is required).
3.4.4 Interfaces
Interfaces are the boundaries between two or more modules or components. Borrow-

ing from software system design terminology, specifically for object-oriented pro-

gramming (OOP) here [Gamm94], we declare that two modules are tightly

coupled in a data analytic system when a group of classes are highly dependent

on one another. In terms of data analysis, this means that the residual signal across

any interface is not affected by the internals of the two modules themselves—the

module-module differences are obfuscated at the interfacial level.

An example might help illustrate the value of the interface. Suppose that we have

two different encryption algorithms that are used to convert unencrypted bit streams

into secure bit streams. We can then collect histograms of the input (unencrypted)
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and output (encrypted) and compare both using normal methods, such as entropy of

the digits in each byte, two byte, etc.; substring; and conditional entropy of sequential

strings. If the input and output strings of two modules match for these measures, we

can assume that the two modules can be interchanged without consequence, even if

they implement greatly different internal processes such as Blowfish, AES, or RC6.
3.4.5 Gain
Gain is a relevant ratio of a measured output variable divided by a measured input

variable. Based on the principles of interfaces—which in hardware are the electro-

magnetic/mechanical connections between modules and in software are the Interac-

tive Data Language, or IDL, specifications—the parameters used for computing the

gain should be part of the system specifications. However, this does not preclude

there being multiple gains for a single module.

In electric circuits, for example, an amplifier has multiple gains—including at

minimum a voltage, current, and power gain—based on the ratios of input and output

parameters. If of interest, conductance, resistance, and impedance gains can also be

defined. Overall, if there are N inputs and P outputs specified, there are 2NP simple

gains that can be defined. More can be defined in some fields if products of more than

one input or output are allowed in the numerator and/or denominator of the gains. For

example, power gain is really the product of two other gains: voltage and

current gain.

In addition to gains associated with ratios of input and output measurements,

there are several other types of gain that are relevant to meta-analytics. These gains

do not necessarily correspond with linear system gains but should be cataloged here

for completeness. The first of these is information, which is normally associated with

an increase in some measurable system entropy. If the information can be described

using a histogram, with each element, i, in the histogram having probability p(i), then
the information gain is defined by Eq. (3.19):

Information gain¼
X
final

pi ln pið Þ�
X
initial

pi ln pið Þ (3.19)

This is not the ratio of an output and input parameter, but it is certainly a relationship

between them.

Functional gains are also of interest to the meta-analytic system designer. These

are gains as they represent a functional relationship between some measurable con-

tent produced by the analytic system (output) and the content as entered into the sys-

tem (input). Two simple examples, which are nonexhaustive and illustrative of a

much larger set of functional gains, are knowledge gain and efficiency gain. Knowl-
edge gain is a direct measurement of the product of an analytic system; for example,

it can be the ratio of the number of terms or entries in a dictionary, taxonomy, or

ontology after processing divided by the number of terms or entries before proces-

sing. Similar knowledge gains can be defined in terms of metadata entries, tags,

search terms, translated words and phrases, etc.
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A second functional gain of interest is efficiency gain, which is a gain in the sys-

tem’s ability to achieve its processing goals divided by the resources required for this

achievement. This may seem to be the same as the performance of a system; how-

ever, it is rather more elaborate than a simple, singular measurement such as perfor-

mance or for that matter accuracy, cost, or robustness. Efficiency from the

perspective of meta-analytics may be viewed as parsimony of algorithm—the most

efficient meta-analytic is the one with the most streamlined design. This could mean

the minimum set of modules that performs the required analytic for system design,

the minimum set of coefficients within the modules, the simplest approach to com-

bining multiple analytics (e.g., weighted voting is a simpler approach than tessella-

tion and recombination), etc.

The final types of gain to be considered here are discussed in greater depth in

Chapter 10. We are speaking of gain in terms of successful bias of a system. That

is, a system is biased toward one of seven design considerations. While there are

undoubtedly more than seven, the ones focused on in Chapter 10 are (1) rank, (2)

accuracy, (3) performance, (4) cost, (5) robustness, (6) modularity, and (7) scalabil-

ity. The “gain” here is more broadly defined to compare a particular incarnation of a

system design compared with the system it is intended to replace going forward. We

consider gain and the seven types of system “biases” next:

(1) In the case of rank-biased systems, the expected value of the rank of the actual

correct answer provides the gain. If the previous analytic system provided the

correct answer, on the mean, in 1.85 attempts, and the new system provides the

correct answer, on the mean, in 1.51 attempts, then the “rank-biased gain” is
1


0:51

1


0:85

or 1.667, since the reciprocal of rank is a measure of system performance.

This implies a 66.7% improvement in finding the correct answer for this

particular system upgrade (since perfect rank is 1.0, not 0.0).

(2) When considering accuracy-biased systems, the gain is relatively

straightforward: the gain can be simply defined as the accuracy of the new

system divided by accuracy of the old system. However, the accuracy gain can

be assigned to partitions of the input (leading to an array of gains), or the

accuracies can be normalized; for example, the gain can be defined as the

percent of possible improvement achieved. In this way, improving a system

from 95 to 97% accuracy is more intuitively shown to have a gain of 1.40 (40%

of the way to perfection) rather than 1.021 (the ratio of 0.97 to 0.95).

(3) In the case of performance-biased systems, the gain is again the ratio of the

reciprocals, here the reciprocal of the time for processing, usually of a large,

diverse, and representative benchmark of tasks for the system. If, for example, a

previous system could process the benchmark set in 21.75h, and then a new

system can process the benchmark in 18.23 hours, then the gain is
1


18:23

1


21:75

, or

1.193.



1413.4 Systems of systems
(4) For cost-biased systems, the gain is also the ratio of the reciprocal of the cost of

the new system divided by the reciprocal of the cost of the old system.

Alternatively and equally, it can be defined by the throughput of the new

system per X number of dollars, divided by the throughput of the former system

per X number of dollars. Consider a voice recognition system in which for a

10% performance cost we are able to assign a voice transaction to freeware

software 50% of the time and must use the full cost voice system the other 50%

of the time. The performance is thus 0.10 of normal 50% of the time, and 1.10

of normal 50% of the time, or a mean of 0.60 of normal overall. The new

throughput is thus 1/0.60 or 1.67 times the old throughout (per unit cost).

(5) Next, we address robustness-biased systems. Here, the gain is based on the

most important success criteria—be it performance, cost, accuracy, rank, or

some linear combination thereof—as applied to data unfamiliar to the fully

trained system. Thus, robustness-biased systems are measured using one or

more of the other biases to measure the effectiveness of the system to

“unsupervised” new data. Suppose, for example, we have two systems, A and

B, which provide accuracies of 89.3% and 85.5%, respectively, on an existing

set of training data. System A is overtrained compared with B but performs

much better on downstream data for the next 6 months (88.4% compared with

84.1%). However, when a change in the environment leads to a change in the

nature of the data, system A provides mean accuracy of 80.3% while system B

provides mean accuracy of 82.3%. The robustness “gain” of system B over

system A is based on the ratio of the reciprocals of lost accuracy of B over A,

that is, 1/j85.5-82.3%j divided by 1/j89.3-80.3%j. The robustness gain here is a
compelling 2.812, meaning B is 182% more robust to new data than A as

assessed by accuracy.

(6) For modularity-biased systems, there are several possibly meaningful gains

that can be measured. The first is simply a ratio of the modules before and after

a system redesign. This can be viewed as “module gain” since it reflects only

the number of modules. A second, more qualitative, gain measurement,

provides insight into the ability of different modules to substitute for each

other. At the highest level, the mean number of modules available to perform a

particular task “primitive” is compared before and after a system redesign, and

the gain is the mean number of modules to perform tasks after/before. This can

be viewed as the “modularity gain.” A third type of gain is based on

functionality. Within a larger ecosystem (many systems available for use

within a larger organization), the mean reuse rate for modules before and after a

system redesign can be compared. The “functional modularity gain” is the ratio

of the use of the modules after/before the redesign. Presumably, a system that is

well designed will provide more modules desired for reuse by other privileged

users; therefore, these more usefully packaged modules will appear in more

additional systems. This third form of modularity gain, obviously, will

naturally creep upward as the number of systems or the size of the

organization grows.
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(7) Finally, for scalability-biased systems, we are concerned with the relative use

of the analytic techniques as the size of the problem space grows. A good

example may be a binary classification algorithm—for example, a support

vector machine or SVM—that falls out of utility as the number of classes grows

beyond original design expectations and must be substituted for by other

methods (Bayesian, neural, genetic, attribute-based, hybrid, etc.). Here, the

gain is the relative use of an analytic approach after system scale increases to

the relative use before scaling.
3.4.6 Domain normalization
We kicked off this chapter with an overview of data normalization. There, we

focused on the measured data (i.e., the dependent variable) and how we could

zero-mean center and/or standardize these data so that multiple dependent variables

could be used together in such complicated systems as clustering and classification

analytics. In this section, we are more concerned with the independent variables,

ensuring that we can modify, or normalize, them sufficiently such that the dependent

variable range behaves without bias when a plurality of outputs needs to collaborate

for a task. In general, this involves remapping of the domain space such that range

behavior is normalized.

Thus, one important means of domain normalization uses the measured attributes

of the range to “back propagate” a (usually nonlinear) remapping of the input.

Deemed output space transformation [Sims13], this approach normalizes the output

of multiple algorithms or systems and in so doing performs a type of empirical nor-
malization. Originally, it was noted that complicated analytic processes—which are

often treated as black boxes—can provide rather idiosyncratic confidence values for

the set of possible outputs. These confidence data may be as (a) a ranked set with no

quantitative confidence values, as (b) relative confidence values, or even (in best

case) as (c) actual probabilities. Output space transformation is the process used

to enforce similar relative behavior among the processes when they are used together

in a system of processes. This fundamentally requires converting any incomplete

normalizations—such as approaches (a) and (b) mentioned just above—into “com-

plete” normalizations involving the assignment of probabilities to all possible out-

comes, ranged from 0.0 to 1.0.

In previous work [Sims13], output space transformation was shown to be both

straightforward and useful in allowing three text classification processes to cooper-

ate. The transformation investigated mapped an output probability p, to a new prob-

ability, pα, prior to applying three sets of intelligent processes to the document

classification task. This simple power law transformation was found to be advanta-

geous for a 20% training set (on a 20,000 document system): transforming p to p0.208,
where p is the highest-accuracy engine probability output and removed 43 additional

errors, that is, it reduced the overall system error rate by more than 8%. When the

medium-accuracy process was independently transformed, the square root operator

(α¼0.5) removed the most (14) additional errors (another 3% reduction in error
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rate). Deploying these two transformations (with the output of the lowest-accuracy

process left untransformed) provided an optimal 12,839 correct answers, 62 more

than before the output space transformation: the error rate was relatively reduced

by 11.3%.

Many other approaches to output space transformation exist. Perhaps, the sim-

plest is relative curve alignment, which makes sure that the overall probability

behavior of two different analytics behaves the same. This may simply involve sub-

domain expansion and compression to provide alignment, effectively a form of

“dynamic time warping” applied to histograms, where “time” is simply the proba-

bility domain from 0.0 to 1.0.
3.4.7 Sensitivity analysis
Typical sensitivity analysis focuses on a matrix of partial derivatives and/or condi-

tional partial derivatives. In general, sensitivity is the response of a system to an

instantaneous change in a relevant part of its input. One area of particular interest

for experimental design is the sensitivity analysis of data models. Suppose we have

two models for fitting a set of data, and their residual signals (the behavior of the data

after subtracting out the model) are effectively equivalent. The two models are

ModelA, ŷ¼�2:33x2 + 8:67x+ 4:78 (3.20)

ModelB, ŷ¼ 1:25cos 3:45x+ 0:54ð Þ�1:11x2 + 4:31x + 3:57 (3.21)

We find the partial derivatives of these two simple models:

ModelA,
∂ŷ

∂x
¼�4:66x+ 8:67 (3.22)

ModelB,
∂ŷ

∂x
¼�4:31sin 3:45x+ 0:54ð Þ�2:22x+ 4:31 (3.23)

We then set and compare the two partial derivatives and use Model A when

�4:66x + 8:67j j< �4:31sin 3:45x+ 0:54ð Þ�2:22x+ 4:31j j (3.24)

And, we use Model B when

�4:66x + 8:67j j> �4:31sin 3:45x+ 0:54ð Þ�2:22x+ 4:31j j (3.25)

This provides us with a means to select multiple models for a domain.We canmodify

the coefficients of models so that there is smoothness (continuity) at the subdomain

boundaries if desired. Sensitivity analysis is an extremely important part of the ana-

lytic engineer’s repertoire. Changes in the nature of data tell us about changes in the

customer’s behavior [Hays04] and point to the way in which all important aspects of

analysis—what data to use for ground truth, what models to apply going forward, and

what data to predict will follow—are changing or are about to change.
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3.5 Summary
This chapter outlines important aspects of experimental design for analytics. The

experimental design may occur after the data is collected, as it is about how to define

the analysis of the data. In Section 3.3, the process of simple data normalization—

unit normalization, zero-mean centering, and scaling—was outlined. This process

allows different features or dimensions to contribute to an analytic task equally,

before weighting is assigned. Bias normalization and four important design consid-

erations corresponding to this form of normalization were then overviewed. Bias nor-

malization is a means of preventing nonproportional data collection from distorting

the conclusions of an analytic task. The design considerations find means of remov-

ing bias and are sensitive to the fact that real-world exigencies such as cost, time,

availability and even ethics may prevent the analytics professional from always

being able to employ the greatest rigor (i.e., design consideration #4). The applica-

tion and interpretation of normalization are shown using simple matrix examples but

are shown to scale with the size of the analytic task through the use of such metrics as

the imbalance in the original data collection (IODC) and the mean absolute value

difference (MAVD).

In Section 3.4, we considered the pruning of aging data, initially through the con-

sideration of a backward-in-time (BIT) approach. We then progressed to a forward-

in-time/backward-in-time approach (FIT-BIT) which allowed us to employ, effec-

tively, an intelligent moving average to the data used to guide the experimental

design.

In Section 3.5, we employed system theory to help frame the “engineering prac-

tice” around meta-analytics. The three necessary—and often sufficient—

functionalities in a useful meta-analytics system are componentization, modularity,

and the amenability to series and parallel construction. The advantages in providing a

plethora of potential system designs using these three principles in conjunction were

illustrated. The application of linear system theory—interfaces, gain, domain nor-

malization, and sensitivity analysis—gives valuable insights into the design of the

analytics. In particular, we show one perspective on sensitivity analysis as the partial

derivative of a data model to changes in the domain. Given the choice of two models

to fit the data, we argue that the one least sensitive to instantaneous changes in the

input (domain) data is likely to be more useful in the future. Sensitivity analysis will

be addressed in greater depth in later chapters, particularly Chapter 5.

Hopefully, the reader is now prepared to apply engineering principles to big data

problems. In the next chapter, we overview the core meta-analytic approaches to

make the application of these engineering principles more fruitful.
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CHAPTER
Meta-analytic design
patterns
 4

Meta-Analytics. ht

# 2019 Steven Sim
A designer knows perfection has been achieved not when there is nothing left

to add, but when there is nothing left to take away

Antoine de Saint-Exup�ery (1939)

Patterns cannot be weighed or measured. Patterns must be mapped

Fritjof Capra (1996)
4.1 Introduction
Given the continually expanding scope of computing—in processing power, storage

capacity, bandwidth, parallelism, and architecture—every day shifts the gauge of rea-

sonable analysis closer to brute-force exhaustive search. Blockchain analysis is, for

example, a driving force for the rapid improvement in blockchain mining hardware

over the past several years. Image analysis has been adriving force in the improvement

of graphics processing units. Artificial intelligence is a driving force formany types of

computing hardware, the balance between general purpose processors and custom

processors being dependent on the domain, and the size of the data problem.

Meta-analytics is a branch of analytics that allows a data scientist to move with

the scope of computing, providing a set of patterns that can be readily gauged for

appropriateness for the specific task. Appropriateness maps the resources (proces-

sing, storage, bandwidth, parallelism, etc.) with the specifications of the problem

(amount of data, amount of metadata, number of floating point operations to be per-

formed on each datum, etc.) and also with the relative expense—in terms of these

same specifications—of each meta-analytic approach. The aforementioned block-

chain mining has proved that given a strong enough (usually financial) motivation,

hardware will quickly evolve to move certain data analysis problems ever closer to

exhaustive search. In fact, as the number of leading zeroes (00000*…*) in a bitcoin
nonce increases, the more exhaustive the blockchain hashing search becomes.

Regardless, meta-analytics are certainly timely. Learning the tools of meta-ana-

lytics—namely, the patterns, the steps in the patterns, and the algorithms required at

each step—helps one to be prepared for migrating the analytics over time from one

pattern to the other, rather than facing obsolescence of a particular approach. As Frit-

jof Capra notes, these patterns must be mapped—and this chapter will map a broad

set of meta-analytic patterns. Contradicting Capra, however, these patterns will also

be weighed and measured—that is, after all, the only way that they can cooperate to

solve analytic problems.
tps://doi.org/10.1016/B978-0-12-814623-1.00004-6
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Antoine de Saint-Exup�ery provides a little princely insight into how meta-

analytics work. They do not, in general, achieve their informational goals through

adding to each other—simply adding analytic approaches tends to blur together

information (central limit theorem), which can be valuable for classification prob-

lems but less so for data mining, search, summarization, regression, and many other

analytic tasks. Rather, meta-analytic approaches generally focus on taking away the

“personality” of remaining data, that is, extracting information until what remains is

effectively indistinguishable from what remains for another data set upon which

meta-analytics have been performed. This “equivalence of residual information”

approach is what is meant by design perfection being achieved when there is “noth-

ing left to take away.” Once the residual data are without personality, all of the orig-

inal personality has been digested into information.
4.2 Cumulative response patterns
A cumulative response curve [Prov13], also known as a lift curve or a cumulative

gain chart, provides a particular set of insights for a predictive model. Typically, this

represents the relative accuracy of classification, but it can be readily applied to

regression, wherein the inverse of the distance from the actual value is the predictive

model measured versus untrained regression. By lift is meant the relative effective-

ness of a predictive model over random guessing. In this section, we use a simple

binary classification example to illustrate how cumulative response curves and a

new “conditional cumulative response curve” can be used to identify the samples

most relevant to subsequent meta-analytic approaches.

The first cumulative response curve (hereafter “CRC”) is shown in Fig. 4.1. We

consider two points on the curve to illustrate the insight provided by a CRC. For

example, the first point on the curve is (0.106, 0.50), which means that the 10.6%

of samples most highly ranked (by Classifier A) belonging to Class 1 result in
FIG. 4.1

Cumulative response curve for Classifier A.
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50% of the samples that are actually from Class 1 are identified. The ratio is 0.500/

0.106¼4.72. Since this ratio is above 2.0, it is clear that the classification problem

shown is imbalanced; that is, there are at least 4.72 times as many samples not

belonging to Class 1 as there are samples belonging to Class 1. The peak ratio (in

this case 14.3 when x¼0.01 and y¼0.143) usually corresponds to 100% accu-

racy—in this case, 7% of the overall set of samples belongs to Class 1, while

93% do not. Extending this, if the first Δx samples result in Δy percentage of a class
(Class 1) being identified, then the percentage of the samples belonging to Class 1 is

given by Eq. (4.1):

Percentage in Class 1¼ △x=△yð Þ100% (4.1)

For the example, (0.01/0.143)100%¼7.0% as noted above. This percentage in Class

1 can, of course, be directly measured from the ground truth data set, but we will use

the following definition since it provides a good comparative value for the discussion

to follow (Eq. 4.2):

EPC1¼EstimatedPercentinClass1 ¼
△xinitial
△yinitial

� �
100%¼ ∂x

∂yinitial

� �
100% (4.2)

As mentioned, in most cases, EPC1 will be accurate since the initial few samples will

be more or less 100% accurately assigned (especially for binary classification).

Thereafter, the curve can be mined for any regions in which the slopeΔy/Δx approx-
imates the slope 1/EPC1. These are areas of high interest to meta-analytics, as

discussed below.

The second point of interest to our discussion on the curve in Fig. 4.1 is (0.2,

0.711). Here, 20% of the samples have been assigned to Class 1. We previously

found EPC1 was 7%, and so, 0.711(7%) or 4.98% of the total number of samples

actually belong to Class 1 and are assigned to Class 1. The accuracy is thus

(4.98%)/(20%)¼0.249. Note that this accuracy is also directly computed from

(Δy/Δx)EPC1, which is (0.711/0.20)(0.07)¼0.249.
4.2.1 Identifying zones of interest
One useful technique for identifying zones of interest is the use of a conditional

cumulative response curve. Fig. 4.2 introduces this useful tool. As with any condi-

tional expression, the joint probability of an event of interest, A, and an event known

or assumed to have occurred, B, is dependent on having the events refer to the same

partition of the overall probability space. Given any set of samples large enough to

make the creation of a cumulative response curve feasible, there is a diminishingly

small chance of any two analytic approaches having the same ranked order of sam-

ples. Therefore, in order to illustrate how the individual approaches are affected by

the samples, we need to “pin” the sample ordering based on the ranked order of just

one of the approaches. The approach (classifier, regression algorithm, clustering

algorithm, etc.) that is used to pin the sample ordering is termed the “anchoring ana-

lytic.” The manner in which to do this is illustrated by Fig. 4.2 and described next.



FIG. 4.2

Cumulative response curves for Classifier A (upper curve) and Classifier B (lower curve). The

samples are chosen in the same order, based on the rankings for Classifier A. Thus, the curve

for Classifier A is smoother than that for Classifier B, since the curve for Classifier B is actually

a conditional cumulative response curve.
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In Fig. 4.2, the cumulative response curve (hereafter “CRC”) for Classifier A is

used as the anchoring analytic (upper curve), as its performance is better than that of

Classifier B (data not shown). This is because the area under the CRC is equal to

0.8256 for Classifier A but only 0.8078 for Classifier B. In general, when selecting

the anchoring analytic for a conditional cumulative response curve (hereafter

“CCRC”), select the analytic with the highest area under the CRC. When the order-

ing of anchoring analytic A is used, we see the CCRC for Classifier B as the lower

curve in Fig. 4.2. This curve has a much lower area than the area under the CRC for

Classifier B when Classifier B’s sample ranking is used—it is 0.7512 instead of

0.8078. This means that there is a reduction in area under the curve of

0.8078�0.7512¼0.0566 in CCRC when compared with the CRC. This is a large

difference, but more importantly, it is an opportunity.

Looking once more at Fig. 4.2, we see that the curve for Classifier A is smoother

than that for Classifier B, since the curve for Classifier B is a CCRC and thus has

some “disjointedness” where its ranking order of the samples deviates meaningfully

from that of Classifier A.

Fig. 4.3 makes the relationship between the CRC for Classifier A, the anchoring

analytic, and the CCRC for Classifier B, the dependent analytic, more explicit. The

lowest of the three curves in Fig. 4.3 represents the difference CRC(A)�CCRC(B). If

the sample ranking behavior of Classifiers A and B were closely related, we would

expect this curve, CRC(A)�CCRC(B), to be rather smooth and to generally not rise

very much above two times the difference in overall classifier accuracy (since the

domain and range for that matter are 1.0, no normalization of this value is necessary).

Two smooth CRC curves will differ by a crescent moonlike sliver that is relatively
well approximated by two triangles, and in such a case, the peak difference between



FIG. 4.3

Cumulative response curves for Classifier A (CRC) and Classifier B (CCRC, with A’s CRC as

the anchor analytic). The lowest curve is the difference between the two curves, CRC

(A)�CCRC(B), which can be seen to have the greatest positive slope in the domain x¼(0.07,

0.17) and the greatest negative slope in the domain x¼(0.33, 0.58).
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two CRC curves will be approximately twice the mean difference, and thus twice the
difference in area since the domain is (0, 1). For our example, this difference, CRC-

Area(A)�CRC-Area(B), is 0.8256�0.8078 ¼ 0.0178. In reality (data not shown),

the peak difference between CRC(A) and CRC(B) occurs when x¼0.20 and is

0.694�0.643¼0.051, which is still far less than the observed peak difference

between CRC(A) and CCRC(B), which is 0.203 when x¼0.18.

In Fig. 4.4, the first derivatives (on intervals of Δx¼0.01) of the two curves in

Fig. 4.2 are plotted. The significance of these first derivatives is the topic of the next

section.
FIG. 4.4

Plot of the first derivatives of the cumulative response curves for Classifiers A and B.
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4.2.2 Zones of interest for sequence-dependent predictive selection
The zones of relatively consistent differences between the two curves, “Delta-A” and

“Delta-B”, of first derivatives (Fig. 4.4) are given in Fig. 4.5. Zone A is the zone

where the greatest positive slope is obtained, that is, in the domain x¼(0.07,

0.17). The zone with the greatest negative slope is further subdivided into two

ranges: Zone B1 in the domain x¼(0.33, 0.42) and Zone B2 in the domain x¼
(0.47, 0.58).

In general, such differences in Delta-A and Delta-Bmay not aggregate into zones.

More programmatically, we define a pattern for identifying samples that are of high

interest. We begin with the computation of a sorted differential-CCRC, or SD-

CCRC, graph, as illustrated in Fig. 4.6.

The SD-CCRC is used to identify those samples that are more strongly biased

toward one analytic approach versus the other, particularly in the context of aug-

menting the cumulative behavior of the curve. This is important, but it means that

the values in Fig. 4.6—that is, Delta-A minus Delta-B values—are contextual to

the changes in the cumulative behavior of the analytic approach. This sequentially

relevant context distinguishes this SD-CCRC design pattern from the simpler, non-

sequentially context-dependent meta-algorithmic pattern, predictive selection, as

introduced elsewhere (Ref. [Sims13], pp. 189–192).
The steps involved in the SD-CCRC design pattern are recapitulated in Table 4.1.

As described above, the first step is to compute the CRC for the anchoring analytic

(this is the more accurate classifier, Classifier A, as shown in Fig. 4.1), designated

CRC(A). In Step 2, the dependent analytic is referred to the anchoring analytic con-

ditionally, and thus, its CCRC is computed (Fig. 4.2) as CCRC(B). Then, in Steps
FIG. 4.5

Plot of the first derivatives of the cumulative response curves for Classifiers A and B. Three

zones are identified. In Zone A, the derivative of Classifier A is higher than the derivative of

Classifier B; in Zones B1 and B2, the derivative of Classifier B is higher than the derivative of

Classifier A.



FIG. 4.6

Sorted differential-CCRC, or SD-CCRC, computed from Fig. 4.5, where the derivative of curve

CRC(A), or Delta-A, has the derivative of curve CCRC(B), or Delta-B, subtracted. These values

are then sorted from largest to smallest and various measurements performed as described in

the text.

Table 4.1 Steps in the sorted differential-conditional cumulative response
curve (SD-CCRC) design pattern, outlined in this section.

Sorted differential-conditional cumulative response curve (SD-CCRC) design
pattern

Step
number Algorithm or process performed at this step

1 Compute the CRC for anchoring analytic, A¼CRC(A)

2 Compute the CCRC for dependent analytic, B, with reference to
A¼CCRC(B)

3 Compute the first derivative curve for CRC(A)¼Delta-A

4 Compute the first derivative curve for CCRC¼Delta-B

5 Compute the difference curve D-CCRC¼Delta-A�Delta-B

6 Sort the SD-CCRC from largest (A favored) to smallest (B favored)
samples

7 Mine the start and end zones of the SD-CCRC for predictors

8 Apply predictors to the meta-analytic deployment

1534.2 Cumulative response patterns
3–4, the first derivative curve for both CRC(A) and CCRC(B) is computed (Figs. 4.4

and 4.5) as Delta-A and Delta-B, respectively. Step 5 computes the difference

between CRC(A) and CCRC(B), designated D-CCRC¼Delta-A�Delta-B. Step 6

involves sorting the individual values in D-CCRC and plotting in sorted order as

SD-CCRC, shown in Fig. 4.6. All of these steps have been described in some detail

already, and so, Steps 7–8 are of particular interest to us.
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In Step 7, we now take advantage of the sorted samples in Fig. 4.6 to perform

proper data mining. Themining is intended to find potential binary decisions of value

to allow the deployment of advanced patterns such as predictive selection (see, e.g.,

Fig. 2.2). For all of the features, or metrics, measured as part of the analytic process,

we determine whether the start and end ranges of the ground truthed data have reli-

able, consistent differences for the two analytics. If so, we can decide for that start

zone to weight analytic A (in this case Classifier A) more heavily than analytic B and

for the end zone to weight analytic Bmore heavily. These predictors are used, in Step

8, to select the specific analytic deployment for samples matching the predictor. For

example, for a text-based analytic document, any document containing words W1,

W2, andW3 in high relative frequency is likely to be in the start zone, and documents

containing words W4, W5, and W6 in high relative frequency are likely to be in the

end zone. Thus, when a sample not in the training set appears, it can be assigned to

one of three deployments in this simple example:

1. W1, W2, and W3 occur with high frequency; deploy the analytic A favoring

analytic.

2. W4, W5, and W6 occur with high frequency; deploy the analytic B favoring

analytic.

3. Default analytic, favoring neither analytic A nor B. Here, {W1,W2,W3} and

{W4,W5,W6} either both occur with high frequency or both occur with normal or

low frequency.
4.2.3 Traditional cumulative gain curves, or lift curves
Cumulative response patterns, described in the previous few sections, are based on

the cumulative gain curves (CGCs), also known as lift curves. These curves are a

convenient way of evaluating a particular classifier, as so much information can

be gleaned from a single curve.

Lift curves are simple in conception, and in this section, we show how to generate

and analyze one. First, we collect all of our samples (or groups of samples with sim-

ilar confidence) and rank order them based on the confidence values. The highest

ranked samples are those we most confidently believe belong to the particular class

to which we are assigning them. These samples have, for example, the highest con-

fidence (relative or absolute) in their output probability for the specific assigned

class. Next, we determine the accuracy of each sample (or sample set) and then

the cumulative accuracy by summing the accuracies of the cumulative sets and divid-

ing by the number of sets. We view the curve and look for when behavior noticeably

changes—the change in behavior gives us insights into the limitations of the system

and indicates where we may apply hybrid system approaches.

A data set used to generate a lift curve is presented in Table 4.2. Here, there are 10

sets of data, each with an accuracy between 0.75 and 0.99 for the class from which

the data presumably come. The data sets are then rank ordered in order to ensure a

monotonic lift cumulative gain curve. The cumulative gain curve with the set in rank



Table 4.2 Data set for a simple example of generating a cumulative gain curve,
or lift curve.

Sample set Confidence Accuracy Rank

1 0.68 0.91 6

2 0.56 0.77 10

3 0.78 0.95 3

4 0.84 0.98 2

5 0.66 0.86 7

6 0.57 0.75 9

7 0.77 0.96 4

8 0.91 0.99 1

9 0.63 0.82 8

10 0.69 0.89 5

This is a binary classifier, for which our engine reports confidences in the range of 0.56–0.91. The
accuracies end up in the range of 0.75–0.99.

Table 4.3 Data set from Table 4.2 with the sample sets in order of confidence.

Sample set Confidence Accuracy Cumulative accuracy Rank

8 0.91 0.99 0.990 1

4 0.84 0.98 0.985 2

3 0.78 0.95 0.973 3

7 0.77 0.96 0.970 4

10 0.69 0.89 0.954 5

1 0.68 0.91 0.947 6

5 0.66 0.86 0.934 7

9 0.63 0.82 0.920 8

6 0.57 0.75 0.901 9

2 0.56 0.77 0.888 10

The cumulative accuracy sums to 88.8%, meaning selecting these 10 data sets results in overall
accuracy of 88.8%. As we will shortly see, the CGC usually represents all sample sets at once, but these
10 sets are the beginning of the CGC, encompassing those samples for which confidence �0.56. The
samples for which confidence <0.56 would create the rest of the CGC.
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order based on the confidence values and accuracies is given in Table 4.3. The curve

comprised of the data in Tables 4.2 and 4.3 itself is given in Fig. 4.7. Note that in this

case, we only had classifier output where the class of interest is highest confidence

(sample set 2 still has 56% confidence in A, which is above 50%). The confidence is

highly correlated with the accuracy, as can be seen in the data in Table 4.3, but not

entirely. The accuracy of sample set 1, with confidence 0.68, for example, is higher

than the accuracy of sample set 10, with confidence 0.69. Overall, however, there is

strong correlation between accuracy and confidence in Table 4.3, as given in

Eq. (4.3):

Accuracy¼ 0:7153 confidenceð Þ+ 0:3809 (4.3)



FIG. 4.7

Cumulative gain curve for Table 4.3 data. The curve has these attributes: (A) monotonic, (B)

generally has decreasing slope as x-axis (percentage of samples assigned to the class)

increases, and (C) asymptotically approaches 1.0 (or 100%).
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For Eq. (4.3), the R2¼0.902. Table 4.3 also introduces the cumulative accuracy,

which is the overall accuracy of the classification when the sample sets up to N sam-

ple sets are selected. By the time all the sample sets with confidence of 0.56 or higher

are selected, the cumulative accuracy is 88.8%. Thus, eight out of nine samples have

been classified correctly among all those reporting 56% or more confidence.

The CGC of Fig. 4.7 is extended in Fig. 4.8 to show a ray extending from the

origin that illustrates perfect classification. The difference between the ray (straight

line segment in Fig. 4.8) and the curved line is samples misclassified.

We next extend the concept of the CGC to a larger data set. In Table 4.4 are the

first 20 entries in a larger example comprising 100 entries. In the data set of

Table 4.4, there are 3000 samples, and therefore, the individual sample sets are

30 each in size. Table 4.4 is the cumulative accuracy of the samples with the highest

calculated confidence belonging to Class A. Class A is one of three equally sized

classes, each with 1000 samples (the other two being Class B and Class C, with

1000 samples each). A perfect classifier for Class A would therefore rank those

1000 samples that actually belong to Class A the highest, and by the time 33.3%,

or 33 1/3 sample sets, of the samples are chosen, all of Class A is assigned correctly,

and no samples from Class B or Class C are assigned to this set. However, we can see

here that even assigning only 60% of this ideal number (600) results in 123 errors, for

a 79.5% cumulative accuracy. A 100% cumulative accuracy for the last row in

Table 4.4 would assign 600 samples to Class A, with no misclassifications.

Fig. 4.9 shows the lift curve for the data in Table 4.4 (which only covers the part

of the curve for the x-axis going from 0.0 to 0.2) and the remaining 80% of the data



FIG. 4.8

Cumulative gain curve for the table data with the “perfect classification” indicated by the ray

(line segment with an arrow at the end). The overall accuracy is nearly 100% until x¼0.4 and

thereafter diverges. The actual curve can never be above the ray. The intersection of the ray

with y¼1.0 (100%) is the percentage of samples actually in the class (here, 100%).

Table 4.4 Here are the first 20 entries (600 samples) in a larger example,
where there are 3000 samples, and the individual sample sets are 30 each
in size.

Percentage
of instances

Percentage of
positives targeted

Percentage targeted in
perfect classification

Cumulative
accuracy

0 0 0 1.000

0.01 0.03 0.03 1.0000

0.02 0.059 0.06 0.983

0.03 0.087 0.09 0.967

0.04 0.116 0.12 0.967

0.05 0.145 0.15 0.967

0.06 0.173 0.18 0.961

0.07 0.2 0.21 0.952

0.08 0.226 0.24 0.942

0.09 0.251 0.27 0.930

0.1 0.275 0.3 0.917

0.11 0.298 0.33 0.903

0.12 0.321 0.36 0.892

0.13 0.344 0.39 0.882

0.14 0.365 0.42 0.869

0.15 0.385 0.45 0.856

0.16 0.404 0.48 0.842

0.17 0.423 0.51 0.829

0.18 0.441 0.54 0.817

0.19 0.46 0.57 0.807

0.20 0.477 0.60 0.795
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FIG. 4.9

Cumulative gain curve for Table 4.4 (0–0.2 pct) and the other 80% of the samples not shown

in Table 4.4. This is the part of the curve included in Table 4.4 from 0 to 0.2 along the x-axis,

“percentage of instances assigned to Class A.”
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set. We can see from the discussion to this point that the lift curve provides a par-

ticular set of insights for the predictive model. Typically, this represents the relative

accuracy of classification, but it can be readily applied to regression, wherein the

inverse of the distance from the actual value is the predictive model measured versus

untrained regression. By lift is meant the relative effectiveness of a predictive model

over random guessing.

Estimated percentage in Class A (EPCA ), as defined in Eq. (4.4) (see also

Eq. 4.2) will be accurate since the initial few samples will be more or less 100% accu-

rately assigned (especially for binary classification).

EPC1¼EstimatedPercentinClassA ¼
△xinitial
△yinitial

� �
100%¼ ∂x

∂yinitial

� �
100% (4.4)

The overall percentage of samples in Class A is given by Eq. (4.5) (see also Eq. 4.1):

PercentinClassA ¼
△x

△y

� �
100% (4.5)

Finally, the accuracy of the curve at any point is determined by Eq. (4.6):

Accuracy¼ Δy=Δxð Þ∗EPC1 (4.6)

Fig. 4.10 shows the curve of the CGC, or lift curve, running between the piecewise

linear curve of perfect classification and the straight line segment, or ray, of random

guessing. Of course, it is possible for the CGC to run BELOW the line of random gues-

sing, in which case the CGC is a good predictor of failure (above expectation).

We customarily show the CGC above the guessing line for either success or failure,

since either is a form of information gain over purely guessing. Fig. 4.11 adds a number

of significant labels to the three curves of Fig. 4.10 and deserves a closer evaluation

to help glean the power of the CGC for determining key classification metrics.



FIG. 4.10

Cumulative gain curve of Fig. 4.9 with additional line segments added. The lowest slope line

segment is the CGC for random guessing, and the highest slope line segment is the CGC for

100% accuracy. The curve between these two line segments is the actual (measured) CGC.

FIG. 4.11

Cumulative gain curve of Fig. 4.10 with additional labels to allow the computation of important

classification metrics. Please see text for details.
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In Fig. 4.11, the upper piecewise linear curve is the curve for perfect classifica-

tion, and it reaches the y¼1.0 mark in proportion to the number of samples in the

class of interest divided by the total number of samples. In this case, that is 1/3 of

the samples, since there are three equally sized classes. The lower curve, or ray,

is the curve for random guessing. Precision at any point is the ratio of ycorrect to ytotal.
Early in the curve (i.e., when the “percentage of instances assigned to Class A” is just

above 0.0), ycorrect is equal to (or nearly equal to) ytotal, and so, the precision is

approximately 1.0. Fig. 4.12 “unwraps” this relationship between ycorrect and ytotal



FIG. 4.12

Precision (y-axis) versus the percentage of instances assigned (x-axis)—note its asymptotes

to the overall percentage in Class A, which in this example is 0.333.
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to show that precision consistently decreases as the percentage of instances assigned

to Class A increases—especially after this percentage is greater than the percentage

of samples that actually are in Class A (i.e., 0.333).

In Fig. 4.12, we recall that precision is equal to ycorrect/ytotal. It is even simpler

to calculate recall: recall is simply ycorrect at any value for x. The F-measure,

or harmonic mean of precision and recall, is thus 2pr/(p+r), which in this case is

2ycorrect/(ycorrect+ytotal
2 ). Note that generally, accuracy and precision are used

interchangeably in a CGC.

We are typically concerned with determining an optimized system that is both

highly precise (accurate, few false positives) and yet does not omit a large percentage

of samples that are actually from the class of interest (recall is high, few false neg-

atives). That is why the harmonic mean of precision and recall, the F-measure, is

used. The F-measure maximum is determined as shown in Fig. 4.13. This is how

the optimum for a precision-recall curve is discerned. The arrow in Fig. 4.13 is

the minimum arrow length circling the point (0, 1) that hits the lift curve. For

Fig. 4.13, the optimal point is roughly (0.32, 0.66), corresponding to an accuracy

of approximately 0.69 (from 0.66/0.96).

In equation form, the optimum point Poptimum is given by Eq. (4.7) and is the point

on the lift curve where the Cartesian distance from upper left (0, 1) to the lift curve is

minimum:

Poptimum ¼ argmin P2CGCð Þ 1�Py

� �2
+ Px�0ð Þ2

n o
¼ argmin P2CGCð Þ 1�Py

� �2
+Px

2
n o

(4.7)

We have shown here that many useful analytics can be deduced just from the lift

curve:

1. Percentage of samples in the class of interest from △x
△y

2. Percentage of samples from the class assigned at any value of x, from ycorrect
3. Precision¼ycorrect/ytotal
4. Recall¼ycorrect
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The F-measure maximum is determined as shown here. Please see text for details.
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5. F-measure¼2ycorrect/(ycorrect+ytotal
2 )

6. Optimum percentage of instances to assign to Class A and the recall and precision

at that optimum, from Eq. (4.7)

7. Relative distance between actual precision and “perfect precision” and “random

guessing precision,” from the curves in Figs. 4.10 and 4.11

We now proceed to a consideration of the optimization of analytics.
4.3 Optimization of analytics
4.3.1 Decision trees
In some cases, a series of analytic steps either must be performed or are more effec-

tive when performed in a sequence. An example of this, familiar to many, is the deci-

sion tree, in which decisions can be based on specific attributes of the data set, for

example, assigning to cluster A if the attribute is greater than threshold T1, assigning
to cluster B if the attribute is in the range (T1, T2), and assigning to cluster C if the

attribute is less than threshold T2. The thresholds T1 and T2 can be determined using

information gain as the decision approach: the values of T1 and T2 that most signif-

icantly reduce the entropy of the three new clusters A, B, and C in comparison with

the original combination of the three clusters are chosen. Note that this is the opposite

direction of entropy normally associated with decision trees (in which an increase in

information gain is a measurable benefit of the right order of decisions). Table 4.5

illustrates three different distributions that provide a (T1, T2) pair.
The information gain is the absolute value of the reduction of the entropy, shown

here in Eq. (4.8):

Information gain¼
X

original

clusters

pi ln pið Þ�
X
new

clusters

pi ln pið Þ

����������

����������
(4.8)



Table 4.5 Information gain choosing three different values for T1 and T2.

Original cluster5{10,10,10}
distribution

Cluster
A

Cluster
B

Cluster
C

Sum of A,
B,C

{a,b,c} Distribution 1 {6,2,1} {2,6,3} {2,2,6} {10,10,10}

Entropy distribution 1,
sum¼2.793

0.848 0.995 0.950 2.793

{a,b,c} Distribution 2 {7,0,3} {2,8,1} {1,2,6} {10,10,10}

Entropy distribution 2,
sum¼2.219

0.611 0.760 0.848 2.219

{a,b,c} Distribution 3 {8,1,1} {0,9,3} {2,0,6} {10,10,10}

Entropy distribution 3,
sum¼1.765

0.639 0.563 0.563 1.765

The original cluster has 10 samples each from Classes A, B, and C, and so, the entropy of three such
clusters¼3.300. The information gain is thus 3.300-(entropy sum) or 0.507 for distribution 1, 1.081 for
distribution 2, and 1.535 for distribution 3. Distribution 3 is thus chosen for maximum information gain in
this example.
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The original set has entropy¼3.300 (entropy of a single cluster with {10,10,10}

is 1.100, so we scale this to the three clusters we split into and make it 3.300), and

distributions 1, 2, and 3 have information gains of 3.300�2.793¼0.507,

3.300�2.219¼1.081, and 3.300�1.765¼1.535, respectively. Thus, distribution

3 is a better choice (provides the best T1 and T2 of the three choices shown) than

distribution 1 or 2.

The decisions in decision trees, of course, need not be determined by information

gain, though it is an approach I favor since I view meta-analytics as a process by

which multiple analytic approaches are used to “scrub the personality” from a set

of data. Regardless, the approach of information gain can be extended to customized

patterns for an individual. This is the subject of the next section.
4.3.2 Putative-identity triggered patterns
An important outcome of Table 4.5 is the understanding that the possible information

gain is a function of the particular downstream analytics (in the case of Table 4.5, the

accuracy). Similarly, it is a function of the type of task that is being addressed. In this

section, this point is illustrated through the example of a specific approach to bio-

metrics that is designated “putative-identity-based biometrics.” This in turn intro-

duces an analysis approach termed “putative-identity triggering.” This is a helpful

pattern when we can subpartition a larger analysis space based on real-time context.

Suppose that we wish to identify an individual based on a small but relatively

accurate set of biometric measurements. For example, these biometrics can be voice

recognition, iris recognition, facial recognition, keyboard dynamics, and fingerprint
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recognition. The biometrics can be continuous and/or challenge-based (e.g., where

the user is asked to perform a task like speaking a specific set of words), so we may

have a total of 10 effective biometrics from this set of five recognition approaches

(NB¼10).

The number of ways these NB individual biometrics can be used to create a per-

sonalized biometric is astonishing. The number of permutations of these biometrics

is NB!, which for NB¼10 is 3.63�106. And this is just for different orderings of the

NB biometrics. If a subset of NS�NB biometrics are also allowed, then the number of

biometrics possible is given by Eq. (4.9):

XNB

k¼1

k! (4.9)

For NB¼10, this sum is 4.04�106. In addition to the sequencing, we can also con-

sider combinations of the NB biometrics (meaning all k�NB biometrics are required,

but their order doesn’t matter), which is given by Eq. (4.10):

XNB

k¼1

NB!

k! NB�kð Þ! (4.10)

ForNB¼10, this is equal to 2N�1¼1023, since the empty set is not useful. The set of

combinations is of course a subset of the permutations, and so, we have not yet gen-

erated any new biometric identification patterns. But when we allow the weighting of

the combinations to vary over a reasonable range of values, we suddenly have NR

possible values (i.e., coefficients for weighted combinations) across the range.

Assuming NR is the same for every biometric, the number of weighted combinations

is now given by Eq. (4.11):

XNB

k¼1

NRð Þk NB!

k! NB�kð Þ! (4.11)

Let us suppose that we can divide each biometric into a range of 10 relative weights.

Then, NR¼10, and the above sum is 2.59�1010. All of the combinations (1.02�104

for NB¼10) where the weighting of the coefficients is identical are degenerate cases

to the permutations, but this still leaves the relevant number of weighted combina-

tions at 2.59�1010.

In addition to the permutations and weighted combinations described, there are

other, advanced, patterns based on meta-algorithmics (such as predictive selection).

Clearly, then, the number of patterns possible is higher—generally much higher—

than the number of individual biometrics that can be efficiently collected, even in

today’s age of relatively ubiquitous distribution of sensors (cameras, microphones,

accelerometers, etc.). As such, a specific pattern personalized to an individual is gen-

erally more effective for biometric identification—using an individualized pattern,



164 CHAPTER 4 Meta-analytic design patterns
in general, reduces the false identification of people other than the legitimate indi-

vidual. The change in false positives can be used as a measurement for information
gain for the individual versus the nonindividuals in the set. This measurement will be

different from the information gain defined for clustering above but still presents a

valuable comparative metric for the effectiveness of a given analytic approach.

Suppose that for one combination of three biometrics, an individual moved from

the 73rd ranked identity to the 21st ranked identity with a weighted combination. The

information gain here is (73/21)¼3.48. Measurements of information gain can be

used to rate the relative value of each personalized pattern—and in combination with

measurements of performance, cost and robustness, among other factors, can be used

as input to optimize an overall system (e.g., if one expensive biometric does not con-

sistently appear in the personalized patterns, it can be left out of the overall system

with cost savings and relatively minor impact on accuracy, performance, etc.).
4.3.3 Expectation-maximization and maximum-minimum patterns
Expectation-maximization (EM), or perhaps better-named expectation-optimization,

is an effective means of playing two processes off against each other to provide an

optimized result for the system comprising these and perhaps additional processes. In

the most commonplace form, expectation-maximization cycles between assigning

samples to clusters defined by a single value (after the first iteration, this is the cur-

rent cluster centroid) and then defining the centroids of clusters from the values

assigned: rinse and repeat. The two processes traded off are (1) defining clusters

based on all the assigned samples and (2) assigning samples to the closest defined

cluster centroid.

Other trade-offs can be used for an EM (or at least EM-inspired) process. As one

example, we can switch the set of features used to cluster iteratively in the two halves

of the EM algorithm. The example provided here is for text clustering. Suppose that

we determine the number of features—in the case of text clustering, this might be the

number of keywords or key phrases used to describe a cluster—for optimal clustering

is N. Then, we decide to cluster based on N+M and N�M keywords and iteratively

hone in on an optimization. This can be done by leaving out terms not occurring in

both clusters from the redefinition of the clusters. This form of EM thus performs

“omission of terms” for (re)definition of cluster centroid between iterations. Termi-

nation conditions for iteration do not have to change in comparison with the normal

EM algorithms, however.

The complexity of EM algorithms includes the definition of even further elabo-

ration, designated the extended expectation-maximization pattern (EEMP), as illus-

trated in Figs. 4.14 and 4.15. This EEMP is actually a hybrid pattern, incorporating

principles of evolutionary algorithms in an effort to avoid local optimization some-

times accompanying EM approaches.

In Fig. 4.14, the approach for advanced text clustering is extended to a series of

three EM-like steps incorporated as a sequence within a relatively more protracted

and elaborated iteration. The clusters are initiated along any usual preferred means
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FIG. 4.14

Applied (specific) version of the extended expectation-maximization pattern applied to text

clustering (e.g., for taxonomy definition, search, document sequencing, and related tasks).

Note the sequential set of three operations used to define two simultaneous clusters that are

milled to create the accepted cluster definitions.
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(e.g., randomly), and then, the iteration continues unless the difference, Δ, between
the current and previous iteration is less than a threshold, ε. In the EM portion of the

algorithm, instead of one juxtaposed pair of operations, there are three:

(1) First, the X cluster is formed from a surfeit of text features (terms that are

keywords and/or key phrases, chosen through methods such as TF*IDF
[Vans17]), while the Y cluster is formed from a scarcity of text features. That is,

the number of terms, N, used to create the “X” clusters isMmore than that used
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Y ← N-M features providing best F-score

Y ← P+M features providing best F-score
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FIG. 4.15

Generic version of the extended expectation-maximization pattern. Note the sequential set of

three operations used to define two simultaneous “sets of sets” that are milled to create the

accepted set of sets definition. Features are available both manually (expert features) and

automatically.
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to create the “Y” clusters. The values for N andM can be determined a number

of ways experimentally, including empirically or historically (e.g., from similar

sized and composed document sets). In the pattern shown in Fig. 4.14, the F-
score approach is suggested. That is, after selectingN terms, we subtract 1…N/
2 terms from N and select the value that provides the highest cluster F-score,
that is, the cluster set with the highest value of between-cluster variance divided

by within-cluster variance. The value ofM is then determined, and the Y cluster

is presumed to be optimized along this vector.
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(2) In the second step, we define a new “X” cluster based on P terms, where P is

less than the expected (empirically, historically, etc.) number of terms. Then,

we add 1 … P terms onto the “X” cluster to define a new “Y” cluster, the

optimal value of which is also selected using the F-score measurement above.

