


Table	of	Contents
Introduction

Introduction	to	Next.js

The	main	features	provided	by	Next.js

Next.js	vs	Gatsby	vs	create-react-app

How	to	install	Next.js?

View	source	to	confirm	SSR	is	working

The	app	bundles

What's	that	icon	on	the	bottom	right?

Install	the	React	Developer	Tools

Other	debugging	techniques	you	can	use

Adding	a	second	page	to	the	site

Linking	the	two	pages

Dynamic	content	with	the	router

Prefetching

Using	the	router	to	detect	the	active	link

Using	next/router

Feed	data	to	the	components	using	getInitialProps

CSS

Populating	the	head	tag	with	custom	tags

Adding	a	wrapper	component

API	Routes

Run	code	only	on	the	server	side	or	client	side

2



Deploying	the	production	version

Deploying	on	Now

Analyzing	the	app	bundles

Lazy	loading	modules

Where	to	go	from	here

3



Introduction

Welcome!
I	wrote	this	book	to	help	you	quickly	learn	Next.js	and	get	familiar	with
how	it	works.

The	ideal	reader	of	the	book	has	zero	knowledge	of	Next.js,	has	used
React	in	the	past,	and	is	looking	forward	diving	more	into	the	React
ecosystem,	in	particular	server-side	rendering.

I	find	Next.js	an	awesome	tool	to	create	Web	Applications,	and	at	the
end	of	the	book	I	hope	you'll	be	as	excited	about	it	as	I	am.

Thank	you	for	getting	this	ebook.	I	hope	it	will	help	you	learn	Next.js!

Flavio

You	can	reach	me	via	email	at	flavio@flaviocopes.com,	on	Twitter
@flaviocopes.

My	website	is	flaviocopes.com.

Introduction

4

mailto:flavio@flaviocopes.com
https://twitter.com/flaviocopes
https://flaviocopes.com


Introduction	to	Next.js
Working	on	a	modern	JavaScript	application	powered	by	React	is
awesome	until	you	realize	that	there	are	a	couple	problems	related	to
rendering	all	the	content	on	the	client-side.

First,	the	page	takes	longer	to	become	visible	to	the	user,	because
before	the	content	loads,	all	the	JavaScript	must	load,	and	your
application	needs	to	run	to	determine	what	to	show	on	the	page.

Second,	if	you	are	building	a	publicly	available	website,	you	have	a
content	SEO	issue.	Search	engines	are	getting	better	at	running	and
indexing	JavaScript	apps,	but	it's	much	better	if	we	can	send	them
content	instead	of	letting	them	figure	it	out.

The	solution	to	both	of	those	problems	is	server	rendering,	also
called	static	pre-rendering.

Next.js	is	one	React	framework	to	do	all	of	this	in	a	very	simple	way,
but	it's	not	limited	to	this.	It's	advertised	by	its	creators	as	a	zero-
configuration,	single-command	toolchain	for	React	apps.

It	provides	a	common	structure	that	allows	you	to	easily	build	a
frontend	React	application,	and	transparently	handles	server-side
rendering	for	you.

Introduction	to	Next.js

5

https://nextjs.org


The	main	features	provided	by
Next.js
Here	is	a	non-exhaustive	list	of	the	main	Next.js	features:

Hot	Code	Reloading

Next.js	reloads	the	page	when	it	detects	any	change	saved	to	disk.

Automatic	Routing

Any	URL	is	mapped	to	the	filesystem,	to	files	put	in	the	 	pages		folder,
and	you	don't	need	any	configuration	(you	have	customization	options
of	course).

Single	File	Components

Using	 	styled-jsx	,	completely	integrated	as	built	by	the	same	team,
it's	trivial	to	add	styles	scoped	to	the	component.

Server	Rendering

You	can	render	React	components	on	the	server	side,	before	sending
the	HTML	to	the	client.

Ecosystem	Compatibility

Next.js	plays	well	with	the	rest	of	the	JavaScript,	Node,	and	React
ecosystem.

The	main	features	provided	by	Next.js

6



Automatic	Code	Splitting

Pages	are	rendered	with	just	the	libraries	and	JavaScript	that	they
need,	no	more.	Instead	of	generating	one	single	JavaScript	file
containing	all	the	app	code,	the	app	is	broken	up	automatically	by
Next.js	in	several	different	resources.

Loading	a	page	only	loads	the	JavaScript	necessary	for	that	particular
page.

Next.js	does	that	by	analyzing	the	resources	imported.

If	only	one	of	your	pages	imports	the	Axios	library,	for	example,	that
specific	page	will	include	the	library	in	its	bundle.

This	ensures	your	first	page	load	is	as	fast	as	it	can	be,	and	only	future
page	loads	(if	they	will	ever	be	triggered)	will	send	the	JavaScript
needed	to	the	client.

There	is	one	notable	exception.	Frequently	used	imports	are	moved
into	the	main	JavaScript	bundle	if	they	are	used	in	at	least	half	of	the
site	pages.

Prefetching

The	 	Link		component,	used	to	link	together	different	pages,	supports
a	 	prefetch		prop	which	automatically	prefetches	page	resources
(including	code	missing	due	to	code	splitting)	in	the	background.

Dynamic	Components

You	can	import	JavaScript	modules	and	React	Components
dynamically.

The	main	features	provided	by	Next.js

7



Static	Exports

Using	the	 	next	export		command,	Next.js	allows	you	to	export	a	fully
static	site	from	your	app.

TypeScript	Support

Next.js	is	written	in	TypeScript	and	as	such	comes	with	an	excellent
TypeScript	support.

The	main	features	provided	by	Next.js

8



Next.js	vs	Gatsby	vs	create-
react-app
Next.js,	Gatsby,	and	 	create-react-app		are	amazing	tools	we	can	use
to	power	our	applications.

Let's	first	say	what	they	have	in	common.	They	all	have	React	under
the	hood,	powering	the	entire	development	experience.	They	also
abstract	webpack	and	all	those	low	level	things	that	we	used	to
configure	manually	in	the	good	old	days.

	create-react-app		does	not	help	you	generate	a	server-side-rendered
app	easily.	Anything	that	comes	with	it	(SEO,	speed...)	is	only	provided
by	tools	like	Next.js	and	Gatsby.

When	is	Next.js	better	than	Gatsby?

They	can	both	help	with	server-side	rendering,	but	in	2	different
ways.

The	end	result	using	Gatsby	is	a	static	site	generator,	without	a	server.
You	build	the	site,	and	then	you	deploy	the	result	of	the	build	process
statically	on	Netlify	or	another	static	hosting	site.

Next.js	provides	a	backend	that	can	server	side	render	a	response	to
request,	allowing	you	to	create	a	dynamic	website,	which	means	you
will	deploy	it	on	a	platform	that	can	run	Node.js.

Next.js	can	generate	a	static	site	too,	but	I	would	not	say	it's	its	main
use	case.

Next.js	vs	Gatsby	vs	create-react-app

9

https://flaviocopes.com/gatsby/
https://flaviocopes.com/react-create-react-app/
https://flaviocopes.com/webpack/


If	my	goal	was	to	build	a	static	site,	I'd	have	a	hard	time	choosing	and
perhaps	Gatsby	has	a	better	ecosystem	of	plugins,	including	many	for
blogging	in	particular.

Gatsby	is	also	heavily	based	on	GraphQL,	something	you	might	really
like	or	dislike	depending	on	your	opinions	and	needs.

Next.js	vs	Gatsby	vs	create-react-app

10

https://flaviocopes.com/graphql/


How	to	install	Next.js?
To	install	Next.js,	you	need	to	have	Node.js	installed.

Make	sure	that	you	have	the	latest	version	of	Node.	Check	with
running	 	node	-v		in	your	terminal,	and	compare	it	to	the	latest	LTS
version	listed	on	https://nodejs.org/.

After	you	install	Node.js,	you	will	have	the	 	npm		command	available
into	your	command	line.

If	you	have	any	trouble	at	this	stage,	I	recommend	the	following
tutorials	I	wrote	for	you:

How	to	install	Node.js
How	to	update	Node.js
An	introduction	to	the	npm	package	manager
Unix	Shells	Tutorial
How	to	use	the	macOS	terminal
The	Bash	Shell

Now	that	you	have	Node,	updated	to	the	latest	version,	and	 	npm	,
we're	set!

We	can	choose	2	routes	now:	using	 	create-next-app		or	the	classic
approach	which	involves	installing	and	setting	up	a	Next	app	manually.

