
Jack D. Hidary

Quantum
Computing:
An Applied
Approach

Quantum Computing: An Applied Approach

Quantum Computing:
An Applied Approach

Jack D. Hidary

Jack D. Hidary

Alphabet X

Mountain View, CA

USA

ISBN 978-3-030-23921-3 ISBN 978-3-030-23922-0

https://doi.org/10.1007/978-3-030-23922-0

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,

broadcasting, reproduction on microfilms or in any other physical way, and transmission or information

storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication

does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book

are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any

errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

(eBook)

https://doi.org/10.1007/978-3-030-23922-0

Contents

Preface xi

Acknowledgements xv

Navigating this Book xvii

I Foundations

1 Superposition, Entanglement and Reversibility 3

2 A Brief History of Quantum Computing 11

3 Qubits, Operators and Measurement 17

3.1 Quantum Operators 22
Unary Operators 22
Binary Operators 26
Ternary Operators 28

3.2 Comparison with Classical Gates 30

3.3 Universality of Quantum Operators 31

3.4 Gottesman-Knill and Solovay-Kitaev 31

3.5 The Bloch Sphere 32

3.6 The Measurement Postulate 33

35

4 Complexity Theory 37

4.1 Problems vs. Algorithms 37

4.2 Time Complexity 38

3.7 Computation-in-Place

vi Contents

4.3 Complexity Classes 40

4.4 Quantum Computing and the Church-Turing Thesis 43

II Hardware and Applications

5 Building a Quantum Computer 47

5.1 Assessing a Quantum Computer 47

5.2 Neutral Atom 49

5.3 NMR 50

5.4 NV Center-in-Diamond 51

5.5 Photonics 52

5.6 Spin Qubits 54

5.7 Superconducting Qubits 56

5.8 Topological Quantum Computation 57

5.9 Trapped Ion 58

5.10 Summary 59

6 Development Libraries for Quantum Computer Programming 61

6.1 Quantum Computers and QC Simulators 62

6.2 Cirq 64

6.3 Qiskit 66

6.4 Forest 69

6.5 Quantum Development Kit 71

6.6 Dev Libraries Summary 74
Using the Libraries 75
Other Development Libraries 75

6.7 Additional Quantum Programs 76
Bell States 76
Gates with Parameters 77

Contents vii

7 Teleportation, Superdense Coding and Bell’s Inequality 81

7.1 Quantum Teleportation 81

7.2 Superdense Coding 84

7.3 Code for Quantum Teleportation and Superdense Com-
munication 85

7.4 Bell Inequality Test 88

8 The Canon: Code Walkthroughs 95

8.1 The Deutsch-Jozsa Algorithm 97

8.2 The Bernstein-Vazirani Algorithm 104

8.3 Simon’s Problem 107

8.4 Quantum Fourier Transform 108

8.5 Shor’s Algorithm 111
RSA Cryptography 111
The Period of a Function 113
Period of a Function as an Input to a Factorization Algo-
rithm 114

8.6 Grover’s Search Algorithm 126

9 Quantum Computing Methods 131

9.1 Variational Quantum Eigensolver 131
VQE with Noise 136
More Sophisticated Ansatzes 138

9.2 Quantum Chemistry 139

9.3 Quantum Approximate Optimization Algorithm (QAOA) 144
Example Implementation of QAOA 147

9.4 Machine Learning on Quantum Processors 154

9.5 Quantum Phase Estimation 160
Implemention of QPE 163

viii Contents

9.6 Solving Linear Systems 166
Description of the HHL Algorithm 168
Example Implementation of the HHL Algorithm 170

9.7 Quantum Random Number Generator 178

9.8 Quantum Walks 180
Implementation of a Quantum Walk 182

9.9 Summary 187

10 Applications and Quantum Supremacy 189

10.1 Applications 189
Quantum Simulation and Chemistry 189
Sampling from Probability Distributions 190
Linear Algebra Speedup with Quantum Computers 190
Optimization 190
Tensor Networks 190

10.2 Quantum Supremacy 190
Random Circuit Sampling 191
Other Problems for Demonstrating Quantum Supremacy 195

10.3 Future Directions 196
Quantum Error Correction 196
Doing Physics with Quantum Computers 197

III Toolkit

11 Mathematical Tools for Quantum Computing I 201

11.1 Introduction and Self-Test 201

11.2 Linear Algebra 203
Vectors and Notation 203
Basic Vector Operations 204
The Norm of a Vector 208
The Dot Product 211

196Quantum Advantage

Contents ix

11.3 The Complex Numbers and the Inner Product 214
Complex Numbers 214
The Inner Product as a Refinement of the Dot Product 216
The Polar Coordinate Representation of a Complex Num-
ber 220

11.4 A First Look at Matrices 228
Basic Matrix Operations 228
The Identity Matrix 235
Transpose, Conjugate and Trace 237
Matrix Exponentiation 244

11.5 The Outer Product and the Tensor Product 245
The Outer Product as a Way of Building Matrices 245
The Tensor Product 247

11.6 Set Theory 250
The Basics of Set Theory 250
The Cartesian Product 253
Relations and Functions 254
Important Properties of Functions 259

11.7 The Definition of a Linear Transformation 264

11.8 How to Build a Vector Space From Scratch 266
Groups 267
Fields 273
The Definition of a Vector Space 280
Subspaces 282

11.9 Span, Linear Independence, Bases and Dimension 285
Span 285
Linear Independence 287
Bases and Dimension 289
Orthonormal Bases 292

12 Mathematical Tools for Quantum Computing II 295

12.1 Linear Transformations as Matrices 295

x Contents

12.2 Matrices as Operators 300
An Introduction to the Determinant 300
The Geometry of the Determinant 305
Matrix Inversion 306

12.3 Eigenvectors and Eigenvalues 314
Change of Basis 316

12.4 Further Investigation of Inner Products 319
The Kronecker Delta Function as an Inner Product 322

12.5 Hermitian Operators 322
Why We Can’t Measure with Complex Numbers 322
Hermitian Operators Have Real Eigenvalues 324

12.6 Unitary operators 326

12.7 The Direct Sum and the Tensor Product 327
The Direct Sum 327
The Tensor Product 329

12.8 Hilbert Space 333
Metrics, Cauchy Sequences and Completeness 333
An Axiomatic Definition of the Inner Product 337
The Definition of Hilbert Space 338

12.9 The Qubit as a Hilbert Space 339

13 Mathematical Tools for Quantum Computing III 343

13.1 Boolean Functions 343

13.2 Logarithms and Exponentials 344

13.3 Euler’s Formula 346

14 Table of Quantum Operators and Core Circuits 349

Works Cited 353

Preface

We are entering a new era of computation that will catalyze discoveries in
science and technology. Novel computing platforms will probe the fundamen-
tal laws of our universe and aid in solving hard problems that affect all of us.
Machine learning programs powered by specialized chips are already yielding
breakthrough after breakthrough.

In this book we will explore quantum computing – an emerging platform
that is fundamentally different than the way we compute with current digital
platforms. To be sure, we are years away from scaled quantum computers. Yet,
we now know that such systems are possible; with advances in engineering
we are likely to see real impact.

Quantum computing is part of the larger field of quantum information
sciences (QIS). All three branches of QIS – computation, communication and
sensing – are advancing at rapid rates and a discovery in one area can spur
progress in another. Quantum communication leverages the unusual properties
of quantum systems to transmit information in a manner that no eavesdropper
can read. This field is becoming increasingly critical as quantum computing
drives us to a post-quantum cryptography regime. We will cover quantum tele-
portation and superdense coding, which are both quantum-specific protocols,
in chapter 7.

Quantum sensing is a robust field of research which uses quantum devices
to move beyond classical limits in sensing magnetic and other fields. For ex-
ample, there is an emerging class of sensors for detecting position, navigation
and timing (PNT) at the atomic scale. These micro-PNT devices can provide
highly accurate positioning data when GPS is jammed or unavailable.

In this book we will focus on quantum computation. One of the critical
differences between quantum and classical computation is that in quantum
computation we are manipulating quantum states themselves; this gives us
a much larger computing space to work in than in classical computers. In
classical computers, if we wish to model a real-world quantum physical

xii Preface

system, we can only do so with representations of such a system and we
cannot implement the physics itself.

This key difference leads to exciting possibilities for the future of comput-
ing and science. All this starts with fundamental truths about our world that
were developed during the quantum mechanics revolution in the first half of
the 20th century. We will review a number of these core concepts in the first
chapter.

I had the fortunate circumstance to have studied quantum mechanics before
learning classical physics and therefore relate to quantum physics as the norm
– it is my intellectual home. Until we change our educational system, most
students will learn the classical before the quantum and so the quantum will
seem doubly strange — both from their own human experience as well as from
the inculcation of classical ideas before quantum ideas can be introduced.

What is ironic about this state of affairs is that the primary mathematical
tool in quantum mechanics is linear algebra, a powerful but very accessible
branch of mathematics. Most students, however, only take linear algebra after
two or three semesters of calculus, if they take it at all. Yet, no calculus is
needed to introduce linear algebra! In any case, we will leave the remedying
of mathematics education to another day while we embark here on a journey
into a new form of computing.

In this book we will explore how to build a computer of a very different
kind than humans have ever built before. What is distinct about this book is
that we will go beyond the theoretical into the practical work of how we can
build such computers and how we can write applications for these systems.
There are now several development libraries which we can use to program
cloud-based quantum systems. We will walk through code examples and show
the reader how to build a quantum circuit comprised of a set of operators to
address a particular challenge. We will mainly use Python in this book.

We are currently in the regime of noisy intermediate-scale quantum (NISQ)
computers, a term coined by John Preskill of CalTech [176]. This refers to
systems that do not yet have full error-correction (thus noisy) and have dozens
to thousands of qubits – well short of the 106C necessary for scaled fault-
tolerant computing. Despite the limitations of these initial systems, the theory,
algorithms and coding techniques we cover in this book will serve readers as
they transition to larger systems that are to come in the future.

Preface xiii

This work is three books in one: the first part covers the necessary frame-
work that drives the design of quantum computers and circuits. We will also
explore what kinds of problems may be amenable to quantum computation in
our treatment of complexity classes.

The second part of the book is for those readers who wish to delve into
the programming that makes these new machines tick. If you already have
a background in quantum mechanics, quantum information theory and theo-
retical computer science (you know who you are!), you can jump right to the
second part and dig into the code. Please refer to the navigation guide in the
following pages to chart a course through this material.

In the third part we provide a set of critical tools to use in the journey to
master quantum computing (QC). We build up the core concepts of linear
algebra and tie them specifically to their use in QC. The table of operators
and circuit elements in chapter 14 is a handy reference as you design your
own quantum computing protocols.

The book is also a portal to the growing body of literature on the sub-
ject. We recommend that the reader use the bibliography to explore both
foundational and recent papers in the field.

We will provide further online examples and code tutorials on a continual
basis. This a living text that will develop as QC technology matures. We
are all travelers together on this new adventure; join us online at this book’s
GitHub site.1 We are excited to see what you will develop with these new
platforms and tools. Contact us via the site — we look forward to hearing
from you.

Jack D. Hidary
June 2019
35,000 ft up

1http://www.github.com/jackhidary/quantumcomputingbook

http://www.github.com/jackhidary/quantumcomputingbook

Acknowledgements

Let me start by thanking my publisher, Elizabeth Loew, who has been so
supportive throughout the process, and the entire SpringerNature team for
their excellence.

A book like this is a significant undertaking and it took a team of people
to help in so many ways. The greatest of appreciation to Stefan Leichenauer
who did a great job as book editor and formatter-in-chief. Stefan reviewed
large parts of the book and I thank him for his commitment to the project. The
entire book is written in TeX and we often pushed the boundaries of what TeX
is capable of implementing.

Thank you to Sheldon Axler, author of Linear Algebra Done Right (also
by Springer) who generously shared his TeX template so that we could format
the book correctly for the Springer standards.

Thanks to the many experts who gave of their time to review key sections
of the book and provide technical advice. These include (in alphabetical
order): Scott Aaronson, Ryan Babbush, Sergio Boixo, Ruffin Evans, Eddie
Farhi, Patrick Hayden, Gerry Gilbert, Matt Reagor and Lenny Susskind. Each
improved the work materially with their input.

I would also like to recognize the significant achievement of Michael
Nielsen and Isaac Chuang in developing their textbook [161]. Recognition
as well to John Preskill for his in-depth lecture notes [174]. Nielsen, Chuang
and Preskill as well as Mermin [151] and Rieffel [186] have helped many
individuals enter the field.

Thanks to my many colleagues at Alphabet X and Google who have
encouraged this effort including: Sergey Brin, Astro Teller and Hartmut
Neven and his excellent team.

Thank you to the many participants in the workshops I taught on quantum
computing as well as my courses on linear algebra and other mathematical
topics. Your feedback has been invaluable.

xvi Acknowledgements

Hearty thanks to James Myer who worked with me intensively on the math
sections; James’ methodical approach assured us of success. We reviewed
these sections countless times, continually reworking them. James is not
only passionate about mathematics; he also cares deeply about pedagogy and
we had productive discussions on the best way to present the core concepts.
Thank you as well to Tai-Danae Bradley who also reviewed the math sections
and made very helpful suggestions.

Thank you to Ryan LaRose who worked with me on the code sections.
In this emerging field where the code frameworks have only been developed
within the last few years, solid information and examples can be hard to come
by. Ryan combined great skill in research as well as compiling the information
in succinct forms. Ryan also did a great job on the book’s GitHub site.

Thank you to Ellen Cassidy who did such a professional job proofreading
the text for grammar and consistency of format. Ellen has an eagle eye and
I commend her work to any author. Joe Tricot also did a wonderful job
coordinating the overall process.

Naturally, even with all this help, there will remain items to fix for the next
edition. All remaining errors are mine and I will be posting updates on the
GitHub site and then include fixes in upcoming versions.

Thank you to my parents, David and Aimee Hidary, and my entire wonder-
ful family for their support through this process. It is a great feeling to share
this accomplishment with you.

Navigating this Book

Here are our suggestions to make the best use of this book:
1. University instructors: You can build several different courses with

the material in this book. All code from the book is on the book’s
website. The math chapters have exercises embedded throughout; for
other chapters please consult the online site for coding exercises and
other problem sets.

(a) Course in Quantum Computing for STEM majors:
i. For this course we recommend assigning chapters 1 and 2

as pre-reading for the course and then proceeding chapter
by chapter with the exercises provided on the GitHub site.
Solutions are also available on the site.

ii. If the students do not have sufficient depth in formal linear
algebra and related mathematical tools, Part III forms a strong
basis for a multi-week treatment with exercises.

(b) Course in Quantum Computing for physics graduate students:
i. For this course, we recommend using this book in conjunction

with Mike and Ike (which is the way many of us refer to
Nielsen and Chuang’s excellent textbook [161]) or another
suitable text which covers the theoretical concepts in depth.
We all owe a huge debt of gratitude to Michael Nielsen,
Isaac Chuang and authors of other textbooks over the last
twenty years. We also recommend referring to John Preskill’s
lecture notes as you build your course for advanced physics
students [174]. Our work is meant to be complementary to
Mike and Ike in several respects:
A. This work is more focused on coding. For obvious rea-

sons, books written prior to the past few years could not
have covered the dev tools and Python-based approaches
to quantum computing that now exist.

xviii Navigating this Book

B. This book does not go into the depth that Mike and Ike
does on information theoretic concepts.

C. This book’s mathematical tools section has a more de-
tailed ramp-up for those students who may not have taken
a rigorous linear algebra course. The short summaries
of linear algebra and other requisite math tools in other
textbooks on quantum mechanics are often insufficient
in our experience.

ii. We recommend first assigning chapters 1 and 2 as pre-reading.
iii. Next, we suggest covering the chapters on unitary operators,

measurement and quantum circuits with exercises on the
Github site to check knowledge.

iv. We then recommend spending the bulk of the course in Part
II to provide the students with hands-on experience with the
code.

(c) Course in Quantum Computing for CS graduate students:
i. We suggest assigning the first two chapters as pre-reading and

then a review of mathematical tools in Part III. Prior exposure
to only undergraduate linear algebra is typically insufficient
as it was most likely taught without the full formalism.

ii. We then recommend chapters 3 and 4 to build up familiarity
with unitary operators, measurement and complexity classes
in the quantum regime. The instructor can make use of the
review questions and answers on the GitHub site.

iii. The course can then cover the approaches to building a quan-
tum computer followed by all the coding chapters.

Please check the book’s GitHub site to find additional resources
including: code from the book, problem sets, solutions, links to
videos and other pedagogical resources.

2. Physicists: For physicists who specialize in fields outside of quantum
computing and wish to ramp up quickly in this area, we recommend
reading the brief history of QC as we provide more detail than typi-
cal treatments, then the survey of quantum hardware followed by the
applications in the second part of the book.

