
Practical
Text Analytics

Murugan Anandarajan
Chelsey Hill
Thomas Nolan

Maximizing the Value of Text Data

Advances in Analytics and Data Science

Advances in Analytics and Data Science

Volume 2

Series Editors
Ramesh Sharda
Oklahoma State University, Stillwater, OK, USA

Hsinchun Chen
University of Arizona, Tucson, AZ, USA

More information about this series at http://www.springer.com/series/15876

http://www.springer.com/series/15876

Murugan Anandarajan  •  Chelsey Hill
Thomas Nolan

Practical Text Analytics
Maximizing the Value of Text Data

ISSN 2522-0233	     ISSN 2522-0241  (electronic)
Advances in Analytics and Data Science
ISBN 978-3-319-95662-6     ISBN 978-3-319-95663-3  (eBook)
https://doi.org/10.1007/978-3-319-95663-3

Library of Congress Control Number: 2018955905

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Murugan Anandarajan
LeBow College of Business
Drexel University
Philadelphia, PA, USA

Thomas Nolan
Mercury Data Science
Houston, TX, USA

Chelsey Hill
Feliciano School of Business
Montclair State University
Montclair, NJ, USA

https://doi.org/10.1007/978-3-319-95663-3

To my aunts and uncle—MA
To my angel mother, Deborah—CH
To my dad—TN

vii

Preface

The oft-cited statistic that “80% of data is unstructured” reminds industry leaders
and analytics professionals about the vast volume of untapped text data resources.
Predictably, there has been an increasing focus on text analytics to generate infor-
mation resources. In fact, the expected growth in this market is projected to be $5.93
billion by 2020!1

Whenever businesses capture text data, they want to capitalize on the informa-
tion hidden within. Beginning with early adopters in the intelligence and biomedical
communities, text analytics has expanded to include applications across industries,
including manufacturing, insurance, healthcare, education, safety and security, pub-
lishing, telecommunications, and politics. The broad range of applied text analytics
requires practitioners in this field.

Our goal is to democratize text analytics and increase the number of people using
text data for research. We hope this book lowers the barrier of entry for analyzing
text data, making it more accessible for people to uncover value-added text
information.

This book covers the elements involved in creating a text mining pipeline. While
analysts will not use every element in every project, each tool provides a potential
segment in the final pipeline. Understanding the options is key to choosing the
appropriate elements in designing and conducting text analysis.

The book is divided into five parts. The first part provides an overview of the text
analytics process by introducing text analytics, discussing the relationship with con-
tent analysis, and providing a general overview of the process.

Next, the chapter moves on to the actual practice of text analytics, beginning with
planning the project. The next part covers the methods of data preparation and pre-
processing. Once the data is prepared, the next step is the analysis. Here, we describe
the array of analysis options. The part concludes with a discussion about reporting
options, indicating the benefits of various choices for convincing others about the
value of the analysis.

1 http://www.marketsandmarkets.com/PressReleases/text-analytics.asp

http://www.marketsandmarkets.com/PressReleases/text-analytics.asp

viii

The last part of the book demonstrates the use of various software programs and
programming languages for text analytics. We hope these examples provide the
reader with practical examples of how information hidden within text data can be
mined.

Philadelphia, PA, USA�  Murugan Anandarajan
Montclair, NJ, USA�  Chelsey Hill
Houston, TX, USA�  Thomas Nolan

Preface

ix

Acknowledgments

The authors wish to acknowledge the invaluable contributions of several individuals
to the preparation of the manuscript of this book.

Diana Jones, Director of the Center for Business Analytics and the Dornsife
Office for Experiential Learning, at the LeBow College of Business, Drexel
University, for her chapter on Storytelling Using Text Data.

Jorge Fresneda Fernandez, Assistant Professor of Marketing at the Martin
Tuchman School of Management, New Jersey Institute of Technology, for his chap-
ters on Latent Semantic Analysis (LSA) in Python and SAS Visual Text Analytics.

We thank Diana and Jorge for their expertise and invaluable contributions to this
book.

We also thank Irena Nedelcu, Rajiv Nag, and Stacy Boyer, all of the LeBow
College of Business, Drexel University, for providing valuable comments on vari-
ous chapters.

Our appreciation to Matthew Amboy and his team at Springer who made the
publication of this book possible.

Murugan Anandarajan
Chelsey Hill

Thomas Nolan

xi

Contents

	1	� Introduction to Text Analytics���    1
	1.1	�� Introduction���    1
	1.2	�� Text Analytics: What Is It?���    1
	1.3	�� Origins and Timeline of Text Analytics���    3
	1.4	�� Text Analytics in Business and Industry ���    5
	1.5	�� Text Analytics Skills ���    6
	1.6	�� Benefits of Text Analytics ���    8
	1.7	�� Text Analytics Process Road Map���    8

	1.7.1	�� Planning���    8
	1.7.2	�� Text Preparing and Preprocessing���������������������������������������    9
	1.7.3	�� Text Analysis Techniques���    9
	1.7.4	�� Communicating the Results���    10

	1.8	�� Examples of Text Analytics Software ���    10
References���    10

Part I � Planning the Text Analytics Project

	2	� The Fundamentals of Content Analysis ���    15
	2.1	�� Introduction���    15
	2.2	�� Deductive Versus Inductive Approaches ���    16

	2.2.1	�� Content Analysis for Deductive Inference���������������������������    16
	2.2.2	�� Content Analysis for Inductive Inference ���������������������������    16

	2.3	�� Unitizing and the Unit of Analysis���    18
	2.3.1	�� The Sampling Unit���    19
	2.3.2	�� The Recording Unit���    19
	2.3.3	�� The Context Unit���    20

	2.4	�� Sampling ���    20
	2.5	�� Coding and Categorization ���    20
	2.6	�� Examples of Inductive and Deductive Inference Processes�������������    23

	2.6.1	�� Inductive Inference ���    23

xii

	2.6.2	�� Deductive Inference���    24
References���    25

	3	� Planning for Text Analytics ���    27
	3.1	�� Introduction���    27
	3.2	�� Initial Planning Considerations���    28

	3.2.1	�� Drivers���    29
	3.2.2	�� Objectives���    29
	3.2.3	�� Data ���    30
	3.2.4	�� Cost ���    30

	3.3	�� Planning Process ���    30
	3.4	�� Problem Framing���    31

	3.4.1	�� Identifying the Analysis Problem��    31
	3.4.2	�� Inductive or Deductive Inference���    32

	3.5	�� Data Generation���    32
	3.5.1	�� Definition of the Project’s Scope and Purpose���������������������    32
	3.5.2	�� Text Data Collection ���    33
	3.5.3	�� Sampling ���    35

	3.6	�� Method and Implementation Selection ���    38
	3.6.1	�� Analysis Method Selection ���    38
	3.6.2	�� The Selection of Implementation Software�������������������������    39

References���    40

Part II � Text Preparation

	4	� Text Preprocessing ���    45
	4.1	�� Introduction���    45
	4.2	�� The Preprocessing Process���    46
	4.3	�� Unitize and Tokenize���    46

	4.3.1	�� N-Grams���    48
	4.4	�� Standardization and Cleaning ���    50
	4.5	�� Stop Word Removal���    50

	4.5.1	�� Custom Stop Word Dictionaries ���    53
	4.6	�� Stemming and Lemmatization���    53

	4.6.1	�� Syntax and Semantics ���    53
	4.6.2	�� Stemming���    54
	4.6.3	�� Lemmatization���    56
	4.6.4	�� Part-of-Speech (POS) Tagging���    58

References���    59

	5	� Term-Document Representation���    61
	5.1	�� Introduction���    61
	5.2	�� The Inverted Index���    61
	5.3	�� The Term-Document Matrix ���    64
	5.4	�� Term-Document Matrix Frequency Weighting �������������������������������    65

	5.4.1	�� Local Weighting���    66

Contents

xiii

	5.4.2	�� Global Weighting���    68
	5.4.3	�� Combinatorial Weighting: Local and Global Weighting�����    71

	5.5	�� Decision-Making���    73
References���    73

Part III � Text Analysis Techniques

	6	� Semantic Space Representation and Latent Semantic
Analysis ���    77
	6.1	�� Introduction���    77
	6.2	�� Latent Semantic Analysis (LSA)���    79

	6.2.1	�� Singular Value Decomposition (SVD)���������������������������������    79
	6.2.2	�� LSA Example���    80

	6.3	�� Cosine Similarity���    84
	6.4	�� Queries in LSA ���    87
	6.5	�� Decision-Making: Choosing the Number of Dimensions���������������    88
References���    91

	7	� Cluster Analysis: Modeling Groups in Text���    93
	7.1	�� Introduction���    93
	7.2	�� Distance and Similarity���    94
	7.3	�� Hierarchical Cluster Analysis ���    98

	7.3.1	�� Hierarchical Cluster Analysis Algorithm�����������������������������    99
	7.3.2	�� Graph Methods��    99
	7.3.3	�� Geometric Methods���   101
	7.3.4	�� Advantages and Disadvantages of HCA�����������������������������   103

	7.4	�� k-Means Clustering ���   103
	7.4.1	�� kMC Algorithm���   104
	7.4.2	�� The kMC Process���   104
	7.4.3	�� Advantages and Disadvantages of kMC �����������������������������   108

	7.5	�� Cluster Analysis: Model Fit and Decision-Making�������������������������   109
	7.5.1	�� Choosing the Number of Clusters���������������������������������������   109
	7.5.2	�� Naming/Describing Clusters���   112
	7.5.3	�� Evaluating Model Fit���   113
	7.5.4	�� Choosing the Cluster Analysis Model���������������������������������   114

References���   115

	8	� Probabilistic Topic Models���   117
	8.1	�� Introduction���   117
	8.2	�� Latent Dirichlet Allocation (LDA)���   119
	8.3	�� Correlated Topic Model (CTM)���   120
	8.4	�� Dynamic Topic Model (DT) ���   122
	8.5	�� Supervised Topic Model (sLDA)���   123
	8.6	�� Structural Topic Model (STM) ���   124
	8.7	�� Decision Making in Topic Models���   124

	8.7.1	�� Assessing Model Fit and Number of Topics�����������������������   124

Contents

xiv

	8.7.2	�� Model Validation and Topic Identification���������������������������   126
	8.7.3	�� When to Use Topic Models���   128

References���   129

	9	� Classification Analysis: Machine Learning Applied to Text���������������   131
	9.1	�� Introduction���   131
	9.2	�� The General Text Classification Process���   132
	9.3	�� Evaluating Model Fit���   132

	9.3.1	�� Confusion Matrices/Contingency Tables�����������������������������   132
	9.3.2	�� Overall Model Measures���   134
	9.3.3	�� Class-Specific Measures ���   135

	9.4	�� Classification Models���   137
	9.4.1	�� Naïve Bayes���   137
	9.4.2	�� k-Nearest Neighbors (kNN)���   138
	9.4.3	�� Support Vector Machines (SVM)���   140
	9.4.4	�� Decision Trees���   141
	9.4.5	�� Random Forests���   143
	9.4.6	�� Neural Networks ���   144

	9.5	�� Choosing a Classification���   146
	9.5.1	�� Model Fit���   146

References���   148

	10	� Modeling Text Sentiment: Learning and Lexicon Models �����������������   151
	10.1	�� Lexicon Approach���   152
	10.2	�� Machine Learning Approach���   158

	10.2.1	�� Naïve Bayes (NB) ���   159
	10.2.2	�� Support Vector Machines (SVM)���������������������������������������   160
	10.2.3	�� Logistic Regression���   161

	10.3	�� Sentiment Analysis Performance: Considerations
and Evaluation���   162

References���   164

Part IV � Communicating the Results

	11	� Storytelling Using Text Data ���   167
	11.1	�� Introduction���   167
	11.2	�� Telling Stories About the Data���   168
	11.3	�� Framing the Story ���   170

	11.3.1	�� Storytelling Framework���   170
	11.3.2	�� Applying the Framework���   171

	11.4	�� Organizations as Storytellers���   173
	11.4.1	�� United Parcel Service���   173
	11.4.2	�� Zillow���   173

	11.5	�� Data Storytelling Checklist ���   174
References���   175

Contents

xv

	12	� Visualizing Analysis Results���   177
	12.1	�� Strategies for Effective Visualization���   178

	12.1.1	�� Be Purposeful���   178
	12.1.2	�� Know the Audience���   178
	12.1.3	�� Solidify the Message���   178
	12.1.4	�� Plan and Outline���   179
	12.1.5	�� Keep It Simple���   179
	12.1.6	�� Focus Attention ���   180

	12.2	�� Visualization Techniques in Text Analytics�����������������������������������   180
	12.2.1	�� Corpus/Document Collection-Level Visualizations�����������   180
	12.2.2	�� Theme and Category-Level Visualizations �����������������������   182
	12.2.3	�� Document-Level Visualizations���   188

References���   190

Part V � Text Analytics Examples

	13	� Sentiment Analysis of Movie Reviews Using R �����������������������������������   193
	13.1	�� Introduction to R and RStudio���   193
	13.2	�� SA Data and Data Import���   194
	13.3	�� Objective of the Sentiment Analysis ���   197
	13.4	�� Data Preparation and Preprocessing ���   199

	13.4.1	�� Tokenize���   199
	13.4.2	�� Remove Stop Words���   200

	13.5	�� Sentiment Analysis��   201
	13.6	�� Sentiment Analysis Results���   204
	13.7	�� Custom Dictionary���   206
	13.8	�� Out-of-Sample Comparison���   217
References���   219

	14	� Latent Semantic Analysis (LSA) in Python ���   221
	14.1	�� Introduction to Python and IDLE ���   221
	14.2	�� Preliminary Steps���   222
	14.3	�� Getting Started���   224
	14.4	�� Data and Data Import���   225
	14.5	�� Analysis���   227
Further Reading ���   242

	15	� Learning-Based Sentiment Analysis Using RapidMiner���������������������   243
	15.1	�� Introduction���   243
	15.2	�� Getting Started in RapidMiner���   244
	15.3	�� Text Data Import ���   247
	15.4	�� Text Preparation and Preprocessing���   249
	15.5	�� Text Classification Sentiment Analysis���   256
Reference ���   261

Contents

xvi

	16	� SAS Visual Text Analytics���   263
	16.1	�� Introduction���   263
	16.2	�� Getting Started���   264
	16.3	�� Analysis���   266
Further Reading ���   282

�Index���   283

Contents

xvii

About the Authors

Murugan Anandarajan  is a Professor of MIS at Drexel University. His current
research interests lie in the intersections of crime, IoT, and analytics. His work has
been published in journals such as Decision Sciences, Journal of Management
Information Systems, and Journal of International Business Studies. He co-authored
eight books, including The Internet and Workplace Transformation (2006) and its
follow-up volume, The Internet of People, Things and Services (2018). He has been
awarded over $2.5 million in research grants from various government agencies
including the National Science Foundation, the US Department of Justice, the
National Institute of Justice, and the State of PA.

Chelsey Hill  is an Assistant Professor of Business Analytics in the Information
Management and Business Analytics Department of the Feliciano School of
Business at Montclair State University. She holds a BA in Political Science from the
College of New Jersey, an MS in Business Intelligence from Saint Joseph’s
University, and a PhD in Business Administration with a concentration in Decision
Sciences from Drexel University. Her research interests include consumer product
recalls, online consumer reviews, safety and security, public policy, and humanitar-
ian operations. Her research has been published in the Journal of Informetrics and
the International Journal of Business Intelligence Research.

Tom Nolan  completed his undergraduate work at Kenyon College. After Kenyon,
he attended Drexel University where he graduated with an MS in Business Analytics.
From there, he worked at Independence Blue Cross in Philadelphia, PA, and Anthem
Inc. in Houston, TX. Currently, he works with all types of data as a Data Scientist
for Mercury Data Science.

xix

List of Abbreviations

ANN	 Artificial neural networks
BOW	 Bag-of-words
CA	 Content analysis
CTM	 Correlated topic model
df	 Document frequency
DM	 Data mining
DTM	 Document-term matrix
HCA	 Hierarchical cluster analysis
idf	 Inverse document frequency
IoT	 Internet of Things
KDD	 Knowledge discovery in databases
KDT	 Knowledge discovery in text
kMC	 k-means clustering
kNN	 k-nearest neighbors
LDA	 Latent Dirichlet allocation
LSA	 Latent semantic analysis
LSI	 Latent semantic indexing
NB	 Naive Bayes
NLP	 Natural language processing
NN	 Neural networks
OM	 Opinion mining
pLSI	 Probabilistic latent semantic indexing
RF	 Random forest
SA	 Sentiment analysis
sLDA	 Supervised latent Dirichlet allocation
STM	 Structural topic model
SVD	 Singular value decomposition
SVM	 Support vector machines
TA	 Text analytics
TDM	 Term-document matrix
tf	 Term frequency
tfidf	 Term frequency-inverse document frequency
TM	 Text mining

xxi

Fig. 1.1	 Text analytics timeline���    3
Fig. 1.2	 Frequency of text analytics articles by year�������������������������������������    4
Fig. 1.3	 Word cloud of the titles and abstracts of articles

on text analytics���    5
Fig. 1.4	 Article frequency by industry for top 25 industry

classifications���    6
Fig. 1.5	 Word cloud of text analytics job titles���    7
Fig. 1.6	 Word cloud of the skills required for text analytics jobs�����������������    7
Fig. 1.7	 Guide to the text analytics process and the book�����������������������������    9

Fig. 2.1	 Content analysis framework���    17
Fig. 2.2	 Features of deductive inference���    18
Fig. 2.3	 Manifest and latent variables���    18
Fig. 2.4	 Deductive and inductive coding approaches�����������������������������������    21
Fig. 2.5	 Four open coding strategies���    22
Fig. 2.6	 The three-step inductive inference process �������������������������������������    22

Fig. 3.1	 Four initial planning considerations���    28
Fig. 3.2	 Text analytics planning tasks���    31
Fig. 3.3	 Three characteristics of good research problems�����������������������������    31
Fig. 3.4	 Quality dimensions of text data���    34
Fig. 3.5	 Simple random sampling���    36
Fig. 3.6	 Systematic sampling ���    37
Fig. 3.7	 Stratified sampling���    37
Fig. 3.8	 Choosing the analysis method based on the focus

of the analysis ���    38

Fig. 4.1	 Hierarchy of terms and documents ���    46
Fig. 4.2	 Example document collection���    47
Fig. 4.3	 The text data pre-processing process���    48

List of Figures

xxii

Fig. 4.4	 Tokenized example documents ���    49
Fig. 4.5	 Cleansed and standardized document collection�����������������������������    51
Fig. 4.6	 Documents after stop word removal ���    52
Fig. 4.7	 Document 9 tokenized text before and after stemming�������������������    55
Fig. 4.8	 Stemmed example document collection ���    55
Fig. 4.9	 Document 9 before and after stemming and lemmatization �����������    56
Fig. 4.10	 Lemmatized example document collection�������������������������������������    57

Fig. 5.1	 Basic document-term and term-document matrix layouts���������������    64
Fig. 5.2	 Heat map visualizing the term-document matrix�����������������������������    66
Fig. 5.3	 Document frequency weighting���    69
Fig. 5.4	 Global frequency weighting���    70
Fig. 5.5	 Inverse document frequency weighting���    71

Fig. 6.1	 Two-dimensional representation of the first five documents
in term space for the terms brown and dog �������������������������������������    78

Fig. 6.2	 Three-dimensional representation of the ten documents in term
space for the terms brown, coat and favorite�����������������������������������    79

Fig. 6.3	 SVD process in LSA, based on Martin and Berry (2007)���������������    80
Fig. 6.4	 Terms and documents in three-dimensional LSA vector space�������    84
Fig. 6.5	 Terms and documents of a two-dimensional LSA solution

across the first two dimensions ���    85
Fig. 6.6	 Rotated plot of the query and Document 6 vectors

in three-dimensional LSA vector space���    89
Fig. 6.7	 Scree plot showing variance explained by number of

singular vectors ���    90

Fig. 7.1	 Visualization of cluster analysis���    94
Fig. 7.2	 Two-dimensional representation of terms in document space

for Documents 3 and 6���    95
Fig. 7.3	 Three-dimensional representation of terms in document space for

Documents 1, 3, and 7���    96
Fig. 7.4	 fluffy and brown in document space for Documents 3 and 6�����������    96
Fig. 7.5	 Dendrogram example with cluster groupings ���������������������������������    98
Fig. 7.6	 HCA algorithm���    99
Fig. 7.7	 Single linkage document—HCA example���������������������������������������   100
Fig. 7.8	 Complete linkage document HCA example �����������������������������������   101
Fig. 7.9	 Centroid linkage document—HCA example�����������������������������������   102
Fig. 7.10	 Ward’s method for linking documents—HCA example �����������������   102
Fig. 7.11	 kMC algorithm���   104
Fig. 7.12	 k-Means process example plot���   105
Fig. 7.13	 k-Means initial cluster seed designation of cat, coat, and hat���������   106
Fig. 7.14	 Cluster assignments based on cluster seeds for a three-cluster

solution���   107

List of Figures

xxiii

Fig. 7.15	 First iteration cluster assignment and calculated centroids�������������   107
Fig. 7.16	 Ward’s method hierarchical cluster analysis solutions

for k = 2, 3, 4, 5, 6, and 7���   110
Fig. 7.17	 Scree plot total within cluster SSE for k Values 1–9�����������������������   111
Fig. 7.18	 Silhouette plot for Ward’s method hierarchical clustering

analysis���   112

Fig. 8.1	 LSA and topic models (Griffiths et al. 2007, p. 216)�����������������������   118
Fig. 8.2	 Plate representation of the random variables in the LDA model

(Blei 2012, p. 23)���   119
Fig. 8.3	 Top ten terms per topic, four-topic model���������������������������������������   120
Fig. 8.4	 Plate representation of the random variables in the CTM model

(Blei et al. 2007, p. 21) ���   121
Fig. 8.5	 Expected topic proportions of four categories in the

CTM model with no covariates���   121
Fig. 8.6	 CTM topic correlation plot ���   122
Fig. 8.7	 Plate diagram of DT model (Blei and Lafferty 2006, p. 2)�������������   123
Fig. 8.8	 Plate representation of the sLDA model (McAuliffe and

Blei 2008, p. 3)���   123
Fig. 8.9	 Plate diagram representation of the structural topic model

(Roberts et al. 2013, p. 2)���   125
Fig. 8.10	 Top ten terms in topics for STM model���   125
Fig. 8.11	 Dog type content across topics ���   126
Fig. 8.12	 Four measures across a number of topics, k, for 2–30 LDA topics�  127
Fig. 8.13	 Topic frequency and the five most probable terms per topic�����������   128

Fig. 9.1	 Classification analysis process���   133
Fig. 9.2	 Sample contingency table with two classifications, Yes and No�����   133
Fig. 9.3	 Contingency table example���   134
Fig. 9.4	 Two-dimensional representation of support vector machine

classification of ten documents (Sebastiani 2002)���������������������������   141
Fig. 9.5	 Splitting criteria for decision trees���   142
Fig. 9.6	 Decision tree created from training data using deviance

as the splitting criteria���   143
Fig. 9.7	 Random forest plot of the importance of variables�������������������������   145
Fig. 9.8	 Neural network example with one hidden layer and three classes�   146

Fig. 10.1	 Levels of sentiment Analysis���   152
Fig. 10.2	 Sample of positive and negative words that coincide

and are consistent across the four lexicons �������������������������������������   154
Fig. 10.3	 Positive review example: text preparation and preprocessing���������   155
Fig. 10.4	 Negative review example: text preparation and preprocessing�������   156
Fig. 10.5	 Ambiguous review example: text preparation and preprocessing���   157
Fig. 10.6	 Word clouds of positive and negative words in review sample�������   158

List of Figures

xxiv

Fig. 10.7	 Examples of Accurate and Inaccurate Predictions using NB���������   159
Fig. 10.8	 Examples of accurate and inaccurate predictions using SVM�������   160
Fig. 10.9	 Examples of accurate and inaccurate predictions using

logistic regression���   162

Fig. 11.1	 Questions to ask to identify the key components of the analysis���   168
Fig. 11.2	 Storytelling framework���   171

Fig. 12.1	 Strategies for text analytics visualizations�������������������������������������   179
Fig. 12.2	 Heat map visualization���   181
Fig. 12.3	 Word cloud of dog descriptions in the shape of a paw�������������������   182
Fig. 12.4	 Plots of top terms in first four LSA dimensions�����������������������������   183
Fig. 12.5	 Two dendrogram versions of the same HCA solution�������������������   184
Fig. 12.6	 Top ten terms per topic, four-topic model �������������������������������������   185
Fig. 12.7	 Plot of expected topic proportions over time���������������������������������   186
Fig. 12.8	 Two versions of the same document network plot�������������������������   187
Fig. 12.9	 Word clouds of positive and negative words in review sample �����   188
Fig. 12.10	 Five-star word cloud of reviews���   188

Fig. 13.1	 RStudio IDE���   194
Fig. 13.2	 RStudio workspace with imdb dataframe in the global

environment ���   195
Fig. 13.3	 Table formatted data using the view function��������������������������������   196
Fig. 13.4	 Frequency of negative (0) and positive (1) reviews�����������������������   196
Fig. 13.5	 Diagram of an inner join between stop words and sentiments�������   201
Fig. 13.6	 Number of classifications per matching stop

word and lexicon lists���   201
Fig. 13.7	 Diagram of a left join between imdb and the aggregated lexicons�  204

Fig. 14.1	 Python IDLE Shell file���   223
Fig. 14.2	 Python IDLE script and .py file���   224
Fig. 14.3	 NLTK downloader ���   226
Fig. 14.4	 First two latent factors in 25-factor LSA solution�������������������������   234
Fig. 14.5	 Variance explained for increasing k values�������������������������������������   235
Fig. 14.6	 First two latent factors in 25-factor LSA solution with

tfidf weighting���   237
Fig. 14.7	 Scree plot for up to 25 latent factors ���   239
Fig. 14.8	 Top 10 terms by weight for dimension 1���������������������������������������   240
Fig. 14.9	 Top 10 terms in first four LSA dimensions �����������������������������������   242

Fig. 15.1	 RapidMiner welcome screen ���   244
Fig. 15.2	 Main RapidMiner view���   245
Fig. 15.3	 RapidMiner view with operations, process, and parameters

panels���   245
Fig. 15.4	 Marketplace extension drop-down menu���������������������������������������   246

List of Figures

xxv

Fig. 15.5	 Text Processing extension ���   246
Fig. 15.6	 Read CSV node ���   247
Fig. 15.7	 Data import wizard���   248
Fig. 15.8	 Tab delimited text���   248
Fig. 15.9	 Row name designations ���   249
Fig. 15.10	 Data type designations���   249
Fig. 15.11	 Read CSV connection to Results port ���   250
Fig. 15.12	 Read CSV results���   250
Fig. 15.13	 Process Documents from Data operator���   251
Fig. 15.14	 Process Documents from Data operator warning���������������������������   251
Fig. 15.15	 Tokenize operator���   252
Fig. 15.16	 Tokenize operator results���   252
Fig. 15.17	 Transform Cases operator���   253
Fig. 15.18	 Filter Stop words (English) operator ���   253
Fig. 15.19	 Filter Tokens (by Length) operator���   254
Fig. 15.20	 Stem (Porter) operator ���   254
Fig. 15.21	 Process Documents operator results���   255
Fig. 15.22	 Term and document frequency node connections �������������������������   255
Fig. 15.23	 Term and document frequency results���   256
Fig. 15.24	 Term occurrences sorted in descending order �������������������������������   256
Fig. 15.25	 Document Occurrences sorted in descending order�����������������������   257
Fig. 15.26	 Validation operator���   257
Fig. 15.27	 Validation node view drop-down���   258
Fig. 15.28	 kNN operator ���   258
Fig. 15.29	 Apply model and performance operators in validation view���������   259
Fig. 15.30	 kNN results contingency table���   259
Fig. 15.31	 Remove kNN operator���   260
Fig. 15.32	 Naïve Bayes operator���   260
Fig. 15.33	 Naïve Bayes results contingency table���   260

Fig. 16.1	 SAS Viya Welcome page ���   265
Fig. 16.2	 Data import option for data management���������������������������������������   265
Fig. 16.3	 The Available option shows the dataset loaded�����������������������������   266
Fig. 16.4	 First 13 rows in the dataset���   266
Fig. 16.5	 Assigning the text variable role ���   267
Fig. 16.6	 Customizing the pipeline���   267
Fig. 16.7	 Default pipeline available on VTA���   268
Fig. 16.8	 Predefined concepts available���   269
Fig. 16.9	 Options available for text parsing���   269
Fig. 16.10	 Topic node options���   270
Fig. 16.11	 Run pipeline icon to implement the analysis���������������������������������   271
Fig. 16.12	 The pipeline tasks completed���   272
Fig. 16.13	 Predefined concepts nlpPerson���   272
Fig. 16.14	 List of kept and dropped terms���   273
Fig. 16.15	 Results of topic analysis���   273

List of Figures

xxvi

Fig. 16.16	 Most relevant terms associated with topics and their use
in documents���   274

Fig. 16.17	 Category definition: code and validation���������������������������������������   275
Fig. 16.18	 Category rule validated over a sample document���������������������������   275
Fig. 16.19	 Example of matched documents in the disease/condition

category ���   276
Fig. 16.20	 Explore and Visualize Data selection for advanced analysis:

main menu ���   277
Fig. 16.21	 Add Data Source selection���   278
Fig. 16.22	 Tile by category and color by frequency percent selected

under Roles���   278
Fig. 16.23	 Category popularity visualization Treemap�����������������������������������   279
Fig. 16.24	 Category popularity visualization Treemap after removing

missing values��   279
Fig. 16.25	 Category popularity visualization: line charts �������������������������������   279
Fig. 16.26	 Category popularity visualization: pie charts���������������������������������   280
Fig. 16.27	 Word by keywords and color by frequency percent selected

under Roles���   280
Fig. 16.28	 Word cloud of key terms in the dataset ���   281
Fig. 16.29	 Visualizations can be customized through the Options tag �����������   281

List of Figures

xxvii

Table 4.1	 Document 9 related words, POS, and lemmatization
for the word fluffy���    56

Table 4.2	 Document 9 related words, POS, and lemmatization
for the word favorite ���    57

Table 5.1	 Unprocessed and preprocessed text���    62
Table 5.2	 Inverted index for dcument collection���    62
Table 5.3	 Document frequency of the term brown ���������������������������������������    63
Table 5.4	 Term-postings frequency table for the term brown�����������������������    63
Table 5.5	 Term-document matrix example���    65
Table 5.6	 Log frequency matrix ���    67
Table 5.7	 Binary frequency matrix���    68
Table 5.8	 tfidf-weighted TDM���    72

Table 6.1	 The LSA space ���    83
Table 6.2	 Cosine similarity measures for fluffy, in descending order�����������    86
Table 6.3	 Term-term cosine similarity measures���    87
Table 6.4	 Cosine values between the query (brown, pink, tan)

and documents in descending order by cosine similarity value ���    88

Table 7.1	 Distance matrix of terms���    97
Table 7.2	 Distance matrix of documents���    97
Table 7.3	 Tfidf term values for Documents 3 and 6���������������������������������������   105
Table 7.4	 Squared distance from cluster seeds���   106
Table 7.5	 Squared distance from terms to cluster centroids�������������������������   108

Table 9.1	 Naïve Bayes contingency table���   138
Table 9.2	 Goodness of fit measures, naïve Bayes model �����������������������������   138
Table 9.3	 1NN testing document actual classifications, 1NN

documents and 1NN predicted classifications�������������������������������   139
Table 9.4	 Contingency table, kNN classification, k = 1 (1NN)���������������������   139

List of Tables

xxviii

Table 9.5	 Goodness of fit measures, k-nearest neighbors, k = 1�������������������   140
Table 9.6	 Support vector machines contingency table ���������������������������������   141
Table 9.7	 Goodness of fit measures, SVM ���   142
Table 9.8	 Decision tree confusion matrix���   143
Table 9.9	 Goodness of fit measures, decision tree ���������������������������������������   143
Table 9.10	 Random forest contingency table ���   144
Table 9.11	 Goodness of fit measures, random forest �������������������������������������   144
Table 9.12	 Neural network contingency matrix with five hidden nodes

in one hidden layer ���   146
Table 9.13	 Goodness of fit measures, neural network with five hidden

nodes in one hidden layer ���   147
Table 9.14	 Classification model accuracy���   147

Table 10.1	 Positive review word-, sentence-, and document-level sentiment�  155
Table 10.2	 Negative review word- and document-level sentiment�����������������   156
Table 10.3	 Ambiguous review word and document-level sentiment �������������   158
Table 10.4	 Naïve Bayes contingency matrix classification analysis���������������   159
Table 10.5	 SVM contingency matrix classification analysis���������������������������   160
Table 10.6	 Logistic regression contingency matrix classification analysis�����   161
Table 10.7	 Examples of consistent accurate and inaccurate predictions across

learning methods for negative and positive sentiments�����������������   163

Table 13.1	 Misclassified sentiment reviews with actual and predicted
sentiment���   206

Table 13.2	 Reviews with 10, including review number, text,
and sentiment labels ���   211

Table 13.3	 Reviews with time, including review number, text,
and sentiment labels ���   211

List of Tables

1© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3_1

Chapter 1
Introduction to Text Analytics

Abstract  In this chapter we define text analytics, discuss its origins, cover its
current usage, and show its value to businesses. The chapter describes examples
of current text analytics uses to demonstrate the wide array of real-world
impacts. Finally, we present a process road map as a guide to text analytics and
to the book.

Keywords  Text analytics · Text mining · Data mining · Content analysis

1.1  �Introduction

Recent estimates maintain that 80% of all data is text data. A recent article in
USA Today asserts that even the Internal Revenue Service is using text, in the
form of US citizens’ social media posts, to help them make auditing decisions.1
The importance of text data has created a veritable industry comprised of firms
dedicated solely to the storage, analysis, and extraction of text data. One such
company, Crimson Hexagon, has created the world’s largest database of text data
from social media sites including one trillion public social media posts spanning
more than a decade.2

1.2  �Text Analytics: What Is It?

Hearst (1999a, b) defines text analytics, sometimes referred to as text mining or text
data mining, as the automatic discovery of new, previously unknown, information
from unstructured textual data. The terms text analytics and text mining are often
used interchangeably. Text mining can also be described as the process of deriving

1 Agency breaking law by mining social media. (2017, 12). USA Today, 146, 14–15.
2 http://www.businessinsider.com/analytics-firm-crimson-hexagon-uses-social-media-to-predict-
stock-movements-2017-4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_1&domain=pdf
http://www.businessinsider.com/analytics-firm-crimson-hexagon-uses-social-media-to-predict-stock-movements-2017-4
http://www.businessinsider.com/analytics-firm-crimson-hexagon-uses-social-media-to-predict-stock-movements-2017-4

2

high-quality information from text. This process involves three major tasks: infor-
mation retrieval (gathering the relevant documents), information extraction (unearth-
ing information of interest from these documents), and data mining (discovering
new associations among the extracted pieces of information).

Text analytics has been influenced by many fields and has made significant con-
tributions to many disciplines. Modern text analytics applications span many disci-
plines and objectives. In addition to having multidisciplinary origins, text analytics
continues to have applications in and make advancements to many fields of study. It
intersects many research fields, including:

•	 Library and information science
•	 Social sciences
•	 Computer science
•	 Databases
•	 Data mining
•	 Statistics
•	 Artificial intelligence
•	 Computational linguistics

Although many of these areas contributed to modern day text analytics, Hearst
(1999a, b) posited that text mining came to fruition as an extension of data mining.
The similarities and differences between text mining and data mining have been
widely discussed and debated (Gupta and Lehal 2009; Hearst 2003). Data mining
uses structured data, typically from databases, to uncover “patterns, associations,
changes, anomalies, and significant structures” (Bose 2009, p. 156). The major dif-
ference between the two is the types of data that they use for analysis. Data mining
uses structured data, found in most business databases, while text mining uses
unstructured or semi-structured data from a variety of sources, including media, the
web, and other electronic data sources. The two methods are similar because they
(i) are equipped for handling large data sets; (ii) look for patterns, insight, and dis-
covery; and (iii) apply similar or the same techniques. Additionally, text mining
draws on techniques used in data mining for the analysis of the numeric representa-
tion of text data.

The complexities associated with the collection, preparation, and analysis of
unstructured text data make text analytics a unique area of research and application.
Unstructured data are particularly difficult for computers to process. The data itself
cover a wide range of possibilities, each with its own challenges. Some examples of
the sources of text data used in text mining are blogs, web pages, emails, social
media, message board posts, newspaper articles, journal articles, survey text, inter-
view transcripts, resumes, corporate reports and letters, insurance claims, customer
complaint letters, patents, recorded phone calls, contracts, and technical documen-
tation (Bose 2009; Dörre et al. 1999).

1  Introduction to Text Analytics

3

1.3  �Origins and Timeline of Text Analytics

Text-based analysis has its roots in the fields of computer science and the social
sciences as a means of converting qualitative data into quantitative data for analy-
sis. The field of computer science is in large part responsible for the text analytics
that we know today. In contrast, the social sciences built the foundation of the
analysis of text as a means of understanding literature, discourse, documents, and
surveys. Text analytics combines the computational and humanistic elements of
both fields and uses technology to analyze unstructured data text data by “turning
text into numbers.” The text analytics process includes the structuring of input
text, deriving patterns within the structured data, and evaluating and interpreting
the output.

Figure 1.1 presents a timeline of text analytics by decade. In the 1960s, compu-
tational linguistics was developed to describe computer-aided natural language pro-
cessing (Miner et al. 2012). Natural language processing techniques are outlined in
Chaps. 5 and 6. During this decade, content analysis, the focus of Chap. 2, emerged
in the social sciences as a means of analyzing a variety of content, including text and
media (Krippendorff 2012).

In the late 1980s and early 1990s, latent semantic indexing, or latent semantic
analysis, introduced in Chap. 6 arrived as a dimension reduction and latent factor
identification method applied to text (Deerwester et al. 1990; Dumais et al. 1988).
At this time, knowledge discovery in databases developed as a means of making
sense of data (Fayyad et al. 1996; Frawley et al. 1992). Building on this advance-
ment, Feldman and Dagan (1995) created a framework for text, known as knowl-
edge discovery in texts to do the same with unstructured text data.

Data mining emerged in the 1990s as the analysis step in the knowledge discov-
ery in databases process (Fayyad et al. 1996). In the 1990s, machine learning meth-
ods, covered in Chaps. 7 and 9, gained prominence in the analysis of text data
(Sebastiani 2002). Around that time, text mining became a popular buzzword but
lacked practitioners (Hearst 1999a, b). Nagarkar and Kumbhar (2015) reviewed text
mining-related publications and citations from 1999 to 2013 and found that the
number of publications consistently increased throughout this period.

1940-
1970s

•Natural
Language
Processing

•Computational
Linguistics

•Content
Analysis

1980s

•Knowledge
Discovery in
Databases

•Latent
Semantic
Analysis

1990s

•Knowledge
Discovery in
Texts

•Data Mining

•Machine
Learning

•Text Mining

•Web Mining

2000s

•Topic Models

•Sentiment
Analysis

•Opinion
Mining

2010s &
Beyond

•Big Data

•Business
Analytics

Fig. 1.1  Text analytics timeline

1.3  Origins and Timeline of Text Analytics

4

Building on a probabilistic form of latent semantic analysis (Hofmann 1999)
introduced the late 1990s, topic models, discussed in Chap. 8, were created in the
early 2000s with the development of the latent Dirichlet allocation model (Blei et al.
2002, 2003). Around the same time, sentiment analysis (Nasukawa and Yi 2003)
and opinion mining (Dave et al. 2003), the focus of Chap. 10, were introduced as
methods to understand and analyze opinions and feelings (Liu 2012).

The 2010s were the age of big data analytics. During this period, the founda-
tional concepts preceding this time were adapted and applied to big data. According
to Davenport (2013), although the field of business analytics has been around for
over 50 years, the current era of analytics, Analytics 3.0, has witnessed the wide-
spread use of corporate data for decision-making across many organizations and
industries. More specifically, four key features define the current generation of text
analytics and text mining: foundation, speed, logic, and output. As these character-
istics indicate, text analysis and mining are data driven, conducted in real time,
rely on probabilistic inference and models, and provide interpretable output and
visualization (Müller et al. 2016). According to IBM Tech Trends Report (2011),
business analytics was deemed one of the major trends in technology in the 2010s
(Chen et al. 2012).

One way to better understand the area of text analytics is by examining relevant
journal articles. We analyzed 3,264 articles, 2,315 published in scholarly journals
and 949 published in trade journals. In our article sample, there are 704 journals,
187 trade journals and 517 scholarly journals. Each article belongs to one or more
article classifications. The articles in our sample have 170 distinct classifications
based on information about them such as industry, geographical location, content,
and article type. Figure 1.2 displays the total number of text analytics-related

400

300

200

100T
o

ta
l T

ex
t

A
n

al
yt

ic
s

A
rt

ic
le

s

0

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Fig. 1.2  Frequency of text analytics articles by year

1  Introduction to Text Analytics

5

articles over time. As the figure illustrates, there has been a considerable growth in
the publications since 1997, with 420 articles about text mining published in 2017.

1.4  �Text Analytics in Business and Industry

Text analytics has numerous practical uses, including but not limited to email
filtering, product suggestions, fraud detection, opinion mining, trend analysis,
search engines, and bankruptcy predictions (Talib et al. 2016). The field has a
wide range of goals and objectives, including understanding semantic informa-
tion, text summarization, classification, and clustering (Bolasco et al. 2005). We
explore some examples of text analytics and text mining in the areas of business
and industry. Text analytics applications require clear, interpretable results and
actionable outcomes to achieve the desired result. Indeed, the technique can be
used in almost every business department to increase productivity, efficiency, and
understanding.

Figure 1.3 is a word cloud depicting the most popular terms and phrases in the
text analytics-related articles’ abstracts and titles. As the figure shows, research and
applications in this area are as diverse as the area’s history. The close relationship
between data mining and text analytics is also evident in the figure.

Fig. 1.3  Word cloud of the titles and abstracts of articles on text analytics

1.4  Text Analytics in Business and Industry

6

Applications of text analytics span a multitude of industries, including health-
care, government, education, publishing, telecommunications, politics, and safety
and security (Bolasco et al. 2005; Fan et al. 2006). Using our journal article sample,
we analyze text analytics by industry. Figure 1.4 provides a plot of the frequency of
the articles by industry. As the figure demonstrates, the publications cover many
industries in which text analytics is a relevant area of research and practice, with
manufacturing, services, computers, arts and broadcasting, and telecommunications
being the most prevalent areas of research activity in the field.

1.5  �Text Analytics Skills

Next, we consider the necessary skills for text mining applications. To do so, we
collect and analyze a sample of 3,479 job postings listed on Indeed3 using “text min-
ing,” “text analytics,” and “text analysis” as our search keywords. By analyzing the
descriptions of the jobs, their requirements, and their titles, we gain insight into the
jobs that require text analysis skills and the specific skills, abilities, and experience
that employers are seeking.

First, we analyze the content of the job titles of the postings to determine the
types of jobs that require text analytics. As Fig. 1.5 shows, the most prevalent job
title in which text analysis skills are required is data scientist. Text mining is also a

3 https://www.indeed.com/

Internet services
Software & computer services

Health care
Publishing

Schools and educational services
Retailing

Hotels & restaurants
Pharmaceuticals

Electrical & electronics
Insurance

Transportation equipment
Financial services

Transportation & travel
Unclassified manufacturing

Unclassified professional services

Broadcasting & telecommunications
Investment services

Chemical
Construction & engineering

Unclassified service
Property & casualty insurance

Other services
Real estate

0 10 20 30 40

Frequency

Articles by Industry

50 60 70

Computer
Arts

Fig. 1.4  Article frequency by industry for top 25 industry classifications

1  Introduction to Text Analytics

https://www.indeed.com/

7

desirable skill for data engineers, data and business analysts, marketing managers,
and research analysts.

Figure 1.6 shows a word cloud created using the most popular terms and phrases
describing the skills, abilities, and experience listed in the descriptions of the jobs.
As the figure illustrates, NLP or natural language processing and machine learning
modeling and software are the skills most sought after in text analysts. In this book,
we introduce many of these topics, including text analysis methods, applications,
and software.

Fig. 1.5  Word cloud of text analytics job titles

Fig. 1.6  Word cloud of the skills required for text analytics jobs

1.5  Text Analytics Skills

8

1.6  �Benefits of Text Analytics

The use of analytics in business can lead to many organization-wide benefits,
including reductions in the time to realized value, organizational change, and
stepwise achievement of goals (LaValle et al. 2011). Ur-Rahman and Harding
(2012) suggest that the use of text mining in business can “cut overhead costs of
product or service quality improvement and project management” (p. 4729).
However, the reasons to conduct text analytics projects and the benefits of doing
so are abundant.

First, such projects can help organizations make use of the estimated 80% of
data that cannot be analyzed using data mining methods alone. Relying only on
structured data can often mean missing part of the bigger picture. Second, text
analytics can help companies index, catalogue, and store data for knowledge man-
agement and information retrieval. The use of text mining techniques can aid in
knowledge management. For example, following a merger, Dow Union Carbide
used text mining principles and methodology for knowledge management pur-
poses, resulting in a substantial reduction in time, costs, and errors (Fan et al.
2006). Finally, text analytics can promote understanding in a climate of informa-
tion overload. Text mining is often used for text summarization in cases where
there is too much text for people to read. The potential efficiency and productivity
gains from the application of text mining principles are undeniable.

1.7  �Text Analytics Process Road Map

We break down the text analytics process into four major steps: (1) planning, (2)
preparing and preprocessing, (3) analysis, and (4) reporting. Figure 1.7 depicts
these four steps.

1.7.1  �Planning

The planning stage determines the rest of the text analytics process, because the
analyst sets the foundation for the analysis. In the planning chapters, we include an
introduction to content analysis and a planning framework specific to text analytics
applications. While the methodology for text analytics is well developed, the theo-
retical foundations are lacking. For this reason, we draw on the rich theory of con-
tent analysis applied to text analytics. To do so, we first present the fundamentals of
content analysis in Chap. 2 and then develop a new planning process for text analyt-
ics projects in Chap. 3.

1  Introduction to Text Analytics

9

1.7.2  �Text Preparing and Preprocessing

In the preparing and preprocessing stage, the text data are prepared for analysis
using appropriate software programs. In the area of data mining, this step is the
point at which the data are cleansed and readied for analysis. In the context of text
analytics, data reduction and preparation include many preprocessing tasks, which
can be separated into two general steps: text preprocessing, introduced in Chap. 4,
and term-document representation, outlined in Chap. 5.

1.7.3  �Text Analysis Techniques

The chapters covering analysis in this book will help guide this decision-making
process. There are two major types of analysis that we will present: unsupervised
and supervised. In unsupervised analysis methods, no prior knowledge of the under-
lying document groupings is used in the analysis. In contrast, supervised analysis
methods use known classifications, or categories, to build predictive models. We
present three analysis methods that are predominantly unsupervised: latent seman-
tic analysis in Chap. 6, cluster analysis in Chap. 7, and topic models in Chap. 8. We
also review two methods that are typically supervised: classification analysis in
Chap. 9 and sentiment analysis in Chap. 10.

•Chapter 2: Fundamentals of Content Analysis

•Chapter 3: Text Analytics Roadmap
Planning the Text Analytics

Project

•Chapter 4: Text Pre-Processing

•Chapter 5: Term-Document Representation

Text
Preparation

•Chapter 6: Latent Semantic Analysis

•Chapter 7: Cluster Analysis

•Chapter 8: Topic Models

•Chapter 9: Classification Analysis

•Chapter 10: Sentiment Analysis

Text Analysis
Techniques

•Chapter 11: Storytelling

•Chapter 12: Visualization

Communicating the
Results

Fig. 1.7  Guide to the text analytics process and the book

1.7  Text Analytics Process Road Map

10

1.7.4  �Communicating the Results

After conducting the analysis, the final step is the interpretation of the findings and
their significance. Regardless of the type of analysis used, reporting is a crucial step
in sharing the results and making the findings actionable. The purpose of reporting
is to provide details about the analysis and its results. Typically, reports include an
overview of the problem and data along with more detailed information that is spe-
cific to the objectives and goals of the text analytics project. There are two key ele-
ments of text analytics reporting that we will explore: storytelling in Chap. 11 and
visualization in Chap. 12.

1.8  �Examples of Text Analytics Software

The choice of analysis tool can be very important to the project. For this reason, we
include examples of applications in Chaps. 13, 14, 15 and 16 using real-world data
in four software programs to complement the analysis chapters. The four software
programs, depicted are R, Python, RapidMiner, and SAS.

References

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2002). Latent Dirichlet allocation. In T. G. Dietterich,
S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems
(pp. 601–608). Cambridge: MIT Press.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine
Learning Research, 3, 993–1022.

Bolasco, S., Canzonetti, A., Capo, F., Della Ratta-Rinaldi, F., & Singh, B. (2005). Understanding
text mining: A pragmatic approach. In Knowledge mining (pp. 31–50). Heidelberg: Springer.

Bose, R. (2009). Advanced analytics: Opportunities and challenges. Industrial Management &
Data Systems, 109(2), 155–172.

Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data
to big impact. MIS Quarterly, 36, 1165–1188.

Dave, K., Lawrence, S., & Pennock, D. M. (2003, May). Mining the peanut gallery: Opinion extrac-
tion and semantic classification of product reviews. In Proceedings of the 12th International
Conference on World Wide Web (pp. 519–528). ACM.

Davenport, T. H. (2013). Analytics 3.0. Boston: Harvard Business Review.

Key Takeaways
•	 Text analytics is a diverse area with a rich interdisciplinary history.
•	 Text analytics has many applications in business and industry.
•	 The text analytics process outlined in this book has four components:

planning preprocessing and preparing, analysis, and reporting.

1  Introduction to Text Analytics

11

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by
latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391.

Dörre, J., Gerstl, P., & Seiffert, R. (1999). Text mining: Finding nuggets in mountains of tex-
tual data. In Proceedings of the fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (pp. 398–401). ACM.

Dumais, S. T., Furnas, G. W., Landauer, T. K., & Deerwester, S. (1988). Using latent semantic
analysis to improve information retrieval. In Proceedings of CHI’88: Conference on Human
Factors in Computing (pp. 281–285). New York: ACM.

Fan, W., Wallace, L., Rich, S., & Zhang, Z. (2006). Tapping the power of text mining.
Communications of the ACM, 49(9), 76–82. https://doi.org/10.1145/1151030.1151032.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery
in databases. AI Magazine, 17(3), 37.

Feldman, R., & Dagan, I. (1995, August). Knowledge discovery in textual databases (KDT). KDD,
95, 112–117.

Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases:
An overview. AI Magazine, 13(3), 57.

Gupta, V., & Lehal, G. S. (2009). A survey of text mining techniques and applications. Journal of
Emerging Technologies in Web Intelligence, 1(1), 60–76.

Hearst, M. A. (1999a, June). Untangling text data mining. In Proceedings of the 37th Annual
Meeting of the Association for Computational Linguistics on Computational Linguistics
(pp. 3–10). Association for Computational Linguistics.

Hearst, M. A. (1999b). The use of categories and clusters for organizing retrieval results. In Natural
language information retrieval (pp. 333–374). Dordrecht: Springer.

Hearst, M. (2003). What is text mining. UC Berkeley: SIMS.
Hofmann, T. (1999, July). Probabilistic latent semantic analysis. In Proceedings of the Fifteenth

Conference on Uncertainty in Artificial Intelligence (pp. 289–296).
IBM. (2011, November 15). The 2011 IBM tech trends report: The clouds are rolling in….is your

business ready? http://www.ibm.com/developerworks/techtrendsreport
Krippendorff, K. (2012). Content analysis: An introduction to its methodology. Thousand Oaks:

Sage.
LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics

and the path from insights to value. MIT Sloan Management Review, 52(2), 21–32.
Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language

Technologies, 5(1), 1–167.
Miner, G., et al. (2012). Practical text mining and statistical analysis for non-structured text data

applications. Amsterdam: Academic Press.
Müller, O., Junglas, I., Debortoli, S., & vom Brocke, J. (2016). Using text analytics to derive cus-

tomer service management benefits from unstructured data. MIS Quarterly Executive, 15(4),
243–258.

Nagarkar, S. P., & Kumbhar, R. (2015). Text mining: An analysis of research published under
the subject category ‘information science library science’ in web of science database during
1999–2013. Library Review, 64(3), 248–262.

Nasukawa, T., & Yi, J. (2003, October). Sentiment analysis: Capturing favorability using natu-
ral language processing. In Proceedings of the 2nd International Conference on Knowledge
Capture (pp. 70–77). ACM.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys
(CSUR), 34(1), 1–47.

Talib, R., Hanif, M. K., Ayesha, S., & Fatima, F. (2016). Text mining: Techniques, applications and
issues. International Journal of Advanced Computer Science & Applications, 1(7), 414–418.

Ur-Rahman, N., & Harding, J. A. (2012). Textual data mining for industrial knowledge manage-
ment and text classification: A business oriented approach. Expert Systems with Applications,
39(5), 4729–4739.

References

https://doi.org/10.1145/1151030.1151032
http://www.ibm.com/developerworks/techtrendsreport

Part I
Planning the Text Analytics Project

15© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3_2

Chapter 2
The Fundamentals of Content Analysis

Abstract  In this chapter, the reader is provided with an introduction to content
analysis, which highlights the congruencies between content analysis and text ana-
lytics. The reader learns the differences between content types and is provided
with a demonstration of the content analysis process. The chapter concludes with
a discussion on how to properly manage the subject area’s current theory for
desired results.

Keywords  Content analysis · Text analysis · Manifest content · Latent content ·
Inference · Deductive inference · Inductive inference · Unitizing · Coding ·
Analysis unit · Quantitative content analysis · Qualitative content analysis ·
Computer-aided text analysis

2.1  �Introduction

In this book, we adopt a content analysis perspective due to its rich theoretical foun-
dations. Text mining and analytics encompass a wide range of methods and tech-
niques, but do not have a single, unifying foundation that spans the various areas of
research and practice in the field. This book aims to present a guide to text mining
within the framework of content analysis, to provide much-needed structure to the
text analytics process.

Content analysis is “a research technique for making replicable and valid infer-
ences from texts (or other meaningful matter) to the contexts of their use”
(Krippendorff 2012, p. 18). Content analysis is specifically concerned with the anal-
ysis of qualitative data. Unlike quantitative, or numeric data, qualitative data are not
innately measurable. For this reason, qualitative data require other techniques spe-
cifically tailored for their needs. Content analysis is one such technique for text
analysis. We use the rigor of content analysis theory to guide our text analytics
methodology.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_2&domain=pdf

16

2.2  �Deductive Versus Inductive Approaches

As a research method for making inferences, or drawing conclusions, content analy-
sis can either take a deductive or inductive approach. The role of theory in the analy-
sis informs the approach used. Figure 2.1 displays the framework for content
analysis and distinguishes the path of the analysis based on the type of inference. As
shown, the deductive approach is driven by theory. Hypotheses and theory deter-
mine the dictionaries, or word lists, and categories, which are counted through a
process known as coding to transform the qualitative data into a quantitative form
for analysis. The inductive approach takes an open coding approach, in which the
analysis is not driven by theory but by the data. Predetermined dictionaries and
categories are not used during coding in content analysis for inductive inference.

2.2.1  �Content Analysis for Deductive Inference

If the purpose of the research project is to test or retest a theory in a new context, a
deductive approach is appropriate. Content analysis for deductive inference is the
more traditional form of content analysis in which observed or manifest content is
analyzed (Potter and Levine-Donnerstein 1999). Manifest content is that which
physically appears on the page, with no interpretation of meaning.

This analysis is directed using existing theory and literature. The published
theory tells the researcher the information to expect in the collected data including
the topic’s focal points and item definitions (Potter and Levine-Donnerstein 1999).
The first step is to examine the current theory available on the topic. Obviously,
this requirement means that there must be published theory for deductive content
analysis to be appropriate (Elo and Kyngäs 2008). The researcher aims to under-
stand the current explanations surrounding the research topic. The theory points
the researcher to the important concepts contained within the research topic (Potter
and Levine-Donnerstein 1999). This information is used in the next step to con-
struct a hypothesis.

Hypotheses are used to test whether the expectations of the current theory match
the collected data’s content (Elo and Kyngäs 2008). These tests then use statistical
methods and metrics to compare empirical findings with established theory to assess
congruency. Hypotheses are tested, and the outcomes validate or refute existing
theory. Three important features of content analysis for deductive inference are
shown in Fig. 2.2.