Using	create-next-app

If	you're	familiar	with	 	create-react-app	,	 	create-next-app		is	the	same
thing	-	except	it	creates	a	Next	app	instead	of	a	React	app,	as	the
name	implies.

How	to	install	Next.js?

11

https://nodejs.org/
https://flaviocopes.com/node-installation/
https://flaviocopes.com/how-to-update-node/
https://flaviocopes.com/npm/
https://flaviocopes.com/shells/
https://flaviocopes.com/macos-terminal/
https://flaviocopes.com/bash/
https://flaviocopes.com/react-create-react-app/


I	assume	you	have	already	installed	Node.js,	which,	from	version	5.2
(2+	years	ago	at	the	time	of	writing),	comes	with	the	 	npx		command
bundled.	This	handy	tool	lets	us	download	and	execute	a	JavaScript
command,	and	we'll	use	it	like	this:

npx	create-next-app

The	command	asks	the	application	name	(and	creates	a	new	folder	for
you	with	that	name),	then	downloads	all	the	packages	it	needs
( 	react	,	 	react-dom	,	 	next	),	sets	the	 	package.json		to:

and	you	can	immediately	run	the	sample	app	by	running	 	npm	run	dev	:

How	to	install	Next.js?

12

https://flaviocopes.com/npx/


And	here's	the	result	on	http://localhost:3000:

How	to	install	Next.js?

13

http://localhost:3000


This	is	the	recommended	way	to	start	a	Next.js	application,	as	it	gives
you	structure	and	sample	code	to	play	with.	There's	more	than	just	that
default	sample	application;	you	can	use	any	of	the	examples	stored	at
https://github.com/zeit/next.js/tree/canary/examples	using	the	 	--
example		option.	For	example	try:

npx	create-next-app	--example	blog-starter

Which	gives	you	an	immediately	usable	blog	instance	with	syntax
highlighting	too:

How	to	install	Next.js?

14

https://github.com/zeit/next.js/tree/canary/examples


Manually	create	a	Next.js	app

You	can	avoid	 	create-next-app		if	you	feel	like	creating	a	Next	app
from	scratch.	Here's	how:	create	an	empty	folder	anywhere	you	like,
for	example	in	your	home	folder,	and	go	into	it:

mkdir	nextjs

cd	nextjs

and	create	your	first	Next	project	directory:

mkdir	firstproject

cd	firstproject

How	to	install	Next.js?

15



Now	use	the	 	npm		command	to	initialize	it	as	a	Node	project:

npm	init	-y

The	 	-y		option	tells	 	npm		to	use	the	default	settings	for	a	project,
populating	a	sample	 	package.json		file.

Now	install	Next	and	React:

npm	install	next	react	react-dom

Your	project	folder	should	now	have	2	files:

	package.json		(see	my	tutorial	on	it)
	package-lock.json		(see	my	tutorial	on	package-lock)

and	the	 	node_modules		folder.

How	to	install	Next.js?

16

https://flaviocopes.com/package-json/
https://flaviocopes.com/package-lock-json/


Open	the	project	folder	using	your	favorite	editor.	My	favorite	editor	is
VS	Code.	If	you	have	that	installed,	you	can	run	 	code	.		in	your
terminal	to	open	the	current	folder	in	the	editor	(if	the	command	does
not	work	for	you,	see	this)

Open	 	package.json	,	which	now	has	this	content:

{

		"name":	"firstproject",

		"version":	"1.0.0",

		"description":	"",

		"main":	"index.js",

		"scripts":	{

				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"

		},

		"keywords":	[],

		"author":	"",

		"license":	"ISC",

		"dependencies":		{

				"next":	"^9.1.2",

				"react":	"^16.11.0",

				"react-dom":	"^16.11.0"

		}

}

and	replace	the	 	scripts		section	with:

"scripts":	{

		"dev":	"next",

		"build":	"next	build",

		"start":	"next	start"

}

to	add	the	Next.js	build	commands,	which	we're	going	to	use	soon.

How	to	install	Next.js?

17

https://flaviocopes.com/vscode/
https://code.visualstudio.com/docs/setup/mac#_launching-from-the-command-line


Tip:	use	 	"dev":	"next	-p	3001",		to	change	the	port	and	run,	in
this	example,	on	port	3001.

Now	create	a	 	pages		folder,	and	add	an	 	index.js		file.

In	this	file,	let's	create	our	first	React	component.

We're	going	to	use	it	as	the	default	export:

const	Index	=	()	=>	(

		<div>

				<h1>Home	page</h1>

		</div>

)

export	default	Index

Now	using	the	terminal,	run	 	npm	run	dev		to	start	the	Next
development	server.

How	to	install	Next.js?

18



This	will	make	the	app	available	on	port	3000,	on	localhost.

Open	http://localhost:3000	in	your	browser	to	see	it.

How	to	install	Next.js?

19

http://localhost:3000


How	to	install	Next.js?

20



View	source	to	confirm	SSR	is
working
Let's	now	check	the	application	is	working	as	we	expect	it	to	work.	It's
a	Next.js	app,	so	it	should	be	server	side	rendered.

It's	one	of	the	main	selling	points	of	Next.js:	if	we	create	a	site	using
Next.js,	the	site	pages	are	rendered	on	the	server,	which	delivers
HTML	to	the	browser.

This	has	3	major	benefits:

The	client	does	not	need	to	instantiate	React	to	render,	which
makes	the	site	faster	to	your	users.
Search	engines	will	index	the	pages	without	needing	to	run	the
client-side	JavaScript.	Something	Google	started	doing,	but
openly	admitted	to	be	a	slower	process	(and	you	should	help
Google	as	much	as	possible,	if	you	want	to	rank	well).
You	can	have	social	media	meta	tags,	useful	to	add	preview
images,	customize	title	and	description	for	any	of	your	pages
shared	on	Facebook,	Twitter	and	so	on.

Let's	view	the	source	of	the	app.	Using	Chrome	you	can	right-click
anywhere	in	the	page,	and	press	View	Page	Source.

View	source	to	confirm	SSR	is	working

21



If	you	view	the	source	of	the	page,	you'll	see	the	 	<div><h1>Home
page</h1></div>		snippet	in	the	HTML	 	body	,	along	with	a	bunch	of
JavaScript	files	-	the	app	bundles.

We	don't	need	to	set	up	anything,	SSR	(server-side	rendering)	is
already	working	for	us.

The	React	app	will	be	launched	on	the	client,	and	will	be	the	one
powering	interactions	like	clicking	a	link,	using	client-side	rendering.
But	reloading	a	page	will	re-load	it	from	the	server.	And	using	Next.js
there	should	be	no	difference	in	the	result	inside	the	browser	-	a
server-rendered	page	should	look	exactly	like	a	client-rendered	page.

View	source	to	confirm	SSR	is	working

22



The	app	bundles
When	we	viewed	the	page	source,	we	saw	a	bunch	of	JavaScript	files
being	loaded:

Let's	start	by	putting	the	code	in	an	HTML	formatter	to	get	it	formatted
better,	so	we	humans	can	get	a	better	chance	at	understanding	it:

<!DOCTYPE	html>

<html>

<head>

				<meta	charSet="utf-8"	/>

				<meta	name="viewport"	content="width=device-width,minimum-sca

le=1,initial-scale=1"	/>

				<meta	name="next-head-count"	content="2"	/>

The	app	bundles

23

https://htmlformatter.com/


				<link	rel="preload"	href="/_next/static/development/pages/ind

ex.js?ts=1572863116051"	as="script"	/>

				<link	rel="preload"	href="/_next/static/development/pages/_ap

p.js?ts=1572863116051"	as="script"	/>

				<link	rel="preload"	href="/_next/static/runtime/webpack.js?ts

=1572863116051"	as="script"	/>

				<link	rel="preload"	href="/_next/static/runtime/main.js?ts=15

72863116051"	as="script"	/>

</head>

<body>

				<div	id="__next">

								<div>

												<h1>Home	page</h1></div>

				</div>

				<script	src="/_next/static/development/dll/dll_01ec57fc9b90d4

3b98a8.js?ts=1572863116051"></script>

				<script	id="__NEXT_DATA__"	type="application/json">{"dataMana

ger":"[]","props":{"pageProps":{}},"page":"/","query":{},"buildId"

:"development","nextExport":true,"autoExport":true}</script>

				<script	async=""	data-next-page="/"	src="/_next/static/develo

pment/pages/index.js?ts=1572863116051"></script>

				<script	async=""	data-next-page="/_app"	src="/_next/static/de

velopment/pages/_app.js?ts=1572863116051"></script>

				<script	src="/_next/static/runtime/webpack.js?ts=157286311605

1"	async=""></script>

				<script	src="/_next/static/runtime/main.js?ts=1572863116051"	

async=""></script>

</body>

</html>

We	have	4	JavaScript	files	being	declared	to	be	preloaded	in	the
	head	,	using	 	rel="preload"	as="script"	:

	/_next/static/development/pages/index.js		(96	LOC)
	/_next/static/development/pages/_app.js		(5900	LOC)

The	app	bundles

24



	/_next/static/runtime/webpack.js		(939	LOC)
	/_next/static/runtime/main.js		(12k	LOC)

This	tells	the	browser	to	start	loading	those	files	as	soon	as	possible,
before	the	normal	rendering	flow	starts.	Without	those,	scripts	would
be	loaded	with	an	additional	delay,	and	this	improves	the	page	loading
performance.