Note that information gain of the added terms could also be used instead of the

F-score.
(3) In the third step, the “X” and “Y” clusters are defined of precisely N and P

terms. We now have three sets of “X” and “Y” clusters, which allow us to

define a final set of clusters using meta-analytic means. For example, for each

of the steps, we can define clusters solely based on the interaction of the “X”

and “Y” clusters and then assign unassigned samples to the clusters based on

distance. The definition of the clusters dictates the key terms for the next

iteration. We can then vote on the cluster assignment of the samples based on

the cluster assignments of these three steps.

Fig. 4.15 generalizes the approach of Fig. 4.14 (and the previous paragraph) and

extends it to other application areas. The basic principal is to perform the following

three steps:

1. Select the expected number of features and form the first set using these. Allow a

second set to exceed this number of features by up to two times (or other relevant

multiplier, depending on the nature of the problem space) and optimize based on a

domain-independent measurement such as F-score or information gain.

2. Select a set of features less than the expected value (e.g., 2/3 the expected value

for the most balanced situation) and form the first set using these. Allow a second

set to exceed this number of features by up to two times (or other relevant

multiplier, depending on the nature of the problem space) and optimize based on a

domain-independent measurement such as F-score or information gain.

3. Select clusters from two preselected values without F-score, information gain,

and optimization.

After these three steps, a plethora of potential combination approaches can be fol-

lowed, including erosion and recombination (prune the regions and combine the

resulting pruned clusters, along the lines used for the text clustering above), voting,

weighted voting, and expert system decisions (comparing the terms in the clusters to

the keywords in the downstream classes, etc.).

One example of employing the extended expectation-maximization pattern is

given in Table 4.6. A linear combination of 10 TF*IDF equations was applied to

a 588-document test set comprising 12 document classes as described elsewhere

[Vans17], with these classes being the 12 CNN-provided classes (business, health,

justice, living, opinion, politics, showbiz, sport, tech, travel, the United States,

and world). Clustering accuracy is determined based on finding the 12 clusters that

correspond to the 12 classes and counting only those correctly assigned to these 12

clusters as being “accurate.” Attachments to the wrong cluster, extra clusters, and

unclustered documents are considered “inaccurate.” For this test, the three steps



Table 4.6 Twenty iterations of the extended expectation-optimization pattern
as illustrated in Fig. 4.14, applied to the database described in Ref. [Vans17].

Iteration Accuracy of clustering Iteration Accuracy of clustering

1 230/588¼0.391 11 373/588¼0.634

2 267/588¼0.454 12 370/588¼0.629

3 273/588¼0.464 13 375/588¼0.638

4 303/588¼0.515 14 371/588¼0.631

5 338/588¼0.575 15 375/588¼0.638

6 345/588¼0.587 16 371/588¼0.631

7 352/588¼0.599 17 375/588¼0.638

8 367/588¼0.624 18 371/588¼0.631

9 365/588¼0.621 19 375/588¼0.638

10 368/588¼0.626 20 371/588¼0.631

For a small positive ε, it is clear that the iterations terminate at 9. Note that the iterations oscillate between
accuracy¼0.631 and 0.638 after iteration 13.
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in Fig. 4.14 are performed in sequence; then, clusters are pruned to the intersection of

at least two of the three “X” and “Y” cluster sets. The initial TF*IDF weightings and

initial clusters are computed from the equal-sized training set (588 documents). Dur-

ing testing, the TF*IDF key terms are taken for the next iteration as the terms

weighted from 0.01 to 1.00 times the highest weighted TF*IDF term in the cluster

(typically�50 terms used). Interestingly and perhaps a consequence of the relatively

small size of the document test set (49 documents/class, total of 588 documents), the

accuracy of the clustering drops slightly by iteration 9 and oscillates by iteration 13.

The convergence is rapid.

A question worth asking about Table 4.6 is, “why does this work?” Part of the

answer, certainly, is that the three steps in each iteration offset each other nicely.

In forcing the hybrid “X”+“Y” cluster in Step 1 to be larger than expected and

the converse for Step 2, there is an aspect of evolutionary algorithm to forcing

one cluster to be larger than expected and the other to be smaller than expected. This

ensures that a diverse population exists after the three steps, leaving creativity for

combining these to form the clusters for the next iteration.
4.4 Model agreement patterns
In this section, the nature of defining models for the data will be assumed. For more

information on techniques for modeling and model fitting, you the reader are kindly

referred to Chapter 7. This section addresses how to assess agreement among models

through an approach designated “equivalence of residual data monotony.”

Among the models of interest to us are the various regression approaches (elastic

net, lasso, linear, logistic, polynomial, ridge, and stepwise being perhaps the most

common seven regressions), decision trees and random forests (which can also be
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based on regression), Bayesian methods, neural networks, and other piecewise

models (which can take on many forms, including the incorporation of expert infor-

mation/human observation).

In this section, we consider hybrid regression and model fitting as two examples

of how to find agreement with a proposed model. In hybrid regression, we provide an

alternative viewpoint in which we are more concerned with what we do notmodel. In

modeling and model fitting, we are concerned with the stability of our model, in par-

ticular, its temporal, scale, distribution, and reliability stability. We begin with

hybrid regression.
4.4.1 Hybrid regression
Regression techniques are used to provide predictive output for input across a large

range of values. Linear, polynomial, and logistic regressions match curve descriptors

for the relationship between independent (covariate) and dependent variables. Ridge

regression, also known as weight decay, adds a regularization term, effectively act-

ing like a Lagrange multiplier, to incorporate one or more constraints to a regression

equation. Least absolute shrinkage and selection operator (lasso) and stepwise selec-

tion perform both feature selection (a form of dimensionality reduction, in which

only a subset of the provided covariates are used in the final model, rather than

the entire set of them) and regularization (which allows the regression to avoid over-

fitting by introducing, e.g., interpolated information). Advanced forms of lasso alter

the coefficients of the regression rather than setting some to zero as in stepwise selec-

tion. Finally, the elastic net adds penalty terms to extend lasso and provides a com-

bination of lasso and ridge functionality. Regression approaches, therefore, have

grownmore complex over the past several decades in order to be able to more closely

fit the covariates (independent variables)—this is the purpose of the variable weight-

ing of the covariate coefficients—and also prevent overfitting and incorporate con-

straints, which is the purpose of the regularization approaches. However, the

perspective on the covariates here is one of being able to model the data as best

as possible.

An alternative approach, which has distinct meta-analytic advantages, is to be

more concerned with what we do not model, that is, to fit a plurality of regression

models—and their corresponding coefficients and weightings—to the data until the

residual data behave in a desired way. Without any other motivation, the residual

data should behave such that its entropy is maximized. This means that the data itself

have no further information to be extracted. This sounds relatively easy: define the

objective function to be a general regression model (e.g., a weighted average com-

bination of the seven regression models described herein), subtract the entropy, and

minimize. However, the nonmodel variability (i.e., the “randomness” of the residual

data) itself may also need to be normalized over the domain of the data. This means

we have both raw and normalized forms of residual data. Raw residual data are sim-

ple, and a simple measure of its randomness is given in Eq. (4.12):
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Residual entropy¼
Xi¼N

i¼1

presidual ið Þ lnpresidual ið Þ (4.12)

It becomes slightly more complicated when we consider normalized residual

data. Since by definition the data are nonuniform across the domain, normalization

is a means of correcting the baseline for this situation. This means we interpret the

data using system theory as signal+noise and assume that the noise is nonuniform.

Uniform, or white, noise is of course modeled by raw residual data.

Thus, residual entropy simply requires a definition of the noise or a noise model.
Common noise models include Gaussian noise, Laplacian noise, and proportional

noise. The latter simply assumes that the energy (magnitude) of the noise is propor-

tional to the magnitude of the signal. Cohesive noise, therefore, can be added into a

regression equation along the lines of a regularizing term described above. The cohe-

siveness of a noise model is considered discovered when the residual of the data after

the regression model and the cohesive noise model have been removed is truly ran-

dom; that is, it follows the entropy behavior of a random signal.
4.4.2 Modeling and model fitting
From the perspective of meta-analytics, modeling and model fitting are the process

of describing all but the randomness of the data and then simplifying this description

to its minimum summary, respectively. An example of the former is to compute the

model residual entropy, which is the same basic equation as Eq. (4.12), replicated

here in Eq. (4.13):

Model residual entropy¼
Xi¼N

i¼1

pmodel residual ið Þ lnpmodel residual ið Þ (4.13)

Effectively, modeling and model fitting are a further generalization of regression,

discussed in the previous section. Significant work [Hast09][Mars09] has been

focused on regression and, separately, optimization processes. It is clear that optimi-

zation processes can be brought to bear on both the modeling and the model fitting.

The data model and the coherent noise model can be posited, and then, the least

squares fit between the models and the actual data used to determine the coefficients.

As an example, suppose that we use a lasso regression analysis and assume that the

error is proportional to the square of the covariates. Then, our optimization process

will be to minimize over β0 the intercept, the vector β of the covariate coefficients,

and the error coefficient η, using the following objective function (Eq. 4.14):

J¼ minβ0,β,η
1

Ns

XNs

i¼1

yi�β0�xTi β� xTi
� �2

η
� �2( )

subject to βk k1 < threshold (4.14)

In addition to optimization concerns, we are also concerned with the stability of our

model. In Chapter 2, we consider the sensitivity of the models to variations of the

training data, including the prevalidation step and ignoring some of the classes to
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be supported when determining the configuration of the model. However, models are

also sensitive to some pragmatic concerns, including its utility over time (a form of

“robustness”), its utility when scale-up occurs, its utility when the algorithm is dis-

tributed (including to other languages and hardware platforms), and its reliability or

its ability to make reasonable predictions even when exposed to data far from the

training data (a second form of “robustness”). How are these four concerns

addressed?

1. Utility over time can be addressed by assessing the drift in the data that the

process/analytic system is meant to handle. This requires ground truth data to be

organized based on time of creation, and a predictive model of when the data will

drift far enough for the current system to satisfactorily handle the data can be

gleaned. This is “introspective prediction” on the system itself.

2. Utility by scale is best addressed by “undertraining” the data. Ideally, this means

using as small of a percentage of ground truth as possible (e.g., 2.5%–20% as in

Ref. [Sims06]), so that a much larger percentage of the ground truth can be used

for validation and/or testing. This generally leads to greater robustness to scaling.

3. Utility by distribution is a measure of howmodular an approach is. For nearly any

algorithmic task, there is domain specificity—for example, text algorithms are

generally quite different from those used for extracting information from images,

sensor information, etc. Domain specificity is not, therefore, a sign of a

nonmodular approach. However, high sensitivity to context shifts (such as

moving to a different but related language or moving from one camera to another)

is indicators that an analytic approach is overfitted to its task. This may be

acceptable for a high-value, high-security, etc. process, but it should be

understood that the approach is likely not generalizable.

4. Utility by reliability can be tested by specific apportionment of training data.

Training and validation sets that are not highly correlated can be used to test the

reliability of the analytic approach. This type of robustness is almost certainly not

garnered when a k-fold cross validation is used to train and test the analytic

approach.
4.5 Co-occurrence and similarity patterns
In natural language processing and other linguistic applications, co-occurrence
refers to an above expected value of two terms occurring in a given sequence. Usu-

ally, this means an idiomatic expression along the lines of “sharp wit” or “meteoric

rise,” but it can also mean semantic proximity of the sequencing is a part of a list

(e.g., the two terms are separated by commas). Similarity, on the other hand, is gen-

erally related to some form of distance metric, with more similar items being closer

together. Similarity is, in this sense, a form of sharing, or mutual information. In the

context of cluster analysis, similarity can be defined as the negative squared Euclid-

ean distance [Frey07] or the familiar cosine of the angle between the vector
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representation of two items. Perhaps, the easiest measurement of similarity is the Jac-

card similarity coefficient, which is the sum of the ratios of minimum(xi,yi)/
maximum(xi,yi) for all (xi,yi) pairs over the domain of i.

Analytic patterns focused on co-occurrence, and similarity is, not surprisingly,

useful for relatively mature analytic problems when consensus rather than discovery

is needed. Voting and weighted voting patterns use similarity among analytic

approaches and the central limit theorem to help ensure that the correct answer is

sufficiently highly ranked. In a search, this might be advantageous to ensure that

the best URL to send the querying person to is generally present in a small subset

of possible outcomes.

I provide one example of this in Table 4.7, which is based on the same data set as

in Table 4.6 (12 classes of 49 test samples each). Here, the broad impact of combin-

ing analytics that are based on co-occurrence (in this case, the co-occurrence of rel-

atively rare terms) and similarity (here, smaller cosines for vectors of the relatively

rare terms) is shown: the impact of additional analytics in a weighted voting scheme

has a larger effect on ranking than on accuracy.

In Table 4.7, accuracy is the percentage of documents assigned to the correct

class, while ranking is the mean rank of the correct class. For example, if three doc-

uments belonging to the “travel” class had “travel” as their first, fourth, and third

highest weighted classes, then the mean rank is (1+4+3)/3¼2.67. Thus, ensemble

methods and particularly those based on co-occurrence and/or similarity tend to

move the correct answer higher in the overall ranked list (rank) more so than simply

moving the correct result to the top of the list (accuracy). In terms of system design

theory (see Chapter 10 for more on this and related topics), this means co-occurrence

and similarity-based ensemble approaches are rank-biased systems, not accuracy-
biased systems.
Table 4.7 Accuracy and rank of correct answer when 1, 2, 3, 4, or 5 algorithms
are used in a 12-class document classification problem [Vans17], using
weighted voting for overall consensus. Note the relatively much larger impact on
rank compared with accuracy.

Number of analytics combined 1 2 3 4 5

Accuracy 0.391 0.464 0.505 0.526 0.534

Mean rank of correct class 3.54 2.67 2.36 2.07 1.78

Percentage accuracy improvement
(percentage of error reduced from 1
analytic)

N/A 0.120 0.187 0.222 0.235

Percentage rank improvement
(percentage of distance to 1.0 from
1 analytic)

N/A 0.343 0.465 0.579 0.693

With five analytics combined, the rank has improved by 69.3%, and the accuracy has improved by 23.5%
(i.e., the error rate is reduced 23.5%) when compared with the original, highest-accuracy analytic.
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4.6 Sensitivity analysis patterns
Sensitivity analysis is an underappreciated part of any analytics—let alone meta-ana-

lytics—project. Without sensitivity analysis, we generally resort to less satisfying

means of gauging the robustness of a system, such as k-fold cross validation and

other methods that may result in overtraining. In addition to avoiding such mistakes,

sensitivity analysis provides significant positive advantages. One of these is that sen-

sitivity analysis allows us to more carefully define the metrology necessary for

inspecting the interfaces between components of a modular, large-scale system.

The simplest sensitivity analysis pattern is the sensitivity-driven ensemble selec-

tion pattern, which consists of the following steps:

1. Identify and, as possible, rank the factors in the system based on the relative

magnitude of the partial derivatives of the factors in the region of interest, that is,
∂y
∂x

		 		= yk k.
2. Determine the appropriate coefficients of determination for the behavior of these

factors in the region of interest.

3. Multiply the outputs of (1) and (2) to get a weighted significance coefficient for

each factor.

4. Create a pool of algorithms for the ensemble with the representation of factors in

the algorithms proportional to the relative weighted significance coefficient of

each factor.

5. Deploy the ensemble and perform ensemble operations (boosting, bagging, etc.).

The sensitivity-driven ensemble selection pattern, therefore, proceedswith traditional

ensemble techniques once the factors are identified, ranked, and relatively weighted.

A second sensitivity analysis pattern worth noting in this brief section is the

sensitivity-driven dimensionality reduction pattern. Fundamentally, this is a feature

selection, not a feature extraction, form of dimensionality reduction. Up front, we

evaluate the relative sensitivity of each feature, y, to variation in the input, as above

given by ∂y
∂x

		 		= yk k: Alternatively, we can use the magnitude of the range of y or the
standard deviation of y rather than the normkyk. Since this is a bookonmeta-analytics,

why not try all three—normof y, range of y, and standard deviation of y—and combine

the results using weighted voting? Regardless, the features are then ranked in order,

and we can remove the lowest-weighted features in order up to 5%, 10%, 20%, etc. of

the overall sum of ∂y
∂x

		 		= yk kwhen computed for all dependent variables y.
4.7 Confusion matrix patterns
Confusion matrices are extremely powerful shorthand mechanisms for what I call

“analytic triage.” As described in Chapter 2, confusion matrices illustrate how sam-

ples belonging to a single topic, cluster, or class (rows in the matrix) are assigned to

the plurality of possible topics, clusters, or classes.

My preferred use of confusion matrices is in balanced and normalized form. The

“balanced” term means that each class, cluster, or topic has the same number of



Table 4.8 Example confusion matrix for a five-class problem, with the sums in
each row and column given.

#Actual class
\assigned class➔ A B C D E SUMS

A 0.54 0.06 0.21 0.09 0.10 1.00

B 0.05 0.62 0.12 0.18 0.03 1.00

C 0.17 0.04 0.55 0.11 0.13 1.00

D 0.08 0.22 0.03 0.63 0.04 1.00

E 0.07 0.05 0.09 0.05 0.74 1.00

SUMS 0.91 0.99 1.00 1.06 1.04 5.00

PRECISION p (e.g.,
0.54/0.91)

0.593 0.626 0.550 0.594 0.712 0.615

F-score¼2pr/(p+ r) 0.565 0.623 0.550 0.611 0.726 0.615

The columns sum the samples assigned to each class, and the diagonal elements divided by these sums
are the precision values. The diagonal elements represent the recall values. The harmonic mean of
precision and recall, or F-value, is shown in the lowest row. The mean recall is 0.616, and the mean
precision and F-score are 0.615 each.
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samples. The “normalized” termmeans that each of these groupings is represented as

having 1.00 samples. Thus, the sum of each row in a balanced and normalized con-

fusion matrix is 1.00, because each row sum represents 100% of the elements in a

particular topic, cluster, or class. The column sums may deviate appreciably from

1.00 depending on whether a topic, cluster, or class is an attractor (more samples than

expected are assigned to this class) or a repeller (less samples than expected are

assigned to this class), as described in Chapter 2.

In Table 4.8, a data set for distinguishing between five different spoken vowel

sounds using an automatic speech recognition (ASR) engine is shown in balanced,

normalized form.

In this data set, there are no strong attractors or repellers, though Class D is the

strongest net attractor with 6% above expected value of samples assigned to it, and

Class A is the strongest repeller with 9% less samples assigned to it than expected.

There are other important insights that come from exploring Table 4.8. For example,

based on the off-diagonal elements of the matrix, we can see that the pairs (A, C) and

(B, D) aremore closely related to each other than the other three classes. For example,

Classes A and C have greater “within pair” confusion (0.21 and 0.17, mean¼0.19)

than “outside pair” confusion (0.06, 0.09, 0.10, 0.04, 0.11, and 0.13, mean¼0.09),

meaning this pair is a good candidate to be “pulled out” from the larger set of classes

and focused on for a binary classifier. A similar recommendation can be made for the

pair of Classes B and D, for which “within pair” confusion has a mean of 0.20 and the

“outside pair” confusion has a mean of only 0.06. The ratio of (within pair)/(outside

pair) is a goodmetric for deciding which binary classifier to pursue first. The 3.3 ratio

for B and D is the highest one for the confusion matrix of Table 4.8.

This section gives a flavor of how confusion matrices can be used to evaluate

large topic identification, clustering, and classification training sets and recommends

system deployment attributes. More on how confusion matrices can be employed for
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triage will be covered in later chapters and in particular with respect to multipath

predictive selection in Chapter 6.
4.8 Entropy patterns
Entropy is such an important topic that is discussed in many sections, including

Section 4.3.1 (decision trees and information gain), Section 4.4.1 (hybrid regres-

sion), and Section 4.4.2 (modeling and model fitting). Entropy-based patterns thus

are not as specific as many of the other pattern types discussed in this book. Entropy

is, rather, another tool like the confusion matrix (see the previous section) that should

be used whenever possible to validate that an analytic approach is indeed “removing

the personality” from a set of data.

In Chapter 11, a deeper consideration of both “aleatory” and “expert system”

techniques is tendered. Here, the two related approaches are introduced and the

meta-analytic patterns associated with them considered in shallow depth. I begin

with “aleatory” techniques, whichmean, according to the definition of the term, tech-

niques that depend on one or more contingencies, that is, techniques that depend on

luck (usually bad luck).

Therefore, an aleatory pattern is one that is immune to or at least relatively buff-

ered from random events. Aleatory approaches are designed to be optimized for

robustness to the failure of individual parts. In the context of meta-analytics, this

means optimized insensitivity to the removal of a single element of a multicomponent

system or ensemble. Conceptually, this is the converse of typical “forward optimi-

zation,” wherein we add more and more algorithms (e.g., in an ensemble approach

such as bagging or boosting) until no further addition improves the metric for the

analytic. For aleatory techniques, metrics are removed until significant sensitivity

to further removal is encountered.

In order to assess optimized insensitivity, we perform the following tasks, which

when combined designate the sequential removal of feature aleatory pattern:

1. Identify the elements—for example, features or labels—which are candidates for

removal.

2. Construct the appropriate instrument for analysis.

3. Complete the fields in the instrument.

4. Make the final recommendation and deploy the recommended analytic system.

One simple example is given here, taken from an image authentication application

I wrote to distinguish authentic from counterfeit images. Originally, 12 image fea-

tures—red, green, blue, cyan, yellow, and magenta saturation and, separately, inten-

sity—wereusedas image features. These are abbreviatedRS,GS,BS,CS,YS,MS,RI,

GI, BI, CI, YI, and MI in the discussion that follows. Each of these features is used

individually for binary classification of an image as coming from an authentic versus

counterfeit product. The classification accuracies range from 0.55 for blue saturation

(BS, just above “guessing” value of 0.50) to 0.90 for green intensity (GI, 9 out of 10

samples correctly classified). These values are cataloged in Table 4.9.



Table 4.9 Twelve image features (R¼ red, G¼green, B¼blue, C¼cyan,
M¼magenta, Y¼yellow, S¼saturation, and I¼ intensity) and the accuracy
when each image features is the sole feature used in the binary classification
problem (authentic vs. counterfeit).

Image feature RS GS BS CS MS YS RI GI BI CI MI YI

Accuracy 0.71 0.77 0.55 0.62 0.76 0.87 0.83 0.90 0.67 0.65 0.74 0.78
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Based on the results of Table 4.9, there are four values (BS, CS, CI, and BI) that

are lower than the other eight values and are good candidates for removal. Regard-

less, the features can now be individually ranked, and so, Step (1) is complete. The

appropriate instrument for analysis (Step 2) is to then sequentially remove the fea-

tures and observe the behavior (Step 3). This is shown in Table 4.10.

In Table 4.10, a simple linear analytic instrument (sequential removal of the

lowest-ranked remaining feature) is used. In this case, removing the four lowest-

accuracy features did result in peak accuracy when the features are combined using

weighted voting, in this case with the weighting of feature j proportional to the

inverse of the error, that is, 1.0�aj where aj is the accuracy of feature j by itself,

as shown in Eq. (4.15):

Wj ¼
1:0



1:0�ajð ÞXnclasses

i¼1

1:0



1:0�ajð Þ
(4.15)

The final recommendation (Step 4) is to deploy the binary classification system with

only 8 of the 12 features, namely, RS, GS, YS, MS, RI, GI, YI, and MI. This example

is incredibly simple, and in general, multiple sequences for removal would be
Table 4.10 Results when the least accurate features are removed in reverse-
ranked order.

Features removed Overall accuracy (weighted voting)

BS 0.954

BS+CS 0.957

BS+CS+CI 0.962

BS+CS+CI+BI 0.963

BS+CS+CI+BI+RS 0.960

BS+CS+CI+BI+RS+MI 0.951

BS+CS+CI+BI+RS+MI+MS 0.941

The overall accuracy peaks when the four lowest-accuracy features (BS+CS+CI+BI) are removed. After
that, accuracy decreases when additional features are removed.
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attempted, especially around the peak accuracy; four reasonable candidates are the

following (with their accuracies in parentheses):

1. BS+CS+BI (0.963)

2. BS+CS+BI+RS (0.962)

3. BS+CS+CI+RS (0.964)

4. BS+CS+CI+BI+MI (0.961)

Note that in this example, removing the combination “BS+CS+CI+RS” gives the

highest overall accuracy. In reality, the training results are not very sensitive after the

removal of BS and CS to the next four lowest-ranked features in accuracy. More on

the sensitivity to features, including noting discrepancies in ordering when compar-

ing individual with aggregate results, is covered in Chapter 11.

A second aleatory pattern is also of interest here. This second aleatory pattern is

designated the sequential variation of feature output aleatory pattern. Applying this
pattern, the results of each of the features are varied by a predetermined amount and

the effect on overall accuracy (aggregated or broken out into a confusion matrix or

other comprehensive analysis instrument) cataloged. The features with larger impact

on the overall accuracy may be increased in relative rank, especially if the ranking is

used subsequently on a pattern such as the sequential removal of feature aleatory
pattern. The output of the sequential variation of feature output aleatory pattern
is a table of sensitivities.

Turning now to expert system techniques, our concern is on validating the

domain expertise by calculating the effect of applying it on overall system measure-

ments such as entropy, accuracy, robustness, cost, performance, and other system

optimizations of interest. Importantly, for expert system patterns—just as with sen-

sitivity analysis and aleatory patterns described earlier in this chapter—the underly-

ing assumption is that there is considerable value to be gained by keeping the

descriptive original variables or “observations” as part of the final deployment. That

is, we use feature selection, not feature extraction, for dimensionality reduction.

The primary concern of an expert system is internalizing the decision-making

algorithm, which usually includes an inference engine and a knowledge base or rule

engine. For meta-analytics, one important concern is in properly considering the

input from multiple analyses. For expert systems—and in particular when these

expert systems include domain expertise distilled as a set of rules—how do we best

incorporate the natural “interrupts” that are immediate and natural for a human

expert? I argue that perhaps the easiest way to implement this is to use John Rawls’

“veil of ignorance” [Rawl71], based on John Locke’s state of nature, as applied to the

algorithms we have available.

With a veil of ignorance, all algorithms are considered equal until they prove

themselves otherwise. A good meta-analytic pattern for this “agnostic” approach

to algorithms is the predictive selection pattern, a variant of which is given in

Fig. 2.2. The predictive selection pattern assigns a particular observation to

one or more categories from a set of categories on which data are trained. One draw-

back of the predictive selection algorithm is that the categories are defined in
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advance (i.e., before the training phase). For an expert system, however, the interrupt

may occur under a context that is not anticipated by the training. For example, the

image classification example described in this section involves identifying counter-

feit samples. A rule defining a counterfeit sample is quite likely to be discovered after

training; for example, a counterfeiter may misspell a word (or, more typically, spell a

word correctly that the brand owner had intentionally misspelled on the legitimate

product label). Then, this rule is an “interrupt” or “override” to the system, irrespec-

tive of the training set. However, from the veil of ignorance standpoint, this rule can

be readily brought into the system if in fact it is highly accurate. The veil of ignorance

therefore equates training with posttraining interrupt, allowing only the accuracy of a

decision to drive its future relevance. Such a system is therefore a continually learn-
ing system. Given this perspective, expert system pattern is therefore one in which

training and interrupting are both relevant to the system decision.
4.9 Independence pattern
Closely related to entropy patterns, independence patterns are concerned with

“scrubbing away” the personality of data until all of the paths through the data

are independent. From a statistical standpoint, independence is given by the formula

Eq. (4.16):

p
\NP

n¼1

En

 !
¼
YNP

n¼1

p Enð Þ (4.16)

where NP is the number of possible events, En is event n of the NP possible events,

and p(En) is the probability that event n occurs. Thus, the probability that any number

of events will occur simultaneously is simply the individual event probabilities mul-

tiplied together. Let us now consider the total probabilities when there are three

events and four events, generalize this to NP events, and then consider this in light

of confusion matrices.

Three events: Here, we consider three events, A, B, and C. The set of

probabilities for an event A with probability of occurring p(A)¼0.6, an event B with

probability of occurring p(B)¼0.7, and an event C with probability of occurring

p(C)¼0.8 is given by the following set, where p(X) means the probability of event

X not occurring:

p Að Þ¼ p Að Þp Bð Þp Cð Þ + p Að Þp Bð Þp C
� �

+ p Að Þp B
� �

p Cð Þ+ p Að Þp B
� �

p C
� �

p Bð Þ¼ p Að Þp Bð Þp Cð Þ + p Að Þp Bð Þp C
� �

+ p A
� �

p Bð Þp Cð Þ+ p A
� �

p Bð Þp C
� �

p Cð Þ¼ p Að Þp Bð Þp Cð Þ+ p Að Þp B
� �

p Cð Þ+ p A
� �

p Bð Þp Cð Þ+ p A
� �

p B
� �

p Cð Þ
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The total probability p(A)+p(B)+p(C), therefore, is given by the following:

p Að Þ + p Bð Þ+ p Cð Þ¼ 3p Að Þp Bð Þp Cð Þ + 2p Að Þp Bð Þp C
� �

+ 2p Að Þp B
� �

p Cð Þ

+ 2p A
� �

p Bð Þp Cð Þ + p Að Þp B
� �

p C
� �

+ p A
� �

p Bð Þp C
� �

+ p A
� �

p B
� �

p Cð Þ (4.17)

Plugging in p(A)¼0.6, p(B)¼0.7, and p(C)¼0.8, we get the following:

p Að Þ + p Bð Þ+ p Cð Þ¼ 3 0:6ð Þ 0:7ð Þ 0:8ð Þ + 2 0:4ð Þ 0:7ð Þ 0:2ð Þ+ 2 0:6ð Þ 0:3ð Þ 0:8ð Þ
+ 2 0:4ð Þ 0:7ð Þ 0:8ð Þ + 0:6ð Þ 0:3ð Þ 0:2ð Þ + 0:4ð Þ 0:7ð Þ 0:2ð Þ+ 0:4ð Þ 0:3ð Þ 0:8ð Þ¼ 2:1,as itmust

Four events: Here, we consider four events, A, B, C, and D. As for the three event

case above, the value p(X) means the probability of event X not occurring:

p Að Þ¼ p Að Þp Bð Þp Cð Þp Dð Þ+ p Að Þp Bð Þp Cð Þp D
� �

+ p Að Þp Bð Þp C
� �

p Dð Þ

+ p Að Þp B
� �

p Cð Þp Dð Þ + p Að Þp Bð Þp C
� �

p D
� �

+ p Að Þp B
� �

p Cð Þp D
� �

+ p Að Þp B
� �

p C
� �

p Dð Þ+ p Að Þp B
� �

p C
� �

p D
� �

p Bð Þ¼ p Að Þp Bð Þp Cð Þp Dð Þ+ p Að Þp Bð Þp Cð Þp D
� �

+ p Að Þp Bð Þp C
� �

p Dð Þ

+ p A
� �

p Bð Þp Cð Þp Dð Þ + p Að Þp Bð Þp C
� �

p D
� �

+ p A
� �

p Bð Þp Cð Þp D
� �

+ p A
� �

p Bð Þp C
� �

p Dð Þ+ p A
� �

p Bð Þp C
� �

p D
� �

p Cð Þ¼ p Að Þp Bð Þp Cð Þp Dð Þ+ p Að Þp Bð Þp Cð Þp D
� �

+ p Að Þp B
� �

p Cð Þp Dð Þ

+ p A
� �

p Bð Þp Cð Þp Dð Þ + p Að Þp B
� �

p Cð Þp D
� �

+ p A
� �

p Bð Þp Cð Þp D
� �

+ p A
� �

p B
� �

p Cð Þp Dð Þ+ p A
� �

p B
� �

p Cð Þp D
� �

p Dð Þ¼ p Að Þp Bð Þp Cð Þp Dð Þ+ p Að Þp Bð Þp C
� �

p Dð Þ+ p Að Þp B
� �

p Cð Þp Dð Þ

+ p A
� �

p Bð Þp Cð Þp Dð Þ + p Að Þp B
� �

p C
� �

p Dð Þ+ p A
� �

p Bð Þp C
� �

p Dð Þ

+ p A
� �

p B
� �

p Cð Þp Dð Þ+ p A
� �

p B
� �

p C
� �

p Dð Þ
The total probability p(A)+p(B)+p(C)+p(D), therefore, is given by the following:

p Að Þ+ p Bð Þ+ p Cð Þ+ p Dð Þ¼ 4p Að Þp Bð Þp Cð Þp Dð Þ+ 3p Að Þp Bð Þp Cð Þp D
� �

+ 3p Að Þp Bð Þp C
� �

p Dð Þ+ 3p Að Þp B
� �

p Cð Þp Dð Þ + 3p A
� �

p Bð Þp Cð Þp Dð Þ

+ 2p Að Þp Bð Þp C
� �

p D
� �

+ 2p Að Þp B
� �

p Cð Þp D
� �

+ 2p Að Þp B
� �

p C
� �

p Dð Þ

+ 2p A
� �

p Bð Þp Cð Þp D
� �

+ 2p A
� �

p Bð Þp C
� �

p Dð Þ+ 2p A
� �

p B
� �

p Cð Þp Dð Þ

+ p Að Þp B
� �

p C
� �

p D
� �

+ p A
� �

p Bð Þp C
� �

p D
� �

+ p A
� �

p B
� �

p Cð Þp D
� �

+ p A
� �

p B
� �

p C
� �

p Dð Þ
(4.18)
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Any number of events: Here, we consider N events. Interestingly, for N events, the

sum of all individual probabilities
P

n¼1
NP p(i) is equal to Eq. (4.19):

NP

YNP

n¼1

p ið Þ+ NP�1ð Þ
X
∗

YNP

n¼1

NP�1ð Þp ∗ð Þ + 1ð Þp ∗ð Þ½ �+… + 2ð Þ
XYNP

n¼1

2ð Þp ∗ð Þ½

+ NP�2ð Þp ∗ð Þ�+ 1ð Þ
XYNP

n¼1

1ð Þp ∗ð Þ+ NP�1ð Þp ∗ð Þ½ � (4.19)

where (*) indicates any set of 1…NP combinations that gives the current iteration n a
total of (NP�n) probabilities of occurring p(*) and, simultaneously, n probabilities

of not occurring p(*)—for example, (NP�n)¼1 and n¼3 for a term such as p(A)p(B)
p(C)p(D) or p(A)p(B)p(C)p(D).

Application to Confusion Matrices: This sum (Eq. 4.19) gives us the overall sys-

tem accuracy if the probabilities p(*) are the accuracies of individual classes, rather
than events. That is, the sums in Eqs. (4.17), (4.18), and (4.19), when applied to con-

fusion matrices, are actually the sum of the diagonal of the confusion matrix. The

overall classification accuracy is then simply this sum divided by the number of

events. To provide an example, a 3�3 confusion matrix is given in Table 4.11.

The accuracies for the three classes are p(A)¼0.6, p(B)¼0.7, and p(C)¼0.8.

For Table 4.11, the off-diagonal elements are similar when comparing Classes A

and B and Classes B and C. The two elements for comparing Classes A and C, how-

ever, differ largely (0.18 and 0.06).

Using independence theory, we provide the initial off-diagonal values for this

confusion matrix in Table 4.12. Moving across row X, the probability for the
Table 4.11 Sample 3�3 confusion matrix to illustrate the application of
probabilistic independence concepts to overall system accuracy.

#Actual class\assigned class➔ A B C SUMS

A 0.60 0.22 0.18 1.00

B 0.19 0.70 0.11 1.00

C 0.06 0.14 0.80 1.00

SUMS 0.85 1.06 1.09 3.00

Table 4.12 Sample confusion matrix of Table 4.11 with initial off-diagonals
per the accuracy of the individual Classifiers A, B, and C. See text for
mathematical details.

#Actual class\assigned class➔ A B C

A p(A) p(A)p(B) p(A)p(C)

B p(A)p(B) p(B) p(B)p(C)

C p(A)p(C) p(B)p(C) p(C)
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diagonal element is p(X), and for every other element, it is p(X) multiplied by the

probability of the corresponding column’s diagonal element. The numerical values

corresponding to Tables 4.11 and 4.12 are given in Table 4.13.

However, the values in Table 4.13 are not correct, since the rows do not sum to

1.00. Thus, we normalize every row Y by the following normalization factor,

Eq. (4.20):

CMEY 6¼X X, Y½ � ¼ p Y
� �

p Yð Þp Xð Þ=XNclasses
i¼1, i6¼Y

p Yð Þp ið Þ

2
6664

3
7775 (4.20)

The CME is the confusion matrix entry (X, Y) anywhere but along the diagonal

(thus, Y 6¼X). Essentially, every off-diagonal element is initially (1.0-the accuracy of

the row’s class, or Y
� �

) multiplied by the accuracy of the column’s class as in

Table 4.12 (theory) and Table 4.13 (example). Then, the sums of the off-diagonal

elements are used to normalize these values, and the normalized values are multi-

plied by p Y
� �

so that the sum of the off-diagonals plus the row’s class accu-

racy—that is, p(Y)—sum to 1.0 as must be the case for a normalized confusion

matrix. The results of this normalization are shown in Table 4.14.

The actual and independence-optimal off-diagonal elements are compared in

Table 4.15. The mean difference is 0.042 in magnitude, which is 28% of the mean
Table 4.14 Sample confusionmatrix of Table 4.11 with independence-optimal
off-diagonals per the accuracy of the individual Classifiers A, B, and C.

#Actual class\assigned class➔ A B C SUMS

A 0.600 0.187 0.213 1.000

B 0.129 0.700 0.171 1.000

C 0.092 0.108 0.800 1.000

SUMS 0.821 0.995 1.184 3.000

See text for mathematical details.

Table 4.13 Sample confusion matrix of Table 4.11 with initial off-diagonals
per the accuracy of the individual Classes A, B, and C.

#Actual class\assigned class➔ A B C SUMS

A 0.60 0.28 0.32 1.20

B 0.18 0.70 0.24 1.12

C 0.12 0.14 0.80 1.06

SUMS 0.90 1.12 1.36 3.38

See text for mathematical details



Table 4.15 Actual confusion matrix elements (Table 4.11) minus the
independence-optimal elements of Table 4.14 and their value as a percentage
of the optimal value (in parentheses).

#Actual class\assigned
class➔ A B C

A 0 0.033
(17.6%)

�0.033
(�15.5%)

B 0.061 (47.3%) 0 �0.061
(�35.7%)

C �0.032
(�34.8%)

0.032
(29.6%)

0
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off-diagonal element. This means that 28% of the maximum possible personality in

the confusion matrices is still present.

Thus, we have seen how to use the independence-optimized confusion matrix in

comparison with the empirical confusion matrix for purposes of determining how

much “personality” is left to extract from the confusion matrix. The mean of the

off-diagonal magnitudes is, of course, a reflection of the overall error rate of the con-

fusion matrix. The mean percentage “personality” remaining (difference between

empirical and independence-optimal confusion matrix) is a reflection of how much

more information can be extracted from the overall classification approach. Once

all the personality is removed (and the empirical and independence-optimal confusion

matrices are nearly equivalent), theoverall systemhas reached itsmaximumaccuracy.
4.10 Functional NLP patterns (macro-feedback)
Functional natural language processing (NLP) is based on linear system theory. At

the simplest level, we feedback success in one process to optimize a related but usu-

ally largely independent process. One tangible example of this was given in an earlier

report, albeit on a small scale rather than large scale [Sims14]. There, the best trans-

lation approach was considered the one that provided search behavior most closely

matching that of the corpus of original (untranslated) documents, as mentioned in

Chapter 2. More generally, one NLP task—be it summarization, indexing, transla-

tion, keyword generation, text clustering, text classification, most closely related

document, search, or tagging—can be optimized by using another one of these (or

other or multiple) analytic tasks as the validation set.

Chapter 8 considers a different class of functional NLP patterns (synonym-

antonym and reinforce-void), which are based on term occurrence statistics. The

feedback for these patterns is the relative occurrence of the terms before and after

specific operations are performed on the documents containing the terms. The names

are included here for “list of patterns” completeness in this largely overview chapter.
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4.11 Summary
This chapter introduces the main themes of the meta-analytic approaches, which will

be elaborated in greater detail in the remaining 10 chapters. Stepping back for a

broader perspective, this chapter focuses on the process of removing what is infor-

mally termed “personality” from data—be it raw data or cumulative data such as

represented by a confusion matrix.

For cumulative response curves (CRCs), our focus was on aligning two or more

CRCs to enable identification of specific zones of interest for sequence-dependent

predictive selection, which relies on sorted differential-conditional CRCs, or SD-

CCRCs. It is shown that the start and end zones of the SD-CCRC are especially use-

ful to mine for predictors. We then saw that the traditional cumulative gain curve

(CGC), or lift curve, is a highly convenient means of illustrating classification error,

precision, recall, and accuracy with any percentage of the samples assigned to a

particular class.

Optimization of decision trees was driven by the maximum information gain

(Eq. 4.8), and an optimization application focused on biometrics was used to illus-

trate the approach. The number of possible biometrics is relatively small, but the

number of meta-analytic approaches that can use these biometrics is shown to be

very large. Sequencing, weighted linear combinations, and predictive selection pre-

clustering approaches are shown to provide the possibility for billions of customized

analytics, even when only 10 biometrics are used. This underpins a different type of

information gain, where we measure the relative ability of a custom pattern com-

pared with a generic pattern at identifying an individual from a (potentially quite

large) set of nonindividuals. Here, the custom biometric approach and weighting

can be thought of as the individual’s public key and their response to it a form of

private key. Next, expectation-maximization (or expectation-optimization)

approaches were considered. Principles of evolutionary approaches were incorpo-

rated into an iterative optimization approach (Fig. 4.15), and its applicability to text

clustering is described. Rapid convergence on a set of relatively difficult to classify

text classes was shown.

Next, model agreement patterns were discussed. Residual entropy was discussed

in context of removing the personality from a data set, and adding a noise model was

used to extend the value—and universality—of regression approaches such as lasso

(Eq. 4.14). Robustness through the utility of a regression approach to temporal, scal-

ing, distribution, and reliability parameters was discussed.

Co-occurrence and similarity algorithms, like meta-algorithms [Sims13], are

expected in general to have a more pronounced effect on ranking of the correct class

than on accuracy of classification. An example illustrating this was given in

Table 4.7. This introduced the topic of system design theory, to be elaborated later

in the book (and in particular in Chapter 10), and co-occurrence and similarity-based

ensemble approaches are described as rank-biased systems, not accuracy-biased
systems.
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Sensitivity analysis started with the relatively rudimentary sensitivity-driven

ensemble selection pattern, which uses the partial derivative and a confidenceweight-

ing for each factor to create a weighted significance coefficient for each factor. These

coefficients are used to drive ensemble methods such as boosting, bagging, or even

weighted voting. A second pattern, the sensitivity-driven dimensionality reduction

pattern, is shown to be a feature selection, not a feature extraction, form of dimension-

ality reduction: the features are ranked from first to last and can be pruned with high

confidence that the ordermatches the order of linear combination of features typical of

a feature extraction dimensionality reduction approach.

Confusion matrix approaches are revisited briefly, summing up attractor/repeller

theory and comparing “within pair” and “outside pair” confusion to be able to target

dimensionality reduction through the replacement of two classes with a binary clas-

sifier that follows a one-dimensional reduced classification.

Entropy is an important topic throughout analytics, but in Section 4.9, we intro-

duce aleatory approaches—that is, approaches that are as insensitive as possible to

errors in individual parts of the analysis. We term this optimized insensitivity and

provide sequential removal of features by two different means, allowing us to per-

form a reasonable level of dimensionality reduction while also identifying likely cor-

relations among features. A second aleatory approach, the sequential variation of
feature output aleatory pattern, purposely introduces error to see what the system

insensitivity to errors of each feature is. An expert system approach using a “veil

of ignorance” to weight both features and rules together without knowledge of their

origin is introduced.

The chapter concludes with a description of independence in probability theory

and its direct application to confusionmatrices (Eq. 4.20). This section shows that the

end point in using confusion matrices is not necessarily to maximize overall accu-

racy, but rather to minimize the difference between the off-diagonal elements from

their independence-optimal values (i.e., those values predicted by independence).

Finally, functional natural language processing (NLP) techniques are introduced

to show how broad domains can be used to create separate functional gains (e.g.,

search and translation) to be used together to optimize over analytic performance.

This approach can be thought of as a form of expectation-optimization at the

macro level.

With this important framing chapter completed, we now turn our attention to sen-

sitivity analysis and big systems engineering, which frames the use of meta-analytics

in deployed systems.
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CHAPTER
Sensitivity analysis and big
system engineering
 5

Meta-Analytics. ht

# 2019 Steven Sim
Beauty of whatever kind, in its supreme development, invariably excites the

sensitive soul to tears

Edgar Allan Poe (1846)

Manhood coerced into sensitivity is no manhood at all

Camille Paglia (1992)
5.1 Introduction
If you’ve made it this far and have been reading from the beginning, there is some

good news. You’ve now covered enough to be confident, conversant, and even con-

gruent when speaking to other analytic experts. The first four chapters were, in effect,

the first half of the book and were intended to get the fundamentals of analytics

across, albeit hopefully in a novel and more expansive manner than do comparative

analytics texts.

The “second half” of this book focuses on incorporating important system level

and/or novel approaches to the field of analytics. In so doing, meta-analytic systems

are created. Another key focus in this chapter and Chapters 6–14 is their applications.
We begin this half of the book with a consideration of how sensitivity analysis

approaches can be employed for analytics. Building on two patterns for incorporat-

ing sensitivity analysis techniques, we then extend them to a number of important

areas in meta-analytics; specifically, settings for individual algorithms and for hybrid

systems of multiple algorithms. In line with Edgar Allan Poe, we are hoping the

beauty of hybrid systems will not only move the sensitive soul to tears but also move

the system architect to consider employing sensitivity techniques more robustly in

their analysis. In line with Camille Paglia, we feel that the system designer need

not be coerced into using sensitivity analysis; however, it probably wouldn’t hurt

to appropriately justify it. As far as building analytics into the system from the

ground up, then, “sensitivity analysis is considered … as a prerequisite for model

building in any setting, be it diagnostic or prognostic, and in any field where models

are used” [Salt04]. In Ref. [Salt04], they show that sensitivity analysis can and

should be applied to a wide variety of analytic models and specifically to decompos-

ing the variance of the output, in diagnostic modeling and in simulations.

In Chapter 4, wementioned that sensitivity analysis is an underappreciated part of

any analytics project. Sensitivity analysis can be applied directly to any of the “vari-

ables” in a system design, allowing a multilayered approach to assessing the
tps://doi.org/10.1016/B978-0-12-814623-1.00005-8

ske. Published by Elsevier Inc. All rights reserved.
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robustness of a system and avoiding such “overtraining” traps as k-fold cross vali-

dation, which is effectively testing on the training data. In k-fold validation, the train-
ing set is often 90% of the available data for training and testing (k¼10), and the

testing results are reported on 10% of the data at a time. Unless the training and test-

ing data are highly uncorrelated—and even if they were, why would they be for a

majority of the k¼10-folds?—this is effectively reporting testing results on training

data (see Sections 1.10 and 1.11 for more on why this is not a good strategy).

This is the stick, but there is also a carrot: sensitivity analysis provides significant

positive advantages. Sensitivity analysis is one of the best ways to determine how

well a system comes together as a compound of its modules, by affording a mean

of assessing the interfaces between components of a modular, large-scale system.

In Chapter 4, we introduced the sensitivity-driven ensemble selection pattern, reca-

pitulated here in light of the sensitivity:

1. First and foremost, sensitivity analysis is an assessment of the partial derivatives

of the factors in the region of interest, that is, ∂y
∂x

�� ��= yk k, or the relative magnitude

of the partial derivative compared with the norm of the dependent variable in a

region. After computing these, we rank the factors in the system based on their

relative magnitudes. Dividing the partial derivative by the norm of the variable

removes the need to normalize each variable in the region.

2. Next, we determine the appropriate coefficients for the behavior of these factors

in the region of interest. This means that we can weight each of the values
∂y
∂x

�� ��= yk k by their contribution to error. This can be done by separately

considering each factor as outlined in Section 1.11.

3. We can then multiply the outputs of (1) and (2) to get a weighted significance

coefficient for each factor, implying this is the relative contribution of the factor

to the overall (measured) system behavior.

4. Create a pool of algorithms for the ensemble with the overall coefficient for the

algorithms proportional to the relatively weighted significance coefficient of

each factor.

5. Deploy the ensemble and perform ensemble operations (boosting, bagging, etc.).

In this way, the sensitivity-driven ensemble selection pattern proceeds with

traditional ensemble techniques once the factors are identified, ranked, and

relatively weighted.

A second sensitivity analysis pattern introduced in Chapter 4 was the sensitivity-

driven dimensionality reduction pattern. Here, the relative sensitivity of each feature,

y, to variation in the input, as above given by ∂y
∂x

�� ��= yk k, is evaluated first. Other

means of assessing the relative sensitivity are to use the magnitude of the range

of y, or the standard deviation of y, rather than the norm kyk. As mentioned previ-

ously, simultaneously employing the norm of y, the range of y, and the standard devi-
ation of y and then combining the results using weighted voting are another way of

adding potential robustness to the solution. However weighted, the features are then

ranked in order, and we can remove the lowest-weighted features in order up to 5%,

10%, 20%, etc. of the overall sum of ∂y
∂x

�� ��= yk kover all y. This last filtering step
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allows us to remove any irrelevant attempts to add robustness, anyway. Thus, the

combination of using a large array of features and then filtering is a useful design

approach, in general.

