
M A N N I N G

Kim Falk

Practical Recommender Systems

Practical
Recommender

Systems

KIM FALK

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Helen Stergius
20 Baldwin Road Production editor: Janet Vail
PO Box 761 Copy editors: Katie Petito and Frances Buran
Shelter Island, NY 11964 Proofreader: Elizabeth Martin
 Technical proofreaders: Valentin Crettaz and Furkan Kamaci

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781617292705
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

http://www.manning.com

 To the loves of my life:
my wife, Sara, and my son, Peter,

the small Superhero

brief contents
PART 1 GETTING READY FOR RECOMMENDER SYSTEMS................... 1

1 ■ What is a recommender? 3
2 ■ User behavior and how to collect it 30
3 ■ Monitoring the system 57
4 ■ Ratings and how to calculate them 77
5 ■ Non-personalized recommendations 102
6 ■ The user (and content) who came in from the cold 128

PART 2 RECOMMENDER ALGORITHMS.. 149
7 ■ Finding similarities among users and among content 151
8 ■ Collaborative filtering in the neighborhood 181
9 ■ Evaluating and testing your recommender 211

10 ■ Content-based filtering 248
11 ■ Finding hidden genres with matrix factorization 284
12 ■ Taking the best of all algorithms: implementing hybrid

recommenders 329
13 ■ Ranking and learning to rank 357
14 ■ Future of recommender systems 384
vii

contents
preface xvii
acknowledgments xix
about this book xx
about the author xxiii
about the cover illustration xxiv

PART 1 GETTING READY FOR RECOMMENDER SYSTEMS....1

1 What is a recommender? 3
1.1 Real-life recommendations 3

Recommender systems are at home on the internet 5 ■ The long
tail 5 ■ The Netflix recommender system 6 ■ Recommender
system definition 12

1.2 Taxonomy of recommender systems 15
Domain 15 ■ Purpose 16 ■ Context 16 ■ Personalization
level 17 ■ Whose opinions 18 ■ Privacy and
trustworthiness 18 ■ Interface 19 ■ Algorithms 22

1.3 Machine learning and the Netflix Prize 23
1.4 The MovieGEEKs website 24

Design and specification 26 ■ Architecture 26

1.5 Building a recommender system 28
ix

CONTENTSx
2 User behavior and how to collect it 30
2.1 How (I think) Netflix gathers evidence while you

browse 31
The evidence Netflix collects 33

2.2 Finding useful user behavior 35
Capturing visitor impressions 35 ■ What you can learn from a
shop browser 36 ■ Act of buying 40 ■ Consuming products 41
Visitor ratings 42 ■ Getting to know your customers the (old)
Netflix way 45

2.3 Identifying users 46
2.4 Getting visitor data from other sources 46
2.5 The collector 47

Building the project files 48 ■ The data model 48
The snitch: Client-side evidence collector 49 ■ Integrating
the collector into MovieGEEKs 50

2.6 What users in the system are and how to model them 52

3 Monitoring the system 57
3.1 Why adding a dashboard is a good idea 58

Answering “How are we doing?” 58

3.2 Doing the analytics 60
Web analytics 60 ■ The basic statistics 60 ■ Conversions 61
Analyzing the path up to conversion 64 ■ Conversion path 66

3.3 Personas 68
3.4 MovieGEEKs dashboard 71

Auto-generating data to your log 71 ■ Specification and
design of the analytics dashboard 72 ■ Analytics dashboard
wireframe 72 ■ Architecture 73

4 Ratings and how to calculate them 77
4.1 User-item preferences 78

Definition of ratings 78 ■ User-item matrix 79

4.2 Explicit or implicit ratings 81
How we use trusted sources for recommendations 82

4.3 Revisiting explicit ratings 83
4.4 What are implicit ratings? 83

People suggestions 85 ■ Considerations of calculating
ratings 85

CONTENTS xi
4.5 Calculating implicit ratings 88
Looking at the behavioral data 89 ■ This could be
considered a machine learning problem 93

4.6 How to implement implicit ratings 93
Adding the time aspect 97

4.7 Less frequent items provide more value 99

5 Non-personalized recommendations 102
5.1 What’s a non-personalized recommendation? 103

What’s a commercial? 103 ■ What does a recommendation
do? 105

5.2 How to make recommendations when you have
no data 105
Top 10: A chart of items 107

5.3 Implementing the chart and the groundwork for the
recommender system component 108
The recommender system component 108 ■ MovieGEEKs code
from GitHub 110 ■ A recommender system 110 ■ Adding a
chart to MovieGEEKs 110 ■ Making the content look more
attractive 111

5.4 Seeded recommendations 113
Frequently bought items similar to the one you’re viewing 114
Association rules 115 ■ Implementing association rules 120
Saving the association rules in the database 123 ■ Running the
association rules calculator 124 ■ Using different events to create
the association rules 126

6 The user (and content) who came in from the cold 128
6.1 What’s a cold start? 128

Cold products 130 ■ A cold visitor 130 ■ Gray sheep 132
Let’s look at real-life examples 132 ■ What can you do about
cold starts? 133

6.2 Keeping track of visitors 134
Persisting anonymous users 134

6.3 Addressing cold-start problems with algorithms 134
Using association rules to create recs for cold users 135
Using domain knowledge and business rules 136 ■ Using
segments 137 ■ Using categories to get around the gray sheep
problem and how to introduce cold product 139

CONTENTSxii
6.4 Those who doesn’t ask, won’t know 140
When the visitor is no longer new 141

6.5 Using association rules to start recommending
things fast 142
Find the collected items 143 ■ Retrieve association rules and
order them according to confidence 143 ■ Displaying the
recs 144 ■ Implementation evaluation 147

PART 2 RECOMMENDER ALGORITHMS.........................149

7 Finding similarities among users and among content 151
7.1 Why similarity? 152

What’s a similarity function? 153

7.2 Essential similarity functions 153
Jaccard distance 155 ■ Measuring distance with Lp-norms 156
Cosine similarity 159 ■ Finding similarity with Pearson’s
correlation coefficient 162 ■ Test running a Pearson
similarity 163 ■ Pearson correlation is similar to cosine 165

7.3 k-means clustering 165
The k-means clustering algorithm 166 ■ Translating k-means
clustering into Python 168

7.4 Implementi5ng similarities 172
Implementing the similarity in the MovieGEEKs site 174
Implementing the clustering in the MovieGEEKs site 177

8 Collaborative filtering in the neighborhood 181
8.1 Collaborative filtering: A history lesson 183

When information became collaboratively filtered 183
Helping each other 183 ■ The rating matrix 185 ■ The
collaborative filtering pipeline 186 ■ Should you use user-user or
item-item collaborative filtering? 186 ■ Data requirements 187

8.2 Calculating recommendations 188
8.3 Calculating similarities 188
8.4 Amazon’s algorithm to precalculate item similarity 189
8.5 Ways to select the neighborhood 194
8.6 Finding the right neighborhood 195
8.7 Ways to calculate predicted ratings 196
8.8 Prediction with item-based filtering 197

Computing item predictions 198

CONTENTS xiii
8.9 Cold-start problems 199
8.10 A few words on machine learning terms 199
8.11 Collaborative filtering on the MovieGEEKs site 200

Item-based filtering 202

8.12 What’s the difference between association rule recs and
collaborative recs? 207

8.13 Levers to fiddle with for collaborative filtering 207
8.14 Pros and cons of collaborative filtering 209

9 Evaluating and testing your recommender 211
9.1 Business wants lift, cross-sales, up-sales,

and conversions 212
9.2 Why is it important to evaluate? 213
9.3 How to interpret user behavior 214
9.4 What to measure 214

Understanding my taste: Minimizing prediction error 216
Diversity 216 ■ Coverage 217 ■ Serendipity 219

9.5 Before implementing the recommender… 219
Verify the algorithm 220 ■ Regression testing 221

9.6 Types of evaluation 222
9.7 Offline evaluation 222

What to do when the algorithm doesn’t produce any
recommendations 223

9.8 Offline experiments 223
Preparing the data for the experiment 229

9.9 Implementing the experiment in MovieGEEKs 235
The to-do list 235

9.10 Evaluating the test set 239
Starting out with the baseline predictor 239 ■ Finding the right
parameters 242

9.11 Online evaluation 243
Controlled experiments 243 ■ A/B testing 244

9.12 Continuous testing with exploit/explore 245
Feedback loops 246

CONTENTSxiv
10 Content-based filtering 248
10.1 Descriptive example 249
10.2 Content-based filtering 251
10.3 Content analyzer 253

Feature extraction for the item profile 253 ■ Categorical data
with small numbers 255 ■ Converting the year to a comparable
feature 255

10.4 Extracting metadata from descriptions 256
Preparing descriptions 256

10.5 Finding important words with TF-IDF 260
10.6 Topic modeling using the LDA 261

What knobs can you turn to tweak the LDA? 268

10.7 Finding similar content 271
10.8 Creating the user profile 272

Creating the user profile with LDA 272 ■ Creating the user profile
with TF-IDF 272

10.9 Content-based recommendations in MovieGEEKs 274
Loading data 274 ■ Training the model 277 ■ Creating item
profiles 278 ■ Creating user profiles 278 ■ Showing
recommendations 280

10.10 Evaluation of the content-based recommender 281
10.11 Pros and cons of content-based filtering 282

11 Finding hidden genres with matrix factorization 284
11.1 Sometimes it’s good to reduce the amount of data 285
11.2 Example of what you want to solve 287
11.3 A whiff of linear algebra 290

Matrix 290 ■ What’s factorization? 292

11.4 Constructing the factorization using SVD 293
Adding a new user by folding in 299 ■ How to do
recommendations with SVD 301 ■ Baseline predictors 302
Temporal dynamic 304

11.5 Constructing the factorization using Funk SVD 305
Root Mean Squared Error 305 ■ Gradient descent 306
Stochastic gradient descent 309 ■ And finally, to the
factorization 309 ■ Adding biases 310 ■ How to start and
when to stop 311

CONTENTS xv
11.6 Doing recommendations with Funk SVD 315
11.7 Funk SVD implementation in MovieGEEKs 318

What to do with outliers 322 ■ Keeping the model up to
date 324 ■ Faster implementation 324

11.8 Explicit vs. implicit data 324
11.9 Evaluation 324

11.10 Levers to fiddle with for Funk SVD 326

12 Taking the best of all algorithms: Implementing hybrid
recommenders 329

12.1 The confused world of hybrids 330
12.2 The monolithic 331

Mixing content-based features with behavioral data to improve
collaborative filtering recommenders 332

12.3 Mixed hybrid recommender 333
12.4 The ensemble 334

Switched ensemble recommender 335 ■ Weighted ensemble
recommender 336 ■ Linear regression 337

12.5 Feature-weighted linear stacking (FWLS) 338
Meta features: Weights as functions 339 ■ The algorithm 341

12.6 Implementation 348

13 Ranking and learning to rank 357
13.1 Learning to rank an example at Foursquare 358
13.2 Re-ranking 362
13.3 What’s learning to rank again? 363

The three types of LTR algorithms 363

13.4 Bayesian Personalized Ranking 365
Ranking with BPR 368 ■ Math magic (advanced
wizardry) 369 ■ The BPR algorithm 372 ■ BPR with
matrix factorization 373

13.5 Implementation of BPR 373
Doing the recommendations 378

13.6 Evaluation 380
13.7 Levers to fiddle with for BPR 382

CONTENTSxvi
14 Future of recommender systems 384
14.1 This book in a few sentences 385
14.2 Topics to study next 388

Further reading 388 ■ Algorithms 389 ■ Context 389
Human-computer interactions 390 ■ Choosing a good
architecture 390

14.3 What’s the future of recommender systems? 391
14.4 Final thoughts 395

index 397

preface
When I finished university in 2003, it was with the threat that no computer scientists
would be needed in Europe because everything would be developed in countries
where salaries were much lower. That never materialized, thank goodness, for many
reasons. I’d venture that one of the larger issues was that companies underestimated
the problem of developers not understanding the culture where their software was
going to run. Software requests were implemented, but the functionality was different
from what customers expected.

 Today, there’s a similar menace for people interested in machine learning and
data science. But now the threat is not low salaries, but software as a service (SaaS),
where you upload data and then the system does the work for you.

 I’m as concerned as anyone else that machines don’t understand domains and
people. Machines aren’t intelligent enough yet that you can take humans out of the
equation. Things are moving quickly, but I venture that anyone who is reading this
book will be able to work with recommenders until the end of their career.

 Where did I drop into the mix? I was working as a software engineer in Italy and
was moving to England and needed a job that required more thought than doing
CRUD operations on a database. Luckily, I was contacted by a great recruiter from
RedRock Consulting Ltd. They matched me with a recommender system provider,
where I worked on the engine. And that was it; I was lost in machine learning (“lost”
in the sense of being really interested and engaged). In addition to working on rec-
ommender systems, I also started trawling for knowledge on the internet and read
myriad books on the subject and related topics.

 Today you can’t throw a stick without having at least 10 people try to teach
you something about machine learning. I find it amusing when I see one-page or
xvii

PREFACExviii
one-hour tutorials that claim to teach you all you need to know about machine learn-
ing. I can create a similarly effective tutorial on how to be a fighter pilot:

You take off and you fly using the stick. If you need to shoot, you press a button. Then, you land
before you run out of gas.

A fighter pilot tutorial like that will probably be great to get you started—it’s where I
started. But don’t fool yourself: understanding machine learning is complex. Add to
that the human factor, which always makes things a bit wobblier.

 To get back to my story, I worked with recommenders and was happy about it, and
then I changed jobs. In my new position, I was supposed to continue working on rec-
ommender systems, but that project was delayed. At that point I was nervous I
wouldn’t be working with recommenders anymore, but that was when Manning
offered me the opportunity to write a book about recommender systems. What could I
do, other than jump at the task? Immediately after I signed the contract, the recom-
mender project started after all. Writing this book has been a great learning experi-
ence, and I hope you’ll benefit from and enjoy it.

 The goal of the book is to introduce you to recommender systems—not only the
algorithms, but also the recommender system ecosystem. The algorithms aren’t too
complex, but to understand and run them requires understanding the users who are
to receive the recommendations. The book’s contents have evolved during writing,
because I’ve tried to fit more and more in. I hope reading this book will provide every-
thing you need to know to get started on recommenders and give you a solid founda-
tion to build on as you learn more.

acknowledgments
I want to mention and acknowledge two groups of people here: those who actively
worked on the book and those who suffered and supported my constantly distracted
presence for the last three years while this book project has been under way.

 It might be my name on the cover of Practical Recommender Systems, but this book
couldn’t have come into existence without the great work of the people at Manning. I
want especially to thank Helen Stergius for her relentless help and guidance as my
development editor. She and all the others have translated my slightly dyslexic writing
into something that teaches people to implement recommenders.

 I also want to thank Furkan Kamaci and Valentin Crettaz, my technical proofread-
ers, and all the reviewers who took the time to read the early versions and helped the
manuscript become more connected. They include Adhir Ramjiavan, Alexander
Myltsev, Alvin Raj, Amit Lamba, Andrew Collier, Fazel Keshtkar, Jared Duncan,
Jaromir Nemec, Martin Beer, Mayur Patil, Mike Dalrymple, Noreen Dertinger, Olivier
Ducatteeuw, Peter Hampton, Simeon Leyzerzon, Søren Lind Kristiansen, Steven Parr,
Tobias Bürger, Tobias Getrost, and Vipul Gupta.

 Many libraries, systems, and packages have been used to write this story, and I’m
very grateful to the communities that helped me. I’m also thankful for the tools the
open source communities have provided so everything didn’t need to be imple-
mented from the ground up.

 Most important, I want to thank my wife, my son, my mother-in-law, the rest of my
family, and my close friends for their support, love, and, most of all, patience. It hasn’t
been easy for them to have a family member and friend who’s always sneaking away to
write while moving to a new house and seeing our homes in Italy shaken to pieces by
earthquakes. Not to mention that said writer started not one, but two, new jobs in the
process. Thank you, and I promise no new projects for at least a couple of years. Love
to all of you!
xix

about this book
Are you envious when Amazon recommends its products or when Netflix is spot-on
with a recommendation for a user? Then here’s your chance to learn how to add these
skills to your repertoire. Reading this book will give you an understanding of what rec-
ommender systems are and how to apply them in practice. To make a recommender
work, many things need to perform in concert. You need to understand how to collect
data from your users and how to interpret it, and you need a toolbox of different rec-
ommender algorithms so you can choose the best one for your particular scenario.
Most importantly, you need to understand how to evaluate whether your recom-
mender system is doing its job well. All this and more is hidden within this book.

Who should read this book

Practical Recommender Systems is primarily intended for developers who are interested in
implementing a recommender. The book takes a practical approach and attempts to
explain everything in normal, everyday language. There will be math and statistics,
but both will be accompanied by figures and code. New data scientists will also benefit
from this book as an introduction to recommender algorithms and to the infrastruc-
ture needed to get them up and running. Managers will find this book useful to get an
overview of what a recommender system is and how it can be used in practice.

 To get the full value out of the book, you should be able to read code in a program-
ming language such as Python or Java, you should understand an SQL query, and you
should have a basic understanding of higher math and statistics. Figures and code list-
ings that explain concepts can get you only so far.
xx

ABOUT THIS BOOK xxi
How this book is organized

The book is divided into two parts, one focusing on the recommender system infra-
structure and the other on algorithms.

 In part 1, you’ll learn how to collect data and how to use it when you add a recom-
mender system to your application:

 Chapter 1 is an overview of recommendations and outlines key elements. It pro-
vides a broad understanding of what a recommender system is and how it
works.

 Chapter 2 is about how to understand users and their behavior, and covers ways
to collect data from users.

 Chapter 3 introduces web analytics and shows how you can implement a dash-
board where you can keep track of your recommenders.

 Chapter 4 discusses how behavioral data can be transformed into ratings.
 Chapter 5 looks at non-personalized recommendations.
 Chapter 6 outlines the problem of new users and products and gives simple

solutions.

In part 2, we look at the recommender system algorithms and how to use the data a
system collects to calculate what things to recommend to a user:

 Chapter 7 discusses formulas for calculating similarity between users or content
items such as movies.

 Chapter 8 introduces personalized recommendations using collaborative filtering.
 Chapter 9 presents metrics for offline evaluation recommenders and outlines

ways to make recommendations online.
 Chapter 10 introduces content-based filtering, which finds similarities in con-

tent using different types of algorithms such as Latent Dirichlet Allocation and
TF-IDF.

 Chapter 11 returns to collaborative filtering, which was introduced in chapter
8, but is discussed now using dimensional reduction methods.

 Chapter 12 presents a way to mix types of recommenders.
 Chapter 13 introduces ranking algorithms and methods for learning to rank

recommendations.
 Chapter 14 rounds out the book with a look into the future, topics to learn

next, books to further your understanding, and thoughts about algorithms and
context.

The book is designed to be read from cover to cover, because many things refer to ear-
lier chapters, but it can also be understood by reading only selected chapters.

ABOUT THIS BOOKxxii
Downloads

The code required to run the example site called MovieGEEKs can be downloaded
from the publisher’s website at www.manning.com/books/practical-recommender-
systems and can also be found on Github.com at http://mng.bz/04K5. The website
is implemented using the Django platform. We will use two data sets: one is auto-
generated, while the other is downloaded from MovieTweetings. All installation
instructions can be found on the GitHub site.

Code conventions

This book contains many examples of source code both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font to separate it from ordinary text. Sometimes code is also in bold to highlight
code that has changed from previous steps in the chapter, such as when a new feature
adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this wasn’t enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

Book forum
Purchase of Practical Recommender Systems includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To access
the forum, go to https://forums.manning.com/forums/practical-recommender-
systems. You can also learn more about Manning’s forums and the rules of conduct at
https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

www.manning.com/books/practical-recommender-systems
www.manning.com/books/practical-recommender-systems
https://forums.manning.com/forums/practical-receommnder-systems
https://forums.manning.com/forums/practical-receommnder-systems
https://forums.manning.com/forums/about
http://mng.bz/04K5

about the author
KIM FALK is a data scientist who is experienced building data-
driven applications. He’s passionate about recommender systems
and machine learning in general. He has trained recommender
systems to provide movie choices to end users as well as ads to peo-
ple, and has even helped attorneys find case law content. He’s
worked with Big Data solutions and machine learning since 2010.
Kim often speaks and writes about recommender systems. You can
find him at http://kimfalk.org.

When he isn’t teaching machines to stalk people, Kim is a family man, father, and trail
runner with his German Pointer.
xxiii

http://kimfalk.org

about the cover illustration
The figure on the cover of Practical Recommender Systems is captioned “Amazone
d’Afrique,” or an Amazon from Africa. The illustration is taken from a collection of
dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–
1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration
is finely drawn and colored by hand.

 The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how
culturally apart the world’s towns and regions were just 200 years ago. Isolated from
each other, people spoke different dialects and languages. In the streets or in the
countryside, it was easy to identify where they lived and what their trade or station in
life was just by their dress. The way we dress has changed since then, and the diversity
by region, so rich at the time, has faded away. It is now hard to tell apart the inhabi-
tants of different continents, let alone different towns, regions, or countries. Perhaps
we have traded cultural diversity for a more varied personal life—certainly for a more
varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xxiv

Part 1

Getting ready for
recommender systems

The environment is everything that isn’t me.
—Albert Einstein

Using recommender systems and, in fact, most machine learning methods in
production isn’t only about implementing the best algorithm, it’s about under-
standing your users and the domain.

 Chapters 1–6, part 1 of Practical Recommender Systems, introduce you to the rec-
ommender system ecosystem and infrastructures. You’ll learn how to collect data
and how to use it when you add a recommender system to your application.
You’ll learn the difference between a recommendation and an advertisement,
and between a personal recommendation and a non-personal one. You’ll also
learn how to gather data to build your own recommender system.

What is a recommender?
It’s a jungle out there as far as understanding what a recommender system is, so
we’ll start this book looking into what problems it solves and how it’s used. Here’s
what we’ll cover:

 Understanding the task a recommender system is trying to emulate
 Developing insight into what are nonpersonalized and personalized recom-

mendations
 Developing a taxonomy of how to describe recommenders
 Introducing the example website MovieGEEKs

Get a cup of coffee and a blanket and make yourself comfortable for this introduc-
tion to the world of recommendations. We’ll ease into it, first looking at real-world
examples before moving into the computational intricacies of a recommender sys-
tem in the following chapters. You might feel tempted to skip ahead, but don’t. You
need the basics to understand what the result of your recommender engineering
efforts should be.

1.1 Real-life recommendations
I lived for years in Italy, in Rome. Rome is a beautiful place with many food mar-
kets—not the central ones found in guidebooks that are full of knock-off Gucci
bags (yes, Gucci bags in food markets)—but the ones that are outside the tour bus
route, the ones where the locals shop and where farmers sell their products.

 Every Saturday we went to see a greengrocer named Marino. We were good cus-
tomers, real foodies, so he knew that if he recommended good things to us, we’d
buy them—even if we had strict plans to buy only what was on our list. The water-
melon season was great, the many types of tomatoes offered a fountain of various
3

4 CHAPTER 1 What is a recommender?
flavors, and I’ll never forget the taste of the fresh mozzarella. Marino, at times, also
recommended that we not buy something if it was not top quality, and we trusted him
to give us good advice. This is an example of recommendations. Marino recommended
the same things repeatedly, which is okay with food, but that isn’t the case for most
other types of products, such as books or movies or music.

 When I was younger, before Spotify and other streaming services took over the
music market, I liked to buy CDs. I went to a music shop that catered mostly to DJs,
and I walked around and gathered a stack of CDs, then found a spot at the counter
with a pair of headphones and started listening. With the CDs as context, I had long
conversations with the man behind the counter. He checked which CDs I liked (and
didn’t like) and recommended others based on that. I valued the fact that he remem-
bered my preferences well enough between visits and didn’t recommend the same
titles to me repeatedly. This is also an example of recommendations.

 Getting home from work (now that I’m older), I always look in our mailbox to see
if we’ve got mail. Usually, the mailbox is full of advertisements from supermarkets, list-
ing things that are on sale. Typically, the ads show pictures of fresh fruit on one page
and dishwasher powder on the next—all things that supermarkets like to recommend
that you buy because they claim it’s a good offer. These aren’t recommendations;
they’re advertisements.

 Once a week, the local newspaper is among the mail. The newspaper features a top
10 list of the most watched movies at the theater that week. This is a non-personalized
recommendation. On television, much thought goes into placing commercials with the
right television content. These are targeted commercials because it’s thought a certain
type of people are watching.

 In February 2015, Copenhagen Airport officials announced the placement of 600
monitors around the airport to show commercials based on the viewer’s estimated age
and gender, along with information regarding the destinations at the nearby gates.
The age and gender were inferred using cameras and an algorithm. The press release
about the advertising provided this description: “A woman traveling to Brussels wants to
see nice watches or an ad for a finance magazine, for example. A family going on vacation might
be more interested in ads for sunblock or car rentals.”1 These are relevant commercials or highly
targeted commercials.

 People usually perceive commercials on television or at the airport as a nuisance,
but if we go online, the limits to what we consider invasive become a bit different.
There could be many reasons for this, which is a whole topic in itself.

 The internet is still the Wild West, and although I think that the advertising at the
Copenhagen Airport is quite invasive, I also find it irritating when I see advertisements
on the internet that are directed at a target group that I’m not part of. To target their
commercials, websites need to know a bit about who you are.

1 For more information, see http://mng.bz/ka6j.

http://mng.bz/ka6j
https://www.djangoproject.com/start/overview/
https://www.djangoproject.com/start/overview/
https://www.djangoproject.com/start/overview/

5Real-life recommendations
 In this and later chapters, you’ll learn about recommendations, how to collect
information about the recipients of the recommendations, how to store the data, and
how to use it. You can calculate recommendations in various ways, and you’ll see the
most used techniques.

 A recommender system isn’t only a fancy algorithm. It’s also about understanding
the data and your users. Data scientists have a long running discussion on whether it’s
more important to have a super-good algorithm or to have more data. Both have flip-
sides; super algorithms require super hardware and lots of it. More data creates other
challenges, like how to access it fast enough. Going through this book you’ll learn
about the tradeoffs and get tools to make better decisions.

 The previous examples are meant to illustrate that commercials and recommenda-
tions can look similar to the user. Behind the screen, the intent of the content is dif-
ferent; a recommendation is calculated based on what the active user likes, what others
have liked in the past, and what’s often requested by the receiver. A commercial is given
for the benefit of the sender and is usually pushed on the receiver. The difference
between the two can become blurry. In this book, I’ll call everything calculated from
data a recommendation.

1.1.1 Recommender systems are at home on the internet

Recommenders are most at home on the internet because this is where you can not
only address individual users but can also collect behavioral data. Let’s look at a few
examples.

 A website showing top 10 lists of the most sold bread-making machines provides
non-personalized recommendations. If a website for home sales or concert tickets shows
you recommendations based on your demographics or your current location, the rec-
ommendations are semi-personalized. Personalized recommendations can be found on
Amazon, where identified customers see “Recommendations for you.” The idea of the
personalized recommendation also arises from the idea that people aren’t only inter-
ested in the popular items, but also in items that aren’t sold the most or items that are
in the long tail.

1.1.2 The long tail

The long tail was coined by Chris Anderson in an article in Wired magazine in 2004,
which was expanded into a book published in 2006 (Hyperion).2 In the article, Ander-
son identified a new business model that’s frequently seen on the internet.

 Anderson’s insight was that if you’ve a brick-and-mortar shop, you’ve a limited
amount of storage and, more importantly, a finite space to show products to your cus-
tomers. You also have a limited customer base because people have to come to your
shop. Without these limitations, you don’t have to sell only popular products as with the

2 For more information on the magazine article, see https://www.wired.com/2004/10/tail/. For information
on the book, see https://en.wikipedia.org/wiki/The_Long_Tail_(book).

https://en.wikipedia.org/wiki/The_Long_Tail_(book)

6 CHAPTER 1 What is a recommender?
usual commerce business model. In brick-and-mortar shops, it’s considered a losing
strategy to stock non-popular products because you need to store many items that might
never sell. But if you’ve a web store, you can store an infinite number of products
because rental space is cheap or, if you sell digital content, it doesn’t take up any space
at all, costing little or nothing. The idea behind the long-tail economy is that you can
profit by selling many products, but only a few of each, to many different people.

 I’m all for diversity, so I think it’s great to have a huge catalog of products, but the
question that’s difficult to answer is how do users find what they want? This is where
recommender systems make their entrance. Because these systems help people find
those diverse things that they wouldn’t otherwise know existed.

 On the web, because Amazon and Netflix are considered the giants both in con-
tent and in recommendations, these companies are used in numerous examples
throughout this book. In the following section, you’ll take a closer look at Netflix as
an example of a recommender system.

1.1.3 The Netflix recommender system

As you likely know, Netflix is a streaming site. Its domain is that of films and TV series,
and it has a continuous flow of available content. The purpose of Netflix’s recommen-
dations is to keep you interested in its content for as long as possible and to keep you
paying the subscription fee month after month.

 The service runs on many platforms, so the context of its recommendations can
differ. Figure 1.1 is a screenshot of Netflix from my laptop. I can also access Netflix
from my TV, my tablet, and even my phone. What I want to watch on each platform
varies—I never watch an epic fantasy film on my phone, but I love them on TV.

 Let’s begin this walk-through by looking at that startup page. The front page is
constructed as a panel containing rows with subjects such as Top Picks, Drama, and
Popular on Netflix. The top row is dedicated to what’s on my list. Netflix loves this list
because it indicates not only what I’ve watched and what I’m watching now, but also
what I (at least at one point) have shown an interest in watching.

 Netflix wants you to notice the following row because it contains the Netflix Origi-
nals—the series that are produced by Netflix. These are important to Netflix for two
reasons, both financial:

 Netflix has spent big money to produce original content and the programs are,
in most cases, found only on Netflix.

 Netflix must pay content owners when users watch their content. If that owner
is Netflix, not only does it save them money, it puts money in their pocket.

The last point also illustrates something to consider: even if everything is personalized
on the page, the fact that the Netflix Originals are on the second row probably isn’t a
result of me watching them, but rather a pursuit of an internal business goal.

7Real-life recommendations
CHARTS AND TRENDS

Next is the Trending Now list. Trending is a loose term that can mean many things,
but here it includes content that’s popular within a short period. The bottom row,
Popular on Netflix, also has to do with popularity but over a longer period, maybe a
week. Trends and charts will be discussed in detail in chapter 5.

Charts

My List NotificationsRow
headlines

Several profiles
per contact

Personal
start page

My
recommendations

Recently
watched

Netflix’s own
series

Figure 1.1 The Netflix start page (before it changed the layout)

8 CHAPTER 1 What is a recommender?
RECOMMENDATIONS

The fourth row is the list of Top Picks for me, which match my profile. This list con-
tains what most people would call recommendations. It shows what the Netflix recom-
mender system predicts what I’d like to watch next. It looks almost right. I’m not into
bloody, gory movies, and I’d rather not see any dissections of bodies at all. Not all the
suggestions are to my liking, but I assume that it’s not only my taste that Netflix uses to
build this list. The rest of my household also watches content using my profile at
times. Profiles are Netflix’s way of letting the current user indicate who’s watching.

 Before introducing profiles, Netflix aimed its recommendations at a household
rather than one person.3 It tried to always show something for mom, dad, and chil-
dren. But Netflix has since dropped that, so now my list doesn’t include any children’s
shows. But even if Netflix is using personal profiles, I think it imperative to consider
who’s watching—not only the person with the profile, but also anyone else. I’ve heard
rumors that other companies are working on solutions enabling you to tell the system
that other people are watching too. This is to allow the service to deliver recommen-
dations fitting all members of the audience. To date, I haven’t seen any in play.

 Microsoft Kinect could recognize people in front of the TV by using face/body rec-
ognition. Microsoft took it a step further by identifying not only household members,
but also other people from its full catalog of users, allowing Kinect to recognize users
when they’re visiting other homes. Although a sign of audience recognition, Kinect
for Xbox One was discontinued in October 2017, representing the end of the Kinect
product line.

ROWS AND SECTIONS

Back to the Top Picks of Netflix. You can find more details on the content by hovering
your mouse over one of the suggestions. A tooltip appears with a description (see fig-
ure 1.2) and a predicted rating, which is what the recommender system estimates I’d
rate this content. You might expect that the recommendations in the Top Picks all have
a high rating, like the one in figure 1.1, but looking through the recommendations,
you can find examples of items with a low predicted rating, as shown in figure 1.3.

 The ways of the Netflix recommender are many, so there are numerous possible
explanations as to why Netflix recommends an item that it predicts I won’t rate highly.
One reason could be that Netflix is aiming for diversity over accuracy. Another reason
could be that even if I won’t rate a movie maximum stars, it might still be something
that I’m in the mood to watch. This is also the first hint that Netflix doesn’t put much
value on ratings.

 The titles of each row are different; some are of the type Because You Watched Suits.
These lines recommend things that are similar to Suits. Other rows are genres such as
Comedies, which, curiously enough, contains comedies. You could say that the row titles
are also a list of recommendations; you could call these category recommendations.

3 “Netflix Recommendations: Beyond the 5 stars (Part 1),” http://mng.bz/bG2x.

http://mng.bz/bG2x

9Real-life recommendations
This could be the end of the story, but then you’d miss the most important part of the
Netflix personalization.

RANKING

Each of the row headlines describes a set of content. This content is then ordered
according to a recommendation system and presented in order of relevancy or rank,
starting from the left as illustrated in figure 1.4.

By hovering over
an item, a description
appears.

Netflix previously estimated a
rating, now it provides you a
percentage of how will this item
matches your taste

96% Match96% Match

Figure 1.2 A Netflix Top Pick with a predicted match

Low-predicted match
between the Top Picks

86% Match86% Match

Figure 1.3 A Netflix Top Pick with a low predicted rating

Recommender system

Comedy

1 2 3 4 5

Set of
comedy
content

Figure 1.4 Each Netflix row is ordered by relevance.

10 CHAPTER 1 What is a recommender?
Even in My List, which contains the content I’ve selected myself, the content is
ordered according to the recommender system’s estimate of its relevance for me. I
added the screenshot in figure 1.1 yesterday. Today my list has a new order, as shown
in figure 1.5.

The Netflix recommender system also tries to recommend content that’s relevant at a
specific time or in a particular context. For example, Sunday mornings might be more
for cartoons and comedies, whereas evenings might be more for “serious” watching of
a TV series such as Suits.

 Another row that might be surprising is Popular on Netflix, which shows content
that’s popular right now. But Netflix doesn’t say that the most popular item is the one
all the way to the left. Netflix finds the set of most popular items and then orders them
according to what you consider most relevant now.

BOOSTING

A point to ponder is why Netflix has ranked the show Designated Survivor high in My
List, considering that I’m already watching it. But Netflix had a notification indicating
that a new season of Designated Survivor is out. This could explain why this show
appears.

 Boosting is a way for companies to put a finger on the scale when suggestions are
calculated, and Netflix wants me to notice Suits because it’s new content, meaning it
has a freshness value. Netflix boosts content based on freshness; freshness can mean
that it’s new or it’s been mentioned in the news. Boosting is covered in more detail in
chapter 6 because it’s something that many site holders request as soon as the system
is up and running.

NOTE There’s a machine-learning algorithm family called boosting, but what
I’m referring to here is something different.4

4 For more information, see https://en.wikipedia.org/wiki/Boosting_%28machine_learning%29.

Yesterday

Today

Figure 1.5 Netflix orders my list by relevancy.

https://en.wikipedia.org/wiki/Boosting_%28machine_learning%29

11Real-life recommendations
SOCIAL MEDIA CONNECTION

For a short period of time, Netflix also tried to use social media data.5 Back then,
you’d find something like what’s shown in figure 1.6 on your Netflix page.

Netflix encouraged you to enable Facebook Connect, thereby allowing Netflix access
to your list of friends as well as other information. One of the advantages for Netflix
was that it was able to find your friends and make social recommendations based on
what they liked. Connecting with Facebook could also make watching films a much
more social experience, which is something that many media companies are exploring.

 In this day and age, people don’t sit down to watch films passively. They multitask,
watching a movie while sitting with a second device (such as a tablet or a smart-
phone). What you’re doing on the second device can have a large influence on what
you watch next. Imagine that after you watch something on Netflix, a notification
pops up on your phone that one of your friends liked a film, and presto, Netflix rec-
ommends that as the next thing to watch.

 This social feature was, however, removed in the 2015-2016 timeframe, with the
argument that people weren’t happy with sharing their films with Facebook’s network.
In the words of Neil Hunt, the Chief Product Officer at Netflix, “It’s unfortunate
because I think there’s a lot of value in supplementing the algorithmic suggestions
with personal suggestions.”6

TASTE PROFILE

With a page that’s built almost entirely based on suggestions, it’s a good idea to pro-
vide as much input as possible on your tastes. If Netflix doesn’t have a clear sense of
your taste, it can be hard for you to find what you want to watch.

 In 2016 Netflix had options that helped users build their profiles. The Taste Profile
menu, shown in figure 1.7, enabled you to rate shows and movies, to select genres by
saying how often you felt like watching, for example, Adrenaline Rush content as illus-
trated in figure 1.8, or to check whether your ratings matched your current opinions.

5 “Get to know Netflix and its New Facebook Integration,” http://mng.bz/6yHM.
6 “It’s your fault Netflix doesn’t have good social features,” http://mng.bz/jc7M.

Figure 1.6 Netflix wants to know what my friends are watching.

http://mng.bz/jc7M
http://mng.bz/6yHM

12 CHAPTER 1 What is a recommender?

The manually inputted Taste Preferences enable Netflix to provide better suggestions.
Asking the user for help with the taste profile is a method often used to allow the sys-
tem to give suggestions to new users. But, as with so many things, there’s often a differ-
ence between what users say they like and what they indeed like.

 Seeing taste preferences is usually the first step in getting to know a user. And as
the user uses the system more, Netflix was able to collect usage data, which is often
more trustworthy. Netflix has now removed this feature.

1.1.4 Recommender system definition

To be sure we’re all on the same page, table 1.1 provides several definitions.

Help the system and
rate content.

Help the system
by indicating
preferred genres.

Help the system
by ensuring your
ratings are correct.

Figure 1.7 Example of how the Netflix taste profile looked in 2015

State how often
you want to watch
Adrenaline Rush.

Choose between
many different
categories.

Figure 1.8 The Netflix Taste Preferences menu

13Real-life recommendations
With these definitions in place, we can finally define a recommender system.

With this definition in place, you might think that you’ve figured it all out. But let’s go
through an example of how a recommendation could be calculated and how it would
work. Figure 1.9 shows how Netflix might produce my Top Picks row. Here are the
steps of how Netflix might calculate my Top Picks:

1 A request for the Top Picks list is received.
2 The server calls the recommendation system, which consists of a pipeline of

methods. This step is called retrieve candidate items. It retrieves the items from the
catalog database that are most similar to the current user’s taste.

3 The top five items (normally it could be 100 items or more) are piped into the
next pipeline step, which is to calculate prediction.

4 Prediction is calculated using the user preferences retrieved from the user data-
base. It’s likely that the calculation will remove one or more items from the list
due to a small predicted rating. In figure 1.9, items C and E are removed.

5 The significant items are output from the calculated prediction, now with a
predicted rating added to them. The result is piped into an order-by-relevance
process.

Table 1.1 Recommender system definitions

Term Netflix example Definition

Prediction Netflix guesses what you’ll rate an
item.

A prediction is an estimate of how
much the user would rate/like an
item.

Relevancy Orders all rows on the page (for
example, Top Picks and Popular on
Facebook) according to applicability.

An ordering of items according to
what’s most relevant to the user right
now. Relevance is a function of con-
text, demographics, and (predicted)
ratings.

Recommendation Top Picks for me. The top N most relevant items.

Personalization The row headlines in Netflix are an
example of personalization.

Integrates relevancy into the
presentation.

Taste profile See figure 1.8. A list of characterizing terms coupled
with values.

Definition: recommender system
A recommender system calculates and provides relevant content to the user based
on knowledge of the user, content, and interactions between the user and the item.

14 CHAPTER 1 What is a recommender?
6 The revelant items are ordered according to the user’s taste, context,
and demographics. The process might even try to add as much diversity to the
result as possible.

7 The items are now ordered by relevance. Item F was removed because the rele-
vance calculations showed that it wouldn’t be relevant for the end user.

8 The pipeline returns the list.
9 The server returns the result.

Looking at figure 1.9, it’s evident that there are many aspects to consider when work-
ing with recommender systems. The preceding pipeline is also missing the parts of
collecting the data and building the models. Most recommender systems try to use the
data shown in figure 1.10 in one way or another.

 Figure 1.9 also illustrates another fact to take into consideration: the rating predic-
tion is only a part of a recommendation system. Other things can also play an import-
ant role in what your system should display to the user. A big part of this book is about
predicting ratings, and that’s important, even if I made it sound like something negi-
ble here.

Web interface

A B F D

A B C FD E

AB D

Pipeline flow

Data query

LEGEND

4. Prediction is
calculated.

Content
database

User
database

Calculate
predictions

5. Predicted
ratings are
added.

3. Pass
popular
items to
predictor.

6. Items ordered
by relevance.

7. Ordered
list. One item
has been
deemed not
relevant.

8. List is
sent to web
server.

9. Web server
responds.

1.Request
Top Picks. 2. Call rec

system.
user ID,
location,
device type,
speed, etc.

Data transfer
object

Method
execution

Retrieve
candidate

items.

Order by
relevance.

Figure 1.9 How Netflix Top Picks might be calculated

15Taxonomy of recommender systems
1.2 Taxonomy of recommender systems
Before starting to implement a recommendation system, it’s a good idea to dwell a bit
on what kind of recommender system you want to roll out of the garage. A good way
to start is by looking at similar systems for inspiration. In this section, you’ll learn a
framework for studying and defining a recommender system.

 In the previous sections, the Tour d’Netflix provided an overview of what a recom-
mender system can do. This section explains a taxonomy to use to analyze recom-
menders. I first learned about it in Professor Joseph A. Konstan and Michael D.
Ekstrand’s Coursera course “Introduction to Recommender Systems,”7 and have
found good use for it ever since. Taxonomy uses the following dimensions to describe a
system: domain, purpose, context, personalization level, whose opinions, privacy and
trustworthiness, interfaces, and algorithms.8 Let’s look at each of those dimensions.

1.2.1 Domain

The domain is the type of content recommended. In the Netflix example, the domain
is movies and TV series, but it can be anything: sequences of content such as playlists,
best ways to take e-learning courses to achieve a goal, jobs, books, cars, groceries, holi-
days, destinations, or even people to date.

 The domain is significant because it provides hints on what you’d do with the rec-
ommendations. The domain is also important because it indicates how bad it is to be
wrong. If you’re doing a music recommender then it isn’t that bad if you recommend

7 For more information, see www.coursera.org/learn/recommender-systems-introduction/.
8 The taxonomy concept first appeared in Word of Mouse: The Marketing Power of Collaborative Filtering by John

Riel and Joseph A. Konstan (Business Plus, 2002).

Prediction

Filtering/Ranking

Recommendation

Historical data

Demographics
 • Age
 • Gender
 • Nationality
 • Political views
 • Income

Context
 • Device
 • Moving or stationary
 • Alone or in group
 • Time of day/week/year

Content metadata

Figure 1.10 Data can potentially be used as input data for a recommender system.

www.coursera.org/learn/recommender-systems-introduction/

16 CHAPTER 1 What is a recommender?
music that isn’t spot on. If you’re recommending foster parents to children in need,
then the cost of failure is quite high. The domain also dictates if you can recommend
the same thing more than once.

1.2.2 Purpose

What is the purpose of the Netflix site, both for the end user and for the provider? For
end users, the use of Netflix recommendations is to find relevant content that they
want to watch at that specific time. Imagine that you didn’t have any ordering or filter-
ing. How would you ever find anything in the Netflix catalog when it has more than
10,000 items? And the purpose for the provider (in this case, Netflix) is ultimately to
make customers pay for the subscription month after month by providing content
they want to watch, right at their fingertips.

 Netflix considers the amount of content viewed as a deciding factor in how
they’re doing. Measuring something else instead of your direct goal is called using a
proxy goal. Using a proxy goal is something you should be careful about because it can
inadvertently end up measuring other effects than what you wanted—more time
spent on the Netflix platform could mean frustrated customers who search and
search without finding what they’re looking for, or they may have found it, but the
site keeps stalling.9

 Behind the scenes, there might also be considerations to balance things in such a
way that Netflix pays the least money possible for what you’re watching. Netflix proba-
bly pays less to offer 10-year-old episodes of Friends than a newer series or, even better,
a Netflix original series where they don’t have to pay a license fee to anybody.

 A purpose could also be to give information or to help or educate the user. In most
cases, however, the purpose is probably to sell more.

 What type of customers would you rather serve: consumers who arrive once and
expect good recommendations or loyal visitors who create profiles and return on a
regular basis? Will the site be based on automatic consumption (for example, the Spo-
tify radio station, which keeps playing music based on a song or a single artist)?

1.2.3 Context

The context is the environment in which the consumer receives a recommendation. In
our example, it can be the device the customer uses to view Netflix or the current
location of the receiver, the time of day (or night), and what the consumer is doing.
Does the user have time to study the suggestions or is a quick decision needed? The
context can also include the weather or even the user’s mood!

 Consider a search for a cafe on Google Maps. Is the user sitting at an office com-
puter and looking for a good coffee bar, or is the user standing on the street as it starts
to rain? In the first scenario, the best response would identify good quality cafes in a
wider radius; in the second scenario, recommendations would ideally contain only the

9 I recommend Weapons of Math Destruction by Cathy O’Neil (Broadway Books, 2016) if you want to know more
about how wrong things can go when you use proxy goals.

17Taxonomy of recommender systems
nearest place to drink coffee while the rain passes. Foursquare is an example of an
app where you can find cafes. We’ll look at Foursquare in chapter 12.

1.2.4 Personalization level

Recommendations can come at many personalization levels, from using basic statistics
to looking at individual user data. Figure 1.11 illustrates these levels.

NON-PERSONALIZED

A list of the most popular items is considered a non-personalized recommendation: the
chances are that the current user might like the same items as most others do. Non-
personalized recommendations also include showing things ordered by date, such as
showing the newest items first. Everyone who interacts with the recommender system
receives the same list of recommendations. And they can also include when a cafe sug-
gests drinks Friday afternoon, cappuccinos in the morning, but brunch on weekend
mornings.

SEMI/SEGMENT-PERSONALIZED

The next level of recommendations divides users into groups—the semi/segment person-
alized recommendations. You can segment groups of users in many ways: by age, by
nationality, or by distinct patterns such as business people or students, car drivers or
bicycle riders.

 A system selling concert tickets, for example, recommends shows based on the
user’s country or city. Here’s another case: if a user is listening to music on a smart-
phone, the system might try to deduce whether the device is moving or not. If it is
moving, the person might be exercising or they might be driving or cycling. If the
device is stationary, the consumer may be sitting on a sofa at home and the appropri-
ate music might be different.

 This recommender system doesn’t know anything personal about you, only you as
a member of a group or segment. Other people who fit into the same group will get
the same recommendations.

PERSONALIZED

A personalized recommendation is based on data about the current user that indicates
how the user has interacted with the system previously. This generates recommenda-
tions specifically for this user.

Non-personalized Semi-personalized Personalized

Most popular
content

Based on
membership of

specific
segments

Based on
personal taste

Figure 1.11 Personalization levels

18 CHAPTER 1 What is a recommender?
 Most recommender systems also use segments and popularity when creating per-
sonalized recommendations. An example of a personalized recommendation is Ama-
zon’s Recommended for You. The Netflix starting page is an extreme example of
personalized recommendations.

 Usually, a site applies various types of recommendations. Only a few sites, such as
Netflix, offer everything personalized. On Amazon, you’ll also find Most Sold Items,
which is nonpersonalized, as well as the Customers Who Bought This Also Bought
This list, which provides seeded recommendations. These are recommendations based on
a seed, which could be the current item that a user is viewing.

1.2.5 Whose opinions

Expert recommenders are manual systems whose experts recommend good wines,
books, or similar. These systems are used in areas where it’s generally accepted that
you need to be an expert to understand what’s good.

 The days of expert websites are mostly over, however, so the whose opinions parame-
ter isn’t used much nowadays. Almost all sites use the opinions of the masses. They say
that there’s no rule without an exception; a few expert sites still remain. An example is
the sommelier’s recommendation on the wine site called www.vivino.com, shown in
figure 1.12. Vivino is turning to recommender systems to recommend wines as well.
Vivino added the recommender system to their app in 2017 to help users find new
wines to taste based on their rating history.10

1.2.6 Privacy and trustworthiness

How well does the system protect users’ privacy? How is the collected information
used? For example, in Europe, it’s common to pay money into a pension, which is
handled by a bank. Often these banks offer different kinds of retirement savings
plans. A system that recommends these should have strict rules for privacy. Imagine

10 For more information, see http://mng.bz/1jFR.

Figure 1.12 Vivino.com provides expert wine recommendations (the recommendations are omitted
to save space).

http://mng.bz/1jFR
www.vivino.com

19Taxonomy of recommender systems
filling in an application for a retirement savings plan and describing that you’ve back
problems, and a minute later receiving a phone call from a chiropractor with great
offers to handle your exact problem. Or even worse, you buy a special bed for people
with back problems, and an hour later you receive an email that your health insurance
premium has gone up.

 Many people consider recommendations as a form of manipulation because they
present choices that customers are more likely to pick than if they were offered a ran-
dom selection. And most shops are trying to sell more, so the fact that stores that use
recommendations to sell more makes people think they’re being manipulated. But if
that means watching a film that would entertain rather than bore, then I say it’s okay.
Manipulation is more about the motive for showing a particular item rather than the
act of showing it. If you’ve recommended inappropriate and non-optimal medicine
because the vendor buys the website owner better dinners, then that’s manipulation,
which should be frowned upon.

 When the recommendation system starts performing and an increase in business is
measured, many might find it tempting to inject vendor preferences, overstocked
items, or maybe preferences for which brand of pills customers buy. Beware: if custom-
ers start feeling manipulated, they’ll stop trusting your recommendations and eventu-
ally find what they need somewhere else.

The moment that recommendations have the power to influence decisions, they become a
target for spammers, scammers, and other people with less-than-noble motives for
influencing our decisions.

—Daniel Tunkelang11

Trustworthiness indicates how much the consumer trusts recommendations instead of
considering them as commercials or attempts at manipulation. In the Netflix exam-
ple, I talked about how predictions can be discouraging for users if the estimated pre-
diction is far off the user’s actual rating. This is about trustworthiness. If the user takes
the suggestions seriously, the system is trustworthy.

1.2.7 Interface

The interface of a recommender system depicts the kind of input and output it pro-
duces. Let’s look at each.

INPUT

Netflix once enabled users to enter likes and dislikes by rating content and adding
preferences on genres and topics. This data can be used as input to a recommender
system.

 The Netflix example uses explicit input, where you, the consumer, manually add
information about what you like. Another form of input is implicit, where the system

11 For more on the role taste and trust play in recommendations, see www.linkedin.com/pulse/taste-trust-dan-
iel-tunkelang.

www.linkedin.com/pulse/taste-trust-daniel-tunkelang
www.linkedin.com/pulse/taste-trust-daniel-tunkelang

20 CHAPTER 1 What is a recommender?
tries to deduce taste by looking at how you interact with the system. Chapter 4 handles
feedback in more detail.

OUTPUT

Types of output can be predictions, recommendations, or filtering. For example, Net-
flix outputs recommendations in many ways. It estimates predictions, provides person-
alized suggestions, and shows popular items, which normally is in the form of a top 10
list (but Netflix even personalizes that).

 If the recommendations are a natural part of the page, it’s called an organic presenta-
tion. The rows shown on Netflix are an example of organic recommendations: Netflix
doesn’t indicate that these are recommendations; they’re an integral part of the site.

 The examples illustrated in figure 1.13 are nonorganic. Hot Network Questions
uses a form of non-personalized recommendations by not explicitly stating that what’s
shown. Amazon displays nonorganic personalized recommendations in its Recom-
mended for You list, and the New York Times employs nonorganic recommendations
showing the most emailed articles.

Certain systems explain the recommendations. Recommenders with that ability are
called white-box recommenders; those that don’t are called black-box recommenders. Figure
1.14 shows examples of each. The distinction is important to consider when choosing
an algorithm because not all provide a clear path back to the reasons for a prediction.

 Deciding whether you want to produce a white-box or black-box recommender
can put constraints on which algorithms you use. The more your system needs to
explain, the simpler the algorithm. Often you can consider the decision as shown in
figure 1.15. The better the quality of the recommendation, the more complex and the
harder to show explanations. This problem is known as model accuracy-model interpreta-
tion trade-off.

 I once worked on a project where extreme emphasis was placed on explainability
and quality. To solve this, we had to build another algorithm on top of our recom-
mender system to allow for good quality recommendations while also having a system
that connected the evidence with the result.

Figure 1.13 Examples of nonorganic, non-personalized recommendations: Hot Network Questions
from Cross Validated, Most Emailed from the New York Times, and a personalized Recommended for
You list from Amazon

21Taxonomy of recommender systems
Amazon white box
recommender. Explains that
Amazon predicts that this book
is interesting to me because I
bought another similar book.

Netflix black box
recommender. No
explanation for their
recommendations

Figure 1.14 Black-box (from Netflix) and white-box (from Amazon) recommendations

Figure 1.15 Explainability vs. quality of recommendations

22 CHAPTER 1 What is a recommender?
Recommender systems have become extremely common in recent years, so there are
many examples to look at. Often the recommender systems are implemented for mov-
ies, music, books, news, research articles, and most products in general. But recom-
mender systems also have a place in many other areas, such as financial services, life
insurance, online data, job searches, and in fact, everywhere there are choices to be
made. This book primarily uses websites as examples, but there’s no reason not to
work in other platforms.

1.2.8 Algorithms

A number of algorithms are presented in this book. The algorithms fall into two
groups, and they depend on the type of data you use to make your recommendations.
Algorithms that employ usage data are called collaborative filtering. Algorithms that use
content metadata and user profiles to calculate recommendations are called content-
based filtering. A mix of the two types is called hybrid recommenders.

COLLABORATIVE FILTERING

Figure 1.16 illustrates one way of doing collaborative filtering. The outer set is the full
catalog. The middle set is a group of users who have consumed similar items. A rec-
ommender system recommends items from the smaller, front-most set, assuming that
if users liked the same things as the current user, then the current user will also like
other items this group has consumed. The group is identified by the overlap between
what the individual users have liked and what the current user liked. Then the gap of
content, which the current user is missing, will be recommended (the part of the mid-
dle circle that isn’t covered by the circle representing the current user’s likes).

 Many ways exist to calculate collaborative filtering recommendations. You’ll see a
simple version in chapter 8 and a not-so-simple one in chapter 11, where we talk about
matrix factorization algorithms.

Complete catalog

Items the current user likes

Items that a segment of
users like

Figure 1.16 Collaborative filtering
diagram

23Machine learning and the Netflix Prize
CONTENT-BASED FILTERING

Content-based filtering uses the metadata you have on the items in your catalog. Netflix
uses descriptions of its movies, for example.

 Depending on the specific algorithm, the system can calculate recommendations
either by taking the items the user has liked and finding similar content, by compar-
ing the items and user profiles, or, if there’s no user involved, by finding similar con-
tent between items. When there’s a user profile, the system calculates a profile for
each user that contains categories of the content. If Netflix used content-based filter-
ing, it could create a user profile of genres like thrillers, comedies, drama, and new
films, and give values to them all. Then a film gets recommended if it has similar val-
ues as the user.

 Here’s an example. User Thomas likes Guardians of the Galaxy, Interstellar, and the
TV series Game of Thrones. Each is rated according to a five-point system. Table 1.2
shows one way of looking at the three selections.

Based on this information, you build a profile of Thomas indicating Sci-Fi: 3, Adven-
ture: 4. To find other films to recommend, you look through the catalog to find films
similar to Thomas’ profile.

HYBRID RECOMMENDER

Both collaborative filtering and content-based filtering have strengths and weak-
nesses. Collaborative filtering needs much feedback from the users to work properly,
while content-based filtering needs good descriptions of the items. Often recommen-
dations are produced as a mix of the output from the two types of algorithms we
talked about previously, plus other types of input, which could be the distance from a
place or the time of day.

1.3 Machine learning and the Netflix Prize
A recommender system is about predicting what content a user needs right now. You
can predict this in many ways. Building recommender systems has become a multidis-
ciplinary sport that takes advantage of computer science fields such as machine learn-
ing, data mining, information retrieval, and even human-computer interaction.
Machine learning and data-mining methods enable the computer to make predic-
tions by studying examples of what it should predict; consequently, recommendations
can be constructed by using these prediction functions.

Table 1.2 Rating system for two films and a TV series

Movies and TV Sci-Fi genre Adventure genre

Interstellar 3 3

Game of Thrones 1 5

Guardians of the Galaxy 5 4

24 CHAPTER 1 What is a recommender?
 Many recommender systems are centered around machine-learning algorithms to
predict user ratings of items or to learn how to correctly rank items for a user. One
reason that the field of machine learning is growing is that people want to solve the
recommender system problem. The aim is to implement algorithms that enable com-
puters to suggest our secret desires, even before we know them ourselves.

 Many claim that the catalyst for this interest in applying machine learning to recom-
mender systems was the famous Netflix Prize. The Netflix Prize was a competition hosted
by Netflix that offered $1,000,000 to anyone who could come up with an algorithm that
improved their recommendations by 10%. The competition began in 2006, and it took
almost three years for somebody to win it. In the end, it was a hybrid algorithm that won.
You’ll recall that a hybrid algorithm runs several algorithms and then returns a com-
bined result from all of them. You’ll learn about hybrids in chapter 11.

 Netflix never used the winning algorithm, probably because it was so complicated
that the performance hit on the system couldn’t justify the improvements. Sadly, we
don’t have Netflix to play with while learning about recommender systems. Instead, I’ve
implemented a small demo site called MovieGEEKs to show off the things described in
this book. The site requires much tweaking before it can be production-ready. Under-
standing recommender systems is its key purpose.

1.4 The MovieGEEKs website
This book is about how to implement recommender systems. It will provide you with
the tools to do that, no matter which platform you want to use for your recommenda-
tion system. But to do anything interesting with a recommender system, you need data
and to get a feel for how it’s working it’s not enough to look at numbers.

 This book focuses on websites, but that doesn’t mean that everything written here
doesn’t apply to any other type of system. This is a short introduction to the frame-
work in which we’ll do our dance.

 The MovieGEEKs website (http://mng.bz/04k5) is built using a Django website. I
encourage you to download MovieGEEKs and use it as you read through the book
because it will help you understand what’s going on. The fact that it’s a Django site or
something else isn’t so important; I’ll point you to where to look as we work through
the examples.

You’ll download the website once. It contains all the functionality described in this
book. Here’s the fictional scenario that we’ll be following.

Django website and framework
If the words Django web framework sound strange to you, take a look at the Django
documentation at www.djangoproject.com/start/overview/.

www.djangoproject.com/start/overview/
http://mng.bz/04k5

25The MovieGEEKs website
 Imagine that you have a customer who wants to take his DVD selling online. I
imagine an old DVD rental shop that was in Bath, in the United Kingdom, with an
owner who wants to try movie selling on the internet. The store sadly no longer exists
(see figure 1.17).

 The shop was anything but electronic; it was managed with small paper cards and,
although you might think that sounds impossible, it all seemed to work! In real life, I
don’t think the owner would ever have taken his business online, but one of the
unique things about this place was that you’d always get superb recommendations.
The owner would do a monthly review—expert opinion recommendations—and the
people who worked there always knew everything there was to know about films.

 I like to think of recommender systems as an attempt to give personal service to
people on the Net. The following is a brief description of what the fictive owner wants.

Figure 1.17 The facade of On the Video Front, our fictional business

26 CHAPTER 1 What is a recommender?
1.4.1 Design and specification

To get started, you’ll need to put down several overall points for the design. The main
page of the site should show visitors the following:

 A tiled area of movies
 An overview of each film, without leaving the page
 Recommendations as personal as possible
 A menu containing a list of genres

Each movie should have its own page with details as follows:

 Movie poster
 Description
 Rating

Each category should have a page containing the following:

 Same structure as the homepage
 Recommendations specific to the category

1.4.2 Architecture

You’ll use Python and the Django web framework to implement this site. Django lets
you split a project into different applications. Figure 1.18 shows a high-level architec-
ture and provides an illustration of which applications will build the site.

Databases

Web APIWebsite

MoviegeekAnalytics

Content EvidenceUsers Recs

Records user behavior

MovieGEEKs
site

Recommender
API

Collector
API

Provides
recommendations

Recommendation builder
Figure 1.18 MovieGEEKs’ architecture

27The MovieGEEKs website
Let’s do a quick walk-through:

 MovieGEEKs—This is the main part of the site. Here the client logic (HTML,
CSS, JavaScript) is placed along with the Python code responsible for retrieving
the movie data.

 Analytics—The ship’s bridge, where everything can be monitored. This part will
use data from all the databases. The analytics part is described in chapter 4.

 Collector—This handles the tracking of the user behavior and stores it in the evi-
dence database. The evidence logger is described in chapter 2.

 Recs—This is the heart of this story and is what will add the edge to this site. It’ll
deliver the recommendations to the MovieGEEKs site. The recommendations
part is described in chapter 5 and the rest of the book.

 Recommendation builder—This pre-calculates recommendations, which will pro-
vide elaborate recommendations to the user. You’ll meet the recommendation
builder for the first time in chapter 7.

Each of these components or applications contain exciting data models and features.
This will thoroughly entice future visitors.

 MovieGEEKs is a movie site mainly because a data set is available that contains a long
list of content—movies, users, and ratings. Even more important, the content includes
URLs that translate into movie posters, which makes working with it much more fun.

 Figure 1.19 shows the MovieGEEKs homepage, or landing page. When the user clicks
a movie, a pop-up appears that gives more information and a link to even more details.

Personal
recommendations

Chart

Movies order by
recency DB

Listing the
genres.

Figure 1.19 The landing page of the MovieGEEKs site

28 CHAPTER 1 What is a recommender?
That’s it! Simple, but it’ll do the trick. Go ahead and download it now. For installation
instructions, refer to the readme on GitHub at http://mng.bz/04k5. The Movie-
GEEKs site uses a data set called MovieTweetings. This data set consists of ratings on
movies that were contained in well-structured tweets on Twitter.12

1.5 Building a recommender system
Before moving on, let’s look at how you’d build a recommender system. Assuming you
already have a platform in the shape of a website or an app where you want to add a
recommender system, it’d go something like the cycle shown in figure 1.20.

Start with an idea that you want to sell more by adding recommenders. You’ll collect
behavioral data and use that data to build an algorithm, which creates a model when it
runs. The model can also be considered as a function, which will, given a user ID, cal-
culate recommendations.

 You’ll try out this model on historical data to see if you can use it to predict a user’s
behavior. For example, if you have data showing what users bought last month, then
you can create the model using the three first weeks of data to see how well the model
recommends things that the users bought in the last week of your month of data. It
might be better at predicting what the user has bought compared to a baseline recom-
mender system, which can be as simple as a method that returns the most popular
items. If it’s doing well, you can expose it to part of your users and see if you can track

12 For more information, see https://github.com/sidooms/MovieTweetings.

Idea

Data

Algorithms

Model

Log data

Offline results

Sell more

Test on real
users

Test
implementation
on saved data

Offline
testing

Online
testing

Recommender
algorithm

Figure 1.20 A data-driven approach to building a recommender system

https://github.com/sidooms/MovieTweetings
http://mng.bz/04k5

29Summary
improvement. If you see improvement, then it can go into production; otherwise, it’s
back to the drawing board.

 You should now have an idea of what a recommender system is, an understanding
of what’s needed as input, and what it can produce. Knowing the basis of a recom-
mender system gives you the foundation for chapter 2, which shows how to collect
data from users.

Summary
 Netflix uses recommendations to personalize its site and to help users select

things they like.
 A recommender system is a common term for many different components and

methods.
 A prediction is different than a recommendation. A prediction is about project-

ing what rating a user would give content, while a recommendation is a list of
items that’s relevant to the user.

 A recommendation context is what happens around the user (the user’s envi-
ronment) when a recommendation arrives. Items that might not be predicted
to have the highest ratings can be recommended if they suit the context.

 The taxonomy described in this chapter is handy when you’re looking at other
recommender systems or trying to design your own. It’s good to go through this
taxonomy before starting to implement your own recommender system.

User behavior
and how to collect it
This chapter invites you to delve into the interesting subject of data collection:

 You’ll start by returning to the Netflix site to identify events, which can pro-
vide evidence to build a case for what a user likes.

 You’ll learn how to build a collector to gather these events.
 You’ll learn how a collector can be integrated into a site such as MovieGEEKs

to fetch events similar to the ones identified on the Netflix site.
 With a general overview in place and an implementation, you’ll step back

and analyze general consumer behavior.

Evidence is the data that reveals a user’s tastes. When we talk about collecting evi-
dence, we’re collecting events and behavior that provide an indication of the user’s
tastes.

 Most books on recommender systems describe algorithms and ways of optimiz-
ing them. They start at a point where you already have a large data set to feed your
algorithms. You’ll use one such data set in the MovieGEEKs site. This data set con-
tains a catalog of movies and ratings from real users. A data set doesn’t magically
appear. Gathering the right evidence takes work and consideration. It’ll also make
or break your system. “Garbage in, garbage out,” that famous programming saying
is also true for recommenders.

 Sadly, data that’s good for one system might be unsuitable for another. For this
reason, we’ll have a serious discussion about data that could be usable, but I cannot
30

31How (I think) Netflix gathers evidence while you browse
guarantee that everything described will work in exactly the same way in your environ-
ment. In this chapter and throughout the book, we’ll look at many examples of how to
approach data collection for your own site.

 Generally, two types of feedback are produced by users of a system: explicit (ratings
or likes) and implicit (activity recorded by monitoring the user). A user can provide
explicit feedback in the form of a certain number of stars, hats, smileys, or any other
icon illustrating how much the user likes a product. Usually the scale is between one
and five (or one and ten). User ratings are often the first thing people think about
when talking about evidence. Later in this chapter, you’ll look at ratings, but they’re
not the only thing that indicates what a user likes.

 Ron Zacharski’s A Programmers Guide to Data Mining presents a great example that
illustrates the difference between implicit and explicit evidence.1 He shows the
explicit evidence of a guy named Jim. Jim states he’s a vegan and enjoys French films,
but in Jim’s pocket is a rental receipt for Marvel’s The Avengers and one for a 12-pack of
Pabst Blue Ribbon beer. Which should you use to recommend things? I think it’s an
easy choice. What do you think Jim wants recommended when he opens the online
ordering site for his local takeout place: vegan food or fast food? By collecting user
behavior data, you can understand what users like Jim want.

 You’ll find there’s no substitute for good evidence. Let’s look at what Netflix could
record, and how they could interpret it.

2.1 How (I think) Netflix gathers evidence
while you browse
Let’s return to Netflix for an example of evidence. Everything on the Netflix landing
page is personalized (the row headlines as well as their content), with the exception of
the top row, which is an advertisement that everybody probably sees or perhaps only
users similar to me. Figure 2.1 shows my personalized Netflix page.

 The rows are different for each user; the headlines range from familiar categories
such as Comedies and Dramas to highly tailored slices such as Imaginative Time
Travel Movies from the 1980s.2 On my page, the first couple of rows contain recently
added content, suggestions, and popular content. On that day, the first personalized
row title is Dramas, which indicates that between the genres (or row headlines), Net-
flix predicts that drama best matches my interests. The Dramas row contains a list of
content that Netflix considers interesting to me within that category. Figure 2.2 illus-
trates the Netflix content shown in my Drama list.

 Hovering the mouse over the row, I can make it scroll sideways, showing other con-
tent in the Dramas genre. When I scroll over the content of the Dramas row, what

1 A free download of this book is available at http://guidetodatamining.com/.
2 This example comes from Netflix. I’d love to know what’s inside that category because I’m sure I’d want to

watch all the films, but besides the Back to the Future films, what could possibly be in there? Look at this article
for more details on Netflix’s colorful categories at http://mng.bz/xCvj.

http://mng.bz/xCvj
https://www.jobsite.co.uk
https://www.jobsite.co.uk
https://www.jobsite.co.uk
https://www.jobsite.co.uk
http://guidetodatamining.com/

32 CHAPTER 2 User behavior and how to collect it
does this say about me? It could mean that I’m writing a book and trying to make
screenshots, but most likely it suggests that I enjoy dramas and want to investigate this
list further.

 If I see a movie that looks interesting, I can place my mouse over it to view details.
Moreover, if those details are intriguing, I can click to go to the films’s page. If it still
sounds good, I’ll either add it to My List or start watching it.

 You could say that for any e-commerce site, looking at details means that I’m
interested; only the act of watching (and finishing) a film is equivalent to buying. But
for a streaming site, this isn’t where it ends. If a visitor starts watching a film, it’s a
positive event, but if they stop after three minutes and never restart the film, then it
shows that the visitor didn’t like what they saw. If they restart the movie later or within
a certain timeframe, it might mean that they liked it even more than when they’d
watched it the first time.

The first
personalized
row

Figure 2.1 My personalized landing page on Netflix. On this day, Drama occupies the top spot.

33How (I think) Netflix gathers evidence while you browse

OFTEN THE PURPOSE ISN’T WHAT IT SEEMS

Often the purpose of e-commerce sites is to make people buy products, even if the
product the customer is buying might not be exactly what they want. That depends on
the site’s affiliation to the product. If Amazon sells you a poor quality T-shirt, for
example, you’d say that the brand of the T-shirt is bad, but you might go back to Ama-
zon and buy another T-shirt. If you buy a T-shirt from, say, a Gap website, and you
didn’t like the quality, then you’ll probably go to another site.

 Subscription-based sites are a bit different. Mofibo (https://mofibo.com/), an e-
book streaming service available in Danish, Swedish, and Dutch markets, provides rec-
ommendations as inspiration and discovery, but with a catch—it’s important to
Mofibo that the reader knows what kind of book it is before starting to read it.
Because Mofibo pays a fee every time a reader opens a new book (not per page, but
per book) and, although Mofibo wants you to read as much as possible, it also wants to
minimize the number of books it must pay for.

2.1.1 The evidence Netflix collects

Let’s try to imagine what goes on behind the curtains at Netflix and what data they col-
lect. Say it’s Saturday night at Jimmie’s place. Jimmie has Netflix user ID 1234, and
after finishing nuking the popcorn in the microwave, he opens Netflix and does the
following:

 Scrolls the Drama (ID 2) row
 Hovers the mouse over a movie (ID 41335) to get details
 Clicks to get more details about the movie (ID 41335)
 Starts watching the movie (ID 41335)

While he watches the movie, imagine what happened on the Netflix server. Table 2.1
shows several of the events that could be collected from this user, along with interpre-
tations of what they could mean. Moreover, I’ve added a column containing an event
name to connect table 2.1 to the log described later.

Drama row Row scroller

Figure 2.2 Netflix Drama row, where you can either scroll the dramas using the arrow or click the
row title and get a complete listing.

https://mofibo.com/

34 CHAPTER 2 User behavior and how to collect it

As table 2.1 illustrates, all these events are evidence to the system because they
uncover interests of the user. Table 2.2 shows how the evidence might be recorded by
Netflix.

There’ll probably be a long list of other columns such as device type, location, speed,
and weather, that can all be used to better understand the user’s context. I’d also ven-
ture that the number of log events for this scenario would be many more, but let’s
keep the example simple. The list of events types is probably much longer as well.

 Now that you have a general idea what evidence is, you can start looking into the
implementation of an evidence collector. An evidence collector is used to collect data like
that found in table 2.2. To ensure that you’re not thinking that this can work only with
media streaming sites, let’s look at another scenario.

GARDEN TOOLS SITE EXAMPLE

I once had a colleague who spent all his breaks surfing the internet for garden trac-
tors or for anything that ran on gasoline that he could use in a garden. Let’s imagine
this former colleague had a short break and opened his favorite (imaginary) site
called Super Power Garden Tools. He did the following:

 Selected the Garden Tractor category
 Clicked a green monster that can pull up trees

Table 2.1 Examples of evidence from Netflix

Event Meaning Event name

Scrolling a themed row User is interested in the theme, here
Dramas.

genreView

Placing the mouse over a film
to request an overview of content

User is interested in the movie (a drama),
thereby showing interest in this category.

details

Clicking the film to request the
details of content

User is more interested in the movie. moreDetails

Adding the film to My List User intends to watch the movie later. addToList

Starting to watch the film User “purchases” the movie. playStart

Table 2.2 How Netflix probably logs evidence

userId contentId Event Date

1234 2 genreView 2017-06-07 20:01:00

1234 41335 details 2017-06-07 20:02:21

1234 41335 moreDetails 2017-06-07 20:02:30

1234 41335 addToList 2017-06-07 20:02:55

1234 41335 playStart 2017-06-07 20:03:01

35Finding useful user behavior
 Clicked Specifications to see the size of the trees it can pull up
 Bought the green monster

These events were the same as picking a movie; the importance of buying an expen-
sive product might be more significant than watching a movie, but I hope you get the
picture.

2.2 Finding useful user behavior
Sites with high user involvement enable the site owner to collect large amounts of rele-
vant data, whereas sites with mostly one-time visitors need to focus on relationships
among the content instead. Don’t despair if you don’t have a streaming service with lots
of user interaction to collect data from; chances are that there’s still plenty to collect.

 Ideally, a recommender system collects all data about a user when they interact
with the content—down to measuring brain activity, adrenalin released in the blood
when exposed to an item, or how sweaty the user’s hands get. The more we live our
lives connected, the more realistic this scenario might sound.

 In the movie WALL-E, humans have devolved into shapeless things who live all
their lives in a chair in front of a screen, where everything about them is fed into a
computer. (Come to think of it, I spend most of my days sitting in front of a screen.
But at least I move between screens.) Because most people have other things to do
besides being hooked up to a recommender system, we need to lower expectations a
bit. But with the web, we’ve become closer to users than any physical store ever could,
so it’s possible to learn many things.

CONTENT AFFILIATION TO PROVIDER

In chapter 1, one of the dimensions in the taxonomy was purpose. Purpose is import-
ant because it might result in particular strategies for calculating suggestions, as well
as what you want to suggest.

 Take, for example, a film: if you watch a bad film on Netflix, it tells you something
about the quality of the content on Netflix and, therefore, says something bad about
Netflix. If Amazon sells a Blu-ray disc of a bad film, you probably wouldn’t think any
less of Amazon, but if you were looking for the film and couldn’t find it, that would
make you think less of Amazon. I mentioned this in section 2.1 with the T-shirt anal-
ogy, but a good point is worth making twice.

 The purpose of Netflix is to show good films that you like. Amazon shows you
things to buy; whether you like them isn’t so important. Amazon spends many
resources on asking customers to write reviews and rate content, so it might not be
completely fair to say it doesn’t care, but for the sake of example, it will do.

2.2.1 Capturing visitor impressions

To better illustrate the events that occur in the lifetime of a consumer/product rela-
tionship, I’ve divided it into the following steps, illustrated in figure 2.3:

36 CHAPTER 2 User behavior and how to collect it
1 Consumer browses. As in a physical shop, the consumer looks around to see
what’s there, with no specific goal. What’s noteworthy is where the consumer
pauses and shows interest.

2 Consumer becomes interested in one or more products. It might be that the
consumer knew from the start that they were looking for something specific or
it might be by chance.

3 Consumer adds product to basket or a list with the intent to buy.
4 Consumer buys products.
5 Consumer consumes product. For example, the consumer watches the film or

the consumer reads the book. If it’s a trip, the consumer goes on the trip.
6 Consumer rates the product. Sometimes consumers return to the shop/site to

rate the product.
7 Consumer resells product or otherwise disposes of it. The consumer lifetime of

the product is finished; it’s disposed of, deleted, or resold; in which case, the
product probably goes through the same cycle again.

We’ll look at what can be collected at each of these steps a bit later. But note that
explicit feedback in the shape of a rating is done in step 6 or later. That’s late in the
process. Therefore, even if ratings are always the first thing people talk about, you
should record data prior to that.

2.2.2 What you can learn from a shop browser

Now to go into detail about what’s happening in steps 1–3 in figure 2.3. A browser is a
customer who looks through content. They might randomly go through many differ-
ent things but often pause at content that seems relevant or interesting. In a physical
shop, a browser strolls through the store, not showing any direction or purpose. In a
sense, the customer is gathering intelligence for later buys.

What you need to collect here is where the browser stops and investigates. It’s also
worth keeping track of what the browser sees without showing any interest. But can
you be sure that a page view (product view) is always good?

PAGE VIEW

A page view in an e-commerce site can mean many things. It can be an indication that
the visitor (or browser) is interested, but it could also identify someone who’s lost or
clicking randomly. In the latter instance, more clicks aren’t positive. A lost user shows
up as a visit with many clicks but no conversions.

A browser
A browser is a customer looking through content. A browser as I said earlier, should
be exposed to as many different things as possible, and suggestions should reflect
that. If you could classify that a visitor is a browser, you could use that information
to produce suggestions that fit that mood.

37Finding useful user behavior
On the other hand, a great recommender results in fewer page views. That’s because
people will find everything they’re looking for from the recommended links and
products without needing to browse around first.

PAGE DURATION

To determine what a visitor browsing your site is interested in, you can measure the
customer’s duration on a content page. But is that straightforward? It is if you assume
that the customer isn’t doing anything else and that the next thing the customer does

Figure 2.3 Consumer/product relationship lifecycle

38 CHAPTER 2 User behavior and how to collect it
is to go to a new page by following a link on the current page. Table 2.3 shows one way
to interpret the possible meaning of how much time a browser spends on a page.

Adjust the duration times to fit your domain, but I think most would agree that these
interpretations could be true. Which of these is worth saving? Well, all of them. Less
than 5 secs is a dislike, 5 secs to 1 min could mean “interested,” 1–5 mins could mean
the user thinks “this is great,” and 5 mins and more is hard to say. All of these depend
on the content of the page. It’s not an exact science.

EXPANSION CLICKS

Besides page duration, there are other ways to record user interest in the content.
Add small control interactions that help you determine what the user is doing. For
example, websites often use links to more information, as shown in figure 2.4. This is
convenient for the customer, who can get a quick overview or expand the link if

Table 2.3 Page durations and a possible interpretation

Duration on page What it means

Less than 5 secs No interest

More than 5 secs Interested

More than 1 min Very interested

More than 5 mins Probably went to get coffee

More than 10 mins Interrupted or went away from the page without following a link

Expansion links are a great
way of keeping an eye on
what the user does.

Figure 2.4 When an expansion link is clicked, it’s an indication of the visitor’s interest.
This is an example from Amazon.co.uk.

Amazon.co.uk

39Finding useful user behavior
they’re interested. Similarly, a user might scroll down to see reviews or technical
details. If a user does one of these things, consider it a sign of interest.

SOCIAL MEDIA LINKS

You can also add social media buttons (figure 2.5) for people who like something so
much they want to share it with others. You can’t control what happens on Facebook
or Twitter, or one of the other social media sites, but you can collect the event of a
consumer sharing something.

SAVE FOR LATER

A Save for Later feature that lets users add things to lists is powerful. If a customer
finds something of interest, it’s a good idea to provide the user the capability to save it
for later (if they don’t buy it immediately). This can be as simple as having a link for
bookmarking the page. Even better, have a wish list, favorites list, or watch list,
depending on the type of content. Other signs of interest could be downloading a
brochure, watching a video about particular content, or signing up for a newsletter on
a specific topic.

SEARCH TERMS

Visiting a website can mean that people are either browsing or that they’re looking for
something in particular. If the page is laid out well, most customers find what they
want quickly. Netflix says that every time someone starts searching, it’s seen as a failure
of the recommender system because it means people didn’t find anything they wanted
to watch among the recommendations. I’m not sure I would agree with that because
often I use the search function because someone has recommended something that
might be outside of what I usually watch. In any case, a search term is one of the best
ways of understanding what a customer is looking for.

 Figure 2.6 shows a Netflix search window. The site has more movies than are avail-
able to watch, so if you search for wonder woman, it shows you similar titles, even
though Wonder Woman isn’t part of the catalog.

 Even if the system can’t provide the content searched for, registering the event is
worthwhile. If a user looks for a film, you know they’re interested in something about
that content. With this knowledge, your recommender can suggest something similar.

Figure 2.5 The usual gang
of social media links

40 CHAPTER 2 User behavior and how to collect it
2.2.3 Act of buying

Buying something means that the consumer considers the item useful or likeable—or
maybe it’s a gift. It’s not easy to determine whether a purchase is for the buyer and
thereby another piece of evidence that can be used to understand the user’s taste, or if
it’s a present and something that should be disregarded.

 Figuring out which purchases are presents and which aren’t is an interesting prob-
lem. An item that’s different in taste from the items consumed by the user so far could
either be an indication of a new dimension in the user’s taste or a present. Either way,
it’s seen as an outlier in the data.

 Graphically, an outlier shows up as a point far away from the main body of points,
as shown in figure 2.7. Because you can’t be sure about what they indicate (present or

Searching for
wonder woman
shows that Netflix
knows
 , even if it
isn’t in the
catalog.

Wonder
Woman

Figure 2.6 Netflix search result window, searching on wonder woman

Linking searched items with the resulting consumption
Another thing to consider about search terms (what a customer types in the search
field) is that it’s a good idea to connect what’s searched for with what’s consumed.
Say a user searches for Star Wars and looks at Harlock: Space Pirate, which has a
reference to Babylon A.D., and the user ends up watching that. Maybe it’s worth put-
ting Babylon A.D. in the search result for Star Wars.

41Finding useful user behavior
a new interest), it’s often better to disregard outliers. Conversely, it could also be a first
indicator of a new trend, which is an opportunity that could be explored.

 The act of buying something means that the product was presented in a good way,
although it doesn’t say anything about whether the consumer likes the product. At
least, this is true if it’s the first time the consumer buys the product. People might
argue that every time a consumer buys a banana, that indicates more stars on the rat-
ing for bananas. A first buy might not be much of an indication of approval, but a sec-
ond buy is. Either way, a buy can be regarded as something positive.

2.2.4 Consuming products

When something is bought, the shop loses contact with the product and the ability
to track how it’s used—if it’s not a streamed product or service provided from the web-
site.

ENDOMONDO
Movies and music aren’t the only content that’s consumed online. Endomondo
(www.endomondo.com) is another example of a site providing online services. The
social fitness sports network allows users to collect statistics about their activity using a
sports tracker.

 Endomondo keeps track of how much you use its features, a basis for the company
to recommend similar services or to understand where they should develop new ones.
Telephone companies also measure how consumers use their phones; they can track
us in scary ways. The following section discusses what you can learn from streamed
products.

STREAMED PRODUCTS

In the case of streaming services, music, film, or even books, all user interactions can
be considered an implicit rating. Listening to a song is an indication that the user

Figure 2.7
Example of an outlier

The outlier

10.0

7.5

5.0y

2.5

0.0

x
4 8 12 16

www.endomondo.com

42 CHAPTER 2 User behavior and how to collect it
likes it. But this data can be analyzed even more. The following list shows user interac-
tions with music or movies:

1 Start playing—The user is interested; that’s already positive.
2 Stop playing—Oh wait, maybe the user was curious enough to start playing but

thought it was so bad that they stopped. Stopping a song within the first 20 secs
(or a film within the first 20 mins) can be a bad sign. Stopping close to the end
can be considered something else.

3 Resume playing—Okay, forget about all the negative implicit ratings the system
registered. Resuming something after stopping can mean various things. If play-
ing is resumed within 5 mins, somebody or something probably interrupted the
consumer, so the stop and resume shouldn’t be counted. But if the consumer
stops and then resumes 24 hrs later, the consumer probably likes the content.

4 Speeding—If the user skips something in the middle, it’s probably not a good
sign—but only if it’s the first consumption. If it’s the tenth time a film has been
watched, for example, skipping a boring scene probably doesn’t make the over-
all perception of the film worse. The technical proofreader of this book noted
that with music, he often skips through songs to understand a song, or whether
it’s worth listening to. Songs have less context, so with skipping, you can get a
sense of whether you’ll like the content or not. This wouldn’t work with movies.

5 Playing it to the end—We have a winner! This is a good sign—it might not be
something that the user would rate high, but if they sat through the whole
thing, it probably means that they’d watch similar films. (Played to the end
means played until the film ends and the credits start rolling.)

6 Replaying—Replaying content might mean something good for film and music,
but for a site offering educational videos, it can also mean that the topic was too
difficult.

These steps work on most streaming products. How to collect evidence from streamed
products depends on the type of player that’s used.

 In the case of Endomondo, which is also a kind of streaming service, these steps
and explanations don’t really hold. In this sense, if you start Endomondo and indicate
that you started running (by pressing the Play button), it probably doesn’t have any-
thing to do with how much you like the app if you pause it after 10 k; that may mean
that you should get in better shape.

2.2.5 Visitor ratings

Finally, you’ve arrived at what everybody talks about—the ratings. Netflix has a motto:

The more you rate, the better your suggestions.

That might be a truth requiring modifications, as you’ll see later. Most recommender
systems use ratings, but those user ratings are usually weighted against user behavior.
These systems use ratings only as a starting point. What you want is to capture the
behavior of users.

43Finding useful user behavior
 Many sites enable users to review content that they’ve viewed, bought, or used. This
enables the system to gain a better understanding of what users like and thereby what
to suggest in the future. Adding a certain number of stars (or hats, smileys, or some-
thing else) determines a rating, but behind the scenes that’s only a number on a scale.
Amazon, as with most places, tries to help you with what each number of stars means by
providing tooltips. Figure 2.8 shows an example of a book review on Amazon.

On Amazon, as the user passes the mouse over the stars, a description is shown. In this
case, four stars means in effect, “I like it.” In addition to ratings, certain sites, such as
TripAdvisor, encourage users to write a review.

 You could say that a five-star rating plus a written review counts as more than a five-
star rating alone, because the person who writes the review puts more thought into it.
The same is true for one-star ratings. But if a person accompanies all ratings with a
written review, then it doesn’t mean more. Could buying something and not rating it
indicate something about your preference?

A SENSE OF CONTROL

When just-add-water cake mixes (figure 2.9) first arrived in stores, they were a huge
failure. The product seemed perfect for busy consumers: the only thing they had to
do was to add water. Through consumer studies, it was discovered that the problem
wasn’t that the process was easy, but that it was too easy. Baking a cake is about creating,
but pre-preparing everything made the process too easy; it took away the consumer’s
sense of control. The manufacturers said, “All right, we’ll let them add eggs also.” It
was less expensive to produce and the consumer felt empowered. When the cake
mixes were introduced again, with instructions to add water and eggs, they were a
huge success.

 Many sites let users add their preferences for the very same reasons: to give the
consumer a sense of control over what the system believes is that consumer’s taste.
Netflix states that many people indicate that they like documentaries and foreign

Amazon helps you a bit, by
indicating that three stars
means that you think it’s okay.

Figure 2.8 When rating something on Amazon, it provides hints as to what the number of stars means.

44 CHAPTER 2 User behavior and how to collect it
movies but watch American sitcoms. Then what should Netflix suggest: things that
make you feel bad about your choice of entertainment or things that you want to
watch?

 This is one of the reasons it’s hard to use data sets with ratings to test whether a
recommender system is good. Data sets can test whether your prediction calculations
work, but not whether the system will attract more users.

SAVING A RATING

When a user adds a rating, it’s an event, and that event should still be saved among the
evidence as any other event. It might also be worth saving directly in your content
database, so you can show average ratings when you present the content to the user.

NEGATIVE USER RATINGS

Things get a bit tricky if you as a consumer want to indicate that you dislike certain
content because to review something you have to give it at least one star. Zero stars
means no rating at all. If you hate something, you don’t want to give it any stars, not
even one. In a sense, not rating it is better than “I hate it,” which you can indicate on
Amazon with one star as shown in figure 2.10.

 Not liking something can mean not bothering to rate it. But if something really
irritates you, you might want to release your frustration somewhere, and that’s often
in the form of a negative review.