Then	those	4	files	are	loaded	at	the	end	of	the	 	body	,	along	with
	/_next/static/development/dll/dll_01ec57fc9b90d43b98a8.js		(31k
LOC),	and	a	JSON	snippet	that	sets	some	defaults	for	the	page	data:

<script	id="__NEXT_DATA__"	type="application/json">

{

		"dataManager":	"[]",

		"props":	{

				"pageProps":		{}

		},

		"page":	"/",

		"query":	{},

		"buildId":	"development",

		"nextExport":	true,

		"autoExport":	true

}

</script>

The	4	bundle	files	loaded	are	already	implementing	one	feature	called
code	splitting.	The	 	index.js		file	provides	the	code	needed	for	the
	index		component,	which	serves	the	 	/		route,	and	if	we	had	more
pages	we'd	have	more	bundles	for	each	page,	which	will	then	only	be
loaded	if	needed	-	to	provide	a	more	performant	load	time	for	the
page.

The	app	bundles

25



The	app	bundles

26



What's	that	icon	on	the	bottom
right?
Did	you	see	that	little	icon	at	the	bottom	right	of	the	page,	which	looks
like	a	lightning?

If	you	hover	it,	it's	going	to	say	"Prerendered	Page":

What's	that	icon	on	the	bottom	right?

27



This	icon,	which	is	only	visible	in	development	mode	of	course,	tells
you	the	page	qualifies	for	automatic	static	optimization,	which	basically
means	that	it	does	not	depend	on	data	that	needs	to	be	fetched	at
invokation	time,	and	it	can	be	prerendered	and	built	as	a	static	HTML
file	at	build	time	(when	we	run	 	npm	run	build	).

Next	can	determine	this	by	the	absence	of	the	 	getInitialProps()	
method	attached	to	the	page	component.

When	this	is	the	case,	our	page	can	be	even	faster	because	it	will	be
served	statically	as	an	HTML	file	rather	than	going	through	the	Node.js
server	that	generates	the	HTML	output.

Another	useful	icon	that	might	appear	next	to	it,	or	instead	of	it	on	non-
prerendered	pages,	is	a	little	animated	triangle:

What's	that	icon	on	the	bottom	right?

28



This	is	a	compilation	indicator,	and	appears	when	you	save	a	page
and	Next.js	is	compiling	the	application	before	hot	code	reloading	kicks
in	to	reload	the	code	in	the	application	automatically.

It's	a	really	nice	way	to	immediately	determine	if	the	app	has	already
been	compiled	and	you	can	test	a	part	of	it	you're	working	on.

What's	that	icon	on	the	bottom	right?

29



Install	the	React	Developer
Tools
Next.js	is	based	on	React,	so	one	very	useful	tool	we	absolutely	need
to	install	(if	you	haven't	already)	is	the	React	Developer	Tools.

Available	for	both	Chrome	and	Firefox,	the	React	Developer	Tools	are
an	essential	instrument	you	can	use	to	inspect	a	React	application.

Now,	the	React	Developer	Tools	are	not	specific	to	Next.js	but	I	want
to	introduce	them	because	you	might	not	be	100%	familiar	with	all	the
tools	React	provides.	It's	best	to	go	a	little	into	debugging	tooling	than
assuming	you	already	know	them.

They	provide	an	inspector	that	reveals	the	React	components	tree	that
builds	your	page,	and	for	each	component	you	can	go	and	check	the
props,	the	state,	hooks,	and	lots	more.

Once	you	have	installed	the	React	Developer	Tools,	you	can	open	the
regular	browser	devtools	(in	Chrome,	it's	right-click	in	the	page,	then
click	 	Inspect	)	and	you'll	find	2	new	panels:	Components	and
Profiler.

Install	the	React	Developer	Tools

30

https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://addons.mozilla.org/en-US/firefox/addon/react-devtools/


If	you	move	the	mouse	over	the	components,	you'll	see	that	in	the
page,	the	browser	will	select	the	parts	that	are	rendered	by	that
component.

If	you	select	any	component	in	the	tree,	the	right	panel	will	show	you	a
reference	to	the	parent	component,	and	the	props	passed	to	it:

Install	the	React	Developer	Tools

31



You	can	easily	navigate	by	clicking	around	the	component	names.

You	can	click	the	eye	icon	in	the	Developer	Tools	toolbar	to	inspect
the	DOM	element,	and	also	if	you	use	the	first	icon,	the	one	with	the
mouse	icon	(which	conveniently	sits	under	the	similar	regular
DevTools	icon),	you	can	hover	an	element	in	the	browser	UI	to	directly
select	the	React	component	that	renders	it.

You	can	use	the	 	bug		icon	to	log	a	component	data	to	the	console.

Install	the	React	Developer	Tools

32



This	is	pretty	awesome	because	once	you	have	the	data	printed	there,
you	can	right-click	any	element	and	press	"Store	as	a	global	variable".
For	example	here	I	did	it	with	the	 	url		prop,	and	I	was	able	to	inspect
it	in	the	console	using	the	temporary	variable	assigned	to	it,	 	temp1	:

Install	the	React	Developer	Tools

33



Using	Source	Maps,	which	are	loaded	by	Next.js	automatically	in
development	mode,	from	the	Components	panel	we	can	click	the	 	<>	
code	and	the	DevTools	will	switch	to	the	Source	panel,	showing	us	the
component	source	code:

Install	the	React	Developer	Tools

34



The	Profiler	tab	is	even	more	awesome,	if	possible.	It	allows	us	to
record	an	interaction	in	the	app,	and	see	what	happens.	I	cannot
show	an	example	yet,	because	it	needs	at	least	2	components	to
create	an	interaction,	and	we	have	just	one	now.	I'll	talk	about	this
later.

Install	the	React	Developer	Tools

35



I	showed	all	screenshots	using	Chrome,	but	the	React	Developer
Tools	works	in	the	same	way	in	Firefox:

Install	the	React	Developer	Tools

36



Install	the	React	Developer	Tools

37



Other	debugging	techniques	you
can	use
In	addition	to	the	React	Developer	Tools,	which	are	essential	to
building	a	Next.js	application,	I	want	to	emphasize	2	ways	to	debug
Next.js	apps.

The	first	is	obviously	 	console.log()		and	all	the	other	Console	API
tools.	The	way	Next	apps	work	will	make	a	log	statement	work	in	the
browser	console	OR	in	the	terminal	where	you	started	Next	using	 	npm
run	dev	.

In	particular,	if	the	page	loads	from	the	server,	when	you	point	the	URL
to	it,	or	you	hit	the	refresh	button	/	cmd/ctrl-R,	any	console	logging
happens	in	the	terminal.

Subsequent	page	transitions	that	happen	by	clicking	the	mouse	will
make	all	console	logging	happen	inside	the	browser.

Just	remember	if	you	are	surprised	by	missing	logging.

Another	tool	that	is	essential	is	the	 	debugger		statement.	Adding	this
statement	to	a	component	will	pause	the	browser	rendering	the	page:

Other	debugging	techniques	you	can	use

38

https://flaviocopes.com/console-api/


Really	awesome	because	now	you	can	use	the	browser	debugger	to
inspect	values	and	run	your	app	one	line	at	a	time.

Other	debugging	techniques	you	can	use

39



You	can	also	use	the	VS	Code	debugger	to	debug	server-side	code.	I
mention	this	technique	and	this	tutorial	to	set	this	up.