2.2.2  �Content Analysis for Inductive Inference

The inductive approach begins by assessing the data to extract all possible codes.
Like the scientific method, inductive content analysis begins with the collected data
and attempts to create a generalizable theory (Elo and Kyngäs 2008; Potter and

2  The Fundamentals of Content Analysis

17

Deductive

Inductive

O
pe

n
an

d
A

xi
al

 C
od

in
g

Deductive

Inductive

Unitization

Sampling

What
coding

method?

What type
of

inference?

Conceptualization

Hypotheses

Theory

Coding

Categorization

Research Question

Theory– Driven
Coding Schema

Inference

Fig. 2.1  Content analysis framework

2.2 � Deductive Versus Inductive Approaches

18

Levine-Donnerstein 1999). This approach is appropriate when the researcher wants
to build a new theory or expand on a current theory with the collected data.

Figure 2.3 visualizes the difference in the types of content that serve as the focus
of the two types of content analysis. The figure describes the relationship between
manifest and latent content. In a gray scale, more light reflects back, moving from
black to white. Just as the black side of the gray scale is the absence of light, mani-
fest content is devoid of interpretation. On the other hand, more of the coder’s per-
sonal interpretations are reflected with latent content.

2.3  �Unitizing and the Unit of Analysis

Next, the unit of analysis is chosen through a process known as unitization. The unit
of analysis contains three parts: the sampling unit, the context unit, and the record-
ing unit (Vourvachis 2007). The sampling unit is the text to be examined, corre-
sponding to each row of data. In text analysis, the individual text items are known
as documents. The recording unit is the text element to be categorized in the coding
step. The context unit is the amount of text for determining the appropriate defini-
tion of the recording unit.

We use Preuss and Brown (2012) as an example to demonstrate the options for
unitization. In this article, the authors content analyze the websites of companies
listed on the Financial Times Stock Exchange 100 (FTSE 100) in 2009 to answer
research questions about the frequency and content of human rights policies in large
corporations.

Current literature guides hypothesis creation

Hypotheses are tested on the researcher's new
data

Current theory is accepted as adequate or
rejected as lacking

Fig. 2.2  Features of deductive inference

Manifest
Observed
Objective

Latent
Unobserved
Subjective

Fig. 2.3  Manifest and latent variables

2  The Fundamentals of Content Analysis

19

2.3.1  �The Sampling Unit

The sampling unit is the text used in the analysis, corresponding to each row of
data or text document. The text can be anything, but there are some guidelines to
follow when deciding what to use. First, the sampling unit must contain the
information necessary to answer the research questions (Vourvachis 2007). An
irrelevant sampling unit can lead to misleading or false inferences. Second, the
size of the sampling unit should be considered. It needs to be large enough that
the data are considered complete but limited to what is practical or feasible
(Vourvachis 2007). In Sect. 2.4, and more comprehensively in Chap. 3, we pres-
ent more about sampling.

In the sample article, the authors selected the firms’ websites as the sampling
unit. Each website was considered an individual text document in the sample
used in the analysis. Corporate websites typically contain a large but manage-
able amount of information. We can assume that the authors knew that the cor-
porate websites contained the appropriate data to answer the research questions
about corporate policies. Thus, the use of company websites was a good choice
for this study.

2.3.2  �The Recording Unit

The recording unit designates the piece of text that is categorized in the coding
step, described in Sect. 2.5. According to Holsti (1969), the recording unit is “the
specific segment of content that is characterized by placing it in a given category”
(p. 116). The recording unit could be a word, sentence, page, or an item specific to
the project. The choice of the sampling unit impacts the choice of recording unit.
At its largest, the recording unit can be the same size as the sampling unit
(Vourvachis 2007). Words, being the smallest measurement option, provide the
highest level of replicability. The disadvantage of words is that they can miss
information, because they do not include context. This issue demonstrates the
trade-offs the analyst must consider when selecting the recording unit. Smaller
recording units are typically more reproducible, whereas larger ones incorporate
contextual information but sacrifice reproducibility.

In our example, the authors used a combination of recording units to answer the
various research questions. The first research question asked whether a company in
the sample had a human rights policy. The researchers answered the first research
question by using the corporate website as the recording unit. If the website
included a human rights policy, the document for that company was coded as yes
with respect to that research question. This case provides a good example of the
research objective driving the decision-making.

2.3 � Unitizing and the Unit of Analysis

20

2.3.3  �The Context Unit

The context unit delineates the boundaries for questions about the meaning of the
recording unit. It limits the amount of text used to place the recording unit in con-
text. If the recording unit is a word and the context unit is a sentence, the sentence
is used to help define the word. The context unit provides a path to define the
recording unit when the meaning is ambiguous. It dictates the amount of text that
can be utilized.

In the example, the researchers used the code of conduct and supporting docu-
ments as the context unit to address the research question regarding human rights.
Drawing on prior research establishing the appropriateness of corporate codes of
conduct as a context unit, the researchers chose these codes as the context unit.

2.4  �Sampling

Sampling involves choosing a representative subset of a population. A population in
content analysis includes all text documents that are relevant to answering the
research question. In Preuss and Brown (2012), the population and sample were the
same, and the corporate websites of all of the companies listed on the FTSE 100
were included in the analysis. While these researchers included the entire popula-
tion in their sample, for larger populations, sampling is necessary to conduct an
efficient and manageable analysis.

The sample is chosen from the relevant population of documents containing text
(Stepchenkova 2012). A sample is considered representative of a population if the
results of an analysis are approximately the same as what the results would be if the
analysis were conducted on the entire population (Krippendorff 2012). For this rea-
son, we need to consider the composition of the entire population. If the population
is diverse, the sample should reflect that diversity. The main goal of sampling is to
compile a group of documents from the larger population of documents that is rep-
resentative of and relevant to the content analysis application. The sample should be
created with the research objective in mind. In Chap. 3, we introduce sampling
techniques used in text analytics.

2.5  �Coding and Categorization

Coding refers to the classification of text data according to observer-independent
rules (Krippendorff 2012, p. 126). Codes are used to create categories, which can
be themes, topics, or classifications. Coding can be completed manually, as in
human coding, or by computers, as in computer-aided coding. As shown in

2  The Fundamentals of Content Analysis

21

Fig. 2.1, human coding is a more involved process than computer-based coding. In
human coding, the coding scheme is first defined, because the coders must be
trained to complete the coding properly (Neuendorf and Kumar 2006). After the
trained coders complete the coding, inter-coder reliability is assessed. Reliability
in content analysis coding is “the extent to which a measure in a coding scheme
produces the same result when applied by different human coders” (Neuendorf
and Kumar 2006, p. 3). In computer-aided coding, theoretically based dictionaries
are used in coding. Even in computer-aided coding, there is still usually some need
for human intervention and interpretation in most content analysis applications
(Shapiro and Markoff 1997).

In addition to the two methods of coding, there are differences in the coding
techniques based on the type of inference, inductive or deductive. Figure 2.4 gives
a general overview of the difference. As shown, deductive inference is a top-down
approach in which theory-driven categories predetermine the codes used, as in the
case of dictionaries. In this approach, the text data are then coded within this theo-
retically driven framework, either by humans or computers. On the other hand,
inductive inference takes a bottom-up approach in which the data influence the
codes and the categories inform the resulting theory. This method is sometimes
referred to as emergent coding.

The first step in coding for both inductive and deductive inference is open cod-
ing. In open coding, every theme is considered possible, and no interpretations of or
connections between categories are made (Berg 1995). Strauss provides four strate-
gies for effective open coding (Berg 1995; Strauss 1987), listed in Fig. 2.5.

The study’s research question should be kept in mind and relevant questions are
created. The data may not answer this question directly. That information should be
recorded, too. Maintaining an open mind about additional information can result in
interesting and unexpected findings. At first, the data should be analyzed minutely
(Berg 1995). When beginning the coding, more is better. Therefore, it is done at a
very detailed level to capture more information. Once code saturation has been

Categories

Codes

Data

Categories

Codes

Data

Deductive Inductive

Fig. 2.4  Deductive and inductive coding approaches

2.5 � Coding and Categorization

22

achieved, the coder steps back and codes more generally. Code saturation occurs
when no new codes are being created.

Coding should be frequently interrupted so that theoretical notes can be written
(Berg 1995). In the coding process, codes may spark theoretical ideas, which
should be recorded in a separate file for future use. Without a written note to revisit,
these ideas may be forgotten. Finally, the analyst should never assume the analytic
relevance of any traditional variable until the data show it to be relevant or assume
that descriptive variables (e.g., age, gender) have an impact without support from
the data. Even if the research focuses on looking for differences in one of these
variables, the collected data determine whether the variable is important (Berg
1995).

• Keep research question in mind

• Maintain an open mind
1. Ask specific and consistent

questions

• More is better at first

• Then, recode more generally
2. Analyze the data minutely

• Record any ideas generated

• Revisit notes
3. Frequently interrupt the

coding

• Find data-driven support

• Let the data guide the results
4. Never assume analytical

relevance

Fig. 2.5  Four open coding strategies

1. Immersion and Open Coding

2. Free Category Generation

3. Abstraction

Fig. 2.6  The three-step inductive inference process

2  The Fundamentals of Content Analysis

23

Once the initial codes have been created, the next step is to condense these codes
into higher-level categories. This is an iterative process where each step aims to
move from a specific to a more general category. The ultimate goal is to achieve
generalizable and replicable categories that are applicable outside the collected
sample of data. To achieve this outcome, we must condense the number of catego-
ries while maintaining the text’s general information (Elo and Kyngäs 2008). The
process takes the notes made during the open coding and places them under gener-
ated category headings.

Following the immersion and open coding step, coding for inductive analysis
follows a more intensive than deductive process, as illustrated in Fig. 2.6. Having
completed the open coding for inductive inference, in step 2, new categories can
be generated freely. Since it is early in the process, it is better to create a category
and combine it or delete it later than the reverse. After the initial iteration, appro-
priate categories can be further condensed. This process typically requires sev-
eral iterations.

The final step in coding for inductive inference, the abstraction stage, produces
the final categories. Their purpose is to provide a general response to the research
question (Elo and Kyngäs 2008, p. 111). The categories should be at a high enough
level that they are clear, concise, and relevant.

An alternative approach is axial coding. In axial coding, the category is the focus.
In this method, the data are considered one category at a time. First, the initial cat-
egory is chosen, and then all of the items that belong in that category are included.
The process is repeated for each category necessary.

2.6  �Examples of Inductive and Deductive Inference
Processes

2.6.1  �Inductive Inference

As an example of content analysis for inductive inference, we use Crane and Kazmi
(2010), which considered the impact of business on children. In this study, the
authors collected 357 accounts and labeled the important topics and themes. From
this process, they extracted possible ideas for further analysis. They questioned each
account’s “[type] of impact (positive/negative), form of impact (direct or indirect),
business sector, and relevant core business functions)” (Crane and Kazmi 2010,
p. 6). The initial reading provided directions for condensing these ideas into inter-
pretative codes. Content analysis allowed the authors to “identify the types of child
impacts deemed relevant, newsworthy, and important by key stakeholders, rather
than prescribing which issues ‘should’ be taken into consideration” (Crane and
Kazmi 2010, p. 571). The authors used an inductive approach to produce categories
directly from the collected data. Extant theory from outside the study did not influ-
ence their decisions about how to conduct the analysis. The seven categories created
in Crane and Kazmi (2010) provided the researchers with descriptors of instances

2.6 � Examples of Inductive and Deductive Inference Processes

24

where “businesses were found to be confronted with issues of corporate responsibil-
ity toward young people” (p. 7). The final categories in their project were physical
protection, moral protection, social and cultural participation, economic well-being,
education and employability, parental and employment and family life, and impact-
ing children’s charities. These are good categories because they are helpful and
generalizable and answer the research question.

2.6.2  �Deductive Inference

We use Cho and Hambrick (2006) to illustrate deductive inference. This study
investigated the organizational impact of the Airline Deregulation Act of 1978. Cho
and Hambrick (2006) explored the conclusions drawn by industry observers, which
the authors used as a guide. The publications contained what experts believed was
happening to company attitudes in the industry. The published theory suggested that
deregulation would result in companies shifting to an entrepreneurial focus—an
important consequence of deregulation. From this knowledge, Cho and Hambrick
(2006) constructed the hypothesis: “Following substantial deregulation, there will
be a general shift in managerial attention toward more of an entrepreneurial orienta-
tion (relative to an engineering orientation)” (p. 4).

The authors tested six hypotheses in their study, but, for simplicity, only one is
presented here. The authors content analyzed shareholder letters of publicly traded
airline companies between 1973 and 1986. The first hypothesis sought to test a shift
in an airline’s entrepreneurial focus due to deregulation in the industry. Shareholder
letters between 1973 and 1978 were written before the deregulation; the ones from
1979 to 1984 were published after the deregulation of the industry. The authors used
the difference in frequency of theoretically defined words to test the hypothesis.

In the sample article, the publications regarding airline deregulation provide two
sets of words. One set is commonly used in an entrepreneurial problem and the
other in an engineering problem. The authors used these words to measure the
degree to which an organization was focused on an entrepreneurial problem versus
an engineering problem.

The decision about whether to use an inductive or deductive approach will impact
the steps of the content analysis process and the interpretation of results. If theory is
used as the foundation of the research, a top-down approach is undertaken. Conversely,
without theory, a bottom-up approach is used, and the data dictate the outcome.

Key Takeaways
•	 Content analysis provides a robust methodological framework for the anal-

ysis of text.
•	 The chosen type of inference, deductive or inductive, guides the content

analysis process.
•	 Four general steps in the content analysis process include unitization, sam-

pling, coding, and inference.

2  The Fundamentals of Content Analysis

25

References

Berg, B. L. (1995). Qualitative research methods for the social sciences. Boston: Bacon and Allyn.
Cho, T. S., & Hambrick, D. C. (2006). Attention as the mediator between top management team

characteristics and strategic change: The case of airline deregulation. Organization Science,
17(4), 453–469.

Crane, A., & Kazmi, B. A. (2010). Business and children: Mapping impacts, managing responsi-
bilities. Journal of Business Ethics, 91(4), 567–586.

Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal of Advanced
Nursing, 62(1), 107–115.

Holsti, O. R. (1969). Content analysis for the social sciences and humanities. Reading: Addison-
Wesley Pub. Co.

Krippendorff, K. (2012). Content analysis: An introduction to its methodology. Los Angeles: Sage.
Neuendorf, K. A., & Kumar, A. (2002). Content analysis. The International Encyclopedia of

Political Communication, 1, 221–230.
Potter, W. J., & Levine-Donnerstein, D. (1999). Rethinking validity and reliability in content anal-

ysis. Journal of Applied Communications Research, 27, 258–284.
Preuss, L., & Brown, D. (2012). Business policies on human rights: An analysis of their content

and prevalence among FTSE 100 firms. Journal of Business Ethics, 109(3), 289–299.
Saldaña, J. (2015). The coding manual for qualitative researchers. Thousand Oaks: Sage.
Shapiro, G., & Markoff, J. (1997). A matter of definition. In C. W. Roberts (Ed.), Text analysis

for the social sciences: Methods for drawing statistical inferences from texts and transcripts.
Mahwah: Lawrence Erlbaum.

Stepchenkova, S. (2012). 23 content analysis. In Handbook of research methods in tourism:
Quantitative and qualitative approaches (p. 443). Cheltenham: Edward Elgar.

Strauss, A. L. (1987). Qualitative analysis for social scientists. Cambridge: Cambridge University
Press.

Vourvachis, P. (2007). On the use of content analysis (CA) in corporate social reporting (CSR):
Revisiting the debate on the units of analysis and the ways to define them In British Accounting
Association Annual Conference 2007, 3–5.

Further Reading

For more comprehensive coverage of manifest and latent content, including patterns and projec-
tions, see Potter and Levine-Donnerstein (1999). For more about content analysis using human
coding, see Potter and Levine-Donnerstein (1999) and Franzosi (1989). For an in-depth book
about content analysis, see Krippendorff (2012). For more about coding in qualitative research,
see Saldaña (2015).

Further Reading

27© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3_3

Chapter 3
Planning for Text Analytics

Abstract  This chapter encourages readers to consider the reason for their analysis
to chart the correct path for conducing it. This chapter outlines the process for plan-
ning the text analytics process. The chapter starts by asking the analyst to consider
the objective, data availability, cost, and outcome desired. Analysis paths are then
shown as possible ways to achieve the goal.

Keywords  Text analytics · Text mining · Planning · Sampling

3.1  �Introduction

The availability and accessibility of data have increased immensely with the Internet
of Things (IoT) (Neuendorf 2016). As the amount of content increases, creating a
new conceptual realm called “big data,” traditional as well as more progressive
content analysis approaches have been used in many fields of research and applica-
tion. Not only has the amount of content increased, but also the nature of the content
has changed. Through real-time communication and interactions via text, email, and
social media, people can both generate and consume data in real time.

Technology-enabled analysis paved the way for an increase in text analysis
applications across many industries and areas of research. Computer-aided text
analysis (CATA) has allowed both analysts and non-analysts to combine qualitative
and quantitative analysis methods and processes in modern text analytics applica-
tions. CATA is defined as “any technique involving the use of computer software for
systematically and objectively identifying specified characteristics within text in
order to draw inferences from text” (Kabanoff 1996, p. 507). The digital age intensi-
fied an already growing trend in the late 1990s toward more practical and applied
approaches to content analysis (Stepchenkova 2012; Stone 1997). Content analysis
refers to the systematic measurement of text or other symbolic materials
(Krippendorff 2012; Shapiro and Markoff 1997). Content analysis and text analysis
are often used interchangeably.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_3&domain=pdf

28

Text mining has become an all-encompassing term referring to all of the underly-
ing processes of text analysis (Sebastiani 2002). In text mining, text analytics, and
content analysis, text is the primary source of content and information. The
similarities between and complementary nature of the two approaches to analyzing
text have been detailed in recent literature. For instance, Yu et al. (2011) suggest that
text mining is compatible with qualitative research, asserting that text mining and
content analysis are similar. On the other hand, many researchers have shown how
the two methods are complementary. According to Wiedemann (2013), computer-
assisted text analytics can be used to support qualitative research. Lin et al. (2009)
present an application using text mining as an enabler of content analysis for the
classification of genres.

3.2  �Initial Planning Considerations

The planning stage determines the rest of the analytics process, because it is at this
point that the analyst makes important basic decisions. Regardless of the reason for
the analysis, by the end of this stage, the analyst will have collected the data and
defined the variables of interest. At this point, the analyst has at least a conception
of the goal of the analysis in mind. In any text analytics application, there are four
major considerations that will influence each step of the planning process, as out-
lined in Fig. 3.1.

Fig. 3.1  Four initial planning considerations

3  Planning for Text Analytics

29

3.2.1  �Drivers

The process of a text analytics project will vary depending on the motivation
behind the analysis. More specifically, the starting point of the analysis will influ-
ence the process and methods. Krippendorff and Bock (2009) suggest that there
are three drivers of content analysis applications: (1) the text, (2) the problem, and
(3) the method. We use this framework to describe the drivers of real-world text
analytics applications. In text-driven analysis, the analysis is undertaken because
of access to and interest in a dataset. The data may be information the analyst owns
or collected, or data that were generated by and/or acquired in an alternate way.
For instance, a company’s marketing department may conduct a text-driven social
media-based market research project to determine the sentiment of its customers
regarding a new product or service, without having any preconception about what
the true sentiment may be. The company may collect the data automatically and
provide them to the analyst.

Unlike text-driven analysis, problem-driven analysis relies on background theory
and may include the testing of a hypothesis using a representative sample. Problem-
driven analysis for hypothesis testing is akin to content analysis for deductive infer-
ence. In text analytics, on the other hand, the basis for testing a hypothesis may not
be as rigid. In many business applications, problem-driven analysis can be used to
compare past performance or organizational beliefs about consumers. As an exam-
ple, a company may have reason to believe that the sentiment about one of its prod-
ucts is positive by looking at the average number of stars assigned on online
consumer reviews. A sentiment analysis could be undertaken to compare customer
sentiment to star ratings.

Finally, method-driven analysis is application based and undertaken with tech-
niques, software, or methodology in mind. As new methodologies and tools are
applied to text, method-driven analysis may be used to test new methods or evaluate
new ways of doing things. For example, an analyst may want to demonstrate the
benefits of performing a cluster analysis using complaint narrative data to catego-
rize customer complaints that are missing categorical information due to technical
errors. While the focus is on the application, the analyst must still ensure that the
method is appropriate and methodologically sound.

3.2.2  �Objectives

The objective of the analysis will inform the type of data, methods and resources
necessary to complete the analysis. In most business applications of text analytics,
the overarching goal of the analysis is to derive value from the data resources. This
value-added activity can help businesses make decisions and gain competitive
advantages (Ur-Rahman and Harding 2012). Potential business text analytics proj-
ect objectives include describing or classifying text data; identifying patterns,

3.2  Initial Planning Considerations

30

relationships, and networks; visualizing information; extracting or summarizing
information; and applying state-of-the-art technologies or testing a hypothesis.

It is important to have a clear understanding of the objectives before beginning a
text analytics project. As in any business project, well-defined objectives lead to
measurable performance and benchmarking capabilities.

3.2.3  �Data

Choosing the data to analyze is a key decision. If the goal of the analysis is analyz-
ing data, that choice is quite simple. However, if the analysis is driven by methods
or problems, it is important to identify the data that will meet the objective. Having
made that decision, the next step is to determine whether the data are available. In
some cases, such as survey research, new data may need to be gathered. The analyst
may often be able to use data he or she already owns or can access. In other cases,
the data may be available on the web or from other electronic sources.

In addition to data generation, which is covered in Sect. 3.5, understanding the
data is crucial.

3.2.4  �Cost

The final consideration is the cost of the analysis. If the analysis is data driven, the
data already exist and will not add to the overall project cost. However, if data must
be collected, the cost of doing so should be considered. Luckily, text data is usually
an available but untapped organizational resource. In fact, the growing amount of
data, both proprietary and public, has created an abundance rather than a shortage
of material (Cukier 2010). Tapping into these available resources can significantly
reduce the cost associated with the analysis.

If the analysis is method-driven, the technological resources needed to complete
the analysis are already available. However, if the analysis is driven by data or a
specific problem, technology costs should be considered when planning and manag-
ing a text analytics project. Commercial software programs can be costly. If cost is
a concern, open-source or web-based software programs can provide an ideal cost-
saving solution.

3.3  �Planning Process

As Fig. 3.2 illustrates, the planning stage involves several major tasks: framing the
problem, generating the data, and making decisions about the analysis.

3  Planning for Text Analytics

31

3.4  �Problem Framing

3.4.1  �Identifying the Analysis Problem

Problem identification is an important part of the text analytics planning process. As
in content analysis, text analytics is a research method. The research problem is the
topic or focus of the analysis. As Fig. 3.3 notes, the research problem should be
clear, focused, and feasible.

The text analytics focus should be clear and well defined. The research problem
helps inform the population of text documents that will be researched. If the focus
is not clear, the relevant population may be erroneously chosen, rendering the analy-
sis results invalid. The analyst must make many important decisions with respect to
the analysis, and a clear focus will make it easier to make these decisions.

To meet project deadlines and goals, it is important to narrow the focus of the
analysis. Additionally, a project with a research question that is too broad may be

• Problem identification

• Approach: Inductive or
deductive

Problem
Framing

• Scope and Purpose

• Data collection

• Sampling

Data
Generation

• Method selection

• Software selection

Analysis
Decision Making

Fig. 3.2  Text analytics planning tasks

1. Clear

2. Focused

3. Feasible

Fig. 3.3  Three characteristics of good research problems

3.4  Problem Framing

32

difficult to manage and implement (Boudah 2011). For instance, if there is an
organizational concern about customer satisfaction, measuring customer satisfac-
tion from customer feedback might be proposed as the focus of the text analytics
project. This is a broad focus, and the insights about the customers overall could
miss important differences among customers. A clearer focus would be to investi-
gate the sentiment of customers about a product or service in a given region. The
results of an analysis with this research focus can inform marketing decisions and
strategies for the product in that region.

Finally, the analysis should be feasible, meaning it should be possible to answer
the research question. It is important to set the text analytics project up for success
at the beginning of the project. If the research question cannot be answered, the
focus of the analysis should be altered prior to the analysis.

3.4.2  �Inductive or Deductive Inference

Similar to content analysis, the objective of the text analytics application will help
to determine the role of background information, domain knowledge, and theory. If
the goal is to learn something new from the text data, as in content analysis for
inductive inference, it may be reasonable to keep external influences, such as back-
ground and theory, to a minimum. On the other hand, text analytics projects can
help expand a business’ current knowledge base, and the use of domain knowledge
and existing organizational knowledge can be invaluable. Akin to content analysis
for deductive inference, existing data, information, and theory can be used for
hypothesis testing, benchmarking, and model building.

As in deductive content analysis, basic information about the analysis planned is
vital. In problem-driven text analytics, it is important to collect background infor-
mation about the problem, because it is the motivation for the project. In many
cases, this step may include gathering existing theoretical information or even col-
lecting supporting data. In problem-driven text analytics, domain knowledge can
also contribute to the formulation of hypotheses, whether formal or informal.

Similar to inductive content analysis, the planning stage in text-driven analytics
focuses on the data itself. The analyst may perform an initial exploratory data analy-
sis to become better acquainted with the data. If quantitative data are also present,
such an analysis may help the analyst better understand the quantitative variables
and how they relate to the qualitative data.

3.5  �Data Generation

3.5.1  �Definition of the Project’s Scope and Purpose

In text analytics, each record of the collected textual data should have a unique
identifier that can be used to refer to that instance. These instances are referred to as
documents. Documents will sometimes correspond to physical documents, as in the

3  Planning for Text Analytics

33

analysis of written materials such as press briefings or corporate reports (Feldman
and Sanger 2007). In some cases, the documents will not necessarily take the form
of a physical document, as is the case of individual tweets, consumer reviews, or
messages. All of these documents comprise a document collection.

As in content analysis, a major decision when planning a text analytics project is
choosing the scope of the analysis. We want to determine the unit of analysis and
granularity of this unit. In this case, it may be documents, sentences, phrases, words,
or characters. It is more common in natural language processing than in text analyt-
ics to analyze text data at the word or character level. In text analytics, the focus is
typically at the document level. We want to be able to describe or categorize a docu-
ment based on the words, themes, or topics present in the document.

In defining the scope of the analysis, we also want to identify the information in
the documents in which we are most interested, whether it is document categories,
meaning, or content. If we want to group or categorize documents, our methods will
be different than if we want to learn about the meaning of the documents. With
respect to the content of the documents, we may be interested in the semantic or
sentiment information. The semantic information derived from documents tells us
how the words in the documents relate to one another, such as co-occurrences
(Griffiths et al. 2007). Sentiment information concerns feelings, emotions, and
polarity based on the words in the documents.

3.5.2  �Text Data Collection

As with any data analysis, analysis using text data is only as good as the data being
used as input to the analysis. For this reason, we prefer to collect and use high-
quality data. While data quality can be judged with regard to many aspects, in
Fig. 3.4 we highlight some important dimensions of quality from Pipino et al.
(2002) that are relevant for text data: consistency, relevancy, completeness, ease of
manipulation, free of error, and interpretability.

We want our text data to be relevant to our objective and area of interest. If our
data are not relevant to the research objective, our analysis results will not be valid.
We can ensure that we are using relevant data by carefully selecting the documents
in our document collection. In choosing these relevant documents, we want to be
certain that we can interpret the text and understand any special formatting. For
instance, if we are using text data from Twitter, “#” will have a different meaning
than in text data from newspaper articles. Any special rules or necessary domain
knowledge should be considered to create a high-quality document collection.

In order to analyze a dataset, we need to be able to manipulate it, not only to
improve the quality but also to preprocess it. Ease of manipulation is especially
important when we want to improve the quality of our data, especially with respect
to insuring that it is free of error, consistent, and complete. We can improve the
quality of our data by performing data cleansing or scrubbing to remove duplicates
and errors (Rahm and Do 2000). This step may require removing inconsistencies
and incomplete documents. Initial consideration of the quality of the text data can

3.5  Data Generation

34

save us time in preparation and preprocessing. If the analysis is not text driven, the
text data will need to be collected or generated. Text data can come from one or
many sources and can be manually or automatically collected.

The unstructured nature of text data can make the text data collection process
more difficult than with other types of data. Unlike other types of information, text
data are created and consumed by humans (Zhai and Massung 2016). Research in
the social sciences may include data from surveys, interviews, or focus groups
(Granello and Wheaton 2004). In this area, the document collection will likely be
smaller than other types of data. Problem-driven analyses, such as those in business
environments, may utilize proprietary electronic data, such as that generated by an
enterprise resource planning (ERP) or customer relationship management (CRM)
system and stored in a database or data warehouse. In this case, the analyst will need
to retrieve the relevant data for the text analytics project by using a querying lan-
guage such as SQL.

Another source of relevant data may be the web. Web-based data are becoming
increasingly popular in text analytics applications because of their many benefits,
including availability, accessibility, and low cost. This data may already be avail-
able in a convenient format, such as via file transfer protocol (FTP) or on a web-
page in .csv, Excel, or text format. In other cases, access to structured data may be
available through an application programming interface (API), which requires
some understanding of programming. If the data are contained within a webpage
or many webpages, web scraping can be used to automatically collect the data.

Text Data Quality

Consistency

Relevancy

Completeness

Ease-of-
Manipulation

Free-of-Error

Interpretability

Fig. 3.4  Quality dimensions of text data

3  Planning for Text Analytics

35

This method works well with social media, discussion boards, blogs, and feeds
(Webb and Wang 2014). In text analytics applications, especially those using web
data, it is common to collect and use data from more than one source. In this case,
care must be taken to standardize the data to make it as uniform as possible to
maintain the quality of the data.

When collecting text data, we will often collect supporting data, known as meta-
data. This metadata will sometimes include a time stamp, unique identification
number, and other classifying or identifying information for that document. For
many analysis methods, metadata can and should be incorporated into the analysis.
For instance, one analysis method covered in Chap. 9, classification analysis,
requires a classification for each document. This information should be retained
when collecting the data and stored as metadata.

3.5.3  �Sampling

A population is a collection of something of interest, such as tweets or blog posts
(Scheaffer et al. 2011). A population includes every instance of interest in the
research. In planning the text analysis, the analyst should consider the population
to be studied. In many cases, the entire population is much too large to collect and
analyze. For this reason, we aim to create a sample of this population, which can
be used to represent or generalize to the entire population. A sample is a smaller
subset of the larger population. We consider two methods: non-probability and
probability sampling.

3.5.3.1  �Non-probability Sampling

In non-probability sampling methods, observations from the target population are
chosen for the sample in a nonrandom fashion. Non-probability sampling methods
are prominent in content analysis, due to its qualitative nature. We present two non-
probability sampling methods: convenience and relevance.

Convenience sampling is the least restrictive sampling type, in which the avail-
ability of the sample determines inclusion (Marshall 1996). Convenience sampling
is an inexpensive sa‑mpling option; however, analysis using this method may suffer
from a lack of generalizability and bias. While convenience sampling suffers from
its subjectivity, in cases where a homogenous group is being studied, convenience
sampling is appropriate (Webb and Wang 2014).

In relevance or purposive sampling, text data observations are chosen for inclu-
sion in the sample if their inclusion contributes to answering the research question.
Relevance sampling requires the analyst to choose the text documents to include,
meaning that the analyst must understand and consider each of the documents
(Krippendorff 2004). For smaller samples, this approach may be feasible; however,
it can be costly and time consuming for wider-scale analyses.

3.5  Data Generation

36

3.5.3.2  �Probability Sampling

In a simple random sample, a set number of observations are chosen for inclusion in
the sample at random, using either a random number generator or an alternative
computer-aided method. In a simple random sample in text analytics, each docu-
ment has the same, or equal, probability of inclusion in the sample. In Fig. 3.5, a
simple random sample of 4 documents is created from the population of 20 docu-
ments. The four documents were chosen using a random number generator.1

In systematic sampling, every nth observation is chosen for inclusion in the sam-
ple (Krippendorff 2012). In the systematic sampling example in Fig. 3.6, every fifth
document is selected for inclusion in the sample of four documents.

A stratified random sample, shown in Fig. 3.7, acknowledges that subgroups
exist in the data and those subgroups are separately sampled and later combined to
form a single sample (Krippendorff 2012).

3.5.3.3  �Sampling for Classification Analysis

In classification analysis, introduced in Chap. 9, the analysis sample is split into
two smaller samples, the training and testing set, prior to the analysis. The training
set is used to build the classification model, and the testing set is used to determine
the accuracy of the model in making predictions. For this reason, sampling for this
type of analysis deserves additional consideration. In sampling for classification

1 In Microsoft Excel, random numbers can be generated using the function = RANDBETWEEN. The
function requires minimum and maximum values as inputs. In the example the function would be
= RANDBETWEEN(1,20), and the function would need to be copied to four cells to produce four
random numbers between 1 and 20.

Fig. 3.5  Simple random sampling

3  Planning for Text Analytics

37

analysis, there are two sampling methods proposed by Yang (1996): proportion-
enforced and completeness-driven sampling. In proportion-enforced sampling, a
systematic sample reflecting the training data is used as the training sample. On the
other hand, in completeness-driven sampling, there is more control over the cate-
gory observations included in the training set.

3.5.3.4  �Sample Size

The sample should be large enough to be representative of the larger dataset. In
quantitative analysis, there are guidelines for choosing the sample size. However,
determinations about the sample size for a qualitative analysis can be based on pub-
lished sample sizes or the sample sizes used in previous analyses (Webb and Wang
2014). In general, the larger the sample, the smaller the sampling error; however, the

Fig. 3.6  Systematic sampling

Fig. 3.7  Stratified sampling

3.5  Data Generation

38

relationship between size and error represents diminishing returns (Marshall 1996).
Put simply, a larger sample is preferable to a smaller sample, but an unnecessarily
large sample can increase costs and inefficiency without realizing notable gains in
error reduction.

3.6  �Method and Implementation Selection

3.6.1  �Analysis Method Selection

Unless the research is method-driven, the most relevant analysis method must be
chosen based on the objective and scope of the project. Figure 3.8 outlines some
simple questions that can help determine the type of analysis that should be used.
By now, the analyst should have a fairly well-established idea of the objective and
scope of the analysis, including its focus. Determining if the focus is on the catego-
rization of documents or the meaning of documents can help narrow down the anal-
ysis method options.

If the focus of the analysis is to categorize or classify the documents in the
document collection, the analysis method will depend on whether or not the avail-
able data have category or class labels. If such labels exist, classification analysis
can be used, which has the ability to make predictions, as described in Chap. 9. If

Fig. 3.8  Choosing the analysis method based on the focus of the analysis

3  Planning for Text Analytics

39

labeled data are not available, cluster analysis, covered in Chap. 7, can be used to
group documents into naturally occurring clusters.

On the other hand, the analysis may be concerned with the content of the docu-
ments. To identify the sentiment of the documents in the document collection,
sentiment analysis can be performed, which is presented in Chap. 10. As demon-
strated in this chapter, if the data have sentiment labels, classification methods can
also be used to classify the documents by sentiment. To identify semantic infor-
mation in the documents, there are two analysis methods available: latent seman-
tic analysis (LSA) and topic models. Topic models are probabilistic, generative
models, while LSA represents documents and words in vector space through
dimension reduction methods. LSA is covered in Chap. 6, and topic models are
discussed in Chap. 8.

3.6.2  �The Selection of Implementation Software

Once the analysis method is chosen, it is important to consider how the analysis
will be performed and which software will be used. In choosing software, some
important considerations are cost, functionality, and capability. For instance, if
cost is a concern, an open-source program, rather than commercial software, is
preferable. With respect to functionality, the chosen software should be a good
match with the analyst’s skill set or should be user-friendly enough in the case of
a learning curve. Finally, the analyst should ensure that the software can conduct
the planned analysis. In Chaps. 13, 14, 15 and 16, we present real-world use cases
with four popular software programs, including both commercial and open-source
programs, for text data analysis.

There are many packages available in the R open-source software for the analy-
sis of text, including tm (Feinerer et al. 2008) and tidytext (Silge and Robinson
2016). Chapter 13 presents a sentiment analysis application using the tidytext
package. Python is an open-source software program with packages such as
NLTK, text mining, pattern, and NumPy that can be used for text preprocessing,
natural language processing, and text analytics (Bird et al. 2009). Chapter 14
describes an application of latent semantic analysis using Python. Rapidminer
Text Mining and sentiment analysis can be used for text extraction and analysis,
with an emphasis on mining web data. Chapter 15 provides an example of classi-
fication analysis using Rapidminer. SAS Text Miner (Zanasi 2005) is a commer-
cial software program that uses SAS Enterprise Miner for the analysis of text data.
Chap. 16 presents a visualization application using SAS Visual Text Analytics.

Key Takeaways
•	 Four important initial considerations when planning a text analytics proj-

ect are drivers, objectives, data, and cost.
•	 The planning process can be broken down into three major planning tasks:

problem framing, data generation, and analysis decision-making.

3.6  Method and Implementation Selection

40

References

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: analyzing text
with the natural language toolkit. O’Reilly Media, Inc.

Boudah, D. J. (2011). Identifying a research problem and question and searching relevant lit-
erature. In Conducting educational research: Guide to completing a major project. Thousand
Oaks: SAGE Publications.

Cukier, K. (2010). Data, data everywhere: A special report on managing information. Economist
Newspaper.

Feinerer, I., Hornik, K., & Meyer, D. (2008). Text Mining Infrastructure in R. Journal of Statistical
Software, 25(5): 1–54. http://www.jstatsoft.org/v25/i05/.

Feldman, R., & Sanger, J. (2007). The text mining handbook: Advanced approaches in analyzing
unstructured data. Cambridge: Cambridge University Press.

Granello, D. H., & Wheaton, J. E. (2004). Online data collection: Strategies for research. Journal
of Counseling & Development, 82(4), 387–393.

Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation.
Psychological Review, 114(2), 211–244.

Kabanoff, B. (1996). Computers can read as well as count: How computer-aided text analysis can
benefit organisational research. Trends in organizational behavior, 3, 1–22.

Krippendorff, K. (2004). Reliability in content analysis: Some common misconceptions and rec-
ommendations. Human communication research, 30(3), 411–433.

Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation.
Psychological Review, 114(2), 211–244.

Krippendorff, K. (2012). Content analysis: An introduction to its methodology. Thousand Oaks:
Sage.

Krippendorff, K., & Bock, M. A. (2009). The content analysis reader. Thousand Oaks: Sage.
Kroenke, D. M., & Auer, D. J. (2010). Database processing (Vol. 6). Upper Saddle River: Prentice

Hall.
Lin, F. R., Hsieh, L. S., & Chuang, F. T. (2009). Discovering genres of online discussion threads

via text mining. Computers & Education, 52(2), 481–495.
Marshall, M. N. (1996). Sampling for qualitative research. Family Practice, 13(6), 522–526.
Neuendorf, K. A. (2016). The content analysis guidebook. Sage.
Pipino, L. L., Lee, Y. W., & Wang, R. Y. (2002). Data quality assessment. Communications of the

ACM, 45(4), 211–218.
Rahm, E., & Do, H. H. (2000). Data cleaning: Problems and current approaches. IEEE Data

Engineering Bulletin, 23(4), 3–13.
Scheaffer, R. L., Mendenhall, W., III, Ott, R. L., & Gerow, K. G. (2011). Elementary survey sam-

pling. Boston: Cengage Learning.
Scheaffer, R. L., Mendenhall, W., III, Ott, R. L., & Gerow, K. G. (2011). Elementary survey sam-

pling. Boston: Cengage Learning.
Sebastiani, F. (2002). Machine learning in automated text categorization. ACM computing surveys

(CSUR), 34(1), 1–47.
Shapiro, G., & Markoff, J. (1997). A Matter of Definition. In C.W. Roberts (Ed.), Text Analysis for

the Social Sciences: Methods for Drawing Statistical Inferences from Texts and Transcripts,
Mahwah, NJ: Lawrence Erlbaum Associates.

Silge, J., & Robinson, D. (2016). tidytext: Text Mining and Analysis Using Tidy Data Principles in
R. Journal of Statistical Software, 1(3).

Stepchenkova, S. (2012). Content analysis. In L. Dwyer et al. (ed.), Handbook of research methods
in tourism: Quantitative and qualitative approaches (pp. 443–458). Edward Elger Publishing.

Stone, P.J. (1997). Thematic text analysis. In C.W. Roberts (Ed.), Text Analysis for the Social
Sciences: Methods for Drawing Statistical Inferences from Texts and Transcripts (pp. 35-54).
Mahwah, NJ: Lawrence Erlbaum Associates.

3  Planning for Text Analytics

http://www.jstatsoft.org/v25/i05/

41

Ur-Rahman, N., & Harding, J. A. (2012). Textual data mining for industrial knowledge manage-
ment and text classification: A business oriented approach. Expert Systems with Applications,
39(5), 4729-4739.

Webb, L. M., & Wang, Y. (2014). Techniques for sampling online text-based data sets. In Big data
management, technologies, and applications (pp. 95–114). Hershey: IGI Global.

Wiedemann, G. (2013). Opening up to big data: Computer-assisted analysis of textual data in
social sciences. Historical Social Research/Historische Sozialforschung, 38(4), 332–357.

Yang, Y. (1996). Sampling strategies and learning efficiency in text categorization. In M. Hearst
& H. Hirsh (Eds.), AAAI spring symposium on machine learning in information access
(pp. 88–95). Menlo Park: AAAI Press.

Yu, C. H., Jannasch-Pennell, A., & DiGangi, S. (2011). Compatibility between text mining and
qualitative research in the perspectives of grounded theory, content analysis, and reliability. The
Qualitative Report, 16(3), 730.

Zanasi, A. (2005). Text mining tools. In Text Mining and its Applications to Intelligence, CRM and
Knowledge Management. WIT Press, Southampton Boston, 315–327.

Zhai, C., & Massung, S. (2016). Text data management and analysis: A practical introduction to
information retrieval and text mining. San Rafael: Morgan & Claypool.

Further Reading

For more thorough coverage of the research problem and question, see Boudah (2011). Database
management, processing, and querying are beyond the scope of this book. For more compre-
hensive coverage of these topics, see Kroenke and Auer (2010). Web scraping is very impor-
tant, but also beyond the scope of this book. For more detailed information and instructions,
see Munzert et al. (2014) for web scraping using R or Mitchell (2015) for web scraping using
Python.

Further Reading

Part II
Text Preparation

45© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3_4

Chapter 4
Text Preprocessing

Abstract  This chapter starts the process of preparing text data for analysis. This
chapter introduces the choices that can be made to cleanse text data, including
tokenizing, standardizing and cleaning, removing stop words, and stemming. The
chapter also covers advanced topics in text preprocessing, such as n-grams, part-
of-speech tagging, and custom dictionaries. The text preprocessing decisions
influence the text document representation created for analysis.

Keywords  Text preprocessing · Text parsing · n-grams · POS tagging · Stemming
· Lemmatization · Natural language processing · Tokens · Stop words

4.1  �Introduction

By the end of the planning stage, the data should be collected, and the goal of the
analysis should be well defined. After completing the planning stage, the next
step is to prepare the data for analysis. Each record of the collected text data
should have a unique identifier that can be used to refer to that instance. In text
analytics, these instances are known as documents. A document is typically made
up of many characters. The many documents make up a document collection or
corpus. Characters are combined to form words or terms in a given language.
These words are the focus of our analysis, although groupings of terms can also
be the chosen unit of analysis, as described in this chapter. The collection of
terms is sometimes called the vocabulary or dictionary. Figure 4.1 illustrates the
components of our text data.

Let’s consider an example of a document collection in which ten people were
told to envision and describe their dog. The dog could be wearing dog clothes. Some
of these people describe their own dogs, while others describe a fictional dog. The
document collection is shown in Fig. 4.2.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_4&domain=pdf

46

4.2  �The Preprocessing Process

Much of the text preparation and preprocessing methods have their roots in natural
language processing. Text preprocessing takes an input of raw text and returns
cleansed tokens. Tokens are single words or groups of words that are tallied by their
frequency and serve as the features of the analysis.

The preprocessing process includes (1) unitization and tokenization, (2) stan-
dardization and cleansing or text data cleansing, (3) stop word removal, and (4)
stemming or lemmatization. The stages along the pipeline standardize the data,
thereby reducing the number of dimensions in the text dataset. There is a balance
between retained information and reduced complexity in the choices made during
the process. This process is depicted in Fig. 4.3.

Each step removes unnecessary information from the original text. Proper pre-
processing of text data sets up the analysis for success. In text analysis, far more
time is spent in preparing and preprocessing the text data than in the analysis itself
(Dumais et al. 1998). Diligent and detailed work in cleansing and preprocessing
makes the analysis process smoother.

4.3  �Unitize and Tokenize

The first step involves the choice of the unit of text to analyze and the separation of
the text based on the unit of analysis. This unit could be a word; however, in other
cases, it may be a grouping of words or a phrase. Single words are the simplest
choice and make a good starting point. It is difficult for a computer to know where
to split the text. Fortunately, most text mining software contains functions to split
text, because computers do not naturally sense when punctuation designates the end
of a word or sentence. For example, apostrophes could indicate the end of a token,
or not, depending on the use (Weiss et al. 2010).

In our example, tokenization is done under the assumption of bag-of-words
(BOW), meaning that the grammar and ordering of the text in a document is not

Terms

Documents

Document Collection

Fig. 4.1  Hierarchy of
terms and documents

4  Text Preprocessing

47

considered in building the quantitative representation of the qualitative text data.
First, we analyze the text in the document collection at the word or term level. For
instance:

Document 1: My Favorite Dog Is Fluffy and Tan  There are seven words in this
document. Next, through tokenization, we separate the text into a more usable form,
known as tokens.

Fig. 4.2  Example document collection

4.3  Unitize and Tokenize

48

Document

1. Unitize & Tokenize
Tokens • N-grams

2. Standardize & Cleanse
Standardize Case • Remove Numbers,

Punctuation and Special Characters

3. Stop Word Removal

Common Lists • Custom Dictionaries

4. Stem or Lemmatize
Stemming • Lemmatizing •

Part of Speech Tagging

Tokens

Fig. 4.3  The text data pre-processing process

Based on Document 1, we have eight tokens. Each of the seven words is a token,
in addition to the period at the end of the sentence. The tokenized documents are
shown in Fig. 4.4. Each bracket in the documents represents a token.

4.3.1  �N-Grams

N-grams are an alternative to single words in the tokenization process. N-grams are
tokens; they are consecutive word sequences with length n. For instance, bigrams
are tokens composed of two side-by-side words; a single word is known as a uni-
gram. N-grams retain information about the co-occurrence of words, because they
group adjacent words into the same token.

Visualize the process as a picture frame that contains n words. Initially, the frame
rests over the first n words. This counts as a token. The frame then moves over one
word resulting in the exclusion of the first word. This is the second token. This pro-
cess repeats for the length of the text (Struhl 2015). We will demonstrate this pro-
cess with n equal to two, known as a bigram. Again, we use Document 1.

4  Text Preprocessing

49

Fig. 4.4  Tokenized example documents

The first token is:
My favorite dog is fluffy and tan.

The second token is:
My favorite dog is fluffy and tan.
The final token is:
My favorite dog is fluffy and tan.
The bigram representation of Document 1 is:

4.3  Unitize and Tokenize

50

My favorite

favorite dog

dog is

is fluffy

fluffy and

and tan

tan

This procedure can be used to create n-grams for higher values of n.

4.4  �Standardization and Cleaning

First, we want to standardize and clean the tokens. These transformations level the
playing field by making the terms in each of the documents comparable. For
instance, we do not want character, character, and Character to be considered sep-
arate items just because one has a comma, and another has an upper case C. This
standardization and cleaning prevents this possibility from occurring.

Our first step is to convert the terms in the text to lower case. In this step, any
capital letters are converted to lower case. Without this conversion, the first token in
Document 1, My, and the first token in Document 7, MY, would erroneously be
considered two different terms.

Following this conversion, we want to remove numbers, punctuation, and special
characters. In Document 9, we will remove the numbers 3 and 2. We will also
remove any punctuation at the ends of sentences, such as periods and exclamation
points. We remove periods from Documents 1, 3, 4, 5, 6, 7, and 10. We also remove
an exclamation point from Document 9 and an ampersand from Document 6. In this
document collection, we have one special character, a ♥ in Document 4, which is
removed. In real-world text data, there may be additional characters and tokens to
clean. For instance, in some text documents, there may be extra spaces, such as
white space. These are also eliminated at this stage. The results of cleansing and
standardizing our text data appear in Fig. 4.5.

4.5  �Stop Word Removal

Next, we want to drop frequently used filler words, or stop words, which add no
value to the analysis. According to the Oxford English Dictionary, and, the, be, to,
and of are the most common words in the English language.1 In the case of text
analysis, we remove common terms because, although common terms such as

1 https://en.oxforddictionaries.com/explore/what-can-corpus-tell-us-about-language

4  Text Preprocessing

https://en.oxforddictionaries.com/explore/what-can-corpus-tell-us-about-language

51

Fig. 4.5  Cleansed and standardized document collection

these serve a grammatical purpose, they provide little information in terms of
content (Salton 1989; Wilbur and Sirotkin 1992).

A collection of stop words is known as a stop list. Alternatively, this collection
of words can be known as a dictionary. There are several stop lists such as those
presented in Chaps. 13, 14, 15 and 16 that are utilized by software programs for
text analytics. These lists include many different languages and methods.2 The

2 Stop lists in more than 40 languages can be found at http://www.ranks.nl/stopwords

4.5  Stop Word Removal

http://www.ranks.nl/stopwords

52

Fig. 4.6  Documents after stop word removal

SMART information retrieval system, introduced by Salton (1971), has a popular
stop word list containing 571 words.3

In our example, we will use the SMART dictionary (Salton 1971) to identify
and remove stop words from our documents. The following stop words were
removed from the documents: a, and, has, he, is, my, the, and was. The resulting
document collection after stop word removal is displayed in Fig. 4.6. An alternative
to using existing stop word dictionaries is to create a custom dictionary.

3 The stop word list based on the SMART information retrieval system can be found at http://www.
ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a11-smart-stop-list/english.stop

4  Text Preprocessing

http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a11-smart-stop-list/english.stop

53

4.5.1  �Custom Stop Word Dictionaries

Standard stop word dictionaries eliminate many of the most common words in a
given language, but sometimes we also want to drop domain- or project-specific
words or tokens. In this case we can build a custom dictionary to complete this task.
Often, projects will have topic-specific words that occur frequently but add little
value. In the documents in our example, we may consider adding the term dog to a
custom stop list. Given that the ten respondents were told to describe their dog, this
word may not be informative in the analysis. Since one respondent described both
a cat and a dog, in this case, we chose not to remove the term. If this were not the
case, the word dog would be included in a custom stop word dictionary and removed.

To identify these words, we can also look at term frequencies. Words that have
high frequencies across all documents in our collection but do not provide informa-
tional content are good candidates for removal. After making these choices, we can
select a subset of the data with the term in it and read it. While reading, we want to
ensure that the term does not provide information that is relevant to the analysis
question. In the creation of a custom stop word dictionary, the process should be
repeated, creating subsets for reading several times to check for multiple uses of the
term (Inmon 2017).

Custom dictionaries can be used in many text analysis projects and not exclu-
sively to filter stop words. Custom dictionaries are created in information retrieval
to find keywords in context (KWIC). Instead of finding tokens for removal, these
keywords are used as search terms. Additional uses of common and custom lexicons
will be presented in Chap. 10 for sentiment analysis.

4.6  �Stemming and Lemmatization

4.6.1  �Syntax and Semantics

Prior to introducing the final preprocessing step, it is necessary to consider two
important concepts: syntax and semantics. Syntax concerns sentence structure,
including grammar and parts of speech. Parts of speech are grammatical categories
or word classes, such as noun, verb, and adjective (Manning and Schütze 1999).
Semantics, on the other hand, refers to meaning. Part-of-speech tagging is beneficial
in text analysis because in identifying the part of speech of a token, the most likely
meaning can also be identified.

Two important semantic concepts related to part-of-speech tagging are synon-
ymy and polysemy. Synonymy refers to two different words having the same
meaning. If a document were added that said, “My cap is brown,” the terms cap
and hat would demonstrate synonymy. Since the synonyms cannot be recognized
automatically, each word is a separate token.

Polysemy refers to a single word having multiple meanings. In the case of the
word coat in our example, in one context, it means a garment that can be worn, but

4.6  Stemming and Lemmatization

54

in another context, it can refer to a dog’s hair or fur. In our example, it is possible
that in Document 10, which reads, “My fluffy dog has a white coat and hat,” the dog
is wearing a white coat, but it is also possible that the dog has white fur. As a noun,
the word coat can mean “fur covering the body of an animal” (Wordnet 3.1).

4.6.2  �Stemming

The final stage is to perform either stemming or lemmatization on the documents.
Stemming and lemmatization involve breaking words down to their root word.
Stemming involves the removal of a word’s suffix to reduce the size of the vocab-
ulary (Porter 1980). Lemmatization is similar to stemming, except it incorporates
information about the term’s part of speech (Yatsko 2011). Both methods com-
bine words that contain the same root into a single token to reduce the number of
unique tokens within the analysis set. Words with a common root often share a
similar meaning. These words are then grouped into one token (Manning et al.
2008). There are exceptions to the roots of words sharing the same meaning, but
the added reduction in complexity is often worth the price of incorrectly catego-
rizing a few words.

As an example, let’s use the root train. Train has several forms, including:

–– Train
–– Trains
–– Trained
–– Training
–– Trainer

In stemming, these words return the root train. Common stemmers, such as
Porter’s (1980), Lovins’ (1968), and Paice’s (1990, 1994), use a series of rules to
remove word endings. These algorithms aim to return the base word. The number
of characters removed changes depending on the stemming algorithm. A stemmer
that removes more from a word will result in less variation among tokens and more
word forms grouped within the same token. Depending on the project, this could
mean better results or increased errors (Manning et al. 2008).

As an example of stemming in our document collection, we can take a closer
look at Document 9, shown in Fig. 4.7, before and after stemming.

The term fluffy describes the dog’s fur or fluff. Using Porter’s stemming algo-
rithm (Porter 1980), the term fluffy is broken down to the root word fluffi. Other
terms with this root will also be replaced by the root. Some terms that would also
be truncated to the root fluffi are fluffier, fluffiest, fluffiness, and fluffily.

As the figure shows, in the document after stemming, the terms dogs and hats
are converted to their singular form, dog and hat, respectively. The term favorites
is not only broken down to its singular form but also further reduced to the root,
favorit. Some terms that would also be stemmed to the root favorit are favorite,
favorites, and favorited. The full, stemmed document collection appears in
Fig. 4.8.

4  Text Preprocessing

55

Fig. 4.7  Document 9 tokenized text before and after stemming

Fig. 4.8  Stemmed example document collection

4.6  Stemming and Lemmatization

56

4.6.3  �Lemmatization

One difficulty encountered with stemming (and text analytics in general) is that a
single word could have multiple meanings depending on the word’s context or part
of speech. Lemmatization deals with this problem by including the part of speech in
the rules grouping word roots. This inclusion allows for separate rules for words
with multiple meanings depending on the part of speech (Manning et al. 2008). This
method helps improve the algorithm by correctly grouping tokens at the cost of
added complexity.

As an example of lemmatization in our document collection, we can again look
at Document 9 in Fig. 4.9. The figure depicts the document at the end of Step 3 in
green and the document after stemming and after lemmatization in orange. As
shown, stemming and lemmatization produce the same tokens for the terms dog,
brown, and hat but vary with respect to fluffy and favorite.

Returning to the terms that would be truncated to the root fluffi using stemming,
we can consider how lemmatization would impact them. These terms and their parts
of speech are displayed in Table 4.1. As shown, all adjectives are lemmatized to
fluffy, while the noun and adverb, fluffiness and fluffily, remain unchanged.