In Chapter 3, we noted that sensitivity analysis typically focuses on a matrix of

partial derivatives and/or conditional partial derivatives. We defined the “sensitiv-

ity” as the response of a system to an instantaneous change in a relevant part of

its input. In particular, the sensitivity analysis of any model for the data is essential

in modern system design (and should not be omitted). Suppose we have two models

for fitting a set of data and their residual signals (the behavior of the data after

subtracting out the model) are effectively equivalent. The two models are

ModelA, ŷ¼�4:68x2 + 3:45x+ 1:23 (5.1)

ModelB, ŷ¼ 7:45x2�8:68x + 1:23 (5.2)

Quick inspection shows that both models have the points (0.0, 1.23) and (1.0, 0.0) in

common.

For sensitivity analysis, we find the partial derivatives (slopes) of these two

simple models:

ModelA,
∂ŷ

∂x
¼�9:36x+ 3:45 (5.3)

ModelB,
∂ŷ

∂x
¼ 14:90x�8:68 (5.4)

We see that Model A has a slope of 0 when x¼0.369 and Model B has a slope of 0

when x¼0.583. In general, though, we use a hybrid model, using Model A when

�9:36x+ 3:45j j< 14:90x�8:68j j (5.5)

This becomes three equations, based on the ranges in x:

�9:36x+ 3:45< 8:68�14:90x ; x¼ �∞, 0:369ð Þ (5.6)

9:36x�3:45< 8:68�14:90x ; x¼ 0:369, 0:583ð Þ (5.7)

9:36x�3:45< 14:90x�8:68 ; x¼ 0:583, +∞ð Þ (5.8)

Rearranged, each of Eqs. (5.6), (5.7), and (5.8) becomes Eq. (5.9):

5:54x< 5:23 or x< 0:944 (5.9)

So, we use Model A whenever x<0.944 and Model B whenever x>0.944. As men-

tioned with a different example in Chapter 3, this provides us with a means to select

multiple models for a domain.We can modify the coefficients of models so that there

is smoothness (continuity) at the subdomain boundaries if desired. For example, we

see that Model A has the value y¼0.316 when x¼0.944 and Model B has the value

y¼�0.325 when x¼0.944, and so, switching fromModel A to Model B at x¼0.944

would result in a large discontinuity at x¼0.944. Therefore, we may provide some

moving average of the two models, ending at x¼1.0 where they are equal and, due to

symmetry, starting the same distance in front of x¼0.944 (i.e., at x¼0.888). This is a

totally acceptable strategy, called “blending,” and it reminds us that the goal to keep
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the sensitivity of the models to a minimum is only one aspect of the overall model.

For example, if Eqs. (5.1) and (5.2) describe the cost of the system, wewould bemore

concerned with accuracy than sensitivity per se.
5.2 Sensitivity analysis of the data set itself
In Section 3.4, the aging of data and statistical approaches to this important topic

were overviewed. In this section, we address additional approaches to monitoring,

augmenting, pruning, and otherwise maintaining throughout its life cycle the data

that we use to define the model and its settings. We start off with a discussion of

performing sensitivity analysis on the critical points for a classification feature selec-

tion procedure.

In Section 1.10, the concept of “critical points” between the means of two popu-

lations to be compared (for categorization, labeling, classification, and the like) was

introduced. In that section, we simply rank ordered the means of the distributions and

then computed the critical points to be between the consecutive means at the point

that is the same number of standard deviations (usually a different value for each of

the two populations) from the pair of means. If all populations have the same vari-

ance, then the critical points are simply the midpoints between the means. If there are

N populations, this method defines N�1 critical points. This approach, however, is

readily generalized to cover any additional comparisons. If, for example, critical

points are defined between a population and the two closest populations to either side

of it in ranked order, then there are N�1 critical points for the nearest neighbors and

an additional N�2 critical points for the second-nearest neighbors. In the extreme,

where critical points of all possible lengths up to N�1 are computed, there are a total

of N(N�1)/2 critical points, or½(N2�N) critical points. This is Order(N2) instead of

the original Order(N).
So, in general, how do we decide how many critical points to define? One quan-

titative means of determining howmany neighbors in each direction to compute crit-

ical points for is determinable by the ratio of the range of a single population to that of

the set of all populations. Suppose that we have the following eight classes of training

data, here defined by their means and standard deviations:

1. 45.7�5.4

2. 56.8�11.6

3. 65.4�9.9

4. 66.9�8.4

5. 72.7�11.1

6. 73.4�8.8

7. 81.6�7.7

8. 83.2�5.6

We see from this that the geometric mean of the standard deviation is the eighth root

of the product (5.4�11.6�9.9�8.4�11.1�8.8�7.7�5.6)¼8.2. The samples

themselves span the range 40.3–89.3 (the total range being 89.3�40.3¼49.0) for
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mean�standard deviation (note that the upper end is set by population 7 and not pop-

ulation 8, even though population 8 has a higher mean). The ratio is thus 8.2/

49.0¼0.167, and so, the range of all the populations is roughly six times that of a

single population. Note that we could have just as simply made this the ratio of

1.96 standard deviations (alpha¼0.05), and the ratio would have been substantially

different, that is, 16.1/(96.7�34.1)¼0.257. Here, the range of all populations is

roughly four times that of a single population. In general, then, we set the number

of neighbors for which to compute critical points based on the alpha level and the

following algorithm:

1. Find the upper level of the combined set of populations as the maximum value of

the (population mean)+nalpha�(population standard deviation) across all

populations, where nalpha is the number of standard deviations from the mean to

obtain the desired alpha level of confidence in the mean, and this is 1.645 for

alpha¼0.10, 1.96 for alpha¼0.05, 2.33 for alpha¼0.02, and 2.58 for

alpha¼0.01 (two-tailed test). This is designated PopulationUPPER.
2. Find the lower level of the combined set of populations as the minimum value of

the (population mean)�nalpha�(population standard deviation) across all

populations, where nalpha is the number of standard deviations from the mean to

obtain the desired alpha level of confidence in the mean, and this is 1.645 for

alpha¼0.10, 1.96 for alpha¼0.05, 2.33 for alpha¼0.02, and 2.58 for

alpha¼0.01 (two-tailed test). This is designated PopulationLOWER.

3. Find the range of the overall set of

populations¼PopulationUPPER�PopulationLOWER.

4. Find the geometric mean of the range of the individual classes using the same

probability alpha. This is simply nalpha multiplied by the NClasses-root of the

product of all the class standard deviations. The value NClasses is the number of

classes. For example, if nalpha is 8, as in our example, then it is the eighth root of

the product. This is the geometric mean of the standard deviation of the classes, or

GM(σClasses).
5. Find the mean range of the classes¼2*GM(σClasses).
6. Calculate the mean overlap

ratio¼MOR¼(PopulationUPPER�PopulationLOWER)/2*GM(σClasses).
7. Set the number of neighbors to either side as NClasses/MOR. Round up to the

nearest integer.

In the example given, MOR is the inverse of the 0.257 value computed for

alpha¼0.05. Thus,MOR¼3.89, and the ratio of 8/3.89¼2.06. We could round this

up to three, in which case we define 7+6+5¼18 critical points. However, using 2

instead of 3 neighbors, we have 7+6¼13 critical points, which would probably work

just as well. The main utility of the critical points, of course, is to comparatively

assess features, and so, we can also adjust the number of nearest neighbors based

on the size of the data set, the absolute number of classes, and the percentage of over-

lap between classes. Regardless, the seven-step algorithm given here will work well.

We now turn our attention to other aspects of data set sensitivity analysis.
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Characterizing the critical points gives us some preliminary insight into the

nature of the ground truth, or training data, at hand. One aspect of meta-analytics

is to go beyond the normal treatment of ground truth associated with regular analyt-

ics. The cumulative data set should be used to determine if data should be retired

(age-based pruning), augmented (underrepresentation imputation of ground truth),

or destabilized. Age-based pruning was covered in Section 3.4. Augmentation is sim-

ple enough. Underrepresented clusters, categories, or classes of data can have addi-

tional samples added directly (through the targeted collection of more samples) or

indirectly (through simulation). Destabilization, however, merits a slightly deeper

discussion.

Why do we want to “destabilize” data in the first place? Isn’t stability good? Not

when the rest of the world is unstable. In data science as in politics, it is often risky

and even ill-advised to be stable when all of your peers are unstable. Making sure that

each subgroup of data has similar overall variability ensures similar robustness and

“educational opportunity.” Often, stability in data sets is the data science equivalent

of “teaching to the exams” in human education: the process of reducing the gamut of

input, intentionally or unintentionally, generally makes the student or system less

robust to new input [Kohn00]. Destabilization then is data “open-mindedness.”

Destabilization can legitimately be performed in several situations, including

(a) when one set of ground truth has statistically significantly different entropy than

the other sets, (b) when one set of ground truth is more or less qualitative/quantitative

than the other sets, and (c) when one set of ground truth is created by different means

than the other sets. A fourth, slightly different form of destabilization is (d) when the

grouped behavior of the data is too similar by analytic evaluation.We address each of

these in order.

One form of stabilization, (a) above, is also one of the easiest to discover, if you

are looking. Data sets differing in entropy are likely examples of “selective oversam-

pling,” wherein specific subgroups within a larger class are overrepresented. In many

cases, such overrepresentation is all but inevitable, unless the experimentalist has an

unlimited budget. Admittedly, in many of the examples in this book, data “stabili-

zation” occurs, simply because I have access to a limited number/variety of sensing,

recording, or other analysis equipment—not to mention conscious and/or subcon-

scious bias to collect data suitable to illustrate the point(s) I intend to make in a given

section of the text. Any time there is a bias, spoken or unspoken, in how data are

captured, there is a risk of data stabilization. This occurs when one device is the

adopted norm, due to ubiquity, cost, standards of practice, etc. It can also occur when

the population available is not representative; for example, differences in ancestry

vary greatly in comparing on campus to off campus, urban to suburban to rural,

etc. Finally, it can occur due to differences in “setting bias” wherein one photogra-

pher prefers a different f-stop (aperture), shutter speed, ISO, focal length, and the

like, and this set is different from that preferred by another photographer. This

may lead to subtle differences in the data sets that are exposed once analytics are

generated. To “destabilize” such data, we need to define a measure of entropy that

partitions (or “discretizes”) one or more feature ranges and allows for a statistical
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comparison among the clusters, categories, or classes. In the case of a setting, the

“bins” that are used to compute the individual probabilities from which the entropy

(please see Eqs. (1.14) and (1.15) in Section 1.8.1) is computed may be derived

directly from the menu options (e.g., only a discrete set of f-stops, shutter speeds,

etc. are available). For other features, a reasonable histogram that partitions the space

“fairly” should suffice.

The second type of destabilization occurs when the ground truth sets differ in

their qualitative and/or quantitative nature. Using the example of camera settings,

one camera may have only discrete settings, and another may have an analog dial

that allows a continuum of settings. Another, say less expensive camera, may have

a lot less f-stops altogether. It is not immediately clear how to impute values between

discrete settings to have the same variety of behavior as those coming from a con-

tinuum. One means of destabilizing data coming from a less diverse environment is

to add noise stochastically to match the spread of the more diverse environment. For

example, a discrete setting can be treated as the mean of a distribution and a distri-

bution fitted to it so that it covers the range between its two nearest critical points

with the same amount of variance as in the other group taken from a continuum. This

is another use of the critical points described earlier in this section.

A third setting for destabilization is when one set of ground truth (whether for

training, validation, and/or testing) is created by a different process than the other

sets. This can result in data artifacts that are indistinguishable from actual differences

between groups but may change the nature of the differences and so remain hidden—

unless the analytic expert is aware of the context (or metadata) for the data collection.

Often, this form of stability occurs through imbalances in data collection, using

referred to as inequalities of scale. These inequalities can include time, time of

day, location, and demographic differences that may be compounded across groups.

They may even be hidden by statistical tests. For example, features 1 and 2 for groups

A and B may have had statistically nonsignificant differences for location, but when

an ANOVA (analysis of variance) is performed, we see a statistically significant dif-

ference in comparing feature 2 for group B to feature 1 for group A. This interaction

may strongly affect any group-to-group differences later reported. For this reason,

ANOVA should be used for any multifactor feature set, if possible. When there

are known to be inequalities of scale in comparing two or more data sets, data dele-

tion, data augmentation, or data imputation should be considered. The latter can be

performed as described above using the critical points between data groups.

A fourth form of destabilization is applicable when all groups have highly cor-

related analytic evaluation behavior. Functional outputs such as accuracy, cost,

robustness, and other system behavior can be plotted against the amount of data used

or the percentage of data used from the ground truth set. The different groups are then

assessed based on the nature of these data graphs (or other visualizations). These

assessments can be based on relative behavior of the different groups or on their

pruning behavior (i.e., when removing the same percent of oldest, most suspect, low-

est confidence, etc. training data) data. Sensitivity to pruning data may undercover
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some patterns in the data over time (e.g., unreported imputation and attempts to

obscure highly correlated data)
5.3 Sensitivity analysis of the solution model
Solution models are broader than data models. Solution models generally describe

the manner in which an input is converted into an output. The ratio of output to input

is the transfer function, and it is often modeled as the ratio of two polynomials, which

provides both convenience and generalizability (not to mention ease of building indi-

vidual modules). We describe the system behavior as

I tð Þ∗ a0 +a1 tð Þ+ a2 t�Δð Þ+ a3 t�2Δð Þ+…+ an t� n�1ð ÞΔð Þ½ � ¼
O tð Þ∗ b0 + b1 tð Þ+b2 t�Δð Þ+b3 t�2Δð Þ+… +bn t� n�1ð ÞΔð Þ½ � (5.10)

In Eq. (5.10), sensitivity analysis is rather straightforward. Given no a priori knowl-
edge about the behavior of the input, I(t), or the output, O(t), we can determine the

sensitivity of the equations from the variability in each of the coefficients {a0, a1,…,

an, b0, b1,…, bn}. For example, if in running multiple training sets we find that a0 is
54.6�7.7, a1 is 22.4�12.1, an is 13.6�3.5, b0 is 123.4�2.3, b1 is 37.9�6.1, and bn
is 15.9�4.4, then we can safely assert that the overall transfer function, O(t)/I(t)¼
a(t, t�Δ, …, t�(n�1)Δ)/b(t, t�Δ, …, t�(n�1)Δ), is most sensitive to a1 in the

numerator (since the variability as standard deviation, not as coefficient of variation,

has the highest expected impact) and most sensitive to b1 in the denominator. The

relative effect of numerator and denominator is affected by the sum of coefficients.

Regardless, in this section, we are not as concerned with transfer functions as we

are with sequences in a solution. We are interested in analyzing a solution to find

where the uncertainty is highest. We consider a process such that we want to know

the next value of x when we have the current value of x and a set of boundary

conditions:

x n+ 1ð Þ¼Ax nð Þ +b (5.11)

Since x(n) and x(n+1) are vectors, our sensitivity is distributed across a set of linear
equations in x. However, the relative sensitivity of each element of x(n+1) is now
predicted by the matrix element value, assuming x(n) values have uniform means.
5.4 Sensitivity analysis of the individual algorithms
Most algorithms have a number of settings, which are often coefficients for weight-

ing different factors, either in isolation or in combination with other algorithms. The

relative weights are often determined once (either on a single set of training data or

on a k-fold set of training data), which precludes understanding the sensitivity of the
setting. This is unfortunate, since clearly the k-fold evaluation allows a modest sen-

sitivity analysis to be performed—the resulting mean and standard deviation of both
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the training and test data can be used as the sensitivity, which provides a sort of val-

idation for the data.

As an example, suppose that we wish to employ a weighted voting algorithm,

where, for example, the overall weight given to each algorithm is determined by

the inverses of the error rate, the accuracy, or any of several other reasonable

approaches, as outlined in Ref. [Sims13]. For this example, we combined three sim-

ple image classifiers (A, B, and C) with their weights set proportional to the inverse

of their error rates (highest for C and lowest for B). These normalized (summing to

1.0) weights are A¼0.32, B¼0.45, and C¼0.23, as shown for the “default” row in

Table 5.1.We are interested in determining the effect of varying the weights for A, B,

and C, both positively and negatively, to determine the absolute, relative, and direc-

tional sensitivity of the weights for each classifier. This helps us in at least two ways:

(1) It tests the model for combination, which is in this case inverse error-dependent

weighted voting, and (2) it may help us optimize the settings if we get consistent

results.

The results for these +10 and �10% changes in the weightings of the three Clas-

sifiers A, B, and C are shown in Table 5.1. The values are calculated as follows: The

weight of the classifier that is to be changed is increased by 10% or decreased by

10%, and the remaining weights are then adjusted, so the sum of weights is still

1.0 (normalized). So, when the A weight moves from 0.32 to 0.35 (+10%),

B weight decreases to 0.43, and C weight decreases to 0.22, so the sum of

0.35+0.43+0.22¼1.0. For B weight, 0.45 is replaced by 0.45/(0.45+0.23)

multiplied by 0.65, which comes to 0.43.

The sensitivity to a +10% change in A is�0.7%, and to a�10% change in A, it is

�0.4%; to a +10% change in B, it is +0.08%, and to a�10% change in B, it is�1.6%;

and to a +10% change in C, it is�0.1%, and to a�10% change in C, it is�0.3%. The

mean sensitivity is the percentage change in accuracy divided by the percentage

change in the weight, which is therefore �0.07 and �0.04 for A, +0.08 and �0.16

for B, and �0.03 and �0.01 for C. From this, we see that the magnitude of the mean
Table 5.1 Sensitivity matrix for weighting of three classifiers that are combined
together in a weighted voting classification pattern

Situation A weight B weight C weight Hybrid accuracy

Default 0.32 0.45 0.23 0.895

A+10% 0.35 0.43 0.22 0.888

A�10% 0.29 0.47 0.24 0.891

B+10% 0.29 0.50 0.21 0.903

B�10% 0.35 0.40 0.25 0.879

C+10% 0.31 0.44 0.25 0.894

C�10% 0.33 0.46 0.21 0.892

The sensitivity to a �10% change in A is �0.7% and �0.4%; to a �10% change in B, it is +0.08% and
�1.6%; and to a �10% change in C, it is �0.1% and �0.3%. Please see text for details.



196 CHAPTER 5 Sensitivity analysis and big system engineering
sensitivity to B is more than twice that of A and is six times that of C. So, the overall

accuracy is most sensitive to the weighting of Classifier B, and there only the positive

direction results in a positive effect on the weighted voting combination accuracy. In

this simple example, then, the system can be optimized by changing the relative

weighting of Classifier B positively.

The next step is to test various positive shifts of the weighting of B and assess the

hybrid accuracy. For some new sets of {A,B,C} weighting based on continuing in the

directions of “positive effects on accuracy,” we chose these weighting triples¼
{0.32,0.45,0.23}, {0.31,0.46,0.23}, {0.31,0.47,0.22}, {0.30,0.48,0.22},

{0.30,0.49,0.21}, {0.29,0.50,0.21}, {0.28,0.51,0.21}, and {0.28,0.52,0.20}. For

these eight combinations, we measured that the hybrid accuracy was, respectively,

0.895, 0.896, 0.898, 0.904, 0.906, 0.903, 0.0903, and 0.901. Thus, the peak is

accuracy¼0.906 for the weights {0.30,0.49,0.21}. Since this is the only positive

direction for sensitivity, we have almost certainly found a better set of weights than

the original set of {0.32, 0.45, 0.23}. Note that this optimization simultaneously con-

sidered the absolute, relative, and directional sensitivities of the coefficients.
5.5 Sensitivity analysis of the hybrid algorithmics
Moving up a level, from the level of individual algorithms cooperating for a solution

to adding more meta-algorithmic (e.g., ensemble, hybrid, and combinatorial

approaches) systems to an existing hybrid system, our sensitivity is now focused

on the overall change in system behavior when a new meta-algorithm is added to

the system.

In Table 5.2, we are looking at the sensitivity of a hybrid system to each of its

components. The components could be individual algorithms along the lines of

the example covered in the previous Section 5.5; however, the approach is general-

izable to any combination of meta-algorithms in addition to any combination of

algorithms.
Table 5.2 Sensitivity matrix for adding a meta-algorithmic pattern to an
existing hybrid system

Meta-algorithmic
number

Meta-algorithmic number

1 2 3 … N

1 — NA NA NA NA

2 1+2 — NA NA NA

3 1+3 2+3 — NA NA

… … … … — NA

N 1+N 2+N 3+N … —

The comparisons made are indicated by “1+2,” “1+3,” etc., in the table. There are N(N�1)/2 total
comparisons to be made. Please see text for details.



Table 5.3 Sensitivity matrix for adding a meta-algorithmic pattern to an
existing hybrid system

Meta-algorithmic
number

Meta-algorithmic number

A (0.822) B (0.833) C (0.755) D (0.734) E (0.714)

A (0.822) — NA NA NA NA

B (0.833) 0.833 — NA NA NA

C (0.755) 0.838 0.844 — NA NA

D (0.734) 0.844 0.829 0.812 — NA

E (0.714) 0.825 0.855 0.811 0.777 —

There areN(N�1)/2 total comparisons to be made. Please see text for details. The values in parenthesis
are the accuracies for each of the individual classifiers, while the table entries are the accuracies for the
paired set of classifiers

1975.5 Sensitivity analysis of the hybrid algorithmics
We start with algorithms first. If, for example, we wished to explore adding

another classifier, say Classifier E, to four classifiers already employed in a weighted

voting pattern, then we might get the specific incarnation shown in Table 5.3.

The table does not simply show what the weighted voting output is for Classifiers

A+B+C+D and then A+B+C+D+E, which is important, but does not give a com-

plete picture of the value of adding Classifier E. In the case of Table 5.3, it so happens

that adding Classifier E improved the overall accuracy from 0.855 to 0.868, which is

a 9.0% reduction in the error rate. But, more importantly, Table 5.3 can be used to

assess the relative value of adding Classifier E to any of the other classifiers in the

problem in several interesting ways. The first is to compute the peak sensitivity

according to Eq. (5.12):

Peak Sensitivity¼ max f i,Mð Þ� f Mð Þð Þ (5.12)

In order to determine the peak sensitivity, we find the maximum difference between

functions (accuracy being the “function” in this case) of two variables, subtracting

the original function (accuracy) of one variable; for example, f(i,M)� f(M). For A, the

peak sensitivity is for (D), since accuracy(A,D)�accuracy(A)¼0.022. For B, the

peak sensitivity is for (E), since accuracy(B,E)�accuracy(B)¼0.022. For C, the peak

sensitivity is for (B), since accuracy(B,C)�accuracy(C)¼0.089. For D, the peak sen-

sitivity is for (A), since accuracy(A,D)�accuracy(D)¼0.110. Finally, for E, the peak

sensitivity is for (B), since accuracy(B,E)�accuracy(E)¼0.141. This is indeed the

highest overall sensitivity, and importantly, the mean sensitivity of B and E is

(0.022+0.141)/2¼0.82. This is the highest overall sensitivity, implying that Classi-

fiers B and E complement each other nicely. Thus, we have two methods for sensi-

tivity analysis. The first is finding the classifier that best complements each classifier

(this is peak sensitivity, or Eq. 5.12), and for {A,B,C,D,E}, this is {D,E,B,A,B}. We

see that Classifier C is the only classifier that does not provide a peak sensitivity for

any other classifier. Also, B and E provide the highest single (0.141) complement and

the highest mean (0.82) complement pair. The mean complement by pair is thus the

second sensitivity analysis metric from the table.



198 CHAPTER 5 Sensitivity analysis and big system engineering
A third sensitivity analysis from the data in Table 5.3 is to find the mean and

range of each classifier for complementing the other ones. For Classifier A, the mean

is 0.76 (of 0.00, 0.083, 0.110, and 0.111), and the range is {0.00, 0.111}. The mean is

thus the sum of the differences in the matrix for A with B, C, D, and E compared with

the accuracy of B, C, D, or E alone and then divided by 4. For Classifier B, the mean

is 0.84, and the range is {0.11, 0.141}. For Classifier C, the mean is 0.51, and the

range is {0.11, 0.97}. For Classifier D, the mean is 0.35, and the range is {�0.04,

0.63}—the negative value is because when D is added to B, it pulls the classification

accuracy from B’s 0.833 to a combined 0.829. In general, this happens quite fre-

quently, especially as our systems approach optimization. Finally, for Classifier

E, the mean is 0.31, and the range is {0.03, 0.56}. Based on the means, the classifiers

with the strongest “pull” (mean increase in accuracy when paired with another clas-

sifier) are, in order, B (pull¼0.79), A (pull¼0.76), C (pull¼0.51), D (pull¼0.35),

and E (pull¼0.31). This happens to be the exact order of the individual classifiers for

accuracy, which implies a generally correlated set of classifiers. However, we see

that adding Classifier E, in spite of its relatively low accuracy, has a positive impact

on each pairing with another classifier. This implies it should prove a robust addition

to the overall classification.

Thus, we see how to use Table 5.1 for combining classifiers, each of which may

by itself a meta-algorithm. For “pure” meta-algorithms, peak sensitivity is given by

Eq. (5.12). Whether algorithms or meta-algorithms are being assessed, the number of

comparisons to be made for the sensitivity analysis is N(N�1)/2 where N¼ the num-

ber of meta-algorithmic patterns being considered for adding into the system.
5.6 Sensitivity analysis of the path to the current state
The final topic in sensitivity analysis to be covered here is related to path. This has a

lot of applications, particularly in its use in Markov models and Bayesian networks.

We start off considering its application to the Markov model originally presented in

Section 1.7.3. In Table 5.4, we see all of the transition probabilities for the four-state

system. In specific, we will be interested in the “no change” state-state transitions,

that is, A➔A, B➔B, C➔C, and D➔D, with probabilities 0.33, 0.12, 0.26, and 0.22,

respectively.
Table 5.4 Table (subset of the data in Table 1.3) for theMarkovmodel with four
states of Fig. 1.11, with all state-state transition probabilities

State n

State n�1

A B C D

A 0.33 0.25 0.22 0.20

B 0.33 0.12 0.23 0.32

C 0.28 0.24 0.26 0.22

D 0.39 0.19 0.19 0.23

This is the starting point for the sensitivity analysis shown in Table 5.5 and described in the text.
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In Table 5.4, note that each row sums to 1.0, as it must since the next state is

always either A, B, C, or D. The columns do not have to sum to 1.0, and rarely

do, but do give us a relative estimate of what percentage of time the system spends

in each state. A closed-form solution of the Markov model is not available, so for the

data of Table 5.4 (and later Table 5.5), the percentages are the means of three sep-

arate trials with 107 consecutive states.

In Table 5.5, we carry out the sensitivity analysis using the “steady-state” situ-

ations of having state n�1 and state n be the same. We could have used any other

variation, for example, changing any of the 16 transition probabilities in Table 5.4 in

both a positive and negative direction. For the purposes of illustration, though, we

will simply change the four probabilities AA, BB, CC, and DD (steady-state staying

at states A, B, C, and D, respectively) by +3% and separately by �3%. When this

occurs, we must adjust the other probabilities downward, and so, for example, we

decrease each of AB, AC, and AD probabilities by �1% when AA is increased

3% and increase each of AB, AC, and AD probabilities by +1% when AA is

decreased 3%.

The results of each of these +3% and �3% variations are shown in Table 5.5.

Sensitivity is measured based on the effect of adding or subtracting 3% of the times
Table 5.5 Table with eight simple sensitivity analyses performed

Condition of the test
A pct
(delta)

B pct
(delta)

C pct
(delta)

D pct
(delta)

Original (see Table 5.4) 0.3331 0.2067 0.2239 0.2363

AA¼0.36, AB¼0.24,
AC¼0.21, AD¼0.19

0.3433
(+0.0102)

0.2039
(�0.0028)

0.2203
(�0.0036)

0.3433
(+0.0102)

AA¼0.30, AB¼0.26,
AC¼0.23, AD¼0.21

0.3233
(�0.0098)

0.2094
(+0.0027)

0.2272
(+0.0033)

0.2401
(+0.0038)

BB¼0.15, BA¼0.32,
BC¼0.22, BD¼0.31

0.3311
(�0.0020)

0.2124
(+0.0057)

0.2218
(�0.0021)

0.2348
(�0.0015)

BB¼0.09, BA¼0.34,
BC¼0.24, BD¼0.33

0.3349
(+0.0018)

0.2013
(�0.0054)

0.2261
(+0.0022)

0.2377
(+0.0014)

CC¼0.29, CA¼0.27,
CB¼0.23, CD¼0.21

0.3302
(�0.0029)

0.2048
(�0.0019)

0.2311
(+0.0072)

0.2339
(�0.0024)

CC¼0.23, CA¼0.29,
CB¼0.25, CD¼0.23

0.3357
(+0.0026)

0.2085
(+0.0018)

0.2170
(�0.0069)

0.2387
(+0.0024)

DD¼0.26, DA¼0.38,
DB¼0.18, DD¼0.180

0.3312
(�0.0019)

0.2044
(�0.0023)

0.2210
(�0.0029)

0.2433
(+0.0070)

DD¼0.20, DA¼0.40,
DB¼0.20, DD¼0.20

0.3348
(+0.0017)

0.2091
(+0.0024)

0.2265
(+0.0026)

0.2296
(�0.0067)

The tests performed were to add and subtract the margin of error (1.96 standard deviations, or 0.03) to
the “steady-state” values of AA, BB, CC, and DD, respectively and distribute the delta evenly across the
remaining three state-state transitions, as shown in the first column. The effects on the overall time spent
in each state are shown in parentheses. Please see text for more details.
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a state remains in state for the next iteration. The expected impact of the sensitivity is

the variation added multiplied by the percentage of time spent in a given state. Since

the variation is �3% and the percentage of time spent in the states A, B, C, and D

(from the first data row in Table 5.5) is 0.3331, 0.2067, 0.2239, and 0.2363, respec-

tively, then we expect the change on percent time spent at A, B, C, and D to be

0.0100, 0.0062, 0.0067, and 0.0071, respectively. As we see in Table 5.5, the mean

effects on state A are 0.0100 (exactly as expected), the mean effects on state B are

0.0056 (lower than expected), the mean effects on state C are 0.0071 (higher than

expected), and the mean effects on state D are 0.0069 (roughly as expected). Sensi-

tivity is defined as the mean effect on the state (of the + and the � variability added

divided by 2), divided by the percent of the time in the particular state, per Eq. (5.13):

Sensitivity¼ +Effect onStatej j + �Effect onStatej j
2�PercentofTimeinState

(5.13)

From Eq. (5.13), the sensitivity of AA¼(0.0102+0.0098)/(2*0.3331)¼0.0300,

the sensitivity of BB¼(0.0057+0.0054)/(2*0.2067)¼0.0268, the sensitivity

of CC¼(0.0072+0.0069)/(2*0.2239)¼0.0315, and the sensitivity of DD¼
(0.0070+0.0067)/(2*0.2363)¼0.0290. Values above 0.03 (the �variability added)

are higher than predicted (this is true of CC), and values below 0.03 are lower than

predicted (this is true of BB). We see from this set of results that state C is the one

upon which the output is most sensitive. It makes sense for us, then, to focus on mak-

ing sure that state C is made as predictable as possible (for cost, throughput, perfor-

mance, accuracy, or whatever else is being measured or managed at each state) to

best improve the predictive power of the overall system.

Markov chains are also readily amenable to path sensitivity analysis. Suppose we

have a Markov chain A➔B➔C and we wish to calculate the probability of this path.

The probability is p(A jBC)�p(B jC)�p(C). The overall sensitivity of the chain’s

probability is therefore a function of the uncertainly of p(A jBC), p(B jC), and
p(C). We use this to compare two close results, for example, p(ABC) and p(ACB).
Suppose p(A jBC) is 20�4%, p(B jC) is 40�10%, and p(C) is 30�6%. Then, sup-

pose p(A jCB) is 19�3%, p(C jB) is 38�5%, and p(B) is 31�3%. We see that

p(ABC)¼0.0240�0.0192 and p(ACB)¼0.0224�0.0098. Clearly, we see that

p(ABC)> p(ACB), but p(ABC) could be as low as 0.0048, and p(ACB) is never lower
than 0.0126. If it is catastrophic from a process standpoint (quality control, risk

assessment, etc.) to be below a certain value, for example, 0.0075 or 0.0100, then

we may choose p(ACB) as the best path or sequence.
5.7 Summary
This chapter began with a review of sensitivity analysis approaches overviewed in

this chapter and Chapters 6–14, elaborating further on the use of sensitivity analysis
to assign individual models to portions of the domain for hybrid models. A deeper

consideration of how many critical points to use for feature selection (initially
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introduced in Sections 1.10 and 1.11) was provided and later shown to be useful for

destabilizing data groups with less entropy than other groups with which it will be

analyzed. Destabilization was discussed for four situations: (a) when one set of

ground truth has largely different entropy than the other sets, (b) when one set of

ground truth is more or less discretized than the other sets, (c) when one set of ground

truth is created by different means than the other sets, and (d) when the grouped

behavior of the data is too similar by analytic evaluation.

Sensitivity analysis was then applied to a solution model. In linear system theory,

the coefficients of the transfer function can be monitored for their variability over

time directly, since the numerator and denominator both have linear equations. Sen-

sitivity for a system of multiple equations is determined from the Amatrix elements

in the equation x(n+1)¼Ax(n)+b.
Sensitivity analysis of individual algorithms in an ensemble, combinatorial, or

other hybrid system was considered in Table 5.1. By varying the weights in a

weighted voting system, we could compute absolute, relative, and directional effects.

In our example, only one direction of sensitivity resulted in improved overall accu-

racy. This allowed us to focus on this direction for optimizing the overall system, in

the end achieving an additional 1.1% in accuracy and reducing the error by 10.5% of

its initial value.

A matrix approach to sensitivity analysis was used to determine if adding another

algorithm or meta-algorithm is as effective as the combinations that have already

been performed in a hybrid design. Three types of sensitivity—peak sensitivity of

the combinations or maximum complement pairing, mean complement by pair,

and mean and range of complementing—are computed for each of the multiple

algorithms/meta-algorithms, and any anomalous behavior can be discerned.

Finally, sensitivity analysis of path was overviewed. This approach was shown to

be particularly applicable to Markov models and Bayesian networks. We revisited

the Markov model from Chapter 1 and showed how sensitivity analysis can point

us to focus on the measurements upon which the final outputs are most sensitive.
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CHAPTER
Multipatch predictive
selection
 6

Meta-Analytics. ht

# 2019 Steven Sim
Those who have knowledge, don’t predict. Those who predict, don’t have

knowledge

Lao Tzu

If the path be beautiful, let us not ask where it leads

Anatole France
6.1 Introduction
The predictive selection pattern for meta-algorithmics was introduced in Ref.

[Sims13] and comprises a statistical learning phase along with the run-time phase.

During statistical learning, each possible configuration of the algorithm, analytics,

or system to be deployed is considered along with each logical partition of the data

space. In this way, we can determine the precision of each decision and always

employ the algorithm, analytics, or system with the highest precision for the partition

to which a run-time sample belongs. Predictive selection was therefore shown to

reduce to the rule of selecting the option with the highest precision in a specific pre-

dictor test. The predictive selection approach is innately rational, as its most rudi-

mentary form is simply conditional probability: maximizing the utility (cost,

accuracy, performance, robustness, etc.) of the selected algorithm, analytics, or sys-

tem given a specific event has occurred. Although wise, the founder of Taoism did

not anticipate the power of predictive selection. With predictive selection, knowl-

edge and prediction interplay as part of the process. Knowledge of the partitioning

includes understanding what partitions to make as much as which downstream sys-

tem to employ for each partition. And, the prediction is directly related to the knowl-

edge of the precision of each system (or analytics or algorithm) for each partition. So

long as the partitions are consistent over time, knowledge and prediction are used

simultaneously, making predictive selection a Tao of analytics.

Nor do we stop with Lao Tzu. Anatole France quipped that “if the path be beau-

tiful, let us not ask where it leads,” but with predictive selection, we see both the

beauty and the direction at the same time. The beauty lies in the ability to partition,

repartition, and layer the predictive elements for the downstream algorithm, analyt-

ics, or systems, and where it leads is guided by the better estimate provided by the

optimized predictive steps. We begin our discussion with the baseline predictive

selection pattern.
tps://doi.org/10.1016/B978-0-12-814623-1.00006-X

ske. Published by Elsevier Inc. All rights reserved.
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6.2 Predictive selection
First and foremost, predictive selection is about collecting data. The predictive part

of the design pattern is focused on categorization. Data that are collected need to be

partitioned so that each partition can be used to optimize the downstream algorithm,

analytics, or system that provides the particular machine intelligence output required

of the problem. Partitioning involves assigning input data to clusters (generally parti-

tioned by their location along ranges of specific content measurements, called fea-

tures or metrics), to conditions (which can include contextual information, such as

metadata or thresholds), and to expert rules (which can be internalized from domain

expertise garnered from experience or can be imposed directly in the case of regu-

lations, standards, and auditable levels of quality).

Importantly, data can be used to assign content to more than one category at a

time. This affords a level of complexity for the overall system design that is analo-

gous to the connections in an artificial neural network. Data used for prediction can

assign the output to two or more categories, and based on the precision of the training

data for those categories, we can choose to select the optimum system design based

on as few as one of the categories and as many as all of the categories. As an example,

suppose a data set is analyzed and found to belong to categories A, B, C, and D. The

precision associated with those categories are, from the training data, 0.89, 0.87,

0.84, and 0.76. Depending on the circumstances, we may find better overall behavior

by considering A only (the highest precision); A and B (e.g., within 5%); A, B, and C

(e.g., within 10%), or all four (throwing away no categories identified, assuming they

are all accurately assigned).Which of these is the “best” strategy? There is no a priori

“right” answer; instead, deciding how multiple categories will be used for selecting

the algorithm, analytics, or system to employ should be the task of the validation

stage of the algorithm. With this in mind, we now cover some more of the specific

of predictive selection, starting with the means of prediction.
6.3 Means of predicting
Prediction is a broad topic. From the simplicity of correlation, to the relative sophis-

tication of conditional probabilities such as Markov and Bayesian approaches, to the

esoteric nature of deep learning and meta-algorithmic patterns, we have several

options for training a system to understand how to configure itself. In this chapter,

our primary focus is on using partitions of the input data as a means of assigning

differential categories to the subsequent analysis in order to improve the overall mea-

sured behavior of the system. Usually, the measurement is of accuracy, but predictive

selection can be used to optimize any objective function, which could be concerned

with cost, throughput performance, robustness, modularity, sensitivity, scalability,

etc., in addition or in place of accuracy. We will default with classification as the

presumed subsequent analysis here unless indicated otherwise.
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The core decision for prediction is to decide how the input should be parti-

tioned and how the data within each partition should be interpreted for the selec-

tion process that follows. Six prediction approaches are outlined here, which

combined are nonexhaustive but certainly very helpful to get the gist of the pro-

cess across:

1. The simplest partition is a yes/no or pass/fail decision. For this prediction

approach, if “A” is contained in the data, we then use the data in one way to select

the downstream process. If “A” is absent, we then use another. This approach is

analogous to a decision tree if we “chain” yes/no or pass/fail decisions

conditionally on the output of previous decisions. For example, if “yes” to A, then

we select pass/fail on “B”; otherwise, we select pass/fail on “C.”

2. The next simplest partition is a threshold. This is a binary decision and so is

similar in concept to yes/no or pass/fail. Data above the threshold are assigned to

one partition, and data below the threshold are assigned to another partition.

Suppose that we are looking at images in a database taken from within a

downtown area. We may then decide that if there are more than five moving

objects of a large size, we will use one particular image understanding

algorithms; if less than five, we will use another. This selection method works

well when our objective function is cost, throughput performance, choosing the

degree of parallelism, etc.

3. The next partition method is subrange-based partitioning. At its simplest, this is a

multiple threshold approach, where we subdivide a range into consecutive

subranges that comprise the partition. Subrange-based partitioning is the starting

point for two more complicated forms of partitioning, described next.

4. Conditional partitioning is based on a Boolean expression, the simplest of which

is AND. Here, the partition may be based on an appropriate subrange for each of

two or more features. Even more complexity can be supported if a function of two

or more features is also partitioned by subrange.

5. Sequential partitions are partitions applied to data that are collected in a time

series, such as ECGs, EEGs, and temperatures, or as video, for example,

surveillance information. Because the sequential events are related, we may

anticipate different subranges, even for the same type of data, over time. A good

example is if an object is accelerating in a video or if heart rate is changing during

an exercise stress test.

6. Finally, consensus partitioning is a specialized type of conditional partitioning

where the partition is defined based on the data and the metadata (or contextual)

information associated with the data. For example, if two different sensors are

used but have different sensitivities or calibration, then a different subrange may

be used for each sensor based on the metadata identifying the manufacturer and

settings of the sensor.

We now continue with the broader, and in some ways more interesting, process of

selection.
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6.4 Means of selecting
The means of selecting is based on maximizing the precision of the particular

approach. The concept of precision is straightforward and is illustrated here

(Table 6.1) for a simple three-class classification problem, which may be the

behavior of the classifier selected based on a partitioning, as described in the pre-

vious section. In Table 6.1, we have a total of 100 normalized samples that belong

(as ground truth training data) to one of three classes: A, B, and C. However, as is

true of any nonideal classifier, there are some classification errors. For Class A,

64.2% of the samples actually coming from Class A are assigned (correctly) to

Class A; however, 14.7% of the samples from Class A are (incorrectly) assigned

to Class B, and 21.1% of the samples from Class A are (incorrectly) assigned to

Class B. A similar interpretation can be garnered for the Class B and Class C “true

class” rows in Table 6.1.

We see, therefore, that recall for each class is readily determined. Recall is the

number of samples that actually belong to the class that are in fact assigned to the

class divided by the number of samples that actually belong to the class. Since

the denominator is 100.0 for each class in Table 6.1, we see that the recall for

Classes A, B, and C are 0.642, 0.596, and 0.714, respectively. However, it is pre-

cision, not recall, that gives us the most confidence in an assigned class. Precision

is determined in Table 6.1 from the columns, rather than the rows. Precision is the

ratio of the number of samples assigned to a class correctly divided by the number

of samples assigned to the class overall. So, for Class A, this ratio is (64.2)/(64.2

+16.7+14.8)¼0.671. Similarly, for Class B, this is 59.6/88.1¼0.677, and for

Class C, this is 71.4/116.2¼0.614. So, the recall is highest for Class C, but

the precision is lowest. It is precision that tells us what the probability of an

assignment being correct is, though, making this the basis of predictive selection.

If the classifier of Table 6.1 tells us that a sample belongs to Classes A or B, we

are roughly 6% more likely to have the right classification than if it tells us a

sample belongs to Class C.

Having this understanding, we can now compare this with the confusion matrix

for a different classifier. This second classifier produces the confusion matrix shown

in Table 6.2, which using the same approach as for Table 6.1 yields precisions of

0.557, 0.713, and 0.696 for Classes A, B, and C, respectively.
Table 6.1 Simple confusion matrix to illustrate the concept of precision.

Normalized confusion matrix

Classifier output (computed
classification) prediction

A B C

True class of the samples (input) A 64.2 14.7 21.1

B 16.7 59.6 23.7

C 14.8 13.8 71.4

Precisions of Classes A, B, and C are 0.671, 0.677, and 0.614, respectively. Please see text for details.



Table 6.2 Second confusion matrix for a classifier distinct from that of
Table 6.1.

Normalized confusion matrix

Classifier output (computed
classification) prediction

A B C

True class of the samples (input) A 55.8 20.9 23.3

B 19.8 74.6 5.6

C 24.5 9.2 66.3

Precisions of Classes A, B, and C are 0.557, 0.713, and 0.696, respectively. Please see text for
discussion.

Table 6.3 Precision values for the classifiers of Tables 6.1 and 6.2.

Class for precision A B C

(1) Classifier of Table 6.1 0.671 0.677 0.614

(2) Classifier of Table 6.2 0.557 0.713 0.696

2076.4 Means of selecting
In Table 6.2, we see lower recall for Classes A and C in comparison with

Table 6.1. Additionally, the precision values are different, being higher for Classes

B and C, and lower for Class A. These values are captured in Table 6.3. The overall

accuracy of both classifiers is similar (the mean of the diagonal elements of the con-

fusion matrices): 0.651 for Table 6.1 and 0.656 for Table 6.2. This means that either

classifier used by itself will provide between 65 and 66% accuracy on the three-class

problem. However, using predictive selection, we should be able to use the differ-

ential precisions of the two classifiers to our advantage.

From Table 6.3, our maximum precision is the situation in which Classifier (2)

reports that the sample belongs to Class B. In order, Table 6.3 suggests we adopt the

following strategy to classifying samples obtained during the run-time, or deploy-

ment, phase:

1. If Classifier (2) classifies the sample as being from Class B, assign the sample to

Class B.

2. Else, if Classifier (2) classifies the sample as being from Class C, assign the

sample to Class C.

3. Else, if Classifier (1) classifies the sample as being from Class B, assign the

sample to Class B.

4. Else, if Classifier (1) classifies the sample as being from Class A, assign the

sample to Class A.

5. Else, if Classifier (1) classifies the sample as being from Class C, assign the

sample to Class C.

6. Otherwise, Classifier (2) classifies the sample as being from Class A, but we

cannot ever reach this step unless Classifier (1) provides no classification

whatsoever, since this is the lowest precision of any of the size options.
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Taken together, this list results in a relatively simple rule. If Classifier (2) classifies

the sample as being from Class B or C, then assign the sample to the classification of

Classifier (2); otherwise, assign it to the class that Classifier (1) identifies.

In this example, because each classifier is used when it provides the higher pre-

cision for the class, we might expect the combined accuracy to be approximately the

mean of the three higher precisions for the classes; that is, 0.671, 0.713, and 0.696 for

Classes A, B, and C, respectively. If so, this would be 0.693 or an error rate reduction

of 10.8% in comparison with the accuracy of 0.656 for the (slightly) better classifier

(0.307 is 10.8% less than 0.344), Classifier (2), and a 12.0% reduction in error (from

0.349 to 0.307) in comparison with the accuracy of Classifier (1). Note that error rate

is 1.0 minus the accuracy. The actual results for such a problem depend on how the

precision of the classifier varies for the samples classified as being from Class A for

the classifier not used, that is, Classifier (2). We see that for Classifier (2), 55.8/(55.8

+19.8+24.5)¼0.5574 of the samples classified as being from Class A actually is

from Class A. For these samples, the classifier we actually use is Classifier (1),

for which the precision is 0.671. Similarly, 19.8/(55.8+19.8+24.5)¼0.1978 of the

samples classified as being from Class A actually is from Class B. For these samples,

Classifier (1) has a precision of 0.677. Finally, 24.5/(55.8+19.8+24.5)¼0.2448 of

the samples classified as being from Class A actually is from Class C, and Classifier

(1) has a precision of 0.614 for these. The overall precision of Classifier (1) for sam-

ples that Classifier (2) assigns to Class A is thus the sum:

0:671�0:5574ð Þ+ 0:677�0:1978ð Þ + 0:614�0:2448ð Þ¼ 0:658 (6.1)

This means that the overall accuracy of the two-classifier system is the mean of

0.658, 0.713, and 0.696 for Classes A, B, and C, respectively, or 0.689. This is a

reduction in error rate of 9.6% compared with Classifier (2) and a higher (of course)

reduction in error rate of 10.9% compared with Classifier (1).

This example illustrates how using the principle of “selecting the option with

highest precision” leads to better overall system performance. But precision is not

the only tool we have at our avail. The entity selected by a predictive selection

approach need not be a single category or class as in the above example; instead,

it can select an entire system with the specifics (settings, weights, etc.) of the system

design selected by the predictive measurements. Selecting a different system for

deployment for each partition in the predictor is associated with the regional optimi-

zation pattern [Sims13]. The so-called predictive selection with secondary engines

approach [Sims13] may be more concerned with ranking the selected choices than in
dictating that a specific choice be adopted. This is because in most real-world sys-

tems, the output of the system is analyzed just as carefully—if not more so—as the

training data. The output can be considered to see if it passes a certain criterium, and

if so, there is no need to select the next choice from the ranked list. Note that the

criterium can be any quality metric germane to the task, for example, mechanical

strength, surface finish smoothness, electric insulation, and density. The criterium

can also be analytic rather than a material or physical property. For example, if accu-

racy or performance requirements are not met, a new system design might be chosen.
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Another important approach within the predictive selection repertoire is the “sep-

aration of task” for prediction and selection. Here, one particular variable is analyzed

by subrange, and each of its subranges triggers a different configuration for the pre-

diction. These configurations can include different system architecture patterns and

different weightings for the multiple components.

Related but alternative to the separation of task, we can use an effectively infi-

nitely scalable system to use as many features as we possibly can to obtain multiple

estimates for the output from this ensemble. The features themselves are defined by

subranges, and for each subrange, we apply the output of the classifier with the high-

est precision to the ensemble overall decision. This might sound difficult, but it is

fortunately very easy to elucidate with the help of a table. So, using a table as our

crutch (and who reading this hasn’t used a table once in their life to rise off the

floor?), we can see from Table 6.4 that each of the features can be defined by 2

or more subranges. In Table 6.4, we show four features with a variable number

(3, 4, or 5) of subranges.

In Table 6.4, each of the subranges is of the same size. Thus, for Feature 1, each

subrange comprises 33.3% of the samples; for Features 2 and 3, each subrange com-

prises 25% of the samples, and for Feature 4, each subrange comprises 20% of the

samples. Also, in Table 6.4, the precision of each of three algorithms for each
Table 6.4 Table used for illustrating the multirange, multifeature predictive
selection approach.

Feature Subrange
Precision,
algorithm A

Precision,
algorithm B

Precision,
algorithm C

Feature 1 Subrange 1 0.655 0.677 0.699

Subrange 2 0.669 0.674 0.681

Subrange 3 0.683 0.669 0.658

Feature 2 Subrange 1 0.734 0.804 0.777

Subrange 2 0.744 0.755 0.813

Subrange 3 0.766 0.711 0.783

Subrange 4 0.779 0.667 0.753

Feature 3 Subrange 1 0.555 0.599 0.634

Subrange 2 0.563 0.588 0.613

Subrange 3 0.571 0.597 0.580

Subrange 4 0.557 0.614 0.603

Feature 4 Subrange 1 0.665 0.707 0.645

Subrange 2 0.634 0.745 0.662

Subrange 3 0.651 0.696 0.684

Subrange 4 0.689 0.689 0.704

Subrange 5 0.745 0.694 0.723

Values shown are the precision values for each of Algorithms A, B, and C. In each row, the underlined
value is the one with the highest precision. Please see text for details.