Other	debugging	techniques	you	can	use

40

https://github.com/Microsoft/vscode-recipes/tree/master/Next-js


Adding	a	second	page	to	the	site
Now	that	we	have	a	good	grasp	of	the	tools	we	can	use	to	help	us
develop	Next.js	apps,	let's	continue	from	where	we	left	our	first	app:

I	want	to	add	a	second	page	to	this	website,	a	blog.	It's	going	to	be
served	into	 	/blog	,	and	for	the	time	being	it	will	just	contain	a	simple
static	page,	just	like	our	first	 	index.js		component:

Adding	a	second	page	to	the	site

41



After	saving	the	new	file,	the	 	npm	run	dev		process	already	running	is
already	capable	of	rendering	the	page,	without	the	need	to	restart	it.

When	we	hit	the	URL	http://localhost:3000/blog	we	have	the	new
page:

Adding	a	second	page	to	the	site

42

http://localhost:3000/blog


and	here's	what	the	terminal	told	us:

Adding	a	second	page	to	the	site

43



Now	the	fact	that	the	URL	is	 	/blog		depends	on	just	the	filename,	and
its	position	under	the	 	pages		folder.

You	can	create	a	 	pages/hey/ho		page,	and	that	page	will	show	up	on
the	URL	http://localhost:3000/hey/ho.

What	does	not	matter,	for	the	URL	purposes,	is	the	component	name
inside	the	file.

Try	going	and	viewing	the	source	of	the	page,	when	loaded	from	the
server	it	will	list	 	/_next/static/development/pages/blog.js		as	one	of
the	bundles	loaded,	and	not
	/_next/static/development/pages/index.js		like	in	the	home	page.	This
is	because	thanks	to	automatic	code	splitting	we	don't	need	the	bundle
that	serves	the	home	page.	Just	the	bundle	that	serves	the	blog	page.

We	can	also	just	export	an	anonymous	function	from	 	blog.js	:

export	default	()	=>	(

		<div>

				<h1>Blog</h1>

Adding	a	second	page	to	the	site

44

http://localhost:3000/hey/ho


		</div>

)

or	if	you	prefer	the	non-arrow	function	syntax:

export	default	function()	{

		return	(

				<div>

						<h1>Blog</h1>

				</div>

		)

}

Adding	a	second	page	to	the	site

45



Linking	the	two	pages
Now	that	we	have	2	pages,	defined	by	 	index.js		and	 	blog.js	,	we
can	introduce	links.

Normal	HTML	links	within	pages	are	done	using	the	 	a		tag:

<a	href="/blog">Blog</a>

We	can't	do	do	that	in	Next.js.

Why?	We	technically	can,	of	course,	because	this	is	the	Web	and	on
the	Web	things	never	break	(that's	why	we	can	still	use	the	 	<marquee>	
tag.	But	one	of	the	main	benefits	of	using	Next	is	that	once	a	page	is
loaded,	transitions	to	other	page	are	very	fast	thanks	to	client-side
rendering.

If	you	use	a	plain	 	a		link:

const	Index	=	()	=>	(

		<div>

				<h1>Home	page</h1>

				<a	href='/blog'>Blog</a>

		</div>

)

export	default	Index

Now	open	the	DevTools,	and	the	Network	panel	in	particular.	The
first	time	we	load	 	http://localhost:3000/		we	get	all	the	page	bundles
loaded:

Linking	the	two	pages

46



Now	if	you	click	the	"Preserve	log"	button	(to	avoid	clearing	the
Network	panel),	and	click	the	"Blog"	link,	this	is	what	happens:

Linking	the	two	pages

47



We	got	all	that	JavaScript	from	the	server,	again!	But..	we	don't	need
all	that	JavaScript	if	we	already	got	it.	We'd	just	need	the	 	blog.js	
page	bundle,	the	only	one	that's	new	to	the	page.

To	fix	this	problem,	we	use	a	component	provided	by	Next,	called	Link.

We	import	it:

import	Link	from	'next/link'

and	then	we	use	it	to	wrap	our	link,	like	this:

import	Link	from	'next/link'

Linking	the	two	pages

48



const	Index	=	()	=>	(

		<div>

				<h1>Home	page</h1>

				<Link	href='/blog'>

						<a>Blog</a>

				</Link>

		</div>

)

export	default	Index

Now	if	you	retry	the	thing	we	did	previously,	you'll	be	able	to	see	that
only	the	 	blog.js		bundle	is	loaded	when	we	move	to	the	blog	page:

Linking	the	two	pages

49



and	the	page	loaded	so	faster	than	before,	the	browser	usual	spinner
on	the	tab	didn't	even	appear.	Yet	the	URL	changed,	as	you	can	see.
This	is	working	seamlessly	with	the	browser	History	API.

This	is	client-side	rendering	in	action.

What	if	you	now	press	the	back	button?	Nothing	is	being	loaded,
because	the	browser	still	has	the	old	 	index.js		bundle	in	place,	ready
to	load	the	 	/index		route.	It's	all	automatic!

Linking	the	two	pages

50

https://flaviocopes.com/history-api/


Dynamic	content	with	the	router
In	the	previous	chapter	we	saw	how	to	link	the	home	to	the	blog	page.

A	blog	is	a	great	use	case	for	Next.js,	one	we'll	continue	to	explore	in
this	chapter	by	adding	blog	posts.

Blog	posts	have	a	dynamic	URL.	For	example	a	post	titled	"Hello
World"	might	have	the	URL	 	/blog/hello-world	.	A	post	titled	"My
second	post"	might	have	the	URL	 	/blog/my-second-post	.

This	content	is	dynamic,	and	might	be	taken	from	a	database,
markdown	files	or	more.

Next.js	can	serve	dynamic	content	based	on	a	dynamic	URL.

We	create	a	dynamic	URL	by	creating	a	dynamic	page	with	the	 	[]	
syntax.

How?	We	add	a	 	pages/blog/[id].js		file.	This	file	will	handle	all	the
dynamic	URLs	under	the	 	/blog/		route,	like	the	ones	we	mentioned
above:	 	/blog/hello-world	,	 	/blog/my-second-post		and	more.

In	the	file	name,	 	[id]		inside	the	square	brackets	means	that	anything
that's	dynamic	will	be	put	inside	the	 	id		parameter	of	the	query
property	of	the	router.

Ok,	that's	a	bit	too	many	things	at	once.

What's	the	router?

The	router	is	a	library	provided	by	Next.js.

We	import	it	from	 	next/router	:

Dynamic	content	with	the	router

51



import	{	useRouter	}	from	'next/router'

and	once	we	have	 	useRouter	,	we	instantiate	the	router	object	using:

const	router	=	useRouter()

Once	we	have	this	router	object,	we	can	extract	information	from	it.

In	particular	we	can	get	the	dynamic	part	of	the	URL	in	the	 	[id].js	
file	by	accessing	 	router.query.id	.

The	dynamic	part	can	also	just	be	a	portion	of	the	URL,	like	 	post-
[id].js	.

So	let's	go	on	and	apply	all	those	things	in	practice.

Create	the	file	 	pages/blog/[id].js	:

import	{	useRouter	}	from	'next/router'

export	default	()	=>	{

		const	router	=	useRouter()

		return	(

				<>

						<h1>Blog	post</h1>

						<p>Post	id:	{router.query.id}</p>

				</>

		)

}

Now	if	you	go	to	the	 	http://localhost:3000/blog/test		router,	you
should	see	this:

Dynamic	content	with	the	router

52



We	can	use	this	 	id		parameter	to	gather	the	post	from	a	list	of	posts.
From	a	database,	for	example.	To	keep	things	simple	we'll	add	a
	posts.json		file	in	the	project	root	folder:

{

		"test":	{

				"title":	"test	post",

				"content":	"Hey	some	post	content"

		},

		"second":	{

				"title":	"second	post",

				"content":	"Hey	this	is	the	second	post	content"

		}

}

Now	we	can	import	it	and	lookup	the	post	from	the	 	id		key:

Dynamic	content	with	the	router

53



import	{	useRouter	}	from	'next/router'

import	posts	from	'../../posts.json'

export	default	()	=>	{

		const	router	=	useRouter()

		const	post	=	posts[router.query.id]

		return	(

				<>

						<h1>{post.title}</h1>

						<p>{post.content}</p>

				</>

		)

}

Reloading	the	page	should	show	us	this	result:

Dynamic	content	with	the	router

54



But	it's	not!	Instead,	we	get	an	error	in	the	console,	and	an	error	in	the
browser,	too:

Why?	Because..	during	rendering,	when	the	component	is	initialized,
the	data	is	not	there	yet.	We'll	see	how	to	provide	the	data	to	the
component	with	getInitialProps	in	the	next	lesson.