The same procedure can be done for the related terms that reduce to the root
favorit in stemming. Table 4.2 displays the words, parts of speech, and

Table 4.1  Document 9
related words, POS, and
lemmatization for the word
fluffy

Word Part of speech Lemmatization

Fluffy Adjective Fluffy
Fluffier Adjective Fluffy
Fluffiest Adjective Fluffy
Fluffiness Noun Fluffiness
Fluffily Adverb Fluffily

Fig. 4.9  Document 9 before and after stemming and lemmatization

4  Text Preprocessing

57

Table 4.2  Document 9
related words, POS, and
lemmatization for the word
favorite

Word Part of speech Lemmatization

Favorite Noun/adjective Favorite
Favorites Noun Favorite
Favorited Verb Favorited

Fig. 4.10  Lemmatized example document collection

lemmatization of these terms. As shown, favorite and favorites, which are primar-
ily nouns, are lemmatized to favorite, while the verb, favorited, remains unchanged.

The full, lemmatized document collection is displayed in Fig. 4.10.

4.6  Stemming and Lemmatization

58

The choice between stemming and lemmatization is up to the analyst and will
depend on the application and text data.

4.6.4  �Part-of-Speech (POS) Tagging

Part-of-speech tagging involves labeling tokens or words by their part of speech
(Manning and Schütze 1999). Two of the most popular tag sets in English are the
Brown Corpus (Kučera and Francis 1967) and the Lancaster-Oslo-Bergen (LOB)
Corpus (Johansson et al. 1978). A newer tag set, the Penn Treebank, was devel-
oped in 1989 and has over 7 million words tagged by their parts of speech
(Taylor et al. 2003).

Part-of-speech tagging can be completed using one of the software programs
described in Chap. 1, including many of those presented in Chaps. 13, 14, 15 and
16. In these programs, the documents are entered as inputs. The program processes
and outputs the word and annotates the parts of speech (Bird et al. 2009). The
method used to identify the part of speech may be rule-based, Markov model-based,
or maximum entropy-based (Indurkhya and Damerau 2010). Additionally, machine
learning techniques, such as those introduced in Chap. 9, can be used to automati-
cally identify the parts of speech of words in the document collection. These meth-
ods can prevent errors caused by stemming or lemmatizing words to the same root
that actually have different meanings depending on the part of speech, demonstrat-
ing polysemy. The accuracy of the analysis can be improved by grouping more
words, such as synonyms, appropriately.

Key Takeaways
•	 The text preprocessing process involves unitization and tokenization, stan-

dardization and cleaning, stop word removal, and lemmatization or
stemming.

•	 A custom stop word dictionary can be created to eliminate noise in the text.
•	 Part-of-speech tagging involves labeling tokens or words by their part of

speech and can be used to prevent stemming and lemmatization-related
errors.

•	 N-grams are consecutive token sequences with length n that preserve token
co-occurrence.

4  Text Preprocessing

59

References

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: Analyzing text
with the natural language toolkit. Beijing: O’Reilly Media, Inc.

Dumais, S., Platt, J., Heckerman, D., & Sahami, M. (1998, November). Inductive learning algo-
rithms and representations for text categorization. In Proceedings of the seventh international
conference on Information and knowledge management (pp. 148–155). ACM.

Indurkhya, N., & Damerau, F. J. (Eds.). (2010). Handbook of natural language processing (Vol.
2). Boca Raton: CRC Press.

Inmon, B. (2017). Turning text into gold: Taxonomies and textual analytics. Bradley Beach:
Technics Publications.

Johansson, S., Leech, G. N., & Goodluck, H. (1978). The Lancaster-Oslo/Bergen Corpus of British
English. Oslo: Department of English: Oslo University Press.

Kučera, H., & Francis, W. N. N. (1967). Computational analysis of present-day American English.
Providence: Brown University Press.

Lovins, J. B. (1968). Development of a stemming algorithm. Mechanical Translation and
Computational Linguistics, 11(1–2), 22–31.

Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing.
Cambridge: MIT Press.

Manning, C., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge:
Cambridge University Press. https://doi.org/10.1017/CBO9780511809071.

Paice, C. D. (1990). Another stemmer. ACM SIGIR Forum, 24(3), 56–61.
Paice, C. D. (1994, August). An evaluation method for stemming algorithms. In Proceedings

of the 17th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (pp. 42–50). Springer-Verlag New York, Inc.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130–137.
Salton, G. (1971). The SMART retrieval system: Experiments in automatic document processing.

Englewood Cliffs: Prentice-Hall.
Salton, G. (1989). Automatic text processing: The transformation, analysis, and retrieval of.

Reading: Addison-Wesley.
Struhl, S. (2015). Practical text analytics: Interpreting text and unstructured data for business

intelligence. London: Kogan Page Publishers.
Taylor, A., Marcus, M., & Santorini, B. (2003). The penn treebank: An overview. In Treebanks

(pp. 5–22). Dordrecht: Springer.
Weiss, S. M., Indurkhya, N., Zhang, T., & Damerau, F. (2010). Text mining: predictive methods for

analyzing unstructured information. Springer Science & Business Media.
Wilbur, W. J., & Sirotkin, K. (1992). The automatic identification of stop words. Journal of

Information Science, 18(1), 45–55.
Yatsko, V. A. (2011). Methods and algorithms for automatic text analysis. Automatic

Documentation and Mathematical Linguistics, 45(5), 224–231.

Further Reading

For a more comprehensive treatment of natural language processing, see Indurkhya and Damerau
(2010), Jurafsky and Martin (2014), or Manning and Schütze (1999).

Further Reading

https://doi.org/10.1017/CBO9780511809071

61© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3_5

Chapter 5
Term-Document Representation

Abstract  This chapter details the process of converting documents into an
analysis-ready term-document representation. Preprocessed text documents are
first transformed into an inverted index for demonstrative purposes. Then, the
inverted index is manipulated into a term-document or document-term matrix. The
chapter concludes with descriptions of different weighting schemas for analysis-
ready term-document representation.

Keywords  Inverted index · Term-document matrix · Document-term matrix ·
Term frequency · Document frequency · Term frequency-inverse document
frequency · Inverse document frequency · Weighting · Term weighting · Document
weighting · Log frequency

5.1  �Introduction

Following the text preparation and preprocessing, outlined in Chap. 4, the next step
is to transform the text documents into a compatible format for text analysis. At this
stage, we need to convert the text data into frequencies that can be used in analytic
calculations. To build the term-document representation, we borrow some concepts
from matrix algebra. In this chapter, before transforming the text data into a term-
document matrix representing the frequency of each word in each document, we
create an inverted index. Finally, we present several weighting measures that can be
used to transform the matrix representation.

5.2  �The Inverted Index

The first step toward building a representation of the terms and documents in our
document collection is to create an inverted index. An inverted index contains a
dictionary of the unique terms or n-grams in the preprocessed tokenized text. The
index also contains postings where the documents in which each of the dictionary
terms occurs are listed (Manning et al. 2008).

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_5&domain=pdf

62

As described in Chap. 4, we preprocess the text to transform it into a format to
create a representation of the term-document information. Table 5.1 displays the
sample document collection containing ten documents in which dog owners talk
about their dogs. In the text column, the raw document text is displayed. The pre-
processed text appears in the third column of the table.

From the preprocessed text, we create an inverted index, illustrated in Table 5.2.
The table contains the unique preprocessed terms in the document collection on the
left, under Dictionary, and the document numbers in which the terms appear are on
the right, under Postings. The terms listed in the dictionary can be considered the
terms in the vocabulary. The inverted index creates the foundation for our term fre-
quency representation.

Based on the inverted index, we represent the document collection as a listing
of each term-posting pair. This listing includes frequency information or the
number of times the term appears in a document. For example, as illustrated in

Table 5.1  Unprocessed and preprocessed text

Documents
Number Text Preprocessed text

1 My favorite dog is fluffy and tan [favorite] [dog] [fluffy] [tan]
2 The dog is brown and cat is brown [dog] [brown] [cat] [brown]
3 My favorite hat is brown and coat is pink [favorite] [hat] [brown] [coat] [pink]
4 My dog has a hat and leash [dog] [hat] [leash]
5 He has a fluffy coat and brown coats [fluffy] [coat] [brown] [coat]
6 The dog is brown and fluffy and has a brown

coat
[dog] [brown] [fluffy] [brown] [coat]

7 My dog is white with brown spots [dog] [white] [brown] [spot]
8 The white dog has a pink coat and the brown

dog is fluffy
[white] [dog] [pink] [coat] [brown]
[dog] [fluffy]

9 The three fluffy dogs and two brown hats are
my favorites

[fluffy] [dog] [brown] [hat] [favorite]

10 My fluffy dog has a white coat and hat [fluffy] [dog] [white] [coat] [hat]

Table 5.2  Inverted index for dcument collection

Dictionary Postings

brown 2 3 5 6 7 8 9
cat 2
coat 3 5 6 8 10
dog 1 2 4 6 7 8 9 10
favorite 1 3 9
fluffy 1 5 6 8 9 10
hat 3 4 9 10
leash 4
pink 3 8
spot 7
tan 1
white 7 8 10

5  Term-Document Representation

63

Document Preprocessed tokenized text Frequency

1 Favorite dog fluffy tan 0
2 Dog brown cat brown 2
3 Favorite hat brown coat pink 1
4 Dog hat leash 0
5 Fluffy coat brown coat 1
6 Dog brown fluffy brown coat 2
7 Dog white brown spot 1
8 White dog pink coat brown dog

fluffy
1

9 Fluffy dog brown hat favorite 1
10 Fluffy dog white coat hat 0

Table 5.3  Document frequency of the term brown

Term Document Frequency

brown 1 0
brown 2 2
brown 3 1
brown 4 0
brown 5 1
brown 6 2
brown 7 1
brown 8 1
brown 9 1
brown 10 0

Table 5.4  Term-postings frequency table for the term brown

Table 5.3, we create a table by counting the number of times the word brown
appears in each of the documents.

The term brown appears in Documents 2 and 6 twice and appears once in
Documents 3, 5, 7, 8, and 9. For the term brown, the term-posting pairs and fre-
quency information are displayed in Table 5.4. Now, we can represent our docu-
ments containing the term brown by their document and frequency.

The remaining 11 terms can be represented in the same way as brown. By rear-
ranging the inverted index in Table 5.2 to include the frequency information for the
term brown from Table 5.3, we have computed the frequency values that will make
up the first row of our term-document matrix. Our next step will be to transform this
list of frequencies for term-document pairs into a matrix representation for all of the
terms and documents in our document collection. We begin by introducing the term-
document matrix representation.

5.2  The Inverted Index

64

5.3  �The Term-Document Matrix

Text analysis is made possible using some concepts from matrix algebra. A matrix
is a two-dimensional array with m rows and n columns. Matrix A is depicted below.
Each entry in the matrix is indexed as aij, where i represents the row number and j
indexes the column number of the entry. There are n columns and m rows in matrix
A. a11, for instance, is located in the first row and first column of matrix A.

	

A

a a a

a a a

a a a

n

n

m m mn

=
…
…

…























11 12 1

21 22 2

1 2

� � � �

	

We model textual information from our document collection in two dimensions,
terms and documents. Following text parsing and inverted indexing, we can model
the individual terms or tokens in each of the documents in our document
collection.

In text mining, we use a specific type of matrix to represent the frequencies of
terms in documents. A term-document matrix (TDM) or document-term matrix
(DTM) is created to represent a collection of documents for text analysis. In a TDM,
the rows correspond to terms, and the columns correspond to documents.
Alternatively, in a DTM, the rows correspond to documents, and the columns cor-
respond to terms. An illustration of the setup of the two matrices appears in Fig. 5.1.
In the examples of the DTM and TDM layouts in the figure, there are three terms
and three documents. The only difference between the two is the placement of the

Document 1

Document 2

Document 3

Document 1

DTM

TDM

Document 2 Document 3

Term 1

Term 2

Term 3

Term 1 Term 2 Term 3

Fig. 5.1  Basic document-term and term-document matrix layouts

5  Term-Document Representation

65

terms and documents, and either can be created and used in text mining analysis. In
the example in this chapter, we will build a TDM.

As described, a TDM created to represent a collection of n documents has m
rows and n columns, where m represents the total number of terms and n represents
the total number of documents. Each entry aij contains the frequency with which
term i occurs in document j. Typically, the number of terms in the TDM will be
greater than the number of documents. The unique terms in the preprocessed text
column of Table 5.1 are used to create the rows of our TDM. Each document in the
table becomes a column in our TDM.

The term brown and the other terms in our vocabulary become the rows of our
matrix, and the documents will be the columns. The frequency values will include
the frequency for each of the term-document pairs. Any term that does not occur in
a document will have a value of 0. We represent the document collection introduced
in Table 5.1 as a TDM in Table 5.5. In this case, we have a 12-term by 10-document
matrix. Note that the row for the term brown is the frequency column from Table 5.4.
All of the rows in the TDM in Table 5.5 are computed in the same fashion.

Given that a matrix is a collection of points, we can represent the information
visually to examine our TDM. In Fig. 5.2, a heat map is used to represent the fre-
quency information in the TDM. The darker colors indicate lower frequency, and
the lighter colors indicate higher frequency values in the TDM. The heat map shows
that the words dog and brown are commonly used in our document collection, while
leash and spot are rarely used.

5.4  �Term-Document Matrix Frequency Weighting

When creating the TDM in Table 5.5, we used the term frequency values of each
term in each document as the values in the matrix. The term frequency of term i
in document j is sometimes denoted as tfi, j. In using the term frequency in our
TDM, the higher the frequency of a given term in a document, the more important

Table 5.5  Term-document matrix example

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

brown 0 2 1 0 1 2 1 1 1 0
cat 0 1 0 0 0 0 0 0 0 0
coat 0 0 1 0 2 1 0 1 0 1
dog 1 1 0 1 0 1 1 2 1 1
favorite 1 0 1 0 0 0 0 0 1 0
fluffy 1 0 0 0 1 1 0 1 1 1
hat 0 0 1 1 0 0 0 0 1 1
leash 0 0 0 1 0 0 0 0 0 0
pink 0 0 1 0 0 0 0 1 0 0
spot 0 0 0 0 0 0 1 0 0 0
tan 1 0 0 0 0 0 0 0 0 0
white 0 0 0 0 0 0 1 1 0 1

5.4  Term-Document Matrix Frequency Weighting

66

that term is to the content of that document. For instance, in looking at the TDM
in Table 5.5, the term brown appears twice in Document 2 and only once in
Document 3. This example illuminates a major issue with using term frequency to
measure importance. The term brown is more important in Document 2 than in
Document 3, but is it twice as important? To reduce the impact of a high degree of
variability in term frequencies, we can use alternative weighting approaches.

We will explore local weighting, global weighting, and combinatorial weight-
ing approaches. Local weighting measures apply weighting to capture the impor-
tance of a term within a specific document in the larger collection of documents.
This weighting tells us how much a term contributes to each of the documents.
Global weighting is the overall importance of the term in the full collection of
documents (Berry et al. 1999). Words that appear frequently, and in many docu-
ments, will have a low global weight. Combinatorial weighting combines local
and global weighting.

5.4.1  �Local Weighting

When applying local weighting, the result will be a matrix with the same dimen-
sions as the original, unweighted TDM. In our case, the result of local weighting
will be a 12-word by 10-document-weighted TDM. The local weighting alternatives
that we consider are logarithmic (log) frequency and binary/Boolean frequency.

white

spot

leash

pink

hat

coat

cat

brown

tan

fluffy

favorite

dog

D1 D2 D3 D4 D5
Documents

T
er
m
s

D6 D7 D8 D9 D10

value
2.0
1.5
1.0
0.5
0.0

Fig. 5.2  Heat map visualizing the term-document matrix

5  Term-Document Representation

67

5.4.1.1  �Logarithmic (Log) Frequency

Log frequency is a weighting method that reduces the effect of large differences in
frequencies (Dumais 1991). The base of the logarithm can vary. Below, the natural
logarithm, denoted ln, is used. Table 5.6 illustrates the log frequency-weighted
TDM. As the table shows, the weight of the terms appearing twice in a document
has a value of 1.1, and terms appearing once in a document have a value of 0.7. This
method reduces the difference between the two weights from 1 to 0.4. The log fre-
quency of term i in document j, lfi, j, is calculated as

	

lf
tf tf

i j
i j i j

,
, ,ln ,

.
,

=
+() >












1 0

0

if

otherwise 	

5.4.1.2  �Binary/Boolean Frequency

Binary frequency captures whether a word appears in a document, without consid-
eration of how many times it appears. In the binary frequency-weighted TDM in
Table 5.7, there is no difference between a term occurring once or twice in a docu-
ment. This approach is equivalent to recording if a term appears in a document. A
binary frequency matrix can be used to perform further weighting on the TDM. The
binary frequency of term i in document j, ni, j, is calculated as

	

n
tf

i j

i j

,
,,

,
.=

>











1 0

0

if

otherwise 	

Table 5.6  Log frequency matrix

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

brown 0.0 1.1 0.7 0.0 0.7 1.1 0.7 0.7 0.7 0.0
cat 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
coat 0.0 0.0 0.7 0.0 1.1 0.7 0.0 0.7 0.0 0.7
dog 0.7 0.7 0.0 0.7 0.0 0.7 0.7 1.1 0.7 0.7
favorite 0.7 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.7 0.0
fluffy 0.7 0.0 0.0 0.0 0.7 0.7 0.0 0.7 0.7 0.7
hat 0.0 0.0 0.7 0.7 0.0 0.0 0.0 0.0 0.7 0.7
leash 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0
pink 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.7 0.0 0.0
spot 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0
tan 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
white 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.0 0.7

5.4  Term-Document Matrix Frequency Weighting

68

5.4.2  �Global Weighting

Global weighting indicates the importance of a term in the whole document collec-
tion, rather than in individual documents. When applying global weighting, the
result of the calculations will be a vector of values that is the length of the total
number of terms, which in our case is 12. The global weighting alternatives that we
consider are document frequency, global frequency, and inverse document
frequency.

5.4.2.1  �Document Frequency (df)

Document frequency can be derived using the binary frequency-weighted TDM by
summing the rows of the binary frequency-weighted TDM. Document frequency,
dfi, is calculated as

	

df ni
j

D

i j=
=
∑

1
, ,

	

where ni, j is the binary frequency-weighted matrix and D is the total number of
documents.

As an example, we calculate the document frequency of the word brown by add-
ing the values in the row for brown in the binary frequency-weighted TDM.

	

df nbrown
j

brown j= = + + + + + + + + + =
=
∑

1

10

0 1 1 0 1 1 1 1 1 0 7, .

	

We find that the document frequency of the term brown is 7, meaning that the
term brown appears in seven out of the ten documents in the collection. The

Table 5.7  Binary frequency matrix

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

brown 0 1 1 0 1 1 1 1 1 0
cat 0 1 0 0 0 0 0 0 0 0
coat 0 0 1 0 1 1 0 1 0 1
dog 1 1 0 1 0 1 1 1 1 1
favorite 1 0 1 0 0 0 0 0 1 0
fluffy 1 0 0 0 1 1 0 1 1 1
hat 0 0 1 1 0 0 0 0 1 1
leash 0 0 0 1 0 0 0 0 0 0
pink 0 0 1 0 0 0 0 1 0 0
spot 0 0 0 0 0 0 1 0 0 0
tan 1 0 0 0 0 0 0 0 0 0
white 0 0 0 0 0 0 1 1 0 1

5  Term-Document Representation

69

document frequency values for each of the 12 terms can be calculated the same
way and are plotted in Fig. 5.3.

5.4.2.2  �Global Frequency (gf)

Global frequency measures the frequency of terms across all documents and is cal-
culated as

	

gf tfi
j

D

i j=
=
∑

1
, ,

	

where tfi, j is the frequency of term i in document j and D is the number of
documents.

As an example, we compute the global frequency of the word brown. Using the
formula, we calculate

Fig. 5.3  Document frequency weighting

5.4  Term-Document Matrix Frequency Weighting

70

	

gf tfbrown
j

brown j= = + + + + + + + + + =
=
∑

1

10

0 2 1 0 1 2 1 1 1 0 9, .

	

The global frequencies of the other terms are computed in the same way and are
displayed in Fig. 5.4.

5.4.2.3  �Inverse Document Frequency (idf)

In inverse document frequency, rare terms have higher weights, and frequent
terms have lower weights (Dumais 1991). Inverse document frequency, idfi, is
calculated as

	

idf
n

dfi
i

=








 +log ,2 1

	

where n is the total number of documents in the collection.

Fig. 5.4  Global frequency weighting

5  Term-Document Representation

71

To find the inverse document frequency of the word brown, we would calculate
it as follows

	

idf
dfbrown

brown

=








 + = 






 + =log log . .2 2

10
1

10

7
1 1 51

	

The idf for each of the words can be computed in the same way. Figure 5.5 depicts
the results of calculating the inverse document frequency for each of the terms.

5.4.3  �Combinatorial Weighting: Local and Global Weighting

Combinatorial weighting combines local and global frequency weighting to con-
sider the importance of each of the terms in the documents individually and in
the document collection. In some cases, combinatorial weighting can also include
normalization based on the total number of terms in each document. Here, we
will focus on one of the most common combinatorial weighting measures, term
frequency-inverse document frequency.

Fig. 5.5  Inverse document frequency weighting

5.4  Term-Document Matrix Frequency Weighting

72

5.4.3.1  �Term Frequency-Inverse Document Frequency (tfidf)

Term frequency-inverse document frequency weighting combines term frequency
and inverse document frequency by multiplying the local term frequency weight by
the global inverse document frequency weight. tfidf is calculated as

	
tfidf tf idfi j i j i, , ,= ∗

	

where tfi, j is term frequency and idfi is inverse document frequency.
tfidf is high when a term occurs many times in a few documents and is low when

a term occurs in all, most or many documents. Intuitively, if a word appears fre-
quently in a document or the collection of documents, it would make sense to con-
sider the term to be important. However, the more frequently a term appears across
documents, the less it actually helps with understanding the textual content.

The use of this method “balances the importance of a term to a document by its
frequency in that document, evidenced by its frequency in that document, against
a term’s overall discriminative ability, based on its distribution across the collec-
tion as a whole” (Jessup and Martin 2001, p. 5). The tfidf-weighted TDM matrix
appears in Table 5.8. As the table shows, terms such as spots, cat, and tan, which
appear infrequently across the collection of documents but appear frequently in a
particular document, have a high tfidf weight value in the documents in which they
appear. The word dog, which appears frequently in the collection of documents,
has a low weighting in the documents in which it occurs because of its high global
frequency. The tfidf-weighted TDM, which is found by multiplying the term
frequency-weighted TDM and the inverse document frequency vector, is shown in
Table 5.8.

Table 5.8  tfidf-weighted TDM

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

brown 0.00 3.03 1.51 0.00 1.51 3.03 1.51 1.51 1.51 0.00
cat 0.00 4.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
coat 0.00 0.00 2.00 0.00 4.00 2.00 0.00 2.00 0.00 2.00
dog 1.32 1.32 0.00 1.32 0.00 1.32 1.32 2.64 1.32 1.32
favorite 2.74 0.00 2.74 0.00 0.00 0.00 0.00 0.00 2.74 0.00
fluffy 1.74 0.00 0.00 0.00 1.74 1.74 0.00 1.74 1.74 1.74
hat 0.00 0.00 2.32 2.32 0.00 0.00 0.00 0.00 2.32 2.32
leash 0.00 0.00 0.00 4.32 0.00 0.00 0.00 0.00 0.00 0.00
pink 0.00 0.00 3.32 0.00 0.00 0.00 0.00 3.32 0.00 0.00
spot 0.00 0.00 0.00 0.00 0.00 0.00 4.32 0.00 0.00 0.00
tan 4.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
white 0.00 0.00 0.00 0.00 0.00 0.00 2.74 2.74 0.00 2.74

5  Term-Document Representation

73

5.5  �Decision-Making

Having reviewed the frequency-weighting options, it is probably clear that each
weighting schema has its own strengths and weaknesses. The choice of weighting
method will depend on both the data and the intended modeling and analysis
method. For instance, the first analysis method that we will explore, latent semantic
analysis (LSA), covered in Chap. 6, is well suited to tfidf weighting. On the other
hand, some topic models, including latent Dirichlet allocation (LDA), which is cov-
ered in Chap. 8, require the unweighted TDM as an input for the analysis.

In addition to the modeling and analysis considerations that influence the choice
of weighting, there are some inherent weaknesses in raw frequency data that encour-
age the use of weighted TDMs. First, longer documents will have higher term counts
than shorter documents. Additionally, high-frequency terms may be less important
than lower-frequency terms. Indeed, the idea of a stop word list is based on the
notion that the most common terms in a language will be the lowest in content.
Terms such as the and an may be high in frequency in a document collection but will
certainly be low in content.

References

Berry, M. W., Drmac, Z., & Jessup, E. R. (1999). Matrices, vector spaces, and information retrieval.
SIAM Review, 41(2), 335–362.

Dumais, S. T. (1991). Improving the retrieval of information from external sources. Behavior
Research Methods, Instruments, & Computers, 23(2), 229–236.

Jessup, E. R., & Martin, J. H. (2001). Taking a new look at the latent semantic analysis approach to
information retrieval. Computational Information Retrieval, 2001, 121–144.

Manning, C., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge:
Cambridge University Press. https://doi.org/10.1017/CBO9780511809071.

Further Reading

For more about the term-document representation of text data, see Berry et al. (1999) and Manning
et al. (2008).

Key Takeaways
•	 An inverted index represents term-posting frequency information for a

document collection.
•	 A term-document or document-term matrix representation transforms pre-

processed text data into a matrix representation that can be used in
analysis.

•	 Local, global, and combinatorial weighting can be applied to the term-
document or document-term matrix.

Further Reading

https://doi.org/10.1017/CBO9780511809071

Part III
Text Analysis Techniques

77© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3_6

Chapter 6
Semantic Space Representation and Latent
Semantic Analysis

Abstract  In this chapter, we introduce latent semantic analysis (LSA), which uses
singular value decomposition (SVD) to reduce the dimensionality of the document-
term representation. This method reduces the large matrix to an approximation that
is made up of fewer latent dimensions that can be interpreted by the analyst. Two
important concepts in LSA, cosine similarity and queries, are explained. Finally, we
discuss decision-making in LSA.

Keywords  Latent semantic analysis (LSA) · Singular value decomposition (SVD)
· Latent semantic indexing (LSI) · Cosine similarity · Queries

6.1  �Introduction

In Chapter 5, we built a term-document matrix (TDM) based on the text in our docu-
ment collection. This matrix-based representation allows us to consider documents
as existing in term space and terms as existing in document space. In this chapter,
we present the latent semantic analysis (LSA) of the TDM. LSA is a fully automatic
semantic space modeling approach in which terms are points in high-dimensional
space and the spatial closeness between those points represents their semantic asso-
ciation (Landauer and Dumais 1997). Semantic representation tries to reveal mean-
ing that can be hidden in the documents. Semantic knowledge extends beyond
meaning to consider relations among terms and the hidden meaning and concepts
present in the documents.

The examples in this chapter use the tfidf-weighted TDM created in Chap. 5,
which includes 12 terms and 10 documents in which dog owners describe their
dogs. Tfidf weighting is a popular weighting method used in LSA, because it com-
bines a local and global weighting function to dampen the impact of high-frequency
terms and give more weight to less frequently occurring documents that occur in
fewer documents. The tfidf-weighted matrix used in this chapter is presented in
Table 5.8. We use a weighted TDM because it produces improved results over mod-
els built with no weighting (Dumais 1991). We begin by plotting relationships based
on the simple, unweighted TDM to conceptualize the term and document spaces.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_6&domain=pdf

78

To begin, we visualize a vector space representation. As shown in Fig. 6.1, we plot
the raw frequency information for the words brown and dog using Documents 1, 2,
3, 7, and 8. Plotting documents in term space can help us understand the distance
between documents and provides a geometric representation of our TDM. This figure
depicts these five documents as vectors in two-dimensional term space. As shown,
the documents are the points in this space. For instance, Document 1 is a point
located at (0,1) in the brown and dog space, because brown does not occur in the
document and dog occurs once. Document 2 is a point located at (2,1) in the brown
and dog space because brown occurs twice and dog occurs once in the document.
The angles formed by vectors in spatial representations are the basis for an important
measure of association, cosine similarity, which will be covered in Sect. 6.2.

For more than two terms, we can visualize documents in term space in higher
dimensions, as shown in Fig. 6.2. The three-dimensional term space in that figure
includes the terms brown, coat, and favorite. In this figure, we visualize the frequen-
cies of each of the three terms in each of our documents in our document collection.
The same plots can be created to represent terms in document space. Due to the
number of dimensions in the TDM, we are limited in how we can visualize these
associations. However, the use of the semantic space representation allows us to
model these associations in much higher dimensions than our graph allows.

Fig. 6.1  Two-dimensional representation of the first five documents in term space for the terms
brown and dog

6  Semantic Space Representation and Latent Semantic Analysis

79

6.2  �Latent Semantic Analysis (LSA)

Dumais et al. (1988) and Deerwester et al. (1990) first introduced latent semantic
analysis (LSA) as latent semantic indexing (LSI), due to its objective of indexing
text. LSA extends the concept to all analytic applications beyond indexing. LSA
creates a vector space representation of our original matrix using singular value
decomposition (SVD). Specifically, LSA is an application of SVD to identify latent
meaning in the documents through dimension reduction. The original TDM is
assumed to be too big and sparse to be useful and/or meaningful. In real-world text
applications, the TDM representation of a document collection can be very large
and difficult to interpret or understand. LSA not only reduces the dimensionality but
also identifies latent dimensions based on singular values. In order to understand
how LSA works, we first need to familiarize ourselves with SVD.

6.2.1  �Singular Value Decomposition (SVD)

LSA relies on SVD to identify latent information in the TDM. SVD splits a matrix,
in our case the TDM, into three smaller matrices that, when multiplied, are equiva-
lent to the original matrix. After this decomposition, we reduce the size of our three
component matrices further by choosing to keep a smaller number of dimensions.

Fig. 6.2  Three-dimensional representation of the ten documents in term space for the terms
brown, coat and favorite

6.2  Latent Semantic Analysis (LSA)

80

SVD is used in semantic space modeling to create smaller approximations of large
document-term matrices. The truncated matrix created through SVD has four
important purposes: latent meaning, noise reduction, high-order co-occurrence, and
sparsity reduction (Turney and Pantel 2010, pp. 159–160).

In SVD, we calculate A = UΣVT, where A is the term-document matrix, U is the
left singular vector of words, Σ is a matrix with weight values on the diagonal, and
V is the right singular vector of documents. r is the rank of the matrix A. If we
reduce r to a smaller number, k, we create an approximation of the original matrix.
r can then be reduced to k, where Ak is then a lower dimensional, rank k approxima-
tion of the original matrix A. In addition, the dimensions of the three component
matrices are adjusted from r to k. SVD can be applied to any rectangular matrix to
decompose a larger matrix into the product of three smaller matrices. Figure 6.3
depicts the SVD of the A matrix.

6.2.2  �LSA Example

When performing SVD, the TDM is known as the A matrix, which is the matrix of
which we want to create a three-component representation. The rank of our A
matrix, r, is 10, which is the minimum of the number of rows and number of col-
umns in our A matrix. More formally, rank is

	
r

m

n
=





min ,
	

where m is the total number of terms and n is the total number of documents.
If the number of documents in the TDM is larger than the number of terms in our

TDM, the rank will be equal to the number of terms. On the other hand, if the num-

A

Ak Uk

Vk
T

k

k

k
r

k

documents

terms terms

Σ

Σk

documents

U

=

VT

Fig. 6.3  SVD process in LSA, based on Martin and Berry (2007)

6  Semantic Space Representation and Latent Semantic Analysis

81

ber of terms is larger, the rank will be equal to the number of documents. In our
case, we have the latter situation, because our terms outnumber our documents.

A =
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Brown 0.0 3.0 1.5 0.0 1.5 3.0 1.5 1.5 1.5 0.0
Cat 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Coat 0.0 0.0 2.0 0.0 4.0 2.0 0.0 2.0 0.0 2.0
Dog 1.3 1.3 0.0 1.3 0.0 1.3 1.3 2.6 1.3 1.3
Favorite 2.7 0.0 2.7 0.0 0.0 0.0 0.0 0.0 2.7 0.0
Fluffy 1.7 0.0 0.0 0.0 1.7 1.7 0.0 1.7 1.7 1.7
Hat 0.0 0.0 2.3 2.3 0.0 0.0 0.0 0.0 2.3 2.3
Leash 0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0
Pink 0.0 0.0 3.3 0.0 0.0 0.0 0.0 3.3 0.0 0.0
Spot 0.0 0.0 0.0 0.0 0.0 0.0 4.3 0.0 0.0 0.0
Tan 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
White 0.0 0.0 0.0 0.0 0.0 0.0 2.7 2.7 0.00 2.7

The U matrix is our term matrix and the left singular vector. The U matrix has 12
rows, a row for each of the terms in the TDM. The number of columns in the U
matrix is ten, because the number of columns is equal to the rank of the A matrix.

U =
−0.4 −0.3 −0.4 0.1 0.2 −0.1 0.3 0.2 −0.3 0.4
−0.1 −0.2 −0.5 0.3 0.3 −0.1 −0.2 −0.2 0.5 −0.3
−0.4 −0.1 0.0 −0.6 0.0 0.3 0.2 0.2 0.4 −0.1
−0.4 −0.1 0.1 0.3 0.0 0.2 −0.3 −0.1 −0.4 −0.1
−0.3 0.6 −0.1 0.1 −0.1 −0.3 0.3 0.0 0.0 −0.4
−0.4 0.1 0.0 −0.1 −0.2 0.4 0.0 −0.2 −0.3 −0.4
−0.3 0.3 0.3 0.1 0.4 −0.1 0.3 −0.4 0.2 0.4
−0.1 0.2 0.3 0.3 0.6 0.3 −0.1 0.5 0.0 −0.2
−0.3 0.1 0.1 −0.3 0.0 −0.6 −0.5 0.3 0.0 0.0
−0.1 −0.4 0.3 0.4 −0.3 −0.2 0.5 0.3 0.2 −0.2
−0.1 0.4 −0.2 0.3 −0.5 0.2 −0.2 0.3 0.3 0.4
−0.3 −0.3 0.4 0.1 −0.3 0.0 −0.2 −0.3 0.2 0.1

The Σ matrix contains the singular values on the diagonal, and the rest of the
matrix is zeroes. The Σ matrix is a symmetric, or square matrix, with the number of
rows and columns equal to the rank of our A matrix. For this reason, our Σ matrix
has ten rows and ten columns. The singular values on the diagonal of the matrix are
in decreasing order. The largest singular value is in the first column, and the smallest
singular value is in the last column. This will be the case in any SVD application.

6.2  Latent Semantic Analysis (LSA)

82

Σ =
9.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 5.3 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 5.1 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 4.2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 3.5 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7

The VT matrix, in which T represents the transpose, is the document matrix and
the right singular vector. The number of rows in the VT matrix is equal to the rank
of our A matrix and is ten. The number of columns in our VT matrix is equal to the
number of documents, ten. When the number of terms is larger than the number of
documents in a TDM, VT will have the same number of rows and columns, because
the rank is equal to the number of documents. On the other hand, if the number of
documents is larger than the number of terms in a TDM, the U matrix will have the
same number of rows and columns, because the rank value, r, will be the number
of terms.

VT =
−0.2 −0.2 −0.4 −0.1 −0.3 −0.3 −0.2 −0.5 −0.3 −0.3
0.6 −0.3 0.3 0.2 −0.1 −0.1 −0.5 −0.2 0.3 0.0
−0.2 −0.7 0.0 0.4 −0.1 −0.2 0.3 0.2 −0.1 0.3
0.4 0.4 −0.3 0.3 −0.4 −0.1 0.5 −0.2 0.2 −0.1
−0.5 0.4 0.2 0.7 0.0 0.0 −0.3 −0.1 0.1 0.0
0.2 −0.1 −0.7 0.3 0.4 0.3 −0.2 −0.1 −0.1 0.3
−0.2 −0.2 0.2 −0.1 0.3 0.2 0.4 −0.7 0.4 0.0
0.2 −0.2 0.2 0.3 0.3 0.2 0.2 0.1 −0.4 −0.7
0.2 0.3 0.3 0.0 0.3 −0.5 0.1 −0.3 −0.5 0.4
0.1 0.0 0.2 0.0 −0.5 0.6 0.0 −0.3 −0.4 0.3

Now that we have used SVD to create the three-component approximation of the
original TDM, we can create a lower-rank approximation of A to reduce the size.
The Σ matrix has ten singular values along the diagonal, equal to the rank of our A
matrix. We want to reduce the number of singular values, thereby reducing the size
of each of our three component matrices, because each of them has at least one
dimension that depends on the rank of A. We choose a number, k, and reduce the
size of each of our component matrices’ dimensions from r to k.

We choose to retain k = 3 singular vectors or three latent dimensions. The reduced
U, Σ, and VT matrices are shown below. Setting k = 3, the U matrix has 12 rows and
3 columns, the Σ matrix has 3 rows and 3 columns, and the VT matrix has 3 rows and
10 columns.

6  Semantic Space Representation and Latent Semantic Analysis

83

U =
−0.4 −0.3 −0.4
−0.1 −0.2 −0.5
−0.4 −0.1 0.0
−0.4 −0.1 0.1
−0.3 0.6 −0.1
−0.4 0.1 0.0
−0.3 0.3 0.3
−0.1 0.2 0.3
−0.3 0.1 0.1
−0.1 −0.4 0.3
−0.1 0.4 −0.2
−0.3 −0.3 0.4

Σ =
9.9 0.0 0.0
0.0 6.0 0.0
0.0 0.0 5.4

VT =
−0.2 −0.2 −0.4 −0.1 −0.3 −0.3 −0.2 −0.5 −0.3 −0.3
0.6 −0.3 0.3 0.2 −0.1 −0.1 −0.5 −0.2 0.3 0.0
−0.2 −0.7 0.0 0.4 −0.1 −0.2 0.3 0.2 −0.1 0.3

After choosing k, we multiply the above component matrices to find Ak, our reduced
rank approximation of the original A matrix. Our Ak matrix, A3, appears in Table 6.1
in what is referred to as the LSA space.

Table 6.1  The LSA space

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

brown 0.6 3.0 1.2 −0.7 1.8 2.3 1.1 2.1 1.0 0.7
cat 0.1 2.6 0.0 −1.4 0.8 1.2 0.0 0.3 0.1 −0.6
coat 0.7 1.1 1.5 0.5 1.4 1.5 1.3 2.3 1.2 1.5
dog 0.6 0.8 1.3 0.6 1.1 1.2 1.2 2.0 1.0 1.4
favorite 2.6 0.1 2.0 0.8 0.6 0.6 −1.2 0.4 2.0 0.5
fluffy 1.3 0.7 1.6 0.6 1.0 1.1 0.4 1.5 1.4 1.1
hat 1.4 −1.1 1.7 1.5 0.4 0.2 0.2 1.2 1.4 1.4
leash 0.3 −1.4 0.6 1.1 −0.2 −0.4 0.2 0.4 0.4 0.8
pink 0.7 0.2 1.2 0.7 0.8 0.8 0.8 1.5 1.0 1.2
spot −1.3 0.0 −0.2 0.2 0.3 0.3 1.7 1.2 −0.5 0.9
tan 1.8 0.1 1.1 0.3 0.2 0.2 −1.3 −0.2 1.2 −0.1
white −1.0 −0.2 0.5 0.9 0.8 0.7 2.4 2.3 0.1 1.9

6.2  Latent Semantic Analysis (LSA)

84

Figure 6.4 shows the documents and terms in three-dimensional LSA vector
space. The documents are depicted as light blue squares, and the terms are darker
blue dots. We created this representation by multiplying our reduced U and VT
matrices by the Σ matrix. This visualization has a clear advantage over the visual-
ization in Fig. 6.2 in that we can view both documents and terms concurrently across
the three dimensions. Each of the documents and terms in the LSA vector space can
be thought of as vectors emanating from the origin.

For concreteness, Fig. 6.5 presents a two-dimensional version of Fig. 2.4 with
only the first two dimensions. The dashed lines drawn from the origin to leash and
cat can be drawn for each document and term, because they are vectors. Using these
concepts, we can map the associations between terms, documents, and terms and
documents. This depiction gives rise to a geometric measure of closeness known as
cosine similarity.

6.3  �Cosine Similarity

The primary method of measuring the association between terms and documents in
LSA is cosine similarity. Cosine similarity is a means of measuring the semantic
similarity of words, regardless of their actual co-occurrence in text documents
(Landauer and Dumais 1997). By applying LSA, we model the terms and docu-
ments in our TDM in vector space. Doing so gives us the ability to model many
right triangles emanating from the origin to the documents and terms. While the

Fig. 6.4  Terms and documents in three-dimensional LSA vector space

6  Semantic Space Representation and Latent Semantic Analysis

85

calculation is made in multidimensional space, we consider cosine similarity in two
dimensions for concreteness.

From trigonometry, we know that the cosine is the angle between two vectors. In
Fig. 6.5, an angle is formed by the two term vectors meeting at the origin. The rows
of the U matrix are converted to column vectors for the calculation. Cosine similar-
ity can be applied to terms, documents, or both. It can also be applied to queries, or
pseudo-documents, which will be covered in Sect. 6.5. Cosine similarity scores
range between −1 and 1 but are typically greater than 0. The cosine similarity for
two terms, t1 and t2, is calculated as.

	
Cosine t t

t t

t t

T

1 2
1 2

1 2

, ,() =
	

where t1
T is the transpose of the t1 vector and ‖‖ represents the vector norm. In the

case of documents, Cosine(d1, d2), d1 and d2 replace t1 and t2, representing Document
1 and Document 2, respectively.

Our example uses the formula above to estimate the cosine similarity for two
terms, rounding to two decimal places for all intermediate calculations. To calculate
the cosine similarity measurement between the terms fluffy and pink, we use the row
vectors from the LSA space, A3, corresponding to these words.

fluffy:
1.25 0.74 1.58 0.56 1.03 1.12 0.43 1.54 1.35 1.10

favourite

tan
SV2

SV1

leash

pinkfluffy

coat

brown

white

dog

cat

spot

hatD9

D1

D4
D3

D10

D5
D6

D2

D7

D8

Fig. 6.5  Terms and documents of a two-dimensional LSA solution across the first two
dimensions

6.3  Cosine Similarity

86

pink:
0.71 0.17 1.24 0.74 0.78 0.78 0.75 1.50 0.98 1.22

	
fluffy pink fluffy pinkT

i
i i= ∗

=
∑

1

10

	

	 fluffy pinkT = + + + + + + + + +0 89 0 13 1 96 0 41 0 80 0 87 0 32 2 31 1 32 1.34 10 35= 	

The numerator is the cross product, or the dot product, of the two vectors, which is
calculated to be 10.35. The denominator is the product of the matrix norms of the
two vectors, which can be computed as the sum of the squared vector values.

	 fluffy = + + + + + + + +1 25 0 74 1 58 0 56 1 03 1 12 0 43 1 54 1 32 2 2 2 2 2 2 2. 55 1 10 3 582 2+ =. . 	

	

pink = + + + + + + + +0 71 0 17 1 24 0 74 0 78 0 78 0 75 1 50 0 982 2 2 2 2 2 2 2 2. ++ =1 22 3 022. . 	

	 fluffypink = 10 81. 	

The cosine similarity measure of the terms fluffy and pink can then be calculated by
Cosine fluffy pink,() = 10 35

10 81

.

.
 = 0.96. The cosine similarity values for fluffy and the

remaining 11 words are calculated in the same way. Table 6.2 presents the cosine
similarity values for the term fluffy in descending order. The terms pink, dog, and
coat have high cosine similarity values with the word fluffy. On the other hand,
spots, cat, and leash have low cosine values with the word fluffy.

The cosine similarity values for all term-term relationships are displayed in
Table 6.3. Pairs of terms with the highest cosine similarity values around 1.0 are
coat and dog, coat and pink, dog and pink, favorite and tan, and fluffy and pink. Pairs
of terms with very high cosine similarity values around 0.90 are brown and coat,

Term Cosine

pink 0.96
dog 0.94
coat 0.94
hat 0.79
brown 0.79
favorite 0.75
white 0.55
tan 0.54
leash 0.32
cat 0.27
spots 0.19

Table 6.2  Cosine similarity
measures for fluffy, in
descending order

6  Semantic Space Representation and Latent Semantic Analysis

87

fluffy and coat, fluffy and dog, hat and pink, and spots and white. The lowest cosine
similarity value is for the terms cat and leash. This result seems reasonable, because
these terms should be unrelated.

6.4  �Queries in LSA

In the field of information retrieval (IR), the use of the LSA space to explore queries
is an essential tool. Anytime you open your browser to a search engine and type in
search keywords, you are using a query. Based on the keywords that you provide,
the search engine returns websites that it believes match your search criteria. In a
similar way, LSA uses the cosine measures to find documents that are similar to
words that you designate as query terms (Deerwester et al. 1990). A query is repre-
sented as a scaled, weighted sum of the component term vectors. A query is equal to

	 query q UT k k= −Σ 1, 	

where qT is a vector of the terms in the query, Uk is the term matrix, and Σk
−1 is the

inverse of the Σk matrix. Multiplying by the inverse of a matrix is equivalent to
dividing by the matrix that is inverted. The query is a pseudo-document with a vec-
tor representation, which can be compared to the documents in the collection.

For instance, a query could include the component terms tan, brown, and pink.
The qT vector of this query is

qT= [1 0 0 0 0 0 0 0 1 0 1 0], based on the pseudo query below.1

brown cat coat dog favorite fluffy hat leash pink spot tan white

1 0 0 0 0 0 0 0 1 0 1 0

1 Note: The qT vector is created using binary frequency, because at this stage weighting cannot be
calculated and applied to the pseudo-document.

Table 6.3  Term-term cosine similarity measures

brown cat coat dog favorite fluffy hat leash pink spot tan white

brown 0.0

cat 0.8 0.0
coat 0.9 0.3 0.0
dog 0.8 0.3 1.0 0.0
favorite 0.3 0.0 0.5 0.5 0.0
fluffy 0.8 0.3 0.9 0.9 0.8 0.0
hat 0.3 −0.4 0.7 0.7 0.8 0.8 0.0
leash −0.3 −0.8 0.2 0.3 0.4 0.3 0.8 0.0
pink 0.7 0.1 1.0 1.0 0.6 1.0 0.9 0.5 0.0
spots 0.3 0.0 0.5 0.5 −0.5 0.2 0.1 0.2 0.4 0.0
tan 0.2 0.0 0.2 0.2 1.0 0.5 0.6 0.2 0.4 −0.7 0.0
white 0.5 −0.1 0.8 0.8 −0.1 0.5 0.5 0.4 0.7 0.9 −0.4 0.0

6.4  Queries in LSA

88

Using the query formula above, we find that the query is equal to (−0.08, 0.03,
−0.09). We use this result to determine the cosine similarity values for the query and
each of the documents in the document collection to find the documents most asso-
ciated with the query. Table 6.4 displays the list of documents in descending order
of similarity. As the table illustrates, Documents 6 and 5 are most closely associated
with the query, while 7 and 4 are the least associated with, or similar, to the query.

This similarity is based on the angles between the vectors, not physical proxim-
ity. Figure 6.6 shows the documents across the three dimensions. The origin is
denoted (0, 0, 0), and the pseudo-document query is labeled “query.” A thick black
line is drawn between the origin and the query. Since Documents 6 and 5 have the
highest cosine similarity, these vectors are drawn in green. The document vectors
with the lowest cosine similarity, 4 and 7, are plotted in red. As shown, this line
between Document 6 and the query nearly overlaps, resulting in a very small angle
between the two vectors and the highest cosine similarity. On the other hand, while
Document 7 is physically close to the query, the angle between the two vectors is
much larger than between the query and Document 6.

6.5  �Decision-Making: Choosing the Number of Dimensions

The choice of the number of singular values is an important decision in LSA model-
ing. If too few SVD dimensions are retained, we run the risk of losing important
information. On the other hand, if we keep too many, our calculations and solution
may be too complex to be meaningful. For this reason, simple solutions are prefer-
able. Past research has suggested that in the case of big data and very large TDMs
(or DTMs), using between 100 and 300 dimensions provides good performance
(Berry and Browne 1999; Dumais 1991; Landauer and Dumais 1997).

Table 6.4  Cosine values
between the query (brown,
pink, tan) and documents in
descending order by cosine
similarity value

Document Cosine

6 0.81
5 0.78
9 0.73
2 0.71
1 0.69
3 0.66
8 0.24
10 −0.08
7 −0.30
4 −0.30

6  Semantic Space Representation and Latent Semantic Analysis

89

In Fig. 6.7, known as a scree plot, we plot the number of singular vectors and the
amount of variance explained. A scree plot is a visual aid used to evaluate the
tradeoff between efficiency and complexity. In doing so, we look for an elbow in the
graph, or the point at which the slope between points is very small, to determine the
number of singular vectors to keep. As is evident in the figure, the identification of
the elbows is a subjective decision, as is the number of singular values to retain. In
the scree plot below, it appears that three dimensions are appropriate.

LSA has many benefits and is widely used in information retrieval and text min-
ing applications. There are many advantages of using LSA, including its ability to
handle the sparsity, size, and noise associated with a TDM. In the case of large
document collections, the associated TDM will be large and sparse. In addition, due
to the uncertainty involved and the qualitative nature of the text data, the data are
noisy. LSA can cut through a lot of the noise of the TDM because it is rooted in
dimension reduction. Additionally, in reducing the dimensionality, it uncovers latent
factors that are otherwise hidden within the data. In LSA, indirect co-occurrences,
where, for instance, two words are related through a third word, become important.
LSA allows us to compute an association measure, cosine similarity, on a lower-
rank matrix rather than our original TDM.

LSA has the innate ability to uncover deep semantic relationships in the terms
and documents in the space (Landauer et al. 1998). It can identify similarity that
stretches beyond just synonymy and is able to determine the importance of terms
(Hu and Liu 2004). LSA handles the types of noisy, sparse matrices that are pro-
duced in text analysis through the use of SVD. Additionally, it can create pseudo-
documents to measure similarity between existing documents and queries. While

Fig. 6.6  Rotated plot of the query and Document 6 vectors in three-dimensional LSA vector
space

6.5  Decision-Making: Choosing the Number of Dimensions

90

the traditional LSA methods do not account for word ordering, because they assume
a bag-of-words representation, newer methods extend the methods to incorporate
word ordering. LSA can also be applied to TDMs that are based on n-grams or
tokens larger than n = 1.

Despite the many benefits of LSA, there are limitations to its application. An
LSA space is created for a particular document collection, and the results depend
heavily on the type of weighting chosen and the number of singular vectors or latent
factors retained. The decisions made by the analyst are particularly impactful, and
in this sense, the analysis is both an art and a science.

Key Takeaways
•	 Latent semantic analysis (LSA) can uncover underlying or latent meaning

in text.
•	 LSA uses singular value decomposition (SVD) to reduce the dimensional-

ity of the TDM.
•	 Cosine similarity based on the LSA space can be used to assess the close-

ness of term-term and document-document relationships.
•	 Queries based on pseudo-documents can be calculated based on the LSA

space to assess similarity between pseudo-documents and actual docu-
ments represented in the space.

1

0.005

0.010

0.015

0.020

0.025

0.030

0.035

2 3 4 5

Number of Latent Dimensions

V
ar

ia
n

ce
 E

xp
la

in
ed

6 7 8 9 10

Fig. 6.7  Scree plot showing variance explained by number of singular vectors

6  Semantic Space Representation and Latent Semantic Analysis

91

References

Berry, M. W., & Browne, M. (1999). Understanding search engines: Mathematical modeling and
text retrieval. Philadelphia: Society for Industrial and Applied Mathematics.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by
latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391.

Dumais, S. T. (1991). Improving the retrieval of information from external sources. Behavior
Research Methods, Instruments, & Computers, 23(2), 229–236.

Dumais, S. T., Furnas, G. W., Landauer, T. K., & Deerwester, S. (1988). Using latent semantic
analysis to improve information retrieval. In Proceedings of CHI’88: Conference on Human
Factors in Computing (pp. 281–285). New York: ACM.

Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation.
Psychological Review, 114(2), 211–244.

Hu, M., & Liu, B. (2004, August). Mining and summarizing customer reviews. In Proceedings of
the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(pp. 168–177). ACM.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analy-
sis theory of acquisition, induction, and representation of knowledge. Psychological Review,
104(2), 211.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis.
Discourse Processes, 25(2–3), 259–284.

Martin, D. I., & Berry, M. W. (2007). Mathematical foundations behind latent semantic analysis.
In Handbook of latent semantic analysis, 35–56.

Turney, P. D., & Pantel, P. (2010). From frequency to meaning: Vector space models of semantics.
Journal of Artificial Intelligence Research, 37, 141–188.

Further Reading

For more about latent semantic analysis (LSA), see Landauer et al. (2007).

Further Reading

93© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3_7

Chapter 7
Cluster Analysis: Modeling Groups in Text

Abstract  This chapter explains the unsupervised learning method of grouping data
known as cluster analysis. The chapter shows how hierarchical and k-means cluster-
ing can place text or documents into significant groups to increase the understand-
ing of the data. Clustering is a valuable tool that helps us find naturally occurring
similarities.

Keywords  Cluster analysis · Hierarchical cluster analysis · k-means cluster
analysis · k-means · Single linkage · Complete linkage · Centroid · Ward’s method

7.1  �Introduction

Cluster analysis is an unsupervised learning method, meaning that we do not
know the true classification of a document in a document collection. Clustering
methods apply algorithms based on distance or similarity measurements to group
similar items together into clusters. As in latent semantic analysis (LSA), covered
in Chap. 6, clustering reduces the dimensionality of the full document’s represen-
tation by combining the terms or documents into groups. If we have one million
documents, but are able to create a few thousand smaller groups or clusters,
describing the documents becomes a much simpler task.

In cluster analysis, we try to find meaningful and interpretable groupings that
naturally occur in the data. Clustering is used in information retrieval and index-
ing to aid in the categorization of unclassified data. In text analytics, clustering
can be performed on either documents or terms to find similar groupings of
either. An overview of the clustering process is shown in Fig. 7.1. In the context
of text analysis, clustering can be used to find similarities in either document-
document or term-term relationships in a term-document matrix (TDM) or doc-
ument-term matrix (DTM). The input for the model is the TDM or DTM
representation of the document collection. From there, the distance or similarity
between terms-terms or documents-documents may be calculated and used as an
input. Next, the analysis is conducted using one of two methods, hierarchical or

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_7&domain=pdf

94

k-means. The result of the analysis is a cluster solution in which terms or docu-
ments are assigned to clusters for evaluation by the analyst.

In this chapter, we will look specifically at these two approaches to clustering,
k-means and hierarchical cluster analysis. In the examples in this chapter, we use the
TDM created in Chap. 5, in which pet owners describe their pets. The TDM repre-
sentation includes 12 terms and 10 documents.

7.2  �Distance and Similarity

When we consider the distance between two items, we try to measure the difference
or space between them. In this sense, we may want to consider how the two items
differ across dimensions. If we consider an apple and banana, they differ in several
dimensions: color, texture, taste, and size. Text-based cluster analysis relies on a
similar notion, but the dimensions used to measure the distance, or difference, are
either the terms or documents.

Clustering methods utilize distance or similarity measurements as the input for
the clustering algorithms used to form the groups. We begin by plotting our terms in
document space using our tfidf -weighted matrix. To better understand the concept
of distance applied to text analytics, we can visualize terms in document space.
Figure 7.2 displays five terms in document space for Documents 3 and 6. As shown,
for these two documents, there appear to be some terms that are more similar than
others. In particular, fluffy and dog are located close together, as are favorite and hat.
In contrast, brown is not located near any of the plotted terms.

ClustersAnalysis
Documents

or
Terms

DTM

Hierarchical

or

k-Means

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster5

Fig. 7.1  Visualization of cluster analysis

7  Cluster Analysis: Modeling Groups in Text

95

Figure 7.3 expands this notion of similarity to three-dimensional space for
Documents 1, 3, and 7. It is clear from this higher dimensional view that the
groupings of terms change as more documents are considered. As more and more
documentsv are considered in the distance calculation, the groupings will continue
to change.

One common measure of the distance between two objects is Euclidean distance.
The Euclidean distance, d (x, y), between two points, x and y, in two dimensions can
be calculated as

	
d x y y x y x, .() = −() + −()1 1

2

2 2

2

	

For example, as shown in Fig. 7.4, if we take the words fluffy and brown in two-
dimensional document space for Documents 3 and 6, we can calculate the Euclidean
distance between the two terms as

	
d fluffy brown, .() = −() + −() =1 74 0 00 3 03 1 51 2 30

2 2
.