 The rating in figure 2.10 is not mine. I definitely recommend Deep Learning (The MIT
Press, 2016) if you have a background in machine learning. Otherwise, you might be bet-
ter off starting with Grokking Deep Learning by Andrew Trask, (Manning, 2016).

Figure 2.9 Chocolate cake mix. When
introduced, the consumer needed to add
only water. But it wasn’t a success until
consumers were instructed to add water
and eggs.

45Finding useful user behavior
VOTING

Many sites have had success creating a community around users voting whether some-
thing is good or not. For example, TripAdvisor’s only service is the rating of hotels and
restaurants. Another such example is Hacker News (https://news.ycombina-
tor.com/), where the users are responsible for adding content, which can be links to
articles and blog posts about “anything that good hackers would find interesting.”
When something is added, you can up-vote it. The more up-votes it gets, the higher it
stands on the page (it’s almost as simple as that; you’ll take a better look at the algo-
rithm later). Sites that use voting are called reputation systems.

2.2.6 Getting to know your customers the (old) Netflix way

With a page that’s almost completely built based on suggestions, it’s important to
gather as much input as possible about a consumer’s tastes. If Netflix thinks that your
tastes are different, finding what you want to watch can be difficult. This is another
point for people who claim that recommender systems are manipulative. Because the
system doesn’t provide equal opportunity for all content, it therefore manipulates
you. I understand the argument, but I disagree.

 Netflix once offered the user the capability to assist in creating a taste profile.3 This
feature is no longer available, but when it was, you could find it in the Taste Profile
menu shown in figure 2.11. It let the user rate shows and movies and select genres by
indicating how often the user felt like watching, for example, Adrenaline Rush. Netflix
could then check whether the user’s ratings matched their current opinions.

 Netflix used this manual input of a taste detail to offer better suggestions. Asking
the user for help with the taste profile is a method often used to enable the system to
give suggestions for new users.

3 For more information, see https://help.netflix.com/en/node/10421.

Figure 2.10 At Amazon you show you hate something with one star. Not that I dislike this one. If
you want to get into Deep Learning, then this is the book to read.

https://help.netflix.com/en/node/10421
https://news.ycombinator.com/
https://news.ycombinator.com/

46 CHAPTER 2 User behavior and how to collect it
2.3 Identifying users
Collecting data on users works only if you have a way of uniquely identifying custom-
ers. The best way to do that is to make the customer log in on your page so you’ve pos-
itive identification. Another alternative is to use cookies.

 Usually sites start out by setting a cookie and connecting all information to that
cookie. If the user then provides identification by logging in or by creating a profile,
all information from the cookie is transferred to that account. Be careful with cookies
because the computer could be a public or a family computer used by several people.
Saving data to the cookie ID over several sessions can be misleading.

 If you don’t have logged-in users, there’s also a cross-device problem, which means
that even if you recognize a user on one device, your system can’t recognize the same
user across different devices. Certain services can help you with this but always with
uncertainty. Try to make users register and log in when possible. It goes without saying
that personalized recommendations can only work if you recognize the user.

2.4 Getting visitor data from other sources
Your site is unique, and the data that can be collected on your site is the data that’s
best suited to reveal the behavior of your customers. But what if you could cheat a bit
and get data from somewhere else?

 Social media is a good place to start, and, if you’re lucky, a visitor on your site has
liked something that matches the content in your catalog. Depending on your con-
tent, the social media site could be Facebook, LinkedIn, or similar sites. Many will
think that, yes, connecting to Facebook is good, but if you aren’t dealing with films or
books, what’s the purpose of adding data from Facebook? Most sites, however, will
benefit from getting something as simple as the age of a visitor or where they live.

 There might be other ways to gain knowledge too. A recommender of pension
plans could benefit from knowing whether a customer reads finance books, for exam-
ple. That would be an indication that the customer is interested in the stock market
and will probably be more interested in pension plans enabling the customer to have
more control over a portfolio.

 Another thing to consider is that many algorithms calculate recommendations
based on similar users. If the system has the same data about many users, even if that

How often do you
want to watch it

Choose from many

Figure 2.11 Netflix Taste Preferences, 2015. The feature is no longer available.

47The collector
data might not be relevant for the content of your site, it still enables the system to find
similar users that can then be used to create recommendations. I’m sure a car dealer-
ship site can find that there’s a special kind of film that most SUV owners like, or that
a makeup site can recommend something based on age and gender. People who work
in IT probably like gadgets instead of phones, and train drivers might like sunglasses.

2.5 The collector
We’re now going to look at an evidence collector implemented for the MovieGEEKs
website. We’ll look at the essential parts and then leave it to the interested reader to
explore the details within the code.

 Because of performance and reliability of your website, it’s better not to add evi-
dence collection to your current (web) application. Instead, add it to a parallel struc-
ture that supports what you want to achieve. This lets you move the evidence collector
to another server if the users go wild after adding your recommender system or the
load on your site gets close to its limit—for scalability.

 This evidence collector has two logical parts:

 The server side—In our example, the server side is built using a Django web API
that works as an endpoint and can be used by anything that a user is in contact
with. Mostly this means a web page, but it could also be an app on a phone or
any kind of device connected to the internet—anything that collects relevant
events. When the server receives a notification that an event has occurred, its
only job is to save it. A web API is an HTTP address configured to receive this
kind of message and can be implemented essentially by any type of framework.

 The client side—There won’t be a client part in the traditional sense because
there’re no web pages that can be requested. The client side consists of a simple
JavaScript function that posts evidence to the evidence collector on the server.

With a collector in place, you’ll be prepared to start collecting data either on Movie-
GEEKs site or on your own. To relate the evidence collector to the rest of MovieGEEKs
architecture, figure 2.12 highlights elements of the evidence collector in the architec-
tural diagram from chapter 1.

 You might be thinking, why not use Django logging to save all the hassle of adding
another app? But consider this:

 Django logging works on server-side code execution, so you have no way of sav-
ing user behavior (except by putting it in a kind of session state and saving it in
the next request). All the events such as hover and scroll would be lost.

 The collector lets you receive evidence from everywhere, not just a website. The
future is around the corner, where evidence is something that you record from
phone apps or other strange gadgets that are coming out, as well as from physi-
cal shops.

Because the data collected is simple, it’s often best to save it in a comma-separated
(CSV) file. In this way, it’s easier to move it around if the system that uses it is somewhere

48 CHAPTER 2 User behavior and how to collect it
else. The CSV file can then be fed to a service that ingests the data at a speed the system
CSV can handle. That way, you always have a buffer to ensure that you aren’t overload-
ing your system. Because a CSV file isn’t easy to query, and while learning about recom-
mender systems, it’s important to query the data. Instead, you’ll use a database.

2.5.1 Building the project files

Getting the site up and running is fairly easy. You need to download or clone the
GitHub repository at http://mng.bz/AU9X. After the download completes, follow the
instructions in the readme.md file.

2.5.2 The data model

It’s important to collect most kinds of interactions. The previ-
ous section indicated that all you need are three things: user
ID, content ID, and event type. You really need a few more
things to make it work, as listed in the data model shown in
figure 2.13.

 The session_id uniquely identifies each session. Later,
you can add more to this model such as device type or con-
text. But for now, you can start with this.

When a user clicks something on the
website, a request is sent to the server for
data. Clicking also triggers a notification
message being sent to the evidence collector.

When the
evidence collector
receives an
evidence log, it
will serialize it and
save it in the log
database.

The log database contains a row for each
piece of evidence recorded on the website.

Web APIWebsite

Analytics

EvidenceUsers Recs

Recommendation builder

MovieGEEKs
site

Recommender
API

Collector
API

Databases

Moviegeek

Content

snitch

Figure 2.12 MovieGEEKs’ evidence collector and logger architecture

Figure 2.13 Data model
of an evidence logger

Logger

date:
user_id:
content_id:
event:
session_id:

datetime
varchar(64)
varchar(16)
varchar(200)
integer

http://mng.bz/AU9X

49The collector

e
’re
b.
 You’ll find plumbing around the logger, which you’re welcome to look into, but it’s
a web API that’s open for one type of request containing the data as shown in figure
2.13. You’ll virtually tag along on a request a bit later on, when we talk about how it’s
hacked into the MovieGEEKs website. But first, let’s look at what you should do on the
client side.

2.5.3 The snitch: Client-side evidence collector

Evidence can be collected as events from anything that interacts with the user, from a
phone app to a device you put in your shoe when jogging.

 The event logger is a simple JavaScript function that calls the event collector. It
doesn’t do anything if there’s an error, because this isn’t something end users can do
anything about. In a production environment, it’s worth keeping track of whether evi-
dence is being recorded, but this probably isn’t the right place to do it.

 The snitch should be in the project where you want to collect data. You’ll find a file
called collector.js in the /moviegeek/static/js folder containing the function shown in
listing 2.1, which creates an AJAX call to the collector.

function add_impression(user_id, event_type, content_id,
 session_id, csrf_token)
{
 $.ajax(
 type: 'POST',
 url: '/collect/log/',
 data: {
 "csrfmiddlewaretoken": csrf_token,
 "event_type": event_type,
 "user_id": user_id,
 "content_id": content_id,
 "session_id": session_id
 },
 fail: function(){
 console.log('log failed(' + event_type + ')')
 }
 })
};

Listing 2.1 Creating an AJAX call to the collector: /moviegeek/static/js/collector.js

A note on time
Recording time is always a bit tricky because you must take into account different
time zones. Using all local time zones means that you can have problems with the
order of events, because events happening at the same time in different time zones
will be farther apart. But recording local times means that you can work with phrases
such as “in the afternoon” on a global basis, rather than having to look at different
time intervals for each time zone.

Makes an
AJAX call

To be RESTful, the messag
sent is a POST because you
adding something to the d

A CSRF
middleware token

that allows your
site to call a site
from a different

domain.

Shows the three important
data elements

Shows a unique session ID

If it fails, then write something out
to the browsers debug console.
Don’t show the user anything.

50 CHAPTER 2 User behavior and how to collect it
The calls from the function in listing 2.1 will eventually be received by the log method
in /moviegeek/collector/view.py shown in the next listing.

@ensure_csrf_cookie
def log(request):

 if request.method == 'POST':
 date = request.GET.get('date', datetime.datetime.now())

 user_id = request.POST['user_id']
 content_id = request.POST['content_id']
 event = request.POST['event_type']
 session_id = request.POST['session_id']

 l = Log(
 created=date,
 user_id=user_id,
 content_id=str(content_id),
 event=event,
 session_id=str(session_id))
 l.save()
 else:
 HttpResponse('log only works with POST')

 return HttpResponse('ok')

2.5.4 Integrating the collector into MovieGEEKs

The MovieGEEKs app covers the examples shown in table 2.4. The examples are simi-
lar to the ones listed in table 2.1, which depict a use case on the Netflix site. I’ve added
the table again here with a new column showing the event data that will be collected.

Listing 2.2 Receiving calls from listing 2.1: /moviegeek/collector/view.py

Table 2.4 MovieGEEKs evidence points

Event Meaning Evidence

Clicking a genre such as Drama User is interested in the theme
(here, Dramas).

(Kimfalk, drama,
genreView)

Placing the mouse over a film such as
Toy Story (requests an overview of the
content)

User is interested in the movie. (Kimfalk, ToyStory,
details)

Clicking the film
(requests details of the film’s content)

User is further interested in the
movie.

(Kimfalk, ToyStory,
moreDetails)

Clicking Save for Later User intends to watch the movie. (Kimfalk, ToyStory,
addToList)

Clicking the Buy link User watches the movie. (Kimfalk,ToyStory,
playStart)

This method is only interested
in POST type messages.

Creates a timestamp to
add to the created field

Saves a log entry
in the database

Responds nicely
even if it isn’t a
POST message

51The collector
LOGGING GENRE EVENTS

The following events have been implemented in the templates/moviegeek/base.html
file. The first event to log is the user clicking a genre. The genres are listed on the left
side of the screen as shown in figure 2.14.

To register clicks on a genre, an onclick attribute is added to each link. When the
active user clicks a genre, it fires an HTTP POST request to the collector. We won’t go
too much into the code because it’s quite repetitive, but look at figure 2.15 to under-
stand what happens when a user clicks a genre.

1 User clicks a genre.
2 The onclick event executes, which calls the JavaScript function in listing 2.1.
3 The add_impression function executes.
4 The HTTP request is received by the web server, which delegates it to the Mov-

ieGEEKs site.
5 The MovieGEEKs site does a lookup in the URL list and delegates everything

that has the URL /collector/ to the collector app.
6 The collector app matches the log/ to a view method.
7 The view method creates a log object.
8 Using the Django ORM system, writes the log object to the database.4

4 For more information, see https://docs.djangoproject.com/en/1.9/topics/db/.

Listing the
genres.

Figure 2.14 MovieGEEKs homepage

https://docs.djangoproject.com/en/1.9/topics/db/

52 CHAPTER 2 User behavior and how to collect it
LOGGING POPOVER EVENTS

When a user clicks a film, a popover appears. A popover is a fancy name for a big tool-
tip. Figure 2.16 shows what one looks like. Because the user clicks, this indicates that
the user might be interested in the film and is, therefore, something you should log.
This is done by adding an event handler that calls the collector every time a popover is
shown.

LOGGING MORE DETAILS EVENTS

A user who finds the information in the popover box interesting can click the More
Details link. This is also something to note because it shows further interest in the
movie.

LOGGING SAVE FOR LATER

Instead of clicking More Details, the customer can add an item to a list. That’s an
important event because it indicates that the user is planning to buy or consume it
later. This functionality is good to have. It’s a link on the details view, which records an
event that you’ll call saveforlater. You can also record other events, but these suffice
for the purpose of this example.

2.6 What users in the system are and how to model them
Before moving on, you also need to think a bit about users. We’ve talked about the
behavior of users, but what other things might be useful to consider when represent-
ing what users know and care about. As mentioned earlier, when it comes to knowing

Web server

Click

Post evidence

Log

Collector App

URL resolution

Javascript

URL
resolution

View
method

Figure 2.15 What happens when a user clicks a genre

53What users in the system are and how to model them
consumers, many other things can be relevant. You need a user model that you can
translate to a database table and use in addition to the evidence.

 What could be relevant to know about a user? Again, the answer is, as always, it
depends. I hate that answer because it’s one of the most useless replies, up there with
“yes, but no” and “it was once true, but not now.” Assuming you’re of the same convic-
tion, let’s pretend that answer doesn’t exist and look at different scenarios where you
can say something about what would be relevant. Another answer could be “every-
thing”; in theory, everything could be pertinent to recommending products.

 If you’re implementing a recommender system on a website such as JobSite
(www.jobsite.co.uk), then it’s relevant to gather information such as current position,
education, years of experience, and so on. If you’re looking at a pension site, you
probably need the same things as JobSite, but also health data (such as how often
you’ve been to the hospital and what medicine you’re taking) will also be of interest.
Book sites could also use all the things mentioned previously, because these are all
things that say something about books you might be interested in reading. But most
book sites probably will use things such as taste and buying habits.

 If you shouldn’t say “it depends,” then let’s say “everything” and take it from there.
Let’s say that Pietro is created in your system (see figure 2.17). What information
would be good to store on Pietro? If you had the possibility to retrieve the information

The popover of
Eddie the Eagle

Figure 2.16 MovieGEEKs front page with popover

www.jobsite.co.uk

54 CHAPTER 2 User behavior and how to collect it
in figure 2.17, what should you save in your database? In this day and age where stor-
age is so economical, why not save all of it. You’ll see what you can do with it in future
chapters.

Ideally, you want to keep a list of key-value pairs next to the user identifiers such as
user ID, email address, and possibly other additional information. Again, remember
you’re doing a recommender system, so typically you’d also save a shipping address,
and things like that. But for the purpose of the MovieGEEKs site, that isn’t so import-
ant. This information gives you a data model like the one shown in figure 2.18.

Age = 35, Job = software dev, nationality = Italian,
current address = San Francisco, education =
University, marital state = Married, hobbies =
hang-gliding, shoe size = NA, eating habits =
Vegan, smoker = occasional.

Figure 2.17 A new user called Pietro

Figure 2.18 Generic data model

user:

name: varchar(255)
user_id: varchar(255)
email: varchar(255)

user_attribute:

user_id: varchar(255)
key: varchar(255)
value: varchar(255)

foreign key

55What users in the system are and how to model them
There are a couple of things to aim for. You want

 Flexibility to save everything
 Simplicity to make code readable

But these are pointing in opposite directions. You should, therefore, do a less flexible,
but easier-to-use implementation (somewhere in the middle ground of what we dis-
cussed earlier). You can create a table containing most of the previous attributes, plus
one that contains any extras you might need later. Your data model for a user might
look like one shown in figure 2.19.

Continuing with our user Pietro, you’ll save the data shown in figure 2.20. This data
model isn’t too flexible, but until you need a flexible data model, it’s better to keep
the level of complexity as low as possible.

 If you have regular visitors, your log might already have something to show you
about your visitors, and that’s great. Nevertheless, it’s always good to have user infor-
mation to check how your algorithms work. Chapter 3 introduces personas and shows
how to autogenerate evidence for them.

user:

name: varchar(255)
user_id: varchar(255)
email: varchar(255)

user_attribute:

user_id: varchar(255)
ext_user_id: varchar(64)
gender: varchar(10)
age: integer
nationality: varchar(50)
living_country: varchar(50)
living_city: varchar(50)
martial_status: varchar(20)
eating_habbits: varchar(20)
hobby: varchar(255)
additionals: varchar(255)

foreign key

Figure 2.19 User data model

user:

name: “Pietro”
user_id: <GUID>
email: “pietro@email.com”

userProfile:

user_id: <GUID>
ext_user_id: “5”
gender: “male”
age: 35
job: “software dev”
nationality: “Italian”
city: “San Francisco”
country: “Usa”
education: “University”
marital_status: “Married”
hobbies: “hand-glider”
shoe_size: “NA”
eating_habbits: “vegan”
smoker: “occasional”Figure 2.20 Data collected for

user Pietro

56 CHAPTER 2 User behavior and how to collect it
Summary
 Log user behavior using a web API. This would possibly run in a different web

application than that of the site to ensure that it won’t cause the site to suffer in
performance if the user triggers many events.

 Connect a snitch to a website by attaching a call to all events happing on a site.
 Good evidence provides information to the system about a user’s taste. It’s good

to record all events because they might turn out to be useful later.
 Implicit ratings are deduced from the events triggered by the user, while

explicit ratings are the actual ratings a user inserts.
 Implicit ratings are usually more reliable but only if you understand what each

event means.
 Explicit ratings aren’t always reliable because they can be biased due to social

influences.

Monitoring the system
This is one of the shorter chapters but still contains considerable information:

 We’ll begin with what all data-driven applications should start with—analytics.
 I’ll attempt to convince you of the great value of analytics, and we’ll look at

how to implement an analytics dashboard.
 I’ll introduce personas and why they’re useful.
 Using these personas, you’ll learn different ways to represent user taste.

In the previous chapters, you learned what a recommender system produces and
what you can learn from users visiting a site. At this point, you should understand
what you want to achieve and what evidence you’ll need to do that. Now you’re
missing only the two parts in the middle as shown in figure 3.1.

 To understand the two middle steps, you need to find a way to understand what
your users are up to. Taking the log data that the collector described in the previ-
ous chapter, you now need to find a way to reduce the data for each user to a

Evidence
Website
usage User taste Recommendations

Figure 3.1 Data flow from evidence to recommendations. You start with your evidence, which you
can aggregate into website usage. With that, you can start to understand the user’s tastes, which
can work as input to the recommender system to produce recommendations.
57

58 CHAPTER 3 Monitoring the system
preference. To do this, there are scripts that auto-generate interactions, which will
provide the data that I’ve based the discussion on. Then you’re going to learn about
simple analytics, something that you can set up and continuously view.

 I’ve always thought of analytics as a continuous, poor-man’s data analysis; it gives
you information about your data, but it only scratches the surface of what’s happen-
ing. Nevertheless, in your case that might be enough, as you’ll see in this chapter. The
reason for resorting to analytics in a book on recommender systems is that you need a
way to understand what’s happening and to measure whether all your efforts will have
any impact. Making recommender systems is such fun that you might not care, but the
people who’re paying you will want to know if the recommender has any effect.

 You’ll begin your journey into analytics by learning the theory behind what you
want to show. Then, when you’ve seen the light, you’ll look at it in the context of the
MovieGEEKs site.

3.1 Why adding a dashboard is a good idea
As I was earning my degree as a computer scientist, we used to make fun of the stu-
dents working with visualizations, calling them “circus computer scientists.”1 After uni-
versity, I was never a big fan of anything containing colorful graphical interfaces. I
preferred the undisturbed “beauty” of data in a table.

 As I got into bigger data sets and data analytics, I saw the errors of my ways and
understood the importance of data visualization. After working with large data sets for
many years, I’ve become a firm believer that running a data application without any
visual representation is like driving with your eyes closed: you feel great, but you’ll
realize that something is wrong only after it’s already too late.

3.1.1 Answering “How are we doing?”

Let’s start out with a question, “How’s your website doing?” How would you answer?
Where’s your focus? Is it money? Number of visitors? Average response time? Or some-
thing different altogether?

 By adding recommender systems, what do you expect to improve? The first result
will be that your colleagues will be much happier, because working with recommender
systems is the best thing since the invention of web shops. But what will it change?
That’s the question of this chapter. Having a data dashboard is paramount in under-
standing how your website is doing, how you can use the data you’re collecting, and if
the site is improving.

 You want to start with a benchmark showing the current performance. This is so
important that I think you can’t implement a recommender system without having an
analytics dashboard to keep an eye on things. I definitely recommend that you build
the analytics part of your site before adding a recommender system.

1 In Danish, it’s cirkus datalog, which sounds a bit better than circus computer scientist.

59Why adding a dashboard is a good idea
 In the following segments, we’ll look at a dashboard implemented with Movie-
GEEKs, so you can see an example of how to track the stream of events and customer
behavior. First, let’s talk more about what you want to achieve.

DASHBOARDS

Most companies aren’t too keen about telling the world how they track behavior or
monitor performance, mainly because it can be a business disadvantage and it can
give hackers hints as to what weaknesses the company could have. In addition, if your
users know too many intimate details of your recommender system algorithm, the
user’s behavior could become less spontaneous. This could induce biases in the
results or even make users do things to push certain recommendations in a specific
direction.

 In this time, when everything should always be more personalized, site owners
need to know their users and what they’re doing on the site to enable data-driven
decisions and to react quickly to changes. Visualizations help you gain a better under-
standing of the data. Mind you, what you’ll do in this chapter is only the beginning
and should be extended when you get a better understanding of the system!

THE MOVIEGEEKS DASHBOARD

The MovieGEEKs analytics dashboard looks like the one in figure 3.2. It’s a good
idea to know these types of things before you start implementing your recommender
system.

Figure 3.2 The MovieGEEKs analytics dashboard

60 CHAPTER 3 Monitoring the system
3.2 Doing the analytics
Whether a website is performing in measures of response time (or responsiveness) is a
significant factor in the success of the site. But that’s the topic of so many books. Here,
you’re concerned with the business part of a website because that tells you whether
you’re showing good recommendations.

3.2.1 Web analytics

What you’re going to do is often called web analytics. Web analytics is split into two cat-
egories: off-site and on-site. Off-site analytics, which is about the potential of the web-
site, focuses on opportunity, visibility, and voice.

 Opportunity—Indicates how big the potential of the site is in terms of the num-
ber of visitors the sector has in total.

 Visibility—Indicates how easy it is to find the site.
 Voice—Indicates how much people are talking about the site.

This chapter concentrates on on-site analytics, which is concerned with how visitors
behave on your site (see figure 3.3). In this category, the focus is on conversions, driv-
ers, and Key Performance Indicators (KPIs), which are explained in the following
section.

3.2.2 The basic statistics

Analyzing the evidence you’ve collected might not give you an Indiana Jones magical
sense of adventure, especially if the data you’re looking at is generated data as
described earlier. In this case, you want to implement a visualization of the evidence,
which lets you analyze the data collected. Often, you’ll find this called summary statistics.

 The top row of the dashboard shows important numbers about the current state of
your site—the KPIs. KPIs can be anything that evaluate the success of your website.
What might those be?

Disclaimer
No matter how good the recommender is, it’s only as good as the content. With good
content, it’ll never be able to recommend anything to a vegetarian at a butcher shop.

Figure 3.3 The KPIs at the top of the analytics app

61Doing the analytics
 First, it’s important that people visit your site (because on the internet, it’s not
“Build it and they will come”), so the initial KPI is the number of visitors. Next is the
conversion rate, described in more detail later in this section. Then the number of
items or content sold this month. Numbers regarding money, such as total revenue,
can also be important, but not for this scenario. It’s definitely worth noting though
that the profit on different items is different, so success criteria can also be that you
sell more of the profitable items.

 The numbers in the dashboard are configured to provide statistics for the previous
month, but they also could be daily or weekly, or even hourly if you have enough traf-
fic and time to sit and watch. You can also use a sliding window that displays statistics
from (now – 1 month) until (now). Alternatively, you can say this month, this week,
and so forth. It’s not terribly important what you do, as long as it’s consistent.

 Another thing to consider when creating your dashboard is that if you want to keep
an eye on how it develops, it can be a good idea to display a chart that shows the values
of KPIs over a historical period, such as the last six months, rather than one value.

3.2.3 Conversions

Imagine that you have a website for a new religion, and visitors can subscribe to the
religion by paying a monthly fee. When a person signs up, that’s a conversion in a
sense, but the type of conversion that you’re interested in most is a paying customer.
In electronic commerce, conversion marketing is the act of changing site visitors into
paying customers.

 I know you’re all here with pure intentions and ambitions to create the best cus-
tomer experiences you could ever dream possible, and the mere mention of KPIs and
business conversions are words of disgrace that make you want to slam this book
shut—but wait a minute! You’re back at the purpose again, which is what marketers try
to measure with conversions and KPIs.

 Conversion rate is an often-used KPI that’s defined as follows:

The conversion rate is a dear child and has many names.
You’ll find it called the goal conversion rate, when we talk
about goal completions, or commerce conversion rate, when
a goal is a transaction in which something is bought.

 Want to make your colleague the marketer happy like
Stef in figure 3.4.? Say that you can calculate the website’s
conversion rate.

 Online marketing is all about conversions. When a
user does what you want, you say that the visitor con-
verted or that you had a website conversion. Conversions
are defined differently by individual marketers and con-

Conversion rate Number of goal achievements
Number of visits

---=

Figure 3.4 Stef the Marketer

62 CHAPTER 3 Monitoring the system
tent creators and can be many things, usually related to selling something. For con-
tent creators, a conversion can also be about indicators that their content has been
read, such as users signing up for a subscription, downloading a newsletter or soft-
ware, or filling out a lead/contact form. But be careful about sounding too confident
because next your colleague will start talking about ROI (return on investment), and
that isn’t covered here.

 To make things even trickier, the word conversion comes from the idea of a conver-
sion funnel. A conversion funnel shows the path users take before they convert. Let’s imag-
ine how a funnel, illustrated in figure 3.5, might look for a company such as Amazon.

 Many people open Amazon’s homepage, look, and maybe click around a bit. They
may move on to look in one of the departments, such as clothing, and might search for
shirts and go through the results before finally selecting a funky Hawaiian shirt to pur-
chase. Each event that pushes the user a step down the funnel is called a value event. At
Netflix, a value event can be that a user watched a film. On Match.com, a wink is a
value event on your journey to eternal love or paying your next monthly subscription.

All users

The
conversion

funnel

Arrive on
landing page.

Look at
products.

Add to cart or
sign up for
newsletter.

Users who
browse

Users
interested in

a product

Users who
converted

User bought
content or
service.

Figure 3.5 A conversion funnel based on logging in at Amazon.

63Doing the analytics
 It’s called a funnel because it starts out wide, then narrows. The same occurs with
site visitors: a (hopefully) large number of visitors come to your site (the wide part of
the funnel), some will add something to a wish list or will share a product, and part of
those will buy something (the narrow part of the funnel).

 Converting is marketer lingo, but what if you look at it from a user’s point of view?
A conversion is what the user wants. For example, a user who comes to Amazon is
there to find something to buy or wants to sign up for an interesting newsletter. You’re
free to claim what you want, even though you may be manipulated or pushed.

 Amazon is a place for buying content, so if you go there, it’s mostly for buying, and
as such, you expect to be helped to get to the best possible things to buy. Later you’ll
look into topics that don’t align with the goals of these two groups, but for now let’s
stay in the world where everything comes together, and people are holding hands.

 In the MovieGEEKs site, the evidence collector is capable of registering conversion
events. What about your site? Spend two minutes considering

 What is a conversion on your site?
 What is the conversion rate in your system?

Goals can change. On a car dealership site, you wouldn’t expect a customer to convert
on every visit, but on Amazon you’d want most visits to end in a conversion (and it does
for me, at least). Think about which image in figure 3.6 depicts a match to your site.

If you chose the image on the left, it means that you’ve an Amazon type of website.
Your hope is that a customer makes a conversion per visit—or at least somewhere
close. If you chose the one on the right, you’re more like the car dealership site. You
want to have a visitor converting in the lifetime of their contact with the site. For the
car dealership site, it’s not important whether a customer visits the site hundreds of

All visits All users

Visits with
conversions

Users who
have done a
conversion

Figure 3.6 Two ways of looking at conversion

64 CHAPTER 3 Monitoring the system
times, only that they buy a car in the end. In this second case, the conversion rate is
calculated using this formula:

MovieGEEKs is a site of the first type. Looking at the set of visits, the conversion rate
will be the number of sessions in which a buy event occurs divided by the total number
of session IDs. This translates to the following SQL code.

select count(distinct(session_id)) as visits,
 count(case when conversion > 0
 then 1 end) as conversions
from
(select session_id,
 sum(case when event = 'buy'
 then 1
 else 0 end) as conversion
 from collector_log
 group by session_id
) c

Using the latest generated data, this returns "999;97", which means that the conver-
sion rate is around 10% (more exactly, 0.097). As mentioned earlier, it might be diffi-
cult to relate to this number, but keep it in mind, because this is the rate that you want
to improve with your recommendations.

3.2.4 Analyzing the path up to conversion

You’re happy when a conversion happens, and the purpose of the recommender is to
make the user convert. Now if you do a query to find all the event types stored in the
database, along with a count of the number of times those events occurred, the results
could look like the following:

This listing shows the query.

select event, count(1)
from collector_log
group by event

Listing 3.1 SQL script to calculate conversion rate

genreView 1527

details 4953
moredetails 2034

addToList 976
buy 510

Listing 3.2 SQL calculating the distribution of events

Conversion rate Number of goal achievements
Users

---=

Counts the cases where a
session contains one or
more conversions

An inner query calculates for
each session whether a
conversion happened

65Doing the analytics
This query gives you a hint as to how often each type of event occurs. What you need
to look at again is how often these events happen in buy sessions and in non-buy ses-
sions. This can be checked using listing 3.3, which groups the sessions so that for each
session a row indicates the number of buy, details, and moredetails events that hap-
pened for the session.

 select session_id,
 sum(case when event like 'buy'
 then 1 else 0 end) as buy,
 sum(case when event like 'details'
 then 1 else 0 end) as details,
 sum(case when event like 'moredetails'
 then 1 else 0 end) as moredetails
 from collector_log
 group by session_id

Now that you’ve broken the sessions into events, you can take the next step and see
what happens in sessions where things are bought. One way to accomplish this is to
reuse the preceding query and add a filter to show only the sessions in which some-
thing was bought. Figure 3.7 shows the result.

 But that doesn’t get you to what you want, because you want to know what interactions
were on each. You want to see what interactions were done before buying something.

Listing 3.3 SQL script calculates how many times each event happens in each session

Gets the
sessionId

Sums all the buy events in
the specific session

Sums all the details events
in the specific session

Sums all the moredetails
events in the specific session

Groups by
sessionId

Figure 3.7 Sessions where a
buy event occurs

66 CHAPTER 3 Monitoring the system
3.2.5 Conversion path

A conversion path is the path a user and specific content take together on their way to a
buy conversion (and to live happily ever after). More precisely, a conversion path is
the sequence of pages and actions a user takes from the time of arrival at the landing
page (the first page that’s seen) until the conversion.

 This is different from a conversion funnel. A conversion funnel is made of pre-
defined goals that have to happen for the user to convert. A conversion path isn’t only
a linked list of events but also includes a linked list of pages. MovieGEEKs isn’t the
best website to describe this because it provides only a limited set of events. Often a
website will have a much longer list of events including the following:

 View content
 View details
 Look inside
 Like content
 Share content
 Sign up for newsletter
 Search result click
 Campaign link
 Add to cart
 Add to favorites list (this will be added in the following chapter)
 Rate
 Write review
 Buy

A conversion path could be much more interesting than what MovieGEEKs provides
because there you have only five events. You’re interested in the conversion path
because events are often key indicators of where the relationship between the user
and content is going (ironically, this analogy works great for dating sites). A key indi-
cator could be that most users who use Search to find a movie end up buying it. You
could interpret that event as something that pushes the implicit rating up an extra
notch. How can you calculate these paths?

 For each user, you want all the sessions in which a buy has happened; and for each
buy, you want a count of the events that occurred on the item that was bought. Trying
to come up with this information in my head makes me dizzy, but let’s move slowly
and see if we can do it.

 First, you find all the buy events for each user, session, and content as shown in the
next listing. Let’s assume that everything that’s done with a specific item is done
before it’s bought. This might be cheating, but it saves building complex calculations.

67Doing the analytics

select session_id, user_id, content_id
from collector_log
where event = 'buy'

This query gives you a list that you can then use to join with the original table, so that
you get only the events that happened in a session where that user did something with
content that ended up as a purchase. This brings you to the next query as shown in
listing 3.5.

select log.*
from (
 select session_id, content_id
 from collector_log
 where event = 'buy') conversions
JOIN collector_log log
ON conversions.session_id = log.session_id
and conversions.content_id = log.content_id

This results in the output shown in figure 3.8.

Listing 3.4 SQL script finding pairs of users and content

Listing 3.5 SQL script finding events leading up to a buy

Figure 3.8 Snippet of the result of running the script shown in listing 3.5, listing all events
that happened in a session where there was a buy

68 CHAPTER 3 Monitoring the system
But you don’t need the buy events because you know they’re there. The final query
looks like this.

select log.session_id, log.user_id, log.content_id
from (
 select session_id, content_id
 from collector_log
 where event = 'buy') conversions
JOIN collector_log log
ON conversions.session_id = log.session_id
and conversions.content_id = log.content_id
where log.event not like 'buy'
order by user_id, content_id, event

You’re not interested in chronological order right now, so this query provides the
needed details.

3.3 Personas
Personas—the cornerstone of user-centered design and marketing—are fictive people
created to represent different stereotypes that correspond to groups or segments in
your user community. This section presents several personas; these are not a product
of web analysis but were created to span an area of the content in the MovieGEEKs
data. (The people pictured in this section and used throughout the book volunteered
to be featured. Normally, as I said, personas are fictive people.)

 The personas are used throughout the book exactly as marketers would use them.
Later, you can look at the results of your algorithms and verify that the results corre-
spond to their type. Without further ado, meet your new best friends.

Listing 3.6 SQL script to find path conversions

Sara
Comedy, action, drama

Jesper
Comedy, drama, action

There’s always room for another romantic comedy,
except when I want to see a CSI-style series.

I’m up for laughs and will choose a comedy most
days but will watch drama and rarely an action
movie.

User ID: 400001 User ID: 400002

You should disregard
buy events.

69Personas
Each of these personas has unique tastes. A way to quantify these preferences is to
indicate the number of hours, out of 100, each will spend on each genre. Using this,
you can describe each user as a tuple containing a number for each genre. For exam-
ple, you can represent Sara’s tastes as 60 hrs of comedy, 20 hrs of action, and 20 hrs of
drama, or taste = (60, 20, 20). Now doing this for each user, you get the numbers
shown in table 3.1.

Another way of illustrating tastes is to plot them in a diagram as shown in figure 3.9.
An advantage of plotting tastes in this fashion is that it makes it easy to find similar
tastes (or to see that you created two users with the same tastes, as was the case when I
first made the graph).

Therese
Comedy

Helle
Action

Anything that makes me laugh is a hit. Anything with superheroes and anything that blows
up

User ID: 400003 User ID: 400004

Pietro
Drama

Ekaterina
Drama, action, comedy

The more complicated the drama, the better it is. Nothing beats drama, but I sometimes watch
action, and rarely a comedy.

User ID: 400005 User ID: 400006

Table 3.1 Persona preferences

Action Drama Comedy

Sara 20 20 60

Jesper 20 30 50

Therese 10 0 90

Helle 90 0 10

Pietro 10 50 40

Ekaterina 30 60 10

70 CHAPTER 3 Monitoring the system
 Certain companies go so far as to make posters describing the personas and
require all the features to be described based on one of these personas. This creates
many odd scenarios because you end up discussing what one persona would do in a
specific scenario, as if everybody were best friends with the personas. (And worse, at
seasonal parties, I’ve even heard people discussing who had an affair with whom.)

 Armed with these personas and their tastes, you’ll move on to auto-generate evi-
dence data that can be used. Generating data seems like cheating a bit, but in this
case, it’s a good way to start out with a data application, because you know what data
you’re working with. But remember, you should never expect things to be exactly the
same in the real world.

The analytics part of the MovieGEEKs site also has a page for each user (figure 3.10).
Figure 3.10 shows what the system knows about Helle. To the left is a list of the high-
est-rated movies. The chart shows a normalized view of how many movies Helle has
rated, and the difference between the average rating of the genre and Helle’s average
ratings across all genres.

 Looking at figure 3.10, you can see that Helle has rated several movies in the
action genre but the average of those are the same as the overall average (no bar at
“Action”). It also seems that she’s positive about Sci-Fi films even if she didn’t rate that
many.

Action

0

10

20

30

40

50

60

70

80

90

100 Sara
Jesper
Therese
Helle
Pietro
Ekatrina

P
er

ce
n

ta
g

e

Genres

User’s Taste

Drama Comedy

Figure 3.9 Chart of users’ tastes

71MovieGEEKs dashboard
The chart in figure 3.10 shows two types of data. The blue (darker) bars shows how
many movies of each genre Helle has rated, while the orange (lighter) bars show the
difference from the average rating. This data won’t show up before you have read
chapter 4 and run the scripts mentioned there. To see figure 3.10 in color, please refer
to the electronic versions of this book.

3.4 MovieGEEKs dashboard
As a reminder, you can get the code of the MovieGEEKs site from GitHub at
http://mng.bz/04k5 either by cloning or downloading it. Follow the readme.md for
setup instructions. The database has no data, so you should also run the popu-
late_logs.py, to which I give a short introduction here.

3.4.1 Auto-generating data to your log

In this and the next couple of chapters, you’ll learn about implicit feedback. Usually
that isn’t something you can download from the internet, but something you’d collect
on your site. Since the MovieGEEKs site doesn’t have many users, I’ve created a script
that fills in part of the data and saves it into the Log database, so that it looks as if it
were collected by the collector. To run it, execute the following at the command
prompt:

>Python3 populate_logs.py

Figure 3.10 This is the profile of Helle. She’s into action movies. Here it seems she’s also into
adventure, but that’s because many of the action films she likes are categorized both as action and
adventure.

http://mng.bz/04k5

72 CHAPTER 3 Monitoring the system
The script auto-generates logs for the six persona users. The core of the script is a for
loop that iterates over the range from zero to the number of events wanted. At each
iteration, a random user is chosen, a film is selected according to the user’s taste, and
then what action should be logged. When everything has been selected, the event is
saved as shown in listing 3.7.

for x in range(0, number_of_events):

 randomuser_id = random.randint(0, len(users) - 1)

 user = users[randomuser_id]

 selected_film = select_film(user)

 action = select_action(user)

 if action == 'buy':

 user.events[user.sessionId].append(selected_film)

 l = Log(user_id=str(user.userId),

 content_id=selected_film,

 event=action,

 session_id=str(user.get_session_id()),

 created=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),

 visit_count=0)

 l.save()

3.4.2 Specification and design of the analytics dashboard

The analytics dashboard is something that most site owners dream about, and you
should try to make several of those dreams come true. Your site should contain a dash-
board that shows

 Number of visitors and what actions they take
 Number of visits resulting in buys (the conversion rate)
 The most sold products

3.4.3 Analytics dashboard wireframe

The dashboard looks like figure 3.11. At the top of the dashboard are the KPIs. They tell
you the number of visitors who have dropped by within a period, currently last month.
(Because the log population script works with only six users, it will show six visitors until
new users are created by playing with the site. Figure 3.11 shows seven users; the site cre-
ated one new user for me when I browsed it.) The second component shows the conver-
sion rate, which is calculated from how many sessions ended in a buy, then the number
of items sold this month, and then the total number of sessions this month.

 The bar chart on the left in the figure shows the number of times the different
events occurred. The buy events are calculated as events on content that have been
bought in the same session. The chart on the right displays the distribution of ratings,

Listing 3.7 Selecting a random user and film: populate_logs.py

Selects random user

Selects random film
(according to users taste)Selects

action

A movie can only be bought once in
this data, so if it’s a buy action, you

add the movie ID to a list for the user.

Creates a Log object,
and initializes it with
the data received

Saves the
Log object

73MovieGEEKs dashboard
meaning each bar shows how many movies would have that specific rating (this won’t
appear before you run the populate_ratings.py script). At the bottom is a list of the
top 10 most bought movies.

3.4.4 Architecture

The analytics app, illustrated in figure 3.12, is another app in your Django project.
Like all websites, it consists of two parts: frontend and backend. Both parts have work
to do: the backend queries the database, and the frontend visualizes the results of
these queries. The analytics app isn’t something that should be accessible to the end
user, but the security around that isn’t something that we worry about in this book.

 As you can see, everything is kept separate from the MovieGEEKs site, which makes
it easy to use the same architecture with any kind of site.2 This is considered best prac-
tice and lets you use this app for sites not implemented in Django.

 The analytics app contains several views, but only a few views in a traditional sense
because they return a web page. The rest are used as a web API to retrieve data. The
first traditional view, called an index, returns an HTML page like the one shown in

2 The analytics dashboard is drawn inside the MovieGEEKs site, but it is doesn’t actually share any parts and
could easily be running somewhere else.

Figure 3.11 MovieGEEKs analytics dashboard

74 CHAPTER 3 Monitoring the system
figure 3.13. The json views return data and thereby feed the website with the data for
each of its components.

 The top row, shown in figure 3.13, has four KPIs, which describe numbers that you
might want to keep an eye on as mentioned earlier. The first one is the number of
users who visited your site. The next is the famous conversion rate. Then you have the
number of products sold and finally the number of unique visits (a unique visit means
how many sessions, so the same user can have many visits).

A NOTE ON MONTHLY VIEWS

The KPIs are calculated for the last month, but could be daily or weekly, or even
hourly, if you have that much traffic. You can also use a sliding window (figure 3.14) to
always calculate for the last month, or you can say this month, this week, and so forth.
What you do isn’t terribly important, as long as it’s consistent, so you can see if you’re
improving over time.

 In this chapter, you looked at analytics and how to implement a dashboard that
shows simple information about how a website is performing. Having a dashboard
that shows you how your site is doing will be a great help when doing recommender
systems. You’re now finally ready to start looking at how to calculate ratings. Following
that, you’ll start creating non-personalized recommendations.

Databases

Web API Website

MoviegeekAnalytics

Content EvidenceUsers Recs

Analytics
dashboard

Recommendation builder

MovieGEEKs site

Recommender
API

Collector
API

Records user behavior

Provides
recommendations

Figure 3.12 The architecture of MovieGEEKs with the analytics parts of the system highlighted

75Summary
Summary
 Key performance indicators are good because they can be benchmarked and

easily used to see whether your site is improving.
 A visitor is converted when they perform a goal or do something that you’re

hoping for.

Dynamic
content

Static content

Figure 3.13 The static HTML is retrieved from the static content. Each component on the dashboard
retrieves data from a different endpoint.

July August

Now

Current month

Sliding month

Figure 3.14 Different periods of time

76 CHAPTER 3 Monitoring the system
 The conversion funnel shows a series of steps you want the user to take. The
conversion path is the actual path visitors take before converting.

 Understanding your site’s conversion funnel is important so you can under-
stand how close users are to converting.

 Analytics is important to understand and always have running.

Ratings and how
to calculate them
Hello, this is your persona speaking, proceed to learn the following:

 Creating user-item matrices.
 Revisiting explicit ratings to discover why they aren’t always good.
 Diving into the mystery of implicit ratings and its creation.
 Learning about an implicit ratings function that translates evidence

into ratings.

In this chapter, you’ll transform your users’ behavior to a format that you can use as
input for the recommender algorithms. You’ll start by looking at the user-item
matrix, which is where most recommender algorithms start. Then you’ll take
another look at explicit ratings, the ratings that users add themselves. Implicit rat-
ings are the core of your system, and you’ll look at those next: first, you’ll review
what they are and then you’ll learn how to calculate them from your evidence.

 Figure 4.1 shows the flow of data we’ve talked about so far. Data collection hap-
pens when visitors interact with the site. Preprocessing is what you’re going to do in
this chapter. Model building and recommendation construction are handled in
later chapters.

 In this chapter, you’ll convert web behavior to content ratings, which you’ll use
for the recommenders in later chapters. This type of rating is called implicit because
they’re deduced.
77

78 CHAPTER 4 Ratings and how to calculate them
Implicit ratings are used more and more because people seem to be unsure about
what they like, and they tend to do (or watch) things that they’d otherwise tell their
friends (or websites) that they don’t like. I’ve watched films on Netflix that I then tell
everybody who asks that I hate, but I still watched them. Another good reason for
using implicit ratings is that the information is much easier to collect than explicit rat-
ings. That’s why I’m a great fan of implicit ratings, which you’ve probably guessed.

 Having read the previous chapters, you should have considered the following:

 What’s the purpose of your site (the goals that you want users to achieve)?
 What events lead up to these goals?
 How many times has each of these events happened?

Keep those things in mind as you continue through this chapter. You’re going to start
by looking at what most recommender algorithms expect as input—the user-item
matrix. The idea of this chapter is to take the behavioral data and turn it into exactly
such a matrix.

4.1 User-item preferences
A user-item matrix can be thought of as a table that has a row for each user and a col-
umn for each item (or the other way around). In literature, this is called a matrix, and
we’ll stick with that. In the junction between a user and a content item, a number indi-
cates the user’s sentiment toward the content item.

4.1.1 Definition of ratings

A rating is, for example, the number of stars on Amazon.com or Glassdoor (www
.glassdoor.com/index.htm, a site where people can rate their workplaces), or a list of
hearts in my local newspaper’s movie reviews. Behind the scenes, a rating is a number
on a scale—say, between 0 and 5—that can be translated into a graphical representa-
tion when shown to the end user.

 More formally, a rating is something that glues together three things: user, con-
tent, and the user’s sentiment toward the content item as shown in figure 4.2. This fig-
ure shows what’s saved after Jimmie had watched, liked, and rated season 1 of Game of
Thrones with four stars. In a database, ratings are implemented as a junction table,
which connects a user to a content item.

Data collection Preprocessing Model building Recommendation
building

Figure 4.1 Data processing model for recommender systems

www.glassdoor.com/index.htm
www.glassdoor.com/index.htm
www.glassdoor.com/index.htm

79User-item preferences
4.1.2 User-item matrix

An example of a user-item matrix is shown in table 4.1.

An empty cell indicates that there’s no recorded interaction between the user and the
item. Remember that there’s a difference between an empty cell and a cell containing
a zero. The latter represents the user giving a rating of zero to an item; the empty cell
means that there has been no rating for the item.

 Those empty cells might not look like much, but they’re the core of most tradi-
tional recommender systems. Most recommender systems attempt to predict what the
user would put in those if they rated the corresponding items. Too few empty cells and
the user has exhausted all content; too many and the recommender won’t have
enough data to understand what the user likes.

 If you find yourself in conversation with people about the user-item matrix (which
is something that occurs all the time, right?), then a good topic to bring up is the spar-
sity problem. It’s a bit like bringing up baby-feeding habits when talking to new parents;

Table 4.1 A simple example of how a user-item matrix could look if there were only 6 users and 4
movies in your system

Indiana Jones Microcosmos Avengers
Pete’s
Dragon

Sara 4 5

Jesper 4 5

Therese 5 3

Helle 4 5

Pietro 3 4 3

Ekaterina 3 3 3

Rating

User Item

Rating system

Figure 4.2 User content
relationship

80 CHAPTER 4 Ratings and how to calculate them
they’ll light up and talk for hours. (New parents also speak of a sparsity problem, but it’s
probably a different one than the following.)

SPARSITY PROBLEM

A user-item matrix isn’t always as populated as the one shown in table 4.1. In fact, usu-
ally nonempty cells are rare because many internet shops have numerous users and
plentiful items. But most users only buy one or a few items, so you’re much more
likely to see a user-item matrix like the one in figure 4.3.

The user-item matrix is input to the recommender algorithms that you’ll see later. It’s
definitely not a good thing to have a matrix that looks like a Danish beach in winter-
time. I can attest to the fact that it’s a lonely place to be (see figure 4.4).

 In chapter 8, we’ll talk about a family of recommender algorithms called collabora-
tive filtering. This family of algorithms uses the user-item matrix to find similar users. If
the matrix is sparse (or empty), it provides little information, and it’s difficult to calcu-
late recommendations. In chapter 5, you’ll look at how to provide recommendations
even if you have a sparse matrix. For now, let’s focus on how to populate this matrix
either from explicit ratings (added manually by users) or implicit ratings (calculated
from the evidence you collect).

1

1 1

U
se

rs

Content

Figure 4.3 Sparsity table, a user-item matrix

Figure 4.4 Danish beach on a cold winter day

81Explicit or implicit ratings
4.2 Explicit or implicit ratings
For the ratings matrix shown so far in this chapter, the data inside supports the exam-
ples in this chapter. The example app gets ratings from two sources; the most import-
ant one being the MovieTweetings data set.1 The other part is calculated from the
user’s behavior persisted in the database, which is auto-generated in this case as
described in chapter 3.

 In a real app, the data could come from either ratings added by users explicitly if a
ratings system were implemented, data collected based on the user’s behavior, or data
from a mix of the two. Figure 4.5 shows examples of the difference between explicit
and implicit ratings.

On a movie site such as MovieGEEKs, if a user bought something and then rated it, the rat-
ing is probably trustworthy. Or is it? I’ve enjoyed films that I rated low, so what if the user
buys two similar films and rates both low? How much would you then trust the ratings?

 These are domain-specific questions, so it isn’t easy to give general answers. But
since the user keeps buying films that he rates low, then you should probably show

1 For more information, see https://github.com/sidooms/MovieTweetings.

Explicit ratings

Implicit ratings

Hmm.. the sun is
shining, maybe I
should rate ithigher?

Should I
give it 3
stars?

How would
my friends

rate it?

What should I rate it

so this girl will like
me more?

Finally alone to
decide what I

can watch.

Hmm.. what
should I watch. I
will browse the

catalog.
Wow cool pic.
Give me some
more details.

Okay
interesting, but I

will save it for
later.

Yay, I will watch

this one.

But the exciting part started just

when I ra
n out of coffee, so maybe I

should take away one star?

Figure 4.5 The difference between explicit and implicit ratings. Many things can influence what
you rate and what you eventually watch.

https://github.com/sidooms/MovieTweetings

82 CHAPTER 4 Ratings and how to calculate them
more films that he would rate low also. But an HBO user (another subscriber-only
online streaming service) rates something that’s only available on HBO, so without
seeing it, do we trust it? Always have a critical eye on what data is showing you.

4.2.1 How we use trusted sources for recommendations

Are your fellow users trustworthy sources for recommendations? Certain sites also
have users selling things, which means that people have an incentive to make them-
selves look better and make the competition look worse. For example, somebody got a
crazy idea and wrote a book on recommender systems. And he was the boss of a big
company (not all of this is true), and then he said all his 2,181 employees had to give a
positive review of his book or they’d be fired. Then the Amazon page could look like
the one in figure 4.6.

 That’s probably an extreme example, but I have seen a situation where a c-level
person wrote a book and then gave it as a present to all his employees afterward. Or
people saying something is bad because the package was broken when it arrived in the
mail. I’m not saying that you shouldn’t trust the reviews on a site, but think about what
incentive the users have to give good ratings or bad ratings. No matter whether it’s
explicit or implicit ratings, they can be faked, so remember that.

The truth about users’ tastes
It’s important to remember that the log data you collect is evidence, and you need to
foster an objective view of what users do on the site. Translating it into ratings and
opinions is a subjective process, which is something that has to be tweaked not only
for each domain but also for each recommender algorithm.

Figure 4.6 The fake Amazon page of this book. I leave it as an exercise for the reader to figure out
which book pages I cut-and-pasted together.

83What are implicit ratings?
4.3 Revisiting explicit ratings
When a user manually gives a content item a rating, it’s called an explicit rating. The
easiest way for a system to populate the user-item matrix, in theory at least, is to ask
users to do it themselves. Only they don’t, even if you give them the opportunity.

 How many people review the books they buy or the movies they watch on Netflix?
And even when they do, you can’t always be sure that their ratings reveal their true
opinions. People are influenced by what their circle of friends say and do. What’s
being rated when a user rates? The next time you rate something, think about it: are
you rating the complete package or was it a detail that you didn’t like that made you
give it a low rating? Maybe you loved the film, but the DVD’s cover was ugly, so you
rated it low. Do you rate a good lawnmower low because of the way a screw is attached?

 When you finish this book, I hope it inspires you to not only write recommender
systems but also to spread the word that this is an excellent book. If so, then a way to
do that is by giving it a high number of stars, for example, on Amazon (not trying to
mentally imprint anything here—blink, blink). That’s an explicit rating. An explicit
rating can be plotted directly on the matrix.2 If you have opinionated users, working
with their explicit ratings is worthwhile.

 Websites like TripAdvisor, Glassdoor, and others have based their sole existence on
users’ ratings. I mention this to remind you that even if implicit ratings generally show
more accurate opinions, explicit ratings still have their place in the world of ratings.
We’ll get back to explicit ratings later. In the next section, you’ll concentrate on the
implicit ones.

4.4 What are implicit ratings?
Implicit ratings are deduced from monitoring people’s behavior. Sounds kind of scary
when it’s written like that, doesn’t it? But remember, you’re trying to ease information
overload and help users, not stalk and manipulate them into buying more.

 Most would agree that when a user buys a product, it indicates that the user has a
positive opinion of the item. You can, therefore, deduce a positive rating between the
user and that particular item. This is an implicit rating. The same is true when a user
streams content or requests more information about a product. These are positive
examples of user-content relationships. But a user returning an object is an example
of an event that induces a negative implicit rating.

 To calculate implicit ratings, you take all the events recorded between each user
and each item and determine a number indicating how happy the user is with specific
content. Another way of thinking about it is that you’re trying to deduce the number
of stars users would give content they’ve interacted with (viewed, streamed, bought,
and so forth). You can define what each event means, but often the actions of users
can be interpreted in several ways, so it’s advisable that you create a system that lets
you easily tweak the rating calculations.

2 Well, that’s not completely true; often you normalize the ratings.

84 CHAPTER 4 Ratings and how to calculate them
 When the data is collected, there are then many ways to use it. Amazon’s famous
item-to-item recommendation algorithm uses only what users buy to create recommenda-
tions, but few sites can claim to have more than 200 million active users as Amazon
does.3 Others use the browsing history of all users to recommend similar pages. Which
approach better fits your site depends on what you’re selling and what customers you
have. After reading this chapter, you should have a better idea of which road to follow.

 Some sites don’t have the concept of “bought” at all. The New York Times website, for
example, uses your browsing history to recommend new material to you. Figure 4.7
shows the recs from the front page of the site (www.nytimes.com).

The New York Times must use implicit ratings because the site doesn’t allow users to rate
what they like. Moreover, even if it did let users rate articles, what would it mean if
users rated an article low? Would it mean that they didn’t like the topic, the way it was
written, or the specific story?

 It’s important to mention that even if a rating is high, that highly rated item might
not be the best thing to recommend right now. A good example is that I love the moji-
tos made at a certain cafe I frequent when I’m in Italy. That doesn’t mean that I want
one for breakfast, even if I’ve rated the mojitos from the previous evening high several

3 Amazon definitely uses much more than the “buy” events, but the particular algorithm described in Greg Lin-
den, et. al’s article, “Amazon.com Recommendations: Item-to-Item Collaborative Filtering” (IEEE Internet
Computing, v.7 n.1, p. 76-80, January 2003), they only use the “buy” events. The year 2003, however, was a
long time ago. You can view the article at www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf.

Figure 4.7 Recommended for
you from The New York Times

www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
www.nytimes.com

85What are implicit ratings?
times in a row. Sometimes it’s worth dividing the evidence into timeslots and doing
different recommenders for each slot. But it’s a trade-off between more accurate rec-
ommendations and data sparsity.

 Always remember relevance. Not all applications have a rating system, and it doesn’t
always make sense to add one. Another good example (in addition to The New York
Times) is eBay. What information would eBay gain from your rating a rare 1984 Won-
der Woman lunchbox that you bought? eBay probably had only one to sell, but it’s
interested in knowing that you frequently browse comic collectibles and lunchboxes.

 Many other sites have content that probably wouldn’t benefit from ratings either,
but they can still provide recommendations. These could be public sites with informa-
tional documents or real estate sites, for example. User ratings also are hard to come
by on educational sites, which are another area where more energy is spent on
implicit ratings.

4.4.1 People suggestions

Much CPU power is spent calculating how to suggest people to other people. One of
the more famous places that does this is good old LinkedIn, which also claims to be
the first site to have achieved that (outside of dating sites, I venture).

 LinkedIn suggests “People You May Know” that you can add to your network. This
is an example of a site where it’d be out of place for people to rate other people. But
for sites such as LinkedIn (or Facebook), a calculation must be done to figure out
what friends it suggests to you.

 We’re walking on the edge here. Most people might say that we’re leaving the
realm of recommender systems and entering the realm of data mining.

4.4.2 Considerations of calculating ratings

In this section, you’ll go through a few considerations before calculating ratings.
Which approach to use depends on what kind of data is registered and what type of
site displays the recommendations.

 In chapter 2, you saw that a buy event is something that comes before the user rat-
ing. The evil truth is that you don’t know anything about this event, and that’s the
hardest problem to solve. But to make this work, you need to assume that a user buys
an item because it looks good. The item might turn out to be garbage, but generally
people buy things because they want them. The item might be a present for the user’s
mother-in-law, but the user bought something once, so why not recommend some-
thing else for the next present? Let’s go with that and look at the buy events in your
evidence.

BINARY USER-ITEM MATRIX

Using buy events, you can make a simple user-item matrix by using this formula:

rij
1, when a user i bought item j

0, else



=

86 CHAPTER 4 Ratings and how to calculate them
Each cell in the user-item matrix contains a 1 if the user (i) bought the item (j) and 0
otherwise. A snippet of such a user-item matrix can be seen in table 4.2. (A similar
matrix could be generated by likes: 1 if the user liked the movie, 0 otherwise.)

The web shop that is said to use “bought or not” the most is Amazon. I regularly go to
Amazon to look for books on Python or data analysis, but I often end up at the Man-
ning or O’Reilly sites because I find that they provide free access to more books and
because they’re often half price. I’ve bought several books from Amazon that I can’t
read on my PC, only on tablets, and that drives me crazy.

 Because I’ve browsed often on Amazon, Amazon can see in my browsing history
that I’m interested in Python and data analysis, but it recommends only the books I’ve
bought as shown in figure 4.8. Recently, I chose a number of books on Microsoft
Azure because, to a large extent, they were free.

 I bought my first book on Amazon around the year 2000 and have bought many
since. But do they all represent my taste? Previously, I was a Java developer, but now
I’m over that phase. I’m no longer interested in Java books, so I hope that the items I
bought recently are more important than the things I bought 15 years ago. In the next
section, we’ll look into that.

TIME-BASED APPROACH

Using a binary matrix makes all things black-or-white. But most websites want nuances
to enable the recommender system to get a better picture of what the users like.

 There’s a saying: “Nothing beats your first love.” But this isn’t true in recom-
mender systems. Here the most recent is given the most importance. Therefore, a way
to make the matrix more nuanced is to use a function based on the purchase date.
You could go as far as to add the production time of the item also. For example, a pur-
chase completed five minutes ago of an item that was produced (or added to the cata-
log) five minutes ago will have a higher rating than a buy five minutes ago of an old
product. It would also have a higher rating than a buy last year of a product that was
new at that time.

Table 4.2 Binary user-item matrix

Users
Movies

Indiana Jones Micro cosmos Avengers Pete’s Dragon

Sara 1 1 0 0

Jesper 1 0 1 0

Therese 1 1 0 1

Helle 1 0 0 1

Pietro 0 1 1 1

Ekaterina 1 0 1 1

87What are implicit ratings?
Using this approach favors new items. Even if a user buys many old romantic comedy
movies and only one new action movie, the action genre will win because old products
get punished for being old.

HACKER NEWS’S ALGORITHM

Hacker News (https://news.ycombinator.com) uses a somewhat similar algorithm,
which puts importance into recent events and not so much on older ones. These types
of algorithms are called time-decay algorithms.

 Last time Hacker News published any details on how it works, it used the following
equation to calculate a news item’s ranking. The formula takes the score (how many
people upvoted this story minus how many who downvoted it) and divides that with a
time decay element, using a term they call gravity, which indicates how fast an item’s
ranking decays:

Figure 4.8 Amazon shows recommendations based only on what you buy.

score 1–

Item age in hours 2+ Gravity
--

https://news.ycombinator.com

88 CHAPTER 4 Ratings and how to calculate them
 There was a time when Hacker News defined gravity as 1.8, but the company
tweaks this algorithm all the time. People’s tastes change, so what was once the best
thing for a user might not be the favorite now. This indicates it’s a good idea to let old
events count less than new ones.

BEHAVIOR-BASED APPROACH

Big companies like Amazon would probably drown in data if they used more actions
than a buy. But for most sites, the binary table shown previously would be quite empty
or at least full of zeros. That’s why it might be a good idea to broaden the horizon a bit
and add other events than buy events.

 Using several kinds of events requires a bit more thought because you need to
quantify how much a user shows liking through the different events. After the value of
each event has been defined, each entry in the user item matrix can be calculated
based on all the events that have occurred between the user and the item. This
approach is what you’ll work on, spicing it up with a bit of a time-based approach.

4.5 Calculating implicit ratings
Given the knowledge that you gained from working with the evidence in earlier chap-
ters, what can you say about events? Can you say that actions that led up to a buy mean
that a customer was closer to buying? It’s hard to tell whether that’s always the case,
but in most instances it’s probably true. Therefore, you’ll work through the events
that are collected on the MovieGEEKs site,
starting with the buy event.

 The example site is simple with only
Details and More Details events to calculate
the implicit ratings. Its “lucky” that there
isn’t much complexity here. Most sites have
many more event types. Now might be a
good time to stop and think about what
you’re calculating because, in a sense, the
word rating isn’t what you’re trying to esti-
mate, not even if you call it an implicit rat-
ing. Let’s look at an example.

 My original objective for learning Italian
was to read books by Umberto Eco (figure
4.9) in his original language. It was a silly
project because I never bothered to read any
of his books, even the ones that were trans-
lated, before setting out to evening classes in
Italian. But it seemed like a good idea at the
time. Ten years later, I’m now married to an
Italian and speak Italian fairly well, although
not well enough to make it enjoyable to read

Figure 4.9 A book by Umberto Eco, an Italian
author and literary critic who died in 2016

89Calculating implicit ratings
Eco’s books. But that doesn’t stop me from hurrying out to buy his books when a new
one comes out and try it—at least I did until he passed away—even if I’m not even sure
whether I like his books in the end. Yet there are other writers that I do like and rec-
ommend to others.

 If you were implementing a book site, you’d want to know about all the books that
I’d potentially buy, regardless of how I’d rate them. What you’re calculating here is a
number that indicates how likely your user is to buy, not how high the user will rate the
content. Beside insights into my obsession with Eco books, this example should also
provide an idea of what you want to find.

4.5.1 Looking at the behavioral data

Let’s take an example from the MovieGEEKs site. Jesper (user 400002) has a weak
spot for Jim Carrey (figure 4.10). He’s considering buying Ace Ventura. He looks at it
once and thinks, “Ahh, maybe it’s too expensive.” Later he looks again, and then
again. Finally, he decides to check out more details, which provide him with the final
reason (excuse) to buy it, so he does. The list of events looks like the rows in table 4.3.

Table 4.3 Constructed evidence for Jesper

User ID Content item Event

2 Ace Ventura: When Nature Calls Clicks Details

2 Ace Ventura: When Nature Calls Clicks Details

2 Ace Ventura: When Nature Calls Clicks Details

2 Ace Ventura: When Nature Calls Clicks MoreDetails

2 Ace Ventura: When Nature Calls Clicks Buy

Figure 4.10 Jesper loves Ace Ventura.

90 CHAPTER 4 Ratings and how to calculate them
You know that he bought the movie. But if I stopped the story before he made the
transaction, you’d still agree that if a user looks at an item three times and clicks More
Details once, then it’s a positive thing. If Pietro clicks Ace Ventura by mistake and never
comes back to the page, then that action shouldn’t mean too much. But if he did
come back, it would be more positive.

 A thing that I left out of this example is the timestamp of the events. If clicks are
done within a short period of time, they might not mean as much as if the clicks were
registered over several days. You could work through many such stories, but the core
of the matter is that you can start adding rules that your implicit recommendations
should obey, for example:

 Buy => Top rating
 One or more Details view + More Details => Very positive
 Several Details views => Positive
 One Details view => Not sure

In the MovieGEEKs dashboard, there’s a chart that shows which actions most often
lead to a buy event. If you return to that, you also get a similar picture of how to calcu-
late implicit ratings. Figure 4.11 is a repeat of a portion of figure 3.2. In our case,
we’re cheating a bit because the chart shows auto-generated data, so the events distrib-
ute like this by design. But in a real system, that chart would be a good place to look at
what value to attribute to each event.

Figure 4.11 Chart showing how many events of each type have occurred in sessions with and
without a buy.

91Calculating implicit ratings
To sum up this investigation, and with Jesper in mind, you can define an implicit rat-
ing function that outputs a number that shows how much user u will be interested in
buying item i. To be more precise, you’re interested in knowing how close user u is to
buying item i, so that you can use this knowledge to find similar things that the user
might buy instead or buy also with item i. With this in mind, consider the following
implicit rating of item i for user u:

Where

 IRi,u is the implicit rating.
 #event is the number of times that a specific event type has occurred.
 w1 … wn are weights that you set based on the previous analysis (and probably

tweak again when you start creating recommendations).

SHOULD ALL EVENTS HAVE A POSITIVE WEIGHT?
If actions occur in more sessions that include a conversion event than in sessions that
don’t, you can give those events a positive score or weight. All interactions between
user and content on your site, and in general, give a positive indication of the user
being interested in the content and should be treated as such.

 You can find exceptions, such as a Dislike button (you haven’t added that to the
site) as Netflix did, moving away from the star ratings to use a thumb’s up or down.4

The thumbs down can be used to indicate that the user doesn’t want to see similar
content, which can only be interpreted as adding a negative score or weight to the
content.

CALCULATING WEIGHTS
Let’s create a function by adding the weights according to what you learned in the
example with Jesper and Ace Ventura. As I’ve iterated several times before, it’s import-
ant not to think that you can start out doing this once and it’ll always work.

NOTE It’s a good idea to work with the weights and the function when you
have a full recommender up and running and then see how the result looks.

First define the following:

 Event1 = buy
 Event2 = moreDetails
 Event3 = details

Now let’s try to deduce the weights for this function so that a buy has the maximum
rating. Let’s say the top rating is 100 (you can normalize it afterward). Table 4.4 shows
your assumptions that can be translated into weights.

4 Tom Vanderbilt, “Now Netflix is all Thumbs,” http://mng.bz/2GV8.

IRi u, w1 #event1  w2 #event2  ... wn #eventn + + +=

http://mng.bz/2GV8

92 CHAPTER 4 Ratings and how to calculate them

Having a list of equations looks like an optimization problem, which can be solved
mathematically, but the equations have come from assumptions, so you can’t trust
them as gospel. A way to solve the equations is to come up with weighted values (wx)
that obey the preceding rules:

 w1 = 100
 w2 = 50
 w3 = 15

If you insert these weights into the preceding formula, it looks like the following:

As a small test, let’s try to calculate Jesper’s implicit rating of Ace Ventura:

If you calculate an implicit rating for a film Jesper found slightly interesting, and yet
clicked Details, then the equation would be:

You’ll normalize these ratings, which means that you’ll adjust them so that later
they’re between 1 and 10. Something to consider is whether there’s a cut-off, where the
number of times someone triggers an event doesn’t add more information—for exam-
ple, if somebody looks at content details more than a certain number of times. Think
about it: if a user clicks Details three times for the same item, does it mean that they’re
more interested in it than if they’d clicked 10 times?

 It could be worthwhile to replace #eventn with min(#eventn,relevant_maxn)to
implement a cut-off. The relevant_maxn would be different for each event type. What
it says is that the formula returns the number of times an event occurs unless its value
is higher than relevant_maxn.

USING MORE AND MORE RELEVANT DATA

The first time a user returns to your site, your ratings will be based mostly on previous
browsing data and not on buy data, so the recs will be based on a fewer number of

Table 4.4 Weights on eventsa

Events Interpretation Example of value

Clicks Buy Top rating 100 = (w1 × 1)

Clicks one or more Details views + More
Details

Very positive 80 < (w2 × 1) + (w3 × 3)

Clicks several Details views Positive 50 < (w3 × 3)

Clicks one Details view Not sure (w3 × 1) < 50

a. w1 is the weight for a Buy; w2 is for More Details, and w3 is the weight of the Details event.

IRi u, 100 #event1  50 #event2  15 #eventn + +=

IRi u, 100 1  50 1  15 3 + +=

IRi u, 195=

IRi u, 100 0  50 1  15 1  65=+ +=

93How to implement implicit ratings
things. As the user interacts with the site and starts buying, the content with which the
user has interacted will narrow down to the user’s specific tastes.

4.5.2 This could be considered a machine learning problem

Today many companies spend a lot of energy trying to predict which users are ready to
buy and when. You have a similar problem: you need to predict how likely a customer
is to buy a specific product that the prospective buyer has viewed.

 It can’t be said for certain that a relationship exists between a user’s interactions
with the site and what the user will buy, but it seems plausible. If so, certain numbers
or a vector could be multiplied with the data collected to produce a probability, which
indicates how close a customer is to buying something. This is a fair approximation of
what you’re trying to calculate. If you defined that in machine learning lingo, you’d
say that there exists a function like the following:

Where Y represents the true prediction of a user’s closeness to buying a specific item.
In theory, this can be calculated by inserting the data that you’ve recorded with the
evidence logger—your features. To save face, you include , a parameter called noise.
 is an indication that you can’t calculate the complete truth from the features, so
there’ll also be a sense of uncertainty, no matter how close your function f comes to
calculating the real rating. The purpose of many machine learning algorithms is to
use data to approximate the function f, and I encourage you to try it with your data.

 What kind of machine learning could you apply to this problem? You’ll want
to predict an implicit rating based on various events. To do that, you can only try to
predict whether a series of events is leading to a buy or not. To do that, you’ll look at
classifiers.

 A good classifier to begin with is the naive Bayes classifier. This not only provides a
classification, but also a probability of how certain it is about the classification. In this
case, you can use the probability that the classification is a buy as an implicit rating.
For more details about how to use a naive Bayes classifier, see chapter 5 of Reactive
Machine Learning Systems by Jeff Smith (Manning, 2017).

 If you’re only here to do machine learning, then read on. Several of the algorithms
used to calculate recommendations are machine learning. Those will be handled in
detail in this book. Next, let’s see how you can implement implicit rating calculations.

4.6 How to implement implicit ratings
Enough beating around the bush—let’s get code on the table! Let’s start with an over-
view of where you’d want to implement this functionality in the MovieGEEKs site, and
then move on to explaining how you go about it. More precisely we’ll look at:

 Retrieving data
 Calculating ratings
 Viewing and understanding

Y f X() +=

94 CHAPTER 4 Ratings and how to calculate them
To understand the following discussion, it’ll be better if you have the MovieGEEKs site
running on your machine. You can download it from GitHub at http://mng.bz/04k5.
See the instructions on the site for how to install it.

 RETRIEVING DATA
To calculate implicit ratings for a specific user, you need to retrieve the log data from
the user. What you want is the data to tell you, for each item, how many times the user
has interacted with the content. For the example shown with Jesper, you want a row
like table 4.5.

Having this data and many rows like this lets you calculate the implicit rating. Getting
data like this can be done either by retrieving all data from the log containing the spe-
cific user ID and content ID, or you can make the database work a bit more and
return data in the format shown in table 4.5, which is what’s done with an SQL query
in the following listing.

SELECT
 user_id,
 content_id,
 mov.title,
 count(case when event = 'buy' then 1 end) as buys,
 count(case when event = 'details' then 1 end) as details,
 count(case when event = 'moredetails' then 1 end) as moredetails
FROM evidenceCollector_log log
JOIN movies mov
ON log.content_id = mov.id
WHERE user_id = '4005'
group by user_id, content_id, mov.title
order by buys desc, details desc, moredetails desc

Having this data in hand (well… in system memory), you can now start calculating the
implicit ratings, which should then be saved in the ratings database. The function
implemented is as previously shown and can be found in the code in listing 4.2. You

Table 4.5 Aggregated view of the sessions leading up to Jesper buying Ace Ventura

User ID Content ID Details moreDetails Buy

400002 Ace Ventura 3 1 1

Listing 4.1 SQL script to retrieve ratings for a user

Counts how many copies a specific
user bought of a specific item

Counts how many times a
specific user viewed details

of a specific item

Counts how
many times a
specific user
viewed more

details of a
specific item

Joins with the movie
table to get the title

Uses group by to
enable the counts

Orders things by buys,
then details, and finally
moredetails

Filters the user ID to get the data of only one
user; here it’s user 4005.

Compares the movie ID with the
content ID of the evidence

http://mng.bz/04k5

95How to implement implicit ratings
can also look in the file moviegeek/ Builder/ImplicitRatingsCalculator.py to find the
method query_aggregated_log_data_for_user to see the actual code that retrieves
the data.

CALCULATING IMPLICIT RATINGS

The calculations are quite simple and don’t require much explanation. You load the
data from the database and calculate the rating. The rating is calculated using the
weights that you deduced earlier as shown in the following listing.

def calculate_implicit_ratings_for_user(userid):
data = query_aggregated_log_data_for_user(userid)
agg_data = dict()
maxrating = 0

for row in data:
 content_id = str(row['content_id'])
 if content_id not in agg_data .keys():
 agg_data[content_id] = defaultdict(int)
 agg_data[content_id][row['event']] = row['count']

 ratings = dict()
 for k, v in agg_data .items():

 rating = w1 * v['buy'] + w2 * v['details'] + w3 * v['moredetails']
 maxrating = max(maxrating, rating)
 ratings[k] = rating

 for content_id in ratings.keys():
 ratings[content_id] = 10 * ratings[content_id] / maxrating
 return ratings

The method query_aggregated_log_data_for_user is called for each user. The data
set MovieTweetings, which you’ll use later in this book, has ratings on a scale from 1 to
10, so you’ll normalize these ratings to the same scale. Having the implicit ratings on
this scale also means that you can use them in place of explicit ratings.

VIEWING THE RESULT

If you fire up the MovieGEEKs app, you can now run:

 python populate_logs.py—Adds auto-generated logs into the database. Flip
back to chapter 3 for more information on this script. The database now con-
tains data shown in figure 4.12.

 python –m builder.implicit_ratings_calculator—Calculates the implicit
ratings.

 python manager.py runserver 8001—Starts the MovieGEEKs site running on
port 8001.

Listing 4.2 Calculating implicit ratings based on the users’ events

Calls method that
queries the database

Creates a dictionary to
contain the ratings

Iterates through each
content item

Calculates the implicit
rating for the content item

Keeps track of what is
the highest rating so far

Goes through all ratings, divides with maxrating
to normalize, then multiplies by 10 to put it on
a 0-10 scale

Returns ratings

96 CHAPTER 4 Ratings and how to calculate them
In the screenshot in figure 4.13, you’ll see that two movies received top ratings of
10/10. If you look at the database (figure 4.12), you’ll see that there’s no buy event,
but the item still got a top rating. That’s due to the many interactions that occurred
between the user and the content.

If you use implicit ratings like the ones described here, you need to take into account
that the user hasn’t consumed many of the items that you’ve ratings for. As a result,
the items not bought could be included in recommendations. But because a user who
has looked at an item as much as in this example, and still not bought it, you probably
won’t include it in the recommendations.

Figure 4.12 A snippet of the auto-generated data. This is the data related to user 400005 (Pietro)
and item 1355644.

Figure 4.13 Screenshot of the user profile for user ID 400005 (Pietro). “Not in Cluster” means
that the user isn’t part of any cluster. You’ll build clusters in chapter 7.

97How to implement implicit ratings
4.6.1 Adding the time aspect

The preceding implementation doesn’t include any aspects of time decay. If old
behavior is less important than recent activity, it’s worth adding that to the mix. It’s a
bit more effort to include the time aspect, however, because you need to look at each
evidence point and add a multiplier that becomes smaller over time.

 Adding a time decay can be done with SQL in the database or in code. Certain
companies swear by doing everything in SQL because they believe that’s the best envi-
ronment; others say that SQL becomes unreadable with more than 10 lines, so rather
than using the database, they move to code. The time decay function you’re going to
implement uses the following formula.

In a database, SQL has no elegant way to do this, so you’ll do the time decay in code.
This also gives you the opportunity to see how you can do everything in code, as
opposed to listing 4.1, where you aggregated the data first. Here you’ll get all log data
from the user using the query in the following listing.5

SELECT *
FROM collector_log log
WHERE user_id = {}

The reason for using days instead of seconds is twofold. First, you want all the events
that happened in one day to count the same because movies aren’t something you buy
several times a day. Second, you want the ratings to decay slowly. By using days, the
weight of the events that happened a week before will decay only by one seventh. A
music-streaming site like Spotify might want to give more importance to the last hour,
or even the last 10 minutes. Figure 4.14 shows the decay algorithm, where you can see
a plot of the time decay.

 To make sure you understand what’s happening, let’s consider an example. If Jim-
mie buys Game of Thrones today, the event will have a score of 1; if the purchase was yes-
terday, the score is 1/2; a week ago is 1/7; a year ago is 1/365. The decay function is
shown in the following listing.

def calculate_implicit_ratings_w_timedecay(userid, conn):

 data = query_log_data_for_user(userid, conn)

 weights = {{'buy': w1}, {'moredetails': w2}, {'details': w3} }

Listing 4.3 SQL to return a specific user’s log data

5 If you have a large log, it might be a good idea to put a time constraint on it, such as created > 1 month ago,
and define an index on the column’s user_id.

Listing 4.4 Calculating implicit ratings using users’ events and time decay

score 1
age of event in days
---=

Retrieves
the data

Dictionary of weights
for each event type

98 CHAPTER 4 Ratings and how to calculate them

Show
q

the
 ratings = dict()
 for entry in data:
 movie_id = entry.movie_id
 event_type = entry.event

 if movie_id in ratings:

 age = (date.today()-entry.created)//timedelta(days=365.2425)

 decay = calculate_decay(age)

 ratings[movie_id] += weights[event_type]*decay

 return ratings

The decay function is shown in the following listing.

def calculate_decay(age_in_days):
 return 1/age_in_days

You can try out more complicated time decay algorithms on your own time to see if
they improve anything. At this point in the book, it’s probably hard to understand
what effect changing the decay function has. But the concept is to add an indication
of how relevant old things are to users in your recommender system.

 If you’ve a horse you’re probably not going to change preferences in horse equip-
ment very often, but if you’re looking at a news site, it’s likely that old stories won’t
interest you as much. For movies, one day is a short period, and one month or year may
be more likely. For testing your system, however, it makes more sense to use one day.

Listing 4.5 The decay function

Creates empty dictionary to
contain the ratings

s the inner
uery to add
 time decay

Calculates
the age of
the event

Adds the event weight
times the decay

Gets the
decay
factor

1.0
decay

20 40 60
days

80

0.8

0.6

0.4

0.2

0.0

Figure 4.14 The function of the decay algorithm

99Less frequent items provide more value
4.7 Less frequent items provide more value
Popular items are often highlighted (understandably) as good items to suggest to peo-
ple. But if you want to understand which things are important for people, you need to
look to the items that few users buy. Consider these examples:

 I buy the movie Lord of the Rings, which is number one on the charts (back
then), and which every man and his dog have already bought.

 I buy a special collector’s extended version of Lord of the Rings, which includes a
signed poster by the leading stars and of which only 100 copies were produced.

Which event tells you more about my tastes? The first example puts me in a group
with half the globe, because most people in the first example don’t make me unique
compared to others. The second example puts me in an exclusive club with a maxi-
mum of 100 members. And those 100 have a specific taste that’s likely to be shared.

 A different example often used to describe this problem is bananas. Everybody
buys bananas, so knowing that the user buys bananas doesn’t have much value, as
compared to the imported sardines in chili oil, which is a unique product that says
something about the buyer. Why am I mentioning this? Well, you could put a filter on
the ratings you’re calculating and boost the items that are special while the normal
ones wouldn’t rate so highly. Implementing this can also be a bit tricky, so let’s take a
quick stab at it.

 First, let’s define a function that makes sense. This problem is closely related to the
well-known term frequency–inverse document frequency problem (TF-IDF among friends).
It’s often used by search engines as a tool to rank a document’s value given a user’s
inquiry. You can consider this a queryless search, where you want to attribute more
value to the special items. To understand what content items you’ll consider special,
you’ll look for the IDF instead. The thinking is that if a user buys an item that’s popu-
lar, it doesn’t provide much information about the user’s taste. If the same user likes
something only few people like, then it could be a better indication of the personal
taste of the consumer.

 The function can be calculated in several ways. But the following shows one I find
more valuable.6 To find the special items, you can calculate the inverse user frequency
(IUF) like this:

Where

 n is the number of times item i has been bought by user u.
 N is the number of users in the catalog.

6 It’s mentioned in regard to collaborative filtering in an article by J.S Breese, et al., “Empirical Analysis of Pre-
dictive Algorithms for Collaborative Filtering,” which I recommend you read. See http://mng.bz/tQhY.

iufi u,
N

1 n+
------------ 
 log=

http://mng.bz/tQhY

100 CHAPTER 4 Ratings and how to calculate them
Normalizing in this context means that you put the result on a logarithm scale. Taking
the logarithmic of something is done to ensure that there’s a big difference among
small numbers, while the more numbers grow, the less importance it has, whether it’s
1,000 or 2. You can see this in figure 4.15.

Because the number of users N is constant while calculating the IUF, it’s graph would
look like the one shown in figure 4.16. The weighted rating calculated by multiplying
the two is as follows:

If you want to keep these ratings between 1–10, you need to normalize again, the way
you did in listing 4.2. It makes it easier to look at these ratings and compare them with
the explicit ones. If you think that your site might increase conversions by adding this,
this can be implemented both in SQL and on the server.

 If you say that you’re teaching machines how to predict ratings, then even if
there’s only one truth, the role of a recommender system engineer or a data scientist
is your guide. Remember that if the recommendations that come out in the end seem
to fit with the data but not with the users, then one of the knobs to turn is here,
where you build the implicit ratings. The implicit ratings that you calculate are the

8

log

6

4

2

0

0 2,000 4,000 6,000
Number

8,000 10,000

Figure 4.15 The log function on numbers from 1 to 10,000. Numbers that go
through the log function change more when they’re small, while the change
is smaller when they become larger.

wRui Rui * iufi u, Rui *
N

1 n+
------------ 
 log= =

101Summary
foundation on which you create the recommenders. Doing it well gives the recom-
mender system the best conditions for predictions, but doing it badly means the rec-
ommender system will fail.

 Now that you have the dashboard and implicit ratings, you’re well on your way to
making your recommender system. The next step is to look at how to best save the
trinity of user, content, and rating data. This is part of the next chapter, where you’ll
also see several recommendations. Go look!

Summary
 A user-item matrix is the data format for recommender algorithms. You can

populate them by using explicit as well as implicit ratings or by indicating which
items were consumed by the user in a binary matrix.

 A rating is the glue that connects a user to an item. It can either be manually
entered by the user or calculated based on the behavior of the user.

 The time decay algorithm takes into account that not all information is equally
important: old evidence is less important because people tend to change their
tastes.

 Inverse frequency factors into the equation because interactions with less popu-
lar items provide more information about the user than interactions with
popular items.

iuf

Number

10

0 500 1000 1500 2000 2500 3000 3500 4000

9

8

7

6

5

4

3

Figure 4.16 The IUF looks like this. If only a few people bought the product,
then it would be boosted more, while if many users bought the item, it would be
boosted very little.

Non-personalized
recommendations
You’ll find recommendations in this chapter, but they’re not personalized. That
doesn’t mean that this chapter will be less important.

 You’ll learn that using non-personalized recommendations can also show
interesting content.

 You’ll see examples that show why your site should order content, and you’ll
learn how to build charts to show users what’s popular and that highlight
items of interest to other users.

 You’ll learn how to calculate association rules by creating itemsets based
on the shopping basket and then use those rules to create seeded recom-
mendations.

 You’ll see how the recommender component is implemented, which is the
core component in the MovieGEEKs example site and the one that provides
the recommendations.

Non-personalized recommendations are usually where most sites start because it’s
easy and doesn’t require that you know anything specific about the users. Non-per-
sonalized recommendations are good because you can always show those, despite
how little you know about the users. People might say that non-personalized recs
should only be shown until the system knows enough about the user to show more
personalized recs, but always remember that humans are flock animals by nature, so
102

103What’s a non-personalized recommendation?
most will be suckers for knowing what content items are the most popular—if for no
other reason than to ensure what not to like.

 We’re handling charts and ordering and association rules in this chapter. We’ll
start the party by looking at the good old charts, which everybody hates in these
context-based days. Charts are simple recommendations based on statistics such as
which content sold more. Charts are about ordering your data, and it’s natural to con-
tinue with a talk about ordering your presentation of the data. We’ll look at the imple-
mentation of charts and discuss reordering the movies in the MovieGEEKs site. In the
second part of the chapter, we’ll look at what people put in the shopping basket and
use that to create recommendations such as “people who bought X also bought Y,”
using something called itemsets or frequency sets. The recommendations we’ll look at
will be the same for all users interacting with the recommender system; that’s why
they’re called non-personalized recommendations.

 After four chapters that are mostly about how to collect data about the users, you
might think that it’s a bit unfair to put the individual aside and look at the data as a
whole. But remember, most sites have many non-identified visitors to whom you
want to cater because they’re the future customers of your site. And even when you
do know the identity of your visitor, it’s highly likely that you don’t have enough data
to calculate personalized recs, and then it’s good to fill out the blanks with non-
personalized ones.

5.1 What’s a non-personalized recommendation?
In chapter 1, we discussed the difference between a commercial and a recommenda-
tion. Let’s briefly talk about that again.

5.1.1 What’s a commercial?

The deal of the day from Manning, shown in figure 5.1, is a commercial. It doesn’t make
it evil because it’s a commercial. A commercial is something that a vendor publishes
because they want content to be exposed to the users, and often people are interested

Deal of the day is a commercial. It’s a
good one, but still a commercial.

Figure 5.1 Manning Publications’ (manning.com) Deal of the Day ad

104 CHAPTER 5 Non-personalized recommendations
in offers. But, it’s something you, as a site owner, should do with caution because bad
commercials will drive visitors away. (I have an idea that the internet is full of such
commercials, but after spending 30 minutes searching for one, I gave up. I did find a
complaint from a guy who felt he got spammed after signing up on a paranormal dat-
ing site—it surprised him because he thought it was a serious site). I define a bad com-
mercial as something that’s blocking the user from getting on with business, like a
popup that can’t be closed before a film has been played or redirecting the user to
unintended pages.

 Often commercials are about things that the seller is trying to convince the user is a
good offer or cheap (even if it isn’t), while a recommendation is about finding the user
what they want. You could say that finding something cheap is exactly what the user
wants. In fact, many sites have made a business out of recommending offers of cheap
things. Personally, I go searching for something after I discover I need it, while a
coupon site, like cupon.com (figure 5.2), is a bit more like people searching for some-
thing they need but don’t know it.