Table 6.5 Overall precision of each algorithm for each feature, irrespective of
subrange, for Table 6.4 values.

Feature
Precision,
Algorithm A

Precision,
Algorithm B

Precision,
Algorithm C

1 0.669 0.673 0.679

2 0.756 0.734 0.782

3 0.562 0.600 0.608

4 0.677 0.706 0.684

Please see text for details.
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subrange is given. The highest precision of each triplet (row) is underlined. There is

an appreciable variability in precision among the triplets and among the algorithms

for the same subranges—up to 0.112 difference for the three algorithms—and among

the subranges for the same algorithm, up to 0.137 difference among the subranges for

the same algorithm, in Table 6.4. By subrange, the rows of Table 6.4 have a mean

range of 0.050.

Table 6.5 highlights the differences in the algorithms by feature, and Table 6.6

highlights the differences in the subranges (mean of all three algorithms). In

Table 6.5, the mean range across the rows is 0.033 or a third lower than that of

Table 6.4. This shows the efficacy of breaking the features up into their subranges,

since greater variability allows us to select algorithms with differential precision.
Table 6.6 Mean precision of each subrange for the three algorithms.

Feature Subrange Mean precision, algorithms A, B, and C

Feature 1 Subrange 1 0.677

Subrange 2 0.675

Subrange 3 0.670

Feature 2 Subrange 1 0.772

Subrange 2 0.771

Subrange 3 0.753

Subrange 4 0.733

Feature 3 Subrange 1 0.596

Subrange 2 0.588

Subrange 3 0.583

Subrange 4 0.591

Feature 4 Subrange 1 0.672

Subrange 2 0.680

Subrange 3 0.677

Subrange 4 0.694

Subrange 5 0.721

Column 3 is the mean of columns 3, 4, and 5 in Table 6.4. Please see text for details.
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The 50% relative increase in range of precision should help provide higher overall

precision in the predictive selection approach eventually implemented. The mean

precision values of Table 6.6 also hide a much larger subrange-algorithm interaction

that is so evident in Table 6.4. For the four features, the range over the set of sub-

ranges is 0.007, 0.058, 0.013, and 0.049, respectively, for Features 1, 2, 3, and 4.

The mean of these is only 0.032, virtually the same as for Table 6.5. In short,

Tables 6.5 and 6.6 justify breaking the features into subranges and using multiple

algorithms, as depicted in Table 6.4.

Next, we determine the impact of this subrange-algorithm interaction in

Table 6.7. Selecting the highest precision algorithm for each subrange results in

between 1.8 and 6.0% lower error rate (1.0—precision) compared with the single

best algorithm by features in Table 6.4. The improvement is obtained at the expense

of adding the subranges, which may have the unanticipated side effect of overtrain-

ing the data. If, however, the subranges are likely to continue throughout the (deploy-

ment) lifetime of the system, the added advantages of improving the overall precision

of the selected algorithm are likely to remain.

In this simple example, we do not actually see how the subrange-partitioning pre-

dictive selection approach affects the overall accuracy of the classification. In order

to perform that assessment, we would need to provide a full multifeature classifica-

tion along the lines of the process outlined in Sections 1.10 and 1.11. Most important

for improving the overall classification accuracy is how independent the features are

in their behavior. Also, the features will be weighted differently based on our con-

fidence in each of them—from Table 6.7, we expect Feature 2 to be weighted the

most heavily, and Feature 3 to be weighted the least heavily. For the particular data

used to create these Tables, the classifiers were used for text classification, and

indeed, the overall accuracy of the system was improved from 0.886 to 0.902, a

reduction of the error rate from 0.114 to 0.098 (14% reduction in error). Interestingly,

this was almost as much as the summed improvement of all four features in Table 6.7

But, of course, “results may vary.”
Table 6.7 Overall precision of each subrange-optimized selection from
Table 6.4, with improvement over best single algorithm from Table 6.5 in
parenthesis.

Feature
Precision, subrange-optimized selection (pct improvement over
Table 6.5)

1 0.688 (2.8% lower error rate)

2 0.795 (6.0% lower error rate)

3 0.615 (1.8% lower error rate)

4 0.719 (4.4% lower error rate)

Percent improvement is in error rate, not accuracy. Please see text for details. These precisions are the
means of the best for each subrange (3, 4, or 5 in number) in a feature.
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6.5 Multi-path approach
Everything up to this point in this chapter was meant to illustrate the power of using

precision to guide predictive selection algorithms, and so with just a few minor

twists, this has been a hopefully interesting but certainly not revolutionary extension

of the predictive selection examples in [Sims13]. In this section, however, we get to

explore the application of predictive selection process to path analytics. We begin

with a consideration of how the partitioning associated with the process can be used

to find an optimal decision tree.

In the previous section and specifically inTable 6.4, the ranges of the featureswere

broken up and assigned to subranges of equal size and then treated as different con-

ditionals within the overall selection phase. However, the subranges were made of

equal size (i.e., the same number of training samples) simply for convenience of cal-

culation and thus illustration in the tables. In practice, wemaywish to refine these sub-

ranges in order to maximize the variance in the ranges. We perform this in a manner

analogous to that employed by decision trees. The first decision is to determine a sub-

range and then determine a figure of merit for the subrange and any additional sub-

ranges it automatically creates (above and below it). If the figure of merit for any

above or below it is low enough, then another subrange definition can occur. All sub-

range definitions in our simple example here were splits, and the decision tree formed

by iterative splitting that resulted in thehighestmean range in the subranges (across the

three classifiers—this valuewas0.050 inTable 6.4)waskept.Thiswas chosen inplace

of a variable such as highest cumulative difference in precision among all the sub-

ranges, as this approach led to the definition of as many subranges as possible (in this

case, 20 per feature since subrange boundaries were limited to multiples of 5% of the

samples). By the subranges so formed, the rows of Table 6.8 have a mean range of

0.064, substantially higher than the “uniform” subranges in Table 6.4. The final “mul-

tipath predictive selection” output is given in Table 6.8, which offers the largest

observed improved in precision ranges across subranges when subranges have step

by 0.05 boundaries. Each “path” is the set of splits occurring in the overall range.

In Table 6.8, several results stand out in comparison with Table 6.4. First off, the

peak precision values are higher in the mean than those of Table 6.4. This is because

the multipath approach leads to subranges with higher variability, and so, half of that

additional variability is expected by normal statistical laws to be on the high end, that

is, the change in range should be half above and half below the mean. Secondly, less

subranges were chosen. This is good news, as it means we probably had more sub-

ranges than needed for Table 6.4, so at least, we don’t feel that Table 6.4 “underparti-

tioned” the range. It also means that the changes in which classifier should be used

for the analysis only occur once or twice per feature: this implies that the features

chosen are generally “stable” and thus generally useful. Thirdly, we see that the sub-

ranges are not uniform in size in Table 6.8. Instead of dividing the ranges evenly into

thirds or halves, we see two ranges divided into (0.45 and 0.55) partitions, another

into nearly equal thirds (0.30, 0.40, and 0.30), and the last into half and two quarters

(0.50, 0.025, and 0.025).



Table 6.8 Table used for illustrating the multipath approach to subrange
optimization.

Feature
Subrange
(pct)

Precision,
algorithm A

Precision,
algorithm B

Precision,
algorithm C

Feature 1 Subrange 1
(0.55)

0.657 0.677 0.702

Subrange 2
(0.45)

0.684 0.668 0.651

Feature 2 Subrange 1
(0.30)

0.735 0.807 0.779

Subrange 2
(0.40)

0.752 0.727 0.824

Subrange 3
(0.30)

0.782 0.670 0.729

Feature 3 Subrange 1
(0.45)

0.558 0.593 0.627

Subrange 2
(0.55)

0.565 0.606 0.592

Feature 4 Subrange 1
(0.50)

0.650 0.730 0.666

Subrange 2
(0.25)

0.668 0.672 0.712

Subrange 3
(0.25)

0.740 0.692 0.692

Here, there are 10 subranges, rather than 16, among the 4 features, and the mean range of the
subranges (rows) for the 3 algorithms is 0.064.
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The new set of subrange partitions do lead to better overall precision, of course.

Otherwise, simply slicing the ranges into equal pieces would have had some strange

magic to it. However, with full disclosure, it should be noted that the “equal” sub-

ranges in Table 6.4 were like the pigs in Orwell’s “Animal Farm,” that is, more equal

than others. If you were paying careful attention to Table 6.4, you noticed that there

were three subgroups for Feature 1, four subgroups for Features 2 and 3, and five

subgroups for Feature 4. These were of course not selected randomly, but instead

were the output of a clustering estimate for the Features—which not coincidentally

were 3, 4, 4, and 5, respectively. Regardless, even with the number of partitions

“intelligently” picked based on clusters for Table 6.4, the multipath predictive selec-

tion approach outlined in this section affords even higher precision, as shown by the

underlined precision values in Table 6.8 and the mean precisions shown in Table 6.9.

In Table 6.9, the total error rate lowering across the four features is 25.0%

(mean¼6.3%), two-thirds again more than the 15.0% total (mean¼3.8%) for

Table 6.7. Based on this, we may expect that when these improved subranges are

deployed for text classification as above (where we use all four features together with

weight), we might see a significant additional improvement in overall accuracy



Table 6.9 Overall precision of each subrange-optimized selection from
Table 6.8, with improvement over best single algorithm from Table 6.5 in
parenthesis.

Feature
Precision, subrange-optimized selection (pct improvement over
Table 6.5)

1 0.694 (4.7% lower error rate)

2 0.806 (11.0% lower error rate)

3 0.615 (1.8% lower error rate)

4 0.728 (7.5% lower error rate)

Percent improvement is in error rate, not accuracy. Note that the percentage of samples falling into each
subrange is accounted for in the final precision. Please see text for details.
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(which for the classifier of Section 6.6 improved from 0.886 to 0.902), perhaps to

0.913 if the same “two-thirds again more accurate” results are obtained on the testing

data. However, we measure only a slight improvement in classification accuracy on

testing data, from 0.886 to 0.907, in comparison with selecting the best classifier for

each feature (0.886) or compared with selecting uniform-size subranges (0.902).

This is, nevertheless, an appreciable reduction of the error rate from 0.114 to

0.093 (18.4% reduction in error). The trade-off here is that having less overall sub-

range partitions (10 instead of 16) removes some sources of overtraining in compar-

ison with the earlier example, but the addition of optimal ranges leads to some

overtraining, since any minor shift in the optimal range from training to testing data

will affect accuracy. Overall, though, the combination of multipath with multiple

subrange predictive selection, in combination with a weighted voting approach to

combining the four features, leads to an impressive reduction in error rate.

One more type of multipath predictive selection can be used, which is more anal-

ogous to a Markov chain than to a decision tree. Here, the predictive selection is used

to select a distinct set of features for each classifier, and then, each classifier (in an

ensemble of classifiers) only bases its decision on those features. In the example of

this section and Section 6.4, Classifiers A and B are very likely to omit Feature 3

using this approach.
6.6 Applications
An interesting application for predictive selection that is not immediately apparent

from the above examples is to allow the algorithms to feed back their results and

accept the output tied to the results with the highest precision. We are not “selecting”

which algorithm or system to use, but rather which outcome to most trust. A good

example is scene recognition, where we are trying to figure out the context of a loca-

tion. One image recognition engine may report there are three chairs, one sink, one

table, and three appliances in a room and so report with precision¼0.856 that it is a

kitchen. Another image recognition engine may report four stools, one sink, one
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table, two drink dispensers, and one appliance in a room and report with pre-

cision¼0.843 that it is a bar. We accept the classification as kitchen, but not with

high confidence.

Other applications of predictive-selection-based approaches will be used in later

chapters, particularly Chapters 12 and 13. However, it is readily seen from the

generic nature of the discussion in this chapter that predictive selection approaches

are excellent choices for any type of system involved in discriminating two or more

classes, clusters, categories, or contexts. The real question to ask as a system design

engineer is, “where can and should I use predictive selection in this project?” The

answer of whether to use is almost invariably “yes.”
6.7 Sensitivity analysis
Many of the predictive selection approaches overviewed in this chapter are effec-

tively “introspective” to sensitivity analysis. In Section 6.6, for example, the multi-

path predictive selection approach innately provides a measure of sensitivity analysis

since we are recording the range in precision for each of the partitions as we consider

all of the possible paths to the final partition configuration. Likewise, we see that

nearly all predictive selection approaches provide the equivalence of sensitivity anal-

ysis during the training, or category-generating, stage. This is because we are highly

interested in ensuring that the categories we use for selection are indeed the most

reliable. A good part of the discussion in Section 6.5, then, is focused on how our

partitioning affects the sensitivity of the predictive selection process to the features

used for the analysis. In this case, the most sensitive partitions can be viewed as the

“optimal” partitions, because they provide a higher discriminatory power for each

partition (subrange) and feature. We must always be careful to ensure that, in our

eagerness to find partitioning with higher overall system precision, we do not over-

train the system. It makes good sense to try several different predictive selection

approaches and select the one that provides good overall performance and robustness

to validation and testing data.
6.8 Summary
This chapter describes the broad set of ways in which the predictive selection pattern

can be used to improve the performance of intelligent systems. The primary focus of

the predictive selection pattern is on improving decision-making accuracy, although

the approach of intelligent partitioning and differential deployment of selection tasks

based on maximizing precision is broadly useful in optimizing any system objective

function.

After describing the assignment of data to categories, we next overview six dif-

ferent approaches to partitioning. These are (1) yes/no or pass/fail; (2) threshold-

based partitioning; (3) subrange-based partitioning; (4) conditional partitioning,
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which supports any Boolean relationship between two or more features; (5) sequen-

tial partitioning, which may result in changing subrange definitions even for the

exact same type and range of data, over time; and (6) consensus partitioning, which

is a particular type of conditional partitioning based on both the data and the meta-

data (or contextual) information associated with the data.

We then discussed how an ensemble of classifiers (or any other analytics) can be

used together based on accepting the output of the one with the highest precision.

Calculating the overall precision is possible after the overall strategy has been

reduced to a set of rules. Generally, an appreciably more precise system is obtained

through this approach. The risk is, of course, that the system may be overtrained.

Next, we considered means of selection based on the partitioning. Partitioning of

the input can use a “separation of task” approach, wherein an auxiliary data feature is

used to assign the sample to one of a plurality of partitions. Then, the precision of

each of the algorithms, analytics, or systems for each of the subranges and for each

of the features is considered. The overall improvement in system behavior will

depend on how the features interact together, but this is a meta-algorithmic

[Sims13] consideration downstream from the predictive selection. For this section,

the precision of the individual features was highlighted.

Finally, we considered multipath predictive selection, in which we allowed a

number of possible decisions to be made and computed a figure of merit score to

each path that not only is robust to the utility of the output but also does not quickly

devolve into creating as many partitions as possible (or no additional partitions, for

that matter). Using a functional measurement such as the range of precisions for the

entire ensemble of algorithms, analytics, or systems in each partition was shown to

work well.
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CHAPTER
Modeling and model fitting
 7

Meta-Analytics. ht

# 2019 Steven Sim
You never change things by fighting the existing reality. To change something,

build a new model that makes the existing model obsolete

Buckminster Fuller

If we are to achieve a richer culture, rich in contrasting values, we must

recognize the whole gamut of human potentialities, and so weave a less

arbitrary social fabric, one in which each diverse human gift will find a

fitting place

Margaret Mead (1935)
7.1 Introduction
The value of modeling to the analytics scientist can hardly be exaggerated. Modeling

is getting our head around the data, not only predicting what the future of the data will

bring but also predicting how the future data will be best analyzed. As Buckminster

Fuller, the scientist now eponymous with the C60 soot molecules buckminsterfuller-

ene, notes, “To change something, build a new model that makes the existing model

obsolete.” Easier said than done, of course, because as another wise man once said,

“It’s tough to make predictions, especially about the future.” That sage was Yogi

Berra. So, it is agreed that in order to make sense of the future before it is the present,

we must be ready to earn our predictive license. The road test for this license is being

able to create a new and better model when new and better data arrive. Two key sets

of tools to do so are (1) a broad set of approaches that borrow from other areas of

successful human learning and (2) a set of evaluation analytics that help us to opti-

mize the settings of the model we’ve chosen.

Margaret Mead notes that “we must recognize the whole gamut of human poten-

tialities, and so weave a less arbitrary social fabric, one in which each diverse human

gift will find a fitting place.” This is a call for meta-analytics if there ever was one.

Let us simply replace “human” with “analytic” and “social fabric” with “system

architecture” and we obtain the following: “we must recognize the whole gamut

of analytic potentialities, and so weave a less arbitrary system architecture, one in

which each diverse analytic gift will find a fitting place.” And Margaret’s always

keen insights are complimented by her skepticism toward unsupported analytics,

such as testing for racial differences in intelligence. Margaret, in addition, was

the researcher who used cultural anthropology analysis to show how diverse cultural

patterns, as an ensemble or hybrid, contribute to a fundamental unity in
tps://doi.org/10.1016/B978-0-12-814623-1.00007-1

ske. Published by Elsevier Inc. All rights reserved.
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human behavior and cultural propensities. Using cultural anthropology to derive

meaningful analytics? What an example for model generation and model fitting!

WithMargaret’s cross discipline approach in mind, we look to chemistry and biology

for design inspiration in the following three sections.
7.2 Chemistry analogues for analytics
The main point of this and the following two sections is to help “expand the mind” of

the analytic engineer by showing how strong analytic ideas can come from a wide

range of fields of study. In this section, among the many candidates for analogy, we

consider the five fundamental types of chemical reactions, the percent yield of reac-

tions, and the concept of limiting reagents.

The five fundamental (simplest) chemical reactions are readily described in

mathematical expressions, as captured in Eqs. (7.1)–(7.5):

A +B!AB composition reactionð Þ (7.1)

AB!A+B decomposition reactionð Þ (7.2)

AB+ 0!A0+B0 combustion reactionð Þ (7.3)

AB+C!AC+B single replacement reactionð Þ (7.4)

AB+CD!AD+BC double replacement reactionð Þ (7.5)

The composition and decomposition reactions are straightforward. In composition,

two elements are brought together into a single compound. This is akin to joining, or

merging, two clusters, classes, categories, or indexes (collectively “group”). The

decomposition is the reverse: a compound is split into two components. This is obvi-

ously analogous to splitting two groups. The combustion reaction is subtler than

composition or decomposition reaction. In the chemical combustion reaction, oxy-

gen in the form of O2 is used to “burn” the compound AB and reduced it to its ele-

ments. The compound AB may be a carbohydrate, for example, C6H12O6, and thus,

6O2 is used to “burn” this into 6H2O and 6CO2. In analytics, a second group is added

to an existing group, revealing a formerly hidden “merged” grouping, resulting in

two new groups A and B, each augmented by part of the new data set O. A good

example of this is when there is noticeable bimodality to a class, with the new sam-

ples falling largely below the lower mode’s mean or above the upper mode’s mean.

The new data thus exacerbate the bimodality of the overall data set, making it easier

to see the original compound group AB as existing as two groups A and B augmented

by portions of the new data set O. The new data thus combust the (presumable inap-

propriate) merging of data sets A and B.

The final two elementary reactions are the single and double replacement reac-

tions. The first one replaces an aggregate of A and B with an aggregate of A and C,
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allowing B to stand as its own group. This is, from an analytics perspective, similar to

combustion, except that all of the new data C are more closely related to A than to B.

This means that the overall data are drifting toward the A side of the aggregate and

statistically isolating the B data. The regrouping is driven by the appropriate cluster-

ing, classification, and/or categorization algorithms. The double substitution reaction

is essentially the same as combustion, except that the portion of the O group pulling

A away from B is here designated D and the portion of the O group pulling B away

from A is here designated C. We also see that originally, C and D were associated

with each other. So, the two groups are essentially splitting and then recombining

into novel aggregates. This might happen when new measurements, analysis, or rel-

ative significance of the features is associated with the data.

This set of five simple chemical equations should be applied to any existing data

sets throughout their life cycle and evaluated statistically. This approach will be used

to ensure that the current groupings (clusters, classes, categories, and indexed sets)

are not contraindicated. This is tantamount to cluster optimization using regulariza-

tion, which is covered in detail in Section 10.3. For now, it is worth noting that we can

determine candidate elements A, B, C, D, and O in the five Eqs. (7.1)–(7.5) above
and then test the representation on either side of the arrow➔for goodness of fit with

the data (along the lines of the methods described in Section 7.6).

Extending the chemistry analogies, the statistical analysis of the groupings is akin

to the determination of the percent yield in a chemical reaction. In chemistry, the

percent yield is the ratio of product obtained over the theoretical maximum (which

is determined by the limiting reagent). In analytics, the percent yield is the ratio of the

amount of information that is actually and measurably extracted from a data set

divided from the theoretical maximum of information that can be extracted from

a data set. A simple example illustrates the analytics relevant part of this. Suppose

that we have three categorization engines participating in categorizing a large set of

data. We know these three engines to have categorization accuracies of 0.7, 0.8, and

0.9, respectively. In order to calculate the theoretical maximum of the ensemble sys-

tem, we use the difference between the theoretical performance of the three engines

in independent voting and the performance of the best engine (0.9) as our percent

yield. For the latter, we have 2N possible voting outcomes, where N¼3:

1. Engines 1, 2, and 3 correct with probability¼0.7*0.8*0.9¼0.504

2. Engines 1 and 2 correct, 3 incorrect with probability¼0.7*0.8*0.1¼0.056

3. Engines 1 and 3 correct, 2 incorrect with probability¼0.7*0.2*0.9¼0.126

4. Engines 2 and 3 correct, 1 incorrect with probability¼0.3*0.8*0.9¼0.216

5. Engine 1 correct, 2 and 3 incorrect with probability¼0.7*0.2*0.1¼0.014

6. Engine 2 correct, 1 and 3 incorrect with probability¼0.3*0.8*0.1¼0.024

7. Engine 3 correct, 1 and 2 incorrect with probability¼0.3*0.2*0.9¼0.054

8. Engines 1, 2, and 3 incorrect with probability¼0.3*0.2*0.1¼0.006

Adding the majority voting correct cases (1.), (2.), (3.), and (4.), we see that if the

three engines are independent, we will expect 0.902 accuracy (0.902¼0.504+

0.056+0.126+0.216), only slightly above the best single engine of 0.900.
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Thus, our theoretical peak accuracy is 0.902, and our theoretical yield is a paltry

0.902–0.900, or 0.002. If in combining the three engines we observe 0.907 accuracy,

thenouryield is (0.007/0.002)�100%¼350%. If, however, it is a similarbut lowervalue

of 0.897 (just 1% less, after all), then our yield is (�0.003/0.002)�100%¼�150%. In

the latter case, we would be better off using just the single engine with 90% accuracy.

Extending this example further, suppose we recrafted the low-accuracy engine to

yield 80% accuracy. The engine accuracies are now 0.8, 0.8, and 0.9. Repeating the

analysis above, this yields a theoretical peak accuracy of 0.928 for the three engines

if they are independent and a now more appreciable theoretical yield of 0.028. If in

combining the three engines we observe 0.919 accuracy, then our yield is (0.019/

0.028)�100%¼68%. If, however, we use a meta-algorithmic pattern [Sims13]

and are able to exploit uncorrelated behavior between the three engines and now

achieve a similar but higher value of 0.929 (just 1% more, after all), then our yield

is (0.029/0.028)�100%¼104%. How can a yield be above 100%? The answer is that

the assumption for the theoretical maximum (independence of the three engines)

wasn’t entirely correct.

The last concept from chemistry we’ll cover in this brief section is that of limiting

reagent. In chemistry, the limiting reagent is the reactant that “runs out” first in a reac-

tion, allowing no further product to be formed. Let’s explain this with chemistry we all

know about—recipes. If you are making pancakes where the recipe calls for 2 eggs for

every cupof flour andyouhave3eggsand1.75cupsof flour in thekitchen, then theeggs

are the limiting factor. This is because 3 eggs are the flour equivalent of 1.5 cups, which

you have in excess, and 1.75 cups of flour are the egg equivalent of 3.5 eggs, which you

cannot use. You will run out of eggs in the recipe with 0.25 cups of flour leftover.

In analytics, the limiting reagent can range from the simple to the subtle. In the

three-engine categorization example above, the limiting reagent was the categorizer

with the lowest accuracy. By improving it to be just as accurate as the poorer of the

other two categorizers, we increase the range for the percent yield 14-fold (from

0.002 to 0.028). Effectively, then, as applied to this classification ensemble, the lim-

iting reagent approach is a form of sensitivity analysis. There is value in taking this

sort of perspective to the field of analytics. The limiting reagent approach is a means

of assessing (1) where to take more data, (2) what the key relationships between input

and output are, and (3) how to build a model that is robust to the nature of the data in

the components (reactants and products, in chemistry). We now turn to a specialized

branch of chemistry, organic chemistry, for further insight. Interestingly enough,

I am not using analytical chemistry for analogy with analytics.
7.3 Organic chemistry analogues for analytics
One of the more relevant areas in organic chemistry for exploring meaningful ana-

lytic approaches is sequential, or chained, oxidation-reduction reactions, such as

occur with polymerization. Like the “cell differentiation” analogy in the following

section, we can use this process as insight for design approaches for dynamic

systems.
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We begin with the oxidative processes (leading to a more positive oxidation num-

ber on the carbon) of converting methane to a chain of products [Holm09]. The for-

ward reaction produces methanol, formaldehyde, formic acid, and carbon dioxide.

The reverse reaction (the Sabatier reaction, see Ref. [Wilb09] for more on the general

chemistry in this section) can use carbon dioxide to regenerate (through a series of

reduction reactions, leading to a more negative oxidation number on the carbon

atom), give, or take a few oxygen atoms and water molecules in either direction.

We will mainly focus on the oxidation process, as it is illustrative. Methane

(CH4), an alkane, is oxidized to become methanol (CH3OH), an alcohol (here,

due to the gain of an oxygen atom). This is in turn oxidized (here, through the loss

of a hydrogen molecule, H2) to become methanal (common name “formaldehyde”),

CH2O. Another oxygen atom can be gained, oxidizing methanal to become HCOOH,

or methanoic acid (common name “formic acid”). Then, methanoic acid can be fur-

ther oxidized, again by the loss of hydrogen H2, to become carbon dioxide CO2.

So, if you’ve read to this point, you may be scratching your head and wondering

what the full oxidation of methane has to do with analytics. Quite a bit, if you keep

an open mind here, especially since the analytic system, architect should have a

creative approach to the life cycle of analysis. In this reaction, oxidation creates

the future data, and reduction looks back at the past state of the data. Several impor-

tant themes emerge. First off, there are multiple means of refining the categoriza-

tion. In the case of the oxidative reaction, we can proceed to the next product

through the addition of an oxygen atom or through the subtraction of a hydrogen

molecule. These amount to the same net effect on the carbon, changing its oxida-

tion by +1 for each hydrogen (total +2) or by subtracting a �2 (total +2). This is an

important point for analytics. We can add categorization value to a sample or an

entire set of data, by adding information or by subtracting noninformation. Think

of homing in on the description of a “ball.” At one stage, we may have the tags

“round,” “hollow,” “light weight,” and “orange” associated with the object. This

seems like it might be a basketball or a street hockey ball. We add content by tag-

ging it with “prolate spheroid” and “brown” and subtract content by removing the

imprecise terms “round” and “orange.” The remaining descriptors are now “hol-

low,” “light weight,” “prolate spheroid,” and “brown.” Most of us would now

(rightly in this case) think this is a football.

The second theme of this oxidation-reduction analogy is that differentiation is not

a simple, linear-in-time evolution. Analytics are an evolution in time and space. A

current analytics is living in the present, and from the standpoint of the pragmatic use

of the analytics, we wish to add any and all tagging that helps differentiate the data

and remove any and all of the tagging that helps confuse the data with other data.

The third theme of the oxidation-reduction discussion is that each subsequent (or

antecedent) reaction is reversible and there is energy involved in moving from either

direction. We could really push this analogy and start talking about spontaneous,

exothermic, and endothermic reactions—not to mention catalysts—but the point

is already made. As analytic engineers, we should be setting up our data analysis

systems to have the same type of robust bidirectionality as nature provides with

oxidation-reduction reaction sequences.
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7.4 Immunological and biological analogues for analytics
In Section 1.8.3, immunologic algorithms were introduced. There, we noted that

immunologic algorithms are based on the distributed, recognition-based, layered
system of memory that is your immune system. This hybrid system includes innate

memory, collaborative or “distributed” memory, and learned memory, meaning that

there are several layers of information contained. This remarkable system provides

as rich a set of memories in many ways as the central nervous system, but without the

consciousness. These layers readily intercommunicate, allowing information to be

shared and so reinforced or downgraded based on consensus or the lack of consensus.

This means that the immune system is capable of both deep learning and deep
unlearning. Deep unlearning is a very important concept and was earlier described

as based on the real immune system concept of clonal deletion, which is the process

by which the immune system learns not to attack the self. More broadly, deep

unlearning is connected to the need for machine intelligence to know when previous

material—and rules of behavior based on them—is no longer relevant. This means

that deep learning is really only revolutionary when it is dynamic.

In Section 1.8.3, key concepts in immunologic algorithms were covered, which of

course will only be touched on lightly here (see Ref. [Delv17] or other general immu-

nology texts for more in depth on these topics). The main goal of this section is to

provide helpful modeling approaches to the would-be system architect. A few—anti-

gens, antibodies, and hybrid design—are reexplored here because of their

significance.

The concept of antigens—fragments of information that can be recognized by the

antigen-binding site on the antibody—is repurposable to system design. In the con-

text of machine learning, an antigen is a specific element or combination of elements

that trigger a downstream set of activities by the machine learning system. This may

mean the occurrence of a rare event triggers a different response—for example, a

different analytics algorithm or design pattern—to be applied. One example is a

“trigger” word that indicates switching frommonolingual to bilingual analysis of text

or speech. Another example is the recognition of a certain object that requires atten-

tion by specific algorithms; for example, a speeding automobile in a school zone trig-

gers an expanded range of sensors and tracking algorithms.

In the immune system, these antigens trigger the antibodies, which are molecules

with the ability to recognize antigen and, after the recognition occurs, moderate the

behavior, location, and scalability of the response to antigen. Antibodies are mole-

cules with different sections or sites, which enable them to participate in different

chemical reactions or “binding.” In machine learning, the analogue to antibodies

may be the detection of a specific pattern of data in a sample, which then binds down-

stream analytics. The antigen binding thus triggers relevant analytics, which are used

to further validate that the antigen-antibody complex is a correct match. This is a

feedback approach requiring full completion of a specified set of process checks.

The receptor binding site then attaches the antibody to its category, cluster, and/or

class set and adds its analytics to those of the set. An example of antigen-antibody
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binding in text analytics is term frequency times inverse document frequency (tf*idf).
This “binds” terms with high frequency in a given set of text (antigen) to much lower

frequency in a larger corpus of text (antibody). The concept of tf*idf, or relative rarity
of occurrence, can obviously be extended to nontext applications as well.

The use of multiple tf*idf terms is an example of multiple model hypotheses. The

other “antigens” or fragments of information generated as part of the data mining

process can be combined with the tf*idf to identify a particular immune system chal-

lenge. In a sense, the logic behind a decision tree can be extended to model forma-

tion, wherein multiple models are created and the goodness of fit of all of the models

together represents our ability to understand the context of the threat.

Not discussed in Chapter 1, but meriting a brief overview here, is the analogy

between immune cell differentiation and increasingly refined analytics. In the differen-

tiation of cells, a stem cell is the starting point. As we know from the appreciable atten-

tion that stem cells currently get in the media, stem cells are unspecialized, or

undifferentiated, and thus can “grow up” to be any of a wide range of differentiation

cells. We can think of the stem cell as an infant or toddler and the differentiated cell

as an adult with a career. Perhaps, the fact that most adults are expected to hold 10 or

more jobs is the analogy to scientists being able to manipulate stem cells, but we will

shelve that discussion for this book. The important point is that a stem cell is expected

to progress to amore differentiated pluripotent progenitor cell and then to an evenmore

differentiated progenitor cell. Next, in an analogue to choosing a university, apprentice-

ship, or internship, the pluripotent cell specializes into a committed lineage cell, which

noweffectivelyknows thegeneralnatureof its adult “career.”Finally, thecell completes

its development, finishing life as a somatic differentiated cell (“somatic” distinguishing

it from “germ” cells, or reproductive system cells). Note that many of the cells, such as

neurons or muscle fibers, may live as long as the individual, while others, such as epi-

dermal cells and erythrocytes, will only live a few weeks to months.

This provides two important and rich analogies that can be used in the definition

of an analytic system. The first is the stage of differentiation. The stage of maturation

corresponds to an increasing precision of classification and thus a larger descriptive

vocabulary for the samples so differentiated. A simple example provides insight

here. The stem cell equivalent might be distinguishing between a vehicle and an ani-

mal in a video. The pluripotent progenitor equivalent might be then classifying the

vehicle as a car, truck, motorcycle, etc. and classifying the animal as a cat, dog,

human, escaped primate, etc. The pluripotent cell may provide make, model, year,

and color of the car and height, build, and gender of the human. The committed lin-

eage cell analogue might be a candidate set of license plate numbers for the car and a

“lineup” of potential individuals for the human. Finally, the somatic differentiated

cell analogue might be the specific car (including license plate and vehicle identifi-

cation number (VIN)) or the specific individual, including name, Social Security

number (SSN), and address. At each stage of differentiation, a more descriptive cat-

egorization of the vehicle and person is garnered. At the price of specificity, how-

ever, can come “commitment” to a mistaken category if there is no manner in

which to validate the categorization.
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This concern is addressed by the second important rich analogy, which is the ability

of the categorization to “rewind” a level (or more) and be recommitted to an alternate

path. This is analogous to the ability to split and reform classes (e.g., from subgroups of

two ormore previously defined classes), form new categories, recluster data samples as

the sizeof thedatabasescales, etc.Asclassesbecomemorespecialized,wemaynotwish

for them to becomemore intransigent. Thus, the degree of specialization and the degree

of mutability can be controlled separately. Interestingly, we have seen these two fac-

tors—specialization and mutability—be separated in cell biology. Even in the early

2000s, cell differentiation was viewed as a one-way function: once differentiated, a cell

could not be “undifferentiated.” A specialized cell was designated a “terminally differ-

entiated” cell and was seen as being permanently specialized until natural or pro-

grammed (apoptosis) cell death. Then, in 2006, scientists showed that they could

turn a differentiated cell back into a stem cell with its pluripotentiality restored

[Taka06]. In a biological system, stem cells have their DNA loosely arranged and ready

to transcribe their messages (e.g., create RNA). As signal molecules trigger differenti-

ation, the process of specialization involves turning off unneeded genes. Genes that are

required in themature cell’s functionality remain active. As an aside, thismechanism is

not dissimilar fromhow different neural pathways are carved in the developing brain. It

is the subtraction of unnecessary neural connections, a process termed synaptic pruning
[Chec98], that leads to learning and othermental specialization associatedwith themat-

urationof the brain.Regardless, for cell development, researchers [Taka06] noticed that

therewerea small subsetofgenes thatareexpressed instemcellsbutnot indifferentiated

cells. Thus, differentiation is associated with—at least in part—genetic pruning. By
reintroducing a set of four genes from this subset into specialized cells, theyweremade

toact likestemcells.Thesegeneswereshowntoremodel theDNAof thecells, andgenes

that had been shut down during differentiation were now turned on. The scientists, now

understandablyNobel laureates,designated thesecells inducedpluripotent stemcells, or
iPS cells. The name is very descriptive: these cells have turned back the clock on spe-

cialization and become less specialized. They have reversed the pruning.

How do we, as analytic system designers, use these concepts to our advantage?We

can complement the specialization that goes with fine-tuning the categorization, clas-

sification, and clustering with a separately controlled adaptability continuum. As a cat-

egorization or other data tagging/description process matures, we expect to see the

adaptability of the categorization to diminish. But by howmuch? This is another oppor-

tunity for the system architect to ingest domain expertise, as we would naturally expect

this “plasticity” to vary fromone domain to the next. The amount of plasticity—and not

the decision of whether to have plasticity—is therefore the key parameter for training.
7.5 Anonymization analogues for model design and fitting
Few concepts are more important from an application standpoint than anonymization

of data. Also known as deidentification, this is an approach in which the identity, but

not the utility, of data has been tokenized, obfuscated, or removed. In anticipation of

the following section, which covers the basics of determining goodness of fit for a
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model, anonymization is tightly associated with entropy. That is, we presume that the

best analytic model for the systemwill be themodel with the highest residual entropy.

This is the entropy of the data remaining when the model is subtracted out. Impor-

tantly, this approach can be extended to both systemand errormodels, by feeding back

validation information to themodel training data. The process is as follows. To initial-

ize, assign your ground truthing data to a training andvalidation set, preferably equally

sized. Then, perform the following steps in iteration until a maximum number of iter-

ations are reached, the same results are obtained for two iterations in a row, the (least

squared) error is less than some minimum value, the variance of the linear absolute

errors is less than someminimum value, and/or the entropy of the error is above some

threshold indicating “cryptographic” level of entropy:

1. Use the training data to create a model of the data.

2. Use the validation data to subtract the model from and characterize the error.

3. Add the error model to the model of the data.

4. Swap half of the training and validation sets, so each represents 50% of the

previous training and validation set.

As an example of the approach outlined, imagine that you would like to use your

voice as a biometric, but you do not wish someone recording your voice to do the

same. In this circumstance, you can provide an algorithm to turn your voice into cus-

tom speech, such that an automatic speech recognition (ASR) engine not only will be

able to recognize the voice if and only if it has the correct algorithm to anonymize the

voice but also make the voice quite different from other voices. The training set

determines the model for anonymizing the voice, while the validation set ensures

it has an acceptably small number of false positives for other primary or secondary

(also anonymized) voices in the database. As a particular feature, you can also use an

affected accent to make spoofing your voice that much harder.
7.6 LSE, error variance, and entropy: Goodness of fit
To rank data models for goodness of fit, we need some easy-to-compute, unambig-

uous, and robust analytics. While there are more complicated means of assessing

models, the three provided in this section, together with their weighted combinations,

provide a broad and highly adaptable means of ensuring the model has no systemic

residual error. Closely tied to the anonymization process described in the previous

section, let us explore these three metrics and then discuss how they can be used

together and even used to optimize the analytic system architecture.

Least squared error, hereafter LSE, is simply defined by Eq. (7.6):

LSE¼ minmodels

Xnsamples
i¼1

samplei�modelið Þ2
 !

(7.6)

Here, the least squared error is the one with the minimum sum of squared differences

between each of the sample points and the predicted value of the sample points based

on the model. Recall from Chapter 1 that linear regression is a simple model for data
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and it used the LSE to optimize the slope and intercept of the regression line. The

LSE, also known as the L2-norm, is often a better metric than error variance because

it is disproportionately sensitive to larger deviations from themodel than the absolute

deviations, or absolute errors, from which the error variance is computed. The error

variance is the variability in the L1-norms, as shown in Eq. (7.7):

Error variance¼

Xnsamples
i¼1

samplei�modelij j�

Xnsamples
i¼1

samplei�modelij j

nsamples

0
BBBB@

1
CCCCA

2

nsamples�1
(7.7)

Error variance is a useful metric providing a different type of analysis than LSE

because it is looking at the distribution of the error, not just the magnitude of the

error. For that reason, the error variance is also usefully computed as the error coef-

ficient of variance, as defined in Eq. (7.8), which even more represents the relative

variability in the error (irrespective of the error magnitude):

Error coefficient of variance¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Errorvariance

p
Xnsamples
i¼1

samplei�modelij j

nsamples

(7.8)

The third metric of interest is the entropy of the error. Here, the error is broken up into

bins across the range of the error magnitude and the normal entropy of the bins com-

puted as described in Section 1.7.1, Eqs. (1.14) and (1.15). Care is taken to break up

the range into uniform subrange spans such that a large number of samples are in

each subrange. If the subranges are taken to be a power of 2, usually 28, then the

maximum entropy per Eq. (1.15) is 8.00. Entropy is another measure of uniformity

of distribution but imposes a different rule set on the distribution than error variance.

Combined, these three measures—LSE, error variance, and entropy—provide a

“you can run but you can’t hide” analysis to expose irregularities in the error data.

Other histogram approaches along the lines of those presented in Ref. [Stur16] and its

referenced publications can also be employed if further assurance of model goodness

of fit is required. However, insofar as showingmodel goodness of fit, entropy is prob-

ably the cleanest method. All three metrics require a threshold value, and in general,

a combination of the three, weighting entropy 3 parts and LSE 2 parts to error coef-

ficient of variance 1 part, seems to work well for optimizing the model using the iter-

ative process of the previous section.
7.7 Make mine multiple models!
Alliterative and yet appropriate, we conclude with a “make mine multiple models

Margaret Mead meme.” Paraphrasing Mademoiselle Mead, we know the advantages

of a system in which each diverse analytic gift will find a fitting place. This is why we
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simultaneously consider LSE, error variance, and entropy. This is why we try to find

relevant analogies from across the fields of science (even if only chemistry and biol-

ogy are touched on deeply here). This is why we are, in this chapter and in this book

as a whole, looking for as many approaches as possible. The richness of analogy is

tremendous, even if we cannot directly apply the analogues to our own idiosyncratic

analytic problem. This is because it gets us to think outside of our normal comfort

zone, to think outside of the expected approaches to a problem space, and to decon-

struct the problem we are addressing both critically and creatively. If nothing else,

applying many different approaches to a particular analytic challenge will get us to

probe more of the assumptions that we are making as we proceed. It will also help us

to break down the barriers between different types of analytic problems and help us

to apply lessons learned from one domain to another. Collaboration among widely

diverse algorithms is our final analogy in this chapter—it provides the same breath of

fresh air and robustness to problem solving than diversity of thought and experience

brings to any team. Ms. Mead and I both recommend you use this to your advantage.
7.8 Summary
This chapter provides a different view of modeling and model fitting than will be

found in any other text on analytics. The basic premise of this chapter is that virtually

any advanced field of science, engineering, or technology can be employed for defin-

ing data system models of utility in dynamic, scalable, modular, and robust systems.

Particular attention is paid to chemistry, organic chemistry, and immunology

approaches, but the ability to pull from other fields is also made clear. The use of

anonymization as a way of testing the optimization of a model is then put forth, fol-

lowed by a discussion of some important metrology for the modeling.

Chemistry analogues used for analytics begin with a discussion of the five sim-

plest chemical reactions. Composition, decomposition, combustion, single substitu-

tion, and double substitution are shown to be analogous to a wide range of regrouping

approaches in analytics. All five equations should be applied to data sets, along with

the associated statistical evaluations, to ensure that the current groupings are not con-

traindicated. Following these reactions, the concept of percent yield is applied to ana-

lytics, as the percent of the theoretical improvement in the analytic output that is

gained. This section concludes with a discussion of limiting reagents, which provide

a sort of sensitivity analysis for the overall analytic model.

Next, we considered the analogy between a sequence of reversible/bidirectional

organic chemistry reactions (oxidation-reduction) and the need for robust analytics.

We noted that there are multiple means of refining the categorization, including the

addition of new tagging information and the removal of ectopic tagging information.

We noted that data specialization (categorization, classification, clustering, index-

ing, etc.) is not a simple, linear-in-time evolution. We also noted that data analytics

should be bidirectional in a sequence, even if more energy is required to go in one

direction when compared with the other.
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Next, we reviewed some of the immunologic analogues from Chapter 1 in light of

the chemistry analogues. We extended the concept of deep unlearning, with both an

immune and neural system allusion. We discussed the analogy between immune cell

differentiation and the continual refinement of analytics. The stage of differentiation,

or maturation, corresponds to an increasing precision of classification or indexing

and thus a larger descriptive vocabulary for the associated data tagging. We also

described the ability of data categorization to “rewind” a level (or more) and be

recommitted to an alternate path—a process very much analogous to the

oxidation-reduction discussion.

Next, anonymization of data is shown to be consistent with the measurements of

system error entropy, least squared error (LSE), and variance. Training data is used to

define a model and validation data to characterize the error in the model. The next

iteration uses the data model plus the error model as the defining model. Anonymi-

zation’s utility in providing both secure and reliable voice biometry is briefly dis-

cussed. Next, the model error metrics of LSE, variance, and entropy are defined,

and their employment for determining model goodness of fit is provided.

The chapter finishes with what one might call a “make mine multiple models

Margaret Mead meme.” We next proceed to a chapter focused on meta-analytic pat-

terns and in specific synonym-antonym and reinforce-void patterns.
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Greatness is so often a courteous synonym for great success

Philip Guedalla (1930)

We must reinforce arguments with results

Booker T Washington (1903-4)

Percibimos el vacı́o, llenándolo

Antonio Porchia (1943)

There is an abundance of scarcity

Steve Simske (2018)
8.1 Introduction
Powerful patterns from other fields of science can be readily and successfully

brought to bear on data analysis. In the previous chapter, the fields of chemistry, biol-

ogy, and immunology were the source of analytic approaches. In this chapter, we

continue with patterns inspired by some of the great ideas in philosophy and logic

to create rich methods for extracting rules and information from data. As Philip Gue-

dalla notes, we are predisposed to use greatness and success synonymously. In the

next section, we will turn this phrase sideways, by using synonyms to generate suc-

cessful—and hopefully also great—analytic approaches.

The second major pattern type described here is the reinforce-void pattern, which

can be viewed as a broad extension of the synonym-antonym patterns, where the syn-

onyms are a form of reinforcement and the antonyms at least somewhat analogous to

voids. The entire approach shares much with the famous Hegelian dialectic, which

consists of three elements: (1) a thesis, which is, for example, the proposed tags, cat-

egories, and/or classes to assign data; (2) an antithesis, which undermines or opposes

the thesis; and (3) a synthesis, which resolves the opposition of thesis and antithesis.

A good example of this is the use of term rareness to identify keywords in a set of

texts. The synthesis might be the words occurring with anomalous high frequency in

the text, and the antithesis might be the words occurring with anomalous low fre-

quency in the text. The synthesis is more sophisticated than the traditional tf*idf,
or term frequency times inverse document frequency, which only accounts for the

commonality of an individual term. Instead, the synthesis is the ratio of the common

term tf*idf divided by the uncommon term tf*idf and highlights the relative differ-

ence in two or more terms. This synthesizes both the differential high frequency of
tps://doi.org/10.1016/B978-0-12-814623-1.00008-3

ske. Published by Elsevier Inc. All rights reserved.
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some terms and the differential low frequency of the other terms. This approach can

be applied to nontext data as well.

This type of reinforcement provides results that can be directly applied to sepa-

rating true positives from false positives. For example, articles on Seattle, the city,

and George, the first president of the United States, may both contain a differential

high frequency of the term “Washington,” but the former will have a much higher

“Washington” to “Virginia” ratio than the latter and the latter a much higher “Wash-

ington” to “Seattle” ratio. And note that both will have a much higher “Washington”

to “Booker” ratio than the author this chapter’s second lead-in quote (showing the

scalability of the approach!).

The reinforce-void pattern indeed fills a much-needed void, and as Antonio

Porchia noted (in my translation), “we perceive the void when we fill it.” This is

not only a nice play on words but also an indication of why the synthesis approach

works well for scalability. When we wish to distinguish two samples by category or

indexing, the easiest way to look for those high ratios is to understand where the

voids are. If we only have the categories on “Seattle” and “First US President,” it

may not occur to us that the term “Booker” might be a good differentiating term.

Once the “Booker T Washington” class enters into the training data/categorization,

though, we notice this former void by filling it.

The final quote to kick off this introduction is by the author himself. It is a play on

words, but it speaks to the fact that we must always be cautious not to “perceive

voids” as something far more important than they might be. For example, what if

the cloud-based management software company Booker opened a new office in

Washington, DC? It’s rather easy to see how this categorization might go awry. This

is just an example of why we need an abundance of scarcity, not just a single scarcity,

to perform scalable clustering, categorizing, indexing, and classification—

collectively “perceptual analytics.”
8.2 Synonym-antonym patterns
The easiest pattern with which to introduce the Hegelian dialectic-inspired patterns

of this chapter is the synonym-antonym. This is a simple trade-off in which the terms

that support a given theme—tag, category, class, and index—are collectively added

and the terms that contradict the given theme are collectively subtracted. These

approaches are readily applied to a variety of text analytics, including search behav-

ior and term rareness. The discussion here is based on the term frequency times

inverse document frequency approach [Salt88], which formalized a method for rel-

atively weighting terms that occur disproportionately in one category, as suggested

earlier [Levi83]. Such methods are excellent for extracting key phrases [Turn00],

which are in turn used to provide accurate extractive summarization [Ferr15].

For the synonyms, we can define the tf*idf to be the sum over a set of synonymic

terms of the products w(i)*tf(i)*idf(i), where w(i) is the synonymic weight given

based on proximity to the categorization term of interest. The range of w(i) is

[0.0, 1.0], and in general, we use onlyw(i)>0.5. The weights can be calculated based
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on a variety of lexicographical methods or acquired from a lexical database such as

WordNet [Word18]. For the antonyms, we can define the tf*idf to be the sum over a

set of antonyms of the products of Eq. (8.1):

SAT¼ 1�w ið Þ½ �∗tf ið Þ∗idf ið Þ (8.1)

where w(i) is the synonymic weight of the antonym, making 1�w(i) the antonymic
weight of the antonym. Antonymic weights can be computed using the same meth-

odologies as the synonyms, and the range of antonyms is therefore also [0.0, 1.0]. In

general, we use only w(i)<0.25. Antonyms are generally less correlated negatively

with key terms of a category than synonyms are correlated positively.

There are several ways of applying the synonymic and antonymic metrics as cal-

culated. The simplest is a single-factor decision of category. For each category (or

tag, index, etc.) we consider, the terms having synonymic weighting in the document

are scored as in Eq. (8.2):

SST¼w ið Þ∗tf ið Þ∗idf ið Þ (8.2)

where the sum of all such synonymic terms is computed and designated the SST.