3. Software engineers: We recommend starting with the opening two chap-
ters, then reviewing the toolkits in Part III. We then suggest returning
to the treatment of qubits and unitary operators in Part I and proceeding
from there.

Navigating this Book xix

4. Engineering and business leaders: For readers who will not be doing

adventurous may want to work through some of the code examples to
get a tangible feel for the algorithms.

5. Independent study: This book can easily be used as a text for indepen-
dent study. We recommend combining it with online resources. Please
consult the GitHub site for an updated list of resources:

http://www.github.com/jackhidary/
quantumcomputingbook

We recommend first assessing your current fluency on the core tools in
Part III; there are numerous self-tests throughout the section that can be
used for this purpose. The reader can then proceed to Part I.
For those with a strong background in quantum mechanics and/or
information theory we recommend looking up the papers referenced

before proceeding to Part II: Hardware and Applications.
Please consult the book’s GitHub site to find a range of resources includ-
ing: code from the book, problem sets, solutions, links to videos and other
pedagogical resources.

hands-on coding, we recommend focusing on chapters 1-4. The more

in chapters 2-4 to gain a deeper understanding of the state of the field

http://www.github.com/jackhidary/quantumcomputingbook
http://www.github.com/jackhidary/quantumcomputingbook

Part I

Foundations

CHAPTER

1
Superposition, Entanglement and
Reversibility

What is a quantum computer? The answer to this question encompasses
quantum mechanics (QM), quantum information theory (QIT) and computer
science (CS).

For our purposes, we will focus on the core of what makes a quantum
computer distinct from classical computers.

1.1 Quantum Computer Definition

A quantum computer is a device that leverages specific properties de-
scribed by quantum mechanics to perform computation.

Every classical (that is, non-quantum) computer can be described by quantum
mechanics since quantum mechanics is the basis of the physical universe.
However, a classical computer does not take advantage of the specific proper-
ties and states that quantum mechanics affords us in doing its calculations.

To delve into the specific properties we use in quantum computers, let us
first discuss a few key concepts of quantum mechanics:
� How do we represent the superposition of states in a quantum system?
� What is entanglement?
� What is the connection between reversibility, computation and physical

systems?
We will be using Dirac notation, linear algebra and other tools extensively

in this text; readers are encouraged to refer to the math chapters later in this
work to review as needed.

According to the principles of quantum mechanics, systems are set to a
definite state only once they are measured. Before a measurement, systems

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019

J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0_1

3

https://doi.org/10.1007/978-3-030-23922-0_1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23922-0_1&domain=pdf

4 CHAPTER 1 Superposition, Entanglement and Reversibility

are in an indeterminate state; after we measure them, they are in a definite
state. If we have a system that can take on one of two discrete states when
measured, we can represent the two states in Dirac notation as j0i and j1i. We
can then represent a superposition of states as a linear combination of these
states, such as

1
p
2

j0i C
1

p
2

j1i

1.2 The Superposition Principle

The linear combination of two or more state vectors is another state vector
in the same Hilbert spacea and describes another state of the system.

aSee Part III for a treatment of Hilbert spaces

As an example, let us consider a property of light that illustrates a super-
position of states. Light has an intrinsic property called polarization which
we can use to illustrate a superposition of states. In almost all of the light
we see in everyday life — from the sun, for example — there is no preferred
direction for the polarization. Polarization states can be selected by means
of a polarizing filter, a thin film with an axis that only allows light with
polarization parallel to that axis to pass through.

With a single polarizing filter, we can select one polarization of light,
for example vertical polarization, which we can denote as j"i. Horizontal
polarization, which we can denote as j!i, is an orthogonal state to vertical
polarization1. Together, these states form a basis for any polarization of light.
That is, any polarization state j i can be written as linear combination of
these states. We use the Greek letter to denote the state of the system

j i D ˛ j"i C ˇ j!i

The coefficients ˛ and ˇ are complex numbers known as amplitudes. The
coefficient ˛ is associated with vertical polarization and the coefficient ˇ is
associated with horizontal polarization. These have an important interpretation
in quantum mechanics which we will see shortly.

After selecting vertical polarization with a polarizing filter, we can then
introduce a second polarizing filter after the first. Imagine we oriented the

1We could have equally used j0i and j1i to denote the two polarization states; the labels
used in kets are arbitrary.

CHAPTER 1 Superposition, Entanglement and Reversibility 5

axis of the second filter perpendicular to the axis of the first. Would we see
any light get through the second filter?

If you answered no to this question, you would be correct. The horizon-
tal state j!i is orthogonal to the first, so there is no amount of horizontal
polarization after the first vertical filter.

Suppose now we oriented the axis of the second polarizing filter at 45°
(i.e., along the diagonal % between vertical " and horizontal !) to the first
instead of horizontally. Now we ask the same question — would we see any
light get through the second filter?

If you answered no to this question, you may be surprised to find the answer
is yes. We would, in fact, see some amount of light get through the second
filter. How could this be if all light after the first filter has vertical polarization?
The reason is that we can express vertical polarization as a superposition of
diagonal components. That is, letting j%i denote 45° polarization and j-i
denote �45° polarization, we may write

j"i D
1

p
2

j%i C
1

p
2

j-i

As you may expect from geometric intuition, the vertical state consists of
equal parts j%i and j-i.

It is for this reason that we see some amount of light get past the second
filter. Namely, the vertical polarization can be written as a superposition of
states, one of which is precisely the 45° diagonal state j%i we are allowing
through the second filter. Since the j%i state is only one term in the superposi-
tion, not all of the light gets through the filter, but some does. The amount that
gets transmitted is precisely 1=2 in this case. (More formally, the intensity of
the transmitted light is 1=2 that of the incident light.) This value is determined
from the amplitudes of the superposition state by a law known as Born’s rule,
which we now discuss.

Max Born demonstrated in his 1926 paper that the modulus squared
of the amplitude of a state is the probability of that state resulting after
measurement [38]. In this case, since the amplitude is 1p

2
the probability of

obtaining that state is
ˇ̌
ˇ 1p

2

ˇ̌
ˇ2 D 1

2 ; so the probability of measuring the light in
either the vertical or horizontal polarization state is 50%. Note that we chose
an amplitude of 1p

2
in order to normalize the states so that the sum of the

modulus squared of the amplitudes will equal one; this enables us to connect
the amplitudes to probabilities of measurement with the Born rule.

6 CHAPTER 1 Superposition, Entanglement and Reversibility

1.3 The Born rule

In a superposition of states, the modulus squared of the amplitude of a state
is the probability of that state resulting after measurement. Furthermore,
the sum of the squares of the amplitudes of all possible states in the
superposition is equal to 1. So, for the state j i D ˛j0i C ˇj1i, we have

j˛j2 C jˇj2 D 1:

While in the polarization example above we have a 50/50 split in proba-
bility for each of two states, if we examined some other physical system it
may have a 75/25 split or some other probability distribution. One critical
difference between classical and quantum mechanics is that amplitudes (not
probabilities) can be complex numbers.

In other words, the coefficients ˛ and ˇ which appear in the statement of
the Born rule can be complex numbers, such as i WD

p
�1 or .1C i/=

p
2. It

is only after we take the square of the modulus of these amplitudes that we
get real numbers, hence actual probabilities. Refer to chapter 11 to review
complex numbers and how to determine the square of the modulus of a
complex number.

As if quantum superposition were not odd enough, QM describes a specific
kind of superposition which stretches our imagination even further: entangle-
ment. In 1935, when Einstein worked with Podolsky and Rosen to publish
their paper on quantum entanglement [75], their aim was to attack the edifice
of QM (this paper is now known as EPR). Even though Einstein earned the
Nobel Prize for his 1905 work on the quantum nature of the photoelectric
effect, he nevertheless railed against the implications of QM until his later
years.

Einstein wrote in 1952 that quantum mechanics appears to him to be
“a system of delusion of an exceedingly intelligent paranoiac concocted of
incoherent elements of thought” [74]. He hoped that the EPR paper would
demonstrate what he perceived to be the deficiencies of QM.

EPR showed that if you take two particles that are entangled with each other
then and then measure one of them, this automatically triggers a correlated
state of the second — even if the two are at a great distance from each other;
this was the seemingly illogical result that EPR hoped to use to show that
QM itself must have a flaw. Ironically, we now consider entanglement to be a
cornerstone of QM. Entanglement occurs when we have a superposition of
states that is not separable. We will put this into a more formal context later
on in this text.

CHAPTER 1 Superposition, Entanglement and Reversibility 7

This "spooky action at a distance" seems at odds with our intuition and
with previous physics. Podolsky, the youngest of the co-authors, reportedly
leaked the paper to the New York Times to highlight this assault on the tower
of QM to the public. The Times ran the story on the front page of the May
4th, 1935 edition with the headline “Einstein Attacks Quantum Theory."

Not only is entanglement accepted as part of standard quantum mechanics,
we shall see later in this work that we can leverage entanglement to perform
novel types of computation and communication. From an information theo-
retic point of view, entanglement is a different way of encoding information.
If we have two particles that are entangled, the information about them is not
encoded locally in each particle, but rather in the correlation of the two.

John Preskill likes to give the analogy of two kinds of books: non-
entangled and entangled [176]. In the regular, non-entangled book we can
read the information on each page as we normally do. In the entangled book,
however, each page contains what appears to be gibberish. The information is
encoded in the correlation of the pages, not in each page alone. This captures
what Schrödinger expressed when he coined the term entanglement:

Another way of expressing the peculiar situation is: the
best possible knowledge of a whole does not necessarily
include the best possible knowledge of all its parts. [196]

Schrödinger further noted that in his opinion entanglement was not just
one of the phenomena described by quantum mechanics,“but rather the char-
acteristic trait of quantum mechanics, the one that enforces its entire departure
from classical lines of thought” [196].

1.4 Entanglement

Two systems are in a special case of quantum mechanical superposition
called entanglement if the measurement of one system is correlated with
the state of the other system in a way that is stronger than correlations
in the classical world. In other words, the states of the two systems are
not separable. We will explore the precise mathematical definitions of
separability and entanglement later in this book.

Now that we have covered two core ideas of quantum mechanics – super-
position and entanglement – let us turn to another fundamental concept that is
not treated as often – the physicality of information. Rolf Landauer opened a
new line of inquiry when he asked the following question:

The search for faster and more compact computing
circuits leads directly to the question: What are the
ultimate physical limitations on the progress in this
direction? ...we can show, or at the very least strongly
suggest, that information processing is inevitably
accompanied by a certain minimum amount of heat
generation. [128]

In other words, is there a lower bound to the energy dissipated in the
process of a basic unit of computation? Due to Landauer and others we
now believe that there is such a limit; this is called Landauer’s bound (LB).
More specifically, the energy cost of erasure of n bits is nkT ln 2 where k
is the Boltzmann constant, T is the temperature in Kelvin of the heat sink
surrounding the computing device and ln 2 is, of course, the natural log of 2
(� 0:69315). This limit is the minimum amount of energy dissipated for an
irreversible computation.

Landauer acknowledged that this minimum is not necessarily the constrain-
ing factor on the energy draw of the system:

It is, of course, apparent that both the thermal noise and
the requirements for energy dissipation are on a scale
which is entirely negligible in present-day computer
components. The dissipation as calculated, however, is
an absolute minimum. [128]

Landauer defined logical irreversibility as a condition in which “the out-
put of a device does not uniquely define the inputs.” He then claimed that
“logical irreversibility...in turn implies physical irreversibility, and the latter
is accompanied by dissipative effects.” This follows from the second law
of thermodynamics which states that the total entropy of a system cannot
decrease and, more specifically, must increase with an irreversible process.
For further background on reversibility, thermodynamics and computation see
Feynman’s Lectures on Computation [84].

In classical computing we make use of irreversible computations. For
example, the Boolean inclusive OR (denoted _) gate has the following truth
table, where 0 denotes “false” and 1 denotes “true”:

X Y X _ Y
0 0 0
0 1 1
1 0 1
1 1 1

8 CHAPTER 1 Superposition, Entanglement and Reversibility

CHAPTER 1 Superposition, Entanglement and Reversibility 9

Note that an output of value 1 cannot be traced uniquely to a set of inputs.
We can arrive at that output through combinations of inputs; the state of the
inputs is lost once we move to the output. This does not violate the conser-
vation of information because the information was converted into dissipative
heat.

The exclusive OR is also irreversible as is the NAND gate, which is univer-
sal for classical computing. NAND stands for “NOT AND” and is the inverse
of the Boolean AND operator. Verify for yourself that NAND is irreversible
by examining its truth table:

X Y X " Y
0 0 1
0 1 1
1 0 1
1 1 0

In quantum computing, we limit ourselves to reversible logical opera-
tions [161, p. 29]. Later in this book we will consider which combinations of
quantum operators are universal. For now, let’s focus on the requirement in
quantum computation that we limit our set of operators to reversible gates.

This requirement derives from the nature of irreversible operations: if we
perform an irreversible operation, we have lost information and therefore
a measurement. Our computation cycle then will be done and we can no
longer continue with our program. Instead, by limiting all gates to reversible
operators, we may continue to apply operators to our set of qubits as long
as we can maintain coherence in the system. When we say reversible, we
are assuming a theoretical noiseless quantum computer. In a noisy QC that
decoheres, we cannot, of course, reverse the operation.

1.5 Reversibility of Quantum Computation

All operators used in quantum computation other than for measurement
must be reversible.

In this chapter, we have examined four essential principles of quantum
mechanical systems: superposition, the Born rule, entanglement and reversible
computation. All four are essential to understanding the difference between
classical and quantum computing as we shall see further in the book. We
provide references on this book’s website to a number of resources for those
who wish to deepen their understanding of quantum mechanics.

CHAPTER

2
Our generous universe comes equipped
with the ability to compute.

—Dave Bacon [19]

A Brief History of Quantum
Computing

The possibility that we can leverage quantum mechanics to do computation
in new and interesting ways has been hiding in plain sight since the field’s
early days; the principles of superposition and entanglement can form the
basis of a very powerful form of computation. The trick is to build such a
system that we can easily manipulate and measure.

While Richard Feynman is often credited with the conception of quantum
computers, there were several researchers who anticipated this idea. In 1979,
Paul Benioff, a young physicist at Argonne National Labs, submitted a pa-
per entitled “The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing ma-
chines” [23].1 In this paper, Benioff demonstrated the theoretical basis for
quantum computing and then suggested that such a computer could be built:

That is, the whole computation process is described
by a pure state evolving under the action of a given
Hamiltonian. Thus all the component parts of the
Turing machine are described by states which have a
definite phase relation to one another as the calculation
progresses...The existence of such models at least
suggests that the possibility of actually constructing such
coherent machines should be examined.

Yuri Manin also laid out the core idea of quantum computing in his 1980
book Computable and Non-Computable [140]. The book was written in
Russian, however, and only translated years later.

1Note: Benioff completed and submitted the paper in 1979. It was published in the
following year, 1980.

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019

J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0_2

11

https://doi.org/10.1007/978-3-030-23922-0_2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23922-0_2&domain=pdf

12 CHAPTER 2 A Brief History of Quantum Computing

In 1981, Feynman gave a lecture entitled “Simulating Physics with Com-
puters” [83].2 In this talk, he argued that a classical system could not ade-
quately represent a quantum mechanical system:

...nature isn’t classical, dammit, and if you want to make
a simulation of nature, you’d better make it quantum
mechanical, and by golly it’s a wonderful problem,
because it doesn’t look so easy...

He then set out the features that a quantum computer should have to be
useful. At the time of this lecture, however, it was unclear to Feynman and
the physics community how one could build such a machine.

Once Benioff, Manin and Feynman opened the doors, researchers began
to investigate the nature of the algorithms that could be run on QCs. David
Deutsch, a physicist at Oxford, suggested a more comprehensive framework
for quantum computing in his 1985 paper [65]. In this work, he describes in
detail what a quantum algorithm would look like and anticipates that “one
day it will become technologically possible to build quantum computers.”

Deutsch then went on to develop an example of an algorithm that would
run faster on a quantum computer. He then further generalized this algorithm
in collaboration with Richard Jozsa [67]. We will cover these and the other
algorithms in more detail with code examples later on in this text.

In computer science and quantum computing, it is often important to
evaluate how efficient an algorithm is — that is, how many steps would it take
to run such an algorithm. We use big-O notation to represent the upper bound
of the worst case of running an algorithm. The O in big-O notation comes
from the “order” of the algorithm. We use big-� (Omega) notation to indicate
the lower bound of the worst-case scenario. So, while Deutsch’s problem
takes at worst O.n/ steps to solve on a classical computer, Deutsch-Jozsa’s
algorithm solves the problem in one step on a quantum computer. Big-O
notation will be helpful throughout this book in illuminating the difference
between the classical and quantum algorithms.