For	now,	add	a	little	 	if	(!post)	return	<p></p>		check	before
returning	the	JSX:

import	{	useRouter	}	from	'next/router'

import	posts	from	'../../posts.json'

export	default	()	=>	{

		const	router	=	useRouter()

		const	post	=	posts[router.query.id]

		if	(!post)	return	<p></p>

Dynamic	content	with	the	router

55



		return	(

				<>

						<h1>{post.title}</h1>

						<p>{post.content}</p>

				</>

		)

}

Now	things	should	work.	Initially	the	component	is	rendered	without
the	dynamic	 	router.query.id		information.	After	rendering,	Next.js
triggers	an	update	with	the	query	value	and	the	page	displays	the
correct	information.

And	if	you	view	source,	there	is	that	empty	 	<p>		tag	in	the	HTML:

Dynamic	content	with	the	router

56



We'll	soon	fix	this	issue	that	fails	to	implement	SSR	and	this	harms
both	loading	times	for	our	users,	SEO	and	social	sharing	as	we
already	discussed.

We	can	complete	the	blog	example	by	listing	those	posts	in
	pages/blog.js	:

import	posts	from	'../posts.json'

const	Blog	=	()	=>	(

		<div>

				<h1>Blog</h1>

				<ul>

						{Object.entries(posts).map((value,	index)	=>	{

								return	<li	key={index}>{value[1].title}</li>

						})}

				</ul>

		</div>

)

export	default	Blog

And	we	can	link	them	to	the	individual	post	pages,	by	importing	 	Link	
from	 	next/link		and	using	it	inside	the	posts	loop:

import	Link	from	'next/link'

import	posts	from	'../posts.json'

const	Blog	=	()	=>	(

		<div>

				<h1>Blog</h1>

				<ul>

						{Object.entries(posts).map((value,	index)	=>	{

								return	(

										<li	key={index}>

Dynamic	content	with	the	router

57



												<Link	href='/blog/[id]'	as={'/blog/'	+	value[0]}>

														<a>{value[1].title}</a>

												</Link>

										</li>

								)

						})}

				</ul>

		</div>

)

export	default	Blog

Dynamic	content	with	the	router

58



Prefetching
I	mentioned	previously	how	the	 	Link		Next.js	component	can	be	used
to	create	links	between	2	pages,	and	when	you	use	it,	Next.js
transparently	handles	frontend	routing	for	us,	so	when	a	user	clicks
a	link,	frontend	takes	care	of	showing	the	new	page	without	triggering
a	new	client/server	request	and	response	cycle,	as	it	normally
happens	with	web	pages.

There's	another	thing	that	Next.js	does	for	you	when	you	use	 	Link	.

As	soon	as	an	element	wrapped	within	 	<Link>		appears	in	the
viewport	(which	means	it's	visible	to	the	website	user),	Next.js
prefetches	the	URL	it	points	to,	as	long	as	it's	a	local	link	(on	your
website),	making	the	application	super	fast	to	the	viewer.

This	behavior	is	only	being	triggered	in	production	mode	(we'll	talk
about	this	in-depth	later),	which	means	you	have	to	stop	the
application	if	you	are	running	it	with	 	npm	run	dev	,	compile	your
production	bundle	with	 	npm	run	build		and	run	it	with	 	npm	run	start	
instead.

Using	the	Network	inspector	in	the	DevTools	you'll	notice	that	any	links
above	the	fold,	at	page	load,	start	the	prefetching	as	soon	as	the
	load		event	has	been	fired	on	your	page	(triggered	when	the	page	is
fully	loaded,	and	happens	after	the	 	DOMContentLoaded		event).

Any	other	 	Link		tag	not	in	the	viewport	will	be	prefetched	when	the
user	scrolls	and	it

Prefetching	is	automatic	on	high	speed	connections	(Wifi	and	3g+
connections,	unless	the	browser	sends	the	 	Save-Data		HTTP	Header.

Prefetching

59

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Save-Data


You	can	opt	out	from	prefetching	individual	 	Link		instances	by	setting
the	 	prefetch		prop	to	 	false	:

<Link	href="/a-link"	prefetch={false}>

		<a>A	link</a>

</Link>

Prefetching

60



Using	the	router	to	detect	the
active	link
One	very	important	feature	when	working	with	links	is	determining
what	is	the	current	URL,	and	in	particular	assigning	a	class	to	the
active	link,	so	we	can	style	it	differently	from	the	other	ones.

This	is	especially	useful	in	your	site	header,	for	example.

The	Next.js	default	 	Link		component	offered	in	 	next/link		does	not
do	this	automatically	for	us.

We	can	create	a	Link	component	ourselves,	and	we	store	it	in	a	file
	Link.js		in	the	Components	folder,	and	import	that	instead	of	the
default	 	next/link	.

In	this	component,	we'll	first	import	React	from	 	react	,	Link	from
	next/link		and	the	 	useRouter		hook	from	 	next/router	.

Inside	the	component	we	determine	if	the	current	path	name	matches
the	 	href		prop	of	the	component,	and	if	so	we	append	the	 	selected	
class	to	the	children.

We	finally	return	this	children	with	the	updated	class,	using
	React.cloneElement()	:

import	React	from	'react'

import	Link	from	'next/link'

import	{	useRouter	}	from	'next/router'

export	default	({	href,	children	})	=>	{

		const	router	=	useRouter()

Using	the	router	to	detect	the	active	link

61



		let	className	=	children.props.className	||	''

		if	(router.pathname	===	href)	{

				className	=	`${className}	selected`

		}

		return	<Link	href={href}>{React.cloneElement(children,	{	classN

ame	})}</Link>

}

Using	the	router	to	detect	the	active	link

62



Using	next/router
We	already	saw	how	to	use	the	Link	component	to	declaratively
handle	routing	in	Next.js	apps.

It's	really	handy	to	manage	routing	in	JSX,	but	sometimes	you	need	to
trigger	a	routing	change	programmatically.

In	this	case,	you	can	access	the	Next.js	Router	directly,	provided	in	the
	next/router		package,	and	call	its	 	push()		method.

Here's	an	example	of	accessing	the	router:

import	{	useRouter	}	from	'next/router'

export	default	()	=>	{

		const	router	=	useRouter()

		//...

}

Once	we	get	the	router	object	by	invoking	 	useRouter()	,	we	can	use
its	methods.

This	is	the	client	side	router,	so	methods	should	only	be	used	in
frontend	facing	code.	The	easiest	way	to	ensure	this	is	to	wrap
calls	in	the	 	useEffect()		React	hook,	or	inside
	componentDidMount()		in	React	stateful	components.

The	ones	you'll	likely	use	the	most	are	 	push()		and	 	prefetch()	.

	push()		allows	us	to	programmatically	trigger	a	URL	change,	in	the
frontend:

Using	next/router

63



router.push('/login')

	prefetch()		allows	us	to	programmatically	prefetch	a	URL,	useful
when	we	don't	have	a	 	Link		tag	which	automatically	handles
prefetching	for	us:

router.prefetch('/login')

Full	example:

import	{	useRouter	}	from	'next/router'

export	default	()	=>	{

		const	router	=	useRouter()

		useEffect(()	=>	{

				router.prefetch('/login')

		})

}

You	can	also	use	the	router	to	listen	for	route	change	events.

Using	next/router

64

https://nextjs.org/docs#router-events


Feed	data	to	the	components
using	getInitialProps
In	the	previous	chapter	we	had	an	issue	with	dynamically	generating
the	post	page,	because	the	component	required	some	data	up	front,
and	when	we	tried	to	get	the	data	from	the	JSON	file:

import	{	useRouter	}	from	'next/router'

import	posts	from	'../../posts.json'

export	default	()	=>	{

		const	router	=	useRouter()

		const	post	=	posts[router.query.id]

		return	(

				<>

						<h1>{post.title}</h1>

						<p>{post.content}</p>

				</>

		)

}

we	got	this	error:

Feed	data	to	the	components	using	getInitialProps

65



How	do	we	solve	this?	And	how	do	we	make	SSR	work	for	dynamic
routes?

We	must	provide	the	component	with	props,	using	a	special	function
called	 	getInitialProps()		which	is	attached	to	the	component.