Then, the terms having antonymic weighting in the document are scored as in

Eq. (8.1), and the sum of all such antonymic terms computed and designated

SAT. The difference, SST-SAT, is then compared for each category, and the cate-

gory (or categories, if multiple categories are allowed) with the maximum value

of SST-SAT is the one assigned to the document.

In addition, the synonymic and antonymic weightings can be used to create rel-

ative rareness products such as SST/SAT or disassembled into individual ratios of the

terms. Alternatively, the term w(i)*tf(i)*idf(i) scores can be compared with the cat-

egory training document w(i)*tf(i)*idf(i) scores using the inner product and the doc-
ument assigned to the class with the highest SST-SAT inner product.
8.3 Reinforce-void patterns
The second pattern family is that of reinforce-void, which is shown to provide an

interesting balance between consensus-driven approaches and rule-based

approaches. We start off with a discussion of how tf*idf can be brought to bear

on reinforce-void approaches, but we continue with the broader set of applications

possible using this method, best described as “adding by summing positives and by

subtracting negatives.”

In terms of reinforcement, when the calculated value of tf*idf for a given term is

much greater than the mean tf*idf values of all terms, designated μ(tf*idf), then a

term is declared reinforced. We generally learn a threshold coefficient C1 such that

we can simply declare all terms with tf*idf>C1*μ(tf*idf) as the reinforced terms.

Note that the system behavior should not be overly sensitive to the value of the

threshold coefficient, since we will also be concerned with void terms below. In

terms of void, when the value of tf*idf for a term is ≪μ(tf*idf), a term is declared

void. It need not have any thematic relationship to any of the reinforced terms,
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although the most valuable reinforce-void pairs can be used for discriminating dis-

tinct groups of data. As an alternative to tf*idf, reinforcement can be declared for any

term for which, when it is removed from the remaining set of nonreinforced terms, it

leads to an increase in overall entropy of the remaining terms greater than some

minimum value.

The contrasting component of this pattern, void, can be determined by using the

following:

1. Remaining entropy, which, as for reinforcement, when removed from the

remaining set of nonreinforced terms, leads to an increase in overall entropy of

the remaining terms greater than some minimum value. Entropy increases with

either anomalously overrepresented terms (reinforced terms) or underrepresented

terms (void).

2. Expectation-maximization (EM) inspired approaches. The inspiration here

comes from using one approach to “shuffle” the data and then a second approach

to “assign” the data. In traditional EM, we iteratively define the representative

value of a cluster, usually the centroid, and then assign samples to it based on a

particular measurement of proximity, usually the Euclidean distance. Once the

assignment has occurred, we redefine the representative value as the shuffle step.

We repeat this until convergence. Expanding on this, we are interested in defining

a representative sample and then assigning samples based on their goodness of

fit to the representative. Once the assignments have completed, we then redefine

the representative of the group based on the attributes. It is here that the

reinforce-void trade-off becomes so valuable. Once we have the new groupings,

we compare the relative reinforcements and voids in each of the groupings and

then redefine the groupings based on the reinforce-void combinations and start

the next iteration. An example of this process is given later in this section.

3. Different coefficients of each sample tf*idf and C1*μ(tf*idf). Here, we allow the

value ofC1 to vary among the terms based on the relative value of the terms to the

problem space. A good example of this is to determine whether specific terms are

tagging, indexing, or categorization terms, in which case we may decide to be

more lenient withC1, that is, allowC1 to have a lower relative magnitude so that it

is more likely to be considered a reinforced term or allow C1 to have a higher

relative magnitude so that it is more likely to be considered a void term. The

tagged, indexed, and/or categorized terms can be obtained from the document

metadata (e.g., author-provided or repository-provided). Suppose we see the term

“gluten” listed as a tag for a considerable percentage of the documents. We may

then decide to let C1¼2.0 (instead of a normal value of 5.0 or 10.0), and any

document with more than twice the normal occurrence frequency of “gluten” in

the text reinforces the term. We also rarely see the term “lecithin” in the database

in spite of its normal high correlation with the term “gluten” elsewhere and so

decide it is a good void candidate for this categorization problem. Thus, we assign

C1¼0.5 (instead of a normal value of 0.2 or 0.1), and any document with less than

half the normal occurrence frequency of “lecithin” voids the term.
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Here, we follow up with an expectation-maximization example: suppose that we

have three main topics in a large set of documents that we wish to recognize, tag,

and repurpose. These topics are (1) skateboarding, (2) surfing, and (3) concert-going.

In the first iteration, we simply take all of the documents with author keywords (lem-

matized versions thereof, usually) “skateboard,” “surf,” and “concert” and assign

these to the three categories of interest. We can then use the synonym-antonym

matching of the remaining documents to assign them to one of the three classes

or go “bigger” and perform a vector space model [Salt75] assignment of the unas-

signed documents even in this first iteration. After the documents are assigned,

we generate the text statistics about the documents and then perform the next iter-

ation with the vector space model or other suitable assignment means. This is

repeated until no further changes (or diminishingly minor changes) occur in two con-

secutive iterations. The synonym-antonym matching can be thresholded, so only the

highest differentially rated terms between classes would be used. We might see a

cutoff in relevant terms after “wheels,” “waves,” and “woodwinds” and before

“amped,” “ramped,” and “cramped.”

As noted above, conceptually, this family of approaches is related to the Hegelian

dialectic, which consists of the thesis and antithesis used together in some manner to

produce a synthesis. Above, we discussed the use of the tf*idf; however, we could

just as readily have chosen any other term-rareness-based mechanism, such as the

Helmholtz-inspired approach [Bali10]. The key is that the reinforced terms are those

occurring with disproportionately high frequencies and the voided terms are those

occurring with disproportionately low frequencies. In the discussion above, thesis

was reinforcement, and antithesis was void. Important, then, was the claim of the

ratios of the high frequencies to the low frequencies being the synthesis. But this

is not necessarily a good synthesis. Consider, for example, frequencies with rela-

tively low coefficients of variance of 0.10. Let us suppose that we use C1¼5.0

for the reinforce and C1¼0.2 for the void. Let us also suppose for the sake of sim-

plicity that all samples fall within two standard deviations of the mean. From the

coefficient of variance (COV), that means all samples are between [4.0, 6.0] for

the lowest reinforced samples and between [0.16, 0.24] for the highest void samples.

The maximum ratio is therefore 6.0/0.16¼37.5, and the minimum ratio is

4.0/0.24¼16.7. This is a pretty wide range of ratios even for two populations with

low COV. Thus, we may confine our synthesis to those ratios whose means are

higher than the predicted means, which are the ratios of the means of the reinforced

and void terms (in our example, 5.0/0.2¼25.0). Note that the ratio of two Gaussian

curves will exceed the ratio of the means, which is a nice result and indicates that

well-behaved Gaussian behavior will be rewarded by being used as “synthesis fea-

tures.” It is worth noting how readily such an approach can be applied to nontext data.

For example, if we are classifying video images as “urban” versus “rural” based on

the presence of buses (a reinforcement for “urban” and a void for “rural”) and the

presence of stock animals (a void for “urban” except for Pamplona in midsummer

and a reinforcement for “rural”) and we obtain a mean ratio of 41.4 for “urban”

and a (reverse) mean ratio of 13.6 for “rural,” with the anticipated ratios being 30
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and 15, respectively, then we can decide to keep bus/stock as a reinforce-void for

“urban.” We may decide to drop stock/bus as a reinforce-void for “rural.” This

simple example outlines how the behavior and not just the absolute values, of the

reinforcement/void ratios, can be employed as criteria for feature selection.

We are particularly interested in using reinforce-void to true positives from false

positives. In classification/categorization lingo, this means we wish to drive higher

precision. Please read (or reread) Chapter 6 if you are wondering why we would

focus on precision! As an additional example to the “Washington” one above, let

us add a third category onto the “urban” and “rural” categorization example of this

section. This one will be “agricultural,” and for this category, we see even higher

values for “stock.” In adding this category on, we also add recognition algorithms

to find “borders” that include fences, walls, and barbed wires. We compute the

reinforce-void ratios for each of these three categories in comparison with a large

set of images including many other categories. These values are tabulated in

Table 8.1. The reinforce-void ratios for “buses” come to 20.0 for the urban images

and 0.05 and 0.045 for “rural” and “agricultural,” respectively. Computing for

“stock,” the reinforce-void ratios are 0.01, 2.3, and 45.5, respectively, for “urban,”

“rural,” and “agricultural.” Finally, for the new object, “borders,” the ratios are 1.1,

1.4, and 21.5, respectively.

Once these values are tabulated, we can determine which of them are reinforce

and which are void features. In our example, we are looking for occurrence or non-

occurrence of greater than or equal to 5 times the normal for reinforcement and less

than or equal to 1/5 the normal for void. For “urban” images, then, buses are rein-

forcers, and stock is voiders. For “rural,” buses are voiders. For “agricultural,” buses

are voiders and both stock and borders and reinforcers. The other three sets of data

are neither reinforcers nor voiders. So, from this, we look for high stock/bus and high

border/bus ratios as indicators of the category “agricultural” and high bus/stock

ratios as indicators of the category “urban.”We have no “self-contained” way to look

for “rural,” but must instead differentiate it by having a void amount for buses and a

normal value for stock and borders.
Table 8.1 Three objects recognized and counted for images belonging to three
categories: “urban,” “rural,” and “agricultural”

Value computed Urban Rural Agricultural

Buses 20.0 (reinforce) 0.05 (void) 0.045 (void)

Stock 0.01 (void) 2.3 (neither) 45.5 (reinforce)

Borders 1.1 (neither) 1.4 (neither) 21.5 (reinforce)

Buses versus stock 2000 246 1011

Buses versus borders 18.2 28 478

Stock versus borders 110 1.64 2.116

The values provided are the ratio of the occurrences in the images compared with the expected
occurrences in a large set of images involving many more classes than just the three shown here. The
ratios are the ratios of themeans in the same column, and the higher ratio is given, and “reinforce,” “void,”
or “neither” is indicated in parentheses. Please see text for details.



2358.4 Broader applicability of these patterns
As noted in the introduction to this chapter, in order to distinguish, or “discrim-

inate” two samples by category or indexing, we truly need an abundance of scarcity,

not just a single scarcity. The “perceptual analytics” we wish to perform use

reinforce-void and as such benefit from the ability of reinforce-void approaches

to generate a plain text set of rules to apply. For the example of Table 8.1, we

can provide a set of “domain expertise rules” for “urban,” “rural,” and “agricultural”

as follows:

1. For “urban,” we expect reinforcement of buses and void of stock. The ratio of

buses to stock will be very high. The ratio of borders to stock will generally

be large.

2. For “rural,” we expect void of buses and intermediate values of stock and borders.

The ratio of stock and borders to buses will generally be large.

3. For “agricultural,” we expect void of buses and reinforce of stock and borders.

The ratio of stock/bus and borders/buses will be very high. The ratio of stock and

borders will not be expected to have categorization relevance.
8.4 Broader applicability of these patterns
The two interrelated patterns described above can be used together or in conjunction

with other patterns, to drive further understanding. As described above, the trade-off

between synonym and antonym and between reinforcement and voiding allows the

analytics architect to perform an expectation-maximization inspired design, which is

highly advantageous for scalability, robustness, and adaptability.

Collectively, these patterns and the expectation-maximization inspired system

designs incorporating them are termed multiphase counterbalanced approaches.

The multiple phases may be as straightforward as expectation and maximization.

In the example above, the “representative” sample of a category is defined based

on the most relevant (e.g., synonym) and least relevant (e.g., antonym) terms, and

once samples are assigned to each category, the category is redefined based on its

overall cosine vector model (i.e., all text, not just the category-specific text). This

approach is effective and quite generalizable. By using a subset of what describes

the class to assign samples to the class, there is a trade-off in the specificity of

the class for the two parts of the iteration, which provides a more robust solution.

The approach can be extended to three phases in the iteration. In the first phase,

the representative sample of the class is defined. In the second phase, all samples are

assigned to one or more categorizations based on their affinity (e.g., Euclidean dis-

tance and cosine of the angle between the sample and representative sample). Then,

samples that are anomalous for a subset of the terms used, for example, are outliers

using the same set of most relevant and least relevant terms used to define the rep-

resentative sample, for example, are pruned before beginning the next iteration. The

threshold on this refinement (akin to a form of validation) phase should be different

than that used for the definition of the category definition in the first phase, so that

phases two and three do not simply add and subtract identical subsets of samples.
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This three-step approach has an alliterative mnemonic, “define, assign, and refine,”
and provides an additional phase to expectation-maximization (we may call it

expectation-maximization-elimination in the content of E-M).
8.5 Summary
This chapter provides insight into the use of two different, though related

approaches to categorization analytics. The first, synonym-antonym, focuses on

the weighting of synonyms and antonyms based on their similarity or dissimilarity

to categorization terms, multiplied by the relative rareness of the terms. The overall

weight is w(i)*tf(i)*idf(i) per term, and the summed weights of synonymic and

antonymic behavior can be used for assignment purposes.

Next, the broader reinforce-void pattern family is discussed. In this section, we

described how residual entropy, expectation-maximization (EM), and varying the

coefficients for the ratio of occurrences to nonoccurrences can be used to generate

effective features. The analogy to the Hegelian dialectic is highlighted. The behavior

of reinforcement/void ratios compared with their expected values can be used as a

criterion for feature selection. The use of reinforce and void for multicategory dis-

crimination is shown by example.

We conclude the chapter with a discussion of an extension of the familiar

expectation-maximization (E-M) algorithm. Here, we designate this multiphase

counterbalanced approach “define, assign, and refine,” but it could also be termed

expectation-maximization-elimination, or E-M-E.
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For the things we have to learn before we can do them, we learn by doing

Aristotle

As areas of knowledge grow, so too do the perimeters of ignorance

Neil deGrasse Tyson (2012)
9.1 Introduction
A book on meta-analytics is clearly going to focus on design patterns to bring mul-

tiple analytics to bear on a problem. The past few chapters have focused on precisely

these—predictive selection, chemistry- and biology-inspired algorithms, and

reinforcement-void being the exemplars. In this chapter, we consider another defi-

nition of “meta,” the “more comprehensive and transcending” one. Going beyond

simple analytics, we are focused on several introspective analytics about the analyt-

ics we are capturing. Next, we describe how to optimize the settings for analytics

from the training data (a form of introspective validation). We then overview how

to use expectation-maximization analytics to optimize systems and system settings

(not just the algorithms or analytics). We conclude with ways to integrate analytics

into the very fiber of system life cycle: functional measurements of the effectiveness

of analytics in their purported roles.

The quote from Aristotle is at first read bizarre, because its opposite is “the thing

we don’t have to learn before we can do” it—that is, an innate ability. It also strikes

me as sententious, since Aristotle was the guy too lazy to throw a heavy and a light

object down a drop at the same time, and so, a decent understanding of gravity had to

wait for Galileo and the leaning tower of Pisa, at least apocryphally. Certainly, Aris-

totle is guilty of believing that objects fall at a speed that is proportional to their

weight (hint for nonphysics folks: they don’t). But I still like the quote by Aristotle

for its relevance to meta-analytics: the thing we have to learn before we can do it is to

accept the fact that no single analytic approach is going to provide the best results for

a given problem, problem space, or system all of the time. We learn this by doing

meta-analytic design and seeing the advantages that a meta-analytic approach pro-

vides for a wide range of important system design concerns, including but not limited

to (a) performance; (b) robustness; (c) accuracy; (d) cost; (e) modularity and repur-

posability; (f) testing, measurement, and validation; (g) scalability; and (h) reliabil-

ity. This book should provide the encouragement and hopefully the means to do the

thing we need to do to learn. Ouch, that hurt just to write, but I’ll blame Aristotle.
tps://doi.org/10.1016/B978-0-12-814623-1.00009-5

ske. Published by Elsevier Inc. All rights reserved.
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Newton often acknowledged that his advancements were because he was standing on

the shoulders of giants, among which Aristotle is certainly found. I feel in this book

that I am trying to understand on the shoulders of giants. The giants I allude to are

those who paved the way for analytics and “big data” to fill the role they do in today’s

world. And meta-analytic approaches are a knowing nod to the fact that there are

quite likely two (or more!) brilliant analytics that can be implemented at any “knowl-

edge opportunity” in a system design. A wise system designer doesn’t usually try to

outdo the genius that came before; instead, the designer tries to use this genius to

advantage in a meta-approach, that is, in a system.

The quote by Neil deGrasse Tyson is even more relevant to this chapter. The price

we pay for gaining knowledge stems from the double-sided nature of knowledge.

There is a reinforcement-void quality to knowledge: when we learn something more

in a subject (reinforcement), we recognize something else that we have yet to know

(void). This void is part of the perimeter of ignorance. Awareness of this void cer-

tainly helps us focus our subsequent learning, attempting to fill the void with under-

standing. But every time we do, we make the body of knowledge larger and thus

increase its perimeter (or surface area). Envisioning knowledge as being surrounded

on all boundaries by ignorance, this naturally means that ignorance grows every time

we add to knowledge. It’s a good time to be a data scientist, because it means the

more you learn, the more you’re needed. Let’s go grow that perimeter.
9.2 Analytics around analytics
To start the consideration of “meta-” in “meta-analytics” where we mean “more

comprehensive and transcending,” all we need to do is make the “meta-” sequentially

broader, each “meta-” encapsulating the previous. The first meta- is the meta-

analytic concerned with employing two or more analytics (prediction and selection,

reinforcement and void, etc.) in an intelligent hybrid pattern. The second meta- is the

meta-analytics concerned with going beyond the hybrid analytics and taking an ana-

lytic approach to evaluating the already potentially meta-analytic system that we are

using to generate information and intelligence from data sets. In this section, we con-

sider the topics of entropy and occurrence vectors, functional metrics, and

expectation-maximization approaches, before concluding with a brief discussion

of system design concerns.
9.2.1 Entropy and occurrence vectors
If you’ve read the previous chapters, then you’ve already seen the value of entropy

for determining howmuch information is contained in a system or system design and

for determining the goodness of fit of a system model. The mantra for the latter is

“the better the model fits the data, the higher the entropy of the residual error between

the system and model.” From this perspective, entropy is particularly valuable for

determining the randomness of a particular distribution. The magnitude of random
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noise in a system is certainly a concern, but the nature of random noise is such that

we, as system designers, feel that we have done all we can to prevent a structured, or

systematic, noise from being missed or ignored.

Entropy as a means of assessing uniformity of distribution can be used on a vari-

ety of distributions. One of the more subtle uses is in difference sets. The superficial

application of this is in comparing data sets over time. We can assign entire data sets,

subdomains of the data sets, or even subsets of the data associated with a specific

metadata label (time/date, location, person collecting the data, device collecting

the data, etc.) to the compared groups (among other options). Changes in entropy

are used solely as a data “triage,” indicating the need for follow-up evaluation.

A simple use of entropy change is to monitor repositories for encryption compliance.

We have been able to distinguish compression and encryption, as well as different

encryption processes, in past work [Stur16]. Applying entropy assessment to subsets

of data is an extremely automated process, which means it is effectively infinitely

scalable, and can be run as an “idle-time process” to any desired level of

thoroughness.

Entropymeasurements can also be used to correlate descriptive distributions such

as histogram of occurrences of different terms (in documents) or items (in videos),

among other “sortable” data. Such data can of course be compared also with a model

for the data. Suppose that we are looking at a histogram of word occurrences in a

corpus, irrespective of the document assignments. Zipf’s law, which propounds that

the occurrence frequency of any word is inversely proportional to its relative rank in

occurrences, can be used to model the actual frequencies. Corpora can be directly

compared with each other and with the ideal Zipf distribution using entropy of

the residuals as a metric. This is shown through the sequential data sets of

Tables 9.1, 9.2, 9.3, and 9.4, described next.

In Table 9.1, we provide the residual entropy as a ratio of the maximum residual

entropy for comparing any two of four word frequency distributions. For simplicity,

no alignment of the terms between the compared pairs of distributions is performed;

thus, the entropy value represents only differences in the shape of the distribution of

ranked terms, not the actual terms across the distributions. In Table 9.1, we see that
Table 9.1 Percent of maximum entropy in residual distribution for comparing
any pair of the three word frequency distributions A, B, and C or in comparing
any of the three with the ideal Zipf’s law distribution, first data set

Corpus A B C Zipf ideal

A 1.000 0.956 0.878 0.794

B 0.956 1.000 0.812 0.899

C 0.878 0.812 1.000 0.957

Zipf ideal 0.794 0.899 0.957 1.000

Comparison of the same sets results in maximum entropy (all values¼0.000) by definition. Please see
text for details.



Table 9.2 Percent of maximum entropy in residual distribution for comparing
any pair of the three word frequency distributions A, B, and C or in comparing
any of the three with the ideal Zipf’s law distribution, second (cumulative)
data set

Corpus A B C Zipf ideal

A 1.000 0.943 0.856 0.803

B 0.943 1.000 0.826 0.897

C 0.856 0.826 1.000 0.949

Zipf ideal 0.803 0.897 0.949 1.000

Comparison of the same sets results in maximum entropy (all values¼0.000) by definition. Please see
text for details.

Table 9.3 Percent of maximum entropy in residual distribution for comparing
any pair of the three word frequency distributions A, B, and C or in comparing
any of the three with the ideal Zipf’s law distribution, difference between
second (cumulative) and first data sets (values of Table 9.1 subtracted from
values of Table 9.2)

Corpus A B C Zipf ideal

A 0.000 �0.013 �0.022 0.009

B �0.013 0.000 0.014 �0.002

C �0.022 0.014 0.000 �0.008

Zipf ideal 0.009 �0.002 �0.008 0.000

Please see text for details.

Table 9.4 Percent of maximum entropy in residual distribution for comparing
any pair of the three word frequency distributions A, B, and C or in comparing
any of the three with the ideal Zipf’s law distribution, difference between
eleventh and tenth, tenth and ninth, …, second and first data set (mean �
standard deviation of the 10 sequential comparisons)

Corpus A B C Zipf ideal

A 0.000�0.000 �0.006�0.012 �0.002�0.011 0.011�0.003*
B �0.006�0.012 0.000�0.000 0.013�0.005* 0.003�0.002*
C �0.002�0.011 0.013�0.005* 0.000�0.000 0.001�0.001*
Zipf ideal 0.011�0.003* 0.003�0.002* 0.001�0.001* 0.000�0.000

Data sets are cumulative, meaning data set 11 has 11 times the data as data set 1. Statistics that are
statistically significantly different from 0.000 at two-tailed z-test of a<0.05 are indicated by *. Please see
text for details.
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distributions A and B have highly entropic differences between them and that

distribution C has a highly entropic difference distribution in comparison with an

idealized Zipf distribution. This means that there are no predictable differences

between A and B, not C from a Zipf distribution.

In Table 9.2, another equally sized set of data for corpora A, B, and C are added to

the original data set (cumulative data set twice the original size), and these are pair-

wise compared or compared with the ideal Zipf distribution. While the values are

similar to Table 9.2, we can see that there is some variance in the entropy in com-

paring the two sets. These differences are captured in Table 9.3.

In order to see if any trends observed for single differences in Table 9.3 continue

for additional sets of data, we accumulate 10 difference entropies from samples taken

over time (for cumulative data sets 2, 3, 4,…, 11 times the size of the first data set).

The means and standard deviations of these samples are shown in Table 9.4, along

with the statistically significant trends, as determined by two-tailed z-tests of the

means (compared with the expected values of 0.0).

In Table 9.4, four statistically significant trends are observed (don’t be fooled by

the eight asterisks—the matrix is symmetrical, and so, each pairwise comparison

shows up twice in the matrix). For all three distributions—A, B, and C—the trend

is for newer data sets to have higher entropy when differenced from the ideal Zipf’s

law. This is likely a result of larger values of data more closely approximating a Zipf

distribution, but this was never a guarantee unless the actual complete distribution

really did follow a Zipf. The other trend is for entropy in comparing B and C to

increase, meaning these two populations start to have no structured differences as

they accumulate in size.

Note that the approach taken here, evaluating entropy as the cumulative data set

increases in size, can behave differently from evaluating the correlation of the two

sets. With correlation, the terms would usually be aligned, and so, the differences

calculated would be for comparing terms that are not usually ranked the same in each

distribution (and the ranking of an individual word in each distribution would also

likely vary). Thus, we are looking for the correlation of frequency of words such as

“because” and “market,” but these words might be ranked 675 and 1423 in corpus 1

and ranked 423 and 2431 in corpus 2. With the entropy measurement described

above, we are comparing the frequency of terms 675, 423, 1423, and 2431, which

might match “had” and “because,” “because” and “take,” “market” and “consider,”

and “form” and “market,” respectively, for the two distributions. The key is that

entropy evaluates differences in the shape of the distribution, whereas correlation

evaluates differences in the occurrence frequency of the same terms.

The third example use of entropy as a means of assessing uniformity of distribu-

tion is to directly compare vector representations of the term frequencies. The com-

parison is done by multiplying the frequencies of the like terms together and

summing them, a process called the inner product. This approach combines the

entropy and correlation approaches as described above. A word vector is simply

the set of occurrences of the words, divided by the total number of words. For the

example here, we might see the first corpus has frequencies for “had,” “because,”
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“market,” and “form” of 0.000122, 0.000087, 0.000043, and 0.000029, respectively.

If the form of the second distribution is exactly the same as the form for the first dis-

tribution, then the frequencies for “because,” “take,” “consider,” and “market” would

be exactly 0.000122, 0.000087, 0.000043, and 0.000029, respectively. Of course, this

doesn’t often happen with real data, and so, our measured values are a similar but not

identical 0.000108, 0.000091, 0.000053, and 0.000031 for “because,” “take,” “con-

sider,” and “market,” respectively. The vector model then multiplies together all of

the values for the same terms in the two distributions and sums them. We only have

the values for “because” (0.000087 and 0.000108 in the two distributions) and “mar-

ket” (0.000043 and 0.000031 in the two distributions), for which the “inner products”

are 87�108�10�12 and 43�31�10�12. Suppose we had a simple distribution with

four terms with frequencies 0.4, 0.3, 0.2, and 0.1. The inner product of these two

exactly equal distributions is therefore (0.4)2+(0.3)2+(0.2)2+(0.1)2¼0.16+0.09

+0.04+0.01¼0.30. The maximum sum is clearly dependent on the nature of the dis-

tribution and in particular the frequency of the most common terms. We can always

predict the maximum possible inner product from Eq. (9.1):

Max inner product¼
XNterms

n¼1

max pA termnð Þð Þ2, pB termnð Þð Þ2
� �

(9.1)

In Eq. (9.1), pA(termn) is the relative frequency of term n in distribution A, and

pB(termn) is the relative frequency of term n in distribution B. This maximum pos-

sible inner product can be used to normalize the sums of inner products so they can be

compared across corpora. For the simple two-term results, we obtained for “because”

and “market,” the maximum possible inner product is (108)2�10�12 for “because”

and (43)2�10�12 for “market.” The percent of the maximum that we actually

obtained is thus (87+31)/(108+43)¼0.781. Note that this value is a very useful met-

ric for determining document similarity (and for recommending the next document

to read while learning a topic).

The vector model is akin to correlation in that it finds the relative amount of

shared term frequency and akin to entropy in that it exposes differences in the dis-

tribution (if, e.g., we use it for subdomains of the terms, i.e., the first 1000 terms and

then next 1000 terms). Regardless, with entropy, correlation, and occurrence vectors,

we have a strong set of analytics to recognize potential differences in distributions

before in-depth analytics have been applied.
9.2.2 Functional metrics
The fundamental rule on functional metrics is “if you can find one, please use it.”

There are many advantages to functional metrics, including the reduced (often to

zero) need to create ground truth (human labeled) data and the ability often to catch

two birds with one worm (to rewrite a less pleasant idiomatic expression). First,

though, we’ll describe what is meant by “functional,” and then, a few examples will

naturally follow.
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Functional metrics are measurable processes that in their normal working, or

“functioning,” give us insight into other analytics. A familiar functional measure-

ment is the behavior of a set of search queries such as mentioned in Section 2.4

and described in Ref. [Sims14]. Here, we are interested in being able to rate a set

of translation engines without having to request a bilingual speaker/reader to perform

the evaluation. Instead, we use an automatic index generator to generate a set of

indexing terms, which are then used for search queries. In order to gauge which trans-

lation engine performs best, the translation engines are used to simultaneously trans-

late the corpora and the search terms. The corpus/search query set that provides the

search behavior most closely matching that of the original (untranslated) document

set is deemed the best translator. The reason this works is that the search terms are

almost certainly translated with a different accuracy, tactic, etc., than the documents

themselves—the search terms are generally just single or compound words rather

than full sentences. The functional measurement (search behavior) is used to rank

the analytics (in this case text translator) in the correct order.

Another example is the use of a functional measurement (classification) to func-

tionally test another analytics (summarization). For a document corpus, different

classification engines are used to assign the documents to their correct classes.

The 20 newsgroups data set [Lang95] is a standard classification set, and if these

20,000 newsletters are summarized, we would expect the accuracy of classification

to drop from peak values as high as 82% [Sims06]. However, the summarization

engine whose output provides the highest overall accuracy on the 20,000 summa-

rized newsletters (assuming each summarizer is allowed the same amount of com-

pression, e.g., to 20% of original length) is identified as the best summarizer. The

classification accuracy is the automatically computed functional metric that is used

to assess the best analytics (in this case, summarization engine).

A third example is the use of a functional metric (face recognition accuracy) to

identify the best face detection algorithm. This example is a bit different from the one

above and hopefully illustrates some of the craftsmanship that can be involved to

avoid the dreaded extra work of human tagging (and interference!). At first glance,

this might appear contradictory—how can we rate face detection accuracy based on

face recognition, since face recognition is a precursor step to it? By analogy, this is

like using object recognition accuracy to rate the binarization (thresholding) algo-

rithm—see Section 1.7.7 for more on this subject. Since binarization is upstream

from object recognition, we know that the relative accuracy of a binarization algo-

rithm—for this type of problem, at least—can be inferred with relatively high con-

fidence based on the object recognition accuracy. The same can be said for face

recognition downstream from face detection (segmentation). What is needed in both

cases is a good labeled object repository. Fortunately, there are many of them

[Fish18], not only for face recognition but also for many other biometrics. These

repositories allow us to use an already-labeled data set to test another. The key to

applying this type of approach is modularity of system design. So long as the only

difference in the system is the analytics of interest, we can infer the differences in the

downstream measured behavior as resulting from differences in the attributes of the
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modularized analytics. Interestingly, the follow-up on this approach is also very pal-

atable from an automation standpoint. We can readily subdivide the outcomes (face

recognition categories) and so perform an “inverse predictive selection” algorithm

on the categories. That is, we can assign the images for the face recognition to cat-

egories a posteriori and then find attributes from these categories that could be fed

forward to subdivide the input space in case a different face detection algorithm

might be indicated for two or more subgroups.

Another example of a functional metric worth overviewing here is one in which

the functional measurement is more derived than the analytic it is optimizing. For

this example, consider a speech recognition engine being used for GPS guidance.

The best speech recognition engine is deemed the one that provides the shortest time

in directed navigation tasks. There are a number of ways of aligning the data sets,

including comparing like paths and computing the number of backtracks and rever-

sals, which don’t need in-depth discussion here. The key is that the function is giving

good driving directions, while the functional measurement is an attribute (time, dis-

tance, number of backtracks, etc.) of the primary function. Thus, this example rep-

resents a class of functional measurements in which secondary functions—not just

primary functions—are used to score the different candidate analytics. This motif

could in theory be extended further—for example, to tertiary functions like the miles

per hour (distance/time)—but the further from primary functional measurements we

get in our assessment metrics, the less likely the evaluation is to be robust to changes

in the inputs to the system over time. The recommendation is to use primary func-

tions wherever possible.
Before leaving this section, an analogy might be worth considering. The differ-

ence between direct measurement of a new analytic for optimization and using func-

tional metrics as illustrated here is analogous to the difference between anatomy and

physiology. The anatomy of an organism is its structure, the way it comes together.

The physiology of an organism is the way it works. Ideally, we match form and func-

tion for an optimized system, the premise being that the best architecture for the sys-

tem is the one that functions the best. In this way, the method of functional metrics

illustrated by the examples here innately makes sense to the system designer. That

being said, never be fooled by the beauty of an algorithm, analytic, or architecture.

Beauty may only be skin—I mean interface—deep. A beautiful design married to a

healthy skepticism is the ideal union: a system for analyzing data is also a system to

which data analysis can be applied for its betterment.
9.2.3 E-M (expectation-maximization) approaches
Expectation-maximization (EM)-inspired approaches were considered for their analo-

gous nature to reinforce-void patterns in Section 8.4. In the traditional implementation,

originally formalized inRef. [Demp77],we iterativelydefine the representativevalueof

a cluster,which isusually the centroid, and thenassigncandidate samples to it basedona

proximity measurement (often the Euclidean distance). Once the assignment has
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occurred,we redefine the representative value from the assigned candidate samples and

repeat the process until convergence is indicated.

For this section, we are more concerned with the analytics around the E-M as an

analytic. Two types of analytics immediately come to mind when applying E-M or

E-M-inspired approaches: (1) analytics on the speed of convergence of the algorithm

and (2) analytics on the entropy of convergence of the algorithm. One means of gath-

ering these analytics without loss of statistical power—that is, cheating on the actual

degrees of freedom available—is to use multiple initial representative values (start-

ing points). We should always be allowed initial assignments equal to the number of

samples minus the number of classes minus 1, based on degrees of freedom alone.

For (1), we may wish to use a directionally proportional (including Cartesian coor-

dinate and angular variability) distance computation for convergence. The angle can

be assessed using a Hough transform, and the rough aspect ratios of the clusters can

be garnered from a set of nearest neighbor connections, using the largest connected

components to estimate any directional bias (e.g., ovoid vs. circular) in the shapes of

the “cluster estimates.” For (2), the entropy approaches of the previous Section 9.2.2

can be brought to bear on the cluster differences between two iterations. The direc-

tion of the changes of the points from their cluster centroids can be accumulated in a

histogram, for example, one varying from 0 to 360 degrees in 5-degree increments.

The entropy of this 72-bin histogram can then be assessed, with the assumption that it

will approach its maximum of 6.17 bits of information—since log2(72)¼6.17—as

the convergence occurs.
9.2.4 System design concerns
When choosing among even the relatively small set of design options for the analyt-

ics around analytics, we must consider a large range of important system design con-

cerns, including but not limited to (a) performance; (b) robustness; (c) accuracy;

(d) cost; (e) modularity and repurposability; (f) testing, measurement, and validation;

(g) scalability; and (h) reliability. At first glance, this might seem like a very open-

ended problem, but when looked at from the right angle, it is a simple design strategy.

For each of these design concerns, before beginning any implementation, plan an

“analytics strategy” for each of them, and implement it from the ground up. This

design should also preferably occur before—or at least concurrently—to the design-

ing of other system-wide concerns such as security, manufacturing process, sourcing

and procurement, EMI/RFI remediation, and the like.

A simple example for each of these is given here. For performance, a simple ana-

lytic is the difference entropy when the system is benchmarked on the same data set

before and after each newmodule is functionalized. For robustness, a vector model of

the behavior of two versions on a broad array of input will help to determine areas of

focus for system improvement—domains with inner products substantially lower

than maximum are indicative of instability to input and thus nonrobustness. For accu-

racy, functional output such as classification is a good system analytic approach. For

cost, the entropy of system behavior (in performance, robustness, accuracy, etc.) for
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different changes in system design, each with the same impact on cost, can be used to

identify the subsystems most sensitive to cost. For modularity and repurposability,

the coefficient of variance methods is useful for qualifying the changes when mod-

ules are substituted with stubs or other nonfunctionality (or the inverse, when stubs

are replaced with functionality or when different functionalities performing the same

task are substituted). Scalability can be tested by vector modeling of the behavior

attributes across new samples: the behavior of existing samples does not need to

be calculated, making this an O(N) calculation. Finally, reliability can generally

be tested along the lines of robustness.

I have focused on entropy in this chapter, because it can be applied to subsets of

the data, and it can be fitted to the expected error distributions readily (e.g., Gaussian

or the difference between two Gaussians). In most cases, though, entropy could be

substituted reasonably by variance or coefficient of variation measurements, even

though they have a slightly different interpretation. My preference is to calculate

all three for the different insights that they may provide.
9.3 Optimizing settings from training data
Next, we describe how to optimize the settings for analytics from the training data (a

form of introspective validation). Considerable detail around ground truthing and

optimizing the use and life cycle of training data was given in Chapter 2 and will

not be repeated here. Instead, here, we consider how to optimize the settings for

the analysis of the analytics from the training data. We do this in part by viewing

training data pruning as an analogue for information extraction. This is an area of

considerable interest to analytics presently. In Ref. [Zend17], for example, two

key questions are asked of the test data: (1) “What should be part of the test data

set to ensure that the required level of robustness is achieved?,” and (2) “How

can redundancies be reduced (to save time and remove bias due to repeated ele-

ments)?” The first question considers the breadth of the training (or testing) data,

while the second question considers the depth of the training set in specific areas.

Sounds a little familiar in this chapter but suffice it to say that it might make sense

to check the training/test set for entropy of representation across the sample input

domain. This handles the (too much) depth (in one subdomain) problem and allows

us to address the breadth so long as we know what should be in the distribution.

Optimizing settings goes deeper than simply ensuring that the training and testing

data represent the entire input domain and do not overrepresent any subdomain. We

have learned about the “representative sample” of a cluster, category, or class, par-

ticularly in the application of expectation-maximization analytics. But another type

of representative sample may be required. For example, which samples from a pop-

ulation are best able to highlight the deviation from other populations? One approach

that has some success in certain applications is in separating data into bands based on

standard deviations apart from the mean for different features. Usually, the best

features for this approach are the ones that best distinguish a certain population
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from another. Samples falling within a standard deviation of the mean for this feature

may bemore representative of the underlying population than those more than a stan-

dard deviation away. There are two potential advantages to this approach: (1)We use

the central limit theorem to find more representative samples for distinguishing clas-

ses by including all samples within a standard deviation (or other multiples of stan-

dard deviations) rather than just the mean, and (2) we allow the samples outside of

the central zone to be mined for the creation of new categories. We can think of these

“outliers” as potentially benefitting from the analytics equivalent of “reproductive

isolation,” which leads to speciation by preventing two subpopulations from inter-

acting. Our “data isolation” can be used to consider splitting classes into subclasses,

the outlier subclasses of which are then encouraged/allowed to interact with splin-

tered subpopulations from other populations.
9.4 Hybrid methods
We start off this section showing how to use expectation-maximization (shorthand E-

M and we call them expectation-optimization, or E-O, since this is a broader range of

applications than just maximization) analytics to optimize systems and system set-

tings (not just the algorithms or analytics). We have covered E-M/E-O algorithms in

some detail in Sections 8.4 and 9.2.3 above. Here, we are concerned with using the

E-O approach as part of a larger analytic system. One means of employing E-M is by

adding a third step to expectation and optimization, here called regularization but

used in an even broader sense than the regularization applied to clustering, for exam-

ple, in Chapter 10.

As first mentioned in Section 1.7.8, clustering outcomes can be attained using a

kNN (k-nearest neighbor) approach for sample assignment to clusters. The kNN algo-

rithm is a classic approach to aggregating data, going back at least 50 years [Cove67].

Adding a third step in each iteration, regularization, creates an E-O-R, or “Eeyore,”

algorithm that hopefully builds a sturdier structure for analytics than might the epon-

ymous donkey. Regardless, the regularization step is straightforward, in its rudimen-

tary form involving no more than an F-score (please see Section 1.6.2 for more on F-
scores). The F-score is the ratio of between-cluster and within-cluster variance and is
calculated for each value of k in the reasonable range of k values for the data. For

large numbers of clusters (medium to large data sets), we may choose to provide

a moving average of F-score versus k in order to choose the true optimum for k, espe-
cially where each cluster may correspond to a distinct set of follow-on analytics.

As mentioned, the F-score is used in analysis of variance (ANOVA) and other

statistical comparisons. The F-score is defined as in Eq. (9.2):

F¼MSEb

MSEw
(9.2)

In Eq. (9.2), the numerator,MSEb, is the mean-squared error between the groups, and

MSEw is the mean-squared error within the groups. The ratio of MSEb/MSEw—that
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is, the F-score—can be used to optimize clustering. The highest F-score correspond-
ing to an acceptable/valid value of k indicates the naive best clustering for the data.

We will add regularization onto this approach in Chapter 10, but for now, it is worth

noting that this method is scalable to any size data space and any number of clusters.

The range of acceptable k can be obtained in several ways: domain expertise, esti-

mated cluster size from histogram of distances from each sample to all other samples,

metadata differences in the data labeling, etc.

Other hybrid methods for analysis include computing more traditional distance

metrics, like the Jaccard similarity coefficient, given by Eq. (9.3):

Jaccard A, Bð Þ¼ A\Bj j
A[Bj j ¼

A\Bj j
Aj j+ Bj j� A\Bj j (9.3)

The Jaccard distance, which represents the dissimilarity between two sets of data, is

given by Eq. (9.4):

DistanceJaccard ¼ 1�Jaccard A, Bð Þ¼ A[Bj j� A\Bj j
A[Bj j ¼ Aj j+ Bj j�2 A\Bj j

Aj j+ Bj j� A\Bj j (9.4)

Other forms of the Jaccard approach can be attempted as well. Jaccard[n] variants are
shown in Eq. (9.5):

Jaccard n½ � A, Bð Þ¼ Aj jn Bj jn
Aj jn + Bj jn (9.5)

As many of the Jaccard equations can be used as desired, and they can be evaluated

precisely along the lines of any other feature for classification, categorization, or

clustering.

In Section 7.7, least squared error (LSE), variance of the error, and entropy mea-

surements were used to determine the goodness of fit of a data model. These three

metrics were chosen as they are easy to compute, unambiguous, and robust to the

range of data input. A weighted combination of these three metrics can be used to

evaluate the different Jaccard metrics, for example, to see which of them tracks best

with error in the model. Also, like the Jaccard methods, the weighted combination of

these can be used for the regularization step in the Eeyore algorithm.

A final type of regularization will complete this section. Up to this point, we have

been concerned with quantitative regularization, that is, regularization based on a

computed regularization term, which is then optimized across a range of values to

suggest an optimum configuration of the incremental expectation-optimization

results (E-O-R). However, qualitative regularization is also possible. By qualitative,

we mean that the regularization is performed in situ rather than being evaluative

across a range. Regularization of the boundary points in a support vector, or

in situ reclustering, can both be regularized by the following methods:

(a) Use only those points that are closer to a boundary at some point than ANY

other member of their cluster. This deselects points that have “line of sight” to

another cluster (or class in the case of SVM). This qualitative rule is adaptable;

for example, we may wish to include points that only have one, two, or other
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points that are closer to the nearest boundary point (thus, this scales with the

size of the data sets in the clusters/classes).

(b) Reseed clusters based on the inverse of their distance from the representative

sample (e.g., centroid) of the cluster. The closer to a boundary, the more likely

such a point can be used to reseed a new cluster. This is a qualitative variant of

the approach outlined in Section 9.4.
9.5 Other areas for investigation around the analytics
Analytics are the algorithms, processes, and systems into which we input raw data

and fromwhich we extricate information, knowledge, recommendations, and estima-

tions. The simplest analytics are descriptive outputs such as mean, standard devia-

tion, and z-score. Analytic processes include the more sophisticated patterns—

predictive selection, inverse predictive selection, reinforce-void, weighted voting,

sensitivity analysis, cumulative response, extended expectation-optimization,

among others—which can be employed for a wide variety of analytic problems with

very little domain customization necessary. Systems for analytics include the clas-

sification approach of Chapter 1 and the clustering approach of Chapter 10, and these

tools provide a means of structuring and organizing the information generated by the

algorithms and processes. Analytics around these analytics include assessing, simul-

taneously, which of these provide the best desired output for the analytic system. This

can be assessed along the lines of any/all of the system concerns of Section 9.2.4 and

provide a means of optimizing the analytics strategy for the system in deployment.

Analytics about analytics, more generally, are functional measurements of the

effectiveness of analytics in their purported roles. This is a broad area of meta-

analytics in which any insight into how the analytic processes being applied to a sys-

tem are being (or not being) effective can be collected for evaluation not of the pri-

mary data, but of the effectiveness with which the data is being evaluated. This is

increasingly important as a larger amount of data is collected each day. Without this

form of data “introspection,” we can only hope that data are being analyzed effec-

tively and appropriately. With the widespread implementation of Internet-connected

sensors, there is the ability to augment other collected sensor data when additional

clarity is required. An increasingly important part of meta-analytics will indeed be

knowing when and how to augment data already being analyzed with data that has

not yet been analyzed, but may add understanding.
9.6 Summary
In this chapter, we went beyond the meta-analytic approach of bringing two or more

analytics together to improve the overall analytic behavior (cost, accuracy, robust-

ness, etc.). We measured the analytics themselves. The analytics around analytics

include applying methods based on entropy, including the application of entropy
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to difference sets; the application of entropy to descriptive distributions such as histo-

grams (with discussion of the relationship to correlation); and the use of occurrence

vectors, which allow inner products to be calculated that merge the best of Jaccard

and correlative approaches. The manner in which to calculate the maximum inner

product is given.

Next, functional metrics in which one or more measurable processes that in their

normal working, or “functioning,” give us insight into other analytics we wish to

evaluate were considered. The examples given helped illustrate some of the art in

the process, while the recommendation to use primary functional metrics where pos-

sible and to use existing databases of labeled functional metrics helped illustrate the

science in the process. One particular functional metric design pattern mentioned, the

“inverse predictive selection,” has been used by the author in numerous applications

to provide better forward estimation as part of optimizing the analytics.

We briefly revisited expectation-maximization approaches covered in a different

light in Section 8.4. Here, we are focused on the analytics around the E-M analytic,

namely, the speed of convergence and the entropy of the convergence. Next, we rein-

forced the value of connecting analytics around important system design concerns of

(a) performance; (b) robustness; (c) accuracy; (d) cost; (e) modularity and repurpo-

sability; (f) testing, measurement, and validation; (g) scalability; and (h) reliability.

Optimizing settings from training data is first concernedwith ensuring that the data

set used for training or testing is both as broad and as uniformly deep as needed to

ensure optimal system robustness. Training data are also useful for defining represen-

tative samples and, as appropriate, for defining new categories from outlier data.

Finally, hybrid methods are covered. Expectation-maximization, or as described

here “expectation-optimization,” approaches are augmented with regularization to

create an expectation-optimization-regulation, or E-O-R (“Eeyore”), algorithm.

The Eeyore algorithm affords a two-factor optimization based on iterative assign-

ment to representative samples (E-O) and optimization of the number of clusters with

an F-score calculation. Jaccard similarity, distance, and variants are covered, and we

complete the chapter’s new material with a consideration of qualitative regulariza-

tion and a big picture view of meta-analytics as “analytics about analytics.”
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CHAPTER
System design
optimization
 10

Meta-Analytics. ht

# 2019 Steven Sim
As to methods, there may be a million and then some, but principles are few.

The man who grasps principles can successfully select his own methods. The

man who tries methods, ignoring principles, is sure to have trouble

Harrington Emerson (1911)

Insanity: doing the same thing over and over again and expecting different

results

various sources

Have no fear of perfection—you’ll never reach it

Salvador Dalı́
10.1 Introduction
Often attributed to the other Emerson (Ralph Waldo, that is—please see quotes for

Chapter 3), Harrington Emerson clearly understood the role of a system architect: she

who approaches system design by trying one method after the other is doomed to

inefficiency. She may be successful in the end—tenacity overcomes a lot misdirec-

tion—but she is likely to enjoy the process a lot more if the methods are applied to a

principled architecture and if the methods themselves are understood from a larger

perspective than the individual—perhaps custom and perhaps idiosyncratic—system

being designed. For this reason, we focus on the principles of analytics and meta-

analytics and show how a core set of principles apply to the methods used for ana-

lyzing both the data and the system using the data.

Another quote often attributed to a very famous person (Albert Einstein, you’ve

probably heard of him) is that insanity is “doing the same thing over and over again

and expecting different results.” This is the flip side of a core tenet of meta-analytics.

With a wide variety of meta-analytic approaches—from the patterns for hybrid ana-

lytics to the use of analytics on the analytics themselves and on system design—the

analytic system designer need never do the same thing over and over. The principles

of meta-analytics allow the designer to employ a “virtual infinity” of approaches

without a huge change in methodology, system design, or test plan. One goal in sys-

tem design is to get as much as you can with as little redesign as possible. But

another, perhaps equally important, goal is to be able to react to situations that

are clearly going awry without losing your previous investment in design, your pre-

viously collected data and information, and indeed your cool.
tps://doi.org/10.1016/B978-0-12-814623-1.00010-1

ske. Published by Elsevier Inc. All rights reserved.
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Salvador Dalı́’s advice is another encouragement to stay cool in the face of data

inundation. Unless you are a perfect expert in an area, there will always be more that

you can extract, or should I say extricate, from the data. We strive for perfection, but

if we could reach it, we wouldn’t need measurements like recall, precision, accuracy,

F-score, z-score, t-score, and the like. With that humbling fact in mind, let’s continue

to explore tools to move us closer to perfection.
10.1.1 System considerations—Revisiting the system gains
In Chapter 3, we described how ensemble methods, such as those described in Ref.

[Sims13], tend to move the correct answer higher in the overall ranked list (rank) more

so than simply moving the correct result to the top of the list (accuracy). In terms of

system design theory, the co-occurrence and similarity-based ensemble approaches of

previous chapters are designated as rank-biased systems, not accuracy-biased systems.
This is a well-known benefit ofmeta-algorithmic approaches, and it has a huge positive

impact on overall system cost models, since the highest costs are often associated with

recovering from errors. Rank-biased systems make less errors over time, even if they

make (slightly) more primary errors (have slightly lower rank¼1 accuracy). This is

because intelligently designed ensemble systems generally have higher percentages

of rank¼2 and rank¼3 results than individual algorithms.

System gain is a ratio of a measured output variable of interest to the system

users, divided by a measured input variable also of interest to the system users.