Umesh Vazirani and his student Ethan Bernstein picked up where Deutsch
and Jozsa left off. In 1993, Bernstein and Vazirani (BV) published a paper
which described an algorithm that showed clear quantum-classical separation
even when small errors are allowed [29]. Why is this significant? While
Deutsch-Jozsa demonstrated a deterministic quantum advantage, if small
errors are allowed in the computation, both classical and quantum versions

2Note: Feynman gave his lecture in 1981 and submitted the lecture for publication in May
of 1981. The lecture was published by IJTP in 1982.

CHAPTER 2 A Brief History of Quantum Computing 13

can be run at worst in O.1/ steps, showing no separation. By contrast, the
Bernstein-Vazirani (BV) algorithm demonstrates separation even when small
errors are allowed, thus showing non-deterministic quantum advantage. The
problem posed in BV can be solved in O.n/ time on a classical computer and
in O.1/ using the BV circuit on a quantum computer.

BV made a further contribution in their 1993 paper. They described a
quantum version of the Fourier transform. This quantum Fourier transform
(QFT) would serve as a critical component for Peter Shor when he developed
his algorithm to factor large numbers.

The work of BV was quickly followed by Daniel Simon, then a postdoc at
the University of Montreal, in 1994. Simon outlined a problem that a quantum
computer would clearly solve exponentially faster than a classical one [203].
To be more specific, Simon’s algorithm has an upper bound of O.n/ on a
quantum computer, but a higher �.2n=2/ on a classical computer. Since
the lower bound on the classical computer is of higher order than the upper
bound on the quantum computer, there is a clear demonstration of quantum
advantage.

Just prior to Daniel Simon’s work on algorithms, Seth Lloyd, working
at Los Alamos, published a paper in Science which described a method of
building a working quantum computer [136]. He proposed that a system
sending pulses into a unit can represent a quantum state:

Arrays of pulsed, weakly coupled quantum systems
provide a potentially realizable basis for quantum
computation. The basic unit in the array could be a
quantum dot, a nuclear spin, a localized electronic state
in a polymer, or any multistate quantum system that
interacts locally with its neighbors and can be compelled
to switch between states with resonant pulses of light.

Lloyd realized that:

The proposed device is capable of purely quantum-
mechanical information-processing capacities above
and beyond the conventional digital capacities already
presented. One of the most important of these capacities
is that bits can be placed in superpositions of 0 and 1 by
the simple application of pulses at the proper resonant
frequencies but at a length different from that required to
fully switch the bit. Such bits have a number of uses,
including the generation of random numbers.

14 CHAPTER 2 A Brief History of Quantum Computing

This was the first practical approach to a working QC. It is interesting
that Lloyd noted the possible use case of generating random numbers from
a quantum system; this has been a topic of recent research in the quantum
computing community. See, for example. [107] and [1].

Enter Peter Shor. In 1994, Shor was a researcher in the mathematical
division of Bell Labs in New Jersey. Shor studied the work of Deutsch,
BV and Simon and realized he could construct an algorithm for factoring
large numbers into two prime factors; factoring large numbers is believed to
be intractable on a classical computer, but Shor’s factoring algorithm runs
quickly on a QC. Factoring large numbers is, of course, the intentionally hard
problem at the core of public key cryptography (PKC) as implemented in the
RSA algorithm[188], the kind of cryptography that is the basis of almost all
communications today over the internet. This includes securely sending credit
card numbers, bank payments and ensuring the security of online messaging
systems.

RSA-based cryptography depends on the one-way hardness of the factoring
of large numbers into two prime factors. Producing the large number is easy;
we just multiply the two factors. Given an arbitrarily large number, however,
it is exponentially difficult to find its two prime factors.

Inspired by Simon, Shor realized that we can use a QC to solve another
problem that is equivalent to the factoring problem; the factoring problem is
in fact equivalent to the period-finding problem which Simon had tackled in
his paper [200]. He also realized that the QFT described by BV was exactly
what he needed to set up the amplitudes of each qubit prior to measurement
so that the measurement would yield the answer needed from the quantum
computation with high probability.

Shor’s breakthrough led more researchers to work on quantum algorithms
since it then became clear that QCs, if built, would be quite powerful. In fact,
Shor’s algorithm is one of the first to have been demonstrated on early QC
physical systems. In 2001, Isaac Chuang et al. implemented Shor’s algorithm
on a nuclear magnetic resonance (NMR) system to factor the number 15 as a
demonstration [219].

After Shor, Lov Grover contributed to the quantum algorithm arsenal by
demonstrating that one can achieve some speedup in a search algorithm on a
QC [98]. Grover’s algorithm only achieves quadratic speedup, not exponential
speedup (as Shor’s does), but this is still significant. Quadratic speedup means
that if an algorithm would take O.N/ steps on a classical computer, we
can achieve the same goal in O.

p
N/ steps on a QC. A few months after

Grover’s paper in May of 1996, Farhi and Gutmann laid out the framework

CHAPTER 2 A Brief History of Quantum Computing 15

for a continuous time Hamiltonian version of Grover’s algorithm [80]. This
introduced the concept of Hamiltonian oracles and the idea of implementing
continuous time models of quantum computation which are different than
gate-based approaches.

As one set of researchers were making progress in identifying algorithms
that would run on a quantum computer with speedup over classical computers,
others were making progress on the physical implementation of a QC. In 1999-
2001, Yasunobu Nakamura built and demonstrated a functioning, controllable
superconducting qubit [157, 158]. Nakamura used Josephson junctions to
create a two-level system that the user could manipulate between its two states.
We will discuss processors based on superconducting qubits in chapter 5.

Another approach to implementing a quantum computer is to trap and
manipulate ions. In 1995, Cirac and Zoller proposed an ion trap as the
physical system to perform quantum computation [59]. In this setup, lasers
are used to ionize atoms which are then trapped in electric potentials. We will
cover ion trap quantum computers in chapter 5 as well.

As the activity in the quantum computing field began to rise, researchers in
the field formalized what constituted a quantum computer and computation. In
1996, David DiVincenzo outlined the key criteria of a quantum computer [69]
in this manner:3

1. A scalable physical system with qubits that are distinct from one another
and the ability to count exactly how many qubits there are in the system
(no fudging allowed). The system can be accurately represented by a
Hilbert space.

2. The ability to initialize the state of any qubit to a definite state in the
computational basis. For example, setting all qubits to state j0i if the
computational basis vectors are j0i and j1i.

3. The system’s qubits must be able to hold their state. This means that the
system must be isolated from the outside world, otherwise the qubits
will decohere. Some decay of state is allowed (�, where � is a small
quantity). In practice, the system’s qubits must hold their state long
enough to apply the next operator with assurance that the qubits have
not changed state due to outside influences between operations.

4. The system must be able to apply a sequence of unitary operators to the
qubit states. The system must also be able to apply a unitary operator
to two qubits at once. This entails entanglement between those qubits.
As DiVincenzo states in his paper, “...entanglement between different

3Note that we are summarizing DiVincenzo’s criteria from his original 1996 paper. See [70]
for another version of his criteria.

16 CHAPTER 2 A Brief History of Quantum Computing

parts of the quantum computer is good; entanglement between the
quantum computer and its environment is bad, since it corresponds to
decoherence” [69, p. 4].

5. The system is capable of making “strong” measurements of each qubit.
By strong measurement, DiVincenzo means that the measurement says
“which orthogonal eigenstate of some particular Hermitian operator
the quantum state belongs to, while at the same time projecting the
wavefunction of the system irreversibly into the corresponding eigen-
function.” This means that the measuring technique in the system
actually does measure the state of the qubit for the property being mea-
sured and leaves the qubit in that state. DiVincenzo wants to prevent
systems that have weak measurement, in other words, measuring tech-
niques that do not couple with the qubit sufficiently to render it in that
newly measured state. At the time he wrote the paper, many systems
did not have sufficient coupling to guarantee projection into the new
state.

In upcoming chapters, we will explore in further detail the various methods
to physically construct a quantum computer and how to program them once
built. Let’s now turn our attention to qubits and the operators we use in
quantum computation.

CHAPTER

3
Qubits, Operators and
Measurement

In this chapter we will cover qubits and the core set of operators we use to
manipulate the state of qubits.

A qubit is a quantum bit. A qubit is similar to a classical bit in that it can
take on 0 or 1 as states, but it differs from a bit in that it can also take on a
continuous range of values representing a superposition of states. In this text
we will use qubit to refer to quantum bits and the word bit to refer to classical
bits.

While in general we use two-level qubit systems to build quantum comput-
ers we can also choose other types of computing architectures. For example,
we could build a QC with qutrits which are three-level systems. We can think
of these as having states of 0, 1 or 2 or a superposition of these states.

The more general term for such a unit is qudit; qubits and qutrits are
specific instances of qudits which can be computing units of any number of
states. The Siddiqi Lab at UC Berkeley, for example, has designed a qutrit-
based QC [34]. In a qutrit system we can represent more states than a qubit
system with the same number of computational units.

A qubit system of say 100 qubits can handle 2100 states (1:26765EC30),
while a qutrit system can handle 3100 states (5:15378EC47), a number which
is 17 orders of magnitude larger. Put another way, to represent the same
number space as a 100 qubit system, we only need � 63 qutrits (log3.2

100/).
Since it is more difficult to build qutrit systems, the mainstream QCs are
currently based on qubits. Whether we choose qubits, qutrits or some other

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019

J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0_3

17

https://doi.org/10.1007/978-3-030-23922-0_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23922-0_3&domain=pdf

18 CHAPTER 3 Qubits, Operators and Measurement

qudit number, each of these systems can run any algorithm that the others can,
i.e., they can simulate each other.1

In QM we represent states as vectors, operators as matrices and we use
Dirac notation instead of traditional linear algebra symbols to represent vectors
and other abstractions. Chapter 11 contains a review of linear algebra, Dirac
notation and other mathematical tools that are crucial for our inquiry in this
book. In this chapter we will assume knowledge of these mathematical tools;
we encourage the reader to use the math chapters to review these concepts in
the context of quantum computing.

Let us begin with the definition of a qubit:

3.1 What is a Qubit?

A physical qubit is a two-level quantum mechanical system. As we will
see in the chapter on building quantum computers, there are many ways to
construct a physical qubit. We can represent a qubit as a two-dimensional
complex Hilbert space, C2. The state of the qubit at any given time can
be represented by a vector in this complex Hilbert space.

The Hilbert space is equipped with the inner product which allows us to
determine the relative position of two vectors representing qubit states. We
denote the inner product of vectors jui, jvi as hujvi ; this will equal 0 if jui
and jvi are orthogonal and 1 if jui = jvi. To represent two or more qubits we
can tensor product Hilbert spaces together to represent the combined states of
the qubits. As we shall see, we have methods to represent separable states,
where the qubits are independent of one another, and entangled states such as
a Bell state, where we cannot separate the two qubit states.

We can represent the states j0i and j1i with vectors as shown below. We
call these two the computational basis of a two-level system. We can then
apply operators in the form of matrices to the vectors in the state space.

j0i D
�

1

0

�
; j1i D

�
0

1

�

1Note that we could consider the same question in classical systems, i.e., we could have
used a 3-state “trit” instead of the bit, but we choose to use bits as there are distinct advantages
to the binary system.

CHAPTER 3 Qubits, Operators and Measurement 19

3.2 Quantum Operators

In gate-based quantum computers, the operators which we use to evolve
the state of the qubits are unitary and therefore reversible. Some of the
operators are unitary, reversible and involutive (i.e., they are their own
inverses); others are not involutive. A measurable quantity, or observable,
is a Hermitian operator; thus the measurement in a quantum computer
outputs real values from the system. We use the terms operators and gates
interchangeably.

In addition to an inner product of two vectors, linear algebra gives us the
outer product. This is when we take two vectors and form a matrix (whereas
an inner product gives us a scalar). If we take the outer product j0ih0j, for
example, we produce the following operator

j0ih0j D

✓
1

0

◆ �
1 0

�
D

✓
1 0

0 0

◆

Similarly, we can take the outer product of the other three combinations to
produce these matrices

j0ih1j D

✓
1

0

◆ �
0 1

�
D

✓
0 1

0 0

◆

j1ih0j D

✓
0

1

◆ �
1 0

�
D

✓
0 0

1 0

◆

j1ih1j D

✓
0

1

◆ �
0 1

�
D

✓
0 0

0 1

◆

We can take the sum of two of these matrices to form a unitary matrix, like
so

j0ih1j C j1ih0j D

✓
0 1

1 0

◆
(3.3)

This, in fact, is the X or NOT operator which we will encounter shortly in
this chapter.

We have established that a qubit can be in one of the computational basis
states of 0 or 1 or in a superposition of these two states. How can we represent
the superposition of multiple states? We can do so as a linear combination of
the computational bases of the state space.

20 CHAPTER 3 Qubits, Operators and Measurement

3.4 Representing Superposition of States

We represent a superposition of states as the linear combination of com-
putational bases of the state space. Each term in the superposition has a
complex coefficient or amplitude.

Using the two computational basis vectors in the case of a single qubit,
two examples of superpositions of states are

jCi WD
1
p
2
.j0i C j1i/

and

j�i WD
1
p
2
.j0i � j1i/

These two states differ by a minus sign on the j1i state. More formally, we
call this difference a relative phase. The term phase has numerous meanings
in physics — in this context, it refers to an angle. The minus sign is related to
the angle � (180°) by Euler’s identity2

ei� D �1

Relative phases are of fundamental importance for quantum algorithms in
that they allow for constructive interference and destructive interference. For
example, if we evaluate the sum of the above states, we obtain

1
p
2
.jCi C j�i/ D

1

2
.j0i C j1i/C

1

2
.j0i � j1i/ D j0i

Here, we say that the amplitudes of the j1i state interfere destructively — the
differing relative phases cause them to sum to zero. On the other hand, the
amplitudes of the j0i state interfere constructively — they have the same sign
(relative phase), so they do not sum to zero, and thus we are left with the state
j0i as the result.

We can also consider subtracting the two superposition states. We leave it
to the reader to verify that

1
p
2
.j�i � jCi/ D �j1i

2For more on Euler’s identity, refer to chapter 13.

CHAPTER 3 Qubits, Operators and Measurement 21

Here, the amplitudes of the j0i state interfere destructively while the ampli-
tudes of the j1i state interfere constructively. In this example, we do not end
up with the j1i state exactly — it is multiplied by a minus sign. As we saw
above, we can interpret this minus sign as an angle (or phase) ei� . Here, it is
applied to the entire state, not just one term in the superposition. We refer to
this type of phase as a global phase.

While it is true that the �j1i state is not exactly the j1i state, we will
see in future chapters that a global phase change has no impact on quantum
measurements. That is, the measurement statistics obtained by measuring the
�j1i state and the j1i state are exactly identical. In this case, we often say
that the two states are equal, up to global phase.

Quantum Circuit Diagrams

We use circuit diagrams to depict quantum circuits. We construct and read
these diagrams from left to right; we can think of circuit diagrams like a staff
of music which we read in the same direction. Barenco et al. set forth a
number of the foundational operators that we use today in QC [22]. Fredkin
and Toffoli [217, 89] added to this set with two ternary operators.

We begin the construction of a quantum circuit diagram with the circuit
wire which we represent as a line

A line with no operator on it implies that the qubit remains in the state in
which it was previously prepared. This means that we are relying on the
quantum computer to maintain the state of the qubit.

We denote the initial prepared state with a ket and label on the left of the
wire

j0i

We denote n number of qubits prepared in that state with a slash n symbol
across the wire.

=n

3.1 Quantum Operators

Let us now turn to the set of commonly used quantum operators. We denote a
single-qubit operator with a box containing the letter representing that operator
straddling the line. We denote a binary gate with an operator box spanning
two quantum wires and spanning three wires for a ternary operator, etc. Note
that we could have chosen a different set of operators to accomplish universal
quantum computation; the set of operators chosen is arbitrary and is sufficient
as long as it meets the test of universality which we will cover later in this
chapter. Here are representations for unary and binary operators

U

U

Unary Operators

Let us now cover the set of one-qubit, or unary, quantum operators. The first
three operators we will examine are the Pauli matrices. These three matrices
along with the identity matrix and all of their˙1 and˙i multiples constitute
what is known as the Pauli group. First, we haveX , which is the NOT operator
(also known as the bit flip operator and can be referred to as �x)

X WD

�
0 1

1 0

�
If we apply X to j0i then we have�

0 1

1 0

��
1

0

�
D

�
0C 0

1C 0

�
D

�
0

1

�
D j1i

We can represent the initial state of a qubit and the operators we apply to
them with a circuit diagram. We use the following symbol to represent the X
operator in circuit diagrams

This is different from the convention of the operator name in a box, which
one may also encounter in circuit diagrams

22 CHAPTER 3 Qubits, Operators and Measurement

SECTION 3.1 Quantum Operators 23

X

As we have seen, we can represent the X operator in ket notation as

X WD j0ih1j C j1ih0j

and the application of the X operator like so:

X jj i D jj ˚ 1i

where j 2 f0; 1g. Here the˚ operation denotes addition modulo-2, and j ˚1
is equivalent to the NOT operation. So if we start with the qubit in state j0i
and apply NOT then we have

j0i j1i

Next we have the Y operator, also denoted �y , which rotates the state
vector about the y axis3.