 Cupon.com uses non-personalized recommendations to recommend more offers.
In the top, it lists the popular categories and brands. While the central part of the
screen contains lists of vouchers to save money on, it’s hard to say how that’s calcu-
lated. Cupon.com is one of many choices, and I think it’s a great way for sellers to get

Recommending
popular brands and
categories

Hard to say how this
is ordered.

Figure 5.2 Cupon.com collects coupons from everywhere.

cupon.com
Cupon.com

105How to make recommendations when you have no data
in contact with people who are happy to get things cheaper—in quantity, thus spend-
ing more money.

5.1.2 What does a recommendation do?

A recommendation, personalized or not, is based on data and calculated from data. To
keep the definition from being too murky, we’ll restrict it to be computer-calculated
based on usage data. That means popular categories at cupon.com are recommenda-
tions (by calculating which category is viewed more). Before you start calculating, let’s
look at examples of what a site can do if it doesn’t have any data at all.

5.2 How to make recommendations
when you have no data
We talked about it before—no data at all means no recommendations. A recommen-
dation comes from what people like. Again, no data means no recommendations.
What can you do then? You can fake it by hand-coding the recs to begin with (this is a
purer objective than what we’ve defined as commercials). You can call it a spotlight,
for example, the way they do on DZone.com as shown in figure 5.3. If you don’t want
(or have the resources) to have somebody set up a spotlight page, you can do a
smaller version.

First, what does it mean to present unordered data? An example of that is the Movie-
GEEKs page, where the films shown on the first page are the first items that came out
of the database. But presenting data like that leaves much to coincidence. Data could
be inserted into the database alphabetically or, if you always add data to the end, then
the oldest will always be shown first.

TIP Never use the order set up in the database. Always consider having a
default ordering of the content presented.

Editors are
selecting content
that they consider
recommendable to
the readers.

Figure 5.3 DZone has editorial spotlights.

106 CHAPTER 5 Non-personalized recommendations
ORDERING BY PRICE IS USUALLY A BAD IDEA

Before ordering data by price, consider what that means. For cupon.com, that could
mean the items with the smallest savings would always be on top, or vice versa. The next
option could be to order by the percentage of the savings. For example, if you save $1
on something that costs $10, the item would be shown before something that you save
$2 on but costs $100. That’s because one discount is 10% while the other is 2%.

USING RECENCY KEEPS THE WEBSITE DYNAMIC
Considering the film website, you don’t have any prices so what could you do there?
To begin, one of the easiest ways to recommend your items is to order it according to
what most people are most likely to favor (assuming you know that). You can order
movies to show the movies most recently produced or the content most recently
updated, for example. In the case of the films, it’s probably better to go with the new-
est ones first. You’ll make the site come alive and be more dynamic, as long as the con-
tent is alive and dynamic.

 Remember that most recent things aren’t always the most desirable. If you’re sell-
ing antiques, you can probably work with ordering the oldest first, such as the PreWar-
Car.com site (www.prewarcar.com) shown in figure 5.4.

 As another example, if your item is a garden tool, then people won’t care much
about recency ordering, except if you’re talking about Weber grills with someone

PreWarCars is one
of the few examples
where oldest first is
a good idea.

Figure 5.4 PreWarCar.com, a marketplace dedicated to antique cars

www.prewarcar.com

107How to make recommendations when you have no data
from Denmark. If you’re a male Dane, it seems you have to exchange your Weber grill
at least once a year, and it can only be bigger. That’s due to genius marketing.

5.2.1 Top 10: A chart of items

Back before the internet (yeah, I’m dating myself), we had Top 10s everywhere. We
had the Top 10 music chart on the radio every weekend, which we religiously
recorded and listened to it on repeat all week. (Repeat meaning that you listened to it
to the end and then rewound it. Usually the popular songs filled a whole cassette.)
The Top 10s were basically the only way to receive recommendations, besides what we
heard from friends. When MTV came to Denmark, it was insane… .

 Anyway, Top 10 charts, like the ones shown in figure 5.5, have gotten a bad reputa-
tion since then, and that’s a shame because they do show people what’s popular. No
matter your personal taste, or how much of an individual you say you are, chances are
that you like something on the Top 10.

Movies with the biggest box office take
during a weekend in 2017 in the US.
Don’t know why earnings is a good
measure of quality, but it often used.

Top 10 most-emailed articles from
the from the Food
section. It’s is also possible to see
the most-viewed articles. Which
provides a better signal is hard
to say.

New York Times

Figure 5.5 Top 10 highest earning movies in the US during one weekend in 2017 according to IMDb
(imdb.com), and the most-emailed Food section articles at the The New York Times (nytimes.com).

108 CHAPTER 5 Non-personalized recommendations
The Top 10 list is all you need, right? Not entirely. A Top 10 chart will satisfy a large
group (the majority even), but users aren’t alike, making the topic of recommender
systems much more fun when tastes are different. It’s worth pondering what the Top
10 tells you. If you’ve a number of users, say 11, and you’ve 10 films, then the most
popular film might be liked by only two people, leaving nine others liking something
else more. Always spend time looking at the data.

 Let’s look at what an implementation of a chart might look like. The chart shows
what content items were bought most often, such as the one in figure 5.6. We could
also have made a chart on which items are viewed more often or, to use a Facebook
term, liked more.

5.3 Implementing the chart and the groundwork
for the recommender system component
You could add the chart quickly, as described in chapter 4. To do things properly and
add the functionality in the right place, you’ll start by creating the recommender sys-
tem component, which is where you’ll do most of the work in the rest of the chapter.

5.3.1 The recommender system component

A recommender system can be built in many ways, depending on how many recom-
mendations you need to serve, the size of content catalog, and the number of visitors.
One thing for certain is that you want it to be a structure that’s independent from
your website, because you can quickly drown performance.

 The solution for the MovieGEEKs site is composed of two components (and a data-
base). The first component, called a builder, makes all the precalculations (training)

A chart–a
non-personalized
recommendation

Figure 5.6 MovieGEEKS displays a chart showing what was bought most often.

109Implementing the chart and the groundwork for the recommender system component
needed to serve the recommendations, while the second component focuses on serv-
ing the recommendations. The reason for the builder component is that most recom-
mendations require a great deal of calculations, which requires time, something you
don’t have when the user’s waiting for the page. It’s the goal of most recommender
algorithms to precalculate as much as possible to make the real-time performance as
fast as possible.

 Normally you split recommender algorithms into memory-based and model-based
recommender algorithms. Memory-based means that the recommender accesses the log
data in real time, while model-based signifies that the algorithm aggregates the data
beforehand to make it more responsive. Experience shows that memory-based algo-
rithms only work up a certain point because they don’t require many views per minute
before it becomes difficult for the servers to keep up.

 Looking at figure 5.7, would you do something different, and why? The light boxes
contain the components we’ve already discussed. The dark boxes are the topics of this
section. The Recommender API handles requests from the website; the Recs database
contains calculated recommendations. The recommendation builder is the compo-
nent that creates the models and, in some of the algorithms, precalculates the recom-
mendations and saves them in the Recs database.

Databases

Web APIWebsite

MoviegeekAnalytics

Content EvidenceUsers Recs

Records user behavior

MovieGEEKs
site

Recommender
API

Collector
API

Provides
recommendations

Recommendation builder

Figure 5.7 MovieGEEKs architecture with the recommender system highlighted

110 CHAPTER 5 Non-personalized recommendations

G
titl

o

5.3.2 MovieGEEKs code from GitHub

Once again, you should consider downloading the MovieGEEKs code from GitHub
at http://mng.bz/04k5. Install it following the instructions in the readme file found
in the root, so you can try out the things.

5.3.3 A recommender system

A recommender system is an application that needs access to all your data, depending on
what type of recommendations it should produce. Often sites will build an architec-
ture that has a recommender system in a separate instance, and as a safety mechanism
has a simple (even hard-coded) fallback recommender, which will keep providing
data if the recommender system runs into problems.

NOTE Always keep the recommender system separate from other parts of
your website because it can be quite demanding performance-wise.

In the MovieGEEK site, the recommender system is implemented as a separate
Django application. This allows it to run independently on a separate machine when
the site goes into production.

5.3.4 Adding a chart to MovieGEEKs

A chart is a rather simple thing; you need to count how many of each item has been
bought and plot that information. With SQL, it’s a matter of grouping by content and
counting the buy events in the log. The SQL query in listing 5.1 does one more thing:
it adds the title of the movie to the chart. In a live system, it might be worth precalcu-
lating the chart once a day because tables can be big and expensive to query every
time a chart should be shown.

SELECT content_id,
 mov.title,
 count(*) as sold
FROM collector_log log
JOIN moviegeeks_movie mov
ON log.content_id = mov.movie_id
WHERE event like 'buy'
GROUP BY content_id, mov.title
ORDER BY sold desc

You’re querying the log file, which is empty if you recently downloaded the code. But
if you run the script moviegeek/populate_logs.py found in the root directory, it auto-
generates log data for you. This script is described in more detail in chapter 4.

 Being in the spirit of recommenders, let’s say this is a recommendation and should
therefore be something that should come out of the recommender app. The chart

Listing 5.1 SQL query to get the most sold products

Gets the content_id,
movie title, and the count

Gets the buy count
from the log table

ets the
e from
movie
table

Connects movie and log
tables using the movie id

Looks
nly at

buy
events

Groups by the
content_id and titleOrders by the sold column i

descending order

http://mng.bz/04k5

111Implementing the chart and the groundwork for the recommender system component
method in recommender/views.py is as shown in listing 5.2. It isn’t nice code, but it
works.

def chart(request, take=10):
 sorted_items = PopularityBasedRecs().recommend_items_from_log(take)
 ids = [i['content_id'] for i in sorted_items]

 ms = {m['movie_id']: m['title'] for m in
Movie.objects.filter(movie_id__in=ids).values('title',

'movie_id')}
 sorted_items = [{'movie_id': i['content_id'],

'title': ms[i['content_id']]} \
for i in sorted_items]

 data = { 'data': sorted_items }

 return JsonResponse(data, safe=False)

The method used in the previous listing calls the following method to extract the data
from the log.

recs/popularity_recommender.py
def recommend_items_from_log(self, num=6):
 items =

Log.objects.values('content_id')
 items = items.filter(event='buy').annotate(Count('user_id'))

 sorted_items = sorted(items, key=lambda item: -float(item['user_id__count']))

 return sorted_items[:num]

To see the output from the method, type localhost:8000/recs/chart as the URL in
your browser. I get a chart of the 10 most sold items for MovieGEEKs as shown previ-
ously in figure 5.6.

5.3.5 Making the content look more attractive

Let’s look at MovieGEEKs content (the movies in the database). Earlier we said that
you can’t allow the database to dictate the order of how you present your content. If
MovieGEEKs site displays the movies as they are in the database, it shows you really old
films (figure 5.8).

Listing 5.2 The chart method in recommender/views.py

Listing 5.3 The recommend_items_from_log method in recs/popularity_
recommender.py

Calls the popularity recommender method to
retrieve the most bought items Extracts the

movie_ids to a list

Uses the extracted
movie_ids to get
the movie titles

Creates a new sorted items list
that also contains the movie title

Returns as json

Retrieves the items and counts
how often they were bought

Sorts by
number of
users who

bought

112 CHAPTER 5 Non-personalized recommendations
You can play around with the ordering of your database by changing this line in the
view file from the following listing:

movies = selected.movies.order_by('year')

This line orders movies by year, starting with the oldest first. If you’ve a thing for black-
and-white films, this is great, but I think most people nowadays want to watch more
recent ones in color. To display the most recent films in a Django query, add a minus
sign in front of the column name as shown in this listing.

movies = selected.movies.order_by('-year')

This change makes the front page of MovieGEEKs a bit more interesting, as you can
see in figure 5.9.

Listing 5.4 Getting the oldest movies first

Listing 5.5 Getting the newest movies first

Figure 5.8 Movies as they’re ordered in the database

113Seeded recommendations
You can also order the movies according to release date, but that doesn’t work for
other things because customers aren’t always looking for the latest one. For example,
Netflix often adds new content to its catalog, but it’s not always the latest films, so your
sort should be based on something else.

 If you turn again to gardening tools, you might not get much out of ordering them
by production date, but maybe your database will contain data about when gardening
tools are typically used. You can use machines to prepare the ground in early fall, later
you need tools to put down seeds, even later a gadget to keep weeds away, and so on.
Gardening equipment could be ordered by seasonal use, with the current season top-
most. With ordering in place, and several non-personalized recommendations made
(figure 5.6), it’s now time to look at several more concrete recommendations.

5.4 Seeded recommendations
Charts are good but generic. One thing that many sites take advantage of is you look-
ing at a specific item, which can be used to create recommenders for associated items.
These items could be said to be seeds.

 Seeded recommendations; isn’t that a search? It is, but the idea is that seeded recom-
mendations can be either an item, a product, or an article that you then use as input to
find other relevant content. You use items bought together to figure out how to make
suggestions. To understand how people buy together, you look in your evidence.

Figure 5.9 Ordering films by
most recent

114 CHAPTER 5 Non-personalized recommendations
 One of the most famous seeded recommendations is the Frequently Bought
Together (FBT) category (figure 5.10) when you look at an item at Amazon or almost
every other web shop. A way to create these associations between items is called an
affinity analysis or, in more familiar terms, shopping basket analysis. Let’s look at how you
go about doing that.

5.4.1 Frequently bought items similar to the one you’re viewing

Can you create an FBT recommender by finding all the products that are bought
together with the current product and then take the top X of that? You could, but as
you’ll see later, it doesn’t work well.

 One of the challenges of showing an FBT recommendation is that most products are
bought together with other popular items. A classic example is that most people leaving
a supermarket in Denmark will have a liter of milk in the bag, so almost no matter what
else is in the basket, you could say that those items were frequently bought together with
a liter of milk.

 As I was writing this, my wife came home from the supermarket with not only one,
but two liters of milk (figure 5.11 shows the shopping receipt). Most products in
a supermarket that are bought often will also be purchased with milk. This yields

Figure 5.10 An example of Amazon’s Frequently Bought Together sales pitch

Figure 5.11 What my wife
bought (the list contains
plastic bag, yogurt, milk,
and olives).

115Seeded recommendations
frequency sets containing milk and most other products. When two or more items are
often seen together it’s called a frequency set.

 You’re probably thinking, “Yeah, that’s great, but this is only interesting for super-
market owners.” Nevertheless, this can be applicable to many different areas.

 In the following sections, we’ll look at how to calculate FBT products in a simple
supermarket example and then move on to implement this in the movie site. Beyond
that, you can move to larger items, such as furniture or estate sales, or boat-selling
websites—markets that usually sell one item at the time that can have FBT products.
For these markets, it’s worth thinking about recommending smaller things. I’ve never
bought a boat, but I’d venture that no matter what size the boat, I’ll need a life vest.
And depending on whether it’s a sail boat or a speedboat, I might need special equip-
ment. Even when you’re selling large and expensive things, it’s worth adding FBT rec-
ommendations, or would you call it frequently needed equipment?

5.4.2 Association rules

Instead of looking at most popular objects, there’s the idea of association rules, some-
thing a bit closer to kindness than marketing talk. Association rules in the commerce sce-
nario can be thought of as well-meaning advice. Most people hate to come home with
a new hard disk only to realize that they don’t have any cable to connect it. If you buy
things on Amazon, then you’re in luck because they remind you that most people buy
a cable with the hard drive, as you can see in figure 5.12.

Now let’s think a bit about how to get these association rules. The short list that fol-
lows details supermarket checkouts. (I tried to add an example about Star Wars here,
but I don’t remember them ever shopping for groceries, so we’ll stick to supermar-
kets.) Let’s imagine that you have a supermarket that has only five products: milk,
dates, yogurt, carrots, and bread. These are usually called items when talking about
association rules.

Most people cannot teleport
data, so they need a cable.
Lucky for you the friendly
folks at Amazon remind you.

Figure 5.12 On Amazon, external hard disks are frequently bought together with a cable.

116 CHAPTER 5 Non-personalized recommendations
1 { bread, yogurt }
2 { milk, bread, carrots, }
3 { bread, carrots }
4 { bread, milk }
5 { milk, dates, carrots }
6 { milk, dates, yogurt, bread }

Each line is a transaction that contains a number of items. To make an association
rule, look at items that are bought together. If you pick milk in this example, then all
other products are bought together with milk. Does that offer you much value? No
matter what product you have, you can say that other people bought milk together
with the current product, so, no, that isn’t of much value. Then what?

 You’ll need to find the products that are always bought together, but not bought
with everything else. Any subset of the list of items is called an itemset. Bread and milk
are an itemset {Bread, milk}, and they can be found in three out of six transactions.
Does that make you confident that it’s a good idea to recommend milk whenever
there’s bread in the basket? It should.

 Let’s define some numbers that can make it easier to decide if a rule is valid or
merely a coincidence. The problem about the three-out-of-six itemset from the exam-
ple is that bread is present in five out of six transactions, so it would be hard not to find
transactions containing bread. To take that into account, you’ll define confidence as the
number of transactions in which the itemset is divided by the total number of times
the first item is present.

Let’s calculate what the confidence rating is that milk will be in the basket when bread
is also bought. This can be written like this:

Next you need to find all the transactions containing first both bread and milk and
then only bread.

Definition: Confidence

where T(X) is the set of transactions that contain X.

c X Y  T X AND Y 
T X 

-----------------------------------=

c bread milk  T bread AND milk 
T bread 

--=

T bread AND milk  milk bread, carrots,  bread milk,  milk dates, yogurt, bread, ,,=

T bread  milk bread, carrots,  bread carrots,  bread milk, , milk dates, yogurt, bread, ,,=

117Seeded recommendations
Inserting that into the equation, you get

According to this calculation, you’d be 60% confident that you’ll find milk when you
see bread in the basket. That seems okay, right? But wait a minute. If you do the same
with dates and carrots, the same calculation would give you

While I get that bread and milk often go together, I’m not as confident that people
who eat dates also buy carrots half the time they buy dates. There simply aren’t
enough cases of transactions with dates to support the claim. This leads to a second
definition you can use to understand whether there exists an association rule between
two items.

Looking at the two examples gives us the following support:

In other words, evidence that supports the association rule bread  milk is much
greater than for the association rule dates  carrots, which was also the previous con-
clusion. This is a nice little example. But if we zoom back to real life, then most shops
(at least the ones that survive) have more than six products. And the transactions
might well be much larger.

 When I began writing this chapter, I asked my friends on Facebook what they
bought last time they went to the supermarket, hoping to get some good example
data. But the feedback was far too messy to work with. Figure 5.13 also illustrates that
association rules can quickly become much more complicated to calculate.

 To find association rules you first need to find frequency sets. Figure 5.14 shows
the possible frequency sets that could result if you’ve a set of items containing four

c bread milk  T bread AND milk 
T bread 

---=

3
5
---=

0.6=

c dates carrots  0.5=

Definition: Support

where T(X) is the set of transactions that contain X, and T() means all transactions.

S X Y  T X AND Y 
T()

-----------------------------------=

S bread milk  3
6
---=

S dates carrots  1
6
---=

118 CHAPTER 5 Non-personalized recommendations
elements {milk, butter, dates, bread}. Once again, this is a simple example, but
to explain how the implementation is done, we need a diagram (figure 5.14).

Figure 5.13 Helpful friends on Facebook were quick to respond to my call for shopping data.

null

BreadMilk DatesButter

Milk
Butter

Milk
Dates

Milk
Bread

Butter
Dates

Butter
Bread

Dates
Bread

Milk
Butter
Dates

Milk
Butter
Bread

Milk
Dates
Bread

Butter
Dates
Bread

Milk
Butter
Dates
Bread Figure 5.14 Itemset lattice with four elements

119Seeded recommendations
Figure 5.14 shows all the possible combinations of the four ele-
ments of the itemsets. If you start from the bottom, where
you’ll find all elements in one itemset, you can ask what needs
to be fulfilled for that frequency set to exist? All elements need
to occur often together in a transaction, but if all of them need
to be present, then each item of the itemset should also be
there frequently.

 If you go one step up and pick the node (the circle) all the
way to the left in the lattice, you find an itemset {milk, butter, dates} as shown in
figure 5.15. For this to become a frequency set, milk, butter, and dates need to occur
often and together. But the fact that all the items have to occur often means you can
take advantage of that to make a fast implementation.

 Start by looking at itemsets with only one element to see how frequently they
appear. If you find that butter is almost never present, then you know there are no fre-
quency sets with butter. That means that you can cross off all rules that contain butter.
The black nodes in figure 5.16 show which elements you can remove from the list by
finding butter infrequently. With that in mind, you’ll see how you might implement
this in the following section.

Milk
Butter
Dates

Figure 5.15 Itemset
lattice with a low
presence of butter

null

BreadMilk DatesButter

Milk
Butter

Milk
Dates

Milk
Bread

Butter
Dates

Butter
Bread

Dates
Bread

Milk
Butter
Dates

Milk
Butter
Bread

Milk
Dates
Bread

Butter
Dates
Bread

Milk
Butter
Dates
Bread

Figure 5.16 The black nodes in the diagram show which frequency sets will never produce any
association rules. Because butter is infrequent, none of the nodes containing butter can be frequent.

120 CHAPTER 5 Non-personalized recommendations
5.4.3 Implementing association rules

The procedure described in the previous section goes something like the following:

1 Settle on a minimum support and minimum confidence level.
2 Get all transactions.
3 Create a list of itemsets, one for each element, and calculate their support (num-

ber of times it’s present divided by the number of transactions) and set confi-
dence to one.

4 Build a list of itemsets containing more than one item and calculate support
and confidence by inferring that each transaction finds all combinations of
items and adds one to the itemset’s support.

5 Iterate through the itemsets and remove the ones that don’t fulfill the confi-
dence requirement.

Let’s translate this into Python code, but we’ll wait a bit before setting the minimum
support and confidence level, calculating everything to start with.

GET ALL TRANSACTIONS
On the MovieGEEKs site, there’s no concept of a basket, so instead we’ll say that buys
happening in the same session are transactions. You’ll get your transactions from the
log, which means that you first need to retrieve buy events from the database and then
build the transactions based on the session ID as shown in figure 5.17.

To get all transactions from your log, select all log entries that contain a buy event as
shown in listing 5.6. This is what the retrieve_buy_events method does.

def retrieve_buy_events():

sql = """
SELECT *

Listing 5.6 Retrieving buy events from your log

LOG

All buy events

Buy events
grouped by
transaction

Figure 5.17 Creating transactions from the log data

121Seeded recommendations
FROM Collector_log
WHERE event = 'buy'
ORDER BY session_id, content_id
"""

 cursor = data_helper.get_query_cursor(sql)
 data = data_helper.dictfetchall(cursor)

 return data

Now you need to group each of the buy events into a transaction. To do that, you’ll feed
the data into the generate_transactions method as shown in listing 5.7. This method
runs through the data and collects each transaction in a dictionary that contains the
transaction ID as a key and a couple of session IDs for the transaction.

def generate_transactions(data):
 transactions = dict()

 for trans_item in data:
id = trans_item["session_id"]
if id not in transactions:
 transactions[id] = []
transactions[id].append(trans_item["content_id"])

 return transactions

GET ALL ITEMSETS, SIZE ONE, AND CALCULATE THEIR SUPPORT

You can now calculate the frequency sets. The method shown in listing 5.8 makes it
easy to abstract what’s going on.

def calculate_support_confidence(transactions, min_sup=0.01):

 N = len(transactions)

 one_itemsets = calculate_itemsets_one(transactions, min_sup)
 two_itemsets =

calculate_itemsets_two(transactions,
one_itemsets, min_sup)

 rules = calculate_association_rules(one_itemsets,
two_itemsets, N)

 return sorted(rules)

The method creates two dictionaries: one for the frequency sets with only one element
and one for the frequency sets with two elements. The declarations are followed by two
calls to methods that populate the dictionaries. Let’s look at calculate_itemsets_
one first.

Listing 5.7 Creating a list and adding it to a dictionary

Listing 5.8 Calculating support and confidence for the frequency sets

Uses an SQL query to
get all buy events

Iterates through
all rows in the
data

Retrieves the
transaction_ids
(session_id in your case)

If not seen
before, creates a
list and adds it to
the dictionaryAppends the content

to the transaction

N is the number
of transactions.

Calculates all
itemsets of size one

Calculates all itemsets
of size two

Sorts
rules and

returns Calculates
association rules

122 CHAPTER 5 Non-personalized recommendations

C

def calculate_itemsets_one(transactions, min_sup=0.01):

 N = len(transactions)

 temp = defaultdict(int)
 one_itemsets = dict()

 for key, items in transactions.items():
 for item in items:
 inx = frozenset({item})1

 temp[inx] += 1

 # remove all items that is not supported.
 for key, itemset in temp.items():
 if itemset > min_sup * N:
 one_itemsets[key] = itemset

 return one_itemsets

When this is done, the itemsets with one element (found in listing 5.9), are fed into this
method, which calculates itemsets with confidence and with support greater than some
minimum value. Listing 5.10 shows the calculation for itemsets with two elements.

def calculate_itemsets_two(transactions, one_itemsets, min_sup=0.01):
 two_itemsets = defaultdict(int)

 for key, items in transactions.items():
 items = list(set(items))

 if (len(items) > 2):
 for perm in combinations(items, 2):
 if has_support(perm, one_itemsets):
 two_itemsets[frozenset(perm)] += 1

Listing 5.9 Creating a list of itemsets with only one element

1 For more information, see http://mng.bz/o2h5.

Listing 5.10 Creating a list of itemsets with two elements

N is the number of all transactions. defaultdict initializes
new elements with
default values of the
type you use as input.

Goes through each transaction
Looks at each item

Goes through all elements

Picks the elements that
have support larger than
the required support

Because you use the defaultdict, you don’t
have to worry about initialization.

FrozenSets are a special type of sets. FrozenSets are
immutable and can therefore be used as dictionary keys.1

defaultdict
In the previous listing, there’s an import of a defaultdict. This is a dictionary where every
new element is initialized to the default value of its declared type. This makes the code
a bit more readable. The method runs through all the transactions and, for each trans-
action it increments, increases the count for each element found in the transactions.

Iterates through all transactions
Removes duplicationshecks if the

itemset has
support Looks only at the

transactions that contain
more than two items

Looks at all the permutations
of two items one can build
from the list of items

Adds the itemset to
the list of itemsets

http://mng.bz/o2h5

123Seeded recommendations
 elif len(items) == 2:
 if has_support(items, one_itemsets):
 two_itemsets[frozenset(items)] += 1
 return two_itemsets

The resulting dictionary is iterated once more, and the items that are above the mini-
mal support are added to the output dictionary that’s eventually returned. Now you’re
ready to calculate the association rules (listing 5.11).

def calculate_association_rules(one_itemsets, two_itemsets, N):
 timestamp = datetime.now()

 rules = []
 for source, source_freq in one_itemsets.items():
 for key, group_freq in two_itemsets.items():
 if source.issubset(key):
 target = key.difference(source)
 support = group_freq / N
 confidence = group_freq / source_freq
rules.append((timestamp, next(iter(source)), next(iter(target)), confidence,

support))
 return rules

It’s worth noting that there could be value in also looking at association rules for sets
with more than one element on the left of the rule if you want to use it to recommend
things when looking at the shopping basket. But calculating it with only one source
element makes sense in this case, because you’ll use it to show recommendations in
reference to one item.

5.4.4 Saving the association rules in the database

Now that you can calculate the association rules, it might be worth considering if com-
puting this every time a customer looks at a product is a good idea. What you can do
is to calculate the rules offline and then have a place to save them, where you can
retrieve those quickly. But the association rules should also be updated, and while the
update is going on, this shouldn’t disrupt the service.

 Can you save the association rules to one table? Well, this could cause problems.
Let’s take a step back so everyone is following. You have users clicking Details of
movies, which query a rules table. This also happens while the system is adding new

Listing 5.11 Calculating association rules

The transaction only
contains two items

Checks if the itemset
has support

Adds the itemset to
the list of itemsets

Iterates through all the
itemsets of size one

For each itemset of size
one, iterates through all
the itemsets of size two

Checks if the
itemsets of size
one are a subset
of the itemset of
size two

Support is the number of times the
itemset has occurred divided by the
total number of transactions.

If so, sets
target to the
element(s)
that aren’t
the source

Confidence is the number of
times the group occurs

compared to how often the
source occurs by itself.

Appends rule

124 CHAPTER 5 Non-personalized recommendations
rules. To avoid having problems while saving new rules, you need a marker that shows
which rules are the current ones to retrieve.

 A way to get around this is to introduce a version table as shown in figure 5.18. The
version table ensures that the system will not mix up different runs of rules. The ver-
sion table contains a row for each full version of the rules. It means that you can’t
query the association rules directly, but you’d have to join it with the version table as
shown in listing 5.12.

WITH currentversion as
 (SELECT version
 FROM version
 WHERE type = 'association_rules'
 ORDER BY version desc
 LIMIT 1)
SELECT *
FROM seeded_recs recs
WHERE source = '<the source id>'
AND recs.version = currentversion

Before you get too excited about the version table, I’d better tell you that it isn’t
implemented in the MovieGEEKs website.

5.4.5 Running the association rules calculator

To run the association rule calculator, you should first generate the log entries that
were mentioned in chapter 4 (by running python populate_logs.py). Then you can
run the code as shown in the following listing.

python –m builder.association_rules_calculator

Listing 5.12 SQL to retrieve association rules from a specific source’s latest version

Listing 5.13 Calculating the association rules

Version

version: numeric

type: varchar

date: datetime

seed_recs

Version: Version

created: datetime

source: varchar

target: varchar

support: numeric

confidence: numeric

type: varcharFigure 5.18 Data model for the
association rules

125Seeded recommendations
This generates the association rules and saves them in the database. And with this, you
should understand how association rules work and are implemented.

 Let’s have a quick look at the MovieGEEKs site to see the rules in action. To
retrieve recommendations using association rules, you call the method in listing 5.14;
it’s Django-specific (and maybe not too interesting to look at if you aren’t into
Django). But you should still be able to see what’s happening.

def get_association_rules_for(request, content_id, take=6):
 data = SeededRecs.objects.filter(source=content_id) \
 .order_by('-confidence') \
 .values('target', 'confidence', 'support')[:take]

 return JsonResponse(dict(data=list(data)), safe=False)

The landing page, shown in figure 5.19, now contains the Top 10 chart on the right.
(The recommendations on the landing page are also from the association rules, but
more on that in chapter 6.) If you click an entry in the chart (in theory, you can click
any movie but we build them using a small dataset, so they will only appear in few
places), you will see the association rules in action on the Details page.

Listing 5.14 Seeded recommendation rules using association rules

Retrieves objects from the SeededRecs table,
where source equals content_id, and orders
them by confidence

Wraps in
json and
returns

Figure 5.19 Landing page with Top 10 content on the right

126 CHAPTER 5 Non-personalized recommendations
In my case, when I click Teenage Mutant Ninja Turtles, I get recommendations on the
Details page as shown in figure 5.20.

5.4.6 Using different events to create the association rules

A friend recommended that I look at Online Consumer Behavior by Angeline G. Close
(Routledge, 2012) to gain more insight into how users behave on the internet so as to
beef up chapter 3. (I’ll leave it to you to guess whether I did.) While looking at the book,
I came across a new recommendation type on Amazon I haven’t seen before (figure
5.21). I think that this recommendation does a disservice to the book, because it gives
the impression that people looked at the book but eventually bought something else.

 What’s interesting is that it shows a way to beef up your association rules. Even if
not many people bought this book, you could still create association rules by finding
all the sessions where a customer viewed a book (for example, like the book Online
Consumer Behavior) and then look at what was eventually bought. Instead of starting
out with frequency sets only containing things bought, you’ll have all the sessions with

Association rules are used to
create these recommendations.

Figure 5.20 Details page showing the recommendations

127Summary
the buy events plus the viewed book. Then when you’ve found all the supported fre-
quency sets, you can calculate rules that start with the book and use those as recom-
mendations.

 This is so exciting that we don’t even need to summarize the chapter, and probably
you’ll want to jump to the next chapter to get started on more ways of constructing
recommendations. But summaries are a good way to refresh what you’ve read.

Summary
 Charts are great and easy to add. You can chart data in many ways, not only by

counting which items have been bought most often.
 Its best not to present unordered content. Content should be ordered accord-

ing to what you think most users are interested in. For movies and books that
can mean ordering by the release date, or for coupons, it can be money saved.

 Association rules are based on what is bought together and used to show Fre-
quently Bought Together (FBT) recommendations. The usefulness of the rules
is calculated by looking at the indicators support and confidence.

 It’s good to save recommendations in the database; that will make the recom-
mender system respond faster. On the other hand, it takes time to calculate
them, and they take up space.

 Adding a version number to the recommendations in your database lets you
have several versions in the database at one time, which means that you can
have one that’s used in production and then switch to a new one when your
ready to go live. But more importantly, if something happens with the recom-
mendations that you’re currently using, you can revert to an older version.

Figure 5.21 Amazon’s recommender: Customers who viewed this went on to buy.

The user (and content) who
came in from the cold
Open your arms and put on a big smile; it’s time to learn how to greet new custom-
ers. In this chapter

 You’ll examine the cold-start problem that’s related to new customers.
 You’ll learn how to segment users, so you can look at semi-personalization.
 You’ll look at Redbubble.com as a case for cold-start problems with your

newly acquired knowledge.
 You’ll look at an implementation of a simple personalize recommender

using association rules.

We’re off to a cold start in this chapter, so put on your hat and gloves and let’s get
started. In the previous chapter, we talked about how to get data, and luckily, most
websites have data before they start adventures into recommender systems. But
even having a lot of data won’t solve the problem of how to introduce new things,
be that products or users.

6.1 What’s a cold start?
Not so surprisingly, if you don’t have knowledge of your users, you can’t personalize
them. And having no personalization is a huge issue because you want to make new
visitors feel welcome so they’ll become loyal returning customers. Repeat custom-
ers are ideal and you’ll want to keep them happy, but there’s nothing like adding a
new one to the list.
128

129What’s a cold start?
 This problem is so big that it has a name—it’s called cold start. It’s a term used not
only for serving recommendations to new users, but also for introducing new items
into your catalog. New items won’t show up in any of the non-personalized recom-
mendations because they don’t have the numbers to enter into sales statistics, and
they won’t appear in personalized recommendations because the system doesn’t know
how to relate those to other items.

 Under the umbrella of cold-start problems are also gray sheep. These are users who
have such individual tastes that even if there’s data, there are no other users who’ve
bought any of the products they have.

 Personalized recommendations are based on information that binds content with
users. Figure 6.1 illustrates the most common connections used when you calculate
recommendations. In the following chapters, we’ll go more into these connections;
here I only want to say that the cold-start problem is about figuring out what to do
when you have none or a small number of these types of connections.

 The figure indicates that if a user has rated film #1 high, then if one of these con-
nections is present, you can recommend film #2. If there are no connections outgoing
from the items the current user has rated high, then you’ll have a hard time recom-
mending something to the user.

 Luckily, this occurs only when you’ve new users who haven’t yet related to any
items (related meaning viewed, bought, and rated). And, as you’ll see, customers with
unique tastes also cause similar problems. But I’m getting ahead of myself. Let’s take it

Demographics:

Content:

Producer

Actor

Genre

Collaborative:

User likes

User dislikes

Popular in country

Popular in city

Popular among men

Film 1 Film 2

Figure 6.1 Common connections used
when you calculate recommendations.

130 CHAPTER 6 The user (and content) who came in from the cold
from the top in more detail. We’ll start with the easiest one—cold products—and
move on from there.

6.1.1 Cold products

A catalog of items doesn’t need to be big before new content will disappear into
obscurity, like a needle in a haystack. It’s therefore crucial that you make extra effort
to introduce something new. In most cases, adding new content should be accompa-
nied by a manual process where the site promotes the item, such as sending emails to
users with similar interests.

 An easy way to make visitors notice new content is by adding a place on your page
that shows it. Most people love to check out new stuff. Netflix has its own area for
showcasing new arrivals as shown in figure 6.2.

Another way is to boost new content so that it looks popular and shows up in your rec-
ommendations. Then if it doesn’t get consumed, you can slowly let it decay.

6.1.2 A cold visitor

A new visitor that you don’t know anything about is also a cold start. When should you
start giving a user personalized recommendations? Many scientific papers say that rec-
ommendations can’t be calculated before a user has rated at least 20 to 50 items. Nor-
mally, the customer expects sites to start delivering recommendations long before that.

 Some movie sites ask you to rate five items to get started; that isn’t an option with
most sites. But if a user searches for something, that’s a great way to understand what
a person wants, then you’re completely sure the item is something the user is inter-
ested in.

 Figure 6.3 shows a search I did on LinkedIn. And right there in the upper corner,
where you’re most likely to see it, is the Create Job Alert button. Such items could pro-
vide good evidence as to what the user wants, and might be enough to classify one or
two groups of your content that could be relevant for the user.
When you have enough information to display a recommendation is a tradeoff. It’s a
matter of deciding whether you want to display high-quality recommendations when
you’ve more data or lower-quality recommendations with less data. Think about it this

Figure 6.2 Netflix shows new arrivals.

Click to find browse the new arrivals.

131What’s a cold start?
way: what’s the least amount of data that will suffice for determining someone’s pref-
erences? In certain cases, this could be five ratings, like on a movie site, but in other
places, it could be different.

 When a new user arrives, you know nothing.1 No data means no personalization.
That’s easy, but instead of throwing in the towel and leaving to drink some herbal tea,
let’s see how much you need to know before you can do something.

 One thing to keep in mind is that when you have little data on a user, you might not
have a correct picture of the user’s preferences. For example, imagine that Sara arrives
at MovieGEEKs, and she likes to divide her movie watching into something like this:
Action, 20%; Drama, 20%; and Comedy, 60% but hasn’t rated any movies yet. Today,
she knows what she’s looking for and goes straight to the Drama category and buys
one. The system knows that Sara likes drama, but not how much or whether she only
likes drama. If the recommender assumes that it’s only drama from here forward, that’s
only a small part of what Sara likes. But, as mentioned earlier, it’s often better to recom-
mend something that’s a little off instead of providing no recommendation at all.

 In chapter 12, you’ll learn about hybrid recommenders, particularly a certain type
called mixed hybrids. When such a recommender is used, it falls back to the most popu-
lar recommendations if personalized recommendations aren’t available.

 For example, Amazon will, among other things, show you what people are looking
at right now. Finding out what people are currently looking at can be done quickly.
Look in your log and find the content that’s been viewed within the last minute, hour,
or day. But there are also other things you can do. Even when you do know something

1 That’s a truth with modifications: because you know their IP addresses and, therefore, probably also where
they come from. More on that in section 6.3.

LinkedIn is asking
if you are interested
to the point of
creating a job alert.

I searched for a job as
Biologist in Stockholm.

Figure 6.3 LinkedIn sets up a job alert using your search terms, which shows that your search
terms were effective in helping find what you were searching for.

132 CHAPTER 6 The user (and content) who came in from the cold
about your customers, you can still have a cold-start problem. We call this a gray
sheep.

6.1.3 Gray sheep

A gray sheep isn’t what you think (well, I’ve no idea of what you think, but at least not
what many would think). It also has nothing to do with the sweet, wool-producing ani-
mals. Rather, a gray sheep is a user who has such an individual taste that even if there’s
data, there are likely no other consumers—or very, very few people—who’ve bought
any of the products the gray sheep has.

 The reason it’s here among the cold-start problem is that gray sheep create the
same issue of calculating recommendations for users that you don’t have any data on.
And certain solutions overlap between cold visitors and gray sheep, so it’s worth men-
tioning here as well.

6.1.4 Let’s look at real-life examples

Take a film, let’s call it X; no one ever bothered to look at it. And here comes Susan,
who may have met somebody who was a statist for 2 min in X, which is the only 2 min
she ever wants to watch. She has chatted with that person online, she intends to get
the film, and so she arrives at the movie site. In this case, Susan probably wouldn’t
want any films like this again, so recommending similar films would be a mistake—but
you don’t know that.

 Generally, people tend to buy something because they like it. In fact, Susan creates
more problems than not for two reasons: the system will spend energy looking for sim-
ilarities but won’t find any and, if Susan does buy something more popular, you sud-
denly have a link between a popular film and something that was only ever viewed or
purchased by one user.

 This might end up making your recommender start recommending the film X to
people who like the more popular film. Only after the user has generated more data
will you realize that film X is an outlier and disregard it because film X has little sup-
port. This isn’t a problem when we talk about association rules, but when we talk
about collaborative filtering, it can be a problem.

AN EXAMPLE OF GRAY SHEEP AND COLD PRODUCTS

Gray sheep sound like odd users that you probably can’t recommend anything to, but
consider a site such as Redbubble (www .redbubble.com) (figure 6.4). Redbubble is a
place where artists can showcase and sell art in many forms, from wall art to T-shirts
and hoodies. With a content catalog containing millions of art pieces and a customer
base from all over the world, Redbubble has many customers who’ve bought some-
thing that nobody else, or darn few, have bought.

 Art is difficult to categorize, so it’s hard to say that because somebody likes one
piece of art, they’ll also like another. If you combine that with the fact that most items
are sold only a few times, the result is that it’s hard to recommend things even to old
customers.

https://www.redbubble.com
https://www.redbubble.com
https://www.redbubble.com
www.redbubble.com

133What’s a cold start?
Most of Redbubble’s products stay cold products because few buy each product. You,
therefore, can’t relate those items to other products. Customers who buy from Red-
bubble can easily be gray sheep, meaning that they’ve bought things that haven’t been
purchased by other people.

 Redbubble, in many ways, has the same type of problem as news sites such as Goo-
gle News, video sites such as YouTube, or magazine sites, such as Issuu (the YouTube
for magazines). Artists, moviemakers, or magazine publishers add content without
descriptions (such as genre, tags, and so on). When they do add information in the
form of tags, people have different opinions about what a tag means. But Redbubble
is especially interesting because, while you can read the uploaded content and try to
tag it, it’s hard to tag art. Look around the Redbubble site and see if you can come up
with ways to automatically add tags.

6.1.5 What can you do about cold starts?

In the following sections, you’ll look at different ways to make cold starts less problem-
atic.2 Many of the solutions for cold-start problems (users, products, and gray sheep)
relate to one of the algorithms you’ll study in the following chapters, so those solu-
tions will be handled then. For example, a cold item is best handled using content-
based filtering, which we’ll look at in chapter 10. I’ll postpone any real attempt to
solve this issue until then.

 While not solving the cold-start problem, a solution that often comes up is offering
to connect with people using social media accounts like Facebook Connect and then

2 I originally wrote “get around,” referring to cold starts, but as a reviewer rightfully said, it isn’t getting around
a cold start—it’s about making it less problematic.

Redbubble is a
marketplace where
artists can upload art
which Redbubble then
sells printed on
different materials such
as hoodies, stickers or
stationery.

Figure 6.4 Landing page of Redbubble

134 CHAPTER 6 The user (and content) who came in from the cold
extracting data from the user’s profile, thereby circumventing the cold-start issue.
These profiles won’t automatically provide you with data that suits your domain, but it
can be a start.

6.2 Keeping track of visitors
Sadly, most users are elusive. They tend to access websites without signing in or log-
ging on from different devices and locations, so it can be a feat to recognize returning
customers. This is sad because to understand users you need to know if they’re a new
user and, more importantly, when they’re coming back. You need to track users, new
and old, to understand their behavior.

6.2.1 Persisting anonymous users

As soon as a new user arrives at your site, it’s a good idea to explain the benefits of reg-
istering, either through Facebook or through a registration page or form. While you’ll
prefer users to register, you’ll still want to save an ID for the anonymous sessions, so
that you can recognize them if they do return. Recognizing users means that you can
accumulate information about the person, which will make the system calculate rec-
ommendations even before you know who they are.

 In the old days when people had one stationary computer and no other devices, it
was enough to set a cookie in the user’s browser. It’s still worth doing but remember,
as soon as the user changes browsers or devices, you’re lost. This problem is so signifi-
cant that companies advertise it when they’ve found a solution to it.3

 Django enables anonymous sessions: sessions where you can place a cookie even if
the user hasn’t added any information to the system. The session framework lets you
store and retrieve arbitrary data on a per site visitor basis. It stores data on the server
side and abstracts the sending and receiving of cookies.

 Cookies contain a session ID that can be looked up in the database where you store
your data. Do set a user ID and save it. That’s because as long as the cookie is received,
and assuming that there’s just one person using the device, your system can identify
the user, even if it’s only on one device. Storing sessions on the server is something to
be careful about, however, because if you have 40 million users, the storage and
retrieval of user data becomes a problem. Tracking users is hard, even the returning
ones, but assuming you have that problem solved, there are other ways to get around
cold starts.

6.3 Addressing cold-start problems with algorithms
Cold starts are still considered a problem because nobody has come up with a great
solution and, unlike what certain magazines want you to believe, machine learning
doesn’t do magic: it infers things from data. If there’s no data with a signal, there’s no
reasonable response. The solution is about finding information in even a sparse data

3 To see an Adform example, look at blog.adform.com/products/cross-device-audience-management.

blog.adform.com/products/cross-device-audience-management

135Addressing cold-start problems with algorithms
set. You want to use the information you already have in the data and relate that to a
new user, or rather, the other way around.

 In the following sections, you’ll use the association rules from the previous chap-
ter, as well as look at creating segments for existing users, and then consider how fast
you can make your users fit into a segment. Finally, we’ll have a little chat about how
you can ask the user what they like.

6.3.1 Using association rules to create recs for cold users

Association rules are created by looking at shopping transactions and producing rules
that tell the recommender that if a person has put bread in their basket, then butter
might be a good thing to recommend. In the previous chapter, these rules were used
to make recommendations on items. But what if you stepped back and used these
rules in cooperation with what you know about a new user (which isn’t much);
namely, the list of items browsed. Then you use those as seeds to find relevant rules
and, from those rules, you can make recommendations. Figure 6.5 illustrates how this
could be implemented.

The system can start when the user views the first item, which could happen in the
first session. Then as the number of visits increases, the data could be more and more
restricted as shown in table 6.1.

Or you could define it otherwise, starting out by retrieving only association rules
based on more valuable information. Something like

Table 6.1 What events to use

Number of visits Events to use

0-2 Item views

2-4 More Details buys

4+ Buys

userId
Association rules

Get all
bought
items

Bought
content

IDs

Get all
association
rules with
source in
content ID

list

Order rules
by

confidence

Personalized
recommendations
for user

Figure 6.5 Making personalized recommendations with association rules

136 CHAPTER 6 The user (and content) who came in from the cold
 Get all association rules based on user’s bought items.
 Get all association rules based on user’s bought items plus More Details views.
 Get all association rules based on all user’s data.

THE WEIGHTED AVERAGE OF PURCHASED ITEMS

When a user buys their first item, you can use the association rules to provide recom-
mendations based on that item. And, as more items are purchased, you can take
weighted averages of the association rules. Let’s say a user bought bread and butter,
and the system already has the following rules saved:

bread => marmalade4

bread => butter
bread => gorgonzola cheese
butter => marmalade
butter => flour
eggs => bacon

Then, because bread and butter were bought, you’d have a choice among

bread => marmalade (and butter => marmalade)
bread => gorgonzola cheese
butter => flour

Butter was also bought, so you should have added a bread => butter rule also, but
since butter was already bought, it wouldn’t add any value. If two rules point to the
same target, you could calculate a new confidence rating using a weighted average. Or
order them and take the best ones, removing duplicates from the list before returning
recommendations. If the user is a returning customer, but still so new that you have lit-
tle data, you could also add weights to each of the rules based on how recently the
user bought the item. That way more recent purchases are weighted higher.

 A way to make the recommendations look better in the movie scenario would be to
add business rules. This means incorporating domain knowledge into the system,
which we’ll look at next.

6.3.2 Using domain knowledge and business rules

Sometimes the recommender can’t do everything for you. It can’t figure out what to
show when people buying cartoons also buy horror movies, for example. Eventually,
this ends up as an association rule. Those who bought Bambi and The Texas Chainsaw
Massacre cause the system to offer a chainsaw massacre movie to young people who
bought their first Disney show!

 One way to avoid this is to filter the content to restrict the recommendations to
certain types of content that are considered appropriate to recommend, based on the
type of content the user is currently viewing. Data scientists will tell you that it

4 The rule bread => marmalade means that there’s a pattern in the data indicating that when you find bread
in the basket, you often find marmalade as well.

137Addressing cold-start problems with algorithms
spoils the algorithm to add such constraints to the output, but I’ve found that it’s
often necessary.

 Business rules can be defined positively or negatively. You can say, “While viewing
the cartoons genre, the system can only recommend cartoons and family films.” Alter-
natively, you can list all the things that shouldn’t appear, such as “Never recommend a
horror movie based upon someone watching a cartoon.”

 You have several ways to implement this. Usually it’s done by calculating a list of
100 recommendations (if you need 10), then filtering and taking the top 10 of the
remaining as shown in figure 6.6.

6.3.3 Using segments

Cold start is an irritating problem, but little can be done about it. Then again, if you
know something about your users, might it be useful for something?

 In Denmark, there’s a saying, “Similar children play best.” I’m not sure I’ve ever
understood the expression because I found that opposites also play well together. But
one thing is certain: children with similar tastes best watch TV together. Transforming
the old proverb would probably make the people who came up with the original one
roll over in their graves, but the transformed proverb is what we’re going to use here.

 You want to group people with similar tastes, so you can figure out what kind of
people like what kind of content. When new visitors arrive, and they’re of a certain
type, you can recommend content popular with that segment. This is known as demo-
graphic recommendations. Many people say that doesn’t work because people are too dif-
ferent within their demographic groups. But it can get you closer to semi-
personalization. Demographics are often not available without the user logging in
first, but if they do, you’ll have that information and will be a step ahead.

THE OBVIOUS SEGMENTS

Before you bring out the big cannons and start doing clustering, which is unsupervised
machine learning, let’s think about what segments naturally fall out. If you’ve a visitor,
you can often get an IP address, and with an IP address you can often pinpoint where
the person is located.

User ID

K

...Generate
10*K recs

Filter based on
business rules

Take
top K
recs

Personalized
recommendations
for the user

Figure 6.6 Using business rules to provide sensible recommendations

http://moviegeeks:8000/movies/Y

138 CHAPTER 6 The user (and content) who came in from the cold
 If the person is from Copenhagen and your shop has things that aren’t sold in
Denmark, then you’re better off filtering those items and only showing things that are
sold in Copenhagen (which is the capital of Denmark). If you sell clothing, then
there’ll usually be at least two groups you want to create—male and female. Beyond
that, you can also divide users into age groups.

 Let’s work through an example of how you could take advantage of something like
gender. If you have a user database that includes a person’s gender, you can filter your
request when retrieving buy events from users who are, say, female and create the
chart based on those users instead of the whole data set. The same is valid for males. I
should note that there’s probably a large percentage of males who are classified as
women after buying a dress as a gift (I’m one of them) and the other way around.

 In your clothes shop imagine that you’ve an image containing dresses and men’s
suits. You could make the men visiting your site feel more at ease by filtering out the
dresses and only showing men’s clothing. Now, this is a bit silly with clothing. Knowing
the gender of the visitor is a matter of filtering the content because clothing items are
usually tagged with a target gender. But let’s move up a level and talk about content,
which isn’t predefined gender-specific, and you might start seeing the point of this.

 For different age groups, for example, look at the Star Wars films, which are gener-
ally considered boring for people of the generation who were too young to have
watched them when they came out and too old to think the next ones were cool. Kids
and the generations who watched them in the cinema adore these films. If you knew
that people coming into your site were younger than 15 or in the 40-50 range, then
you could recommend Star Wars, while the group in between may go for Marvel super-
heroes movies instead.

THE NOT-SO-OBVIOUS SEGMENTS
Let’s expand a bit on the obvious segments from the previous section and consider
the following: what if there were groups such as “German women who browse in the
evening during the weekend and like action” or “American male teenagers who buy
horror films during school time.” Segments like these aren’t so obvious and might be
hard to spot even in the data, but it’s valuable information for personalizing the site
for your users. Segmentation doesn’t have to include demographics; it can be based
on any kind of data you have on your users.

 Usually segments are created by market researchers based on industry practice and
wisdom, which in many cases translates to guesswork. Guessing is good, but not always
practical. So instead of doing segments by hand, more and more researchers use clus-
ter analysis to find these not-so-obvious segments.

 Cluster analysis is a less subjective way of finding the segments and can be done
using unsupervised machine learning. A cluster is a fancy word for a group with similar
traits, so we’ll try to find particular types of users who consume specific content.

139Addressing cold-start problems with algorithms
6.3.4 Using categories to get around the gray sheep problem
and how to introduce cold product

“Sometimes you need to take a step back to get ahead.” This proverb is always irritat-
ing when it’s thrown at you, but sometimes it’s necessary. This is the idea behind the
next method of getting around gray sheep and some cold products.

 If you’ve a series of products that only a few people have bought and rated, it’s
hard to infer recommendations. But if you take a step back and use the metadata of a
product, you might be able to find similar products. It sounds confusing, so here’s an
example.

 Turning back to Redbubble, it has one thing going for it: artists tend to create art
that falls within the taste of a particular group of users (at least, that’s what I assume).
A way to get less sparse data is to look at artists instead of art content. To do this, you’d
need to group all artwork by artist as if it’s one item.

 Salvador Dali did many art pieces, two of which are shown in figure 6.7. And if you
can imagine that he isn’t world-famous and that thousands would buy his paintings,
you could look at users who bought the painting to the left as people who also bought
X, which uses the functionality implemented in the previous chapter. Or you could
look at users who bought art by Salvador Dali and who also bought art from artist X.
And if the buying decision is only based on art works, then recommend the most pop-
ular of artist X’s art.

In general, this can be abstracted into the method shown in figure 6.8. You can use
this logic for sites such as Redbubble, but also many other sites. With music, you can
abstract songs to the artist; with news, you can either abstract it to the topic using tags
or to the articles by author.

Figure 6.7 Grouping art rather than artists.

Salvador Dali

140 CHAPTER 6 The user (and content) who came in from the cold
Remember that the abstraction or classification can’t be too general because the asso-
ciation between the categories loses its value. An example of such an association is
action => comedy. You could find plenty of associations in the data but will find little
value in calculating quality recommendations.

 A not-so-obvious example would be this: I like the films of J.J. Abrams, so I’d proba-
bly watch any movie he made (especially after The Force Awakens). People who like him
may also like Richard Marquand, who directed Return of the Jedi.5 If you implement this
(and we’re not going to here), you could create association rules based on the abstrac-
tion, and then every time you ask for a recommendation, you could use the current
item that the user is viewing. It depends on the data set you’re holding if this will work.

 A classification could also be the works of Tolkien or cars that run more than 40 km
per liter of gasoline. To implement this, you can alter the association rules described in
chapter 5, and instead of saving the item ID, you can save the author and manufacturer
of each category and then create a special lookup that looks for rules based on the
metadata.

6.4 Those who doesn’t ask, won’t know
One solution to get started is to ask the user what they think about a selected list of
items to get them started immediately. But for most e-commerce sites, it isn’t a good
idea to restrict access until a visitor answers several questions, so it might not be worth
doing. You could make it optional, however.

 Amazon offers you the possibility to improve your recommendations. This is done
by logging into Amazon and clicking Improve Your Recommendations as shown in
figure 6.9. The way Amazon does this doesn’t help us much in this case because you’re

5 Okay, in all honesty the films that Richard Marquand did beyond Star Wars don’t seem to be something I’d
like, but let’s continue for the sake of the example.

Figure 6.8 Using metadata to get around data sparcity

Category A Category B

Calculate recommendations
based on categories or
abstractions.

Find
category or
abstraction
of item.

Sparse Item of
category A

Sparse Item of
category B

Find most
popular
product in
category.

141Those who doesn’t ask, won’t know
trying to collect data about new users, not existing ones (even if you can never get too
much data.)

 How do you create a page where a user can teach you about their preferences? It
isn’t as simple as it sounds, because what content should you show—the most popular
(the ones that everybody likes) or the least popular (the ones that few people like)? If
you choose the latter, most likely you’ll spot the gray sheep and not be any closer to
understanding the user. The chances are that you’re better off guessing the recom-
mendations. Another thing to consider is that if you do pick a popular item, you’ll
gain the advantage of comparing this user to many others.

 To solve this problem, you have to turn to something called active learning, and it’s
cool. But sadly, it’s beyond the scope of this book. A good place to go to learn more is
in the publicly available article “Active Learning” by Ruben, et al.6 Active learning for
recommender systems is about creating an algorithm that comes up with good exam-
ples for the user to rate, which then provides the recommender with valuable infor-
mation about the person’s preferences.

6.4.1 When the visitor is no longer new

It’s worth putting checks in place if the user is no longer new, something you can do
over time. Say that you’ll only use the evidence for the last week or the most recent 20
evidence items for this kind of recommendation. Or you might add weights, so that
new items have a higher weight. You might also say that when the user has bought five
items, you’ll only use the buy events as seeds.

 Association rules seem to make the most sense when you look at the raw evidence
and not the implicit ratings. You could, however, start by using the implicit ratings as
seeds and then weight them based on the ratings.

6 Rubens N., M Elahi, M. Sugiyama, D. Kaplan “Active Learning in Recommender Systems.” Ricci F., L. Rokach,
B. Shapira (eds) Recommender Systems Handbook (Springer, 2015).

Figure 6.9 Amazon provides a way to improve your recommendations.

Amazon offers different
things you can recommend.

Improve your
recommendations.

142 CHAPTER 6 The user (and content) who came in from the cold
6.5 Using association rules to start recommending
things fast
How would you go about adding association rules to the MovieGEEKs site? You
already have a framework in place for the association rules, so you need to take what a
user has shown an interest in and then find association rules for each of those items.
You can then return the recommenations that you think are a best fit. Not much
magic there, but let’s see if it does the trick.

 Association rules are one way this can be implemented, but any kind of similarity
method can be used. For example, you could use content-based recommendations
instead, but you don’t know about those yet (content-based filtering is discussed in chap-
ter 10), so let’s look at association rules first. In terms of the MovieGEEKs site, you’ll use
the space beneath the other elements on the front page as shown in figure 6.10.

 Here’s a checklist for adding personalized recommendations:

 Find a good spot on the page.
 Collect and use the list of items the user has interacted with.
 Find the association rules.
 Order by confidence and show the recommended items.

Figure 6.10 Added space for personalized recommendations in MovieGEEKs site

Association rule
recommendations
will be added here.

143Using association rules to start recommending things fast
6.5.1 Find the collected items

You’ll want these recommendations to start working as soon as the user looks at some-
thing, so you’ll get data from the evidence log. Implicit ratings can give a better view
of a user’s preferences, but because you want to service new users, you can’t be sure
that the system has calculated the implicit ratings yet.

 The problem you’re trying to solve here is to create recommendations for users
you don’t know much about, so you’ll use all items the user has interacted with, not
only the purchased ones. The data is scarce and, in most cases, the user won’t have
bought anything up to this point.

6.5.2 Retrieve association rules and order them
according to confidence

You can use the method you already implemented to get association rules, but that
would mean that you’d query the database repeatedly for each item. Instead, you’ll
create a new method as shown in listing 6.1 that queries the database by itself.

def recs_using_association_rules(request, user_id, take=6):
 events = Log.objects.filter(user_id=user_id)\
 .order_by('created')\
 .values_list('content_id', flat=True)\
 .distinct()

 seeds = set(events[:20])

 rules = SeededRecs.objects.filter(source__in=seeds) \
 .exclude(target__in=seeds) \
 .values('target') \
 .annotate(confidence=Avg('confidence')) \
 .order_by('-confidence')

 recs = [{'id': '{0:07d}'.format(int(rule['target'])),
 'confidence': rule['confidence']} for rule in rules]
 return JsonResponse(dict(data=list(recs[:take])))

Listing 6.1 Calculating recommendations using association rules

Queries the database for events that are
related to the user_id, orders those by
created, and returns a unique list of items

Gets only the target row

Shows where the targets are
not in the user’s event log

If duplicate targets found in the
result, takes the average

confidence

Orders by average confidence

Creates a
dictionary of

the resultJSONify and return

Queries the association rules and finds all
rules where the source is among the
content found in the active user’s event log

Takes the newest 20 events

144 CHAPTER 6 The user (and content) who came in from the cold
Calling the method in listing 6.2 produces JSON output. To test it, try requesting
http://moviegeek.com:8000/rec/ar/5/. It produces JSON that looks like the follow-
ing listing.

{
data:
[
{confidence: 0.006463878326996198,
id: "1291150"},
{confidence: 0.004617055947854427,
id: "1985949"},
{confidence: 0.004562737642585552,
id: "2267968"},
{confidence: 0.004562737642585552,
id: "0475290"},
…
}

6.5.3 Displaying the recs

If you create a new private browser tab (on a PC using Chrome, it’s done by typing
Ctrl-Shift-n), you’ll create a new session (figure 6.11.) so as to mimic the new user. A
private browser tab means that you hide all your current cookies (and delete new ones
when you leave the private tab). It’s useful in these cases to see how a site looks when
you arrive as a new user. Or when you want to order plane tickets without the air lines

Listing 6.2 Output of http://moviegeek.com:8000/rec/ar/5/

The values might be different
because they’re based on a data
set that changes.

The response contains
more items.

Recommended for you
is not visible because
there is nothing to

show.

Figure 6.11 New private session to illustrate what new visitors see at MovieGEEKs site.

http://moviegeek.com:8000/rec/ar/5/
http://moviegeek.com:8000/rec/ar/5/

145Using association rules to start recommending things fast
making calculations on which plane you need, which makes it more expensive. … Get-
ting off trail here. … The private browser tab lets you see the MovieGEEKs site as if
you were visiting it for the first time.

 Looking at the terminal window where you’re running the Django app (figure
6.12), it’s clear why there are no recommendations. Because it’s a new private session,
it’s considered a new user and the site doesn’t recognize the user. Looking further
down in figure 6.12, it also indicates that it finds no seeds, meaning no evidence is yet
captured.

Let’s buy an item (go to http://localhost:8000/movies/movie/3110958/). Click Buy
and check that your Django app log output shows a registered evidence item. This
takes you to the page shown in figure 6.13.

 Returning to the main page, you should see the same recommendations as shown
in the frequently bought section in figure 6.13, which is what figure 6.14 shows,
although the order of films differs. (It’s worth noting that the recommendations have
these content IDs: 10, 18, 45, and 9.)

 Now to make things more interesting, let’s buy another item on the list of associa-
tion rules so that the recommendations are updated. A bit of a trick exists here. If you
bought the most popular item, the confidence of the association rules already used
will be much greater than the others, so before you start throwing something out the
window if it doesn’t change anything, look at the confidence indicator first.

 If you look at the previous association rules you can see that if you choose Y, then
at least one element should change. Go to http://moviegeeks:8000/movies/Y and
click Buy. Then go back to the main window and press Refresh (F5 on most machines
and browsers). The recs should now be updated.

Figure 6.12 Command prompt shows the new user ID being generated.

New id created

No seeds
found

http://localhost:8000/movies/movie/3110958/
http://moviegeeks:8000/movies/Y

146 CHAPTER 6 The user (and content) who came in from the cold
Figure 6.13 Buying Now You See Me 2

Click

Recommendations appear after
just interacting with one item.

Figure 6.14 Recommendations after interacting with one item.

147Summary
6.5.4 Implementation evaluation

The recommendations implemented here are simple, but the advantage is that you
start getting those immediately, which is what you set out to do. And as you get more
data you have better ways to extract user preferences, which you’ll look at in the fol-
lowing chapters.

 Another thing to remember here is that the data on which you’re basing recom-
mendations is auto-generated for MovieGEEKs. The generation only looks at genres,
so an association such as Ninja Assassin and The Time-Traveler’s Wife seems a bit far-
fetched given that one is an action film and the other one is a drama.

 We’ve covered many topics in this chapter. Recommender systems encompass
many problems, which can be attacked in many ways. Different studies show one is
better than the other, but only for specific data sets. It’s important to know your
options and then see what works best for your site. With this, we end part one of this
book. We’ve looked at all the basics of recommender systems and talked about users
and how to understand them. Now it is time to look into the algorithms and under-
stand how the recommenders perform their “magic.” As you’ll see, there’s actually no
magic about it, but that doesn’t make it less cool.

Summary
 Cold-start problems mean you have to decide what to recommend to new visi-

tors on your site. Introducing new products is also a cold-start problem, which
we’ll look at in more detail in later chapters.

 Adding a conscious ordering to the data that’s presented is a great start and will
make many sites look more dynamic.

 Gray sheep are users who don’t have individual tastes resembling other users
who’ve bought any of the products they have. Sometimes gray sheep can be
helped by abstracting the content into genres.

 Creating recommendations for new users using association rules provides an
easy and quick way to add personalization that will start working quickly.

 Segments can be built or generated to make semi-personalized recommenda-
tions. Alternatively, demographics can be used to create demographic recom-
mendations.

Part 2

Recommender algorithms

An algorithm must be seen to be believed.
—Donald Knuth

In the first six chapters, you learned about the ecosystem and infrastructure
around recommender systems. Now, in part 2, we’ll look at the recommender
system algorithms. We’ll look at how to use the data that a system can collect to
calculate what things it can recommend to a user. We’ll also discuss how you can
evaluate a recommender system and look at the strengths and weaknesses of
each algorithm.

Finding similarities among
users and among content
Similarity can be calculated in many ways, and we’ll look at most of those. In this
chapter

 You’ll gain an understanding of what similarity and its cousin, distance, are.
 You’ll look at how to calculate similarity between sets of items.
 With similarity functions, you’ll measure how alike two users are, using the

ratings they’ve given to content.
 It sometimes helps to group users, so you’ll do that using the k-means cluster-

ing algorithm.

Chapter 6 described non-personalized recommendations and the association rules.
Association rules are a way to connect content without looking at the item or the
users who consumed them. Personalized recommendations, however, almost always
contain calculations of similarity. An example of such recommendations could be
Netflix’s More Like This recommendation shown in figure 7.1, where it uses an
algorithm to find similar content.

 In later sections, you’ll learn ways of measuring whether two items or two users
are similar. You’ll first look at how to calculate similarity on binary data (bought
versus not bought) and then move on to measure the similarity between users
based on their ratings (and items based on how the same users rate them). You can
use the tools that measure similarity as an instrument to understand the similarities
among your catalog’s content. In chapter 8, you’ll put that to good use when imple-
menting collaborative filtering algorithms.
151

152 CHAPTER 7 Finding similarities among users and among content
 In this chapter, you’ll also learn how to cluster users into segments of similar taste.
You’ll use this to provide a way for the users to browse. And in chapter 8, you’ll see
examples where clustering can optimize collaborative filtering algorithms. This is a bit
of a tooling chapter, but it’s an essential one, both for recommender systems and for
many machine-learning algorithms. Before we jump in, let’s consider the recommen-
dations in figure 7.1.

In the figure, it’s clear that it isn’t only about showing things that are similar to the
first recommendation, Doctor Strange. If we want to attribute a label to Doctor Strange,
I’d say the first thing that comes to mind is Superhero, which relates to Captain Amer-
ica: Civil War and Wonder Woman. But what about the two other movies? Are they simi-
lar in other ways?

 In this chapter, we’ll look at calculating the similarities among content and among
users using different metrics. We’ll start with the intuitive explanation of what similar-
ity is and then move on to ways of calculating it.

7.1 Why similarity?
We must talk about similarity because you want to find items like the ones you like, or
you want to find users who like what you like. How do you define similarity? For exam-
ple, how do you answer the following: on a scale of -1 to 1, how similar are two people?

In Netflix you can get
 recommendations,
which is probably found by

calculating similarity.

More
Like This

Figure 7.1 More Like This personalized recommendations on Netflix based on the TV series The
Flash

153Essential similarity functions
Your first response is probably to ask, “In what sense similar?” Let’s narrow the scope
and base the similarity on their tastes. The answer could be many things. One could
say that two people have similar tastes because they both like films with Tom Hanks,
science fiction films, or simply all-evening movies.1 But then, even people who like sci-
fi have different tastes. Maybe one person likes Star Trek and another Star Wars. Are
they similar?

 Looking at the data you have on hand narrows the possibilities of using the ratings
to understand a user’s taste. But similarities can also be found using additional infor-
mation such as metadata about the content or the demographics of the user. This
chapter looks at how to answer how similar things are. In the scientific literature, few
similarity functions are said to give good results, so we’ll go through each in the fol-
lowing sections. You’ll also look at optimizing the number of similarity calculations
between users by finding segments of similar users.

7.1.1 What’s a similarity function?

You can calculate similarity in many ways, but the overall problem can be defined as
follows: Given two items, i1 and i2, the similarity between them is given by the function
sim(i1, i2).

 This function’s return values will increase the more similar the items are. We can
say that the similarity between the same item is Sim(i1, i1) = 1, and two items that have
nothing in common will be Sim(i1, nothing in common with i1) = 0. Figure 7.2 illus-
trates two examples of similarity functions. It’s worth thinking about which you should
choose. Which is better depends on your domain and data.

 Similarity measurement is closely related to the calculation of the distance
between items. Generally you can say that the relationship between similarity and dis-
tance is the following:

 When distance gets larger, the similarity goes toward zero.
 When distance goes toward zero, the similarity goes toward one.

7.2 Essential similarity functions
As mentioned earlier, there’s no right or wrong similarity method. Different methods
work better on different data sets, but there are several guiding points, which are dis-
cussed in this section.

 We’ll start by looking at the Jaccard similarity, which is used to compare sets. In your
case, a set can be the set of movies a user has bought. We’ll then look at similarities
between ratings; the first is one dimension in the form of the similarity between two
users’ ratings of one film. This can be generalized to measure how similar users are
when they rated many films. To do this we’ll use Pearson and Cosine similarity func-
tions. Each similarity method needs a specific kind of data, as shown in table 7.1.

1 In Denmark, we have a term called helaftensfilm, which means an all-evening movie, and something that you
pay extra to go to see, compared to normal-length films. A helaftensfilm is a film that is longer than two hours
and 45 minutes.

154 CHAPTER 7 Finding similarities among users and among content
Before getting started, we’ll name a few things in table 7.2 that will make it easy to
describe the similarity functions.

Table 7.1 Different data types

Data type Data example Similarity

Unary data: This can be data contain-
ing only likes or only transactions of
items bought.

User 1 likes movie 2
User 2 likes movie 2
User 3 likes movie 1

Jaccard similarity

Binary data: Data where there are
two possible values. Like/dislike for
example.

User 1 dislikes movie 1
User 1 likes movie 2
User 2 likes movie 2
User 3 likes movie 1

Jaccard similarity

Quantitative Data User 1 gave 4/10 stars to
movie 2
User 2 gave 10/10 stars to
movie 2
User 3 gave 1/10 stars to
movie 1

Pearson or cosine similarity

When objects
have nothing in

common

Identical
objects

How much two items have in common
0

0.0
2 4 6 8 10

0.2

0.4

0.6

S
im

ila
rit

y
0.8

1.0
2 examples of similarity functions

similarity 1
similarity 2

Figure 7.2 Two different similarity functions. A straight line indicates a similarity of 0.5 if it
has half the features in common. The curved line returns a similarity of approximately 0.20.

155Essential similarity functions

7.2.1 Jaccard distance

This was originally coined coefficient de communaté by Paul Jaccard, who came up with
this distance measure to indicate how close two sets are to each other. You’ll also find
it under the names Jaccard index or Jaccard similarity coefficient.

 Two sets? What does that have to do with users and content? Well, if you say that
each movie is a bag containing all the users who bought the movie, then you have sets
of users—one for each movie. Then you can compare two movies by looking at the
two sets of users.

 Data sets such as the one described previously can be produced from the user
transactions, which can be turned into a list where each row indicates whether or not
a user bought a product (1 = bought, 0 = not bought). Or if the user likes the content
item, you have a unary data set, which can be illustrated in a table such as table 7.3. It’s
a unary data set because a 1 is information and 0 is no information.

Table 7.2 Elements of a similarity function

Name Definition Example

Rating of user u for item indicates that Sara rated Star Trek 4,5

Average rating of the user u. The mean of all the ratings given by user u. If Peter rated Star

Trek 4, Star Wars 3, then

Set of items rated by both a
and b

The set of items, if you have Sara and Peter from the previous
examples.

 since they both rated that movie.

Table 7.3 Unary user-item matrix (1 = bought, 0 = not bought)

Comedy Action Comedy Action Drama Drama

Sara 1 1 0 0 0 0

Jesper 1 1 1 0 0 0

Therese 1 0 0 0 0 0

Helle 0 1 0 1 0 0

Pietro 0 0 0 0 1 1

Ekaterina 0 0 0 0 1 1

rui rsara star trek, 4 5,=

ru
rPeter 3 5,=

Pa b,

Psara Peter, Star Trek =

156 CHAPTER 7 Finding similarities among users and among content
To find the similarity between two items, calculate how many users bought both items,
then divide by how many users bought either one (or both). Written more formally, it’s

where i represents item 1 and j represents item 2.
 To calculate the similarity between two movies, you count the number of equal bits

(number of times where the user has repeated a similar event with each movie) as
shown in table 7.4. The table shows four rows out of six where users did the same
thing, which means the Jaccard similarity between the two is 4 / 6. If you look at the
movies in table 7.4 where no users reacted, the Jaccard similarity is 2 / 4 = 0.5, mean-
ing that they’re only a little bit similar.

The Jaccard similarity is plotted in the previous figure as similarity 1 (see figure 7.2).
Whether 0.5 is a high similarity is domain-specific, so you should play around with the
similarity function and see what fits your domain. Later, we’ll look at how users are
similar in the MovieGEEKs site using Jaccard’s similarity algorithm. For now, if you’ve
more details in your data set, you can do additional similarity calculations. Let’s look
at a few of those.

7.2.2 Measuring distance with Lp-norms

A general way of measuring distances is with Lp-norms, so in this section, we’ll look at
two different measures—the L1- and the L2-norms. If your data set is a bit more
detailed than the one used in the MovieGEEKs example, with ratings indicating how
much people like the content viewed, you could use a long series of other functions to
calculate distances and similarities, rather than just the Jaccard measure.

Table 7.4 Similarity Between Men in Black and Star Trek

1 if similar
0 if not

Sara 1 1 1

Jesper 1 1 1

Therese 1 0 0

Helle 0 1 0

Pietro 0 0 1

Ekaterina 0 0 1

Sum = 4

similarityJaccard i j,  #users that bought both items
#users who bought either i or j
---=

157Essential similarity functions
L1-NORM

What is similarity? I ask again (and, hopefully, answer this time). If you want to find if
Pietro and Sara have similar opinions about a film like The Secret Life of Pets, you could
ask them how they’d rate it on a scale of 1-10. Pietro thought it was an okay film, so he
gave it a 6, while Sara, a lover of dogs and cartoons, rated it as 9 because it was a nearly
perfect film for her. Figure 7.3 illustrates the ratings for both Pietro and Sara.

Based on only one film, it’s easy to measure how similar two users are, even if it
doesn’t give any real indication of their actual tastes or preferences. You can calculate
the difference between the two like this:

where
 rsara is Sara’s rating.
 rpietro is Pietro’s rating.

With this formula, the distance is 9 - 6 = 3. Because the maximal distance between the
two ratings is 9, you can make it a similarity (1 when the distance is minimum and close
to 0 when the distance is maximum) with this calculation:

Here, I’ve added 1 to the denominator to avoid the division-by-zero exception if two
ratings are the same. Returning to the distance method again, for two movies, as
shown in figure 7.4, you can calculate the difference between each rating and sum
them to end up with the following formula:

1 2 3 54 6 7 8 109

d = 3

Figure 7.3 Similarity of two
users’ ratings on one film

distance Sara Pietro,  rsara rpietro–=

similarity Sara Pietro,  1
rsara rpietro– 1+
--=

Sum of Absolute Difference(SAD) rsara i, rpietro i,–
i 1=

n

=

158 CHAPTER 7 Finding similarities among users and among content
This way of measuring distance or similarity goes by the sexy name of Manhattan dis-
tance. It’s part of what’s called taxicab geometry.2 In more established circles, however,
it goes by the name of L1-norm. The idea is that if you want to measure the distance
between two street corners in Manhattan, you drive a grid, rather than measure as
the crow flies.

 According to the L1-norm, you’d calculate a similarity measure of 3 + 5 = 8. Often,
you’ll run into the mean absolute error (MAE), which is calculated using the average of
the L1 norm. As shown in the following formula, the only thing new here is that you
divide the sum by the number of items to get the average distance between ratings:

We’ll return to MAE in chapter 9, where you’ll evaluate recommender systems. For
the sake of similarity, let’s move on to the next norm.

2 For more information, see https://en.wikipedia.org/wiki/Taxicab_geometry.

1 2 3 54 6 7 8 109

D1 = 3

D2 = 5

1
2

3
5

4
6

7
8

10
9

Figure 7.4 Similarity of two users based on ratings of two films. Pietro rated In China They Eat
Dogs a 9, while Sara rated it a 4, so the difference D2 = 5, while D1 = 3 comes from the difference
in their ratings for The Secret Life of Pets.

Mean absolute error (MAE) 1
n
--- rsara i, rpietro i,–

i 1=

n

=

https://en.wikipedia.org/wiki/Taxicab_geometry

159Essential similarity functions
L2-NORM

The big brother of L1-norm is the L2-norm, which geometrically can be considered
the distance between two points not travelled by a taxi in Manhattan but by the crow,
going directly from one point to the next. Basically, it stems from the famous Pythago-
rean theorem, a2 + b2 = c2, which says that the square of the hypotenuse (the side
opposite a right angle in a triangle) is equal to the sum of the squares of the other two
sides. If you don’t know much about Pythagoras or this theorem, it’s no problem
because we’re immediately moving on.

 The L2-norm is known as the Euclidian norm. It’s defined as follows:

When you use machine learning, and you’ll want to, you’ll come across the Euclidian
norm. It’s often used as a measure of how well your algorithm is performing. It takes the
average of the norm, called the root mean square error (RMSE), which is also a known fellow:

Again, you can create the similarity by inserting 1 over the sum of squared differences.
While you can use these formulas, it isn’t something that’s regarded as a good solution
in recommender systems. They’re here because you’ll use them when you evaluate the
algorithms. The following section explains a good way to measure similarity instead.

7.2.3 Cosine similarity

Another way of looking at content is to see the rows of the rating matrix as vectors in
space, and then look at the angle between them. I know that sounds a bit “spacey,” but
it’ll make perfect sense once you look at the following example, where we slim down
your data to what’s shown in table 7.5.

Table 7.5 A slimmed-down rating matrix

Comedy Action

Sara 3 5

Therese 4 1

Helle 2 5

distance Sara Pietro,  rsara rpietro– 2
rsara i, rpietro i,–

2

i 1=

n

= =

Root Mean Squared Error (RMSE) 1
n
--- rsara i, rpietro i,– 2

i 1=

n

=

160 CHAPTER 7 Finding similarities among users and among content
You’ll then plot the data into the coordinate system shown in figure 7.5. This works for
more than two items as well, but because each item will be another dimension and
there are no decent ways of illustrating higher dimensions, we’ll stick with two and
hope you believe me when I say it can be expanded quickly to more items.

From the angles between the vectors, it’s easy to see that Sara and Helle are much
closer than Therese and Sara when it comes to ratings. Because of that, you can
assume that the tastes of Helle and Sara are more similar.

 A small issue exists here that always makes you stare at vectors for a long time. If
you look at figure 7.5 and imagine that there’s a user who rated both films a 6 and
another one who rated both a 1, their vectors would point in the same direction.
They’d therefore have a similarity of 1. This can be a problem when calculating simi-
larity using the angles between vectors; but in practice, it’s not a problem I’ve seen.

 Let’s go for a test run by computing several similarities. But instead of users, we’ll
look at item similarity. Amazon has shown us that item-item collaborative filtering is
much more efficient for the simple reason that they’ve more customers than items. By
calculating item similarity, however, there are fewer things to calculate.

ratingsThe Time Traveler’s Wife

ra
tin

g
S

ta
r T

re
k

0
0 1 2 3 4 5 6

1

2

3

4

5

6

The smaller the
angle between the
vectors the more
similar are the users’
tastes.

Helle

Sara

Therese

Figure 7.5 You can measure similarity by looking at the angles between the rating vectors.

161Essential similarity functions
COMPUTING ITEM SIMILARITY

Looking at item similarity means that you look for similarity between the columns (see
table 7.6) instead of rows as in the previous section.

The function to calculate the angle among column ratings is done using the cosine
formula that most kids learn in school and then forget it when they leave. In case you
forgot what you learned in school, here’s the formula again:

It’s beautiful, isn’t it? Sadly, we have to change the function a bit because we’re talking
about comparing different users’ ratings, and people use different rating scales when
they’re rating (a happy rater gives higher marks than a sad one). You need to take that
into account. Badrul Sarwar and friends came up with an adjusted cosine similarity to
offset this drawback by subtracting the user’s average rating.3 Luckily, that doesn’t
make the formula any less beautiful:

Table 7.6 Looking for item similarity

Comedy Action Comedy Action Drama Drama

Sara 5 5 2 2 2

Jesper 4 5 4 3 3

Therese 5 3 5 2 1 1

Helle 3 3 5 1 1

Pietro 3 3 3 2 4 5

Ekaterina 2 3 2 3 5 5

3 Badrul Sarwar, et al., “Item-based Collaborative Filtering Recommendation Algorithms,” (http://files.grouplens
.org/papers/www10_sarwar.pdf).

sim i j, 
ri rj

r1 2 rj 2

----------------------- uri u, rj u,

u ri u,
2

u rj u,
2

--= =

sim i j,  u ri u, ru–  rj u, ru– 

u ri u, ru– 2 u rj u, ru– 2
--=

http://files.grouplens.org/papers/www10_sarwar.pdf
http://files.grouplens.org/papers/www10_sarwar.pdf
http://files.grouplens.org/papers/www10_sarwar.pdf

162 CHAPTER 7 Finding similarities among users and among content
7.2.4 Finding similarity with Pearson’s correlation coefficient

If you take the ratings you looked at in the last few sections, you’ve an idea of whose
are similar. But if you plot them in a diagram with the items along the x-axis and the
ratings along the y -axis and then draw a line from point to point, it’s even more visi-
ble; you can clearly see which ratings are similar and which aren’t (figure 7.6).

Pearson’s correlation coefficient looks at these points and measures how different
each point is on the average: very different means that it returns something close to -1,
while very similar means something closer to 1. Note that these findings range from -1
to 1, not 0 to 1 as you saw earlier in table 7.4.

 The algorithm calculates how much the two lines correlate between two users. If
their trends are identical (they go up and down together), it’ll be 1 or close to that.
Here, getting a 0 means that there’s no connection at all, while -1 means that what
one user likes, the other dislikes.

 With Pearson’s correlation coefficient, the ratings are normalized by subtracting
the item’s average rating from each rating as shown in the following equation:

0

Sara
Jesper
Therese
Helle
Pietro
Ekaterina

Men in Black Star Trek

1

2

3

4

5

Ace
Ventura

Braveheart Sense
and Sensibility

Les
Misérables

Figure 7.6 Charting the ratings of MovieGEEKs users. The vertical axis shows ratings and the
horizontal axis is a list of films. The films are those rated in table 7.6: Men in Black, Star Trek, Ace
Ventura, Braveheart, Sense and Sensibility, and Les Misérables.

sim i j, 
e U ri u, ri–  rj u, rj– 

e U ri u, ri– 
2

e U rj u, rj– 
2

---=

163Essential similarity functions
where is the set of users which have rated both i and j.
 Don’t worry if it looks a bit scary; it isn’t. It’s addition and multiplication, as you’ll

see when we implement it later in the chapter. Let’s take this for a test run and see
how similar Jesper and Pietro are in taste.

7.2.5 Test running a Pearson similarity

Table 7.7 shows how Jesper and Pietro rated the six films.

To calculate the Pearson similarity, you need to

1 Calculate the average ratings
2 Normalize the ratings
3 Put the results into the formula

CALCULATING THE AVERAGE RATING

First, for each user, you need to calculate the average rating by adding all ratings and
dividing by the number of ratings:

 Jesper: (4 + 5 + 4 + 3+ 3) / 5 = 3.8
 Pietro: (3 + 3 + 3 + 2 + 4 + 5) / 6 = 3.33

Notice that Jesper has rated five films, while Pietro has rated all six. You still use the
number of ratings for each user to calculate the average. You’re deducting the average
to make the ratings comparable.

 Because Jesper only gave ratings between 3 and 5, then you can deduce that when
he rated something a 3, he probably didn’t like it much. When he used the rating 5, it
was for something he liked a lot. But if he gave ten other movies a rating of 1, his aver-
age would be much lower, which would push the value of a rating of 3 to be much more
positive. It could also indicate that Jesper only sees films he’s somewhat indifferent to,
but for the similarity calculations to work, assume that he’s used only ratings 3 and 4 to
describe his taste.

Table 7.7 Ratings of Jesper and Pietro

Comedy Action Comedy Action Drama Drama

Jesper 4 5 4 3 3

Pietro 3 3 3 2 4 5

164 CHAPTER 7 Finding similarities among users and among content

NORMALIZING THE RATINGS

As mentioned previously, a certain user’s rating should always be viewed in relationship
to that user’s other ratings. To compare the ratings of two users, you need to normalize
their ratings. Normalize means a broad range of things, but in its simplest form, it means
that you adjust the scale of certain values to be comparable or on the same level.

 To normalize ratings, you subtract the rating average of each user from their rat-
ings. For example, to subtract the average from the ratings of Jesper and Pietro, you’d
calculate (and as shown in table 7.8. By doing that,
you’ll have the essential building blocks for calculating the similarity according to
Pearson.

Normalizing the ratings around 0 means that the ratings get a positive or negative feel
to them. For example, a rating of -0.75 sounds negative compared to a rating of 3. It
probably should be viewed as negative as such, but for an optimistic guy, the scale goes
from likes a little to likes a lot, while for another, it could go from absolutely hate to
like a little.

PUT THE RESULTS INTO THE FORMULA

Let’s set , transforming the Pearson correlation into the following,
which is the same but uses the normalized ratings instead:

Inserting the normalized ratings, you get the following:

Table 7.8 Pietro’s and Jesper’s normalized ratings

Jesper 0.20 1.2 0.2 -0.8 -0.8

Pietro -0.33 -0.33 -0.33 -1.33 0.67 1.67

Note on implementation
Remember when you have an array of ratings similar to Jesper’s, you need to calcu-
late the mean of the items that were rated. If you look at Jesper’s ratings, you’d have
the following array [4, 3, 0, 4, 4]. If you use a normal mean operation on that, you’ll
get 15 / 5. Although the zero doesn’t affect the sum (15), it still counts in the total
number of ratings (5).

rJesper i, rJesper–  rPietro i, rPietro– 

nra i, ra i, ra–=

sim a b, 
i P nra i,  nrb i, 

i P nra i, 
2

i P nrb i, 
2

---=

0.2  0.33–  1.2  0.33–  0.2  0.33–  0.8–  0.67  0.8–  1.67 ++++

0.2 2 1.2 2 0.2 2 0.8– 2 0.8– 2+ + + + 0.33– 2 0.33– 2 0.33– 2 0.67 2 1.67 2+ + + +
---=

165k-means clustering
Now it’s a matter of calculating (or rather copying and pasting into your web browser
to do the calculation for you):

This result shows what you saw from the beginning: that Jesper’s and Pietro’s tastes
aren’t at all similar. You could say they’re close to opposites.

7.2.6 Pearson correlation is similar to cosine

Pearson’s correlation coefficient and cosine similarity look alike and, in fact, in later
chapters you’ll see that the cosine similarity function will be extended into the
adjusted cosine similarity function. Adjusted means that you add the normalization of
ratings, which makes it the same function as Pearson’s. The only difference between
the adjusted cosine and Pearson’s correlation is that the Pearson function uses items
that two users have rated, while the cosine similarity function uses all rated items by
either or both, setting the ratings to zero when one of the users doesn’t rated an item.

 In the previous example with Jesper and Pietro, the two similarity functions pro-
duce the following result:

One thing to notice is that if you calculate similarity between a user with few ratings
and one with many, then the cosine would push the similarity toward zero. Why? If
there are many items that don’t overlapping, it doesn’t affect the numerator because
if an item isn’t rated by one of the users, then the product will be zero, not adding any
value, while in the denominator for each rating is squared.