To	do	so,	first	we	name	the	component:

const	Post	=	()	=>	{

		//...

}

export	default	Post

then	we	add	the	function	to	it:

const	Post	=	()	=>	{

Feed	data	to	the	components	using	getInitialProps

66



		//...

}

Post.getInitialProps	=	()	=>	{

		//...

}

export	default	Post

This	function	gets	an	object	as	its	argument,	which	contains	several
properties.	In	particular,	the	thing	we	are	interested	into	now	is	that	we
get	the	 	query		object,	the	one	we	used	previously	to	get	the	post	id.

So	we	can	get	it	using	the	object	destructuring	syntax:

Post.getInitialProps	=	({	query	})	=>	{

		//...

}

Now	we	can	return	the	post	from	this	function:

Post.getInitialProps	=	({	query	})	=>	{

		return	{

				post:	posts[query.id]

		}

}

And	we	can	also	remove	the	import	of	 	useRouter	,	and	we	get	the	post
from	the	 	props		property	passed	to	the	 	Post		component:

import	posts	from	'../../posts.json'

const	Post	=	props	=>	{

		return	(

				<div>

Feed	data	to	the	components	using	getInitialProps

67



						<h1>{props.post.title}</h1>

						<p>{props.post.content}</p>

				</div>

		)

}

Post.getInitialProps	=	({	query	})	=>	{

		return	{

				post:	posts[query.id]

		}

}

export	default	Post

Now	there	will	be	no	error,	and	SSR	will	be	working	as	expected,	as
you	can	see	checking	view	source:

Feed	data	to	the	components	using	getInitialProps

68



The	 	getInitialProps		function	will	be	executed	on	the	server	side,	but
also	on	the	client	side,	when	we	navigate	to	a	new	page	using	the
	Link		component	as	we	did.

It's	important	to	note	that	 	getInitialProps		gets,	in	the	context	object	it
receives,	in	addition	to	the	 	query		object	these	other	properties:

	pathname	:	the	 	path		section	of	URL
	asPath		-	String	of	the	actual	path	(including	the	query)	shows	in
the	browser

which	in	the	case	of	calling	 	http://localhost:3000/blog/test		will
respectively	result	to:

	/blog/[id]	

	/blog/test	

And	in	the	case	of	server	side	rendering,	it	will	also	receive:

	req	:	the	HTTP	request	object
	res	:	the	HTTP	response	object
	err	:	an	error	object

	req		and	 	res		will	be	familiar	to	you	if	you've	done	any	Node.js
coding.

Feed	data	to	the	components	using	getInitialProps

69



CSS
How	do	we	style	React	components	in	Next.js?

We	have	a	lot	of	freedom,	because	we	can	use	whatever	library	we
prefer.

But	Next.js	comes	with	 	styled-jsx		built-in,	because	that's	a	library
built	by	the	same	people	working	on	Next.js.

And	it's	a	pretty	cool	library	that	provides	us	scoped	CSS,	which	is
great	for	maintainability	because	the	CSS	is	only	affecting	the
component	it's	applied	to.

I	think	this	is	a	great	approach	at	writing	CSS,	without	the	need	to
apply	additional	libraries	or	preprocessors	that	add	complexity.

To	add	CSS	to	a	React	component	in	Next.js	we	insert	it	inside	a
snippet	in	the	JSX,	which	start	with

<style	jsx>{`

and	ends	with

`}</style>

Inside	this	weird	blocks	we	write	plain	CSS,	as	we'd	do	in	a	 	.css		file:

<style	jsx>{`

		h1	{

				font-size:	3rem;

		}

CSS

70

https://github.com/zeit/styled-jsx


`}</style>

You	write	it	inside	the	JSX,	like	this:

const	Index	=	()	=>	(

		<div>

								<h1>Home	page</h1>

								<style	jsx>{`

										h1	{

												font-size:	3rem;

										}

								`}</style>

		</div>

)

export	default	Index

Inside	the	block	we	can	use	interpolation	to	dynamically	change	the
values.	For	example	here	we	assume	a	 	size		prop	is	being	passed	by
the	parent	component,	and	we	use	it	in	the	 	styled-jsx		block:

const	Index	=	props	=>	(

		<div>

								<h1>Home	page</h1>

								<style	jsx>{`

										h1	{

												font-size:	${props.size}rem;

										}

								`}</style>

		</div>

)

CSS

71



If	you	want	to	apply	some	CSS	globally,	not	scoped	to	a	component,
you	add	the	 	global		keyword	to	the	 	style		tag:

<style	jsx	global>{`

body	{

		margin:	0;

}

`}</style>

If	you	want	to	import	an	external	CSS	file	in	a	Next.js	component,	you
have	to	first	install	 	@zeit/next-css	:

npm	install	@zeit/next-css

and	then	create	a	configuration	file	in	the	root	of	the	project,	called
	next.config.js	,	with	this	content:

const	withCSS	=	require('@zeit/next-css')

module.exports	=	withCSS()

After	restarting	the	Next	app,	you	can	now	import	CSS	like	you
normally	do	with	JavaScript	libraries	or	components:

import	'../style.css'

You	can	also	import	a	SASS	file	directly,	using	the	 	@zeit/next-sass	
library	instead.

CSS

72

https://github.com/zeit/next-plugins/tree/master/packages/next-sass


Populating	the	head	tag	with
custom	tags
From	any	Next.js	page	component,	you	can	add	information	to	the
page	header.

This	is	handy	when:

you	want	to	customize	the	page	title
you	want	to	change	a	meta	tag

How	can	you	do	so?

Inside	every	component	you	can	import	the	 	Head		component	from
	next/head		and	include	it	in	your	component	JSX	output:

import	Head	from	'next/head'

const	House	=	props	=>	(

		<div>

				<Head>

						<title>The	page	title</title>

				</Head>

				{/*	the	rest	of	the	JSX	*/}

		</div>

)

export	default	House

You	can	add	any	HTML	tag	you'd	like	to	appear	in	the	 	<head>		section
of	the	page.

Populating	the	head	tag	with	custom	tags

73



When	mounting	the	component,	Next.js	will	make	sure	the	tags	inside
	Head		are	added	to	the	heading	of	the	page.	Same	when	unmounting
the	component,	Next.js	will	take	care	of	removing	those	tags.

Populating	the	head	tag	with	custom	tags

74



Adding	a	wrapper	component
All	the	pages	on	your	site	look	more	or	less	the	same.	There's	a
chrome	window,	a	common	base	layer,	and	you	just	want	to	change
what's	inside.

There's	a	nav	bar,	a	sidebar,	and	then	the	actual	content.

How	do	you	build	such	system	in	Next.js?

There	are	2	ways.	One	is	using	a	Higher	Order	Component,	by
creating	a	 	components/Layout.js		component:

export	default	Page	=>	{

		return	()	=>	(

				<div>

						<nav>

								<ul>....</ul>

						</hav>

						<main>

								<Page	/>

						</main>

				</div>

		)

}

In	there	we	can	import	separate	components	for	heading	and/or
sidebar,	and	we	can	also	add	all	the	CSS	we	need.

And	you	use	it	in	every	page	like	this:

import	withLayout	from	'../components/Layout.js'

const	Page	=	()	=>	<p>Here's	a	page!</p>

Adding	a	wrapper	component

75

https://flaviocopes.com/react-higher-order-components/


export	default	withLayout(Page)

But	I	found	this	works	only	for	simple	cases,	where	you	don't	need	to
call	 	getInitialProps()		on	a	page.

Why?

Because	 	getInitialProps()		gets	only	called	on	the	page	component.
But	if	we	export	the	Higher	Order	Component	withLayout()	from	a
page,	 	Page.getInitialProps()		is	not	called.
	withLayout.getInitialProps()		would.

To	avoid	unnecessarily	complicating	our	codebase,	the	alternative
approach	is	to	use	props:

export	default	props	=>	(

		<div>

				<nav>

						<ul>....</ul>

				</hav>

				<main>

						{props.content}

				</main>

		</div>

)

and	in	our	pages	now	we	use	it	like	this:

import	Layout	from	'../components/Layout.js'

const	Page	=	()	=>	(

		<Layout	content={(

				<p>Here's	a	page!</p>

		)}	/>

Adding	a	wrapper	component

76



)

This	approach	lets	us	use	 	getInitialProps()		from	within	our	page
component,	with	the	only	downside	of	having	to	write	the	component
JSX	inside	the	 	content		prop:

import	Layout	from	'../components/Layout.js'

const	Page	=	()	=>	(

		<Layout	content={(

				<p>Here's	a	page!</p>

		)}	/>

)

Page.getInitialProps	=	({	query	})	=>	{

		//...