Y D

�
0 �i

i 0

�
So that if we apply it to the j1i state we have�

0 �i

i 0

��
0

1

�
D

�
0 � i

0C 0

�
D

�
�i

0

�
D �i j0i

The circuit diagram for the Y operator is

Y

And the Z operator, also denoted �z , which rotates the state vector about
the z axis (also called the phase flip operator since it flips it by � radians or
180 degrees)

Z WD

�
1 0

0 �1

�
If we apply Z to the computational basis state we have

Z jj i D .�1/j jj i

or to show this in matrix form for the special case j D 0

3The x, y and z axes in this section refer to representation of the qubit’s state on a Bloch
sphere, which we will cover later in this chapter.

24 CHAPTER 3 Qubits, Operators and Measurement�
1 0

0 �1

��
1

0

�
D

�
1C 0

0C 0

�
D

�
1

0

�
D .�1/0 j0i D j0i

For the case where j D 1 we have�
1 0

0 �1

��
0

1

�
D

�
0C 0

0 � 1

�
D

�
0

�1

�
D .�1/1 j1i D � j1i

Note that we can multiply the bit-flip operator X by the phase-flip operator
Z to yield the Y operator with a global phase shift of i . That is, Y D iXZ.

The circuit diagram for the Z operator is

Z

Next we turn to the more general phase shift operator. When we apply this
operator we leave the state j0i as is and we take the state j1i and rotate it by
the angle (or phase) denoted by ', as specified in the matrix

R' WD

�
1 0

0 ei'

�
So the Pauli Z operator is just a special case of R' where ' D � . Let’s

recall that ei� D �1 by Euler’s identity (see chapter 13) so we can replace
ei� with �1 in the Z matrix. The circuit diagram for the R operator is

R'

Let’s discuss two additional phase shift operators that are special cases of
the R' matrix. First, the S operator, where ' D �=2

S WD

�
1 0

0 i

�
The S operator thus rotates the state about the z-axis by 90°. The circuit
diagram for the S operator is

S

Next let’s turn to the T operator which rotates the state about the z-axis by
45°. If we give ' the value of �=4 then4

4Note that the T gate is also known as the �=8 gate, since if we factor out ei�=8, the
diagonal components each have j'j D �=8, but this is of course the same operator.

SECTION 3.1 Quantum Operators 25

T WD

�
1 0

0 ei�=4

�
Note that S D T 2. In other words, if we apply the T matrix to the vector

representing the state and then apply T again to the resulting vector from
the first operation we have accomplished the same result as applying S once
(45°C 45° D 90°/. The circuit diagram for the T operator is

T

Now let’s turn to the Hadamard operator. This operator is crucial
in quantum computing since it enables us to take a qubit from a def-
inite computational basis state into a superposition of two states. The
Hadamard matrix is

H WD
1
p
2

�
1 1

1 �1

�
It was actually the mathematician John Sylvester who developed this matrix,
but we name it after Jacques Hadamard (see Stigler’s law of eponymy which,
of course, was probably conceived by Merton and others). The circuit diagram
for the H operator is

H

If we apply the Hadamard to state j0i we obtain

1
p
2

�
1 1

1 �1

��
1

0

�
D

1
p
2

�
1C 0

1C 0

�
D

1
p
2

�
1

1

�
D
j0i C j1i
p
2

And to state j1i we have

1
p
2

�
1 1

1 �1

��
0

1

�
D

1
p
2

�
0C 1

0 � 1

�
D

1
p
2

�
1

�1

�
D
j0i � j1i
p
2

So we can see that the H operator takes a computational basis state and
projects it into a superposition of states .j0i C j1i/=

p
2 or .j0i � j1i/=

p
2,

depending on the initial state.
What is the

p
2 doing in this state? Let us recall the Born rule that the

square of the modulus of the amplitudes of a quantum state is the probability
of that state. Furthermore, for all amplitudes ˛, ˇ, etc. of a state

j˛j2 C jˇj2 D 1

That is, the probabilities must sum to one since one of the states will emerge
from the measurement.

26 CHAPTER 3 Qubits, Operators and Measurement

Before moving on to the binary operators, let us define the identity operator
and then determine which operators can be expressed as sequences of other
operators. The identity operator is simply the matrix which maintains the
current state of the qubit. So for one qubit we can use

I WD

�
1 0

0 1

�
Having covered the set of unary operators, we can show the following identi-
ties:

HXH D Z

HZH D X

HYH D �Y

H �
D H

H 2
D I

Please see chapter 14 for a list of additional identities.

Binary Operators

Let us now consider two qubit, or binary, operators. In a two-qubit system,
by convention, we use the following computational basis states:

j00i D

0BB@
1

0

0

0

1CCA ; j01i D
0BB@
0

1

0

0

1CCA ; j10i D
0BB@
0

0

1

0

1CCA ; j11i D
0BB@
0

0

0

1

1CCA
Let us first discuss the SWAP operator. The SWAP takes the state j01i

to j10i and, of course, j10i to j01i. We can represent this operator with the
following matrix

SWAP WD

0BB@
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1CCA
And apply it to a 4-d vector representing the state j01i as follows0BB@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1CCA
0BB@
0

1

0

0

1CCA D
0BB@
0C 0C 0C 0

0C 0C 0C 0

0C 1C 0C 0

0C 0C 0C 0

1CCA D
0BB@
0

0

1

0

1CCA D j10i

SECTION 3.1 Quantum Operators 27

Satisfy yourself that this operator applied to one of the two-qubit computa-
tional basis vectors will have the desired result. For the circuit diagram of the
SWAP operator we use

�

�

Now we come to a critical operator for quantum computing — controlled-
NOT (CNOT). In this binary operator, we identify the first qubit as the control
qubit and the second as the target qubit. If the control qubit is in state j0i then
we do nothing to the target qubit. If, however, the control qubit is in state j1i
then we apply the NOT operator (X) to the target qubit. We use the CNOT
gate to entangle two qubits in the QC. We can represent CNOT with the
following matrix

CNOT WD

0BB@
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1CCA
So, for example, we compute the action of CNOT on the state j10i as follows0BB@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1CCA
0BB@
0

0

1

0

1CCA D
0BB@
0C 0C 0C 0

0C 0C 0C 0

0C 0C 0C 0

0C 0C 1C 0

1CCA D
0BB@
0

0

0

1

1CCA D j11i
And for the circuit diagram, we depict the CNOT in this way

�

Here is an identity connecting the SWAP and CNOT operators:

SWAPij D CNOTijCNOTj iCNOTij

Now let’s turn to another control operator: CZ. Here we have a control
qubit and a target qubit just as with CNOT; however, in this operation if the
control qubit is in state j1i then we will apply the Z operator to the target
qubit. We can represent the CZ operator in a circuit diagram as

�

Z

28 CHAPTER 3 Qubits, Operators and Measurement

and as a matrix

CZ WD

0BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

1CCA
We can represent the CZ operator in circuit diagrams as

�

�

Note that unlike the CNOT gate, the CZ gate is symmetric: we can choose
either qubit as the control or the target and we will end up with the same result.
This is why we can represent the CZ gate with a dot on both circuit wires.

Ternary Operators

We have discussed both unary and binary operators. Now let’s consider the
ternary or 3-qubit operators. First, we have the Toffoli operator, also known
as the CCNOT gate [217]. Just as in the CNOT operator, we have control and
target qubits. In this case, the first two qubits are control and the third is the
target qubit. Both control qubits have to be in state j1i for us to modify the
target qubit. Another way of thinking about this is that the first two qubits (x
and y) have to satisfy the Boolean AND function — if that equals TRUE then
we apply NOT to the target qubit, z. We can represent this action as

.x; y; z/ 7! .x; y; .z ˚ xy//

or, as a matrix, 0BBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

1CCCCCCCCCCA
As an example, we apply this gate to the state j110i

SECTION 3.1 Quantum Operators 290BBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

1CCCCCCCCCCA

0BBBBBBBBBB@

0

0

0

0

0

0

1

0

1CCCCCCCCCCA
D

0BBBBBBBBBB@

0

0

0

0

0

0

0

1

1CCCCCCCCCCA
D j111i

In circuit diagrams, we use the following to denote the Toffoli

�

�

Next, let’s consider the Fredkin gate, also known as the CSWAP gate [89].
When we apply this operator, the first qubit is the control and the other two
are the target qubits. If the first qubit is in state j0i we do nothing and if it is
in state j1i then we SWAP the other two qubits with each other. The matrix
representing this operations is0BBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

1CCCCCCCCCCA
For example, the Fredkin gate applied to j110i gives0BBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

1CCCCCCCCCCA

0BBBBBBBBBB@

0

0

0

0

0

0

1

0

1CCCCCCCCCCA
D

0BBBBBBBBBB@

0

0

0

0

0

1

0

0

1CCCCCCCCCCA
D j101i

In circuit diagrams we use this symbol for the Fredkin operator

30 CHAPTER 3 Qubits, Operators and Measurement

�

�

�

3.2 Comparison with Classical Gates

In classical computing we have a set of commonly used gates: AND, NOT,
OR, NAND, XOR, FANOUT, etc. We can use combinations of these gates
to perform any computation in classical computing. A classical computer
that can run these gates is Turing-complete or universal. In fact, we can
prove that the NAND gate alone is sufficient to construct all other classical
operators [198]. We can construct classical circuits with these basic building
blocks such as a circuit for the half-adder

Figure 3.1: Half-adder in classical computing Source: Wikimedia

We can then build a full-adder from those elements:

Figure 3.2: Full-adder in classical computing Source: Wikimedia

Neither AND, OR, XOR, NAND or FANOUT can be used in quantum
computing. The AND, OR, XOR and NAND gates are not reversible. The

SECTION 3.3 Universality of Quantum Operators 31

FANOUT gate would not be allowed in quantum computing since it involves
the duplication, or cloning, of a state; this would violate the no-cloning
theorem. Of the primary classical gates, only the NOT operator can be used in
the quantum computing regime as it is reversible and does not involve cloning.

3.3 Universality of Quantum Operators

If NAND is universal for classical computing, is there such a gate or set of
gates that are universal for quantum computing? In fact, there are several
combinations of unary and binary operators that lead to universality. No set
of unary gates on their own can achieve universal QC. Two of the gate sets
that yield universality are:

1. The Toffoli gate is universal for QC when paired with a basis-changing
unary operator with real coefficients (such as H) [199].

2. Another set of gates which is universal is fCNOT; T;H g [44, 161].

3.4 Gottesman-Knill and Solovay-Kitaev

The Gottesman-Knill theorem states that circuits built with only Clifford gates
can be simulated efficiently on classical computers assuming the following
conditions:
� state preparation in the computational basis
� measurements in the standard basis
� any classical control conditioned on the measurement outcomes

The Clifford group of operators is generated by the set C D fCNOT; S;H g
[96] [168].

A further theorem that is worth considering at this junction is that of
Solovay-Kitaev. This theorem states that if a set of single-qubit quantum
gates generates a dense subset of SU.2/, which is the special unitary group
of unitary matrices which are 2 x 2, then that set is guaranteed to fill SU.2/
quickly, i.e., it is possible to obtain good approximations to any desired
gate using surprisingly short sequences of gates from the given generating
set [62]. The theorem generalizes to multi-qubit gates and for operators from
SU(d) [62].

A simplified version of this statement is that all finite universal gate sets
can simulate a given gate set to a degree ı of precision. More precisely, if L is
the size of the circuit (i.e., the number of gates) then the approximation L0 of

32 CHAPTER 3 Qubits, Operators and Measurement

L has a bounded number of gates; this can be specified in big-O notation by

L0 D O

✓
L log4

✓
L

ı

◆◆

If D denotes the depth of the circuit, i.e., the number of computational
steps, then the approximationD0 ofD has a bounded depth specified in big-O
notation by

D0 D O

✓
L log4

✓
D

ı

◆◆

So, these expressions demonstrate that the simulation is quite efficient and
better than polynomial time.

3.5 The Bloch Sphere
There are several ways to represent the state of a qubit:

1. We can write out the state in Dirac notation. For example, if we have a
qubit that is prepared in state j0i and then apply the X operator, we will then
find the qubit in state j1i (assuming no outside noise)

X j0i ! j1i

2. We can use the Bloch sphere to represent the state of a single qubit. Any
state in a quantum computation can be represented as a vector that begins at
the origin and terminates on the surface of the unit Bloch sphere. By applying
unitary operators to the state vectors, we can move the state around the sphere.
We take as convention that the two antipodes of the sphere are j0i on the top
of the sphere and j1i on the bottom.

As we can see in Figure 3.3, one of the advantages of visualization with
the Bloch sphere is that we can represent superposition states such as

j0i C j1i
p
2

as we see at the X axis. We can also differentiate between states that contain
different phases as is shown in the states along the X and Y axes.

Let us return to computational universality which we treated above. Now
that we have introduced the Bloch sphere, another way to think about a set of
gates that satisfies universal computation is one which enables us to reach any
point on the Bloch sphere.

SECTION 3.6 The Measurement Postulate 33

Figure 3.3: The Bloch sphere Source: [93]

For interactive visualizations of qubits on the Bloch sphere, see the book’s
online website. Now that we have covered the main unitary operators which
we use in QC, let’s turn to the measurement of the QC’s state.

3.6 The Measurement Postulate

Measurement in classical physics is a seemingly straightforward process. The
act of measurement is assumed to have no effect on the item that we are
measuring. Furthermore, we have the ability to measure one property of a
system, get a reading, then measure another property and be confident that
the first property measured still retains its observed value. Not so in quantum
mechanics; in this regime, the act of measurement has a profound effect on
the observation.

Building on the principles of quantum mechanics, we can state the mea-
surement postulate as:

3.5 Measurement Postulate

Every measurable physical quantity, o, is described by a corresponding
Hermitian operator, O , acting on the state ‰.

According to this postulate, there exists a Hermitian operator, which
we call an observable, associated with each property. So, for example, the
observable Ox is associated with the position of a particle.

We recall that a Hermitian operator is equal to its adjoint (which is its
complex conjugate transpose). If O is Hermitian then we can state that
O D O� (see chapter 12 for more discussion on Hermitians).

34 CHAPTER 3 Qubits, Operators and Measurement

Hermitian operators have the desirable property that their eigenvalues
are guaranteed to be real numbers. When measuring a physical system for
properties such as momentum or position we need to specify a real number.

Each possible outcome of the measurement is an eigenvalue, �; of the
observable and is characterized by jP j i j2 where P is the projector onto
the eigenspace of the observable. Since we normalize the vectors, the state
after measurement is represented by a unit eigenvector of the observable with
eigenvalue �i .

We discussed earlier how a system can be in a superposition of two or
more states. We can represent this as a linear combination of the orthonormal
basis vectors. For example,

j‰i D
1
p
2
j0i C

1
p
2
j1i

This leads to the question of how we can set up the measurement in such
a way as to obtain the output we require. This in turn is dependent on the
amplitudes of each state since, as discussed previously, the square of the
modulus of the amplitude is the probability of that state appearing as the
output upon measurement (Born’s rule).

We can represent a measurement in a quantum circuit like this:

Now that we have our unitary and measurement operators, we will con-
struct some basic quantum circuits. Let’s figure out what this one does:

j0i H �

j0i

We start with two qubits, let’s call them q0 and q1, each prepared in
state j0i. We then apply the Hadamard operator to q0 which puts it into the
superposition of states

jq0i D
1
p
2
j0i C

1
p
2
j1i

We then apply a CNOT across q0 and q1. This entangles the two qubits so
we now have the combined, non-separable state of the two qubits of

1
p
2
j00i C

1
p
2
j11i

We have thus created a Bell state, or an EPR pair. We then measure q0 with a
50/50 chance of finding a 0 or a 1 value for the real-valued output.

SECTION 3.7 Computation-in-Place 35

3.7 Computation-in-Place
We can depict the circuit in a 3-dimensional manner as in Figure 3.4. Here
you can see the qubits beginning in a prepared state followed by a Hadamard
step to put them all into a superposition; then they undergo a series of one and
two-qubit operations such as X , Y , T and CZ. Measurement is then applied
in the final step.

In this diagram, we see a crucial difference between classical and quantum
computing.

Figure 3.4: 3-D Quantum circuit diagram Source: Google

3.6 Computation-in-Place

In most forms of gate-based quantum computing, the information is rep-
resented in the states of the qubits as they evolve over time with the
successive application of unitary operators.