7.3 k-means clustering
As you’ll see in the next chapter, calculating the similarity between users or items is
the Achilles heel of the neighborhood collaborative filtering algorithms. That’s
because it requires that the algorithm have an opinion about how similar the cur-
rently active users are to all other users or how similar items are to all other items in
the system. Because of this, it’s a good idea to divide the data set into smaller groups,
so you only need to calculate similarity in groups with fewer users.

 Figure 7.7 shows the data divided into four clusters. Consider that every time a per-
son comes to your site, you potentially need to compare all the users in your system
with the active user. If you have clusters, you can look up which group the user resides
in, and presto!— you’ve cut away three-fourths of the users.

sim jesper pietro,  2.4–

2.8 3.56
--------------------------------- 0.76–= =

simNormalized Cosine Jesper Pietro,  0.62–=

simPearson Jesper Pietro,  0.75–=

166 CHAPTER 7 Finding similarities among users and among content

7.3.1 The k-means clustering algorithm

Clustering is also called segmentation. We talked about it in an earlier chapter when we
discussed non-personalized recommendations. At that time, we talked about using
segmentation to find groups of users that are similar to a new visitor based on demo-
graphic data. The purpose here is more of an optimization because you want to find
clusters of users to narrow down how many times you calculate user-user similarity.

 If user X comes to your site, you’d potentially have to iterate through all the users
in the database, but if you can divide the users into clusters, you can look up which
cluster the user is part of and calculate similarities between those users as part of a
smaller group. Although this is the general idea, there’s a risk that your cluster doesn’t
contain the most similar users. Even so, let’s try clustering. You’ll use k-means cluster-
ing, which is one of the popular algorithms for segmentation.

HOW DOES THE K-MEANS CLUSTERING ALGORITHM WORK?
K-means clustering is what’s called an unsupervised machine learning algorithm. It’s unsu-
pervised because you don’t give it any examples of what the correct input-output pairs
would look like. It’s also a parametric algorithm because you need to give it a parameter,
k, for it to run. Adding one parameter sounds simple, but it’s hard to get the right one
and, sadly, the difference can be that you don’t get nice groups of users.

 The parameter k is used to tell the algorithm how many clusters it should find. In
the following section, you’ll learn how k-means clustering works using a simple Python
implementation to solve the following problem: Divide users Sara, Dea, Peter, Mela,
Kim, Helle, Egle, Vlad, and Jimmie into two groups based on how much they liked two
films. The data is as follows:

 Sara = [7,1]
 Dea = [10,0]
 Peter = [0, 6]
 Mela = [1, 4]
 Kim = [5,3]
 Helle = [9,9]
 Egle = [2,1]

All data

Cluster Cluster

Cluster Cluster

Figure 7.7 Clustering data

167k-means clustering
 Vlad = [4,4]
 Jimmie = [6,8]

It should be clear how to group the first two because they like one film and not the
other, while the rest can be a bit difficult to place. Figure 7.8 shows how they look in
a plot.

The k-means clustering algorithm works by finding k points, called centroids, which sat-
isfy the theorem that the sum of the distances between all items and their assigned
centroids are as small as possible. As I write this I’m watching a sprinkler watering the
flowers. Why? It takes much consideration about where to place the sprinkler because
water in Denmark is precious, so I need to find k spots where it’ll water everything but

Figure 7.8 Each dot represents a user’s rating of Star Wars and The Secret Lives of Pets.

168 CHAPTER 7 Finding similarities among users and among content
use as little water as possible. The k-means clustering can be used for that too because
it produces centroids that would show the best place to put the sprinkler.

 The algorithm goes through the following steps:

 Selects k places as the centers of the clusters.
 Loops over the following:

– For each data point in the set, finds the centroid with the shortest distance.
– When all points are assigned, calculates the sum of all the distances between

the item and its centroid.
• If the distance isn’t smaller than the previous run, returns the clusters.

– Moves each centroid into the center of the assigned cluster.

You have many ways to choose these initial prototypes, and it’s an important step
because it can change the outcome of your clustering. In chapter 10 of Machine Learn-
ing in Action by Peter Harrington (Manning, 2012), you also find ways to make the
clustering algorithm smarter. What I want to show here is an overview of how it works
because having a sense of how these algorithms work enables you to understand the
output much better and also lets you have a sense of what’s right and wrong.

7.3.2 Translating k-means clustering into Python

The code in this section should help you understand the algorithm better. The code
won’t be used in the MovieGEEKs app because this is a nice illustrative implementa-
tion, but it isn’t fast. If you want to play around with the code yourself, look at the
Jupyter Notebook that can be found in the notebook folder in the GitHub project.4

 To start our journey into k -means clustering, you’ll take the easy way, selecting at
random between input items that will serve as the initial cluster centers. The code for
this is shown in the following listing.

import random

def generate_centroids(k, data):
 return random.sample(data, k)

FOR EACH DATA POINT IN THE DATA SET, FIND THE CENTROID WITH THE SHORTEST DISTANCE
The next thing to do is to calculate the distance between the items in the data and the
centroids and find which is closer. The distance algorithm you’ll use here is a well-
known fellow: the Euclidian norm as described earlier. The formula is the following:

4 For more information on the Jupyter Notebook, see http://mng.bz/KMfU.

Listing 7.1 Generating centroids

Takes out k-random
elements of the data

rsara rpietro– 2 rsara i, rpietro i,–
2

i 1=

n

2=

http://mng.bz/KMfU

169k-means clustering
This formula can be implemented as shown in the next listing.

import math

def distance(x,y):

 dist = 0
 for i in range(len(x)):
 dist += math.pow((x[i] - y[i]), 2)
 return math.sqrt(dist)

 You can use the distance method to decide which cluster each element should be
a part of as shown next (listing 7.3). The method returns the centroid with the small-
est distance to the item (the most similar one).

def add_to_cluster(item, centroids):
 return item, min(range(len(centroids)),
 key= lambda i: distance(item, centroids[i]))

When all points are assigned, the distance method calculates the sum of all the dis-
tances between the item and its centroid. The sum is used to compare the iterations of
the algorithm. The second iteration compares the sum of the distances in the second
setting with the previous one. If the earlier one is better, then the algorithm stops; oth-
erwise, it does another iteration.

 For each iteration, the centroids are moved. This can be done in many ways, but in
this listing the centroids are moved to the center of all the points in its cluster.

from functools import reduce

def move_centroids(k, kim):

 centroids = []
 for cen in range(k):
 members = [i[0] for i in kim if i[1] == cen]
 if members:
 centroid = [i/len(members) for i in reduce(add_vector, members)]
 centroids.append(centroid)

 return centroids

Listing 7.2 Calculating the distance between two vectors

Listing 7.3 Assigning a data item to a cluster

Listing 7.4 Moving centroids to the center of the cluster

Iterates through
each dimension Adds the squared

difference between
the vectors in that
particular dimension

Returns the square
root of the sum

Runs through each cluster
center and returns the one
that’s closer to the item

Loops through k
clusters to create
new centroids

Finds all members of this
cluster. (Remember each item
was a tuple of two
elements—the actual vector
and the cluster assignment.)

If the cluster isn’t empty…
… adds all vectors and divides it by the

number of vectors. You’ll get a point which
is in the center of the cluster.

170 CHAPTER 7 Finding similarities among users and among content

e
to
The add_vector method in listing 7.5 is simple. It iterates through the vectors and
adds each element as shown in this listing.

def add_vector(i, j):
 return [i[k] + j[k] for k in range(len(j))]

Now let’s look at the whole k-means algorithm.

def k_means(k, data):
 best_weight = math.inf

 centroids = generate_centroids(k, data)

 while True:
 iteration = list([add_to_cluster(item, centroids) for item in data])

 new_weight = 0

 for i in iteration:
 new_weight += distance(i[0], centroids[i[1]])

 if new_weight < best_weight:
 best_weight = new_weight
 new_weight = 0
 else:
 return iteratiasd+on

 centroids = move_centroids(k, iteration)

k_means(k, data)

Having the clusters in place means that you can reduce the number of users you need
to compare when calculating similarity to the other members of the clusters. Figure
7.9 shows an execution of the algorithm that ran for four iterations.

 The result of the run was the three clusters shown in table 7.7. It seems okay, for a
small toy example.

Listing 7.5 Utility method

Listing 7.6 The k-means clustering algorithm

Table 7.9 Examples of clusters

Cluster Members

0 Peter = [0, 6]
Mela = [1, 4]
Vlad = [4,4]
Kim = [5,3]
Egle = [2,1]

1 Helle = [9,9]
Jimmie = [6,8]

2 Sara = [7,1]
Dea = [10,0]

Shows the best weight so far is infinity

Generates the centroids

Appoints
ach point
 a cluster Calculates the distance

between each item and
its centroid

If the new weight is better than
the best weight, it continues;
otherwise, it returns.

Recalculates centroids

Runs the clustering

171k-means clustering
Pick random values and see if you can convince yourself that this would work. For
example, which cluster would a new user who loves The Secret Lives of Pets but is so-so
on Star Wars ([10, 4]) belong to?

NOTE OF WARNING

Before moving on, I think it’s only fair to tell you that when you see an example like
that in table 7.7 (Pietro’s and Jesper’s normalized ratings), it’s easy to believe that k-
means clustering is a magical beast that responds to your every bidding. That isn’t so.
K-means clustering, as with most other machine-learning algorithms, is difficult to
make work correctly. It often responds with results that aren’t understandable or
usable.

 Examples in books are simple and constructed to teach how it works, but sadly how
it doesn’t work is much harder to describe and is often left to the reader to discover.
Figure 7.10 shows other results I got when I began with different starting points.

 I’m afraid I’m not going to offer much more assistance. In the next section, you’ll
see how k-means are implemented in the MovieGEEKs site to get quick lists of similar
users. At least that will show you a more realistic example of how to implement it.

duster
0
1
2

–2
–2

0

0

2

4

st
ar

 w
ar

s
6

8

10

12

2 4 6
pets

Iterations 3

8 10 12

0 centroid
1 centroid
2 centroid

duster
0
1
2

–2
–2

0

0

2

4

st
ar

 w
ar

s

6

8

10

12

2 4 6
pets

Iterations 4

Iterations 1 Iterations 2

8 10 12

0 centroid
1 centroid
2 centroid

duster
0
1
2

–2
–2

0

0

2

4

st
ar

 w
ar

s

6

8

10

2 4 6
pets

8 10 12

0 centroid
1 centroid
2 centroid

duster
0
1
2

–2
–2

0

0

2

4

st
ar

 w
ar

s

6

8

10

2 4 6
pets

8 10 12

0 centroid
1 centroid
2 centroid

Figure 7.9 The four iterations the k-means clustering went through before it settled.

172 CHAPTER 7 Finding similarities among users and among content
HOW TO USE THE CLUSTERS

You can use the clusters in two ways:

1 Looking up users in existing groups. If you need to find similar users to say, Kim,
then you look up which cluster he’s in and use that to find the other users in
the group.

2 Placing new users in groups. What if a new user arrives? Then it’s a matter of find-
ing the centroid that’s closest to the new data point. You can then use that to
find which cluster to add the new user to.

It’s tempting to implement clusters now that it’s fresh on your mind, but let’s follow
the flow of the chapter and go back to the start and add similarities to the Movie-
GEEKs site and then clusters.

7.4 Implementing similarities
It only makes sense to look at users who’ve rated many of the same items as the cur-
rent user. To be even pickier, you need users who not only rated many of the same
items but also rated them the same as the active user. Those are the ones you’ll use to
recommend.

 If you look at the sets, it looks like what’s drawn in figure 7.11, showing which item-
sets are important for user-collaborative filtering.

 In short, you want to find users who have much—but not everything—in common
with the active user. How can you do that? If you were using SQL, you’d start by doing
something like that shown in listing 7.7 when looking for users similar to a user with
id = 4.

WITH au_items AS (
SELECT
 distinct(movieid), rating
FROM

Listing 7.7 Getting candidate users using SQL

Random seed 44

duster
0
1
2

–2
–2

0

0

2

4

st
ar

 w
ar

s
6

8

10

2 4 6
pets

8 10 12

0 centroid
1 centroid
2 centroid

Random seed 45

duster
0
1
2

–2
–2

0

0

2

4

st
ar

 w
ar

s

6

8

10

2 4 6
pets

8 10 12

0 centroid
1 centroid
2 centroid

Figure 7.10 Results of k-means clustering that don’t look good

Gets all the items that the
current active user has
rated

173Implementing similarities
 public.ratings
WHERE
 userid = '4')

SELECT userid, count(movieid) overlapping
FROM public.ratings
WHERE movieid IN (SELECT movieid from au_items) and
userid <> '4'
AND overlapping > min
group by userid
order by overlapping desc;

To make this query in Django, you can use the QuerySet and your procedure will look
like the following listing. You’ll find this query in the /recommender/views/py file on
GitHub.

ratings = Rating.objects.filter(user_id=user_id)
sim_users = Rating.objects.filter(movie_id__in=ratings.values('movie_id')) \
 .values('user_id') \
 .annotate(intersect=Count('user_id')).filter(intersect__gt=min)

Listing 7.8 Getting candidate users using Django ORM

Finds all users who’ve rated
one or more of the same items
the active user has rated

Only finds ratings on
movies that the active
user has rated

Requires the overlap to be
more than several minutes

Users that aren’t the active user

Groups by ID

Orders by
overlapping item

The set of items that the active
user has not seen is used to
find items to recommend. A
similar user needs to have

items not seen by the active
user to be interesting.

Items rated by
both

Items rated by
a similar user

Items rated by
active user

The group of items shared
should be big enough to understand

if the user is similar.

Figure 7.11 Showing which itemsets are important for user-collaborative filtering

174 CHAPTER 7 Finding similarities among users and among content
This is a slow query but considering that you cut away a big chunk of users that
wouldn’t have been similar to the current user, maybe it’s worth the wait. And with this
list, you can now say that you only want to look at the 100 most similar users or the
users who have at least a certain number of similar items.

 Looking around for advice on where to cut the list, I found that Michael D.
Ekstrand and others at GroupLens suggest using somewhere between 20-50 users.5 My
feeling is that’s a high number for most data sets, but on the sample data set, it might
be a good number. I challenge you to test it.

 Next, we’ll look at how to implement the Pearson similarity that you learned about
earlier. The method in Listing 7.9 compares two users and calculates their similarity.
Again, you’ll find this code in the /recommender/views/py file on GitHub.

def pearson(users, this_usr, that_usr):
 if this_usr in users and that_usr in users:
 this_sum = sum(users[this_usr].values())
 this_len = len(users[this_usr].values())
 this_usr_avg=this_sum/this_len

 this_keys = set(users[this_user].keys())
 that_keys = set(users[that_user].keys())
 all_movies = (this_keys & that_keys)

 dividend = 0
 divisor_a = 0
 divisor_b = 0

 for movie in all_movies:
 nr_a = users[this_user][movie] - this_user_avg
 nr_b = users[that_user][movie] - that_user_avg
 dividend += (nr_a) * (nr_b)
 divisor_a += pow(nr_a, 2)
 divisor_b += pow(nr_b, 2)

 divisor = Decimal(sqrt(divisor_a) * sqrt(divisor_b))
 if divisor != 0:
 return dividend/divisor

 return 0

7.4.1 Implementing the similarity in the MovieGEEKs site

To make it easier to play with the similarities, you’ll look at how it’s implemented in
the MovieGEEKs site admin part. Did you look at the MovieGEEKs site
(http://mng.bz/04K5)? It has an analytics part that, in turn, contains a page for each
user_id. You can find it at http://localhost:8000/analytics/user/100s.

5 GroupLens (https://grouplens.org), a research group at the University of Minnesota, has produced a lot of
good research on recommender systems.

Listing 7.9 Implementing Pearson’s similarity method

Finds the users’
average rating

Merges the two
movie sets into one

Normalizes user ratings
by subtracting the mean

Puts everything together and
calculates Pearson coefficient

Returns zero if the divisor
is always zero

https://grouplens.org
http://mng.bz/04K5

175Implementing similarities
Look for the user with ID 100. User 100 likes many different genres; for example,
adventure, animation, and thrillers as the chart shows in figure 7.12 or on the site.

 Your task here is to implement the next section on the page, the one that shows
similar users. You can see it in figure 7.13.

In the MovieGEEKs site, the similarity is considered part of the recommender system,
so I added a similar_users method to the recommender API as shown in listing 7.10.
The similar_users method requires a user_id and a type. The type enables you to
extend it easily with other types of similarity calculations. I’ll leave it up to the inter-
ested reader to see the configuration around it, so I’ll skip directly to the Python code
of the method.

Figure 7.12 The top of the user profile page of user 100

Figure 7.13 Similar users to user 100, calculated by Jaccard’s simularity on the left and
Pearson’s correlation on the right

176 CHAPTER 7 Finding similarities among users and among content

E

us

us

A

def similar_users(request, user_id, type):

 min = request.GET.get('min', 1)
 ratings = Rating.objects.filter(user_id=user_id)
 sim_users = \

Rating.objects.filter(movie_id__in=ratings.values('movie_id'))\
 .values('user_id') \
 .annotate(intersect=Count('user_id')) \
 .filter(intersect__gt=min)
 users = {u['user_id']: {} for u in sim_users}
 dataset = Rating.objects.filter(user_id__in=users.keys())

 for row in dataset:
 if row.user_id in users.keys():
 users[row.user_id][row.movie_id] = row.rating

 similarity = dict()
 switcher = {
 'jaccard': jaccard,
 'pearson': pearson,
 }

 for user in sim_users:
 func = switcher.get(type, lambda: "nothing")
 s = func(users, int(user_id), int(user['user_id']))
 if s > 0.2:
 similarity[user['user_id']] = s

 data = {
 'user_id': user_id,
 'num_movies_rated': len(ratings),
 'type': type,
 'similarity': similarity,
 }
 return JsonResponse(data, safe=False)

The Pearson method is described in detail in listing 7.9. Here, the jaccard method is
used. For a detailed description, see section 7.2 earlier in the chapter. You’ll find this
code segment in the file /recommender/views.py.

def jaccard(users, this_user, that_user):
 if this_user in users and that_user in users:
 intersect = set(users[this_user].keys()) \
& set(users[that_user].keys())
union = set(users[this_user].keys()) |\
 set(users[that_user].keys())

Listing 7.10 similar_users: /recommender/views.py

Listing 7.11 The jaccard method

You can add a minimum
overlap if required.

Gets all the current
users’ ratings Gets the ratings of all the

users who’ave overlapping
ratings with the user

Based on the current users’
ratings, retrieves all users

who also rated one or more
of those films.

xtracts
all the
er_ids

Builds a
er-rating

matrix

A sneaky way of
doing a case
statement in Python.
If you want to add
another similarity
method, you add the
name and the name
of the method.Iterates through

all the users
Gets a
reference to
the func
described in
the input, and
executes it

Checks whether the
similarity is more than 0.2.
Changes to this require
more or less similarity.

dds a user to
the list of

similar users

Returns as JSON

Calculates the
intersection between
the two users

Calculates the union

between the two users

177Implementing similarities
return len(intersect)/Decimal(len(union))
 else:
return 0

I did a small test to see if the Pearson similarity and k-means clustering worked the
same way. I sampled a few of the users that I found in the list of similar users to user 2,
with 0.87 and 0.85 similarity, respectively, and they were all in cluster seven. You can’t
prove that it works in all cases. however, by looking at only one example, but it gives
you a good indication that the implementation is consistently either wrong or right.

 The user similarities that we looked at here don’t require any special training. In
chapter 8, you’ll look at item similarity and calculate all the similarities beforehand.

7.4.2 Implementing the clustering in the MovieGEEKs site

Using a clustering algorithm in your site will be a bit of a leap of faith for now, but don’t
worry about that. Here, you’ll implement the solution using the clustering algorithm
that’s part of the Scikit-learn library.6 It’s also a k-means algorithm, but supposedly it’s
faster and better tested than our little example, so we’ll go with that. You’ll add the clus-
ters to your analytics part of the MovieGEEKs site (figure 7.14) in two places, first on the
main page at http://localhost: 8000/analytics/. No clusters will be shown before you’ve
calculated them, however.

 The script implemented for the MovieGEEKs site does the same as the script you saw
in listing 7.6, only now it loads data from the database, calculates the k-means, and then
saves a row in the Cluster table for each user_id, with its corresponding cluster_id, as
shown in listing 7.12. You’ll find the script in /builder/user_cluster_calculator.py.7

class UserClusterCalculator(object):

def load_data(self):
 print('loading data')
 user_ids = list(
 Rating.objects.values('user_id')
 .annotate(movie_count=Count('movie_id'))
 .order_by('-movie_count'))
 content_ids = list(Rating.objects.values('movie_id').distinct())
 content_map = {content_ids[i]['movie_id']: i
 for i in range(len(content_ids))}
 num_users = len(user_ids)
 user_ratings = dok_matrix((num_users,
 len(content_ids)),
dtype=np.float32)

6 Scikit-learn is a free software machine learning library for Python. For more information see http://scikit-
learn.org/stable/index.html.

Listing 7.12 UserClusterCalculator script

7 For more information on the dictionary of keys matrix, see http://mng.bz/5bK4.

Returns the
Jaccard correlation

Gets all the user_ids
from the ratings table

Gets all the
content_ids

from the
ratings table

Creates a mapping
between the
content_ids and a list of
integers to make it
work with the sparse
matrix implementation

Creates an instance of dok_matrix
(dictionary of keys matrix)7 with the
dimensions according to number of
users and content

http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/index.html
http://mng.bz/5bK4

178 CHAPTER 7 Finding similarities among users and among content
 for i in range(num_users):
 # each user corresponds to a row, in the order of all_user_names
 ratings = Rating.objects.filter(user_id=user_ids[i]['user_id'])
 for user_rating in ratings:
 id = user_rating,movie_id
 user_ratings[i, content_map[id]] = user_rating.rating
 print('data loaded')

 return user_ids, user_ratings

def calculate(self, k = 23):
 print("training k-means clustering")

 user_ids, user_ratings = self.load_data()

 kmeans = KMeans(n_clusters=k)
 clusters = kmeans.fit(user_ratings

.tocsr())

 plot(user_ratings.todense(), kmeans, k)

 self.save_clusters(clusters, user_ids)

 return clusters

def save_clusters(self, clusters, user_ids):
 print("saving clusters")
 Cluster.objects.all().delete()
 for i, cluster_label in enumerate(clusters.labels_):
 Cluster(
 cluster_id=cluster_label,
 user_id=user_ids[i]['user_id']).save()

if __name__ == '__main__':
 print("Calculating user clusters...")

 cluster = UserClusterCalculator()
 cluster.calculate(23)

This script can be run from the command line (or directly from PyCharm, which I’m
using). From the command line simply write the code as shown in the listing below.

python –m builder.user_cluster_calculator

On a MacBook from 2014, it takes a couple of hours, so go and get a little exercise and
a snack before moving on.

Listing 7.13 Running the clustering

Iterates through all the
users and adds data to

the matrix

Creates an instance
of the k-means
clustering algorithm

Does the magic
(clustering)

Deletes all clusters
already saved in the
database to make
room for new ones

Saves the
clusters

179Implementing similarities
In addition to the view on the loading page of the analytics for MovieGEEKs site, you
can click one of the clusters (for example, the first one), and you’ll get the view shown
in figure 7.15. It shows a chart of the normalized distribution of ratings for all the clus-
ter members, plus a list of all its members.

 It’s a chapter in itself to describe and discuss how you understand and verify whether
your clustering algorithm works to your advantage. But using clusters can be a way to
optimize the algorithms described in the following chapter, and you can use clustering
algorithms to narrow down the search for similar users so you can calculate recommen-
dations faster.

Clusters are listed here, with the
respective number of members.

Figure 7.14 The loading page for MovieGEEKs site with the analytics dashboard and the
list of clusters

180 CHAPTER 7 Finding similarities among users and among content
Similarity and distance are everything in recommender systems and in many machine-
learning algorithms. Data scientists often spend much time transforming data from
categories or text into a format that can be used to calculate similarities, so it’s import-
ant to have a good mental picture of similarity functions.

 In this chapter, we talked about data that can be visualized, such as two-
dimensional quantitative data. It’s great for showing examples, but rarely what you see
in real life. My advice is to get well-acquainted with the two-dimensional data similarity
examples you looked at here because they’ll help you better understand more com-
plex situations.

Summary
 Measuring similarities between sets can be used to calculate similarity between

users where the data is transactional, such as a buy or a like data rating.
 Quantitative data is interesting when it comes to users who provide ratings,

either implicitly or explicitly.
 Lp-norms can be used on quantitative data and are also the starting point for

talking about other types of correlation methods, such as the Pearson correla-
tion and cosine similarity, which look similar but have different interpretations.

 K-means clusters are great in toy examples, but always be careful about check-
ing the results. As you saw, they can easily end in a suboptimal state, which
would create strange recommendations to users. (The example you looked at
came with a warning reminding you that examples are constructed to explain
the algorithm, but it hides the fact that many algorithms are difficult to make
work according to the executor’s needs. Consider yourself warned.)

Figure 7.15 Screenshot from MovieGEEKs analytics that shows a cluster

Collaborative filtering
in the neighborhood
Collaborating makes things easier, so let’s collaborate our way through this chapter.

 You’ll start by revisiting the rating matrix.
 You’ll look at the theory behind collaborative filtering.
 Collaborative filtering is done in several steps, and you’ll look at each and

learn about the choices that need to be addressed.
 You’ll learn how collaborative filtering is implemented in MovieGEEKs.

This chapter introduces collaborative filtering and goes into detail about the
branch of it called neighborhood-based filtering. Collaborative filtering is an umbrella
of methods. What unites those is the selection of data. These filtering methods only
use ratings (implicit or explicit) as the source for creating recommendations.

 I dedicate two chapters, this one and chapter 10, for collaborative filtering.
Chapter 10 covers learned models using matrix factorization to find hidden fea-
tures, also known as latent features. Chapter 9 covers content-based filtering.1

 In this chapter, you’ll learn about the history of recommenders and see differ-
ent ways collaborative filtering has been used. The core of collaborative filtering
we’ll look at in this chapter, neighborhood-based filtering, is based on the similari-
ties between users and items, calculated with functions like the ones covered in
chapter 7.

1 I also use collaborative filtering in chapter 12, which covers hybrid recommenders as one of the feature
recommenders, and again in chapter 13, which covers ranking algorithms. But that isn’t the focus of those
chapters.
181

182 CHAPTER 8 Collaborative filtering in the neighborhood
 Up to now, you’ve only created simple, non-personalized recommenders. It’s time
to get up close and personal with personalized recommendations. The recommenda-
tions created so far were based on auto-generated collected behavior but, from now
on, you’ll use a real rating data set called MovieTweetings and build recommenda-
tions based on it.2 I recommend checking out the data set at GitHub to familiarize
yourself with it.

 The collaborative filtering algorithm is simple; there are only a few things that
need to be in the pipeline to produce recommendations. In each of the pipeline
steps, you’ve a list of choices that affect the outcome. We’ll look at each step in detail
to make sense of it all.

 When you’re finished with this chapter, you’ll know how to implement the item-
item collaborative filtering algorithm used by Amazon—at least the one published in
2003.3 I’m surprised that Amazon hasn’t come up with something different by now.
The algorithm is used to produce Amazon’s Recommended for You page. Mine is
shown in figure 8.1. As you can see, I’ve bought books on statistics and Django. The
overall idea is to find items that are rated similarly to the items already rated or bought.

 Neighborhood collaborative filter-based algorithms were the first algorithms to be
categorized as a recommender systems algorithm. Let’s start with a bit of history.

2 For more information about the MovieTweetings data set, see https://github.com/sidooms/MovieTweetings.
3 G. Linden et al., Amazon.com Recommendations: Item-to-Item Collaborative Filtering. Available online at http://

ieeexplore.ieee.org/abstract/document/1167344/.

Figure 8.1 My Recommended for You page at Amazon.com

https://github.com/sidooms/MovieTweetings
http://ieeexplore.ieee.org/abstract/document/1167344/
http://ieeexplore.ieee.org/abstract/document/1167344/
http://ieeexplore.ieee.org/abstract/document/1167344/

183Collaborative filtering: A history lesson
8.1 Collaborative filtering: A history lesson
Most people consider themselves unique and don’t like to be segmented into a partic-
ular type. But that’s exactly what using collaborative filtering to calculate recommen-
dations is all about. In all its simplicity, collaborative filtering recommends a list of
items for you. The list is created based on people who like the same things as you, but
who also like something that you haven’t yet consumed.

8.1.1 When information became collaboratively filtered

Our story starts around 1992 at the Xerox PARC (Palo Alto Research Center), when
they realized that the number of emails sent had exploded, “…resulting in users being
inundated by huge streams of incoming documents.”4 I can’t help thinking that in
1992 they truly had seen nothing yet, but as in so many other cases, Xerox PARC was
ahead of its time—maybe also in information overload.

 The mail system they built was based on the assumption that you always have a few
users who’d read everything immediately and then endorse those items of interest,
while most users would read only what looked intriguing. The mail system was called
Tapestry, a name you’ll often read in recommender system literature.

 Two years later, the GroupLens project, a collaborative effort between MIT and the
University of Minnesota, created “an open architecture for collaborative filtering of
Netnews.”5 GroupLens (https://grouplens.org) wanted to solve the same problem of
information overload and wanted to enable people to rate newsgroup messages. This
time, the system was built on the assumption that people who previously agreed with
the ratings were likely to agree with them again.

 Xerox and the GroupLens group laid the foundation for most of what we now
know as recommenders. The following section largely describes what GroupLens did
originally, along with the improvements that have been suggested since then.

8.1.2 Helping each other

The assumption on which collaborative filtering is based is that together we can be
better, and together we’ll better understand each other. Sounds beautiful and a bit
cheesy, like the ending of an epic Hollywood film, but this is the idea behind collabo-
rative filtering. Also, you need to assume that people principally keep their tastes over
time and that if you agreed with somebody in the past, you’ll likely agree with them in
the future. Let’s try to be more concrete before we dig into the theory of collaborative
filtering and how to calculate it.

 In chapter 6, you looked at recommendations that were based on what people had
bought in the past by looking at their shopping baskets; now you’ll concentrate on the
user. You could say that we’re asking the question, “If the user was a shopping cart
what would be in it?”

4 D. Goldberg et al., Using Collaborative Filtering to Weave an Information Tapestry (1992). Available online at
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.104.3739.

5 For more information, see http://ccs.mit.edu/papers/CCSWP165.html.

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.104.3739
http://ccs.mit.edu/papers/CCSWP165.html
https://grouplens.org

184 CHAPTER 8 Collaborative filtering in the neighborhood
 Bookshops and libraries often have posters saying, “If you liked this popular book
X, then you should also try this (maybe not so popular) book Y.” These posters are
directed toward a large group of people and often work well; they’re similar to a fil-
tered chart. Instead, what you want to do is to create individualized content lists or at
least lists for small groups of like-minded users. You don’t want to print them out and
hang them on your walls, but rather create and present them instantly when a user
arrives at your website.

 Neighborhood-based filtering can be handled in two ways. You could find users
with similar film tastes as yours and then recommend films they’ve liked but that you
haven’t seen; this is user-based filtering (in figure 8.2, start in the upper-left corner then
go right and down). Alternatively, you can find items similar to items that you already
like (start in the upper-left corner, then go down and to the right in figure 8.2); this is
item-based filtering. Both similarities between users and items are calculated based on
the ratings.

 The user-based path means looking at similar users. My good friend Thomas and I
have known each other for many years, and I’m fairly sure he likes movies similar to
the ones I like. If I want to go to the cinema, I can text him for advice. If I’ve a group
of friends with similar tastes to mine, I could ask all of them and then use all of their
responses. The group would collaboratively filter the current selection of movies for
me and tell me which to recommend.

 For example, say you watched the new Star Trek movie, and you want to watch
something similar. You ask all your friends what they thought about Star Trek and
whether they can give you names of other films they liked as much. I would ask Helle,
who I know likes science fiction, and she’ll tell me that she also liked Rogue One: A Star
Wars Story, while Pietro has no love for science fiction, so he naturally hates it and

Active user Another user

User-based

Item-based

Similar

Similar

R
ated

R
ated

Item to
recommend

Content item,
rated by the user

Figure 8.2 The two ways of performing neighborhood-based filtering. One
method uses similar users, while the other uses items similar to items the
active user liked.

185Collaborative filtering: A history lesson
promises me that he’ll never waste any more time on another film like Rogue One. Hav-
ing these two testimonies means that I can deduce that the two films are similar (one
person likes both of them and one doesn’t like either). Because I liked Star Trek, I’ll
probably also like Rogue One. In this way, my friends have collaboratively helped me
find the next film I should go see in the cinema (if I weren’t spending all my evenings
writing this book).

 In short, either you find similar users to the active user and then recommend the
films they liked that the active user hasn’t watched, or you find the liked items of the
active user and come up with similar items to recommend. To make all this work,
you’re back at the rating matrix to describe users’ preferences.

8.1.3 The rating matrix

A way to represent users’ tastes is to list all the content they’ve expressed an opinion
about. Usually, this data is kept in a user-item matrix, which you learned about in
chapter 7, and which we’ll revisit here.

 Matrix is a fancy word for a table with numbers, like the one shown in table 8.1.
Each cell indicates a user’s sentiment toward an item. Usually, a rating such as 5 or 10
is a good rating (depending on what rating scale you’re using), and a rating close to
zero is a bad rating or a dislike.

 What you want to calculate are predictions for each of the empty cells in this
matrix—numbers that correspond to a particular user’s predicted future sentiment
toward specific content—using the data already present in the matrix. Does that mean
that you want all the data to be present? Not really, because that indicates that the user
has rated or consumed all the content you can offer already, which is good in one way,
but then they have to go somewhere else to get more. If the matrix is too empty, then
you have the cold-start problems I talked about at length in chapter 6.

Table 8.1 Example of a rating matrix. Notice that Sara hasn’t rated Ace Ventura, and Jesper and Helle
haven’t rated Braveheart.

Comedy Action Comedy Action Drama Drama

Sara 5 3 2 2 2

Jesper 4 3 4 3 3

Therese 5 2 5 2 1 1

Helle 3 5 3 1 1

Pietro 3 3 3 2 4 5

Ekaterina 2 3 2 3 5 5

186 CHAPTER 8 Collaborative filtering in the neighborhood
How does this fit into what I said about finding similar users and items? If you look at
the table, you can see Sara and Therese have similar tastes, so to find a good movie to
recommend to Sara, you could choose a movie Therese likes and Sara hasn’t seen. Or
you could say Sara liked Men in Black and find which films have been rated similarly. If
you look at Ace Ventura, the same people liked it (Jesper and Therese) and the same
people (Helle, Pietro, and Ekaterina) didn’t, so those ratings can be considered simi-
lar. This is simplified, and you should remember that normally there are more empty
cells than filled ones, so collaborative filtering requires a bit more to do it. What does
it take to make a program do this for you?

8.1.4 The collaborative filtering pipeline

When talking about machine learning and predictive applications, you typically talk
about a pipeline, which is a serialized pipe of (possibly parallelizable) things that need
to be calculated in a certain order before predictions can be made. The pipeline in
figure 8.3 gives an overview of the steps to take.

 You learned in chapter 7 that there are several ways to calculate similarity. Step 1 in
figure 8.3 shows one way. Later, you’ll learn about which function should be used.
Using one of the ways to calculate similarity described in chapter 7 allows you to cre-
ate a list of the active user’s similarities with all the other users. Step 2 orders the other
users. In step 3, you select a neighborhood to use to calculate the predictions. Again,
there are different ways you can decide which is the neighborhood, but for now think
of it as a close group of users who are similar to the active user. Later in this section,
we’ll look at the ways this can be done.

 In Step 4, you use similarities for the users in the neighborhood along with these
users’ ratings of the item to predict. Here the predicted rating is 3.48. Predicted rat-
ings can either be used as is or you can calculate many ratings, then order these and
return the top-N predicted ratings to get the top-N recommendation.

 The goal of most systems is to do as much as possible before the user visits, expect-
ing recommendations. Let’s look at what you can do.

8.1.5 Should you use user-user or item-item collaborative filtering?

Which collaborative filtering should you use? Start by looking at the first collaborative fil-
tering algorithm, which finds similar users and uses that to calculate recommendations.
An average user doesn’t have many item ratings, which means that adding a new rating
can change the system’s calculation of the user’s taste.

 It’s considered unwise to do a pre-computation of which users are similar. Items
are considered more stable in the sense that the same types of people like the same
types of items, and studies have shown that you can pre-calculate similarities for items.
That’s important when you’re talking about a catalog the size of Amazon (you can
think about both the size of the Amazon River or Amazon the internet store!).

 Look at figure 8.2 again. Consider that you want to calculate as few similarities as
possible. If you’ve many more users than items, then you should go for item-based fil-
tering; otherwise, user-based filtering is more economical.

187Collaborative filtering: A history lesson
You may come across the term user-user-based filtering in your quest for knowledge. The
reason why people are still talking about user-user-based filtering is that it’s a better
way to give recommendations. If you do item-to-item filtering, you’ll find items similar
to what user A, for example, has already rated, but similar items won’t provide the ser-
endipity that similar ratings can provide.

 With user similarity, the hope is that your data will connect a user with other users
with different peculiarities in their tastes and provide surprising, but good recommen-
dations. If you want to explain why you gave those recommendations, then item-based
filtering makes this task easy. That’s because the system can say you get a recommen-
dation for movie Y because you liked movie X, which is similar to movie Y. Whereas
user-based filtering requires a bit more ingenuity to explain why the recommenda-
tions are shown while keeping the privacy of the other users.

8.1.6 Data requirements

Does the data match the needs of collaborative filtering? I’ve noted numerous times
when there are no clear rules on which recommender algorithm you should use.
While that’s still true, I’ve advice before you venture into the exciting world of collab-
orative filtering. To calculate recommendations, the data needs to be well connected:

 If no users have rated content, then no recommendations will be made.
 Users who don’t have overlapping tastes with other users won’t receive good

recommendations.

N
ei

gh
bo

rh
oo

d

MI S
S

LM

5 3 2 2 2

4 3 4 3 3

5 2 5 2 1 1

3 5 3 1 1

3 3 3 2 4 5

2 3 2 3 5 5

1

0.21

0.10

0.30

-0.08

-0.14

Rating matrix Similarity

Item to
predict

1. Calculate the
 similarity
 between active
 user and all the
 rest.

2. Order users
 by similarity.

u4

u1

u1

u2

u3

u4

u5

u6

u1

u2

u3

u4

u5

u6

u2

u3

u5

u6

u4

u2

u3

u5

u6

A
V

S
T

B
H

Active
user

ru1,av = 3.25
4. Calculate
 predicted
 rating.

3. Select the
 neighborhood.

Figure 8.3 Pipeline for user-based neighborhood-based filtering

188 CHAPTER 8 Collaborative filtering in the neighborhood
A way to implement collaborative filtering is by first finding all the items that are rated
by several users (more than two users at least). Then calculate the number of users
who are connected to one or more of those items. These are the users who’ll receive
recommendations; the rest won’t.

 The good thing about collaborative filtering is that your system doesn’t need any
domain knowledge. But remember that you do need domain knowledge to create a
good recommender system.

8.2 Calculating recommendations
We’ve looked at both user- and item-based filtering. I’ll continue talking about user-
based filtering, but more than likely, the implementation that you’ll end up with will
use item similarity, especially if the data set you have has approximately 45,000 users
and only 25,000 items. The item similarity pipeline is a tiny bit different; you still take
the same steps as you saw in figure 8.3, but you’re looking at items rather than users.
Figure 8.4 shows the steps you’ll take for item-based filtering.

8.3 Calculating similarities
The first thing you need to do is settle on a similarity function, which you learned
about in chapter 7. There are different schools of thought about which similarity func-
tion to use. The one we’ll look at uses the cosine similarity from chapter 7. It provides
a matrix of similarities that, for each item, provides a list of similar items.

N
ei

gh
bo

rh
oo

d

MI S
S

LM

5 3 2 2 2

4 3 4 3 3

5 2 5 2 1 1

3 5 3 1 1

3 3 3 2 4 5

2 3 2 3 5 5

0.40

-0.06

1

-0.03

-0.60

-0.55

Rating matrix Similarity

Item to
predict

1. Calculate the
 similarity
 between item to
 predict and all
 the rest.

2. Order items
 by similarity.

MI

AV

ST

AV

BH

SS

LM

u1

u2

u3

u4

u5

u6

MI

BH

ST

LM

SS

MI

BH

ST

LM

SS

A
V

S
T

B
H

Active
user

ru1,av = 3.25
4. Calculate
 predicted
 rating.

3. Select the
 neighborhood.

Figure 8.4 The item-based filtering pipeline

189Amazon’s algorithm to precalculate item similarity
8.4 Amazon’s algorithm to precalculate item similarity
It’s assumed that item similarity is stable, so item similarities can be calculated before-
hand or offline. Amazon was one of the first, and probably biggest, user of this algo-
rithm, and they published a paper describing their method.6 Greg Lindens, the
builder of much of Amazon.com’s early recommendation system, describes a pseudo-
algorithm for how to do item-item collaborative filtering:

For each item in product catalog, I1
 For each customer C who purchased I1
 For each item I2 purchased by customer C
 Record that a customer purchased I1 and I2
 For each item I2
 Compute the similarity between I1 and I2

Using this algorithm, you’ll end up with a data set where you can look up similar items
for the current item, making it faster to calculate the predictions. The Amazon article
refers to an article by B. M. Sarwar et al.,7 which is also a great source for learning
about item-item collaborative filtering.

 Now for our example. Table 8.2 is the same as table 8.1 and is reprinted here for
your convenience.

6 Linden et al., ”Amazon.com Recommendations: Item-to-Item Collaborative Filtering.” Available at www.cs
.umd.edu/~samir/498/Amazon-Recommendations.pdf.

7 B. M. Sarwar et al., “Item-Based Collaborative Filtering Recommendation Algorithms.” 10th International
World Wide Web Conference (ACM Press, 2001), pp. 285-295.

Table 8.2 (A repeat of table 8.1) Example of a rating matrix. Notice that Sara has not rated Ace
Ventura, and Jesper and Helle have not rated Braveheart.

Comedy Action Comedy Action Drama Drama

Sara 5 3 2 2 2

Jesper 4 3 4 3 3

Therese 5 2 5 2 1 1

Helle 3 5 3 1 1

Pietro 3 3 3 2 4 5

Ekaterina 2 3 2 3 5 5

www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf

190 CHAPTER 8 Collaborative filtering in the neighborhood
 All customers have rated Men in Black, so you’ll need to look at each user in turn.
The first user is Sara, who also rated Star Trek (ST), Braveheart (B), Sense and Sensibility
(SS), and Les Misérables (LM). You should add her ratings to the list of items rated
together with Men in Black, so you have: MIB: [ST, B, SS, LM]. Next is Jesper, who
rated movies already in the list plus Ace Ventura (AV). An item should only be added
once, so you now have the following list: MIB: [ST, B, SS, LM, AV].

 This is going to be a long story if I do this for all, so I’ll skip ahead, but you as a
dutiful reader should continue and do the model for all films. For the rest, this would
be the result:

 MIB: [ST, B, SS, LM, AV]
 ST: [MIB, B, SS, LM, AV]
 B: [MIB, ST, SS, LM, AV]
 SS: [MIB, ST, B, LM, AV]
 LM: [MIB, ST, SS, B, AV]
 AV: [MIB, ST, B, SS, LM]

With these lists, you calculate similarities for each of the elements in the list for MIB.
Again, I’ll do it for the first one and then leave it as an exercise for you to calculate the
rest. You’ll use the adjusted cosine similarity function (the one that normalizes the
item ratings based on the users average instead of the items) to calculate the similar-
ity. To make the calculations fit, you again define :

I have to admit that I’m in a bit of trouble here. I tried to write out the summations,
but either the example got so small that it was too obvious, or I couldn’t fit the calcula-
tions on the page. But let’s do small steps and then it should work.

 First, you want to normalize table 8.2 in table 8.3. Again, this is done by calculating
the average rating for a user and subtracting the number of ratings. (This is only one
way of doing it; in the code you’ll use something a bit more complex.) With the nor-
malized ratings, you can calculate the similarity between MIB and ST. To do that, look
at each user in turn and sum it. You’ll multiply each rating pair for each user and add
them together (I’ve pointed out Jesper’s contribution to the equation):

nri u, ri u, ru–=

unrMIB u, nrST u,

unr2
MIB u, unr2

ST u,
---=Sim("MIB","ST")

191Amazon’s algorithm to precalculate item similarity

“Hmm,” you might be thinking. “What does this tell me?” Well, you know that the
adjusted cosine similarity function returns results between -1 and 1. And basically, you
could interpret it as how many people who’ve rated both films gave both above aver-
age or under.

 If you look at the ST and MIB numbers in table 8.3, you can see that Sara and
Helle gave both films average ratings, while Pietro and Ekaterina gave below-average
ratings. And Jesper and Therese like one movie more than the average but didn’t like
the other. It’s Jesper and Therese who are the troublemakers here, but Sara and Helle
gave different ratings, so none of the users agree on the two movies. This is visible in a
similarity of 0.016.

 If similarity is close to 1, then everybody agrees on the two films, so all users either
put positive ratings on both films or negative ones. If all users are positive about one and
not the other, the similarity is close to -1. If there’s no correlation between users’ ratings
of the films, the similarity is close to 0. I calculated all the similarities in table 8.4.

Table 8.3 A repeat of table 8.2, but with normalized ratings according to the user’s average

Comedy Action Comedy Action Drama Drama

Sara 2.20 0.20 -0.80 -0.80 -0.80

Jesper 0.60 -0.40 0.60 -0.40 -0.40

Therese 2.33 -0.67 2.33 -0.67 -1.67 -1.67

Helle 0.40 2.40 0.40 -1.60 -1.60

Pietro -0.33 -0.33 -0.33 -1.33 0.67 1.67

Ekaterina -1.33 -0.33 -1.33 -0.33 1.67 1.67

Jesper’s rating
of MIB

Jesper’s ratings

Jesper’s rating
of STSimilarity

192 CHAPTER 8 Collaborative filtering in the neighborhood

To get a feel for how the similarity is distributed, it’s a good idea to look at one on
each end of the scale and one in the middle:

 Close to 1—LM and SS are interesting because you can see that they’re dissimilar
to all except themselves. They’ve a high similarity because all users agree on rat-
ing both either above or under. But then why is it not 1? Because the ratings
aren’t exactly the same. If they were the same, it would be 1, as is the case with
AV and MIB.

 Close to -1—SS and AV are the most dissimilar, which also makes sense. I can
imagine that most people who like Ace Ventura won’t like Sense and Sensibility,
and vice versa.

 Close to 0—The similarity between Ace Ventura and Braveheart is close to zero.
This is an indication that some users like Ace Ventura, others don’t, and vice
versa. In this example, there are only three users who rated both, so it doesn’t
say much. Two users rate both films below average, while one is positive about
Ace Ventura but negative about Braveheart.

When I calculated this in Python, I could have added an if statement that would only
indicate similarity if the similarity function returned values above zero. That made the
previous lists much shorter and easier to view. But in certain cases, it can also be
worthwhile to use the negative similarities (or the dissimilarities). Would you consider
recommending Ace Ventura to people who didn’t like Sense and Sensibility?

BEWARE OF THE 1 OR 2 ITEMS IN COMMON PROBLEM
In the previous algorithm, if an item has only one rating, the average rating is equal to
the that rating. This means it will be 0, which makes the similarity function undefined.

Table 8.4 Similarity matrix between the six movies. The negative similarities are highlighted against a
dark color, while the positive ones are written against a white background.

MIB 1 0.63 1 -0.21 -0.88 -0.83

ST 0.63 1 0.35 -0.47 -0.64 -0.62

AV 1 0.35 1 0.01 -0.89 -0.83

B -0.21 -0.47 0.01 1 -0.23 -0.32

SS -0.88 -0.64 -0.89 -0.23 1 0.96

LM -0.83 -0.62 -0.83 -0.32 0.96 1

193Amazon’s algorithm to precalculate item similarity
Next, if you’ve one user who’s the only one who rated two items, then the similarity is
1, which is the highest similarity you can get.

 Be careful about calculating similarity between users that have too few items in
common. Imagine that it’s only Helen who has watched both Men in Black and Star
Trek, and she’s rated them quite differently but the function says they’re a top match:

Always require a minimum of overlapping users—overlapping in the sense of the
number of users who have rated both films. You shouldn’t use collaborative filtering
with users who have rated only one or two items. If there are too many overlapping
users, it can also be difficult to find similarities because the recommendations pro-
duced will be too general. If everybody likes several items, it turns into a chart.

NOTE Remember, it’s a tradeoff. Narrow the number of users and you risk
not finding any content to recommend. Make it too wide and you risk that the
recommendations contain content that’s outside the user’s taste.

Figure 8.6 shows how many users have only rated one item. Almost 20,000 out of the
45,000 users have only rated one movie in the MovieTweetings data set.

2,17 1.7

2.172 1.72
-------------------------------- 1=

More than 5,000 users have
only rated two movie in the
data set.

More than 20,000 users
have only rated one movie
in the data set.

20,000

15,000

10,000

5,000

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Number rated

N
um

be
r

of
 u

se
rs

 r
at

ed
 th

at
 a

m
ou

nt

Number of users who rated x movies

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Figure 8.6 Histogram showing how many users have rated a certain number of movies. You can see
that a bit more than 5,000 have rated two films (for x = 2).

194 CHAPTER 8 Collaborative filtering in the neighborhood
8.5 Ways to select the neighborhood
A neighborhood is simply the set of items that are similar to the content you’re currently
looking at. We call it a neighborhood because we talk about items with a small dis-
tance between them. In this section, I’ll cover three ways to define and calculate such
a neighborhood: clustering, Top-N, and threshold.

CLUSTERING

In chapter 7, you learned how to implement clustering. If you performed user-based
filtering, you could use these clusters as neighborhoods, or you could rig the cluster-
ing algorithm to cluster items instead and use that for the item-based approach. To do
the clustering with this purpose, you’d probably want to add more clusters so your
neighborhoods aren’t too large, but it works the same way. The problem with this
method is that you risk that the active user is on the border of a cluster or that the
cluster has a strange shape and, therefore, you won’t get the best neighborhood.

 Instead of using the clusters directly as neighborhoods, the clusters can also be
used to optimize the algorithm. That narrows the area where the system will look for
neighbors. If you clustered your items into two clusters, the fact that you only have to
look at one of them produces a large performance boost.

NOTE By narrowing the space where you search for neighbors, you also risk
that they’re suboptimal, so be careful.

I suggest doing test runs with and without clustering and compare whether there’s a
drop in quality (refer to chapter 9 on how to evaluate recommenders). If you use clus-
tering to narrow the search area, you can use it in cooperation with Top-N or threshold.

TOP-N
The simplest way to find a neighborhood is to define a number N as the number of
neighbors that should be in the neighborhood and then say that all items have N fel-
low items in the neighborhood. This allows the system to have items to work with, but
they can be items that aren’t at all similar. This is illustrated on the right-hand side of
figure 8.7.

 The two examples in the figures show the results of requiring three neighbors. The
first example finds points close to the active point, while the other example needs to
go further away. The Top-N approach can force the system to use points dissimilar to
the active point, making it a bad recommender. For ensuring better quality, you
should adopt the next approach, threshold, instead.

THRESHOLD

Another way to cut the cake is by saying that you only want items of a certain standard
to be in the neighborhood by requiring that the similarity needs to be above a specific
constant. This is shown on the left side of figure 8.7.

 For the first point in the figure, this works great and gets similar items as the Top-N
neighborhood. You can see problems with the second point because it doesn’t have any
nearby points. The neighborhood becomes small and lonely and potentially empty.

195Finding the right neighborhood
TIP Choosing between Top-N and threshold is choosing between quantity
and quality. Choose the threshold method for quality; Top-N for quantity.

No matter what you choose, you have a second question to answer: what should the
threshold/N be? If you choose the Top-N approach to select the neighborhood, you
need to find a constant N, indicating the number of points that should be in the
neighborhood. The threshold method requires a threshold constant. The choice
depends on both the data and how good you want your recommendations to be.

 In a utopian data set, all items will be equally distributed throughout the area, and
then N will be easy to select. But that doesn’t happen often, and it’s a matter of balanc-
ing between how good the recommendations should be for people liking popular
things versus how good recommendations should be for people with peculiar tastes.

8.6 Finding the right neighborhood
Getting back to the example in section 8.4, now let’s see what happens if you use
either Top-N or threshold. Using the similarities calculated in section 8.4, the neigh-
borhoods will look like those in table 8.5.

Table 8.5 Results of neighborhood calculations. Threshold returns elements that are similar, while the
Top-2 mostly returns dissimilar objects.

Movies Top-2 Threshold: 0.5

Men in Black (MIB) ST: 0.63, AV: 1.00 ST: 0.63, AV: 1.00

Star Trek (ST) MIB: 0.63, AV: 0.35 MIB: 0.63

Ace Ventura (AV) MIB: 1.00, ST: 0.35 MIB: 1.00

Similarity threshold
neighborhood

–2
–2

0

0

2

4

st
ar

 w
ar

s

6

8

10

2 4 6
pets

8 10 12

1

2

Top-N neighborhood

–2
–2

0

0

2

4

st
ar

 w
ar

s

6

8

10

2 4 6
pets

8 10 12

1

2

Figure 8.7 Two ways of finding the neighborhood. The left side shows how the threshold neighborhood
works. Around the active point, you draw a circle (at least in 2D) and everything that’s inside is a
neighbor. On the right is the Top-N approach. It doesn’t look at distance; it grows until it has N neighbors
in the neighborhood.

196 CHAPTER 8 Collaborative filtering in the neighborhood
As you can see in the table, Braveheart only has other items in the neighborhood if you
use the Top-N method, but if you look at the threshold method instead, there are no
similar items. If you’re using the Top-N method, you could calculate recommenda-
tions based on the N similarities, even if they aren’t similar at all. If you’re using
threshold, you can’t recommend anything. Now that you’ve settled on the parameter
for selecting a neighbor, you have the neighborhoods sorted and you can start calcu-
lating predictions.

8.7 Ways to calculate predicted ratings
The most common ways of calculating predicted ratings fall into two categories—regres-
sion and classification (for the machine language savvy!)—that I’ll describe using two
examples. Figure 8.8 gives an overview of the two methods. It glosses over the similarity
values, which will have a place again when you calculate the rating predictions.

 One method can be explained using an example of how to predict a sales price for
a house using prices of similar homes. The second method is like counting votes at an
election.

HOUSE PRICE (REGRESSION)
A way to understand how the regression method is implemented is by thinking about
the example of pricing a house for sale. You want to put your home up for sale, but
you don’t know what you should ask for it. One way is to find similar houses sold in
your area (comparables in real estate lingo) and take the average of the sell prices.
This method is similar to regression.

 Predicting ratings of items for specific users is done the same way. I’m not saying
you’re a house, but you can find similar users and average their ratings for an item.

FRIENDLY VOTERS (CLASSIFICATION)
Now consider that you have 10 people who are running for mayor in your town. You
don’t know which candidate to vote for, so you ask your neighbors who they’re voting
for. Then you count how many neighbors will vote for each candidate. When you’re
finished, you select the candidate with the highest score (count).

 This method can easily be transferred to your domain. Instead of asking neighbors
to rank a mayoral candidate, you’re asking them to rate a movie. Hypothetically, if the
active user has five users in their neighborhood, and they want to know what rating to

Braveheart (B) MIB: -0.21, AV: 0.01

Sense and Sensibility (SS) B: -0.23, LM: 0.96 LM: 0.96

Les Misérables (LM) B: -0.32, SS: 0.96 SS: 0.96

Table 8.5 Results of neighborhood calculations. Threshold returns elements that are similar, while the
Top-2 mostly returns dissimilar objects. (continued)

Movies Top-2 Threshold: 0.5

197Prediction with item-based filtering
give a film, they first ask how many rated the movie one star, then asks about the num-
ber of two-star raters, and so on, until all rating values have been counted. The active
user can now look at the rating count and choose the rating that most of the users in
their neighborhood have. Instead of counting each neighbor as one vote, you can use
the similarity score and make the votes count only as much as the similarity score.

 These examples are simplified because they don’t add any weighting to each of
the ratings. In the next section, you’ll look at predicting things in more detail using
the regression technique. To recap, look at figure 8.9. You’ve an active user who has
rated (interacted with) a list of items, and for each of these items you’ll find similar
items in the neighborhood. These similar items are the candidates for the recom-
mendation.

8.8 Prediction with item-based filtering
Okay, so we’re arriving at the core. You’ve created a list of similar items by looking in
the neighborhoods around the user-rated items, and now you’re ready to do predic-
tions. How does that work exactly? Read on, and it shall all be clear.

 In theory, you could take all the items in your catalog and calculate predictions,
but because you’re basing predictions on what the active user has already rated, you’ll

5

4

5

1

3

5

Classification way

Regression way

rating count

1 1

2 0

3 1

4 1

5 3

(5 + 4 + 5 + 1 + 3 + 5) / 6 = 3.8

Predicted rating:

5

Predicted rating:

3.8

Ratings
given by a
number of
users

Figure 8.8 Two ways to calculate the predicted rating of Pete’s Dragon for an active user
whose neighborhood has given it the ratings listed on the right. Classification produces a rating
of 5 by seeing which ratings are given more, whereas regression returns 3.8 by taking the
average of the item-based ratings.

198 CHAPTER 8 Collaborative filtering in the neighborhood
look only at items that are in the neighborhood. Expanding on the regression exam-
ple from section 8.7, we’ll look in more detail at how to predict the rating of an item.

8.8.1 Computing item predictions

When you find the neighborhood around an item, you can calculate the rating using a
weighted average of ratings of the products that are similar to the item and that the
active user rated. When you do it like this, you need to add the user’s average rating to
return the prediction to the same scale as the ratings the user put in. To put that into
math, you’d write the following formula:

where

 is the average rating of the user u.
 is the active user’s u rating of item j.
 is the set of items in the neighborhood that user u has rated.
 is the predicted rating for user u of item i.
 is the similarity between item i and item j.

Similarities
Active user

Ratings Similarity

Rated items

Candidates content items
that might end up being
recommended to the user.

Get all items in
the neighborhood
of the rated items.

Get all items rated
by the active user.

Figure 8.9 The items that become recommendation candidates are found by first getting the
specific user’s rated items and then locating the items in the user’s neighborhood.

Pred u i,  ru

j Si sim i j,  × ru j, 

j Si sim i j, 
---+=

ru
ru j,
Si
Pred u i, 
sim i j, 

199A few words on machine learning terms
Let’s say you want to predict Helle’s rating for Star Trek.8 You begin by looking at the
similarity model calculated previously and, conveniently, use the movies where the
neighborhood is the same no matter which method you used to find it. You’ll have a
list like this: ST: MIB: 0.63, AV: 0.35. Then it’s a matter of filling in the numbers in the
function:

If you’ve calculated the examples in this chapter, you should pat yourself on the back
because you’ve calculated your first item-item prediction. But wait a minute! That was
a prediction of a rating. How can that turn into a recommendation? That’s easy. You
do this for all items that are of interest, order them according to the predicted rating,
and return the top 10. This is only if you can find 10 items to predict ratings for. If you
implemented a threshold neighborhood, then it wouldn’t be possible to predict a rat-
ing for Braveheart.

 The next problem is that if your algorithm predicts ratings that are below average,
do you then want to recommend them? Despair not. If you’re still a bit confused,
you’ll soon look at a code example that even a machine can understand.

8.9 Cold-start problems
Collaborative filtering requires data, which is a problem when you receive new users as
well as new items—you have no data for generating recommendations. Again, a way to
get around this dilemma is to ask new users to rate a few items when they arrive. Alter-
natively, it’s a good idea to create a new arrivals list to showcase new items because
many users like to check out new products. We discussed this in detail in chapter 6.
Another way could be to use exploit/explore methods, illustrated in figure 8.10.

 In the figure, injecting new items occurs 1/6 of the time. Throwing a die (or using
some random library), you get a number that either falls into the Exploit interval (1–
5) or the Explore interval (6). Exploit means you exploit the knowledge you have and
return recommendations. Explore means it shows a new item. This way the items gets
exposed and users hopefully interact with them.

8.10 A few words on machine learning terms
Next, you’re going to implement the item’s collaborative filtering algorithm. First,
let’s put several terms in place.

 One of the smart things about item-based filtering is that you can do much of the
hard work before you have to serve recommendations to the active users. If you’re
new to the whole world of machine learning and data science, you might not know
that doing work beforehand is called offline model training. Let’s take a look at each of
these words:

8 Yes, it’s already in the rating table, but let’s go through the calculation anyway.

Pred Helle Star Trek,  2.6 063 0.4 0.35 0.4+
0.63 035+

-- 3=+=

200 CHAPTER 8 Collaborative filtering in the neighborhood
 Offline—Accomplishing something before using it live in production, not while
the user is waiting. (Online—Doing tasks while the user is waiting.)

 Model—A process you can use to predict ratings (or other things depending on
the machine-learning algorithm). A model can be created by taking the raw
data, running it through a machine-learning algorithm that aggregates the data
and produces a model. Creating a model is usually done offline.

 Training—A leftover term from the AI world where you consider machine
learning as learning a new skill. In our case, the recommender is training (cal-
culating the model) to find similar items.

Figure 8.11 shows what happens offline and online in item-item collaborative filtering.
 To get everything into a real-life context, the next section looks at MovieGEEKs

site. If you haven’t already, download the site from GitHub and follow the instructions
given in the README.md page at http://mng.bz/04k5.The README page also pro-
vides details on how to download and import the data.

8.11 Collaborative filtering on the MovieGEEKs site
You’ll use the collaborative filtering recommendations in the second row of recom-
mended items (figure 8.12), which, you might remember, lists products that are simi-
lar to items a user has already rated or bought. Let’s get started building.

Exploit Explore

 item 1

 item 2

 Item N
1
N

…

Database

Click

(3) By exploring
new items, the
system will try out
new items and
collect data on
these.

Select items
using either CF
or most popular.

(2a) In most cases
(1-5) the system will
exploit its knowledge.

(2b) Occasionally
(6) it will explore
new items.

Select at
random from
the bucket of
new items:

1
N

1
N

(1) Select random number between 1 and 6

Figure 8.10 A way to sneak in new items is to inject those items into the mix a certain percentage
of the time.

http://mng.bz/04k5

201Collaborative filtering on the MovieGEEKs site

N

ei
gh

bo
rh

oo
d

1

0.63

1

-0.21

-0.88

-0.83

Similarity

1. Calculate the
 similarity
 between all
 items.

2. Order active
 user’s rated
 items by
 similarity.

MI

MI

0.63

1

0.35

-0.47

-0.64

-0.62

ST

1

0.35

1

0.01

-0.89

-0.83

AV

-0.21

-0.47

0.01

1

-0.23

-0.32

BH

-.088

-0.64

-0.89

-0.23

1

0.96

SS

-0.83

-0.62

-0.83

-0.32

0.96

1

LM

ST

AV

BH

SS

LM

MI

ST

LM

MI

ST

LM

MI SS LM

5 3 2 2 2

4 3 4 3 3

5 2 5 2 1 1

3 5 3 1 1

3 3 3 2 4 5

2 3 2 3 5 5

Rating matrix

u1

u2

u3

u4

u5

u6

AVST BH

Offline

User ID

Online

4. Calculate
 predicted
 rating.

3. Select the
 neighborhood.

Item ID

Figure 8.11 Collaborative filtering pipeline divided into offline and online calculations

Chart

Association
rules

Collaborative
filtering

Figure 8.12 Front page of the MovieGEEKs site, including collaborative filtering recs

202 CHAPTER 8 Collaborative filtering in the neighborhood
8.11.1 Item-based filtering

Hopefully after reading this far in this chapter it’s crystal clear what you need to do now.
If not, here’s a little list of things you’ll implement. They’re also shown in figure 8.11.

 Find similar items to the ones the active user likes
 Calculate predicted ratings for these items
 Use predictions to calculate recommendations

NOTE The difference between user and item collaborative filtering is how
you find the similar items.

If you want to view the code, then you should look in two places:

 \builder\item_similarity_calculator.py, which is the offline training that shows
the calculation of all the similarities

 \recs\neighborhood_based_recommender.py, which is the online part of it

CALCULATING ITEM SIMILARITY OFFLINE

To start with collaborative filtering, begin building the similarity matrix, which will be
a database table with all the similarities calculated. It’s better to create a Python script
to run outside of the Django scope to do the model building. It might still take hours,
but at least it’s not days.

 You need to create another builder as shown in listing 8.1. Overall, it gets data
from the database, calculates the similarities, and saves them in the database.

import os
import pandas as pd

import database
import item_cf_builder

all_ratings = load_all_ratings()

ItemSimilarityMatrixBuilder.build(all_ratings)

Getting the ratings from the database is simple, but I still encourage you to glance at
the code. If you use it, remember to add a time restriction to the query so that you
only get the data for a specified period. I left it out here, but it’s easy to find on Git
(the method is called load_all_ratings). Let’s look at the build method that will
train/build/calculate/deduce/brew the model in listing 8.2. As mentioned, you’ll
find this in the file /builder/item_similarity_calculator.py.

def build(self, ratings, save=True):
 ratings['rating'] = ratings['rating'].astype(float)
 ratings['avg'] = ratings.groupby('user_id')['rating'] \
 .transform(lambda x: normalize(x))

Listing 8.1 Using a Python script to build and save a similarity model

Listing 8.2 Building the similarity matrix

Gets the
rating data Builds the similarity

model and saves it to
the database

Be sure the ratings are of type
float, otherwise you might
have problems later.

Normalizes the ratings based on the user’s
average and adds it to a column of data. You use

the method normalize to do this.

203Collaborative filtering on the MovieGEEKs site
 ratings['user_id'] = ratings['user_id'].astype('category')
 ratings['movie_id'] = ratings['movie_id'].astype('category')

 coo = coo_matrix((ratings['avg'].astype(float),
 (ratings['movie_id'].cat.codes.copy(),
 ratings['user_id'].cat.codes.copy())))9

 overlap_matrix = coo.astype(bool).astype(int) \
.dot(coo.transpose().astype(bool).astype(int))

 cor = cosine_similarity(coo, dense_output=False)
 cor = cor.multiply(cor > self.min_sim)
 cor = cor.multiply(overlap_matrix > self.min_overlap)

 movies = dict(enumerate(ratings['movie_id'].cat.categories))
 if save:
 self.save_similarities(cor, movies)

 return cor, movies

def normalize(x):
 x = x.astype(float)
 x_sum = x.sum()
 x_num = x.astype(bool).sum()
 x_mean = x_sum / x_num

 if x.std() == 0:
 return 0.0
 return (x - x_mean) / (x.max() - x.min())

A word or two of caution:10 This code was changed and optimized from the original
version so that it runs quite fast. You can run it while you watch it perform its magic;
however, even if this is fast code, you should expect these things to take a while.

REMOVING SIMILARITIES THAT AREN’T BASED ON ENOUGH OVERLAPPING RATINGS

We’ve talked about how important it is to have enough overlapping ratings between
two items. In many implementations of similarity methods, however, you don’t have
the option of defining a minimum number of overlapping elements.

 Here’s a way that works well in sparse matrices. You take your rating matrix, cast it
first to Boolean (which makes everything more than zero True and the rest False),
then you cast that to integers: 1 for True and 0 for False. You can now multiply the
rating matrix with a transposed version of itself, and presto, you’ve a matrix where you

9 For more information, see http://mng.bz/nLOL.
10 You need time, patience, and lots of free RAM. When I first came up with a version of this code (being an

optimist I thought I had the final version), two days passed before it finished. This version leaves me time to
go for a run with my dog and eat dinner before it’s finished.

Converts the user_ids as well as the
movie_ids to categories. This needs to
be done to use the sparse matrix.

Converts the ratings
into a sparse matrix,
called coo_matrix9

The
overlap
matrix Calculates the cosine

similarity between rows

Removes similarities
that are too small

Removes similarities not based
on a big enough overlap

Creates a dictionary
of the movie_ids to

find the items you’re
looking for

Saves to the
database

Shows the
normalize method
used previously

http://mng.bz/nLOL

204 CHAPTER 8 Collaborative filtering in the neighborhood
can look up overlapping elements. This is illustrated in figure 8.13 and done in the
code in listing 8.3 (a snippet of the code from listing 8.2). You’ll find this code in the
file /builder/item_similarity_calculator.py.

overlap_matrix = coo.astype(bool).astype(int)
.dot(coo.transpose().astype(bool).astype(int))

With overlap matrices, you now have the option to say that you want all cells to be
True if they’re larger than a predefined minimum overlapping. If you only want to
look at overlaps more than 2, for example, then all that are 2 or below are returned as
False and the rest as True. If you cast that to integer again, then you’ve a matrix con-
taining 1’s where you’re interested in saving the similarity. This can be done by writing
this code as shown in /builder/item_similarity_calculator.py and listing 8.4.

overlap_matrix > self.min_overlap

Listing 8.3 Calculating an overlap matrix

Listing 8.4 Creating a threshold matrix

5 6 0 0 0

0 7 8 5 0

7 3 5 0 0

0 0 5 6 7

0 4 5 5 0

1 1 0 0 0

0 1 1 1 0

1 1 1 0 0

0 0 1 1 1

0 1 1 1 0

1 1 0 0 0

0 1 1 1 0

1 1 1 0 0

0 0 1 1 1

0 1 1 1 0

1 0 0 0

1 1 0 1

0 1 1 1

0 1 1 1

0 0 1 0

2 1 2 0 1

1 3 2 2 3

2 2 3 1 2

0 2 1 3 2

1 3 2 2 3

Multiply the matrix with itself
transposed.

Transpose the matrix
(mirror it on its diagonal).

Each cell in the result is done by
multiplying each cell in the column with
the row and summing it together as
shown here:

2 = 1*1 + 1*1 + 0*1 + 0*0 + 0*0 + 0*0

This means that movies 0 and 2 have
two overlapping users (users that rated
both).

It’s easy to see that the each of the parts of the
equation will only contribute to the sum if both cells
contains a 1. This means that the result will be
the number of overlapping movies.

Casting
the matrix
to Boolean
and then to
the integer

1

1

1

0

0

Figure 8.13 The fastest way to calculate overlap on your rating matrix

205Collaborative filtering on the MovieGEEKs site
This expression returns a new Boolean matrix. When you’ve calculated the similarity,
you do an element-wise multiplication, which means that you multiply each cell indi-
vidually by the cell in the same position. Multiplying the similarity matrix with the Bool-
ean overlap matrix will work such that all similarities that you aren’t interested in will
be multiplied by 0, meaning they’ll return as 0, while the interesting ones will be multi-
plied by 1 and stay the same. In the following listing, the same trick is used to remove
similarity values that are too small (or see /builder/item_similarity_calculator.py).

cor = cor.multiply(cor > self.min_sim)
cor = cor.multiply(overlap_matrix > self.min_overlap)

ONLINE PREDICTIONS
To use the model built with the methods shown previously, you need a prediction
algorithm as illustrated in figure 8.14. Notice that you only go to the database twice—
once to get the user’s ratings and once to get the similarities of these. In fact, an easy
way to optimize this is to join the data in the database before extractions, so that
you’ve the similarities as well as the user’s ratings.

Listing 8.5 Removing similarity values

Removes similarities
that are too small

Removes similarities that
aren’t based on enough
overlapping ratings

Similarities

For each similarity, we want
to predict a rating for the
target element.

To predict a rating, use the
same similarity connections
to find the items similar to
the item which the user
has rated.

Now take a weighted
average of each of these
items weighted by the
similarity. And you have a
predicted rating.

Rate
this
item

Active
user’s
ratings

Figure 8.14 To predict a rating, use the similarity between the item in question and the
items rated by the user. You multiply each similarity by the user’s rating, sum that together,
and divide it by the sum of the similarities. This creates a weighted average.

206 CHAPTER 8 Collaborative filtering in the neighborhood

Cal
an a

F
s
l

If the similarity script is finished running the offline calculations, it’s time to look at
the online part of the recommender.

def recommend_items_by_ratings(self, user_id, active_user_items, num=6):

 movie_ids = {movie['movie_id']: movie['rating']
 for movie in active_user_items}
 user_mean = Decimal(sum(movie_ids.values())) / Decimal(len(movie_ids))

 candidate_items = Similarity.objects.filter(Q(source__in=movie_ids.keys())
 &~Q(target__in=movie_ids.keys()))
 candidate_items = candidate_items.order_by('-similarity')[:20])

 recs = dict()
 for candidate in candidate_items:
 target = candidate.target

 pre = 0
 sim_sum = 0

 rated_items = [i for i in candidate_items
 if i.target == target][:self.neighborhood_size]

 if len(rated_items) > 1:
 for sim_item in rated_items:
 r = Decimal(movie_ids[sim_item.source]) - user_mean
 pre += sim_item.similarity * r
 sim_sum += sim_item.similarity
 if sim_sum > 0:
 recs[target] = {'prediction': user_mean + pre / sim_sum,
 'sim_items': [r.source for r in rated_items]}

 sorted_items = sorted(recs.items(), key=lambda
 item: -float(item[1]['prediction']))[:num]
 return sorted_items

Listing 8.6 The code when a user visits a page

Creates a dictionary of
movie_ids and ratings

culates
verage

Finds all items similar to
active users’ rated items

Cuts the list to 20. This is
a choice you can play
around with to find a

good balance between
speed and quality.

Iterates
similar

items

Multiplies the normalized rating
by the item’s similarity

Deducts the user mean
from the item rating

It’s best if it’s more than one rated item;
otherwise, the predicted rating will be the
same as the one item.

rom the target item, looks at all the
imilarities present. That gives you a
ist of the items the active user rated.

Adds the similarities

Sorts all items based on prediction
value. Here’s another place where

you could consider playing around a
bit and add other considerations

into the code.

Appends the predicted rating to the
result, along with the rated items

Ensures it doesn’t add to zero (and
thereby cause a division with zero,

which throws an exception)

207Levers to fiddle with for collaborative filtering
 You should now see another list of recommendations. What do you think? Do the
recommendations look okay? Can you see them in figure 8.12? Open the site as your
persona Helle and look at her analytics page (http://127.0.0.1:8000/analyt-
ics/user/400004/). You’ll see that the recommendations are somewhat interesting
(what’s shown in figure 8.12).11

8.12 What’s the difference between association rule recs
and collaborative recs?
Let’s take one last look at the recommendations, comparing the recommendations
calculated with the association rules and the ones with collaborative filtering. The
association rules look like they’re closer to what Helle’s taste is. But remember, you’re
looking at two different data sets: the association rules were based on the buys of your
personas that are auto-generated by the script mentioned in chapter 3, while the col-
laborative filtering is based on the ratings in the downloaded data set. In a real system,
those would be the same data set.

 Associative rules aren’t collaborative filtering because they’re based on what’s in a
single shopping basket, not what a user buys over time. Collaborative filtering looks at
what users buy or rate over time.

8.13 Levers to fiddle with for collaborative filtering
It isn’t always enough to implement the algorithm to get good recommendations.
Often there are things that need to be adjusted. For example, you previously adjusted
the number of overlapping users needed before you could calculate a similarity. When
considering what can be adjusted, refer to this list:

 Which ratings should be used for the active user?
– Only the positive ones?
– Only the most recent ones?
– How should you normalize the ratings?

 When creating similarity
– How many user’s need to rate two movies for the similarity to be calculated?
– Should you restrict similarities only to be added to the similarity list if they’re

positive?
 When creating the neighborhood

– What method of selecting the neighborhood should you use?
– How big should the neighborhood be (selecting threshold and/or N similar-

ities)?
 When predicting the ratings

– Should you use classification or regression?
– Should you use a weighted average?

11 To impersonate users, add a query string parameter called user_id. To see Helle’s page (who has user_id
400004), you request the following URL: localhost:8000/?user_id=400004.

208 CHAPTER 8 Collaborative filtering in the neighborhood
 When returning the recommendations, should you return all of them or only
the ones with good predictions (that is, prediction above a threshold).

And the list goes on and on. … Each of these will narrow down a number of items
going through the calculations. Take, for example, the overlap of users that you
require. Figure 8.15 shows how the overlap affects the number of similarities you’ll
have in your model for the MovieGEEKs site. If you don’t require a minimum overlap,
you have around 40 million similarities. If you require two overlaps, you’re already
down to 5 million, and so on.

Figure 8.16 shows a plot dividing the movies into the number of ratings they’ve
received. There are around 11,000 movies that have only been rated by one person.
To calculate the similarity between movies, you need more than two users to have
rated both movies, which means that you can’t use these 11,000 items for anything.

 Looking at the line above 2,000 in figure 8.16, you can see that there are around
4,000 movies that have been rated by two users. If you set a limit of a minimum of two
overlapping ratings, then you can subtract everything to the left of it. Let’s say you
require at least two ratings, then you can see that you already cut away approximately
12,600 movies. That’s a big number, considering you only have 25,000 movies to
choose from.

TIP The number of similarities saved in a database depends on many things,
so it’s hard to be specific about how restrictive you should be. My advice is to
first try not being restrictive to see if that works, then try being more restric-
tive. You’ll probably arrive at somewhere in the middle.

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0

0.0 2.5 5.0 7.5 10.0
Overlap

12.5 15.0 17.5

Similarities left

Number of available similarities when a specific number of overlap is required

20.0

Figure 8.15 Plot showing how many similarities you’ll have when you add a higher required number
of overlapping users. Note that the y-axis is in thousands.

209Pros and cons of collaborative filtering
Usually, the more users who’ve rated a film, the more popular, so as you require more
overlapping users, you’ll also look at more popular items and less personalized mov-
ies. The recommendations become better as fewer movies become candidates. Read-
ing through the chapter, and indeed the book, should give you an idea of what to
choose in each of the previous options.

 In chapter 9, you’ll look at how to evaluate a recommender. Before going crazy
about how to select the correct values, read that and then return to this list, keeping
in mind what you’ve read. A good reference for what values to start out with can be
found in “Item-based Collaborative Filtering Recommendation Algorithms” by Badrul
Sarwar et al.12 But before moving on to chapter 9, look at figure 8.16, where several of
the evaluation functions are plotted. And before summarizing the chapter, let’s sum
up the pros and cons of neighbor collaborative filtering algorithms.

8.14 Pros and cons of collaborative filtering
Even if it sounds fantastic, there are issues and drawbacks of collaborative filtering
that you need to consider:

 Sparsity—This problem is one of the biggest. Most data sets aren’t dense enough
to recommend items other than the most popular ones. Because most users
only have a few ratings and often an e-shop will have thousands of different
items, it can be difficult to find neighbors.

 Gray sheep—As you recall from chapter 6, gray sheep are users who’ve such
unusual tastes that it’s impossible to find related users or items.

12 For more information, see http://files.grouplens.org/papers/www10_sarwar.pdf.

12,000

10,000

6,000

2,000

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Movies with exactly that number of ratings

N
um

be
r

of
 m

ov
ie

s

Number of users who rated X movies

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

8,000

4,000

Figure 8.16 A chart that illustrates how many movies have received x ratings in MovieGEEKS site

http://files.grouplens.org/papers/www10_sarwar.pdf

210 CHAPTER 8 Collaborative filtering in the neighborhood
 Number of ratings—As mentioned many times, to have good collaborative recom-
mendations, you need many ratings from a user before you can trustworthily
produce recommendations. This poses a problem because most systems don’t
like to sit around while collecting 20 or more ratings before starting to recom-
mend things. It’s known as the cold start problem that you read about in chap-
ter 6.

 Similiarity—Collaborative filtering is content-agnostic and doesn’t try to fit rec-
ommendations into specific subjects. It follows the users’ behavioral trends,
which tend to go toward the more popular content. Another way of saying this
is that because it’s based on similarity, the most popular items will have much in
common with more content, which puts the popular items in the recommenda-
tions more often.

The fact that collaborative filtering is content-agnostic is also a great plus. You don’t
have to spend any energy adding metadata to your content or collect knowledge
about your users. You only need the ratings and the interactions between items. In the
next chapter, you’ll look at how to evaluate recommender systems.

Summary
 The pipeline of neighborhood filtering can either use user-based filtering, look-

ing at similar users, or item-based filtering, looking at similar items.
 Use user-based filtering if there are more items than users; otherwise, use item-

based filtering.
 A similarity matrix makes it possible to quickly look up similar items.
 Using a similarity table enables the system to make neighborhoods using the

clustering, Top-N, or threshold procedures.
 The neighborhoods you find let you calculate predictions when you’ve a small

set of similar users.
 Amazon’s first stab at a recommender system was item-based collaborative filtering.

Evaluating and testing
your recommender
The Netflix Prize abstracted the recommendation problem to a simplified proxy of
accurately predicting ratings. It is now clear that this is just one of many components
in an effective industrial recommendation system. They also need to account for
factors like diversity, context, evidence, freshness, and novelty.

—Xavier Amatriain et al.1

After studying this chapter, you’ll gain experience in the following areas:

 Evaluating the effectiveness of a recommender algorithm
 Splitting data sets into training data and test data
 Building offline experiments to evaluate recommender systems
 A rough understanding of online testing

Why did you implement a recommender? What did you want to gain? Do you want
to earn more? Have more visitors? Try out new technology? No matter what you
answer, it might not directly translate into a way to calculate whether or not you’re
improving.2 You often hear about algorithms that are better or slightly improved
compared to the current cutting-edge algorithms, but improving what and how?

1 Amatriain, Xavier et al., Past, Present, and Future of Recommender Systems: An Industry Perspective (Recsys,
2016).

2 Start with Why: How Great Leaders Inspire Everyone to Take Action (Portfolio; Reprint edition, 2011) by Simon
Sinek, is completely unrelated to recommender systems, but is an interesting book on how you need to
understand why your business is there.
211

212 CHAPTER 9 Evaluating and testing your recommender
 This chapter is about evaluating recommender systems, or rather, how to attempt
to do so. General agreement among recommender system researchers is that it’s close
to impossible to evaluate a recommender system or algorithm without having a live
system to test it out on. Still, it’s important to know if your recommender system is
going in the right direction.

9.1 Business wants lift, cross-sales, up-sales,
and conversions
In this chapter, you’ll work through how best to evaluate a system using the data you
have. We’ll also talk about how to test a live website. While you can simulate visitors
and visits to give the data to run on, it doesn’t make sense to simulate visits for evaluat-
ing recommenders.

 Figure 9.1 illustrates the evaluation cycle of a recommender system; we’ll look
closer at each step as we progress through the chapter. Certain tasks aren’t usually
associated with the evaluation of recommender systems, but they’re important if you
want to develop and maintain one.

One thing that’s often forgotten is that all data applications are living things (not in
the AI sense) and require maintenance and monitoring. Performance is a product of
the data being used, which is updated constantly. The behavior of the system changes
if the data changes, and the system’s performance and predictive power might diverge
or degrade.

 Let’s run through the tasks shown in figure 9.1 before going too deeply into the
details. I recommend you start with the simplest algorithm first, then increase com-
plexity if needed. When you’ve selected the algorithm, the first step is to verify it.

Controlled group

Online testing
Offline testing

A/B test

Engineers

Users

Involved:

Recommender algorithm evaluation:

LAUNCH

Regres
test

Continuous
integration

Friends
and family Exploit/

Explore

Verify
Algorithm

Testing on a
piece of paper

Offline
algorithm
test

Figure 9.1 The evaluation cycle of recommender systems and who’s involved in the process

213Why is it important to evaluate?
 Take a small data set with something like 5 users and 10 items and see if the algo-
rithm makes sense. Play around with it and if you’re satisfied, then start implementing
the algorithm. It’s a good idea to have regression tests continuously running in such a
way that if somebody makes an update to the data, it won’t hurt the performance of
the system. When the algorithm is coded and functionality is tested (continuously),
it’s time to do offline algorithm evaluation using a data set. If the offline evaluation is
successful, you can introduce the output to humans.

 Often, you’ll start out with a control group, which many call friends and family. This
is where you’ll have to answer to your boss (who didn’t read this book and doesn’t
know anything about recommender systems but is an expert and knows there’s some-
thing wrong with his recommendations because they didn’t look perfect to him).
Friends and family will only get you so far, so to ensure everything is great with the rec-
ommender system, it can be unleashed upon the happy users—but only a small per-
centage to verify if it works and increases the Key Performance Indicators (KPI) that
you’re after. If that’s successful, it’s time to launch the algorithm for everybody.

 Many people will probably stop there, but a trend that’s gaining attention is
exploit/explore, which means that you let the system decide which algorithm it
should use based on how users respond to the output. We’ll look at this briefly later in
this chapter. Speaking of which, we’ve many things to talk about, so let’s dig in. Before
we start talking about how to evaluate your recommender, let’s talk a little more about
why you need to do this.

9.2 Why is it important to evaluate?
Is your recommender system running correctly? After having sworn, sweated, and
bled to make a recommender system work, you don’t want it to fail. Often, testing a
recommender system is a quest for finding proof that it works. You also hope not to
find signs that it might not work perfectly or that it returns unexpected results to
more than half the users. It’d certainly be good to know this was going to happen
before all your users did!

 Often a system will be over-fitted to the taste of the stakeholders. The boss calls and
says, “My daughter didn’t like any of the recommendations your system produced. Fix
it or you don’t have to fix anything else.” Of course, he says this late on a Friday after-
noon and you’ve made plans for the weekend. Maybe I’m stretching it a bit, but you
do need to understand who your customers are because different people want differ-
ent recommendations.

 With that in mind, it’s important to have a clear idea of what question you’re asking.
Let’s talk about Netflix again. One of its goals is retention of subscribers, but that’s only
measurable once a month. Netflix has deduced (probably by looking at the data) that
user retention is correlated with the user watching more. But a user watching more
content can also indicate other things, not necessarily that they’ll be around a long
time. Maybe the user’s girlfriend left him and he has time on his hands; maybe it’s
something else entirely. More to the point, though, the goal might not be immediately

214 CHAPTER 9 Evaluating and testing your recommender
measurable, and the things that are measurable might not uniquely indicate what you
want to know.

 Because we’re only interested in the actual recommender system, we’re interested
in an evaluation that shows which recommender gives the best result based on the
MovieTweetings3 data that we’re using in our example. To evaluate something that
happens to many people (in MovieGEEKs’ case, what happens is that a person
receives a recommendation), we need to dive into statistics. I’m not going to teach sta-
tistics in this book, but I’ll give you an overview of what you should consider when test-
ing the recommenders you’ve implemented. First, we’ll frame our question as a
hypothesis.

HYPOTHESIS

A hypothesis describes the goal of the test. For us, that could be “Recommender B pro-
duces recommendations that are clicked more often than recommendations from
Recommender A.” The click event is also called the click-through rate (CTR).

 Is the hypothesis clear enough to run a test? Will the mail carrier, to whom you’ve
shown a copy of the hypothesis, understand it in exactly the same way as you do?

9.3 How to interpret user behavior
Figure 9.2 shows four scenarios for a visitor arriving on a website:

 Visit 1 is simple. Your system records that it showed the landing page and then
nothing happened. Should you then assume—or not—that the visitor has seen
the recommendations?

 Visit 2 shows that several pages are viewed. Here you must assume that the recom-
mendations are presented but the visitor didn’t show any interest because they
clicked something different.

 Visit 3 is ideal. The visitor arrives and clicks a recommendation.
 Visit 4 poses a question. How should you value the visit? Does it count as one click

or two? Possibly it could make more sense to say that a recommendation algo-
rithm is successful if a user clicks one or more times on the recommendations.
But again, that depends on the domain you’re in.

9.4 What to measure
There appear to be two types of goals for recommender systems:

 To make your customers happy and hopefully earn money at the same time.
 To make as much money as possible and, if you must make your customers

happy to do that, then you’ll do it, but only enough to earn money.

You, the engineer, need to make your boss happy, which he will be if the customers are
happy (and spending money). Customers’ goals are nearly the same: they want to be

3 For more information, see https://github.com/sidooms/MovieTweetings.

https://github.com/sidooms/MovieTweetings

215What to measure
happy and will spend money if they are, but they don’t have your boss’s goal of maxi-
mizing their spending!