	

The Euclidean distance between fluffy and brown in these two documents is
equal to 2.30. We can calculate the distance between each of the terms in the
document space by extending this two-dimensional distance metric to higher

0.0

0.0

0.5

1.0

1.5

fluffy

brown

dog

hat favorite

2.0

2.5

3.0

0.5 1.0 1.5

D3

Terms in 2D Document Space

D
6

2.0 2.5 3.0

Fig. 7.2  Two-dimensional representation of terms in document space for Documents 3 and 6

7.2  Distance and Similarity

96

Fig. 7.4  fluffy and brown in document space for Documents 3 and 6

0 1 2 3 4 5
0.0

0.5
1.0

1.5
2.0

2.5
3.0

3.5

0

1

2

3

4
spots

white brown

dog
hat

cat

pink

tanfluffy
leash

favorite

coat

5

D1

D
3

D
7

Terms in 3D Document Space

Fig. 7.3  Three-dimensional representation of terms in document space for Documents 1, 3, and 7

7  Cluster Analysis: Modeling Groups in Text

97

dimensions. The distances can be calculated in this way for all terms and docu-
ments to produce a distance matrix that captures the distance between words
across all documents.

The distance matrices based on Euclidean distance for term-term distance and
document-document distance are presented in Tables 7.1 and 7.2, respectively. In
the analysis of the example, we will cluster the documents. Therefore, we will use
the distance matrix in Table 7.2.

An alternative measure to calculating distance is calculating similarity. Recall
from Chap. 6 that cosine similarity is used in latent semantic analysis (LSA) as a
measure of closeness. Cosine similarity provides insights into the similarity
between two documents or two terms based on the angle of the vectors that they
form in LSA.

Table 7.1  Distance matrix of terms

brown cat coat dog favorite fluffy hat leash pink spots tan white

brown 0.0
cat 4.7 0.0
coat 5.0 7.1 0.0
dog 4.1 5.1 5.5 0.0
favorite 6.0 6.4 6.6 5.2 0.0
fluffy 4.6 6.1 3.9 3.1 4.6 0.0
hat 6.1 6.3 5.9 4.7 4.3 4.9 0.0
leash 7.0 6.1 7.1 5.1 6.4 6.1 4.5 0.0
pink 5.6 6.4 5.2 4.9 5.1 5.4 5.3 6.4 0.0
spots 6.0 6.1 7.1 5.1 6.4 6.1 6.3 6.1 6.4 0.0
tan 7.0 6.1 7.1 5.1 4.2 4.7 6.3 6.1 6.4 6.1 0.0
white 6.0 6.4 5.7 3.6 6.7 4.6 5.6 6.4 5.1 4.2 6.4 0.0

Table 7.2  Distance matrix of documents

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

D1 0.0
D2 7.6 0.0
D3 6.8 7.1 0.0
D4 7.3 7.2 6.7 0.0
D5 6.8 6.5 5.6 6.9 0.0
D6 6.3 5.1 5.6 6.3 2.8 0.0
D7 7.6 6.9 7.5 7.2 6.9 6.0 0.0
D8 7.3 6.9 5.5 7.3 5.4 4.8 6.2 0.0
D9 5.1 6.1 4.4 5.6 5.5 4.4 6.5 6.1 0.0
D10 6.6 6.9 5.8 5.8 4.6 4.7 5.8 4.5 4.6 0.0

7.2  Distance and Similarity

98

7.3  �Hierarchical Cluster Analysis

Hierarchical cluster analysis (HCA) is a type of agglomerative clustering.
Agglomeration methods iteratively join clusters together until there is one large
document group with many smaller subgroups (Jain and Dubes 1988; Jain et al.
1999; Rousseeuw and Kaufman 1990). The result of hierarchical clustering analysis
produces a visualization of the solution known as a dendrogram. A dendrogram is a
tree-like diagram that depicts the hierarchical nature of the process. Cutting the
dendrogram at different levels or heights leads to different clustering solutions.

The dendrogram displays the groupings created by the specific hierarchical clus-
tering algorithm and the height at which the clusters are formed. By drawing hori-
zontal lines on the dendrograms at varying heights, we make cuts to form the cluster
groups. The number of clusters chosen for a specific cluster solution can be largely
subjective in nature, although there are some tools to aid in decision-making, which
we will take a closer look at in Sect. 7.4.

An example of a dendrogram appears in Fig. 7.5. The horizontal lines represent
cuts, forming the different cluster configurations. The vertical lines represent the
data that is being clustered, and the end of each of the lines is labeled as either a
term or document. For instance, if we cluster documents, each vertical line repre-
sents a document. On the right-hand side, the cluster groupings are listed for each
of the seven cuts, beginning with one-cluster solution, in which all documents are
in the same cluster. HCA algorithms start at the bottom of the dendrogram, with
all eight data points in their own clusters. As shown, larger and larger clusters are
formed moving upward along the dendrogram. At the top of the dendrogram, one
large cluster is created containing all eight data points. To see the impact of the
dendrogram cuts, however, it is easier to start from the one-cluster solution and
work down to the eight-cluster solution, in which each document is its own clus-
ter. In Fig. 7.5, cuts are made at successively lower heights to form higher num-
bers of clusters.

Fig. 7.5  Dendrogram example with cluster groupings

7  Cluster Analysis: Modeling Groups in Text

99

7.3.1  �Hierarchical Cluster Analysis Algorithm

The general algorithm involves three main steps, with the fourth step being the rep-
etition of previous steps in the process. In HCA, everything starts in its own cluster,
and the singleton clusters are iteratively combined, based on the linkage method
used. A general algorithm for agglomerative clustering, adapted from Xu and
Wunsch (2005), is outlined in Fig. 7.6.

There are several linkage measures that can be used in Step 2 of the general algo-
rithm to measure similarity or distance among clusters. These linkage measures can
be separated into two groups: geometric methods and graph methods (Murtagh
1983). Geometric methods include centroid, median, and Ward’s minimum variance
method. Graph methods include single and complete-linkage methods. We begin by
describing the graph methods.

7.3.2  �Graph Methods

7.3.2.1  �Single Linkage

If single linkage is used to combine clusters, the similarity between clusters is the
maximum of the similarities (or the minimum distance) between all document pairs
(Voorhees 1986). The dendrograms formed using single linkage tend to have long,
stringy clusters.

In this method, to make clustering decisions, we seek to minimize the distance
between clusters, d (Ci, Cj) = min {d (x, y)|x ∈ Ci, y ∈ Cj}, where Ci and Cj are two

Step 1.
Calculate the distance matrix for

singleton clusters.

Step 2.
Combine clusters based on the

linkage method used.

Step 3.
Recalculate the distance matrix

based on new cluster formations.

Step 4.
Repeat steps 2-3 until a single

cluster is formed.

Fig. 7.6  HCA algorithm

7.3  Hierarchical Cluster Analysis

100

different clusters, x is a member of Ci and y is a member of Cj. In Fig. 7.7, which
depicts the dendrogram for a clustering solution based on single linkage, we see
that, as expected, the first documents to be combined into a cluster are Documents
5 and 6. These have the smallest distance measurement in the distance matrix.

The advantage of single-linkage clustering is its efficient implementation.
However, single linkage can sometimes lead to chaining based on transitive rela-
tionships, resulting in inappropriate groupings (Aggarwal and Zhai 2012; Jain et al.
1999; Nagy 1968).

7.3.2.2  �Complete Linkage

In complete-linkage clustering, the maximum distance between a pair of documents
is used in cluster formation (Zhao et al. 2005). In the complete-linkage method,
distance is calculated as d (Ci, Cj) = max {d (x, y) | x ∈ Ci, y ∈ Cj}, where Ci and Cj
are two different clusters, x is a member of Ci and y is a member of Cj. This method
creates more compact clusters than the single-linkage method and does not suffer
from the same chaining issue (Jain et al. 1999; Jain et al. 2000). However, in com-
parison to single linkage, complete linkage is less efficient.

In the dendrogram in Fig. 7.8, we see more compact clusters. Again, the process
starts by creating a cluster between the two closest documents, Documents 5 and 6.
Next, instead of adding Document 8 to the cluster, as in single linkage, another
cluster is formed, joining Documents 8 and 10. This process continues until
Document 4 is finally joined to create the large cluster solution containing all ten
documents.

0.2

0.4

0.6H
ei

g
h

t 0.8

1.0

1.2

Single Linkage

1

4

3
9

5 6

2
7

10 8

Fig. 7.7  Single linkage document—HCA example

7  Cluster Analysis: Modeling Groups in Text

101

7.3.3  �Geometric Methods

7.3.3.1  �Centroid

In clustering using centroid distance, the measurement of the dissimilarity or dis-
tance between clusters is the distance between the clusters’ centers or centroids
(Berry and Linoff 2011). Put simply, the similarity is calculated based on the
middle of the clusters. Centroid-based methods are a type of average-link cluster-
ing. In this method, combination decisions are made, and distance is calculated as
d (Ci = i, Ci ≠ i) = d (μi = i, μi ≠ i), where μi is the mean or average of Cluster i and
µi

k

n

kn
x=

=
∑1

1

. xk represents a document in Cluster i.
As Fig. 7.9 illustrates, centroid-based methods can have issues with crossovers,

which single linkage and complete linkage do not have. This crossover occurs
when a cluster merges with another cluster, before the original cluster is even cre-
ated (Jain and Dubes 1988). The overlaps shown on the dendrogram depict this
crossover effect.

7.3.3.2  �Ward’s Minimum Variance Method

Ward’s method or Ward’s minimum variance method minimizes the within-cluster
variance (Ward 1963). Cluster formation decisions are made based on calculations
of squared errors, with the goal of minimizing the change in the sum of squared
errors (SSE) caused by merging the clusters. There are many examples demonstrat-
ing that Ward’s method performs better than alternative hierarchical clustering
methods (Jain and Dubes 1988). In Ward’s method, the SSE of Cluster i is calcu-
lated based on the distance from the cluster centroids. The cluster centroids are

1

4

3

0.2

0.4

0.6

H
ei

g
h

t

Complete Linkage

0.8

1.0

1.2

1.4

9

5 6

8 10

2 7

Fig. 7.8  Complete linkage document HCA example

7.3  Hierarchical Cluster Analysis

102

calculated as in the centroid method. If there are m total clusters and n total docu-

ments, the SSE of cluster i is computed as SSE xi
k

n

i

m

k i= −[]
= =
∑∑

1 1

2µ , and the distance

between clusters is found by calculating the change in the overall SSE of the cluster-
ing solutions. For this reason, the squared Euclidean distance is used.

Figure 7.10 illustrates the resulting dendrogram from HCA using Ward’s method.
In this example, Ward’s method provides a clear visualization of the clustering of
the documents.

7 1 2

4

3
0.3

0.4

0.5H
ei

g
h

t

Centroid Distance

0.6

0.7

0.8

0.9

9

5 6

8

10

Fig. 7.9  Centroid linkage document—HCA example

0

10

20

30

40

50

60

D4

D1

D3 D9

D2 D7

D5 D6

D8 D10

H
ei

g
h

t

Ward’s Method

Fig. 7.10  Ward’s method for linking documents—HCA example

7  Cluster Analysis: Modeling Groups in Text

103

7.3.4  �Advantages and Disadvantages of HCA

Hierarchical cluster analysis has many beneficial properties for unsupervised text
categorization. Unlike other forms of clustering, such as k-means, which will be
covered next, HCA does not require any predetermined number of clusters prior to
performing the analysis. Additionally, HCA can be used as the only method of clus-
tering, or it can be used as the basis for alternative forms of clustering. Another
important advantage of HCA is that it produces a visualization, the dendrogram. In
smaller samples, the dendrogram can be a clear representation of the analysis and
can be easy to interpret, which is useful in presenting the results of the analysis.

Despite the many advantages of HCA, there are some known disadvantages too.
In hierarchical clustering applied to text, the visualization can be difficult to inter-
pret in large document collections. As the dimensionality of the analysis increases,
the readability and usefulness of the dendrogram decrease. In large-scale analysis,
the explanatory power of the dendrogram may not be as strong, without a reduction
in dimensions or feature selection methods being used prior to analysis. Due to the
high level of dimensionality of real-world text analysis, the use of the dendrogram
by the analyst may not be as informative as in smaller-scale applications.

Another issue is that HCA can be particularly sensitive to outliers, whose pres-
ence may have a strong influence on the clustering solution (Manning et al. 2008).
For this reason, it is sometimes beneficial to consider feature selection procedures
and outlier detection prior to conducting HCA. While the fact that there is no need
to specify the number of clusters at the outset is an advantage of hierarchical cluster-
ing, it can also lead to overly subjective results that are heavily dependent on the
decisions of the analyst. For this reason, it is important to make informed decisions.
We will consider some important decisions at the end of this chapter, in Sect. 7.4.

7.4  �k-Means Clustering

k-means clustering (kMC) is a type of partitional clustering in which there is a sin-
gle solution. Unlike in HCA, where the number of clusters is chosen after the analy-
sis produces many possible cluster solutions, kMC requires that the number of
clusters, k, be determined prior to the analysis. k-means clustering in text analytics
is also a method for finding natural groupings based on a TDM or DTM, but there
is no hierarchical structure or dendrogram-type visualization created. Instead,
groupings are formed around pre-specified cluster seeds based on similarity or min-
imum distance. There are a few variations of kMC analysis, namely, k-medians,
k-mediods, and k-modes clustering analysis. However, we will present the most
popular, k-means clustering analysis. Next, we describe the general two-step algo-
rithm used in kMC, which involves assigning data points to clusters and updating
distance measures iteratively until a desired threshold is met.

7.4  k-Means Clustering

104

7.4.1  �kMC Algorithm

The k-means clustering method requires two inputs provided by the user: the num-
ber of clusters, k, and the initial seed. The initial seeds provide a starting point
around which the clustering algorithm will build clusters. This initial seed can be
data points or points chosen at random. In Sect. 7.4, we take a closer look at meth-
ods for choosing the initial seed. After the initial cluster seeds are chosen, the pro-
cess follows two steps until all assignments are made, and based on some
convergence criteria, the model cannot be improved.

Typically, we try to minimize the total sum of squared errors (SSE), as in Ward’s
method of HCA. The within-cluster SSE is calculated as the sum of the squared
distance from each data point to its assigned cluster centroid. The sum of the within-
cluster SSE values for all k clusters is the total SSE. When the total SSE cannot be
improved by reassigning data points, the algorithm stops. The kMC algorithm is
depicted in Fig. 7.11.

7.4.2  �The kMC Process

To explain how kMC works, we perform a small-scale kMC analysis to cluster
terms in the TDM. Specifically, we will apply the kMC algorithm to eight terms
across two documents, Documents 3 and 6.1 Their tfidf-weighted values are shown
in Table 7.3.

1 The omitted terms (leash, spots, tan, and white) have the same value as cat (0,0) and, therefore,

Step 1.
Assign data points to the cluster

with the closest centroid. The initial

centroids are the cluster seeds.

Step 2.
Calculate cluster centroids based on

assignment from Step 1.

Step 3.
Repeat steps 1 and 2 until

convergence is reached.

Fig. 7.11  kMC algorithm

7  Cluster Analysis: Modeling Groups in Text

105

Figure 7.12 shows the plotted tfidf term values for the two documents. Based on
the plotted values, we have reason to believe that there are three naturally occurring
groupings consisting of {brown, coat}, {fluffy, dog, cat}, and {hat, favorite, pink}.
For this reason, we will choose k = 3. In larger k-means clustering applications,
especially with high dimensionality, this visual decision method cannot be used. In
Sect. 7.4.1, we will introduce some methods for choosing k.

Prior to kMC, we need to choose (1) k, the number of clusters, (2) the initial
cluster seeds, and (3) the convergence criteria. The three initial seeds are chosen to
be three randomly selected data points: cat, coat, and hat. Figure 7.13 designates
these cluster seeds with a purple “X” as the plot point. These seeds serve as our

would be in the same cluster. To make the example visually clearer, they were removed.

Table 7.3  Tfidf term values
for Documents 3 and 6

Term D3 D6

brown 1.5 3.0
cat 0.0 0.0
coat 2.0 2.0
dog 0.0 1.3
favorite 2.7 0.0
fluffy 0.0 1.7
hat 2.3 0.0
pink 3.3 0.0

0.0

0.5

1.0

dog

fluffy

coat

hatcat favorite pink

brown

1.5

2.0

2.5

3.0

0 1 2 3

Fig. 7.12  k-Means process example plot

7.4  k-Means Clustering

106

initial cluster centroids, and all initial assignments are based on the closeness of the
remaining data points to these cluster seeds.

Once the initial cluster seeds are chosen, the distances between the seeds and the
remaining data points are calculated. Table 7.4 displays the squared distance
between the unassigned data points shown in black in Fig. 7.13 and the cluster
centroids plotted in purple. The assignment is chosen by evaluating the minimum
distance for each of the rows in the table. For each term i, assign-
menti = argminj{d (termi, centroidj)2}. The minimum distance for each of the terms
is shown in bold in the table.

Our initial cluster assignments, which are based on the minimum squared dis-
tance values, are depicted in Fig. 7.14. The terms in Cluster 1 are red, Cluster 2 are
green, and Cluster 3 are blue. The within-cluster SSE is calculated by adding the
squared distance values for each cluster, resulting in within-cluster SSE values of
4.7, 1.3, and 1.2, respectively. The total within-cluster SSE, therefore, is
4.7 + 1.3 + 1.2 = 7.2.

Table 7.4  Squared distance from cluster seeds

Centroid 1: cat Centroid 2: coat Centroid 3: hat

brown 11.5 1.3 9.8
dog 1.7 4.5 7.1
favorite 7.5 4.5 0.2
fluffy 3.0 4.1 8.4
pink 11.0 5.7 1.0

0.0

0.5

1.0

dog

fluffy

coat

cat favorite pink

brown

1.5

2.0

2.5

3.0

0 1 2 3

hat

Fig. 7.13  k-Means initial cluster seed designation of cat, coat, and hat

7  Cluster Analysis: Modeling Groups in Text

107

The next step, Step 2, is to recalculate the centroids of the clusters. Since the
centroid of a cluster is the arithmetic mean of the cluster, we can easily calculate the
new cluster centroids as (0.0, 1.0), (1.8, 2.5), and (2.8, 0.0), for Clusters 1, 2, and 3,

0.0

0.5

1.0

dog

fluffy

coat

cat favorite pink

brown

1.5

2.0

2.5

3.0

3.5

0 1 2 3

hat

Fig. 7.14  Cluster assignments based on cluster seeds for a three-cluster solution

0.0

0.5

1.0

dog

fluffy

coat

cat

1

3

2

favorite pink

brown

1.5

2.0

2.5

3.0

3.5

0 1 2 3

hat

Fig. 7.15  First iteration cluster assignment and calculated centroids

7.4  k-Means Clustering

108

respectively. These new centroid values are plotted in Fig. 7.15 and are labeled by
their cluster number.

Next, based on Step 3, we repeat the process, beginning with Step 1 to determine
if we can improve the assignments from our first iteration. For each of the terms, we
recalculate the square distances to each of the cluster centroids. Table 7.5 presents
the results. The minimum squared distance for each term is highlighted in bold.

The within-cluster SSE values for the three clusters are 1.5, 0.6, and 0.5, for a
total SSE of 2.6. Comparing our new total SSE to our previous total SSE, we see
that the total SSE has been reduced from 7.2 to 2.6. Based on Table 7.5, the assign-
ments have remained unchanged. Thus, we can conclude that this is the best possi-
ble clustering solution based on the chosen k value and initial seeds. Since the
solution remains unchanged, we stop the clustering algorithm iteration and choose
this as our clustering solution. Therefore, our kMC analysis solution in this example
is {fluffy, dog, cat}, {brown, coat}, and {hat, favorite, pink}. If this were not the
case, and we could improve the solution, we would make the necessary assignments
and continue iterations of the algorithm until the solution could not be improved any
further based on the total within-cluster SSE.

Next, we consider the kMC cluster solution for the full document collection
using the tfidf-weighted TDM created in Chap. 5. As in the small-scale example, we
choose k = 3. Applying the kMC algorithm, Cluster 1 contains Documents 2 and 7;
Cluster 2 contains Documents 1, 3, 4, and 9; and Cluster 3 contains Documents 5,
6, 8, and 10. The within-cluster SSE for the three clusters are 23.6, 55.6, and 30.9.
The total within-cluster SSE is 110.

7.4.3  �Advantages and Disadvantages of kMC

kMC analysis has several advantages in unsupervised text categorization. kMC per-
forms fast calculations, and the algorithm typically converges quickly (Aggarwal
and Zhai 2012). When there are clear clusters in the data, the performance is par-
ticularly good. Many of the shortcomings of k-means are related to the choices
made prior to performing the analysis. The kMC method requires that the number
of clusters be chosen before conducting the cluster analysis. In the next section, we

Table 7.5  Squared distance from terms to cluster centroids

Term Cluster 1 Cluster 2 Cluster 3

brown 6.4 0.4 10.8
cat 1.0 9.5 7.8
coat 5.0 0.3 4.6
dog 0.1 4.6 9.6
favorite 8.5 7.1 0.0
fluffy 0.5 3.8 10.9
hat 6.4 6.5 0.2
pink 12.0 8.6 0.3

7  Cluster Analysis: Modeling Groups in Text

109

cover some ways to choose the number of clusters. Additionally, different initial
seed choices lead to very different clustering solutions. It is widely accepted that
based on the choice of the initial seed value, the kMC algorithm can converge after
finding local optima instead of global optima. Some researchers suggest running
the k-means algorithm many times, using different initial seeds each time to evalu-
ate many solutions, choosing the best solution of these runs (Steinley 2006).
Depending on the size of the data, this approach may be one method to search for
the best possible solution based on the minimized SSE. However, for larger datas-
ets, this method may be infeasible.

7.5  �Cluster Analysis: Model Fit and Decision-Making

7.5.1  �Choosing the Number of Clusters

The number of clusters is an important decision in both cluster analysis methods.
We present some subjective methods and some methods based on graphing fit mea-
sures to choose either the minimum or maximum fit value. Since both HCA and
kMC are sensitive to the decisions of the analyst, it is important to consider many
alternatives when choosing the final clustering solution. There is no single objective
number of optimal clusters, so a thorough evaluation of alternative solutions is key
to finding the best model for the specific application.

7.5.1.1  �Subjective Methods

In HCA, the dendrogram helps us visualize the solutions for varying numbers of
clusters, k. First, we look at the cluster solution using Ward’s method and consider
different cluster analysis solutions with varying numbers of clusters, k. Using the
dendrograms for each of the potential number of clusters helps us visualize the solu-
tions for different numbers of clusters. Figure 7.16 displays clustering solutions in
which k varies between 2 and 7. In this case, there is still subjectivity in the cluster
decision. One person may believe that the solution with six clusters appears to fit
best, while another person may believe that a two-cluster solution is best. For this
reason, this method is more subjective than objective.

There are other subjective methods that can be utilized, such as using expert
opinion, domain knowledge, or experience to choose the number. In k-means clus-
tering, it can be beneficial to use the best solution from hierarchical clustering to
determine the number of clusters as the input for k-means. For large datasets, the use
of the dendrogram may not be sufficient to make the decision. However, there are
several measures that can be utilized to aid in the decision.

7.5  Cluster Analysis: Model Fit and Decision-Making

110

F
ig

. 7
.1

6 
W

ar
d’

s
m

et
ho

d
hi

er
ar

ch
ic

al
 c

lu
st

er
 a

na
ly

si
s

so
lu

tio
ns

 f
or

 k
 =

 2
, 3

, 4
, 5

, 6
, a

nd
 7

7  Cluster Analysis: Modeling Groups in Text

111

7.5.1.2  �Graphing Methods

Scree Plot

Using the kMC solution described in Sect. 7.3.2, we run the clustering algorithm
and vary the number of clusters, k, and evaluate the total within-cluster SSE. Plotting
k against the total within-cluster SSE, we create a plot that is similar to a scree plot.
A scree plot depicts the variance explained on the y-axis for different solutions
when varying the number of clusters, k, and is used widely in data mining analysis.
As in the case of a scree plot, we aim to find an elbow, to find a balance between the
explanatory power and the complexity of the solution. Figure 7.17 displays this plot
for the k-means solution. As evidenced by this plot, sometimes there is no clear
elbow. Even if there is an elbow, there is still subjectivity in the interpretation and
resulting decision based on this type of plot.

Silhouette Plot

The average silhouette method can be used with any clustering approach to help
choose the number of clusters (Rousseeuw and Kaufman 1990). The silhouette
coefficient, si, for data point i is calculated by

Fig. 7.17  Scree plot total within cluster SSE for k Values 1–9

7.5  Cluster Analysis: Model Fit and Decision-Making

112

	

s
b a

a bi
i i

i i

=
−

()max ,
,

	

where ai is the average distance from data point i to all other data points in its own
cluster and bi is determined by calculating the distance to all other data points in all
other clusters and finding the minimum average distance from the data point to
another cluster. Due to the need to compute ai and bi for each data point, it is clear
that the calculation of the cluster silhouette coefficient can be computationally
expensive for larger datasets.

From there, the average cluster silhouette is found by averaging the data point
silhouette coefficients for each cluster. The overall measure of the average silhouette
for the cluster solution is calculated as the average of the silhouette values for all
points in the data. The average overall silhouette model values for k values between
2 and 9 for the Ward’s method HCA is displayed in Fig. 7.18. Based on the plot, we
would conclude that the best clustering solution would be the k = 7 clustering solu-
tion. The seven-cluster solution is {1}, {4}, {2}, {7}, {3,9}, {5,6}, and {8,10}.

7.5.2  �Naming/Describing Clusters

In addition to finding naturally occurring groupings in the data, the main objective
in the application of cluster analysis is to describe the clusters. It is important to
consider what the members of clusters have in common and what differentiates
them. The most useful clustering analysis solution should be interpretable.

2

0.
12

0.
14

0.
16

0.
18

0.
20

3 4 5 6

Number of cluster k

A
ve

ra
g

e
si

lh
o

u
et

te
 w

id
th

7 8 9

Fig. 7.18  Silhouette plot for Ward’s method hierarchical clustering analysis

7  Cluster Analysis: Modeling Groups in Text

113

We consider the k-means clustering solution with three clusters, which is identi-
cal to the three-cluster solution using HCA with Ward’s method and seeks to
describe the clusters by first looking at their centroids. The three-cluster k-means
solution is {2,7}, {1,3,4,9}, and {5,6,8,10}.

Since the tfidf weightings are used as the inputs for the clustering solution, the
importance of the various terms in the documents is what creates the similarities and
dissimilarities in the documents. Recall that in the kMC example clustering terms,
the centroids were in two dimensions, Documents 5 and 6. If the terms in the TDM
were to be clustered, the centroids would be in ten dimensions, since the total num-
ber of documents in the collection is ten. In the larger example, the centroids are the
number of dimensions of the terms used to create the clusters. In this case, the cen-
troids would be in 12 dimensions, since there are 12 terms.

If we characterize our clusters by their most prominent terms, we can describe
Cluster 1 using the words brown, cat, and spots, we can describe Cluster 2 using
favorite and hat, and we can describe Cluster 3 using coat and fluffy. In real-world
cases with clearly defined distinctions or categories in the data, describing the cen-
troids in this way can provide more concrete labels or distinctions to the clusters.
This ability is particularly helpful in presenting and reporting the analysis clearly.

7.5.3  �Evaluating Model Fit

In validating our model to assess model goodness and fit, we are concerned with
three types of validity: internal, external, and relative. Internal validity is based on
measures derived from the data and the model created. External validity is based on
outside information, such as expert opinion or classification labels. Finally, relative
validity compares different solutions by changing the values of the parameters (Zaki
et al. 2014). Due to the unsupervised nature of clustering in this chapter, we will
focus on assessing the internal validity of the model. However, if we know the
actual cluster membership, we can evaluate the predicted and actual cluster mem-
bership. The silhouette coefficient described in Sect. 7.4.1 is an example of a rela-
tive validity measure because choosing k, the number of clusters, is a parameter
choice. In Chap. 9, which introduces supervised classification analysis methods, we
cover external validity in depth.

One measure of internal validity used to assess the fit of a clustering solution is
the Dunn index (Halkidi et al. 2002). The Dunn index is the ratio of the minimum
inter-cluster data point distance to the maximum intra-cluster point distance or

	

Dunn Index ,inter

intra

=
{ }
{ }

min

max

d

d
	

where min {dinter}, the minimum inter-cluster distance, is the minimum distance
between any two points in different clusters and max {dintra}, the maximum intra-
cluster distance, is the maximum distance between any two points in the same
cluster. These distance measures are found by evaluating the distance measure

7.5  Cluster Analysis: Model Fit and Decision-Making

114

used to create the model. Better fitting clustering models will have higher Dunn
index values.

7.5.4  �Choosing the Cluster Analysis Model

The choice between k-means and hierarchical clustering depends largely on the
purpose of the application. When choosing a model type to use, consider the advan-
tages and disadvantages of each. Since clustering is an unsupervised, undirected
form of analysis, the choice of k in the kMC method can be difficult. For this reason,
a combination of the two methods may be helpful in finding the naturally occurring
groupings that exist in the dataset. Expertise or access to experts in the field who
have extensive knowledge about the data can help inform the analysis and therefore
the decision about the type of analysis.

A good understanding of the data will help determine the analysis method to
use in any text analytic application. Clustering will always produce a solution,
and in some cases, clusters will be created where they do not naturally occur in
the data (Manning et al. 2008). If the data are too noisy, there may not be natu-
rally occurring groupings in the TDM or DTM. Preprocessing and feature selec-
tion can reduce the dimensionality and help the analyst decide if cluster analysis
is the right fit. In addition, the goal of the analysis should help in this decision. If
the goal is to categorize documents in a document collection without knowing
what the true categories are, cluster analysis is a good analysis method. If the true
categories of the documents are known and the goal is to make predictions, a bet-
ter approach is to use a supervised method, such as classification analysis, which
will be introduced in Chap. 9.

Key Takeaways
•	 Cluster analysis is an unsupervised analysis method used to form groups,

or clusters, based on similarity or distance.
•	 Two popular clustering methods are hierarchical cluster analysis (HCA)

and k-means clustering (kMC).
•	 HCA produces a visualization of the clusters, known as a dendrogram, and

can be completed using several methods, including single-linkage,
complete-linkage, centroid, and Ward’s method.

•	 kMC requires cluster seeds, the number of clusters, and a convergence
criterion as input to the analysis.

•	 Two types of methods to choose the number of clusters are subjective and
graphing.

7  Cluster Analysis: Modeling Groups in Text

115

References

Aggarwal, C. C., & Zhai, C. X. (2012). Mining text data. New York: Springer Verlag.
Berry, M. J., & Linoff, G. S. (2011). Data mining techniques. For marketing, sales, and customer

relationship management. Chichester: Wiley-Interscience.
Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2002). Cluster validity methods: Part II. ACM

SIGMOD Record, 31(2), 40–45.
Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Upper Saddle River:

Prentice-Hall.
Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing

Surveys (CSUR), 31(3), 264–323.
Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(1), 4–37.
Manning, C., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval.

Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511809071.
Murtagh, F. (1983). A survey of recent advances in hierarchical clustering algorithms. The

Computer Journal, 26(4), 354–359.
Nagy, G. (1968). State of the art in pattern recognition. Proceedings of the IEEE, 56(5), 836–863.
Rousseeuw, P. J., & Kaufman, L. (1990). Finding groups in data. Hoboken: Wiley Online Library.
Steinley, D. (2006). K-means clustering: A half-century synthesis. British Journal of Mathematical

and Statistical Psychology, 59(1), 1–34.
Voorhees, E. M. (1986). Implementing agglomerative hierarchic clustering algorithms for use in

document retrieval. Information Processing & Management, 22(6), 465–476.
Ward, J. H., Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the

American Statistical Association, 58(301), 236–244.
Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on neural net-

works, 16(3), 645–678.
Zaki, M. J., Meira, W., Jr., & Meira, W. (2014). Data mining and analysis: Fundamental concepts

and algorithms. Cambridge: Cambridge University Press.
Zhao, Y., Karypis, G., & Fayyad, U. (2005). Hierarchical clustering algorithms for document

datasets. Data Mining and Knowledge Discovery, 10(2), 141–168. https://doi.org/10.1007/
s10618-005-0361-3.

Further Reading

For more about clustering, see Berkhin (2006), Jain and Dubes (1988) and Jain et al. (1999).

Further Reading

https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1007/s10618-005-0361-3
https://doi.org/10.1007/s10618-005-0361-3

117© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3_8

Chapter 8
Probabilistic Topic Models

Abstract  In this chapter, the reader is introduced to an unsupervised, probabilistic
analysis model known as topic models. In topic models, the full TDM (or DTM) is
broken down into two major components: the topic distribution over terms and the
document distribution over topics. The topic models introduced in this chapter
include latent Dirichlet allocation, dynamic topic models, correlated topic models,
supervised latent Dirichlet allocation, and structural topic models. Finally, decision-
making and topic model validation are presented.

Keywords  Topic models · Probabilistic topic models · Latent Dirichlet allocation
· Dynamic topic models · Correlated topic models · Structural topic models ·
Supervised latent Dirichlet allocation

8.1  �Introduction

Topic models, also referred to as probabilistic topic models, are unsupervised
methods to automatically infer topical information from text (Roberts et al.
2014). In topic models, topics are represented as a probability distribution over
terms (Yi and Allan 2009). Topic models can either be single-membership mod-
els, in which documents belong to a single topic, or mixed-membership models,
in which documents are a mixture of multiple topics (Roberts et al. 2014). In this
chapter, we will focus on mixed-membership models. In these models, the num-
ber of topics, k, is a fixed number that is chosen prior to building the model.

Latent semantic analysis (LSA), which is covered in Chap. 6, and topic models
are both dimension reduction methods and use the document-term matrix (DTM) or
term-document matrix (TDM) as the input for the analysis. While LSA discovers
hidden semantic content, topic models reveal thematic structure. LSA aims to
uncover hidden meaning in text, while topic models focus on the underlying sub-
jects or themes that are present in the documents.

The most common type of topic model was created as an extension of the prob-
abilistic latent semantic indexing (pLSI) model proposed by Hofmann (1999),
which is a probabilistic LSA model. Figure 8.1 shows how the specific dimension

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_8&domain=pdf

118

reduction in LSA compares to that of topic models (Griffiths et al. 2007). As
detailed in Chap. 6, LSA uses singular value decomposition (SVD) to break down
the full TDM or DTM into three smaller component matrices. From there, the
number of singular vectors can be reduced to create a smaller dimensional repre-
sentation of the original. In topic modeling, the full TDM or DTM is broken down
into two major components: the topic distribution over terms and the document
distribution over topics. The first component tells us the importance of the terms in
topics, and using that importance information, the second component tells us the
importance of topics in the documents.

While there are many similarities between LSA and topic models, they also dif-
fer in many ways. Unlike LSA, topic models are generative probabilistic models.
Based on the assigned probability, we can understand topics through their most
likely terms. We are also able to better understand documents based on their most
likely topics in their topic distribution. Unlike the latent factors in LSA, each topic
is clearly identified and explainable.

The topic modeling examples in this chapter use text data based on 56 docu-
ments in which people describe the physical appearance of their pet dogs. There
are four different breeds of dogs described in the documents: Bichon Frise,
Dachshund, Great Dane, and Golden Retriever. The dogs vary in terms of height,
weight, size, color, and fur. Each of the breeds has distinguishing features that are
characteristic of that breed. For instance, Bichon Frises are small, fluffy dogs that
are predominantly white and usually have black noses. On the other hand, a Great
Dane is a very large dog with a short, straight coat that can be one of the several
colors or a mix of colors. In the document sample, each dog type is described in 14
of the 56 documents.

Fig. 8.1  LSA and topic models (Griffiths et al. 2007, p. 216)

8  Probabilistic Topic Models

119

Preprocessing and parsing are applied to the 56 text documents, including the
removal of stop words and stemming. Since some of the pet owners describe their
dogs in terms of weight, we do not remove numbers from our corpus. The tfidf-
weighted DTM is used, and the resulting vocabulary contains 96 terms. The first
topic model that we will present is the latent Dirichlet allocation (LDA). Many of
the alternative topic models use LDA as the basis of their model.

8.2  �Latent Dirichlet Allocation (LDA)

The latent Dirichlet allocation (LDA) model is a generative probabilistic model
introduced in Blei et al. (2002, 2003). LDA assumes a bag-of-words (BOW) model
representation, meaning that term ordering in a document is not considered when
building the topic model (Blei et al. 2003). Additionally, LDA assumes that docu-
ments are exchangeable, meaning that there is no meaningful sequential ordering of
the documents in the collection (Blei et al. 2010). Another assumption of LDA is the
independence of topics. Figure 8.2 provides an illustration of the LDA.

In the LDA model, K is the total number of topics, D is the total number of docu-
ments, and N is the total number of words in a document, where Wd,  n is an observed
word. Additionally, α is the Dirichlet parameter, and η is the topic hyperparameter.
Each topic is a distribution over terms, with topic assignments Zd,  n. Each document
is a mixture of topics, with topic proportions θd, and each term is drawn from one of
the topics, with topic assignments βk. Due to the intractability of computing the
posterior distribution of the topics in a document, approximation methods are used,
including mean field variational methods, expectation propagation, collapsed Gibbs
sampling, and collapsed variational inference.

Using the data in the example, we build a model with four topics. We choose
four topics as our starting point because we know that there are four dog breeds
represented in the document collection. The top ten terms in each of the four top-
ics based on the expected topic assignment are depicted in Fig. 8.3. Based on the
figure, Topic 2 can be described using the word white, and we would expect to see
the documents describing Bichon Frises assigned to this topic. Topic 1 can be
described by the terms long, tail, and short; Topic 3 can be described by the terms
weigh, pound, and coat; and Topic 4 can be described by coat and ear. One of the
strengths of topic models can be seen in Topic 3. The terms weigh and pound are

Fig. 8.2  Plate representation of the random variables in the LDA model (Blei 2012, p. 23)

8.2  Latent Dirichlet Allocation (LDA)

120

tall
long

short

dark
ear

leg

tail

fluffi

bodi

golden

0.00 0.02 0.04 0.06 0.08 0.00 0.025 0.050 0.075 0.100 0.125

0.00 0.02 0.04

3 4

1 2

0.06 0.00
beta

te
rm

0.02 0.04 0.06

white
long

coat

weigh
ear

black

leg

tail

fluffi

look

pound
coat

weigh

gold
ear

hair

nose

lbs

muscular

fur

long
coat

short

weigh
gold

ear

black

tail

fluffi

larg

Fig. 8.3  Top ten terms per topic, four-topic model

synonyms, and they are most likely terms in the same topic. Unlike other methods,
such as LSA, topic models are able to handle synonymous terms very well.

8.3  �Correlated Topic Model (CTM)

The correlated topic model (CTM) is a hierarchical model that explicitly models
the correlation of latent topics, allowing for a deeper understanding of relation-
ships among topics (Blei and Lafferty 2007). The CTM extends the LDA model by
relaxing the independence assumption of LDA. As in the LDA model, CTM is a
mixture model and documents belong to a mixture of topics. CTM uses the same
methodological approach as LDA, but it creates a more flexible modeling approach
than LDA by replacing the Dirichlet distribution with a logistic normal distribution
and explicitly incorporating a covariance structure among topics (Blei and Lafferty
2007). While this method creates a more computationally expensive topic model-
ing approach, it allows for more realistic modeling by allowing topics to be cor-
related. Additionally, Blei and Lafferty (2007) show that the CTM model
outperforms LDA (Fig. 8.4).

As in the LDA model, K is the total number of topics, D is the total number of
documents, and N is the total number of words in a document, where Wd, n is an
observed word. In the CTM model, ηd is the topic hyperparameter with mean μ and

8  Probabilistic Topic Models

121

Fig. 8.4  Plate representation of the random variables in the CTM model (Blei et al. 2007, p. 21)

Fig. 8.5  Expected topic proportions of four categories in the CTM model with no covariates

covariance matrix ∑. Again, each topic is a distribution over terms, with topic
assignments Zd, n. Each document is a mixture of topics, with topic proportions θd,
and each term is drawn from one of the topics, with topic assignments βk. A fast
variational inference algorithm is used to estimate the posterior distribution of the
topics, because, as in LDA, the calculation is intractable. However, in practice, the
computation is inefficient, particularly in comparison to LDA.

Using the data from the example, we build a CTM model with k = 4 topics. The
top terms and expected topic proportions of this model are presented in Fig. 8.5.
When considering the topic proportions, since we know that the four dogs are
equally represented in the document collection, we would expect the topics to have
the same expected proportions if the topics are dog specific. Based on the figure,

8.3  Correlated Topic Model (CTM)

122

Topic 1

Topic 4

Topic 3

Topic 2

Fig. 8.6  CTM topic correlation plot

they do not appear to be topics based on the dog breeds. However, it does appear
that Topic 1 could be about Dachshunds, Topic 2 about Golden Retrievers, Topic 3
about Bichon Frises, and Topic 4 about Great Danes. Topic 1 is the most prevalent
expected topic, which contains short, long, and leg as the topic words. To try to
explain the difference in topic proportions, we can look at a plot of the correlations
among topics.

The CTM model has the advantage over the LDA model in that it models the
correlations among topics. To investigate possible correlations, we can evaluate the
correlations among topics and create an adjacency plot. Based on the adjacency plot
in Fig. 8.6, in which no edges or straight lines connect the topic nodes, the four top-
ics in the CTM model are not correlated.

8.4  �Dynamic Topic Model (DT)

The dynamic topic model models topics in a sequentially ordered document col-
lection to incorporate the evolution of topics over time by relaxing the exchange-
ability assumption of the LDA model (Blei and Lafferty 2006). The process
involves splitting the data into smaller, time-dependent groups, such as by month
or year. Dynamic topic models are built as an extension of the LDA model and
thus do not model correlations among topics. The model uses the logistic normal
distribution with mean α for each time period t (Fig. 8.7).

As in the LDA model, K is the total number of topics, D is the total number of
documents, and N is the total number of words in a document. Wd, n is an observed
word. Additionally, αt is the mean Dirichlet parameter α at time t. Each topic is
a distribution over terms, with topic assignments Zt, d, n. Each document is a mix-
ture of topics, with topic proportions θt, d, and each term is drawn from one of the
topics, with topic assignments βt, k at time t. The model can use variational
Kalman filtering or a variational wavelet regression to estimate the parameters of
the DT model.

8  Probabilistic Topic Models

123

a a a

q

b b b

N

w

z

A

q

N

w

z

A

q

N

w

z

A

K

Fig. 8.7  Plate diagram of DT model (Blei and Lafferty 2006, p. 2)

Yd

Zd,n Wd,n

D

KN
a qd bk

h,s 2

Fig. 8.8  Plate representation of the sLDA model (McAuliffe and Blei 2008, p. 3)

8.5  �Supervised Topic Model (sLDA)

McAuliffe and Blei (2008) introduced the supervised latent Dirichlet allocation
(sLDA), which is an extension of the LDA model with the use of labeled docu-
ments, as in the classification analysis covered in Chap. 9. The sLDA model has a
class variable associated with each document, which serves as the response variable
in the model (Fig. 8.8).

As in the LDA model, in the sLDA model, K is the total number of topics, D is
the total number of documents, and N is the total number of words in a document,
where Wd, n is an observed word. Additionally, α is the Dirichlet parameter, η and σ2
are response parameters, and y is the response variable. Each topic is a distribution
over terms, with topic assignments Zd, n. Each document is a mixture of topics, with
topic proportions θd, and each term is drawn from one of the topics, with topic

8.5  Supervised Topic Model (sLDA)

124

assignments βk. Rather than treat the parameters as random variables, the model
treats them as unknown constants. As in the LDA model, a variational expectation-
maximization (VEM) procedure is used for the model estimation.

8.6  �Structural Topic Model (STM)

The structural topic model (STM) combines three common topic models to create a
semiautomated approach to modeling topics, which can also incorporate covariates
and metadata in the analysis of text (Roberts et al. 2014). Additionally, unlike the
LDA model, topics in STM can be correlated. This model is particularly useful in
the topical analysis of open-ended textual data, such as survey data.

Since STM allows for the addition of covariates, additional information from the
data can be used in the model. Furthermore, effect estimation can be performed to
investigate and compare selected covariates and topics. In particular, STM has the
ability to account for topical content and prevalence, allowing us to compare group-
ings in the data. For instance, to consider content, we could compare the specific
words that are used to describe the different types of dogs. We could also explore the
topic’s prevalence, or how often a topic occurs, for the different breeds.

STM is a mixture model, where each document can belong to a mixture of the
designated k topics. Topic proportions, θd, can be correlated, and the topical preva-
lence can be impacted by covariates, X, through a regression model
θd~LogisticNormal(Xγ, Σ). This capability allows each document to have its own
prior distribution over topics, rather than sharing a global mean. For each word, w,
the topic, zd, n, is drawn from a response-specific distribution. Conditioned on the
topic, a word is chosen from a multinomial distribution over words with parameters,
βzd, n. The topical content covariate, U, allows word use within a topic to vary by
content (Fig. 8.9).

We build an STM model with four topics and include the dog breed as a content
variable. The top ten words in each topic in the STM model are shown in Fig. 8.10.

By incorporating the dog breed as a covariate, we can consider how the breeds
vary for each of the four topics. Figure 8.11 shows the expected proportion of topics
for each of the topics and dog breeds.

8.7  �Decision Making in Topic Models

8.7.1  �Assessing Model Fit and Number of Topics

Although there is no single, uniform measure for choosing the number of topics in
building a topic model, several methods have been proposed to help the analyst
decide on the number of topics, k. Two methods aim to minimize the metrics to
determine the optimal number of topics. Cao Juan et al. (2009) uses minimum

8  Probabilistic Topic Models

125

Fig. 8.9  Plate diagram representation of the structural topic model (Roberts et al. 2013, p. 2)

Fig. 8.10  Top ten terms in topics for STM model

8.7  Decision Making in Topic Models

126

Fig. 8.11  Dog type content across topics

density measures to choose the number of topics. Arun et al. (2010) utilize a mea-
sure of divergence, where minimal divergence within a topic is preferred. Both
methods use measures of distance to make decisions regarding k. On the other hand,
Deveaud et al. (2014) utilize a measure maximizing the divergence across topics,
and Griffiths and Steyvers (2004) maximize the log-likelihood of the data over dif-
ferent values of k. We use these four measures across 2–30 topics in building the
LDA models, and the results are displayed in Fig. 8.12. Based on the figure, includ-
ing five topics in an LDA model appears to be a good tradeoff between the four
measures and is highlighted in red.

8.7.2  �Model Validation and Topic Identification

Topic models can be supervised or unsupervised and, thus, can rely on either inter-
nal or external validity measures, depending on the type of data being used. Model
validity and interpretability should go hand-in-hand in topic model analysis, and
therefore, we will consider them together. We will focus on internal validity

8  Probabilistic Topic Models

127

Fig. 8.12  Four measures across a number of topics, k, for 2–30 LDA topics

measures, since we performed an unsupervised LDA analysis. Mimno et al. (2011)
suggest using topic size or the frequency of terms assigned to the topic as a good
indicator of topic quality. Figure 8.13 displays the term frequency for the four-topic
LDA solution and the five most probable terms in those topics.

Topics 4, 3, and 1, respectively, are the topics with the highest number of terms
and are believed to be of higher quality than Topic 2. Topic models are built to iden-
tify latent topics existing in a document collection. In most cases, topic models are
used to gain an understanding of the collection and to find ways to categorize and
characterize documents. While the method is automatic, it requires interpretable
output to be useful to the modeler. In this sense, it requires a combination of art and
science. To this end, human coders are oftentimes used to evaluate the topics to
determine if there is a natural label that can be assigned to the topic assignments
from the topic model. For this reason, Chang et al. (2009) investigate the interpret-
ability of models compared to their quantitative performance measures. They pro-
pose the use of word intrusion and topic intrusion methods, which involve presenting

8.7  Decision Making in Topic Models

128

Fig. 8.13  Topic frequency and the five most probable terms per topic

the most probable terms and topics and an intruder. Then, human coders are
instructed to identify the intruder. Another common approach is the use of coding
by field experts in the relevant domain.

Alternatively, the model can be built on the sample, with a portion removed as a
holdout sample. In doing so, two measures, perplexity and held-out likelihood, can
be used to assess the model. Perplexity measures how well the model predicts the
held-out sample. Perplexity values that are lower are preferred and indicate that the
model is a good fit. We can also compute the log-likelihood of the held-out docu-
ments. The higher the log-likelihood, the better the model fit.

8.7.3  �When to Use Topic Models

When determining if topic modeling should be used in the analysis, there are sev-
eral considerations to keep in mind. First, most topic model approaches are unsu-
pervised and assume that there is uncertainty in the documents. If the true topics of

8  Probabilistic Topic Models

129

the documents in the document collection are known, it may be more beneficial to
apply a supervised analysis method, such as classification analysis, which is cov-
ered in Chap. 9. Topic models form soft clusters because they are typically mixed-
membership models. The results of the analysis will produce the most likely topics
to assign to documents and the most probable terms for each of the topics. If hard
clusters are preferred and the topical content across terms and documents does not
need to be considered simultaneously, cluster analysis can be used to cluster either
terms or documents into hard clusters. Topic models, however, are particularly
useful in making predictions. Since topic models are probabilistic models, predic-
tions can be made about new documents based on the model.

References

Arun, R., Suresh, V., Madhavan, C. V., & Murthy, M. N. (2010, June). On finding the natural num-
ber of topics with latent dirichlet allocation: Some observations. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining (pp. 391–402). Berlin/Heidelberg: Springer.

Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77–84.
Blei, D. M., & Lafferty, J. D. (2006). Dynamic topic models. In Proceedings of the 23rd

International Conference on Machine Learning (pp. 113–120). ACM.
Blei, D. M., & Lafferty, J. D. (2007). A correlated topic model of science. The Annals of Applied

Statistics, 1(1), 17–35.
Blei, D. M., & Lafferty J. D. (2009). Topic models. In A. Srivastava & M. Sahami (Eds.), Text min-

ing: Classification, clustering, and applications. London: Chapman & Hall/CRC Data Mining
and Knowledge Discovery Series.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2002). Latent Dirichlet allocation. In Advances in neural
information processing systems (pp. 601–608). Cambridge, MA: MIT Press.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine
Learning Research, 3, 993–1022.

Blei, D., Carin, L., & Dunson, D. (2010). Probabilistic topic models. IEEE Signal Processing
Magazine, 27(6), 55–65.

Blei, David M., & Lafferty, J.D. (2007). A Correlated Topic Model of Science. The Annals of
Applied Statistics. 1(1): 17–35.

Cao, J., Xia, T., Li, J., & Zhang Y., & Tang, S. (2009). A density-based method for adaptive lDA
model selection. Neurocomputing — 16th European Symposium on Artificial Neural Networks
2008, 72(7–9), 1775–1781.

Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J. L., & Blei, D. M. (2009). Reading tea leaves:
How humans interpret topic models. In Advances in neural information processing systems
(pp. 288–296). Cambridge, MA: MIT Press.

Key Takeaways
•	 Topic models were created as an extension of a probabilistic version of

latent semantic analysis.
•	 Topic models are unsupervised analysis methods that produce a topic dis-

tribution over terms and document distribution over topics.
•	 Popular topic modeling approaches include latent Dirichlet allocation, cor-

related topic models, dynamic topic models, supervised latent Dirichlet
allocation, and structural topic models.

References

130

Deveaud, R., SanJuan, E., & Bellot, P. (2014). Accurate and effective latent concept modeling for
ad hoc information retrieval. Document numérique, 17(1), 61–84.

Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National
Academy of Sciences, 101(suppl 1), 5228–5235.

Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation.
Psychological Review, 114(2), 211–244.

Hofmann, T. (1999, July). Probabilistic latent semantic analysis. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence (pp. 289–296).

Mcauliffe, J. D., & Blei, D. M. (2008). Supervised topic models. In Advances in neural informa-
tion processing systems (pp. 121–128). Cambridge, MA: MIT Press.

Mimno, D., Wallach, H. M., Talley, E., Leenders, M., & McCallum, A. (2011, July). Optimizing
semantic coherence in topic models. In Proceedings of the conference on empirical methods in
natural language processing (pp. 262–272). Association for Computational Linguistics.

Roberts, M. E., Stewart, B. M., Tingley, D., & Airoldi, E. M. (2013, January). The structural topic
model and applied social science. In Advances in neural information processing systems work-
shop on topic models: computation, application, and evaluation (pp. 1–20).

Roberts, M., et al. (2014). Structural topic models for open-ended survey responses. American
Journal of Political Science, 58, 1064–1082.

Yi, X., & Allan, J. (2009, April). A comparative study of utilizing topic models for information
retrieval. In European conference on information retrieval (pp. 29–41). Berlin/Heidelberg:
Springer.

Further Reading

To learn more about topic models, see Blei (2012), Blei and Lafferty (2009), and Griffiths et al.
(2007).

8  Probabilistic Topic Models

131© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3_9

Chapter 9
Classification Analysis: Machine Learning
Applied to Text

Abstract  This chapter introduces classification models. We begin with a descrip-
tion of the various measures for determining the model’s strength. Then, we explain
popular classification models including Naïve Bayes, k-nearest neighbors, support
vector machines, decision trees, random forests, and neural networks. We demon-
strate the use of each model with the data from the example with the four dog
breeds.

Keywords  Classification analysis · Categorization · Machine learning · Text
classification · Text categorization · Supervised learning · Artificial neural net-
works · Decision trees · Random forest · Support vector machines · Naïve Bayes ·
k-nearest neighbors

9.1  �Introduction

Think about the last time you received a spam email message in your inbox. If this
experience is a distant memory, you are already familiar with classification analysis.
Every time a spam email is directed to your spam or trash folder rather than your
inbox, a classification model is identifying the message as spam and redirecting the
message to your spam folder.

Text classification, also known as text categorization, is used extensively in text
analytics. Text categorization methods have been used in information retrieval (IR)
for text filtering, document organization, word-sense disambiguation, and indexing
(Sebastiani 2002). More specifically, it has been used for news filtering, document
organization and retrieval, opinion mining, email classification, and spam filtering
(Aggarwal and Zhai 2012).

Classification analysis is a type of supervised learning model. Supervised learn-
ing models are used to automatically categorize or classify text documents when the
true classification of the document is known (Kantardzic 2011; Sebastiani 2002).
Classification analysis is different from cluster analysis, topic models, and latent
semantic analysis because there is certainty in the natural groupings or underlying

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_9&domain=pdf

132

factors of the data. In unsupervised analysis, we must infer the naturally occurring
groupings in the data, without knowing the actual groupings or categories. This type
of research produces inductive inference. A major advantage of classification analy-
sis is the ability to make predictions. Classification analysis also differs from other
models with respect to the analysis process and the assessment of the model fit.

9.2  �The General Text Classification Process

Prior to conducting classification analysis, we split the document sample into at
least two groups: the training set and the testing set. Sometimes, a third group is also
included, known as the validation set. In this chapter, we perform classification
analysis using a training set and a testing set. We begin with our full document set,
which includes the known class labels. These labels are categorical in our example
and take on discrete values. Categorical variables are qualitative labels. For instance,
a document collection describing fruit may have documents with categorical class
labels such as apple, banana, and orange.

We split the set into two groups based on a chosen split rule. When choosing how
to split the data, there is a trade-off. We want to include enough documents in the
training set to produce a good classifier and map the documents to the class label.
However, we also need to have enough documents “held out” to assess the perfor-
mance of our classifier. In splitting the documents, we want to include enough docu-
ments of each classification in each set, so that each class, or category, is considered
when building the classifier and can be predicted. A popular split is to put 70% of
the data in the training set and 30% in the testing set.

After the documents are split, the classification method is applied to the term-
document matrix (TDM) or document-term matrix (DTM) of the training set. We
take this step to map the relationship between the TDM or DTM and the class label.
Once the classifier is created, it is applied to the TDM or DTM of the testing set,
which does not include the class label. This step produces either a most likely cat-
egory or a category to which the document is predicted to belong. Then, measures
of external validity can assess the performance of the analysis. Figure 9.1 provides
an overview of the classification analysis process (Dorre et al. 1999).