Computation-in-place is in stark contrast to classical computing, where we
shuttle data around the processor to various memory and calculation registers.
In most forms of quantum computers, all processing takes place on the qubits
themselves. After measurement in a QC we output real-valued bits which
we can share with the CPU that is controlling the quantum processor and, if
necessary, incorporate in further processing on classical machines.

36 CHAPTER 3 Qubits, Operators and Measurement

We now come to one of the key questions in quantum computing: if
measurement is based on the modulus squared of the amplitude of each qubit
state, then how can we pre-determine which of the qubits will be the output?
Deutsch, Jozsa, Bernstein, Vazirani, Shor and others realized that we can
influence the output by setting up the amplitudes prior to measurement to
favor the output we need for that computational task.

One method for accomplishing this goal is the quantum Fourier transform
(QFT – not to be confused with quantum field theory!). By applying a QFT
across all qubits prior to measurement, we can obtain phase information upon
measurement instead of amplitude information.

The QFT is an efficient process on a quantum computer: the discrete
Fourier transform on 2n amplitudes only takes O.n2/ applications of
Hadamard and phase-shift operators (where n is the number of qubits). We
will cover the QFT in greater detail later in this text.

Here we display the circuit for QFT for n D 4:

jx1i H R�=2 R�=4 R�=8

jx2i � H R�=2 R�=4

jx3i � � H R�=2

jx4i � � � H

Before we turn our attention to quantum hardware, let’s delve into com-
putational complexity in the next chapter. This will give us the foundation to
understand which sorts of problems are appropriate for a quantum computer.

CHAPTER

4
If you take just one piece of information from
this blog: Quantum computers would not
solve hard search problems instantaneously
by simply trying all the possible solutions at
once.

—Scott Aaronson

Complexity Theory

Since quantum computing offers an alternative approach to computation, it is
logical to consider which classes of problems are now tractable in this new
regime that were not thought to be tractable in a classical framework. To do
so, let’s consider a range of problem classes.

4.1 Problems vs. Algorithms

Let us first clarify the difference between computational problems (or tasks),
algorithms and programs. Here is an example of a computational problem:

Given a data set of n numbers, sort the numbers in
increasing numerical order.

We can then analyze several different algorithms to solve this problem:
quicksort, merge sort, insertion sort and others. An algorithm is a hardware-
independent method of solving a computational problem. We generally try to
find algorithms that can solve a problem efficiently. A program is a particular
implementation of an algorithm in a given coding language.

Analysis of algorithms is the study of the resources that an algorithm needs
to run.1 We can bucket algorithms into different computational orders both
in time (number of steps) and space (amount of memory). Computational
complexity theory, by contrast, is the study of classes of problems; we will
define a number of important problem classes below.

1Note: It is common to refer to the analysis of the time and memory resource requirements
of an algorithm as the time and space complexity of the algorithm. Although the strict
definition of "complexity" would only apply to computational problems, the usage is sufficiently
widespread that we will occasionally use complexity in the context of algorithms as well.

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019

J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0_4

37

https://doi.org/10.1007/978-3-030-23922-0_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23922-0_4&domain=pdf

38 CHAPTER 4 Complexity Theory

When defining complexity classes we focus on decision problems; these
are mathematical problems that can be answered with a binary yes/no response
given an input. Examples of decision problems include:

Given x, is x a prime number?
Given x and y, does y divide x evenly?

Complexity analysis for a decision problem determines the computational
resources needed to deliver an answer. We generally look at the characteristics
of the worst-case scenario for this determination.

4.2 Time Complexity

As we discussed in an earlier chapter, we can use big-O notation to denote
the upper bound of the worst case of a problem. For example, if we have a
series of items that we want to sort, the big-O time complexity will depend
on which algorithm we choose to sort the items. Here are some complexity
orders of common sorting algorithms:

� Insertion sort: O.n2/
� Mergesort: O.n log.n//
� Timsort: O.n log.n//

These differences can be significant if n is large. When analyzing algo-
rithms for the computational resources needed to run them, we are performing
asymptotic analysis; in other words, what resources will be needed as the
input, n, gets very large. Refer to Figure 4.1 for a plot of common big-O time
computational orders.

In addition to big-O notation which designates the upper bound on the
worst case computational order for that algorithm, we can consider big-�
(Omega) notation which designates the lower bound of the worst case compu-
tational order. Adding now to the list above we can compare lower and upper
bounds for the computational resources needed for these sorting algorithms:

� Insertion sort: �.n/, O.n2/
� Mergesort: �.n log.n//, O.n log.n//
� Timsort: �.n/, O.n log.n//

SECTION 4.2 Time Complexity 39

Figure 4.1: Big-O time complexity chart Source: [15]

We see that the lower bound for insertion sort and timsort are significantly
better than their upper bound. However, since we have to plan for the upper
bound, we generally focus on the big-O complexity.

There is a third metric we use for cases in which the upper bound (big-O)
and the lower bound (big-�) of the worst-case match. For these algorithms
we can describe their big-‚ computational order, which is both their big-O
and their big-� since they match.

To use more formal notation, we say that a function f .n/ (which could
represent the time necessary to run an algorithm for an input of size n) is on
the order of a function g.n/ (which could represent the time necessary to run
a different algorithm given n inputs) if and only if the limit superior of the
absolute value of the quotient of f .n/ and g.n/ is finite as n tends to infinity.

In symbols

f .n/ D O.g.n// if and only if lim sup
n!1

ˇ̌̌̌
f .n/

g.n/

ˇ̌̌̌
<1

In this expression, lim sup is the limit superior or supremum limit. Following
Hardy and Littlewood [102] and as described by Knuth [121], we state that

f .n/ D �.g.n// iff g.n/ D O.f .n//

PSPACE and related classes
Source: Wikimedia

40 CHAPTER 4 Complexity Theory

and

f .n/ D ‚.g.n// iff f .n/ D O.g.n// and f .n/ D �.g.n//

There are two more notations called little-o and little-!. Little-o provides
a strict upper bound (equality condition is removed from big-O) and little-!
provides a strict lower bound (equality condition removed from big-�).

4.3 Complexity Classes
Let us first define a number of common complexity classes from classical
computing:

P – Polynomial time: problems that can be solved in polynomial time.
In other words, the problem can be solved in a reasonable amount of time
on a classical computer. Problems of O.1/, O.log.n//, O.n/, O.n log.n//,
and O.n2/, as examples, are in class P. Although O.log.n// doesn’t look
polynomial since log.n/ is not a polynomial in n, O.log.n// is in P since is it
upper-bounded by O.n2/, which is a polynomial.

NP – Non-deterministic polynomial
time: a problem is in NP if whenever the
answer is "yes," there’s a polynomial-
size witness or proof for the yes-answer,
which a polynomial-time algorithm can
verify. We can imagine a Turing ma-
chine which can switch to a state that is
not determined by its previous state. If
through such a move it happens upon a
correct solution to a problem, this solu-

tion can be verified in polynomial time.
A problem, A, is said to be NP-Complete iff2: (1) A is in NP, and (2) all

NP problems are polynomial-time reducible to A. If we only know (2), and
not necessarily (1), we say A is NP-hard.

2Note: we often abbreviate if and only if as iff throughout the book.

Let’s also introduce the concept of completeness. A problem, G, is said to
be H-complete if it is a part of class H and we can prove that all problems
in class H can be reduced to G. In other words, if we have a subroutine, S,
which when run can solve for problem G, and this subroutine can also solve
for any problem in H, then we can say that all problems in H can be reduced
to G and that G is H-complete.

SECTION 4.3 Complexity Classes 41

Figure 4.2: Complexity classes - note: it is not yet proven whether graph isomorphism is in P
or not Source: [2]

One of the seven Clay Mathematics Institute Millennium Problems is the
question of whether the complexity class P is equivalent to the class NP. This
$1 million challenge is the most recently developed of all the Clay prizes and
is most closely tied to computer science; this question is still the subject of
active research.

PSPACE – Polynomial space: This class focuses on memory resources,
not time. PSPACE is the class of decision problems that are solvable by some
algorithm whose total space usage, in all instances, can be upper-bounded by
a polynomial in the instance size. See Figure 4.2 for the position of PSPACE
in the context of other classes.

BPP – Bounded-error probabilistic polynomial time: BPP is a class that
contains P; many believe that BPP = P, but we have not been able to prove
that yet [3, Lecture 4]. BPP is the class of decision problems for which there
exists a polynomial-time randomized algorithm that solves every instance
with a success probability of at least 2=3 (over the choice of random bits).
The core idea of BPP is that sometimes randomized algorithms give us faster

42 CHAPTER 4 Complexity Theory

time results than a deterministic algorithm trying to achieve the same goal.
Problems that are in BPP either have a deterministic algorithm that can run in
polynomial time or have a probabilistic algorithm which will give the wrong
answer to a decision problem no worse than 1=3 of the time.

The bound of 1=3 is not fixed. We can choose any lower bound between 0
and below 1=2 and BPP will not change. The reason is that when run many
times the probability of producing a wrong error each time is low. This is
described by the central limit theorem.

Now let’s consider a range of complexity classes that arise with quantum
computing:

BQP – Bounded-error quantum polynomial time: BQP is the quantum
analogue of the class BPP for classical computation. A decision problem is in
BQP if it can run in polynomial time and yields a correct result with a high
probability. BQP is the primary complexity class we focus on for QC.

As you can see from Figure 4.2, BQP contains problems which are thought
to be intractable in the classical regime but are thought to be tractable in
bounded-error polynomial time for a quantum computer. We say "thought to
be" as it is still not yet proven whether the computational problem of factoring
large numbers, for example, is in P or NP. Although we have no classical
algorithm at the moment that can factor large numbers, this does not mean
such an algorithm does not exist. Thus, complexity theorists are not sure of
the exact position of BQP with respect to P, NP and PSPACE [161].

EQP – Exact quantum polynomial time: this is the set of decision problems
solvable by a quantum circuit that yields the correct answer with a probability
of 1. In other words, this class is the same as BQP except that it must give
the correct answer with probability of 1 instead of having some bounded error
margin [6].

Note that a QC does not render all NP problems tractable; only problems
that have some structure we can exploit can be handled efficiently by a QC. For
example, Shor’s algorithm takes advantage of the periodicity of the function
which then enables us to solve the equivalent problem of factoring a large
number.

QMA – Quantum Merlin-Arthur: QMA is the quantum analogue to the
non-probabilistic class MA. In a Merlin-Arthur (MA) problem, a prover
(Merlin) sends a message to a verifier (Arthur). In the classical complexity
class MA, Arthur can verify the message in polynomial time. Problems that
live in QMA are ones with the following characteristic [37]:

SECTION 4.4 Quantum Computing and the Church-Turing Thesis 43

� If the answer is Yes, then the verifier can verify with probability greater
than 2=3 using a proof that can run in polynomial time on a quantum
computer.

� If the answer is No, then the verifier can reject the proof with a wrong
outcome in no more than 1=3 of the cases.

Table of Classical and Quantum Complexity Classes3

Classical Quantum
P EQP
BPP BQP
NP QMA

4.4 Quantum Computing and the
Church-Turing Thesis

Let us now turn to the relationship between quantum computing and the
Church-Turing thesis. Alonzo Church and Alan Turing developed the initial
conjecture that:

4.1 Church-Turing Thesis (CTT)

If an algorithm can be performed on any piece of hardware (say, a modern
personal computer), then there is an equivalent algorithm for a Universal
Turing Machine (UTM) which performs exactly the same algorithm [161,
p. 5].

This conjecture was then updated take into account the efficiency of the
algorithm. Algorithmic efficiency refers to the quantification of a particular
resource that is used in running the algorithm. It is important in this analysis to
maintain consistency when comparing the efficiency of a set of algorithms; if
we are analyzing the number of steps of one algorithm, we should do so for all
others in the comparison and not switch to the analysis of memory resources,
for example, midway through the analysis. The additional requirement of
running an algorithm efficiently gives us the Strong Church-Turing Thesis
(SCTT):

3Readers interested in this subject should consult the complexity zoo [6].

44 CHAPTER 4 Complexity Theory

4.2 Strong Church-Turing Thesis (SCTT)

Any algorithmic process can be simulated efficiently using a Universal
Turing Machine (UTM) [161, p. 5].

Researchers then realized that there were probably counterexamples to
the SCTT, namely, algorithms that made use of randomness. For example,
Solovay and Strassen demonstrated that an algorithm using randomness could
test for primality of a number [208]. By repeating the algorithm a finite
number of times, one could obtain a correct answer with almost near certainty.

It was later shown that there is an efficient polynomial-time algorithm for
testing primality [8], but historically, it was the initial insight that an algorithm
using randomness could get the task done that led to the refinement of the
SCTT. The SCTT was thus updated to give us the Extended CTT (ECTT):

4.3 Extended Church-Turing Thesis (ECTT)

Any algorithmic process can be simulated efficiently using a Probabilistic
Turing Machine (PTM) [161, p. 6].

Enter quantum computation. QC challenges the ECTT by demonstrating
that it can solve certain problems exponentially faster than a classical computer.
This undermines the ECTT assertion that any UTM or even PTM can simulate
any other computing device in running any given algorithm [10]. We now
arrive at the quantum version of the ECTT, which still stands:

4.4 Quantum Extended Church-Turing Thesis (QECTT)

Any realistic physical computing device can be efficiently simulated by a
fault-tolerant quantum computer.

Now that we have a foundation of quantum operators, circuits and com-
plexity classes, let us explore how to build a physical quantum computer.

Part II

Hardware and Applications

CHAPTER

5
Building a Quantum Computer

Now that we have covered the essential workings of a quantum computer,
let us discuss how we can physically realize these devices. There are many
different architectures and designs of gate-based quantum computers each
with its own pros and cons. In this chapter we will cover the leading paradigms
of quantum computational hardware. Check the book’s online site for updates
as the technology is changing rapidly.1

Each of the architectures below require a set of classical computers for
control of the system. As you can see in Figure 5.1, a superconducting qubit
QC, for example, is controlled by a traditional computer. We develop our
quantum circuit protocols in high-level languages on the classical computer
which can then manipulate the quantum system to apply the operators in the
circuit. Upon measurement, the output of a QC is classical information which
is fed back to the classical computer for readout or further processing.

We can think of the QC portion of a computation as a subroutine in a much
larger computation, much of which may take place in the classical regime. In
the application of Shor’s algorithm, for example, many tasks are performed
by the classical computer and then the hard part – the implementation of the
period-finding algorithm (which is equivalent to prime number factoring) – is
sent out as a subroutine to the QC. This output is then integrated back into the
classical platform.

5.1 Assessing a Quantum Computer

There are many advances occurring in quantum hardware. Here is a useful
checklist to analyze the potential impact of engineering progress in this field:

1Here is the online site: https://github.com/jackhidary/quantumcomputingbook

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019

J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0_5

47

https://github.com/jackhidary/quantumcomputingbook
https://doi.org/10.1007/978-3-030-23922-0_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23922-0_5&domain=pdf

48 CHAPTER 5 Building a Quantum Computer

Figure 5.1: Classical CPU controlling a superconducting quantum computer Source: [169]

1. Universality: The first question to ask about a hardware platform that
is presented as a quantum computer is whether it is Turing-complete,
or universal. The device may be a non-universal annealer, for instance.
We can turn to the DiVincenzo criteria we described in chapter 2 to
aid us in this test. For example, DiVincenzo calls for the qubits to
be individually addressable in a quantum computer. If we have, for
example, a two-level system comprised of an ensemble of atoms, but
where the qubits are not individually addressable, this system would
fail the QC test.

2. Fidelity: While it is tempting to focus on the horse race of the number
of qubits of each platform, we recommend first examining the claims
made on the fidelity of those qubits. Fidelity is a measure of the ability
for a qubit to remain in coherence through a computation; specifically
it is calculated as: 1 - the error rate. When presented with a system, it
is useful to examine the fidelity of the qubits under one and two-qubit
operations. Fidelity is harder to maintain when spanning two qubits
with a CNOT, for example, than when applying single-qubit operators
such as X or Y .

3. Scalability: Is the architecture scalable to 106 qubits and beyond?
While it is of some benefit to create NISQ-regime QCs across a mul-
titude of hardware frameworks at this stage, it is also important to
examine the ability to achieve a fault-tolerant platform in that architec-
ture.

4. Qubits: Once the above questions are considered, we can turn to num-
bers of qubits. Maintaining the simultaneous coherence of larger and

SECTION 5.2 Neutral Atom 49

larger numbers of qubits is a technical challenge. Also, it is important
to look at architecture-specific limitations of the qubits, such as nearest-
neighbor connections. In some platforms, for example, if we operate
on two adjacent qubits, we cannot make use of other adjacent qubits at
the same time due to potential crosstalk.