 Let’s forget about the money for a moment and think about happy customers.
How can you make the customers happy? The answer differs from individual to indi-
vidual and from domain to domain, but here’s what makes me happy when I shop
online:

1 The site understands my tastes. I don’t like to receive recommendations that are
obviously wrong.

2 The site gives me a nice variety of recommendations. I want my recommendations like
I want nature—full of diversity.

3 The site surprises me. I want to see things that I never knew I wanted, but now I
want them.

As a site or content maintainer, you’d also want to add:
4 The site covers everything in the catalog.

We’ll look more at the details for each of these.

View

View Rec click

View Rec click Rec click

Unique visit

Visit 1

Visit 3

Visit 4

ViewVisit 2 View View

Views: 1
Clicks: 0

Views: 1
Clicks: 2

Views: 1
Clicks: 1

Views: 3
Clicks: 0

Figure 9.2 Different scenarios of user behavior. Visit 3 is ideal because the user viewed and
clicked a recommendation.

216 CHAPTER 9 Evaluating and testing your recommender
9.4.1 Understanding my taste: Minimizing prediction error

One way of measuring how well a recommender understands my tastes is by saying
that it must predict whether I like an item that I know and have already rated. This
can be done by measuring how often the recommender gets close to predicting the
correct rating.

 Another way to look at it is as decision-support metrics, which divide the predictions
into groups where the user will react in a similar way. If the system predicts a film
above a 7 on a scale of 1–10, then I’d probably be interested in watching it. If it’s
below 7 but above 3, it’s a film that I wouldn’t refuse to watch if my wife wanted to
watch it. Below that I’d put my foot down and say, “No way!” If the recommender pre-
dicts a rating that’s somewhere inside the ranges that fit where I’d rate it, then it’s
probably okay. If it’s in a different group, then it will make me lose time and/or lose
good content. And, eventually, I’ll lose confidence in the recommender if that hap-
pens too often.

9.4.2 Diversity

Let’s take a quick detour into the Bible, where we find this in the book of Matthew:

For unto everyone that hath shall be given, and he shall have abundance: but from him
that hath not shall be taken even that which he hath.

—Matthew 25:29, King James Version

You’re probably asking how this relates to recommender systems. The Bible verse is
the basis of what’s called the Matthew effect. A more familiar interpretation is “the rich
get richer and the poor get poorer.” If you view a popular item as rich and unpopular
item as poor, then the issue here is that you’ll have items in your catalog that are rec-
ommended often because they’re popular.

 It’s good that popular items are recommended often, but these items might show
up in too many recommendations, thus becoming even more popular, while other
potentially great items don’t get shown because they aren’t yet popular. With popular
items always being favored, you’re also creating what we call a filter bubble.4 This can be
a good thing, because you’ll always get recommendations for what you like. But on the
other hand, you’ll never know if there’s something slightly different that you might
like even more than the popular item but haven’t yet experienced.

 In addition to the filter problem, there’s also the fact that the original idea of a rec-
ommender system is to help users navigate a larger catalog than what is found on a
single page of a shop. If the recommender only shows popular items, then that advan-
tage is lost. (Okay, I know there are many other advantages as well, but this is an
important one.)

 It’s hard, however, to measure whether your system is successfully diverse and also
hard for your system to be diverse when it’s personalized. Researchers have attempted

4 For more information, see https://en.wikipedia.org/wiki/Filter_bubble.

https://en.wikipedia.org/wiki/Filter_bubble
https://en.wikipedia.org/wiki/Gospel_of_Matthew
https://en.wikipedia.org/wiki/King_James_Version

217What to measure
to calculate a diversity measure by calculating the average dissimilarity between all
pairs of the recommended items. Look at “Improving Recommendation Diversity” by
Keith Bradley and Barry Smyth for more on the subject. You can find the article at
www.academia.edu/2655896/Improving_recommendation_diversity.

9.4.3 Coverage

Diversity leads nicely into coverage because the better the diversity, the better the cov-
erage. One of the main reasons for implementing a recommender system is to enable
users to navigate the full catalog, which is known as content coverage. Coverage refers
both to ensuring the algorithm will recommend everything in your catalog and whether
it can recommend something to all registered users, which is called user coverage.

 The brute-force way of calculating the user coverage is to iterate over all users, call
the recommender algorithm, and then see if it returns anything. This can be done as
shown in listing 9.1. You can view the script for this method in /evaluator/cover-
age.py.

def calculate_coverage(self):

 for user in self.all_users:
 user_id = str(user['user_id'])
 recset =

self.recommender.recommend_items(user_id)
 if recset:
 self.users_with_recs.append(user)
 for rec in recset:
 self.items_in_rec[rec[0]] += 1

 no_movies = Movie.objects.all().count()
 no_movies_in_rec = len(self.items_in_rec.items())
 no_users = self.all_users.count()
 no_users_in_rec = len(self.users_with_recs)
 user_coverage = float(no_users_in_rec/ no_users)
 movie_coverage = float(no_movies_in_rec/ no_movies)
 return user_coverage, movie_coverage

This method solves both coverage calculations—content and user. User coverage is
defined as follows:

where

Listing 9.1 Calculating coverage

Runs through all users
Gets recommendations
for the user

Checks if the
recommender
returned a
recommendations

Appends the user
to the list of users
that received recs

Shows each
recommend

item

Adds to
the items
in the rec

Calculates user coverage

Calculates item
coverage

coverageuser
u U Pu
U

------------------------=

Pu {1 :if recset 0
0 :else

 =

U number of all users=

|recset|=number of recommendationss the recommender returns for user u

www.academia.edu/2655896/Improving_recommendation_diversity

218 CHAPTER 9 Evaluating and testing your recommender
Using the result of the method execution, you can also calculate the catalog coverage,
which is defined by:

where
 For this coverage, you’ll also need the total number of items in the catalog. Using

the calculate_coverage method from listing 9.1, I found that the item-item collabo-
rative filtering method implemented in chapter 8 has a coverage of 13%. Out of the
26,380 movie items in MovieGEEKs’ data set, only 3,473 movies would make it into
a recommendation.5

 While running this code, I also collected which movies were recommended. This
resulted in the histogram seen in figure 9.3, which shows how many movies were rec-
ommended only once between all the recommendations produced for all the users.
The movies that are most popular are the ones that are in the long tail (which is a bit
counterintuitive compared to the long-tail problem we talked about earlier). The fig-
ure was cut because there are movies that have appeared in more than 100 recom-
mendation sets.

Note that 3,473 movies out of 26,380 isn’t many. Maybe it’s a good idea to add a
content-based recommender, which we’ll talk about in the following chapter. The cov-
erage code shown in listing 9.1 can be run by running this line in the following listing.

5 This depends on which parameters you use to train it.

coveragecata uelog
all items in recs

I
---------------------------------------=

I number of items in the catalogue.=

350

300

250

200

150

100

50

0
0 20 40

Movies apearing in x recommendations

N
um

be
r

of
 m

ov
ie

s

60 80 100

Figure 9.3 How many movies are shown x number of times. More than 350 movies are shown
in only one recommendation. Counterintuitively, the movies that are most popular are the ones
that are in the long tail.

219Before implementing the recommender…

>python -m evaluator.coverage –cf

If you run –-help instead (as shown in the following listing), you’ll see that you’ve an
option to run the coverage evaluation on each of the algorithms we’ll look at in the
rest of the book.

Evaluate coverage of the recommender algorithms.

optional arguments:
 -h, --help show this help message and exit
 -fwls run evaluation on fwls rec
 -funk run evaluation on funk rec
 -cf run evaluation on cf rec
 -cb run evaluation on cb rec
 -ltr run evaluation on rank rec

But wait with running the others until you’ve trained models; otherwise, it’ll take a
long time to calculate the coverage.

9.4.4 Serendipity

You want to be surprised by finding things in your recommendations that you love but
never knew you would. Serendipity is about giving the user that sensation, so that all
their visits aren’t more of the same. Serendipity is subjective and difficult to calculate,
so I’ll ask you to remember that it’s important and to make sure that you don’t con-
strain the recommender’s returns too much. Constraining means less serendipity. You
can read about attempts to apply metrics serendipity in the article Beyond Accuracy:
Evaluating Recommender Systems by Coverage and Serendipity.6

 You now have several different concepts of what you should measure and evaluate.
You’re one step closer to doing an evaluation or your recommender system, but first,
as a former software developer, I’ve a few more things that I need to get off my chest.

9.5 Before implementing the recommender…
Another proverb: The lamp will only burn as well as the oil you pour in it, so here are
a few steps to consider:

 Verify the algorithm
 Verify the data
 Do a regression test

Let’s look at these in more detail.

Listing 9.2 Running the coverage for the collaborative filtering algorithm

Listing 9.3 Running help for the collaborative filtering algorithm

6 For more information, see http://mng.bz/nkGC.

http://mng.bz/nkGC

220 CHAPTER 9 Evaluating and testing your recommender
9.5.1 Verify the algorithm

It’s a silly thing to add, but you’d be surprised how often somebody reads a scientific
article that sounds so cool, then spends months implementing it before somebody
finally thinks to ask about the elephant in the living room. Too late they realize that
this algorithm won’t work with the data available or produce the output they need. Do
yourself a favor and write down a simple scenario in which you can rigorously calcu-
late your way through a small example where the algorithm is used. Consider carefully
what data you can provide as input, and be sure to agree with stakeholders about what
the output is going to be.

 This simple scenario can also work as a way to verify that the system is running. For
example, the algorithm you’ll look at in this chapter takes a couple of hours to run on
the full data set. If you’re using that to debug the algorithm, you’ll never finish. You’ll
do one correction and start the builder, then life happens, and when the algorithm
finishes, you’ve forgotten everything. If you’re unlucky, your next step is to do a new
correction that basically undoes the correction you did first. Do yourself a favor and
follow the steps in figure 9.4.

DATA

Test whether the data you need is either available or possible to produce. Is the data
persisted far enough into the past to be usable? It’s great if you save all users’ ratings
and behaviors, but if the system deletes everything that’s a day old, you might have a
problem.

 You should also look at the diversity of the data. Do you have data of users who
interact with all your catalog or only part of it? You need to do something special to
get those untouched items into play.

ARCHITECTURE AND AGGREGATION

Having the data isn’t enough. Can you retrieve it? If so, can you do the aggregation
that you want? In SQL databases, it’s easy to do joins between tables, but that might
not be the case in a database such as MongoDB. It seems obvious, but consider this
step before relying on the data.

Data Aggregation Algorithm Output

1
2
3
4
5

2342
23423
4
24234
353

4
5
6
3
2

1
2
3
4
5

2342
23423
4
24234
353

4
5
6
3
2

Figure 9.4 Execute the algorithm by hand to test if you’ve data and whether it produces the
right output.

221Before implementing the recommender…
ALGORITHM
How complicated is the algorithm? Is it easy to implement? Does it require mathemat-
ics that is difficult to implement or performance-wise too much to do on a computer?
And if you create a small example using a small data set, is it possible to make a naive
implementation in, for example, a Jupyter notebook to illustrate that it can be done?
When these questions are satisfied, you can start implementing your algorithm.

9.5.2 Regression testing

As a software engineer, you should know about regression testing, which means that you
should have a test set that can be run either nightly or at least every time somebody
makes a change to the code base. Often people argue that these algorithms are way
too complicated to run automatic tests on. If you run into one of those people, please
rap them on their knuckles, especially if they claim that the business can’t afford it.

 Take, for example, the collaborative filtering algorithm. It’s built as a pipeline with
several steps. If you look at each, then you can test the pieces. For example, the simi-
larity method can easily be tested if it responds correctly to simple vectors. If you call
the similarity method with the same vector, the similarity should return one, while two
vectors that are orthogonal to each other should be -1 or 0, depending on which simi-
larity function you use.

 Look at the tests I did in the test folder of the project.7 One of the similarity func-
tion tests looks like that shown in the next listing. Again, you can view the code in the
/item_similarity_calculator_test.py script.

def test_simple_similarity(self):
 builder = ItemSimilarityMatrixBuilder(0)

 no_items = len(set(self.ratings['movie_id']))
 cor = builder.build(ratings=self.ratings, save=False)
 self.assertIsNotNone(cor)
 self.assertEqual(cor.shape[0], no_items,
 "Expected correlations matrix to have a row for each item")
 self.assertEqual(cor.shape[1], no_items,
 "Expected correlations matrix to have a column for each item")
 self.assertEqual(cor[WONDER_WOMAN][AVENGERS], - 1,
 "Expected Wolverine and Star Wars to have similarity 0.5")
 self.assertEqual(cor[AVENGERS][AVENGERS], 1,
 "Expected items to be similar to themselves similarity 1")

I created a small dataset to test, which lets me run small tests to verify that each step of
the collaborative filtering pipeline is working. With this in place, it’s time to look at
the offline evaluation, which is typically where we start talking about the evaluation of
machine-learning and recommender algorithms.

7 For more information, see http://mng.bz/rS4s.

Listing 9.4 Similarity function test

http://mng.bz/rS4s

222 CHAPTER 9 Evaluating and testing your recommender
9.6 Types of evaluation
You have several ways to test a recommender algorithm. Not all of them are going to
give you an accurate view of how the algorithm will perform if you add it to your web-
site. The sad truth is that the only real way to know is to put one in action on your site.
But before you do that, you can ease the transition by doing other evaluations.

 We’ll assume that you already have a data set containing ratings. To do a true eval-
uation, you need what’s called a complete ground truth set, which is a data set containing
information about all combinations of users and content. If you have that, however,
you might not need a recommender system because the user already knows exactly
how he feels about all items. If you don’t have that set, you need to instead assume
that the user-item combinations present in the data are the truth and representative
of all users.

 You can test in three types of scenarios: offline experiments, controlled user exper-
iments, and online experiments. Recommender system researchers talk about offline
experiments not working, and controlled and online experiments being too expen-
sive, but sometimes it’s hard to make everybody happy. Sean McNee and fellow
researchers at GroupLens8 point out that the focus on improving the accuracy of
recommender systems has been misguided and even detrimental. Each experiment
(offline, controlled user, and online) has a purpose. You only need to select the right
one for the job.

9.7 Offline evaluation
The idea of offline evaluation is to use data that you regard as truthful. Then split the
data into two parts and feed one part to the recommender. Use the other part to verify
that the recommender predicts ratings on items in the set that were hidden to it;
those that are close to the actual ratings or those that produce recommendations that
contain items that were highly rated in hidden data as shown in figure 9.5. Or you can
say that the users consumed items they rated even if they didn’t like them, so the items
still count for something.

8 Sean M. McNee et al., “Accurate Is Not Always Good: How Accuracy Metrics Have Hurt Recommender Sys-
tems,” http://files.grouplens.org/papers/mcnee-chi06-acc.pdf.

Data

Train data
Recommender algorithm
trainer

Recommender algorithm
evaluator

Figure 9.5 Offline evaluation splits data into training and test sets before testing the
recommender algorithm.

http://files.grouplens.org/papers/mcnee-chi06-acc.pdf

223Offline experiments
This isn’t regarded as a good way of evaluating recommenders, but so far it’s been
hard to come up with a better way—unless you’re Netflix and you can do live A/B test-
ing on all new features (which we’ll talk about in a bit). Offline evaluation continues
to be a way to measure the effectiveness of the recommender. To complicate matters
further, a recommender can pass an offline evaluation with flying colors but still fail
miserably in production.

 There are many ifs and maybes, but you’ll do this with the recommender you
looked at in chapter 8. In the following chapters, we’ll talk about how to evaluate the
algorithms you look at. If you want to do research into recommender systems, it’s best
to have a good understanding of how to implement, test, and present new algorithms
or dialects of existing ones. I recommend looking at Michael Ekstrand et al.’s article
on the recommender research ecosystem.9

9.7.1 What to do when the algorithm doesn’t produce any
recommendations

Often you’ll run into cases where the recommender doesn’t produce any recommen-
dations or maybe not a long enough list of them. This can be a problem when evaluat-
ing the system, so often you fill in the blanks with a simple algorithm, such as the most
popular items, the average rating for the item, or an average of the user ratings. A
slightly more complicated solution is something that’s called baseline recommenders,
which we’ll look at in chapter 11. This is also briefly discussed in the article I recom-
mended in the previous section.

9.8 Offline experiments
An offline experiment uses the data that you have and measures whether the algorithm is
good. With offline experiments, you’ve limited options for finding out what you want
to know. This is because the data you have will probably be based on the behavior of
users where there was either no recommender system or there was one that you were
hoping to demonstrate is inferior to the one you want to test. You can only test if it’s as
good (or as bad) as the one used to collect it.

 We’ve agreed that a great benefit of a recommender system is providing users a
selection of new items that they want to use. But if you only have data where the level
of new (and surprising) items isn’t high, then how can you test it? You’d need users to
provide feedback on the complete catalog to know what a good recommendation is.
For now, because you don’t have any other way of testing your algorithms before
exposing people to those, this will have to do.

 One way you’ll look at testing the algorithm is to see if you can make the recom-
mender predict the user’s rating. If you hide part of the high ratings as an alternative,
you’ll see how many of those hidden ratings are recommended by the recommender.
So how will you measure what’s good?

9 Michael Ekstrand et al., “Rethinking the Recommender Research Ecosystem: Reproducibility, Openness, and
LensKit,” http://files.grouplens.org/papers/p133-ekstrand.pdf.

http://files.grouplens.org/papers/p133-ekstrand.pdf

224 CHAPTER 9 Evaluating and testing your recommender
MEASURING ERROR METRICS

To determine what’s good, you’ll measure the difference between the ratings in your
historical data set with what the recommender algorithm outputs. When we talk about
error, it’s exactly that—the difference between a user’s rating and the recommender’s
prediction of that rating:

 In chapter 7, you looked at mean absolute error (MAE), mean squared error
(MSE), and root mean squared error (RMSE). To quickly summarize the MAE takes
the absolute value of each of the differences and finds the average of those. The rea-
son for taking the absolute value is that if the recommender guesses low in one predic-
tion and high in the next, those two would cancel out each other. But if you remove
the sign, you’ll see positive numbers, and this is what you want so that you can mea-
sure the distance between the two.

 What these all have in common is that they sum up all errors (squared or not). If
there are users who’ve many ratings, the recommender would have an easier time pre-
dicting the ratings, while users with only a few ratings would be difficult. The RMSE
will put big penalties on big errors, such that one big error will count much more than
several smaller ones. While if you use the MAE, big errors or outliers don’t push the
error much. If it’s important that none of your users gets bad recommendations, then
you should use RMSE. But if you realize that you can’t make all users happy, then it’s
probably enough to use MAE.

 Figure 9.6 illustrates two users. User 1 has added four ratings and let’s say the sys-
tem knows him well, so it’s good at predicting ratings for him. User 2 has added only
one rating, so the system doesn’t know him as well. If you average all the prediction
errors, you’ll get (1 + 1 + 1 + 1 + 3) / 5 = 1.4, while if you average the users’ errors first,
then you get ((1 + 1 + 1 + 1) / 4 + 3 / 1). You have an average of 2 as the error, which
better indicates the overall user experience.

 If you look at each item instead, the popular items will be the ones easier to pre-
dict. If you’ve many items in the long tail, it might be worth thinking about what
you’re optimizing for. Maybe you can remove the popular items from the test set. Or
you can divide the data (if you have enough) into a set with popular items and evalu-
ate that, then separately evaluate the other data set with long-tail items.

 If you take the average of all the rating errors, the bulk of your result will come
from the user you know more about, while the one with the fewest ratings wouldn’t
contribute much. You get around that by measuring for each user and then taking
their average. Then each user would contribute equally, and the evaluation won’t
favor users with more ratings. But if you’re out to verify the predictive error on all the
test data, then you should average over all of the users:

where

error r p–=

MAE 1
RECSET
------------------------- r p–

r RECSET
=

RECSET theset of all recommended items for all users.=

225Offline experiments
As mentioned, it might not be too important to the users if the recommender can pre-
dict their ratings down to a decimal (unless you’re trying to win a competition). It’s
likely they’ll want it the recommender to list only the things they like and leave out
the things they don’t like. Maybe you don’t care if it’s good at predicting things that
the user has rated low.10 (By the way, most people don’t know how to describe what
they do and don’t like, so asking the recommender to do it is a bit of a complex
requirement.)

 Using the metrics we talked about here presents another issue (even if we only
look at the good recommendations), which is that all ratings are considered equally
important. If you look at the problem from a Top-N recommendation instead of a rat-
ing prediction, you’d be more interested in having good recommendations at the top
but not care so much about what happens further down. Let’s look at several rank-
aware metrics.

MEASURING DECISION-SUPPORT METRICS

Decision support is about taking each element and asking if the system was right or wrong.
If you consider a recommender system and look at each recommended item and com-
pare it to a user’s actual consumption, you can have four outcomes: for a given item, it
can either be recommended or not, and the user can either have consumed it or not. If
the recommender recommends the item, we say it’s positive, and then if the user con-

10 To account for this, you could say that the error of items rated below average by the user is something small,
as long as the prediction is also below the user’s average.

ActualUser 1

User 2

Predicted Error

Figure 9.6 Users should have equal weight in the evaluation. Here two
users’ ratings are shown. User 1 has added four ratings, while user 2 has
only added one. If you average all ratings, then the bad experiences of
user 2 will drown in the good ratings of user 1.

226 CHAPTER 9 Evaluating and testing your recommender
sumes the item, we say it was the right decision. We consider it positive if the item was rec-
ommended and true if the recommender and the user agree, so you get these outcomes:

 True positive (TP)—Item recommended and consumed by the user.
 False positive (FP)—Item was recommended but the user didn’t consume it.
 False negative (FN)—The recommender didn’t include the item in a recommen-

dation and the user consumed it.
 True negative (TN)—It wasn’t recommended and the user didn’t consume it.

This is often depicted as a table, which is shown in figure 9.7.

Having the outcome of your test in this format enables you to define two different
metrics:

 Precision—What fraction of the recommended items the user consumed:

 Recall—What, out of all the items that the user consumed, was recommended:

Recommended Not
recommended

Consumed True positive False negative

Not
consumed

False positive True negative

Recommender

Precision uses
numbers from
this column

Recall uses
numbers from
this row

Content
item

Figure 9.7 How precision and recall are calculated. comparing if users consumed the same
things that were recommended by the recommender.

Precision True Positive
True Positive False Positive+
--=

Recall True Positive
True Positive False Negative+
--=

227Offline experiments
Often a recommender system is implemented such that it should give the user at least
one choice for what to buy or view next. It’s important that there’s always at least one
relevant object in a Top-N recommendation. It’s often considered more important to
optimize precision, while not putting too much importance on whether the user gets
all the possible relevant items (the recall).

 How do you translate this into a metric that you can use for all your recommenda-
tions? Decision-support comes from information filtering, originally used for calculat-
ing the quality of search results. A search result can be long, so in the world of
recommenders, they’ve restricted the measurement to look only at the k top elements.

PRECISION AT K
The k top elements are measured by taking the number of relevant items between the
first k items. Relevance can be a hard boundary, considering that an item is relevant if
the user has rated it more than four stars, or you could say it must be more than one star
from the user’s mean. If you’re talking about implicit ratings, then it could also be items
consumed or something altogether different. But relevance needs to be decided on.

 If you’re interested in the precision within the first k items, called precision at k, it’s
defined as follows:

If you want to use precision, you can calculate the average over all users by summing
up all precisions and then dividing by the number of users. But if you have a top 10,
then you want to have relevant items all over the place, but most importantly at the
top. For this reason, more and more companies are using ranking metrics to evaluate
their recommenders. The first one we’ll look at uses precision at k to calculate the
mean average precision.

MEASURING RANKING METRICS
The first item recommended is always the most important one, then the second is
second-most important, and so on. When evaluating, you should take that into
account. In the following sections, we’ll look at ranking metrics that do exactly that.

MEAN AVERAGE PRECISION (MAP)
The average precision (AP) can be used to measure how good the rank is by running
the precision from 1 to m, where m is the number of items that are recommended
(usually denoted as k). To take it a step further, take the average of the precisions over
the first element, then the next two until you arrive at m. This is shown in figure 9.8
and in the following formula:

P@k u  # relevant content in the top k postitions  
k

--=

AP u 
P@k u k 1=

m
m

------------------------------=

228 CHAPTER 9 Evaluating and testing your recommender

This works per recommendation, so if you want to use it as a measure to evaluate a rec-
ommender, you can then take the mean of the average (or mean average precision—
MAP) over all recommendations:

DISCOUNTED CUMULATIVE GAIN

The discounted cumulative gain (DCG) is hard to define but easy enough to understand.
It’s about finding each relevant item and then penalizing the items the farther down it
is in the list. It’s much like the MAP that you looked at earlier. But where the MAP
only works with relevance, the DCG looks at levels of relevancy.

 To determine DCG, you give each item a relevancy score. In the case of a recom-
mender system, it can be the predicted rating or profit on the item. Here, relevance is
also denoted as gain. You could have also called it the discounted cumulative rele-
vance. The relevance is discounted by the position in the list: these relevance scores
are added up to get the discounted cumulative gain.

DCG has an even stricter big brother called the normalized discounted cumulative
gain (NDCG).

NORMALIZED DISCOUNTED CUMULATIVE GAIN

The thing about DCG is that it isn’t easy to compare with DCG calculated in other
evaluations. To get around that, one can use the big brother, NDCG, which when com-
pared to the DCG, is written as a proportion of the optimal ranking. You’ll have 1 if
the ordering is optimal:

Relevant

Relevant

p@1 = 1/1

p@2 = 1/2

p@3 = 2/3

p@4 = 2/4

Average precision:
ap = 1 / 1 + ½ + ⅔ + 2 / 4

4
= 2 / 3

Figure 9.8 Calculating AP by taking the average of each precision at k, with k being from 1 to the
number of items recommended.

MAP
AP u u U

U
-----------------------=

DCG 2rel i  1–

2log i  2+ 

i 1=

k
=

nDCG DCG
IDCG
--------------=

229Offline experiments
The NDCG is often used in competitions at Kaggle.com.11 If you’re interested in the
implementations of these in Python or other languages, check out the GitHub reposi-
tory at https://github.com/benhamner/Metrics.

9.8.1 Preparing the data for the experiment

With the different offline evaluation methods in place, you need to look at the data
needed for the experiment. You’ll need to go into tedious details about the data and
how to divide it.

 To start, figure out what data you have and whether it illustrates the reality you
want to evaluate. You probably have too little data and too many users that you know
too little about, or you have so much data that you’re drowning. It’s the usual prob-
lem: the grass is always greener on the other side. No matter what situation you’re in,
it’ll seem like the opposite problem is the easier one.

HANDLING NEW USERS

An example of a challenge—one I’ve already talked plenty about in this book—is that
you need data to personalize. If you’ve many users with only a few ratings, then it’s a
bit harsh to penalize the recommender if it can’t recommend something sensible to a
user that you basically don’t know anything about. You’ll usually filter users away with
only a small number of interactions in your data. Another problem is what to do if
you’ve too much data. In that case, you might need to try sampling.

SAMPLING

Sampling is about extracting a subset of the data that represents the same distribution
across communities and oddities as the full data set. That can be difficult. At its sim-
plest form, sampling is a matter of randomly picking items for your subset.

 The more accepted way of sampling is something called stratified sampling. If you’ve
a data set with 10% men and 90% women, then stratified sampling ensures that your
sample will contain the same distribution of male and female users.

FINDING GOOD CANDIDATES FOR THE EVALUATION

For this experiment, you should remove all users with few ratings. In chapter 7, you
learned that similarity only counts if there’s an overlap of more than 20 items. To
allow for that, you need to remove users with fewer than 20 items. In chapter 7, you
also saw that 20 items was a large number. If you look at figure 9.9, you can see that a
restriction of a minimum of 20 ratings will leave fewer than 10,000 users eligible for
recommendations.

 As with everything, it’s up to you and the rules of the domain as to where to set the
boundary. The algorithm won’t work for users with only one rating. A user with only
one registered rating also won’t do anything for collaborative filtering algorithms,
which work on binding items based on users having rated them. But removing all
users who’ve rated fewer than 20 items also seems to paint a misguided picture of the

11 For more information, see www.kaggle.com/wiki/NormalizedDiscountedCumulativeGain.

www.kaggle.com/wiki/NormalizedDiscountedCumulativeGain
https://github.com/benhamner/Metrics

230 CHAPTER 9 Evaluating and testing your recommender
e-commerce world, at least if you’re making a recommender for something that has
customers with similar buying habits, such as a bookstore.

 In most e-shops, it takes time to arrive at 20 items. I’d test this a few times, putting
the minimum as low as possible to determine the effect of the recommender on the
result. No matter what you decide, you still need to split the data.

SPLITTING THE DATA INTO TEST, TRAINING, AND VALIDATION SETS

When performing the experiment, you need data for the recommender to train and
calculate the predictions, but you also need data to test whether the predications
work. To handle this, you’ll split the data. You need three data sets: test, training, and
validation.

 The test set is where you calculate how good the algorithm is at predicting and pro-
ducing ratings. But if you keep correcting the recommender system to run better on
the test set, you’ll end up with a recommender system that’s good at predicting the
things in the test set, but perhaps not so good at predicting untested material.

 The test set should only be used once when you’ve finished optimizing the system.
That leaves you with the training set. What you can do is to split the training set fur-
ther, so that you’ve a training set (used to create the model) and a validation/dev set
(used to optimize the variables of the recommender). In short, you’d split the data set
into a test set and a training set. Then optimize the recommender (it could be the
number of recommendations that should be returned, the minimum similarity that

0 20 40
Number of rated items

N
um

be
r

of
 u

se
rs

60 80 100

0

10,000

20,000

30,000

40,000

50,000

Figure 9.9 The plot shows how many users remain in the data set if you specify a minimum
number of ratings a user should have before they’re included.

231Offline experiments
should be saved, and so on), then cut the training set into two sets for training and
dev/validation.

 You should optimize the recommender one parameter at a time. Or try your luck
with grid search or even randomized search.12 When you’ve an optimized model, use
the test set to calculate the evaluation measure.

 For the remainder of this section, we’ll assume the test set is already separate. To
use any of the metrics you spent so much time learning, you need two things—or
more precisely—you need two data sets (well, 3, but we’e assuming that you took out
the test set already). You’ll get these by splitting your historical data set into two parts
as shown in figure 9.10.

You’ll use one part to teach the recommender algorithm and one part to evaluate
what it has learned. Before you find a saw to cut the data set in two, let’s consider what
you’re trying to do because that will affect how you should slice and dice the data.

 Let’s say you have a small data set. I cut table 9.1 out of the rating table in the Mov-
ieGEEKs site.

12 In theory, grid search and random search should return the same result. But a grid search is exhaustive while
a random search isn’t and is therefore faster.

Table 9.1 A small sample of the MovieTweetings data set

user_id movie_id rating

1 0068646 10.00

1 0113277 10.00

2 0816711 8.00

2 0422720 8.00

2 0454876 8.00

2 0790636 7.00

3 1300854 7.00

3 2170439 7.00

3 2203939 6.00

4 1300854 7.00

user id

item id

rating

date

Splitting point

Figure 9.10 The historical data contains a long list of tuples, each describing a rating done by a
user on an item. How the data is split greatly influences how the evaluation goes.

232 CHAPTER 9 Evaluating and testing your recommender
We’ll use this data to show how the different splitting techniques work.

RANDOM SPLITTING

Often when you deal with predictive machine-learning algorithms, it’s normal to pick
a percentage p of the data and use that for training, then use the rest for testing the
trained algorithm. Many libraries will take care of this for you (Scikit-Learn to name
one).13 In a recommender system, you’ve the problem that splitting ratings randomly
will make the recommender train with ratings that are added after the ones that it
needs to predict.

NOTE Recommenders often don’t distinguish between ratings done now or a
year ago, but a rating’s age might have an effect on the recommender’s ability
to predict ratings.

It’s a good idea to split the data around 80–20, but that isn’t a rule. It’s important to
have as much data as possible to train the algorithm, but it won’t matter if you don’t
have a nice selection of data to verify the result. Let’s randomly select two rows and
take them out using two examples where this wouldn’t work well. Imagine the random
selection was a bit lazy and took two from the top as shown in table 9.2.

The result is that the recommender doesn’t know anything about user 1, therefore
can’t recommend anything. The same is the case if you pull out these two lines in
table 9.3.

Now the recommender can’t find any similarity for movie 1300854 and it’s lost. Taking
out all the ratings of a certain value isn’t a problem, however.

13 For more information, see http://mng.bz/X5gZ.

Table 9.2 Unlucky random selection where only user
1’s ratings are present in the validation data

user_id movie_id rating

1 0068646 10.00

1 0113277 10.00

Table 9.3 Another unlucky random selection where
item 1300856 is present in the validation set but not
in the training set

user_id movie_id rating

3 1300854 7.00

4 1300854 7.00

http://mng.bz/X5gZ

233Offline experiments
SPLIT BY TIME

From a recommender system evaluation’s point of view, it makes more sense to split
the data based on time, saying that everything before a certain point is used for train-
ing the algorithm. Only you can’t train with this data because you don’t have a time-
stamp, so you’d have to skip this option (or update the data model because the
MovieTweetings data set also contains timestamps).

 If you’ve the ratings in figure 9.11 on a timeline instead as the brief example in
table 9.1 shows, you’ve a snapshot of how the data looks at a certain point in time. You
can even test the recommender with a sliding time scale and see how the recom-
mender would work at any point.

There’s a cost of splitting data like that shown in figure 9.11; you’ll have users who
only appear in the test set, and the recommender has no idea what to do with that.
Certain people would say that it’s an excellent chance to see how it works with cold
users, but for the evaluation of one algorithm, it doesn’t seem like the right thing to
do. If you’re testing a hybrid that’s implemented to handle cold-start users, this is per-
fect. Alternatively, you can clean the test data set for users who don’t appear in the
training set. One extreme case for this method is that you iterate through all ratings
and attempt to predict it using only ratings with timestamps that are earlier than the
current rating.

SPLIT BY USERS

The last option we’ll look at doesn’t divide the users between test and training sets.
Instead, you’ll divide each user’s ratings between a training set and a test set. The rat-
ings will be divided by taking the first n ratings in the training set and the rest in the
testing set. This is illustrated in table 9.4.

Training data set Test data set

Figure 9.11 Splitting data by time creates timed snapshots of the data.

234 CHAPTER 9 Evaluating and testing your recommender

In table 9.4, the two first ratings of each user are put in the training set. Users 1 and 4
don’t have any ratings in the test set, but this way all users will be in the training set,
and you won’t find any users in the test set that haven’t been seen before.

 It’s a bit more demanding to split data this way because you need to order each
user’s rating. If you have timestamps, you can do something like this.

select *,
 (select count(*)
 from rating as rating2
 where rating2.timestamp < rating1.timestamp
) as rank
from Rating as rating1
where rating1.user_id = 1
and rank < 3

If you have many ratings, this takes more time, so you might be better off storing
the number when you save the rating. Dividing the data like this is called the given n
protocol; it’s mentioned here because it’s often used in research papers. Others would
argue that this is the best way to collect one rating from all the users and will use that.

CROSS-VALIDATION

No matter how you split the data, there’s a risk that you’ll create a split that’s favorable
for one recommender. To mitigate this, try out different samples of the data for train-
ing and find the average and the variance of each of the algorithms to understand
how one is better than the other. Figure 9.12 shows how the data can be divided.

 k - fold cross-validations work by dividing the data into k folds then use k -1 folds to
train the algorithm. The last fold is test data. You iterate through the full data set and
allow each fold to be used as the test set. You run the evaluation k times and then cal-
culate the average of them all.

Table 9.4 Data split by user

user 1 user 2 user 3 user 4

1 0068646 0422720 1300854 1300854

2 0113277 0454876 2170439

3 0790636 2203939

4 0816711

Listing 9.5 Getting the first two ratings of all users with SQL

Selects each row in the resulting table.
Queries the data to find how many
ratings were done before this
timestamp.

Counts all the
ratings with
timestamps lower
than the timestamp
of the current rating

For each user, filters by user_id to
split the data

Gets only the first two
ratings per user as
shown in table 9.4

235Implementing the experiment in MovieGEEKs
But the previous question still remains: how do you split the data? Do you divide the
ratings into k different folds? But then you’ve the same problem: you might end up
with users who are only present in one set.

 Instead, you’ll take all the user IDs and split those into k different piles. Then,
you’ll have the problem of users being in only one fold. To solve that, divide the rat-
ings of the test users such that 10 ratings, for example, go into the training part and
the rest are used for testing. Let’s see if we can implement this.

9.9 Implementing the experiment in MovieGEEKs
As always, we’ll look at an implementation in the MovieGEEKs website that can be
found at http://mng.bz/04k5. (If you haven’t done so, I recommend that you down-
load it and run it on your machine.) The data set you’ll use is called MovieTweetings,
which can also be found on GitHub,14 but if you’re downloading the website, there’s a
script you can run to get all the data you need. For instructions on how to run the
MovieGEEKs site, see the README file.

9.9.1 The to-do list

The implementation uses a k -fold cross-validation, where k = 6. The first 10 items of
the test go to training the algorithm. This chapter describes an evaluation runner
framework and shows how you can evaluate the algorithm from chapter 8. It uses the
same evaluation framework throughout the rest of the book for each of the algo-
rithms described. You’ll evaluate it using the MAP. Figure 9.12 shows the pipeline we’ll
walk through. It goes through these steps:

 Cleans the data
 Splits the users into k-folds
 Repeats for each of the five folds

– Splits data

14 For more information, see https://github.com/sidooms/MovieTweetings.

All data

Training dataTest data

Test data

Test data

...

Test data

Fold 1

Fold 2

Fold 3

Fold N

Figure 9.12 When you do k-fold cross-validation, you divide your data into chunks.

https://github.com/sidooms/MovieTweetings
http://mng.bz/04k5

236 CHAPTER 9 Evaluating and testing your recommender
– Trains recommender
– Evaluates recommender on the test set

 Aggregates result

Figure 9.13 illustrates each step. The code for this can be found on GitHub in the
folder called \evaluator. The file is called evaluation_runner.py.15

CLEANING DATA

Most data sets need a bit of housekeeping before you evaluate them. You can say that
maybe it’s cheating, but for your own sake, it’s better to clean the data. Big data sets
take forever to test, and in our case, all the users who rated only a few items don’t help
the recommender much, and the chance of recommending something sensible is
small. In the code, I’ve chosen to do that as shown in listing 9.6. You can view this
script in /evaluator/evaluator.py.

15 For more information on the split_users method, see http://mng.bz/eL42.

Recommender algorithm

Build model

Split Users in data into k-folds

K

For each fold

Training setTest set

Evaluate

Training
data

Build the
model using
the training set

Compare
recommender
with test set

Evaluation
Runner

Data
Cleaner

Algorithm
evaluation

Predict/
Recommend

The users from the
test fold. Will have
the ratings split
between test and
training set.

Figure 9.13 The evaluation pipeline

http://mng.bz/eL42

237Implementing the experiment in MovieGEEKs

def clean_data(self, ratings, min_ratings=5):

 user_count = ratings[['user_id', 'movie_id']]

 user_count = user_count.groupby('user_id').count()

 user_count = user_count.reset_index()

 user_ids = user_count[user_count['movie_id'] > min_ratings]['user_id']

 ratings = ratings[ratings['user_id'].isin(user_ids)]

 return ratings

Now that you have the data clean, spotless, and shiny, you’re ready to proceed.

SPLITTING THE USERS

Splitting the users into k-folds isn’t that hard, so we won’t go into much detail about
that here. This listing shows how you can use the Scikit-Learn tool. You’ll find it in
/evaluator/evalutation_runner.py

def split_users(self, users, num_folds = 5):

 kf = KFold(n_split = num_folds)16

 return kf

To get any benefit from the splitter, you can use it in a for loop (shown next) that
runs the steps shown in figure 9.11 in the box called repeat n times. Again, you can see
this in the /evaluator/evalutation_runner.py script.

def calculate_using_ratings(self, all_ratings,
 min_number_of_ratings=5,
 min_rank=5):

 ratings = self.clean_data(all_ratings, min_number_of_ratings)

 users = ratings.user_id.unique()
 kf = self.split_users()

Listing 9.6 Cleaning the data

Listing 9.7 Splitting users into k-folds with the Scikit-Learn tool

16 For more information about sklearn, see http://scikit-learn.org/stable/modules/cross_validation.html.

Listing 9.8 Running the evaluation

Counts how many items to cut—the ones with
fewer than the minimum number of ratings a
user should have

With groupby, you need to
reset the index to access the

column by name.

Filters the list of user_ids to
remove the users with fewer movie
ratings than the min_ratings

Filters the ratings to
only those from the
users you filtered
previously

Creates an instance of
the k fold from sklearn16
and initializes it to do
num_folds folds

kf has a split method, which when
called, returns a training set and a
test set, corresponding to the next
configuration of the k folds.

http://scikit-learn.org/stable/modules/cross_validation.html

238 CHAPTER 9 Evaluating and testing your recommender
 validation_no = 0
 paks, raks, maes = Decimal(0.0), Decimal(0.0), Decimal(0.0)

 for train, test in kf.split(users):
 validation_no += 1
 test_data, train_data = self.split_data(min_rank,
 ratings,
 users[test],
 users[train])
 if self.builder:
 self.builder.build(train_data)

 pak, rak = PrecisionAtK(self.K,
 self.recommender).calculate(train_data,
 test_data)

 paks += pak
 raks += rak
 maes += MeanAverageError(self.recommender).calculate(train_data,
 test_data)
 results = {'pak': paks / self.folds,
 'rak': raks / self.folds,
 'mae': maes / self.folds}
 return results

Before looking at the precision at k and the mean average error, let’s look at a method
for splitting the data.

SPLITTING THE DATA

As you learned in the previous section, you have k folds, where all ratings from the k-1
folds go directly to the training set, and the last fold is divided so that all items ranked
lower than min_rank are in the test set and the rest are in the training set as shown in
the next listing. The code can be viewed in the script evaluator/evaluation_runner.py.

def split_data(self, min_rank, ratings, test_users, train_users):
 train = ratings[ratings['user_id'].isin(train_users)]
 test_temp = ratings[ratings['user_id'].isin(test_users)]

Listing 9.9 Splitting the data into training and test data

The kf.split
provides the
user_ids, but you
still need to split
the test users’
data.

The builder is an instance of the recommender
algorithm trainer class. Calling build means
that it prepares the training data for
recommendations. In the neighborhood
algorithm, it builds the similarity matrix.

The precision at k evaluation
that runs on the top five

recommendations using the
neighborhood recommender.

Calculates the mean
average error

Returns the result,
averaging over the

number of folds

Creates a data frame with all the ratings
of the train_users from the k-1folds

Creates a data frame with all the
ratings of the test_usersfrom the

last fold

239Evaluating the test set
 test_temp['rank'] = test_temp.groupby('user_id')['rating_timestamp'] \

➥ .rank(ascending=False)
 test = test_temp[test_temp['rank'] > min_rank]

 additional_training_data = test_temp[test_temp['rank'] >= min_rank]
 train = train.append(additional_training_data)

 return test, train

9.10 Evaluating the test set
Having done all these things, I’m afraid the sad truth is that you wouldn’t have won
the Netflix Prize with the algorithm implemented in chapter 8. That’s also what they
said at Netflix after they cashed out $1 million. They said that it wasn’t a good way to
evaluate whether a recommender is good.

 The next brutal thing is that there are many parameters that you can adjust to
make it look better (or worse). For example, you can restrict the users that are in the
test. You can look at the precision at 10 or 100. But rest assured that everybody has
received disturbingly low numbers the first time they ran an evaluation on their rec-
ommender. (I got a precision that was something like 0.063 the first time around.)

 I guess I sound a bit like a sore loser, and yes, I was disappointed. But what you’re
looking for is a benchmark. If it’s too close to zero, the recommender can’t predict
any of the films the users had in the test set. And that’s bad. If you have something
that’s almost one, it means that all users in your test set receive recommendations that
contain items the user has rated positively.

 But before giving up, consider how often you click a recommendation and end up
buying it. Let’s say it’s a movie site like MovieGEEKs, and you’ll often arrive looking
for something specific. How often do you think that you click something in the recom-
mendations, buy it, and then rate it. That’s what you’re up against here. If you could
create a recommender that would make a user click on a recommendation one out of
50 times, then that would be an okay start.

9.10.1 Starting out with the baseline predictor

Before you evaluate your new recommender, you should evaluate it on a simple rec-
ommender that, for example, always recommends the most popular items and see
what numbers come out. Then you’ll have something to compare. Listing 9.10 shows
the code or you can view the script in /recs/popularity_recommender.

Ranks the content items ordered by
timestamp for each user, so the item
with rank 1 is the newest, and so on

Removes all items that rank
higher than the min_rank Returns the

two data frames

Takes all the items
from the test users

with ranks higher or
equal to min rank . . .

… adds them to the
training data

240 CHAPTER 9 Evaluating and testing your recommender

class PopularityBasedRecs(base_recommender):

 def predict_score(self, user_id, item_id):
 avg_rating = Rating.objects.filter(~Q(user_id=user_id) &

Q(movie_id=item_id)).values('movie_id').aggregate(Avg('rating'))
 return avg_rating['rating__avg']

 def recommend_items(self, user_id, num=6):
 pop_items = Rating.objects.filter(~Q(user_id=user_id))

➥ .values('movie_id')

➥ .annotate(Count('user_id'), Avg('rating'))
 sorted_items = sorted(pop_items, key=lambda item:

➥ -float(item['user_id__count']))[:num]
 return sorted_items

Both methods in listing 9.10, predict_score and recommend_items, exclude all data for
the current user, so the methods might give slightly different recommendations,
depending on who’s viewing. But for the rest, it’s quite simple. The predict_score
method calculates the item’s average, and the recommend_items method takes the most
rated items. You could also recommend items based on the highest average rating.

 To evaluate this recommender algorithm run the script in listing 9.11. If you’re
measuring according to the MAP we talked about earlier, then test the most popular
recommendation with K = 2 and then jump 2 until 20. The result is shown in figure
9.14. (Figure 9.15 is the same graph but for the neighborhood collaborative-filtering
algorithm you saw in chapter 8.) The first evaluation (of the popularity recom-
mender) was done by executing the script in the following listing.

>python -m evaluator.evaluation_runner -pop

The graph in figure 9.15 was done using the data created by running almost similar
code as shown in this listing.

>python -m evaluator.evaluation_runner -cf

It’s easy to see that you should choose this model over the popularity model because
the MAP is much higher here. The problem is that to get this precision, you need to
look at only the users who have rated 20 items.

Listing 9.10 The most popular recommender method

Listing 9.11 Evaluating the popularity recommender in figure 9.14

Listing 9.12 Evaluating the popularity recommender in figure 9.15

The predict-score method finds all
the ratings given to a particular
item and averages that.

The top-N recommender returns the items
that have been rated the most.

Returns a sorted list based on
how many users rated it

241Evaluating the test set
0.04

0.03

0.02

0.01

Mean average precision for popularity rec

map
P

re
ci

si
on

0.00

0 2 4 6 8 10
K

12 14 16 18

Figure 9.14 The MAP for the popularity recommender. An interesting hill appears at top-2 with
a slight decrease for top-4 recs.

0.10
Mean average precision for collaborative filtering rec

0.08

map

0.06

0.04

P
re

ci
si

on

0.02

0.00

0 2 4 6 8 10
K

12 14 16 18

Figure 9.15 The MAP for the neighborhood model that you looked at in chapter 8

242 CHAPTER 9 Evaluating and testing your recommender
Even if the neighborhood model might not be good for recommending things to all
users, it’s still worth implementing and using over the popularity recommender
because it has a higher precision. This is probably as easy a start as you could have to
implement a hybrid recommender that will return results from the neighborhood
model. When the user has too few ratings, it could spice things up a bit with results
from the popularity recommender.

9.10.2 Finding the right parameters

You should begin taking away the test set. Then you should look at the training set,
which is split further into smaller parts when you want to optimize the parameters of
the model. The model implemented in chapter 8 has the parameters shown here and
in /evaluator/evaluation_runner.py.

min_number_of_ratings = 20
min_overlap = 5
min_sim = 0
K = 10
min_rank = 5

You want these parameters to be set so they return the best evaluation. To do that,
pick one and then run the evaluator for a range of values. For example, the parameter
min_ number_of_ratings says something about the minimum number of ratings a
user should have before being considered in the evaluation. Now do a simple for loop
like that shown in the next listing. You can see this code segment in the file /evalua-
tor/evaluation_runner.py.

builder = ItemSimilarityMatrixBuilder(min_overlap, min_sim=min_sim)

for min_overlap in np.arange(0, 15, 1):
 recommender = NeighborhoodBasedRecs()
 er = EvaluationRunner(0,
 builder,
 recommender,
 K)

 result = er.calculate(min_number_of_ratings,
 min_rank,
 number_test_users=-1)

Listing 9.13 Splitting the training set

Listing 9.14 Minimum number of ratings: evaluator/evaluation_runner.py

Requires that each user has
rated a minimum of 20 movies

Looks only at similarities where
more than min_overlap users
have rated both movies

Saves only similarities that are
greater than min_sim

Top 10 recommendations

Gives the five newest
ratings to the test set

Creates an instance of the model
training class. In this case, it’s the
item similarity matrix. builder.

Runs through a range of values,
where you’re testing min_overlap

Creates an instance
of the recommender

Creates an instance of
the evaluation runner

Runs the evaluation calculator

243Online evaluation
 user_coverage, movie_coverage =
RecommenderCoverage(recommender).calculate_coverage()

When that’s finished, and you believe that you’ve an optimal number, you can move
on to the next parameter. Go through all of the parameters, and if you want to do a
thorough job, you can run through it all a couple of times in different orders. These
are the manual steps in testing each parameter. Keep in mind that you’ll have to fix
the code, so it iterates over the parameter you’re training.

 This is it for offline experiments. I hope now you have an understanding about not
only how you can use them, but also how many things can go wrong when you do. It’s
still a good idea to test so you can measure if you have improvements, just remember
to evaluate the right things.

9.11 Online evaluation
Once you’re satisfied that your recommender algorithm is spinning to the best of your
knowledge, it’s time to deploy the system and test it out on real humans. But you can
do this in stages.

 First, I’d recommend doing controlled experiments. Then when the feedback is
good, move on to testing with random users in your system, doing what is called a
bucket test or, more fashionably, A/B testing. But what is a controlled experiment?

9.11.1 Controlled experiments

You set up controlled experiments by inviting humans to perform a test in a con-
trolled environment. You can invite people to follow a checklist; for example, in the
case of MovieGEEKs, the goal is to have users insert their preferences (rate several
movies), determine if the recommendations are good, show two different types of rec-
ommendations to the user, and see which seems to work better.

 The good thing about controlled experiments is that you can monitor user behav-
ior. You can ask users questions about what they thought. The downside is that users
might behave differently in a controlled environment than they would if they were
nonchalantly visiting your site. It might also be time-consuming and difficult to set up
an experiment that you can learn from.

FAMILY AND FRIENDS

A way to do something similar is to provide access to a small group of people, which is
normally termed family and friends, who you trust to try out the system and return hon-
est feedback. This alternative will make everybody an expert in recommender systems,
and they’ll tell you how and why you need to update the recommender.… When that
happens, remember to bow your head and listen to their feedback. Because even if
they don’t understand the new super-complicated algorithm you’re testing, they’re
still representatives of the end-users.

Calculates coverage

244 CHAPTER 9 Evaluating and testing your recommender
9.11.2 A/B testing

Many things can influence how your application runs. You might have an increase in
conversions because you added new content to your catalog, or Christmas is around
the corner so people might go on a frenzied buying spree, or you might have a com-
pletely different reason. What I’m getting at is that there are many different factors
that influence the state of e-commerce, including many that you can’t control. This is
important to consider because you might launch a new recommender system, or a
change to an existing one, and when that something else happens, it might look like
it’s the recommender’s fault. It’s hard to test whether a recommender has a positive
effect. To get around this, you can use A/B testing to see if your change has any effect.

 With A/B testing, you can test a new recommender algorithm by redirecting a
small part of the traffic to the new recommender and letting the customers (unknow-
ingly) indicate which is better. In fact, usually it’s business as usual for the customers.
They won’t know that they’re part of an experiment. And that’s the whole point.

 How does A/B testing work? Let’s say you finished a new algorithm implementa-
tion, the offline evaluation looked okay, and now it’s time to step it up so you imple-
ment an A/B test. The test will show if there’s a significant difference between the
current recommender and the new one. In practice, it works by diverting a small per-
centage of traffic to the new feature as shown in figure 9.16.

A concrete example could be that you want to test two different settings of the neigh-
borhood size, or you want to test if one recommender’s performance is better than
another. Registering all visitor behavior in the test group (as well as in the control
group) lets you decide whether it’s worth upgrading all traffic to the new algorithm.

 One of the risks to consider with A/B testing is that if your new feature isn’t good,
then you might risk losing customers because they’d experience a drop in quality. But
there’s always a price to pay for a chance to do something better. Conversely, if you put
new features in production without testing them, you might end up in much more trou-
ble. At companies like Netflix with many millions of users, they A/B test everything
before it goes into production.17

17 Read more about Netflix’s A/B test at http://mng.bz/FJUB.

All visitors

Test group visitors Recommender under test

Current recommender
Control group
visitors

A/B test
allocator

Figure 9.16 In an A/B test, visitors are split into two groups: the test group that sees the new
feature and a control group that continues as usual.

http://mng.bz/FJUB

245Continuous testing with exploit/explore
 A/B testing is something you’d want to look into more because it’ll be the basis of
feature development for data-driven applications in the future. A/B testing is one
thing, and you need to do that, but another consideration is features that test well may
not be good in the long run. It’s a good idea to keep running tests, and one way of
doing that is exploit/explore, which we’ll summarize next.

9.12 Continuous testing with exploit/explore
A/B testing is about deciding whether to deploy a new feature. It’s much easier instead
to say, “I have these two algorithms running, and I believe that sometimes one is better,
but other times, it’s the other way around,” and make the computer figure out which it
should use. That’s exactly what’s behind the explore/exploit idea: you can either
exploit the knowledge you’ve gained so far and use the one that you think is better, or
you can explore another feature that the system doesn’t know much about.

 You can consider this as continuous A/B testing. Another way of thinking about it
is this scenario: you’ve a long row of one-armed bandits (also known as slot machines)
as shown in figure 9.17. As an experienced gambler, you know that machines 1 and 2
often give out something, but the payout may not be as much as the other machines
you don’t know much about. Should you then go for the safe bet and put your money
in 1 or 2, or should you be daring and try something less known?

This problem is similar to the recommender system that knows that popular items are
often good, but you might gain more by showing something new. This can be used not
only when choosing between algorithms but also for items. For more on this subject, I
recommend Statistical Methods in Recommender Systems by Deepak K. Agarwal et al.,
(Cambridge University Press, 2016).

 Exploit/explore is also used at Yahoo! News to introduce new content so that it
doesn’t stay cold (remaining unseen). But it’s tested among users first, allowing the
system to understand what users’ responses are to the new content.

Figure 9.17 Exploit/explore is often explained as the problem of a gambler who needs to choose
the next slot machine to play.

246 CHAPTER 9 Evaluating and testing your recommender
9.12.1 Feedback loops

Collaborative filtering uses user behavior to create recommendations, but when you
put your system in production, you should ask what the recommender does to the
user’s behavior. That’s because if the recommender works, it might hinder diversity as
discussed in section 9.4.2. NIPS (Conference on Neural Information Processing Sys-
tems) 2016 featured an interesting paper showing how to measure such diversity with
feedback loops.18

 It’s a good idea to keep feedback loops in mind because it’s about ensuring that
users are given alternative ways to provide data for your tests. In figure 9.18, the loop
represents what happens if users only consume things that are shown as in recommen-
dations. This is something that Netflix has to consider because everything is a recom-
mendation on its platform.19 Somehow you need to introduce new items into this
loop.

 In figure 9.18, X could be a search, some manually added content, or even ran-
dom items added to the feed as we talked about in the previous section. Remember, if
you want diversity, you also need to enable the users to be diverse.

Recommender systems, although hard to evaluate, are about making many choices.
You can either choose to measure prediction power or rank power as we talked about,
or you can split your evaluation data into two sets in so many ways: random split, time
split, or user splits. Is it a surprise that we’ve spent almost a whole book talking about
how to implement recommender systems, and now it turns out that it’s hard to evalu-
ate whether they work or not? What you should remember from all this is that it’s hard

18 Sinha, Ayan et al., “Deconvolving Feedback Loops in Recommender Systems,” https://papers.nips.cc/paper/
6283-deconvolving-feedback-loops-in-recommender-systems.pdf.
19 Look at the slides at http://mng.bz/0gw4.

Consumed Model

In training data

X

In
recommendation

Figure 9.18 The feedback loop of recommenders

https://papers.nips.cc/paper/6283-deconvolving-feedback-loops-in-recommender-systems.pdf
http://mng.bz/0gw4

247Summary
to do one run and then understand if it’s good. It’s more important to do an evalua-
tion and then use that as a basis for future evaluations.

Summary
 You should consider testing before implementing a recommender system.
 Regression tests guard your code against mistakes added unknowingly.
 Serendipity, the users finding things in your recommendations that they love

but never knew they would, is hard to measure, but it’s important.
 Different metrics are used to calculate whether the recommender is good or, at

least, if it compares to a baseline.
 A/B testing (where visitors are split into two groups) is something you need to

consider if you want to fine-tune your recommender system. An A/B test can
also be done to test which parameters work better; for example, the size of the
neighborhood in collaborative filtering or the number of latent factors in
matrix factorization.

 The explore/exploit method is important if you want to keep optimizing your
system when it’s online.

 Watch out for feedback loops.

Content-based filtering
 This chapter is all about content and users’ tastes:

 You’ll be introduced to content-based filtering.
 You’ll learn how to construct user and content profiles.
 You’ll learn to extract information from descriptions using term fequency-

inverse document frequency (TF-IDF) and latent Dirichlet allocation (LDA)
to create content profiles.

 You’ll implement content-based filtering using descriptions of films in Movie-
GEEKs site.

In previous chapters, you saw that it’s possible to create recommendations by focus-
ing only on the interactions between users and content (for example, shopping
basket analysis or collaborative filtering). Although those work nicely, what about
the things that you know about the content? For a movie that can include catego-
ries such as genres, actors, and directors. In other sites, it can be things such as
clothing sizes and colors, or engine sizes for cars. Can you call a recommender sys-
tem good if it doesn’t take those things into account?

 The answer is “YES!” as you’ve seen in the previous chapters, but it still seems as
if you’re missing something or losing out on certain information. I’ll try to make up
for that because this chapter covers what you know about content and users’ tastes.

 By the end of this chapter, you should have a clear idea of how to build a
content-based recommender because you’ll build one. We’ll look at feature selec-
tion and how to process text to be used for content filtering. We’ll also look at two
different algorithms called term frequency–inverse document frequency (TF-IDF)
248

249Descriptive example
and latent Dirichlet allocation (LDA). Sounds exciting, doesn’t it? Let’s start with an
example to set the stage.

10.1 Descriptive example
On an average day, a conversation about movies could go something like the following:

 Me: I just saw Ex Machina (okay, still haven’t watched it but I look forward to it).
 Imaginary interested person: Really, was it good?
 Me: Yeah, there were some very interesting subjects (imagining that I watched it).
 Imaginary interested person: All right, so you like robot people.
 Me: Well, yes (feeling like I shouldn’t say yes).
 Imaginary interested person: Technology that goes bad. Then you must like Terminator.
 Me: Yes (relieved).

What transpired here? The imaginary interested person thought about categories con-
taining Ex Machina, found the category “Robots that go insane,” mentally looked up
other movies in that genre (or maybe that isn’t an accepted genre, so let’s call it a cat-
egory) and found Terminator. In this chapter, you want to implement a recommender
that does the same.

 You can use content-based filtering to create similar items recommendations,
which are also sometimes called More Like This recommendations (see figure 10.1),
or to provide personal recommendations based on taste.

Figure 10.1 More Like This recommendation from Netflix

http://localhost:8001/analytics/user/100/)

250 CHAPTER 10 Content-based filtering
The imaginary interested person never used any opinions about whether the movies
were good or not, but only used the metadata of the content being discussed and rec-
ommended a movie based on that. To draw it, it might look similar to figure 10.2.

That seems clear (at least to the imaginary interested person and me), but if you have
to implement this into a recommender system, how would you get it to do the same?
In figure 10.2, we took one film (Ex Machina) and found a recommendation based on
that. To do that, we needed to look for a way to find content that visitors think is simi-
lar, That can be a bit hard because humans are strange machines. But let’s make an
attempt.

 We’ll start by talking more about what content filtering is when we look at a way to
find important words using the TF-IDF algorithm. Using that and other tricks to
extract features, we’ll build a model where similar documents are close. In this chap-
ter, you’ve a bit of road to follow, so let’s see if I can provide directions to start with so
you know where you’re going. We’ll start with an overview of what content-based filter-
ing is. Then we’ll look at several ways to describe content.

 One element that’s often used on the internet is tags. Tags are something that
came out of the social internet or Web 2.0 (even if it had been there for a while). Tags
let users of your website add keywords to your content. An example of this is seen on
imdb.com as shown in figure 10.3. Another way to describe content is with textual
descriptions, which is the next topic we’ll address.

 It’s hard to make computers understand text-only content. Making computers read
text is a complete research study in itself and, sadly, doesn’t fit into this book. The field
is called natural language processing (NLP) and it’s a topic which is expanding

I like Ex machina

Look up
movies in
these
categories• Star Wars (1,3)

• Terminator (1,2,3)
• Die Hard (1)

Recommendations
Terminator ***
Star Wars **
Die Hard *

Order by
relevance

Look up categories
for Ex Machina 1. Action

2. Robots that
 go insane
3. Sci-fi

Figure 10.2 Example of content-based recommendation pipeline

251Content-based filtering
exponentially these days. If you’re interested, a good place to start is Natural Language
Processing in Action.1 If you’re going to recommend textual content, such as articles or
books, then it’s a good idea to look into NLP. If you’re recommending content with only
short descriptions, I don’t know if it would be worth the effort. NLP can be many things
and, indeed, most of what’s in this chapter is also considered NLP.

 Because we’re trying to make the computer extract keywords, not read the text,
we’ll look at how to extract those words that are important while removing those that
produces noise. You can remove noise in many ways, and we’ll look at several. Then
we’ll calculate the most important words using the TF-IDF method.

 You can use the important words you find to create a list of categories (also called
topics) that capture similar trends in the descriptions by using the LDA algorithm.2

Latent refers to the fact that the topics found don’t compare to any category that you
know, Dirichlet is the way the documents are described using these topics, and alloca-
tion means that words are allocated into topics. This isn’t the complete truth, but with-
out going too much into statistics, it’s a good way to remember it. When you’ve a
better understanding of these methods, we’ll look at how they’re implemented in the
MovieGEEKs app. Now on to content-based filtering.

10.2 Content-based filtering
Content-based filtering seems a bit more complicated than collaborative filtering
because it’s about extracting knowledge from the content. You’ll try to extract precise
definitions of each content item and represent each item as a list of values. Described
like this it sounds easy, but it does pose challenges. Figure 10.4 illustrates a simple ver-
sion of how to train a content-based recommender (offline), while figure 10.5 shows
how it’s used when a user arrives at your site (online).

1 Hobson Lane and Hannes Hapke, Natural Language Processing in Action (Manning, 2018).
2 For more information on the LDA algorith, see http://jmlr.csail.mit.edu/papers/v3/blei03a.html.

Tags

Figure 10.3 Screen from imdb.com showing tags

http://jmlr.csail.mit.edu/papers/v3/blei03a.html

252 CHAPTER 10 Content-based filtering
To sum up, you need the following to make things work:

1 Content analyzer—Creates a model based on the content. In a way, it creates a
profile for each item. It’s where the training of the model is done.

2 User profiler—Creates a user profile; sometimes the user profile is a simple list of
items consumed by the user.

3 Item retriever—Retrieves relevant items found by comparing the user profiles to
the item profiles as shown in figure 10.5. If the user profile is a list of items, this
list is iterated, and similar items are found for each item in the user’s list.

You have several ways to implement these steps, and this chapter is about how it works.
Let’s look at each of the three points in turn.

Content items

2. User interacts with
 the content, and the
 system creates a
 user profile in the
 user profiler.

1. All the content runs
 through the content
 analyzer that creates a
 model of the items.

User
profiler

Content
analyzer

Figure 10.4 Training a content-based recommender offline

Website

1. When a
 user arrives...

2. ...the user’s profile
 is retrieved.

3. The trained model
 is used to find
 relevant items.

Figure 10.5 The item retriever returning recommendations with
content-based filtering online.

253Content analyzer
10.3 Content analyzer
The content analyzer is the poor soul that’s given descriptive data about your content
and has the task of mapping that data into something, such as a vector, the machine
can use. To implement a content analyzer, we need to chat a bit about content: what is
it and how do you understand it? We also need to talk about feature extraction, which
is extracting things that you think are important for your algorithm to work.

10.3.1 Feature extraction for the item profile

Data about data is called metadata. To avoid confusion, we call data about films metadata
as well. Metadata about a film is everything that you can find on an IMDb page, such as
genre, starring artists, and production year. It could also be something like the type of
filming or the style of clothing worn by the actors in the film, or in other domains, the
shade of paint on the car or the number of freckles on men on dating sites. I like to split
the metadata loosely into two types:

 Facts
 Tags

This isn’t a division normally used, but it’s beneficial for you to think about. Because
facts are the things such as production year or starring actors in a movie that can’t be
disputed, and you can also use them as input. Tags can mean different things to peo-
ple and should be considered before adding them.

 The social internet has made it popular for people to add descriptive tags to con-
tent. Tags can be something as simple as “uplifting” or more subjective like “breaking
the fourth wall.”3 I’ve no idea what that means, but 10 people describing Deadpool said
that it was relevant, and apparently it applies to a number of films across genres and
decades.4

 Another challenge with the tags that viewers put on films is that people have dif-
ferent ways of expressing themselves. A simple example is how people talk about a
James Bond film. I’d probably say it’s a “Bond film” and tag it as such. But looking at
the data, you can see that there are several different ways to describe those files, pre-
dominantly using “007.” To make your system understand that people are, in fact,
talking about the same film, it’s worth streamlining the tags to use the same word for
the same thing as much as possible. Ideally, you also want to split tags that mean dif-
ferent things to people.

NOTE Facts and tags have no clear divisions, so remember that facts are
something that people often agree on, while tags can be a bit more subjective.
In this light, you should probably put genres in the tag category, but that’s a
matter of debate also.

3 Look for the most popular movies that have been tagged breaking-the-fourth-wall at http://mng.bz/uC72.
4 For more information, see http://mng.bz/997l.

http://mng.bz/uC72
http://mng.bz/997l

254 CHAPTER 10 Content-based filtering
One of the biggest showstoppers for developers trying to use content-based recom-
menders is that they can’t get the data about the items. What options do you have?
You could try to build it yourself or you could hire people to go through the content
and tag it. But beware, that can produce strange recommendations. Entire companies
exist where people tag content for a living; can you guess where? Let’s look at an
example where you can get a feel for the differences between tags and facts.

TAGS VS. FACTS
Batman v Superman: Dawn of Justice (BvS) is an interesting film. The film from the
IMDb site is shown in figure 10.6. Looking at the description of the film, you can see
that the genres are action and adventure (and sci-fi, but I disagree with that) and that
the film premiered in 2016. Much more can be said about the film; for example, it
could say that Ben Affleck plays Batman. I’d also put that it’s a long film.

To represent these film tags, you can make a simple vector such as the one shown in
table 10.1. That isn’t a vector but a table, but think of it as a list of key values. The table
lists two types of values:

 Binary values—Like starring Ben Affleck and Action genre.

Premiered in 2016

Ben Affleck
plays Batman

Long film

Genres are action
and adventure.
(and sci-fi but I
disagree with that)

Figure 10.6 Batman v Superman film on imdb.com

imdb.com

255Content analyzer
 Quantitative values—Such as explosions (if the number of explosions in the film
could be considered as something worth having as a feature) and the produc-
tion year.

This table (vector) doesn’t leave much space for features other than the ones for Bat-
man v Superman, but you’ll want to represent many different films using the same vec-
tor. Comedies should fit in there too. Films starring popular artists should also be
there, and maybe a feature indicating how often they smoke, look at the rain, or
whether any fish were hurt in the story. In the end, you’ll have a long list of different
features and movies. One of the funny parts about doing content-based recommend-
ers is to figure out what’s important and what isn’t.

 Now, if a user bought or liked BvS and other movies starring Ben Affleck, you
could deduce that the user likes Ben Affleck. Then, with that knowledge, you can
search the list of vectors for other films with a 1 in the Starring Ben Affleck feature and
recommend those. It could also be for another reason that the user liked them; in
which case, this wouldn’t be a good direction to go. That other reason might be that
the specific user likes a specific genre of films that’s orthogonal to the usual genres
and is therefore not normally used to classify movies. This type of hidden (or should
we call it latent) genre is something that we’ll look for when we introduce the LDA.

10.3.2 Categorical data with small numbers

Previously we talked about actors, but we could approach film features even more gen-
erally and say that everyone worth mentioning who’s in the production of the content
could be a feature. But while words that occur only once in a document are good to
save if you’re creating a search, you need to economize when you talk about recom-
mendations.

 For example, if there’s an actor who appears in only one film, it’s great if some-
body likes the film, but it doesn’t help find similar films because this actor isn’t found
anywhere else. You can’t use an actor who’s only mentioned once to find similar mov-
ies. In that case, you might as well leave the actor out.

10.3.3 Converting the year to a comparable feature

Most actors only appear in one role in a film, so the feature that indicates “starring X”
is either 0 or 1. Except if we’re talking about Eddie Murphy who typically plays everybody

Table 10.1 An item profile of Batman v Superman

Y
ear

S
tarring B

en
A

ffleck

A
ction

A
dventure

C
om

edy

Explosions

Long film

D
ogs

S
uperheroes

BvS 2016 1 1 1 0 5 1 0 1

256 CHAPTER 10 Content-based filtering
in his films. But would you make the category starring Eddie Murphy more if he plays
five roles instead of one? If you like Eddie Murphy, then I guess you like Eddie Murphy.

 Some features you’ll want to keep as ordinal numbers (things that have an order—
first, second, and so on), so it’s clear one is positioned or ordered more or less than
another and so on. Production year is a good example. If a user likes content from
1980, a film from 1981 is probably closer to his taste than one from 2000, so produc-
tion year is something you want to keep ordinal.

 When adding an ordinal feature, it’s also worth considering how important this
feature is. If you put an ordinal feature such as a production year into a system where
everything is between zero and one, 2000 is a high number, even if it’s supposed to
represent a year. It’s important that you normalize the data or scale it so that it’s
between zero and one, or close to it.

 One way to compare films is by plotting them as shown in figure 10.7. It’s easy to
see that even if Harrison Ford doesn’t star in Harry Potter, and Star Wars (1979) and
Harry Potter (2001) were made 22 years apart, they still look similar in figure 10.7
(top), while in figure 10.7 (bottom) the production year has been normalized.5 You
could even subtract 1894 (the year of the oldest movie in the database) from all the
production years or from the earliest production year to make the difference larger.
With all the data having values between 0 and 1, it’s easy to see that they’re different.

 Let’s move on. Besides tags and facts, you can use descriptions as input for your
algorithms.

10.4 Extracting metadata from descriptions
In the scope of content-based filtering, news articles are interesting because they’re
often only relevant for a short time, which means that they’re hard to recommend
using collaborative filtering (you know, that algorithm we talked about in chapter 8).
But you might still want to recommend them.

 Besides using popularity, you can analyze the content. One way of doing that is to
look at what words are in the article, how many times each occurs, and how commonly
they appear in all the news items in the database. This can be done using TF–IDF,
which we’ll look at soon. An article is text, so the content is in the description, while a
movie has a description that’s written by somebody.

10.4.1 Preparing descriptions

Getting good descriptions of content isn’t easy because the quality of descriptions can
vary. More work goes into tagging movies than books or TV shows, for example, but it’s
still a challenge to make computers read and understand text, at least for this purpose.

 Before trying to extract information from the descriptions, you need to remove all
the things that might confuse the machine. In the next sections, we’ll look at exactly
that. You start out pulling the text apart and putting it into a bag.

5 By dividing each year with the highest year: 2001 => 1 and 1979 => 1979/2001 = 0.99.

257Extracting metadata from descriptions
Harry Potter

Starring
Harrison Ford

1.0

0.8

0.6

0.4

0.2

0.0

Starring
Harrison Ford

Starring
Daniel Radcliffe

Tag

Comparing two films after normalization

Production
year

Indiana Jones

Comparing two films

Starring
Harrison Ford

Adventure Starring
Daniel Radcliffe

Tag

Production
year

Harry Potter
Indiana Jones

2,000

1,750

1,500

1,250

1,000

750

500

250

0

Figure 10.7 Illustrating why data needs to be normalized. At top, the production year isn’t
normalized, and the lines are more or less on top of each other. At bottom, the production
year is divided by the max year and suddenly you can see that the two movies are different.

258 CHAPTER 10 Content-based filtering
THE BAG-OF-WORDS (BOW) MODEL AND TOKENIZATION
To use the descriptions, you first need to make a bag-of-words (BoW) model, meaning
that you split the description into an array of words:

“the man likes big ice creams” -> [“the”, “man”, “likes”, “big”, “ice”, “creams”]

Notice that when using BoW, you’re already losing a bit of information because “ice”
and “cream” mean something when they’re next to each other but different things
when they’re apart. This representation will also be the same for any permutation of
the words used, such as “the big ice man likes creams” produces the same BoW, even if
it’s talking about something different.

 Certain words won’t add any knowledge to the BoW; these words are referred to as
stopwords. You’ll look at how to remove those next.

REMOVING STOP WORDS

Descriptions are full of filler words, in the sense that there are many words needed to
make a human-readable description. But if you’re deconstructing the documents into
an array of words, you lose the value of words like the or a. Because the word a by itself
doesn’t give any descriptive information, it’s best to remove that and similiar words of
that type. The words you don’t want in your model are the stop words.

 The next step is to remove the stop words from the BoW. Stop words are, strangely
enough, not synonyms of the word stop, but words that you’re going skip in your anal-
ysis. A stop words list is dependent on both your language and your domain. The one
you’ll use here supports English but also many other languages (such as Danish). The
package will be downloaded and installed executing the command line shown in list-
ing 10.1 in the terminal window.

>Pip3 install stop-words

After installing the package, you can get the stop words by importing get_stop_words
as shown in the next listing.

from stop_words import get_stop_words

This provides an array of words you probably won’t be interested in including in your
model. Calling get_stop_words('en') results in the list of words shown in the follow-
ing listing.

['a', 'about', 'above', 'after', 'again', 'against', 'all', 'am', 'an',
'and', 'any', 'are', "aren't", 'as', 'at', 'be', 'because', 'been',
'before', 'being', 'below', 'between', 'both', 'but', 'by', "can't",
'cannot', 'could', "couldn't", 'did', "didn't", 'do', 'does', "doesn't",
'doing', "don't", 'down', 'during', 'each', 'few', 'for', 'from',

Listing 10.1 Installing the stop-words package

Listing 10.2 Importing the stop-words package

Listing 10.3 English stop words

259Extracting metadata from descriptions
'further', 'had', "hadn't", 'has', "hasn't", 'have', "haven't",
'having', 'he', "he'd", "he'll", "he's", 'her', 'here', "here's",
'hers', 'herself', 'him', 'himself', 'his', 'how', "how's", 'i', "i'd",
"i'll", "i'm", "i've", 'if', 'in', 'into', 'is', "isn't", 'it', "it's",
'its', 'itself', "let's", 'me', 'more', 'most', "mustn't", 'my',
'myself', 'no', 'nor', 'not', 'of', 'off', 'on', 'once', 'only', 'or',
'other', 'ought', 'our', 'ours', 'ourselves', 'out', 'over', 'own',
'same', "shan't", 'she', "she'd", "she'll", "she's", 'should',
"shouldn't", 'so', 'some', 'such', 'than', 'that', "that's", 'the',
'their', 'theirs', 'them', 'themselves', 'then', 'there', "there's",
'these', 'they', "they'd", "they'll", "they're", "they've", 'this',
'those', 'through', 'to', 'too', 'under', 'until', 'up', 'very', 'was',
"wasn't", 'we', "we'd", "we'll", "we're", "we've", 'were', "weren't",
'what', "what's", 'when', "when's", 'where', "where's", 'which',
'while', 'who', "who's", 'whom', 'why', "why's", 'with', "won't",
'would', "wouldn't", 'you', "you'd", "you'll", "you're", "you've",
'your', 'yours', 'yourself', 'yourselves']

You probably want to add more words, but this list is a good start. Before using the
BoW model, you want to go through each word of your description and check if it’s a
stop word if it’s not, leave it; otherwise, remove it. You also want to keep derogative
words (words that are sexual or hateful) out of your model.

REMOVING THE HIGH AND LOWS

It’s also worth looking at words that appear in all documents and the ones that only
appear a few times or only once in each document. The high-frequency words create
background noise, while the low-frequency words add complexity to the model with-
out adding content. The lowest frequency words can also be deleted, but if you
remove too many, you run the risk that the model won't find nuances in the texts. The
right amount is something to fine-tune in different data sets.

STEMMING AND LEMMATIZING

Words such as run and running are considered different words in the BoW model, and
that might not be what you want. You have a number of ways to “normalize” that word.
The best way is to use a lemmatizer, which will find the base of the word.

 The base of both run and running is run. However, words such as run, runner, and
running are easy words to handle because the base is the beginning of all the words. If
this is all that’s needed, then you can use a stemmer instead of a lemmatizer.

 A stemmer usually refers to the heuristic process that chops off the ends of words in
the hope of achieving this goal, correctly most of the time, while the lemmatizer is
referred to doing things properly.6 Their effectiveness depends on what type of text
you’re working with. Stemming is good in some cases, where there are words that
when you strip them stay the same but weren’t supposed to. It’s generally considered
that the good outweighs the bad. I discourage this on short documents because stem-
ming does remove certain information. The best thing to do is to try this out and see if
a stemmer or a lemmatizer improves things.

6 In the words of Cristopher Manning et al. from “Introduction to Information Retrieval.” Available online at
http://mng.bz/OXR6.

http://mng.bz/OXR6

260 CHAPTER 10 Content-based filtering
 Before moving on, let’s be sure you know where you are and where you’re head-
ing. It should be clear by now what content filtering is and how to do feature
extraction. We’ll move on to the first of the two ways of extracting features from
descriptions and create something that can be compared by a computer. First, we’ll
look at TF-IDF and then LDA. These are only two of many different types of feature
extraction you can do in text.

10.5 Finding important words with TF-IDF
When you look at documents for information filtering or search, you often want to
look at which words or phrases are in the documents. But, in addition to the stop
words, documents are full of words that are so overused they don’t add anything
descriptive to the text.

 Suppose you were to cut this book into small pieces. You’d probably have a zillion
pieces containing the word recommender, so even if it’s a mega-important word, it
doesn’t help to distinguish that word in the documents. If you have a collection of arti-
cles on the great things about computers, there might only be one article on recom-
menders and then the word recommender would be defining for the article, and
probably even more if it’s there many times. This is known as term frequency (tf in the
equation) and a simple way to define it is as follows:

But more often, this formula is used:

The more times a word is present in one document, the higher the chance that it’s
important (assuming that you removed all the stop words). But, as mentioned previ-
ously, only if the word is only present in few documents. For this, you can use the
inverse document frequency (idf in the equation), which is the number of all your
documents divided by the number of documents that contain the word. Together, the
product is tf-idf, which is defined like this:

Look at the following words (let’s pretend each line of text is a document):

 The superhero Deadpool has accelerated healing powers.
 The superhero Batman takes on the superhero Superman.
 The LEGO superhero Batman takes the stage.
 The LEGO superheroes adventures.
 The LEGO Hulk.

If you want to determine the importance of superhero, you can use the calculations in
table 10.2.

tf word document,  how many times does the word appear in document=

tf word document,  1 log word frequency +=

tf i df word document, – tf word document, *idf word document, =

261Topic modeling using the LDA

If you’ve someone looking for a superhero movie, you can show document 2, which
has the TF-IDF (superhero) equal to 3.33, followed by the two other documents with
non-zero values. Try this on your own to calculate TF-IDF (Hulk).7

 Why all this talk about words when you’re looking at content features? Well, when
you find words that provide large TF-IDF returns, you can add those to the list of fea-
tures. If the previous sentences were actual descriptions of movies, you could add the
word superhero to the list of features with the value of the TF-IDF.

 Those formulas were simple. There’s one correction, however. Usually you’d use
the following IDF formula:

NOTE This equation keeps the final number more stable because the logs of
numbers between 1-10 are close to each other.

TF-IDF was once king, but after the invention of LDA models, it’s fallen out of grace.
Everyone’s first choice now is to use LDA models or similar topic models. However,
before you believe I took up your time explaining something you might not use, it’s
worth mentioning that TF-IDF is something that you can use to clean the input of the
LDA. TF-IDF is a classic method and has been widely used, but new algorithms are
also gaining traction—one in particular called Okapi BM25.8

10.6 Topic modeling using the LDA
If you’re a machine-learning professional, you’ve probably heard about the fantastic
LDA models (figure 10.8) that can solve everything regarding text. Okay, word2vec is
also quite popular, so let’s say LDA is one of the popular ones.9 The way that word2vec

Table 10.2 Showing TF-IDF of the word superhero. You aren’t using stemming so superhero in
document 4 doesn’t work.

TF superhero IDF superhero tf × idf

1 The superhero Deadpool has acceler-
ated healing powers.

1 5 / 3 1.66

2 The superhero Batman takes on the
superhero Superman.

2 5 /3 3.33

3 The LEGO superhero Batman takes the
stage.

1 5 / 3 1.66

4 The LEGO superheroes adventures. 0 5 / 3 0

5 The LEGO Hulk. 0 5 / 3 0

7 TF-IDF for the word Hulk is 0 for all except for string number 5 where it’s 1(5 / 1) = 5.
8 For more information, see https://en.wikipedia.org/wiki/Okapi_BM25.
9 Mind, the LDA and word2vec models are usually used for different things.

idf term 
Total number of docs

Number of docs containing term
--log=

https://en.wikipedia.org/wiki/Okapi_BM25

262 CHAPTER 10 Content-based filtering
and LDA are often described, it sounds like they’ll give you a foot massage and wash
your windows! Word2vec is the focus of chapter 6 in Natural Language Processing in
Action (Manning, 2018) by Hobson Lane, et al.

 If you aren’t familiar with this, then sharpen your pencils and stay alert, because
it’s a bit complicated. Luckily LDAs are easy to use in the sense that there are many
libraries out there that make it easy to have code up and running in no time. And in
no time, you’ll start having trouble because even if it did give you a foot massage, it
doesn’t respond in an easy-to-understand language.

 Let’s go through a bit of the theory of how LDA works and then return to what it
produces. An LDA is what you call a generative model, so let’s start with an example
explaining what that is.

GENERATIVE MODEL EXAMPLE

This silly example will hopefully make a generative model clearer. You have three
bags, each with shapes of one color: one bag with red shapes, one with blue shapes,
and one with green shapes. If you form the row of shapes shown in figure 10.9, you’d
need to draw three times from the red bag (triangles), two times from the blue one
(squares), and finally five times from the green one (circles).

Another way to indicate how to generate the row of shapes in figure 10.9 would be to
say you’d have to draw a shape from the red bag 30% of the time, from the blue bag
20% of the time, and from the green bag 50% of the time. Or you could say that the
row X in figure 10.9 is formed by the following equation:

If this were a recipe for generating documents, you could have also created the docu-
ment shown in figure 10.10.

LDA

Allocation refers to the fact that
that all words are allocated into
the hidden (latent) topics.

L is for latent, which means
hidden. Usually in mathematics
and machine learning it means
something that is found by an
algorithm. It is the same here.

Is a distribution of distributions
and is used to describe
documents in the LDA model.

Figure 10.8 The LDA model (short for latent Dirichlet allocation)

Figure 10.9 Row of shapes in a generative model example

x 0.3 red 0.2 blue 0.5 green+ +=

263Topic modeling using the LDA

Now look at another row in figure 10.11.

The only difference between the first and the third rows is that a red triangle is
replaced by a blue box. If you imagine each of these shapes is a piece of your descrip-
tion, then the idea is that you can write a formula to make documents easier to com-
pare. Remember this mental image of the bags with shapes that can be used to
generate rows of shapes.

 What if, instead of bags, we call those items topics: the shapes are words, and the
rows are descriptions. Then instead of colors, the topics could be something such as
Superhero, computer science, and food, for example. Under the Superhero topic
could be words such as Spiderman, flying, strong, superhero, and so on as shown in the fol-
lowing:

 Superhero—Spiderman, flying, strong, superhero
 Computer science—Computer, laptop, CPU
 Food—Eat, breakfast, fork

If you’ve a description like the following

Z = Spiderman is home with his laptop to eat breakfast with a fork.

and want to generate that from your three topics, you can draw Spiderman and flying
from the Superhero topic, laptop from computer science topic, and eat, breakfast, and
fork from the food topic. This can be summed up in the following generative formula:

That’s simple, isn’t it? It does get more complicated, however, because each word in a
topic has a probability that says something about how important a word it is. But let’s
keep that in mind for now and skip on to how to create these topics.

 An example closer to your MovieGEEKs site can be seen in figure 10.12. It shows
how topics related to movie genres could be distributed.

 I came up with the topics in figure 10.12, but normally the whole idea of topic mod-
els is that you want the computer to sort out topics from your database of descriptions.

Figure 10.10 Another row, which could have been generated using this recipe: x = 0.3×red +
0.2×blue + 0.5×green.

Figure 10.11 And another row, which could have been generated using this recipe: x = 0.2×red
+ 0.3×blue + 0.5×green.

z 0.2 Superhero 0.1 ComputerScience 0.3 Food+ +=

264 CHAPTER 10 Content-based filtering
GENERATING THE TOPICS

How do you generate topics? Figure 10.13 shows one way to do that. The idea, as shown
in figure 10.13, is that input for the LDA algorithm contains several documents and a
number K, where K is the number of topics the algorithm should create to produce a
list of topics. The output of the algorithm is a list of K topics and a list of vectors, one

Superhero Flying

Strong

Superhero

computer

Food

Content Topics Words

Strongly related

Weakly related

...

laptop

Explosion

A topic can be described
by what words are used
when describing
something of the topic.

Computer
Science

Content can
be described
by a series of
topics.

Spiderman is
home with his
laptop to eat
breakfast with a
fork.

Figure 10.12 A topic model. Each topic is defined by a list of words and their respective
probability of being drawn. A document can be described by selecting topics, using a formula
of how large a percentage of the time you should draw from each topic.

Documents

K

LDA training

Topic 1:
W1: x1%, w2:
x2%, … wN:
xN%

Topic 1:
W1: x1%, w2:
x2%, … wN:
xN%

Topic 1:
W1: x1%, w2:
x2%, … wN:
xN%

Topic 1:
W1: x1%, w2:
x2%, … wN:
xN%

Topic K:
W1: x1%, w2:
x2%, … wN:
xN%

Topics

Document:
Topic 1: t1%
Topic 2: t2%
…
Topic K: tk%

Documents

Document:
Topic 1: t1%
Topic 2: t2%
…
Topic K: tk%

Document:
Topic 1: t1%
Topic 2: t2%
…
Topic K: tk%

Document:
Topic 1: t1%
Topic 2: t2%
…
Topic K: tk%

Document:
Topic 1: t1%
Topic 2: t2%
…
Topic K: tk%

Document:
Topic 1: t1%
Topic 2: t2%
…
Topic K: tk%

Figure 10.13 A model for generating topics when running an LDA algorithm with input from a list
of documents and a variable K, representing the number of topics for the algorithm to create. The
input documents can now be described using the generated list of topics.

265Topic modeling using the LDA
for each document, that contains a probability of how often each topic appears in the
document. Topics can be generated in several different ways; this is but one. In the
next section, we’ll look at how to connect the words, topics, and documents with Gibbs
sampling.