Because module-to-module interfaces should be fully specified as part of the system

design, the two parameters used in the gain formula should be explicitly listed and

explained in the system specifications. This is especially important where there are

multiple relevant gains for a single module and its input and output interfaces. For

example, an instrumentational amplifier, which is often used for medical applica-

tions because of its very high input impedance, excellent common-mode rejection

ratio (CMRR), and stable voltage gain, has multiple gains that are of interest to

the electronic system designer, including voltage, current, and power gain. These

ratios are based on two inputs and two outputs (input and output current and voltage),

and CMRR is effectively the same except that the input voltage is that across the

positive and negative terminals of the operational amplifier. From these same input

and output values, impedance, admittance, resistance, and conductance gain can also

be computed. As mentioned in Chapter 4, if there are N inputs and P outputs spec-

ified, there are 2NP simple gains for the module. More can be defined if more com-

posite inputs and outputs can be used; for example, power gain is really the product of

two other gains: voltage and current gain.

The gains mentioned above are based on the direct measurements at the inter-

faces. In the field of analytics, the input and output are data and/or information,

and so, the system gains can be defined based on the data (content gains) or based

on attributes of the data (context gains). Information gain was earlier defined as an

attribute/context gain, as it was associated with an increase in some measurable sys-

tem entropy (information being extracted increases entropy). If the system informa-

tion is written to a histogram, with each element, i, in the histogram having
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probability p(i), then its information gain is determined from the change in the

entropy (Eq. 3.19, rephrased in Eq. 10.1) from input to output, a familiar motif

now for anyone who has read these chapters consecutively:

Information gain¼
X
output

pi ln pið Þ�
X
input

pi ln pið Þ (10.1)

Eq. (10.1) provides a relationship between input and output and if negative indicates

the loss of information (meaning we overreached on our modeling, modularization,

etc.). This equation is a gain, but is obviously no longer a ratio.

Extending the concept of a gain to that of differences in information allows us to

create a category designated earlier as functional gains. Functional gains represented

an upgrade in the value of data in some problem space and so embody a functional

relationship between measurable content produced by the analytic system (output)

and the content as entered into the system (input). In Chapter 3, two functional gains

discussed are knowledge gain and efficiency gain. We revisit these in context of all

that we have explored in the intervening five chapters.

Knowledge gain is a direct measurement of the product of an analytic system or

else a measurement comparing it with alternative products. In text analytics, the

knowledge gained can be assessed, among other ways, by comparing the entropy

and coverage the analytics have to a specific, salient text reference such as a dictio-

nary, taxonomy, or ontology. Similar knowledge gains can be defined in terms of

metadata entries, tags, meaningful coverage of a set of search queries, inclusion

of foreign words and phrases, etc. Knowledge gain can also be qualitative—

increased use of a system, increased downloading from a mirror site, etc. may indi-

cate that its knowledge base has improved in value.

A second functional gain of interest is efficiency gain, which is indicative of

improved ability of an information system to achieve its processing goals, normal-

ized by the resources required for this achievement. This is not the same as the per-

formance, or throughput, of a system, although it certainly relates to it. Efficiency in

most cases more closely correlates with the rank efficiency of a system, that is, its

ability to yield the correct answer more quickly. Efficiency can come from simple

improvement in indexing or in adding contextual information (user and her historical

behavior, GPS location, time of day, etc.). Efficiency from the perspective of apply-

ing meta-analytic approaches may be viewed as parsimony of algorithm—the most

efficient meta-analytic is the one with the most streamlined design or the design that

can be conveyed with the shortest amount of description. This could also be effi-

ciency in terms of the number and complexity of modules that are required to design

the analytic, the minimum set of coefficients and other wildcard expressions within

the modules, the simplest meta-analytic pattern (e.g., weighted voting is a simpler

approach than reinforcement-void), etc. Discussed in Chapter 4, we can now look

at these gains in light of the design choice we made for the system.

A third functional gain of interest, not previously introduced, is robustness gain.
We are ready to explore this gain based on what we learned from the synonym-

antonym and reinforcement-void patterns explored in Chapter 8 and the analytics

around analytics in Chapter 9. A gain in robustness is an improvement in a system
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architecture that allows the system to respond better to changing input, including

changes in the nature (depth and breadth) of the input, the scale of the input, and

the context of the input. In previous chapters, we have discussed several ways in which

to improve robustness. The simplest conceptually is to employ hybrid analytics by

design, benefitting from the factor that ensemble analytics, meta-analytics, and other

combinatorial approaches tend to cover the input spaces more completely, and with

entropy and variance measurements to support this, more evenly. Straightforward

ways of representing system robustness include data indicating theworst-case through-

put, the worst-case accuracy, the worst-case costs, etc. The most robust systems are

generally the most reliable, and thus, the variability in response to input is lowest.
10.1.2 System gains—Revisiting and expanding the system biases
The reason tomeasure gain in the first place is to quantify the return on investment that

we get from a system. As system designers, we are generally motivated to put a certain

priority—or more usually set of priorities—on a system. In the product design and

deliver world, the priorities are features, time, and resources, which means teams nat-

urally measure product testing, schedule, and staffing quite closely. In the world of

analytics, the measured factors are tied to the information that the analytic system pur-

ports to deliver. As such, wewill typically see an analytic system bias to one ormore of

the following key measurables: (1) rank, (2) accuracy, (3) performance, (4) cost,

(5) robustness, (6) modularity, and (7) scalability. If we emphasize one of these factors

more than another, we need to show the end users or at least the boss whose approval is

needed to continue the exciting analytic work that this factor indeed shows “gain” after

implementation of our analytic design. The “gain” of an analytic system priority is of

course broadly defined to allow comparison of a particular incarnation of a system

design compared with the system it is intended to replace going forward. Not a prob-

lem, so long as the gain we show is (a) quantitative, (b) repeatable, (c) meaningful, and

(d) significant enough to meet the requirement(s). We reconsider the gain of these

seven types of system “priorities” or “biases” in this section.

In the case of rank-biased systems, the relative improvement in the calculated

mean value of the rank of the actual correct answer provides the gain. Suppose that

we are using a classifier for text data, and the previous classifier provided 78% accu-

racy, but the mean rank of the correct classification was 2.19. That is, the previous

analytic system provided the correct answer, on the mean, in 2.19 attempts, and the

new system provides the correct answer, on the mean, in 1.65 attempts, albeit with a

lower accuracy of the primary classification of 76%. Since we are concerned with the

“rank-biased gain” of this system, we note that it is
1
�
1:65

1
�
2:19

, or 1.327, as we know that

the reciprocal of the rank is a measure of system performance. This implies a 32.7%

improvement in finding the correct answer for this particular system upgrade. Inter-

esting, the reduction in accuracy is 2.6%. So, unless the cost of a primary classifi-

cation mistake is more than 12.5 times the cost of never getting the right

classification, this system is justifiable rank-biased rather than accuracy-biased.
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This leads right in to accuracy-biased systems. Here, we can also compute a gain

in a rather straightforward fashion. Earlier, we defined the gain as the accuracy of the

new system divided by the accuracy of the old system, which is very much in line

with traditional gains like voltage, current, or power gain. This is a broad brush,

though, and the accuracy gain will usually be calculated on partitions of the input

(leading to an array of gains), which is very much in line with the training phase

of a predictive selection approach. The gains are often transformed; for example,

the gain can be defined as the percentage of possible improvement achieved, which

is another way of saying howmuch the error percentage has been reduced. I generally

prefer error percentage over accuracy myself, because it is what I am trying to

change. Improving a system from 78% to 87% accuracy, as example, has a gain

of 1.409 (40.9% of the way to perfection) when we consider what we’re trying to

change with our algorithm. Simply presenting the gain as 1.115 (the ratio of 0.87

to 0.78) does not really capture a “feel” for what we have accomplished.

For performance-biased systems, the simplest gain—that of throughput—is again

the ratio of the reciprocals, in this case the reciprocal of the time for processing. Per-

formance gains are an exception to rule of applying k-fold training and generally ben-
efit from an averaging. The k-fold also ensures that any real “back breakers” for

performance are counted k times in the performance data. So, performance is the sys-

tem concern that most benefits from k-fold evaluation, and not accuracy. Computing

the performance gain is undemanding: if, for example, a previous system could pro-

cess the benchmark set in a k-fold mean time of 56.3h and then new system can pro-

cess the benchmark in 47.4h, then the gain is
1
�
47:4

1
�
56:3

, or 1.188.

For cost-based systems, the gain is also the ratio of reciprocal of the cost of the

new system divided by the reciprocal of the cost of the old system. Nothing partic-

ularly exciting about this, but the real value of a cost model is when it is tied to risk.

If, for example, we look at the cost gain as throughput of the new system per N num-

ber of dollars, divided by the throughput of the former system per N number of dol-

lars, then the cost gain is really a function of the variability in the throughput. For

example, we reconsider the voice recognition system in which for a 10% perfor-

mance cost (tied to preanalysis of the voice and the decision on whether to use free-

ware or for-pay software), we are able to assign a voice transaction to freeware

software 50% of the time, and must use the full cost voice system the other 50%

of the time. This means that we only have to pay 50% as much overall for the

high-robustness, for-pay software. The performance is thus 0.10 of normal 50%

of the time and 1.10 of normal 50% of the time or a mean of 0.60 of normal overall.

The improved throughput is 1.67 times the old throughput when using the means.

However, suppose that a penalty is paid whenever we have to use the for-pay system

more than estimated and the payment is three times the normal pay. What is the new

risk to the system? Let us check the algebra:

(a) P¼percentage of the time above 50% we have to use the for-pay software.

(b) Throughput/1.10¼ throughput with the up-front predictor to use freeware or

for-pay software.
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(c) (0.50+3P)¼payment for the for-pay software.

(d) (0.50+3P)¼1.0/1.10 at breakeven.

(e) P¼0.136 at breakeven.

This could be a little concerning. If we ever use the for-pay service 13.6% of the time

more than expected, we will not make money. As such, our validation testing for the

system should simulate multiple pay periods and find out how much “3X” costs will
be involved, as this will surely reduce our cost gain, since we get no rebate when we

use the for-pay software less than 50% of the time.

Our next gain is robustness gain. Robustness-biased systems are systems for

which we are encouraged to split our training and validation sets up into multiple

units and vary the training and validation percentages. One means of performing this

is to provide a 2-to-k enumerated training plus validation design, as shown in

Table 10.1. This means we allow the k in the k-fold training+validation design to

vary from 2 to k (in the case of Table 10.1, the maximum kmax¼10) and use valida-

tion data with a percentage from 1/kmax to 0.5. The variability in the results for the 2-
to-k-fold training gives a good idea of the robustness of the system. Ideally, the

results are uniform across the range of k.
Note that we did not specify on what robustness was measured. It could be per-

formance, accuracy, rank, scalability (e.g., where we apply Table 10.1 to different

sized data sets), or some linear combination thereof in a cost model or other derived

objective function. Robustness-biased systems are measured using one or more of the

other biases to measure the effectiveness of the system to “unsupervised” new data.

Suppose for example we have two systems, A and B, which have associated costs of

$14.5M and $17.8M, respectively, on an existing set of training data. Based on a

2-to-10 enumeration, we see that system A is overtrained compared with B (has

higher variance in the validation) and performs much better on downstream data
Table 10.1 k-fold-based training and validation for a robustness-biased system
(2-to-k enumeration), with kmax¼10

k Number of training sets Percentage of validation sets

10 10 0.100

9 9 0.111

8 8 0.125

7 7 0.143

6 6 0.167

5 5 0.200

4 4 0.250

3 3 0.333

2 2 0.500

1 N/A N/A

Total 54 0.167

The mean percent validation is 0.167, although the percent validation is across the range [0.10, 0.50].
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for the next 6 months ($14.5M compared with $17.8M). However, when a change in

the environment leads to a change in the nature of the data, system A has a new cost

of $19.6M, while system B has a new cost of only $18.3M. The robustness “gain” of

system B over systemA is based on the ratio of the reciprocals of changes in cost of B

over A, that is, 1/j$18.3M�$17.8M j divided by 1/j$19.6M�$14.5M j. The robust-
ness gain here is a compelling 10.2, meaning system B is more than 10 times as

robust in its system cost to new data when compared with system A.

For modularity-biased systems, we have some options in our definition of gain,

and some understanding of how you are writing, testing, and approving new func-

tionality is necessary to test and make the final decision on the reporting of gain.

Certainly, the simplest and most obvious gain is the ratio of the modules before

and after a system redesign. This can be viewed as “module gain” since it reflects

only the number of modules. This is a problematic ratio, however, since the ratio will

be strikingly different for the same degree of product maturity in comparing, among

others, a waterfall and agile/scrum approach software development. Another reason-

able—and in this case more quantitative—modularity gain assesses the interchange-

ability of different modules. The mean number of modules to perform a particular

process or action after dividing by the mean number before a system redesign is

the modularity gain for a system of analytics, algorithmics, and intelligent processes.

This gain can be qualified by the aggregate number of processes accumulated in each

module, to ensure that the change from one iteration to the next of the architecture is

not simply due to module splitting or merging. A third type of modularity gain is

based on the functionality of the modules and is therefore more “tightly coupled”

to the actual implementation details of the modules than the other two modularity

gains. Within a larger ecosystem (e.g., a software repository with multiuser

check-in/checkout), the mean implementation rate for specific modules before

and after a system redesign can be calculated. This “functional modularity gain”

is the ratio of the use of the modules after/before the redesign, again qualified where

necessary to account for module splitting or merging. A well-designed system will

presumably end up with a single (though perhaps overloaded) method for each indi-

vidual task, and so, reuse rates of good modules will climb. This modularity gain

might be used to identify the modules most crucial for early functionality testing,

based on their relative popularity of adoption.

The last gain we reconsider here is scalability gain. This type of gain may be con-

fused with robustness because, of course, as more data are flooded into the system,

the potential for input previously unencountered increases. Here, however, we are

more concerned with how the number of categories, clusters, and/or classes grows

irrespective of the domain of the input (e.g., what had previously thought to be clas-

ses are shown to be multiple classes after the number of samples grows, etc.). As

such, we may see the need to switch algorithms or even the architecture around

the algorithms from using an individual algorithm (Bayesian, ANN, etc.) to using

a hybrid or combinatorial approach. The scalability gain, then, is not about the sys-

tem attributes but instead has an algorithm’s eye view of the data. The scalability

gain is the relative use (adoption rate, number of uses rate, etc.) of a particular ana-

lytic approach after system scale increases.
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10.1.3 Nothing ventured, nothing gained
Without measurement, there are no analytics. Without analytics, there are no system

gains. Without system gains, it is potentially difficult to convince your customers,

your manager, and/or your government to continue investing in a system that already

“works well enough.” Improving the quality of a system is the goal of every engineer;

improving the return on investment is the goal of every savvy businessperson. There-

fore, it should be the goal of every analytic designer to support both parties in their

pathways to success. If you want to be an analytics systems engineer, you must

design system processes to be measurable throughout their lifecycle.

The final system gain we should certainly consider here is the gain based on the

ratio of “increased system value” to “cost of investment in analytics.” This is not a

trivial calculation. Investing in the front end for analytics may mean purchasing,

placing, calibrating, wireless connecting, and maintaining a previously unbudgeted

array of sensors. It may mean having to change the database size, distribution, and

costs, not to mention the plan for data archiving and deprecation. Additional soft-

ware, recycling/disposal, auditing, safety, privacy, and security concerns will need

to be addressed. Offsetting these costs must be a positive return on investment. This

is where data analytics can be tied to marketing, among other concerns. If, for exam-

ple, the additional sensors provide better product safety, this is something that can be

used to differentiate a product. The data themselves may have value; for example, a

reliable and distributed set of image sensors may be useful for surveillance, traffic

monitoring, and other imaging applications. Repurposing (selling) of the data may be

a positive entry in this particular gain equation.
10.2 Module optimization
As systems become more complex, it becomes more pass�e—or at least less neces-

sary—to talk about the need to modularize the design. An important part of system

design optimization is to determine whether the modular implementation is efficient.

Among the often huge set of design choices, how is a particular design selected? The

raw analytics for design optimization will come as no surprise: measures of relative

values of entropy, error variance, and sensitivity. These data need to be actively ana-

lyzed and used to trade off what are hopefully a diminishing set of design options as

more of the system is rolled through testing, measurement, validation, quality assur-

ance, and other best manufacturing practices during development. Choices to make

include whether to split a subsystem or module into two or more parts, whether to

join two or more modules, or whether to extricate commonalities in two or more

modules and pull them into a separate subsystem or modules, changing the familial

(parent-child) relationships between these functionalities. The reduction of tight cou-

pling should be reflected in the amount of communication between modules,

discussed next.
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An important criterion in the decision process, aside from the error measurement

and evaluation, is the communication/messaging between subcomponents. It is not

necessarily the total amount of messaging that we may wish to minimize; instead, we

may wish to minimize the amount of messaging that must be channeled through one

module unused (pass-through messaging) or the amount of message processing as a

percentage of the overall processing time. In the pass-through case, we may consider

any messaging that passes through a module without being used by the module as too

tightly coupled; here, we would likely employ a software design pattern such as a

message factory.

Another approach to optimizing the messaging is to optimize the ratio of within-

module messaging to between-module messaging. The optimal design is accom-

plished when this ratio of traffic(within modules)/traffic(between modules) is a max-

imum. Designing the system from the perspective of messaging is an interesting

“hybrid” approach to some of the other ones adventured previously (cost, accuracy,

robustness, rank, etc.) and affords a relatively independent means of “shuffling and

reorganizing” the elements. Speaking of shuffling and reorganizing, we next return

to clustering but dive much deeper than in Chapter 1.
10.3 Clustering and regularization
Clustering using k-means and k-nearest neighbor approaches was introduced in

Section 1.6.1. Regularization of regression and estimation approaches was over-

viewed in Section 1.5.3. In this section, we bring these two great approaches

together, not unlike the peanut butter and chocolate aficionados in the vintage

Reese’s advertisements of the 1980s. While the approaches in this section are

straightforward to compute and effective, it should be noted that there is existing lit-

erature in this area that also applies local and global regularization [Wang09], albeit

through different methods. The goal in this section is not to be exhaustive, but instead

to show how relatively easy it is to check a fitness value with a reasonable regular-

ization penalty.

For regularization of regression, there are generally two competing forces at

work. In the first place, we are trying to minimize the squared error distance between

the regression curve and the empirical data. This is called the least squared error

(LSE) and is defined from LSE¼ min
Pnsamples

i¼1 yi� ŷið Þ2 where ŷ is the regression

value and y is the empirical value. If we fit a curve of order N�1 to N samples, how-

ever, we can guarantee no error, but the curve fitting the points will almost certainly

be far more complex than necessary (and will not represent a real relationship

between independent and dependent variables). To prevent this overfitting, we

add a penalty to the error function, usually in the form of λ
2
wk k, where kwk is the

norm of the weights (coefficients) of the regression equation where ŷ¼PJ
j¼0wjx

j.

Because the weights of the coefficients are penalized during optimization, they

are prevented from growing to fill in all the degrees of freedom.
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More generally, regularization penalizes behavior that leads to optimization with

overfitting. For example, we can fit 10 points exactly with a ninth-order regression,

but the coefficients of the linear regression are likely to expand very significantly.

Thus, we optimize a positive term, the fitness of the model to the data, from which

another positive term, the “penalty” or regularization term, is subtracted. For a

regression curve, the form may be given by Eq. (10.2), equivalently Eq. (10.3):

J¼Fitness�Penalty (10.2)

J¼ 1X
predictedpoint�actualpointð Þ2

� ��λ
X

coefficientk k (10.3)

where jjcoefficient jj is its L2-norm (square of the coefficient weight). The penalty

term should be geared to keeping the approach reasonable: (1) too low of a value for

λ, and the data are highly overfit; and (2) too high of a value for λ, and the subtleties of
the fit are lost (e.g., a curve is fit by a line).

Obviously, this process can be extended to other areas of machine learning. We

have previously covered k-means and related clustering approaches, which use an

iterative method of assigning samples to clusters: (1) assign all samples to the nearest

representative sample (initially k random points and after the first iteration of the k
representative points of the clusters) and (2) redefine the representative sample of the

cluster (usually as the centroid of all the points now belonging). This is a tidy opti-

mization process, often referred to as expectation-maximization (I prefer

expectation-optimization), but it does not provide us with the optimum value for k.
Thus, we need to determine k through an optimization process of its own. Recal-

ling that our objective function, J, is the fitness-penalty, we are already familiar with

the definition of fitness as an F-score (Eq. 10.4):

Fitness¼F� score¼ mean squared error between clustersð Þ
mean squared error within clustersð Þ (10.4)

To complete the definition of J, we need a penalty term such that k doesn’t just auto-
matically become equal to the number of samples when fitness starts out greater than

1.0 and so that k¼1 doesn’t happen when fitness starts out less than 1.0. The means

to prevent these extremes (unless they really are the rare case when they’re optimal)

is regularization, and this will be shown through example.

In Fig. 10.1, the simple set of 12 points in (x,y) that we will use for clustering and
for illustrating the regularization processes is given. When I eyeball it, there seem to

be three clusters:

1. Points (1,6), (1,7), (2.5, 7), (3,8), and (4,7)

2. Points (1,3), (1,4), (2,2), and (3,1)

3. Points (4,4), (5,3), and (5,5)

Other folks looking at it break up the first cluster into points {(1,6), (1,7)} and

{(2.5, 7), (3,8), (4,7)}. And running expectation-maximization algorithms, still other



FIG. 10.1

Simple set of points for clustering and for illustrating the regularization processes.

FIG. 10.2

Example k¼3 clustering.
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clusters emerge, but for illustration, I will just compare the two clustering results

shown in Figs. 10.2 and 10.3.

For the k-means clustering example where k¼3 (Fig. 10.2), the arrows indicate

the direction the representative value (initial point and thereafter centroid) of the

three clusters that might have moved overall during the iterations. Once those three

clusters have been defined (as shown by the ovals in Fig. 10.2), we calculate the sum

squared error of differences (just the sum of L2 distances here) around the centroids

of the clusters (rows 2, 3, and 4 of Table 10.2, SSE column). The SSE of the clusters

themselves is compared with the centroid of the clusters and is given in Table 10.2,



FIG. 10.3

Example k¼4 clustering.

Table 10.2 k-means clustering results for k¼3,
with clusters A, B, and C as shown in Fig. 10.2

Cluster Centroid SSE df

A (2.3, 7.0) 8.80 4

B (4.67, 4.0) 2.67 2

C (1.75, 2.5) 7.75 3

All three (2.91, 4.5) 15.32 2

SSE¼sum squared error of all points from the centroid of either
the cluster A, B, or C or the centroid of the three clusters for “all
three.” The degrees of freedom for each SSE is given by df, which
is one less than the number of samples in each SSE calculation.
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column 3, row 5. From Table 10.2, we use SSE/df to get mean-squared error (MSE)

and use the formula F-Score¼ (SSEbetween/dfbetween)/(SSEwithin/dfwithin). For

Table 10.2, this value is (15.32/2)/(19.22/9)¼3.59.

Next, we repeat this procedure for the situation where k¼4, as shown in Fig. 10.3.

Here, the arrows and ovals have the same meaning exactly as for Fig. 10.2, except

that here, there are four arrows and four cluster ovals. The centroid, SSE, and df
values for Fig. 10.3 are captured in Table 10.3. For these data, the F-Score¼
(SSEbetween/dfbetween)/(SSEwithin/dfwithin)¼ (22.78/3)/(12.75/8)¼4.76. Comparing

this value (4.76) to the value for k¼3 (which was 3.59), we would recommend

k¼4 over k¼3 without regularization. This illustrates the rise in fitness as more

and more small clusters are “peeled” from the sample set and emphasizes the need

for regularization.



Table 10.3 k-means clustering results for k¼4, with clusters A, B, C,
and D as shown in Fig. 10.3

Cluster Centroid SSE df

A (1.0, 6.5) 0.50 1

B (3.17, 7.33) 1.83 2

C (4.67, 4.0) 2.67 2

D (1.75, 2.5) 7.75 3

All four (2.65, 5.08) 22.78 3

SSE¼sum squared error of all points from the centroid of either the cluster A, B, C, or D or
the centroid of the four clusters for “all four.” The degrees of freedom for each SSE is given
by df, which is one less than the number of samples in each SSE calculation.
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In this section, we propose five different types of regularization (penalties). These

are representative, and not comprehensive. The goal is to provide five types of reg-

ularization penalties that cover a different interpretation of what it means to be (and

not be) a cluster. Obviously, any unique weighted average of these five types also

represents a different regularization penalty, but we’ll address that later. For now,

they will be simply introduced and their main feature(s) highlighted:

1. A coefficient, lambda (λ), times the norm (sum of squares) of the clusters—this

can very simply just be the number of clusters, so that λ(nclusters)
2 is subtracted

from the F-score: F-score�λ1*(nclusters)
2.

2. Add a regularization term, lambda (λ), times the norm of the spread in the

clusters. Suppose the spread is the variance (σ2) around the centroids. Since

ever-smaller clusters tend to have lower variance, we add this to penalize the

smaller clusters: F-score+λ2*Σ(σcluster)2.
3. Subtract a regularization based on the cluster size. The coefficient, lambda (λ), is

directly proportional to the number of clusters and is multiplied by the inverse of

the size of the clusters: F-score�λ3*(nclusters)*Σ(1/sizecluster).
4. Subtract a separate penalty for any noncluster clusters (cluster size¼1 or cluster

size<10% or 20% the mean size of the other clusters): F-score�λ4*(nclusters_of_1)
5. Divide theF-score directly by the number of clusters:F-score+λ5*F-score/nclusters.

Combining these five into a single penalty equation, we arrive at Eq. (10.5):

F� score�λ1∗ nclustersð Þ2 + λ2∗Σ σclusterð Þ2�λ3∗ nclustersð Þ∗Σ 1=sizeclusterð Þ
�λ4∗ nclusters of 1

� �
+ λ5∗F� score=nclusters (10.5)

We next consider each of these regularization penalties in order.
10.3.1 Sum of squares regularization
The first one is straightforward. If the number of clusters is 3, we subtract 9λ1 from
the F-score. If the number of clusters is 4, we subtract 16λ1 from the F-score. Typical
values from my experience with medium to large size data sets are for λ1 to be
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relatively small. Values for λ1 are generally dependent on the size of the data sets.

Since this is a (purposely very) small data set, we’ll choose λ1¼0.05.

a. F-score�λ1*(nclusters)
2 ¼3.59�0.05(3)2 ¼3.14

b. F-score�λ1*(nclusters)
2 ¼4.76�0.05(4)2 ¼3.96

When does the regularized F-score of the two approaches become equal? This is an

important value, which we will compute for every regularization approach. It is

called the equivalence point. The equivalence point is by nature an isolated measure-

ment, since if combined with other regularization techniques will not be able to drive

which of the compared values for k has the highest value for fitness-penalty, or J.
Nevertheless, it is important for us to get an understanding of a reasonable value

for the lambda coefficient when two (or more) options for k seem reasonable. For

the example at hand, the J score¼ fitness-penalty for k¼3 and k¼4 becomes equal

when 4.76�16λ1¼3.59�9λ1 or 1.17¼7λ1. Thus, the equivalence point is when

λ1¼0.17. Our value of λ1¼0.05 seems reasonable, then. In general, we suggest

the following guideline for selecting a good value for λ1 where

J¼F-score�λ1*(nclusters)
2:

1. Determine how many regularization coefficients you’re going to use¼nRC.
2. Determine the best two (or two of the best) clustering options—this can be done

manually by looking for an F-score optimum region or “sweet spot” as k is varied
from 2 to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nsamples

p
.

3. Find the equivalence point and the corresponding value for λ1 that we call

λ1(equiv).
4. Select λ1(equiv)/nRC<λ1<λ1(equiv).
5. In our example 0.17/5<λ1<0.17, or 0.034<λ1< 0.17.

6. Our value of 0.05 is conservative, that is, toward the lower end. Some will chooseffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1 equivð Þ=nRCð Þ λ1 equivð Þð Þp ¼λ1 equivð Þ/ ffiffiffiffiffiffiffi

nRC
p ¼0.076, the geometric mean

of the range extremes: I like to err a little on the side of caution with regard to the

regularization value, since I “trust” the F-scores in general and do not want the

regularization to overly determine the final value of J.
7. The value of λ1 can also be set automatically based on expert input, previous

results, or training/validation.
10.3.2 Variance regularization
The second type of regularization is governed by J¼F-score+λ2*Σ(σcluster)2, where
we note that the variance (σ2)¼ SSE/df. For our example data set, for the three clus-

ters, we add (6.12)λ2 to the F-score. For the four clusters, we add (5.33)λ2 to the F-
score. Typically, λ2 is relatively small and unsurprisingly is dependent on the size of

the data sets. Since this is a (again, purposely, very) small data set, we’ll

choose λ2¼0.10. This is larger than λ1 since variance does not grow as the number of

clusters increases, and so, the penalty will not grow with the scale of the sample set.
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For k¼3, J¼F-score+λ2*Σ(σcluster)2¼3.59+λ2*(8.80/4+2.67/2+7.75/3)¼3.59+λ2*
(6.12)¼3.59+0.10*(6.12)¼ 4.20. For k¼4, J¼F-score+λ2*Σ(σcluster)2¼4.76+λ2*
(0.50/1+1.83/2+2.67/2+7.75/3)¼4.76+λ2*(5.33)¼4.76+0.10*(5.33)¼ 5.29. We

are interested again in calculating the equivalence point, which is when 4.76

+5.33λ2¼3.59+6.12λ2 or 1.17¼0.79λ2. Therefore, the equivalence point for

λ2¼1.48. Proceeding as above, our guideline for selecting λ2 is as follows:

1. Determine how many regularization coefficients you’re going to use¼nRC.
2. Determine the F-score sweet spot as k is varied from 2 to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nsamples

p
.

3. Find the equivalence point and the corresponding value for λ2 that we call

λ2(equiv).
4. Select λ2(equiv)/nRC<λ2<λ2(equiv).
5. In our example, 1.48/5<λ2<1.48 or 0.296<λ2< 1.48.

6. Our value of 0.10 is conservative here and completely off the lower end. Some

will choose
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 equivð Þ=nRCð Þ λ2 equivð Þð Þp ¼λ2 equivð Þ/ ffiffiffiffiffiffiffi

nRC
p ¼0.66, the

geometric mean of the range extremes. I like to err for this type of regularization

quite a bit on the side of caution, since it is a regularization term, we add instead

of subtracting, and we’re really just trying to penalize very poorly clustered

clusters.

7. The value of λ2 can also be set automatically based on expert input, previous

results, or training/validation.
10.3.3 Cluster size regularization
For this approach, J¼F-score�λ3*(nclusters)*Σ(1/sizecluster). Here, for the three clus-
ters, we subtract (2.35)λ3 from the F-score. For the four clusters, we subtract (5.67)λ3
from the F-score. Typically, λ3 is relatively small and of course is dependent on the

size of the data sets. Since this is a very small data set, we’ll choose λ3¼0.20. This

is larger than λ2 since the variances are larger than the inverse of cluster sizes.

For k¼3, J¼F-score�λ3*(nclusters)*Σ(1/sizecluster)¼3.59�λ3*(3)*(1/5+1/3+
1/4)¼3.59�2.35λ2¼3.59�2.35*(0.20)¼ 3.12. For k¼4, F-score�λ3*(nclusters)
*Σ(1/sizecluster)¼4.76�λ3*(4)*(1/2+1/3+1/3+1/4)¼4.76�5.67λ3¼4.76�5.67*
(0.20)¼ 3.63. The equivalence point is determined from when 4.76�
5.67λ3¼3.59�2.35λ3 or 1.17¼3.32λ3. Thus, at the equivalence point, λ3¼0.35.

This is a relatively small value, and our choice of lambda gets us over halfway to

the equivalence point. Our now-familiar guidelines for selecting the lambda value

follow:

1. Determine how many regularization coefficients you’re going to use¼nRC.
2. Determine the best F-score sweet spot as k is varied from 2 to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nsamples

p
.

3. Find the equivalence point and the corresponding value for λ3 that we call

λ3(equiv).
4. Select λ3(equiv)/nRC<λ3<λ3(equiv).
5. In our example 0.35/5<λ3<0.35, or 0.07<λ3<0.35.
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6. Ourvalue of0.20 is aggressive and toward theupper endof the recommended range.

Some will choose
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ3 equivð Þ=nRCð Þ λ3 equivð Þð Þp ¼λ3 equivð Þ/ ffiffiffiffiffiffiffi

nRC
p ¼0.16, the

geometricmeanof the rangeextremes. I like toerr a littleon thesideofweighting this

regularization factor higher, particularly when it is used as the only regularization

factor, since greatly imbalanced cluster sizes are generally a worry for analytics (it

may be the experimental design that is a problem, of course).

7. The value of λ3 can also be set automatically based on expert input, previous

results, or training/validation.
10.3.4 Small cluster regularization
Next, we consider the problem of small clusters or even unclustered samples. In our

simple example, we have no clusters of one since there are no outliers—wewould not

have had any clusters less than 10% or 20% of the size of any of the other clusters,

anyway, since the largest has just five samples. However, had we, we would have

used λ4¼0.15. This is smaller than λ3 because any cluster the size of 1 would have

also had a substantial penalty in the λ3 regularization. Needless to compute, for k¼3,

J¼F-score�λ4*(nclusters_of_1)¼3.59�λ4*(0)¼3.59�0.15*(0)¼ 3.59
(unchanged). For k¼4, J¼F-score�λ4*(nclusters_of_1)¼4.76�λ4*(0)¼
4.76�0.15*(0)¼ 4.76 (also unchanged). There is no equivalence point here since

the penalty¼0. Our guideline for selecting this value of lambda is included here

for completeness:

1. Determine how many regularization coefficients you’re going to use¼nRC.
2. Determine the best F-score sweet spot as k is varied from 2 to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nsamples

p
.

3. Find the equivalence point and the corresponding value for λ4 that we call

λ4(equiv).
4. Select λ4(equiv)/nRC<λ4<λ4(equiv).
5. In our example, (3) and (4) don’t work, since there are no clusters of size 1. So,

instead, we noted that we would already penalize clusters of size 1 in the previous

(λ3) regularization, so that picking a value less than that value (75% asmuch here)

is reasonable.

6. The value of λ4, of course, can also be set automatically based on expert input,

previous results, or training/validation.
10.3.5 Number of clusters regularization
Our last regularization example here is one that penalizes the number of clusters

(assuming less is best, along the lines of Occam’s razor, or at least his electric

shaver). Here, we provide a penalty for having more clusters by adding less to the

overall J score (our penalty is additive). For three clusters, we add (λ5/3) times

the F-score, meaning we scale by 1+(λ5/3). For four clusters, we add (λ5/4) times

the F-score, meaning we scale by 1+(λ5/4). For small numbers of clusters, the value

for λ5 can therefore be relatively large. We will use 0.25 here. For k¼3, J¼F-score+
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λ5*F-score/nclusters¼3.59+λ5*(3.59/3)¼3.59+0.25*(3.59/3)¼3.59+0.30¼3.89.
For k¼4, J¼F-score+λ5*F-score/nclusters¼4.76+λ5*(4.76/4)¼4.76+0.25*(4.76/
4)¼4.76+0.30¼5.06. These aren’t moving much closer together, and indeed, the

equivalence point, determined when 4.76+1.22λ5¼3.59+1.29λ5 or 1.17¼0.07λ5,
is given by λ5¼16.71. Clearly, this regularization approach isn’t going to change

much in this particular example. We nevertheless conclude with the recommended

protocol to determine this lambda value:

1. Determine how many regularization coefficients you’re going to use¼nRC.
2. Determine the F-score sweet spot as k is varied from 2 to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nsamples

p
.

3. Find the equivalence point and the corresponding value for λ5 that we call

λ5(equiv).
4. Select λ5(equiv)/nRC<λ5<λ5(equiv).
5. In our example 16.71/5<λ5<16.71 or 3.34<λ5<16.71.

6. Our value of 0.25 seems conservative, but this is an accident of how closely

matched the two clustering partitions are for this measure, and it is the largest

coefficient we use in any of the five regularizations here—the hint is that the

number of clusters regularization might not mean much for consecutive

values of k.
7. The value of λ5 can, of course, also be set automatically based on expert input,

previous results, or training/validation.
10.3.6 Discussion of regularization methods
Between the five regularization approaches present, we account for the variability

within the clusters (sum of squares and variance), the cluster size, the presence of

small clusters or unclustered samples, and the overall number of clusters. These

methods, combined, provide a robust set of checks and balances for ectopic optimi-

zation, accounting for within and between cluster variability, scale of the problem

space, and unassigned samples.

Out of interest, what happens in this example if we apply all five regularizations

simultaneously? The overall equation is given by Eq. (10.6):

J¼F� score�λ1∗ nclustersð Þ2 + λ2∗Σ σclusterð Þ2�λ3∗ nclustersð Þ∗Σ 1=sizeclusterð Þ
�λ4∗ nclusters of 1

� �
+ λ5∗F� score=nclusters (10.6)

For k¼3 clusters, J¼3.59�0.05(9)+0.10(6.12)�0.20(2.35)�0.15(0)+0.25*
(1.20). Thus, J¼3.59�0.45+0.61�0.47�0.00+0.30¼3.58. This really

hasn’t changed from its initial value of 3.59, but what of k¼4 clusters?

There, J¼4.76�0.05(16)+0.10(5.33)�0.20(5.67)�0.15(0)+0.25*(1.19). Thus,

J¼4.76�0.80+0.53�1.13�0.00+0.30¼3.66. All five regularizations combined

have nearly moved the k¼4 case to equality with the k¼3 case, but not quite. In com-

paring, we see that the individual regularization terms nevermake up the difference of

1.17 between the two F-scores. But combined, they nearly do. We conclude that four

clusters are only slightly better than three clusters in this problem, but would not be
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surprised if later datamerged the upper clusters (A andB) in the four-cluster partition-

ing, resulting in the three-cluster partitioning. Regularizationmakes the confidence in

k¼4 a little less in comparison with k¼3.
10.4 Analytic system optimization
We complete our consideration of system design optimization with a brief reconsid-

eration of the variance and entropy measurements upon which so many of our ana-

lytics—and actions after performing the analytics—are based. In Table 10.4, two

input spaces are compared for their suitability to being modeled by a first-,

second-, and third-order regression equation. Firstly, the residual variance of the

error drops significantly for both input spaces in going from first-, to second-, to

third-order regression models. Even if we applied regularization, clearly the order

three models are best. This is substantiated by the considerable increase in entropy

of the residual error across the range [μ�σ, μ+σ] of the error distribution. A large

increase in entropy is observed for each increment in the order of the regression

model. Greater entropy implies less “structure” to the residual entropy, meaning

information gain has been achieved with the incremental model (e.g., third-order

regression compared with second-order).

In Table 10.4, we can also see that the regression model is a better fit for input

space A at third-order regression and probably at second-order regression when

accounting for the entropy, than it is for input space B. First-order regression is a

better model for input space B, however, than it is for input space A. Therefore,

if we believe that the data should follow a first-order regression, we have a better

fit for input space B. However, if we feel that more complicated regression models

are acceptable (other factors that we do not yet know how to explain are in the data),

we use the third-order (or higher) regression model and feel that input space A pro-

vides the better fit to the model.
Table 10.4 First-, second-, and third-order regression models for two sets of
data and residual variability (variance of the error) and entropy (measured in
evenly space bins across the range [μ�σ, μ+σ] of the error distribution)

Input space A Input space B

Order of
regression

Residual
variability

Residual
entropy

Residual
variability

Residual
entropy

1 0.432 2.377 0.345 2.561

2 0.167 3.398 0.156 2.856

3 0.055 4.101 0.087 3.019

Wecan see that every order regressionmodel is better for input space A than for input space B at order 3.
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10.5 Summary
We reconsidered many of the system gains originally introduced in Chapter 3 herein

with a broader perspective on system design empowered by meta-analytics as both

hybrid analytics and as analytics about our analytics. We considered I/O gains and

information gain, before turning to knowledge gain and efficiency seen in new light

of increased value and in terms of conciseness of design choice, respectively.

Robustness gain was introduced here and is defined in terms of the system’s

worst-case response to input.

Next, we revisited the key system design considerations—rank, accuracy, perfor-

mance, cost, robustness, modularity, and scalability considering what we have cov-

ered over the past seven chapters. Rank and accuracy bias in a system were shown

to be relatively assessed by the cost of their errors. The case for error gain over accu-

racy gain was further expostulated. Performance gain and later robustness gain were

shown to be gains that benefit from k-fold training and validation in a way (I argue)

accuracy- and rank-biased systems do not. A brief consideration of how errors in our

model can greatly affect the overall lifetime cost of a systemwas shown through a sim-

ple example using freeware and pay-for software. In robustness gain, the use of 2-to-k
enumerated training and validation design to provide a stronger estimate of robustness

was described. Finally, additional considerations around modularity (popularity of

adoption) and scalability (around popularity of a specific analytic) were overviewed.

Module optimization was specifically addressed using measurements of entropy,

error variance, and sensitivity. These approaches are familiar from previous chap-

ters; here, we show the process of using them along with analytics about the messag-

ing, or communication, within and between modules.

Clustering, introduced in moderate depth in Chapter 1, was then augmented with

regularization approaches. Regularization is a penalty subtracted from the fitness.

The fitness is an F-score based on the relative variance within clusters compared with

between clusters. Five regularization approaches are provided that, combined,

account for the variability within the clusters (sum of squares and variance), the clus-

ter size, the presence of small clusters or unclustered samples, and the overall number

of clusters.

We conclude with a simple example of using variable complexity models along

with measures of residual variance and entropy to determine which models are best

and which data sets provide the best fit. Variance should decrease, and entropy

should increase, as our model fitness improves.
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CHAPTER
Aleatory and expert system
techniques
 11

Meta-Analytics. ht

# 2019 Steven Sim
An expert is a man who has made all the mistakes which can be made, in a

narrow field

Niels Bohr

Psychohistory dealt not with man, but with man-masses. It was the

science of mobs; mobs in their billions. It could forecast reactions to stimuli

with something of the accuracy that a lesser science could bring to the

forecast of a rebound of a billiard ball. The reaction of one man could be

forecast by no known mathematics; the reaction of a billion

is something else again

Isaac Asimov (1952)
11.1 Introduction
If you started reading this book with your only intention being to find out how to take

a bag of data and convert it into labeled, indexed, clustered, or classified groups, you

need read no further. You’ve got that. The clustering with regularization approach

shown in Chapter 10 allows you to take unstructured data and turn them into clusters.

The various analytic approaches of Chapter 1 allow you to mine these clusters and

turn them into classes of structured, labeled information. That is a key to analytics,

and in those key chapters, you learned how to build clusters, classifiers, and machine

learning algorithms from the ground up. In between those chapters, you learned to

better evaluate training data, to improve experimental design, to evaluate models for

data, and to employ a wide range of hybrid analytic techniques—the core meta-

analytic approaches from predictive selection to reinforce-void and a wide range

between them. You’ve even learned how to analyze your analysis!

So what’s left? It turns out rather a lot. In this chapter, aleatory techniques are

elaborated. By aleatory, we mean depending on some source of randomness. Monte

Carlo simulations use random sampling; random number generators can be used to

provide full domain coverage of input, etc. But, in this chapter, randomness will be

used in a variety of system-relevant applications. The mantra for aleatory approaches

is that randomness results in coincidence with significance—or synchronicity if you

prefer a Jungian view to a Jaccardian view. In order to find that coincidence with

meaning, you usually have to actively search for it. Just as there is an obvious

and important distinction between causality and correlation, there is also a very dis-

tinct difference between coincidence and luck. Luck just happens, and a part of the
tps://doi.org/10.1016/B978-0-12-814623-1.00011-3

ske. Published by Elsevier Inc. All rights reserved.
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reason it can have a negative connotation is there is often an unspoken impression

that not enough attempts were made to receive the bounty of the “luck.” Coincidence,

however, often irks people the other way, with many a skeptic asserting that there is

no such thing as coincidence; instead, we intentionally focus on the events that are

the farthest from the norm and then look for connections between them to justify a

(forced) claim of coincidence. In other words, if you seek luck, you can’t find it, but if

you seek coincidence, it is easy to find.

That might get too metaphysical for anyone but Sartre’s or Camus’s great-

grandchildren, but I’ll put a happy death to either of these interpretations. I prefer a

much more mechanistic approach. Coincidence can indeed be forced, any time there

are enough events to essentially guarantee a certain number will be X standard devi-

ations away from the expected, where X>1.96 or X>2.58, for example. Those are

special 95% and 99%values for two-tailed z-scores, and a Gaussian distribution should
see such values either 5 or 1 time in 100. Coincidence? I think not. Now, we can mine

these outliers for insight into the system. In this way, we use aleatory events to find out

more about the behavior of the system in its extrema.AsNiels Bohr noted, “an expert is

a man who has made all the mistakes which can be made, in a narrow field.” Viewing

aleatory events as mistakes in central behavior, then, we learn from them.

As noted in Chapter 1, the concept of predictive analytics is the basis of the Foun-

dation trilogy by Isaac Asimov, written a lifetime ago. In it, Asimov introduced the

science of psychohistory, upon which I will overlay my own assumptions. Psycho-

history used an extreme form of multivariate analysis both to predict specific events

in the future and to eliminate from concern other events. Harry’s science was meant

to remove uncertainty as much as provide certainty for the future. But, his predictions

broke down in the face of a personality stronger than that of Caesar, Christ, or Napo-

leon—named the “Mule,” a genius of vision and manipulation. Or did it really

matter? Were Hari Seldon’s meta-analytic approaches sufficiently robust, scalable,

modularizable, and accurate enough to estimate the future with sufficient probabil-

ity? He did foresee the fall of the Galactic Empire and thus included a set of instruc-

tions for recovery from amillennium of anarchy that would follow. His systems were

robust enough to overcome the “specific randomness” of the personality of the Mule.

As mentioned in Chapter 1, this “preflight sensitivity analysis” of a predictive model

is a suitable candidate for aleatory approaches. Kudos to Asimov for anticipating that

hybrid systems—designed to follow the law of parsimony where possible and also

modular and scalable enough to be able to handle much more complexity where

appropriate—are more robust than simple or fully hybrid systems. These systems

therefore remain relevant longer—maybe not for millennia as in Asimov’s science

fiction, but we are anywaymore concerned with science facts. As Asimov envisioned

psychohistory, he thought of it as a “science of mobs; mobs in their billions …

(which) could forecast reactions to stimuli with something of the accuracy that a

lesser science could bring to the forecast of a rebound of a billiard ball.” This sure

sounds like a huge ensemble approach to me. And, the final tell is that Asimov rec-

ognized that the “reaction of one man could be forecast by no known mathematics;

the reaction of a billion is something else again.” In other words, Hari Seldon, via
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Asimov, created a multibillion ensemble architecture that, as such systems do, per-

colated the correct rank of the future of history to the very top of the possibility stack.

Hari Seldon fully understood the concept of a rank-biased system.

In this chapter, we will explore how aleatory techniques are able to “prestress test”

a system to ensure that it will be robust to the unexpected. This is not a coincidence. It

is a forced coincidence with meaning. Forget synchronicity, this is Seldonicity.
11.2 Revisiting two earlier aleatory patterns
Aleatory techniques were introduced in Chapter 4 in the context of entropy, or quan-

titative disorder, of a system. We will review the two approaches here and extend

them based on the additional value multiple passes of adding randomness to a system

can bring.
11.2.1 Sequential removal of features aleatory pattern
Insensitivity of a system is related to its robustness: the less sensitive a system is to

added noise, the more robust it tends to be to new input. The difference between these

two concepts is subtle but important to elaborate. Insensitivity to error describes how

robust a system is to additive noise associated with existing input. Robustness

describes how robust a system is to new input. Since the additive noise model is

unlikely to match changes in input associated with new data (e.g., additive noise

may be Gaussian, with a zero-mean difference from the current input, while new

input is likely to see a drift in the mean value), these two measurements of system

stability are almost always distinct. It is the former—intentional addition of random-

ness, following a particular model for the addition—that we are concerned with using

aleatory approaches.

The first aleatory pattern described was used precisely to optimize a system’s

lack of sensitivity to random changes in specific portions of the input, termed the

features. The process is termed, in a near-litotes fashion, optimized insensitivity.
One way to approach this goal is to remove features that are more sensitive to the

input, as in the sequential removal of feature aleatory pattern, which features these

steps:

1. Identify the elements, usually different features being used together in an

ensemble, which are candidates for removal (use feature ranking).

2. Construct the appropriate process for analysis (analytics, algorithm, system, etc.).

3. Complete the steps in the process.

4. Make the final recommendations, and deploy the recommended process for an

analytic system.

The example used in Chapter 4 was a simple binary image classification, used for

determining product authenticity and thus validating supply chain integrity. A set

of a dozen image features—both color saturation (S) and intensity (I) measurements
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for the six colors red (R), green (G), blue (B), cyan (C), magenta (M), and yellow

(Y)—were calculated. These are abbreviated RS, GS, BS, CS, YS, MS, RI, GI,

BI, CI, YI, and MI as expected given the shorthand for each color and type of mea-

surement in parentheses above.

Each of these features were used as a single classifier in an ensemble of binary

classifiers for discriminating authentic from counterfeit products using images of

specific regions of the labels. The individual classifiers in the ensemble ranged from

near guesswork (0.55 accuracy for BS, or blue saturation, just above the “coin toss”

value of 0.50) to near perfection (0.90 accuracy for GI, or green intensity, meaning 9

out of 10 samples were correctly classified). These values are recapitulated in

Table 11.1. In our example, we are assuming higher error rates imply higher sensi-

tivity to the input, but other measures of sensitivity (e.g., variance in error by class of

input) could just as easily have been employed.

Based on the results of Table 11.1, there are four features (BS, CS, CI and BI,

ranked 12, 11, 10, and 9, respectively) with values noticeably lower than the values

of the other eight features (ranked 1–8) and are good candidates for removal. Among

these, BS again stands out as being very far away indeed from the previous rank. The

measurement of %Error Gain was introduced to show how much of the remaining

error to be gained was gained by the increase in rank. The %Error Gain is given

by equation 11.1. In order of rank 1–12, the %Error Gains are 0.20, 0.08, 0.11,

0.15, 0.04, 0.04, 0.08, 0.13, 0.19, 0.12, 0.20, and 0.58. The last 4–5 increases, par-

ticularly the last one (at 0.58), are anomalously high in comparison with the three

(0.05, 0.04, and 0.08) right before it and indicate a fundamental change in the ability

of the final four features to provide ensemble value:

%ErrorGain N½ � ¼ Error RankN½ ��Error RankN�1½ �ð Þ
Max Error�Error RankN�1½ �ð Þ (11.1)

In Eq. (11.1), Max Error is 0.50, which is pure guessing for a binary classifier. Also,

when N¼1, then Error[Rank N�1]¼Error[Rank 0] is defined as 0.00 (perfection).