5. Circuit depth: This refers to how many operations we can implement
before coherence breaks down. A 100,000 qubit computer would be
wonderful, but if it cannot implement more than a few operations before
losing coherence it is of limited value.

6. Logical connectivity: Can we implement two-qubit gates on any pair
of qubits, or only for certain pairs? Limited logical connectivity re-
quires that logical SWAP operations be inserted into our algorithms to
effectively simulate greater connectivity. More operators means more
potential for noise and errors.

7. Cloud access: Is the hardware easily made available over the cloud?
It is unlikely that most organizations will purchase or build their own
QCs. Instead, they will rely on a range of academic and commercial
providers who will provide cloud access. Criteria to consider in this
category include reset time between computations and labor required to
keep the platform available to meet its service level agreement (SLA).

With that introduction, let’s consider the leading QC architectures in
alphabetical order. Please consult this book’s online site for links to additional
papers and updates as they are posted. For additional background on the
approaches outlined in this chapter, please see [126].

5.2 Neutral Atom

Neutral atoms present an intriguing approach to quantum computing. While
trapped-ion research has been going on for some time, several labs have more
recently ramped up their ability to control ensembles of neutral atoms.

To implement a neutral atom system, engineers can set up four laser
beams around the atom ensemble to form a magneto-optical trap (MOT).
Labs typically use either cesium (Cs) or rubidium (Rb) atoms for this work.
By confining the atoms with this quadruple laser system, we can cool the
atoms down to mK temperatures. Now that we have hundreds of millions of
neutral atoms in a reservoir, we can transfer a small number of them into an
addressable array (see Figure 5.2).

50 CHAPTER 5 Building a Quantum Computer

Figure 5.2: A. Diagram of addressing a 5 � 5 � 5 array of neutral atoms. Each addressing
beam can be parallel-translated within 5�s to any line of atoms, so that any site can be put at
their intersection. The addressing beams are circularly polarized, and the 140mG magnetic
field is in the same plane. B.) The relevant part of the ground state energy level structure for
addressing (not to scale) a target atom experiences twice the AC Stark shift of any other atom
(its shift is illustrated by the orange dashed lines), so that, starting in the storage basis, j3; 0i
and j4; 0i, it alone is resonant with !1. After it is transferred to the computation basis, j3; 1i
and j4; 1i, it alone is resonant with !2. Image and caption from [228]

The Lukin Lab at Harvard has made good progress on neutral atom sys-
tems [172, 133]. David Weiss and his group at Penn State have also focused
on neutral atom platforms and have demonstrated a Stern-Gerlach-inspired
neutral atom experiment [228, 238].

Neutral atom systems meet the DiVincenzo criteria for a quantum com-
puter: qubits are individually separable and addressable, they can hold their
state and we can perform a measurement on them. Saffman et al. offers a good
review of implementing gates on a neutral atom system [193]. The challenge
now is to scale such systems. See [232] for a helpful review.

5.3 NMR

Some of the first demonstrations of quantum computation made use of spin
qubits using nuclear magnetic resonance (NMR) devices. Chuang and col-
leagues demonstrated the factoring of the number 15 using Shor’s algorithm in
a liquid-state NMR setup (LSNMR) [219]. While the number 15 is trivial to
factor, it was one of the first demonstrations that quantum principles could be
used in a physically realizable system for computation. Later, researchers ex-
perimented with solid state NMR (SSNMR) using nitrogen-vacancy centered

SECTION 5.4 NV Center-in-Diamond 51

Figure 5.3: Neutral atom system setup Source: [14]

diamonds, which relates to another approach covered in this chapter. While a
number of researchers use NMR platforms to test various QC phenomena, this
platform is unlikely to scale for fault-tolerant quantum computation. We will
need millions of physical qubits (translating to thousands of logical qubits)
for such a device and NMR as currently implemented becomes impractical at
those scales.

5.4 NV Center-in-Diamond

In the nitrogen-vacancy (NV) center-in-diamond approach to QC, two carbon
atoms in the diamond lattice are missing, and one of them is replaced with a
nitrogen ion. The resulting system forms a paramagnetic defect that can act as
a qubit. The qubit state can be manipulated with microwave fields and read out
optically. A number of labs have demonstrated basic NV systems [195, 218].

Instead of doping with nitrogen, several labs have doped with silicon [110,
76]. These and other materials each have their own unique advantages and
disadvantages [53, 122]. For helpful reviews of NV approaches see [55, 71].

Researchers are currently investigating the successful application of a
two-qubit operator on this platform (See [135, 28, 171, 109]).

52 CHAPTER 5 Building a Quantum Computer

Figure 5.4: NV diamond schematic Source: [173]

5.5 Photonics

Photonics can also be used to construct a gate-based quantum computer. Lin-
ear Optics Quantum Computing (LOQC) uses linear optical elements (such
as mirrors, beam splitters and phase shifters) to process quantum informa-
tion [7, 120, 123]. These optical elements preserve the coherence of input
light and hence equivalently apply a unitary transformation on a finite number
of qubits. However, photons do not interact with each other in a vacuum.
They can only interact indirectly via another medium.

In 2001, Knill, Laflamme and Milburn (KLM) [120] presented a method of
implementing scalable quantum computing using single photons, linear optics,
photodetection and post-processing. These elements enable the application
of nonlinear operations solely with linear optical elements [123]. Another
paradigm is the so-called one-way, measurement-based or cluster-state quan-
tum computer (MBQC) [179, 180, 181, 182] which first prepares a highly
entangled multi-particle cluster state. Then, in order to implement a quantum
circuit, one has to perform a sequence of single-qubit projective measure-
ments. Every subsequent measurement choice is driven by the outcome of the
previous measurement.

Arbitrary two-qubit processing requires the equivalent of three consecutive
entangling gates in the circuit model of quantum computing [101] which
is beyond the level of complexity that can be practically constructed and
maintained with free-space quantum optics [143, 52]. Photonic chips can take
advantage of the entire silicon-based infrastructure to miniaturize LOQC and
bring down the cost [201]. Researchers from the University of Bristol, together
with researchers from China’s National University of Defense Technology,
have demonstrated a photonic quantum processor on a silicon photonics chip.
The processor generates two photonic qubits on which it performs arbitrary
two-qubit unitary operations, including arbitrary entangling operations [178].
The quantum processor was fabricated with mature Complementary Metal

SECTION 5.5 Photonics 53

Figure 5.5: Quantum information processing circuits and schematic of the experimental set-up
Source: [178]

Oxide Semiconductor (CMOS) compatible processing and comprises more
than 200 photonic components; the processor was programmed to implement
98 different two-qubit unitary operations with an average quantum process
fidelity of 93:2 ˙ 4:5%.

Semiconductor quantum transistor

The lack of deterministic photon-photon interactions is a challenge for quan-
tum computation in this approach. To deterministically control an optical
signal with a single photon requires strong interactions with quantum memory.
Nanophotonic structures coupled to quantum emitters may offer an attrac-
tive approach to realize single-photon nonlinearities in a compact solid-state
device. Recently, there has been great progress in controlling photons with
solid-state qubits [16, 205, 30], as well as controlling a solid-state qubit with
a photon [212].

Researchers at the University of Maryland and the Joint Quantum Insti-
tute have realized the first single-photon switch and transistor enabled by
solid-state quantum memory using a semiconductor chip [211]. The device
allows one photon to switch other photons, and hence to produce strong and
controlled photon-photon interactions. It consists of a spin qubit strongly
coupled to a nanophotonic cavity (an idea first proposed by Duan and Kim-
ble [72]). They combined a semiconductor membrane with quantum dots;
together they sit in the middle of the array. The array forms a photonic crystal,
which uses the Bragg reflection mechanism where light bounces around a

54 CHAPTER 5 Building a Quantum Computer

trap. That allows the quantum dot to store the information about the photon
with a single electron, which has spin properties. By using this transistor, they
should be able to apply quantum gates to photons. A scalable device suitable
for quantum information processing will require higher efficiencies, as photon
loss constitutes a dominant error source for photonic qubits.

Topological photonic chip

Topological insulators are exotic materials which insulate in their bulk but
conduct on their surface [105, 177]. These states exhibit remarkable properties
such as unidirectional propagation and robustness to noise. Since the discovery
of these phases of matter, several topological effects have been observed using
integrated photonics [138, 167, 240, 229, 99, 183, 100, 32, 153, 239, 54, 162,
134, 125, 221, 220, 244, 33, 154].

Topological photonics is a promising option for scalable quantum comput-
ers since they have the advantage of not requiring strong magnetic fields and
feature intrinsically high-coherence, room-temperature operation and easy
manipulation. Recently, scientists from RMIT University, Australia, in collab-
oration with researchers from the Politecnico di Milano and ETH Zurich, have
developed a topological photonic chip that encodes, processes and transfers
quantum information at a distance [214]. They have used photonic chips
to demonstrate that topological states can undergo quantum interference by
replicating the well known Hong-Ou-Mandel (HOM) experiment with 93.1
˙ 2.8% visibility [112].

5.6 Spin Qubits

Silicon-based spin-qubit technology represents another approach to quantum
computation. If we could construct qubits from common semiconductor mate-
rials, we could scale such a system by leveraging the decades of know-how in
the integrated chip industry. It is difficult, however, to develop a stable, ad-
dressable qubit on the standard CMOS platform. Initial prototypes have been
demonstrated, but it has been challenging to stabilize these qubits for scale-up.
In these early attempts, a pair of quantum dots is placed between the source
and sink in a traditional CMOS setup on a silicon semiconductor substrate.
The entire device is placed in a dilution fridge to bring it down to about 1K;
this is much warmer than the temperature needed for superconducting qubits.
Microwave pulses are then used to apply unitary operators to the qubits [230].

SECTION 5.6 Spin Qubits 55

Figure 5.6: Photonic boundary-state beamsplitter. (A) Illustrative representation of a wave-
guide array implementing stationary topologically boundary states (red shaded regions) that
propagate at the edges of the device. This device is used to confirm that the boundary state
is preserved during the propagation inside the array. (B) Illustrative representation of a
waveguide array implementing a TBS that interferes two topologically boundary states. (C)
Photonic supermodes (eigenvectors) of the arrays at the start and end of the both devices. (D
and E) Band structure (eigenenergies) along the length of the arrays (A and B). The topological
bands (B and D) are highlighted in red, and the bulk bands (A, C, and E) are shaded in blue.
Image and caption from [214]

Figure 5.7: Spin qubit experimental system Source: [145]

56 CHAPTER 5 Building a Quantum Computer

Figure 5.8: Superconducting processors (l to r): Google, IBM, Rigetti Source (l to r): Google,
[113], [241]

Intel, HRL Laboratories, as well as labs at the University of Cambridge,
Delft University of Technology, Harvard, and the University of New South
Wales (UNSW) are working on silicon-based spin qubit approaches.

5.7 Superconducting Qubits

Several groups are building quantum computers with superconducting qubits.
The core design is based on a qubit made from a Cooper pair with a Josephson
junction [42]. Microwave leads are attached to the qubit to control it. By send-
ing specific pulses of microwave frequencies for controlled amounts of time
into the physical qubit, the user can apply the range of unitary operators. The
entire apparatus must be cooled below 10mK to operate. The system is also
shielded from magnetic fields and other factors that could cause decoherence.

The NAS report summarizes the various types of superconducting
qubits [159, page C-1]:

Fixed-frequency versus tunable qubits: Frequency-
tunable qubits can be calibrated and corrected for
qubit frequency variations that arise from variations in
the fabrication process or as a result of device aging.
An advantage is that one microwave tone can control
multiple qubits, a savings in hardware. Gaining this
advantage requires an additional control signal to adjust
the frequency and adds an additional path for noise to
enter the qubit. The two most common qubits in use
today for digital superconducting quantum computing
are the “transmon qubit”, which comes in single-junction
nontunable and two-junction tunable forms, and the “flux

SECTION 5.8 Topological Quantum Computation 57

qubit.”...Both transmon designs are being used in leading
edge efforts.

Static versus tunable coupling: Static coupling
between qubits — for example, by using a capacitor or
an inductor to mediate interaction — is an “always-on”
coupling that is fixed by design. The coupling is turned
“on” by bringing two qubits into resonance, and it is
turned off by detuning the qubits. Yet even in the off
state, there still is a small residual coupling. This tuning
can be further reduced by adding a third object — either
another coupler qubit or a resonator — between the two
qubits. The two qubits are then coupled by adjusting the
qubits and the resonator to the proper frequency.

A number of groups are working on superconducting qubit quantum com-
puters including: Google, IBM, Rigetti, QCI and others (see Figure 5.8)
and [165, 190]. Check this book’s GitHub site for updated information in this
area. Krantz, et al., offer a helpful review of this approach [124].

5.8 Topological Quantum Computation

In addition to the platforms we covered above, there are many other efforts to
build quantum computing devices. The topological approach takes advantage
of the unique properties of anyons. An anyon is a 2-dimensional quasiparticle
which is neither a boson (such as a photon) nor a fermion (such as an electron).
By braiding the pathways of an anyon in 4D spacetime, one can theoretically
create a system for quantum computation which is robust to decohering
effects (see Figure 5.9). This is due to the braided nature of the system —
even if there are a series of small perturbations to the system, the topology
of the system does not change, and therefore it stays coherent and quantum
computation can continue. See Roy and DiVincenzo for more background on
this approach [192].

Alexei Kitaev, then of the Landau Institute of Theoretical Physics, first
proposed the idea of topological quantum computing [119]. Freedman, Kitaev,
et al. then demonstrated that such a topological computer would be Turing
complete [90]. Freedman and others then launched a program at Microsoft to
investigate the physical realization of a topological quantum computer. For a
useful survey, see [127].

58 CHAPTER 5 Building a Quantum Computer

Figure 5.9: Braided anyons for topological computing Source: [204]

5.9 Trapped Ion

Source: [237]

In the trapped-ion approach, ytterbium
atoms (or another element) are ionized
with lasers and trapped in electric po-
tentials to form a line of qubits. An
additional laser is then used to measure
the state of the qubits. Proponents of
trapped-ion systems point to the ability
to run their systems without having to

cool it to mK ranges which is a requirement for a number of other approaches.
Cirac and Zoller did early work in this field [59]. Chris Monroe of the Univer-
sity of Maryland, College Park and Jungsang Kim of Duke University have
been active in this space and reported on several advances [12, 21]. Other
groups include those at NIST [35], Oxford [139], Innsbruck [92], MIT [131]
and ETH [86].

Figure 5.10 details two types of qubits that can be realized in a trapped
ion system: optical qubits and hyperfine qubits. Optical qubits leverage the
difference in energy levels between ground metastable states; hyperfine qubits
distinguish between two different ground states. See [50] and [159] for helpful
reviews of the trapped-ion approach.

SECTION 5.10 Summary 59

Figure 5.10: Qubits in an atomic ion. (a) An optical qubit consists of one of the atomic ground
states and one of the metastable excited states, separated by approx. 1014 to 1015Hz. (b)
A hyperfine qubit consists of two of the ground states, separated by approx. 109 to 1010Hz.
Usually some excited states are used to support qubit manipulation operations. In both cases,
there are other (auxiliary) states in the ground, excited and metastable excited states than
those chosen to represent the qubit. Source: [159, Appendix B]

5.10 Summary

Figure 5.11: Quantum computing roadmap Source: Google

Researchers are pursuing a range of architectures in the quest for a fault-
tolerant, scaled universal quantum computer. This period in quantum com-
puting hardware is probably most akin to the 1940s and 1950s in classical
computing. Research groups today are still figuring out which architecture
will scale and to understand the kinds of problems which can be addressed
with these platforms. Quantum hardware development is likely to move at

60 CHAPTER 5 Building a Quantum Computer

a faster pace as we have the benefit of a global community of academic and
commercial researchers forging ahead.

Figure 5.11 indicates that we are in the NISQ era of 102 to 103 qubits. We
aim to reach >106 qubits in order to build a fully error-corrected quantum
computer. Current quantum error correction techniques require about 1,000
physical qubits for every logical qubit. Since at least a few thousand logical
qubits are needed for Shor’s and other important algorithms, we will have to
be in the 106 to 107 regime to realize this goal.

Now that we have surveyed the various approaches to quantum computing
hardware, let us turn to the QC development platforms and software.

CHAPTER

6
Development Libraries for
Quantum Computer
Programming

With the growing interest in quantum computing, there are an increasing
number of development libraries and tools for the field. There are development
environments and simulators in all the major languages including Python,
C/C++, Java and others. A comprehensive list can be found on this book’s
website.

Many of the leading QC research centers have focused on Python as
the language of choice for building quantum circuits. One of the reasons
for choosing Python is that it is a flexible, high-level language that allows
programmers to focus on the problem being solved without worrying about
too many formal details. For example, Python is dynamically typed (meaning
variable types do not have to be declared by the programmer) and is an
interpreted language (meaning it does not have to be pre-compiled into a
binary executable). For these reasons and others, Python has a relatively easy
learning curve for new users and has already seen strong support from the QC
community.