GIBBS SAMPLING

Looking again at figure 10.13, let’s elaborate on what data structures you have: you’ve
K (which is the number of topics the LDA model should contain), and you’ve each
document that’s essentially considered a BoW (which means that you don’t have any
structure or idea which words are next to each other, only the words). The goal is now
to connect words with topics and documents with topics. Let’s start with the topics and
words as shown in figure 10.14.

 If you line up a list of K topics and all the words that are present in the docu-
ments, it’s hard to imagine ever coming up with a solution. But because words
related to the same topic are often found in the same document, then you already
have information to start with. If you know one word is already in a topic, then you’ve
information about whether another word should be there. This is what Gibbs sam-
pling takes advantage of.10

10 Philip Resnik and Eric Hardisty, “Gibbs Sampling for the Uninitiated,” https://www.umiacs.umd.edu/
~resnik/pubs/LAMP-TR-153.pdf.

? ?

Topic

Topic

Topic

Topic

Doc

Doc

Doc

Doc

Word

Word

Word

Word

Word

Word

Word

Word

Word

Figure 10.14 Connecting the words and docs with the topics

https://www.umiacs.umd.edu/~resnik/pubs/LAMP-TR-153.pdf
https://www.umiacs.umd.edu/~resnik/pubs/LAMP-TR-153.pdf
https://www.umiacs.umd.edu/~resnik/pubs/LAMP-TR-153.pdf

266 CHAPTER 10 Content-based filtering
 Gibbs sampling begins by randomly adding topics to documents and words to top-
ics. Imagine the arrows set at random in figure 10.14. The Gibbs sampler goes
through each document and each word, and, given the probabilities of all the remain-
ing words in each document, it adjusts the probability of that word. This follows the
premise that topics contain similar words. By fitting each word and distribution one
step at a time, the Gibbs sampling algorithm slowly approaches a distribution of words
and topics that seems magically to make sense.

 I don’t know if you need to know a lot of the information in the Resnik/Hardisty
article mentioned in the footnote, but I do believe that you need to know how a model
is trained and Gibbs sampling is used to train the LDA model. Guess what’s next.

LDA MODEL

The Gibbs sampling produces K topics that look something like listing 10.4. Each
topic is printed with the 10 (K) most probable words in each topic. If strange words
appear with this sampling, such as 18genre, it’s my attempt to inject genres into the
description. Instead of using names like action and drama, I added numbers to be sure
they aren’t confused with words in the description. This might change the importance
of several of those words from the sampling In the listing, (0…) is the first topic,
(1…) is the second topic, and so on.

[(0,
 '0.037*18genre + 0.022*love + 0.021*s + 0.012*young +
 0.012*man + 0.011*story + 0.009*woman + 0.008*father +
 0.008*35genre + 0.007*10749genre'),
 (1,
 '0.010*vs + 0.010*even + 0.009*nothing + 0.008*based +
 0.007*boyfriend + 0.005*s + 0.005*music + 0.005*rise +
 0.004*writer + 0.004*hero'),
 (2,
 '0.012*one + 0.011*s + 0.011*gets + 0.011*three + 0.009*like +
 0.008*99genre + 0.008*years + 0.007*car + 0.006*different +
 0.006*marriage'),
 (3,
 '0.013*s + 0.010*28genre + 0.009*house + 0.009*two +
 0.009*878genre + 0.008*years + 0.008*daughter + 0.007*year +
 0.007*world + 0.007*old'),
 (4,
 '0.024*35genre + 0.015*girl + 0.011*10749genre + 0.010*year +
 0.009*old + 0.009*go + 0.009*falls + 0.008*s + 0.008*get + 0.008*four'),
 (5,
 '0.025*53genre + 0.016*80genre + 0.015*27genre + 0.013*28genre +
 0.011*18genre + 0.008*police + 0.008*s + 0.007*goes + 0.007*couple +
 0.007*discovers'),
 (6,
 '0.016*t + 0.016*s + 0.011*school + 0.010*friends + 0.010*new +
 0.009*boy + 0.008*first + 0.007*will + 0.007*35genre + 0.007*show'),
 (7,
 '0.013*99genre + 0.008*s + 0.008*fall + 0.007*movie + 0.007*documentary +

0.007*power + 0.005*18genre + 0.005*wants + 0.005*will + 0.005*move'),

Listing 10.4 Topic distribution created by Gibbs sampling

267Topic modeling using the LDA
 (8,
 '0.046*film + 0.011*friend + 0.010*past + 0.009*18genre + 0.009*directed +

0.007*upcoming + 0.007*produced + 0.006*ways + 0.006*festival +
0.006*turned'),

 (9,
 '0.016*s + 0.014*will + 0.013*one + 0.010*10402genre + 0.009*life +

0.009*journey + 0.008*game + 0.007*work + 0.007*time + 0.006*world')]

Each topic contains all words found in all the input documents, but many words have
so little probability (close to zero) that they aren’t interesting. The probabilities are
the numbers in front of each word in the topic listing. If you try to generate a docu-
ment from those topics, you’ll draw that word with the lesser probability. If you have a
document that was generated from topic 0 alone, then each occurrence of the word
love has the probability of 2.2% as you can see in this listing.

[(0,
 '0.037*18genre + 0.022*love + 0.021*s + 0.012*young + 0.012*man +

➥0.011*story + 0.009*woman + 0.008*father + 0.008*35genre +

➥0.007*10749genre'),

Another document could be generated by pulling words from the topics 2, 3, and 9,
for example. The document could be represented in the LDA model as shown in the
next listing.

[(2, 0.02075648883076852),
 (3, 0.1812829334788339),
 (9, 0.78545976997831202)]

This listing shows that 2.1% of the time a word is generated from topic 2, while 18.1%
of the time it’s generated from topic 3, and 78.5% of the time it’s generated from
topic 9.

 Now you know how it works, in theory at least. Much of the work in making an
LDA function is how you process the text you’re inputting. Understanding LDA mod-
els is difficult. You need to stare at the output for a while—well, maybe more like for a
long time and then sleep on it before anything makes sense because the topics might
represent something that’s hard to understand from the input.

THE CORPUS WIKIPEDIA

We’ve only talked about adding descriptions and documents into the LDA, but what
kinds of documents are they? The previous example and the implementation in
MovieGEEKs that we’ll soon talk about both use the same documents that you’ll calcu-
late similarity between. But it’s a good idea to use a data set that describes (or at least
provides) good examples of several of the topics you want to find.

 The media company Issuu (https://issuu.com), for example, uses an LDA model
to offer recommendations of what digital content to read. It uses the Wikipedia data
set to create the models, which enables Issuu and other sites to create a model with

Listing 10.5 Topic 0’s probability for the word love

Listing 10.6 A document’s topic distribution

https://Issuu.com

268 CHAPTER 10 Content-based filtering
easy-to-understand topics. Wikipedia also contains documents with classifications for
everything, which ensures that the topic model is nicely distributed.

ADDING FEATURES AND TAGS TO DOCUMENTS

Pardon me for repeating myself: a document is presented as a BoW and not as con-
nected words where the order is important. If you want to control the topics a docu-
ment contains, you can also inject words into the descriptions. For example, if you
want to include information such as actors or product year, you add them to the BoW.
You saw an example of this in listing 10.4 where words such as 35genre appeared. More
details on that in a bit.

10.6.1 What knobs can you turn to tweak the LDA?

All this magic. Does it work? Looking at figure 10.15, it’s easy to see that it leaves some-
thing to desire.

You could discuss whether
finding Frankenweenie is good,
but it’s a story where something
is brought back. In Finding Nemo,
Nemo is brought back home. In
Frankenweenie, he’s brought back
to life. It’s a Disney film and
rated U, so its not too bad.

 innocenza e turbamento is quite
a long way from Finding Nemo, but
again if you read the description it
is about coming home.

Finding the sequel to this film is
a good sign and so is finding
All Dogs Go to Heaven 2
and Minions.

Figure 10.15 Content-based recs from LDA that need a bit of tuning. A Disney cartoon that’s
similar to Innonceza e turbamento (Innocence and Desire) doesn’t sound like the best of
recommendations.

269Topic modeling using the LDA
 A model is only as good as the quality of the documents and good quality docu-
ments are examples of the types/genres/subjects that you want your model to repre-
sent. For example, the descriptions of the movies that you’re using in this section
aren’t always good for this. Looking at the Finding Nemo description, it doesn’t say that
it’s a cartoon or that it’s about the sea. You can add the genres that will include that
it’s also animation, but unless you want to start handwriting better descriptions, it’s
hard to come up with ways to deal with a lack of information.

 Something you can do is to see how the recommender responds to what you know
has many similar items in the catalog, such as Spider-Man movies, as shown in figure
10.16. There’s a lot of Spider-Man movies, so these recommendations would probably
only appeal to the more hardcore Spider-Man fans. Besides the considerations around
the input, you should also consider the number of topics you’d use.

A good test of whether
similarity works in this
dataset is that the
content-based
recommender returns all
Spider-man films when
the Spider-man film is a
seed.

Figure 10.16 The content-based recommender understands that all the different Spider-Man
movies are similar.

270 CHAPTER 10 Content-based filtering
WHAT’S A GOOD NUMBER OF TOPICS?
One thing that can make or break the LDA model is whether you’ve trained it with a
good number of topics. And it’s also one of the things that makes it into an art
because there isn’t any way to verify that you have the right number.

 In the analytics part of the MovieGEEKs site (http://mng.bz/04k5), you’ve an
interactive visualization of the model (http://127.0.0.1:8001/analytics/lda) as shown
in figure 10.17, where it shows a circle for each topic. Hovering over a topic, you get a
list of the most frequently used words in that topic.

 It’s important to find a number of topics that are distributed evenly. If you select a
too low K, then many documents will look like each other as if you described all films
using only the genres Action, Comedy, and Drama. But if you select too many topics,
then you might end up with no similar documents because you have a million differ-
ent dimensions (topics). Then you’re back to the curse of dimensionality.

 One way to visualize your model and better understand if your model distributes
the topics nicely, is to use a tool called pyLDAvis (figure 10.17).

Figure 10.17 The pyLDAvis dashboard showing topic distribution

http://mng.bz/04k5
http://127.0.0.1:8001/analytics/lda

271Finding similar content
 The pyLDAvis dashboard was created using a Python library called pyLDAvis11 as
described in a paper by Carson Sievert and Kenneth E. Shirley.12

 It’s a good idea to test the following when deciding on the right number of topics
for training the LDA model:

 Check a view (such as the one in figure 10.17) to see if the topics are distributed
and not on top of each other.

 Test if the LDA produces similar items.

Later in this chapter, you’ll see how LDA is implemented in the MovieGEEKs site and
where you can check to determine if it produces good recommendations. My first
attempt produced the recommendations shown in figure 10.15.

 The short answer to how the LDA model should look is that it should look right.
Find several movies that you like and try to tweak them until the model makes sense.
Then ask a friend to do the same and see if you can tweak it so you’re both happy.

PLAYING WITH ALPHA AND BETA

You have two more parameters to play with when you’re using LDA. You can change
the parameters alpha and beta to adjust the distributions of both the documents and
the words in the topics.

 If you enter a high alpha, then you’ll distribute each document over many topics;
low alpha distributes only a few topics. The advantage with high alpha is that docu-
ments seem to be more similar, while if you have specialized documents, then a low
alpha will keep them divided into few topics.

 The same is true for beta: a high beta leads to topics being more similar because
the probabilities will be distributed on more words that are used to describe each
topic. For example, instead of having 10 words in a topic with a probability above 1%,
you might have 40. This allows for bigger overlap. Most people I’ve talked with are
careful to change the default values of alpha and beta because it can get a little rough,
but if there’s time to play, you should.

10.7 Finding similar content
Now that you’ve the LDA model, you’ve another way of finding similar items. By pro-
jecting two documents into the LDA model, you can calculate their similarity. Because
the probability distribution can be seen as vectors, many use cosine similarity (one of
the similarity functions that we talked about in chapter 7) for their calculations.

 In principle, it’s also possible to use the LDA model to compare documents that
weren’t used when creating the model. This is one of the more important features for
content-based recommenders used for getting around the problem of cold products
that we talked about in chapter 6. This can be used for the More Like This recommen-
dation.

11 You can view the documentation for pyLDAvis at https://pyldavis.readthedocs.io/en/latest/.
12 Carson Sievert and Kenneth E. Shirley, “LDAvis: A method for visualizing and interpreting topics,”

http://mng.bz/qPf7.

https://pyldavis.readthedocs.io/en/latest/
http://mng.bz/qPf7

272 CHAPTER 10 Content-based filtering
 Later in this chapter, we’ll talk more about the implementation in MovieGEEKs
and show a similarity calculation between two movies. For now, let’s look at how to do
personalized recommendations in a content-based recommender system.

10.8 Creating the user profile
If you like James Bond, then you might also like… This is a simple one that doesn’t
need any user profile. With the LDA model or simply the feature vectors we talked
about earlier, you’ll find the vector for a James Bond movie and then locate movies
with similar vectors. But if you provide personalized recommendations, you’ll need to
create a user profile that encompasses all the movies the user likes. Let’s look at how
to do that with LDA, then with TF-IDF.

10.8.1 Creating the user profile with LDA

When creating a personalized recommendation function, you should look at the full
list of items that the user likes and return other items that the user might also like. In
real life, such a function isn’t individual—the user might not be uniquely defined by
the items consumed (even if most recommender systems probably will respond the
same). But it’s still much more personalized than a chart.

 What you can do is to iterate through each of the items the user likes and for each,
find similar products. When you get a list, order it according to the product of similar-
ity and the users’ ratings from the original list of consumed items. More formally, you
could do the following for an active user:

 Get all consumed items (CI) by the active user.
 For each item I in CI:

– Find similar objects using the LDA model.
– Calculate a rating based on the similarity and the active users rating.

 Order items by rating.
 Order by relevancy (if you have any data about that).

An alternative way, described by Jobin Wilson et al., is that you can create an LDA vec-
tor of the user, and then find similar items.13 It could also be interesting to see how
that would work. The evaluation looks very good.

10.8.2 Creating the user profile with TF-IDF

With the vectors described previously regarding tags and facts, there’s another way
you could create a user profile. You can aggregate the vectors of the things the user
likes and subtract the things the user doesn’t like. Look at the insightful information
in table 10.3.

13 Jobin Wilson et al., Improving Collaborative Filtering Based Recommenders Using Topic Modelling, Feb 2014. Abstract
at https://arxiv.org/abs/1402.6238.

https://arxiv.org/abs/1402.6238

273Creating the user profile

If you have a user (you aren’t doing collaborative filtering here, so it’s enough to look
at one) who rated 5 stars for Raiders of the Lost Ark (who doesn’t love that movie?) and
3 stars for La La Land, you can now create a user profile multiplying the rating on the
movie vector and adding it together as shown in table 10.4.

You can now use that vector to find similar content for the user. You should probably
normalize the values so that they’re on the same scale as the movies, and the number
of explosions should probably be downplayed into a film that does or doesn’t contain
explosions. In that case, the user profile looks like the one in table 10.5.

Table 10.3 Vector representation of several movies

Starring Ben
Affleck

Action Adventure Comedy Explosionsa

BvS 1 1 1 0 5

Valentine’s
Day

1 0 0 1 0

Raiders of
the Lost Ark

0 1 1 1 2

La La Land 0 0 0 1 0

a. These are made-up numbers.

Table 10.4 Multiplying the users’ ratings on the movie vectors and adding each element to create a
user profile

Starring Ben
Affleck

Action Adventure Comedy Explosionsa

Raiders of the
Lost Ark

0 5 5 5 10

La La Land 0 0 0 3 0

User’s profile 0 5 5 8 10

a. These are made-up numbers.

Table 10.5 Multiplying the user’s ratings on the movie vectors and adding each element to create the
user profile

Starring Ben
Affleck

Action Adventure Comedy Explosions

User profile 0 5 5 8 5

274 CHAPTER 10 Content-based filtering

Fin
max
I find this procedure to be truer to films. A good thing with this is that you can look
for movies that have all the aspects of what a user likes (if you captured the right tags
and facts, of course), but although I like chocolate and lasagna, that doesn’t mean I
like them together. The same can be said for many other attributes you could come
up with for either food or movies. The takeaway is that you can use this to see that the
user likes comedy more than action and adventure.

 In the MovieGEEKs analytics part of the system, I’ve represented a user’s taste by
running through the user-rated movies and doing sums of the ratings for each genre
as shown in the following listing. You can view the code in the /analytics/views.py file.

for movie in movies:
 id = movie.movie_id

 rating = ratings[id]

 r = rating.rating
 sum_rating += r
 movie_dtos.append(MovieDto(id, movie.title, r))
 for genre in movie.genres.all():

 if genre.name in genres_ratings.keys():
 genres_ratings[genre.name] += r - user_avg
 genres_count[genre.name] += 1

max_value = max(genres_ratings.values())
max_value = max(max_value, 1)
max_count = max(genres_count.values())
max_count = max(max_count, 1)

genres = []
for key, value in genres_ratings.items():
 genres.append((key, 'rating', value/max_value))
 genres.append((key, 'count', genres_count[key]/max_count))

This code is used to create charts like the one in figure 10.18 for user 100 (http://
localhost:8001/analytics/user/100/).

10.9 Content-based recommendations in MovieGEEKs
As mentioned several times, we’ll go through an implementation and use of a content-
based LDA model building. First, we need to say a few words about getting the data.

10.9.1 Loading data

The data set you’re using doesn’t contain descriptions of movies, so again you’re at
the mercy of www.themoviedb.org to retrieve data. In the root of the code accompany-
ing the book, there’s a script called populate_sample_of_descriptions.py that retrieves
the description of the most recent films. An example of what is downloaded can be
seen in figure 10.19.14

Listing 10.7 Extracting tastes from ratings

14 See http://mng.bz/1UXq.

Calculated for each
movie the user rated

Gets the rating
Iterates over each movie
genre and builds a
dictionary with genre
names as keys and sum of
ratings as values

ds the
 values

Makes sure it isn’t below one
Finds the max values

Makes sure it isn’t below one

Normalizes
the values

http://mng.bz/1UXq
http://localhost:8001/analytics/user/100/
http://localhost:8001/analytics/user/100/
http://localhost:8001/analytics/user/100/
www.themoviedb.org

275Content-based recommendations in MovieGEEKs

Figure 10.18 Taste charted for user 100

- {
 poster_path: "/z09QAf8WbZncbitewNk61KYMZsh.jpg",
 adult: false,
 overview: ""Finding Dory" reunites Dory with friends Nemo and Marlin on a search
 for answers about her past. What can she remember? Who are her parents? And where
 did she learn to speak Whale?",
 release_date: "20016-06-16",
 - genre_ids: [
 16,
 10751
],
 id: 127380,
 original_title: "Finding Dory",
 original_language: "en",
 title: "Finding Dory",
 backdrop_path: "/iWRKYHTFlsrxQtfQqFOQyceL83P.jpg",
 popularity: 27.117383,
 vote_count: 1234,
 video: false,
 vote_average: 6.69
 },

Figure 10.19 The JSON object representing Finding Dory

276 CHAPTER 10 Content-based filtering
The following listing’s script shows how to retrieve and save the descriptions to the
database. It’s shown because you might want to fiddle with it to make it work for your
current setup. This code can be viewed in /pre/moviegeek/populate_sample_of_de-
scriptions.py.

def get_descriptions(start_date = "1990-01-01"):
 url = """https://api.themoviedb.org/3/discover/movie"""
 qs =

"""?primary_release_date.gte={}&api_key={}&page={}"""
 api_key = get_api_key()

 this_date = start_date
 last_date = ""
 MovieDescriptions.objects.all().delete()
 today_date = str(datetime.now().date())
 errorno = 0

 while today_date > last_date != this_date and errorno < 10:

 for page in tqdm(range(1, NUMBER_OF_PAGES)):
 formated_url = url + qs.format(start_date, api_key, page)

 r = requests.get(formated_url)
 r_json = r.json()
 if 'results' in r_json:
 for film in r_json['results']:
 id = film['id']
 md = MovieDescriptions.objects.get_or_create(movie_id=id)[0]

 md.imdb_id = get_imdb_id(id)
 if md.imdb_id is not None:
 md.title = film['title']
 md.description = film['overview']
 md.genres = film['genre_ids']
 last_date = film['release_date']

 md.save()

 elif 'errors' in r_json:
 print(r_json['errors'])
 errorno += 1
 break

 time.sleep(1)

The movie’s API request contains the release data that has to be greater or equal (gte)
than this. It is currently set to 1970. To retrieve these movie descriptions run this listing.

$ python populate_sample_of_descriptions.py.

This code downloads the descriptions you can use for the topic model. There might
be issues running it because the descriptions are collected from www.themoviedb.org,
and there might be a limit on how many requests you can make. I’ve added a

Listing 10.8 Retrieving movie descriptions

Listing 10.9 Downloading the movie descriptions

The movie’s API
URL. It shows
movies from 1990
to present.

If not today, continue if
there’s fewer than 10

errors

Runs through
1,000 pages
(the max the

API allows)

Runs through
all films in

the page

Saves it to the database

If an error occurs,
increase the error
counter and break out
of the for loop.

www.themoviedb.org

277Content-based recommendations in MovieGEEKs
time.sleep(1) in the code that requests it to sleep 1 sec between each request. It
might not be enough, so if you keep getting angry messages from the server, go to the
populate_sample_of_descriptions.py file and put in a higher number.

10.9.2 Training the model

You’ll use a library called Gensim, which contains an implementation of LDA models.
Other models exist, but this is one of the most popular, and my experience with it so
far has been good.

 You can install Gensim by running the command in listing 10.10. It’s part of the
general requirements for the MovieGEEKs site, so if you’ve installed that, then you
should be good to go (besides running pip3 install –r requirements.txt).15

$ pip3 install gensim.

Using the Gensim library, it isn’t too hard to create the LDA model. You need the doc-
uments loaded and cleaned, as we’ve already talked about. That’s done as shown in
the next listing, whose code can be viewed in the /Builder/LdaBuilder.py file.

texts = []
tokenizer = RegexpTokenizer(r'\w+')
for d in data:
 raw = d.lower()

 tokens = tokenizer.tokenize(raw)

 stopped_tokens = self.remove_stopwords(tokens)

 stemmed_tokens = stopped_tokens

 texts.append(stemmed_tokens)

dictionary = corpora.Dictionary(texts)

corpus = [dictionary.doc2bow(text) for text in texts]

lda_model = models.ldamodel.LdaModel(corpus=corpus, id2word=dictionary,
 num_topics=n_topics)

index = similarities.MatrixSimilarity(corpus)

self.save_lda_model(lda_model, corpus, dictionary)
self.save_similarities(index, docs)

Listing 10.10 Downloading the Gensim package

15 For more information on installing Gensim, see http://radimrehurek.com/gensim/install.html.

Listing 10.11 Building an LDA model

Goes through
each document

Makes all the capital
letters in the text
small letters

Splits the text into an array

Removes the stop words

This line is where you stem the words.

Adds the concentrated document

Creates the corpus, which contains an array of all
the documents represented as a bag of words

Shows the LDA
model being

built

Creates a
similarity matrix

Saves the LDA model

Saves the
similarities in
the database

Creates a bag of words

http://radimrehurek.com/gensim/install.html

278 CHAPTER 10 Content-based filtering
10.9.3 Creating item profiles

The item profiles are created with the model and are presented using the LDA vector,
which we’ve talked about. In the builder you saw previously, I chose to go one step fur-
ther and create the similarity matrix directly because doing the recommendations is a
matter of looking up the item in question. This isn’t always possible; you’ll probably
have many more items than we used here.

 It’s a good idea to look at how big the similarities are in the similarity matrix. If all
are close to zero, then it might be worth coming up with more general data that will
connect more items. To create the model and enable the MovieGEEKs site to produce
content-based recommendations, run the LdaBuild.py file shown in the listing below.

$ python -m builder.lda_model_calculator

10.9.4 Creating user profiles

I am definitely repeating myself: a user profile can be created in many ways. The sim-
plest one, which you’ll use in the next listing, is a list of the items that the user liked,
and for each of them, you’ll find similar items. You’ll find this code snippet in the
familiar script /recs/content_based_recommender.py.

def recommend_items(self,
 user_id,
 num=6):

 movie_ids = Rating.objects.filter(user_id=user_id)
 .order_by('-rating')
 .values_list('movie_id', flat=True)[:100]

 return self.recommend_items_from_items(movie_ids, num)

def recommend_items_by_ratings(self,
 user_id,
 active_user_items,
 num=6):
 content_sims = dict()

 movie_ids = {movie['movie_id']: movie['rating'] \
 for movie in active_user_items}
 user_mean = sum(movie_ids.values()) / len(movie_ids)

 sims = LdaSimilarity.objects.filter(Q(source__in=movie_ids.keys())
 & ~Q(target__in=movie_ids.keys())
 & Q(similarity__gt=self.min_sim))

Listing 10.12 Running the LDA model builder

Listing 10.13 Recommendation for a user at runtime

You use all the ratings from the
user, at least the 100 highest.

Calls the
recommend_items_by_ratings

Using this method makes it easier
to test because it receives a list of

what ratings the user got.

Extracts all the IDs of
the rated movies

Calculates the
user mean

You’re only interested in iterating over
the targets of the similarity, so get those.

279Content-based recommendations in MovieGEEKs
 sims = sims.order_by('-similarity')[:self.max_candidates]
 recs = dict()
 targets = set(s.target for s in sims)
 for target in targets:

 pre = 0
 sim_sum = 0

 rated_items = [i for i in sims if i.target == target]

 if len(rated_items) > 0:
 for sim_item in rated_items:
 r = Decimal(movie_ids[sim_item.source] - user_mean)
 pre += sim_item.similarity * r
 sim_sum += sim_item.similarity

 if sim_sum > 0:
 recs[target] = \
 { 'prediction': Decimal(user_mean) + pre/sim_sum,
 'sim_items': [r.source for r in rated_items]}

 return sorted(recs.items(),
 key=lambda item: -float(item[1]['prediction']))[:num]

The recommend_items method can be called using the API, calling http://
127.0.0.1:8000/rec/cb/ user/400003/ if you want to get the recommendations for
user_id 400003. The result will look like that shown in the following listing.

{
user_id: "400003",
data:[
["1049413",{
 prediction: "10.0000",
 sim_items:["2709768"]}
],
["4160704",{
 prediction: "6.8300",
 sim_items: ["1878870"]}
],
["1178665",{
prediction: "6.8300",
sim_items: ["1878870"]}
], …

Listing 10.14 Result of calling the cb user rec

Orders the similarities by similarity value and takes
the top candidates. The number to take is something
you should adjust, balancing performance and time.

Finds all the
similarities that
have that as a
target

Runs through those targets

Finds all the items that the
user rated that are similar to

the current target

If it found rated items,
it runs through them.

Deducts the user
mean from the

rating

Multiplies
similarity

with rating

Adds the
similarity
to the sum

Sees whether there are any similarities . . .

. . . if so, adds them as a
recommendation

Returns a sorted list of recs
ordered by prediction

280 CHAPTER 10 Content-based filtering
The predictions are done based on the rating of only one film. You can decide
whether it’s beneficial to rate predictions this way, but it’s at least an ordering that will
provide a list where the items are more similar to the items that the user rated higher.

10.9.5 Showing recommendations

The content-based recommendations are shown on the Details page of a particular
movie, so the current item is the featured film. You saw an example of this in figure 10.15.

 For the personalized recommendations on the front page, iterate through all the
user’s items and calculate similarity based on their LDA vectors, and then order them
before returning them to the user. An example that can be seen in figure 10.20.

Figure 10.20 The personalized content-based recommendations can be seen on the front page of
MovieGEEKs app in the row called Similar Content.

281Evaluation of the content-based recommender
10.10 Evaluation of the content-based recommender
Before moving on, let’s refer back to chapter 9 and think about how you could evalu-
ate this recommender. In chapter 9, we talked about doing cross-validation of the
data, but that doesn’t work for content data. To evaluate this recommender, you can
use the same code as used to evaluate the MAP. Well almost.

 You need to make a recommender method that takes a list of ratings such that you
can call it with the training part of the user’s ratings. But you already had that as shown
in listing 10.14. The next thing to consider is how you want to divide each user’s data.
Again, you can either do it so that you ensure that there’s always a certain amount of
training data or always a certain number of test ratings. Or it could be a specific point.
You can run the evaluation by executing the code in the following listing.

> python -m evaluator.evaluation_runner -cb

This code creates a CSV file with the data used to show the evaluations. Figure 10.21
shows how the MAP looks.

Listing 10.15 Executing the evaluation

Figure 10.21 Evaluation on the content-based recommender. Using these measures
won’t put the content-based recommender in a favorable spotlight.

282 CHAPTER 10 Content-based filtering
Content-based recommenders work by finding similar content. The result of the eval-
uation depends on whether your domain and users are one, where users stay within
the same type of content, or on how adventurous the users are.

 Another way to test this type of recommender could also be by looking at how dif-
ferent the recommended items are from the seeded (input) content. The good thing
is that all users have rated one item, and there’s a similar item that will receive a rat-
ing. The earlier test was done using similarities above 0.1 (at least), and that produced
recommendations for 96% of the users. That’s higher than a collaborative filtering
algorithm.

10.11 Pros and cons of content-based filtering
Here are some things to consider when you build a content-based filtering algorithm:

 Pros:
– New items are easy to add. Create the item feature vector, and you’re set to

go.
– You don’t require much traffic. Because you can find similarity based on con-

tent descriptions, you can start recommending things from the first visit or
rating.

– It recommends across popularity; content-based recommenders don’t care
which content is popular right now if it finds that a film nobody ever watched
is as likely to be recommended as one that everybody watched.

 Cons:
– Conflates liking with importance. If you like science fiction films with Harri-

son Ford, the system will also give you films with Harrison Ford that aren’t
science fiction.

– No serendipity; it’s specialized.
– Limited understanding of content. It might be hard to include all features

that mark the aspects that make content favorable to a user, which means
that the system can easily misunderstand what the user likes.

An example of this is the first Thor movie. It could be that a user likes everything that
comes out of the Shakespearian school, but normally dislikes action, but the system
interprets a user liking Thor because it’s an action film. Or as Joseph Konstan says in
his “Introduction to Recommender Systems”, if I like Sandra Bullock in action films
and Meg Ryan in comedies, but if I hate Meg Ryan in action films and Sandra Bullock
in comedies, there’s no way for that to be captured in the feature vector.16 That is,
unless you start combining them to have a feature “Action film starring Sandra Bull-
ock” and “Comedy starring Sandra Bullock,” and so on.

 You’re doing great! Just the summary to go, and then you are finished with chapter 10.

16 University of Minnesota courses, taught by Joseph Konstan, “Introduction to Recommender Systems: Non-
Personalized and Content-Based,” www.coursera.org/learn/recommender-systems-introduction.

www.coursera.org/learn/recommender-systems-introduction

283Summary
Summary
 TF-IDF is easy, apart from remembering that its acronym means term fre-

quency–inverse document frequency. You can use it to find important words in
documents.

 Before feeding descriptions and texts to an algorithm, it’s good to remove
unwanted words and optimize for the algorithm. This can be done with remov-
ing stop words, popular words, stemming, and using TF-IDF to remove words
that aren’t important.

 Topic models create topics that can be used to describe documents.
 Latent Dirichlet allocation (LDA) creates a topic model.
 Evaluating content-based recommenders can be done by dividing each user’s

ratings into training and testing data (as you learned in chapter 9). Then run
through each user and calculate the recommendations to see if it produced
something that was in the test set.

 Content-based recommender systems are good because they don’t need much
information about the user.

 Content-based recommender systems will find similar items, which might not
always be the most surprising and fun recommendations to get.

Finding hidden genres
with matrix factorization
The matrix is only numbers, and this chapter is about the matrix and how to create
one:

 You’ll learn about dimensionality reduction recommender algorithms.
 Reducing similarity will help you find latent (hidden) factors in the data.
 You’ll train and use a singular value decomposition (SVD) to create recom-

mendations.
 You’ll learn how to fold in new users and items into an SVD.
 You’ll look at another matrix factorization model called the Funk SVD,

which is more flexible than the original SVD.

What have you learned so far? In chapter 8, we looked at collaborative filtering
using neighbor-based filtering. In this chapter, we’re going to return to collabora-
tive filtering, but this time we’re not talking about neighborhoods. Instead, we’ll
explore latent factors. In chapter 10, we talked about latent factors, but at that
point, we talked about latent factors in the content data. Now we’ll look at latent
factors in relation to collaborative filtering, which means in behavioral data.

 I’m throwing around many names. But let’s get it settled: hidden genres are the
same as latent factors. At least when talking about movies. The factors are said to be
latent because they’re defined by something that an algorithm calculates, not by
humans. They’re trends in the data that show or explain the user’s taste. These
284

285Sometimes it’s good to reduce the amount of data
trends or factors are also latent because even if they make sense data-wise, it might not
be so easy to say what these factors mean. I’ll explain this as we go.

 Latent factor recommenders are a relatively new discovery, getting their real break-
through when the Netflix Prize competition promised $1 million to anyone who
could improve Netflix’s recommendations by at least 10%. The winner was an ensemble
recommender algorithm, which means mixing many different algorithms to produce the
final result (and, incidentally, the topic of chapter 12). The winning ensemble was so
complicated that it never went into production. Instead, another solution made by
Simon Funk became famous for getting close to winning because he blogged about it.
His finding has been the basis for many other solutions since.

 In this chapter, you’ll look at several solutions that were close to winning Netflix’s
prize. We’ll also concentrate on something called the rating matrix. If you’ve only
behavioral data or implicit ratings, you should first go through the steps of converting
it into ratings as you did in chapter 4. The Funk SVD, which we talk about at the end
of this chapter, can be modified to use behavioral data instead of ratings data.1

 Before we move on, I want to set the stage. We’ll start with much discussion about
SVD. It’s a well-known method from linear algebra, and there are many tools available
to help you calculate matrix factorization. I’ll show you one tool with scikit-learn, a
machine-learning library for Python.

 With a true SVD, you can add new users easily. However, it’s terribly slow to calcu-
late an SVD, and if you have a large dataset, then it will be time-consuming.2 On top of
that, there are strict requirements about what should be done about the empty cells in
the rating matrix. To address this, we’ll move on to the Funk SVD, which is becoming
the one used most frequently. It’s not as easy to add new users, but it can be done.

 Finding latent factors is a task that can be done in many ways. In the scope of col-
laborative filtering, finding latent factors has been done primarily with matrix factor-
izations based on the rating matrix.

11.1 Sometimes it’s good to reduce the amount of data
Everybody is always ranting about how it’s good to have more data. What’s up with that?
Is this a covert attempt to go against the masses? Let me put you at ease and tell you up
front that it isn’t. But you need to look at how to get the most out of the data you do have.

 A reason to reduce the dimensions could be to extract a signal from the data. For
example, the top plot in figure 11.1 shows a scatter plot of noisy data, while the bot-
tom one shows the actual signal—the information in the data. Simplifying the data
can sometimes make it easier to understand the information hidden in it.

1 It’s a funky algorithm, but its name comes from the originator, Simon Funk, who popularized it.
2 Michael Holmes et al., “Fast SVD for Large-Scale Matrices,” http://sysrun.haifa.il.ibm.com/hrl/bigml/

files/Holmes.pdf.

http://sysrun.haifa.il.ibm.com/hrl/bigml/files/Holmes.pdf
http://sysrun.haifa.il.ibm.com/hrl/bigml/files/Holmes.pdf
http://sysrun.haifa.il.ibm.com/hrl/bigml/files/Holmes.pdf

286 CHAPTER 11 Finding hidden genres with matrix factorization

In a sense, you could have the same information in the points as in the line as shown
in the figure, only the points have noise too. The same principle applies when you do
dimension reduction, where you have high-dimensional data.

 Think about the data as a cloud of points, and you want to project the data into a
lower-dimensional space where the distance between the objects is the same. Then the
points that were further from each other before the reduction are also further away
after the reduction, and nearby items are also closer after the reduction. You want to
reduce the data so that only the directions that provide more information are
retained. If the algorithm succeeds, then the vectors pointing in those directions are
said to be latent factors.

 To illustrate this in an example closer to home for us recommender people, let’s
look at a real-world story. Imagine that you are on a first date or stuck in an elevator
with somebody (stress levels being equally high). To release part of the tension, you
start talking about movies. It might start with something like “Did you see X?” Or it
might be that you’re in for a longer session and want to talk about movie tastes and
say, “I like films with people dressed from a particular designer and with a slightly
supernatural aspect, and preferably it makes me laugh and takes place in the seven-
ties.” The other person says, “Oh, so you like James Bond!” “Yes, but also A Single Man
(a movie from 2009 directed by Tom Ford, who usually designs sunglasses and stuff)

60

40

20N
oi

sy
 d

at
a

0

0 2 4

X

X

Signal

Noise

6 8 10

60

40

20

f(
x)

0

0 2 4 6 8 10

Figure 11.1 A scatter plot of noisy data (top) and the signals that uncover the information in
the data (bottom)

287Example of what you want to solve
or Clueless (an even older comedy).” The other person says, “Cool,” and goes off on
ranting about Dawson’s Creek (television series that ended in 1998) being such a cool
series because they all wore clothing of a well-defined taste.

 If you should do the same story with the usual set of genres, it would go something
like this: “I like action movies, but also drama and comedy.” And the other person
would say, “Yes, I like TV series.” This probably wouldn’t turn out to be a fruitful
conversation. The basic idea is that by looking at the behavioral data of users, you can
find categories or topics that let you explain users’ tastes with much less granularity
than with each movie but more detail than genres. These factors will enable us to posi-
tion the movies that users like closer to each other.

 Talking about hidden things makes it sound as if there’s always something there, so
it’s worthwhile to point out that if your data is random or it doesn’t have any signal,
the reduction won’t provide any additional information. But by extracting factors
from the data, you’ll use more of the data collected for a user. The neighborhood
algorithms discussed in chapter 8 uses only small sets of the data when calculating pre-
dictions; here you’ll use more.

11.2 Example of what you want to solve
Let’s get back to the rating matrix that I’ve been dragging around for the last several
chapters (shown in table 11.1).

Again, you’ll do a dimension reduction by factorizing the rating matrix (that’s
described in the following paragraphs). This will help you find important factors so
that you’ve users and items in the same space, and you can recommend films that are
interesting to the user by finding which are nearby. You can also find similar users.

Table 11.1 Rating matrix

Comedy Action Comedy Action Drama Drama

Sara 5 3 2 2 2

Jesper 4 3 4 3 3

Therese 5 2 5 2 1 1

Helle 3 5 3 1 1

Pietro 3 3 3 2 4 5

Ekaterina 2 3 2 3 5 5

288 CHAPTER 11 Finding hidden genres with matrix factorization
 Using the matrix factorization, I produced the plot shown in figure 11.2 using only
two dimensions. First, you can say that the vertical axis indicates how serious. the films
are: Men in Black (MiB) and Ace Ventura (AV) are not serious, while Les Misérables (LM)
is serious.

 It’s important to note that this is my interpretation. I didn’t try to fit the data to
make it do a better factorization, so it’s okay to be puzzled. I did try to come up with
an interpretation of the horizontal axis but having Ace Ventura and Sense and Sensibility
at the same point made it difficult.3 It’s also important to note that the system didn’t
choose the number of dimensions; I did that to make the result illustratable. More on
that later.

The visualization in figure 11.2 shows three segments, which seems to correspond well
with the rating matrix.

1 The top one contains Therese, Helle, and Jesper (he’s hard to see because he’s
under Star Trek) and Sara who like all comedies and action movies.

2 Pietro and Ekaterina are down with the dramas.
3 The third segment contains only Braveheart, which is a bit outside of the other

segments.

Looking at figure 11.3, where the segments are pointed out in the rating matrix,
makes it easy to see why there would be these three segments in figure ll.2.

3 Please let me know on the book forum if you come up with something.

2. Three segments1. A hidden factor

Less
serious

Very
serious

Sara

Braveheart

Helle

Therese

Ace Ventura
Men In Black

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8
-0.55

Star Trek

Pietro

Ekaterina

Sense and Sensibility
Les Misérables

Jesper

-0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20

Figure 11.2 Plotting the movies and users in a reduced dimensional space. The reduced space
has two dimensions: one is the seriousness of the movies (y-axis), while I can’t see what
interpretation to put on the x-axis.

289Example of what you want to solve
When I first saw the output from figure 11.2, it puzzled me that Jesper’s position was
near that of Star Trek. He didn’t rate the movie that high, so why there? However, if you
consider Jesper’s ratings in figure 11.3, he gave four stars to Men in Black and Ace Ven-
tura and three stars to Star Trek and the two dramas. Now, it seems sensible that Jesper’s
position is there because the matrix factorization attempts to push items and users that
are more closely related. He’s close to Men in Black and Ace Ventura, but still not too far
from the two dramas.

 Segment two also deserves another word. I think that Braveheart has won its own
segment in the reduced space because it’s the one film that all rated low. But again,
that’s my interpretation.

 Calculating recommendations is done by looking into this factor space (the coor-
dinate system shown in figure 11.2) and finding the ones that are closer to the user.
Before you start plotting your factor space and looking for clusters, listen up: you’ll
find many tutorials and descriptions showing how you can interpret dimensions in a
vector space into something understandable, but they rarely work. Use a vector space
as a box that you ask about similarity among items and users. That’s what it’s good for.

 Even if they’re hard to interpret, I’m excited about this. It’s so cool! I hope that
this got you so interested that you’re ready to learn a bit of math because you need to
dip a bit into linear algebra.

Segment 1 Segment 3 Segment 2

Figure 11.3 Showing the three segments in the rating matrix, which is shown in figure 11.2.

290 CHAPTER 11 Finding hidden genres with matrix factorization
11.3 A whiff of linear algebra
Linear algebra is a large field of mathematics. It covers the study of lines, planes, and
subspaces, but it’s also concerned with properties common to all vector spaces. Ideally
the concept of matrix factorization is based more on linear algebra than what you’re
going to look at here.

11.3.1 Matrix

Matrix is Latin for womb.4 You’ve looked at vectors, which represent user taste, but
they can also mean so many other things. If you’ve two vectors like the following

then you could consider them as two arrows pointing in two directions. You could
draw a plane that passes through them, and you can say that they span a plane, such as
the plane shown in figure 11.4.

4 You can read more interesting facts about linear algebra at https://en.wikipedia.org/wiki/Linear_algebra.

v1

1
1
1

= and v2

0
2
1

=

Figure 11.4 A plane
spanned by two vectors

https://en.wikipedia.org/wiki/Linear_algebra

291A whiff of linear algebra
One way to represent two or more vectors is as a matrix. The matrix M represents the
vectors described previously:

A matrix is a rectangular array of numbers and declared by a number of rows m and a
number of columns n. A vector is a special case of a matrix that has only one column.

 Now imagine you’re rating vectors for your users. You have a dimension for each
content item, which means that you’re talking about a vector with thousands of
dimensions. In a thousand-dimensioned space, you’ll have something called a hyper-
plane that all the vectors lie in. A matrix is a way of describing one of those planes or
hyperplanes.

 The rating matrix shown earlier will span a kind of hyperplane in a six-dimensional
space and will probably be difficult to imagine or draw, so I won’t. Think of those as
something in a space like this:

But before you get too confident with this way of seeing the rating matrix as a matrix,
you should remember that you don’t have values to put in all the cells, and you can’t
have a matrix where only part of the cells have values. In the previous matrix, I filled
in the empty spaces with zeros, but that isn’t the best thing to do. You’ll see later that
much thought has to go into deciding what should be put in those empty cells.

 In the following section, you’ll multiply matrices. If you know how to do that,
great; if you don’t, that section provides a quick example.

MATRIX MULTIPLICATION

If you’ve two matrices U and V, they can be multiplied if A has the same number of col-
umns as B has rows. Figure 11.5 shows an example of how to create a matrix by multi-
plying two of them.

 The idea is that each cell in the new matrix is the dot product between the corre-
sponding row (U in figure 11.5) in the first matrix and the corresponding column (V)
in the second matrix. With this quick example done, let’s move on to factorization.

M
1
1
1

0
2
1

=

R

5 3 0 2 2 2
4 3 4 0 3 3
5 2 5 2 1 1
3 5 3 0 1 1
3 3 3 2 4 5
2 3 2 3 5 5

=

292 CHAPTER 11 Finding hidden genres with matrix factorization
11.3.2 What’s factorization?

As discussed previously, you want to factorize the matrix. Factorization is about splitting
things up. For example, you can split a number like 100 into the following prime fac-
torization:5

100 = 2 × 2 × 5 × 5

This means that you take a number and write it as a number of factors. In this case,
you write it as a list of prime numbers.6 Here, you don’t have a number but a rating
matrix. And what you can do in this case is to factor it into a product of matrices, so if
you have a matrix R (R for rating matrix, blink blink) you can decompose it into the
following form: .

 If R has n rows and m columns (as in n users and m items), you call it an n × m
matrix (read n by m); the size of U will be an n × d matrix and V is a d × m matrix. If
you look at the matrix shown previously, you’ll have a formula as follows:

5 For more information, see http://mathworld.wolfram.com/PrimeFactorization.html.
6 Interestingly, prime number factorization is unique due to the fundamental theorem of arithmetic.

U*V

When doing matrix
multiplication it’s
often good to take
the right matrix and
put it above where
you’ll write your
result, then it’s
easier to see which
row should be
done with which
column.

Here you need the third
row from U and fourth
column from V.

To calculate the top left
corner of the product
matrix, you’ll sum the
element-wise product of the
first row in U and the first
column in V:

U is a 6 x 2
matrix

V is a 2 x 6
matrix

Figure 11.5 Crash course in matrix multiplication

R UV=

5 3 0 2 2 2
4 3 4 0 3 3
5 2 5 2 1 1
3 5 3 0 1 1
3 3 3 2 4 5
2 3 2 3 5 5

u1 1, u1 2,
u2 1, u2 2,
u3 1, u3 2,
u4 1, u4 2,
u5 1, u5 2,
u6 1, u6 2,

v1 1,

v2 1,

v1 2,

v2 2,

v1 3,

v2 3,

v1 4,

v2 4,

v1 5,

v2 5,

v1 6,

v2 6,
=

http://mathworld.wolfram.com/PrimeFactorization.html

293Constructing the factorization using SVD
This is called a UV-decomposition. Here you set the d to be 2, but it could also have been
3 or 4 or even 5 (since the original matrix is 6 × 6). The idea is that you want to
decompose the matrix R into hidden features (read columns for users and rows for
items) for items and for users. In the field of recommender systems, you’d call the U
the user-feature matrix and the V the item-feature matrix.

MATRIX FACTORIZATION

To do the factorization, you need to somehow insert values in the U and V matrixes in
such a way that UV is as close to R as possible. Let’s start simple and say, for example,
you want to fit the cells in the second row, second column from the upper left corner
of R as shown in figure 11.6.

As you saw in the figure, the cell is calculated using the dot product. The dot product
isn’t new to the careful reader; you looked at it before, so to refresh your understand-
ing: if you’ve the row and the column from figure 11.6, then you’ve two vectors (u2,1,
u2,2) and (v1,2, v2,2), and the dot product is:

Even if the vectors are longer, it works the same way. For each cell in the matrix,
you’ve a similar expression, so that you’ve a long list of equations. To do factorization
is to find the v’s and u’s that satisfy the equations. If you do that, you’ve successfully
done a matrix factorization. In the next several sections, you’ll look at two ways to do
the factorization: with the SVD method, which is an old mathematical construct that’s
well-known and understood, and with the Funk SVD.

11.4 Constructing the factorization using SVD
One of the most commonly used methods for matrix factorization is an algorithm
called SVD (singular value decomposition). You want to find items to recommend to
users, and you want to do it using extracted factors from the rating matrix. The idea of

2,2

=X

RU
V

Cell (2,2)

Second
row

Second
column

u2,1 u2,2

V1,2

V2,2

Figure 11.6 The fitted cells as the sum of the element-wise products of the second row in U
and the second column in V by multiplying the first set (U) pair-wise with the corresponding
column in the second set (V), then adding the product of the formula afterward.

r̂
2 2, u2 v2 u2 1, v1 2, u2 2, v2 2,+= =

294 CHAPTER 11 Finding hidden genres with matrix factorization
factorization is even more complicated because you want to end up with a formula
that enables you to add new users and items without too much fuss.

 From the rating matrix M, you want to construct two matrices that you can use:
one that represents the customer’s taste and one that contains the item profiles. Using
SVD, you construct three matrices: U, , and VT (also known as V* depending on
which book you look in). Because you want to end up with two matrices, you multiply
the square root of  on one of the two others, and then you only have two left. But
before doing that, you want to use the middle matrix that gives you information about
how much you should reduce the dimensions. Figure 11.7 shows the SVD.

You call them:

 M—A matrix you want to decompose; in your case, it’s the rating matrix.
 U—User feature matrix.
 —Weights diagonal.
 VT—Item feature matrix.

When using the SVD algorithm the  will always be a diagonal matrix.

DIAGONAL MATRIX

 A diagonal matrix means that it only has zeros except in the diagonal from the upper-
left corner to the lower-right corner as shown here:

REDUCING THE MATRIX

It might be hard to see how splitting a matrix into three matrices does any good, espe-
cially when I mentioned that it’s time-consuming to create these. But the idea is that
the central diagonal matrix  contains elements that are sorted from the largest to the
smallest; the elements are called singular values, and the values indicate how much
information this feature produces for the data set. A feature here means both a column
in the user matrix U and a row in the content matrix VT. You can now select a number
r of features and set the rest of the diagonal to zero. Look at figure 11.8, which

=

M U ∑∑ VT

Figure 11.7 A matrix can be factorized into three matrices.

9 0 0
0 5 0
0 0 1

295Constructing the factorization using SVD
illustrates what remains of the matrices when you set diagonal values to zero outside
the middle box. This is the same as removing all right-most columns in the user
matrix U and all the bottom rows from V*, keeping only the r top rows.

Let’s look at an example using the rating matrix shown previously. You can make a
Python Panda DataFrame7 as shown in the next listing.

import pandas as pd
import numpy as np

movies = ['mib', 'st', 'av', 'b', 'ss', 'lm']
users = ['Sara', 'Jesper', 'Therese', 'Helle', 'Pietro', 'Ekaterina']

M = pd.DataFrame([
 [5.0, 3.0, 0.0, 2.0, 2.0, 2.0],
 [4.0, 3.0, 4.0, 0.0, 3.0, 3.0],
 [5.0, 2.0, 5.0, 2.0, 1.0, 1.0],
 [3.0, 5.0, 3.0, 0.0, 1.0, 1.0],
 [3.0, 3.0, 3.0, 2.0, 4.0, 5.0],
 [2.0, 3.0, 2.0, 3.0, 5.0, 5.0]],
 columns=movies,
 index=users)

For fun you can test whether it worked correctly and try out the following command:

M['mib']['sara']

It prints 5.0, which is correct. To do the matrix factorization, you can use the NumPy
implementation shown in listing 11.2.8

Listing 11.1 Creating a rating matrix

7 If you’re new to Panda, I recommend Python for Data Analysis by Wes McKinney (O’Reilly Media; 2nd ed.,
2017).

8 For more information on NumPy, see http://mng.bz/xYEl.

r columns

r rows

ΣΣ VTU

r

Figure 11.8 Reducing the SVD by setting small values in  to zero.

http://mng.bz/xYEl

296 CHAPTER 11 Finding hidden genres with matrix factorization

from numpy import linalg

U, Sigma, Vt = linalg.svd(M)

This creates the three matrices shown in figure 11.9 (which looks like what you saw in
figures 11.6 and 11.7).

Does that make sense? Well, probably, not really. It’s so much work to get three matri-
ces exactly the same size as the original. But hold your horses a second. Look at the
diagonal matrix in the middle (), more significantly known as the weights matrix. Each
of these weights can be an indication of how much information is present in each
dimension. The first one provides much information (17.27), the next one, not so
much (5.84), and so on, so you can reduce the size of the matrices. But by how much?

HOW MUCH SHOULD THE MATRIX BE REDUCED?
You could reduce the dimensions using only two, and still produce a chart like the one
in figure 11.2. Another good reason for reducing the matrix to two dimensions is that
by looking at the weights in the Sigma matrix (), you’ll get most of the information
by using only two features.

 With such a small example, reducing the matrix doesn’t matter much. But a rule of
thumb is that you should retain 90% of the information. If you add up all the weights,
that’s 100%, then you should continue counting weights until you have 90% of the
information. Let’s do the calculation for the matrix in figure 11.9.

 The sum of all of them is 32.0, so 90% of that is 28.83. If you reduce it to 4 dimen-
sions, then the weight is 29.80 so you should reduce it to 4 dimensions (factors). To
reduce the matrices in code, you’d implement the commands in this listing.

def rank_k(k):
 U_reduced= np.mat(U[:,:k])
 Vt_reduced = np.mat(Vt[:k,:])
 Sigma_reduced = Sigma_reduced = np.eye(k)*Sigma[:k]

Listing 11.2 Doing an SVD on the matrix

Listing 11.3 Reducing the matrix

Imports the linear algebra library of NumPy8

Calculates the matrix factorization

-0.34

-0.43

-0.39

-0.33

-0.48

-0.46

0.05

0.16

0.56

0.42

-0.34

-0.61

0.91

-0.31

-0.19

0.02

-0.18

-0.06

-0.00

0.35

0.02

-0.05

-0.78

0.51

0

5.84

0

0

0

0

17.27

0

0

0

0

0

0

0

3.56

0

0

0

0

0

0

3.13

0

0

ΣΣ Vt

0

0

0

0

1.67

0

0

0

0

0

0

0.56

0.19

0.74

-0.32

-0.37

0.10

–0.40

0.11

-0.12

0.63

-0.76

0.03

0.02

-0.50

0.46

0.50

0.34

0.41

-0.01

-0.44

0.17

0.22

-0.77

-0.36

-0.03

-0.41

0.42

-0.78

0.17

-0.16

0.01

-0.43

-0.55

-0.13

-0.01

0.25

-0.66

-0.40

-0.49

-0.08

-0.02

0.19

0.75

-0.22

-0.22

0.26

0.51

-0.76

-0.02

U

Figure 11.9 The matrices of the NumPy factorization

Returns the reduced
matrices

297Constructing the factorization using SVD
 return U_reduced, Sigma_reduced, Vt_reduced,

U_reduced, Sigma_reduced, Vt_reduced = rank_k(4)

M_hat = U_reduced * Sigma_reduced * Vt_reduced

The M_hat matrix looks like the one shown in figure 11.10.

It’s probably tempting to throw away the U and V matrices, but not if you want to add
new users to the model. If you want to add them to the model, you must keep the fac-
torized matrices. More on that in a bit. First let’s see how to predict a rating.

PREDICT A RATING

With the factorization in place, it’s now easy to predict ratings for users. Simply look it
up in the new M_hat matrix, which contains all of the predicted ratings. To look up
something in a matrix, you first denote the column (in the following listing, 'av') and
then the index of the row (here 'sara'). The following listing shows a look-up (that’s
after it wraps M_hat in a data frame with nice column and index names).

M_hat_matrix = pd.DataFrame(M_hat, columns= movies,index= users).round(2)

M_hat['av']['sara']

Suppose you wanted to save the decomposed matrices only. To avoid doing three sets
of multiplication, you’ll take the  matrix and find the square root of it and then mul-
tiply that by each of the matrices. You can update the reduction matrix from the previ-
ous listing to that shown in the next listing.

def rank_k2(k):
 U_reduced= np.mat(U[:,:k])
 Vt_reduced = np.mat(Vt[:k,:])
 Sigma_reduced = Sigma_reduced = np.eye(k)*Sigma[:k]
 Sigma_sqrt = np.sqrt(Sigma_reduced)

Listing 11.4 Predicting a rating

Listing 11.5 Reducing the matrix

Uses rank_k to
return the reduced
matrices

Calculates the
deduced matrix M_hat

4.87

3.49

5.22

3.25

2.93

2.27

Sara

Jesper

Therese

Helle

Pietro

Ekaterina

3.11

3.46

1.80

4.77

3.05

2.77

0.05

4.19

4.92

2.90

3.03

1.89

1.92

2.82

1.14

1.13

4.67

5.35

1.94

2.62

1.10

1.14

4.30

4.92

2.24

mib st av lmssb

0.95

1.59

-0.47

2.11

2.50 Figure 11.10 Showing the M_hat matrix

Wraps the M_hat matrix in a data
frame so you can query it as you

did with the rating matrix

Queries for Sara’s predicted
rating for Ace Ventura

Reduces the size of the
decomposed matrices

Takes the square
root of all entries

298 CHAPTER 11 Finding hidden genres with matrix factorization
 return U_reduced*Sigma_sqrt, Sigma_sqrt*Vt_reduced

U_reduced, Vt_reduced = rank_k2(4)

M_hat = U_reduced * Vt_reduced

Now with these two matrices, you can predict a rating like the following listing (and
illustrated in figure 11.11). Here you’re indexing the matrix in the shape of NumPy
arrays and not as data frames as you did before.

Jesper = 1
AceVentura = 2
U_reduced[Jesper]*Vt_reduced[:,AceVentura]

Running the previous code shows that Jesper would rate Ace Ventura at 4.19, which is
close to his actual rating. When you produce a rating on the same film for Sara, you
get 0.048, which is also close to the zero you fed into the algorithm. Maybe filling all
the empty spots with zeros wasn’t such a good idea. To make the predictions better,
you’ll do something called imputation.

SOLVING THE PROBLEM OF THE ZEROS IN THE RATING MATRIX USING IMPUTATION

What do you do with all the data you don’t know? The example you looked at previ-
ously had only a few unknowns, but often, you’ll talk about situations where only 1%
of the cells in the rating matrix have values. Something needs to be done. You have
two common ways to approach this:

 You can calculate the mean of each item (or user) and fill in this mean where
there are zeros in each row (or column) of the matrix.

 You can normalize each row, such that all elements are centered around zero,
so the zeros will become the average.

Listing 11.6 Calculating the ratings

Calls the method to get
the reduced matrices

To produce the M_hat
matrix, multiply the two.

Rating matrixUser

Items

The dot productUser factors

Item factors

Figure 11.11 How to predict ratings using the factors

Sets variables to make
it more readable

Calculates a predicted rating

299Constructing the factorization using SVD
Both methods are known as imputation. This solution takes you part of the way, but you
can do better with something called baseline predictors, which I’ll talk about soon. In
the next listing, you’ll fill in the cells with zeros with the averages of the product ratings.

r_average = M[M > 0.0].mean()

M[M == 0] = np.NaN

M.fillna(r_average, inplace=True)

If you run it through the mill again, you get Sara’s predicted rating for Ace Ventura as
3.47, which I think sounds closer to what it should be. It also sounds closer to the aver-
age rating for Ace Ventura, which is 3.4.

11.4.1 Adding a new user by folding in

One cool thing about the SVD method is that you can also add new users and items into
the system (though not before there have been interactions). For example, you could
add me to the factorization; my rating vector would look something like that shown in
table 11.2.

Expressed as a vector, this would be:

What you want is to project this rating vector into your vector space. To do that, you
can utilize the decomposition shown previously. To add a new user means to add
another row to the rating matrix, which in turn means that the decomposed user
matrix would also have another row, as illustrated in figure 11.12.

 How do you do that? It’s simple—you use the things you know already. You know
the row of ratings, you know  and V*. You have rules that come into play about how to
work with matrices, but I’ll leave that out here because it’ll require lengthy discussion

Listing 11.7 Normalizing ratings

Table 11.2 Ratings from Kim

Comedy Action Comedy Action Drama Drama

Kim 4 5 3 3

Calculates the mean of all movies
Sets all entries equal to zero to NaN (not a number)

Fills all NaNs with the averages

rkim (4.0, 5.0, 0.0, 3.0, 3.0, 0.0)=

300 CHAPTER 11 Finding hidden genres with matrix factorization
about matrices.9 I hope you’ll trust me telling you that you can calculate the new row
using the following formula:

 where

 is the user vector in the reduced space to represent the new user.
 is the new user’s rating vector.
  is the inverse of the Sigma matrix.
 is the item matrix.

To use this in Python, you implement the code in this listing.

from numpy.linalg import inv

r_kim = np.array([4.0, 5.0, 0.0, 3.0, 3.0, 0.0])
u_kim = r_kim *Vt_reduced.T* inv(Sigma_reduced)

Now you can predict ratings for user Kim as well. Similarly, you can fold in a new item
using the following formula:

 where
 is the vector in the reduced space to represent the new item.
 is the new items user ratings vector.
  is the inverse of the sigma matrix.
 U—The user matrix.

As you can see, you need to have user ratings before you can add items. If you can add
new users and items, then why ever recalculate everything, you might ask. Remember

9 Look at “Using Linear Algebra for Intelligent Information Retrieval” for more details. See www2.denizyuret
.com/ref/berry/berry95using.pdf.

Listing 11.8 Folding in new users

U

=

New user

M ΣΣ VT

Figure 11.12 The schematics of the SVD folding-in technique

ukim rkVt 1–=

ukim
rk

VT

înew rT
new itemU  1–=

inew
rnew item

www2.denizyuret.com/ref/berry/berry95using.pdf
www2.denizyuret.com/ref/berry/berry95using.pdf
www2.denizyuret.com/ref/berry/berry95using.pdf

301Constructing the factorization using SVD
that the reduction is done to extract topics from the data. These topics aren’t updated
when you fold in a new user or item; they’re placed compared to the topics that are
already there.

 It’s important to update the SVD as often as possible. Depending on how many
new users and items you have, you should do it once a day or once a week. One curi-
ous thing about folding in a new user is that if the new user only has one rating, then
it doesn’t matter if it’s high or low.10 The list of recommendations will be exactly the
same. Play around with the small matrix shown previously to understand why that’s so.

11.4.2 How to do recommendations with SVD

Two ways you can make recommendations now are to calculate all predicted ratings
and take the largest ones that the user hasn’t seen before, or to iterate through each
item and find similar products in the reduced space. A third way could be to use the
new matrices you have to calculate neighborhood collaborative filtering as you did in
chapter 8. The reason why that might be a good idea is that the matrices have all non-
zero entries (at least if it’s normalized). In this dense space, you’ve a much better
chance of finding similar items or users.

PROBLEMS WITH SVD
I can keep on writing about SVD and its possibilities, but I want to move on to another
type of reduction method, which is similar to SVD but much more efficient to calcu-
late. The SVD you’ve seen so far has several problems: To begin with, it requires that
something is done with the unfilled cells in the rating matrix. And it’s slow to calculate
large matrixes. On the positive side, there’s the possibility to fold in new users as they
arrive, but you need to keep in mind, the SVD model is static and should be updated
as often as possible.

 Further, SVD isn’t at all explainable. People like to know why something is recom-
mended but the SVD approach makes it difficult to understand why the machine is
predicting high ratings for one item and not another. But before you move on, I rec-
ommend you read an article written by Badrul M. Sarwar et. al., from the GroupLens
research group—people you should know if you’re into recommender systems. The
article is “Application of Dimensionality Reduction in Recommender System—A Case
Study.” 11

 The next matrix factorization algorithm is interesting, but as always, I’ll sidestep a
second and look at something called baseline predictors, which make it easier to add
values to the empty slots of the matrix. Although these can be used as a recommender
system, they’re used here as a way to make the matrix factorization better.

10 As pointed out in “Fifty Shades of Ratings: How to Benefit from a Negative Feedback in Top-N Recommendations Tasks”
by E. Frolov et al. An abstract can be found at https://arxiv.org/abs/1607.04228.

11 For more information, see http://files.grouplens.org/papers/webKDD00.pdf.

https://arxiv.org/abs/1607.04228
http://files.grouplens.org/papers/webKDD00.pdf

302 CHAPTER 11 Finding hidden genres with matrix factorization
11.4.3 Baseline predictors

Besides item types and the users’ tastes, there are other aspects of items and users to
mention. If a movie is generally considered good, then the average rating of that film
is probably slightly higher than the global average of all movies, and in turn, if a film
was considered bad, its average rating is likely below the global average. If you had
information like that, then you could add a slightly higher default rating on an item.
At the same time, certain users are more critical than others (did I say grumpy old
farts?) or, conversely, more positive. An item that’s above or below the average you
could say is biased. The same is true with users; you can say that users have a bias com-
pared to the global average.

 If you could extract the biases for the items and the users, then you’d be in a posi-
tion to provide a baseline for your predictions, which is much better than using the
average as you did before when filling out empty cells in the rating matrix. Using
these biases, you can create baseline predictors. A baseline predictor is the sum of the
global average plus the bias of the item plus the bias of the user. In math you’d use the
following equation:

where

 bui is the base prediction of item i for user u.
 bu is the user bias.
 bi is the item bias.
  is the average of all ratings .

All that sounds clever, but how do you calculate the user and item biases because
they’re both part of the ratings? Easy. You have an equation for each rating. If, for
example, Sara rated the Avenger film Civil War only 3 out of 5 stars because she
thought Captain America wasn’t acting nice, you’ve the following equation:

The global average of the example is 2.99 (sum all the cells divided by the number of
nonzero cells). Can you answer what the values of the biases are? It’s not possible to
say which is what, but if you have many equations with the biases, you can get close by
trying to solve it as a least-squares problem.

FINDING BIAS BY FINDING LEAST SQUARES

When discussing similarity in chapter 7, you learned about least squares. It’s the same
idea here; you want to find biases that make the baseline predictions as close to the
known ratings. If you take the same rating as used previously, you’ll ask what values
you should set for the biases to make the following as small as possible:

bui  bu bi+ +=

b(sara,civil war)  bsara bcivil war+ + 3 3.6 bsara bcivil war+ +==

min r sara civil war,  b sara civil war,  
2

–

min r sara civil war,  – bsara– bcivil war –
2

303Constructing the factorization using SVD
To be sure I’m not losing anybody here, I’ll go through this quickly. The equation
means that you’re trying to find the bs that makes the equation as small as possible or
the minimum (min). When you have many ratings (or at least more than one), you
can find the minimum of the sum of all of them. The reason for the equation to be
squared is that it makes the values all positive as well as penalizes bit differences.
When you have many ratings, you write it like the following:

where is all the ratings you have so far.

A SIMPLER WAY TO CALCULATE BIASES

A simpler way to find these biases is to use the equations explained in this section.
First, calculate the bias for each user (bu), taking the sum of the difference between
the users’ ratings and the mean. Divide this by the number of ratings, which means
the result is the average difference between the mean and the users’ ratings:

When all the users’ biases have been calculated, calculate the item bias (bi) the same
way:

These baseline predictors mentioned previously can be used to fill in the empty
spaces of the rating matrix to make the SVD or, indeed most matrix factorization algo-
rithms, work better. I’ve calculated the biases for the test data (using the Python code
in listing 11.9) and they’re shown in table 11.3.

global_mean = M[M>0].mean().mean()
M_minus_mean = M[M>0]-global_mean
user_bias = M_minus_mean.T.mean()
item_bias = M_minus_mean.apply(lambda r: r - user_bias).mean()

Listing 11.9 Calculating biases

min
b

r u i,  – bu– bi– 2

u i,  K


u i,  K

bu
1
Iu
------- ru i, – 

i Iu
=

bi
1
Ui
-------- ru i, bu– – 

u Ui
=

Finds the global mean, which can be done
by first finding the mean of each column
and then finding the mean of that Deducts the global mean from

all the nonzero ratings

The mean of each row
is the user bias.

Deducts the user bias from each row,
then takes the mean of each column

giving you the item bias.

304 CHAPTER 11 Finding hidden genres with matrix factorization
Looking at the table, you’ll see that certain users are more critical raters than others,
and certain movies are generally considered better than others. I’m not sure this set of
users is representative of the general public because I believe Braveheart to be a fantas-
tic film. Besides the bias of users, there are other things that can be variable. Let’s look
at those next.

11.4.4 Temporal dynamic

We’ve talked about bias as something that’s static, but a user could move from a happy
rater to a grumpy old person, and biases should be adjusted to reflect that. The same
is true for adjusting the item bias over time because items go in and out of fashion.
Predictions of the ratings could also vary over time, so you could say your rating pre-
diction function is also a function of time. In those instances, you should modify the
previous equation to the following function of time:

where

 bui is the base prediction of item i for user u at time t.
 bu is the user bias at time t.
 bi is the item bias at time t.
  is the average of all ratings.

It’s something to consider if you implemented everything else and want to try to
squeeze more precision out of the recommender. Whether this is something you want
to do is also dependent on the size of your data.

 If your data stretches over a long period of time and you have many ratings, then
I’d say that you should look into the temporal aspect of things; otherwise, you might
keep it simple to start with and then consider upgrading later. You can find much
research out there describing how to approach this. A good place to start is Collabora-
tive Filtering with Temporal Dynamics by Yehuda Koren.12

Table 11.3 User and item biases

User User Bias Item Item Bias

Sara -0.197222 Men in Black 0.644444

Jesper 0.402778 Star Trek 0.144444

Therese -0.330556 Ace Ventura 0.333333

Helle -0.397222 Braveheart -0.783333

Pietro 0.336111 Sense and Sensibility -0.355556

Ekaterina 0.336111 Les Misérables -0.188889

12 The article can be found at http://mng.bz/52nP.

bui t   bu t  bi t + +=

305Constructing the factorization using Funk SVD
11.5 Constructing the factorization using Funk SVD
The SVD method puts much weight into the rating matrix, but that’s a sparse matrix
and shouldn’t be relied on too heavily in the sense that finding a cell that’s populated
with a rating can be below 1%. Instead of using the whole matrix, Simon Funk came
up with a method that only uses the things you need to know. You need to learn more
math to appreciate it, but it’s full of figures so that it will be over with in no time. The
Funk SVD is also often referred to as regularized SVD.

 You’ll start by looking at the RMSE, which you first read about in chapter 7, to pro-
vide a measure of how close you are to the known ratings. With that in your toolbox,
you’ll look at something called gradient descent, which uses RMSE to walk (don’t
believe me? then you’d better read on) toward a better solution. When you have that,
you’ll look at how to use baseline predictors. I already mentioned them as a way to
predict better than average rating information. Once you’ve learned all that, you’ll
look at the Funk SVD algorithm.

11.5.1 Root Mean Squared Error

When you’re optimizing algorithms, your first approach should always be RMSE. Let’s
go through how that will make you happier. The problem you want to solve is to create
two matrices U and V that when multiplied together will be as close to the original
matrix as possible. Ideally you want to find u’s and v’s so the following is true:

You also saw earlier that this can be written as a long list of equations. And for each of
them, you want the following to be as small as possible:

Because you want to do that for all cells, you can make a sum of these expressions and
say that you want the minimum of all of them:

NOTE Remember that each row is a user (u), each column is an item (i), and
each cell in the matrix is defined by (u,i).

The user-item notation makes it clear that all the ratings that the user u has given; is
all the ratings you already know. The goal here is to find values for the two matrices
that minimize the difference between the rating and the ones you calculate from U

5 3 0 2 2 2
4 3 4 0 3 3
5 2 5 2 1 1
3 5 3 0 1 1
3 3 3 2 4 5
2 3 2 3 5 5

u1 1, u1 2,
u2 1, u2 2,
u3 1, u3 2,
u4 1, u4 2,
u5 1, u5 2,
u6 1, u6 2,

v1 1,

v2 1,

v1 2,

v2 2,

v1 3,

v2 3,

v1 4,

v2 4,

v1 5,

v2 5,

v1 6,

v2 6,
=

minu v, rui uuvi– 

minu v, rui uuvi– 
u i,  known


http://yifanhu.net/PUB/cf.pdf

306 CHAPTER 11 Finding hidden genres with matrix factorization
and V. A way to minimize the difference is to use an algorithm called gradient
descent, which you’ll learn about in the next section.

 You want the equation to penalize big errors, so you take the square of the differ-
ence. But you still want the error to come out to be on the same scale of the ratings so
with that you end up with the RMSE:

You square each element of the sum, and when everything is summed, you divide by
the number of elements in the sum and then take the square root. You’ll use this in a
little bit. To make the explanation in the following more relevant, I’ll point out that
the previous RMSE can be seen as the following function f :

And you want to find values u1,…, uN, v1,…, vM, which make the result of the function
as small as possible. Because that’s rather difficult to do by looking at it, as mentioned,
you’ll turn to something called gradient descent.

11.5.2 Gradient descent

To understand gradient descent, let’s start with a general example and then go back to
the problem at hand. Gradient descent is a way to find optimal points on a graph, where
optimal means the lowest point (or the highest point). Consider that you’ve the follow-
ing function f and you want to find x and y, which produce the smallest possible value:

If you plot, it looks like the one shown in figure 11.13.

RMSE 1
known
-------------------- rui uuvi– 

2

u i,  known
=

f u1 ... , uN, v1, ... , vM,  1
known
-------------------- rui uuvi– 

2

u i,  known
=

f x y,  12x2 5x 10y2 10+ +–=

Figure 11.13 Plotting the function
f(x,y) 12x2 -- 5x ൅10y2 ൅10

307Constructing the factorization using Funk SVD
The thinking behind gradient descent is to start somewhere (we’ll get back to how to
select that somewhere) and then look around to see if there’s any direction that
makes the function produce a smaller value. In math language, you want to find x’
and y’ such that:

In the example in figure 11.13, it boils down to understanding what side of the bowl
you’re standing on and then moving in the direction that points toward the bottom.
Consider yourself standing on a mountain, it’s foggy, and you can only see a meter in
each direction. If you want to get to a point where you might find water, then the best
choice is probably to go in the direction that leads downward. It’s the same principle
here. Figure 11.14 shows how to translate that.

I’ll divide the description of gradient descent into several steps in the next sections.

HOW TO START

How do you decide which point to start with? You can start anywhere because all func-
tions aren’t nicely bowl-shaped like the one in figure 11.14. Many times, you’re looking
at functions that have more than one local minimum like the one shown in figure 11.15.

 Often the best suggestion is to try different starting points and see if they arrive at
the same point. For example, if you continue with the previously described function
and the steps in figure 11.14, you picked x = 5.

HOW TO FIND THE LINE THAT POINTS DOWN

To find the line pointing down, you find the derivative. If you don’t know about deri-
vation, then you’ll have to take my word that the derivate of (this is the function after
you set y = 0) is the following:

f x' y',  f x y, 

• Choose a starting
 point x.

x x x

500

400

300

200

100

0
-6 -4 -2 0 2 4 6

x’

1 2 3

• Find this line.
• Go in the direction
 of where the line
 points down.

• Move in the direction
 of where the line is
 descending.
• Go back to 2.

500

400

300

200

100

0
-6 -4 -2 0 2 4 6

500

400

300

200

100

0
-6 -4 -2 0 2 4 6

Figure 11.14 The gradient descent algorithm. Start out somewhere to find the direction that
moves down, move a little bit in that direction, and repeat.

dy
dx
------ 24x 5–=

308 CHAPTER 11 Finding hidden genres with matrix factorization
If you input your chosen starting point (x = 5), you get

which means the original function at x = 5 slopes downward with a slope equal to a
fall of 125 every time you move 1 to the right. If the derivate function produces some-
thing positive, you should move to the right to find the x that gives the minimum
result.

 To check that this is true, look at figure 11.14, where you can see that if you insert
x = 2 into the derivate, you get , which means you should go left. If you’re
looking at a function with several variables like the one in figure 11.13, do this for
each of the variables.

HOW TO FIND THE NEXT POINT

You know which way to go now, so how do you move on to the next point? How do you
take that next step? Take this equation, for example:

Don’t stress because I added a Greek letter; it’s an alpha (). In the world of gradient
descent, it’s called the learning rate, which translates to how big a step you should take
every time you want to move to the next point.

 Again, there aren’t any rules, other than if you take too large a step, you might miss
the minimum altogether. Looking at step 3 in figure 11.14, if you take more than five
steps, you’ll miss the bottom and go back and forth between the sloping sides. And if
you take steps that are too small, you’ll never arrive. If you have more than one vari-
able, you do the same for each variable.

Figure 11.15 Function with more than
one minimum (1.2x4 ൅ 0.5x3 - 20x2)

dy
dx
------ 125=

dy
dx
---- 43=

x' x a *
dy
dx
------–=

309Constructing the factorization using Funk SVD
WHEN IS IT FINISHED?
I can’t tell you when you’re finished (this is why it’s called a heuristic and not a solu-
tion). But what you can look for is when your scoring function—the function you try
to optimize—changes less and less. For example, if you take a step and the function
only gets 0.0001 better, then it might be time to stop. Alternatively, you can say that
you’ll continue for 150 iterations (steps) and when you’re done, you’re done.

11.5.3 Stochastic gradient descent

The gradient descent algorithm described earlier is also known as the batch gradient
descent because you calculate all the errors every time you move the value of the
parameters—which can be a considerable amount of work. Consider that the data set
you’re using contains no less than 601,263 ratings. Every time the gradient descent
algorithm does an iteration, you need to calculate all 601,263 subtractions as shown in
this listing that uses the Django model interface.

In[1]: Rating.objects.all().count()
Out[1]: 601263

Another way that’s also proven both efficient and effective performance-wise, and also
in the result, is what’s called stochastic gradient descent, which looks at one rating at a
time. The algorithm goes as follows. For each rating r (u, i):

 Calculate where is the predicted rating. You’ll learn more
about it soon.

 Update x so that where  is the learning rate.

You’d be able to finish after one or more iterations over all the ratings! Sadly, this is it
for the math lesson. I hope you learned something because it’ll be useful in the next
examples where stochastic gradient descent is used in the following sections.

 If you’re moving off into deep learning after reading my book,13 then gradient
descent is an important part of how you train deep learning networks.

11.5.4 And finally, to the factorization

What if you try to disregard all the cells with nothing in them and only calculate
RMSE, looking only at the ratings you do know; thereby avoiding the problem of the
sparse matrix and how to fill the empty cells? Don’t get angry; you still need every-
thing we talked about after the SVD. Trust me.

 Our goal is to take all your ratings and create two matrices such that the ith row of the
item factor matrix multiplied by the uth column of the user factor matrix provides some-
thing that’s close to the actual known ratings. Putting that into a least squares problem,

Listing 11.10 Getting a count of all ratings

13 I’m reading Machine Learning with TensorFlow by Nishant Shukla (Manning, 2018) right now.

e rui qipu–= qipu

x x a * e–

310 CHAPTER 11 Finding hidden genres with matrix factorization
you can say that you want to find matrices Q and P, which will minimize the following
for all known ratings. This can be done using the stochastic gradient descent algorithm.

where

 qi is the ith row in the item factor matrix Q.
 pu is the uth column in the user factor matrix P.

For each rating, you’ll update the two matrices Q and P, or rather a row and a column
in the respective matrices. Before starting, you need to decide how many features you
want to end up with.

 In the Funk SVD, you don’t have the Sigma matrix to calculate energy, so you’ll
have to run it for several different numbers of features and see which is best. You can
use the following algorithm for each f in features and then continue until finished.
(I’ll explain what this algorithm does and then show you how to implement it in
Python in a bit.)

 For each rating rui in ratings, calculate







where

 is the learning rate.
 is called the regularization term.

First, this equation calculates how much the predicted rating is off, compared to the
actual rating. You use this error to correct Q and P. You can now update the two vec-
tors qi and pu using the error you calculated multiplied by the learning rate (), which
is often similar to 0.001, and subtract its own vector times a regularization factor. (The
last part is done to keep the length (values) of the vector small.)

 Now when you run through all the known ratings once, you’ll have two matrices
that can be used to predict ratings. It’s a good idea to shuffle the list of ratings before
doing this algorithm because trends in the ratings might push the factorization in
strange directions.14

11.5.5 Adding biases

We’ve talked about biases in a previous section. Even if the equation is already a bit
complicated, it’s worth adding them. But what does it mean to have both user factors
(a row in P) and a bias?

14 This means to randomize the ordering of the ratings.

minp q, ru i, qipu– 2

u i,  K


eui rui qipu–=

qi qi  * eui * pu  * qi– +
pu pu  * eui * qi  * pu– +






311Constructing the factorization using Funk SVD
 The way I think of it is that the user likes a specific type of film, which is encoded in
the user factors, while the negative (or positive) rater is encoded in the bias. A pre-
dicted rating is now the sum of four things as shown in figure 11.16.

If you add those to the equation, the new function you want to minimize is the
following:

And now your algorithm looks like the following (this is an extension of the previous
one). For each feature f, continue until finished











where

 is the learning rate.
 is the regularization term.

Even if you aren’t going to drag too much through these equations, it’s worth know-
ing that you’re doing it according to the stochastic gradient descent approach, and
the equations are found by taking the derivate of the squared error.

11.5.6 How to start and when to stop

Now that you’ve all the math and structure in place, it’s time to talk about the art of
machine learning because good machine learning isn’t only about knowing the math:

R =

Global average

User bias

Item bias

Dot product of between the user
and item factors

Figure 11.16 A predicted rating is
a combination of these four things.

minb p, q, riu – bu– bi– qipu– 2

u i,  K


eui rui qipu–=

bu bu  * eui  * bu– +
bi bi  * eui  * bi– +
qi qi  * eui * pu  * qi– +

pu pu  * eui * qi  * pu– +




312 CHAPTER 11 Finding hidden genres with matrix factorization
it’s also about understanding how to initialize parameters and what the constants
should be. The problem with any art is that it’s hard to teach because there isn’t a
right or wrong. Although it’s a bit of an art to arrive at good parameters, Simon Funk
was nice enough to describe which values he used: learning rate  = 0.001, regulariza-
tion  = 0.02 with 40 factors. This supposedly got him third place in the Netflix chal-
lenge mentioned in the beginning of this chapter.

 But let’s have a quick chat about how to figure good values for each of your para-
meters. The difference between what you’re doing here and the evaluation you
looked at in chapter 9 is that you’re not only looking for more precision and recall
(that’s something you’ll look at when you’ve finished fine-tuning the parameters), but
you’re also concentrating on training the algorithm to understand the domain. That
sounds fancy, but let’s remember your goal, which is to provide recommendations for
users online.

 How to emulate that best isn’t by creating something that not only remembers the
answers from the training data but also predicts ratings from the test data. It’s about
you wanting to have as little error as possible both on the data that you’re training and
on the data set that you test it on when you calculate or descend toward the two matri-
ces for the user and item factors. As described in chapter 9, you split the data so that
you can use the training data to teach the algorithm about the domain and to instruct
the test data to know when it has extracted enough knowledge. If you teach the algo-
rithm too little, you won’t have a result that understands the domain, while too much
and it’ll be overfitted on the training data. Instead of understanding the domain, it’ll
have mastered only remembering the training data. The levers you’ll use to manipu-
late the algorithm include the following:

 Initialize the factors?—Decides where the gradient descend should start walking.
 Learning rate?—How fast you should move at each step.
 Regularization?—How much should the algorithm regularize the errors? Should

it be the same for all the expressions or should you split it into factors and bias?
 How many iterations?—How specialized should the algorithm become to the

training data?

There are many ways you can interpret what effect you’ll have on the result by setting
these levers in different ways. I recommend that you strive to understand the effects of
each of them. Also include a grid search, which means that you try many different val-
ues and see how each works. You’ll be better equipped for your next recommender if
you take time to understand what power the parameters have.

 The last sentence should trouble you a bit, because the data you’re using here
most likely won’t be the Netflix data set that was used in the Netflix Prize. You should
try out different parameters to see if you can make your data set work better. This list-
ing shows how you could test different parameters. If you like, you can view the code
in /builder/matrix_factorization_calculator.py.

313Constructing the factorization using Funk SVD

def meta_parameter_train(self, ratings_df):

 for k in [5, 10, 15, 20, 30, 40, 50, 75, 100]:
 self.initialize_factors(ratings_df, k)
 test_data, train_data = self.split_data(10, ratings_df)

 columns = ['user_id', 'movie_id', 'rating']
 ratings = train_data[columns].as_matrix()
 test = test_data[columns].as_matrix()

 self.MAX_ITERATIONS = 100
 iterations = 0
 index_randomized = random.sample(range(0, len(ratings)),
 (len(ratings) - 1))

 for factor in range(k):
 factor_iteration = 0
 last_err = 0
 iteration_err = sys.maxsize
 finished = False

 while not finished:
 train_mse = self.stocastic_gradient_descent(factor,
 index_randomized,
 ratings)

 iterations += 1

 finished = self.finished(factor_iteration,
 last_err,
 iteration_err)
 last_err = iteration_err
 factor_iteration += 1

 test_mse = self.calculate_mse(test, factor)

Figure 11.17 shows the result of the testing in listing 11.11; each factor run has been
plotted.

 After running this test, which took approximately 12 hrs. on my MacBook with 2.7
GHz Core i7 from 2016, I came to the conclusion that 40 factors looked good. I also
had to modify the number of iterations. Funk wrote that he trained each feature for
120 iterations each; with this data set, I stopped it at either 100 iterations or when the
last error was smaller than the current one. I think maybe it was worth giving it some
slack. For that reason, if the algorithm has started training a new factor, perhaps you
should let it run for 10 iterations or so before stopping it. But I’ll leave that as a test
for you.

 Funk also mentions that he had different ideas of how to calculate the prediction
error. You have so many possible combinations of setting the levers, but the best way to
go about it is to come up with a hypothesis and then do test runs as shown earlier.

Listing 11.11 Testing how many factors to use

Each factor is trained
for 100 epochs that
runs through all the
training ratings 100
times.

With stochastic
gradient descent, it’s
important that you
randomize the data.

Trains one
factor at a time

Continues until a
termination function is true

Initializes all the
factors and constants Splits the data

into training data
and test data

Runs a stochastic
gradient on all the

training ratings (more
details later)

Calculates mean
square error on the
test data

314 CHAPTER 11 Finding hidden genres with matrix factorization
Another way to look at the data is to compare the error of the training to the test
error. This is shown in figure 11.18. It’s important that the lines have a more or less 45-
degree angle such that the test error is proportional to the training error.

 Many advise you to run the test for a certain number of times, such as 50 or 100,
while others recommend that you look at the RMSE for each iteration and when the
change in RMSE is below a value, stop. If you do plot the MSE as in figure 11.18, it’s a
good idea to look for the elbows in the chart. The elbow is often where you stop fitting
the algorithm to the known data and start overfitting the algorithm. A line in figure
11.18 shows the training of 75 factors. You can see the test MSE has a little elbow
around 400 iterations. Here you should only use 20 factors because the 20 factor test
line has a small elbow around 275 iterations, so that may be a good place to stop.

OVERFITTING

If your rating matrix is sparse, then you might run into overfitting problems, where the
algorithm learns the training data too well and suddenly the MSE of the test data
starts increasing. For example, overfitting happens when the matrices U and V can cal-
culate precisely the right values for the existing ratings, but will be completely off
when it comes to predicting new ones. A way to get around this is to introduce some-
thing call a regularization factor, so that what you’re minimizing is the following:

The idea here is that you want the algorithm to find the best U’s and V’s, while not
allowing any of them to become too large. The argument for doing this is not to let

3.50

3.25

3.00

2.75

2.50
M

S
E

2.25

2.00

1.75

1.50
0 200 400 600

MSE on test data

MSE on training data

800

15 factors train
20 factors train
30 factors train
40 factors train
50 factors train
75 factors train
100 factors train
125 factors train

4.0

3.8

3.6

3.4

3.2

M
S

E

3.0

2.8

0 200 400 600

Iteration

800

15 factors train
20 factors train
30 factors train
40 factors train
50 factors train
75 factors train
100 factors train
125 factors train

Figure 11.17 RMSE plotted for each iteration of the algorithm. The top is the MSE on the
training data, while the bottom is the error on the test set.

minuv rui uuvi–   u 2 v 2
+ +

u i,  known


315Doing recommendations with Funk SVD
the factorization become too specialized toward the values that you’re giving the train-
ing data because you want it to be good at predicting ratings on new data.

 Overfitting is an interesting topic that requires more space than I have here.15 In
the Funk SVD, the fact that you can use the user factor to limit the item factor, and
vice versa (and the same with the biases), should handle the overfitting problem.

11.6 Doing recommendations with Funk SVD
After all that work, you have four things:

1 Item factor matrix—Where each column represents a content item described by
the latent factors that you calculated.

2 User factor matrix—Where each column represents a user described by the latent
factors.

15 Look at the Wikipedia page at https://en.wikipedia.org/wiki/Overfitting for more information.

The test data MSE against the training data MSE

5 factors test
15 factors test
20 factors test
30 factors test
40 factors test
50 factors test
75 factors test
100 factors test

2.8

1.6

3.0

3.2

Te
st

 M
S

E

3.4

3.6

3.8

1.8 2.0 2.2 2.4

Train MSE

2.6 2.8 3.0 3.2

Figure 11.18 Comparing test MSE with training MSE shows if you’re starting to
overfit.

https://en.wikipedia.org/wiki/Overfitting

316 CHAPTER 11 Finding hidden genres with matrix factorization
3 Item bias—Where certain items are generally considered better—or worse—
than others. The bias describes the difference between the global mean and the
item’s mean.