9.3  �Evaluating Model Fit

9.3.1  �Confusion Matrices/Contingency Tables

A contingency table, or confusion matrix, presents the actual and predicted classes
based on classification analysis models. An example of a simple 2-by-2 table with
two classifications, Yes and No, appears in Fig. 9.2. The cells in the table contain
frequency values for each of the classifications present in the model across the

9  Classification Analysis: Machine Learning Applied to Text

133

Training Set TDM/
DTM

Testing Set TDM/
DTM

Class
1

Class
2

Class
3

Class 3
Class 1

Class 2

CLASSIFIER

Fig. 9.1  Classification analysis process

Actual

Yes No

Predicted
Yes

No

Fig. 9.2  Sample contingency table with two classifications, Yes and No

actual and predicted classifications. The cells in which the actual and predicted
values match are on the diagonal, highlighted in green. These green cells represent
hits or instances where the classification model makes a correct prediction. The
cells in the contingency table where the classification model predicts the wrong
classification are shown in red. These red cells represent misclassifications or
misses.

Contingency tables allow for the efficient calculation of measures of goodness of
fit. To demonstrate, we use the contingency table displayed in Fig. 9.3, which is
based on Fig. 9.2. An additional row and column have been added to the table to
display the total actual and predicted values, respectively. As the table demonstrates,
the size of the testing data is 20, with 10 classified as Yes and 10 classified as No.

9.3  Evaluating Model Fit

134

9.3.2  �Overall Model Measures

We use the contingency table to perform calculations to assess our classification
analysis model fit. The first overall model measure is accuracy.

9.3.2.1  �Accuracy

Accuracy measures the proportion of correct predictions. Accuracy is usually
expressed as a percentage. In calculating accuracy from a contingency table, we find
correctly predicted classes along the diagonal of the contingency table. We measure
accuracy as

	
Accuracy

of correct predictions

of total predictions
= ∗
#

#
100

	

We can calculate the accuracy of the classification depicted in Fig. 9.3 as

	
Accuracy =

+
∗ =

3 4

20
100 35%

	

This result is very low level of accuracy. An accuracy level equal to 100% means
that the model has perfect predictive power, whereas accuracy equal to 0% means
that the model does not make any correct predictions.

9.3.2.2  �Error Rate

The error rate considers the classification predictions that are not on the diagonal.
We want a classification model with a high level of accuracy and a low error rate.
Since accuracy is measured as a percentage, we calculate the error rate by subtract-
ing the accuracy from 100. The error rate is calculated as

	
Error Rate

of incorrect predictions

of total predictions
= ∗ =
#

#
100 1000 −()Accuracy

	

Actual
Yes No Total Predicted

Predicted
Yes 3 6 9

No 7 4 11

Total Actual 10 10 20

Fig. 9.3  Contingency table example

9  Classification Analysis: Machine Learning Applied to Text

135

To calculate the error rate of the classification model represented in the contingency
table in Fig. 9.3, we use this formula:

	
Error Rate =

+
∗ =

7 6

20
100 65%

	

Accuracy and error rate are two simple measures that tell us the overall fit of the
model and its performance. Additional measures of the predictive power of the clas-
sification model include the Rand index, the Adjusted Rand index (ARI), and
Cohen’s kappa. The ARI is used to determine the agreement between the actual and
predicted classifications that are not attributed to chance. Cohen’s kappa considers
the accuracy of the model versus its expected accuracy.

9.3.3  �Class-Specific Measures

Class-specific measures reveal if our model is good (or bad) at predicting a certain
class. In cases where it is more important to identify a specific class, these measures
help the analyst choose the model. For instance, suppose we have a document col-
lection of customer reviews for a subscription service. The documents are labeled
“Active” if the customer is a current customer, “3–5 months” if the customer left the
service after 3–5 months, and “6–12 months” if the customer left the service after
6–12 months. If we want a model that can be applied to a group of new customers
for targeted marketing to those customers who are likely to leave after 3–5 months,
it is imperative that the model correctly predicts this class of customers. The three
class-level measures of predictive performance that we use are precision, recall, and
F-measure.

9.3.3.1  �Precision

Precision is the class-specific equivalent of accuracy. Precision measures how many
of the predictions for a given class are accurate compared to the total number of
documents that are predicted in that class. Precision does not consider the actual
number of documents in the class, only the number of predictions. Precision is mea-
sured as

	
Precision Accuracy

of correct predicted

total predictedi i
i

i

= =
#

# 	

We calculate the precision of the two classes, Yes and No, of the classification model
represented in the contingency table in Fig. 9.3 as

9.3  Evaluating Model Fit

136

	
Precision and Precision .YES NO= = = =

3

9
0 33

4

11
0 36. .

	

Consistent with our model-level accuracy, the result is a low level of precision for
the two categories.

9.3.3.2  �Recall

An alternative measure to precision is recall. Recall measures how many of the
predictions for a given class are correct compared to the total number of documents
that truly belong to that class. Recall is measured as

	
Recall

of correct predicted

total of actuali
i

i

=
#

# 	

We calculate the recall of the two classes, Yes and No, of the classification model
represented in the contingency table in Fig. 9.3 as

	
Recall and RecallYES NO= = = =

3

10
0 30

4

10
0 40. .

	

9.3.3.3  �F-Measure

In real-world classification, we want high levels of both precision and recall.
However, this outcome is not always possible. For this reason, in assessing our
model fit and choosing our classification model, we want to balance the two mea-
sures. The F-measure is a goodness of fit assessment for a classification analysis that
balances precision and recall. The maximum possible value of the F-measure is 1.
The F-measure is calculated as

	
Fi = ∗

∗
+

2
precision recall

precision recall 	

We can calculate the F-measure values of the two classes, Yes and No, of the clas-
sification model represented in the contingency table in Fig. 9.3 as

	
F FYES NOand= ∗

∗
+

= = ∗
∗
+

=2
0 33 30

0 33 30
0 31 2

0 36 0 40

0 36 0 40
0

. .

. .
.

. .

. .
.338

	

The mean class-level F-measure values can be used as the overall F-measure. In this
case, our overall F-measure value is (0.38 + 0.31)/2, 0.35. An overall F-measure
value of 0.35 is very low but should be expected, given the poor performance of the
classification model. Next, we introduce the classification models.

9  Classification Analysis: Machine Learning Applied to Text

137

9.4  �Classification Models

There are many classification models available to categorize and classify documents
in text analytics applications. In this chapter, we cover six popular models that are
also utilized in machine learning and data mining applications: naïve Bayes, k-
nearest neighbors, support vector machines, decision trees, random forests, and
neural networks.

The classification examples in this chapter use the DTM based on 56 documents
in which people describe the physical appearance of their pet dogs. There are four
different breeds of dogs described in the documents: Bichon Frise, Dachshund,
Great Dane, and Golden Retriever. The dogs vary in terms of height, weight, size,
color, and fur. Each of these breeds has distinguishing features that are characteris-
tic of that breed. For instance, Bichon Frises are small, fluffy dogs that are predomi-
nantly white and usually have black noses. On the other hand, a Great Dane is a very
large dog with a short, straight coat that can be one of several colors or a mix of
colors. In the document sample, each dog type has 14 documents.

Pre-processing and parsing is applied to the 56 text documents, including the
removal of stop words and stemming. Since some of the pet owners describe their
dogs in terms of weight, we do not remove numbers from our corpus. The tfidf
weighted DTM is used, and the resulting vocabulary contains 96 terms. For demon-
strative purposes, we put 70% of our observations in our training set and 30% in our
testing set. In this example, we keep an equal number of observations per classifica-
tion in each set. There are 40 documents in the training data, 10 per dog, and 16
documents in the testing data, 4 per dog.

9.4.1  �Naïve Bayes

Naïve Bayes (NB) models are often applied in the identification of spam email mes-
sages and for fraud detection. NB models are widely used because they are easy to
implement and simple to use (Allahyari et al. 2017; Kim et al. 2006). The model
relies on Bayes’ rule, which is used to estimate conditional probability. Bayes’ rule
states that

	

P X Y
P Y X P X

P Y
|

|
() = () ()

() 	

NB assumes that terms are conditionally independent given the class, which simpli-
fies the necessary calculations. The naïve Bayes classification rule says that the
most likely classification Ĉ , of document D, is equal to

	
ˆ argmax |C P D C P C= ()∗ (), 	

9.4  Classification Models

138

where P(D|C) is the conditional probability of a document given its class and P(C)
is the probability of the classification. Since we know that documents are comprised
of terms, we can determine the probability of a document given the classification by
multiplying each of the probabilities of a term given that it belongs to that class.
This assumption makes the model estimation efficient, but it is not necessarily accu-
rate in applications using real-world data (Zhang 2004).

In our example, we apply the naïve Bayes model to the training data to develop
the classification rule, and then the rule is used on the testing data to predict the
most likely classification. Table 9.1 displays the contingency table with the most
likely class labels estimated for the 16 documents in the testing set. The accurate
predictions are displayed along the diagonal in green, and the misclassifications are
indicated in red.

While the model is known to be simple, it is very accurate in predicting three out
of the four dog breeds. The model misclassifies only one document, classifying it as
Bichon Frise, when it actually describes a Dachshund. The overall accuracy of the
model is 93.8%, and the overall F-measure is 0.95. The class-level goodness of fit
measures, precision, recall, and F-measure are displayed in Table 9.2.

9.4.2  �k-Nearest Neighbors (kNN)

Similar to the distance-based groupings formed in clustering, in k-nearest neighbor
(kNN) classifications, the similarity between documents is used to classify them
(Aggarwal and Zhai 2012). The most common classification in a document’s k-
nearest neighbor group is set as that group’s class label. The training groups are then
compared to the testing points, and the group nearest to each testing point becomes
that point’s predicted classification. kNN is considered a “lazy learning model,”
meaning that no actual model is created. Instead, all calculations are performed dur-
ing the classification of the testing data (Bell 2006).

Table 9.2  Goodness of fit measures, naïve Bayes model

Precision Recall F-measure

Bichon Frise 0.8 1.0 0.9
Dachshund 1.0 0.8 0.9
Golden Retriever 1.0 1.0 1.0
Great Dane 1.0 1.0 1.0

Table 9.1  Naïve Bayes contingency table

Actual

Bichon Frise Dachshund Golden Retriever Great Dane

Predicted
Bichon Frise 4 1 0 0

Dachshund 0 3 0 0
Golden Retriever 0 0 4 0

Great Dane 0 0 0 4

9  Classification Analysis: Machine Learning Applied to Text

139

To illustrate the use of the kNN classification model, let’s consider an example
using k = 1. In this case, a distance matrix of the DTM is used to find the closest data
point in the training data for each of the testing data points. Based on the distance
values in the distance matrix, the nearest neighbors to the 16 testing documents and
their resulting most likely classifications are shown in Table 9.3. Misclassified test-
ing documents are shown in red, and correctly classified documents are shown in
green.
The resulting contingency table appears in Table 9.4 and displays the correct clas-
sifications in green and the misclassifications in red. The kNN model with k = 1, or
1NN model, correctly predicts the documents about Golden Retrievers but has trou-
ble predicting the other classes. The overall accuracy of the model is 68.8%.

The class-level goodness of fit measures, precision, recall, and F-measure are
displayed in Table 9.5. While the model has perfect precision for the Dachshund
class, it has very poor recall (0.5). The model has perfect recall for the Golden
Retriever class, but only a 0.6 precision level. The class with the highest F-measure
value is Bichon Frise, with precision and recall values of 0.8.

Table 9.3  1NN testing document actual classifications, 1NN documents and 1NN predicted
classifications

Table 9.4  Contingency table, kNN classification, k = 1 (1NN)

9.4  Classification Models

140

Table 9.5  Goodness of fit measures, k-nearest neighbors, k = 1

Precision Recall F-Measure

Bichon Frise 0.8 0.8 0.8
Dachshund 1.0 0.5 0.7
Golden Retriever 0.6 1.0 0.7
Great Dane 0.7 0.5 0.6

An obvious caveat of kNN classification is that it requires a k value prior to per-
forming the classification. Additionally, the solution is sensitive to the chosen value
of k. However, since the number of classifications is known in supervised learning,
the best k to start with is usually the number of classes present in the dataset. For
large datasets, kNN can be very inefficient.

9.4.3  �Support Vector Machines (SVM)

Support vector machine (SVM) classification involves the search for the optimal
hyperplane, among all possible separating hyperplanes, which has the largest mar-
gin of separation between classes (Hearst et al. 1998; Vapnik and Kotz 1982). The
support vectors are the points located at the boundary of the margin. According to
Joachims (1998), SVM performs very well when applied to text classification
because SVM can handle the high dimensionality and sparsity of the DTM used as
the input quite efficiently (Joachims 1998).

An illustration of a two-dimensional SVM classification model is displayed in
Fig. 9.4. The blue circles representing Documents 1–5 belong to class “blue” and
the green circles representing Documents 6–10 belong to class “green.” The optimal
hyperplane is the red line depicted in the figure. The red line is the optimal hyper-
plane because it creates the largest margin, shown in purple, between the two sup-
port vectors, which are represented as orange dashed lines drawn through Documents
4 and 10.

We apply SVM to our example DTM to predict the four dog breeds. The result-
ing contingency table is shown in Table 9.6, which displays the correct classifica-
tions in green and the misclassifications in red. The overall accuracy of the SVM
model is 81.3%.

The goodness of fit measures, precision, recall, and F-measure are displayed in
Table 9.7. Overall, the model performs very well in predicting the class labels. The
SVM model has perfect precision for the Bichon Frise and Dachshund breed classes,
and perfect recall for the Golden Retriever class. All of the classes have high
F-measure values over 0.8, and the overall F-measure is 0.85.

Overall, SVM is accurate, efficient, and quick to train and has been shown to
outperform other methods, including naïve Bayes and the next method that we will
cover: decision trees (Dumais et al. 1998). On the other hand, Ikonomakis et al.
(2005) assert that despite the high level of precision of the SVM model, it can suffer
from poor recall.

9  Classification Analysis: Machine Learning Applied to Text

141

Fig. 9.4  Two-dimensional representation of support vector machine classification of ten docu-
ments (Sebastiani 2002)

9.4.4  �Decision Trees

Decision tree classification is a nonparametric approach that uses recursive parti-
tioning to separate classes within a dataset (Quinlan 1986; Rokach and Maimon
2005; Sebastiani 2002). Decision trees are comprised of a collection of rules divid-
ing a dataset into successively smaller groups for classification or prediction.
Decision trees help the user understand and explain groups and subgroups occurring
in the data, because they are based on a series of rules. The output of using DT is a
visualization depicting the partitioning process.

The top node leading to all subsequent partitions is known as the root node.
The goal of each split in a decision tree is to increase purity, which refers to the
homogeneity of the partitioned data. With each successive split, we want to
improve the groups so that each group includes a single class. A pure node would
contain all points of a single class and would have a purity value of 1. There are

Table 9.6  Support vector machines contingency table

9.4  Classification Models

142

Table 9.7  Goodness of fit measures, SVM

Precision Recall F-Measure

Bichon Frise 1.0 0.8 0.9
Dachshund 1.0 0.8 0.9
Golden Retriever 0.7 1.0 0.8
Great Dane 0.8 0.8 0.8

measures divergence between probability distributions (Rokach and
Maimon 2005)Gini Index

• Purer nodes have a value of 1; therefore, higher Gini Index values are preferred when making
splitting decisions (Berry and Linoff 2011).

• The Classification and Regression Tree (CART) method uses Gini (Breiman et al. 1984).

measures homogeneityEntropy/Deviance
• Purer nodes have a value of 0; therefore, lower Entropy values are preferred when making splitting

decisions (Sutton 2005).

measures the reduction in EntropyInformation Gain
• Higher values are preferred when making splitting decisions.

measures the likelihood of a splitChi-Square Test
• A higher value indicates that the split is less likely to be due to chance and is a better split than a split

with a lower value (Loh 2008).
• Increasing in the dataset size.

Fig. 9.5  Splitting criteria for decision trees

several measures of purity to split the nodes of a decision tree, including Gini,
entropy, chi-square, and deviance. Figure 9.5 describes the four purity measures.

Using the training set, we utilize entropy as the splitting criteria to create a clas-
sification tree. The resulting tree, shown in Fig. 9.6, is formed using four terms:
white, short, black, and ear, with white as the root node.

The resulting contingency table is shown in Table 9.8, which displays the correct
classifications in green and the misclassifications in red. The overall prediction
accuracy of the DT classification model is 62.5%. As the table indicates, the model
is particularly poor at predicting the Great Dane breed category.

The class-level goodness of fit measures, precision, recall, and F-measure are
displayed in Table 9.9. While the model has perfect recall for the Bichon Frise class
and perfect precision for the Golden Retriever class, the model is very poor at pre-
dicting the documents about Great Danes, with both precision and recall values of
0.3. The overall F-measure value is 0.63.

Decision trees used for classification have many beneficial properties. They are
not sensitive to outliers or distributional properties. They are also simple and easy
to understand. The visual aid adds concreteness to the results of the analysis.

9  Classification Analysis: Machine Learning Applied to Text

143

Fig. 9.6  Decision tree created from training data using deviance as the splitting criteria

Table 9.9  Goodness of fit measures, decision tree

Precision Recall F-Measure

Bichon Frise 0.6 1.0 0.7
Dachshund 0.7 0.5 0.6
Golden Retriever 1.0 0.8 0.9
Great Dane 0.3 0.3 0.3

However, decision trees can be prone to overfitting, where the model demonstrates
strong predictive performance on the training set but may fail to be generalizable.
For this reason, decision trees can be sensitive to minor changes in the training set.
In addition, they are computationally expensive (Sutton 2005).

9.4.5  �Random Forests

Random forests (RF) are a “combination of tree predictors such that each tree
depends on the values of a random vector sampled independently and with the same
distribution for all trees in the forest” (Breiman 2001, 1). RF can overcome the

Table 9.8  Decision tree confusion matrix

9.4  Classification Models

144

Table 9.11  Goodness of fit measures, random forest

Precision Recall F-Measure

Bichon Frise 0.8 1.0 0.9
Dachshund 1.0 0.8 0.9
Golden Retriever 1.0 1.0 1.0
Great Dane 0.8 0.8 0.8

instability of a single decision tree by using many different decision trees, creating
a forest of decision trees that on average are more accurate (Strobl et al. 2009). The
procedure involves building many trees that form a collection of trees, or a forest.
From that forest, voting or averaging can be used to make classification decisions.

We apply RF to the DTM example to predict the dog breed classification. The
resulting contingency table is shown in Table 9.10, which displays the correct clas-
sifications in green and the misclassifications in red. The overall accuracy is 87.5%.

The class-level goodness of fit measures, precision, recall, and F-measure are
displayed in Table 9.11. The RF model clearly outperforms the DT model. In fact,
the model is able to predict the Golden Retriever class with perfect precision and
recall. The model also has perfect precision for the Dachshund class and perfect
recall for the Bichon Frise class. The F-measure values are all at or above 0.8, and
the overall F-measure value is 0.9.

Based on the contingency table in Table 9.10 and the fit measures in Table 9.11
for the RF predictions, it is clear that the use of many decision trees in RF outper-
forms the use of a single DT across all fit measures. One feature of RF analysis is
the ability to measure and visualize the importance of variables based on the analy-
sis. Fig. 9.7 displays the importance of variables based on the mean decrease in
accuracy. The importance of the terms short and white is evident in this figure. RF
has the advantage of accuracy and efficiency and overcomes the overfitting issue of
a classification model with a single DT (Breiman 2001).

9.4.6  �Neural Networks

Neural networks (NN) or artificial neural networks (ANN) are made up of intercon-
nected groups of nodes with one or more hidden layers linking inputs to outputs and
are based on the neural networks that exist in the human brain (Kantardzic 2011).

Table 9.10  Random forest contingency table

9  Classification Analysis: Machine Learning Applied to Text

145

NN is a machine learning technique that learns and adapts based on the data in the
model. Neural networks are referred to as a black box model because they have a
high level of accuracy but are difficult to understand or interpret. For this reason,
this network-based approach is best when we want to create a high-performing clas-
sification model, but an explanation of the model is not crucial to the application of
the model. The model requires that the number of hidden layers and hidden layer
nodes be specified in advance.

Figure 9.8 depicts an example of NN. A NN classification model takes the model
input and maps the input to the output through a series of nodes and one or more
hidden layers. In the figure, nodes are depicted as blue circles. There are five input
nodes in the input layer, one for each input. There is one hidden layer with four
nodes, which connect to the three output nodes in the output layer.

In the NN classification model predicting dog breed, we use one hidden layer
with five hidden nodes. The resulting contingency table is shown in Table 9.12,
which displays the correct classifications in green and the misclassifications in red.
The overall accuracy of the model is 75%.

The goodness of fit measures, precision, recall, and F-measure are displayed in
Table 9.13. The NN model has perfect precision for the Bichon Frise class and per-
fect recall for the Golden Retriever and Great Dane classes. However, based on the
F-measure, which balances the two performance measures, the model does not per-
form well for the Bichon Frise and Dachshund classes. On the other hand, the NN
classification is quite successful in predicting the Golden Retriever and Great Dane
classes. The overall F-measure value of the NN classification model is 0.75.

Fig. 9.7  Random forest
plot of the importance of
variables

9.4  Classification Models

146

Fig. 9.8  Neural network example with one hidden layer and three classes

9.5  �Choosing a Classification

9.5.1  �Model Fit

There are many ways to evaluate which model to choose for text classification. One
way is to assess the accuracy of the model. In the models we created here, the most
accurate model is the simplest: naïve Bayes. The overall accuracy measures for each
model, in descending order of accuracy, are presented in Table 9.14. As the table
illustrates, the most accurate models are Naïve Bayes and random forest, while the
least accurate are k-nearest neighbors and decision trees. Other measures of model

Table 9.12  Neural network contingency matrix with five hidden nodes in one hidden layer

9  Classification Analysis: Machine Learning Applied to Text

147

Table 9.13  Goodness of fit measures, neural network with five hidden nodes in one hidden layer

Precision Recall F-measure

Bichon Frise 1.0 0.5 0.7
Dachshund 0.7 0.5 0.6
Golden Retriever 0.7 1.0 0.8
Great Dane 0.8 1.0 0.9

Table 9.14  Classification model accuracy

Model Accuracy (%)

Naïve Bayes 94
Random forest 89
Support vector machines 81
Neural networks 75
k-nearest neighbors 69
Decision tree 63

fit, as described in the beginning of this chapter, can also be used to consider the
performance of the classification model in predicting the document class.

In choosing the classification analysis method, it is important to consider the
strengths and weaknesses of the model and the specific application. If it is important
not only to classify the documents but also to know the importance of specific terms
in the model’s creation, a decision tree or random forest classification analysis can
be used. If the application requires a visual aid demonstrating how the classification
is done, decision trees may be the most appropriate. On the other hand, if an under-
standing of the specifics of the classifier is not important to the classification appli-
cation, neural network analysis can be used.

If the DTM or TDM being used in the classification analysis is very large and
very sparse, one should consider the advantage of the support vector machine mod-
el’s strength in classifying large, sparse data. If there is reason to believe that there
are very strong naturally occurring groups of documents in the data, the k-nearest
neighbors model should be a strong contender. Finally, if the application calls for
simplicity and efficiency, naïve Bayes might be the best choice. Ultimately, the
choice of the appropriate model depends on the priorities of the analyst: overall
accuracy, precision, recall, the F-measure, or an alternate goodness-of-fit measure.

Key Takeaways
•	 Classification analysis applied to text uses category labeled documents as

input to build a predictive model.
•	 Some of the machine learning techniques used for classification analysis

presented in this chapter include naïve Bayes, k-nearest neighbors, deci-
sion trees, random forest, support vector machines, and neural networks.

(continued)

9.5  Choosing a Classification

148

•	 In classification analysis, a training and testing set are used. The model is
built using the training sample, and the predictive performance is assessed
using the testing sample.

•	 Measures of overall predictive performance include accuracy and error
rate.

•	 Measure of class-specific predictive performance includes precision,
recall, and F-measure.

References

Aggarwal, C. C., & Zhai, C. X. (2012). Mining text data. New York: Springer-Verlag.
Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K.

(2017). A brief survey of text mining: Classification, clustering and extraction techniques.
arXiv preprint arXiv:1707.02919.

Bell, D. A. (2006). Using kNN model-based approach for automatic text categorization. Soft
Computing, 10(5), 423–430.

Berry, M. J., & Linoff, G. S. (2011). Data mining techniques. For marketing, sales, and customer
relationship management. Chichester: Wiley-Interscience.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.
Dörre, J., Gerstl, P., & Seiffert, R. (1999). Text mining: Finding nuggets in mountains of tex-

tual data. In Proceedings of the fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (pp. 398–401). ACM.

Dumais, S., Platt, J., Heckerman, D., & Sahami, M. (1998, November). Inductive learning algo-
rithms and representations for text categorization. In Proceedings of the Seventh International
Conference on Information and Knowledge Management (pp. 148–155). ACM.

Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector machines.
IEEE Intelligent Systems and Their Applications, 13(4), 18–28.

Ikonomakis, M., Kotsiantis, S., & Tampakas, V. (2005). Text classification using machine learning
techniques. WSEAS Transactions on Computers, 4(8), 966–974.

Joachims, T. (1998). Text categorization with support vector machines: Learning with many rel-
evant features. In Machine learning: ECML-98 (pp. 137–142). Berlin/Heidelberg: Springer.

Kantardzic, M. (2011). Data mining: Concepts, models, methods, and algorithms. New York:
Wiley.

Kim, S. B., Han, K. S., Rim, H. C., & Myaeng, S. H. (2006). Some effective techniques for naive
bayes text classification. IEEE Transactions on Knowledge and Data Engineering, 18(11),
1457–1466.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
Rokach, L., & Maimon, O. (2005). Top-down induction of decision trees classifiers-a survey. IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35(4),
476–487.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys
(CSUR), 34(1), 1–47.

Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: Rationale,
application, and characteristics of classification and regression trees, bagging, and random for-
ests. Psychological Methods, 14(4), 323.

(continued)

9  Classification Analysis: Machine Learning Applied to Text

149

Sutton, C. D. (2005). Classification and regression trees, bagging, and boosting. In Handbook of
Statistics (Vol. 24, pp. 303–329). Amsterdam: Elsevier.

Vapnik, V. N., & Kotz, S. (1982). Estimation of dependences based on empirical data (Vol. 40).
New York: Springer-Verlag.

Zhang, T. (2004). Statistical behavior and consistency of classification methods based on convex
risk minimization. Annals of Statistics, 56-85.

Further Reading

For more about machine learning techniques, see Berry and Linoff (2011) and Kantardzic (2011).
For machine learning techniques for text classification, see Sebastiani (2002), Ikonomakis et al.
(2005), and Aggarwal and Zhai (2012).

Further Reading

151© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3_10

Chapter 10
Modeling Text Sentiment: Learning
and Lexicon Models

Abstract  This chapter presents two types of sentiment analysis: lexicon-based and
learning-based. Both methods aim to extract the overall feeling or opinion from
text. Each approach is described with an example, and then the difficulties of senti-
ment analysis are discussed.

Keywords  Sentiment analysis · Opinion mining · Learning · Lexicon

Sentiment analysis and opinion mining were introduced in the early 2000s as meth-
ods to understand and analyze opinions and feelings (Dave et al. 2003; Liu 2012;
Nasukawa and Yi 2003). Sentiment analysis and opinion mining can be used inter-
changeably, as both analyze text to understand feeling. The goal of sentiment analy-
sis is to explain whether the document contains positive or negative emotions.
Sentiment analysis has many practical applications, especially for businesses. It
helps businesses determine public opinion about the brand, the effect of publicity,
or the reactions to product releases (Mullich 2013).

Human readers use their knowledge of language to determine the feelings behind
a text. This applies to individual words as well as their meaning within the docu-
ment’s context. A computer, unfortunately, needs to be told which words or phrases
change the polarity of a text (Silge and Robinson 2016, 2017). In sentiment analy-
sis, the unit of analysis can range from the document level to the word level, as
depicted in Fig. 10.1 (Appel et al. 2015; Kumar and Sebastian 2012).

At the document level, the sentiment of the full document is captured to deter-
mine the overall sentiment of each individual document. At the sentence level, the
same determination occurs, but each sentence is considered individually when cal-
culating sentiment. Feature-level sentiment is measured on the attribute level, par-
ticularly when applying sentiment analysis to customer or product feedback and
reviews (Appel et al. 2015).

For instance, in a customer review about a car, a feature-level analysis will con-
sider the sentiment of the customer with respect to the look, fuel efficiency, comfort,
durability, and price of the vehicle separately. While people may have negative feel-
ings about the price and fuel efficiency of their luxury automobile, they may be
more positive with respect to the look, comfort, and durability of their high-priced

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_10&domain=pdf

152

vehicle. Analysis at this level is more granular than at the sentence level, but less
granular than analysis conducted at the term level.

At the word level, sentiment analysis typically centers on adjectives as the
descriptive words with sentiment attached (Appel et al. 2015). According to Kumar
and Sebastian (2012), analysis conducted at the word level can follow one of two
methods: dictionary or corpus-based. Dictionary-based methods use pre-made dic-
tionaries containing terms and sentiment scores to assign sentiment scores to text
data by comparing the terms in the sample to the particular dictionary. Corpus-
based, word-level sentiment analysis builds on terms in the corpus with identifiable
sentiments to create an association network for synonymous terms, which can be
used to classify terms with unknown sentiment (Kumar and Sebastian 2012). Next,
we will explore these two methods.

There are two common approaches to sentiment analysis: dictionary, or lexi-
con, and corpus, or learning. The lexicon approach assigns a polarity to words
from a previously created dictionary. This dictionary defines a word and its polar-
ity. If the lexicon contains the same word or phrase that appears in the text, its
polarity value is returned. In contrast, the learning-based method builds an auto-
matic sentiment classifier for a document set previously annotated with senti-
ments. From there, a classifier is trained that can be applied to new, unseen data
(Ignatow and Mihalcea 2016).

10.1  �Lexicon Approach

The lexicon approach uses previously scored words and word phrases to assign a
sentiment value to a new text. Each word or phrase that matches the corresponding
word or phrase in the lexicon is given that value. For the full text, the values are then
summed (Silge and Robinson 2016, 2017).

Document

Sentence

Feature

Word

Fig. 10.1  Levels of sentiment Analysis

10  Modeling Text Sentiment: Learning and Lexicon Models

153

Numerous scored lexicons exist for use in sentiment analysis. Labels typically
include an indicator for positive and negative or a score that indicates the strength
of the polarity. Popular lexicons include OpinionFinder (Wilson et al. 2005),
General Inquirer (Stone et al. 1966), SentiWordNet (Baccianella et al. 2010), and
AFINN (Nielsen 2011). Of these four popular lexicons, OpinionFinder and General
Inquirer provide categorical sentiment values, such as positive and negative, and
SentiWordNet and AFINN provide numerical sentiment values.

OpinionFinder contains 8,223 word entries, including POS tags, stemming indi-
cators, and sentiment classifications.1 Sentiment classifications in OpinionFinder
can be negative, neutral, positive, or both (Wilson et al. 2005). General Inquirer
contains many classification category labels for terms originating from four differ-
ent sources, which extend far beyond sentiment.2

SentiWordNet is a lexicon that uses WordNet, a lexical database, to assign
numeric sentiment score scales ranging from −1 for negative sentiment tokens to +1
for positive sentiment tokens (Esuli and Sebastiani 2007). SentiWordNet includes
words and phrases, or n-grams, with the largest phrases containing six terms.3 The
AFINN lexicon scores words in a range from −5 to 5, with negative numbers indi-
cating negative polarity and positive numbers representing positive polarity.4 For
both of the lexicons providing numerical sentiment values, the absolute value of the
sentiment score indicates the strength of its polarity. Figure 10.2 displays several
positive and negative terms that appear in and have sentiment agreement across the
four lexicons.

To demonstrate, we use the four lexicons to score the review presented in
Fig. 10.3 at the document, sentence, and word level. As shown in the figure, the
review is unitized, tokenized, standardized, and cleaned. We remove stop words
after comparing stop word lists with the lexicons to avoid losing any emotive words
and lemmatize the tokens.

The sentiment scores by word are displayed in Table 10.1. By calculating the
sentiment at the word level, we can assess the word-, sentence-, and document-
level sentiment for the review for each of the four sentiment lexicons. The terms in
the first sentence are highlighted in blue, and the terms in the second sentence are
highlighted in pink. Although there is disagreement across the lexicons, at the doc-
ument level, there is agreement that this document is positive. At the document
level, the SentiWordNet sentiment score is 0.375. The sentiment score based on
AFINN is 6, which is found by summing the word-level scores. At the word level,

1 The OpinionFinder subjectivity lexicon can be downloaded at http://mpqa.cs.pitt.edu/lexicons/
subj_lexicon/
2 Information about the four category sources and the General Inquirer lexicon can be downloaded
at http://www.wjh.harvard.edu/~inquirer/homecat.htm
3 The SentiWordNet lexicon can be downloaded at http://www.wjh.harvard.edu/~inquirer/home-
cat.htm. To learn more about WordNet, visit: https://wordnet.princeton.edu/
4 The AFINN lexicon can be downloaded at http://www2.imm.dtu.dk/pubdb/views/publication_
details.php?id=6010

10.1  Lexicon Approach

http://mpqa.cs.pitt.edu/lexicons/subj_lexicon
http://mpqa.cs.pitt.edu/lexicons/subj_lexicon
http://www.wjh.harvard.edu/~inquirer/homecat.htm
http://www.wjh.harvard.edu/~inquirer/homecat.htm
http://www.wjh.harvard.edu/~inquirer/homecat.htm
https://wordnet.princeton.edu/
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010

154

the words great, perfectly, and expert are positive words, although inconsistently
across the lexicons. At the sentence level, there is agreement across the four lexi-
cons that the second sentence is positive. However, only three of the four lexicons
identify the first sentence as positive, with SentiWordNet indicating that this sen-
tence is neutral.

Next, let’s try the same exercise with a negative sentence. Again, we use the four
methods to score the negative review presented in Fig. 10.4. Since this review is
only one sentence, the document-level and sentence-level results are identical, and
we analyze at the document and word level. We follow the same preparation and
preprocessing steps as in the positive review.

The sentiment scores by word for the negative review are displayed in Table 10.2.
Although there is disagreement across the lexicons with respect to specific words,
the lexicons agree that the document-level sentiment of the review is negative.
SentiWordNet assigns an overall sentiment score of −2.13 to the review, and the
score according to AFINN is −6. OpinionFinder identifies three negative terms,
while General Inquirer identifies two. At the word level, the four lexicons agree that
the word ugly is negative. Three lexicons identify terribly as negative, two identify
rude, and smell and loud are listed as negative by one lexicon each.

Let’s take a closer look at the AFINN results. The negative review analyzed using
this lexicon returned a −6 indicating a negative polarity. Note that rude and loud did
not return scores. As human beings, we would describe these words in the context
of a restaurant as negative opinions. However, these words do not exist in the lexi-
con, so they do not get scored. Such situations demonstrate the imperfections of
general-purpose sentiment analysis lexicons. In some contexts, they have a negative
polarity, but that is not always true.

accept
courageous

enjoy
fondness
forgive
humor

improvement
luckily

optimism
outstanding
virtuous
worthy

abandon
aggravate
dismal
disturb
harsh

inadequate
obliterate
obstinate

rash
scorn

unhappy
worthless

Fig. 10.2  Sample of positive and negative words that coincide and are consistent across the
four lexicons

10  Modeling Text Sentiment: Learning and Lexicon Models

155

Fig. 10.3  Positive review example: text preparation and preprocessing

Table 10.1  Positive review word-, sentence-, and document-level sentiment

Word OpinionFinder General Inquirer SentiWordNet AFINN

great + + 3
meal

food

cook

perfectly + 0.38 3
waitstaff

expert + +
+ + 0.38 6

10.1  Lexicon Approach

156

Table 10.2  Negative review word- and document-level sentiment

OpinionFinder General Inquirer SentiWordNet AFINN

entrance

smell −0.88
terribly – −0.25 −3
very

loud −0.50
hostess

rude – –
decor

ugly – – −0.50 −3
– – −2.13 −6

Fig. 10.4  Negative review example: text preparation and preprocessing

10  Modeling Text Sentiment: Learning and Lexicon Models

157

Both of those reviews were straightforward—obviously positive or negative.
Next, let’s consider what happens with an ambiguous review. The prepared and
preprocessed ambiguous review is presented in Fig. 10.5.

The results of sentiment analysis applied to this ambiguous review, as dis-
played in Table 10.3, are less consistent across lexicons than the first two exam-
ples. OpinionFinder, General Inquirer, and SentiWordNet label this review as
negative, while AFINN classifies the review as positive. Unlike the other three
lexicons, AFINN does not identify bland as a sentiment word, leading to the
inconsistent scoring.

The ambiguous review demonstrates some of the difficulty associated with
lexicon-based sentiment analysis. Next, we will explore an alternative method, the
machine learning-based approach.

Fig. 10.5  Ambiguous review example: text preparation and preprocessing

10.1  Lexicon Approach

158

10.2  �Machine Learning Approach

The machine learning approach to sentiment analysis builds a classifier, as in Chap.
9, on a dataset with labeled sentiments. Datasets from news articles, headlines,
movie reviews, and product reviews have been annotated for this purpose. Domain-
specific datasets perform best when applied to unseen data from that domain
(Ignatow and Mihalcea 2016).

First, the classifier is trained on a training set. Then, the model is applied to the
testing data to classify the text’s sentiment. Some common machine learning and
classification analysis methods applied to sentiment analysis are support vector
machines (SVM), naïve Bayes (NB), k-nearest neighbors (kNN), and logistic
regression (Feldman 2013).

To demonstrate the machine learning approach to sentiment analysis, we will use
a sample of 100 Amazon reviews with positive or negative class labels (Dua and
Taniskidou 2017). There is no additional information about the products, aside from
the content of the reviews. The review data are prepared and preprocessed using a
small custom stop list, including the terms the, you, is, was, this, that, for, are, and

Fig. 10.6  Word clouds of positive and negative words in review sample

Table 10.3  Ambiguous review word and document-level sentiment

OpinionFinder General Inquirer SentiWordNet AFINN

price

good + + 0.47 3
disappoint − − −0.50 −2
food

bland − − −0.38
− − −0.41 1

10  Modeling Text Sentiment: Learning and Lexicon Models

159

am. In Chap. 13, in the example of sentiment analysis using the R Software, we
explore the use of custom stop word lists further. Once the DTM is created, the
sentiment label indicating if the review is positive or negative is added back to the
document representation.

In defining the training and testing data, we use an 80/20 split, with 80 reviews
in the training set and 20 reviews in the testing set. In both the training and testing
sets, half of the reviews are positive and half are negative. Figure 10.6 displays
two word clouds made up of the terms for the positive and negative reviews. The
size of the terms in each of the word clouds indicates the frequency of the term in
the sample.

10.2.1  �Naïve Bayes (NB)

We perform a NB analysis on the unweighted DTM, following the procedures out-
lined in Chap. 9. The resulting contingency table of the NB sentiment analysis
appears in Table 10.4. As shown, the sentiment analysis using NB has 65% predic-
tive accuracy in classifying the sentiment of the reviews in the testing sample.

To understand the results, we take a closer look at some of the accurate and inac-
curate predictions based on the testing data. As shown in Fig. 10.7, the NB senti-

Table 10.4  Naïve Bayes contingency matrix classification analysis

Actual
− + Total

Predicted − 6 3 9
+ 4 7 11
Total 10 10 20

Accurate

• Great product for the price!

• Poor Reliability.

• Excellent starter wireless headset.

Inaccurate
• This phone tries very hard to do everything but fails at

it's very ability to be a phone.

• I had to purchase a different case.

• Love this product.

Fig. 10.7  Examples of Accurate and Inaccurate Predictions using NB

10.2  Machine Learning Approach

160

ment analysis model has difficulty classifying ambiguous reviews but performs as
expected with more obvious sentiments.

10.2.2  �Support Vector Machines (SVM)

We can utilize support vector machines (SVM) in the manner described in Chap.
9, using the tfidf-weighted DTM. The resulting contingency table of the SVM
sentiment analysis appears in Table 10.5. As shown, the sentiment analysis using
SVM has the same predictive power as the NB sentiment analysis model, namely,
65% predictive accuracy in classifying the sentiment of the reviews in the test-
ing sample.

To understand the results, we take a closer look at some of the accurate and inac-
curate predictions based on the testing data. As shown in Fig. 10.8, the SVM senti-
ment analysis model also has difficulty classifying ambiguous reviews but performs
as expected with clearer sentiments.

Table 10.5  SVM contingency matrix classification analysis

Actual
− + Total

Predicted − 4 1 5
+ 6 9 15
Total 10 10 20

Accurate

• I love the look and feel of Samsung flipphones.

• Display is excellent and camera is as good as any from
that year.

• Absolutely great.

Inaccurate

• Case was more or less an extra that I originally put on but
later discarded because it scratched my ear.

• I had to purchase a different case.

• The picture resolution is far below what other
comparably-priced phones are offering today.

Fig. 10.8  Examples of accurate and inaccurate predictions using SVM

10  Modeling Text Sentiment: Learning and Lexicon Models

161

10.2.3  �Logistic Regression

Due to the binary nature of the sentiments in our sentiment analysis, we can use a
model known as logistic regression to predict review sentiment. Logistic regression
is a generalized regression model for binary dependent variables, such as the posi-
tive and negative variables that we aim to predict in sentiment analysis (Kantardzic
2011). Rather than predict the category, logistic regression estimates the probability
that the dependent variable will be either positive or negative. A general form of a
logistic regression model is

	

logit p
p

p
x xk

k

k
k n nk() =

−








 = + + +ln ,

1 0 1 1β β β

	

where logit(pk) represents the natural log odds ratio of the outcome of interest in
document k, pk represents the probability of the classification, the β parameters are
the regression coefficients for the n term variables, and the x variables are the n
term weights for the k documents. In sentiment analysis using logistic regression,
the independent variables are the column values in the DTM representing either the
raw frequency or weighted frequency of each of the terms in the document.	
For classification, logistic regression models require a chosen probability cutoff
point. Anything below the cutoff is designated as one class, and the rest are catego-
rized as the other class. Varying the cutoff point will change the classification solu-
tion. For this reason, it is beneficial to consider many potential solutions by varying
the cutoff point.

We apply a logistic regression to the tfidf-weighted DTM and choose the cutoff
to be 0.5. With this cutoff, anything at or below 0.5 is labeled as negative, and any-
thing above 0.5 is labeled as positive. Table 10.6 displays the contingency matrix
based on the results of the logistic regression sentiment analysis. The logistic regres-
sion model results in the same accuracy as the NB and SVM sentiment analysis
models, or 65%.

To understand the results, we take a closer look at some of the accurate and inac-
curate predictions based on the testing data. As shown in Fig. 10.9, the logistic
regression sentiment analysis model also has difficulty classifying ambiguous
reviews but performs as expected with clearer sentiments. This model, like the NB

Actual
- + Total

Predicted - 6 3 9

+ 4 7 11

Total 10 10 20

Table 10.6  Logistic regression contingency matrix classification analysis

10.2  Machine Learning Approach

162

model, also struggles to accurately identify phrases such as, “Love this product,”
which appears to have a clearly positive sentiment.

10.3  �Sentiment Analysis Performance: Considerations
and Evaluation

As the examples using the learning approach illustrate, there are some difficulties
with this method. The consistent accurate and inaccurate predictions, both positive
and negative, are displayed in Table 10.7. These three models are all better able to
accurately predict positive sentiments than negative sentiments. Learning models
perform best when they are trained using a large amount of data. For instance, the
NB and logistic regression models both fail to accurately identify “Love this prod-
uct” as a positive review. In taking a closer look at the DTM, we find that the posi-
tive term in the sentence, love, appears only once in only one document. The
prevalence of the term is clearly insufficient for accurate classification using these
two sentiment analysis model methods.

With straightforward sentences, sentiment analysis appears simple. Unfortunately,
such sentences may be rare. People use language in many ways that, at times, makes
it hard for even human readers to agree on the sentiment (Mullich 2013).

For example, take the following restaurant review:

Their bread is delicious, it’s nicely buttered and warm with a light browned top-split.
However, the lobster itself wasn’t impressive. Don’t get me wrong, it’s still yummy and I
liked that the lobster was not drenched in butter or mayonnaise, but I feel like I remember
the bread more than the lobster meat. Their lobster meat here tasted fresh, but wasn’t that
sweet and overall was a little bland to me. I also tried their Lobster Bisque (Cup $7.50),
which I liked. It’s pretty creamy and heavy though, in my opinion. Probably more cream in
it than there should be.5

5 T., Debra. “Maine-Ly Sandwiches.” Yelp, Yelp, 2 Jan. 2018, www.yelp.com/biz/
maine-ly-sandwiches-houston-3

Accurate

• I love the look and feel of Samsung flipphones.

• Product is useless, since it does not have enough
charging current to charge the 2 cellphones I was
planning to use it with.

• The majority of the Logitech earbud headsets failed.

Inaccurate

• Love this product.

• Comfortable fit-you need your headset to be
comfortable for at least an hour at a time, if not for an
entire day.

• I had to purchase a different case.

Fig. 10.9  Examples of accurate and inaccurate predictions using logistic regression

10  Modeling Text Sentiment: Learning and Lexicon Models

http://www.yelp.com/biz/maine-ly-sandwiches-houston-3
http://www.yelp.com/biz/maine-ly-sandwiches-houston-3

163

The review contains elements that are both positive and negative, making it difficult
to discern if there is an overall positive or negative sentiment to the review.
Furthermore, automated sentiment analysis struggles with similes and metaphors.
The phrase “avoid like the plague” is easy for humans to understand, but, unless
specifically coded, it will likely be overlooked programmatically.

To evaluate the results of sentiment analysis, we can use measures of external
validity. Additionally, we can check them against human-coded sentiment. While
100% agreement is unlikely, an agreement rate of at least 80% is considered good
(Mullich 2013). To evaluate a text, first select a random subset of documents. Limit
the size to an amount manageable by hand. Next, have people manually read and
score each document’s polarity. Check the human assessments versus the program-
matic assignments to evaluate the agreement, with a benchmarking target of approx-
imately 80%.

Key Takeaways
•	 Sentiment analysis, also referred to as opinion mining, is a method for

measuring or categorizing the polarity of text documents.
•	 Sentiment analysis can be lexicon-based, which relies on preset dictionar-

ies for sentiment identification or learning-based, in which machine learn-
ing techniques are employed to identify the sentiment of text documents.

•	 General Inquirer, AFINN, OpinionFinder, and SentiWordNet are examples
of lexicons used in sentiment analysis.

•	 Naïve Bayes, support vector machines, and logistic regression are demon-
strated as learning-based approaches to sentiment analysis.

Table 10.7  Examples of consistent accurate and inaccurate predictions across learning methods
for negative and positive sentiments

Accurate Inaccurate
Positive Great product for the price

Display is excellent, and camera is as
good as any from that year
So far so good
Absolutely great
Excellent starter wireless headset
Best of all is the rotating feature,
very helpful
And the sound quality is great

Fast service

Negative The majority of the Logitech earbud
headsets failed
Poor reliability

This phone tries very hard to do everything
but fails at its very ability to be a phone
In addition, it feels and looks as if the phone is
all lightweight cheap plastic

10.3  Sentiment Analysis Performance: Considerations and Evaluation

164

References

Appel, O., Chiclana, F., & Carter, J. (2015). Main concepts, state of the art and future research
questions in sentiment analysis. Acta Polytechnica Hungarica, 12(3), 87–108.

Baccianella, S., Esuli, A., & Sebastiani, F. (2010, May). Sentiwordnet 3.0: An enhanced
lexical resource for sentiment analysis and opinion mining. In LREC (Vol. 10, No. 2010,
pp. 2200–2204).

Dave, K., Lawrence, S., & Pennock, D. M. (2003, May). Mining the peanut gallery: Opinion extrac-
tion and semantic classification of product reviews. In Proceedings of the 12th International
Conference on World Wide Web (pp. 519–528). ACM.

Dua, D., & Karra Taniskidou, E. (2017). UCI machine learning repository [http://archive.ics.uci.
edu/ml]. Irvine: University of California, School of Information and Computer Science.

Esuli, A., & Sebastiani, F. (2007). SentiWordNet: A high-coverage lexical resource for opinion
mining. Evaluation, 1–26.

Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the
ACM, 56(4), 82–89.

Ignatow, G., & Mihalcea, R. (2016). Text mining: A guidebook for the social sciences. Los Angeles:
Sage Publications.

Kantardzic, M. (2011). Data mining: concepts, models, methods, and algorithms. John Wiley &
Sons.

Kumar, A., & Sebastian, T. M. (2012). Sentiment analysis: A perspective on its past, present and
future. International Journal of Intelligent Systems and Applications, 4(10), 1.

Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language
Technologies, 5(1), 1–167.

Mullich, J. (2013, February 4). Guide to sentiment analysis. Data Informed, data-informed.com/
guides/guide-to-sentiment-analysis/.

Nasukawa, T., & Yi, J. (2003, October). Sentiment analysis: Capturing favorability using natu-
ral language processing. In Proceedings of the 2nd International Conference on Knowledge
Capture (pp. 70–77). ACM.

Nielsen, F. Å. (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microb-
logs. arXiv preprint arXiv:1103.2903.

Silge, J., & Robinson, D. (2016). Tidytext: Text mining and analysis using tidy data principles in
R. JOSS, 1(3), 37.

Silge, J., & Robinson, D. (2017). Text mining with R: A tidy approach. Sebastopol: O’Reilly
Media, Inc.

Stone, P., Dunphry, D., Smith, M., & Ogilvie, D. (1966). The general inquirer: A computer
approach to content analysis. Cambridge, MA: MIT Press.

Wilson, T., Wiebe, J., & Hoffmann, P. (2005, October). Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the Conference on Human Language Technology
and Empirical Methods in Natural Language Processing (pp. 347–354). Association for
Computational Linguistics.

Further Reading

For an example of implementing lexicon-based sentiment analysis in R, see Chap. 13. For an
example of implementing learning-based sentiment analysis in RapidMiner, see Chap. 15.

10  Modeling Text Sentiment: Learning and Lexicon Models

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://data-informed.com/guides/guide-to-sentiment-analysis
http://data-informed.com/guides/guide-to-sentiment-analysis

Part IV
Communicating the Results

167© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3_11

Chapter 11
Storytelling Using Text Data

Abstract  This chapter explores the concept of data storytelling, an approach
used to communicate insights to an audience to inform, influence, and spur action.
A storytelling framework is included for reference and can be used to develop,
focus, and deliver the most important concepts from an analysis that should be
conveyed within a narrative.

Keywords  Storytelling · Insights · Narrative · Reporting

11.1  �Introduction

Storytelling has been embedded in the human experience since the beginning of
time. The influential art of the spoken word dates back thousands of years—an
oral tradition breathing life into information through an entertaining or compel-
ling narrative. Stories promote social interaction and connection, affirm percep-
tions and beliefs, and allow people to make sense of complex concepts. Stories are
tools that have the ability to take listeners on an impactful journey. Effective sto-
rytelling can turn the mundane into exciting. It has the ability to reimagine the
minutiae as the pivotal.

From broadcast journalists, directors, and entertainers to authors, playwrights,
and artists, storytelling has always played an important role in society. In fact,
some of the world’s most iconic speeches have incorporated narratives that cap-
tured and inspired audiences. Whether it is William Shakespeare’s “to be or not
to be” or Abraham Lincoln’s “of the people, by the people, for the people,” cen-
turies-old words from famous stories still resonate with us today. In more recent
years, Pakistani activist Malala Yousafzai shared stories about equality and the
rights of women and children, rallying leaders to provide worldwide access to
education at the United Nations Youth Assembly. Airbnb—an online platform
connecting producers and consumers of accommodations—launched an initia-
tive to leverage storytelling to reach audiences. The organization’s new stories
feature on its website is a page dedicated solely to customer narratives about
Airbnb’s services. Packaging information into a story allows concepts to be

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_11&domain=pdf

168

shared, heard, and felt. Perhaps even more impactfully, when rooted in data,
those stories can emerge into something even more transformative.

11.2  �Telling Stories About the Data

While storytelling itself dates back to the origins of speech, the concept of data
storytelling is a skill that many have yet to conquer. Few talents are as impactful as
the ability to tell an engaging story. While the term “data storytelling” has often
been used to describe data visualization, as in business intelligence, it extends
beyond the use of dashboards, heat maps, and infographics. The objective of data
storytelling is to communicate insights to inform, influence, and elicit action.
Ultimately, the success of a text analytics application hinges on the ability to com-
municate the results.

The ability to tell a story with numbers is a highly sought-after skill with demand
that is expected to increase in the future. Google’s Chief Economist Dr. Hal
R. Varian said, “The ability to take data – to be able to understand it, to process it,
to extract value from it, to visualize it, to communicate it – that is going to be a
hugely important skill in the next decades” (Dykes 2016).

What are the important messages, patterns and themes in the data that I

should communicate?

What findings were derived?

Why and to whom do they matter?

What actions should be taken from here?

Do your data reveal associations that have value within a broader context?

Are there symbiotic relationships or correlations that should be examined

further?

Fig. 11.1  Questions to ask to identify the key components of the analysis

11  Storytelling Using Text Data

169

Developing an effective narrative requires merging data and meaning to con-
vey analysis-driven findings. The data on their own are not enough. As noted,
author and data visualization expert Stephen Few said, “Numbers have an impor-
tant story to tell. They rely on you to give them a clear and convincing voice”
(Dykes 2016). Without a story, analyses fall flat. According to Jennifer Aaker, a
marketing professor at the Stanford Graduate School of Business, people remem-
ber information when it is woven into narratives “up to 22 times more than facts
alone” (Aaker 2012).

In business, stories provide audiences with a journey of events that highlights the
information they need to know. Data storytelling illuminates the key components of
the analysis—the ones most worth sharing. As Fig. 11.1 shows, there are seven
important questions to guide the storytelling strategy. Answering these questions
will help the analyst package and sequence the findings in a clear way that is useful
and of interest to the audience.

Perhaps the most critical aspect of telling a story is knowing the audience. As
Chap. 12 indicates, it is important to consider the stakeholders in the analysis.
Additionally, the consideration of their interests and priorities can be crucial. Given
their roles within or across an organization, how will the message be received and
understood? Which audience members can and will influence each other when it
comes to making decisions?

When communicating the story, it is also important to be free of bias. Bias occurs
when one outcome is subjectively favored. Of course, opinions, explanations, and
context can be interwoven with factual information, but including bias when com-
municating the results of a data-driven analysis can invalidate or weaken a strong,
fact-based story.

Data storytelling is critical not only for the audience to retain the key message
but also for understanding it. In addition to creating a memorable presentation, it is
important to keep the message simple. Philanthropists Bill and Melinda Gates have
been acknowledged for their ability to use simple language to make complex con-
cepts understandable. As part of an announcement about a “Breakthrough Energy
Coalition” of private investors on a mission to advance clean energy initiatives, Bill
Gates detailed the science of climate change in a paper using words that were
“remarkably short, simple and free of jargon,” explaining the problem and solution
in a way that was readily understood at a high school level. Gates is passionate
about “learning and communicating what he’s learned to galvanize people to action.
And [he] cannot persuade if his audiences don’t understand him” (Gallo 2015).

While the mastery of skills is crucial to secure a job as a text analyst, the ability
to communicate data-driven results effectively to a nontechnical audience and make
the findings accessible means that the insights can be shared with a large number of
people. A good storyteller eliminates jargon and overly complicated or confusing
content, instead communicating only the necessary information that supports and
strengthens the central argument. If more detail from the analysis is necessary to
answer questions from analytical listeners, including more granular information in
an appendix within the presentation or report can be a talking point for post-
presentation conversation.

11.2  Telling Stories About the Data

170

Without communicating the story, valuable opportunities to move the organi-
zation forward, secure potential investment or resources for a new strategic
direction, and influence decision-making among leaders and colleagues will be
lost. A compelling story ignites meaningful dialogue about performance, cus-
tomers, strengths, and areas where improvement is needed. The result is a well-
informed team with an in-depth understanding of organizational performance
and clear goals for future direction. Stories share realities but also spur growth,
reflection, and further discussion within an organization.

11.3  �Framing the Story

11.3.1  �Storytelling Framework

Stories are not about sharing statistics or logic. The power of a story lies in its ability
to elicit human responses. To hold the attention of any audience, the story needs to
be properly framed to engage listeners.

Using a framework to develop and deliver the data story helps the analyst focus
on the most important concepts to convey. The following steps, displayed in
Fig. 11.2, can guide the strategic process:

	1.	 Introduce the story. In this initial step, give the audience a high-level introduc-
tion to the analyst and analysis. In other words, describe the end goal. Perhaps
the objective is to convey customer sentiment about a specific product or
brand. Let the audience know what will be shared, setting the scene for what
they can expect.