In this chapter, we will provide an overview of how these libraries work
and provide code examples for each framework. In the upcoming chapters,
we will go into further detail with examples of algorithm implementations
using these libraries. These quantum development libraries have methods for
all the major unary and binary operators that we cover in this book. A few
offer built-in modules for ternary operators, but these can be constructed if
not offered in the library.

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019

J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0_6

61

https://doi.org/10.1007/978-3-030-23922-0_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23922-0_6&domain=pdf

62 CHAPTER 6 Development Libraries for Quantum Computer Programming

Figure 6.1: Quantum computing stack Source: [94]

Figure 6.1 shows a schematic diagram of the quantum computing stack,
which ranges from quantum algorithms and applications at the highest level
to physical realizations of quantum computers at the lowest level. Numerous
components sit between these layers such as control, readout, and — in
the future — quantum error correction modules. Quantum programming
languages (QPL) are used to interface with the top of the stack [129]. A
quantum language consists of low-level instructions indicating which gates
to perform on which qubits. Since it would be very tedious to program
this by hand, when we program quantum computers, we interface with the
higher-level quantum programming language in a development library.

Many QPLs are now available including both functional and imperative
languages. The functional set includes: Qiskit, LIQUiji, Q# and Quipper.
Imperative languages for QC programming include: Cirq, Scaffold and Pro-
jectQ. See [85] for a helpful review of open source frameworks for quantum
computing.

6.1 Quantum Computers and QC Simulators

Cloud quantum computers make it possible to run algorithms on real quantum
hardware, and development libraries enable this capability. In order to test
code prior to running it on a quantum computer, most QC frameworks provide
a QC simulator which runs on a classical computer. This simulator can run
locally or in the cloud. Since it is running on a classical computer, it cannot, of

SECTION 6.1 Quantum Computers and QC Simulators 63

course, process actual quantum states, but it is helpful to test the code syntax
and flow.

There are numerous techniques to classically simulate quantum circuits,
all of which suffer from the “exponential explosion” of classical memory: to
store the most general state of an n qubit system, all 2n complex numbers
of the system’s wavefunction must be stored. How much memory does this
require? For simplicity, suppose that each complex number is stored using
one byte. Then, for n D 30 qubits, 230 bytes, or a gigabyte, of memory is
required. For n D 40, a terabyte of memory is required, and for just n D 50,
a petabyte is required. These memory requirements are already reaching the
limits of today’s best supercomputers, even for a modest number of qubits.
Larger systems cannot hope to be simulated, since we wouldn’t even have
enough memory to write the wavefunction down!

The most basic method for simulating a quantum computer is to note
that a quantum circuit simply expresses a unitary transformation, U , on a
wavefunction, j i. The QC simulator algorithm then just performs matrix
multiplication to get the resulting state j 0i via

j 0i D U j i

Note that this method requires storing the entire unitary of the circuit,
which is a 2n�2n matrix, in memory (in addition to storing the wavefunction).

A method that improves on these memory requirements, only having to
store the wavefunction itself, works by applying one- and two-qubit gates to
the wavefunction individually. To apply a single-qubit gate

G D

�
G11 G12
G21 G22

�
to the i th qubit, one applies a matrix product to each amplitude ˛ whose index
differs in the i th bit [91, 206]

˛�����0i����� D G11˛�����0i����� CG12˛�����1i�����

˛�����1i����� D G21˛�����0i����� CG22˛�����1i�����

Here, the subscript i on either 0 or 1 denotes that this index is in the i th
position, and asterisks denote indices that are the same on either side of the
equation. A similar update equation exists for two-qubit gates. The algorithm
for this “state vector” or “wavefunction” simulator then consists of iterating
through all single-qubit and two-qubit gates in the circuit and applying the
appropriate update equation.

64 CHAPTER 6 Development Libraries for Quantum Computer Programming

Other types of QC simulators exist, such as Clifford circuit simulators,
which can efficiently simulate several hundreds or thousands of qubits. How-
ever, as discussed in chapter 3, these circuits are not universal. In this chapter,
we focus on programming universal QCs and QC simulators. When a program
is sent to a quantum backend, it is first compiled into gates the computer can
actually implement. This compilation is expressed in a lower level language
— quantum assembly or instruction language — which is sent to the computer.
At the lowest level, gates are implemented by physical operations acting on
the qubits. These physical operations can include microwave pulses, laser
pulses or other interactions acting on a qubit, depending on which physical
realization of a qubit is used.

6.2 Cirq
Cirq Overview

Institution Google
First Release v0.1 on April 17, 2018
Open Source? Yes

License Apache-2.0
Github https://github.com/quantumlib/Cirq

Documentation https://cirq.readthedocs.io/en/stable/
OS Mac, Windows, Linux

Classical Language Python

Figure 6.2: Overview of the Cirq dev library. Modified with permission from [129].

Source:[60]

Cirq is Google’s quantum comput-
ing development library. Cirq enables
the developer to build and execute quan-
tum circuits comprised of all the usual
unary, binary and ternary operators we
have covered in this book. We will use
Cirq for the majority of code examples
throughout this book.

To get acquainted with the language,
a sample program in Cirq is provided below [60]. This program creates a
quantum circuit with one qubit and performs the NOT operator on it followed

https://github.com/quantumlib/Cirq
https://cirq.readthedocs.io/en/stable/

SECTION 6.2 Cirq 65

by a measurement. This circuit is simulated several times and its measurement
outcomes are displayed to the console. The full program is shown below.1

"""Simple program in Cirq."""

Import the Cirq package
import cirq

Pick a qubit
qubit = cirq.GridQubit(0, 0)

Create a circuit
circuit = cirq.Circuit.from_ops([

cirq.X(qubit), # NOT.
cirq.measure(qubit, key=’m’) # Measurement
]

)

Display the circuit
print("Circuit:")
print(circuit)

Get a simulator to execute the circuit
simulator = cirq.Simulator()

Simulate the circuit several times
result = simulator.run(circuit, repetitions=10)

Print the results
print("Results:")
print(result)

In this circuit, we first set up a qubit within a grid pattern. Cirq also
allows qubits to be set up in a linear fashion if needed, since both linear and
two-dimensional qubit arrays are the most popular for near-term quantum
computer architectures. We then apply the NOT operator to the qubit. If the
qubit was in a state of j0i before, it will now be in the state j1i and vice-versa.
We then measure the qubit to output the classical bit of the measurement result.
Note that the keyword argument key=’m’ in the measure operation makes it
easy to access measurement results using the histogram method of a Cirq
TrialResult. In this simple program, it is not necessary, but in more complex
programs it can be a useful tool.

The next lines of code get a QC simulator and execute the circuit ten times.
Then, the results of executing the circuit are printed to the screen. A sample
output from this program is shown below.

1To find versions of each program shown in this chapter for the latest releases of each
development library, see the book’s GitHub page.

66 CHAPTER 6 Development Libraries for Quantum Computer Programming

Figure 6.3: The Bloch sphere Source: [93]

Circuit:
(0, 0): ---X---M(’m’)---
Results:
m=1111111111

The circuit is printed out in ASCII text, as is standard for drawing circuits
in Cirq, and the results are indicated by a sequence of binary digits. As we
anticipate, on a noiseless QC simulator all measurement outcomes are equal
to 1. Finally, note that the string of measurement outcomes is labeled by the
measurement key m provided as a keyword argument to the measure operation.

We can represent the application of the X operator in this circuit on a
Bloch sphere (see Figure 6.3). We recall that the Bloch sphere represents the
computational basis states of j0i and j1i at the poles. By applying the X gate
to the prepared state of j0i we move the qubit to state j1i. If we then apply a
Hadamard gate, we can represent the new qubit state with a horizontal vector
on the Bloch sphere corresponding to:

j0i � j1i
p
2

For circuits of many operators we can use dynamic Bloch sphere simulation
software from Q-Ctrl (and other sites listed on the companion website) to
visualize the unitary transformations.

6.3 Qiskit

The Quantum Information Science Kit, or Qiskit for short, is a quantum
computing dev library created by IBM. The Qiskit library is a flexible frame-

SECTION 6.3 Qiskit 67

Qiskit Overview
Institution IBM

First Release 0.1 on March 7, 2017
Open Source? Yes

License Apache-2.0
Homepage https://qiskit.org/

Github https://github.com/Qiskit
Documentation https://qiskit.org/documentation/

OS Mac, Windows, Linux
Classical Host Language Python

Quantum Language OpenQASM

Figure 6.4: Overview of the Qiskit development library. Modified with permission from [129].

work for programming quantum computers. The Qiskit development library
consists of four core modules distributed across the quantum computing stack:
� Qiskit Terra: Terra provides core elements for composing quantum

programs at the level of circuits and pulses, and optimizing them for
the constraints of a particular physical quantum processor.
� Qiskit Aer: Aer provides a C++ simulator framework and tools for

constructing noise models for performing realistic noisy simulations of
the errors that occur during execution on real devices.
� Qiskit Ignis: Ignis is a framework for understanding and mitigating

noise in quantum circuits and devices.
� Qiskit Aqua: Aqua contains a library of cross-domain quantum algo-

rithms upon which applications for near-term quantum computing can
be built.

Except for Aqua, at the time of writing, each of these components is in-
stalled automatically with Qiskit. The Aqua module can be installed separately
and requires a working installation of the core Qiskit library. To demonstrate
the coding syntax in Qiskit, we include below the same example program that
was shown previously in Cirq.

"""Simple program in Qiskit."""

Import the Qiskit package
import qiskit

Create a quantum register with one qubit
qreg = qiskit.QuantumRegister(1, name=’qreg’)

Create a classical register with one qubit
creg = qiskit.ClassicalRegister(1, name=’creg’)

https://qiskit.org/
https://github.com/Qiskit
https://qiskit.org/documentation/
https://github.com/QISKit/openqasm

68 CHAPTER 6 Development Libraries for Quantum Computer Programming

Figure 6.5: Circuit diagram drawn in Qiskit for the above program

Create a quantum circuit with the above registers
circ = qiskit.QuantumCircuit(qreg, creg)

Add a NOT operation on the qubit
circ.x(qreg[0])

Add a measurement on the qubit
circ.measure(qreg, creg)

Print the circuit
print(circ.draw())

Get a backend to run on
backend = qiskit.BasicAer.get_backend("qasm_simulator")

Execute the circuit on the backend and get the measurement results
job = qiskit.execute(circ, backend, shots=10)
result = job.result()

Print the measurement results
print(result.get_counts())

This program in Qiskit closely mirrors that in Cirq, with minor differences
due to language design, syntax and notation. After importing the Qiskit
development library, the program declares a quantum and classical register
with one qubit, which it then uses to create a circuit. Note how this is different
from Cirq, in which (1) a classical register is never explicitly created and (2)
qubits are only referred to in a circuit when operations are added. Continuing
through the Qiskit program, the next lines add the appropriate operations (NOT
and measure) to the circuit, which is subsequently printed out by drawing the
circuit.

Qiskit has the ability to draw and save circuits as files in addition to printing
out text representations. Figure 6.5 shows the circuit for this program drawn
with the code shown below:

circ.draw(filename="qiskit-circuit", output="latex")

After printing the circuit, a backend is declared for executing the quantum
circuit. In the final lines, the circuit is executed, the results are retrieved,
and finally the measurement statistics (counts) are printed to the screen. An

SECTION 6.4 Forest 69

example output of this program is shown below. Note that the circuit will
also be printed to the console in the above program — we omit the text
representation here.

{’1’: 10}

In Qiskit, measurement outcomes are stored as dictionaries (a Python data
type consisting of key-value pairs) where keys are bit strings and values are
the number of times each bit string was measured. Here, this output says that
the only bit string present in the measurement is 1. Similar to the Cirq output,
since we are running this program on a QC simulator without activating a
noise model, all measurement outcomes are 1 as expected.

6.4 Forest
Forest Overview

Institution Rigetti
First Release v0.0.2 on Jan 15, 2017
Open Source? Yes

License Apache-2.0
Homepage https://www.rigetti.com/forest

GitHub https://github.com/rigetti/pyquil
Documentation pyquil.readthedocs.io/en/latest/

OS Mac, Windows, Linux
Classical Language Python

Quantum Programming Library pyQuil
Quantum Language Quil

Figure 6.6: Overview of the Forest development library. Modified with permission from [129].

Forest is a development library by Rigetti. Similar to the previous two
libraries, Forest is Python-based and features a collection of tools for effective
quantum programming. Users type quantum programs in pyQuil, and low-
level instructions are sent to the quantum computer as Quil, short for Quantum
Instruction Language [207]. The name Forest refers to the collection of
all programming tools in this toolchain including Quil, pyQuil and other
components such as Grove, a collection of quantum algorithms written in
pyQuil.

https://www.rigetti.com/
https://www.rigetti.com/forest
https://github.com/rigetticomputing/pyquil
http://pyquil.readthedocs.io/en/latest/
http://pyquil.readthedocs.io/en/latest/compiler.html

70 CHAPTER 6 Development Libraries for Quantum Computer Programming

To get a sense for the language we implement the “NOT and measure”
program in pyQuil below.

"""Simple program in pyQuil."""

Import the pyQuil library
import pyquil

Create a quantum program
prog = pyquil.Program()

Declare a classical register
creg = prog.declare("ro", memory_type="BIT", memory_size=1)

Add a NOT operation and measurement on a qubit
prog += [

pyquil.gates.X(0),
pyquil.gates.MEASURE(0, creg[0])
]

Print the program
print("Program:")
print(prog)

Get a quantum computer to run on
computer = pyquil.get_qc("1q-qvm")

Simulate the program many times
prog.wrap_in_numshots_loop(10)

Execute the program on the computer. NOTE: This requires the QVM
to be running

result = computer.run(prog)

Print the results
print(result)

Here, we first import the pyQuil library and then create a program, the
equivalent of a circuit in Cirq or Qiskit. After creating the program, we declare
a classical register of one bit, then add the operations for this circuit — NOT
and measure. Note that qubits can be indexed dynamically in pyQuil; there is
no explicit reference to a qubit register, but rather we provide an index (0) to
the gate operations. In contrast, classical memory does have to be explicitly
declared, and so we measure the qubit into a classical register.

After printing out the program to visualize its instructions, we send the
instructions to a QC for execution. Here, the string key designates that we
want a one qubit (1q) quantum virtual machine (qvm), which is Rigetti’s
terminology for their quantum computer simulator. To simulate the program
many times, we call the method wrap_in_numshots_loop on the program,
and provide as input a number of repetitions (shots). Finally, we run the

SECTION 6.5 Quantum Development Kit 71

program on the specified computer and print the result. To execute this
program on the quantum virtual machine, we can initiate the QVM with the
following command in a terminal:

qvm -S

Once executed in the QVM, the program will produce and the following
results:

Program:
DECLARE ro BIT[1]
X 0
MEASURE 0 ro[0]

Result:
[[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]]

Unlike Cirq and Qiskit, pyQuil does not produce a circuit diagram of the
program, but rather displays the Quil instructions line by line. In this particular
Quil program, a readout register called ro is declared, a NOT operation is
applied to qubit 0, and the measurement outcome of qubit 0 is stored into the
readout register. The results of simulating the circuit appears as a list of lists.
Each inner list is the measurement outcome for a particular execution of the
circuit. The number of inner lists is equal to the total number of times the
circuit was executed. All of these are wrapped in an outer list containing the
results of all simulations. As with the previous programs, all measurement
outcomes are 1 on a noiseless quantum computer simulator, as we expect.

6.5 Quantum Development Kit

The Quantum Development Kit (QDK) is a quantum computing development
library by Microsoft. Unlike the previous languages, which were based in
Python, the QDK contains its own language, called Q# (pronounced “Q
sharp”), for writing quantum programs.

72 CHAPTER 6 Development Libraries for Quantum Computer Programming

QDK Overview
Institution Microsoft

First Release 0.1.1712.901 on Jan 4, 2018
Open Source? Yes

License MIT
Homepage microsoft.com/en-us/quantum/development-kit

Github https://github.com/Microsoft/Quantum
Documentation docs.microsoft.com/en-us/quantum/?view=qsharp-preview

OS Mac, Windows, Linux
Quantum Prog. Lang. Q#

Figure 6.7: Overview of the QDK development library. Modified with permission from [129].