As an example of applying Eq. (11.1), for rank 5 compared with rank 4, the %Error

Gain¼ (0.23�0.22)/(0.50�0.22)¼0.04. Again, we see that BS (rank 12) makes

58% more of the “possible” error remaining compared with CS (rank 11).
Table 11.1 Twelve image features (R¼ red, G¼green, B¼blue, C¼cyan,
M¼magenta, Y¼yellow, S¼saturation, and I¼ intensity) and the accuracy
when each image feature is used as a binary classifier for distinguishing
between images from authentic versus counterfeit labels

Image feature RS GS BS CS MS YS RI GI BI CI MI YI

Accuracy 0.71 0.77 0.55 0.62 0.76 0.87 0.83 0.90 0.67 0.65 0.74 0.78

Rank 8 5 12 11 6 2 3 1 9 10 7 4

%Error Gain 0.13 0.04 0.58 0.20 0.04 0.08 0.11 0.20 0.19 0.12 0.08 0.15

Some or all of the 12 features are then used together in an ensemble classifier, as described in the text. In
addition to their ranks, the percent gain in error (which is 1.00 accuracy) for the given rank compared with
the previous rank is given (please see text for details).



Table 11.2 Results when the least accurate features are removed in reverse-
ranked order

Features removed Overall accuracy (weighted voting)

None 0.948

BS 0.954

BS+CS 0.957

BS+CS+CI 0.962

BS+CS+CI+BI 0.963

BS+CS+CI+BI+RS 0.960

BS+CS+CI+BI+RS+MI 0.951

BS+CS+CI+BI+RS+MI+MS 0.941

The overall accuracy peaks using this approach when the four lowest accuracy features (BS+CS+CI+
BI) are removed. After that, accuracy decreases when additional features are removed in this sequential
approach.
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Regardless, the features can now be individually ranked, and so, step 1 is complete.

The appropriate instrument for analysis (step 2) is to then sequentially remove the

features and observe the behavior (step 3). This is shown in Table 11.2.

In Table 11.2, a simple linear analytic instrument (sequential removal of the low-

est ranked remaining feature) is used. Note that the error rate goes from

1.0�0.948¼0.052 to 1.0�0.955¼0.045 just by removing BS. Thus, BS is an easy

first choice to remove. In this case, removing the four lowest accuracy features

resulted in peak accuracy for the particular approach outlined in Table 11.2. For

assessing accuracy, the features are combined using weighted voting, using the

weighting of feature j proportional to the inverse of the error, that is 1.0�aj where
aj is the accuracy of feature j by itself, as already described in Eq. (4.15). The final

recommendation (step 4) is to deploy the binary classification system with only eight

of the twelve features, namely, RS, GS, YS, MS, RI, GI, YI, and MI. This example is

incredibly simple and involves comparing only as many as 11 removal combinations,

from {rank 12}, to (rank 12+rank 11},…, to {rank 12+rank 11+… +rank 2}. But,

there are 12 features, and so 212�12¼4084 different possibilities for removing 11 or

less of the 12 features. While this set can be exhaustively searched for small data sets,

when we move on to deep learning and potentially training and testing on millions of

images, vides, etc., we might only really have time to test a few dozen or a few hun-

dred combinations of features. When we start considering scores, hundreds or even

thousands of features, of course, we do not have any such “exhaustive search” pos-

sibility, even with today’s powerful processing and storage options.

Thus, we need a source of variation from the approach of Table 11.2. In

Chapter 4, we noted that “multiple sequences for removal” are attempted, especially

around the peak accuracy obtained from the method of Table 11.2. Four such can-

didates (with their accuracies in parentheses), each of which removes the two obvi-

ous outliers BS and CS, are given here:

1. {Rank 12+rank 11+rank 9} BS+CS+BI (0.963)

2. {Rank 12+rank 11+rank 9+rank 8} BS+CS+BI+RS (0.962)
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3. {Rank 12+rank 11+rank 10+rank 8} BS+CS+CI+RS (0.964)
4. {Rank 12+rank 11+rank 10+rank 9+rank 7} BS+CS+CI+BI+MI (0.961)

Note that in this set of four, removing the combination “BS+CS+CI+RS,” or {rank

12+rank 11+rank 9+rank 8}, gives the highest overall accuracy.

In reality, the training results are not very sensitive after removal of BS and CS to

the next four lowest ranked features in accuracy. In order to test for what features to

remove, we need to note discrepancies in selecting that features to remove, if any,

when comparing individual to aggregate results. There are several methods to test

for this systematically, rather than simply by trial and error and/or intuition, as in

the four examples above. We will cover two of them here. The first is to look for

flat regions in the %Error Gain metric and let each of these be the next jump from

the current set. For the example that we are using, these are between ranks 5 and 8

(0.05, 0.04, 0.08, and 0.13) and again between ranks 9 and 11 (0.19, 0.12, 0.20).

These two “runs” appear to be good candidates for “peerage” and thus parallel con-

sideration for removal. The ranks 9–11 relatively similar %Error Gain zone implies

we may wish to start with the following combinations:

1. {Rank 12+rank 11} BS+CS (0.957)

2. {Rank 12+rank 10} BS+CI (0.965)
3. {Rank 12+rank 9} BS+BI (0.962)

We see right away that we missed one of these in the above two approaches, and

removing solely BS+CI results in the greatest improvement in error rate of any

so far. Note that following up with removal of CS actually increases the error rate

from 0.035 to 0.38 (see fourth row of Table 11.2). Thus, removing BS+CS+CI

results in 0.962 accuracy. The other triad is BS+CI+BI, which results in 0.965

(no change from BS+CI).

The second method of testing systematically is to change the weightings based on

the relative sensitivities of each of the features. We saw that removal of BS was ame-

liorating for the overall accuracy, reducing error from 0.052 to 0.045 when removed.

But where do we reassign its weighting? One strategy is just to renormalize the

weightings of the remaining features, acting as if the BS feature never existed. A

second strategy is to enhance the weightings of those most poorly correlated with

the feature removed, assuming they will lead to better overall behavior of the ensem-

ble. A third approach is to enhance the weighting of features with similar sensitivities

to that removed to ensure that any independence among the remaining features is not

dampened. The choice of reweighting is a broad topic and relates to the discussion of

bagging, boosting, and stacking in Section 1.7.8.
11.2.2 Sequential variation of feature output aleatory pattern
The second aleatory pattern described in Chapter 4 is also of interest here. This sequen-
tial variation of feature output aleatory pattern comprises varying the results of each of

the features by a predetermined amount. This intentional randomness is another way to
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optimize a system’s lack of sensitivity to random changes in specific portions of the

input. This optimized insensitivity is performed using an intentional change in each

feature (akin to “random” noise in one feature at a time) and then measuring the effect

on overall accuracy (aggregated or broken out into a confusion matrix or other com-

prehensive analysis instrument). This is a form of sensitivity analysis in which the sen-

sitivity to features is forced by intentionally adding errors to the (actual) measured

values and will be referred to here as “forced aleatory sensitivity analysis.” This differs

from two other forms of sensitivity analysis worth mentioning here:

1. Sensitivity analysis in which two or more actual data with a given difference

(“delta”) between them is used to determine the relative sensitivity of an outcome

to a given difference in input. This form of sensitivity analysis is often preferred

to the aleatory one introduced above because it represents “real data” rather than

altered data. However, it generally requires a large set of data to be able to ensure

that deltas for multiple features can be found that are roughly equivalent in

magnitude (or normalized magnitude). Regardless, this type of sensitivity

analysis can be considered “natural sensitivity.”

2. Sensitivity analysis in which the data are simulated. Simulated data are data that

were created and not obtained by direct measurement. It is the other extreme from

“natural sensitivity analysis” and often is used when anonymized (or

“deidentified”) data are needed (e.g., for privacy, security, or even unavailability

of the needed data is an issue). Such “synthetic sensitivity analysis” is a form

generally only used when there is a large set of data available, such that the

simulated data can be carefully compared with the real data for important

population behavior, such as mean, variance, shape of distribution, and

correlation among the features.

We see from the discussion of natural and synthetic sensitivity analysis that our pre-

ferred approach, “forced aleatory sensitivity analysis,” is somewhere between the

two in terms of behavior. Like “natural sensitivity analysis,” it is based on measured

data (with error added). However, like “synthetic sensitivity analysis,” our aleatory

methods rely on synthesized differences being added to the measured data. It would

be a little self-serving to say that aleatory sensitivity analysis is a hybrid of the other

two common methods, but not to say that aleatory sensitivity analysis behavior

should be between the other two behaviors.

So far, we have described aleatory methods at the focus level of a single feature.

What happens when we account for all the features simultaneously? We know from

using multiple feature categorization patterns that the features with a larger impact

on the overall accuracy may be increased in relative rank, especially if the ranking is

used subsequently on a pattern such as the sequential removal of feature aleatory
pattern described in the previous section. But what about overall sensitivity of a fea-
ture? That is the output of the sequential variation of feature output aleatory pattern:
a table of sensitivities. As we saw in the previous section, the features that are most

sensitive to input variation are generally those that are less reliable as predictors for

behavior of the deployed system. This means that, all other aspects of the analysis
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being equal, two features can be directly compared for their usefulness based on their

sensitivities and their correlation with one another. If two features are very highly

correlated, then, from a predictive standpoint, we should only need one of them

to get the same predictive power. A good example of this is if two features are Fahr-

enheit temperature and Celsius temperature. While different in value (by the familiar

F¼32+1.8C equation), the two features are very highly correlated, differing pre-

sumably only by differences in measurement, calibration, and environment (humid-

ity, amount of direct sunlight, etc.) procedures. But, if we were to use these two

features as part of a categorization analytics, the two overall should have no better

predictive power than either one by itself (assuming there is no systematic element to

the differences between the two temperature measurements). Suppose, however, we

find that the Celsius measurements are more sensitive to the variations in the input.

This may be, for example, because they are recorded to the nearest degree Celsius,

and so, they have an 80% larger expected value of error than do Fahrenheit record-

ings also made to the nearest degree. Whatever the case, the Fahrenheit values are

better predictors of categorization of the weather, and so, they are chosen above the

Celsius temperature to survive as a meaningful feature.
11.3 Adding random elements for testing
Systematically adding variability to the input data can be considered an aleatory

technique, particularly if a specific noise model is assumed for the data and its dis-

tribution is applied to the deltas that are added to the actual (measured) data. This is

analogous to some forms of Monte Carlo processes, of course. The use of this kind of

aleatory technique can also be considered for the creation of synthetic data. Among

the approaches that can be used to “randomly” vary data are the following:

1. For the first five in this list, we’ll focus on numerical data. Dropping one or more

significant figures in the data but allowing the mean of the data so altered to stay

the same. This is effectively a data blurring operation, and it adds discretization

error to the data. It is also a form of reliability testing.

2. Swapping two fields between two data elements. This is irrelevant when there is

only one field in the data but makes a lot of sense when there are multiple fields

(e.g., in image, this includes color channel intensity, saturation, and hue).

Effecting enough of these swaps “uncorrelates” the fields stored in the data.

3. Using genetic programming inspired approaches to the data. Crossover,

mutation, and inversion of digits in the data create a different type of error than

those above. Crossover in terms of aleatory treatment of data can be used to

exchange digits at limits of certainty (e.g., in the digits that are within 1–3
standard deviations from the mean). Crossover can be performed as a means of

recrafting the distribution of the data to match the desired characteristics (e.g.,

fitting to a Gaussian), although in this case the crossovers will only be

semirandom.
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4. Mutation, similarly, can be viewed from a curve-fitting perspective. The strict

aleatory approach performs random substitutions of digits, which will result in a

distribution “uniform” across the digits affected. However, a uniform random

distribution is not a necessary approach. Instead, the distributions of the random

substitutions can be used to guide the distribution of the test data. If, for example,

a Gaussian distribution is impacted by mutations and the mutations themselves

are generated with equal probability across a given range, then the range of the

data will be extended (since there is an equal probability of shifting away from

the mean). The distribution will be changed entirely if the mutations are skewed

or otherwise manipulated.

5. Inversions of digits are similar to the application of multiple mutations and so are

of particular additional interest here. However, the fact that multiple digits are

impacted simultaneously does mean this approach should converge to the desired

distribution more quickly than the other two genetic-inspired approaches. The

caveat is that inversions must affect at minimum two digits (or, i.e., at least two

bits), and so, they may lead to an unacceptable level of data blurring.

6. Intentional introduction of errors. These approaches are particularly useful for

text analytics. In that domain, the types of errors that can be introduced are rather

extensive. At the mechanistic level, this includes substitution (replacing one

letter or word with another), deletion (the loss of a letter or word), insertion (the

addition of a letter or a word), and transposition (swapping two letters or words,

usually next to each other). And, yes, transposition of two words in a document

can make an enormous difference: consider New York City and New City York.

One is a single compound noun designating the largest city in the United States,

and the other is a new city named York.

7. In addition to these rudimentary operations (substitution, deletion, insertion, and

transposition), more complex errors can be introduced for text and other

“compound” data (which includes multiple-field data). In text analytics, this

includes spelling (e.g., using “they’re” in place of “their” or “there,” which

constitute several rudimentary operations concurrently), imputation, and

normalization. Spelling is of particular interest, as some errors such as the

parenthetically cited one (they’re, their, and there) become rudimentary

operations at another level of the data stack (these are word substitutions in

addition to compound letter errors). Additionally, spelling errors include a wide

range of spelling variants that are not tied to actual misspelling. Example includes

pig Latin (or should I say “IgPay AtinLay?”), anagram (“I Sing And/Or Game”

for “Imagine Dragons”), acronym (“MAKE MY DAY” for “Meta-Analytics

Knowledge Educates Many Young Data Analysts Yearly”), slang/jargon (e.g.,

cockney rhyming slang such as “bubble and squeak” for “Greek” and texting

slang such as “AAR8” for “at any rate”), pun (“data good thing to learn?”), and

other context-dependent plays on words, engendered by people a lot more clever

than whoever wrote these parenthetic examples. These types of “errors” are

generally difficult to interject into documents, although there are increasingly

available online and for pay lists of such specialized linguistics.
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8. Imputation is a protocol for infilling missing data. Determining the correct values

to substitute is an art as much as a science. For text analytics, many methods such

as tf*idf and cosine models do not require imputation since they are based on the

relative frequencies of terms. However, other natural language processing

approaches, like part of speech tagging, suffer from missing words and/or letters.

One method I’ve used with some success is to substitute words in order of their

frequency into the corpus unless a certain level of confidence in the part of speech

tagging is attained. Other methods for imputation are described in Section 5.3.

9. Normalization includes manipulating the statistical values of the data

distributions, such as mean, median, mode, and variance. Section 3.3 covers

many of the traditional normalization approaches. For introducing errors,

normalization can involve equating one or more (dependent on the degrees of

freedom in the data) of these values across multiple data groups.
11.4 Hyperspectral aleatory approaches
These are exciting times for imaging scientists, to be sure. Green fluorescent protein

(GFP) made it possible to study aspects of the intracellular environment of living

cells (such as analyte concentrations and pH). Lidar (radar + laser) and new imaging

technologies based on CMOS and InGaAs have extended the gamut of imaging

approaches available to scientists and engineers. In addition, hyperspectral (multi-

spectral) and other hybrid imaging approaches, incorporating UV, IR, visible, and

ultrasonic source signals, are now possible because of the explosion in sensing, pro-

cessing, and storage over the past decade.

Taken together, hyperspectral approaches provide the means for interesting and

in some cases novel ways to test systems for reliability, robustness, and sensitivity.

These are described briefly here:

1. Reliability is the degree to which the result of a measurement, calculation, or

specification can be depended on to be both accurate and precise—to not vary

from one measurement of the same state to the next and to closely match the

actual state. For hyperspectral approaches, this means that performing a

measurement—for example, the height of a building or the width of a river—in

two or more imaging modalities, results in an acceptably small difference from

the measured value (and between the modalities). When the modalities are

similar in etiology (say visible and IR light), this reliability is largely a

measurement reliability—are the devices cocalibrated correctly, etc.? When the

modalities are rather distinct in etiology (say ultrasound and lidar), this reliability

is largely an assumption reliability—are the assumptions (about foreground vs

background, about the boundaries, about the number of significant digits in the

measurements, etc.) correct?

2. Robustness is tied to the variance in the system output for large changes in the

system input. The formal definition is a system’s ability to provide a similar



28311.5 Other aleatory applications in machine and statistical learning
output with rigorous input testing. The output need not be a specific value, but can

be consistent behavior. For example, the common-mode rejection ratio (CMRR)

of a differential amplifier is the consistency of gain across a wide range of

common-mode signals on the two inputs. Robustness can thus be thought of as the

lack of unwanted (or at least unpredicted) gain from input to output.

3. Sensitivity is how much an output varies with a change in the input (first

derivative). One pragmatic means of testing sensitivity is to determine ranges

over which information from one data stream can be substituted for another.

Full range substitutability implies that the measurements are redundant, so from a

meta-analytics standpoint we may be “disappointed” to find no differences in

sensitivity, as it may preclude an opportunity to gain system robustness,

reliability, accuracy, precision, recall, etc., from two data streams being used

together intelligently. From this perspective, sensitivity is an advantage to the

meta-analytic system designer—the caveat being she must measure the

sensitivity.
11.5 Other aleatory applications in machine and statistical
learning
Maybe this section should have been entitled “random thoughts about randomness”?

No, probably not. The key perspective for the meta-analyst about randomness is the

flip side of the perspectives gained considering entropy. Randomness can be a source

of system testing, as described for reliability, robustness, and sensitivity. The advan-

tages of randomness, of course, extend to the unknown.Without providing sources of

randomness, unexpected system flaws cannot be identified before deployment (think

of the Tacoma Narrows Bridge disaster and aeroelastic instability, which was diffi-

cult to diagnose even after the famous 1940 collapse), and so, a system architect is

less likely to be able to predict failure modes.

As discussed in previous chapters in this book, along with many others [Hast09]

[Mars09], one of the most important considerations for any machine learning design

is how the available training data are used. In this chapter, we have talked about

means to modify, synthesize, and normalize additional training data, but another

important aspect of training data is to recognize the “global” constraints placed

on its generation, measurement, and history. If all the ground truth data are obtained

in one small time window, for example, then later knowledge about how the input

should be varied cannot be fed back to the generation. If the measurements are taken

with nonrepresentative settings (filtering, precision, gain, etc.), the appropriate addi-

tional bits required by the system cannot be added with confidence later. Finally, the

history of the data is important. This means when, how (settings), with what equip-

ment, with what operator, etc. data were collected. This emphasizes the importance

of tagging and metadata. All of these conditions can be treated as variables that can

be treated with any of the aleatory techniques described earlier in this chapter.
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11.6 Expert system techniques
Turning now to expert system techniques, our concern is on validating the domain

expertise by calculating the effect of applying it on overall system measurements

such as entropy, accuracy, robustness, cost, performance, and other system optimi-

zations of interest. As mentioned above with regard to entropy, aleatory approaches

are—or at least can be—the flip side of traditional expert system techniques. Ran-

dom changes in the expert system rules can be added to determine their effects on the

overall system measurements at any point in a system design. The sensitivity of the

overall system to random changes in the rules may help provide a more robust, cost-

sensitive, or otherwise optimized system than would be the case without testing the

impact of random changes. Suppose, for example, that we have two system models

that provide the same basic performance on a data set. We can then add aleatory

changes to the system in, at minimum, the following ways:

1. Change the coefficients of each model by the same percentage.

2. Change the training data along the lines of Section 11.3.

3. Randomly delete percentages of the training data.

4. Apply the inverse of the expert system rules to the inverse of the data with the

same sets of aleatory approaches as in 1, 2, and 3.

The most robust system will show the smallest mean change to these aleatory

approaches. The most cost-sensitive system will show the overall lowest cost. The

most accurate system will show the overall lowest mean error.
11.7 Summary
In this chapter, we revisited in-depth two aleatory patterns originally presented in

Chapter 4. For the sequential removal of feature aleatory pattern, we extended the rudi-
mentary approach of removing features sequentially based on their rank for a figure of

merit suchas accuracy.Weperformed this by looking for inflectionpoints in the%Error

Gain metric. At the inflection points, a simple analytic approach designated sequential

removal of the lowest ranked remaining feature is used to provide a sensitivity analysis

for the sequential removal of features (until an optimum set is determined).

The sequential variation of feature output aleatory pattern is a form of sensitivity

analysis in which the sensitivity to features is forced by intentionally adding errors to

the measured values. This is termed forced aleatory sensitivity analysis and is a rea-

sonablemiddle groundbetween sensitivity analysis performedusing actual datawith a

given difference (“delta”) between them (designated natural sensitivity) and sensitiv-

ity analysis performed on simulated data (designated synthetic sensitivity analysis).

In Section 11.3, a variety of ways to add randomness to existing (measured) data

were presented: dropping significant figures; swapping two fields between two data

elements; using genetic approaches such as crossover, mutation, and inversion; rudi-

mentary introduced errors (substitution, deletion, insertion, and transposition);
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compound introduced errors (spelling, anagram, acronym, slang, jargon, pun, and

other context-dependent plays on words); imputation; and normalization.

Hyperspectral aleatory approaches were considered with respect to the important

system measurements of reliability, robustness, and sensitivity. The distinction

between measurement and assumption reliability was described, and sensitivity

was considered in terms of substitutability. We concluded with a brief mention of

aleatory techniques applied to expert system rules.
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CHAPTER
12
Application I: Topics and
challenges in machine
translation, robotics, and
biological sciences
Meta-Analytics. ht

# 2019 Steven Sim
Everything that can be invented has already been invented

Charles Duell (1899)

I visualize a time when we will be to robots what dogs are to humans, and

I’m rooting for the machines

Claude Shannon (1987)
12.1 Introduction
If Charles Duell had been correct in 1899, then this chapter would not be needed. But

then, neither would the past 11 chapters nor this book at all, because there were no

computerized analytics even though “everything that can be invented” existed. This

was from a man who at the time was the director of the US Patent Office. Was he a

steampunk ahead of his time, thinking that the steam-run world of 1899 would extend

far into the future? Well, 10 million patents later, we’re still going strong on inven-

tion, and steam is still used—but is possibly more often punked these days. This

chapter is meant to stimulate further invention using analytics as a driving factor

to improve many (or any!) other fields of science, technology, engineering, art,

and mathematics (together known today as STEAM). One can support this form

of STEAM without being a steampunk.

On the other side of the spectrum is the mechanophilia of Claude Shannon, who I

was more than happy to attribute a quote to, since he is so important to the history of

entropy calculations in analytics. But I have to wonder if the quote really makes

sense in composite, since coevolution has guided the relationship between people

and puppies, and you really can’t root for one without simultaneously rooting for

the other. So, unlike Claude, I wish to root for the combination of robots and us

and hope that we continue to coevolve and provide for a better world. One thing

is certain—robots and their central nervous systems, from Arduino (C/C++) to

Python to LISP—will continue to evolve. In this chapter, we hope to provide the

punctuated equilibrium to effect evolutionary changes in machine translation, robot-

ics, and biological sciences.Wewill do this by applying themeta-analytic techniques

learned in the previous chapters together with the approaches native to translation,

robotics, and biology. We begin with machine translation.
tps://doi.org/10.1016/B978-0-12-814623-1.00012-5

ske. Published by Elsevier Inc. All rights reserved.
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12.2 Machine translation
Machine translation offers an innately meta-analytic experience, since the number of

stages in machine translation can be so extensive. Keeping it to 10 steps in this sec-

tion, I will highlight the touch points for analytics in each of them:

1. The first step is image/speech to text and language translation. Here, the

original sentences are created from whatever the input media is. This could be

speech, in which case an automatic speech recognition engine (voice to text, or

ASR) is used. It could be words in an image, in which case character extraction

and recognition are needed. Regardless, the common ground ends up being the

native language of the person using the system. This is a perfect step in which

to engage the ground truthing approaches described in Chapter 2. Specifically,

prevalidation (Section 2.2) approaches can be used to determine which input is

of insufficient quality to remain part of the training set. This prevalidation

should result in better, more robust behavior since the system will not be

partially “randomized” by low-quality input. Applying pruning of training data

approaches (Section 3.3) can help in the prevalidation approach by singling out

time windows for the data to be tested using the prevalidation methods.

Regardless, during the input phase is the best time to eliminate obviously

anomalous data. The language translation step is largely independent of the

quality of the input and so can be viewed as a second substep. As briefly

discussed in Section 9.2.2, translation quality can be determined by using the

same translation approach on a separate, usually smaller set of text, and then

automating the quality of the output obtained, that is, by determining the

quality based on how closely the language translating engine matches the

search responses before and after translation.

2. The second step in machine translation is in grading of the sentences by

difficulty. This is an excellent candidate for a meta-analytic-as-hybrid

approach. Analytics for grading sentences can be based on content, sequence,

or proximity. The content basis rates sentences based on the rareness of the

terms (a variant of the TF*IDF methods described in Section 2.2), the

complexity of the part of speech (e.g., compound nouns and verbs score higher

than simple nouns and verbs and gerunds rank higher than progressive tenses),

or the mean length of the terms in syllables, for three examples. The sequence

basis can also use rareness of the sequence, rareness of the consecutive parts of

speech in the sequence, or the length of the sequence—for example, phrase—in

syllables, as three examples. Finally, proximity or other co-occurrence

approaches can be used to rate sentence complexity based on the cumulative

complexity of the terms in them.

3. The third step in machine translation is editing. Editing consists of correcting

spelling errors and punctuation errors and then preparing the corrected text for

more effective downstream processing by algorithm. This preparation can

include removing stop words (such as very common words that do not affect

the meaning, “the,” “or,” “and,” “how,” etc. being good examples) and
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performing stemming and/or lemmatization to ensure that terms with the same

semantic meaning aggregate and so are properly weighted for occurrence

frequency. The spelling errors can be guided by a ground truth data set so that

“intended misspellings” such as those concerning slang, shorthand, and texting

are not corrected and thus lose their contextual meanings.

4. Morphological analysis is the fourth step in our somewhat simplified set of

machine translation processes. This step may be performed in advance of Step

2 to enable some of the meta-analytic approaches outlined there. Inflection,

number, part of speech, and tense are the primary morphological outputs.

Meta-analytic approaches such as weighted voting are helpful for the improved

accuracy of this step.

5. Determining the inflection of the words is broken out as a separate step

here because of its amenability to meta-analytic approaches. Inflection

metadata include the aspect, case, comparative, gender, mood, number,

person, tense, and voice of the word and provide an interesting

opportunity for consensus approaches. Within a specific partition of text, the

different components of inflection can be individually analyzed word after

word and then the sequential tallies analyzed to determine if there is

consistency and also for categorizing the type of text. The former—

consistency—can be used to determine the inflection-related tagging to

perform when several options are available.

6. Syntactic analysis comprises part of speech (POS) tagging, grouping of words

into phrases (or clauses), and the relationships between words, particularly

when a pronoun refers to a known noun (“he” for “Eisenhower,” “it” for “world

peace,” etc.). Often, the POS tagging can be performed twice—once in Step 2

above to help determine the complexity of the sentences, clauses, and phrases

and a second time in this step where it can take advantage of the inflection

metadata assigned to better decide on borderline POS tags. Grouping words

into phrases can benefit from the POS tagging, since often phrases begin and

end with specific speech parts; for example, conjunctive adverbs such as “for

example” divide sentences into two clauses. Pronoun referents can be resolved

using weighted voting of algorithms such as closest noun, inflection-matching

noun, and closest proper noun.

7. Grammar determination can be considered in someways as the inverse of Steps

4, 5, and 6, since grammar checks that the morphology, inflection, and syntax

are correct. Interestingly, the information obtained during this phase can be fed

back to Steps 4, 5, and 6, which may improve their accuracies.

8. After grammar and syntactic analysis are performed, the words are tagged.

Tagging is used to identify the linguistic properties of the individual words

(POS tagging) and to identify the clauses, phrases, and their categories (e.g., a

Reed-Kellogg system diagram) [Aart06]. Parsing here can be considered an

“aggregate” analytics that incorporates output from the previous steps

(morphology, syntax, POS tagging, grammar, etc.) and determines the overall

parsing of the sentences. Like grammar, its results can be fed back to the earlier

steps for validation and consensus.
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9. Semantic analysis generates the meaning representations, which can be

considered metadata that allow the definition of important linguistic

relationships such as synonym and antonym; metaphor and simile; litotes and

synecdoche; kenning and metonymy; chiasmus and antithesis; and irony,

sarcasm, and satire, among other “higher level” linguistic output. Semantic

analysis is readily supported by meta-algorithmic approaches such as expert

feedback (e.g., using slang, sarcasm, and irony dictionaries) and extended

predicted selection (e.g., analyzing word content and then deciding which type

of figure of speech to search for), patterns originally introduced in [Sims13].

Semantic analysis is therefore a very broad area of analytics, determining the

meaning of words, the meanings associated with grammatical structures, and

commonsense knowledge and/or dictionaries of semantic associations of

idiomatic expressions.

10. In the final step, the analysis is mapped to the language into which it is

translated, if necessary. Not surprisingly, since all of the variability added up in

the previous nine steps can potentially affect this step, it is particularly prone to

noise and error. There are a number of reasons for this, including the fact that

idiomatic expressions, which are consistently prone to syntactic and semantic

error, need to be translated idiomatically, that is, not in direct word-for-word

translation. Different translation engines can be automatically rated for quality,

fortunately, in several ways. The first, covered in Section 9.2.2, ranks the

translation engines after using them to translate both the document corpus and

the corpus’ search terms. The corpus/search query set that provides the search

behavior most closely matching that of the original (untranslated) document

set is deemed the best translator [Sims14]. The second involves a “round-trip”

from one language (original) to another (desired language of translation) and

back to the original. Then, the word error rate (and other linguistic error rates,

including morphology, grammar, and syntax) can be computed, and the

translator with the lowest round-trip error rate is selected as the best. An

example of this approach is given in Table 12.1.

Clearly, in the relatively complicated process of machine translation, we find that

different analytic approaches are valuable at each stage of the translation. We also

see that errors can be cumulative, and in order to reduce the overall errors, we may

wish to feed back information from later steps back to earlier steps.
Table 12.1 Round-trip of a single sentence with several idiomatic expressions
using a web-based translator.

Sentence type Sentence text

Original Bob gave me the lowdown on what’s shaking

Translated Bob me dio lo mejor de lo que está temblando

Back to original Bob gave me the best of what is shaking

Note that there are several errors after the “there and back again” translations. In particular, the idiomatic
expression “lowdown” has been changed in meaning from “true facts or most salient details” to
“the best.”
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12.3 Robotics
Robotics is a huge field and includes a wide range of subfields, including industrial

robotics, service robotics, software-based robotics (artificial intelligence, bots, etc.),

autonomous robotics, bionics, and warfare robotics. The definition of what consti-

tutes a robot varies between individuals, but it is clear that they are becoming more

pervasive and will continue to become more pervasive for the foreseeable future.

Meta-analytics are particularly applicable to the intelligence associated with robotics

and in particular when one considers five of the arguably most important aspects of

employing robotics in society: human-robot interface, manipulation, mobility, pro-

gramming, and sensors. We herein consider these five aspects of robotics in light of

meta-analytic approaches that we have introduced previously and then elaborate

upon the same:

1. Human-robot interface (HRI) is a particularly important consideration, since the

rate and depth of adoption of a robot depends on how comfortable a human is with

using it. With a software bot, the human-computer interface (HCI) is already a

very highly developed field, and this includes the user interface together with the

means in which a user continues inputting to the bot. With the advent of ambient

computing, input has become more “natural” (e.g., voice-based) and ubiquitous

for many HCI touch points. However, not every user considers personalization of

HCI to be natural, and so, an opportunity for the meta-analytic designer is to

customize the HCI to the specific preferences of the user. A useful approach for

HCI is to employ a form of the predictive selection meta-analytic wherein the

predictive portion assesses the context of the HCI and the selection portion

modifies the types of HCI allowed for the given context. Suppose an ambient

computing bot assesses whether the person is having a conversation in the room

or with a remote person (e.g., on the phone or via a communication app). Then, it

may decide to remain mildly interactive (in the room condition) or go into

nonrecording mode (remote conversation condition) based on the user’s

historical preferences. For a physical robot or “physibot” to engage a neologism,

the HRI is even more important a consideration, since the physibot may have the

potential to do bodily injury to the user, may frighten the user by its actions, or

may impact a user financially (e.g., by depleting a consumable such as fuel,

medicine, and bandwidth). In the case of a physibot, the predictive selection

algorithm may be an oversimplification, because the predictive phase of the

algorithm has its categories defined a priori, while we may be concerned with

nascent context that requires a more “averaged” or smooth response. Thus,

contextual mixing algorithms such as weighted voting or the variety of confusion

matrix [Sims13] approaches, with intermediate categories being defined a
posteriori, may be more appropriate to the task.

2. For manipulation, an articulated robotic limb is controlled at one or more joints,

with each joint carefully controlling the location {x,y,z} and the direction

{Θ1,Θ2,Θ3} that the attached robotic link points. If the joints and link are rigid,

three of these values will determine the other three but in the presence of a load on
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the effector end (or abutting anywhere else). When a load (e.g., sensor and object

to be moved) is firmly grasped by the effector end, the robot can control the

position and velocity of the part with only periodic sensing and position

correction/recalibration. The position error is due to a number of factors, including

part state, part geometry, part mass, friction in the environment, coefficient(s) of

restitution as applicable, and the robot’s own control errors. The part state can

change with time; for example, the part can be damaged and repaired, changing its

mass and/or moments of inertia. Internal wear can also change the robot’s

velocity, resistance to movement, etc. Part geometry can change permanently

(e.g., due to damage), temporarily (e.g., due to humidity, temperature, or pressure

change), or actively (e.g., due to load-induced bending). Part mass automatically

changes when a load is grasped by the effector end of the link. Friction in the

environment can include having to overcome resistance in wires and pneumatics,

which are part of the overall system configuration. For the coefficient of

restitution, which is the ratio of the relative speed after to the relative speed before

a collision, a full kinetic model of the collision would be required. In reality, a

quick postcollision calibration verification is the minimum required. Finally, the

robot’s own control errors are often difficult to calibrate: they may vary, often

appreciably, based on the septet of task values {x,y,z,Θ1,Θ2,Θ3,L},whereL¼mass

of the load. A seven-space calibration for even coarse resolution—for example,

100 values in x, y, and z, by 1.0 degree increment inΘ1,Θ2, andΘ3, and from 0.1 to

10.0kg in 100g increments—requires 4.666�1015 calibration measurements.

Obviously, a large amount of interpolation and often extrapolation is needed for a

full-range calibration to be applied. Because each of these manipulation concerns

has some degree of independence from the others, a hybrid intelligence engine

that simultaneously accounts for models of each is generally preferred to a single

model that maps the behavior of the robot under different measured conditions to

its salient outputs {x,y,z,Θ1,Θ2,Θ3}. This is perhaps intuitive based on the coarse

resolution of any calibration of the robot as described above. Further, having a

model for each of thesemainmanipulation factors—part state, part geometry, part

mass, friction in the environment, coefficient(s) of restitution, and control

errors—is more robust to changes in the inputs over time and of course can more

readily internalize enhanced data sets (adaptability).

3. Robot mobility is a hallmark of service robots, since industrial robots are usually

locked in place, in a track, or within a confined range of motion for safety,

calibration, repair, and other cost-optimization concerns. Service robots include

wheeled, tracked, multilegged, aerial, and underwater autonomous vehicles/

devices. Adding motion to a sensor-laden device (why would one have a robot

with no sensors on it?) requires the use of odometry (visual, inertial, etc.) so that

the data collected by the other sensors on the mobile unit are calibrated for their

new locations. The analytics involved are combining the movement of the robot

with the movement of the sensors (e.g., imaging device) on the robot. Unless

these motions are correlated (and there is no reason that they have to be), the two

forms of movement have independent variability, and thus, the overall variance is
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roughly the sum of the two separate variances. One way to reduce the amount of

variability of these added motions is to use a hybrid system for measuring

odometry (e.g., adding an ultrasound motion sensor to the visual imaging sensor).

A second, independent means of calibrating the two motions is to perform object

or feature map identification and then measure changes in angle and position

based on the relative location of the objects. This can be based on RANSAC along

the lines of previous work [Garc08] [Golb12] [Kitt10].

4. Robot programming, among the five broad aspects of robotics addressed, is

ostensibly the one that will benefit most from hybrid, ensemble, combinatorial, or

other meta-analytic approaches. In addition, these approaches will benefit the

users of the robotics, since they will lead to less “fringe” behavior and thus a

safer, more “smooth” behavior. Among the main system-level, or functional,

concerns of any well-engineered analytics, algorithm, process, or system are the

familiar septet of cost, accuracy, rank bias, robustness, adaptability, modularity,

and scalability. Cost can readily be addressed by producing multiple robotic

control software projects and using an approach such as constrained substitution

[Sims13] to replace a more expensive (e.g., pay-for-use) process with a less

expensive (e.g., open source and in-house developed) process when the

contextual analytics indicate this is allowable. Accuracy of the robot includes

accuracy of motion, mentioned above, which usually benefits from the existence

of several trajectory algorithms (for motion and measurement) to better estimate

the location of robotic elements. This is extremely important for safety concerns,

such as ensuring that a robot effector will not move beyond taped-off safety-

labeled boundaries. Accuracy of purely software concerns is perhaps as important

for safety, as the robotic “brain” must understand the simple safety rules that

govern how much force is needed to trigger automatic retraction or even

shutdown. Additionally, this artificial brain must understand more complex rules

such as when to recognize that a human user/interactor requires emergency

attention and when the robot needs unscheduled service. In each of these cases,

being able to hybridize domain expertise-driven rules with machine intelligence

algorithms is particularly beneficial. Rank bias is a particularly salient concern

for robotic control systems, since well-designed robotic programming involves

constant feedback of the robot’s impact on its environment and immediate

correction when indicated. Invoking multiple analytics to determine the

reasonable next state under contextual feedback benefits from the central limit

theorem and usually ensures that the correct response to a changing environment

is higher on the list, making safe and appropriate response faster and more

accurate than when using only a single analytics. Having multiple analytics

contribute to the robot’s next state often increases the adaptability of the robot, as

well. This is because the combination of analytics will generally be more

sensitive to changes in the input than a single analytics. One simple example of

this is when each analytics has only two output states. When there is one

analytics, there are only two possible outputs, but when there are N analytics,

there are 2N maximum output states for even these simple binary decision
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analytics. Modularity is usually directly correlated with cost, since modular

approaches can be reused with little or no development costs. However,

modularity includes more than simple reusability. Repurposability, where the

modules are defined at a sufficiently atomic level such that they can be

recombined for purposes for which they were not intentionally designed, is a

huge advantage of creating multiple analytics for the same combination of {input,

output} specifications. This is effectively analytic polymorphism, or being able

to use analytics with different internal details for the same transformation

between one node (input) and another (output) depending on contextual

variables, preferences, regulations, and other factors. The last consideration in

this short section is scalability, which is how well the robotic analytic approach

handles scale in one or more aspects, including size of data set to analyze, range

of input types, and task list. Often, an increase in scale or scope requires the use of

two or more analytics in place of one, in which case a smooth transition between

the two (e.g., a sliding pair of coefficients over the transition range) can be

effective. If needed, a more adaptable scaling approach, for example, using a

predictive selection approach whereby a different configuration of analytics is

used for each subrange of input, can be selected. The scope of the robot’s

tasks requires a lot more attention than this short section provides, since there

is currently a transformation of an appreciable part of the manufacturing

sector from mass production to a hybrid of mass production and mass

customization. This means a significant fraction of industrial robots must now

be concerned with actual accuracy of motion, rather than simple repeatability.

The {x,y,z,Θ1,Θ2,Θ3} values can vary by as much as two orders of magnitude for

movement to an arbitrary position in comparison with moving to the same

position multiple times [Kats17]. Thus, the “accuracy” values currently reported

for articulated robotic arms are in reality “repeatability” values, and new

analytics are required to provide the required precision of motion as the number

of locations to support moves from one to many. We see here in particular how

assigning analytics at the same level of modularity as the subsystems of the

robotics leads to improved efficiency, robustness, and adaptability.

5. Our final aspect of robotics considered here is the sensors and the sensing

performed. Arguably, a machine without sensors cannot be a robot, since sensors

are generally required to perform complex series of actions automatically—the

hallmark of robots. Sensing is of course a primary analytics in any system: it is the

input. Among the hybrid analytic opportunities for sensing are employing two or

more sensors with partially overlapping sensitivities to magnitude, frequency,

frequency ranges (filtering), spatial resolution, width of field, and directionality

(sensitivity to direction). The overlap between multiple sensors is important, as it

can be used to determine when one or more sensors is out of calibration or

damaged. Additionally, sensors of different modalities (e.g., a thermal sensor and

an infrared light imager) can be used to analyze distinct aspects of the same

physical continuum (in this case, radiated energy). Another example is the

interplay between ultrasound, inertial accelerometer, and seismometer sensors.
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The importance of robotics would be difficult to overstate in today’s monitoring,

manufacturing, mobility, and marketing environments. One thing that can be said

with certainty is that robotics will continue to increase in importance in the near

future. This means that hybrid systems that provide redundant safety to the programs

and the physical aspects of the robots are of paramount importance, because as robots

become more pervasive, they will also be treated with less novelty. Safety will at

some point change from a concern to an assumption on behalf of the users of the

technology, as is human nature. It is therefore so important to build systems from

the beginning—that is, from the ground up—that provide robustness, adaptability,

rank bias, modularity, and scalability. Building systems for these user and human

characteristics, as I hope I have shown throughout this book, will naturally lead to

systems with the robotics provider’s goals of both competitive cost and accuracy.
12.4 Biological sciences
For the biological sciences, a useful starting point for any in-depth meta-analytic

approach is to model the analytics on the biological processes unto which they

are being applied. Biological sciences are particularly interesting due to the richness

of biological diversity and adaptability. Most physiological systems include a high

degree of redundancy to failure, fail-safe mechanisms, and robustness to changing

environments. In Sections 1.8.3 and 7.4, brief overviews of immunologic and bio-

logical analogues for analytics were reviewed. These complemented the other great

biologically inspired analytics, artificial neural networks and genetic programming.

These concepts will not be repeated here, wherein we extend them to the larger fields

of biology, including enzymes, ecology, and evolution.

Enzymes are biologically manufactured polymers, all of which are proteins

except for ribozymes, which are composed of ribosomal RNA (thus nucleotide poly-

mers instead of amino acid polymers). Enzymes catalyze specific—usually quite

specific—biological reactions such as those involved in metabolism, growth, and

cell differentiation. Thus, enzymes are used to accelerate the completion of targeted

biochemical reactions. Enzymes act upon target molecules that are designated sub-

strates, and the enzyme converts the substrates into one or more different molecules

known as the product(s). The simplest enzymatic effect may be creating a conforma-

tional change in the molecule, but often, the enzyme changes the molecular formula

of the substrate, for example, by adding or removing phosphate groups, by oxidation

and reduction, by splitting lipids into fatty acids, by splitting complex carbohydrates

into simpler sugars, by splitting proteins into peptides, and by splitting nucleic acids

into their nucleotide bases. You get the idea—enzymes rapidly upgrade the amount

of information in an environment by combining, separating, mixing, or transforming

the “information” in the substrates. The primary products of enzymes can be second

messengers, which themselves go on to perform more information identification and

generation than perhaps the enzymes themselves did. This is a key analogue for

sequential analytic systems, in which the unlocking of one or more findings triggers
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a more in-depth search downstream. Examples of such “sequential reactions”

include finding keywords for a partition (cluster, class, or category) and then per-

forming a more thorough search to see if a document belongs to the partition. By

having the right keyword, the upfront search is swift and reliable; by allowing the

scaling, the partition assignment is as accurate as possible. This can be viewed as

a form of sequential refinement, but the refinement need not follow the same algo-

rithmic path as the initial knowledge discovery.

The field of evolution, of course, has not gone unnoticed in the field of analytics.

Genetic algorithms (Section 1.8.1) are the grandparents of many of today’s evolu-

tionary approaches [B€ack93][Banz98]. In this section, we consider evolutionary

approaches at the more macroscopic level. Three topics will be covered here: repro-

ductive isolation, punctuated equilibrium, and CRISPR-Cas9.

Reproductive isolation is a means of forming new species. In nature, isolating a

subset of an existing species, such as in a proverbial tidal pool, eventually is accom-

panied with enough genetic changes (mutations, the loss of allele, etc.) that specia-

tion occurs, and even if the isolated population was brought in contact with the

original “stock” species, interbreeding would be unsuccessful. Genetic isolation

can occur due to behavioral (e.g., nocturnal vs. diurnal), gametic (incompatibility

of germ cells), habitat (geographic isolation), or mechanical incompatibility (e.g.,

chihuahua and mastiff). Regardless, reproductive isolation allows two groups (cat-

egories, clusters, or classes) to grow in isolation to each other. Using this principle for

meta-analytics is relatively straightforward. Partitions of the data (whether clusters,

categories, or classes) can be left in isolation after they are formed on the original

training data. Then, new samples can be assigned to one or more partitions based

on the statistical characteristics of the partitions alone, each partition gaining new

samples without consideration or knowledge of whether the new samples are mul-

tiply assigned. After this has run for a relevant number of samples, the partitions

can then be recalculated (using, e.g., expectation-optimization). The potential mul-

tiple assignment steps provide a different type of optimization that only allows single

assignments, as in traditional expectation-maximization approaches. This method

can be used to perform a multiple expectation-optimization approach followed by

voting for final partition assignment and in this way shares some behavior with

bagging.

The second evolutionary approach considered in this section is punctuated equi-

librium, a widely accepted theory for how evolution works in response to environ-

mental changes, originally outlined by Eldredge and Gould in the 1970s [Goul77].

Punctuated equilibrium proposes that the rate of evolution is decidedly nonconstant;

in particular, the rate is usually relatively low except at times of great environmental

stress. During stressful times, the evolutionary rate is greatly accelerated. We can

readily apply punctuated equilibrium to the genetic algorithms overviewed in

Section 1.8.1, by changing the mutation, crossover, and/or inversion rates based

on how far the population of chromosomes is from the optimum. However, to do this,

we must have some idea of what the optimum would be, and that may not be the case

for many genetic programming situations. However, the concept of punctuated



29712.5 Summary
equilibrium is extensible to other types of analytics. For example, we can punctuate

the feedback in a neural network to use a higher weight for the feedback in an arti-

ficial neural network (see, e.g., the discussion on the value of eta, η, in Section 1.8.2)
during early learning to prevent early “locking” on a local optimum and then reduce

the value of η over time (e.g., from 0.3, to 0.2, to 0.1 over the three-thirds of the

expected number of iterations). Punctuated equilibrium can also be applied to simple

meta-algorithmic patterns, such as weighted voting. Here, the weights used can favor

the features that performed best on the training data when the system is deployed but

then be relaxed somewhat over time, assuming that the samples will drift a bit from

the training data over time. Suppose we have four features being used and their rel-

ative weights after training and validation are {0.4, 0.3, 0.2, 0.1}. Then, by exchang-

ing the training and validation sets, we find them to be {0.38, 0.33, 0.19, 0.10}. We

see the largest change is 0.03, and so, we assume that after deployment, we will “col-

lapse” by 0.03 in weighting. So, we deploy the system with {0.4, 0.3, 0.2, 0.1} and

allow these weights to change to {0.37, 0.285, 0.215, 0.13} over time.

As our last example, we note that clustered regularly interspaced short palin-

dromic repeats (CRISPR) and CRISPR-associated (Cas) genes [Ran13] were discov-

ered in the adaptive immunity processes of certain species of archaea and bacteria

(e.g., Escherichia coli and Streptococcus thermophilus), where the CRISPR-Cas9

system is used to eliminate invading genetic material. CRISPR-Cas9 is part of the

explanation for why bacteria can acquire resistance so quickly against a bacterio-

phage—it is used to integrate a genome fragment of the infecting virus into its

CRISPR locus. An analytic analogue for the CRISPR system is to use an information

injection process whereby data elements are substituted or inserted into an existing

data set, and the altered data structure is then reassessed for categorization, cluster-

ing, classification, etc. The fact that information of varying length can be inserted (or

substituted) into the data set supports a variable evolution rate. Where does the slice

and splice approach of CRISPR work best? Noisy input data come to mind. In this

case, CRISPR-inspired substitution can be used to inject a hypothetical outcome into

the data, such as filling in details in a noisy area for a biometric evaluation (this is the

only area in which I have applied this particular approach to date, by the way); a

spectra for an analyte; and other signal, image, video, or 3-D image analysis tasks.
12.5 Summary
In this chapter, we addressed meta-analytics and machine translation, robotics, and

the biological sciences. In the machine translation section, we divided this compli-

cated system into 10 sequential processes, pointing out the variety of analytic

approaches that can be applied at each step. Also of note are the points in the 10-step

sequence where information calculated can be fed back to “earlier” stages to improve

the overall behavior of the system. We concluded with a new example of functional

reliability assessing, the “translation round-trip” approach.
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Next, the field of robotics was shown to potentially benefit highly from meta-

analytic approaches. Our argument is to apply analytics at the same level of modu-

larity as the subsystems of the robotics and targeted for particular aspects of the

robotics (human-robot interface, manipulation, mobility, programming, and sen-

sors). The application of predictive selection and weighted voting patterns to phys-

ical robot (“physibot”) motion and manipulation is perhaps obvious: being able to

simultaneously address cost, accuracy, rank bias, robustness, adaptability, modular-

ity, and scalability in robot programming may be less intuitive. Using multiple sen-

sors for richer analytics is also an important meta-analytic consideration.