4 User bias—Encompasses different rating scales for different users.

With these four things, you can calculate a predicted rating for any item for any user
using the formula we discussed earlier and shown here:

And that’s nice because compared to the methods you looked at before, you can now
provide predicted ratings on everything ! But recommendations are more than predict-
ing ratings. You need to find a list of items that the user would rate high. The follow-
ing describes two ways to do that—brute force and neighborhoods.

BRUTE FORCE RECOMMENDATION CALCULATION

Brute force is easy to describe: you calculate a predicted rating for each user for each
item, then you sort all the predictions and return the top N items. While you’re at it,
you can also save all the predictions so that you have them ready when the user visits.

 This is the no-nonsense way of doing stuff. The thing to remember is that it might
take time to do and will require your system to do many calculations that might never
be used for anything. You could optimize it a bit, but a better way would be to save the
factors and the biases and use those to calculate the recommendations.

NEIGHBORHOODS RECOMMENDATION CALCULATION

I spent time describing neighborhoods in chapter 8, so I won’t drag you through that
again. The only thing that has changed in this chapter is that instead of using the orig-
inal rating data, you can use the factors that you calculated. This means that you’re
calculating similarities where things are closer and in a smaller dimension, which
makes it easier.

 If you look at the factor space from earlier, again shown in figure 11.19, you can
create user-based or item-based recommendations. Either way takes advantage of the
created vectors representing users and items.

USER VECTOR

One way to create recommendations is to find the items with factor vectors that are
close to the active user’s vector. They’re all in the same space, so why not. But if you do
that, then you should consider that the user is placed in the middle between all the
items the user likes. If the user likes only one type of movies, that’s fine. If you’re like
me and like Italian dramas and superhero movies, then the neighborhood around you
will be in between everything you like, and you might not like any of the things close
to you.

THE ITEMS THE USER LIKES

We’re back to figure 11.20 (the square from chapter 8 and repeated here) going
through all the items that the user has rated positively and finding similar items, or
finding similar users, and recommending items they liked.

ru i,  bu bi qipu+ + +=

)

317Doing recommendations with Funk SVD
2. Three segments1. A hidden factor

Less
serious

Very
serious

Sara

Braveheart

Helle

Therese

Ace Ventura
Men In Black

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8
-0.55

Star Trek

Pietro

Ekaterina

Sense and Sensibility
Les Misérables

Jesper

-0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20

Figure 11.19 Coordinate system showing one interpretation of how the hidden space could be
interpreted. Here you can see that Ekaterina and Pietro like Sense and Sensibility and Les
Misérables. No one likes Braveheart.

Active user Another user

User-based

Item-based

Similar

Similar

R
ated

R
ated

Item to
recommend

Content item,
rated by the user

Figure 11.20 The different ways to go from active user to recommendations,
either by finding similar users or looking at the active user’s items and finding
similar items

318 CHAPTER 11 Finding hidden genres with matrix factorization
11.7 Funk SVD implementation in MovieGEEKs
Now let’s return to the subject of implementing things in MovieGEEKs. You’ve already
looked at a few implementations by now, so what you want to look at here are the rec-
ommendations and also how to verify if the model is working.

Python -m builder.MatrixFactorizationCalculator

You’ll find the code to build the matrix model in /builder/MatrixFactorizationCalcu-
lator.py. In the following sections, you’ll see what happens inside the the build.

TRAINING PHASE

The training phase initializes all the biases and factors and retrieves the ratings, as
shown in the following listing. Because you’ll run through the ratings a few times, it’s
better to load them up front and keep them in memory (if they fit), You’ll find this
listing’s code in /builder/matrix_factorization_calculator.

def initialize_factors(self, ratings, k=25):
 self.user_ids = set(ratings['user_id'].values)
 self.movie_ids = set(ratings['movie_id'].values)

 self.u_inx = {r: i for i, r in enumerate(self.user_ids)}
 self.i_inx = {r: i for i, r in enumerate(self.movie_ids)}

 self.item_factors = np.full((len(self.i_inx), k), 0.1)
 self.user_factors = np.full((len(self.u_inx), k), 0.1)

 self.all_movies_mean = self.calculate_all_movies_mean(ratings)
 self.user_bias = defaultdict(lambda: 0)
 self.item_bias = defaultdict(lambda: 0)

We need a way to test the error between the actual ratings and the calculated ones, so
you need a predict rating method as shown in the following listing that you can view at
/builder/matrix_factorization_calculator.py. The method is identical to the predic-
tion method that will be used in the end.

Listing 11.12 Building the matrix model

Listing 11.13 Initializing biases and factors for MovieGEEKs

Creates a dictionary from user_ids to a number, so
you can use NumPy arrays instead of pandas. You
do that to make it faster.

Creates a dictionary from movie_ids to a
number, so you can use NumPy arrays instead

of pandas. You do that to make it faster.

Creates a set of
all user IDs

Creates a set of
all movie IDs

Creates two matrices of factors, all
initialized with 0.1.

Calculates the average
of all movie ratings

319Funk SVD implementation in MovieGEEKs

def predict(self, user, item):
 avg = self.all_movies_mean
 pq = np.dot(self.item_factors[item],self.user_factors[user].T)
 b_ui = avg + self.user_bias[user] + self.item_bias[item]
 prediction = b_ui + pq

 if prediction > 10:
 prediction = 10
 elif prediction < 1:
 prediction = 1
 return prediction

With these, you’re ready for the training algorithm. It’s the same as described previ-
ously and is also found in /builder/matrix_factorization_calculator.py.

def train(self, ratings_df, k=20):

 self.initialize_factors(ratings_df, k)
 ratings = ratings_df[['user_id', 'movie_id', 'rating']].as_matrix()

 index_randomized = random.sample(range(0, len(ratings)),
 (len(ratings) - 1))

 for factor in range(k):
 iterations = 0
 last_err = 0
 iteration_err = sys.maxsize
 finished = False

 while not finished:
 start_time = datetime.now()
 iteration_err = self.stocastic_gradient_descent(factor,
 index_randomized,
 ratings)

 iterations += 1
 finished = self.finished(iterations,
 last_err,
 iteration_err)
 last_err = iteration_err
 self.save(factor, finished)

HOW MANY ITERATIONS ARE NEEDED TO RUN THE TRAINING?
As explained previously, there’s no easy way to decide when to finish. The following
listing shows the one I used while training, and you can view this snippet in the script
/builder/matrix_factorization_calculator.py.

Listing 11.14 Implementing a predict rating method

Listing 11.15 The training algorithm

Calculates the dot product of
the current user’s factors and

the current item

Sums the
biases Sums things to create

the prediction

Makes sure that the prediction
is between 1 and 10

Formats
the

rating
data

Iterates
through each of
the k factors

Shuffles the data to
ensure trends in the
ordering won’t affect
the training

Initializes all the factors and constan
shown in listing 11.13

320 CHAPTER 11 Finding hidden genres with matrix factorization

def finished(self, iterations, last_err, current_err):

 if iterations >= 100 or last_err < current_err:
 print('Finish w iterations: {}, last_err: {}, current_err {}'
 .format(iterations, last_err, current_err))
 return True
 else:
 self.iterations +=1
 return False

SAVING THE MODEL

You wouldn’t want all the work to be lost, so you should save the model to several files.
Saving the model to JSON is one way of doing that, depending on how you want to use
it. I’ve chosen to save each of the factor matrixes in a file as well as the biases as shown
here. You can view these in /builder/matrix_factorization_calculator.py

def save(self):
 print("saving factors")
 with open('user_factors.json', 'w') as outfile:
 json.dump(self.user_factors, outfile)
 with open('item_factors.json', 'w') as outfile:
 json.dump(self.item_factors, outfile)
 with open('user_bias.json', 'w') as outfile:
 json.dump(self.user_bias, outfile)
 with open('item_bias.json', 'w') as outfile:
 json.dump(self.item_bias, outfile)

JSON in a file isn’t that fast to retrieve, and you want to be fast, but that depends on
what you want to do next. If you want to calculate the brute force recommendations
and save all the predicted ratings in the database, then you need to take the dot prod-
uct between all users and all items. Save the ones that are above a certain threshold in
the database and do a simple look-up when needed.

 Another way is to calculate similarities using cosine similarity as you did in chapter
8. Then calculate the ratings the same way you did in that chapter. In the next section,
you’ll do a slower version that loads the files every time it needs to return a recom-
mendation.

ONLINE PHASE

Listing 11.18 shows how to do recommendations by calculating predictions and then
ordering them according to the highest prediction. This snippet can be found in
/recs/funksvd_recommender.py.

Listing 11.16 Are we there yet?

Listing 11.17 Saving each factor matrix

Moving on;
incrementing the
number of iterations

If more than 30 iterations have
passed or the difference

between the error has gone
below 1, then it’s time to stop

and move on to the next factor.

321Funk SVD implementation in MovieGEEKs

def recommend_items_by_ratings(self, user_id, active_user_items, num=6):

rated_movies = set(active_user_items.values('movie_id'))
user = self.user_factors.loc[user_id]

scores = self.item_factors.dot(user)
scores.sort_values(inplace=True, ascending=False)
result = scores[:num + len(rated_movies)]

recs = {r[0]: r[1] + self.user_bias[user_id] + self.item_bias[r[0]]
 for r in zip(result.index, result) if r[0] not in rated_movies}

sorted_items = sorted(recs.items(),
 key=lambda item: -float(item[1]['prediction']))[:num]

return sorted_items

Do a manual test and check a recommendation for somebody, then look at user
400005, whose taste profile is like that shown in figure 11.21.

Listing 11.18 Ordering by highest prediction: recs/funksvd_recommender.py

Gets the IDs of all the movies the user has already
rated. You don’t want to show them again.

The user_factors are loaded from
the files you saved during training.

Sorts the ratings in
descending order

Takes the head of the list containing only enough elements for the
number of elements you want to return, leaving room for the case
where all the user’s rated items are found

Creates the data format the
frontend expects and cuts off the
number that should be returned

Creates a dictionary,
content id–predicted rating

User likes adventure,
fantasy, and horror.

Looking at the movies I would also say that the user
likes action, but the user has also rated action
movies low, so that’s why the taste action is negative.

Figure 11.21 Taste profile of user 400005 (http://localhost:8001/analytics/user/400005/)

322 CHAPTER 11 Finding hidden genres with matrix factorization
This user receives the recommendations shown in figure 11.22 (screen dump from
the analytics part of MovieGEEKs at http://localhost:8001/analytics/user/400005/).

 The problem with looking at one user’s recommendation is that it could poten-
tially be one out of only a few where your system provides good recommendations, but
you can never be sure. That’s why the only real way to see if the model is good is by
putting it in production and at least show it in a preview mode to someone.

11.7.1 What to do with outliers

In one of the earlier iterations of the recommender, I had gotten something that
looked good when evaluating, and I thought everything was ready for sendoff. But
then I came across a user who liked cartoons like Kung Fu Panda and LEGO Batman,

Figure 11.22 The recommendations you have calculated so far: the association rules, then the
content-based and collaborative filtering, and finally the matrix factorization recommendations. I
think the recommended movies are action-packed, but they fit the movies the user has watched well
(but it’s a subjective opinion).

323Funk SVD implementation in MovieGEEKs
but the Funk SVD produced the recommendations shown in figure 11.23. Without
having watched any of the recommendations, I thought it looked a bit odd.

 It turns out that these aren’t related to either Kung Fu Panda or LEGO Batman. The
user’s taste shows adventure, animation, crime, fantasy, and thrillers as a personal
preference. A bit more poking around showed that those films were 5 out of the 5
items that had an item bias above 5. The algorithm does the dot product between the
user and all the item factors, and then afterwards the item biases are added before you
order them and take them from the top. Now I’m torn about whether you should
order the items before adding the item biases or not.

 If you change the algorithm to sort the items before adding the item bias, then
they’ll still boost the recommendations, but only within the list of items that are simi-
lar to the factors that the user likes. Doing this changed the recommendations into
what’s shown in figure 11.24.

Another thing I played around with was reducing the learning rate of the biases,
which also helped with this problem because it made the biases smaller with more
diversity in the user and item factors. It’s a matter of taste about what’s better, and it’s
something that can give you many sleepless nights, but also a sense of adventure. It’s
difficult to say what the best settings are, so you should continue to play around with
them.

Figure 11.23 Several outliers have sneaked into the recommendations.

Figure 11.24 Adding the bias after ordering the recommendations shows better recommendations.

324 CHAPTER 11 Finding hidden genres with matrix factorization
11.7.2 Keeping the model up to date

This model you created quickly goes out of date. Ideally, you should start a new
run as soon as it’s finished, but, depending on how much your data changes, you
can do recalculate your model once each night or even once a week. But remem-
ber, every time a user interacts with a new item, it might be evidence that will show
connections among the items and could give further inklings about the user’s
taste. And if you calculate weekly, also remember to remove items already con-
sumed by the user from the recommendations. Finally, one last thing to keep in
mind is that if you’ve used implicit data, then if there’s a rating, it doesn’t mean
that the user has consumed the item.

11.7.3 Faster implementation

The previous matrix factorization is done using gradient descent, but if you have
many millions of products and users, that might become a slow process. Another way
is the alternating least squares (ALS) method, which isn’t as precise as gradient
descent, but should work fairly well anyway.

11.8 Explicit vs. implicit data
If you’ve a data set of implicit data, you could do as you did in chapter 4 and deduce
ratings from it. Alternatively, you can use it directly by slightly changing the previous
algorithm. For more information on how to do that, I recommend you read “Collabo-
rative Filtering for Implicit Feedback Datasets” by Yifan Hu et al. (http://yifanhu.net/
PUB/cf.pdf).

 If you want to skip directly to the implementation of it have a look at the Implicit
framework, which is a fast implementation for implicit data and collaborative filter-
ing.16 I’ve heard that it’s used in some production environments where there’s a great
deal of data. (I can tell you where, but then I’m afraid I’ll have to kill you.)

 As mentioned, the implementation uses slightly different algorithms than
described here. It can be a great exercise to look through the code to understand
alternative ways to do it.

11.9 Evaluation
When you work with Funk SVD or other machine-learning algorithms, you often have
many parameters to tune before starting the actual evaluation. Previously, we’ve talked
about the error of the training data and compared it with the error on the test data.
Then, when you’re finished adjusting those variables, you can do the algorithm evalua-
tion. Many would say that it’s the same thing. But in the end you should test the algo-
rithm on unseen data to see how it’s working.

 You don’t want to find hyper-parameters doing cross-validation because it takes too
long. You almost always want to use cross-validation to evaluate the performance of
the algorithm. The principle is exactly the same as the one described in chapter 9 and
shown in figure 11.25.

16 For more information, see https://github.com/benfred/implicit.

https://github.com/benfred/implicit
http://yifanhu.net/PUB/cf.pdf
http://yifanhu.net/PUB/cf.pdf
http://yifanhu.net/PUB/cf.pdf

325Evaluation
You clean the data, so you only have relevant information, then you split the users into
k folds. Then for each of these folds, you hold one out and split it into train and test
data for the users in that fold. The training data from the fold is merged and
appended to the k-1 other folds and used to train the algorithm. Then the algorithm
is tested using one of the metrics described in chapter 8, and finally, you aggregate the
result. You can run the evaluation by executing this listing.

> python -m evaluator.evaluation_runner -funk

This command creates a CSV file with the data used to show the evaluations. I encour-
age you to check out the code and see how it’s done.

 The script doesn’t run cross-validation out of the box; you need to tweak the code
to run it. It’s set to 0 folds, which means no cross-validation. I ran an evaluation on a
model with 40 factors, calculating the precision and recall as you’ve done in the two
previous chapters. The result is shown in figure 11.26.

 Looking at the result of the matrix factorization, I think it’s great to see that it can
service 100% of the users, but I’m disappointed to see that it only recommends 0.11%
of the items, which is a bit more than 3,200 items. (I tweaked the bias learning rate a
bit to begin with: from 0.0005, which produced a model that only covered around 200
items, to 0.002, which yielded the final recommendation of more than 3,200 items.
Much, however, is still missing to cover the full set of 28,700 items.) One reason for
such a low percentage rate could be that more factors should be added to allow for
more diverse taste profiles. But again, it’s something to play with. And a great exercise
for you to try out.

Listing 11.19 Executing the evaluation

EvaluationRunner

Repeat for n runs

Data
cleaner

Data
splitter

Algorithm
trainer

Evaluation
metric

calculation

Aggregate result

Figure 11.25 A diagram showing how the evaluation runner works

326 CHAPTER 11 Finding hidden genres with matrix factorization
The precision in figure 11.26 is much better than the content-based algorithm, where
both recall and precision were more than half this. The thing that you might make a
fuss about is the fact that the neighborhood model gets a better recall than this one. But
the difference here is that you have 100% user coverage, so users who only rated one
item are also included; you took those away from the data before calculating the neigh-
borhood model. If you remove all users with few ratings the way you did in chapter 8,
then you’d probably have a superior precision and recall as shown in figure 11.27.

11.10 Levers to fiddle with for Funk SVD
You have so many levers and configurations that can be changed and tweaked when
you use the Funk SVD algorithm. What makes it more complicated is that they’re all
dependent, meaning that you can’t expect that optimizing one parameter will always be
the best possible value if you then change another factor. You need to try all combina-
tions to be completely sure which is best. That can be attempted with a grid search, or
something similar.17

 What ratings to add to the training for users who have only done one rating
doesn’t help your collaborative filtering algorithm much, so it might be good to
take them out. The only thing they help is that they add to the average rating of the
movies.

17 For more information, see http://scikit-learn.org/stable/modules/grid_search.html.

0.06

0.00

0 2
Top N

0.01

0.02

0.03

0.04

0.05

18161412

Mean average precision@k for users w min 10 ratings

10864

Mean average precision@k

Figure 11.26 Mean average precision of the Funk SVD. The bottom line tests all users, while
the upper one restricts the test data to users who’ve at least 10 ratings.

http://scikit-learn.org/stable/modules/grid_search.html

327Levers to fiddle with for Funk SVD
Item and user factors are representations of users and items using the latent factors
that you’ve been training. It’s good to check that the factors aren’t too large. I’d be
worried if any vector had values that wasn’t around 1. You can tune this by regulariza-
tion; the larger the regularization the more the factors are kept close to 0.

 Bias initialization matters too, because it determines how big the prediction error
will be on the factors in the beginning. You don’t want these to be too large. Consider
that if you have an average rating of all the movies, then adding the user bias and item
bias shouldn’t take the average outside of the rating scale. The dataset you’re using
here uses a rating scale from 1–10. The average rating is around 7, so item bias and
user bias shouldn’t be too much above 1.5 each.

 Determining the right number of iterations is also a matter of taste. If you run
through too many iterations on the early factors, you risk the chance that all signals
will be pushed into the first dimension, while the remaining factors will only have a
small signal. Too few iterations and the vectors will never align correctly. Depending
on how many iterations you decide on, you’ll also have to settle on a learning rate for
the factors as well as for the bias: too large and it might always overshoot the optimum;
too small and it’ll never move from its initial position.

 This is a short list of things to play around with; there are many more. Remember
to have a good measure of quality, then test it. Getting a low RMSE/MSE might not
result in the best recommendations, but it shows how to do a function that captures

1000

800

600

Number of times a movie appeared in a rec

Histogram showing how often a movie is recommended

0 50 100 150 200 250 300

N
um

be
r

of
 ti

m
es

 a
 m

ov
ie

 a
pp

ea
re

d
x

tim
es

 in
 a

 r
ec

400

200

0

Figure 11.27 Plots how many movies are only shown a certain number of times.
From this, you can see more than 1,000 movies are only recommended to one user.

328 CHAPTER 11 Finding hidden genres with matrix factorization
that. Again, remember to make a hypothesis, be sure you know how to measure the
result, and make the testing as easy as possible.

 This has been a complex chapter, and you’ve learned a lot. Matrix factorization is a
topic in itself and here we only scratched the surface. But if you understood this chap-
ter, you can build on it and make much more complex things.

Summary
 SVD is a way of doing matrix factorization; it’s well accepted in many libraries,

which makes it a good method to use. The downside is that it won’t work if your
matrix isn’t complete, meaning with no empty cells. You’ll have to fill those cells
in with something, and that something is hard to do because they’re empty
when you don’t know what should be there.

 Baseline predictors are one way to fill in those empty cells. The same is true for
items.

 Baseline predictors are used to understand user and item biases.
 A way that allows you to use a sparse matrix of ratings is with the method first

tried by Simon Funk—the Funk SVD.
 Gradient descent and stochastic gradient descent are super tools for solving

optimization problems like the one defined to train and optimize the Funk
SVD.

Taking the best of all algorithms:
Implementing hybrid

recommenders
This chapter is a hybrid of many sections:

 You’ll learn to combine recommenders to take advantage of the strengths
and weaknesses of different types of recommender systems.

 You’ll tour the overall classes of hybrid recommenders.
 You’ll be introduced to ensemble recommenders.
 Having knowledge of ensemble recommenders, you’ll look at how to imple-

ment a specific algorithm called feature-weighted linear stacking (FWLS).

Supposedly one of the most energy-efficient cars ever made is a hybrid: a Toyota
Prius. At its core, Toyota combines two well-known technologies—the combustion
engine and the electric engine.1 Hybrid recommenders are basically the same
idea—you combine recommender algorithms to get a more powerful tool. These
not only improve the average result, but also attempt to mitigate the corner cases,
where algorithms don’t work well.

 Figure 12.1 shows the four most acknowledged classes of recommender systems
and their data sources. We’ve talked about each recommender system as something
that runs alone and in a silo, but the world is far from being this ordered. To
provide recommendations, you need to do a mix, or a hybrid, of more than one

1 For more information, see https://en.wikipedia.org/wiki/Toyota_Prius.
329

https://en.wikipedia.org/wiki/Toyota_Prius

330 CHAPTER 12 Taking the best of all algorithms: Implementing hybrid recommenders
system. Also, if you’ve access to more than one of the data sources shown in the figure,
it’s a sin not to use all of them!

 There are no limits to how you can combine algorithms, and if this chapter
explained all of them, it would quickly become a book in itself. To avoid that, I’ll start
with a small survey of the different categories that are commonly considered. Then
you’ll look at the details for the FWLS algorithm. Finally, you’ll see how to implement
that algorithm in MovieGEEKs.

12.1 The confused world of hybrids
Hybrid recommenders are a common term for the different types of recommenders
shown in figure 12.2. Here’s how I like to look at hybrids.

 The monolithic takes components of various recommenders and glues them
together in new ways; the ensemble runs different recommenders and then combines
the result into one recommendation, and a mixed recommender runs a number of
recommenders, returning all of them. Each of these will be described in detail in the
following sections.

Domain knowledge

Content metadata

Behavioral data

Demographic data

Context data

Knowledge
-based

recommender

Content
-based

recommender

Collaborative
-based

recommender

Demographic
-based

recommender

Suffer from cold-start
problems

Figure 12.1 Four commonly recognized classes of recommenders and the type of data they consume

331The monolithic
12.2 The monolithic
If you look up the word monolithic, you don’t get a picture of something cutting edge.
Instead, it means something that’s made from one piece of stone, like the heads on
Easter Island, or it refers to organizations that are powerful, rigid, and slow to change.
While monolithic is probably not something you want to put in an ad for your com-
pany, nevertheless, it’s what these recommenders are called.

 In our case, a monolithic hybrid recommender is defined as the Frankenstein of recom-
menders. It contains parts from different types of recommender algorithms. Nor-
mally, a recommender contains many different components like item similarity or
candidate selection, to name a few. A monolithic recommender mixes components
from different recommenders or even adds new steps to improve overall perfor-
mance. Figure 12.3 illustrates a monolithic recommender that uses the item similarity
part of Recommender 1 and the candidate selection and prediction parts from Rec-
ommender 2.

Hybrid
recommenders

Ensemble
recommenders

Mixed hybrid
recommenders

Monolithic hybrid
recommenders

Figure 12.2 The three different types of overall hybrid recommenders

Monolithic hybrid recommender

Input Recs

Recommender 1 Recommender 2

Item
similarity

Candidate
selection

Rating
prediction

Item
similarity

Candidate
selection

Rating
prediction

Figure 12.3 A monolithic hybrid recommender is composed of other recommender
system parts.

332 CHAPTER 12 Taking the best of all algorithms: Implementing hybrid recommenders
 As an example, you could use a content-based approach that finds all the items that are
similar content-wise, mixing that with a collaborative filtering approach to calculate pre-
dicted ratings the same way you’d use simple collaborative filtering (which is how you did
personalized content-based recommendations). The possibilities are endless. A mono-
lithic recommender can also add another step as described in the following section.

12.2.1 Mixing content-based features with behavioral data to improve
collaborative filtering recommenders

The whole point of hybrids is to take advantage of more types of data. An example of
a monolithic hybrid recommender could be a collaborative filtering recommender
with one extra pre-processing step that adds ratings to the rating-matrix, such that the
collaborative filtering will connect things that are related content-wise. Say you have a
list of films, as shown in table 12.1, all of them in the sci-fi genre.

Using neighborhood collaborative filtering on the rating matrix in table 12.1, you
wouldn’t get any similarity between the first two films and the last two, so you can’t rec-
ommend anything to any of the users because there are no connections to unseen
films. What you need is a user to bridge the content. Because you know you’ve all sci-fi
films, it might be good to add another user who loves all films of that type into the
matrix. You could then update the rating matrix as shown in table 12.2.

This enables you to link sci-fi films and to also recommend films of the same genre.
You could also take the next step and use the LDA model you implemented in chapter
10, where you create a pseudo-user for each of the hidden topics and then add those
connections to the mix. There are more technical details to understand if this is a way
you’d like to go. If so, I recommend that you read the article “Content-Boosted

Table 12.1 An example of a rating matrix

Sci-fi 1 Sci-fi 2 Sci-fi 3 Sci-fi 4

User 1 4 4

User 2 5 4

User 3 2 4

Table 12.2 An example of a rating matrix adding a sci-fi lover

Sci-fi 1 Sci-fi 2 Sci-fi 3 Sci-fi 4

User 1 4 4

User 2 5 4

User 3 2 4

Sci-fi lover 5 5 5 5

333Mixed hybrid recommender
Collaborative Filtering for Improved Recommendations” by Prem Melville et al., for
more details.2

 The previous example requires work, and monolithic recommenders, in general,
probably require more effort to change current recommenders to operate within a
hybrid recommender. If you already have recommenders in place, you might want to
try mixed hybrids or ensembles.

12.3 Mixed hybrid recommender
A mixed hybrid doesn’t do much mixing; a mixed hybrid returns the union of all the
results. A way of using a mixed hybrid is one that I’ve used myself where you’ve a hier-
archy of recommenders.

 Consider the recommender as a scale of personalization. Make the first one as per-
sonalized as possible and then continue until you’re using item popularity to give rec-
ommendations. Often the most personalized recommender only produces one or two
recommendations, the next recommender produces several more and, in that way,
you’ll always have a good quantity of recommendations but with as much quality as
possible. Figure 12.4 illustrates a mixed hybrid recommender.

If you’ve several good recommenders, each returning a score, then you can return a
list ordered accordingly. Remember that the scores should be normalized so all the
results are on the same scale. Keeping with the idea of having several recommenders
running, let’s now turn to ensembles.

2 For more information, see www.cs.utexas.edu/~ai-lab/pubs/cbcf-aaai-02.pdf.

Mixed hybrid recommender
Input

Recs

... ...

Rec 1

Rec 2

Rec N-1

Rec N

Most
personalized
recommender

Popularity
recommender

Figure 12.4 A mixed hybrid recommender, which simply stacks the output of several
recommenders, starting with the most personalized recommender on the top, then the next most
personalized, and so on.

www.cs.utexas.edu/~ai-lab/pubs/cbcf-aaai-02.pdf

334 CHAPTER 12 Taking the best of all algorithms: Implementing hybrid recommenders
12.4 The ensemble
An ensemble is defined as a group of things viewed as a whole rather than individually.
It’s the same for ensemble recommenders: you combine predictions from different
recommenders into one recommendation.

NOTE The difference between an ensemble and a mixed recommender is
that the hybrid might not show anything of the result for one recommender,
while the mixed hybrid always shows everything.

One of the takeaways from RecSys 2016—the annual recommender systems confer-
ence in 2016—was that if you’re a start-up and want to get into recommender systems,
you should start with matrix factorization (the topic of chapter 11) and add recom-
menders to create an ensemble recommender (see figure 12.5) as described by Xavier
Amatriain in his presentation on “Lessons Learned from Building Real-Life Recom-
mender Systems.” Keep reading, and afterwards go and check out Xavier’s slides
because they contain more relevant advice.3

If you’ve two recommenders running already, let’s say content-based and collaborative
filtering, then why not run them simultaneously as seen in figure 12.6 and then com-
bine the result to get an even better outcome?

 The idea with the ensemble is to calculate recommendations using several full rec-
ommenders and then somehow combine them. You can take the result of a number of
recommenders and make them into one in many ways. For example, you can do a
majority voting approach whereby the objects that occur most are the top ones, then
the next ones, and so on.

3 For more information, see www.slideshare.net/xamat.

Figure 12.5 One of the takeaways from RecSys2016 was that everything is an ensemble.

www.slideshare.net/xamat

335The ensemble
Figure 12.7 shows an example of how an ensemble recommender might work. Recom-
mender 1 returns a recommendation for the top 3 movies 1, 5, and 6. Recommender
2 returns 5, 6, and 3. Then the hybrid returns 5, 6, and 1, depending on how you cal-
culate ties. It recommends movie 5 because it occurs twice, once in each result, and it
recommends movie 6 because it appears in both too, but below movie 5 because it was
ranked lower. Then it recommends movie 1 because it appears as the first in Recom-
mender 1, and movie 3 is dropped.

Often, you’ll hear talk of switched or weighted ensembles. We look at those next.

12.4.1 Switched ensemble recommender

A switched ensemble recommender is about using the best tool for the job. If you
have two or more recommenders, then a switched ensemble recommender will decide
which of them to use given the context of the request.

Ensemble recommender

Hybrid

Recommender 1

Input

Recs

Recommender N

...

Figure 12.6 An ensemble hybrid runs a number of recommenders and combines
the result before delivering it as one recommendation.

Ensemble recommender

Recommender 1

Recommender 2

Hybrid

5

6

3

1

5

6
5

6

1

Figure 12.7 Example of how an ensemble recommender might work.

336 CHAPTER 12 Taking the best of all algorithms: Implementing hybrid recommenders
 For example, you might have two different recommenders for two different coun-
tries. When a user shows up from one country, the result of one recommender is
shown, and if somebody from another country visits, then the second recommender
produces the output. It can also be switched on time of day; maybe one works in the
mornings, while another is just getting started in the evening. Or in a newspaper, the
national news section should be filled with the latest news, while the cultural page
might be more about content-based recommendations for specific books.

 You can switch recommenders based on which section of the site a user is on. Or,
in its simplest form, it could be one where the switch would be between users who
rated fewer than 20 movies and the ones who rated at least 20 as shown in figure 12.8.
Users with more than 20 ratings receive output from the collaborative filtering recom-
mender, while users with fewer ratings receive it from the shopping basket recom-
mender (see chapter 6).

If a user is logged in, you know more details about the user. This might be a good rea-
son to use a different recommender than you’d use if the user weren’t logged in. But
if you instead want to combine forces of the different recommenders, read on and
learn about weighted feature ensembles.

12.4.2 Weighted ensemble recommender

Consider two algorithms you looked at earlier in this book: collaborative filtering (it
doesn’t matter if it’s the neighborhood or SVD type now) and content-based filtering.
Content-based filtering is good at finding similar content. If you know a user likes a
topic, you can use content-based filtering to find similar things. The problem is that
content-based filtering doesn’t distinguish between good and bad quality; it’s only
concerned with topic or keyword overlap. Collaborative filtering, on the other hand,

Ensemble recommender

Hybrid

If |ratings(u)| < 20

If |ratings(u)| >= 20

Shopping basket
analysis

recommender

Collaborative
filtering

recommender

Figure 12.8 An example of a switching ensemble where users with more than 20 ratings receive
output from one recommender, while users with fewer than 20 receive recommendations from
another.

337The ensemble
doesn’t put any importance into items because it’s about the same topic, only that cer-
tain people thought it was good quality and others didn’t.

 You can use them together to try to combine these strengths. You don’t have to
give them equal weight though, and this is where a weighted hybrid recommender comes
into the picture. It’s straightforward in the sense that you’ll train two different recom-
menders and ask them both to produce candidates for recommendations. When two
or more recommenders are combined like this, we call them feature recommenders.

 You can feed all the candidates into both recommenders and then take the empir-
ical mean of the two as illustrated in figure 12.9. To calculate an empirical mean, you
select a weight, such as 60/40, which means that predictions from this hybrid would
be calculated using the following formula:

The feature weights can be found in several ways. The simplest way is to guess, but that
isn’t too scientific and might result in strange recommendations. Another way is to do
linear regression. Or you could do continuous adjustments to the weights using differ-
ent values for different user groups and see who clicks more, using either A/B testing
or multi-armed bandits (both mentioned in chapter 9). Let’s have a quick look at lin-
ear regression.

12.4.3 Linear regression

Linear regression is about creating a function that minimizes the error between its out-
put and the actual value. If you have the output of two recommenders, and you have
the rating from a user (for example, data similar to table 12.3), then you can use lin-
ear regression to find how much the hybrid recommender should weight each output.

r̂ 0.6 r̂collaborative 0.4 r̂content+=

Hybrid

Collaborative filtering

Content based filtering

rhybrid = rcf*0.6 + rcb*0.4

rcf

rcb

Figure 12.9 A feature-weighted hybrid. Here, the hybrid combines results
from collaborative filtering and content-based filtering, using the weights
0.6 and 0.4, respectively.

338 CHAPTER 12 Taking the best of all algorithms: Implementing hybrid recommenders

Now create a function f that, given output of the two recommenders, predicts the
user’s ratings best. You want a function in which you can minimize the difference
between its output and the user’s rating r, for example:

The function could look more like the previous one:

You want to find w1 and w2 such that the sum from the previous equation will be as
small as possible. You have many ways to figure out what these values should be, some
of them complex. I think we’ll do as they do in Introduction to Statistical Learning
(Springer, 2017) and move on after commenting that multiple regression coefficients
estimates (which the previous equation is) have somewhat complicated forms.4 And I
should mention that there are many software packages out there that can easily solve
it for you.5

 It’s good having weights for each recommender, but it’s even better to have these
weights change depending on the user or items. This is what you’ll do in the following
section.

12.5 Feature-weighted linear stacking (FWLS)
Previously you looked at feature-weighted hybrids, where you combined several rec-
ommenders using a fixed weight. This is similar to doing linear functions with the out-
put of different recommenders, for example:

Where

 b(u,i) is the predicted rating for user u and item i
 w1, w2 are the feature weights.
 rcf(u,i) is the collaborative filtering predictor.
 rcb(u,i) is the content-based predictor.

Table 12.3 An example of how predicted ratings from two recommenders could look compared to a
user’s ratings

Item RecSys1 RecSys2 User rating

I1 4 6 5

I2 2 4 3

I3 5 5 5

4 For more information, see http://www-bcf.usc.edu/~gareth/ISL/, a great book on machine learning.
5 For example, Scikit-learn at http://mng.bz/P375.

RSS f u i,  r– 2
all ratings in training data=

f u i,  w1 RecSys1 u i,  w2 RecSys2 u i, +=

b u i,  w1 rcf u i,  w2 rcb u i, +=

http://www-bcf.usc.edu/~gareth/ISL/
http://mng.bz/P375

339Feature-weighted linear stacking (FWLS)
You call the result here for blend, which is also a name for these feature-weighted
hybrids.6 In this example, you weighted the input of two recommenders (the weights
are w1 and w2). You can use more than two; in fact, there’s no limit to how many you
use. In this section, you’re going to look at how to make the weights into functions
instead. It comes from an article by the same name by Joseph Sill et al.7

12.5.1 Meta features: Weights as functions

Let’s say you want to make your recommender system even more flexible by saying
that you want to use content-based recommendations if the user has only rated a few
items, and collaborative filtering if the user has interacted with many items. To do that
you can extend the previous example by replacing the weights with functions as
shown in figure 12.10.

These functions are called meta functions or feature-weights functions and will make the
prediction function look like the following:

Figure 12.11 shows a selection of the meta functions used to win the Netflix Prize.
They seem so simple that it’s hard to believe there’s enough power in these simple
functions to almost win a million dollars. Those functions deserve respect!

6 The predicted rating is also often referred to as when looking at functions.
7 For more information, see https://arxiv.org/pdf/0911.0460.pdf.

Hybrid

Collaborative filtering

Content based filtering

rhybrid = rcf*f(u,i) + rcb*g(u,i)

Weights are changed
into functions

rcf

rcb

Figure 12.10 Example of an FWLS recommender that replaces weights

b u i,  f u i,  rcf u i,  g u i,  rcb u i, +=

https://arxiv.org/pdf/0911.0460.pdf

340 CHAPTER 12 Taking the best of all algorithms: Implementing hybrid recommenders
 8

8 Found in the article ”Feature-Weighted Linear Stacking” by J. Sill. Available online at https://arxiv.org/pdf/
0911.0460.pdf.

Figure 12.11 Feature weights used for the Netflix Prize8

https://arxiv.org/pdf/0911.0460.pdf
https://arxiv.org/pdf/0911.0460.pdf
https://arxiv.org/pdf/0911.0460.pdf

341Feature-weighted linear stacking (FWLS)
12.5.2 The algorithm

Having a function like the one shown in the previous section is nice, but how do you
figure out what the function should look like? The list of functions in figure 12.11
comes from a good knowledge of data, but probably also from an ample portion of
wild guessing.

 You can say that you’ve a series of recommenders, g1, g2, …, gL. Every gi takes an
input such as user and item and returns a predicted rating. With that you can write
the simple linear function like this:

It’s called FW for feature weighting. As you saw in earlier chapters, there’s an easier
way to write this:

That looks too simple, right? Make each of the wj’s into a function as you saw previ-
ously; these are called feature-weighting functions:

Now you have a short way to write linear functions so that you can add the really cool
stuff. The feature-weighting functions can be defined as follows: Each weight wj is
defined as the sum of the functions with a weight v in front as shown in the following:

But this is confusing, right? At least I thought so the first time I saw it. Each weighting
function is the sum of all the meta features. The idea is that you want to let the
machine decide what’s better. You can say that you want the content-based recom-
mender to provide 90% of the recommendation if the user has rated fewer than three
items; otherwise, it should be 50/50. Let’s look at an example. You could have two
functions, such as function 1 and 2 in the following. The first function could be

and the second

You had two predictors for collaborative filtering and for content-based filtering. You
can make a blended recommender function b like the following:

bFW u i,  w1g1 u i,  w2g2 u i,  ... wLgL u i, + + +=

bFW u i,  wjgj u i, 
j 1=

L

=

bFW u i,  wj u i, gj u i, 
j 1=

L

=

wj u i,  vkj fk u i, 
k 1=

M

=

f1 u i,  1=

f2 u i,  1 if u has rated less than 3 items
0 otherwise=

b u i,  v11 f1 u i,  v12 f2 u i, + rcf u i,  v21 f1 u i,  v22 f2 u i, + rcb u i, +=

342 CHAPTER 12 Taking the best of all algorithms: Implementing hybrid recommenders
It’s already a bit long. But can you guess what values you should give the v’s? If you set
the v’s as highlighted in the following expression, you gain what you wanted:

If the user rated more than three items, then f2(u,i) = 0 and f1(u,i) = 1:

If the user rated fewer than three items, then f2(u,i) = 1 and f1(u,i) = 1:

This is what you wanted. To get back in theory mode, let’s take the previous expres-
sions and combine them so you get a more compact expression of rFWLS :

With this, you have FWLS, and figure 12.12 illustrates this. You can use this to blend the
output of recommenders using weights that are functions that make those extremely
flexible.

 Manually setting the values is one thing, but you want the machine to look at the
data and decide for itself which values are better. You want to train the algorithm.
Let’s call a shovel a shovel and admit that you’re going to use machine learning.

 Training the algorithm comes down to more or less the same problem as you saw
in the previous chapter. You want to take the data you have in your database and use
that to figure out what those weights should be. As an example, you could say that you
have the usual user rating matrix shown in table 12.4.

 Because you have six users and six items, you have 6 × 6 – 3 (the minus 3 is the
empty cells in the table), meaning you have 33 data points, each containing a user ID,
an item ID, and a rating; for example, (Sara, Star Trek, 3). You consider this to be true,
and you can say that if you input (Sara, Star Trek) into the function, then you want it
to return 3. The same is true for all the other 32 data points. You want the hybrid

b u i,  0.5 f1 u i,  0.4– f2 u i, + pcf u i,  0.5 f1 u i,  0.4 f2 u i, + pcb u i, +=

b u i,  0.5 1 0.4–  0+ pcf u i,  0.5 1 0.4 0+ pcb u i,  0.5 pcf 0.5 * pcb+=+=

b u i,  0.5 1 0.4–  1+ pcf u i,  0.5 1 0.4 1+ pcb u i,  0.1 pcf 0.9 * pcb+=+=

rFWLS u i,  vkj fk u i,  gj u i, 

k 1=

M


j 1=

L

=

wj u i,  vkjfk u i, 

k 1=

M

=

rFW u i,  wjgj u i, 

j 1=

L

=

343Feature-weighted linear stacking (FWLS)
recommender function to produce output that makes the difference between an
expression and the actual ratings as small as possible. Looking only at the (Sara, Star
Trek) example, you want to minimize the following:

Well, you need to do something more, because if you set the rating to 0 in the previ-
ous expression, the result is -3, which is the smallest you can get. Let’s aim for mini-
mizing this instead

Table 12.4 An example of a rating matrix

Comedy Action Comedy Action Drama Drama.

Sara 5 3 2 2 2

Jesper 4 3 4 3 3

Therese 5 2 5 2 1 1

Helle 3 5 3 1 1

Pietro 3 3 3 2 4 5

Ekaterina 2 3 2 3 5 5

Feature-Weighted Linear Stacking

*f1

*f2 *v12

*f1 *v21

+

*v11

*f2 *v22

u, i rFWLS

rcb

rcb

rcf

rcf

Collaborative filtering
recommender

Content-based filtering
recommender

Figure 12.12 An example of an FWLS recommender, containing a collaborative filtering
recommender and a content-based filtering recommender

rFSWL Sara, Star Trek  3–

rFSWL Sara, Star Trek  3– 2 (1)

344 CHAPTER 12 Taking the best of all algorithms: Implementing hybrid recommenders
because then you can stick to the goal of getting it as close to zero as possible. The
expression (1) is only for one of the 33 data points you have. And you need to be sure
that the function works for all of them, so you’ll want to do this for all users and all
items. To do that, you get the following:

What was the rFSWL? In the following, rFSWL is inserted into the expression:

And this is what you want to make as small as possible. This is the algorithm.
 You have many different ways to take it from here but keep it simple. To finish the

example with the manually found weights, which gave us the following function:

If you want to know how this recommender would predict what rating Sara would give
the film Avengers, you’d call both feature recommenders (assume they predict 4 and 5,
respectively), and run the two functions. Both return 1. That means the hybrid calcu-
lates the following:

Now let’s go back to the weights and see how you can machine learn yourself out of
that problem.

WHEN THE FEATURE RECOMMENDER DOESN’T KNOW
One of the things you need to think about up front is what to do when one or more of
the feature recommenders doesn’t produce any recommendations. The easiest thing
to do is take out the data where one of the recommenders doesn’t respond. This
reduces the training set, which might not be a viable solution. You can also try to guess
by adding the average rating of the user, the item, the average of the two, or the base-
line predictors described in chapter 11.

 In the following implementation, you’ll take the first solution and remove all the
rows that don’t contain predicted ratings from either of the feature recommenders. It
could also be that a feature-weighting function isn’t defined for all rows; in that case,
you can also either remove the row or come up with a default value.

TRAINING THE BEAST
To prepare the hybrid recommender, you need to do a few things. It can be confusing
and easy to make small mistakes that become big ones when you have a long pipeline
such as the one shown in figure 12.13. You’ll go through the following steps:

 Split the data into two sets for training and testing (not shown in figure 12.13).
 Train the featured recommenders.

rFSWL u i,  ru i,– 2

i items


u users


vjk fk u i, gj u i,  ru i,–

k 1=

M


j 1=

L


 
 
 
  2

i items


u users


b u i,  0.5 f1 u i,  0.4– f2 u i, + pcf u i,  0.5 f1 u i,  0.4 f2 u i, + pcb u i, +=

b u i,  0.5 1 + 0.4–  1  4 0.5 1 0.4 1+  5+ 4.9==

345Feature-weighted linear stacking (FWLS)
 Generate predictions for each of the training data points.
 Execute each feature-weighted function on all training and data points.
 For each training data point, calculate the product between each predicted rat-

ing with each feature-weighted function result.
 Find the unknown values using linear regression.
 Test the hybrid on the test set.

SPLITTING DATA

Before starting, it’s a good idea to split the data and remove something like 20% of it
to check how well the algorithm does. The problem is that if you use all the data to
train the algorithm, then you’ll measure its power on data that it’s already seen.
Instead, you need to cut part of the data so you can see how well it will do on not-seen
data. And, as mentioned in an earlier chapter, splitting the data before training the
feature recommenders means that the feature recommenders won’t train on the test
data.

 To do this correctly, you should split your data into training, validation, and test
sets. Use only the training data to train the feature recommenders and the hybrid.
Then use the validation data to understand if the hybrid is a good model and to fine-
tune the hyper parameters. The test set provides an unbiased validation of the
model.

Rating data

Training data

Rating dataTrain:
Collaborative

filtering

Train:
Content-based

filtering

Predict
ratings from
training data

Call each
feature

weighting
function

Calculate
FW * P

Linear
Regression to

find the weights v

Hybrid
ready...

Figure 12.13 The FWLS hybrid recommender training pipeline

346 CHAPTER 12 Taking the best of all algorithms: Implementing hybrid recommenders
TRAINING THE FEATURED RECOMMENDERS

Here you’re going to need many things that you learned in earlier chapters. Before
beginning on the hybrid recommender, you need to prepare the recommenders that
the hybrid will use. First, you’ll prepare the item–item collaborative filtering recom-
mender (which was described in chapter 8), and the content-based recommender
(chapter 10). You could also have used something else, but those were the two I
chose.

GENERATING PREDICTIONS FOR EACH OF THE TRAINING DATA POINTS

Here you could arrive at a strange problem: how will your recommender react when
you try to predict ratings that already exist? Depending on how you implemented it,
your collaborative filtering system might decide to use the most similar product to the
current item that it can find and that’s the same. In that case, the recommender will
return the actual rating instead of a prediction. That isn’t a good idea because it will
skew the training of the hybrid.

 Here you solve this by pretending that the current item hasn’t been rated by the
current user. Table 12.5 shows the present ratings.

When the recommenders are trained and they’re ready to shine, you’ll take the train-
ing data, which is the data you’ll use to teach the hybrid algorithm to recommend,
and run it by each of the recommenders to see what they’d predict for each user-item
pairs. This gives you the data shown in table 12.6.

Table 12.5 Training data for Men in Black

user item Actual rating

Sara MIB 5

Jesper MIB 4

Therese MIB 5

Helle MIB 4

Table 12.6 Training data with the predictions added

user item
Prediction

collaborative
filtering

Prediction
content-based

Actual rating

Sara MIB 4.5 3.5 5

Jesper MIB 4 5 4

Therese MIB 4 4 5

Helle MIB 3 5 4

347Feature-weighted linear stacking (FWLS)
EXECUTE EACH FEATURE-WEIGHTED FUNCTION ON ALL TRAINING DATA POINTS
Now you want to run it past the two functions to get their results. This is shown in
table 12.7.

For each training data point, calculate the product between each predicted rating
with each feature-weighted function result, then multiply the predictions with the
meta feature functions. You’ll get the results shown in table 12.8.

Now the training data is ready.

FINDING THE UNKNOWN VALUES VS. USING LINEAR REGRESSION

To find the v’s (unknown values), you’ll use linear regression. This means that you’ll
try to find a function that creates output as close to the actual data as possible. Such a
function might not be possible to find, but we’ll get back to that in a bit.

 Linear regression is one of the first things that you’ll learn in any machine-learn-
ing course. Whole books have been written about the subject, so I won’t try to teach it
here.9 But I will tell you that the concept is basically the same as what you learned in
the previous chapter, when you tried to find the unknowns in the Funk SVD, in the
sense that linear regression will try to minimize the squared error over all data points.

TESTING THE HYBRID ON THE TEST SET

With the linear regression finished, you can now check the quality of the hybrid’s
results (compared to the ratings of the test set—the data you left out) and decide

Table 12.7 Training data with the predictions and function results added

user item
Prediction

collaborative
filtering

Prediction cb F1 F2 Actual rating

Sara MIB 4.5 3.5 1 0 5

Jesper MIB 4 5 1 1 4

Therese MIB 4 4 1 1 5

Helle MIB 3 5 1 1 4

Table 12.8 Training data with the calculated predictions and function results

user item Pcf * F1 Pcf * F2 Pcb*F1 Pcb*F2 Actual rating

Sara MIB 4.5 0 3.5 0 5

Jesper MIB 4 4 5 5 4

Therese MIB 4 4 4 4 5

Helle MIB 3 5 3 5 4

9 G. James et al., Introduction to Statistical Learning (Springer, 2017). This book is not totally about linear regres-
sion but it includes a good chapter about it.

348 CHAPTER 12 Taking the best of all algorithms: Implementing hybrid recommenders
whether it works. To do that, you’ll examine how close the predictions of the hybrid fit
the actual ratings. Now that you know it all, it’s time to look at the code that can imple-
ment your hybrid.

12.6 Implementation
Let’s see how an FWLS hybrid runs in MovieGEEKs. You’ll follow the same steps as
before but use code instead. If you haven’t downloaded the MovieGEEKs code yet, I
suggest doing it now, so you can follow along with what happens. MovieGEEKs is
implemented to be ready and running in a few steps. You can find it at
http://mng.bz/ 04k5. When you’ve downloaded the code, follow the installation
instructions in the readme file.

 During the installation you’ll download the MovieTweetings dataset. When you
have followed the instructions and populated all the data, you can train the FWLS
hybrid algorithm by running this script.

> python –m builder.fwls_calculator

While the script runs, you can see how it works. It starts out loading and splitting the
data, of course.

LOADING THE DATA

You’ll now load rating data. (I want to make sure you understand that it’s made of the
ratings collected from the users, either explicit or implicit.) The data is used to fine-
tune the hybrid by providing both input and (expected) output. You’ll find the follow-
ing scripts in /builder/fwls_calculator.py.

def get_real_training_data(self):
 columns = ['user_id', 'movie_id', 'rating', 'type']
 ratings_data = Rating.objects.all().values(*columns)
 df = pd.DataFrame.from_records(ratings_data, columns=columns)

To get the data, you loaded all the ratings into memory. If there are red flags waving
here, there should be.

 It isn’t a good idea to load the whole rating table into memory unless you’re look-
ing for trouble. But the size here is okay; if not, then you have to either stream the
data chunk-by-chunk or take a data sample. The simplest thing might be to cut away
old data until it all fits in memory. Moving on.

SPLITTING THE DATA

Here you split the data into the two sets: train and test data. This is done so you can
see how good the result of our work is. You’ll use the data to train the feature recom-
mender and the hybrid recommender. For the hybrid, you’ll use the training data to
select good values for the weights and the test set to see how well you did.

Listing 12.1 Training the FWLS recommender

Listing 12.2 Loading the rating data

Creates a Panda
data frame of

the data

http://mng.bz/04k5

349Implementation

self.train, self.test = train_test_split(self.train, test_size = 0.2)

TRAINING THE FEATURED RECOMMENDERS

The feature recommenders need to be trained, but you needn’t do that here because
you trained them in earlier chapters. But if you want to evaluate the algorithms, you
should train those on the training data only; this is true for the collaborative filtering
recommender at least. The content-based recommender uses content data, so hiding
users from that won’t change much. To train the feature recommenders, update the
line in the following listing.

fwls.train() # run fwls.train(train_feature_recs=True)

➥to train feature recs

GENERATING PREDICTIONS FOR EACH OF THE TRAINING DATA POINTS

With the ratings loaded, you can take each of the data points in the training data and
see what each of the feature recommenders predicts. These will be added to the data
frame.

 Here are the methods that you’ll call to do the predictions. The first one is collab-
orative filtering, which was described in detail in chapter 8 (see that chapter for more
information). The code is shown in listing 12.5. Notice that the method takes a list of
movie_ids. This is done to ensure that it doesn’t mistakenly use the knowledge with
which the user has already rated this item. The method is called with a list of all items
rated by the user, except for the item you want to predict. You’ll find the following
scripts in /recs/neighbourhood_based_recommender.py.

def predict_score_by_ratings(self, item_id, movie_ids):
 top = 0
 bottom = 0
 mc = self.max_candidates
 ids= movie_ids.keys()
 candidate_items = (Similarity.objects.filter(source__in=ids)
 .filter(target=item_id)
 .exclude(source=item_id)
 candidate_items = candidate_items.distinct()
 .order_by('-similarity')[:mc]

 if len(candidate_items) == 0:
 return 0

 for sim_item in candidate_items:
 r = movie_ids[sim_item.source]
 top += sim_item.similarity * r
 bottom += sim_item.similarity

 return top/bottom

Listing 12.3 Splitting the data for training and testing

Listing 12.4 Calling the training method

Listing 12.5 Collaborative filtering

Ensures that you
don’t use the
user’s rating

350 CHAPTER 12 Taking the best of all algorithms: Implementing hybrid recommenders
The second recommender (listing 12.6) is the content-based recommender that uses
the LDA. LDA was described in detail in chapter 10, but not this method. What hap-
pens is that you use the similarities and the user’s ratings to predict a rating. Here you
use the similarity from the LDA instead of the similarity based on user behavior as in
collaborative filtering.

def predict_score(self, user_id, item_id):

 active_user_items = (Rating.objects.filter(user_id=user_id)
 .exclude(movie_id=item_id)
 .order_by('-rating')[:100])

 movie_ids = {movie['movie_id']: movie['rating'] for movie in
active_user_items}

 user_mean = sum(movie_ids.values()) / len(movie_ids)

 sims = LdaSimilarity.objects.filter(Q(source__in=movie_ids.keys())
 & Q(target=item_id)
 & Q(similarity__gt=self.min_sim)
).order_by('-similarity')
 pre = 0
 sim_sum = 0

 if len(sims) > 0:
 for sim_item in sims:
 r = Decimal(movie_ids[sim_item.source] - user_mean)
 pre += sim_item.similarity * r
 sim_sum += sim_item.similarity

 return Decimal(user_mean) + pre / sim_sum

You’ll use these two methods on each of the ratings in the training data by applying
them to each row and inserting the results into new columns as shown in the following
listing. The script is found in /builder/fwls_calculator.py/.

def calculate_predictions_for_training_data(self):

 self.training_data['cb'] = self.training_data.apply(lambda data:
self.cb.predict_score(data['user_id'], data['movie_id']))
 self.training_data['cf'] = self.training_data.apply(lambda data:
self.cf.predict_score(data['user_id'], data['movie_id']))

You now have a structure like the one you saw in table 12.2.

EXECUTING EACH FEATURE-WEIGHTED FUNCTION ON ALL TRAINING DATA POINTS

The functions you’ll use in this step are simple and not much to talk about, but I
deem that they’re enough to show how FWLS works as shown in this listing. You’ll find
this script in /builder/fwls_calculator.py/.

Listing 12.6 Content-based recommender

Listing 12.7 Calculating predictions for training data

351Implementation

def fun1(self):
 return 1.0

def fun2(self, user_id):
 user_ratings = self.rating_count['user_id']==user_id
 rating_count = self.rating_count[user_ratings]['movie_id'].values[0]
 if rating_count < 3.0:
 return 1.0
 return 0.0

Instead of calculating the function first and saving that data, you’ll use the functions
and compute the product of their result in one step.

FOR EACH TRAINING DATA POINT, CALCULATE THE PRODUCT BETWEEN
EACH PREDICTED RATING WITH EACH FUNCTION

For each prediction, you want to return a column with the product of the prediction
and each of the functions. You have two predictors and two functions, so you need to
get four new columns as shown in the following listing. Once again, you’ll find the
script in /builder/fwls_calculator.py/.

def calculate_feature_functions_for_training_data(self):
 self.training_data['cb1'] = self.training_data.apply(lambda data:
 data.cb*self.func1())
 self.training_data['cb2'] = self.training_data.apply(lambda data:
 data.cb*self.func2(data['user_id']))

 self.training_data['cf1'] = self.training_data.apply(lambda data:
 data.cf*self.func1())
 self.training_data['cf2'] = self.training_data.apply(lambda data:
 data.cf*self.func2(data['user_id']))

You’re finished the preparation for the linear regression to find the v’s. This is also
called feature generation. Often, when doing machine-learning applications, this is
where you’ll spend the most time.

FEATURE-WEIGHTED FUNCTION RESULT

You calculated the feature-weighted functions in the previous step, but it might not
always be a good idea to do this in real life. Sometimes it’s better to do only small
steps, depending on your specific scenario.

Listing 12.8 Showing how FWLS works

Listing 12.9 Calculating feature functions for training data

Always returns 1

Returns 1 if user has rated fewer
then 3 movies; otherwise, 0

Calculates the product of the
content-based prediction and
function 1

Calculates the product of the content-
based prediction and function 2

Calculates the product of the
neighborhood-based prediction and
function 1

Calculates the product of the neighborhood-
based prediction and function 2

352 CHAPTER 12 Taking the best of all algorithms: Implementing hybrid recommenders

Ad
items
neig
 Now for linear regression. You’ll find these scripts in the train method in
/builder/fwls_calculator.py.

 regr = linear_model.LinearRegression(fit_intercept=True,
 n_jobs=-1,
 nomarlize=True)
regr.fit(self.train_data[['cb1', 'cb2', 'cf1', 'cf2']],
 self.train_data['rating'])10

To use these weights, you need to save them. You can put them in the database so that
you can use them again later, or you can save them to a file as shown in the following
listing.

with open(self.save_path + 'fwls_parameters.data', 'wb') as ub_file:
 pickle.dump(result, ub_file)

THE ONLINE RECOMMENDATION PREDICTION
You can implement the hybrid recommender by pre-calculating recommendations and
saving them in the database. The lazier approach is to call all the feature recommenders
and then mix the results.

 To ensure a good ordering, both recommenders are requested to provide a Top-N
five times larger than what the user is requesting. This is to allow for the linear func-
tions to have enough elements to order them correctly as shown in the next listing.
You’ll find these scripts in the train method in /builder/fwls_calculator.py.

def recommend_items(self, user_id, num=6):
 cb_recs = self.cb.recommend_items(user_id, num * 5)
 cf_recs = self.cf.recommend_items(user_id, num * 5)

 combined_recs = dict()
 for rec in cb_recs:
 movie_id = rec[0]
 pred = rec[1]['prediction']
 combined_recs[movie_id] = {'cb': pred}

 for rec in cf_recs:
 movie_id = rec[0]
 pred = rec[1]['prediction']

Listing 12.10 Linear regression

10 For more information, see http://mng.bz/P375.

Listing 12.11 Saving weights

Listing 12.12 Ordering elements

Fits the weights to build
the linear function

Instantiates the
LinearRegression model

class of scikit-learn10

Calls the content-based
recommender requesting
five times more elements
than needed

Calls the neighborhood-
based recommender
requesting five times more
elements than needed

Runs through all the
recommendations and
creates a dictionary of
dictionaries. Adds all items
from the content-based
recommendation.

ds all the
 from the
hborhood

model

http://mng.bz/P375

353Implementation

l
ns

 if movie_id in combined_recs.keys():
 combined_recs[movie_id]['cf'] = pred
 else:
 combined_recs[movie_id] = {'cf': pred}
 fwls_preds = dict()
 for key, recs in combined_recs.items():
 if 'cb' not in recs.keys():
 recs['cb'] = self.cb.predict_score(user_id, key)
 if 'cf' not in recs.keys():
 recs['cf'] = self.cf.predict_score(user_id, key)
 pred = self.prediction(recs['cb'], recs['cf'], user_id)
 fwls_preds[key] = {'prediction': pred}
 sorted_items = sorted(fwls_preds.items(),
 key=lambda item: -float(item[1]['prediction']))[:num]

 return sorted_items

The prediction method looks like the one shown in the next listing.

def prediction(self, p_cb, p_cf, user_id):
 p = (self.wcb1 * self.fun1() * p_cb +
 self.wcb2 * self.fun2(user_id) * p_cb +
 self.wcf1 * self.fun1() * p_cf +
 self.wcf2 * self.fun2(user_id) * p_cf)
 return p + self.intercept

def fun1(self):
 return Decimal(1.0)

def fun2(self, user_id):
 count = Rating.objects.filter(user_id=user_id).count()
 if count > 3.0:
 return Decimal(1.0)
 return Decimal(0.0)

In the following section, you’ll see a few recommendations produced with the hybrid.

HOW DOES THE HYBRID COMPARE?
The feature recommenders are correlated with the hybrid recommender, but how
does the hybrid compare with the individual recommenders? To understand that, you
can again see which of the three recommenders (collaborative, content-based, and
hybrid) comes closest to the actual ratings.

 In the first example where the user has only one rating, the neighborhood model
doesn’t return anything (figure 12.14). Then, if you look at a user who has several rat-
ings registered, the combination of the two recommenders shows items that wouldn’t
enter into the top 6 of the content-based or the neighborhood-based recommenders
(figure 12.15).

Listing 12.13 The prediction method

Runs through the mode
and gets rating predictio
from the recommenders
that are missing

Calculates the
predicted rating
for all elements in
the dictionary,
using the predict
method shown in
listing 12.13

Orders result by
prediction

Calculates the
predicted rating for
the item

Function 1

Function 2

354 CHAPTER 12 Taking the best of all algorithms: Implementing hybrid recommenders

Content-based
recommender will return
something no matter how
few ratings the user has.

User (user_id 386)
has only one rating in
the database, so the
collaborative filtering
doesn’t return anything.

The hybrid only gets
predictions from the
content-based
recommender. But it
reorders it.

Figure 12.14 Example of recommendations returned by the hybrid recommender.

User has several
ratings, so both
neighborhood-based
and content-based
recommenders
return a top 6.

The linear function
rearranges the items
returned from the
two feature
recommenders
(content-based and
collaborative-based).

Figure 12.15 The recommendations from the hybrid recommender, where both feature
recommenders predicted recommendations

355Implementation
TESTING THE HYBRID ON THE TEST SET
Did it work? How do you test that? Well, there’s the offline evaluation that you learned
about in chapter 9. That’s where you did cross-validation as shown in figure 12.16.

Running this evaluation runner is similar to what’s described in chapter 9, only here
you need to train all of the included recommenders. You can run the evaluation by
executing the code shown in the following listing.

> python -m evaluator.evaluation_runner -fwls

The evaluator produces the data shown in figure 12.17. That evaluation (shown in fig-
ure 12.17) is special compared to the others you’ve seen because it’s built on three
machine-learning algorithms. But it’s not the case that the final product is better
when the two feature recommenders are optimal.

 If I wanted to put this system into production, then I’d probably precalculate
much of the algorithms to speed things up. A way to make the training faster is to sam-
ple the ratings used to do the linear regression, the way I did in this listing.

self.train_data = self.train_data.sample(self.data_size)

Listing 12.14 Executing the evaluation

Listing 12.15 Executing the evaluation

EvaluationRunner

Repeat for n runs

Data
cleaner

Data
splitter

Algorithm
trainer

Evaluation
metric

calculation

Aggregate result

Figure 12.16 The evaluation runner is used to evaluate an algorithm. It’s a pipeline
where the data is first cleaned, then split into the k folds for cross-validation. Then for
each fold it repeats training of the algorithm to evaluate it. When it’s all finished, you
aggregate the result.

356 CHAPTER 12 Taking the best of all algorithms: Implementing hybrid recommenders
The question is how big should the sample size be, so that it’s representative of the
whole data set, considering that you’re training the four weights. It’s a typical
dilemma with machine learning. And I can say that I’ve had good experiences with a
few hundred data points, but that’s not many! But if you look at the precision in the
chart in figure 12.17, then the algorithm looks good.

 Many terms and combinations were thrown around in this chapter. If you’re new
to linear regression, then I highly recommend looking deeper into it. It’s simple when
you get to know it, and it can be used for so many things that it’s silly not to have it in
your tool box.

Summary
 A recommender system can be greatly optimized by adding the output of sev-

eral algorithms.
 Hybrid recommenders enable you to combine the forces of different recom-

menders to get better results.
 Not all things that are complex are functional in the real world, although the

algorithm that won the Netflix Prize also failed because it was too complicated
to put into production.

 The feature-weighted linear stacking (FWLS) algorithm enables the system to
use feature recommenders in a function-weighted way, which makes it strong.

The functions makes the precision
do a funny bend around . I
challenge the reader to figure out
why is that.

K = 10

rak

Precision for the Feature Weighted Linear Stacking.
0.06

0.05

0.04

0.03

P
re

ci
si

on

0.02

0.01

0.00
2 4 6 8 10

Top N
12 14 16

pak

Figure 12.17 The evaluation of the FWLS algorithm.

Ranking and
learning to rank
This book is all about learning, and in this chapter, you’ll learn how to rank.

 You’ll reformulate the recommender problem to a ranking problem.
 You’ll look at Foursquare’s ranking method and how it uses multiple sources.
 You’ll go through the different types of Learning to Rank (LTR) algorithms

and learn how to distinguish pointwise, pairwise, and listwise comparisons of
ranks.

 You’ll learn about the Bayesian Personalized Ranking (BPR) algorithm,
which is a promising algorithm to implement.

Are all these chapters on recommender algorithms starting to look the same? If so,
you’re in luck, because now you’re going to start something completely different.
Instead of focusing on recommendations as a rating prediction problem, it some-
times makes more sense to look at how the items should be stacked. The catalog
item that the user would find most relevant is on top, the second one next, and so
on. To define relevancy like this takes away the need to predict ratings. You don’t
need to know how favorably users would rate something, only that they’d love it, or
at least like it more than everything else that’s available.

NOTE Keep in mind that the catalog of content might not contain any-
thing the user would love, but even when that’s the case, you still want to
provide a list of the best you can do with what you have.

I think this is going to be an exciting chapter. You’re going to learn about a type of
algorithm first introduced in the area of information retrieval (IR) systems—a posh
357

358 CHAPTER 13 Ranking and learning to rank
word for search engines these days. Ranking powers the Microsoft search engine Bing,
as well as most other search engines, and Facebook and Foursquare use it too. You’ll
see a difference between what they want to find and what a recommender wants, but
in the end, most of the research done in the IR world has also been usable for recom-
menders.

 You’ll start this journey with an example of Learning to Rank from Foursquare to
give you a sense of ranking. You’ll then step back and look at LTR algorithms in gen-
eral, which are divided into three subgroups. To have a concrete example of a LTR
algorithms, you’ll examine the BPR algorithm. It has a bit of complicated math, but
you’ll revisit it by coding the algorithm in MovieGEEKs so you can see it in action.

13.1 Learning to rank an example at Foursquare
Foursquare is a guide to cities. I use it to find places where I can maintain my coffee
addiction (which I promise myself to stop when I finish writing this book). Imagine
I’m standing in front of the beautiful St. Peter’s Basilica in Rome. After an exhaust-
ingly long wait in a queue to see the inside of the church, I decide I need coffee, so I
flip out my phone and open the Foursquare app and click coffee near me. The result
is shown in figure 13.1 (not completely, but it’s the browser version of Foursquare’s
search for the same thing).

Bars not
ordered by
Rating

Bars not
ordered by
Distance

Figure 13.1 Looking for a coffee place near St. Peter’s Basilica in Rome using Foursquare

359Learning to rank an example at Foursquare
As you can see, the recommendations aren’t ordered by rating or by distance, so how
are they ordered? How did Foursquare come up with this list?

 Foursquare published an excellent article on how its recommender system works,
describing their implementation of learning to rank.1 I recommend that you read it
because it’s a fascinating insight into the challenges of finding points of interest near
users. We’ll look at a slightly simpler version than what they use to give you as a basic
introductory example of learning to rank.

 Like the hybrid recommenders from chapter 12, learning to rank is a way to com-
bine different kinds of data sources, such as popularity, distance, or recommender sys-
tem outputs. The difference here is that rank doesn’t necessarily have to be from (or
parts of) a recommender system. When ranking, you’re looking for input sources that
will give you an ordering of the objects. Figure 13.2 shows an overview of the list of fea-
tures (called features in machine-learning lingo), which according to the article are uti-
lized at Foursquare.

Because you don’t have access to the features listed in figure 13.2, let’s stick to two fea-
tures and see if you can make sense of the coffee rankings I got on the page shown in
figure 13.1. The page shows the average rating of each venue; I found the walking dis-
tance using Google Maps. If you put this data into a table, it looks like table 13.1.

1 Blake Shaw et al., “Learning to Rank for Spatiotemporal Search,” http://mng.bz/vP25.

Table 13.1 The cafes recommendations from Foursquare

Ranking on
Foursquare

Name
Walking time

(distance)
Average ratings

1 Al Mio Caffé 2 min 7.4

2 Makasar 4 min 7.7

3 Wine Bar
de’ Penitenzieri

4 min 7.5

4 Castroni 10 min 9.2

Figure 13.2 List of features used in Foursquare’s algorithm to rank venues near you

http://mng.bz/vP25

360 CHAPTER 13 Ranking and learning to rank
If you look at the table, it’s easy to see that the rankings aren’t based on ratings. If they
were, Castroni would be at the top. It’s also not ranked by distance, or Makasar would
have to share its second place with the wine bar. Let’s try feature engineering here
and see if you can get closer to predicting the ranking for the four elements using
only these two features—distance and average ratings.

 First, you need to massage the data so that a higher value denotes a shorter dis-
tance and a higher average rating. Being far away isn’t a good thing for a cafe, so you
need to invert the distances. Inverting the distance will make places within a short
walking distance (time) have a higher value. To do this, find the maximum, which is a
10-minute walk, and subtract each walking time from maximum. This makes the dis-
tance value of Al Mio Caffé be 10 – 2 = 8 and Castroni 10 – 10 = 0. You rescale all the
data so that everything is between 1 and 0 because if you don’t, certain algorithms
might not work well.2 Rescaling can be done using the following formula:

Normalizing the data will give you the data in table 13.2.

With this change, you’ve a distance ordering close to the ranking on Foursquare.
Because Items 2 and 3 are tied for walking time, you need to get ranking from the
ratings.

 You’re now at the core of the problem; you want to teach the machine to rank
these items based on the input of ratings and distance. You can formalize this a bit
more by saying you want the system to learn weights (w0 and w1), which when inserted
into the following expression produce a value such that the four items get ordered as
on the Foursquare page:

Because you want to make the function produce an ordering like Foursquare’s, you’re
trying to make an algorithm that’s optimized to rank based on the output. In this

2 For more information on rescaling, see https://en.wikipedia.org/wiki/Feature_scaling.

Table 13.2 Same as table 12.1, except with normalized data

Ranking on
Foursquare

Name
Walking time

(distance)
Average ratings

1 Al Mio Caffé 1.00 0.00

2 Makasar 0.75 0.17

3 Wine Bar
de’ Penitenzieri

0.75 0.06

4 Castroni 0.00 1.00

x' x min x –
max x  min x –
---=

f distance rating,  w0 distance w1 rating+=

https://en.wikipedia.org/wiki/Feature_scaling

361Learning to rank an example at Foursquare
example, it’s not too hard to guess the value for w 0 and w1 if you set them equal to
w0=20 and w1=10, you’ll get the score values shown in table 13.3.

Another way to approach the problem is to use linear regression to find the line that
best represents the data set. Use the line to find the rank of each item by starting at
the point furthest away from (0,0) and work inward. This is shown in figure 13.3. The
angle of the line determines which of the two features (ratings or distance) will be
given the most importance.

 Figure 13.3 also provides a view of what you’re trying to solve here. You have two
different dimensions: the distance and the average ratings. By drawing the line as I
did, I got the ordering as shown in the figure. If you change the angle of the line, the
cafes might come out in a different order. I hope that helped.

Table 13.3 Cafe data with a column showing the score calculated with the previous function f

Ranking on
Foursquare

Name
Walking time

(distance)
Average ratings Score

1 Al Mio Caffé 1 0 20

2 Makasar 0.75 0.17 16.7

3 Wine Bar de’ Penitenzieri 0.75 0.06 15.6

4 Castroni 0 1 10

1 Mio Café

Mio Café

2

Makasar

Makasar

3

Penitenzieri

Penitenzieri

4 Castroni

Castroni

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2
-0.2

Inverted and normalized distance

N
or

m
al

iz
ed

 r
at

in
g

0.0 0.2 0.4 0.6 0.8 10 12

Figure 13.3 Projecting the points to a line shows an ordering of the items

362 CHAPTER 13 Ranking and learning to rank
Back to the Foursquare example: if you were Foursquare, you’d probably have a pipe-
line like the one shown in figure 13.4. Now the problem becomes slightly different
because how do you (pretending you’re Foursquare) optimize the function if you
don’t know what it’s supposed to return? You use the check-in feature (read the arti-
cles for more details). Here I want you to note that finding data that describes how it
should look isn’t always straightforward.

13.2 Re-ranking
If you read about hybrids in the previous chapter, you might ask what’s the difference
between this and the feature-weighted hybrid. Remember that you’re optimizing for
two different things. A hybrid recommender always predicts ratings, while a LTR algo-
rithm produces orderings. You’ll look at how to define ordering in the next section.

 Certain users would call the Foursquare ranking a re-ranking because it takes a list
of venues that’s found using a spatial index, meaning that it finds the items closest to
you, and then reorders the list to also match the rating criteria.

 A simple example of re-ranking in the recommender system is to use a popularity
ordering as the base and then re-rank the items using the recommender. Popularity
narrows the list to the most popular items and reduces the risk for showing items that
are for particular (and maybe unpopular) tastes. This might remind you of a filter
bubble, but remember that if a user likes unusual items more than popular items, the
unusual ones would still bubble up in the list.

 As an example, look at figure 13.3 again and find Castroni. It’s far away but
because its average rating is so high, it manages to get on the Top 4 list. The Mio Caffé
doesn’t have good ratings, but you were basically standing next to the cafe, so even if
it’s unpopular, it came first because it was the closest option.

 Collaborative filtering algorithms are prone to recommend items liked by few peo-
ple, but by people who really like the content. The algorithm has no concept of popu-
larity and could be used for re-ranking instead of as the sole source for the ordering.
This example is also described on the Netflix TechBlog.3

3 For more information on Netflix’s TechBlog, see http://mng.bz/LacO.

Foursquare system

Recommender
Ratings

Venue finder

Distance
Distances

Ranking

(Userid,
location)

Figure 13.4 A simplified view of the Foursquare ranking system

http://mng.bz/LacO

363What’s learning to rank again?
 Instead of re-ranking items and rating predictions, why not start with the aim of
ranking and then construct algorithms that optimize for that? This is the goal of LTR
algorithms.

13.3 What’s learning to rank again?
A recommender or another type of data-driven application that produces ranked lists
is trained using a family of algorithms called Learning to Rank (LTR). A ranking recom-
mender system has a catalog of items. Given a user, the system retrieves items that are
relevant to the user and then ranks them so the items at the top of the list are the most
applicable.

 The ranking is done using a ranking model.4 A ranking model is trained using an
LTR algorithm, which is a supervised learning algorithm, meaning that you provide it
with data containing input and output. In your case, that’s a user_id as input and a
ranked list of items as output. This family of algorithms has three subgroups—
pointwise, pairwise, and listwise—which we’ll quickly review.

13.3.1 The three types of LTR algorithms

LTR algorithms are distinguished by the way they evaluate the ranked list during train-
ing. Figure 13.5 illustrates the three different flavors.

4 This definition is loosely taken from the article ”A Short Introduction to Learning to Rank” by Hang LI. Avail-
able online at http://times.cs.uiuc.edu/course/598f16/l2r.pdf.

Item 1

Item 2

Item 3

Item 1

Item 2

Item 3

Item 1

Item 2

Item 3

score

score

compare

score

compare

compare

score

Pointwise LtR

Pairwise LtR

Listwise LtR

Figure 13.5 The three different subgroups of LTR algorithms: pointwise,
pairwise, and listwise

http://times.cs.uiuc.edu/course/598f16/l2r.pdf

364 CHAPTER 13 Ranking and learning to rank
POINTWISE

The pointwise approach is the same as the recommenders you looked at in earlier
chapters. It produces a score for each item and then ranks them accordingly. The dif-
ference between rating prediction and ranking is that with ranking, you don’t care if
an item has a utility score of a million or within a rating scale, as long as the score sym-
bolizes a position in the rank.

PAIRWISE

Pairwise is a type of binary classifier. It’s a function that takes two items and returns an
ordering of the two. When you talk about pairwise ranking, you usually optimize the
output so you’ve the minimal number of inversions of items compared to the optimal
rank of the items. An inversion means that two items change places.

 To do pairwise ordering, you need what’s called an absolute ordering. An absolute
ordering means that for any two content items in the catalog, you can say one is more
relevant than the other or is tied.

NOTE If you made a pairwise ranking by predicting ratings using the neigh-
borhood model from chapter 8, you wouldn’t have an absolute ordering
because the algorithm can’t predict ratings for all items.

LISTWISE

Listwise is the king of all LTR subgroups because it looks at the whole ranked list and
optimizes that. The advantage of listwise ranking is that it intuits that ordering is more
important at the top of a ranked list than at the bottom. Pointwise and pairwise algo-
rithms don’t distinguish where on the ranked list you are.

 Consider, for example, a Top 10 recommendation; the pairwise recommendation
will penalize you for getting the order of the last two items wrong as much as for get-
ting the first two wrong. You know by now that that isn’t good because users pay much
more attention to the top of the list. To inject this into the algorithm also means that
you need to look at the complete list and not each pair of items.

 It sounds simple when explained like this: you have to create a ranking such that
all items are always ranked correctly. But it turns out that it’s hard to programmatically
calculate whether one list is better than another one.

 To have a look at a listwise ranking algorithm, I suggest CoFiRank (collaborative
filtering for ranking), which was presented at NIPS (Neural Information Processing
Systems) in 2007.5 In the following section, you’ll look at an algorithm that uses pair-
wise ranking.

5 Weimer et al. Maximum. CoFiRank Margin Matrix Factorization for Collaborative Ranking. Available online at
http://mng.bz/m0t1.

http://mng.bz/m0t1

365Bayesian Personalized Ranking
13.4 Bayesian Personalized Ranking
Once again, it’s always a good idea to be sure you and your coworkers agree on the
problem. That’s true for this and so many other things in life. Let’s start with a defini-
tion of the problem or task you want to solve. To solve it you’ll use an algorithm called
Bayesian Personalized Ranking (BPR), which was presented in a paper by Steffen Ren-
dle et al.6

TASK TO SOLVE

The overall idea is that you want to provide customers with a list of items where the
top one is the most relevant one, then the next best one, then the next, and so on. Up
to now, I’m pretty sure that we understood each other: for each user you want to order
the content items in such a way that the most relevant is on top. This is what you need
to describe in a way that both you and the machine understand.

 You need to define an ordering that says no matter which two items you hold up,
the ordering will rank one better than the other. To make that work, you need three
rules: totality, anti-symmetry, and transitivity. For example, for a given user, you want
an ordering written such as >u and defined as the following:

 Totality—For all i,j in I (all items), if , then you have either or .
 Anti-symmetry—For all i,j in I, if and then .
 Transitivity—For all i,j,k in I, if and then .

It might not seem like it’s important to spend so much time on this ordering, but it’s
needed to make the BPR work.

IF YOU HAVE IMPLICIT DATA

The algorithm we’re talking about is often only used on implicit feedback. But here
the problem is that you never have any negative feedback because you only have
events that say “bought.” Not having negative data is something that makes it hard for
a machine-learning algorithm to understand when it’s doing something wrong, so it
also doesn’t know when it’s doing something right.

 The absence of a bought event could indicate that the user doesn’t know the
item exists (they haven’t seen it); they saw it, but didn’t like it; or they saw it, liked it,
but haven’t bought it yet. In either case, you can assume that the not is something
worse than the bought as illustrated in figure 13.6. Either a user has bought an item
or not (the squared boxes). You then have different conditions for the user-item
relationship.

 If you’ve two items, one that’s bought and one that’s not, then when talking about
ranking, you can define that a bought item is always more attractive than one that
wasn’t bought. With that clear, you can now turn to item pairs, which have two items

6 Steffen Rendle et al., “BPR: Bayesian Personalized Ranking from Implicit Feedback,” https://arxiv.org/pdf/
1205.2618.pdf.

i j i ju j iu
i ju j iu i j=

i ju j ku i ku

https://arxiv.org/pdf/1205.2618.pdf
https://arxiv.org/pdf/1205.2618.pdf
https://arxiv.org/pdf/1205.2618.pdf

366 CHAPTER 13 Ranking and learning to rank
that should be either bought or not bought, but you don’t have anything to say about
them just yet.

 In figure 13.7, you can see the transformation of a user’s buy log into an order
matrix. Figure 13.8 shows how this expands your data because each user will have
their own matrix.

 That’s all well and good, but you do have rating data, so how can you use that
here? If you want more fine-grained sampling, you should look at MF-BPR (Multi-
feedback Bayesian Personalized Ranking). Listen to this talk from RecSys 2016 on
YouTube: “Bayesian Personalized Ranking with Multi-Channel User Feedback.”7

WITH EXPLICIT DATA SETS

If you have explicit data—ratings—then you could make a similar order by saying
non-rated items are below rated items (item rated = bought). You could ask if the not-
rated item should be valued as an average rated item or as an item that’s rated below
all rated items. In figure 13.8, we’ll assume rated means bought.

THE TRAINING DATA SET

With the approach described in the previous section, you can now collect a data set to
be used to train a ranking recommender. This data set will contain all tuples (u, i, j),
where i has been bought and rated by the user, and j has not.

7 To listen, go to www.youtube.com/watch?v=aKHLf4P3N08.

Always here

When a user bought
item, you know what it
means.

When a user did not
buy item, it is hard to
say what it means.

Item
bought

Item not
boughtCould mean any

of these states

Not
Observed

item

Observed
item

Figure 13.6 Different states of a user-item relationship. You know that when a user
buys an item it’s bought, but if a user doesn’t buy an item, what does that mean?

www.youtube.com/watch?v=aKHLf4P3N08

367Bayesian Personalized Ranking
Movie Bought

Rogue One (RO) ?

Arrival (A)

Secret Life Of Pets (SLP)

Fantastic Creatures (FC) ?

Spiderman (S) ?

RO A SLP FC S

RO - - ? ?

A + ? + +

SLP + ? + +

FC ? - - ?

S ? - - ?

Transformations
None bought: (?,?) -> ?
First is bought: (
Both bought: (
Second is bought (?,

+ User prefers
the row item.

- User prefers
the column item

 ? We don’t know

User prefers
SLP over RO

User prefers
A over FC

Figure 13.7 How to transform one user’s transaction into an order matrix. On the left, √
means that the user bought the item. In the matrix on the right, + means the user prefers
a row element, and - means the user prefers the column element; for example, A is preferred
over RO.

Sara RO A SLP FC S

RO - - ? ?

A + ? + +

SLP + ? + +

FC ? - - ?

S ? - - ?

RO A SLP FC S

Sara x x

Jesper x x x

Helle x x x

Pietro x x

Therese x x x

Jesper RO A SLP FC S

RO - - ? ?

A + ? + +

SLP + ? + +

FC ? - - ?

S ? - - ?

Helle RO A SLP FC S

RO - - ? ?

A + ? + +

SLP + ? + +

FC ? - - ?

S ? - - ?

Pietro RO A SLP FC S

RO - - ? ?

A + ? + +

SLP + ? + +

FC ? - - ?

S ? - - ?

Theresse RO A SLP FC S

RO - - ? ?

A + ? + +

SLP + ? + +

FC ? - - ?

S ? - - ?

Create a new matrix
for each user

Figure 13.8 The algorithm creates an order matrix for each user. Five users are in the rating matrix
and will generate five matrices.

368 CHAPTER 13 Ranking and learning to rank
13.4.1 Ranking with BPR

Let’s begin with the beast. You want to find a personalized ranking for all items and all
users in your database. For personalized ranking, you’ll use something called Bayesian
statistics to solve this problem. Bayesian statistics are based on this simple equation:

This equation states that the probability (p) of event A happening given that B hap-
pened is equal to the probability that A happens multiplied by the probability that B
happens when A occurs, divided by the probability that B happened. To explain, you
could say A is the event that it has rained, and B is the event that the street outside is
wet. Then Bayes says that the probability that it has rained given that the street is wet
(p(A|B)) is equal to the probability that it has rained (p(A)) multiplied by the proba-
bility that the street is wet given it has rained (p(B |A)) divided by the probability that
the street is wet (p(B)). This simple equation has turned into an interesting branch of
statistics, so I encourage you to look it up.

 In the context of the ranking problem, you can formulate it by having an unknown
ordering preference for each user, which you denote by for user u. is a total
ordering, which given any two content items i and j from your catalog, the user will
prefer one or the other. You’ll also say that  is the list of parameters you need to find
for the recommender system (or, in fact, any machine-learning prediction model). If
you’re talking about the Funk SVD, remember that the problem boils down to making
two matrices that you can use to calculate the predictions as shown in the following:

When you talk about in relationship to this, then is the set of all the ui,j’s and vi,j’s.
 In a BPR, you want to find the model, , as defined, such that there’s the highest

probability that the model will produce a perfect ordering for all users. The probabil-
ity can be written like this:

(You read it by saying: the probability of seeing (theta) given the ordering >u.) Due
to Bayes’ theorem, you know that if you want to maximize this, then it’s the same as
maximizing the following because they’re proportional:8

8 For more information, see https://en.wikipedia.org/wiki/Bayes’_theorem.

p A B 
p B A p A 

p B 
-------------------------------=

>u >u

5 3 0 2 2 2
4 3 4 0 3 3
5 2 5 2 1 1
3 5 3 0 1 1
3 3 3 2 4 5
2 3 2 3 5 5

u1 1, u1 2,
u2 1, u2 2,
u3 1, u3 2,
u4 1, u4 2,
u5 1, u5 2,
u6 1, u6 2,

v1 1,

v2 1,

v1 2,

v2 2,

v1 3,

v2 3,

v1 4,

v2 4,

v1 5,

v2 5,

v1 6,

v2 6,
=

 


p  u 



p(>u )p  

https://en.wikipedia.org/wiki/Bayes’_theorem

369Bayesian Personalized Ranking
Notice that the ordering and the model have changed places. Now you’ll work
on the probability of seeing the ordering given a specific model and multiply
that with the probability of seeing that model.

NOTE You’ll need to do some math magic in the following section. Feel free
to skip it if you’re not interested in the nitty-gritty details.

Before going into the magic, however, let’s stay afloat for a little bit longer and spell
out exactly what’s happening. You assume that in a perfect world there’s a way to
order all your content items flawlessly for each of your users, which is the total order-
ing that I keep mentioning. If there’s such an ordering, there’s also a probability
that there’s a recommender algorithm that can produce it.

 is a question that you’re asking. Assuming this ordering exists, what’s the
probability that you can find a model that will produce it? Then you mix Bayes into it,
and you rephrase the question. Saying that is the same as asking what is the
probability that there’s times the probability that if you have , you then have the
ordering. Is that clearer now?

13.4.2 Math magic (advanced wizardry)

Let’s look at the two parts of the expression from the previous section. To refresh your
memory:

ASSUME THE PRIOR IS A NORMAL DISTRIBUTION

Let’s start with the last part of the equation: . Assume that the parameters of the
model are independent and that each is normally distributed with zero
mean and a variance-covariance matrix .9 Assuming that, you can write the last part as:

This infers you say that .