}

Adding	a	wrapper	component

77



API	Routes
In	addition	to	creating	page	routes,	which	means	pages	are	served	to
the	browser	as	Web	pages,	Next.js	can	create	API	routes.

This	is	a	very	interesting	feature	because	it	means	that	Next.js	can	be
used	to	create	a	frontend	for	data	that	is	stored	and	retrieved	by
Next.js	itself,	transferring	JSON	via	fetch	requests.

API	routes	live	under	the	 	/pages/api/		folder	and	are	mapped	to	the
	/api		endpoint.

This	feature	is	very	useful	when	creating	applications.

In	those	routes,	we	write	Node.js	code	(rather	than	React	code).	It's	a
paradigm	shift,	you	move	from	the	frontend	to	the	backend,	but	very
seamlessly.

Say	you	have	a	 	/pages/api/comments.js		file,	whose	goal	is	to	return
the	comments	of	a	blog	post	as	JSON.

Say	you	have	a	list	of	comments	stored	in	a	 	comments.json		file:

[

		{

				"comment":	"First"

		},

		{

				"comment":	"Nice	post"

		}

]

Here's	a	sample	code,	which	returns	to	the	client	the	list	of	comments:

API	Routes

78



import	comments	from	'./comments.json'

export	default	(req,	res)	=>	{

		res.status(200).json(comments)

}

It	will	listen	on	the	 	/api/comments		URL	for	GET	requests,	and	you	can
try	calling	it	using	your	browser:

API	routes	can	also	use	dynamic	routing	like	pages,	use	the	 	[]	
syntax	to	create	a	dynamic	API	route,	like
	/pages/api/comments/[id].js		which	will	retrieve	the	comments	specific
to	a	post	id.

API	Routes

79



Inside	the	 	[id].js		you	can	retrieve	the	 	id		value	by	looking	it	up
inside	the	 	req.query		object:

import	comments	from	'../comments.json'

export	default	(req,	res)	=>	{

		res.status(200).json({	post:	req.query.id,	comments	})

}

Heres	you	can	see	the	above	code	in	action:

In	dynamic	pages,	you'd	need	to	import	 	useRouter		from	 	next/router	,
then	get	the	router	object	using	 	const	router	=	useRouter()	,	and	then
we'd	be	able	to	get	the	 	id		value	using	 	router.query.id	.

In	the	server-side	it's	all	easier,	as	the	query	is	attached	to	the	request
object.

If	you	do	a	POST	request,	all	works	in	the	same	way	-	it	all	goes
through	that	default	export.

To	separate	POST	from	GET	and	other	HTTP	methods	(PUT,
DELETE),	lookup	the	 	req.method		value:

API	Routes

80



export	default	(req,	res)	=>	{

		switch	(req.method)	{

				case	'GET':

						//...

						break

				case	'POST':

						//...

						break

				default:

						res.status(405).end()	//Method	Not	Allowed

						break

		}

}

In	addition	to	 	req.query		and	 	req.method		we	already	saw,	we	have
access	to	cookies	by	referencing	 	req.cookies	,	the	request	body	in
	req.body	.

Under	the	hoods,	this	is	all	powered	by	Micro,	a	library	that	powers
asynchronous	HTTP	microservices,	made	by	the	same	team	that	built
Next.js.

You	can	make	use	of	any	Micro	middleware	in	our	API	routes	to	add
more	functionality.

API	Routes

81

https://github.com/zeit/micro


Run	code	only	on	the	server
side	or	client	side
In	your	page	components,	you	can	execute	code	only	in	the	server-
side	or	on	the	client-side,	by	checking	the	 	window		property.

This	property	is	only	existing	inside	the	browser,	so	you	can	check

if	(typeof	window	===	'undefined')	{

}

and	add	the	server-side	code	in	that	block.

Similarly,	you	can	execute	client-side	code	only	by	checking

if	(typeof	window	!==	'undefined')	{

}

JS	Tip:	We	use	the	 	typeof		operator	here	because	we	can't	detect
a	value	to	be	undefined	in	other	ways.	We	can't	do	 	if	(window	===
undefined)		because	we'd	get	a	"window	is	not	defined"	runtime
error

Next.js,	as	a	build-time	optimization,	also	removes	the	code	that	uses
those	checks	from	bundles.	A	client-side	bundle	will	not	include	the
content	wrapped	into	a	 	if	(typeof	window	===	'undefined')	{}		block.

Run	code	only	on	the	server	side	or	client	side

82



Run	code	only	on	the	server	side	or	client	side

83



Deploying	the	production
version
Deploying	an	app	is	always	left	last	in	tutorials.

Here	I	want	to	introduce	it	early,	just	because	it's	so	easy	to	deploy	a
Next.js	app	that	we	can	dive	into	it	now,	and	then	move	on	to	other
more	complex	topics	later	on.

Remember	in	the	"How	to	install	Next.js"	chapter	I	told	you	to	add
those	3	lines	to	the	 	package.json		 	script		section:

"scripts":	{

		"dev":	"next",

		"build":	"next	build",

		"start":	"next	start"

}

We	used	 	npm	run	dev		up	to	now,	to	call	the	 	next		command	installed
locally	in	 	node_modules/next/dist/bin/next	.	This	started	the
development	server,	which	provided	us	source	maps	and	hot	code
reloading,	two	very	useful	features	while	debugging.

The	same	command	can	be	invoked	to	build	the	website	passing	the
	build		flag,	by	running	 	npm	run	build	.	Then,	the	same	command	can
be	used	to	start	the	production	app	passing	the	 	start		flag,	by
running	 	npm	run	start	.

Those	2	commands	are	the	ones	we	must	invoke	to	successfully
deploy	the	production	version	of	our	site	locally.	The	production
version	is	highly	optimized	and	does	not	come	with	source	maps	and

Deploying	the	production	version

84



other	things	like	hot	code	reloading	that	would	not	be	beneficial	to	our
end	users.

So,	let's	create	a	production	deploy	of	our	app.	Build	it	using:

npm	run	build

The	output	of	the	command	tells	us	that	some	routes	( 	/		and	 	/blog	
are	now	prerendered	as	static	HTML,	while	 	/blog/[id]		will	be	served
by	the	Node.js	backend.

Then	you	can	run	 	npm	run	start		to	start	the	production	server	locally:

npm	run	start

Deploying	the	production	version

85



Visiting	http://localhost:3000	will	show	us	the	production	version	of	the
app,	locally.

Deploying	the	production	version

86

http://localhost:3000


Deploying	on	Now
In	the	previous	chapter	we	deployed	the	Next.js	application	locally.

How	do	we	deploy	it	to	a	real	web	server,	so	other	people	can	access
it?

One	of	the	most	simple	ways	to	deploy	a	Next	application	is	through
the	Now	platform	created	by	Zeit,	the	same	company	that	created	the
Open	Source	project	Next.js.	You	can	use	Now	to	deploy	Node.js
apps,	Static	Websites,	and	much	more.

Now	makes	the	deployment	and	distribution	step	of	an	app	very,	very
simple	and	fast,	and	in	addition	to	Node.js	apps,	they	also	support
deploying	Go,	PHP,	Python	and	other	languages.

You	can	think	of	it	as	the	"cloud",	as	you	don't	really	know	where	your
app	will	be	deployed,	but	you	know	that	you	will	have	a	URL	where
you	can	reach	it.

Now	is	free	to	start	using,	with	generous	free	plan	that	currently
includes	100GB	of	hosting,	1000	serverless	functions	invocations	per
day,	1000	builds	per	month,	100GB	of	bandwidth	per	month,	and	one
CDN	location.	The	pricing	page	helps	get	an	idea	of	the	costs	if	you
need	more.

The	best	way	to	start	using	Now	is	by	using	the	official	Now	CLI:

npm	install	-g	now

Once	the	command	is	available,	run

Deploying	on	Now

87

https://zeit.co
https://zeit.co/pricing


now	login

and	the	app	will	ask	you	for	your	email.

If	you	haven't	registered	already,	create	an	account	on
https://zeit.co/signup	before	continuing,	then	add	your	email	to	the	CLI
client.