	2.	 Connect with the audience. Engage with the listeners. Who are the people in the
room? What is their relationship with one another? Why does this information
matter to them? Tailor the delivery to the audience, reminding them that the dis-
cussion itself can help the organization progress and achieve its goals.

	3.	 Deliver the facts. What are the key data points that should be shared?
	4.	 Highlight the central argument. What is the key challenge or component being

shared? What does the information mean, and where is the organization now in
comparison to where it should be?

	5.	 Communicate the insight. Integrate the problem within the context of the organi-
zation. What is the relationship between the data and the key challenges? Are
there additional meanings within the data that are not explicitly stated?

	6.	 Identify what is at stake. If the current situation does not improve, what will the
potential outcome be? Who and how many will this result affect?

	7.	 Share the potential impact. Illustrate what could be, sharing potential future
results. Describe the problem as an opportunity. What does this situation make
possible? What is the value proposition or return on investment?

	8.	 Envision a roadmap to success. Now that we have the information, how do we
use it to get to where we want to go? What needs to be achieved, when, and by
whom?

11  Storytelling Using Text Data

171

11.3.2  �Applying the Framework

We will provide an example using the hospitality industry. An extended-stay hotel
organization is interested in learning more about the overall journey of its custom-
ers—from initial room booking to final checkout. The central question is: How do
customers perceive the organization? What is the brand identity? What do custom-
ers think about the services offered? Where are the strengths and weaknesses of the
overall customer journey?

Data from the organization’s registration system, social media platforms, and
other sources were compiled to complete a text analytics assessment of customer
sentiment with the objective of extracting insights and themes about customers’
perceptions. The data show that customers want a more modernized experience and
more personalized interactions with the hotel staff. Moreover, the online booking
system used to make reservations is difficult to navigate and could benefit from
being more user-friendly.

Using the framework, we revisit each step to communicate these insights
through data storytelling. Each component of the story framework below includes
an example of how the extended-stay hotel might address its data analysis, as in the
latent semantic analysis (LSA) example using Python presented in Chap. 14.

Introduce the
story

Connect with
the audience

Deliver the
facts

Highlight your

central
argument

Communicate
the insight

Identify
what's at

stake

Share the
potential
impact

Envision a
roadmap to

success

Storytelling

Framework

Fig. 11.2  Storytelling framework

11.3  Framing the Story

172

	1.	 Introduce the story.
As an organization, we’re customer-centric and always aiming to exceed

expectations. From the data we’ve collected and analyzed, we’ve extracted
insights about the overall customer journey—from pre-arrival and check-in to
the duration of the stay and checkout—that we’d like to share. These insights
provide a heightened awareness of our customers’ experiences and an opportu-
nity to understand how our organization and performance are perceived.

	2.	 Connect with the audience.
The data deal with many areas and functions and can improve customer ser-

vice and marketing efforts and personalize the experience. With valuable insights
across various departments, the results can help the organization optimize the
effectiveness of its operations. The data can improve our meaningful engage-
ment with our customers.

	3.	 Deliver the facts.
From our analysis of customer sentiment, 67% of our customers are dissatis-

fied with the interior appearance of the rooms. Words such as dark, outdated, and
dingy were mentioned quite frequently.

	4.	 Highlight your central argument.
We need to modernize and enhance the guest experience in order to meet the

expectations of today’s travelers and expand our market share. The negative sen-
timents appeared most frequently in comments from people ages 28–44. By lis-
tening to the voice of our potential customers within this generation, we can
address the problems that emerged from the analysis.

	5.	 Communicate the insight.
We have experienced success in four of our suburban locations, delivering

quality experiences to primarily couples and families. However, three of our
urban locations that typically serve business travelers and individual guests are
underperforming. Those locations are losing customers and spending money on
strategies that are not aligned with their target audience. The organization’s
investments are not targeted toward the right population of potential customers.

	6.	 Identify what’s at stake.
If we don’t take action on these issues, we will lose market share and damage

our reputation, leading to the potential closure of our urban locations and a loss
of revenue.

	7.	 Share the potential impact.
Modernizing the guest experience, both technologically and aesthetically, and

creating active, social spaces will help us offer people-centric experiences to
satisfy the 28–44 age group. By attracting customers within this target segment,
we have the opportunity to gain market share, leading to organizational growth,
enhanced reputation, and increased revenue.

	8.	 Envision a roadmap to success.
We can enhance the experience of our customers by providing a simple, intuitive

online booking system and a modern, inviting atmosphere where guests can
recharge and socialize. We can attract younger generations of customers by
offering a contemporary design and amenities, and a strengthened sense of com-
munity, eventually leading to increased market share and an elevated brand.

11  Storytelling Using Text Data

173

11.4  �Organizations as Storytellers

How do organizations reach their customers through storytelling? Several compa-
nies have demonstrated innovative approaches to addressing their data through
narratives.

11.4.1  �United Parcel Service

UPS’ story of innovation is a highlight in the analytics field. The decade-long opera-
tion research project—On-Road Integrated Optimization and Navigation
(ORION)—ensures that drivers use the most effective delivery routes, based on
components such as time, fuel, and distance. When UPS shares the ORION story, it
does not describe the program’s advanced algorithms and fleet telematics. The story
is a structured approach introducing the project’s origin, the challenge that was
tackled, the methodology, the outcome of the effort, and the overall results.

It was UPS’ founder Jim Casey’s belief that companies should continually iden-
tify ways to improve. That belief, accompanied by the organization’s commitment
to invest in technology, led to the inception of ORION and the initiative to optimize
nearly 55,000 routes in North America. As a result of ORION, UPS drives approxi-
mately 100 million fewer miles per year, consumes 10 million gallons less fuel, and
reduces its carbon dioxide emissions by 100,000 metric tons. According to the orga-
nization’s assessment, UPS can save up to $50 million per year by reducing 1 mile
per driver per day.

The project not only helped the organization but also was beneficial for its cus-
tomers, who now have access to personalized services for tailoring home delivery
preferences, rerouting shipments, and modifying deliveries. While the undertaking
of the project required a complex, technical solution that was far from simple, the
organization shares its efforts and results in a way that is easily understood by audi-
ences and customers (UPS 2016).

11.4.2  �Zillow

People at Zillow are accomplished storytellers. The online real estate marketplace
considers storytelling to be a critical component of connecting with current and
future residents. Stephanie Reid-Simons, director of content at Zillow Group,
knows that reaching her audience with quality content requires a powerful story
and that storytelling is directly associated with return on investment. “Storytelling
in any business is vital, but it is especially so in the apartment industry. You are
creating homes, lifestyles and a rich community with neighborhood players. Your
residents and potential residents are hungry for information and ideas about your
area and their interests.”

11.4  Organizations as Storytellers

174

To reach potential customers in the apartment industry, Zillow uses storytelling
to trigger emotional responses from audiences. Stories about creating a sense of
community and a place to call home resonate with hopeful residents who are dream-
ing of the perfect neighborhood and the opportunity to develop a lifestyle dedicated
to the people and things most important to them. Zillow’s strategic approach to
storytelling uses an emotional hook to connect and engage with more people,
expanding the organization’s marketing reach over time Schober (2016).

11.5  �Data Storytelling Checklist

The analyst can use this checklist to guide his or her storytelling efforts.
Introduce the story

•	 Why are you there?
•	 What information do you intend to share?

Connect with the audience

•	 Why does this information matter to them?
•	 What is the outcome of the discussion?

Deliver the facts

•	 What are the key data points that should be shared?

Highlight your central argument

•	 What is the key challenge or component that needs to be changed? What does
your argument mean in terms of the organization and where are things now in
comparison to where they should be?

Communicate the insight

•	 What is the relationship between the data and the key challenges?
•	 Are there additional meanings within your data that are not explicitly stated?

Identify what is at stake

•	 If changes or improvements are not made, what is the potential outcome?
•	 Who and how many stakeholders will be affected by this result?

Share the potential impact

•	 What does this situation make possible?
•	 What is the value proposition or return on investment?

Envision a roadmap to success

•	 What needs to be achieved?
•	 How do we get there?

11  Storytelling Using Text Data

175

Acknowledgements  The authors thank Diana Jones, Associate Director of the Business Analytics
Solutions Center and the Dornsife Office for Experiential Learning, at the LeBow College of
Business, Drexel University for contributing this chapter to the book.

References

Aaker, J. (2012). How to harness stories in business. Stanford Business School. Retrieved
May 29, 2018, from https://www.gsb.stanford.edu/faculty-research/case-studies/
how-harness-stories-business

Dykes, B. (2016, March 31). Data storytelling: The essential data science skill everyone needs,
Forbes. Retrieved May 29, 2018, from https://www.forbes.com/sites/brentdykes/2016/03/31/
data-storytelling-the-essential-data-science-skill-everyone-needs/2/#3ea7514b7ee0

Gallo, C. (2015, December 11). Bill and Melinda Gates brilliantly explain complex stuff in simple
words. Retrieved May 29, 2018, from https://www.forbes.com/sites/carminegallo/2015/12/11/
bill-and-melinda-gates-brilliantly-explain-complex-stuff-in-simple-words/#7d436bde30b8

Schober, L. (2016, April). Zillow Group. Retrieved May 29, 2018, from https://www.zil-
low.com/multifamily-knowledge-center/tips-trends-training/apartment-marketing/
whats-the-roi-of-storytelling/

UPS. (2016). Retrieved May 29, 2018, from https://www.pressroom.ups.com/pressroom/
ContentDetailsViewer.page?ConceptType=Factsheets&id=1426321616277-282

Further Reading

Gabriel, Y. (2000). Storytelling in organizations: Facts, fictions, and fantasies. Oxford: Oxford
University Press.

Gargiulo, T. L. (2005). The strategic use of stories in organizational communication and learning.
Armonk: M.E Sharpe.

Key Takeaways
•	 Data storytelling involves communicating insights from the data to inform,

influence, and spur action.
•	 A critical aspect of storytelling is knowing the audience and stakehold-

ers—and what matters most to them.
•	 A good storyteller eliminates technical jargon and overwhelming content,

communicating only the necessary information that supports and strength-
ens the central argument.

•	 To hold the attention of the audience and elicit action, a story should be
properly framed in a way that engages listeners. Using a framework to
develop and deliver the story will help the analyst focus on the most impor-
tant concepts he or she wants to convey.

Further Reading

https://www.gsb.stanford.edu/faculty-research/case-studies/how-harness-stories-business
https://www.gsb.stanford.edu/faculty-research/case-studies/how-harness-stories-business
https://www.forbes.com/sites/brentdykes/2016/03/31/data-storytelling-the-essential-data-science-skill-everyone-needs/2/#3ea7514b7ee0
https://www.forbes.com/sites/brentdykes/2016/03/31/data-storytelling-the-essential-data-science-skill-everyone-needs/2/#3ea7514b7ee0
https://www.forbes.com/sites/carminegallo/2015/12/11/bill-and-melinda-gates-brilliantly-explain-complex-stuff-in-simple-words/#7d436bde30b8
https://www.forbes.com/sites/carminegallo/2015/12/11/bill-and-melinda-gates-brilliantly-explain-complex-stuff-in-simple-words/#7d436bde30b8
https://www.zillow.com/multifamily-knowledge-center/tips-trends-training/apartment-marketing/whats-the-roi-of-storytelling/
https://www.zillow.com/multifamily-knowledge-center/tips-trends-training/apartment-marketing/whats-the-roi-of-storytelling/
https://www.zillow.com/multifamily-knowledge-center/tips-trends-training/apartment-marketing/whats-the-roi-of-storytelling/
https://www.pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=Factsheets&id=1426321616277-282
https://www.pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=Factsheets&id=1426321616277-282

177© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3_12

Chapter 12
Visualizing Analysis Results

Abstract  Text visualizations are the topic for this chapter. The chapter begins
with general techniques to help create effective visualizations. From there, it
moves to common visualizations used in text analysis. The chapter describes heat
maps, word clouds, top term plots, cluster visualizations, topics over time, and
network graphs.

Keywords  Text analytics · Text visualization · Word clouds · Document visualiza-
tion · Document networks · Text clouds

With the analysis complete and the storytelling strategy in place, it is time to share
the results. Visualizing the results of the analysis is an integral part of the storytell-
ing strategy, as covered in Chap. 11. According to Kucher and Kerren (2015,
p. 476), text visualization includes techniques for visually representing raw text
data or the results of text analysis methodologies. Effective and meaningful visual-
izations convince audiences of the message and help them understand the findings.
In this chapter, we will discuss the elements that make an effective visualization
and the factors that should be considered when choosing a visual representation of
the results of the text analysis.

Powerful visualizations help the audience understand the presenter’s message.
Comprehending the patterns and trends is easier when looking at a visualization
than when viewing just the raw data (“Data Visualization: What it is and Why it
Matters” 2017). The importance of visualization in data analysis spurned the cre-
ation of a subfield of analytics in the early 2000s known as visual analytics (Ellis
and Mansmann 2010). The use of visuals can play an important role in communi-
cating the results of the text data analysis to the audience, reduce their complexity,
and increase the cohesion and clarity of the findings (Keim et al. 2006).

In this chapter, we cover the fundamentals of effective visualization. In doing
so, the chapter discusses the importance of text visualization strategies. Then we
present examples of text visualizations at the word, document, category/theme, and
corpus levels.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_12&domain=pdf

178

12.1  �Strategies for Effective Visualization

We begin with several important considerations when trying to create an impactful
visualization. As Fig. 12.1 shows, while constructing the visualization, the presenter
should be purposeful, know the audience, solidify the message, plan and outline,
keep it simple, and try to focus the attention of the viewer.

12.1.1  �Be Purposeful

Visualizations are typically grouped into either explanatory or exploratory.
Explanatory visualizations explain a topic to the audience and are used for presenta-
tions. Exploratory visualizations help the analyst understand the data as he or she
works through the analysis (Knaflic 2015a, b, c). Given that we are discussing prep-
ping for a presentation, we focus on explanatory visualizations. The goal of the
visualization is to prove a belief. Therefore, it centers on the important points and
does not show every factor or step in the analysis (Knaflic 2015a, b, c). In other
words, the visualization should be purposeful. Rather than providing the audience
with a data dump, the presenter should create a story and walk the audience through
the proof. The visualization is an aid for telling a story and supporting the points the
presenter wants to make (Knaflic 2017).

12.1.2  �Know the Audience

Next, the presenter should consider the target audience of the analysis and construct
the visualization with them in mind. By understanding the audience, the presenter
can tailor the visualization to maximize the chances that they will engage with the
story. The purpose of the visualization is to convince them. To do that, the visualiza-
tion must fit their knowledge base and goals for the project. If the presenter under-
stands their goals, he or she can tailor the visualization to provide the correct
information in the correct form (Knaflic 2015a, b, c).

12.1.3  �Solidify the Message

With an understanding of the purpose and the audience in hand, the presenter should
now create the “big idea” (Knaflic 2015a, b, c). In other words, he or she must iden-
tify the main points to tell the audience (Knaflic 2015a, b, c). To accomplish this
goal, the presenter should ask himself or herself detailed questions. This approach
is an effective way to narrow the focus to the most important and impactful items to
emphasize. For example, the presenter might begin with a consideration of the goal

12  Visualizing Analysis Results

179

of the project. A broad start limits the responses to the essential parts of the project.
The presenter can then narrow these parts down to the most impactful elements of
the analysis (Berinato 2016).

12.1.4  �Plan and Outline

The next step is to spend time planning and outlining the appearance of the visual-
ization. While the final result may differ, the goal is to have a set of notes or sketches
on which to focus. Taking this step will help ensure that the presenter is not dis-
tracted by software options. It is the notes that should guide the presenter, not the
recommended graph in Excel (Knaflic 2015a, b, c).

The notes should include sketches of the presentation. This visualization should
make it easy for others to understand the presenter’s ideas (Berinato 2016). If one
train of thought does not make sense, the presenter should start over. With each new
iteration, the goal is to move closer to a concise presentation of the message.

12.1.5  �Keep It Simple

Simple visualizations offer the presenter the best chance of helping the audience
understand the desired message. Audiences do not need or want to commit a great
deal of effort to understanding complex visualizations or ones that they regard as
complex. When faced with the need to do so, they are likely to ignore the visualiza-
tion. The presenter’s goal should be to minimize the effort the audience needs to

Be Purposeful

Know Your Audience

Solidify Your Message

Plan and Outline

Keep it Simple

Focus Attention

Fig. 12.1  Strategies for text analytics visualizations

12.1  Strategies for Effective Visualization

180

expend on understanding the visualization (Knaflic 2015a, b, c). Therefore, the pre-
senter should include only the items that increase the understanding of the message.
By leaving out extraneous information, the visualization will entice the audience,
not repel them (Knaflic 2015a, b, c).

12.1.6  �Focus Attention

The next way for the presenter to maximize the chances that the audience will
understand his or her message is to focus their attention with pre-attentive attributes.
Pre-attentive attributes highlight specific locations and draw the audience’s focus to
that spot (Knaflic 2015a, b, c). In this context, they are visual attributes such as size,
color, and position. When used judiciously, the audience’s mind is unconsciously
drawn to this highlighted location.

12.2  �Visualization Techniques in Text Analytics

The high dimensionality of text data, including large document collections with
many words, can create some difficulty with respect to the visualization of analy-
sis results. Yang et al. (2008) report that some common real-world, text-focused
visualizations include histograms, co-occurrence matrices, cluster maps, and net-
work graphs.

The granularity of the visualization may vary depending on the purpose of the
analysis. However, in most cases the presenter should begin with the overall picture
before focusing on the more detailed aspects of the analysis (Gan et al. 2014). In this
section, we will revisit many of the plots that have been presented in this book and
introduce some additional plots that can be used to help the presenter convey the
intended message and tell the story of the analysis. We begin by visualizing the big
picture at the document collection level and then narrow our focus to the category/
theme level and document level.

12.2.1  �Corpus/Document Collection-Level Visualizations

Corpus-level representations can include heat maps, document relationship net-
works, and document similarity maps (Gan et al. 2014). Document maps are a use-
ful method to present a spatial representation of document similarity (Alencar et al.
2012). First, we consider visualizations at the highest granularity level: the full cor-
pus. Regardless of the analysis method used, the goal is to illustrate the big picture:
all of the documents or words. In our small-scale example in Chap. 5 with 10

12  Visualizing Analysis Results

181

documents and 12 terms, we used a heat map displaying the frequency of terms in
the documents, which is displayed again in Fig. 12.2. A heat map can be used, as
opposed to presenting a matrix with frequency values. If applicable, the color
scheme can be altered to align with the focus of the analysis or to match corporate
branding protocols. Heat maps are useful in small-scale analysis but are less infor-
mative or effective for larger-scale analysis.

Another type of plot that can be used, which can represent term frequencies at
the corpus level, is a word cloud. Word clouds are a common visualization created
for text analyses. Usually, they display the most frequent words in the corpus. Each
word is sized by its frequency. The words are often displayed with colors or fonts
that make word clouds superficially attractive and fun (Heimerl et al. 2014). They
provide audiences with a summary of word usage, but they are limited beyond this
basic overview (Heimerl et al. 2014). They do not include any information about the
interrelationship between words or any exact measurement information.

Word clouds have many applications in text analytics, because they are visually
appealing and a simple alternative to presenting a large, sparse DTM to the audi-
ence. There are many elements of word clouds such as colors and shapes that can be
customized for the analysis. For example, in the document collection used in Chaps.
8 and 9, in which dog owners describe their dog’s physical appearance, the intended
audience is probably fellow dog lovers. For this reason, as Fig. 12.3 illustrates, we
create a word cloud in the shape of a dog’s paw to appeal to our audience. The word
cloud gives us an idea of the global term frequency, without presenting it in a more
formal, standard barplot.

white

spots

leash

pink

hat

coat

cat

brown

tan

fluffy

favorite

dog

1 2 3 4 5 6
Documents

T
er
m
s

7 8 9 10

value
2.0
1.5
1.0
0.5
0.0

Fig. 12.2  Heat map visualization

12.2  Visualization Techniques in Text Analytics

182

12.2.2  �Theme and Category-Level Visualizations

The next level of granularity is at the category or theme level. At this level, we want
to consider LSA dimensions, clusters, topics, categories, and sentiments.

12.2.2.1  �LSA Dimensions

The output of an LSA is a multidimensional space created by using SVD for dimen-
sion reduction. The LSA space has many dimensions and may be difficult to con-
ceptualize or understand for people who are unfamiliar with it. Rather than focus on
the big picture, we can visualize the terms that feature most in LSA dimensions.
Figure 12.4 displays the top 10 words in each of the four LSA dimensions in the
analysis using Python in Chap. 15. From the plot, we have an at-a-glance view of all
four dimensions from which we can try to characterize the latent information in
each dimension further.

12.2.2.2  �Cluster-Level Visualizations

In analyses that cluster documents using HCA, the dendrogram resulting from the
analysis can give the audience a clear and concise idea of naturally occurring group-
ings of documents in the document collection. As covered in Chap. 7, the

Fig. 12.3  Word cloud of dog descriptions in the shape of a paw

12  Visualizing Analysis Results

183

dendrogram is a benefit of HCA analysis and can be informative in the analysis of
both word and document clusters. However, for large-scale analysis, it can be con-
fusing and difficult for the audience to interpret. When choosing the visualization,
the presenter should keep in mind both the audience and the size of the data to
determine the most effective way to relay the findings. Figure 12.5 contains two
versions of the same dendrogram based on the seven-cluster HCA solution found in
the chapter. In both versions, we use color to distinguish the clusters and focus the
reader’s attention. In the first dendrogram, we alter only the colors of the rectangles
distinguishing the clusters. In the second dendrogram, we expand the use of the
seven different colors and alter the orientation of the plot.

12.2.2.3  �Topic-Level Visualizations

At the topic level, plots of the most important terms in a topic can have a great deal
of explanatory power. In Fig. 12.6, we use different colors to differentiate the vari-
ous topics and plot the most important topic words. The top three terms in Topic 1
are long, tall, and short, indicating that they have to do with the physical descrip-
tion of the dog’s height. Topic 2 is dominated by white, and we would expect to
find this topic discussed in most of the Bichon Frise documents. Weight and pound
are the top two terms in Topic 3, indicating that this topic deals with the size of the
dog, in terms of weight. Finally, Topic 4 appears to describe the physical attributes
of the dogs.

Fig. 12.4  Plots of top terms in first four LSA dimensions

12.2  Visualization Techniques in Text Analytics

184

Fig. 12.5  Two dendrogram versions of the same HCA solution

12  Visualizing Analysis Results

185

Visualizations are an important way to not only present the results of the analysis
but also let the audience see the trends and patterns in the data and analysis for
themselves. Figure 12.7 depicts the temporal topic trends based on an STM analysis
of complaints about vehicle defects for a topic describing sudden acceleration. By
looking at the expected topic proportions over time, we can visualize trends over
time to put our findings into context. This visual aid offers a concise way to contex-
tualize the topic analysis.

12.2.2.4  �Category or Class-Level Visualizations

As shown in Fig. 12.8, document network plots can help us spatially understand
connections among documents that might otherwise be missed. In the top figure,
we build an adjacency-based network plot based on the similarity or closeness of
the documents in the document collection presented in Chap. 8. We use the default
plot settings. From this visualization of the document network, we can see that
there are some documents that clump together, suggesting there are groups of simi-
lar documents. However, the plot does not inform us about which documents might
be similar.

In the bottom plot, we incorporate color-coded class information. Now, we have
a much clearer view of the document collection. As we can see, the documents
describing Bichon Frises are very similar. On the other hand, the Golden Retriever

tall
long

short

dark
ear

leg

tail

fluffi

bodi

golden

0.00 0.02 0.04 0.06 0.08 0.00 0.025 0.050 0.075 0.100 0.125

0.00 0.02 0.04

3 4

1 2

0.06 0.00
beta

te
rm

0.02 0.04 0.06

white
long

coat

weigh
ear

black

leg

tail

fluffi

look

pound
coat

weigh

gold
ear

hair

nose

lbs

muscular

fur

long
coat

short

weigh
gold

ear

black

tail

fluffi

larg

Fig. 12.6  Top ten terms per topic, four-topic model

12.2  Visualization Techniques in Text Analytics

186

document network is more spread out. The Dachshund and Great Dane documents
do not display clearly defined groupings, suggesting that we would expect there to
be similarities in these documents. In addition to adding the color schema and leg-
end, we also muted the impact of the edge lines connecting the document nodes by
changing the black lines to a light gray. This color change draws the audience’s
focus forward to the document nodes.

12.2.2.5  �Sentiment-Level Visualizations

Sentiment analysis aims to classify or measure the polarity of documents in a docu-
ment collection. Color schemes, such as those in Fig. 12.9, can be chosen along a
spectrum of polarity measures, and different colors, such as red and green, can be
utilized to separate the sentiments. This figure provides separate word clouds for the
positive and negative sentiments, with positive in green and negative in red. If the
neutral sentiment were also included, it could be plotted in amber to follow the
stoplight theme. Displaying the word clouds side by side lets the viewer see the big
picture of the analysis.

As we have seen, the use of word clouds can be as generic or customized as the
presenter chooses. For instance, we can create a word cloud for online reviews

Fig. 12.7  Plot of expected topic proportions over time

12  Visualizing Analysis Results

187

Fig. 12.8  Two versions of the same document network plot

12.2  Visualization Techniques in Text Analytics

188

receiving five stars. For online reviews, the most positive reviews have five stars,
and the most negative reviews have one star. We can use this domain knowledge to
provide an alternative representation of the terms in positive reviews, as shown in
Fig. 12.10.

12.2.3  �Document-Level Visualizations

Document-level visualizations, which focus on words and phrases in a document,
can be represented by tag clouds, word clouds, or enhanced text (Gan et al. 2014).
To see their power in action, look at the following reviews.1 First, we consider the
reviews as normal text:

1 www.yelp.com/biz/summer-china-diner-houston-4

Fig. 12.9  Word clouds of positive and negative words in review sample

Fig. 12.10  Five-star word cloud of reviews

12  Visualizing Analysis Results

http://www.yelp.com/biz/summer-china-diner-houston-4

189

–– Ordering took a while. When the waiter came over, he said they were really busy.
There were only four other tables occupied. We both ordered fried rice and one
of us was served white rice.

–– The soft spring rolls were 3″ or 4″ long and not very good. I ordered the beef and
broccoli, and the beef was literally the worst I have ever eaten. Mediocre service
as well. Sweet tea is good.

–– The food was very tasty, hot, and fresh. The waiter was not attentive. The food
was freshly cooked and came out in 15 min piping hot.

When all of the text is the same in terms of color and weight, there is no clear
message. However, if we bold certain sections of the text, the viewer’s focus shifts
to those words.

–– Ordering took a while. When the waiter came over, he said they were really busy.
There were only four other tables occupied. We both ordered fried rice and one
of us was served white rice.

–– The soft spring rolls were 3″ or 4″ long and not very good. I ordered the beef and
broccoli, and the beef was literally the worst I have ever eaten. Mediocre service
as well. Sweet tea is good.

–– The food was very tasty, hot, and fresh. The waiter was not attentive. The food
was freshly cooked and came out in 15 min piping hot.

Based on this emphasis, it is clear that the presenter is making a statement about
the service at this restaurant. Adding color to these sectors can underscore this point
even further.

–– Ordering took a while When the waiter came over, he said they were really busy.
There were only four other tables occupied. We both ordered fried rice and one
of us was served white rice.

–– The soft spring rolls were 3″ or 4″ long and not very good. I ordered the beef and
broccoli, and the beef was literally the worst I have ever eaten. Mediocre service
as well. Sweet tea is good.

–– The food was very tasty, hot, and fresh. The waiter was not attentive. The food
was freshly cooked and came out in 15 min piping hot.

By changing only an attribute or two, we make it easy for the audience to digest
the message (Knaflic 2015a, b, c).

Key Takeaways
•	 Strategies for effective visualizations include be purposeful, know your

audience, solidify your message, plan and outline, keep it simple, and
focus attention.

•	 Visualizations at different levels of detail should be provided to convey the
important high-level and low-level information to your audience.

12.2  Visualization Techniques in Text Analytics

190

References

Alencar, A. B., de Oliveira, M. C. F., & Paulovich, F. V. (2012). Seeing beyond reading: A sur-
vey on visual text analytics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 2(6), 476–492.

Berinato, S. (2016). Good charts: The HBR guide to making smarter, more persuasive data visual-
izations. Cambridge, MA: Harvard Business Review Press.

Data visualization: What it is and why it matters. SAS, SAS Institute, Inc. (2017, December 1).
www.sas.com/en_us/insights/big-data/data-visualization.html

Ellis, G., & Mansmann, F. (2010). Mastering the information age solving problems with visual
analytics. In Eurographics (Vol. 2, p. 5).

Gan, Q., Zhu, M., Li, M., Liang, T., Cao, Y., & Zhou, B. (2014). Document visualization: An
overview of current research. Wiley Interdisciplinary Reviews: Computational Statistics, 6(1),
19–36.

Heimerl, F., Lohmann, S., Lange, S., & Ertl, T. (2014, January). Word cloud explorer: Text ana-
lytics based on word clouds. In System Sciences (HICSS), 2014 47th Hawaii International
Conference on (pp. 1833–1842). IEEE.

Keim, D. A., Mansmann, F., Schneidewind, J., & Ziegler, H. (2006, July). Challenges in visual data
analysis. In Information Visualization. IV 2006. Tenth International Conference on (pp. 9–16).
IEEE.

Knaflic, C. N. (2015a). Storytelling with data: A data visualization guide for business profession-
als. Hoboken: John Wiley & Sons.

Knaflic, C. N. (2015b, May 13). Tell your audience what you want them to know. Storytelling
with data. Retrieved April 14, 2018, from http://www.storytellingwithdata.com/blog/2015/05/
tell-your-audience-what-you-want-them

Knaflic, C. N. (2015c, June 03). Audience, audience, audience. Storytelling with data.
Retrieved April 14, 2018, from http://www.storytellingwithdata.com/blog/2015/06/
audience-audience-audience

Knaflic, C. N. (2017, September 7). My guiding principles. Storytelling with data. Retrieved April
14, 2018, from http://www.storytellingwithdata.com/blog/2017/8/9/my-guiding-principles

Kucher, K., & Kerren, A. (2015, April). Text visualization techniques: Taxonomy, visual sur-
vey, and community insights. In Visualization Symposium (PacificVis), 2015 IEEE Pacific
(pp. 117–121). IEEE.

Yang, Y., Akers, L., Klose, T., & Yang, C. B. (2008). Text mining and visualization tools–impres-
sions of emerging capabilities. World Patent Information, 30(4), 280–293.

Further Reading

For an example of visualizing text analytics results in SAS Visual Text Analytics, see Chap. 16.

12  Visualizing Analysis Results

http://www.sas.com/en_us/insights/big-data/data-visualization.html
http://www.storytellingwithdata.com/blog/2015/05/tell-your-audience-what-you-want-them
http://www.storytellingwithdata.com/blog/2015/05/tell-your-audience-what-you-want-them
http://www.storytellingwithdata.com/blog/2015/06/audience-audience-audience
http://www.storytellingwithdata.com/blog/2015/06/audience-audience-audience
http://www.storytellingwithdata.com/blog/2017/8/9/my-guiding-principles

Part V
Text Analytics Examples

193© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3_13

Chapter 13
Sentiment Analysis of Movie Reviews
Using R

Abstract  In this chapter, the reader is presented with a step-by-step lexicon-based
sentiment analysis using the R open-source software. Using 1,000 movie reviews
with sentiment classification labels, the example analysis performs sentiment analy-
sis to assess the predictive accuracy of built-in lexicons in R. Then, a custom stop
list is used and accuracy is reevaluated.

Keywords  Sentiment analysis · Opinion mining · Online consumer reviews
(OCR) · R · RStudio · Open-source

13.1  �Introduction to R and RStudio

In this example, we will use the R programming language (R Development Core
Team 2008) and its integrated development environment (IDE), RStudio. R is a free
statistical computing language with user-contributed libraries. It is available for
download at https://www.r-project.org/. RStudio is a free and popular IDE that
makes many processes easier. It is available to download at https://www.rstudio.
com/. The RStudio workspace is shown in Fig. 13.1.

To follow and replicate the analysis, we present the blocks of code and their
output with a light background shading, while the written text has no background.

We will use three packages in R for our analysis: tidytext, dplyr, and ggplot2.
The tidytext package will be used to conduct the basic sentiment analysis.1

To install and load the necessary packages used in this analysis, run the following
lines:

install.packages(c('tidytext', 'dplyr', 'ggplot2'))

library(ggplot2) #load the ggplot2 package

library(tidytext) #load the tidytext package

library(dplyr) #load the dplyr package

1 For additional information on tidytext and more examples, consult http://tidytextmining.com/

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_13&domain=pdf
https://www.r-project.org/
https://www.rstudio.com/
https://www.rstudio.com/
http://tidytextmining.com/

194

13.2  �SA Data and Data Import

We use 1,000 Internet Movie Database (IMDB) reviews downloaded from https://
archive.ics.uci.edu/ml/machine-learning-databases/00331/. The description of the
dataset is available at https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+S
entences#.

download.file("https://archive.ics.uci.edu/ml/machine-learning-databases/00331

/sentiment%20labelled%20sentences.zip", "sentiment labelled sentences.zip")

trying URL 'https://archive.ics.uci.edu/ml/machine-learning-databases/00331/se

ntiment%20labelled%20sentences.zip'

Content type 'application/zip' length 84188 bytes (82 KB)

downloaded 82 KB

td = tempdir()

unzip("sentiment labelled sentences.zip", files="sentiment labelled sentences/

imdb_labelled.txt", exdir=td, overwrite=TRUE)

fpath = file.path(td, "sentiment labelled sentences/imdb_labelled.txt")

imdb <- read.table(fpath, col.names = c("comment","positive_flag"), quote = ""

, comment.char = "", sep = "\t", stringsAsFactors=FALSE)

imdb$review_id <- 1:nrow(imdb)

The additional parameters in the read.table function tell R that there are no quotes
(quote = “”), there is no comment character (comment.char = “”), the file is tab
delimited (sep = \t), and string variables should not be automatically converted to
factor or categorical variables (stringsAsFactors = FALSE). These settings allow R

Fig. 13.1  RStudio IDE

13  Sentiment Analysis of Movie Reviews Using R

https://archive.ics.uci.edu/ml/machine-learning-databases/00331/
https://archive.ics.uci.edu/ml/machine-learning-databases/00331/
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences

195

Fig. 13.2  RStudio workspace with imdb dataframe in the global environment

to read the file properly. We also define the names of the two columns in the
dataframe (col.names = c(“comment,” “positive_flag”)). Then, we add an additional
column, which includes the unique review ID number.

Once this step is completed, there will be a dataframe in the environment called
imdb, which includes 1,000 observations and 3 variables, as depicted in Fig. 13.2.
The first column or variable is a series of text comments—the comments to analyze.
The second variable is a negative or positive polarity indicator that we can use to
judge our model, with 0s indicating negative sentiment and 1 s indicating positive
sentiment. The third variable is the ID number.
To get a feel for the data, we can take a closer look, either using str or view. The str
function tells us how many documents and variables are in the dataframe, or R
object, and gives the first 10 observations for each of the variables. When using the
view function, a separate table is opened in the workspace with the data, as shown
in Fig. 13.3.

str(imdb)

'data.frame': 1000 obs. of 3 variables:

$ comment : chr "A very, very, very slow-moving, aimless movie about a

distressed, drifting young man. " "Not sure who was more lost - the flat char

acters or the audience, nearly half of whom walked out. " "Attempting artines

s with black & white and clever camera angles, the movie disappointed - became

even more ridi"| __truncated__ "Very little music or anything to speak of. "

...

$ positive_flag: int 0 0 0 0 1 0 0 1 0 1 ...

$ review_id : int 1 2 3 4 5 6 7 8 9 10 ...

View(imdb)

13.2 � SA Data and Data Import

196

Fig. 13.3  Table formatted data using the view function

Fig. 13.4  Frequency of negative (0) and positive (1) reviews

13  Sentiment Analysis of Movie Reviews Using R

197

Next, let’s visualize how many reviews are positive or negative using the barplot
function. As the barplot in Fig. 13.4 shows, the dataset is evenly split, with 500 posi-
tive and 500 negative reviews. Now that we understand the dataset better, we can
start our analysis.

barplot(table(imdb$positive_flag))

13.3  �Objective of the Sentiment Analysis

Defining the purpose of the analysis is our first step. Here, we conduct a data-driven
analysis to describe the sentiment analysis process in R. Since the movie reviews
include sentiment labels, we can explore which lexicon classifies the reviews best.

The tidytext library comes with three lexicons: NRC, bing, and AFINN. The first
lexicon, referred to in tidytext as nrc (Mohammad and Turney 2013), categorizes
13,901 terms as positive or negative and/or by emotion, such as trust, fear, and sad-
ness. We can preview the NRC lexicon using the get_sentiments function and speci-
fying the parameter lexicon equal to nrc.

get_sentiments(lexicon="nrc")

A tibble: 13,901 x 2

word sentiment

<chr> <chr>

1 abacus trust

2 abandon fear

3 abandon negative

4 abandon sadness

5 abandoned anger

6 abandoned fear

7 abandoned negative

8 abandoned sadness

9 abandonment anger

10 abandonment fear

... with 13,891 more rows

The bing lexicon (Hu and Liu 2004) includes 6,788 words, which are classified
as either positive or negative. We can preview the bing lexicon using the get_senti-
ments function and specifying the parameter lexicon equal to bing.

13.3 � Objective of the Sentiment Analysis

198

get_sentiments(lexicon="bing")

A tibble: 6,788 x 2

word sentiment

<chr> <chr>

1 2-faced negative

2 2-faces negative

3 a+ positive

4 abnormal negative

5 abolish negative

6 abominable negative

7 abominably negative

8 abominate negative

9 abomination negative

10 abort negative

... with 6,778 more rows

The AFINN lexicon (Nielsen 2011), which is described in Chap. 4, assigns
numerical sentiment scores to 2,476 terms. We can preview the AFINN lexicon
using the get_sentiments function and specifying the parameter lexicon equal to
afinn.

get_sentiments(lexicon="afinn")

A tibble: 2,476 x 2

word score

<chr> <int>

1 abandon -2

2 abandoned -2

3 abandons -2

4 abducted -2

5 abduction -2

6 abductions -2

7 abhor -3

8 abhorred -3

9 abhorrent -3

10 abhors -3

... with 2,466 more rows

13  Sentiment Analysis of Movie Reviews Using R

199

13.4  �Data Preparation and Preprocessing

Returning to the IMDB review data, we will prepare and pre-process the data prior
to our analysis.

13.4.1  �Tokenize

We will start with some initial preprocessing of our text data. The tidytext package
does a great deal of this work automatically with the unnest_tokens() function.
Punctuation is removed, and uppercase letters are changed to lowercase. The func-
tion then tokenizes the sentences, with the default token being a single word. By
changing the token parameter in the function, n-grams are possible, although we
will use the default in our analysis.

The code creating our tidytext object says to use the imdb dataframe to unnest
the tokens in the comment column into a new column in tidy format called word. By
using the str function to view the structure of the tidy_imdb object, we see that the
new dataframe has 3 columns and 14,482 rows. Each row is now a word in a review.
By using the head function, we view the first 10 rows, corresponding to tokens from
the first review.

tidy_imdb <- imdb %>% unnest_tokens(word, comment)

str(tidy_imdb)

'data.frame': 14482 obs. of 3 variables:

$ positive_flag: int 0 0 0 0 0 0 0 0 0 0 ...

$ review_id : int 1 1 1 1 1 1 1 1 1 1 ...

$ word : chr "a" "very" "very" "very" ...

head(tidy_imdb, 10)

positive_flag review_id word

1 0 1 a

1.1 0 1 very

1.2 0 1 very

1.3 0 1 very

1.4 0 1 slow

1.5 0 1 moving

1.6 0 1 aimless

1.7 0 1 movie

1.8 0 1 about

1.9 0 1 a

13.4 � Data Preparation and Preprocessing

200

13.4.2  �Remove Stop Words

Next, we consider removing stop words. The tidytext package comes with a generic
stop list in the “stop_words” dataset. Let’s check to see if we want to remove the
stop words on the list. To do so, we will see if any words exist in the stop words
dataset and at least one of the lexicon datasets. Sentiments are a built-in dataset in
tidytext that includes four lexicons: NRC, bing, AFINN, and Loughran. We use
inner_join, which takes two dataframes and creates a new dataframe that includes
only the observations where there is a match between the two. Figure 13.5 depicts
an inner join, where the resulting dataframe is made up of the overlap between the
two dataframes, shown in the middle in darker blue. To limit our comparison to the
three lexicons that we will use, we use the OR operator, “|”.
Using the length and unique functions, we discover that there are 78 unique stop
words that exist on both the stop words list and the NRC, bing, or AFINN lexicon
lists. The number of terms classified for each lexicon list is depicted in Fig. 13.6. As
shown, since each term on the NRC list can have one or multiple classifications, the
largest number of matches is within this list. Based on the large number of senti-
ment words that are considered stop words, we will not remove stop words in our
analysis.

stop_words %>% inner_join(sentiments %>% filter(lexicon=="bing" |

lexicon=="nrc" | lexicon=="AFINN"), by="word")

A tibble: 151 x 5

word lexicon.x sentiment lexicon.y score

<chr> <chr> <chr> <chr> <int>

1 allow SMART <NA> AFINN 1

2 alone SMART <NA> AFINN -2

3 appreciate SMART positive bing NA

4 appreciate SMART <NA> AFINN 2

5 appropriate SMART positive bing NA

6 available SMART positive bing NA

7 awfully SMART negative bing NA

8 best SMART positive bing NA

9 best SMART <NA> AFINN 3

10 better SMART positive bing NA

... with 141 more rows

length(unique(stop_lexicon_match$word))

[1] 78

> barplot(table(stop_lexicon_match$lexicon.y))

13  Sentiment Analysis of Movie Reviews Using R

201

13.5  �Sentiment Analysis

With the tidytext package, we can match the terms used in our reviews to the lexicon
terms using a join to the given lexicon. The polarity, classification, or score for each
token is added to the dataframe, which are named according to their lexicon. Again,
we use the str function to investigate the size of the dataframes and the variables.

stop_words

sentiments

Fig. 13.5  Diagram of an inner join between stop words and sentiments

AFINN bing nrc

AFINN bing nrc

0

10

20

30

40

50

0

10

20

30

40

50

Fig. 13.6  Number of classifications per matching stop word and lexicon lists

13.5 � Sentiment Analysis

202

Based on this function, we see that NRC includes additional classes beyond positive
and negative, bing provides a positive or negative assessment, and AFINN scores
each word for a degree of polarity.

nrc_sentiment <- tidy_imdb %>% inner_join(get_sentiments("nrc"), by = "word")

str(nrc_sentiment)

'data.frame': 4432 obs. of 4 variables:

$ positive_flag: int 0 0 0 0 0 0 0 0 0 0 ...

$ review_id : int 1 1 1 1 1 1 1 2 2 2 ...

$ word : chr "aimless" "distressed" "distressed" "young" ...

$ sentiment : chr "negative" "fear" "negative" "anticipation" ...

bing_sentiment <- tidy_imdb %>% inner_join(get_sentiments("bing"),

by = "word")

str(bing_sentiment)

'data.frame': 1696 obs. of 4 variables:

$ positive_flag: int 0 0 0 0 0 0 0 0 0 1 ...

$ review_id : int 1 1 1 2 3 3 3 3 3 5 ...

$ word : chr "slow" "aimless" "distressed" "lost" ...

$ sentiment : chr "negative" "negative" "negative" "negative" ...

afinn_sentiment <- tidy_imdb %>% inner_join(get_sentiments("afinn"),

by = "word")

str(afinn_sentiment)

'data.frame': 1286 obs. of 4 variables:

$ positive_flag: int 0 0 0 0 0 0 1 0 0 0 ...

$ review_id : int 1 2 3 3 3 3 5 6 6 6 ...

$ word : chr "distressed" "lost" "clever" "disappointed" ...

$ score : int -2 -3 2 -2 -3 -2 3 3 -1 -1 ...

In our dataset, these are the frequencies of the categories. Beyond classifications
as positive and negative, we have anger, anticipation, disgust, fear, joy, sadness,
surprised, and trust. Of the total 704 unique matching terms in the nrc_sentiment
dataframe, 622 of those terms are classified as either positive or negative. For this
reason, we choose to keep the terms that are classified as either positive or negative
by subsetting the nrc_sentiment dataframe.

nrc_sentiment <- nrc_sentiment[nrc_sentiment$sentiment %in% c("positive",

"negative"),]

str(nrc_sentiment)

'data.frame': 1516 obs. of 4 variables:

$ positive_flag: int 0 0 0 0 0 0 0 0 0 0 ...

$ review_id : int 1 1 1 2 3 3 3 3 3 4 ...

$ word : chr "aimless" "distressed" "young" "lost" ...

$ sentiment : chr "negative" "negative" "positive" "negative" ...

13  Sentiment Analysis of Movie Reviews Using R

203

Next, we need to aggregate the review-level polarity information. To do so, we
score each review as a sum of its points. Since AFINN provides sentiment scores,
we will total these points. For the bing and NRC lexicons, we count each positive as
+1 and each negative as −1. For these two lexicons, we use the ifelse function to
accomplish this task and assign the result to a column called “score,” as in the
AFINN lexicon. The aggregate dataframes include the review numbers and aggre-
gated scores.

nrc_sentiment$score <- ifelse(nrc_sentiment$sentiment == "negative", -1, 1)

nrc_aggregate <- nrc_sentiment %>% select(review_id, score) %>%

group_by(review_id) %>% summarise(nrc_score = sum(score))

bing_sentiment$score <- ifelse(bing_sentiment$sentiment == "negative", -1, 1)

bing_aggregate <- bing_sentiment %>% select(review_id, score) %>%

group_by(review_id) %>% summarise(bing_score = sum(score))

afinn_aggregate <- afinn_sentiment %>% select(review_id, score) %>%

group_by(review_id) %>% summarise(afinn_score = sum(score))

Next, we aggregate to the review level and add the sentiment information to our
original imdb dataset. We include one column for each lexicon to make it easy to
judge which scored the review sentiments best. Next, we use the merge function to
sequentially combine the aggregated lexicon information with the original imdb
review data. Figure 13.7 illustrates how the merge function is used. In our case, we
tell R to combine observations in the original imdb data with the aggregated lexicon
data based on the matching review_id. By specifying all.x = TRUE, merge is acting
as a left-join operator, because we specify that we want to keep all of the observa-
tions in imdb and we want to add the aggregated lexicon score only if we find a
match between the review_ids in the two dataframes. Then, we replace NAs that
arise from non-matches with 0 s, indicating a neutral sentiment score.

imdb_sent <- merge(x = imdb, y = nrc_aggregate, all.x = TRUE,

by = "review_id")

imdb_sent <- merge(x = imdb_sent, y = bing_aggregate, all.x = TRUE,

by = "review_id")

imdb_sent <- merge(x = imdb_sent, y = afinn_aggregate, all.x = TRUE,

by = "review_id")

imdb_sent[is.na(imdb_sent)] <- 0

Finally, we use the ifelse function again to denote if the review is positive or
negative, according to each of the three lexicons. These sentiment flags are added as

13.5 � Sentiment Analysis

204

new columns to the imdb data and saved as a dataframe called imdb_sent. We use
the same procedure to denote the actual sentiment of the review in words in a col-
umn called “actual sentiment.”

imdb_sent$afinn_judgement <- ifelse(imdb_sent$afinn_score < 0, "negative",

ifelse(imdb_sent$afinn_score > 0, "positive",

"neutral"))

imdb_sent$bing_judgement <- ifelse(imdb_sent$bing_score < 0, "negative",

ifelse(imdb_sent$bing_score > 0, "positive",

"neutral"))

imdb_sent$nrc_judgement <- ifelse(imdb_sent$nrc_score < 0, "negative",

ifelse(imdb_sent$nrc_score > 0, "positive",

"neutral"))

Imdb_sent$actual_sentiment <- ifelse(imdb_sent$positive_flag == 1, "positive",

"negative")

13.6  �Sentiment Analysis Results

Using the sentiment flags, we can compare the lexicon-based sentiments with the
actual labeled sentiments of the reviews using the table function. First, we can com-
pare the predicted and actual sentiments using the NRC lexicon.

table(imdb_sent$nrc_judgement, imdb_sent$actual_sentiment)

negative positive

negative 235 42

neutral 160 166
positive 105 292

The NRC lexicon correctly identifies 292 positive reviews, or 58.4%, and 235
negative reviews, or 47%. Overall, based on the NRC lexicon, approximately 53%
of the reviews have the correct sentiment.

imdb aggregated
lexicon

Fig. 13.7  Diagram of a left join between imdb and the aggregated lexicons

13  Sentiment Analysis of Movie Reviews Using R

205

table(imdb_sent$bing_judgement, imdb_sent$actual_sentiment)

negative positive

negative 304 43

neutral 119 110

positive 77 347

The bing lexicon correctly identified 304 of the 500 (60.8%) negative reviews
and 347 of the 500 (69.4%) positive reviews. It did substantially better for the nega-
tive reviews and showed an improvement over the NRC lexicon for the positive
reviews. Overall, it classified 651 (69.4%) of the 1,000 reviews correctly. Finally,
we consider the accuracy of the AFINN lexicon.

table(imdb_sent$afinn_judgement, imdb_sent$actual_sentiment)

negative positive

negative 274 35

neutral 133 127

positive 93 338

AFINN correctly identified 274 of the 500 (54.8%) negative reviews and 338 of
the 500 (67.6%) positive reviews. Overall, 612 of the 1,000 (61.2%) were labeled
correctly.

Based on the results for the three lexicons, we would choose the bing lexicon to
identify the sentiments of the movie reviews. If we were to acquire additional imdb
reviews with unknown labels, we would expect the bing lexicon to produce the best
results. We can dig deeper into the results by looking at the misclassified reviews.
How many reviews did all three lexicons classify incorrectly?

incorrect_reviews <- imdb_sent[imdb_sent$afinn_judgement !=

imdb_sent$actual_sentiment &

imdb_sent$bing_judgement != imdb_sent$actual_sentiment &

imdb_sent$nrc_judgement != imdb_sent$actual_sentiment,]

nrow(incorrect_reviews)

[1] 205

There are 205 reviews that all three lexicons predicted incorrectly. It can be
insightful to read a sample of those misclassified reviews by running the following
code. Five of these consistently misclassified reviews are shown in Table 13.1 with
the actual sentiment and the predicted sentiment for the three lexicons.

sample <- incorrect_reviews[sample(nrow(incorrect_reviews), 5), c("comment",

"actual_sentiment", "afinn_judgement", "bing_judgement",
"nrc_judgement")]

13.6 � Sentiment Analysis Results

206

As described in Chap. 10, sentiment analysis struggles to correctly classify the
sentiment of ambiguous text. Given the context, a human reader would know that
the phrase “Lots of holes in the script” is negative. However, sentiment analysis is
context-free and therefore incorrectly identifies this ambiguous review. For those
reviews that are ambiguous to human readers, such as “There are massive levels,
massive unlockable characters… it’s just a massive game,” sentiment analysis also
has difficulty identifying the sentiment.

Additionally, our sentiment analysis fails to account for negation, as in the review
“None of them are engaging or exciting.” In this case, sentiment analysis identifies
engaging and exciting as positive and deems the review positive, even though to a
human reader the sentiment is clearly negative.

13.7  �Custom Dictionary

The general dictionaries are a good start, but they were not created with analysis-
specific context in mind and leave important terms out as a result. One way to
improve our sentiment analysis results is to create a dictionary that is specific to our
analysis. In creating the dictionary, we need to achieve a balance between improve-
ment in predictive performance and generalizability to out-of-sample data. A dic-
tionary that is too specific will have strong predictive accuracy for the data on which
the model is built, the training data, but may perform poorly on our testing data. A
dictionary that is too broad will miss information.

To create a custom dictionary, we split our data into a training and test set, as in
Chap. 9, covering classification analysis. The test set provides an estimate of how
our new model would perform on an out-of-sample dataset. Our goal is to create a
dictionary that improves the predictive performance on the test set compared to the
bing lexicon’s performance.

To accomplish this goal, we return to the original imdb dataframe. We use the
sample function on the imdb dataset to create the two samples, training and testing.