For the biological sciences, we see that using analytics modeled after the biolog-

ical processes that they are being applied to is a logical approach. Rather than rehash

biological approaches inspired by neural networks, genetics, or the immune system,

in this chapter, we discussed using enzymes and previously undiscussed (in this text)

the evolutionary concepts of reproductive isolation, punctuated equilibrium, and

CRISPR-Cas9. These biological systems are used to provide insight into the robust

design of certain types of intelligent analytic systems. Punctuated equilibrium is

especially repurposable to other analytics, including ANNs and meta-algorithmics.
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CHAPTER
13
Application II: Medical and
health-care informatics,
economics, business,
and finance
Meta-Analytics. ht

# 2019 Steven Sim
Diseased nature oftentimes breaks forth in strange eruptions

William Shakespeare (1597)

In the business world, the rearview mirror is always clearer than

the windshield

Warren Buffett

We want the world and we want it now

Jim Morrison (1967)

I think if you look back through time, the history of income, wealth and

taxation is full of surprise. So I am not terribly impressed by those who know in

advance what will or will not happen

Thomas Piketty
13.1 Introduction
Hotspur (young Henry IV) notes in the eponymous Henry IV, Part 1, that “diseased

nature oftentimes breaks forth in strange eruptions.” While this can be read as the

disease being correlated with eruptions, from a predictive analytic standpoint, we

are more interested in how the eruption can be anticipated by the symptoms (fea-

tures) of the disease. Disease progression currently justifies a tremendous amount

of expense, but much of this expense is arguably misplaced, because we are incapa-

ble of simultaneously treating and not treating the same patient to assess the actual

benefit of treatment. While control groups are increasingly effective in health-care

studies, the impossibility of simultaneously treating and not treating an individual

means that we will always need case studies and explicitly planned experiments

for our analytic approaches.

Famous Nebraskan Warren Buffett notes that the rearview mirror is always

clearer, implying that we have 20/20 hindsight but may be a bit myopic looking

ahead. However, I would note that the windshield is much larger than the rearview

mirror, and so, the future is brighter than the past. This also means that the future is

filled with more bugs, especially if your windshield is traveling at 75 miles/hour on

Interstate 80 in Nebraska. Overall, then, it is a good time to be a meta-analytics pro-

fessional. We are creating so much data at such a high speed, all the while accepting

the fact that there are bugs with the data collected that we must correct real time.
tps://doi.org/10.1016/B978-0-12-814623-1.00013-7
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This is because the rate of data collection continues to increase, with no end in sight.

This “data revolution” has changed business faster than many businesses can visu-

alize, and so, we have increasingly the data “haves” and the data “have nots.” Those

who can collect, store, interpret, and act upon the real-time data are rewarded hand-

somely, at least in market capitalization and/or venture capital investment if not

directly in revenue or margin. We thus surmise that Mr. Buffett’s quote is more rel-

evant to business before the data revolution. We are now in the “reign of error” stage

of the data revolution, but that also means that business as usual will never regress to

a prerevolutionary model. Consumers expect their information immediately; in

effect, they want the world, and they want it now. Given the way prediction and esti-

mation work, this means that consumers want the world and they want it yesterday,

since our algorithms must anticipate the now. Business today is more than real-time

data processing: it is the processing of today’s data in anticipation of tomorrow’s

requests.

French economist Thomas Piketty notes that “if you look back through time, the

history of income, wealth and taxation is full of surprise. So I am not terribly

impressed by those who know in advance what will or will not happen.” Does this

mean that finance and economics do not benefit from predictive analytics? Abso-

lutely not. Instead, it means that these fields are precisely those in which a new per-

spective on how to reliably predict and how to effectively estimate is needed. Piketty

is expressing his dissatisfaction with the current state of economic and financial pre-

dictive analytics. In this chapter, we reach out from the current means of performing

analytics in these broad fields to a new set of approaches based on meta-analytics. To

use business terminology, we hope that you profit from it.
13.2 Healthcare
In health care, we are particularly interested in the anonymization (or deidentifica-

tion) of data, ostensibly for patient privacy concerns but, in reality, more for legal/

auditing concerns. Privacy is often opposed to other desired attributes of health-care

data, such as instant feedback on exercise goals and ease of access to the data for

legitimate consumers of the data (health-care professionals, patients, etc.). The Inter-

net, particularly the social Internet, often sacrifices privacy at the expense of narcis-

sism (being able to share all your latest news but allowing strangers to monitor you)

and convenience (being able to locate nearby resources but allowing the app pro-

vider, the mobile device manufacturer, and/or the cloud service provider to log your

position, preferences, and purchasing). One life insurance company has pushed the

limits even further, allowing its policyholders to “score premium discounts for hit-

ting exercise targets tracked on wearable devices such as a Fitbit or Apple Watch.”

Presumably, then, when you miss your exercise targets, you suffer a double hit to

your self-esteem of knowing that your insurance company might decide to change

the cost of your premium. The insurance company aims to incent its customers with

gift cards and discounts [Barl18], so there is a “carrot” and the “stick” here; however,

one has to wonder if the overall strategy isn’t a bit analogous to letting the fox guard

the henhouse.
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On a different thread and as noted in the introduction to this chapter, monitoring a

person’s disease state and disease progression—irrespective of the amount of pri-

vacy sacrificed—is generally viewed as a justifiable expense, since an accurate

understanding of a patient’s health state is aligned, at least in theory, with an optimal

preventative or therapeutic treatment regimen. Much of the overall health-care

expense, however, may be speculative since we are incapable of simultaneously

treating and not treating the same patient in order to assess the actual benefit of treat-

ment. Or are we? What if, instead of designing treatment regimens to be relatively

static (even if customized to the patient), we designed them to be dynamic? Let’s

describe this for two situations: a pharmacological regimen used to treat a particular

endocrine disease and a thermal regimen used to treat a joint sprain.

For the pharmacological regimen, the generic dose is a standard amount such as

“take two tablets each morning.” The specific, or customized, dose may well be the

two tablets normalized to body mass, with two tablets being employed prescribed

for 120–180 pounds and the overall number of tablets being defined as the integer

nearest the person’s mass divided by 75; that is, if the person weighs 200 pounds, then

200/75¼2.67, and so, the person is instructed to ingest three tablets. A person who

weighs 100 pounds is instructed to ingest 100/75¼1.33 or 1 tablet. Both of these reg-

imens are static, however. The patient either takes three tablets or takes one tablet, but

that amount doesn’t change (unless their weight does). A dynamic regimen, on the

other hand, adjusts based on some sensing/measurement and feedback from the

patient, for example, the serum level of the previous dose. If the serum level is above

some upper threshold, then the patient adds two pills to their next dose. If the serum

level is above some lower threshold but below the upper threshold, then they add one

pill to their next dose. Finally, below the lower threshold, the patient takes the standard

dose. Note that this is easily extensible to ranges below thresholds, too. Thus, for a

pharmaceutical regimen, any of the four strategies {generic, static}; {generic,

dynamic}; {specific, static); and {specific, dynamic} is possible for the given situation.

For the thermal regimen, there is a similar breadth of strategy. A generic approach

might use ice on days 1, 2, and 3 after injury, while a specific regimen might assess

the recovery rate of the individual and switch from ice to heat at day 2 or day 4,

instead of the switch at day 3. A static approach would switch from the use of

anti-inflammatories to the use of cytokines when the sensing of the amount of extra-

cellular histamine present in the wound indicates a late stage in inflammation, while

a dynamic approach might include the sensing of the amount of extracellular hista-

mine present in the wound region but adjust the mixture of anti-inflammatories and

cytokines according to the stage.

What is almost certain to happen in health care is that regimens will become, as

a percentage of all treatments, more customized, more dynamic, more personal-

ized, and more data-driven as time progresses forward. In other words, more types

of data and more types of analytics—that is, meta-analytics—will be used to drive

treatment success. The future of medicine is in the hands of the data collected.

The human body is a highly complex system involving many feedback systems;

the analytics used to fine-tune this system should take advantage of the same

adaptive, closed loop designs.
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13.3 Economics
Economics represent an application space in which the input sets are decidedly broad

and diverse. Economies are simultaneously fragile and robust, and this contradiction

is perhaps tautologically innate to economies: The fragility is a consequence of the

ability of virtually any negative event in the perception of a relevant set of citizens in

the economic zone to pejoratively impact sales, pricing, and/or confidence; the

robustness is a consequence of the ability of virtually any well-received event to pos-

itively impact the same. This means, from a system standpoint, that economies have

an effective limitless number of inputs, a tremendous breadth of outputs, and mul-

tiple feedback mechanisms whereby the output can be measured, compared with a

particular value, and fed back to the input to adjust its value. Because the inputs

are measured and the outputs created in parallel, economics is seemingly designed

with meta-analytic approaches in mind. We’ll start this off with a brief example, that

is, the use of Piketty’s model to predict the percentage of people living under the

poverty line (in terms of income).

As an example of applying meta-analytics to economics, I here consider Piketty’s

excellent book on Capital in the 21st Century [Pike13]. I do this for several reasons:

(1) Piketty assimilates a massive amount of data into his formulations, so his book’s

scope is already one of big data; (2) Piketty’s analyses are generally compelling and

accurate; (3) Piketty’s analysis can be readily expanded into meta-analytic

approaches; and (4) the starting point that Piketty provides for meta-analytic elabo-

ration should be interesting to a broad audience.

Piketty [Pike13] uses as the principal formula for much of his economic theories

on capital and income a simple one that relates the rate of return on capital (desig-

nated r) to economic growth (designated g), where r includes profits, dividends,

interest, rents, and other income from capital and where g is the amount of income.

Piketty notes in his statistical models that when the rate of growth is low, wealth

tends to accrue more quickly from r than from labor and additionally tends to accrue

more among the top 1 and 10 percentiles in terms of capital ownership, increasing

inequality in capital across the range of wage earners. Piketty’s premise is that the

primary force for separation and greater wealth inequality is the degree to which

r>g. There is no doubt truth to what Piketty claims; however, from the standpoint

of meta-analytics, it is unsatisfactorily simple to focus on only these two factors.

While Piketty further elaborates on the inheritance of capital using the same

approach [Pike13]—and this surely counts as meta-analytics—he may have been

served well to include other factors in his analysis as an additional and likely more

powerful, meta-analytic approach. Among the critiques of his work is included the

fact that other economists can also explain the growing disparity in wealth of the

wealthiest 1% of population in comparison with the lower 20, 50, or even 80% of

population with the circumstances of globalization and technological change. These,

in turn, are relatively broad factors that can be readily broken up into component, or

subfactors. For globalization, the subfactors can be the percentages of gross domestic
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product (GDP) that imports and, separately, exports comprise. These factors can be

further subfactored by market segment—for example, agriculture, food, transporta-

tion, housing, electronics, and health care—and this can continue for several further

levels, perhaps ending at the level of an individual imported or exported item (say, a

particular brand and type of cheese). The entire hierarchy of the factor can be indi-

cated as easily as, for example, Import.Food.Dairy.Cheese.FamilyFarmsInc.Brie,

which provides the factor Import, subfactor Food, and further sub-subfactors Dairy,

Cheese, FamilyFarmsInc (brand), and Brie (type of cheese). Another subfactor of

globalization may be the amount (absolute amount and percentage amount) of taxes,

tariffs, and other transfer pricings associated with any/all levels of the hierarchy of

factors and subfactors.

Similarly, we can assign subfactors to “technological change” including commu-

nication technologies, artificial intelligence (AI) technologies, and data access tech-

nologies. Sub-subfactors of these include different types of communications,

including road, train, and air (in addition to the Internet), and for AI access to dif-

ferent types of advanced computing (supercomputers, desktop computers, mobile

computing, etc.). These factors are captured in Table 13.1.

Determining the optimal level of subfactoring to consider in the final economic

model is a meta-analytic approach. We illustrate the means to assess this in

Table 13.2, which replaces the labels assigned to the factors, subfactors, and sub-

subfactors of Table 13.1 with their distinctly measured predictive accuracies.

In Table 13.2, we make the decision on the predictive powers based on the

reported accuracies. We see that for the column in Table 13.1 labeled “return on cap-

ital (r) versus growth (g),” which is columns 2 and 3 (second and third from the left)

in Table 13.2, the sample subfactors provide better accuracy (0.678 and 0.813) than

the factor itself (0.663). The sub-subfactors of columns 2 and 3—that is, {0.645,
Table 13.1 Example of factorization and subfactorization of economy-relevant
factors, illustrating the ability to effectively scale up the number of factors
considered for the economic model in a hierarchical or recursive manner.

Factor

Return on capital (r)

versus growth (g) Globalization Technological change

Sample

subfactors

r>g? Ratio r/g %GDP

imports

%GDP

exports

Communication

technologies

AI

Sample

sub-

subfactor 1

For

individuals

Ratio<1 Agriculture Food Roadway

coverage

Access to

supercomputing

Sample

sub-

subfactor 2

For new

corporations

1�Ratio<2 Transportation Housing Railway

coverage

Access to

desktop

computing

Sample

sub-

subfactor 3

For existing

corporations

Ratio�2 Electronics Health

care

Air travel

coverage

Access to

mobile phones



Table 13.2 Example of Table 13.1 with the predictive accuracies of each step
indicated.

Factor 0.663 0.734 0.567

Sample subfactors 0.678 0.813 0.745 0.794 0.613 0.622

Sample sub-subfactor 1 0.645 0.778 0.834 0.767 0.555 0.561

Sample sub-subfactor 2 0.693 0.756 0.876 0.645 0.435 0.654

Sample sub-subfactor 3 0.655 0.873 0.819 0.808 0.632 0.836

Boldface accuracies indicate those chosen for the final analysis. Please see text for details.
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0.693, 0.655} and {0.778, 0.756, and 0.873}—do not provide better mean accuracy

than the subfactors to which they belong, and so, factoring into these three subfactors

for predictive behavior is not apparently a refinement of the model. However, in the

columns fourth and seventh from the left, we see that modeling based on the sub-

subfactors does improve the overall accuracy of the model.

Obviously, Table 13.2 is a simplification of the actual process of building amodel

matched to the problem. Much further analysis of factors and various levels of sub-

factor are possible. For example, we may have a related subfactor (or sub-subfactor,

etc., collectively “child” factors) in two different columns, since, for example, both

agriculture and food imports/exports may both have a wide variety of food types as

overlapped categories. This is considered the search for a confounding factor—a sub-

factor affecting multiple parent factors. Also, as we know from the more general field

of classification, our optimal set of factors may be weighted combinations of parent

and child factors at several levels. Regardless, this example illustrates the use of a

meta-analytic approach to build an economic model.

Importantly, this model is not the same as principal component analysis

approaches. We are not looking for an orthogonal set of basis functions; instead,

we are looking for a model that can be described in terms of the actual factors them-

selves. This means that the models are directly based on the measured factors and

their combinations. In the example of Tables 13.1 and 13.2, then, we may build

our model as a very simple linear combination of the factors and subfactors that are

most promising; for example, the output¼c1*(r�g)+ c2*(r/g)+ c3*(agricultural
imports)+

c4*(transportation imports)+ c5*(electronics imports)+ c6*(%GDP exports)+ c7*
(communication technologies)+ c8*(access to supercomputing)+ c9*(access to

desktop computing)+ c10*(access to mobile phones). Because the ranges of the 10

subfactors will differ largely—for example, r/g may only be in a range of 0.1–10, while
“agricultural imports” will range from $0 to perhaps many hundreds of billions of

dollars—we will expect to see widely varying values for the individual coefficients

c1–c10. The products of the coefficients and the subfactors will, however, be more

similar in magnitude (e.g., the range of accuracies in Table 13.2 for the boldface terms

that comprise the selected subfactors is only from 0.561 to 0.876).
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In building economic models, we can simultaneously consider the production,

distribution, and consumption of goods and services using two or more analytic

approaches, one of which may be the factor/subfactor approach shown in

Tables 13.1 and 13.2. For example, in addition to a “constructive” model based

on the relative accuracies of the factors/subfactors, we may wish to incorporate

the use of a “sensitivity”-based model in which the relative changes in the economic

output based on changes in factors across their respective ranges are considered. This

is highly relevant for deploying a system that will be valuable for predictive assess-

ment of the behavior and interplay of different economic variables. Using the exam-

ple of Piketty’s model, we may decide to include all of the various factors and

subfactors at once and remove them based on the insensitivity of the overall eco-

nomic model to changes across the entire range for each variable. In other words,

samples are pruned by larger sensitivities rather than greater accuracies.
13.4 Business and finance
In business and finance, analytics are already de rigueur for any successful organi-

zation. Profitability in many ventures is dependent on an estimate not only of the

mean but also of the variability of a particular asset, commodity, stock, etc. This

is the basis of the “buy low, sell high” adage in stocks, which is irritating to hear

about after the fact but wonderful to have seen coming. Whether or not predictive

analytics constitutes insider trading in the future is a question worth asking at this

point, as surely there will be a time—if indeed that time has not already

occurred—when predictive analytics will surpass the abilities of even financial

department employees at predicting the market capitalization of a corporation.

The use of analytics to predict future outcomes and gain deeper insights into current

behavioral patterns and how they will help shape the future is an important part of

any organization’s strategy in this age of analytics, and this helps explain the enthu-

siasm around such technologies as blockchain [Nara16], which might otherwise be

no more than a quotidian, incremental incarnation of a distributed ledger. Block-

chain’s volatility (and, admittedly, its usefulness in allowing transaction parties to

hide behind anonymity) is a large part of its charm. Financial institutions perform

better when there is volatility in the market, and blockchain in its first decade has

been all about volatility. An important predictive analytic for any financial institu-

tion is the volatility of the markets in which they can choose to participate. The most

profitable markets are the ones with the highest volatility. The mean doesn’t mean as

much as the variance.

For businesses, determining the level of volatility is essential for such prosaic

reasons as ordering, inventory, shipping, and marketing. Unpredictability in sales

leads to inefficiencies in myriad aspects of planning a business. Staff can be unoc-

cupied, draining revenue, or staff can be overworked, draining their spirit. Inventory

can sit unpurchased, increasing the footprint of stock and increasing the urgency of

scaling up marketing efforts. In other words, volatility in the market leads to a larger
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footprint for the entire supply chain—volatility in the market corresponds to variance

in resources and a concomitant expended range of contingencies to anticipate

downstream.

For business and finance applications, we are most interested in reducing the vol-

atility around the mean predicted behavior. This differs from the benefits of most

hybrid, ensemble, combinatorial, and meta-algorithmic approaches, which tend to

elevate the rank of the correct output irrespective of an improvement in the overall

accuracy, precision, recall, or other concerns. In business and finance, the top con-

cern for the intelligent system designer is usually the amount of risk incurred in the

near term. Multiple approaches to risk management are relevant, including the fol-

lowing four that will be touched upon in this section:

1. Historical simulation

2. Extreme value theory

3. Worst-performing algorithm

4. Consensus hybrid model

The first two of these are existing approaches, well known and well adapted in the

financial community. For (1), predicting the value at risk is accomplished through

the simulation of a cumulative distribution function (CDF) of asset returns over time,

a process named historical simulation. The CDF can be sampled from in a time

series, along the lines of a Monte Carlo simulation, and from it, a population of

returns over time is estimated. From this plurality of simulations, a consensus

expected return and variance (risk) can be computed. In its basic form, historical sim-

ulation equally weights all asset returns of the whole period and does not allow data

further in the past to be less heavily weighted. This is inconsistent with our recom-

mendations for the pruning of aging data as described in Section 3.3. More appro-

priately, weighted historical simulation ages older data to overcome the

inconsistencies of basic historical simulation. Another modification of historical

simulation, filtered historical simulation, is concerned with the volatility in the his-

tory of asset returns and uses a model-based treatment of volatility with a nonpara-

metric specification of the CDF to provide a broader estimate of the range of risks

than basic historical simulation. From a meta-analytic standpoint, of course, some

linear combination of weighted and filtered historical simulation is almost certain

to provide a more robust estimate of risk. Whether a robust estimate of risk is the

preferred assessment of risk, of course, is open to debate. The extremes of risk

may be most important.

If so, then (2) above—that is, extreme value theory—may be the approach best for

the financial segment. Extreme value theory incorporates the probability of events

that are more extreme than any previously observed in the historical return on assets

into its calculations. Extreme value analysis (EVA) is not just used in business and

financial models; in addition, it is employed in structural engineering, earth sciences,

traffic prediction, and geologic engineering. In meteorology and hydrology, EVA is

employed to estimate the probability of the so-called “100 year” and “1000 year”

floods, the “50 year” waves, and the “100 year” coastal swellings. EVA relies on
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straightforward but powerful approaches, such as daily/weekly/monthly/annual

maxima series. There is some art involved in the calculation of these series—that

is, the maxima and minima can be represented based on day, week, month, or other

partitioning—but in the end, a high and low end of overall risk can be estimated.

Generally, when absolute maximum risk is important to estimate, the time window

for the series approaches an infinitesimal slice of time, akin to the computing of com-

pound interest.

For (3), the worst-performing algorithm approach, we employ multiple models,

which might include the variants of historical simulations and extreme value

approaches, along with Bayesian networks, neural networks, evolutionary algo-

rithms, and others. In terms of reliability, we are concerned with the differences

between models and not just on the different data sets. Therefore, the “worst-

performing algorithm” is the one that provides the highest negative risk. This is a

relatively simplistic model and is only used if the user is extremely risk-averse

(e.g., someone planning a military action). For less conservative hybrid approaches,

we will use the fourth approach.

For the fourth approach, namely, the consensus hybrid model, we focus on the

use of clustering and classification algorithms in multiple combinations in order to

generate the most robust financial models. Here, a wide variety of the meta-

algorithmic approaches described in the previous 12 chapters can be brought to bear

on the multiple models described in the previous paragraph regarding the worst-
performing algorithm approach. The consensus hybrid model is a traditional

meta-algorithmic [Sims13] approach to risk analysis and thus performs a process

such as weighted voting, predictive selection, or weighted confusion matrix to pro-

vide the highest accuracy + robustness estimate of risk. This approach tends to cen-

tralize the estimate and so by definition blurs the outliers and underestimates the

extreme risks.

All told, it is clear that the business and financial sectors are especially predis-

posed to meta-analytic approaches. There is a rather inelegant reason for this: busi-

ness and finance analytics have so many potential influencing factors that

estimations related to returns on assets almost certainly do not optimally balance

the influences of these factors—if in fact they consider all of the relevant factors.

More concerningly, financial models are incapable of pinpointing “random” events

such as earthquakes, tsunamis, major sporting winners, election results, and a wide

variety of other outcomes, which can, upon occurring, cause larger effects on

finances than all the other factors combined. One might note that financial prediction

is more akin to trench warfare than to a siege—long periods of boredom punctuated

by moments of sheer terror. Even the most extreme of extreme value analyses are

unlikely to effectively anticipate these events. Thus, we are ultimately left with

an unsatisfying amount of control over business and financial analytics. The best that

we can do is optimize the cost models for the predictable and accept that the unpre-

dicted can and will occur. Using historical data, we can at least estimate the cost of

the unpredictable, add that to the range of our predictions, and so define the worst-

case risk.
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13.5 Summary
In this chapter, several novel (to this book) application domains for meta-analytics

were considered. For health care, we considered the means by which to deidentify

potential privacy-compromising information (this is applying analytics to the on-

ramp of health-care analytics). We also considered the trade-offs in generic versus

personalized health care (applying health care to the off-ramp of health-care analyt-

ics). For economics, we started with the relatively simple economic model of Piketty

and extended it through the incorporation of new factors and subfactors. The advan-

tages of such an approach include its inclusiveness (new factors easily incorporated)

and its ease of retraining. Since health-care regimens are almost certain to continue to

become progressively more customized, dynamic, and personalized, we can cer-

tainly anticipate them to become progressively more data-driven for the foreseeable

future.

In economics, we begin with a consideration of Piketty’s straightforward but

effective model for capital and income by incorporating factors and various levels

of subfactors in the areas of globalization and technological change. We show

how a table of accuracies for the factors can be used to select a model that can be

described in terms of the actual factors themselves. This means that the models

are directly based on the measured factors and their combinations and thus can be

conveyed to a nonmathematically inclined audience in the terms of their trade.

In business and finance, the difference between an estimate of the mean and the

variance of the risk was described. Four different means of analytics or meta-

analytics for assessing risk on asset returns were described, including historical sim-

ulation and its variants (weighted and filtered historical simulation), extreme value

theory, the worst-performing algorithm (or “greatest risk”), and the consensus hybrid

model. Each of these approaches has different value depending on the nature of the

risk, the size of the financial investment, and the willingness of the asset investor to

take on risk.
13.6 Postscript: Psychology
Psychology is a field that has gone largely undiscussed in these 13 chapters. It is,

however, one of the fields in which analytics have been historically of paramount

importance. This includes the tried and true approaches of collecting surveys (in

which case percentages are the customary analytics), performing longitudinal and

cross-sectional analyses, and performing archival analyses. Tying behavior, mental

state, and personality together has helped drive a lot of the advanced regression tech-

niques now so common to the field of analytics. More recently, the field of behav-

ioral analytics has extended analytics to the (very!) personal level of suggesting

entire streams of information for an individual to consume. Are these streams always

relevant? No, but the large data collectors—think of the companies above $500 bil-

lion in market capitalization—are very good at insinuating more information out of
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their users. So, the analytics continue to get better—meaning more personalized,

more accurate, and not incidentally more creepy.

Other elements of psychological research are generalizable to the overall field of

meta-analytics. One of the most important is the concept of confounding factors, in

which two correlated measurements are actually unrelated. For example, we might

see that square feet in a person’s house is highly correlated (r > 0.95) with the num-

ber of trips to Europe taken by the household. It is clear in this example that the size

of the house is not causing the family to go to Europe, nor is going to Europe making

the family purchase a larger house. Instead, there is a rather obvious confounding

factor—the net income of the family—that is very highly (r > 0.99) correlated with

both square feet of house and trips to Europe. A simple rule of correlation is as fol-

lows: there is almost always a confounding or at least partially confounding factor.

Setting up a table of correlation coefficients is, therefore, essential to better under-

standing the relationships between your features.

Another concern to any earnest psychological researcher is the fact that in many

cases, a quasi-experimental approach, rather than a proper experimental approach,

must be employed. A quasi-experiment is empirical—that is, control and experimen-

tal group assignment is a posteriori, so that it is used to estimate the causal impact of

an experimental factor but without random assignment. This means such an exper-

iment is almost certain to be impacted by one or more confounding factors. However,

there are usually ethical and/or structural exigencies that prevent a proper experi-

mental design in many psychology-related research areas. One example is to test

the impact of smoking on the development of another disorder such as lung cancer.

It would be unethical to randomly assign participants in the experiment to either the

control or one of the experimental (e.g., 0.5, 1, or 2 packs per day) groups, since

assignment to an experimental group would have considerable health risks (not to

mention it may be difficult to enforce). Thus, for this experiment, the assignments

are after the fact, and the experiment designer does not have the ability or choice

to change the independent variable. Thus, if only such a study were available, a cig-

arette manufacturer might argue that there may be a predisposition of people to

smoke who already have a higher than average genetic risk of lung cancer. Some

might argue that this is statistical apologetics, giving the cigarette manufacturers

a loophole. It’s not—I’ll close that loophole shortly. However, from the standpoint

of a quasi-experiment, it can reasonably be argued that a physiological lung defect

such as weakened alveolar linings and dilated bronchi may make a person more

likely to smoke: the smoking might constrict the bronchi to normal levels and so alle-

viate discomfort. The onus should then be on the cigarette manufacturers to establish

that constricted bronchi lead to a higher lung cancer rate but that only delays the cre-

ation of another confounding factor to keep the argument going. Fortunately, there

are means of establishing a proper experiment a posteriori. Perhaps a biological

anomaly, identical twins are an absolute boon to psychological research. Because

they are born with equivalent genetic information (epigenetics dissuades us from

ever truly arrogating the term “identical” here, but the expression is more mellifluous

than monozygotic, isn’t it?), if we find identical twins with different smoking
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behavior, we can act as if they were assigned to these different groups a priori (since
from the genetic standpoint, their assignment is random). This elevates the quasi-

experiment to an experiment.

From the perspective of meta-analytics, this discussion of quasi-experiment

versus proper experiment is illuminating, not to mention interesting. We can use a

meta-analytic (i.e., hybrid) approach to establish that the quasi-experimental data

(experimental output of the a posteriori quasi-experiment) match that of the identical

twin experiments. In so doing, we can justifiably augment the size of each of our

experimental groups with the non-identical-twin individuals. That is, if the two

groups are not statistically significantly different, we can combine them, and in so

doing, the quasi-experiment becomes a reasonable proxy for the true experiment.

Finally, with meta-analytic approaches such as the cumulative gain, or lift, curves

(Chapter 4); sensitivity analysis (Chapter 5); predictive selection (Chapter 6); model

fitting (Chapter 7); design patterns (Chapter 8); analytics about analytics (Chapter 9);

analytic system design (Chapter 10); and aleatory techniques (Chapter 11) at hand,

we can craft the meta-analytics equivalent of “identical twin” research. Combinato-

rial approaches drive meta-analytics, and for psychological and other complex

behavioral research, creating multiple hypotheses and finding intelligent means of

creating consensus among these hypotheses are a good approach if one aims to create

a robust overall knowledge base.
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Meta-Analytics. ht

# 2019 Steven Sim
The future’s uncertain and the end is always near

Jim Morrison (1970)

The aim of argument, or of discussion, should not be victory, but progress

Joseph Joubert
14.1 Chapter 1
The first chapter provided a sweeping consideration of the field of analytics, which is

essential to an understanding of meta-analytics. Statistical estimation compares

uncertainty in the independent and dependent variables, which is directly related

to sensitivity analysis. The calculation of residual entropy is used to determine model

definition sensitivity. Clustering k-means and k-nearest neighbor clustering are

introduced to illustrate the conversion of unstructured data into structured data.

The addition of regularization approaches to clustering to “optimize” the clustering

is considered in Chapter 10. The process of unclustering was also introduced as a

form of “tessellation and recombination” (a meta-algorithmic pattern) for clusters.

Additional topics in Chapter 1 introduced the reader to a set of analytic tools.

A four-state Markov model was used to illustrate how system optimization can be

garnered from the behavior of individual states and their transitions. This model

can also be applied to time series data. Next, “nonbiological” machine learning

approaches were overviewed. Entropy as a means of assessing how close to optimi-

zation a system is was discussed. Support vector machines (SVMs) and Bayesian

approaches were reviewed. Dimensionality reduction for assessing the complexity

of a system was covered, along with its link to information gain. Optimization,

search, data mining, and knowledge discovery approaches were introduced. Recog-

nition was covered along with processes of binarization, segmentation, key-point

detection, classification, and the consideration of training data. These were applied

to 1D and 3D recognition in addition to the 2D image recognition. The main forms of

ensemble learning (bagging, boosting, and stacking) were introduced along with a

novel ensemble method, the spatial-continuity hybrid.

Next, artificial intelligence (AI) approaches were introduced: genetic algorithms

(GAs), artificial neural networks (ANNs), and immunologic approaches. Only the

most rudimentary of evolutionary approaches were covered, but the basics of popu-

lations, mutations, crossovers, and inversions were described. For ANNs, multilayer
tps://doi.org/10.1016/B978-0-12-814623-1.00014-9
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perceptrons were used to illustrate the concepts of nodes, gains, back-propagation,

and thresholding at each consecutive layer.

The chapter concluded with the introduction of a simple but very adaptable clas-

sifier approach. The degenerate binary case was covered first. Then, the general case

was described, in which training and testing, weighting samples based on distances

from all class populations, and the derivation of features from measured features are

considered. Taken as a unit, this chapter introduces analytic approaches not often

seen in traditional analytic books, including the following:

(1) Design patterns and approaches for combining a multiplicity of analytic

approaches.

(2) Application to a wide range of fields.

(3) Pragmatically, statistics-, and heuristic-driven evaluation approaches (such as

for the ground-up classifier in Section 1.10).

This chapter intends to provide the means for all practitioners of data analytics to

build better systems. The aim is to allow someone with a moderate understanding

of statistics, calculus, logic, linear systems, and design patterns to be able to architect

and deploy more intelligent systems than even the best individual intelligent algo-

rithm designer can achieve—by using such a superior algorithm as the starting point.

This meta-architect understands the relative advantages and disadvantages and both

the flexibility and the limitations, of each of the component systems, and thus how to

make them more valuable within a larger system involving two or more intelligent

components.
14.2 Chapter 2
Ground truth is, in fact, only part of the truth. While we cannot prejudicially elim-

inate ground truth data, we can employ an approach analogous to boosting (one of the

original meta-analytics), wherein different weighting of the ground truth is used to

better train and validate an intelligent system. Traditional training approaches are

problematic: Many use k-fold cross validation, wherein
k�1ð Þ100%

k of the ground truth

is used for training and the k subsets of the training data are used for testing; these k
tests are averaged to report the (overtrained) test accuracy. This is really a teleolog-

ical measurement, showing the maximum possible performance of the algorithm. As

such, it should be complemented with more thorough training+validation+testing

approaches, which are more robust.

Training data can be used for many purposes; for example, the first round of train-

ing can be used for the optimization of accuracy, while the second round (or “val-

idation”) of training can be used for robustness. We introduced the use of

prevalidation wherein a subset of ground truth data define a set of weak classifiers

(improved robustness), and when all the training data are used, we tune the accuracy

of the entire data set. Sequential consideration of meta-analytic patterns was shown

to be a form of validation: training sets are herein used to select the appropriate pat-
tern for the analytics. The validation set evaluates paired meta-algorithmic behavior.
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Iterative training on multiple meta-algorithmic patterns can be followed by using the

validation set for robustness rather than accuracy: validation explores which meta-

analytic approach provides the best system output, whether it is accuracy, robustness,

or some other measurement or combination of measurements.
14.3 Chapter 3
Experimental design of analytic systems may, by necessity, occur after the data are

collected. Data normalization is used to even the playing field so that, before

weighted, distinct features or dimensions will contribute to an analytic task equally.

An advanced form of normalization—bias normalization—and its design consider-

ations are means of preventing asymmetrical data collection from distorting the con-

clusions. Systems should be designed cognizant that cost, time, availability, and even

ethics may preclude the desired rigor in an analysis (see also the discussion around

quasi-experiments in Chapter 13). Ground truthing, or training set normalization, is

employed to prevent one or a few ill-behaved data sets from steering the architect

into a poor design choice. Gracefully aging data involve a backward-in-time

(BIT) or a combined forward-in-time/backward-in-time (FIT-BIT) approach and

is based on the data analogue of a moving average filter.

There is also an “engineering practice” that is defined around meta-analytics.

Componentization, modularity, and the amenability to series and parallel construc-

tion provide many potential system designs, as in other fields (and software in gen-

eral). The application of linear system theory, particularly sensitivity analysis, allows

us to compare and contrast different models to fit the data: the one least sensitive to

instantaneous changes in the input (domain) data is likely to be more useful in

deployment phase.
14.4 Chapter 4
Data analytics is, in some sense, the act of removing the “personality” from data—be

it raw data or cumulative data such as represented by a confusion matrix. One means

of extracting this structure is to generate a cumulative response curve (CRC). In

aligning two or more CRCs, we identify zones of interest for sequence-dependent
predictive selection (a meta-analytic pattern based on the meta-algorithmic patterns

on predictive selection), which is based on sorted differential-conditional CRCs, or

SD-CCRCs. The start and end zones of the SD-CCRC are especially useful to mine

for predictors. The simple (and traditional) cumulative gain curve (CGC), or lift

curve, complements the powerful analytic tool, the confusion matrix, in illustrating

classification error, precision, recall, and accuracy with any percentage of the

samples assigned to a particular class.

Maximum information gain was applied to the optimization of a “decision tree”

for biometrics: while the number of possible biometrics is relatively small, the num-

ber of meta-analytic approaches that can use these biometrics is shown to be very
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large. Sequencing, weighted linear combinations, and predictive selection preclus-
tering patterns provide the possibility for billions of customized analytics, even with

only 10 measured biometrics. Here, information gain is the differential ability of a

custom pattern to identify an individual from a large population. The custom biomet-

ric approach and settings are the individual’s “public key” and their biometric

response to a form of private key.

Model agreement patterns were discussed: Residual entropy removes the person-

ality from a data set, while the regression-based approach to temporal, scaling, dis-

tribution, and reliability parameters adds robustness. System design theory-based—

particularly co-occurrence and similarity-based ensemble—approaches are shown to

provide excellent rank-biased systems, moving the correct answer closer to the top of

the stack. These are not always accuracy-biased systems and in fact at times can

decrease accuracy while reducing the mean guesswork to find the correct response.

Two sensitivity analysismeta-analytic design patternswere introduced: (1) the sen-
sitivity-driven ensemble selection pattern uses the partial derivative and a confidence
weighting for each factor to create a weighted significance coefficient for each factor,

enabling more productive boosting, bagging, or even weighted voting. (2) The sensi-
tivity-driven dimensionality reduction pattern is a feature selection, not a feature

extraction, form of dimensionality reduction (through feature pruning). This type of

dimensionality reduction is compared with that driven by confusion matrices. The lat-

ter employs “within pair” and “outside pair” confusion matrix-based techniques to tar-

get dimensionality reduction from D-dimensions through the replacement of two

classes with a binary classifier that follows a D-1 dimension-reduced classification.

Aleatory approaches—insensitive as possible to errors in individual parts of the

analysis—provide us with a so-called optimized insensitivity, providing sequential

removal of features by two different means. This enables dimensionality reduction

even while identifying likely correlations. A second aleatory approach, the sequen-
tial variation of feature output aleatory pattern, is a form of sensitivity analysis that

intentionally introduces error to see what the system insensitivity to errors of each

feature is. Finally, a “veil of ignorance” approach to expert system-inspired weight-

ing of features and rules together is provided.

The value of confusion matrices is further enhanced when they are shown to

apply to the determination of independence in probability theory. Here, confusion

matrices are employed to minimize the difference between the off-diagonal ele-

ments from their independence-optimal values (i.e., those values predicted by

independence).
14.5 Chapter 5
Sensitivity analysis approaches are used to assign individual models to portions of

the domain, creating hybrid models or metamodels. Relatedly, destabilization of data

groups was discussed for four situations: (a) when one set of ground truth has largely

different entropy than the other sets, (b) when one set of ground truth is more or less

discretized than the other sets, (c) when one set of ground truth is created by different
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means than the other sets, and (d) when the grouped behavior of the data is too similar

by analytic evaluation. Sensitivity analysis was also applied to the system model and

to individual algorithms in an ensemble, combinatorial, or other hybrid system. By

varying the weights in a weighted voting system, we could compute absolute, rela-

tive, and directional effects. A matrix approach to sensitivity analysis was used to

determine when adding another algorithm or meta-algorithm is warranted in a hybrid

design. Three types of sensitivity were evaluated for this purpose. Sensitivity anal-

ysis of path was shown to be particularly applicable to Markov models and Bayesian

networks. Clearly, sensitivity-based approaches are one of the most important

families of meta-analytics, providing not only better analysis but also better system

testing and configuration.
14.6 Chapter 6
Predictive selection is often used to improve system decision-making accuracy,

although the approach of intelligent partitioning followed by the differential deploy-

ment of selection tasks based on maximizing precision is broadly useful in opti-

mizing any system objective function. Six major approaches to partitioning were

described: (1) yes/no or pass/fail; (2) threshold-based partitioning; (3) subrange-

based partitioning; (4) conditional/Boolean partitioning; (5) sequential partitioning,

which may result in changing subrange definitions; and (6) consensus partitioning, a

conditional partitioning based on both the data and the metadata. Predictive selection

applies to ensembles of classifiers (or any other analytics), so long as the configu-

ration providing the highest precision can be assessed. The trade-off for predictive

selection is adding more rules to improve precision versus running the risk of over-

training the system. Partitioning of the input can use a “separation of task” approach,

wherein an auxiliary data feature is used to assign the sample to one of a plurality of

partitions. The overall improvement in system behavior depends on how the features

interact together, although this is not directly addressed by predictive selection. For

predictive selection, there is one focus: maximizing precision for every decision.

We concluded with multipath predictive selection, wherein a number of possible

decisions are made and a goodness of fit score computed for each path that is robust

to the utility of the output. Again, some form of analytic regularization is needed so

that this algorithm does not devolve into creating as many partitions as possible.

A functional measurement such as the range of precisions for the entire ensemble

of algorithms, analytics, or systems in each partition was shown to work well in this

role of regularization. This emphasizes the need for regularization as a “check and

balance” for a wide number of meta-analytic processes.
14.7 Chapter 7
Most advanced fields of science, engineering, and technology can be employed

for defining data system models of utility in dynamic, scalable, modular, and robust

systems. In this short chapter, we focused on chemistry, organic chemistry, and
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immunology approaches and showed how anonymization can be employed as a

means of testing the optimization of a model. Chemistry analogues used for analytics

include the five simplest chemical reactions: composition, decomposition, combus-

tion, single substitution, and double substitution. One strategy is to apply all five

equations to data sets and evaluate the percent of the theoretical improvement in

the analytic output that is gained. The concept of limiting reagents, which provide

a sort of sensitivity analysis for the overall analytic model, was introduced. The anal-

ogy between a sequence of reversible/bidirectional organic chemistry reactions

(oxidation-reduction) and the need for robust analytics was made: One direction

is the addition of new tagging information, and the other is the removal of ectopic

tagging information. Immune cell differentiation is shown analogous to the continual

refinement of analytics. The stage of maturation corresponds to an increasing preci-

sion of classification or indexing.We also described the ability of data categorization

to “rewind” a level (or more) and be recommitted to an alternate path.

Anonymization of data was shown to be consistent with the measurements of sys-

tem error entropy, least squared error (LSE), and variance. Anonymization’s utility

in providing both secure and reliable voice biometry was briefly discussed. The

model error metrics of LSE, variance, and entropy were defined, and their employ-

ment for determining model goodness of fit is provided.
14.8 Chapter 8
Two different, though related, approaches to categorization analytics were intro-

duced. The first, synonym-antonym, focuses on the weighting of synonyms and anto-

nyms based on their similarity or dissimilarity to categorization terms, multiplied by

the relative rareness of the terms. The overall summed weights of synonymic and

antonymic behavior can be used for assignment purposes. Secondly, the rein-
force-void pattern family is discussed. Residual entropy, expectation-maximization

(EM), and varying the coefficients for the ratio of occurrences to nonoccurrences can

be used to generate effective features for this pattern. The analogy to the Hegelian

dialectic is highlighted. The behavior of reinforcement/void ratios compared with

their expected values can be used as a criterion for feature selection and for multi-

category discrimination. Finally, an extension of the familiar expectation-

maximization (E-M) algorithm; “define, assign, and refine”; or expectation-maximi-

zation-elimination (E-M-E) was introduced.
14.9 Chapter 9
Meta-analytics is more than just coordinating two or more analytics to improve the

overall analytic behavior (cost, accuracy, robustness, etc.). They are also analytics

around analytics, including the application of methods based on entropy to difference

sets; the application of entropy to descriptive distributions such as histograms; and

the use of occurrence vectors, which merge the best of Jaccard and correlative
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approaches. Functional metrics in which one or more measurable processes give us

insight into other analytics we wish to evaluate were considered. The recommenda-

tion is to use primary functional metrics where possible: one such functional metric

design pattern designated the “inverse predictive selection,” which is used in numer-

ous applications to provide better forward estimation as part of optimizing the ana-

lytics. We reinforced the value of connecting analytics around important system

design concerns of (a) performance; (b) robustness; (c) accuracy; (d) cost; (e) mod-

ularity and repurposability; (f) testing, measurement, and validation; (g) scalability;

and (h) reliability.

We should ensure that the data set used for training or testing is both as broad and

as uniformly deep as needed to ensure optimal system robustness. Training data are

also useful for defining representative samples and for defining new categories from

outlier data. Finally, training and testing can be regularized for swifter and more

robust optimization. Expectation-optimization approaches are augmented with

regularization to create an expectation-optimization-regularization, or E-O-R

(“Eeyore”) algorithm. This enables a two-factor optimization based on iterative

assignment to representative sample (E-O) and the optimization of the number of

clusters with an F-score calculation.
14.10 Chapter 10
A broader perspective on system design is empowered by meta-analytics as both

hybrid analytics and as analytics about our analytics. I/O gains, information gain,

knowledge gain, and efficiency can be measured in new light of increased system

value and in terms of conciseness of design choice. Robustness gain was introduced

here, defined as the system’s worst-case response to input. In revisiting key system

design considerations—rank, accuracy, performance, cost, robustness, modularity,

and scalability—we showed that rank and accuracy bias in a system are relatively

comparable by the cost of their errors. The case for error gain over accuracy gain

as a means of weighting was further expostulated. Performance gain and later robust-

ness gain are gains that benefit from k-fold training and validation in a way that accu-
racy and rank-biased systems do not. In robustness gain, the use of 2-to-k enumerated

training and validation design provided a stronger estimate of robustness.

Module optimization uses measurements of entropy, error variance, and sensitiv-

ity. Using them along with analytics about the messaging, or communication, within

and between modules adds more insight into system functionality. We further elab-

orated on the benefits of regularization applied to clustering. Regularization is

defined as a penalty subtracted from the fitness. The fitness is an F-score based

on the relative variance within clusters compared with between clusters. Five regu-

larization approaches account for the variability within the clusters (sum of squares

and variance), the cluster size, the presence of small clusters or unclustered samples,

and the overall number of clusters. In clustering and other partitioning processes, var-

iance should decrease, and entropy should increase, as our model fitness improves.
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14.11 Chapter 11
For the sequential removal of feature aleatory pattern introduced in Chapter 4, we

introduced a figure of merit (such as accuracy) approach to dimensionality reduction,

looking for inflection points in the %Error Gain metric. At these points, sequential

removal of the lowest-ranked remaining feature is used to provide a sensitivity anal-

ysis for the reduced dimensionality. For the sequential variation of feature output ale-
atory pattern, the sensitivity to features is determined by intentionally adding errors

to the measured values. This “forced aleatory sensitivity analysis” is a reasonable

middle ground between sensitivity analysis performed using actual data with a given

difference (“delta”) between them (designated natural sensitivity) and sensitivity

analysis performed on simulated data (designated synthetic sensitivity analysis).

A variety ofways to add randomness to existing (measured) datawere overviewed:

dropping significant figures; swapping two fields between two data elements; using

genetic approaches such as crossover, mutation, and inversion; rudimentary

introduced errors (substitution, deletion, insertion, and transposition); compound

introduced errors (spelling, anagram, acronym, slang, jargon, pun, and other

context-dependent plays on words); imputation; and normalization. Combined, these

tests are recommended means of assessing the robustness of a system. Lastly, hyper-

spectral aleatory approaches were considered with respect to measurements of

reliability, robustness, and sensitivity. The distinction between measurement and

assumption reliability was described, and sensitivity was considered in terms of

substitutability.
14.12 Chapter 12
For machine translation, we pointed out the variety of analytic approaches that can be

applied at each of 10 identified major steps. There are multiple nodes in the sequence

where information calculated can be fed back to “earlier” stages to improve the over-

all behavior of the system, an approach termed “translation round-trip.”

Robotics was shown to benefit from meta-analytic approaches. Applying analyt-

ics at the same level of modularity as the subsystems of the robotics, we can use the

predictive selection and weighted voting patterns for physical robot (“physibot”)

motion and manipulation. Using multiple sensors for richer analytics is also an

important meta-analytic consideration and argues for robotics being “meta-analytic”

by nature.

Using analytics modeled after the biological processes that they are being

applied to is a logical approach, analogous to the chemistry analogues in

Chapter 7. Using enzymes and evolution as two systems for design insight, we

showed how reproductive isolation, punctuated equilibrium, and CRISPR-Cas9

processes provide insight into the robust design of certain types of intelligent ana-

lytic systems. Punctuated equilibrium is especially repurposable to other analytics,

including ANNs and meta-algorithmics, where it can be used to break recalcitrant

nonglobal “optimization.”
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14.13 Chapter 13
In Chapter 13, we considered applying meta-analytics to health care, economics,

business, and finance. We specifically focused on how hybrid approaches enable

simultaneously generic and personalized health care. Meta-analytics were then

shown to have the potential to greatly extend existing economic models, such

as Piketty’s, through the incorporation of new factors and subfactors in a recursive

hierarchy. This meta-analytic system is inclusive to new factors and is easy to

retrain. In our specific example, we showed how factors in globalization and tech-

nological change could be used to augment Piketty’s model based on capital and

income. Our model extensions are based on directly measured factors and their

combinations, which means their structure can be explained to an audience in

the terms of their trade. In business and finance, four different meta-analytics

for assessing risk on asset returns were described, including the historical simula-

tion and its variants (weighted and filtered historical simulation), the extreme

value theory, the worst-performing algorithm (or “greatest risk”), and the consen-

sus hybrid model. We completed the new content of the book with a discussion of

quasi-experimental approaches in psychological and other research. Most impor-

tantly, we considered the approaches allowing us to combine the two data sets

through establishing statistical equivalence (or, rather, showing the lack of statis-

tical differences) between these two populations. This approach is closely related

to the approaches for pruning low-quality training data (Section 2.2) and aging

training data (Section 3.3).
14.14 The future of meta-analytics
Despite living in the age of big data, our future is perhaps more uncertain than it

has been in a long time. Is this a mirage only seeming more uncertain because we

now understand better the power of predictive analytics? That may well be the

case. Regardless of the certainty of what is to come, I can predict with high accu-

racy that the end is very near, just as it was, regrettably, for Jim Morrison when he

penned those lyrics in 1970. The end of this book, that is, which is in just a few

short sentences. If this book accomplishes nothing else, it should show the reader

that there is a lot of room for creativity, for argument, and for discussion in the

future of data analytics, that is, in meta-analytics. As Joseph Joubert noted, the

aim of this creative argumentation and discussion is not for one analytic to “claim

victory” in a particular area of application. Instead, meta-analytics is all about

progress. Understanding on the shoulders of the giants of analytic experts who

have come before you. Using their findings, their insights, and their wisdom

as the launchpad in a career guided by dataphilia. The love of data. If you are

not already smitten, find Cupid’s dart–or should I say data?–and feel its barb.

Because data are here to stay. I hope that this book helps launch your dataphilia

in creative ways.
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Lift curves, 154–158, 155t, 158f
Linear regression, 10–11, 10f

with confidence interval, 11–14, 12f
with sensitivity lines, 11–14, 13f
uncertainty, 14
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