Once	this	is	done,	from	the	Next.js	project	root	folder	run

now

and	the	app	will	be	instantly	deployed	to	the	Now	cloud,	and	you'll	be
given	the	unique	app	URL:

Once	you	run	the	 	now		program,	the	app	is	deployed	to	a	random	URL
under	the	 	now.sh		domain.

We	can	see	3	different	URLs	in	the	output	given	in	the	image:

https://firstproject-2pv7khwwr.now.sh
https://firstproject-sepia-ten.now.sh
https://firstproject.flaviocopes.now.sh

Deploying	on	Now

88

https://zeit.co/signup
https://firstproject-2pv7khwwr.now.sh
https://firstproject-sepia-ten.now.sh
https://firstproject.flaviocopes.now.sh


Why	so	many?

The	first	is	the	URL	identifying	the	deploy.	Every	time	we	deploy	the
app,	this	URL	will	change.

You	can	test	immediately	by	changing	something	in	the	project	code,
and	running	 	now		again:

The	other	2	URLs	will	not	change.	The	first	is	a	random	one,	the
second	is	your	project	name	(which	defaults	to	the	current	project
folder,	your	account	name	and	then	 	now.sh	.

If	you	visit	the	URL,	you	will	see	the	app	deployed	to	production.

Deploying	on	Now

89



You	can	configure	Now	to	serve	the	site	to	your	own	custom	domain	or
subdomain,	but	I	will	not	dive	into	that	right	now.

The	 	now.sh		subdomain	is	enough	for	our	testing	purposes.

Deploying	on	Now

90



Analyzing	the	app	bundles
Next	provides	us	a	way	to	analyze	the	code	bundles	that	are
generated.

Open	the	package.json	file	of	the	app	and	in	the	scripts	section	add
those	3	new	commands:

"analyze":	"cross-env	ANALYZE=true	next	build",

"analyze:server":	"cross-env	BUNDLE_ANALYZE=server	next	build",

"analyze:browser":	"cross-env	BUNDLE_ANALYZE=browser	next	build"

Like	this:

{

		"name":	"firstproject",

		"version":	"1.0.0",

		"description":	"",

		"main":	"index.js",

		"scripts":	{

				"dev":	"next",

				"build":	"next	build",

				"start":	"next	start",

				"analyze":	"cross-env	ANALYZE=true	next	build",

				"analyze:server":	"cross-env	BUNDLE_ANALYZE=server	next	build"

,

				"analyze:browser":	"cross-env	BUNDLE_ANALYZE=browser	next	bui

ld"

		},

		"keywords":	[],

		"author":	"",

		"license":	"ISC",

		"dependencies":	{

				"next":	"^9.1.2",

				"react":	"^16.11.0",

Analyzing	the	app	bundles

91



				"react-dom":	"^16.11.0"

		}

}

then	install	those	2	packages:

npm	install	--dev	cross-env	@next/bundle-analyzer

Create	a	 	next.config.js		file	in	the	project	root,	with	this	content:

const	withBundleAnalyzer	=	require('@next/bundle-analyzer')({

		enabled:	process.env.ANALYZE	===	'true'

})

module.exports	=	withBundleAnalyzer({})

Now	run	the	command

npm	run	analyze

Analyzing	the	app	bundles

92



This	should	open	2	pages	in	the	browser.	One	for	the	client	bundles,
and	one	for	the	server	bundles:

Analyzing	the	app	bundles

93



Analyzing	the	app	bundles

94



This	is	incredibly	useful.	You	can	inspect	what's	taking	the	most	space
in	the	bundles,	and	you	can	also	use	the	sidebar	to	exclude	bundles,
for	an	easier	visualization	of	the	smaller	ones:

Analyzing	the	app	bundles

95



Analyzing	the	app	bundles

96



Lazy	loading	modules
Being	able	to	visually	analyze	a	bundle	is	great	because	we	can
optimize	our	application	very	easily.

Say	we	need	to	load	the	Moment	library	in	our	blog	posts.	Run:

npm	install	moment

to	include	it	in	the	project.

Now	let's	simulate	the	fact	we	need	it	on	two	different	routes:	 	/blog	
and	 	/blog/[id]	.

We	import	it	in	 	pages/blog/[id].js	:

import	moment	from	'moment'

...

const	Post	=	props	=>	{

		return	(

				<div>

						<h1>{props.post.title}</h1>

						<p>Published	on	{moment().format('dddd	D	MMMM	YYYY')}</p>

						<p>{props.post.content}</p>

				</div>

		)

}

I'm	just	adding	today's	date,	as	an	example.

This	will	include	Moment.js	in	the	blog	post	page	bundle,	as	you	can
see	by	running	 	npm	run	analyze	:

Lazy	loading	modules

97



See	that	we	now	have	a	red	entry	in	 	/blog/[id]	,	the	route	that	we
added	Moment.js	to!

It	went	from	~1kB	to	350kB,	quite	a	big	deal.	And	this	is	because	the
Moment.js	library	itself	is	349kB.

The	client	bundles	visualization	now	shows	us	that	the	bigger	bundle	is
the	page	one,	which	before	was	very	little.	And	99%	of	its	code	is
Moment.js.

Lazy	loading	modules

98



Every	time	we	load	a	blog	post	we	are	going	to	have	all	this	code
transferred	to	the	client.	Which	is	not	ideal.

One	fix	would	be	to	look	for	a	library	with	a	smaller	size,	as	Moment.js
is	not	known	for	being	lightweight	(especially	out	of	the	box	with	all	the
locales	included),	but	let's	assume	for	the	sake	of	the	example	that	we
must	use	it.

Lazy	loading	modules

99



What	we	can	do	instead	is	separating	all	the	Moment	code	in	a
separate	bundle.

How?	Instead	of	importing	Moment	at	the	component	level,	we
perform	an	async	import	inside	 	getInitialProps	,	and	we	calculate	the
value	to	send	to	the	component.	Remember	that	we	can't	return
complex	objects	inside	the	 	getInitialProps()		returned	object,	so	we
calculate	the	date	inside	it:

import	posts	from	'../../posts.json'

const	Post	=	props	=>	{

		return	(

				<div>

						<h1>{props.post.title}</h1>

						<p>Published	on	{props.date}</p>

						<p>{props.post.content}</p>

				</div>

		)

}

Post.getInitialProps	=	async	({	query	})	=>	{

		const	moment	=	(await	import('moment')).default()

		return	{

				date:	moment.format('dddd	D	MMMM	YYYY'),

				post:	posts[query.id]

		}

}

export	default	Post

See	that	special	call	to	 	.default()		after	 	await	import	?	It's	needed	to
reference	the	default	export	in	a	dynamic	import	(see
https://v8.dev/features/dynamic-import)

Now	if	we	run	 	npm	run	analyze		again,	we	can	see	this:

Lazy	loading	modules

100

https://v8.dev/features/dynamic-import


Our	 	/blog/[id]		bundle	is	again	very	small,	as	Moment	has	been
moved	to	its	own	bundle	file,	loaded	separately	by	the	browser.

Lazy	loading	modules

101



Where	to	go	from	here
There	is	a	lot	more	to	know	about	Next.js.	I	didn't	talk	about	managing
user	sessions	with	login,	serverless,	managing	databases,	and	so	on.

The	goal	of	this	Handbook	is	not	to	teach	you	everything,	but	instead	it
aims	to	introduce	you,	gradually,	to	all	the	power	of	Next.js.

The	next	step	I	recommend	is	to	take	a	good	read	at	the	Next.js	official
documentation	to	find	out	more	about	all	the	features	and	functionality
I	didn't	talk	about,	and	take	a	look	at	all	the	additional	functionalities
introduced	by	Next.js	plugins,	some	of	which	are	pretty	amazing.

Where	to	go	from	here

102

https://nextjs.org/docs
https://github.com/zeit/next-plugins

	Introduction
	Introduction to Next.js
	The main features provided by Next.js
	Next.js vs Gatsby vs create-react-app
	How to install Next.js?
	View source to confirm SSR is working
	The app bundles
	What's that icon on the bottom right?
	Install the React Developer Tools
	Other debugging techniques you can use
	Adding a second page to the site
	Linking the two pages
	Dynamic content with the router
	Prefetching
	Using the router to detect the active link
	Using next/router
	Feed data to the components using getInitialProps
	CSS
	Populating the head tag with custom tags
	Adding a wrapper component
	API Routes
	Run code only on the server side or client side
	Deploying the production version
	Deploying on Now
	Analyzing the app bundles
	Lazy loading modules
	Where to go from here