Table 13.1  Misclassified sentiment reviews with actual and predicted sentiment

Comment
actual_
sentiment

afinn_
judgement

bing_
judgement

nrc_
judgement

Tom Wilkinson’s character is a man who is
not prepared for the ordeal that is about to
begin, but he takes the matter in hand as the
story progresses, and this great actor gives a
performance that makes you feel the
character’s anguish and suffering

Positive Neutral Negative Negative

Lots of holes in the script Negative Neutral Neutral Positive
None of them are engaging or exciting Negative Positive Positive Positive
Overall, I rate this movie a 10 out of a 1–10
scale

Positive Neutral Neutral Neutral

There are massive levels, massive unlockable
characters… it’s just a massive game

Positive Neutral Neutral Neutral

13  Sentiment Analysis of Movie Reviews Using R

207

The sample function will provide us with the row numbers of 75% of our imdb data.
In our analysis, the training set will be 75% of our data, and the test set will have
25%. We will split our data into the two samples based on the imdb data and then
subset our tidy-formatted data to avoid preprocessing the data again. We use the
head function to view the first six observations. The head function shows that
Review 1 is in our training sample.

set.seed(101)

train <- sample(nrow(imdb), nrow(imdb)*.75)

tidy_train <- subset(tidy_imdb, review_id %in% train)

tidy_test <- subset(tidy_imdb, !(review_id %in% train))

head(tidy_train)

positive_flag review_id word

1 0 1 a

1.1 0 1 very

1.2 0 1 very

1.3 0 1 very

1.4 0 1 slow

1.5 0 1 moving

We now need a dictionary for our newly created sentiments. To create the custom
dictionary, we begin with the best performing dictionary, bing, and add to it based
on data exploration. We use left_join to add the bing lexicon sentiments to the tidy_
train data.

tidy_train_imdb <- tidy_train %>% left_join(get_sentiments("bing"),

by = "word")

colnames(tidy_train_imdb)[which(colnames(tidy_train_imdb) == "sentiment")]

<-"bing_sentiment"

tidy_train_imdb$bing_score <- ifelse(is.na(tidy_train_imdb$bing_sentiment), 0,

ifelse(tidy_train_imdb$bing_sentiment

== "positive", 1, -1))

head(tidy_train_imdb)

positive_flag review_id word bing_sentiment bing_score

1 0 1 a <NA> 0

2 0 1 very <NA> 0

3 0 1 very <NA> 0

4 0 1 very <NA> 0

5 0 1 slow negative -1
6 0 1 moving <NA> 0

To start, we look at the words in the imdb reviews that have zero polarity accord-
ing to the bing lexicon. Let’s check the words that appear most in the negative and
positive reviews but do not have a polarity. First, we calculate term frequency and
document frequency, as defined in Chap. 5, for those terms that are not classified by

13.7 � Custom Dictionary

208

the bing lexicon. We create a dataframe and sort it in descending order by total term
usage. Given the six most frequent terms, we may want to reconsider our decision
not to remove stop words.

zero_polar <- tidy_train_imdb %>%

filter(is.na(bing_sentiment) %>%

select(positive_flag, review_id, word) %>%

group_by(word) %>%

summarise(total_usage = n(),

review_frequency = n_distinct(review_id)) %>%

arrange(desc(total_usage))

head(zero_polar)

A tibble: 6 x 3

word total_usage review_frequency

<chr> <int> <int>

1 the 649 381

2 a 332 253

3 and 320 243

4 of 284 230

5 is 261 227

6 this 214 199

Let’s remove the stop words that do not exist in the bing lexicon and repeat the
steps to create zero_polar.

stop_words <- stop_words %>% anti_join(get_sentiments("bing"), by = "word")

tidy_train_imdb <- tidy_train_imdb %>% anti_join(stop_words, by = "word")

zero_polar <- tidy_train_imdb %>%

filter(is.na(bing_sentiment)) %>% #select words that bing did not review

select(positive_flag, review_id, word) %>%

group_by(word) %>%

summarise(total_usage = n(),

review_frequency = n_distinct(review_id)) %>%

arrange(desc(total_usage))

head(zero_polar)

A tibble: 6 x 3

word total_usage review_frequency

<chr> <int> <int>

1 movie 131 123

2 film 128 124

3 time 38 38

4 acting 33 33

5 characters 26 26

6 10 25 17

13  Sentiment Analysis of Movie Reviews Using R

209

This process improves the results. Next, we use the same procedure to calculate
the frequency of the unclassified terms in the labeled reviews to explore term fre-
quency by known sentiment label. We create two dataframes, zero_polar_positive
and zero_polar_negative, which include the total frequency of the terms and the
total number of reviews in which the terms appear in positive and negative-labeled
reviews.

zero_polar_positive <- tidy_train_imdb %>%

#select words that bing did not review and are part of a positive review

filter(is.na(bing_sentiment) & positive_flag == 1) %>%

select(review_id, word) %>%

group_by(word) %>%

summarise(positive_total_usage = n(),

positive_review_frequency = n_distinct(review_id)) %>%

arrange(desc(positive_total_usage))

zero_polar_negative <- tidy_train_imdb %>%

#select words that bing did not review and are part of a negative review

filter(is.na(bing_sentiment) & positive_flag == 0) %>%

select(review_id, word) %>%

group_by(word) %>%

summarise(negative_total_usage = n(),

negative_review_frequency = n_distinct(review_id)) %>%

arrange(desc(negative_total_usage))

Again, we use the merge function to complete a left join adding the positive and
negative term review information from the zero_polar_positive and zero_polar_
negative dataframes to the zero_polar dataframe. Then, we add a column to the
dataframe, percent_positive_review, which includes the calculated percentage of
positive reviews in which the term appears. We replace any NAs arising from the
left join with 0 and sort the zero_polar dataframe in descending order by review_
frequency and percent_positive_review.

zero_polar <- merge(x = zero_polar, y = zero_polar_negative, all.x = TRUE,

by = "word")

zero_polar <- merge(x = zero_polar, y = zero_polar_positive, all.x = TRUE,

by = "word")

zero_polar[is.na(zero_polar)] <- 0

zero_polar$percent_positive_review <- round((zero_polar$positive_review_freque

ncy / zero_polar$review_frequency),4)

zero_polar <- zero_polar %>% arrange(desc(review_frequency),

desc(percent_positive_review))

13.7 � Custom Dictionary

210

Next, we use the head function to view the 10 most frequent words. As we sus-
pected, the most frequent terms appear to be stop words.

zero_polar %>% head(10) %>% select(word, review_frequency,

percent_positive_review)

word review_frequency percent_positive_review

1 film 124 0.6452

2 movie 123 0.5203

3 time 38 0.3684

4 acting 33 0.4545

5 characters 26 0.6538

6 movies 23 0.5652

7 watching 19 0.5263

8 10 17 0.8235

9 films 17 0.7059

10 character 17 0.5882

Looking at the ten most frequently uncategorized words, most of them are words
we would expect from reviews about movies: film, movie, characters, etc. There are
several words that account for large percentages in positive or negative reviews—10,
films, time. Reviews with 10 present are positive 82.4% of the time. This high rate
intuitively makes sense—“This movie was a 10!” The words time and films are more
ambiguous. In the 38 reviews where time is present, they are negative in 36.8% of
the cases. Reviews with films are positive 70.6% of the time. Let’s check the usage
of 10, films, and time. First, we will look at 10. We subset the imdb data by the
reviews that include 10. The reviews and their sentiment labels are displayed in
Table 13.2.

example_ids <- tidy_train_imdb %>% filter(word == "10") %>% select(review_id)

%>% unique() %>% arrange(review_id)

imdb[imdb$review_id %in% example_ids$review_id, "comment"]

Most are clearly positive. There are two reviews that list “1/10” or “1 out of 10,”
but we will accept the errors on those reviews for the correctly classified positive
reviews. Next, we look at the reviews that use the word time (Table 13.3).

example_ids <- tidy_train_imdb %>% filter(word == "time") %>%

select(review_id) %>% unique() %>% arrange(review_id)

imdb[imdb$review_id %in% example_ids$review_id, c("comment", "positive_flag")]

The word time is less clear-cut. Time has many uses, and we see it is used posi-
tively and negatively. Reading the reviews to check their validity is tedious and does
not give us an idea of the change in classification performance by adding terms to
the bing lexicon. To make it easier to check, let’s create a function that will output

13  Sentiment Analysis of Movie Reviews Using R

Table 13.2  Reviews with 10, including review number, text, and sentiment labels

Review Review text
positive_
flag

62 All in all I give this one a resounding 9 out of 10 1
82 This is the first movie I’ve given a 10 to in years 1
87 I gave it a 10 1
126 10/10 1
292 Rating: 1 out of 10 0
302 10 out of 10 for both the movie and trilogy 1
357 Now you know why I gave it a 10+ 1
435 1/10—and only because there is no setting for 0/10 0
439 Still, it was the SETS that got a big “10” on my “oy-vey” scale 1
449 My 8/10 score is mostly for the plot 1
487 Overall I rate this movie a 10 out of a 1–10 scale 1
523 Rating: 0/10 (grade: Z) note: The show is so bad that even the mother of

the cast pull her daughter out of the show
0

633 I’ll give this film 10 out of 10 1
653 Don’t be afraid of subtitles........ it’s worth a little aversion therapy 10/10 1
688 10 out of 10 stars 1
789 10/10 1
931 I rate this movie 9/10 1

Table 13.3  Reviews with time, including review number, text, and sentiment labels

Review Review text
Positive_
flag

34 Actually, the graphics were good at the time 1
75 I wouldn’t say they’re worth 2 h of your time, though 0
85 Plus, it was well-paced and suited its relatively short run time 1
99 Ursula Burton’s portrayal of the nun is both touching and funny at the same

time without making fun of nuns or the church
1

138 IMDB ratings only go as low as 1 for awful; it’s time to get some negative
numbers in there for cases such as these

0

143 It is an hour and half waste of time, following a bunch of very pretty high
schoolers whine and cry about life

0

217 Ironically I mostly find his films a total waste of time to watch 0
235 Do not waste your time 0
293 An AMAZING finale to possibly the BEST trilogy of all time 1
332 For those that haven’t seen it, don’t waste your time 0
338 By the time the pyromaniac waylaid the assistant, I was bored and didn’t

care what happened next, and so I switched off
0

416 As a European, the movie is a nice throwback to my time as a student in
the 1980s and the experiences I had living abroad and interacting with
other nationalities, although the circumstances were slightly different

1

432 I am not a filmmaker nor am I a director, but I would hide my head in the
sand if I’d spent whatever amount of money and time on this movie

0

433 In short, this was a monumental waste of time and energy, and I would not
recommend anyone to EVER see this film

0

450 I won’t say anymore—I don’t like spoilers, so I don’t want to be one, but I
believe this film is worth your time

1

508 By the time the film ended, I not only disliked it, but I despised it 0

(continued)

212

Table 13.3  (continued)

Review Review text
Positive_
flag

589 Even when the women finally show up, there is no sign of improvement;
the most expected things happen, and by the time the film is over, you
might be far asleep

0

593 Being a 1990s child, I truly enjoyed this show, and I can proudly say that I
enjoyed it big time and even more than the classical WB cartoons

1

611 Don’t waste your time watching this rubbish non-researched film 0
665 Even allowing for poor production values for the time (1971) and the

format (some kind of miniseries), this is baaaaaad
0

700 Very bad performance played by Angela Bennett, a computer expert who is
at home all the time

0

706 One of the worst shows of all time 0
710 Every time he opened his mouth, you expect to hear, “you see kids…”

Pulling the plug was a mercy killing for this horrible show
0

719 Top line: don’t waste your time and money on this one; it’s as bad as it
comes

0

725 Seriously, it’s not worth wasting your or your kid’s time on 0
755 It is rare when a filmmaker takes the time to tell a worthy moral tale with

care and love that doesn’t fall into the trap of being overly syrupy or
overindulgent

1

782 The foreigner is not worth 1 s of your time 0
823 It’s a long time since I was so entertained by a movie 1
826 It’s pretty surprising that this wonderful film was made in 1949, as

Hollywood generally had its collective heads in the sand concerning black
and white issues at that time

1

828 Plus, with the movie’s rather modest budget and fast running time, it does
an amazing job

1

838 Don’t waste your time 0
857 It’s dumb and pointless and a complete waste of time 0
897 I felt asleep the first time I watched it, so I can recommend it for

insomniacs
0

901 Otherwise, don’t even waste your time on this 0
928 It was a long time that I didn’t see a so charismatic actor on screen 1
930 The movie is not completely perfect, but “Titta Di Girolamo” will stay with

you for a long time after the vision of the movie
1

970 At a time when it seems that film animation has been dominated by
Disney/Pixar’s CGI masterpieces, it is both refreshing and comforting to
know that Miyazaki is still relying on traditional hand-drawn animation to
tell his charming and enchanting stories

1

975 If you haven’t choked in your own vomit by the end (by all the cheap
drama and worthless dialogue), you’ve must have bored yourself to death
with this waste of time

0

the change in correctly classified reviews by classifying new terms that are not
classified by the bing lexicon. Custom functions in R can be created by using “func-
tion.” The parameters that need to be specified are listed in parentheses. For our
custom function, called check_word, we need to provide a word and a sentiment as
inputs to the function.

13  Sentiment Analysis of Movie Reviews Using R

213

check_word <- function(input_word, sentiment_input){

if(!(sentiment_input %in% c("negative", "positive")))

stop("sentiment must be 'positive' or 'negative'")

bing_edit_check <- rbind(bing_edit, c(input_word, sentiment_input))

check_tidy_df <- tidy_train_imdb %>% left_join(bing_edit_check,

by = "word")

check_tidy_df$new_score <- ifelse(is.na(check_tidy_df$sentiment), 0,

ifelse(check_tidy_df$sentiment == "positive",

1, -1))

check_agg_score <- check_tidy_df %>% select(review_id, positive_flag,

bing_score, new_score) %>%

group_by(review_id, positive_flag) %>%

summarise(bing_score = sum(bing_score),

new_score = sum(new_score)) %>%

mutate(bing_judge = ifelse(bing_score > 0, "positive",

ifelse(bing_score < 0, "negative", "neutral"),

edit_judge = ifelse(new_score > 0, "positive",

ifelse(new_score < 0, "negative", "neutral")))

new_score <- c(positive = nrow(check_agg_score[check_agg_score$edit_judge

== "positive" & check_agg_score$positive_flag == 1,]),

negative = nrow(check_agg_score[check_agg_score$edit_judge

== "negative" & check_agg_score$positive_flag == 0,]))

new_score <- c(new_score, total_correct = sum(new_score))

bing_score <- c(positive = nrow(check_agg_score[check_agg_score$bing_judge

== "positive" & check_agg_score$positive_flag == 1,]),

negative = nrow(check_agg_score[check_agg_score$bing_judge

== "negative" & check_agg_score$positive_flag == 0,]))

bing_score <- c(bing_score, total_correct = sum(bing_score))

rbind(new_scores = new_score, bing_scores = bing_score)

}

By using the check_word function, we can compare the sentiment classification
performance without 10 classified by sentiment with the reviews including 10 as a
positive sentiment term.

check_word("10","positive")

positive negative total_correct

new_scores 283 221 504

bing_scores 271 222 493

Based on the output of the function, by adding 10 as a positive sentiment term,
we increase the total correctly classified reviews by 11. Next, we try our function
with the term time as a negative word.

13.7 � Custom Dictionary

214

check_word("time", "negative")

positive negative total_correct

new_scores 264 224 488

bing_scores 271 222 493

Based on the output of our function, this change reduces our accuracy. This result
makes sense, based on the reviews with the word. It is used in many ways, and the
negative reviews typically contain the word waste nearby. For this reason, we do not
add time to our custom dictionary. Finally, we consider adding the term films as a
positive sentiment term.

check_word("films", "positive")

positive negative total_correct

new_scores 273 219 492

bing_scores 271 222 493

Based on the results of the function, the word films results in a relatively unchanged
score, so we will not add it to our custom dictionary. Now, we need to look for addi-
tional words to test. Having reviewed the most frequent 10 words, let’s look at words
11 through 30. We must be careful, because words in this group have lower frequen-
cies. Therefore, we are more likely to see a high or low positive percent just by
chance. For this reason, large datasets are preferred in sentiment analysis.

zero_polar[11:30, c("word", "review_frequency", "percent_positive_review")]

word review_frequency percent_positive_review

11 story 17 0.4706

12 real 16 0.5625

13 cast 14 0.7857

14 actors 14 0.6429

15 watch 14 0.5000

16 script 14 0.2143

17 scenes 13 0.4615

18 writing 11 0.3636

19 art 10 0.9000

20 people 10 0.8000

21 screen 10 0.7000

22 life 10 0.6000

23 totally 10 0.3000

24 played 9 1.0000

25 performance 9 0.8889

26 music 9 0.7778

27 short 9 0.7778

28 job 8 1.0000

29 play 8 1.0000

30 actor 8 0.8750

13  Sentiment Analysis of Movie Reviews Using R

215

None of these words seem to be indicative of a positive or negative sentiment, but
we can try testing them using our check_words function. First, we isolate the
reviews and their sentiments. Then, we use lapply to apply the function to the terms.

words_to_test <- zero_polar[11:30, c("word", "percent_positive_review")]

words_to_test$polarity <- ifelse(words_to_test$percent_positive_review < .5,

"negative", "positive")

words_test <- lapply(1:nrow(words_to_test), function(x)

check_word(words_to_test[x, "word"],

words_to_test[x,"polarity"]))

names(words_test) <- words_to_test$word

words_test

$story

positive negative total_correct

new_scores 267 222 489

bing_scores 271 222 493

$real

positive negative total_correct

new_scores 274 218 492

bing_scores 271 222 493

$cast

positive negative total_correct

new_scores 271 221 492

bing_scores 271 222 493

$actors

positive negative total_correct

new_scores 273 221 494

bing_scores 271 222 493

$watch

positive negative total_correct

new_scores 272 221 493

bing_scores 271 222 493

$script

positive negative total_correct

new_scores 269 225 494

bing_scores 271 222 493

$scenes

positive negative total_correct

new_scores 269 222 491

bing_scores 271 222 493

13.7 � Custom Dictionary

216

$writing

positive negative total_correct

new_scores 269 222 491

bing_scores 271 222 493

$art

positive negative total_correct

new_scores 272 222 494

bing_scores 271 222 493

$people

positive negative total_correct

new_scores 274 222 496

bing_scores 271 222 493

$screen

positive negative total_correct

new_scores 274 221 495

bing_scores 271 222 493

$life

positive negative total_correct

new_scores 273 220 493

bing_scores 271 222 493

$totally

positive negative total_correct

new_scores 271 223 494

bing_scores 271 222 493

$played

positive negative total_correct

new_scores 272 222 494

bing_scores 271 222 493

$performance

positive negative total_correct

new_scores 272 221 493

bing_scores 271 222 493

$music

positive negative total_correct

new_scores 272 222 494

bing_scores 271 222 493

13  Sentiment Analysis of Movie Reviews Using R

217

$short

positive negative total_correct

new_scores 271 222 493

bing_scores 271 222 493

$job

positive negative total_correct

new_scores 272 222 494

bing_scores 271 222 493

$play

positive negative total_correct

new_scores 274 222 496

bing_scores 271 222 493

$actor

positive negative total_correct

new_scores 271 221 492

bing_scores 271 222 493

Looking through the results, we notice that including these terms in our custom
dictionary generally impacts our correctly classified score by only 1 or 2. The maxi-
mum increase occurs when we include the terms people and play, but they increase
the correctly classified reviews only by 3. We could continue looking for words to
improve our dictionary in this manner. In the interests of brevity, we will continue
with our findings about classifying 10 as a positive sentiment term.

13.8  �Out-of-Sample Comparison

We will use the test set to test the bing lexicon against our edited bing lexicon. We
need to repeat the same steps as before on the test set with both dictionaries.

13.8 � Out-of-Sample Comparison

218

tidy_test_imdb <- tidy_test %>%

left_join(bing_edit, by = "word") %>%

left_join(get_sentiments("bing"), by = "word") %>%

mutate(edit_score = ifelse(is.na(sentiment_edit), 0,

ifelse(sentiment_edit == "positive", 1, -1)),

standard_score = ifelse(is.na(sentiment), 0,

ifelse(sentiment == "positive", 1, -1))) %>%

group_by(positive_flag, review_id) %>%

summarise(edit_score = sum(edit_score),

standard_score = sum(standard_score)) %>%

mutate(edit_value = ifelse(edit_score > 0, "positive",

ifelse(edit_score < 0, "negative", "netural")),

standard_value = ifelse(standard_score > 0, "positive",

ifelse(standard_score < 0, "negative", "neutral")))

First, we look at the accuracy of the sentiment analysis based on the original bing
lexicon.

table(tidy_test_imdb$positive_flag, tidy_test_imdb$standard_value)

negative neutral positive

0 82 34 21

1 9 28 76

On the test set, the regular bing lexicon correctly predicted 82 of the 137 negative
reviews (59.85%) and 76 of the 113 positive reviews (67.25%), for an overall result
of 158 of the 250 correct (63.2%). Next, we look at the accuracy of the sentiment
analysis based on the custom lexicon.

table(tidy_test_imdb$positive_flag, tidy_test_imdb$edit_value)

negative netural positive

0 82 31 24

1 9 27 77

The edited lexicon correctly scored 82 of the 137 negative reviews (59.85%), just
as the regular lexicon did. The correctly scored positive reviews increased by 1–77
of the 113 (68.1%). Overall, 159 of the 250 were scored correctly (63.6%). These
results do not indicate any significant change. Let’s check the use of 10 in the
reviews.

13  Sentiment Analysis of Movie Reviews Using R

219

reviews_10 <- tidy_test %>% filter(word == "10") %>% select(review_id)

imdb[imdb$review_id %in% reviews_10$review_id, c("comment", "positive_flag")]

comment

331 The hockey scenes are terrible, defensemen playing like they're 5 years

old, goalies diving at shots that are 10 feet wide of the net, etc.

354 I would give this television series a 10 plus if i could.

459 This gets a 1 out of 10, simply because there's nothing lower.

617 My rating: just 3 out of 10.

positive_flag

331 0

354 1

459 0

617 0

As we can see, there are only four reviews that contain 10 in the test set, which
is one of the disadvantages of using a small dataset. Three of them had a negative
original review but were classified as neutral by the bing lexicon. Based on the out-
of-sample results, our edited dictionary appears to perform similarly to the original
bing lexicon. This outcome is not surprising, because we only made one change. For
improved accuracy, we could consider switching to n-grams and weeding out the
use of 10 in cases such as “out of 10.”

References

Hu, M., & Liu, B. (2004, August). Mining and summarizing customer reviews. In Proceedings of
the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(pp. 168–177). ACM.

Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing a word–emotion association lexicon.
Computational Intelligence, 29(3), 436–465.

Nielsen, F. Å. (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microb-
logs. arXiv preprint arXiv:1103.2903.

R Development Core Team. (2008). R: A language and environment for statistical computing.
Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0, URL http://www.R-
project.org

Key Takeaways
•	 R open-source software, more specifically RStudio IDE, can be used to

perform lexicon-based sentiment analysis using online consumer reviews.
•	 Built-in lexicons can easily be used and manipulated, and custom stop lists

can be created in R.

References

http://www.r-project.org
http://www.r-project.org

220

Further Reading

For more about R software, see R Development Core Team (2008) and visit https://www.r-project.
org/

13  Sentiment Analysis of Movie Reviews Using R

https://www.r-project.org/
https://www.r-project.org/

221© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3_14

Chapter 14
Latent Semantic Analysis (LSA) in Python

Abstract  This chapter presents the application of latent semantic analysis (LSA)
in Python as a complement to Chap. 6, which covers semantic space modeling and
LSA. In this chapter, we will present how to implement text analysis with LSA
through annotated code in Python. In this example, we will run LSA over a dataset
that includes 401 instances of both online and offline review sources from the
Areias do Seixo Eco-Resort (Data available at https://archive.ics.uci.edu/ml/data-
sets/Eco-hotel).

Keywords  Python · Latent semantic analysis · Text analytics · Text mining

14.1  �Introduction to Python and IDLE

Similar to R, which is presented in Chap. 13, Python offers the advantages of open-
source software, such as being free and offering countless—also free—online
resources to develop and improve the code and the analysis itself. Some tools allow
R users to write code for Python and vice versa. For example, Python users can
develop R code by using rpy. Nevertheless, generally speaking, users may need to
choose one language or the other.

These two languages differ in several aspects. R is best suited for statistics and
data exploration. Python is a more generic programming language than R, and it
is more approachable and intuitive than other software development languages.
For those users interested in learning a general language that can do more than
mathematics and statistics, Python is preferable. It is also especially well suited
for data manipulation and repeated, routine tasks. Arguably, Python is easier to
learn than R, which is considered to have a steeper learning curve. A final consid-
eration is the underlying logic of these two languages. Python programming fol-
lows the logic of how computer programmers think. R programming follows a
logic closer to how statisticians and mathematicians think. Therefore, R program-
mers may find Python’s programming somewhat difficult and counterintuitive and
vice versa.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_14&domain=pdf
https://archive.ics.uci.edu/ml/datasets/Eco-hotel
https://archive.ics.uci.edu/ml/datasets/Eco-hotel

222

Another unique characteristic of Python is that it has two versions concurrently
updated—Python 2.X and Python 3.X. We recommend that readers use the Python
3.X version. While some of the resources currently available are based only on
Python 2.X and some libraries do not support Python 3.X, Python has scheduled the
discontinuation of the 2.X versions several times. The last date provided for this
discontinuation is 2020. Therefore, this chapter will use the Python 3.X version.

14.2  �Preliminary Steps

If you do not have Python installed on your computer, you can download the
platform-specific version at: https://www.python.org/downloads/. Since Python is
platform-dependent, we refer you to the beginners guide available at: https://
wiki.python.org/moin/BeginnersGuide/Download.1 While the implementation may
vary depending on the platform, the code will generally be consistent. This chapter
uses Python 3.6 on a Windows machine.

We begin by installing the necessary modules. In our case, we will use several
modules, including csv, nltk, pandas, numpy, sklearn, re, and matplotlib. The csv
module allows Python to read and write tabular data in comma separated values (.
csv) format. The nltk module (nltk stands for Natural Language Toolkit) allows us
to use several text processing and preprocessing functions, such as parsing, tokeni-
zation, stemming, classification, and tagging. The pandas module provides struc-
ture to the data, which simplifies its analysis and manipulation. The Python module
NumPy provides several generic functions for scientific computing. In our analysis,
NumPy is used as a multidimensional container of our review data. Sklearn incorpo-
rates a set of different modules into our analyses for data mining and machine learn-
ing. The module re provides matching functions for 8-bit and Unicode strings.
Matplotlib allows us to generate high-quality plots, charts, and histograms.

In our Windows-based implementation, we use the command line to install the
modules, with our path as the location of the Python scripts folders. We use pip for
the installation.

C:\>cd C:\Python\Python36\Scripts

C:\Python\Python36\Scripts>pip install csv

C:\Python\Python36\Scripts>pip install nltk

C:\Python\Python36\Scripts>pip install pandas

C:\Python\Python36\Scripts>pip install numpy

C:\Python\Python36\Scripts>pip install sklearn

C:\Python\Python36\Scripts>pip install re

C:\Python\Python36\Scripts>pip install matplotlib

1 Additional resources are available for nonprogrammers (https://wiki.python.org/moin/
BeginnersGuide/NonProgrammers) or programmers (https://wiki.python.org/moin/Beginners
Guide/Programmers).

14  Latent Semantic Analysis (LSA) in Python

https://www.python.org/downloads
http://python.org/moin/BeginnersGuide/Download
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
https://wiki.python.org/moin/BeginnersGuide/Programmers
https://wiki.python.org/moin/BeginnersGuide/Programmers

223

In this chapter, we will run our code in the Python integrated development and
learning environment (IDLE), which should be automatically downloaded when
you install Python. This interactive environment serves a similar purpose as RStudio
with R, presented in Chap. 13. We use Python IDLE, because according to its docu-
mentation, it works consistently across computer platforms. Alternatively, .py files
can be run directly in the command window, after using cd to specify the directory
containing the .py file. For example, to run a file called file.py, which is

C:\Python\Python36\Scripts>cd C:\

C:\>python file.py

Once the Python IDLE is open, the default behavior opens the Shell. In the Shell,
we can run individual lines of code. The initial Shell file is depicted in Fig. 14.1.

Fig. 14.1  Python IDLE Shell file

14.2 � Preliminary Steps

224

Upon opening the IDLE Shell, we can either choose to open a .py file or use the
File menu to create a New File. Choosing New File will open another window,
which will be blank. In order to run the new file, we can use the File menu to choose
Run and then Run Module. An example of a .py file and the Shell are depicted in
Fig. 14.2, with the shell in the background and the file in the .py foreground. In
choosing Run Module, the full .py file will run, and any necessary output will dis-
play in the Shell.

14.3  �Getting Started

First, we define the problem or the reason for performing the analysis. In this exam-
ple, we aim to uncover the latent content in our sample of 401 hotel reviews that were
collected between January and August of 2015. A unique characteristic of this data-
set is that it incorporates two different sources of data, offline (e.g., guest books) and
online reviews (e.g., Tripadvisor.com), in one single file. We want to extract insights
from reviews written by former guests of the Areias do Seixo Eco-Resort.

Fig. 14.2  Python IDLE script and .py file

14  Latent Semantic Analysis (LSA) in Python

http://tripadvisor.com

225

To begin in Python, we import the necessary modules or packages. Modules
consist of the top-level package name and associated submodules. To import the
top-level module, we use “import.”

>>> import csv

>>> import nltk

>>> import sklearn

>>> import re

We can import modules and assign nicknames to them to make them easier to
refer to in our code by using “import…as.” For instance, instead of typing “pandas”
to refer to the pandas module, we can assign it the name pd.

>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

We import submodules in a slightly different way. To download subroutines, we
use “from…import.” As shown in the first code line, we can also use “from…import
*” to import all submodules from the top-level module pylab.

>>> from pylab import *

>>> from nltk.corpus import stopwords

>>> from pylab import *

>>> from sklearn.decomposition import TruncatedSVD

>>> from sklearn.feature_extraction.text import TfidfTransformer

>>> from sklearn.feature_extraction.text import CountVectorizer

>>> from sklearn.preprocessing import Normalizer

>>> from sklearn import metrics

>>> from sklearn.cluster import KMeans, MiniBatchKMeans

Now that we have loaded all of the modules that we will use, we need to download
some additional nltk data and files by using nltk.download(). As Fig. 14.3 illus-
trates, an additional window will open when this line is run. Download all additional
files by choosing “all.”

>>> nltk.download()

14.4  �Data and Data Import

Now that we have set up Python for our analysis, we can move on to our data. We
want to import the data that we will be using in our analysis (note that the path to
the location of the file must be specified). The data are contained in a single column
of a .csv file. We use open() to open the “Data.csv” file, which we designate for

14.4 � Data and Data Import

226

read-only use by including the “r” argument. Just as we named our modules, we use
“as” to assign the data the name f. We then use read.csv from the pandas module by
using pd.read_csv () on our data, f, and setting it as “your_list.”

>>> with open(' C:\\Users\\Data.csv','r') as f:

your_list = pd.read_csv(f)

As described, the data contain reviews about a hotel. To begin, we may want to
know more about the data that we imported. First, we can confirm the number of
reviews using “len.” As expected, we have 401 reviews. Then, we can find out more
about the type of Python object we are working with using “type.” As shown, your_
list is a pandas dataframe.

>>> len(your_list)

401

>>> type(your_list)

<class 'pandas.core.frame.DataFrame'>

Fig. 14.3  NLTK downloader

14  Latent Semantic Analysis (LSA) in Python

227

We can preview the first and last five reviews by indexing the your_list dataframe.
Unlike in R, in Python, indexing begins at 0. There are some convenient ways, how-
ever, to refer to the first and last observations in a list or dataframe. For instance, we
can view the first five reviews in your_list using the code that follows. As displayed,
the first five reviews are numbered from 0 to 4.

>>> your_list[:5]

Review

0 Everything from the weather staff food propert...

1 The hotel it is fantastic built by the sea, li...

2 One dream! Cozy and comfortable Hotel! The bes...

3 Hotel concept is hard to grasp. They communica...

4 This is a wonderful hotel for a romantic escap...

We can view the last five reviews in the your_list dataframe using the code that
follows. As displayed, the last five reviews are numbered from 396 to 400.

>>> your_list[-5:]

Review

396 An extraordinary place! Amazing architecture h...

397 What a wonderful place to relax and enjoy the ...

398 Thank you for the best ever. And the best dinn...

399 As you know we have just returned home after 5...

400 SPA is excellent. I worked only with one lady ...

14.5  �Analysis

Now that we are acquainted with the data, we begin our analysis by creating a
function called fix_Text to preprocess the data. Prior to that step, we define stop_
words, which is a set of English stop words. Then, we define the fix_Text func-
tion, which takes text as input. First, the function uses the re module to substitute
a space for any special characters or numbers and saves the result as a string vari-
able, letters_only. Then, we replace uppercase letters with lowercase letters and
rename the result “words.” There are some built-in functions for string manipula-
tion, such as split, which splits the string based on a space. In other words, it sepa-
rates each word. Next, for each of the words in our string called words, we
compare the word to the stop_words and remove any matches that we find. We
save the text that remains as meaningful. The result of our function is brought
back together as processed strings.

14.5 � Analysis

228

>>> stop_words = set(stopwords.words("english"))

>>> def fix_Text(text):

letters_only = re.sub("[^a-zA-Z]"," ", str(text))

words=letters_only.lower().split()

meaningful=[w for w in words if not w in stop_words]

return(" ".join(meaningful))

We can look at the effect of our function on the first review and compare it to the
original review. As we can see, the capital letter “E” was changed to lower case, and
the following stop words were removed from the review: from, the, and, were.

>>> your_list["Review"][0]

'Everything from the weather staff food property fire pits decor spa rooms and beach were top

notch'

>>> fix_Text(your_list["Review"][0])

'everything weather staff food property fire pits decor spa rooms beach top notch'

Next, we can iterate over all 401 reviews in our list of reviews to apply the func-
tion. First, we want to set the number of reviews as a named variable, which we call
num_resp. Then, we create an empty object to store the result of the iteration, called
clean_text. Finally, we iterate over our reviews to apply the function to each review
in the list.

>>> clean_text = []

>>> for i in range(0,num_resp):

clean_text.append(fix_Text(your_list["Review"][i]))

Now, we want to tokenize our reviews and create our document-term matrix.
We use CountVectorizer, which creates the DTM based on raw frequency. We
name our DTM object dtm and remove terms that do not appear more than once in
the corpus.

>>> vectorizer = CountVectorizer(min_df=1)

>>> dtm = vectorizer.fit_transform(clean_text)

We then determine the dimensions of our DTM. Since we already know the num-
ber of documents, we use .shape to find out the number of terms in the DTM.

>>> dtm.shape

(401, 2305)

14  Latent Semantic Analysis (LSA) in Python

229

As shown, the DTM contains 401 reviews and 2,306 terms. Next, we can take a
closer look at our DTM, which is labeled using the review number.

>>> pd.DataFrame(dtm.toarray(),index=range(0,401),

columns=vectorizer.get_feature_names()).head(10)

able absolute absolutely absorb accept acceptable accommodating \

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0

accommodation account achieved ... years yes yesterday yet \

0 0 0 0 ... 0 0 0 0

1 0 0 0 ... 0 0 0 0

2 0 0 0 ... 0 0 0 0

3 0 0 0 ... 0 0 0 0

4 0 0 0 ... 0 0 0 0

5 0 0 0 ... 0 0 0 0

6 0 0 0 ... 0 0 0 0

7 0 0 0 ... 0 0 0 0

8 0 0 0 ... 0 0 0 0

9 0 0 0 ... 0 0 0 0

yiulyia yoga young yuliya zen zero

0 0 0 0 0 0 0

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

7 0 0 0 0 0 0

8 0 0 0 0 0 0

9 0 0 0 0 0 0

[10 rows x 2306 columns]

14.5 � Analysis

230

As we can see, we are viewing the DTM for the first 10 reviews. We can view the
first 10 terms using the following code.

>>> terms=vectorizer.get_feature_names()

>>> terms[0:10]

['able', 'absolute', 'absolutely', 'absorb', 'accept', 'acceptable', 'accommodating', 'accommodation',

'account', 'achieved']

Next, we can create a new DTM based on dtm, which uses tfidf weighting. We
use TfidfTransformer to apply tfidf weighting to our DTM and save this weighted
DTM as tfidf_dtm.

>>> tfidf_transformer = TfidfTransformer()

>>> tfidf_dtm = tfidf_transformer.fit_transform(dtm)

Now that we have created our weighted and unweighted DTMs, we use SVD for
our LSA. In this case, we use TruncatedSVD. As arguments, we specify the number
of latent factors and an algorithm. Since we have a large, sparse matrix, we will use
the “randomized” algorithm. For our preliminary analysis, we use 25 as the number
of factors. Later, we will create a scree plot to help us decide how many factors to
ultimately use. To begin, we apply the LSA to our DTM and name the object created
dtm_lsa. Finally, we normalize the resulting space.

>>> lsa = TruncatedSVD(25, algorithm='randomized')

>>> dtm_lsa = lsa.fit_transform(dtm)

>>> dtm_lsa = Normalizer(copy=False).fit_transform(dtm_lsa)

Next, we can view the LSA space for the first 10 latent factors, labeled 0 through
9. This view, which appears below, shows us the factor values for the first and last
10 terms in the LSA space.

14  Latent Semantic Analysis (LSA) in Python

231

>>> pd.DataFrame(lsa.components_, columns=vectorizer.get_feature_names()).head(10)

able absolute absolutely absorb accept acceptable \

0 0.013749 0.002820 0.039118 0.002550 0.001806 0.002556

1 0.007153 -0.002486 -0.012687 -0.003050 -0.003674 0.006149

2 0.001611 0.000862 0.014876 -0.001261 0.000052 0.001774

3 0.004097 -0.004221 0.015376 -0.003943 -0.001595 0.006665

4 -0.007110 -0.004201 -0.031583 0.002855 0.001609 -0.004062

5 -0.016659 -0.002920 -0.055943 -0.004642 0.000598 0.006568

6 -0.002070 0.003457 -0.055558 -0.002502 -0.001278 -0.017966

7 0.019146 0.004027 -0.020199 0.002751 0.006456 0.007479

8 -0.013958 0.003112 0.005797 -0.000551 0.000363 0.001963

9 -0.014358 0.000274 0.002453 0.011895 -0.000980 0.014423

accommodating accommodation account achieved ... years \

0 0.004882 0.005554 0.011717 0.004470 ... 0.023585

1 -0.011925 0.013095 0.007296 0.006829 ... 0.073164

2 -0.002719 0.044802 0.005726 0.002927 ... 0.283041

3 -0.007650 -0.008353 0.014277 0.013430 ... -0.105108

4 0.009967 0.021278 -0.019020 -0.000911 ... 0.124869

5 0.007969 0.017900 -0.011214 -0.015462 ... 0.025219

6 0.002784 -0.001202 -0.026749 -0.018708 ... -0.006957

7 0.018577 -0.000166 -0.007076 0.015968 ... -0.031582

8 -0.003164 -0.008399 -0.010897 0.000824 ... -0.029122

9 0.014313 -0.024550 -0.008660 0.000347 ... 0.006237

yes yesterday yet yiulyia yoga young yuliya \

0 0.007102 0.021952 0.019327 0.001578 0.017614 0.007249 0.004225

1 0.004620 0.074413 0.012693 0.002121 -0.003008 0.023884 -0.003464

2 0.002399 -0.050652 0.011927 0.000249 0.005494 0.089920 -0.005100

3 0.004801 -0.030493 0.021962 -0.000515 0.012503 -0.033139 -0.008973

4 -0.006877 0.040574 -0.045927 -0.002945 -0.018626 0.037674 0.008346

5 -0.002515 0.016911 0.054559 0.002198 -0.018786 0.009470 -0.002025

6 -0.020244 -0.031310 0.051893 0.002451 0.091475 -0.001698 -0.002950

7 0.007692 -0.017203 -0.009812 -0.000773 -0.007374 -0.014990 0.005530

8 0.000804 0.011918 0.024293 0.001056 -0.017515 -0.013066 -0.004551

9 0.018806 -0.017370 0.052262 -0.005253 0.012650 -0.002037 -0.005203

zen zero

0 0.001827 0.002979

1 -0.000200 0.004868

2 0.006600 0.001954

3 -0.003199 0.002298

4 0.005106 -0.000144

5 0.002329 -0.009377

6 -0.003140 0.000685

7 0.003255 0.007237

8 -0.008760 -0.001311

9 0.002598 0.014487

[10 rows x 2306 columns]

14.5 � Analysis

232

Next, we can view the first 10 reviews and the 25 factors.

>>> pd.DataFrame(dtm_lsa, index=range(0,401)).head(10)

0 1 2 3 4 5 6 \

0 0.510987 -0.014657 -0.032065 0.111138 -0.110953 -0.043068 -0.109962

1 0.616895 -0.202628 -0.002306 -0.056770 -0.179124 -0.157713 -0.152674

2 0.583230 0.237838 0.160601 0.015477 -0.057968 -0.170911 0.120507

3 0.548577 0.161484 0.140848 0.178186 -0.232191 -0.115990 -0.137619

4 0.627850 -0.028411 0.168889 0.083308 -0.233225 -0.181913 -0.022517

5 0.386635 -0.233259 0.090502 -0.024438 -0.085955 -0.052243 -0.030432

6 0.565024 -0.049642 0.008636 -0.146977 -0.018576 -0.236534 0.172666

7 0.457475 -0.471364 0.011931 -0.228610 0.027218 -0.013820 -0.062061

8 0.605329 -0.062158 0.035770 -0.286809 -0.089867 -0.118332 -0.097990

9 0.352444 -0.378203 -0.028062 -0.160444 0.067359 -0.078973 -0.208093

7 8 9 ... 15 16 17 \

0 -0.156421 -0.350032 -0.130046 ... 0.028201 -0.222759 0.254286

1 -0.035866 0.153570 0.125864 ... -0.035328 -0.256524 -0.000390

2 -0.028251 -0.109417 0.082392 ... 0.317669 -0.028075 0.137788

3 0.253082 0.063792 0.003237 ... -0.180549 0.012050 0.058678

4 -0.003614 -0.366153 0.044473 ... 0.138258 -0.115951 0.250343

5 -0.523088 0.075690 -0.275989 ... 0.395706 0.034237 -0.257962

6 -0.365759 0.145832 -0.042977 ... 0.106022 0.136114 -0.055560

7 -0.487943 0.081316 -0.174115 ... 0.156276 -0.062958 -0.274597

8 -0.256832 0.216131 0.099532 ... 0.021504 -0.031020 0.050775

9 -0.455523 0.357415 -0.083569 ... 0.140965 0.022662 -0.357771

18 19 20 21 22 23 24

0 -0.350605 0.110179 -0.261564 -0.223285 0.032448 0.202093 0.202115

1 -0.119009 -0.130681 0.390618 0.094993 0.035315 -0.002806 0.134004

2 0.418444 -0.006926 0.259844 -0.020242 -0.044755 -0.114808 0.205581

3 0.075591 0.061278 0.069554 0.105619 -0.143809 -0.144725 -0.522724

4 0.089980 0.081567 -0.043008 0.075917 0.087638 -0.214700 0.111421

5 -0.156288 0.002638 0.119189 -0.034989 -0.063124 0.066788 -0.081429

6 0.087619 0.094267 0.181079 -0.188803 -0.010383 -0.130504 0.479287

7 0.038932 -0.023761 -0.174586 0.093763 0.039419 -0.141020 -0.054554

8 0.149981 0.058947 -0.063786 -0.198406 -0.079982 0.009973 0.433295

9 0.008779 0.031022 0.215526 0.051593 0.040296 -0.097362 -0.195113

[10 rows x 25 columns]

Next, we can calculate document similarity and view the first and last 10
documents.

14  Latent Semantic Analysis (LSA) in Python

233

>>> doc_sim=np.asarray(np.asmatrix(dtm_lsa)*np.asmatrix(dtm_lsa).T)

>>> pd.DataFrame(doc_sim, index=range(0,401), columns=range(0,401)).head(10)

0 1 2 3 4 5 6 \

0 1.000000 0.321554 0.164317 0.097386 0.488586 0.217846 0.301747

1 0.321554 1.000000 0.480013 0.367089 0.448377 0.246754 0.488934

2 0.164317 0.480013 1.000000 0.285392 0.651149 0.143899 0.574373

3 0.097386 0.367089 0.285392 1.000000 0.382873 0.072660 -0.012807

4 0.488586 0.448377 0.651149 0.382873 1.000000 0.247993 0.333991

5 0.217846 0.246754 0.143899 0.072660 0.247993 1.000000 0.468969

6 0.301747 0.488934 0.574373 -0.012807 0.333991 0.468969 1.000000

7 0.185623 0.325449 0.092371 0.058211 0.309323 0.785270 0.457617

8 0.435776 0.504434 0.438371 0.116739 0.309950 0.353285 0.830504

9 -0.029467 0.521930 0.115535 0.152697 0.015523 0.663121 0.433980

7 8 9 ... 391 392 393 \

0 0.185623 0.435776 -0.029467 ... 0.225699 0.156402 0.278194

1 0.325449 0.504434 0.521930 ... 0.439478 0.476610 0.289342

2 0.092371 0.438371 0.115535 ... 0.248294 -0.037384 0.133103

3 0.058211 0.116739 0.152697 ... -0.003957 0.340499 0.001273

4 0.309323 0.309950 0.015523 ... 0.430351 0.226895 0.404533

5 0.785270 0.353285 0.663121 ... 0.163344 0.305761 0.179608

6 0.457617 0.830504 0.433980 ... 0.346683 0.042575 0.227739

7 1.000000 0.470497 0.767869 ... 0.627326 0.447842 0.543420

8 0.470497 1.000000 0.384236 ... 0.396954 0.124044 0.269111

9 0.767869 0.384236 1.000000 ... 0.452972 0.410034 0.337642

394 395 396 397 398 399 400

0 0.157753 0.273576 0.604338 0.164714 0.415022 0.021273 0.164803

1 0.000523 0.006337 0.395841 0.373592 0.438532 0.232593 0.605098

2 0.012404 0.126345 0.105652 0.194226 0.217237 0.139543 0.345082

3 0.038839 0.052821 0.042930 0.066478 -0.110113 0.266072 0.248046

4 0.107073 0.105265 0.345977 0.307985 0.158374 0.271263 0.179939

5 0.108594 0.204301 0.397551 0.170228 0.359187 0.199241 0.293886

6 0.025676 0.125338 0.504283 0.391694 0.582738 0.152393 0.287706

7 0.174081 0.307924 0.586561 0.651703 0.463295 0.423682 0.329064

8 0.054052 0.136632 0.683219 0.585448 0.468530 0.214374 0.236304

9 0.054970 0.221971 0.291378 0.509513 0.437995 0.212444 0.479875

[10 rows x 401 columns]

Now, we can visualize our latent factors. We will create a scatterplot of the first
and second latent factors in two-dimensional space using plt.scatter, after defining
the x variable, xs, as the first factor and the y variable, ys, as the second factor. We
label our x-axis using xlabel, our y-axis using ylabel, and our plot using title.

14.5 � Analysis

234

>>> xs = [w[0] for w in dtm_lsa]

>>> ys = [w[1] for w in dtm_lsa]

>>> plt.scatter(xs,ys)

<matplotlib.collections.PathCollection object at 0x000001F182CB77F0>

>>> xlabel('Latent Factor 1')

Text(0.5,0,'Latent Factor 1')

>>> ylabel('Latent Factor 2')

Text(0,0.5,'Latent Factor 2')

>>> title('Plot of First 2 Latent Factors')

Text(0.5,1,'Plot of First 2 Latent Factors')

>>> show()

The resulting scatterplot is displayed in Fig. 14.4.
Next, we will use the percentage of variance explained by retaining k factors to

determine the number of latent factors to include in our LSA. Again, we use
TruncatedSVD, although this time we will store the explained_variance_ratio_
attribute from the SVD as VarianceExplained. We will then plot this outcome as
a scree plot, where we will look for an elbow point to choose the number of
factors, k.

Fig. 14.4  First two latent factors in 25-factor LSA solution

14  Latent Semantic Analysis (LSA) in Python

235

>>> svd = TruncatedSVD(500, algorithm='randomized')

>>> svd.fit(dtm)

TruncatedSVD(algorithm='randomized', n_components=500, n_iter=5,

random_state=None, tol=0.0)

>>> VarianceExplained=svd.explained_variance_ratio_

>>> plt.plot(VarianceExplained)

[<matplotlib.lines.Line2D object at 0x000002B23C898C18>]

>>> xlabel('k')

Text(0.5,0,'k')

>>> ylabel('Percent of Variance Explained')

Text(0,0.5,'Percent of Variance Explained')

>>> title('Scree Plot for up to 500 Latent Factors')

Text(0.5,1,'Scree Plot for up to 500 Latent Factors')

>>> show()

The resulting figure is shown in Fig. 14.5.
We can repeat the analysis using our tfidf-weighted DTM.

>>> lsa_tfidf = TruncatedSVD(25, algorithm='randomized')

>>> tfidf_lsa = lsa_tfidf.fit_transform(tfidf_dtm)

>>> tfidf_lsa = Normalizer(copy=False).fit_transform(tfidf_lsa)

Again, we can view the first 10 dimensions and the first and last 10 terms.

Fig. 14.5  Variance explained for increasing k values

14.5 � Analysis

236

>>> pd.DataFrame(lsa_tfidf.components_, columns=vectorizer.get_feature_names()).head(10)

able absolute absolutely absorb accept acceptable \

0 0.004532 0.003806 0.036714 0.001540 0.001892 0.000402

1 -0.000109 -0.000308 -0.019911 0.000587 0.000552 -0.000153

2 -0.011416 -0.011827 -0.012920 -0.002650 -0.002084 -0.001574

3 0.001706 -0.000245 0.002078 -0.001002 0.000167 0.000174

4 -0.006299 0.000210 -0.000423 -0.000069 -0.000995 -0.002080

5 0.006827 0.008616 0.005573 -0.001694 0.000160 -0.000086

6 0.007050 -0.003087 -0.055006 -0.000368 0.003015 0.000680

7 -0.003064 -0.016570 0.039658 -0.001583 -0.003136 0.000372

8 -0.001543 0.004540 -0.048210 -0.003343 -0.001629 0.000112

9 0.000628 0.013653 -0.043152 0.002352 0.002926 -0.000536

accommodating accommodation account achieved ... years \

0 0.003376 0.000838 0.003654 0.000680 ... 0.009959

1 0.000370 -0.000075 -0.002707 -0.000289 ... 0.000703

2 -0.006854 -0.002223 -0.008213 -0.002345 ... -0.020144

3 -0.004910 0.000649 -0.000332 0.000040 ... 0.017103

4 0.002401 -0.001766 -0.008210 -0.002383 ... 0.010496

5 -0.001376 0.001034 -0.003302 -0.000389 ... 0.024578

6 0.000418 0.001035 0.003157 0.001655 ... 0.008065

7 -0.004491 -0.000652 0.001609 0.000216 ... -0.002677

8 -0.003113 -0.000225 0.004495 -0.001456 ... -0.023012

9 -0.001744 -0.002022 -0.003243 -0.001464 ... -0.032590

yes yesterday yet yiulyia yoga young yuliya \

0 0.004061 0.005235 0.006019 0.001206 0.006747 0.007598 0.006310

1 -0.003922 -0.001345 -0.002894 -0.000754 0.000340 -0.005846 0.003899

2 -0.005922 -0.011012 -0.015730 -0.003295 -0.013280 -0.018710 -0.006131

3 0.003456 0.000727 -0.000160 0.000094 -0.002899 -0.001226 0.002607

4 -0.008747 -0.006797 -0.005336 -0.004458 -0.005088 -0.003650 0.003451

5 -0.000734 0.002281 -0.002739 -0.002551 0.002974 -0.002398 -0.003628

6 0.001322 0.009911 -0.006631 0.002644 0.001731 -0.016292 0.016666

7 0.008066 -0.001533 -0.012167 0.000104 -0.008068 0.003175 -0.010457

8 -0.007986 -0.008586 0.006275 -0.001241 0.003885 0.015251 -0.031549

9 0.002955 0.000858 0.011624 -0.002493 0.002930 0.019208 -0.001731

zen zero

0 0.008897 0.000714

1 0.014957 -0.000092

2 -0.002741 -0.002830

3 -0.028967 0.000324

4 0.030925 -0.002232

5 0.014698 0.002213

6 0.033013 0.002010

7 0.013009 -0.000939

8 0.022938 -0.001997

9 0.008754 -0.002966

[10 rows x 2305 columns]

14  Latent Semantic Analysis (LSA) in Python

237

We can again visualize our latent factors, this time based on the SVD using tfidf
weighting. We create a scatterplot of the first and second latent factors in two-
dimensional space using plt.scatter, after defining the x variable, xls, as the first
factor and the y variable, yls, as the second factor. We label our x-axis using xla-
bel, our y-axis using ylabel, and our plot using title. The resulting plot is displayed
in Fig. 14.6.

>>> x1s = [q[0] for q in tfidf_lsa]

>>> y1s = [q[1] for q in tfidf_lsa]

>>> plt.scatter(x1s,y1s)

<matplotlib.collections.PathCollection object at 0x0000029580E82A58>

>>> xlabel('Latent Factor 1')

Text(0.5,0,'Latent Factor 1')

>>> ylabel('Latent Factor 2')

Text(0,0.5,'Latent Factor 2')

>>> title('Plot of First 2 Latent Factors')

Text(0.5,1,'Plot of First 2 Latent Factors')

>>> show()

Again, we can evaluate how many dimensions to retain based on the percentage
of variance explained. This time, we use the tfidf-weighted DTM. We will consider
up to 25 dimensions and will view the singular vectors using print.

Fig. 14.6  First two latent factors in 25-factor LSA solution with tfidf weighting

14.5 � Analysis

238

>>> svd_tfidf = TruncatedSVD(25, algorithm='randomized')

>>> svd_tfidf.fit(tfidf_dtm)

TruncatedSVD(algorithm='randomized', n_components=25, n_iter=5,

random_state=None, tol=0.0)

>>> print(svd_tfidf.singular_values_)

[4.45547573 2.95920593 2.72617011 2.51294425 2.26102596 2.19855807

2.1328984 2.10353138 2.02640514 1.95992672 1.93506684 1.89246879

1.85480958 1.83363862 1.79273831 1.77692858 1.7282294 1.72095243

1.69238561 1.67376682 1.66262164 1.64495241 1.63905492 1.60095109

1.59024176]

Visually, we can see that there is a big difference in the value of the first and second
singular values, but all others exhibit less drastic differences. We can compute the
variance explained by retaining k vectors and then visualize this result to determine
how many singular vectors to keep in our LSA solution. The resulting scree plot
appears in Fig. 14.7.

>>> VarianceExplained_tfidf=svd_tfidf.explained_variance_ratio_

>>> plt.plot(VarianceExplained_tfidf)

[<matplotlib.lines.Line2D object at 0x0000029580E717F0>]

>>> xlabel('k')

Text(0.5,0,'k')

>>> ylabel('Percent of Variance Explained')

Text(0,0.5,'Percent of Variance Explained')

>>> title('Scree Plot for up to 25 Latent Factors')

Text(0.5,1,'Scree Plot for up to 25 Latent Factors')

>>> show()

Based on the plot, there might be an elbow at k = 4. We can also view the values
of the percent of variance explained.

>>> VarianceExplained_tfidf

array([0.0089098 , 0.02280897, 0.01812614, 0.01644031, 0.01329649,

0.0125896 , 0.01179111, 0.01152468, 0.01067322, 0.01000166,

0.00974257, 0.00931803, 0.00896053, 0.0087415 , 0.00837121,

0.00822199, 0.00777894, 0.00770312, 0.00745876, 0.00728289,

0.00719874, 0.00704623, 0.00699573, 0.00667463, 0.00658673])

As we suspected, there is a decrease of approximately 0.003. We can arrive at
this result using the index values 3 and 4 of VarianceExplained_tfidf, which corre-
spond to the singular values 4 and 5, because the index starts at 0.

14  Latent Semantic Analysis (LSA) in Python

239

>>> VarianceExplained_tfidf[3]-VarianceExplained_tfidf[4]

0.003143821356073063

Next, we can consider the top terms in the first dimension. We use the built-in
components from our SVD. Then we sort the terms by weight, using .reverse to sort
the terms in decreasing order by weight.

>>> sing_vecs = lsa_tfidf.components_[0]

>>> index = np.argsort(sing_vecs).tolist()

>>> index.reverse()

>>> terms = [vectorizer.get_feature_names()[weightIndex] for weightIndex in index[0:10]]

>>> weights = [sing_vecs[weightIndex] for weightIndex in index[0:10]]

>>> terms.reverse()

>>> weights.reverse()

Finally, we can plot the ten terms with the largest weight in the first dimension using
plt.barh, which creates a barplot that is oriented horizontally. The resulting figure is
displayed in Fig. 14.8.

Fig. 14.7  Scree plot for up to 25 latent factors

14.5 � Analysis

240

>>> plt.barh(terms, weights, align="center")

<BarContainer object of 10 artists>

>>> xlabel('Weight')

Text(0.5,0,'Weight')

>>> title('Component 1 Terms with Most Weight')

Text(0.5,1,'Component 1 Terms with Most Weight')

>>> show()

>>> plt.barh(terms, weights, align="center")

<BarContainer object of 10 artists>

>>> xlabel('Weight')

Text(0.5,0,'Weight')

>>> title('Terms with Most Weight in Dimension 1')

Text(0.5,1,'Terms with Most Weight in Dimension 1')

>>> show()

As shown, the top terms are overwhelmingly positive terms, such as thank,
thanks, amazing, beautiful, and wonderful. We can automate this process for the
first four dimensions by using a loop.

Fig. 14.8  Top 10 terms by weight for dimension 1

14  Latent Semantic Analysis (LSA) in Python

241

>>> result=[]

>>> for i in range(0,4):

sing_vecs = lsa_tfidf.components_[i]

index = np.argsort(sing_vecs).tolist()

index.reverse()

terms = [vectorizer.get_feature_names()[weightIndex] for weightIndex in index[0:10]]

weights = [sing_vecs[weightIndex] for weightIndex in index[0:10]]

terms.reverse()

weights.reverse()

temp = pd.DataFrame(columns=('terms','weights'))

temp['terms'] = terms

temp['weights'] = weights

result.append(temp)

First, we can view the top 10 terms for the first dimension, indexed by 0, to view
the format of the results of our loop, which store the dataframe results as a list called
“result.”

>>> result[0]

terms weights

0 hotel 0.147558

1 thanks 0.149188

2 beautiful 0.150366

3 stay 0.170099

4 amazing 0.192657

5 come 0.247706

6 back 0.259533

7 place 0.266045

8 wonderful 0.333778

9 thank 0.352487

Next, we can use subplots to show the four plots for the four dimensions on the
same plot. Again, we will use a loop to create the subplots efficiently and then plot
the main figure. The top words for the dimensions are displayed in Fig. 14.9.

>>> fig = plt.figure()

>>> fig.subplots_adjust(hspace=.5, wspace=.5)

>>> for i in range(0, 4):

ax = fig.add_subplot(2, 2, i+1)

ax.barh(result[i]['terms'],result[i]['weights'], align="center")

ax.set_title('Dimension %d' % (i))

<BarContainer object of 10 artists>

Text(0.5,1,'Dimension 0')

<BarContainer object of 10 artists>

Text(0.5,1,'Dimension 1')

<BarContainer object of 10 artists>

Text(0.5,1,'Dimension 2')

<BarContainer object of 10 artists>

Text(0.5,1,'Dimension 3')

>>> plt.show()

14.5 � Analysis

242

In viewing the weights of the terms, we see that several terms factor strongly into
more than one of the dimensions.

Acknowledgment  The authors thank Jorge Fresneda Fernandez, Assistant Professor of Marketing
at the Martin Tuchman School of Management, New Jersey Institute of Technology for contribut-
ing this chapter to the book.

Further Reading

To learn more about the open-source Python software, visit https://wiki.python.org/moin/
BeginnersGuide/Download

Fig. 14.9  Top 10 terms in first four LSA dimensions

Key Takeaways
•	 LSA is implemented in the open-source Python software in a step-by-step

analysis.
•	 The modeling capabilities of Python make it an ideal tool for analyzing

data from sources that generate large corpora, such as social media, online
reviews, and open-ended questions in surveys.