Likelihood function
Moving on to , you can do some rewriting. When you say >w, its only one user,
but you want to maximize it for all users, so it means that you want to maximize

This equation can be written more compactly as uU p(>u|. You have a product of
the probability where there’s an ordering for each user, given such a model. The prob-
ability of an ordering for one user must be the same probability for all pairs of items
where one has been bought and the other one not bought—there’s an ordering.

9 For more information, see https://en.wikipedia.org/wiki/Normal_distribution.

>u 
>u 

>u

p  u 

p  u 
 

p(>u )p  

p   
p   N 0 ,  



p   1
2
------e

1
2
---–   2

=

 I=

p(>u )

p >u1|  * p >u2
|  * ... * p >un| 

https://en.wikipedia.org/wiki/Normal_distribution

370 CHAPTER 13 Ranking and learning to rank
 We said previously you’re only looking at these cases. With some common sense and
several clever tricks, you can reduce the previous product to a product containing prob-
ability of an ordering for each data point (u, i, j), meaning all your data Ds’s become

You can take this one step further. Because is a recommender system model, you
know that means that you’re asking for the probability that a recom-
mender exists that will predict ratings such that . You can rewrite the
product again:

RELAXING THE ORDERING

Earlier I said that the problem with ranking was binary, in the sense either it was (or
wasn’t) item i that was preferred. And because you’ve the total ordering, this describes
a function that’s called the Heaviside function (figure 13.9). The outcome of asking is
i >u j? can only ever be {yes, no} (yes or no), given a certain model. That means
p(i >u j|) is either 0 or 1.

 You’re only looking at the data where one item was bought by the user and the
other one wasn’t. That means there’s no sliding on the function. It’s 0 until there’s a
straight vertical line to 1:

Remember that in chapter 11 we talked about optimizing an analog, comparing it to
standing on a foggy hilltop and looking for water and that it doesn’t work if the func-
tion one minute is 1 and the next 0. With a Heaviside function, you can’t see which
way to go down safely. To solve this, you can use another function that’s almost the
same, one called the sigmoid function. The sigmoid function also runs in the interval
from 0 to 1 and moves almost as the Heaviside function. The sigmoid is defined as:

Figure 13.9 shows the sigmoid function in action. As you can see from the figure, you
can insert the sigmoid without losing too much integrity. You get that

where is the predicted ratings from a recommender system. You now have
the building blocks to put everything together and come up with something you can
stuff into some Python code and do ranking.

 Once again, you want to find a set of parameters for a model such that you have
the highest probability to produce a ranking for all users that’s perfect. You can say

p >u| 
u U
 p i>u j| 

u i, j,  Ds
=


i>u j| 

rui ruj– 0 

p i>u j | 
u i, j,  Ds
 p rui ruj– 0 

u i, j,  Ds
=

p i >u j | 
1 if i >uj

0 otherwise



=

 x  1

1 e x –
+

-------------------=

p i>u j |  p rui ruj 0–   rui ruj–  1

1 e
rui ruj– –

+
---------------------------------= = =

rui ruj–



371Bayesian Personalized Ranking
you want to maximize the following (you use argmax when you want to say that you
want to find the parameters that maximize an expression):

You’ll use a trick that says that if you want to do that, then it’s the same as maximizing
the following because the function ln is continuous and always increasing:

Inserting what you deduced, you get

where Ds is all the combinations you have in your data (user u bought/rated an item i
but not the item j).

 The function you added (ln) is short for the natural logarithm, and it has some
nice properties shown here:10

 (ln(a * b)  ln(a)  ln(b) and)

10 For more information, see https://en.wikipedia.org/wiki/Natural_logarithm#Properties.

–6

0.0

0.2

0.4

0.6

0.8

1.0

–4 –2 0 2 4 6

Heaviside
Sigmoid

Figure 13.9 Heaviside and sigmoid functions plotted in the interval -6 to 6

argmax


p | >u p

argmax


ln p | >u p 

argmax


ln  rui ruj– 
u i, j,  Ds
 *

1
2
------ e

1
2
---–   2

 
 
 
 

e

1
2
---–   2

 
 
  1

2
---–   2

=

https://en.wikipedia.org/wiki/Natural_logarithm#Properties

372 CHAPTER 13 Ranking and learning to rank
You’ll also set , which you’ll use to simplify the expression, at least a little bit.
You’ll call the part inside of the argmax for BPR optimization criteria (BPR-OPT).

This is the task. Did everyone arrive here safe and sound? Let’s recap.
 The expression you arrived at is what the problem boils down to: you want to find

the recommender system. Running with the set of parameters  will make the whole
expression as large as possible, meaning that it’s the  with the highest probability so
that the system produces an ordering >u that matches all users’ preferences. It’s a
noble goal, don’t you think?

 I’m afraid to say that this was only the problem; now you also need more work
before you get at the algorithm that solves it. Remember, stochastic gradient descent
from chapter 11? You’ll use something similar here.

 You want to find the gradient of the previous expression to understand which way
you should move to get closer to the optimal ranking. I claim (without proof) that the
gradient of the BPR-OPT is proportional to the following ( means proportional to):

And this is the function you’ll want to use to figure out which direction you should go
to optimize the ranking method. With that you leave magic math mode and continue
as though nothing strange has happened to optimize the expression found here.

13.4.3 The BPR algorithm

In the article where BPR is described, the author also suggests an algorithm called
LearnBPR, which goes as follows:

This is it. I bet it’s a bit like watching a complex whodunit movie and then sleeping
through the last 10 minutes (where it was explained why the butler did it). But you’ve
arrived at an algorithm that will produce a ranking. Up to now we haven’t said much
about the recommender algorithm, and, in fact, the step

: 1
2
---=

argmax


ln  rui ruj–     2
–

u i, j,  Ds


BPR OPT–


-------------------------------- e
rui ruj– –

1 e
rui ruj– –

+
-------------------------------- * 


------ rui ruj–  –

u i, j,  Ds


  BPR OPT–


--------------------------------–

373Implementation of BPR
in the procedure depends on which recommender you plug into it. Most scientific
articles use a matrix factorization algorithm, so you’ll do the same. The thing to pon-
der is if you use the same algorithm and the same heuristic to solve it as you did in
chapter 11, would it then produce the same results?

 Perplexing I know, but now you have a new goal. Remember that in chapter 11 the
goal was to reduce the difference between the ratings you have in your database and
what the recommender predicts? Here you don’t care what type of ratings are pre-
dicted, only the order of predictions—the ranking—which allows the learning to be
more “free” (for lack of a better word). At this point, it’s also worth mentioning the
draw function, which can be implemented in several different ways and with different
strategies. In the implementation, I used the simplest one, but there are other ways.

13.4.4 BPR with matrix factorization

If you don’t remember what matrix factorization is, you can refresh your memory in
chapter 11. You’ll do many of the same things here. Predicting a rating in matrix fac-
torization comes down to multiplying a row in the user matrix W with a column in the
item matrix H, which is done by using the following summation

where K is the number of hidden factors.
 To fit it into the example expression, you need to consider how the gradient will

look. You’re taking the gradient in regards to , which is the union of all the parame-
ters you’re trying to find, meaning all the w’s and the h’s. With some careful thinking,
you’ll see that there are only three cases that are interesting (as in non-zero):

You may need to stare at the gradient expression before realizing this. But I’m afraid
that I have to leave it as an exercise for you to do.

13.5 Implementation of BPR
The BPR was first described in section 13.4. The authors, along with several other peo-
ple, implemented a recommender system algorithm library called MyMediaLite in C#;
the code you’ll see in the following is inspired by that.11 Figure 13.10 shows an over-
view of what you’re implementing in this section:

11 For more information, see https://github.com/zenogantner/MyMediaLite.

ru j, wu f, * hj f,
f 1=

K

=



------ ru i, ru j,– 

hu i, hu j,–  if  wu=
wu if  hi=

wu– if  hj=

0 else







https://github.com/zenogantner/MyMediaLite

374 CHAPTER 13 Ranking and learning to rank
To run the training set, download the code from GitHub (http://mng .bz/04k5) and
follow the install instructions in the readme file. Then go to the MovieGEEKs folder
and execute the following listing.

> python -m builder.bpr_calculator

It outputs something close to this:

2017-11-19 16:23:59,147 : DEBUG : iteration 6 loss 2327.0428779398057
2017-11-19 16:24:01,776 : INFO : saving factors in ./models/bpr/2017-11-19

16:22:04.441618//model/19/

To use this model, you need to take the folder name where the model (factors) has
been saved and insert it into the recommender class. This could be done automati-
cally in a real system. But it’s good to have a manual step so you’re sure you don’t have
faulty models suddenly running in production. Insert the path in recs/bpr_recom-
mender.py in line 17 or as the default parameter to the init method, as shown in the

Listing 13.1 Running the BPR training algorithm

1. Initialize

Draw

Rating

User

Item

Positive item

Users’ ratings

Rating

User

Negative item

2. Initialize factors

1. Initialize bias

2. Train

Repeat num of iterations

Repeat number of ratings:

Draw sample

Step

Step

3. Update user factors.

2. Find users’
 ratings

1. Select a
 random
 rating

3. Pick a random rating until
you find one that the user
has not rated

1. Find dot product between user
factor and the difference between
the item factors.

2. Update item bias, increase the
positive item bias and decrease the
negative item bias..

4. Update item factors, increase the
positive item factor, and decrease
the negative item factor.

For each
item in the
loss sample

3. Loss
calculation

Calculate
loss

3. Create loss
sample

Figure 13.10 An illustration of what you implement in this section. You start by initializing
everything, then you train. For each iteration, you run through the same number of ratings, and
for each step, you draw a sample of a user and a positive and a negative item. Then you step,
meaning that you move all the factors and biases in the right direction.

http://mng.bz/04k5

375Implementation of BPR
following listing.The annotation mentions a relative path in the log. Is that what’s out-
put from listing 13.1? If so, mention full path.

def __init__(self, save_path='<insert path there>'):
 self.save_path = save_path
 self.load_model(save_path)
 self.avg =

list(Rating.objects.all().aggregate(Avg('rating')).values())[0]

TRANSFORMING YOUR RATINGS TO DATA USABLE TO BPR
Before starting on the actual algorithm, you need to transform your rating data into
something you can use. The BPR uses implicit feedback, which can either be clicks or
purchases. If you consider the user-content lifetime that was described in chapter 4,
then you could say that anything the user rated is something that they purchased. You
could also say that all ratings are indications that the user bought something. The
question then is whether you want to lose the information about whether a user has
rated something high.

 If you want to take advantage of the user’s explicit feedback, you transform all rat-
ings above a certain threshold that indicate a buy and the rest you delete. It’s a matter
of gut feeling. Here the first solution is taken, so you’ll have more data to use.

LEARNBPR METHOD

First, you have the overall build method, which is where you control all of the build.
The build method looks like that shown in this listing. You can view the code for the
following listings in /build/bpr_calculator.py.

def train(self, train_data, k=25, num_iterations=4):

 self.initialize_factors(train_data, k)

 for iteration in range(num_iterations):

 for usr, pos, neg in self.draw(self.ratings.shape[0]):
 self.step(usr, pos, neg)

If you were expecting a big light, then I guess this is a bit disappointing, so let’s move
on quickly. The initialize_factors method initializes everything. It doesn’t do any-
thing surprising, so I’ll leave it to you to look it up if you’re interested.12

 After the initialization method loops the number of times indicated in the num_
iterations parameter, in each iteration it loops through all the samples of u, i, j,

Listing 13.2 Init method of BRP recs

Listing 13.3 The overall build method

12 For more information, see http://mng.bz/tjAO.

Inserts path. The log only
prints out the relative path,
but here you need the full one.

Initializes
the factors

Loops the num_iterations
4 times

Loops through all the samples created in the
generate_samples method

Calls the step
method

http://mng.bz/tjAO

376 CHAPTER 13 Ranking and learning to rank
which are the users where item i was bought and item j not. In your case, it means ran-
domly selected. For each of those, you call a step method (next listing).

def step(self, u, i, j):

 lr = self.LearnRate
 ur = self.user_regularization
 br = self.bias_regularization

 pir = self.positive_item_regularization
 nir = self.negative_item_regularization

 ib = self.item_bias[i]
 jb = self.item_bias[j]

 u_dot_i = np.dot(self.user_factors[u, :],
 self.item_factors[i, :] - self.item_factors[j, :])
 x = ib - jb + u_dot_i

 z = 1.0/(1.0 + exp(x))

 ib_update = z - br * ib
 self.item_bias[i] += lr * ib_update

 jb_update = - z - br * jb
 self.item_bias[j] += lr * jb_update

 update_u = ((self.item_factors[i,:] - self.item_factors[j,:]) * z
 - ur * self.user_factors[u,:])
 self.user_factors[u,:] += lr * update_u

 update_i = (self.user_factors[u,:] * z
 - pir * self.item_factors[i,:])
 self.item_factors[i,:] += lr * update_i

 update_j = (-self.user_factors[u,:] * z
 - nir * self.item_factors[j,:])
 self.item_factors[j,:] += lr * update_j

The step method does exactly the same as the one you implemented for the matrix
factorization in chapter 11. I encourage you to read through it again for any details
(see the code in bpr_calculator.py and chapter 11). What’s more interesting in this
chapter is how the sample is done and how the prediction and loss functions look.

DRAW METHOD

A draw or a sample consists of a user ID and two item IDs, where one item is preferred
by the user over the other. This can be implemented by saying that the preferred item
is the one that the user purchased, and the other, the one that the user hasn’t bought
(or in our case, one is rated and one is not). To draw a sample like that with your rat-
ing data, you can do the following:

 Draw a random user rating to get the user ID and the positive item.
 Keep drawing random ratings until you have a item that isn’t rated by the user.

Listing 13.4 Calling the step method

Creates short nicknames
for the learning rate and
regularization constants

Shows the same with
the item bias

Takes the dot product
between user factor and

the difference between
the two item vectors

Updates the
item biases

Updates the user’s
factor vector

Updates the
item factors

377Implementation of BPR

s.
ou
e
ave

Dra
num

s

This leaves assumptions about your ratings that you should remember. This data set,
MovieTweetings only contains content if somebody has rated it, so all the content
returns in the ratings data. Also, popular items appear more frequently than others
because they’re rated more.

 The draw method in listing 13.5 uses yield instead of return, so when it arrives at
yield it delivers the result. But that stays in the for loop so that draw will iterate
through the entire index. You could do this by pushing all the samples to a list and
then returning the list. But yield seems a nicer way of doing it. Note that the scripts
for the following listings can be found in /build/bpr_calculator.py.

def draw(self, no=-1):
 if no == -1:
 no = self.ratings.nnz
 r_size = self.ratings.shape[0] – 1
 size = min(no, r_size)
 index_randomized = random.sample(range(0, r_size), size)
 for i in index_randomized:
 r = self.ratings[i]
 u = r[0]
 pos = r[1]

 user_items = self.ratings[self.ratings[:, 0] == u]
 neg = pos
 while neg in user_items:
 i2 = random.randint(0, r_size)
 r2 = self.ratings[i2]
 neg = r2[1]

 yield self.u_inx[u], self.i_inx[pos], self.i_inx[neg]

The loss function (create_loss_samples in listing 13.6) indicates if you’re going in the
right direction. It runs through the loss sample that was created in the initialization.

Build\bpr_calculator.py
def create_loss_samples(self):
 num_loss_samples = int(100 * len(self.user_ids) ** 0.5)
 self.loss_samples = [t for t in self.draw(num_loss_samples)]

The loss function shown in listing 13.7 runs through this loss sample and calculates

Listing 13.5 The draw method

Listing 13.6 The loss function

Because you want to shuffle your data,
creates an array of all the numbers in the
index (0 until the end) and then shuffles.

Runs through the
shuffled index

A rating is selected, now
find all the users rating
(Here’s a place where y
could probably optimiz
the code so you don’t h
to filter all the ratings
every time.)

See the silly
trick to get

through
the loop

constraint
the first

time.

Loops until negative is an item that
the user hasn’t rated.

ws the
ber of

amples

Number of samples
that should be taken.

ln  rui ruj–    –
u i, j, Ds



378 CHAPTER 13 Ranking and learning to rank

Re

def loss(self):
 br = self.bias_regularization
 ur = self.user_regularization
 pir = self.positive_item_regularization
 nir = self.negative_item_regularization

 ranking_loss = 0
 for u, i, j in self.loss_samples:
 x = self.predict(u, i) - self.predict(u, j)
 ranking_loss += 1.0 / (1.0 + exp(x))

 c = 0
 for u, i, j in self.loss_samples:
 c += ur * np.dot(self.user_factors[u], self.user_factors[u])
 c += pir * np.dot(self.item_factors[i], self.item_factors[i])
 c += nir * np.dot(self.item_factors[j], self.item_factors[j])
 c += br * self.item_bias[i] ** 2
 c += br * self.item_bias[j] ** 2

 return ranking_loss + 0.5 * c

The loss function uses a prediction method, but the difference is that values, not rat-
ings, are predicted. Listing 13.8 illustrates how the values are compared to the predic-
tion of another item, which shows how those two should be ranked against each other.

def predict(self, user, item):
 i_fac = self.item_factors[item]
 u_fac = self.user_factors[user]

 pq = i_fac.dot(u_fac)

 return pq + self.item_bias[item]

Running this algorithm takes a long time. But there are many places where you could
be smarter and optimize it to run several hundred times faster with a few tricks. As it
stands here, it takes my MacBook 2017 model around two hours per iteration. At that
rate, 20 iterations will take 40 hours, so you can go for a run or something. When it’s
finished, however, you can use it to make recommendations. Let’s look at how you do
that next.

13.5.1 Doing the recommendations

To hand test the recommendations, you can start MovieGEEKs and, if you trained the
model, it will produce recommendations from the BPR using the method shown in
the next listing. You’ll find the code for the listings in this section in /recs/bpr_rec-
ommender.py.

Listing 13.7 Calculating the error on loss sample data

Listing 13.8 Ranking one item against another

Creates short
nicknames for
the constants

Calculates the
ranking loss

gularization
expressions

Ranking loss plus half
the regularization

Does the dot product
between the item factors
and the user factors

Adds the item bias and returns

379Implementation of BPR

t

def recommend_items_by_ratings(self, user_id, active_user_items, num=6):

 rated_movies = {movie['movie_id']: movie['rating']
 for movie in active_user_items}
 recs = {}
 if str(user_id) in self.user_factors.columns:

 user = self.user_factors[str(user_id)]

 scores = self.item_factors.T.dot(user)

 sorted_scores = scores.sort_values(ascending=False)
 result = sorted_scores[:num + len(rated_movies)]

 recs = {r[0]: {'prediction': r[1] + self.item_bias[r[0]]}
 for r in zip(result.index, result)
 if r[0] not in rated_movies}

 s_i = sorted(recs.items(),
 key=lambda item: -float(item[1]['prediction']))

 return s_i[:num]

To do this, you first have to load the model using the code in listing 13.10. The model
is saved in the last step of the training.

def load_model(self, save_path):

 with open(save_path + 'item_bias.data', 'rb') as ub_file:
 self.item_bias = pickle.load(ub_file)
 with open(save_path + 'user_factors.json', 'r') as infile:
 self.user_factors = pd.DataFrame(json.load(infile)).T
 with open(save_path + 'item_factors.json', 'r') as infile:
 self.item_factors = pd.DataFrame(json.load(infile)).T

Listing 13.9 Top N recommendation method using the BPR model

Listing 13.10 Loading the model

Makes a dictionary of the active user’s
movies, which comes in handy when
verifying that you’re not recommending
anything the user has already seen.

Be sure the model has seen the
user; otherwise, you can’t

return any recommendations.

Calculates the do
product between

the active user
factor and all the

item factor vectors
so that you can
calculate which

are
more alike

Runs through the resulting
items, adding the item bias

Cuts the list down to the number that should be
returned plus the number of ratings the user has

Orders again and returns
expected numbers

Orders
values

descending

380 CHAPTER 13 Ranking and learning to rank
13.6 Evaluation
How do you test the algorithm? One way is with the offline evaluation that you learned
about in chapter 9, where you used cross-validation. The evaluation is shown in figure 13.11.

The following listing shows the evaluation method I added. This creates the data
that’s shown in the graph in figure 13.12. You can view the code for this listing in
/evaluator/evaluation_runner.py.

def evaluate_bpr_recommender():
 timestr = time.strftime("%Y%m%d-%H%M%S")
 file_name = '{}-bpr-k.csv'.format(timestr)

 with open(file_name, 'a', 1) as logfile:
 logfile.write("rak,pak,mae,k,user_coverage,movie_coverage\n")

 for k in np.arange(10, 100, 10):
 recommender = BPRRecs()
 er = EvaluationRunner(0,
 None,
 recommender,
 k,
 params={'k': 10,
 'num_iterations': 20})
 result = er.calculate(1, 5)

 user_coverage, movie_coverage =
RecommenderCoverage(recommender).calculate_coverage()

Listing 13.11 The evaluation method

Evaluation runner

Repeat for n runs

Aggregate result

Evaluation
metric

calculation

Algorithm
trainer

Data
splitter

Data
cleaner

Figure 13.11 The evaluation runner for an algorithm. It’s a pipeline where the data is first
cleaned, then split into k folds for cross-validation. For each fold, it repeats the training of
the algorithm, then evaluates it. When it’s finished, you aggregate the result.

381Evaluation
 pak = result['pak']
 mae = result['mae']
 rak = result['rak']

Measuring the precision gave the result shown in figure 13.12, which is nothing spe-
cial. I’ve confidence that it can be better: it’s good, but on small K it isn’t great. I
also calculated the coverage and it’s also better. Item coverage is 6.4% and user cov-
erage is 99.9%.

If you look at the larger numbers, then it suddenly looks much better as shown in fig-
ure 13.13. The thing about the graph in figure 13.13 and these numbers is that they’re
local to this data set, and you can’t really use them for much other than as a bench-
mark that can be improved upon. This recommender only recommends 6% of the
items, which isn’t much. You should probably mix it with a content-based recom-

0.000

0.0 2.5 5.0 7.5 10.0
k

12.5 15.0

Mean average precision

17.5

0.005

0.010

0.015%

0.020

0.030

0.025

Bayesian Personalized Ranking w/20 factors

Figure 13.12 Mean average precision for BPR on a short top N. It isn’t that impressive, but
I’m sure it can be tweaked to make it better.

382 CHAPTER 13 Ranking and learning to rank
mender or use something else like the multi-armed bandit scheme to introduce more
items into the system.

13.7 Levers to fiddle with for BPR
BPR is a complex algorithm and there are many decisions that were made before run-
ning it. Unfortunately, I glossed over many of them, such as how many factors should
be included and what learning rate enables the system to optimize the learning prob-
lem best? That doesn’t mean they aren’t important here, but only that it’s up to you to
use what you learned in former chapters to evaluate the meta parameters. Let’s take a
quick walk through them.

 You have the item bias and the user factors, so you need to decide how many fac-
tors you want to use. The number of factors should be determined by how complex
your data domain is. For example, movies are divided into small sets of types (or
genres), so it could be they don’t need too many factors. But if you’re making a wine
recommender such as the Vivino.com example, then you probably need many more.
This is something you should test based on your data set.

0.00

10 20 30 40 50
k

60 70 80

Average recall@k
Mean average precision

90

0.05

0.10

0.15

%

0.20

0.25

Bayesian Personalized Ranking w/20 factors

Figure 13.13 Precision and recall for the BPR algorithm

383Summary
 It’s hard to give good advice about the learning rate. I found that a too high learn-
ing rate gave me large user factor values, meaning that the biases didn’t have much to
say, while a too low learning rate allowed the biases to take over the decisions. Regular-
izations try to keep things at bay, but if they need to be too large, then maybe it’s a sign
that the learning rate is too high.

 I love the idea of comparing items and then pushing them in different directions
(I’m talking about the item bias here). This can be adjusted with positive and negative
item regularization. These will also affect how much a negative item is pushed away,
and that might hurt new items if there aren’t many users who have consumed those
yet.

 The data set that you used contained ratings, so you could have removed the low-
rated items so they didn’t figure as positive items in your training set. But even if a
user didn’t like a movie, and it was still something they’d consumed, it’s good to use
those also.

 As we conclude this chapter, did you learn everything you needed? If not, then you
can reread this chapter again. But it’s hard, and unless you’re going to implement the
BPR, maybe you don’t need to remember all the details. But if you’re planning to
implement a recommender using BPR, then it’s a good idea to know how it works.
Learning to rank is also something you’ll have to consider when you work with search
machines, so it’s not a bad thing to know a little bit ranking.

 This is it. One more chapter to go, then you can go to GoodReads.com and mark
this book as read. Remember to review it where you bought it, good or bad. Recom-
mender systems need feedback, so please support that.

Summary
 Learning to Rank (LTR) algorithms solve a different problem than that of the

classic recommender problem of predicting ratings.
 Foursquare uses a ranking algorithm to combine the ratings and the locations

of venues, which is a great example of how to combine relevant data into one
recommendation.

 A challenge with the LTR algorithm is that it isn’t easy to come up with a contin-
uous function that can be optimized.

 This chapter touched upon the Bayes theorem, so even if it wasn’t the subject of
this book, you should look into it because it’s used in many scenarios. I recom-
mend Practical Probablistic Programming by Avi Pfeffer (Manning, 2016) for addi-
tional information.

 The Bayesian Personalized Ranking (BPR) can be used on top of the matrix fac-
torization method you looked at in chapter 10, but also with other types of algo-
rithms.

Future of
recommender systems
In this final chapter, you’ll go back to the future:

 You’ll look at a short summary of the book.
 I’ll provide a list of topics to learn next if you want to continue your voyage

into the exciting world of recommender systems.
 Although nobody knows what the future of recommender systems holds, I’ll

give you my best bet and then some final thoughts.

It has taken me three years to arrive at writing this sentence; I hope your travel
time has been a bit faster. I wish I could say that now you know everything about
recommender systems and that you can venture forth as an expert who under-
stands all recommender algorithms. And, more importantly, that you’ll never be
surprised by anything on this topic again. You’ve come a long way, but from here
to becoming an expert is still a long journey.

 In this book, you learned the basics, enough to get you started and equip you
for digging deeper into the subject. But don’t only read. Play around with new algo-
rithms or get more intimately familiar with the ones described in the book. You’ll
find many improvements and tricks to make each of them work better.

 Hopefully, the MovieGEEKs site provided the basics for how to load different
kinds of data and try out some of the things you learned from reading this book.
Remember that MovieGEEKs was implemented to make recommender systems and
algorithms easy to understand and has many places where it can be optimized.
384

385This book in a few sentences
 But before you go out into the world of recommender systems alone, I want to
talk about a few things that didn’t fit into this book. My editor would probably call it
the cliffhangers for the next book, but my wife says no way—so you’ll probably be on
your own from here. First, let’s have a quick run through of what topics we looked at
in the book.

14.1 This book in a few sentences
In this book, you learned about recommender systems, which can be described by the
pipeline shown in figure 14.1.

 You started out learning about collecting data or data ingestion. In Pedro Domingo’s
famous paper called “A Few Useful Things to Know about Machine Learning,” he

Bars not
ordered by
Rating

Bars not
ordered by
Distance

Figure 14.1 A recommender system pipeline

386 CHAPTER 14 Future of recommender systems
points out that more data beats a more complex algorithm.1 That’s also true for recom-
mender systems, only data collected isn’t always a source of truth.

 Explicit ratings can be a reflection of mood or a result of social influences and can’t
always be trusted to indicate what the user wants. Implicit ratings are, as the name
implies, implicit, and you or the machine have to deduce what the collection of events
that have occurred between each user and item indicate. And, no surprise here, peo-
ple’s tastes change over time, so old data might be misleading. It isn’t always straight-
forward to understand what the behavioral data means. Turning events into ratings
and clustering users is part of preparing the data for creating a recommender model.
It’s often referred to as data pre-processing.

 While data is important for understanding what the user wants, it’s equally import-
ant to have a way to see how the system is performing, which is why you looked at ana-
lytics that will be useful for keeping an eye on how things are going.

 Calculating recommendations often uses a model, so you looked at model training.
You can divide the different types of recommendations into levels of personalization,
from completely non-personalized to very personalized as shown in figure 14.2. We
started with the non-personalized because those don’t require that you know the user
well or, frankly, much other data at all. This enables you to have a soft launch into add-
ing recommendations to your site.

First, you saw the non-personalized recommendations that helped find the most-sold
items, the most-liked items, or just the trending items. All users start out as cold users,
so we spent a chapter (chapter 6) on one of the more difficult problems in recom-
mender systems, which is to figure out what to do with new users and items. An
attempt to solve the recommender problem for new users is to look at shopping bas-
ket analysis.

 You then moved into looking at how you can segment things (chapter 7) to under-
take semi-personalized or demographic recommendations. Before getting all per-

1 For more information, see https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf.

Non-personalized Segment-personalized Personalized

Most popular content Membership of
specific segments

Based on personal
taste

Figure 14.2 Grades of personalization

https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

387This book in a few sentences
sonal, you looked at distance and similarity measurements between items and between
users, which is something that haunts nearly every recommender system algorithm.

 The first personalized recommendation method was collaborative filtering (in chap-
ter 8), which provides recommendations based on similar behavior, either between
users or between items. This can be done using ratings explicitly inserted into the sys-
tem by the user, or by implicitly deducing the results of data in your logs.

 There are two types of collaborative filtering. You started with the one known as
neighborhood-based, in which the algorithm uses similarity measures to find neighboring
items or users to the current one. With one algorithm under your belt, you then
looked at evaluating algorithms (in chapter 9). Looking at many different metrics for
evaluating a recommender, you then implemented the Mean Average Precision
(MAP) for the system.

 If you don’t have much user data (or you have well described content), then it’s
worth it to consider content-based recommenders. You have several ways to do that, but
the core is that you look at the content and calculate similarities on that basis. You
looked at creating vectors using first term frequency–inverse document frequency (TF-IDF)
and then topic vectors using latent Dirichlet allocation (LDA) topic modeling (in chap-
ter 10).

 After the LDA, we returned to collaborative filtering, only now you looked at model-
based filtering. You can do model-based filtering in many ways, but the main way is
matrix factorization (chapter 11). This is also where you started to look seriously at
training machine-learning algorithms. We talked about the traditional singular value
decomposition (SVD) and then moved on to the Funk SVD, which got excellent results
in the Netflix Prize competition.

 With a good toolbox of different recommender algorithms, you started looking at
how to combine them, which you can do in many ways. You explored several ways in the
chapter on hybrids, where you implemented one called feature-weighted linear stacking
(FWLS), which was the method that won the Netflix prize. Next, you looked at a new
type of algorithm called Learning to Rank (LTR), which doesn’t care much about cor-
rectly predicting ratings, but rather focuses on producing lists of items that are ranked
appropriately. The algorithms can be divided into three different types as shown in fig-
ure 14.3.

 Each ranking method has advantages and disadvantages. I picked one that’s often
referenced when talking about learning to rank, the Bayesian Personalized Ranking
(BPR) algorithm.

 At this point you might ask which algorithm should you implement? It depends on
what kind of data you have. I suggest going with matrix factorization. When that’s
implemented, you can build the LTR model on top of it. Or you can add another
implementation and make it into an ensemble.

 And finally, we arrived at the future of your recommender journey and the future
of recommenders in general. Let’s start with the first one.

388 CHAPTER 14 Future of recommender systems
14.2 Topics to study next
Here’s what I recommend as the next steps in your pursuit of mastering recom-
mender systems.

14.2.1 Further reading

First, if you want more details and more ways to do recommendations, there’s so much
more research to dive into. I can heartily recommend Recommender Systems Handbook by
Francesco Ricci and Lior Rokach. (Springer, 2015 ed.). It’s a brick of a book, but it
covers more than what I managed to fit into this book.

 I’d hoped to cover more about online testing in this book. I did get to talk a bit
about A/B testing in chapter 9, but for this, the next topics you need to learn about
are exploit/explore methods and multi-armed bandits. For that purpose, I recom-
mend Statistical Methods for Recommender System by Deepak Agarwal and Bee-Chung
Chen from LinkedIn (Cambridge University Press, 2016).

 Beyond books, keep an eye on GroupLens (https://grouplens.org/) and look for
the ACM Recommender Systems (RecSys) conference. Many interesting papers come
out of that conference, and YouTube videos also have their own channel for recom-
mender systems (http://mng.bz/ta38).

 Reading this book, you might get the impression that collaborative filtering as
mentioned in chapter 8 is largely a historical approach, but it’s still a method where
much research is on-going, and it’s the way that many companies produce their rec-

Item 1

Item 2

Item 3

Item 1

Item 2

Item 3

Item 1

Item 2

Item 3

score

score

compare

score

compare

compare

score

Pointwise LtR

Pairwise LtR

Listwise LtR

Figure 14.3 Different types of LTR algorithms

https://grouplens.org/
http://mng.bz/ta38

389Topics to study next
ommendations. For example, the paper of the year at RecSys2016 was “Local Item-
Item Models for Top-N Recommendation.”2 You can catch Evangelia Christakopou-
lou, the author, on YouTube talking about it.

 Recommender algorithms are a subfield of machine learning. Few people will get
away working with only the algorithms deemed recommender algorithms. I suggest
that to continue your journey into becoming an expert in delivering relevant recom-
mendations, you study machine learning in general, beyond what you learned here.
Two books worth looking at are Real-World Machine Learning by Henrik Brink et al.
(Manning, 2016) and Algorithms of the Intelligent Web, 2nd ed., by Douglas G. McIlwraith
et al. (Manning, 2016).

 Search engines are a topic that is closely related to recommendations. My view of
search engines is that they’re seeded recommendations, so searches are a special case
of recommender systems. But search engine people like Doug Turnbull would say that
recommenders are search machines. This could quickly become a chicken-or-the-
egg discussion. At most places where recommenders are implemented, there’s also
a search index to manage, so take a look at Relevant Search by Doug Turnbull et al.
(Manning, 2016).

14.2.2 Algorithms

Turning now to algorithms, those called Learning to Rank (LTR) are popular. Also
popular are the listwise ones, which are more complex than what you saw at in chap-
ter 13.

 Nowadays every serious machine learner will look to deep learning for improve-
ments in all areas, and there’s also intensive research going on in the subject of rec-
ommenders. Things are moving so quickly that it would be foolish to add any pointers
here because I’m sure those will be terribly outdated before this book is even printed.
Still, look at the Deep Learning Workshop at the 2016 RecSys conference (http://dlrs-
workshop.org/dlrs-2016/program/).

 One of the issues with the algorithms described in this book, and one of the largely
unresolved problems of recommender systems, is that most recommenders are opti-
mized to show items that are as similar as possible to content already seen by the user.
But what you want a recommender to do is find items that are undiscovered, serendip-
itous, and novel. It depends on which domain you’re using as to how much you need
this, but it’s worth thinking about; it’ll also add a little bit of chaos into the recommen-
dations. Another problem is also that people might not want to see the same Top-N list
of recommendations over and over again.

14.2.3 Context

Recommender systems are moving from being stationary (something that you only
see on your desktop monitor) to portable (with all sorts of mobile devices). Users

2 For more information, see http://mng.bz/5c7E.

http://dlrs-workshop.org/dlrs-2016/program/
http://dlrs-workshop.org/dlrs-2016/program/

390 CHAPTER 14 Future of recommender systems
could have one session in Europe and the next one in the U.S. Because a device is
mobile, it can also be influenced by weather and other conditions.

 I’ve discussed this idea throughout the book, but without providing any concrete
solutions. Depending on the domain you’re in, it’s worth also considering the con-
text. For example, you learned about Funk SVD in chapter 11 that can be extended to
also handle context, or you could use the re-ranking method described in chapter 13.

14.2.4 Human-computer interactions

As a data scientist or machine learning nerd (as in single-minded), you’d probably
like to forget about anything regarding the frontend, but to create a good recom-
mender, you also need to serve it in the best way. UI is important.3

14.2.5 Choosing a good architecture

Let’s face it. The MovieGEEKs site doesn’t perform well. With one concurrent user,
it’s okay, but I fear that it wouldn’t handle many more! It’s a good idea to look for a
stronger platform to run a recommender and website on.

 Django is performant, but it needs a real database. I’ve used SQLite because that’s
what requires the least setup, but I recommend upgrading to a PostgreSQL or similar
database before letting your site go live. In saying this, however, I don’t intend that
you start moving everything to a new architecture and buy new hardware. First, figure
out if a recommender will provide you with what you want. If you can’t test it on all
your traffic to begin with, it doesn’t matter: create something smaller and show it to
only 1% of your customers and see how they react. Only remember that the more data
you give a recommender, the better it works (this is a general rule).

 But let’s imagine that you have this step sorted already and you want to roll out
your recommender full-scale. In that case, the following sections cover things that I’d
consider.

THE CLOUD DOESN’T SOLVE ALL YOUR PROBLEMS

We’re all bombarded with ads about how one cloud service after another beats all the
others in being the best, fastest, and cheapest. But before moving things to the cloud,
consider the following:

 Data needs to be in the cloud to be usable. If you have an on-premise solution (mean-
ing that you have your servers locally), then you’ll have to somehow move all
your data into the cloud for your system to do the calculations necessary to cre-
ate the recommendations. Bandwidth, storage, and so on can quickly turn an
economical solution into something far too costly.

 The off-the-shelf recommenders such as the Microsoft Cognitive Services Recommendation
API are probably an easy start. But there might be restrictions on how many items

3 For more information, see http://mng.bz/933q. Another question is does the way items are recommended
need to be the same for all people? People have different temperaments and moods, so it could be your rec-
ommender needs to be more discrete with certain people and more in-your-face with others.

http://mng.bz/933q

391What’s the future of recommender systems?
you can have in your catalog or how often it can be called. Carefully research
the restrictions; do those make it feasible to have your application or site rely on
such a third-party solution.

 Privacy should be taken seriously. If you have any sensitive data, remember that in
the cloud means somewhere in the world, and it’s the country where the server is
placed that dictates the laws that are applied to the data stored on it.

 Data is your most valuable asset. Don’t show it to others before considering what
values you’re providing to your competition.

On the plus side, a cloud service takes away much of the pressure of keeping a server
running and scaled up in peak periods. I’m not saying you should disregard such a
service, but do consider the circumstances around it.

WHAT PROCESSING PLATFORM TO CHOOSE

And finally, here it comes… ta da.… Spark has so much hype that this wouldn’t be a
good data book if I didn’t mention it at least once.

 Spark is a distributed computing platform that can handle machine learning in a
distributed, performant way. If you’re interested in doing the calculations across many
computers, then Spark is an excellent choice. If you look at Spark.MLlib
(https://spark.apache.org/mllib/), it’s possible to create the matrix factorization we
talked about in chapter 11. If you want to do a content-based recommender, such as
the one from chapter 11, there’s an implementation for doing an LDA model, but I
haven’t found a tutorial on it yet. But do keep your eyes on my blog (https://kim-
falk.org); it might appear there soon.

14.3 What’s the future of recommender systems?
Predicting the future proves to be difficult, and only the ones who predict it correctly
will be remembered, so let’s hope the entries in the following sections will be remem-
bered. But know that chances are the future will be entirely different.

 One thing I’m certain about is that recommenders will be something that will pop up
everywhere. They’ll be the new JavaScript for the web and applications. They’ll run on
everything and provide their humble services in virtually any decision-making process.

USER PROFILES

In Denmark, we’ve had many discussions about the fact that everything is becoming
electronic and accessible only online. The Danish state has stopped sending out paper
letters and will only communicate using an electronic mailbox. State policy and the
speed-of-light innovations don’t, however, make all people in Denmark inclined to
jump on the bandwagon. This creates an increasing gap between the people who are
on the bandwagon and people who aren’t.

 Why is this important in this context? People on the bandwagon are those we rec-
ommender system engineers like because they’re the ones who give us more evidence
to work with. Tracking and knowledge about people who use the internet are only
going to increase, which means that we can get a good picture of what they like.

https://spark.apache.org/mllib/
https://kimfalk.org
https://kimfalk.org

392 CHAPTER 14 Future of recommender systems
Facebook and LinkedIn are teaching people to have a public human-readable profile.
I think in the not-too-distant future either Facebook or another company will provide
a public machine-readable profile for machine-learning algorithms.

 Having a public profile will enable your systems to access and use those profiles to
understand who your customers are. Using lists of movies or books a person likes
works well for the entertainment industry. But public profiles might also contain seg-
ment details, such as whether someone is a homeowner, a car owner, or a parent as
shown in figure 14.4, which will help other types of recommenders.

 A machine-readable profile like that will also enable people to be much more con-
scious about what information to share, or whether to share information at all. Cur-
rently, sites such as Facebook let people use their profile for logging in to different
sites without much effort. In essence, you’re allowing another company to access your
profile.4 In a certain sense, the profile is already there, which means readily available

4 Many will point to the General Data Protection Regulation (GDPR) at this point, and for good reason. But I
am afraid that the new laws will not stop the harvesting of users’ data; it’ll just make the user agreements lon-
ger, and that doesn’t matter because nobody reads those anyway.

Figure 14.4 A user profile could contain which movies and
books the user likes, and also information such as that he’s
a parent or a homeowner and loves bikes.

393What’s the future of recommender systems?
data. Having a format for a machine-readable profile may also enable better privacy
because you can decide how much you want to reveal about yourself, such as letting a
system know that you’ve recently read the latest Peter F. Hamilton novel and are crazy
about new trends in organic raw food dishes.

 For people who don’t allow access to their details, there are companies in the busi-
ness of generating profiles about users, and they’re on the rise. This means that no
matter what you do, an online business will probably know something about you from
day one.

 It probably will be even harder to serve recommendations to people who aren’t on
the web but who use non-internet mobile apps. As the new generations grow up, not
knowing how it was before everybody had a smartphone, this segment will likely grow
smaller by the year. And in the near future, you’ll still have problems with cold customers.

CONTEXT

Devices and choice are also becoming more dynamic. I believe that recommenders
will eventially be used in many different contexts. Not only because almost all devices
are now portable, with GPS and other tools to understand the current context (figure
14.5), but also because soon all devices will contain so much content that people will
need a recommender to figure out what to do. I’m not talking only about buying stuff.
Recommenders will also be used to make decisions in many other scenarios.

 For example, Next Best Action recommenders are becoming bigger and bigger in mar-
keting and banking. This isn’t necessarily for the end user but to help bankers suggest
to customers what options are better or to help lawyers handle a case, or even to help
you find the love of your life.

 Current research and most publicly available knowledge about recommenders are
about algorithms that do all the calculations offline. This lends itself to further
research and allows you to validate the algorithm on a test set. You can even enlist the
aid of others to come up with a better result. As mentioned several places in this book,
this doesn’t guarantee you’ll produce a good recommender using this approach. I
think that the future of recommenders lies in dynamic recommender algorithms,
though, of course, with a core of offline calculations similar to the ones you’ve learned
here. And the idea of reinforced learning will have a much more important role.

 The context could also be that your phone is connected to your smart watch,
which looks at your body functions and predicts that you need a drink because you’re
low on fluids, so it recommends a juice bar around the corner. Or it notices that your
heart rate indicates you might be a little stressed because that algorithm is just not
coming together, so it plays some calming music. Maybe a recommender will become
a general recommender.

 For more in-depth discussion about context-aware recommender systems, I again
suggest the Recommender Systems Handbook by Francesco Ricci et al. (Springer, 2015 edi-
tion). Its chapter on context-aware recommenders is available online.5

5 To access the PDF, go to https://www.researchgate.net/publication/220605653_Context-Aware_Recom-
mender_Systems.

394 CHAPTER 14 Future of recommender systems
ALGORITHMS

When I first started working on recommender systems, I thought of them as the natu-
ral evolution of search engines. Everything was so data-overloaded that information
needed to be filtered before recommending. With that perspective, recommenders
become something similar to data retrieval, where your query is your taste profile
combined with the context, your mood, and more.

 Mohammed Hossein Taghavi, Netflix senior researcher engineer, stated in his pre-
sentation at RecSys2016 that the ideal state of their recommender system was if you’d
“Turn on Netflix, and the absolute best contents for you would automatically start
playing” (http://mng.bz/2152). But to do this, you’ll need algorithms that can incor-
porate a larger model and that also include much more knowledge of the current
users: is the user happy, with other people, tired, writing a book, and so on.

 In chapter 12, we talked about everything being an ensemble, which is also some-
thing that could support more input and more different models. Again, deep learning
is also seen as something that’s expected to improve everything. What algorithms are
around the corner are hard to say; maybe you’ll be the one to come up with the next
big thing.

PRIVACY

With the social internet, you’ll have more and more data about people and their
social connections. Even if collaborative filtering is good because it connects users’
behaviors, in the future, you’ll also see that people want to have recommendations
based on close and trusted friends rather than a group of people that happen to have
the same taste. Trust-based recommenders are already out there and this area will
grow.

Figure 14.5 Context can be many things; the weather can have an impact,
whether the user is happy or sad, alone or with friends, or even driving or just being
at home lying on the sofa. Each would mean different things in different domains.

http://mng.bz/2152

395Final thoughts
 As I review this book, the Facebook data scandal is rolling. Coupled with new pri-
vacy laws like the European Union GDPR, that will probably make this an explosive
field of discussion over the next couple of years. I fear that even with new legislation,
people will soon forget all the fuss, going back to giving up their privacy to free ser-
vices and then being surprised that their data is being sold. But I hope all this trouble
will make people realize that they need to think about what they put on the internet,
and that businesses will be a bit more careful about handling their users’ data. As a
data scientist, I urge you to use the data sensibly and respect other people’s privacy.

ARCHITECTURE

A recommender system will naturally be requested where there’s too many choices. In
the future, I suppose there will be numerous choices everywhere, not only in an enter-
tainment business such as Netflix. With huge amounts of data, the recommender
algorithms will start having problems, and it will be too time-consuming to get recom-
mendations based on terabytes of data. We’ll have to look for new types of algorithms
that can handle huge data loads or at least optimize the ones we have now.

 Recommenders will become something that runs everywhere, and you’ll need rec-
ommenders that run on smaller devices. But with the rate that phones and other
devices are developing, it’s likely that it won’t be a problem because they’ll have the
same power as our servers have today. I could imagine, for example, that a topic
model could be trained on a large amount of data and then the model could be used
locally on your phone to do content-based recommendations on your local library.

SURPRISING RECOMMENDATIONS

One of the biggest problems of recommenders is that they aren’t good at providing
surprising recommendations. We need to figure out better ways to cut across catego-
ries and recommend things from the catalog on a wider scale. This will be one of the
bigger problems to solve in the future.

 You’ll see many proposals out there about how it could be done. In Novelty and
Diversity Metrics for Recommender Systems: Choice, Discovery and Relevance, Pablo Castells et
al. list different methods to measure novelty and diversity of recommendations.6 But
doing so successfully is far from straightforward.

14.4 Final thoughts
I should admit that I never read the last section in a machine-learning nonfiction
book because I spend my time researching what people tend to write. My conclusion
is that most authors don’t write any final thoughts, but I’ll leave with a few of my own.

 As a parting thought about writing this book, I’ve met many people who’ve hinted
that they had a great idea for a similar book and that if they bothered to write it,

6 P. Castells et al.: Novelty and Diversity Metrics for Recommender Systems: Choice, Discovery and Relevance. Available
online at http://ir.ii.uam.es/rim3/publications/ddr11.pdf.

http://ir.ii.uam.es/rim3/publications/ddr11.pdf

396 CHAPTER 14 Future of recommender systems
they’d have written a much better book than what you’re reading now. Probably so.
However, most of these people never started on the project. And for a good reason.

 Writing a book is a humongous project, one that will teach you so much, both on
the subject that you’re writing about and on the art of writing. In addition, it’ll test the
strength of the bonds of those with whom you are the closet.

 Regarding writing and recommender systems, I still have much to learn. Regard-
ing those personal bonds, I’m happy to say that they are strong enough, even if I have
at least a couple of years of making up for lost time with family and friends. If you do
get the crazy idea of writing a technical book, then I can’t recommend Manning Pub-
lications enough because they’ve made it a great experience.

 Most would say that writing such a book was a full-time job that wouldn’t support
you in any other way than giving you the gratifying feeling of the weight of the print-
outs. That may be. Writing this book, I have nonetheless learned a lot. I’ve met many
people and have gained numerous new contacts. I’ve had fun, and I hope you have
too while reading; hopefully you learned what you wanted. I’ll part with these wise
words:

We are stuck with technology when what we really want is just stuff that works.
—Douglas Adams (2002)

index

A

absolute ordering 364
active learning 141
add_impression function 51
add_vector 170
advertisements 4
algorithms 22–23

addressing cold starts with
134–140

association rules 135–136
categories 139–140
domain knowledge and

business 136–137
segments 137–138

collaborative filtering 22
content-based filtering 23
hybrid recommenders 23
in future of recommender

systems 394
overview 389

ALS (Alternating Least
Squares) method 324

analytics dashboard,
MovieGEEKs 59, 73

AP (average precision) 227
architecture

choosing 390–391
in future of recommender

systems 395
argmax 371
association rules 115–120,

135–136
getting all item sets, sizing

one, and calculating
support 121–123

getting all transactions
120–121

MovieGEEKs website
142–147

displaying recs 144–145
finding collected items

143
implementation

evaluation 147
retrieving and ordering

according to
confidence 144

recs 207
running calculator 124–126
saving in database 123–124
using different events to

create 126–127
weighted average of pur-

chased items 136
auto-generated data 96
average precision (AP) 227

B

Bag of Words (BoW)
model 258

baseline predictors 302–304
finding bias by finding least

squares 302–303
simpler way to calculate

biases 303–304
Bayes classifier 93
Bayesian Personalized Rank-

ing. See BPR (Bayesian
Personalized Ranking)

behavior-based ratings
approach 88–93

calculating weights 91–92
positive weight 91
relevant data 92–93

biases
adding 310–311
finding by finding least

squares 302–303
simpler way to calculate

303–304
binary user-item matrix 85–86
binary values 254
black-box recommenders 20
Boolean overlap matrix 205
boosting

cold starts 128–147
algorithms 134–140
asking user for improve-

ment information
140–141

association rules 142–147
cold products 130–133
cold visitors 130–132
defined 128–130
examples of 132–133
gray sheep 132–133
user tracking 134

Netflix recommender
system 10

BoW (Bag of Words) model
258–260

BPR (Bayesian Personalized
Ranking) 365

algorithm 372–373
doing recommendations

378
draw method 376–378
implementation of 373–378
LearnBPR method 375–376
math 369–372

assuming prior is normal
distribution 369
397

398 INDEX
BPR (Bayesian Personalized
Ranking), math
(continued)

likelihood function 369
relaxing ordering 370–372

ranking with 368–369
task to solve 365
training data set 366
transforming ratings to data

usable to 375
with matrix factorization 373

BPR-OPT (BPR optimization
criteria) 372

browsers (customers) 36–39
expansion clicks 38–39
page duration 37–38
page views 36–37
Save for Later feature 39
search terms 39
social media links 39

brute force recommendation
calculation 316

builder component 108

C

calculate_coverage method 218
calculate_decay method 98
calculate_itemsets_one method

121
candidate selection 331
categorical data with small

numbers 255
categories 139–140
category recommendations 8
centroids 167
charts and trends 108–113

adding to MovieGEEKs
110–111

making content more
attractive 111–113

MovieGEEKs code from
GitHub 110

Netflix recommender system
7

recommender system
component 108–109

Top 10 charts 107–108
classification 196–197
click-through rate (CTR) 214
client side, evidence collector

47
cluster_id 177
clustering.

See k-means clustering

CoFiRank 364
cold starts 128–147, 199

algorithms 134–140
association rules 135–136
categories 139–140
domain knowledge and

business 136–137
segments 137–138

asking user for improvement
information 140–141

association rules 142–147
display recs 144–145
find collected items 143
implementation evaluation

147
retrieving and ordering

according to
confidence 144

cold products
example of 133
overview 130

defined 128–130
examples of 132–133
gray sheep

example of 133
overview 132

user tracking 134
cold visitors

association rules 135–136
overview 130–132

collaborative filtering 181–210
association rule recs and

collaborative recs 207
calculating similarities

188–193
cold start problems 199
data requirements 187–188
item-based filtering 197–199,

202–207
calculating item similarity

offline 202–203
online predictions

205–207
removing similarities that

aren't based on enough
overlapping ratings
203–205

levers for 207–209
machine learning terms

199–200
neighborhood, selecting

194–195
clustering 194
finding right

neighborhood 195–196

threshold 194–195
Top-N approach 194

on MovieGEEKs site
200–207

calculating item similarity
offline 202–203

online predictions
205–207

removing similarities that
aren't based on enough
overlapping ratings
203–205

overview 22, 183–185
pipeline 186
predicted ratings, calculating

196–197
friendly voters

(classification)
196–197

house price (regression)
196

pros and cons of 209–210
rating matrix 185–186
user-user vs. item-item collab-

orative filtering
186–187

collaborative recs 207
command prompt 145
comma-separated (CSV) file 47
commerce conversion rate 61
commercials, non-personalized

recommendations vs.
103–105

complete ground truth set 222
confidence 116
content analyzer 252
content coverage 217
content-based filtering 23,

248–283
content analyzer 253–256

categorical data with small
numbers 255

converting year to compa-
rable feature 255–256

feature extraction for item
profile 253–255

content-based recommenda-
tions in MovieGEEKs
274–280

creating item profiles 278
creating user profiles

278–280
loading data 274–277
showing recs 280
train model 277

399INDEX
content-based filtering
(continued)

creating user profile
272–274

with LDA 272
with TF-IDF 272–274

descriptive example 249–251
extracting metadata from

descriptions 256
BoW model and

tokenization 258
preparing descriptions 256
removing high and lows

259
removing stop words

258–259
stemming and

lemmatizing 259–260
finding similar content

271–272
overview 251–252
pros and cons of 282–283
recommender, evaluation of

281–282
TF-IDF 260–261
topic modeling 261–271

adding features and tags to
documents 268

corpus 267–268
generating topics

264–265
generative model example

262–263
Gibbs sampling 265
LDA model 266–271

context 389, 393
context dimension 16–17
conversion funnel 62
conversions 61–64

analyzing path up to 64–65
conversion path 66–68

Cosine similarity 153, 159–161
coverage 217–219
CSV (comma-separated) file 47
CTR (click-through rate) 214

D

dashboards
MovieGEEKs website

example 59, 71–76
architecture 73–76
autogenerating data to log

71–72

monthly views 74–76
specification and design of

72
wireframe 72–73

overview 59
data ingestion 385
data pre-processing 386
data sets 155
data sparcity 140
data-driven approach 28
dataFrame 297
DCG (discounted cumulative

gain) 228
decision-support metrics,

measuring 225–227
defaultdict 122
demographic

recommendations 137
derivate function 308
descriptions, extracting meta-

data from 256
BoW model and tokenization

258
preparing descriptions 256
removing high and lows 259
removing stop words

258–259
stemming and lemmatizing

259–260
details event 65
diagonal matrix 294
dimensionality 270
discounted cumulative gain

(DCG) 228
Dislike button, Netflix 91
distance

Jaccard distance 155–156
measuring with Lp-norms

156–159
L1-Norm 157–158
L2-Norm 159

distance method 169
diversity 216–217
Django 24
domain dimension 15–16
draw method 376–378
DZone.com 105

E

editorial spotlights, DZone 105
Endomondo 41
ensemble recommenders

linear regression 337–338

switched ensemble recom-
menders 335–336

weighted ensemble recom-
menders 336–337

error metrics, measuring
224–225

Euclidian norm 159, 168
evaluation method 236, 380
evaluation. See recommender,

evaluating and testing
event logger 49
evidence collectors 30–56

garden tools site example
34–35

gathering evidence 35–45
act of buying 40–41
browsers (customers)

36–39
consuming products

41–42
content affiliation to

provider 35
from other sources 46–47
visitor impressions 35
visitor ratings 42–45

identifying users 46
MovieGEEKs website

example 47–52
client-side evidence

collector 49–50
data model 48–49
integrating collector

50–52
project files 48

Netflix 31–35
evidence collected by

33–35
taste profile creation 45

purpose of 33
expansion clicks 38–39
explicit feedback 31
explicit input 19
explicit ratings

implicit ratings vs. 81–82
overview 83

Explore interval 199

F

f function 93
Facebook Connect 11
fallback rec 110
false negative (FN) 226
false positive (FP) 226

400 INDEX
FBT (Frequently Bought
Together) category 114

feature extraction, for item
profile 253–255

feature generation 351
feature recommenders 337
feature weighting (FW) 341
features, adding to documents

268
Feature-Weighted Linear Stack-

ing (FWLS). See FWLS
feedback loop 246
filter bubble 216
filtering. See content-based

filtering
FN (false negative) 226
for loop 237
Foursquare, learning to rank

example 358–362
FP (false positive) 226
frequency set 115
Frequently Bought Together

(FBT) category 114
frequently extra equipment

115
Funk SVD

constructing factorization
using 305–315

adding biases 310–311
gradient descent 306–309
RMSE 305–306
starting and stopping

311–315
stochastic gradient descent

309
implementation in

MovieGEEKs 318–324
faster implementation 324
keeping model up to date

324
number of iterations to

run training 319
online phase 320–322
outliers 322–323
saving model 320
training phase 318–319

recommendations with
315–316

brute force recommenda-
tion calculation 316

neighborhoods recom-
mendation calculation
316

user vector 316
FW (feature weighting) 341

FWLS (Feature-Weighted Lin-
ear Stacking) 329,
338–356, 387

calculating product between
each predicted rating
with each function 351

executing feature-weighted
functions on all train-
ing data points 347,
350–351

feature-weighted function
result 351–352

finding unknown values vs.
using linear regression
347

generating predictions for
each training data
point 346, 349–350

loading data 348
online recommendation

prediction 352–353
preparing recommender

344–345
splitting data 345, 348
testing hybrid on test set

347–348, 355–356
training featured recom-

menders 346, 349
weights as functions 339
when feature recommenders

doesn't produce any
recommendations 344

G

generate_transactions method
121

genre events, logging 51
genres 51
Gensim library 277
get_stop_words 258
Glassdoor 78
goal conversion rate 61
gradient descent 306–309

finding line that points down
307–308

finding next point 308
finished 309
starting 307

gray sheep 132
categories 139–140
example of 133

greater or equal (gte) 276
Grid Search 326
GroupLens 183, 222
gte (greater or equal) 276

H

Hacker News algorithm 45,
87–88

Heaviside function 370
hidden genres 284
human-computer interactions

390
hybrid recommenders 23

ensemble recommeners
334–338

linear regression 337–338
switched ensemble

recommender 335–336
weighted ensemble

recommender 336–337
feature-weighted linear

stacking 338–356
calculating product

between each pre-
dicted rating with each
function 351

executing feature-weighted
functions on all train-
ing data points 347,
350–351

feature-weighted function
result 351–352

finding unknown values vs.
using linear regression
347

generating predictions for
each training data
point 346, 349–350

loading data 348
online recommendation

prediction 352–353
preparing recommender

344–345
splitting data 345, 348
testing hybrid on test set

347–348, 355–356
training featured

recommenders 346,
349

weights as functions 339
when feature recommend-

ers doesn't produce any
recommendations 344

mixed hybrid
recommenders 333

monolithic hybrid recom-
menders 331–333

hyperplane 291

401INDEX
I

IDF (Inverse Document
Frequency) 260

implementation 164
implicit feedback 31
implicit input 19
implicit ratings 83–98

behavioral data 89–93
calculating weights 91–92
positive weight 91
relevant data 92–93

behavior-based approach 88
binary user-item matrix

85–86
explicit ratings vs. 81–82
Hacker News algorithm

87–88
machine learning 93
MovieGEEKs website

example 94
calculating ratings 95
retrieving data 94–95
time aspect 97–98
viewing result 95–96

people suggestions 85
time-based approach 86–87

imputation 298–299
information retrieval systems

(IR) 357
init method 374
initialize_factors method 375
input data 15
interface dimension 19–22

input 19
output 20–22

Inverse Document Frequency
(IDF) 260

inverse user frequency
(IUF) 99

IR (information retrieval
systems) 357

Issuu 267
item bias 316
item factor matrix 315
item profiles, creating 278
item retriever 252
item similarity 331
item-based filtering 197–199,

202–207
calculating item similarity

offline 202–203
online predictions 205–207
removing similarities that

aren't based on enough
overlapping ratings
203–205

vs. user-user collaborative
filtering 186–187

item-feature matrix 293
items 116
itemset 116
item-to-item recommendation

algorithm 84
IUF (inverse user

frequency) 99

J

Jaccard distance 155–156
JobSite 53

K

key performance indicators
(KPI) 60, 205

Kinect 8
k-means clustering 165–172

algorithm for 166–168
translating into Python

168–172
centroid with shortest

distance 168–171
clusters, using 172
warning 171

KPI (key performance
indicators) 60, 213

L

latent factors 284
LDA (Latent Dirichlet Alloca-

tion) model 268–271
alpha and beta 271
number of topics 270–271
overview 266–267
user profile, creating with

272
LearnBPR method 375–376
learning rate 308
learning to rank 363–364

algorithm types for 363–364
Listwise 364
Pairwise 364
Pointwise 364

example at Foursquare
358–362

least squares, finding biases by
finding 302–303

lemmatizing 259–260
liking searched items 40

linear stacking. See FWLS (Fea-
ture-Weighted Linear
Stacking)

LinkedIn 130
Listwise learning to rank 364
load_all_ratings method 202
loading data 274–277
log function 82, 100
logarithmic scale 100
long tail 5–6
loss function 377
Lp-norms 156–159

L1-Norm 157–158
L2-Norm 159

M

machine learning
implicit ratings 93
overview 23–24
terms in 199–200

MAE (mean absolute error)
158, 224

Manhattan distance 158
manipulation 19
MAP (mean average precision)

227–228, 241, 387
matrix 78
matrix factorization 284–328

Bayesian Personalized Rank-
ing with 373

evaluation 324–326
explicit vs implicit data 324
levers 328
linear algebra 290–293

factorization 292–293
matrix 290–291

reducing size of data
285–287

using SVD 293–304
adding new user by folding

in 299–301
baseline predictors

302–304
diagonal matrix 294
predicting ratings

297–298
problem of zeros in rating

matrix using
imputation 298–299

recommendations with
SVD 301

reducing matrix 294–297
temporal dynamic 304

See also Funk SVD

402 INDEX
mean absolute error (MAE)
158, 224

mean average precision (MAP)
227–228, 241, 387

mean squared error (MSE)
224

memory-based recommender
algorithms 109

meta functions 339
metadata, extracting from

descriptions 256
BoW model and tokenization

258
preparing descriptions 256
removing high and lows 259
removing stop words

258–259
stemming and lemmatizing

259–260
M_hat matrix 297
Microsoft Kinect 8
min_number_of_ratings

parameter 237
min_rank 238
model accuracy-model inter-

pretation trade-off 20
model training 386
model-based filtering 387
model-based recommender

algorithms 109
Mofibo 33
monitoring and analytics

57–76
basic statistics 60–61
conversions 61–64

analyzing path up to
64–65

conversion path 66–68
dashboards 59
importance and purpose of

58–59
MovieGEEKs dashboard 59,

71–76
architecture 73–76
autogenerating data to

log 71
monthly views 74–76
specification and design of

72
wireframe 72–73

personas 68–70
web analytics 60

More Details feature, logging
events 52

moredetails event 65

MovieGEEKs 24–28
architecture 26–28
association rules 120,

142–147
display recs 144–145
find collected items 143
get all item sets, size one,

and calculate their
support 121–123

get all transactions
120–121

implementation evaluation
147

retrieving and ordering
according to
confidence 143–144

charts and trends 108–113
adding to MovieGEEKs

110–111
code from GitHub 110
making content more

attractive 111–113
recommender system

component 108–109
collaborative filtering on

200–207
calculating item similarity

offline 202–203
online predictions

205–207
removing similarities that

aren't based on enough
overlapping ratings
203–205

content-based recommenda-
tions in 274–280

creating item profiles 278
creating user profiles

278–280
loading data 274–277
showing recs 280
train model 277

dashboards 59, 71–76
architecture 73–76
autogenerating data to log

71
monthly views 74–76
specification and design of

72
wireframe 72–73

design and specification 26
evidence collector 47–52

client-side evidence
collector 49–50

data model 48–49

integrating collector
50–52

logging genre events 51
logging More Details

events 52
logging popover events 52
logging Save for Later

events 52
project files 48

Funk SVD implementation in
318–324

faster implementation 324
keeping model up to date

324
number of iterations to

run training 319
online phase 320–322
outliers 322–323
saving model 320
training phase 318–319

implementing clustering in
177–180

implementing experiment
in 235–238

cleaning data 236–237
splitting data 238
splitting users 237–238

implementing similarity in
174–177

implicit ratings 94
calculating ratings 95
retrieving data 94–95
time aspect 97–98
viewing result 95–96

MovieTweetings data set 81
MSE (mean squared error)

224
MyMediaLite library 373

N

naive Bayes classifiers 93
Natural Language Processing

(NLP) 250
NDCG (normalized dis-

counted cumulative
gain) 228–229

neighborhood, selecting
194–195

clustering 194
finding right neighborhood

195–196
threshold 194–195
Top-N approach 194
See also collaborative filtering

403INDEX
neighborhood-based filtering
184

neighborhoods recommenda-
tion calculation 316

Netflix Prize 23–24
Netflix recommender system

6–14
boosting 10
charts and trends 7
evidence collector 31–35

evidence collected by
33–35

taste profile creation 45
ranking 9–10
recommendations 8
rows and sections 8–9
social media connection 11
taste profile 11–12

NLP (Natural Language
Processing) 250

noise parameter 93
nonorganic presentation 20
non-personalized recom-

mendations 17–127
charts and trends 108–113

adding to MovieGEEKs
110–111

making content more
attractive 111–113

MovieGEEKs code from
GitHub 110

recommender system
component 108–109

commercials vs. 103–105
making without data

105–108
ordering by price 106
recency 107
Top 10 charts 107–108

seeded recommendations
113–127

what's non-personalized rec-
ommendation?
103–105

normalized discounted cumula-
tive gain (NDCG)
228–229

num_iterations method 375
numpy implementation 295

O

offline evaluation 222–223
offline experiments 223–229

DCG (discounted cumula-
tive gain) 228

MAP (mean average
precision) 227–228

measuring decision-support
metrics 225–227

measuring error metrics
224–225

measuring ranking metrics
227

NDCG (normalized dis-
counted cumulative
gain) 228–229

precision at k 227
preparing data for

experiment 229–235
cross-validation 234
good candidate users for

evaluation 229–230
handling new users 229
random splitting 232
sampling 229
split by time 233
split by users 233–234
splitting data into test,

training, and validation
sets 230–232

offline model training 199
off-site analytics 60
Okapi BM25 algorithm 261
onclick event 51
online predictions 205–207
on-site analytics 60
organic presentation 20

P

page duration 37–38
page views 36–37
Pairwise learning to rank 364
parametric algorithm 166
PARC (Palo Alto Research

Center) 183
Pearson similarity

Cosine and 165
functions 153
overview 162–163
test running 163–165

people suggestions 85
personalization level

dimension 17–18
non-personalized

recommendations 17
personalized recommenda-

tions 17–18

semi/segment-personalized
recommendations 17

personalized recommenda-
tions 5, 17–18

personas 68–70
plotting functions 306
Pointwise learning to rank 364
popover events, logging 52
populate_logs.py file 71
populate_ratings.py script 73
precalculations 108
precision at k 227
precision matrix 226
predicted matches 9
predicted ratings, calculating

196–197
friendly voters (classifica-

tion) 196–197
house price (regression) 196

predicting ratings 297–298
prediction method 353
PreWarCar.com 106
prime number factorization

292
privacy 18–19, 394–395
private browser tab 145
proxy goal 16
purpose 16, 35
pyLDAvis dashboard 270
Python, translating k-means

clustering into 168–172
centroid with shortest

distance 168–171
clusters, using 172
warning 171

Q

quantitative values 255
QuerySet 173

R

randomized search 231
ranking 357–383

Bayesian Personalized
Ranking 365–369

algorithm 372–373
doing recommendations

378
draw method 376–378
implementation of

373–378
LearnBPR method

375–376

404 INDEX
ranking, Bayesian Personalized
Ranking (continued)

math 369–372
ranking with 368–369
task to solve 365
training data set 366
transforming ratings to

data usable to 375
with matrix factorization

373
evaluation 380–382
learning to rank 363–364

algorithm types for
363–364

example at Foursquare
358–362

metrics, measuring 227
Netflix recommender system

9–10
re-ranking 362–363

rating matrix 185–186, 292
ratings 42–45, 77–101

defined 78
explicit

implicit ratings vs. 81–82
overview 83

implicit 83–98
behavioral data 89–93
behavior-based approach

88
binary user-item matrix

85–86
explicit ratings vs. 81–82
Hacker News algorithm

87–88
machine learning 93
people suggestions 85
time-based approach

86–87
MovieGEEKs website

example 94
calculating ratings 95
retrieving data 94–95
time aspect 97–98
viewing result 95–96

negative 44
saving 44
sense of control 43–44
trusted sources 82
user-item matrix 78–80
value of less frequent items

99–101
voting 45

recall matrix 226
recommendation builder 27

recommendations
defined 105
Netflix recommender system

8
with Funk SVD 315–316

brute force recommenda-
tion calculation 316

neighborhoods recom-
mendation calculation
316

user vector 316
with SVD 301

recommender systems 3–29
building cycle 28–29
defined 12–14
future of 391

algorithms 394
architecture 395
context 393
privacy 394–395
recommendations 395
user profiles 391–393

internet as ideal home for 5
long tail 5–6
machine learning 23–24
MovieGEEKs website

example 24–28
architecture 26–28
design and specification

26
Netflix Prize 23–24
Netflix recommender system

6–14
boosting 10
charts and trends 7
ranking 9–10
recommendations 8
rows and sections 8–9
social media connection

11
taste profile 11–12

recommendations, defined
3–5

taxonomy of 15–23
algorithms dimension

22–23
context dimension 16–17
domain dimension 15–16
interface dimension

19–22
personalization level

dimension 17–18
privacy and trustworthiness

dimension 18–19
purpose dimension 16

Whose Opinions
dimension 18

recommender, evaluating and
testing 247

continuous testing with
exploit/explore
245–247

evaluating test set 239–243
baseline predictor

239–242
finding right parameters

242–243
implementing experiment in

MovieGEEKs 238
cleaning data 236–237
splitting data 238
splitting users 237–238

importance if 213–214
offline evaluation 222–223
offline experiments 223–229

discounted cumulative
gain 228

mean average precision
227–228

measuring decision-sup-
port metrics 225–227

measuring error metrics
224–225

measuring ranking metrics
227

normalized discounted
cumulative gain
228–229

precision at k 227
preparing data for

experiment 229–235
online evaluation 243–245

A/B testing 244–245
controlled experiments

243
regression testing 221
types of evaluation 222
user behavior, interpretting

214
verifying algorithm 220–221

architecture and
aggregation 220

data 220
what to measure 214–219

coverage 217–219
diversity 216–217
serendipity 219
taste-minimizing predic-

tion error 216
recommenders. See hybrid

recommenders

405INDEX
recording time 49
recs, showing 280
Redbubble 132
reducing matrix 294–297
regression 196
regression testing 221
regularization factor 312, 314
relevance 85
relevant_maxn event 92
reputation systems 45
re-ranking 362–363
retrieve_buy_events method

121
RMSE (root mean squared

error) 159, 224,
305–306

ROI (return on investment) 62
root mean squared error

(RMSE) 159, 224,
305–306

rows and sections, Netflix rec-
ommender system 8–9

S

Save for Later feature
logging events 52
overview 39

saveforlater function 52
Scikit-Learn library 232
search terms 39–40
seeded recommendations

113–127
association rules 115–120

get all item sets, size one,
and calculate their
support 121–123

get all transactions
120–121

running calculator
124–126

saving in database
123–124

use different events to
create 126

use different events to cre-
ate association rules 127

overview 18
segmentation 166
segments 137–138

not-so-obvious segments 138
obvious segments 137–138

semi/segment-personalized
recommendations 17

semi-personalized recommen-
dations 5

serendipity 219
serialized pipe 186
server side, evidence collector

47
session_id 48
shopping basket analysis 114
sigmoid function 370
similarity 151–180

calculating 188–193
calculating offline 202–203
implementing 172–180
k-means clustering 165–172

algorithm for 166–168
translating into Python

168–172
not based on enough over-

lapping ratings,
removing 203–205

overview 152–153
similarity functions 153–165

Cosine similarity 159–161
Jaccard distance 155–156
measuring distance with

Lp-norms 156–159
L1-Norm 157–158
L2-Norm 159

overview 153
Pearson similarity

Cosine and 165
overview 162–163
test running 163–165

similar_users method 175
Singular Value Decomposition

(SVD). See SVD
social media connection

Netflix recommender system
11

social media links 39
sparsity table 80
splitting data 233

by time 233
by users 233–234
into test, training, and valida-

tion sets 230–232
random splitting 232

stemmer 259
stemming 259–260
stochastic gradient descent 309
stop words, removing 258–259
stratified sampling 229
streamed products 41–42
summary statistics 60
support 117

SVD (Singular Value Decompo-
sition), factorization
using 293–304

adding new user by folding
in 299–301

baseline predictors 302–304
diagonal matrix 294
predict rating 297–298
problem of zeros in rating

matrix using
imputation 298–299

recommendations with
SVD 301

reducing matrix 294–297
temporal dynamic 304
See also Funk SVD

T

tags, adding to documents 268
Tapestry 183
targeted commercials 4
Taste Preferences menu,

Netflix 12
taste profile, Netflix recom-

mender system 11–12
taste-minimizing prediction

error 216
taxonomy 15
temporal dynamic 304
Term Frequency-Inverse Docu-

ment Frequency.
See TF-IDF

testing. See recommender, eval-
uating and testing

TF-IDF (Term Frequency-
Inverse Document
Frequency) 99, 249

general discussion 260–261
user profile, creating with

272–274
threshold 194–195
time zones 49
time-based ratings approach

86–87
time-decay algorithms 87
TN (true negative) 226
tokenization 258
Top Picks list, Netflix 13
topic modeling 261–271

adding features and tags to
documents 268

corpus 267–268
generating topics 264–265

406 INDEX
topic modeling (continued)
generative model

example 262–263
Gibbs sampling 265
LDA model 266–271

alpha and beta 271
number of topics 270–271

Top-N approach 194
TP (true positive) 226
train model 277
training 108, 350
true negative (TN) 226
true positive (TP) 226
trusted sources 82
trustworthiness 19

U

unsupervised machine learn-
ing algorithm 166

user behavior 30–56
garden tools site example

34–35
gathering 35–45

act of buying 40–41
browsers (customers)

36–39
consuming products

41–42
content affiliation to

provider 35
from other sources 46–47

visitor impressions 35
visitor ratings 42–45

identifying users 46
MovieGEEKs website

example 47–52
client-side evidence

collector 49–50
data model 48–49
integrating collector

50–52
project files 48

Netflix 31–35
evidence collected by

33–35
taste profile creation 45

purpose of gathering 33
user model 52–56

user bias 316
user content relationship 79
user factor matrix 315
user model 52–56
user profiles

creating 272–274, 278–280
with LDA 272
with TF-IDF 272–274

in future of recommender
systems 391–393

user tracking 134
user vector 316
user-based filtering 184
user-collaborative filtering 173
user-feature matrix 293

user_id 175, 177
user-item matrix 78–80
user-item relationship 366
user-user collaborative filtering

186–187
utopian data set 195
UV-decomposition 293

V

value event 62
version table 124
visitor impressions 35

W

web analytics 60
weighted hybrid recommender

337
weights matrix 296
white-box recommenders 20
Whose Opinions dimension 18

X

Xerox 183

Z

zeros in rating matrix 298–299

Kim Falk

O
nline recommender systems help users fi nd movies, jobs,
restaurants—even romance! There’s an art in combin-
ing statistics, demographics, and query terms to achieve

results that will delight them. Learn to build a recommender
system the right way: it can make or break your application!

Practical Recommender Systems explains how recommender
systems work and shows how to create and apply them for
your site. After covering the basics, you’ll see how to collect
user data and produce personalized recommendations. You’ll
learn how to use the most popular recommendation algo-
rithms and see examples of them in action on sites like Ama-
zon and Netfl ix. Finally, the book covers scaling problems
and other issues you’ll encounter as your site grows.

What’s Inside
● How to collect and understand user behavior
● Collaborative and content-based fi ltering
● Machine learning algorithms
● Real-world examples in Python

Readers need intermediate programming and database skills.

Kim Falk is an experienced data scientist who works daily with
machine learning and recommender systems.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/practical-recommender-systems

$49.99 / Can $65.99 [INCLUDING eBOOK]

Practical Recommender Systems

SOFTWARE DEVELOPMENT/MACHINE LEARNING

M A N N I N G

“Covers the technical back-
ground and demonstrates

implementations in clear and
concise Python code.”
—Andrew Collier, Exegetic

“Have you wondered how
Amazon and Netfl ix learn
your tastes in products and

movies, and provide relevant
recommendations? This book

explains how it’s done!”
—Amit Lamba, Tech Overture

“Everything about recom-
mender systems, from entry-
level to advanced concepts.”—Jaromir D.B. Němec, DBN

“A great and practical
deep dive into recommender

systems!”
—Peter Hampton
Ulster University

See first page

	Practical Recommender Systems
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized
	Downloads
	Code conventions
	Book forum

	about the author
	about the cover illustration
	Part 1 Getting ready for recommender systems
	1 What is a recommender?
	1.1 Real-life recommendations
	1.1.1 Recommender systems are at home on the internet
	1.1.2 The long tail
	1.1.3 The Netflix recommender system
	1.1.4 Recommender system definition

	1.2 Taxonomy of recommender systems
	1.2.1 Domain
	1.2.2 Purpose
	1.2.3 Context
	1.2.4 Personalization level
	1.2.5 Whose opinions
	1.2.6 Privacy and trustworthiness
	1.2.7 Interface
	1.2.8 Algorithms

	1.3 Machine learning and the Netflix Prize
	1.4 The MovieGEEKs website
	1.4.1 Design and specification
	1.4.2 Architecture

	1.5 Building a recommender system
	Summary

	2 User behavior and how to collect it
	2.1 How (I think) Netflix gathers evidence while you browse
	2.1.1 The evidence Netflix collects

	2.2 Finding useful user behavior
	2.2.1 Capturing visitor impressions
	2.2.2 What you can learn from a shop browser
	2.2.3 Act of buying
	2.2.4 Consuming products
	2.2.5 Visitor ratings
	2.2.6 Getting to know your customers the (old) Netflix way

	2.3 Identifying users
	2.4 Getting visitor data from other sources
	2.5 The collector
	2.5.1 Building the project files
	2.5.2 The data model
	2.5.3 The snitch: Client-side evidence collector
	2.5.4 Integrating the collector into MovieGEEKs

	2.6 What users in the system are and how to model them
	Summary

	3 Monitoring the system
	3.1 Why adding a dashboard is a good idea
	3.1.1 Answering ?How are we doing??

	3.2 Doing the analytics
	3.2.1 Web analytics
	3.2.2 The basic statistics
	3.2.3 Conversions
	3.2.4 Analyzing the path up to conversion
	3.2.5 Conversion path

	3.3 Personas
	3.4 MovieGEEKs dashboard
	3.4.1 Auto-generating data to your log
	3.4.2 Specification and design of the analytics dashboard
	3.4.3 Analytics dashboard wireframe
	3.4.4 Architecture

	Summary

	4 Ratings and how to calculate them
	4.1 User-item preferences
	4.1.1 Definition of ratings
	4.1.2 User-item matrix

	4.2 Explicit or implicit ratings
	4.2.1 How we use trusted sources for recommendations

	4.3 Revisiting explicit ratings
	4.4 What are implicit ratings?
	4.4.1 People suggestions
	4.4.2 Considerations of calculating ratings

	4.5 Calculating implicit ratings
	4.5.1 Looking at the behavioral data
	4.5.2 This could be considered a machine learning problem

	4.6 How to implement implicit ratings
	4.6.1 Adding the time aspect

	4.7 Less frequent items provide more value
	Summary

	5 Non-personalized recommendations
	5.1 What?s a non-personalized recommendation?
	5.1.1 What?s a commercial?
	5.1.2 What does a recommendation do?

	5.2 How to make recommendations when you have no data
	5.2.1 Top 10: A chart of items

	5.3 Implementing the chart and the groundwork for the recommender system component
	5.3.1 The recommender system component
	5.3.2 MovieGEEKs code from GitHub
	5.3.3 A recommender system
	5.3.4 Adding a chart to MovieGEEKs
	5.3.5 Making the content look more attractive

	5.4 Seeded recommendations
	5.4.1 Frequently bought items similar to the one you?re viewing
	5.4.2 Association rules
	5.4.3 Implementing association rules
	5.4.4 Saving the association rules in the database
	5.4.5 Running the association rules calculator
	5.4.6 Using different events to create the association rules

	Summary

	6 The user (and content) who came in from the cold
	6.1 What?s a cold start?
	6.1.1 Cold products
	6.1.2 A cold visitor
	6.1.3 Gray sheep
	6.1.4 Let?s look at real-life examples
	6.1.5 What can you do about cold starts?

	6.2 Keeping track of visitors
	6.2.1 Persisting anonymous users

	6.3 Addressing cold-start problems with algorithms
	6.3.1 Using association rules to create recs for cold users
	6.3.2 Using domain knowledge and business rules
	6.3.3 Using segments
	6.3.4 Using categories to get around the gray sheep problem and how to introduce cold product

	6.4 Those who doesn?t ask, won?t know
	6.4.1 When the visitor is no longer new

	6.5 Using association rules to start recommending things fast
	6.5.1 Find the collected items
	6.5.2 Retrieve association rules and order them according to confidence
	6.5.3 Displaying the recs
	6.5.4 Implementation evaluation

	Summary

	Part 2 Recommender algorithms
	7 Finding similarities among users and among content
	7.1 Why similarity?
	7.1.1 What?s a similarity function?

	7.2 Essential similarity functions
	7.2.1 Jaccard distance
	7.2.2 Measuring distance with Lp-norms
	7.2.3 Cosine similarity
	7.2.4 Finding similarity with Pearson?s correlation coefficient
	7.2.5 Test running a Pearson similarity
	7.2.6 Pearson correlation is similar to cosine

	7.3 k-means clustering
	7.3.1 The k-means clustering algorithm
	7.3.2 Translating k-means clustering into Python

	7.4 Implementing similarities
	7.4.1 Implementing the similarity in the MovieGEEKs site
	7.4.2 Implementing the clustering in the MovieGEEKs site

	Summary

	8 Collaborative filtering in the neighborhood
	8.1 Collaborative filtering: A history lesson
	8.1.1 When information became collaboratively filtered
	8.1.2 Helping each other
	8.1.3 The rating matrix
	8.1.4 The collaborative filtering pipeline
	8.1.5 Should you use user-user or item-item collaborative filtering?
	8.1.6 Data requirements

	8.2 Calculating recommendations
	8.3 Calculating similarities
	8.4 Amazon?s algorithm to precalculate item similarity
	8.5 Ways to select the neighborhood
	8.6 Finding the right neighborhood
	8.7 Ways to calculate predicted ratings
	8.8 Prediction with item-based filtering
	8.8.1 Computing item predictions

	8.9 Cold-start problems
	8.10 A few words on machine learning terms
	8.11 Collaborative filtering on the MovieGEEKs site
	8.11.1 Item-based filtering

	8.12 What?s the difference between association rule recs and collaborative recs?
	8.13 Levers to fiddle with for collaborative filtering
	8.14 Pros and cons of collaborative filtering
	Summary

	9 Evaluating and testing your recommender
	9.1 Business wants lift, cross-sales, up-sales, and conversions
	9.2 Why is it important to evaluate?
	9.3 How to interpret user behavior
	9.4 What to measure
	9.4.1 Understanding my taste: Minimizing prediction error
	9.4.2 Diversity
	9.4.3 Coverage
	9.4.4 Serendipity

	9.5 Before implementing the recommender?
	9.5.1 Verify the algorithm
	9.5.2 Regression testing

	9.6 Types of evaluation
	9.7 Offline evaluation
	9.7.1 What to do when the algorithm doesn?t produce any recommendations

	9.8 Offline experiments
	9.8.1 Preparing the data for the experiment

	9.9 Implementing the experiment in MovieGEEKs
	9.9.1 The to-do list

	9.10 Evaluating the test set
	9.10.1 Starting out with the baseline predictor
	9.10.2 Finding the right parameters

	9.11 Online evaluation
	9.11.1 Controlled experiments
	9.11.2 A/B testing

	9.12 Continuous testing with exploit/explore
	9.12.1 Feedback loops

	Summary

	10 Content-based filtering
	10.1 Descriptive example
	10.2 Content-based filtering
	10.3 Content analyzer
	10.3.1 Feature extraction for the item profile
	10.3.2 Categorical data with small numbers
	10.3.3 Converting the year to a comparable feature

	10.4 Extracting metadata from descriptions
	10.4.1 Preparing descriptions

	10.5 Finding important words with TF-IDF
	10.6 Topic modeling using the LDA
	10.6.1 What knobs can you turn to tweak the LDA?

	10.7 Finding similar content
	10.8 Creating the user profile
	10.8.1 Creating the user profile with LDA
	10.8.2 Creating the user profile with TF-IDF

	10.9 Content-based recommendations in MovieGEEKs
	10.9.1 Loading data
	10.9.2 Training the model
	10.9.3 Creating item profiles
	10.9.4 Creating user profiles
	10.9.5 Showing recommendations

	10.10 Evaluation of the content-based recommender
	10.11 Pros and cons of content-based filtering
	Summary

	11 Finding hidden genres with matrix factorization
	11.1 Sometimes it?s good to reduce the amount of data
	11.2 Example of what you want to solve
	11.3 A whiff of linear algebra
	11.3.1 Matrix
	11.3.2 What?s factorization?

	11.4 Constructing the factorization using SVD
	11.4.1 Adding a new user by folding in
	11.4.2 How to do recommendations with SVD
	11.4.3 Baseline predictors
	11.4.4 Temporal dynamic

	11.5 Constructing the factorization using Funk SVD
	11.5.1 Root Mean Squared Error
	11.5.2 Gradient descent
	11.5.3 Stochastic gradient descent
	11.5.4 And finally, to the factorization
	11.5.5 Adding biases
	11.5.6 How to start and when to stop

	11.6 Doing recommendations with Funk SVD
	11.7 Funk SVD implementation in MovieGEEKs
	11.7.1 What to do with outliers
	11.7.2 Keeping the model up to date
	11.7.3 Faster implementation

	11.8 Explicit vs. implicit data
	11.9 Evaluation
	11.10 Levers to fiddle with for Funk SVD
	Summary

	12 Taking the best of all algorithms: Implementing hybrid recommenders
	12.1 The confused world of hybrids
	12.2 The monolithic
	12.2.1 Mixing content-based features with behavioral data to improve collaborative filtering recommenders

	12.3 Mixed hybrid recommender
	12.4 The ensemble
	12.4.1 Switched ensemble recommender
	12.4.2 Weighted ensemble recommender
	12.4.3 Linear regression

	12.5 Feature-weighted linear stacking (FWLS)
	12.5.1 Meta features: Weights as functions
	12.5.2 The algorithm

	12.6 Implementation
	Summary

	13 Ranking and learning to rank
	13.1 Learning to rank an example at Foursquare
	13.2 Re-ranking
	13.3 What?s learning to rank again?
	13.3.1 The three types of LTR algorithms

	13.4 Bayesian Personalized Ranking
	13.4.1 Ranking with BPR
	13.4.2 Math magic (advanced wizardry)
	13.4.3 The BPR algorithm
	13.4.4 BPR with matrix factorization

	13.5 Implementation of BPR
	13.5.1 Doing the recommendations

	13.6 Evaluation
	13.7 Levers to fiddle with for BPR
	Summary

	14 Future of recommender systems
	14.1 This book in a few sentences
	14.2 Topics to study next
	14.2.1 Further reading
	14.2.2 Algorithms
	14.2.3 Context
	14.2.4 Human-computer interactions
	14.2.5 Choosing a good architecture

	14.3 What?s the future of recommender systems?
	14.4 Final thoughts

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