14  Latent Semantic Analysis (LSA) in Python

https://wiki.python.org/moin/BeginnersGuide/Download
https://wiki.python.org/moin/BeginnersGuide/Download

243© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3_15

Chapter 15
Learning-Based Sentiment Analysis Using
RapidMiner

Abstract  This chapter provides a step-by-step sentiment analysis in RapidMiner
using classification analysis. After being introduced to the RapidMiner software, the
reader learns to build a process map-based analysis to classify Amazon reviews by
sentiment. Two machine learning methods, k-nearest neighbor and naïve Bayes, are
demonstrated and assessed for predictive performance.

Keywords  RapidMiner · Sentiment analysis · Categorization · Classification
analysis · k-nearest neighbor · Naïve Bayes · Online consumer reviews

15.1  �Introduction

RapidMiner is a process map-based software program for data science. In this
example, we use RapidMiner Studio, which can be downloaded at: https://
my.rapidminer.com/nexus/account/index.html#downloads.1 We will also use the
Text Processing extension. Information about the extension can be found at: https://
marke tp lace . rap idminer.com/UpdateServer / faces /p roduc t_de ta i l s .
xhtml?productId=rmx_text.

Online consumer reviews (OCR) are an important source of information for
companies to monitor customer satisfaction. The ability to predict the sentiment of
an online review can help inform marketing strategies. One method that can be used
to build a predictive model of consumer sentiment is learning-based sentiment anal-
ysis. In this step-by-step example using RapidMiner, we perform a sentiment analy-
sis using classification methods. We use 1,000 sentiment labeled Amazon reviews,
with sentiment label 0 for negative reviews and sentiment label 1 for positive
reviews.2 Since the sentiment classification of the reviews is known, we use two
classification methods, naïve Bayes and k-nearest neighbor, to build predictive

1 For more information about getting started with RapidMiner Studio, visit https://docs.rapidminer.
com/latest/studio/
2 The data can be downloaded from https://archive.ics.uci.edu/ml/machine-learning-data-
bases/00331/. The description of the dataset can be found at https://archive.ics.uci.edu/ml/datasets/
Sentiment+Labelled+Sentences#

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_15&domain=pdf
https://my.rapidminer.com/nexus/account/index.html#downloads
https://my.rapidminer.com/nexus/account/index.html#downloads
https://marketplace.rapidminer.com/UpdateServer/faces/product_details.xhtml?productId=rmx_text
https://marketplace.rapidminer.com/UpdateServer/faces/product_details.xhtml?productId=rmx_text
https://marketplace.rapidminer.com/UpdateServer/faces/product_details.xhtml?productId=rmx_text
https://docs.rapidminer.com/latest/studio/
https://docs.rapidminer.com/latest/studio/
https://archive.ics.uci.edu/ml/machine-learning-databases/00331/
https://archive.ics.uci.edu/ml/machine-learning-databases/00331/
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences%23
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences%23

244

models. Once the models are built, we can assess their accuracy by viewing a con-
tingency table of the predicted versus actual classifications and comparing the mod-
els based on their predictive performance.

15.2  �Getting Started in RapidMiner

To begin, we download RapidMiner Studio. Once the download is complete and
RapidMiner is installed, we run RapidMiner. At the RapidMiner welcome screen,
we choose “New Process” and “Blank” to create a blank process template, shown in
Fig. 15.1.

There are three views available in RapidMiner Studio: Design, Results and Auto
Model. The Design view will be used to create our analysis process. In the Design
view, we have tabs on the left-hand side named “Repository” and “Operators.” Data
can be imported in the Repository tab, but we will focus on the Operators tab.
Operators are the building blocks of the process map, which can be used to import,
transform, and analyze data (Hofmann and Klinkenberg 2013). The main folders
containing the operators are the following: Data Access, Blending, Cleansing,
Modeling, Scoring, Validation, Utility and Extensions. The Extensions folder con-
tains add-on extensions.

On the right-hand side, the tabs are named “Parameters” and “Help.” As we set
up our process map in the main Process panel in the center of the Design view lay-
out, if there are parameters that can be changed, we will update them in the
Parameters tab. The main Parameters options include the ability to choose a random

Fig. 15.1  RapidMiner welcome screen

15  Learning-Based Sentiment Analysis Using RapidMiner

245

seed. The center Process panel will be where we create the process map for our
analysis. We can drag individual operators to the Process panel to add them to our
analysis. On either end of the Process panel, there are two ports: inp and res. The inp
port on the left stands for input, and the res port on the right stands for results. To
view the results of the process, we must connect the last operator in the process to
the res port. The main screen in RapidMiner is shown in Fig. 15.2.

Since we will not use the Repository and Help panels, we can remove them by
clicking the × next to these panels (Fig. 15.3).

Fig. 15.2  Main RapidMiner view

Fig. 15.3  RapidMiner view with operations, process, and parameters panels

15.2  Getting Started in RapidMiner

246

Fig. 15.4  Marketplace extension drop-down menu

Fig. 15.5  Text Processing extension

For our analysis, we will use the Text Processing extension, which we can add in
RapidMiner Studio. We can add this extension by using the top menu bar. Navigate
to the “Extensions” on the top menu bar and choose “Marketplace” from the drop-
down menu (Fig. 15.4).

A pop-window with a Search tab will appear. Here, we can search for “Text
Processing.” If the Text Processing extension is not already installed, we can click
the “Install” button in the bottom right-hand corner of the pop-up screen to add the
extension. Once the installation is completed, we will be able to view the Text
Processing extension in a subfolder of the extensions folder in the Operators tab
(Fig. 15.5).

15  Learning-Based Sentiment Analysis Using RapidMiner

247

Now that we have familiarized ourselves with RapidMiner and added the neces-
sary extension, we are ready to import and prepare our text documents for
analysis.

15.3  �Text Data Import

We use the Operators panel to select the Process nodes for text preprocessing. The
data for analysis are in the form of a text file, which we can read as a csv file by
changing the delimiter. We highlight and drag the “Read CSV” operator located in
the Data Access file in the Operators tab to our Process panel (Fig. 15.6).

When the Read CSV node is highlighted, we edit the node in the Parameters
panel on the right-hand side of the Studio window. Here, we can use the Input
Configuration Wizard button to import our data more easily. First, choose the file
from the location where the text file is saved. Be sure to change the type of file to
“All Files” because we are importing a text file rather than a csv file. Then, choose
the amazon_cells_labelled.txt file and choose “Next.” (Fig. 15.7).

Then, we specify how the file should be imported. We choose not to skip com-
ments or trim lines. We choose tab as the delimiter, rather than comma, and uncheck
the “Use Quotes” box. Then, click “Next.” (Fig. 15.8).

Next, we use the drop-down next to the first row to indicate that the first row does
not contain columns names. Then, click “Next.” (Fig. 15.9)

Finally, we change the attribute data type and names. In RapidMiner, data vari-
ables are known as attributes. First, we can use the drop-downs to indicate that att1
is text and att2 is nominal, because the 0 s and 1 s stand for negative and positive
sentiments. On this screen, we can also change the column names, which automati-

Fig. 15.6  Read CSV node

15.3  Text Data Import

248

Fig. 15.7  Data import wizard

Fig. 15.8  Tab delimited text

cally are named att1 and att2, for attribute 1 and attribute 2. Here, we can rename
the columns as “text” and “sentiment.” For our analysis, the text is an attribute, but
the sentiment is a label. We use the drop-down to change sentiment to a label.
Finally, we can click “Finish.” (Fig. 15.10)

By connecting the output port on the Read CSV operator to the res port on the
right-hand side of the Process panel, we can set up our process to run (Fig. 15.11).

To run the process, we can then choose the blue arrow or use a keyboard shortcut,
F11. Once the process is run, the Results tab is automatically displayed with a pre-
view of the data (Fig. 15.12).

15  Learning-Based Sentiment Analysis Using RapidMiner

249

Fig. 15.9  Row name designations

Fig. 15.10  Data type designations

15.4  �Text Preparation and Preprocessing

Next, we return to the Design view to process our data. To do this, we navigate to
the Text Processing folder, which is a subfolder of the Extensions folder. In the Text
Processing folder, we highlight and drag the “Process Documents from Data” oper-
ator. By dragging it onto the connection between the Set Role node and the res port,
the connections will automatically be updated. In the Parameters panel, we can
choose the weighting schema used. The default weighting is tfidf. In this example,
we use term frequency, because we will be classifying sentiment polarity using
k-nearest neighbor (kNN) and naïve Bayes (NB) (Fig. 15.13).

15.4  Text Preparation and Preprocessing

250

Fig. 15.11  Read CSV connection to Results port

Fig. 15.12  Read CSV results

Note that there is a yellow triangle on the Process Documents operator, indicat-
ing that we have a warning. We can right-click on this operator and choose “Show
warnings.” Based on the warning, we now have a new screen for the “Process
Documents from Data” operator. On this new screen, we will add our preprocessing
operators that will be completed by the Process Documents from Data operator
(Fig. 15.14)

Next, we drag the Tokenize operator, which is located in the Tokenize subfolder
of the Text Processing folder in the Operator panel, to our Process panel and connect
it to doc (document) ports on either side. In the Parameters panel, we can specify the
tokenization mode, which defaults to non-letters. For our analysis, we will use the
default mode (Fig. 15.15).

15  Learning-Based Sentiment Analysis Using RapidMiner

251

Fig. 15.13  Process Documents from Data operator

Fig. 15.14  Process Documents from Data operator warning

Again, we can click the “Run” button or use the keyboard shortcut to view the
results of the current process map (Fig. 15.16).

As we can see, a document-term matrix (DTM) is created from our review docu-
ments, which includes sentiment as the label attribute. In viewing the terms, we see
that additional preprocessing must be completed, including converting the text to
lower case. Returning to the Design view, we use the “Transform Cases” operator in
the “Processing Text” subfolder called “Transformation” to achieve this goal. We
click and drag Transform Cases onto the line between the Tokenize and final doc
port. From the Parameters panel, we see that the default transformation is to lower
case (Fig. 15.17).

15.4  Text Preparation and Preprocessing

252

Fig. 15.15  Tokenize operator

Fig. 15.16  Tokenize operator results

Next, we can remove stop words. As in other software programs with text pro-
cessing capabilities, RapidMiner has built-in stop word lists, which can be accessed
in the “Filtering” subfolder. Here, we can choose the Filter Stop words (English)
operator and drag it after our Transform Cases node. As shown, this operator does
not have any parameters (Fig. 15.18).

Next, in the Filtering folder, we add the “Filter Tokens (by Length)” operator
after the Filter Stop words (English) node to set a minimum and maximum character

15  Learning-Based Sentiment Analysis Using RapidMiner

253

Fig. 15.17  Transform Cases operator

Fig. 15.18  Filter Stop words (English) operator

length for our tokens. Based on the Parameters panel, the default minimum is 4 and
the default maximum is 25. In this analysis, we do not change the defaults
(Fig. 15.19).

For our final preprocessing step, we use the Porter stemming algorithm to stem
the tokens. The Stemming subfolder contains many stemming options, including
Snowball, Porter, and Lovins. We choose the “Stem (Porter)” operator and drag it
onto the connector after the Filter Stop words (English) node (Fig. 15.20).

Again, we see that this operator does not have any parameters. Having completed
all of the preparation and preprocessing steps, we can view the resulting DTM by
running the process. As shown, there are 1,000 documents and 1,174 terms in our
DTM (Fig. 15.21).

15.4  Text Preparation and Preprocessing

254

Fig. 15.19  Filter Tokens (by Length) operator

Fig. 15.20  Stem (Porter) operator

To explore the term frequency, we can return to the beginning nodes and add an
additional connection from the wor (word) port on the Process Documents from
Data operator to the second res port (Fig. 15.22).

Now, if we run the process, we can expect to have two result tabs: one tab with
the DTM and one tab with a term list and frequency information. Here, we have
columns displaying the term frequency and document frequency values for all of the
terms in our DTM (Fig. 15.23).

15  Learning-Based Sentiment Analysis Using RapidMiner

255

Fig. 15.21  Process Documents operator results

Fig. 15.22  Term and document frequency node connections

By clicking on the column names of the WordList, we can sort by specific col-
umns. First, we sort the Total Occurrences column in descending order of frequency
to view the most frequent terms. As shown, phone is the most frequently used word
in the corpus, with a term frequency of 178, followed by work (112), great (99),
good (78), and product (56) (Fig. 15.24).

Next, we sort the Document Occurrences column in descending order of fre-
quency to view the terms with the highest document frequency. As shown, the terms
with the highest term frequency also have the highest document frequency. Phone
has the highest document frequency (167), followed by work (108), great (97), good
(75), and product (56) (Fig. 15.25).

15.4  Text Preparation and Preprocessing

256

Fig. 15.23  Term and document frequency results

Fig. 15.24  Term occurrences sorted in descending order

15.5  �Text Classification Sentiment Analysis

To begin, we need to add a Split Validation operator to the main process screen to
split the data into training and testing. The Split Validation operator is in the
Validation folder. We drag this operator to a position after the Process Documents
from Data node and connect the exa (example set) port from the Process Documents
node to the tra (training) port on the new Validation node. We can also disconnect
the connection between wor and res. Now, we connect the mod (model) port and
one of the ave (average) ports on the Validation operator to the res ports. We use the
default split criteria, which is to put 70% of the observations in the training data and

15  Learning-Based Sentiment Analysis Using RapidMiner

257

Fig. 15.25  Document Occurrences sorted in descending order

Fig. 15.26  Validation operator

30% in the testing data. In this case, the auto-sampling feature is a stratified sample,
with proportionate class representation in the training and testing data (Fig. 15.26).

Now, if we click the Process drop-down menu, we can go to the Validation node
view to set up the training and testing configuration (Fig. 15.27).

On the left-hand side of the Validation pane, we see the training pane, and the
testing pane is on the right side. First, we need to specify the model for training. We
will use a kNN operator node, which we drag from the “Lazy” subfolder in the
“Modeling” folder. We connect the two tra (training) and mod (model) ports. On the
Parameters panel, we can update the number of nearest neighbors, k. For our exam-
ple, we will choose k = 5 (Fig. 15.28).

15.5  Text Classification Sentiment Analysis

258

Fig. 15.27  Validation node view drop-down

Fig. 15.28  kNN operator

Next, we need to set up the training pane. In this pane, we first add an “Apply
Model” operator from the “Scoring” folder and connect the mod ports and the test
(testing) and unl (unlabeled) ports on the left-hand side of the Apply Model node.
Then, to the right of the Apply Model node, we add a “Performance (Classification)”
operator from the “Predictive” subfolder in the “Validation” folder. We connect the
two lab ports and finally connect the per port on the lef (left) to the ave (average)
port on the right. In the Parameters pane of the Performance node, we can choose
additional performance measures to display in the results of the analysis (Fig. 15.29).

15  Learning-Based Sentiment Analysis Using RapidMiner

259

Fig. 15.29  Apply model and performance operators in validation view

Fig. 15.30  kNN results contingency table

Next, we can run the model to view the confusion matrix of classifications of the
testing data. As shown in the upper right of the results, the accuracy of the kNN
model is 63%. The recall and precision values for the sentiments are also displayed
in the contingency table (Fig. 15.30).

To complete the naïve Bayes analysis, we return to the Validation pane view in
the Design view to replace the kNN node. We can remove the kNN node by right
clicking on it and choosing “Delete.” (Fig. 15.31).

Once the kNN node is removed, we can add the “naïve Bayes” operator, which
is located in the “Bayesian” subfolder of the “Modeling” folder. We drag this opera-
tor to the training pane and replace the connections between the tra and mod nodes
(Fig. 15.32).

Finally, we can run the NB model to view the contingency table based on the
predicted and actual classes for the reviews. As shown in the Results pane, the NB
model outperforms the kNN model, with 73% accuracy. The class-level precision
and recall values are also displayed in the confusion matrix (Fig. 15.33).

15.5  Text Classification Sentiment Analysis

260

Fig. 15.31  Remove kNN operator

Fig. 15.32  Naïve Bayes operator

Fig. 15.33  Naïve Bayes results contingency table

15  Learning-Based Sentiment Analysis Using RapidMiner

261

Reference

Hofmann, M., & Klinkenberg, R. (Eds.). (2013). RapidMiner: Data mining use cases and business
analytics applications. Boca Raton: CRC Press.

Further Reading

For more about RapidMiner, see Hofmann and Klinkenberg (2013).

Key Takeaways
•	 A step-by-step classification analysis using the process map-based

RapidMiner Studio software is demonstrated.
•	 Learning-based classification methods, including naïve Bayes and k-

nearest neighbor, are demonstrated.
•	 The RapidMiner Studio provides an interactive user interface for noncod-

ers to perform text analytics.

Further Reading

263© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3_16

Chapter 16
SAS Visual Text Analytics

Abstract  This chapter presents a step-by-step visualization analysis of over 4,000
health news tweets using SAS Visual Text Analytics (VTA). SAS VTA is a com-
mercial software program that uses a pipeline, or process-based, approach to the
analysis of text. This chapter demonstrates the creation of visualizations including
tree maps, line charts, pie charts, and word clouds using the software.

Keywords  SAS Visual Text Analytics (VTA) · Twitter · Health news · Text data
visualization · Social media

16.1  �Introduction

This chapter covers the application of the SAS tool Visual Text Analytics (VTA).
VTA combines traditional natural language tools and linguistic rules with other
more advanced tools, such as machine learning, to reveal and visualize the most
relevant insights contained in textual data. VTA supports four different types of
models that address a broad range of text analysis needs: categories, contextual
extraction, sentiment, and text topics.1 VTA integrates with open-source lan-
guages such as R or Python and allows users to incorporate SAS Text Miner
capabilities into the analysis. Additionally, VTA projects can be integrated into
SAS Platform, which facilitates collaborations and exchanges among users.

VTA adds some unique features to text analysis. One of the most interesting
features is the ability to combine machine learning and linguistic rules. This fea-
ture allows users to incorporate elements such as slang, irony, and sarcasm with
which regular machine-learning approaches struggle. VTA provides tools to han-
dle context-specific content, such as expressions, names, dates, part-of-speech
tags, currency, and measurements. VTA offers support for the text analysis of 30
different languages including default stop word lists for each of those
languages.

1 https://rpclab02023.sas.com/epmenu/pdf/Telecommunications_Discovery_VTA_Script.pdf

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_16&domain=pdf
https://rpclab02023.sas.com/epmenu/pdf/Telecommunications_Discovery_VTA_Script.pdf

264

VTA is more user-friendly than other approaches and easy to implement. Users
can take advantage of its visual programming flow (called a “pipeline” in VTA),
which includes nodes that can be controlled independently and provides flexibility
to the entire analysis.

On the negative side, SAS VTA is proprietary software, and therefore users must
pay a fee to access the tool after the trial period. Additionally, VTA is constrained to
the options provided by SAS and lacks the flexibility (which also translates into
more complexity) of open-source options, in which the user can “craft” the analysis
to meet the very specific requirements.

In this chapter, we will run VTA over a dataset that includes 4,141 health news
tweets from the Twitter account of the Los Angeles Times to illustrate our analysis—
these tweets were posted from December 2011 to March 2015.2 Prior to the imple-
mentation of the analysis itself, the dataset was manipulated to remove repeated
instances—some tweets were posted twice or even three times and the links pro-
vided to read the full news report when those links were available in the tweet itself.
“Artificially” redundant data—such as the same tweet repeated several times—can
have a significant impact on the results, regardless of the text analysis tool employed.
The analyses will be run using the SAS Visual Text Analytics version 8.2 on the
cloud platform SAS Viya. Due to space constraints, we will address only a few of
the functionalities available through VTA.

16.2  �Getting Started

After logging into the SAS Viya account, users can access the most relevant options
related to the data management, data analysis, and environment management
through the Welcome page, as shown in Fig. 16.1. This option includes data man-
agement, data preparation, data exploration and visualization, model building,
model management, decision management, workflow management, and environ-
ment management.

The data to be analyzed—in our case the 4,141 health news tweets—can be
loaded by selecting the Manage Data icon on the Welcome page. SAS VTA makes
the data importation very easy. The Manage Data option allows users to handle the
already available datasets and to import local data files from the user’s system. After
selecting the option Import, users can either select the location of the data file or
drag the data file themselves into the drop area as shown in Fig. 16.2.

The data are imported from their location on the computer, and a confirmation
message is generated after the dataset is correctly loaded onto the platform.3

2 Data available on https://archive.ics.uci.edu/ml/datasets/Health+News+in+Twitter#
3 Note that the data were imported in a tab-delimited, .txt format and using UTF-8 encoding. This
file is called LATIMESHEALTH4, as shown in the screenshots.

16  SAS Visual Text Analytics

https://archive.ics.uci.edu/ml/datasets/Health+News+in+Twitter

265

The data are now available in the system. To confirm that availability, users should
be able to see a short description of the dataset through the Available option as
shown in Fig. 16.3. The right-hand side of the screen of Details shows that the file
contains 4,141 rows and only one column, CleanText, corresponding to the text of
the 4,141 tweets.

Users can also confirm that the dataset was correctly loaded by inspecting a few
rows through the Sample Data tag within the Available option. The default option is
to inspect 100 rows, although users can change the number of rows they want to
review. Figure 16.4 shows the first 13 rows of the dataset.

Fig. 16.1  SAS Viya Welcome page

Fig. 16.2  Data import option for data management

16.2 � Getting Started

266

16.3  �Analysis

Once the dataset is available, users can start building the analysis pipeline. The
Welcome page allows the creation of the analysis pipeline through the Build
Model tag. (Note that the Welcome page can be accessed anytime through the top
left-hand corner Show Applications Menu tag). We should select the option New
Project in order to begin the analysis. A pop-up screen will allow us to enter three
important elements: the name of the new project, the type of project (such as
Data Mining and Machine Learning, Forecasting, or Text Analytics), the data
source, and the language of the new project. After naming the new project, we
select the Text Analytics option, the Tweets dataset, and the English option for
language. These four steps allow us to create the new project.

Fig. 16.4  First 13 rows in the dataset

Fig. 16.3  The Available option shows the dataset loaded

16  SAS Visual Text Analytics

267

VTA requires assigning a variable to the text role, which we can do through the
Assign Variable Role option. By clicking this option, a new pop-up screen will
show a warning message indicating that no text variable has been selected, as
shown in Fig. 16.5.

For this analysis, we assign the only variable available (named “CleanText”) to
text variable. As explained in the Introduction section, “CleanText” contains the
4,141 unique tweets with the links to the full news reports removed (Note that the
warning message has now disappeared, as shown in Fig. 16.5). At this point, the
process should continue by adapting the pipeline to our analysis requirements. A
pipeline is the way in which SAS VTA represents the sequence of tasks per-
formed in the analysis. Each of these independent tasks constitutes a node in the
pipeline. The tag Pipelines is located on the top left-hand side of the screen, as
Fig. 16.6 illustrates.

Fig. 16.5  Assigning the text variable role

Fig. 16.6  Customizing the pipeline

16.3 � Analysis

268

The default pipeline shows six independent elements: Data, Concepts, Text
Parsing, Sentiment, Topics, and Categories. Pipeline nodes can be somewhat
modified prior to the analysis, and users can add or remove nodes from the default
pipeline. Figure 16.7 shows the default pipeline.

The first node, the Data node, prepares the textual data to be used in the pipeline.
The Concepts node extracts specific information from the textual data, as the ana-
lyst needs it, because it might be relevant within some specific context. The user can
decide whether to implement the analysis with the predefined concepts. For instance,
these predefined concepts can identify names, places, persons, dates, or organiza-
tions. The predefined concepts appear in Fig. 16.8.

The following node, Text Parsing, allows the user to get the text ready for term
analysis. The options that can be adjusted for the analysis include the minimum
number of documents in which a term must appear to be included in the analysis:
the use of either a start list, a list of terms that can be included in the analysis, or a
stop list, a list of terms that cannot be included in the analysis; and the use of a syn-
onym list. (Note that a start list and a stop list cannot be employed simultaneously.)
These options appear in Fig. 16.9. Both Concepts and Text Parsing are the default
natural language processing nodes.

The next node is Sentiment. The sentiment model identifies the attitudes included
in the textual data and can generate a score for feature-level sentiments. By adding
analysis nodes following the Sentiment node, users can develop a document-level
analysis of sentiments.

Following the workflow elements of the pipeline, the next default node corre-
sponds to Topics. The basic function of this node is to assign the documents ana-
lyzed to topics. Users can select to implement automatic topic detection or to specify
the number of topics in advance. If the latter option is selected, the analyst must

Fig. 16.7  Default pipeline available on VTA

16  SAS Visual Text Analytics

269

Fig. 16.9  Options available for text parsing

Fig. 16.8  Predefined concepts available

16.3 � Analysis

270

enter the maximum number of topics. Otherwise, automatic detection must be
selected. The topic selection is implemented through unsupervised machine learn-
ing methods.

Users can also customize both the term density and the document density. The
term density refers to the cutoff value needed to include a term in the topic, relative
to the absolute value of the weight of that term. By weight, VTA means the impor-
tance of one term relative to the entire population of terms in the data. The docu-
ment density is similar but differs in that it assigns the cutoff value for the number
of documents assigned to a topic. Term density and document density can take val-
ues between 0 and 10. The closer to 0, the more densely populated the topics will
be. In contrast, increasing the values closer to 10 will create very selective, less
densely populated topic. Figure 16.10 displays these options. Sentiments and Topics
are the two default nodes for feature extraction.

The last default node is Categories. This node classifies documents by subject.
Users can either allow the software to generate category rules or provide rules for
the category variables. In VTA, categories are a higher-level classification element
than topics. This hierarchy implies that topics can be “promoted” to categories, but
categories cannot be “promoted” to topics. The classification of documents is based
on linguistic rules instead of the weighting of terms, as is the case in topics. (Note
that documents can be categorized as belonging to more than one category.)
Categories is the default node for text modeling.

In this example, (1) we included the predefined concepts in the Concepts node;
(2) we used the predefined English stop list that is applied automatically and
adjusted the minimum number of documents to 10 within the Text Parsing node; (3)
within the Topics node, we selected the “Automatically determine number of top-
ics” option and adjusted the term and document density to 3 to obtain a lower
density in the results than with the default value of 1; and (4) we selected
“Automatically generate categories and rules” under the Categories node. (Note
that due to the nature of the data, health news tweets, which are very short pieces of

Fig. 16.10  Topic node options

16  SAS Visual Text Analytics

271

text, we did not select the option “Specify a sentiment model” within the Sentiment
node.) After the selection of these settings, the analysis is ready to be implemented.
We can start the analysis by either clicking on the “Run pipeline” icon on the top
right-hand side of the pipeline area (shown in Fig. 16.11) or right clicking on one
node and selecting “Run.”

VTA runs the analysis sequentially, following the pipeline flow, and generates a
warning message if it encounters an issue while performing the specified tasks
within each node. (Note that in Fig. 16.12, all of the check marks appear in green.
If VTA encounters a problem, it displays a red mark on the specific node that gener-
ated the problem, and the analysis stops at that specific node. If such a problem
occurs, users should modify the settings of the specific node that created the prob-
lem in order to complete the entire analysis.)

By right clicking on Concepts and selecting “Open,” we can access the pre-
defined concepts referred to previously. As an example, by selecting the “nlpPer-
son” predefined concept under matched documents, we can identify names such as
Angelina Jolie, Ray Romano, and James Gandolfini, because they were mentioned
in the tweets included in the dataset. This example appears in Fig. 16.13.

Similarly, selecting “nlpOrganization” allows us to identify organizations men-
tioned in the tweets such as the Pentagon, the Supreme Court, and the USDA. Clicking
“Close” returns us to the pipeline screen.

By right clicking on Text Parsing and selecting “Open,” we can access the list
of terms that were kept and the list of terms that were dropped from the analysis.
The list of dropped terms results from the application of the default stop word list
over the dataset. Figure 16.14 shows the first six elements of this list on the right.
Words such as “be,” “to,” “the,” “a,” “in,” or “of” are very common, but they do not

Fig. 16.11  Run pipeline icon to implement the analysis

16.3 � Analysis

Fig. 16.13  Predefined concepts nlpPerson

Fig. 16.12  The pipeline tasks completed

273

carry relevant meaning and therefore were dropped from the analysis. By clicking
“Close” we can go back to the pipeline screen.

By right clicking on Topics and selecting “Open,” we can access the automatic
topic selection requested. The results show 12 different topics and 657 terms
included in the analysis, as illustrated in Fig. 16.15.

The majority of the topics can be easily labeled. For instance, the first one
includes terms such as “heart,” “risk,” “disease,” “heart disease,” and “attack.”
Users can easily infer that this topic refers to heart diseases/heart attacks. To delve
even more into the identification of each topic, users can inspect the list of relevant
terms associated with it by clicking the “Matched” option of the term list on the
right. They can also review how these terms were used in the documents by select-
ing the “Matched” option of the document section at the bottom. These options are
illustrated in Fig. 16.16. (Note that the relevancy of each term and each document

Fig. 16.14  List of kept and dropped terms

Fig. 16.15  Results of topic analysis

16.3 � Analysis

274

in the topic also appear in this node). Clicking “Close” returns us to the pipeline
screen to continue checking the results of the analysis.

The Categories node can be opened by right clicking on it and selecting “Open.”
The automatic generation of categories and rules did not create any categories, so
we defined three custom categories based on the inspection of the dataset. These
three custom categories are: (1) “disease/condition,” (2) “research,” and (3) “legal.”
By right clicking on All Categories, “Add new category,” we can add new custom-
ized categories.

After choosing to add a new category, users are prompted to enter the name of
the new category. We named all three categories (“disease/condition,” “research,”
and “legal”) and provided a definition for each one, including the terms that we
wanted to use to define those categories. In the case of disease/condition, the words
selected were “heart,” “risk,” “disease,” “attack,” “Alzheimer,” “brain,” “cancer,”
and “breast.” For research, the words chosen were “new,” “research,” “drug,”
“health,” “study,” and “find.” Finally, for legal, the list of words was “healthcare,”
“law,” “supreme”, and “court.”

We indicate the definition of the categories by entering a simple code (techni-
cally speaking, a category rule) in the “Edit a Category” pane, as shown in
Fig. 16.17. Each category rule includes two major elements: operators (such as
Boolean operators) and arguments (such as the words selected for each category).
As Fig. 16.17 illustrates, operators appear in blue color, while arguments are in
purple. The code (or rule) should be validated (by clicking on the “Validate Rule”
icon on the top right) so that no mistakes are made in entering the definition of
the category.

The category rules are a very important element of the analysis. Therefore, users
should ensure that their definition is correct. These category rules should be tested
prior to applying the changes to the entire analysis. To do so, we can select an

Fig. 16.16  Most relevant terms associated with topics and their use in documents

16  SAS Visual Text Analytics

275

individual document containing words that were specified as part of the category
rule and test whether the system identifies the matched items. We selected the
disease/condition category, and we also selected a document containing two words
included in this category rule, “disease” and “Alzheimer,” within the Documents
tab. Once the document was selected within the Documents pane, we clicked on the
“Paste to Test Sample Text” icon and moved to the Test Sample Text pane, where
we ran the test by clicking on “Test text.” As Fig. 16.18 illustrates, the system cor-
rectly identified the two words “disease” and “Alzheimer,” and therefore the cate-
gory rule was validated.

Fig. 16.17  Category definition: code and validation

Fig. 16.18  Category rule validated over a sample document

16.3 � Analysis

276

Once the category rules were provided and validated, we ran the analysis again.
Opening the category node allows us to check the results of applying the category
definition. As Fig. 16.19 illustrates, users can select one of the three categories
defined and inspect the matched documents. In this case, we reviewed the disease/
condition category. The relevancy of the document to the category also appears on
the right-hand side of the “Matched” pane.

At this point, we closed the category node and returned to the pipeline screen.
Additional explorations and visualizations are available on VTA if users

decide to export the categorization model created. First, users must save the cat-
egorization analysis results by right clicking on the Categories node and select-
ing “Save data table.” Under Data Sources, users need to expand cas-shared-default
and select their own CASUSER(XXXX@XXXX) library to save the data table.
This action allows users to start the advanced explorations and visualizations
available within the main menu (top left-hand corner of the screen, as shown in
Fig. 16.20).

Users can select the dataset containing the 4,141 health news tweets employed
previously in the pipeline and press “OK.” (A quick check of the dataset confirms
that there are 4.1 k rows and 1 column.). In the Data pane, users must select “Add
data source” as shown in Fig. 16.21 and select “CATEGORIES_DATA.”

The Objects tag, under the Data tag, provides a list of all of the possible visu-
alizations available on SAS VTA, as well as a list of additional analytical tools
and controls. If users are interested in visualizing the popularity of each of the
three categories, they can choose among multiple options. An interesting option to
visualize this popularity (as measured by the total number of documents ascribed
to each category) is to select Treemap from the Objects tag. Once Treemap is
selected, VTA requires the user to specify the required roles of the data item. This
task can be implemented by clicking on the Roles tag on the right. Under Tile, we
selected “_category_,” and under Color, we selected “Frequency Percent” (as
shown in Fig. 16.22).

Fig. 16.19  Example of matched documents in the disease/condition category

16  SAS Visual Text Analytics

277

These selections allow the users to visualize the results by assigning more color
intensity to the most popular categories. The final visualization is shown in
Fig. 16.23.

Note that the “most popular” category is obviously the “missing” category,
which corresponds to those documents that cannot be classified within any of the
three categories. Users can filter out these missing documents through Filters by
removing the selection “Include missing values.” Fig. 16.24 replicates the previous
visualization after removing the missing values.

The results show that clearly research is the most popular category in the dataset
of health news tweets from the Los Angeles Times, followed by disease/condition,
and legal. Similar visualizations such as Line Charts (Fig. 16.25) or Pie Charts
(Fig. 16.26) can be obtained through other options available through Objects.
Frequency or frequency percentage can be employed to show the results.

As a final visualization example, users can generate a word cloud of popular
terms in the dataset. To do so, the Word Cloud object must be selected. In this case
the word cloud is implemented over key terms, not over categories. Therefore,
within the Data Roles tag, we selected “keywords” instead of “_category_” as in the
previous example. We also selected Color by “Frequency Percent” (see Fig. 16.27).

Fig. 16.20  Explore and Visualize Data selection for advanced analysis: main menu

16.3 � Analysis

278

Fig. 16.22  Tile by category and color by frequency percent selected under Roles

Fig. 16.21  Add Data Source selection

16  SAS Visual Text Analytics

Fig. 16.23  Category popularity visualization Treemap

Fig. 16.24  Category popularity visualization Treemap after removing missing values

Fig. 16.25  Category popularity visualization: line charts

280

Fig. 16.26  Category popularity visualization: pie charts

Fig. 16.27  Word by keywords and color by frequency percent selected under Roles

16  SAS Visual Text Analytics

281

The word cloud visualization is shown in Fig. 16.28.
All of the visualizations in this section were created by using the default settings

on SAS VTA. Users might consider customizing those settings to develop more
informative, or even more impactful, visualizations by adjusting the style, layout, or
legend position through the Options tag located on the right-hand side of the screen,
as shown in Fig. 16.29.

Fig. 16.28  Word cloud of key terms in the dataset

Fig. 16.29  Visualizations can be customized through the Options tag

16.3 � Analysis

282

Acknowledgment  The authors thank Jorge Fresneda Fernandez, Assistant Professor of
Marketing at the Martin Tuchman School of Management, New Jersey Institute of Technology for
contributing this chapter to the book.

Further Reading

This chapter illustrates a basic analysis implemented on SAS VTA. For more advanced options,
please refer to the SAS Visual Text Analytics User’s Guide (version 8.2 for this example) avail-
able at: http://documentation.sas.com/?cdcId=ctxtcdc&cdcVersion=8.2&docsetId=ctxtug&do
csetTarget=titlepage.htm&locale=en

Key Takeaways
•	 SAS Visual Text Analytics provides access to advanced text analytics tools

without the complexity of coding.
•	 SAS Visual Text Analytics performs well for frequent, repeated analyses

that do not require high levels of customization.
•	 Data management and topic modeling are easily and robustly implemented

in SAS Visual Text Analytics.

16  SAS Visual Text Analytics

http://documentation.sas.com/?cdcId=ctxtcdc&cdcVersion=8.2&docsetId=ctxtug&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?cdcId=ctxtcdc&cdcVersion=8.2&docsetId=ctxtug&docsetTarget=titlepage.htm&locale=en

283© Springer Nature Switzerland AG 2019
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data
Science 2, https://doi.org/10.1007/978-3-319-95663-3

A
Accuracy, 36, 58, 134–136, 138–140, 142,

144–147, 159–161, 205, 206, 214, 218,
219, 244, 259

Adjusted rand index (ARI), 135
Analysis, 1–10, 15, 16, 18–24, 27–33, 35–39,

45, 46, 50, 53, 54, 58, 61, 64, 73,
77–90, 93–114, 117, 123, 124, 126,
128, 129, 131–147, 151–154, 157–163,
168–172, 177–186, 188, 189, 193–215,
217–219, 221–225, 227, 228, 230,
232–235, 237–261, 263, 264, 266–282

Analytics, 1–10, 15, 20, 27–39, 45, 51, 56, 93,
94, 103, 114, 131, 137, 168, 171, 173,
177, 179–189, 261, 263–268, 270, 271,
273–277, 281, 282

Application programming interface (API), 34
Artificial neural networks (ANN), 144

B
Bag-of-words (BOW), 46, 90, 119
Big data, 4, 27, 88
Bi-grams, 48
Business analytics, 4–8, 29, 30, 32

C
Categorization, 20–23, 38, 93, 103, 108,

131, 276
Centroid, 99, 101, 102, 104, 106–108, 113, 114
Classification, 4–6, 9, 20, 28, 35, 36, 38, 39,

93, 113, 114, 123, 129, 131–147, 153,
158, 161, 162, 200–202, 206, 210, 213,
222, 243, 256–260, 270

Classification analysis, 9, 35, 36, 38, 39, 113, 114,
123, 129, 131–147, 158, 160, 161, 206

Cluster analysis, 9, 29, 39, 93–114, 129, 131
Clusters, 9, 29, 39, 93–114, 129, 131, 180,

182, 184
Coding, 16, 18–24, 128
Complete linkage, 99–101, 114
Computational linguistics, 2, 3
Content analysis, 3, 8, 15, 16, 18–24, 27–29,

31–33
Contingency table, 132–136, 138–142, 144,

145, 159, 160, 244, 259, 260
Correlated topic model (CTM), 120–122, 129
Cosine similarity, 78, 84–90, 97

D
Data mining, 1–3, 5, 8, 9, 111, 137, 222, 266
Decision trees, 137, 140–144, 146, 147
Dendrogram, 98–103, 109, 114, 182, 184
Dictionary, 45, 50–53, 58, 61, 62, 152,

206–215, 217, 219
Distance, 78, 93–97, 99–101, 103, 106, 108,

112–114, 126, 138, 139, 173
Document collection, 33, 34, 38, 39, 45, 47,

50–52, 54–58, 61–65, 68, 71, 73, 77–79,
88–90, 93, 103, 108, 114, 119, 121, 122,
127, 129, 132, 135, 180–182, 185, 186

Document frequency (df), 63, 68–72, 207,
254–256

Document networks, 137, 180, 185–187
Document-term matrix (DTM), 64, 73, 88, 93,

103, 114, 117, 119, 132, 137, 139, 140,
144, 147, 159–162, 181, 228–230, 235,
237, 251, 253, 254

Index

https://doi.org/10.1007/978-3-319-95663-3

284

Document visualization, 84, 98, 102, 177,
180–182, 188, 189

Document weighting, 65–72, 77, 90, 249, 270
Dunn index, 113, 114
Dynamic topic (DT) model, 122, 123, 129,

142, 144

E
Error rate, 134, 135, 148

F
File transfer protocol (FTP), 34
F-measure, 135, 136, 138–140, 142–145,

147, 148
Frequency, 4, 6, 18, 24, 46, 61–63, 65–73,

77, 78, 127, 128, 132, 159, 161, 181,
196, 207, 209, 228, 249, 254–256,
276–278, 280

H
Hierarchical, 93, 94, 98–103, 109, 110, 112,

114, 120
Hierarchical cluster analysis (HCA), 94,

98–104, 109, 110, 112–114, 182, 184

I
Inference, 4, 15, 16, 18, 19, 21–24, 27, 29, 32,

119, 121, 132
Insights, 2, 6, 32, 97, 168–172, 174, 175,

224, 263
Inverse document frequency (idf), 68, 70–72
Inverted index, 61–64, 73

K
K-means, 94, 103, 108, 109, 111, 113, 114
K-means cluster analysis, 103, 104, 108, 114
K-means clustering (kMC), 103–111, 113, 114
K-nearest neighbor (kNN), 137–140, 146, 147,

158, 243, 249, 257–261
Knowledge discovery in databases (KDD), 3
Knowledge discovery in texts (KDT), 3

L
Latent Dirichlet allocation (LDA), 4, 73, 119,

120, 122–124, 126, 127, 129
Latent semantic analysis (LSA), 3, 4, 9, 39,

73, 77–90, 93, 97, 117, 118, 120, 129,
131, 171, 182, 183, 221–225, 227, 228,
230, 233–235, 237–242

Latent semantic indexing (LSI), 3, 79, 117, 118
Learning, 3, 7, 39, 58, 93, 131–147, 151–163,

169, 171, 221–223, 243–261, 263,
266, 270

Lemmatization, 46, 53–58
Lexicon, 53, 151–163, 197, 198, 200, 201,

203–208, 210, 217–219
Log frequency, 66, 67
Logistic regression, 158, 161–163

M
Machine learning, 3, 7, 58, 131–147, 157, 158,

222, 263, 266, 270
Matrix, 61, 63–73, 77, 79–87, 89, 94, 97, 100,

117, 121, 132, 139, 143, 146, 160, 161,
181, 228, 230, 251, 259

Movie reviews, 158, 193–215, 217–219

N
Naïve Bayes (NB), 137, 138, 146, 147, 158,

159, 161–163, 243, 249, 259–261
Narrative, 29, 167, 169, 173
Natural language processing (NLP), 3, 7, 33,

39, 46, 268
Neural networks (NN), 137, 144–147
N-grams, 48, 50, 58, 61, 90, 153, 199, 219

O
Online consumer reviews (OCR), 29, 243
Open-source, 30, 39, 219, 221, 242, 263, 264
Opinion mining, 4, 5, 131, 151, 163

P
Part-of-speech (POS), 53, 54, 56–58, 153, 263
Planning, 8, 10, 27–39, 45, 179
Population, 20, 31, 35, 36, 172, 270
POS tagging, 53, 58
Precision, 135, 136, 138–140, 142–145, 147,

148, 259
Prediction, 5, 36, 38, 114, 129, 132–136, 138,

141, 142, 144, 159, 160, 162, 163
Probabilistic topic models, 117–129
Python, 10, 39, 171, 182, 221–225, 227, 228,

230, 233–235, 237–242, 263

Q
Qualitative, 3, 15, 16, 27, 28, 32, 35, 37, 47,

89, 132
Quantitative, 3, 15, 16, 27, 32, 37, 47, 127
Queries, 85, 87–89

Index

285

R
R, 10, 39, 159, 193–215, 217–219, 221, 223,

227, 263
Random forest (RF), 137, 143–147
RapidMiner, 10, 39, 243–261
Recall, 97, 113, 135, 136, 138–140, 142–145,

147, 148, 259
Reporting, 2, 4, 8, 10, 33, 113, 169, 180, 264, 267
RStudio, 193–195, 219, 223

S
Sample, 4, 6, 19, 20, 23, 24, 29, 35–37, 62,

103, 118, 128, 132, 133, 137, 143, 148,
152, 154, 158–160, 188, 205, 206,
217–219, 224, 257, 265, 275

SAS Visual Text Analytics (VTA), 39,
263–268, 270, 271, 273–277, 281, 282

Scree plot, 89, 90, 111, 230, 234, 238, 239
Seeds, 103–109, 114, 245
Sentiment, 4, 9, 29, 32, 33, 39, 53, 151–163,

170–172, 182, 186, 188, 193–215,
217–219, 243–261, 263, 268, 270, 271

Sentiment analysis, 4, 9, 29, 39, 53, 151–154,
157–163, 186, 193–215, 217–219,
243–261

Similarity, 78, 84–90, 93–97, 99, 101, 103,
114, 138, 180, 185, 232

Single linkage, 99–101, 114
Singular value decomposition (SVD), 79–82,

88–90, 118, 182, 230, 234, 237, 239
Social media, 1, 2, 27, 29, 35, 171, 242
SQL, 34
Stemming, 46, 53–58, 119, 137, 153, 222, 253
Stop words, 46, 50, 52, 58, 73, 119, 137, 153,

159, 200, 201, 208, 210, 227, 228, 252,
263, 271

Storytelling, 10, 167–175, 177
Structural topic model (STM), 124–126, 129, 185
Sum of squared errors (SSE), 101, 104, 106,

108, 109, 111
Supervised analysis, 9, 113, 114, 129
Supervised latent Dirichlet allocation (sLDA),

123, 129
Supervised learning, 131, 140
Support vector machines (SVM), 137, 140,

141, 147, 158, 160, 163

T
Term-document matrix (TDM), 61, 63–73,

77–80, 82, 84, 88–90, 93, 103, 104,
108, 113, 114, 117, 132, 147

Term frequency, 62, 65, 71, 127, 181, 207,
209, 249, 254, 255

Term frequency-inverse document frequency
(Tf-idf), 71, 72, 77, 94, 104, 108, 113,
119, 137, 161, 230, 235, 237

Term weighting, 65–73, 270
Text analysis, 4, 6, 7, 9, 15, 18, 27, 28, 35,

46, 50, 53, 61, 64, 89, 93, 103, 177,
263, 264

Text analytics, 1, 15, 20, 27–39, 45, 51, 56, 93,
94, 103, 114, 131, 137, 168, 171,
179–189, 261, 263–268, 270, 271,
273–277, 281, 282

Text categorization, 103, 108, 131
Text classification, 20, 131–133, 140, 146,

256–260
Text clouds, 7, 181, 264
Text data, 1–3, 9, 20, 21, 29, 30, 32–35, 39,

45–48, 50, 58, 61, 73, 89, 118, 152,
167–175, 177, 180, 199, 247–250

Text data visualization, 39, 177
Text mining, 1–6, 8, 15, 28, 39, 46, 64, 89
Text parsing, 64, 268–271
Text pre-processing, 9, 39, 45, 46, 48, 50,

52–54, 56, 58, 247
Text visualization, 103, 177, 179–189
Tokenization, 46–48, 58, 222, 250
Tokens, 46–48, 50, 53, 54, 56, 58, 64, 90, 153,

199, 252–254
Topic models, 4, 9, 39, 73, 117–129, 131, 185
Twitter, 33, 264

U
Unitizing, 18, 46, 49

V
Vector, 39, 68, 72, 78–82, 84–86, 88–90, 97,

118, 137, 140, 141, 143, 147, 160,
163, 238

Visualization, 4, 10, 39, 84, 94, 102, 103, 114,
141, 168, 169, 177–189, 264, 276, 277,
279–281

Vocabulary, 45, 54, 62, 65, 119, 137

W
Ward’s method, 101, 102, 104, 112–114
Weighting, 61, 65–73, 77, 90, 113, 230, 237,

249, 270
Word clouds, 5, 7, 158, 159, 181, 182, 186,

188, 277, 281

Index

	Dedication
	Preface
	Acknowledgments
	Contents
	About the Authors
	List of Abbreviations
	List of Figures
	List of Tables
	Chapter 1: Introduction to Text Analytics
	1.1 Introduction
	1.2 Text Analytics: What Is It?
	1.3 Origins and Timeline of Text Analytics
	1.4 Text Analytics in Business and Industry
	1.5 Text Analytics Skills
	1.6 Benefits of Text Analytics
	1.7 Text Analytics Process Road Map
	1.7.1 Planning
	1.7.2 Text Preparing and Preprocessing
	1.7.3 Text Analysis Techniques
	1.7.4 Communicating the Results

	1.8 Examples of Text Analytics Software
	References

	Part I: Planning the Text Analytics Project
	Chapter 2: The Fundamentals of Content Analysis
	2.1 Introduction
	2.2 Deductive Versus Inductive Approaches
	2.2.1 Content Analysis for Deductive Inference
	2.2.2 Content Analysis for Inductive Inference

	2.3 Unitizing and the Unit of Analysis
	2.3.1 The Sampling Unit
	2.3.2 The Recording Unit
	2.3.3 The Context Unit

	2.4 Sampling
	2.5 Coding and Categorization
	2.6 Examples of Inductive and Deductive Inference Processes
	2.6.1 Inductive Inference
	2.6.2 Deductive Inference

	References
	Further Reading

	Chapter 3: Planning for Text Analytics
	3.1 Introduction
	3.2 Initial Planning Considerations
	3.2.1 Drivers
	3.2.2 Objectives
	3.2.3 Data
	3.2.4 Cost

	3.3 Planning Process
	3.4 Problem Framing
	3.4.1 Identifying the Analysis Problem
	3.4.2 Inductive or Deductive Inference

	3.5 Data Generation
	3.5.1 Definition of the Project’s Scope and Purpose
	3.5.2 Text Data Collection
	3.5.3 Sampling
	3.5.3.1 Non-probability Sampling
	3.5.3.2 Probability Sampling
	3.5.3.3 Sampling for Classification Analysis
	3.5.3.4 Sample Size

	3.6 Method and Implementation Selection
	3.6.1 Analysis Method Selection
	3.6.2 The Selection of Implementation Software

	References
	Further Reading

	Part II: Text Preparation
	Chapter 4: Text Preprocessing
	4.1 Introduction
	4.2 The Preprocessing Process
	4.3 Unitize and Tokenize
	4.3.1 N-Grams

	4.4 Standardization and Cleaning
	4.5 Stop Word Removal
	4.5.1 Custom Stop Word Dictionaries

	4.6 Stemming and Lemmatization
	4.6.1 Syntax and Semantics
	4.6.2 Stemming
	4.6.3 Lemmatization
	4.6.4 Part-of-Speech (POS) Tagging

	References
	Further Reading

	Chapter 5: Term-Document Representation
	5.1 Introduction
	5.2 The Inverted Index
	5.3 The Term-Document Matrix
	5.4 Term-Document Matrix Frequency Weighting
	5.4.1 Local Weighting
	5.4.1.1 Logarithmic (Log) Frequency
	5.4.1.2 Binary/Boolean Frequency

	5.4.2 Global Weighting
	5.4.2.1 Document Frequency (df)
	5.4.2.2 Global Frequency (gf)
	5.4.2.3 Inverse Document Frequency (idf)

	5.4.3 Combinatorial Weighting: Local and Global Weighting
	5.4.3.1 Term Frequency-Inverse Document Frequency (tfidf)

	5.5 Decision-Making
	References
	Further Reading

	Part III: Text Analysis Techniques
	Chapter 6: Semantic Space Representation and Latent Semantic Analysis
	6.1 Introduction
	6.2 Latent Semantic Analysis (LSA)
	6.2.1 Singular Value Decomposition (SVD)
	6.2.2 LSA Example

	6.3 Cosine Similarity
	6.4 Queries in LSA
	6.5 Decision-Making: Choosing the Number of Dimensions
	References
	Further Reading

	Chapter 7: Cluster Analysis: Modeling Groups in Text
	7.1 Introduction
	7.2 Distance and Similarity
	7.3 Hierarchical Cluster Analysis
	7.3.1 Hierarchical Cluster Analysis Algorithm
	7.3.2 Graph Methods
	7.3.2.1 Single Linkage
	7.3.2.2 Complete Linkage

	7.3.3 Geometric Methods
	7.3.3.1 Centroid
	7.3.3.2 Ward’s Minimum Variance Method

	7.3.4 Advantages and Disadvantages of HCA

	7.4 k-Means Clustering
	7.4.1 kMC Algorithm
	7.4.2 The kMC Process
	7.4.3 Advantages and Disadvantages of kMC

	7.5 Cluster Analysis: Model Fit and Decision-Making
	7.5.1 Choosing the Number of Clusters
	7.5.1.1 Subjective Methods
	7.5.1.2 Graphing Methods
	Scree Plot
	Silhouette Plot

	7.5.2 Naming/Describing Clusters
	7.5.3 Evaluating Model Fit
	7.5.4 Choosing the Cluster Analysis Model

	References
	Further Reading

	Chapter 8: Probabilistic Topic Models
	8.1 Introduction
	8.2 Latent Dirichlet Allocation (LDA)
	8.3 Correlated Topic Model (CTM)
	8.4 Dynamic Topic Model (DT)
	8.5 Supervised Topic Model (sLDA)
	8.6 Structural Topic Model (STM)
	8.7 Decision Making in Topic Models
	8.7.1 Assessing Model Fit and Number of Topics
	8.7.2 Model Validation and Topic Identification
	8.7.3 When to Use Topic Models

	References
	Further Reading

	Chapter 9: Classification Analysis: Machine Learning Applied to Text
	9.1 Introduction
	9.2 The General Text Classification Process
	9.3 Evaluating Model Fit
	9.3.1 Confusion Matrices/Contingency Tables
	9.3.2 Overall Model Measures
	9.3.2.1 Accuracy
	9.3.2.2 Error Rate

	9.3.3 Class-Specific Measures
	9.3.3.1 Precision
	9.3.3.2 Recall
	9.3.3.3 F-Measure

	9.4 Classification Models
	9.4.1 Naïve Bayes
	9.4.2 k-Nearest Neighbors (kNN)
	9.4.3 Support Vector Machines (SVM)
	9.4.4 Decision Trees
	9.4.5 Random Forests
	9.4.6 Neural Networks

	9.5 Choosing a Classification
	9.5.1 Model Fit

	References
	Further Reading

	Chapter 10: Modeling Text Sentiment: Learning and Lexicon Models
	10.1 Lexicon Approach
	10.2 Machine Learning Approach
	10.2.1 Naïve Bayes (NB)
	10.2.2 Support Vector Machines (SVM)
	10.2.3 Logistic Regression

	10.3 Sentiment Analysis Performance: Considerations and Evaluation
	References
	Further Reading

	Part IV: Communicating the Results
	Chapter 11: Storytelling Using Text Data
	11.1 Introduction
	11.2 Telling Stories About the Data
	11.3 Framing the Story
	11.3.1 Storytelling Framework
	11.3.2 Applying the Framework

	11.4 Organizations as Storytellers
	11.4.1 United Parcel Service
	11.4.2 Zillow

	11.5 Data Storytelling Checklist
	References
	Further Reading

	Chapter 12: Visualizing Analysis Results
	12.1 Strategies for Effective Visualization
	12.1.1 Be Purposeful
	12.1.2 Know the Audience
	12.1.3 Solidify the Message
	12.1.4 Plan and Outline
	12.1.5 Keep It Simple
	12.1.6 Focus Attention

	12.2 Visualization Techniques in Text Analytics
	12.2.1 Corpus/Document Collection-Level Visualizations
	12.2.2 Theme and Category-Level Visualizations
	12.2.2.1 LSA Dimensions
	12.2.2.2 Cluster-Level Visualizations
	12.2.2.3 Topic-Level Visualizations
	12.2.2.4 Category or Class-Level Visualizations
	12.2.2.5 Sentiment-Level Visualizations

	12.2.3 Document-Level Visualizations

	References
	Further Reading

	Part V: Text Analytics Examples
	Chapter 13: Sentiment Analysis of Movie Reviews Using R
	13.1 Introduction to R and RStudio
	13.2 SA Data and Data Import
	13.3 Objective of the Sentiment Analysis
	13.4 Data Preparation and Preprocessing
	13.4.1 Tokenize
	13.4.2 Remove Stop Words

	13.5 Sentiment Analysis
	13.6 Sentiment Analysis Results
	13.7 Custom Dictionary
	13.8 Out-of-Sample Comparison
	References
	Further Reading

	Chapter 14: Latent Semantic Analysis (LSA) in Python
	14.1 Introduction to Python and IDLE
	14.2 Preliminary Steps
	14.3 Getting Started
	14.4 Data and Data Import
	14.5 Analysis
	Further Reading

	Chapter 15: Learning-Based Sentiment Analysis Using RapidMiner
	15.1 Introduction
	15.2 Getting Started in RapidMiner
	15.3 Text Data Import
	15.4 Text Preparation and Preprocessing
	15.5 Text Classification Sentiment Analysis
	Reference
	Further Reading

	Chapter 16: SAS Visual Text Analytics
	16.1 Introduction
	16.2 Getting Started
	16.3 Analysis
	Further Reading

	Index