The Q# language is different in several respects compared with Python-
based libraries such as Cirq, Qiskit and pyQuil. In Q# we need to explicitly
declare types, as well as use curly braces instead of indents as in Python.
Additionally, three separate files are required to execute programs using the
QDK:

1. A file ending in .qs where quantum operations (analogues of functions
in Python) are stored

2. A driver file ending in .cs where quantum operations are executed in
the main program

3. A file ending in .csproj which defines the project and contains metadata
about computer architecture and package references

An example program in Q# that executes the same “NOT and measure”
circuit we have seen in other languages is included below. We first show the
.qs file which defines the quantum operations we will use in the driver file.

namespace Quantum.Simple
{

// Importing the libraries
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

// Sets a qubit in a desired state
operation Set(desired_state: Result, qubit: Qubit) : Unit {

let current = M(qubit);
if (current != desired_state) {

X(qubit);
}

}

// Executes the NOTandMeasure circuit for an input number
// of repetitions and returns the number of ones measured
operation NotAndMeasure(repetitions: Int) : Int {

https://github.com/Microsoft/Quantum
https://docs.microsoft.com/en-us/quantum/?view=qsharp-preview
http://microsoft.com/en-us/quantum/development-kit

SECTION 6.5 Quantum Development Kit 73

// Variable to store the number of measured ones
mutable num_ones = 0;

// Get a qubit to use
using (qubit = Qubit()) {

// Loop over the desired number of repetitions
for (test in 1..repetitions) {

// Get a qubit in the zero state
Set(Zero, qubit);

// Perform a NOT operation
X(qubit);

// Measure the qubit
let res = M (qubit);

// Keep track of the number of ones we measured
if (res == One) {

set num_ones = num_ones + 1;
}

}
// "Released qubits" must be in the zero state to avoid a

System.AggregateException
Set(Zero, qubit);

}
// Return the number of ones measured
return num_ones;

}
}

In the first line we define a namespace for the operations. This namespace
is used in the driver file to access these operations. The next two lines are the
equivalent of import packages in Python — they make operations defined in
the QDK available for us to use in the program (e.g., the X gate). Next, we
declare an operation called Set which inputs a desired computational basis
state and an arbitrary qubit state; it then changes the state of the qubit to
match the desired state. This is accomplished by measuring the qubit in the
computational basis and then performing a NOT operation if necessary.

We then define the NotAndMeasure operation which sets up the quantum
circuit and measures the qubit for a user-specified number of times. Explicitly,
the operation sets a qubit to be in the 0 state using the previous operation
we defined, performs a NOT operation, then measures, keeping track of the
number of 1s measured. After the total number of repetitions, the number of
1s measured is returned.

In order to use this file, we must define a separate driver file ending in .cs
which executes these operations. The driver file used to execute this program
is shown below.

using System;

74 CHAPTER 6 Development Libraries for Quantum Computer Programming

using Microsoft.Quantum.Simulation.Core;
using Microsoft.Quantum.Simulation.Simulators;

namespace Quantum.Simple {
class Driver {

static void Main() {
// Get a quantum computer simulator
using (var qsim = new QuantumSimulator()) {

// Run the operation NotAndMeasure and get the result
var num_ones = NotAndMeasure.Run(qsim, 10).Result;

// Print the measurement outcome to the console
System.Console.WriteLine(

$"Number of ones measured: {num_ones, 0}.");
}

}
}

}

Here, we import System, which allows us to print to the console, and
the necessary tools to use the QC simulator in the QDK. Next, we invoke
the namespace declared in the .qs file above and define a Main function
inside the driver class. This Main function uses a QC simulator to run the
NotAndMeasure operation, then prints the results to the console. The output
of this program is shown below.

Number of ones measured: 10.

As in other languages, we obtain the correct output of measuring all ones.
The final file .csproj needed to execute this code is included on this book’s
GitHub site. We omit the program here since it is nearly identical for each
project in the QDK.

6.6 Dev Libraries Summary

In the sample programs shown for these libraries, we have seen that most
frameworks are fairly similar in terms of constructing quantum circuits. The
general recipe for each of them is:

1. Build a quantum circuit consisting of quantum and/or classical registers
2. Add operations to the circuit
3. Simulate the circuit
However, there are some differences across the various libraries. For

example, qubits are defined separately from a quantum circuit in Cirq, whereas

SECTION 6.6 Dev Libraries Summary 75

qubits are required as input to a quantum circuit in Qiskit. Similarly, all qubits
must be allocated in a quantum register before performing operations on them
in Qiskit, but qubits can be allocated dynamically when programming in
pyQuil.

While these differences may seem small, there are bigger differences in
the features each development library contains. For example, some libraries
include the ability to simulate noise, compile algorithms to arbitrary architec-
tures, access the wavefunction for debugging and so on. These differences
lead to certain algorithms being easier to implement in particular libraries.
While one development library is usually sufficient for most tasks, having
experience in multiple libraries is helpful to choose the the appropriate library
for certain cases.

Using the Libraries

In the remainder of the book, we will use these development libraries to
explore the core algorithms that make up the canon of quantum computing
and more recent QC methods. While Cirq is the main library used, some
programs are shown in other libraries for comparison. Before continuing on
to this core part of the text, we briefly mention other development libraries
that we have not yet covered.

Other Development Libraries

As mentioned, before the emergence of cloud quantum computing, many
quantum computer simulators were developed in languages ranging from C++
(e.g., Quantum++) to Java (e.g., jSQ) to Rust (e.g., QCGPU). A full list of
quantum computer simulators is available at https://quantiki.org/wiki/list-qc-
simulators. While many of these simulators are outdated or deprecated, a
number of them are still actively developed and being improved upon. Indeed,
while classical algorithms for simulating quantum circuits are widely believed
to be intractable, finding new ways to simulate more qubits with greater speed
is still an active area of research.

In addition to the libraries above, here are other libraries of interest: Pro-
jectQ, a Python library with a high-performance C++ quantum computer
simulator; Strawberry Fields, a Python library built around continuous vari-
able quantum computing; and Ocean, a Python library for quantum annealing
on D-Wave quantum computers. Additionally, a hardware independent quan-
tum programming framework called XACC is also actively being developed.

https://quantiki.org/wiki/list-qc-simulators
https://quantiki.org/wiki/list-qc-simulators

76 CHAPTER 6 Development Libraries for Quantum Computer Programming

For a full list of open-source quantum software projects, see the companion
website to this book.

6.7 Additional Quantum Programs

In principle, knowing how to program circuits, simulate them and access
measurement results are the core skills needed for coding quantum algorithms
in future chapters. While the simple “NOT and measure” program contains
these three key features, it is nonetheless simple. To help bridge this gap
to the more complex programs to come, we include two additional example
quantum programs in this section.

Bell States

One common circuit pattern is the set of operators we use to prepare one of
the four Bell states

jˆCi D
1
p
2
Œj00i C j11i�

from the ground state. It can be easily verified that such a circuit consists of a
Hadamard on the first qubit and then a CNOT between the two qubits, where
the first qubit is the control qubit. This structure appears, for example, in the
quantum teleportation circuit for creating entangled pairs of qubits between
two parties.

A circuit for preparing a Bell state, written in Cirq, is shown below. For
pedagogical purposes, we add measurements after the Bell state preparation
circuit to see the possible measurement outcomes.

"""Script for preparing the Bell state |\Phi^{+}> in Cirq."""

Import the Cirq library
import cirq

Get qubits and circuit
qreg = [cirq.LineQubit(x) for x in range(2)]
circ = cirq.Circuit()

Add the Bell state preparation circuit
circ.append([cirq.H(qreg[0]),

cirq.CNOT(qreg[0], qreg[1])])

Display the circuit
print("Circuit")
print(circ)

SECTION 6.7 Additional Quantum Programs 77

Add measurements
circ.append(cirq.measure(*qreg, key="z"))

Simulate the circuit
sim = cirq.Simulator()
res = sim.run(circ, repetitions=100)

Display the outcomes
print("\nMeasurements:")
print(res.histogram(key="z"))

Note that in this Cirq program, we utilize the measurement key to access
measurement outcomes using the histogram method. An example output of
this program is shown below:

Circuit
0: ---H---@---

|
1: -------X---

Measurements:
Counter({3: 53, 0: 47})

Here, the circuit drawing shows the Bell state preparation circuit consisting
of a Hadamard and CNOT gate. After, the measurement outcomes enumerate
how many 0 and 3 states were measured. Note that this is a binary represen-
tation of bitstrings — i.e., 0 stands for 00 and 3 stands for 11. As expected,
these are the only two measurement outcomes in the program, meaning that
the measurements are perfectly correlated: when one qubit is measured 0.1/,
the other qubit is always measured 0.1/.

Gates with Parameters

Several quantum gates are defined in terms of angles, for example the stan-
dard rotation gates Rx.�/, Ry.�/ and Rz.�/. In many quantum algorithms,
known as variational quantum algorithms, these angles, or parameters, are
iteratively adjusted in order to minimize cost. For example, in the variational
quantum eigensolver, gate parameters are adjusted in order to minimize the
expectation of a Hamiltonian h .�/jH j .�/i. Regardless of the application,
such variational quantum algorithms depend critically on the ability to update
and change gate parameters.

Because of this, most quantum computing development libraries contain
built-in features and methods for working with parameterized gates. In the
following program, we demonstrate this functionality in Cirq. In particular,

78 CHAPTER 6 Development Libraries for Quantum Computer Programming

we set up a simple quantum circuit with one parameterized gate, execute the
algorithm for a sweep of parameters and plot the measurement results.

"""Working with parameterized gates in Cirq."""

Imports
import matplotlib.pyplot as plt
import sympy

import cirq

Get a qubit and a circuit
qbit = cirq.LineQubit(0)
circ = cirq.Circuit()

Get a symbol
symbol = sympy.Symbol("t")

Add a parameterized gate
circ.append(cirq.XPowGate(exponent=symbol)(qbit))

Measure
circ.append(cirq.measure(qbit, key="z"))

Display the circuit
print("Circuit:")
print(circ)

Get a sweep over parameter values
sweep = cirq.Linspace(key=symbol.name, start=0.0, stop=2.0,

length=100)

Execute the circuit for all values in the sweep
sim = cirq.Simulator()
res = sim.run_sweep(circ, sweep, repetitions=1000)

Plot the measurement outcomes at each value in the sweep
angles = [x[0][1] for x in sweep.param_tuples()]
zeroes = [res[i].histogram(key="z")[0] / 1000 for i in

range(len(res))]
plt.plot(angles, zeroes, "--", linewidth=3)

Plot options and formatting
plt.ylabel("Frequency of 0 Measurements")
plt.xlabel("Exponent of X gate")
plt.grid()

plt.savefig("param-sweep-cirq.pdf", format="pdf")

We highlight several key components in this program. First, a symbol
in Cirq is used to represent a numerical value of a parameter that will be
determined later, before executing the circuit. When the circuit is printed (see
below), the name of the symbol appears in the circuit.

SECTION 6.7 Additional Quantum Programs 79

Figure 6.8: Measurement outcomes at each value of the exponent t 2 Œ0; 2� in the circuit X t j0i

Circuit:
0: ---X^t---M(’z’)---

Next, a sweep is a set of values that the symbol will take on. Simulators
in Cirq have a method, called run_sweep, for executing circuits at all values
in a sweep. At each value, the circuit is simulated a number of times set by
the repetitions keyword argument. The remaining code in the program is for
plotting the outcome of the run_sweep, which is shown in Figure 6.8.

Now that we have explored the various quantum computing development
libraries, let us look at three protocols — quantum teleportation, superdense
coding, and Bell’s inequality test — and then turn to the canon of quantum
algorithms that helped establish the field.

CHAPTER

7
Teleportation, Superdense
Coding and Bell’s Inequality

Two of the most fascinating quantum circuits enable us to transmit information
in ways that are not possible in the classical regime. In this chapter, we will
learn how to build these two circuits. We will then examine a foundational
advance in quantum mechanics, the Bell Inequality.

7.1 Quantum Teleportation

Quantum teleportation, despite its name, does not teleport any physical object.
It does transmit the state of a qubit over any given distance in a way that is
completely secure. It is remarkable that it took more than seventy years from
the formulation of QM to realize that this framework gave us a new form of
secure communication. The protocol was developed in 1993 [26] by Bennett
and Brassard et al.; it was experimentally verified in 1997 [41]. Bennett and
Brassard had also developed quantum key distribution in 1984, known as
BB84 [25].

One of the key insights of quantum teleportation is that we can treat
entangled states as a resource. We can use entangled states (known as EPR
pairs or Bell states) to perform a range of tasks that cannot be accomplished
using classical means.

In quantum teleportation, Alice is the sender and she wishes to transmit
the state of a qubit, Q, to a receiver, Bob. The algorithm requires three qubits
in total. Let’s walk through the protocol in detail:

1. We set up the system with three qubits:

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019

J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0_7

81

https://doi.org/10.1007/978-3-030-23922-0_7
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23922-0_7&domain=pdf

82 CHAPTER 7 Teleportation, Superdense Coding and Bell’s Inequality

Figure 7.1: Quantum teleportation diagram. Relative to the notation in the main text, jˆi is
the state of qubit Q, A D R and B D S . Source: Wikimedia

(a) Alice has a qubit, Q, with state jˆi. Alice wishes to transmit the
state jˆi to Bob in a secure manner.

(b) To accomplish this goal, Alice also starts with two additional
qubits, which we will label R and S. One of these qubits, say S,
will be sent to Bob, and the other will stay with Alice. In practice,
S can be sent over a quantum channel such as an optical fiber if
the qubits are photons.

2. Alice prepares a Bell state with qubits R and S. This is done by applying
a Hadamard to qubit R and then a CNOT between R and S, controlling
on R. At this point, Alice sends qubit S to Bob.

3. Alice now performs a Bell measurement on her original qubit Q and her
half of the EPR pair, R. This is done by performing a CNOT between
the qubits, controlling on Q, then performing a Hadamard gate on Q,
and finally measuring both qubits in the computational basis.

4. After measuring, Alice now has two bits of classical information, one
from each measured qubit. Alice now transmits these bits to Bob over
a classical communication channel. Note that there are four possible
outcomes from her measurements: 00, 01, 10, and 11.

SECTION 7.1 Quantum Teleportation 83

Figure 7.2: Circuit diagram for quantum teleportation Source: Wikimedia

5. Depending on which bit string Bob receives from Alice, he performs
a set of operations on his qubit, S. The dictionary of operations for
each measurement result is listed below. Performing the appropriate
operation guarantees Bob’s qubit, S, will be in the same state as Alice’s
original qubit Q — even though neither Alice nor Bob know what this
state is!

If Alice transmits then Bob applies this operator
00 None — Bob’s qubit is in the right state
01 Z

10 X

11 XZ (apply Z first then X)

Two ways to represent quantum teleportation in a circuit diagram can be
seen in figure 7.2 and below; they are equivalent and it is useful to be familiar
with different ways of presenting circuits:

Q W jˆi � H �

R W j0i H �

S W j0i X Z jˆi
Let us highlight the following points on teleportation:

1. Note how Alice prepares a Bell state with an H on R and then a CNOT
across the pair of qubits, R and S.

2. Note how Alice transmits two bits of classical information to Bob —
these are denoted with the sets of double wires in the quantum circuit.

84 CHAPTER 7 Teleportation, Superdense Coding and Bell’s Inequality

3. In this circuit Alice successfully transmits the state of jˆi to Bob via
an EPR pair and the use of two classical bits. We can also represent this
transmission as

Œqq�C Œcc� � Œq�

where Œqq� represents an EPR pair, Œcc� represents a pair of classical
bits and Œq� is the state of a qubit we wish to transmit.

While quantum teleportation is a tool we can use in quantum communica-
tions, it also has applications in quantum computing [58]. We can potentially
use quantum teleportation to create a modular architecture for quantum com-
puting by sending a quantum state from one module to another in a scaled
quantum computer (see [58]).

7.2 Superdense Coding

Superdense coding is a method to transmit classical bits by sending only
one qubit from sender to receiver. If Alice wishes to transmit two classical
bits to Bob using a classical channel, she would have to use two bits. With
superdense coding, however, she can communicate the two bits with the
transmission of just one qubit.

This protocol was initially developed by Bennett and Wiesner [27] and
then further specified as a secure communications protocol [226]. Anton
Zeilinger experimentally demonstrated superdense coding transmission in
1995 [144].

To achieve superdense coding, Alice first prepares an EPR pair. She then
performs one of four operations on her half of the pair. Let’s say that these are
a pair of photons. To create the Bell pair, Alice first applies a Hadamard to
her photon and then a CNOT across the two photons as she did in the case of
preparing an EPR pair for quantum teleportation protocol. The pair of photons
is now entangled.

Now Alice chooses which of four classical states she wishes to transmit to
Bob as the intended message. Depending on the message she chooses to send,
Alice applies a specific quantum operator to her photon.

If Alice wants to send Alice applies
00 I (identity operator)
01 X

10 Z

11 ZX (first apply X , then apply Z)

85

Figure 7.3: Circuit diagram for superdense coding Source: Wikimedia

Next she sends her photon to Bob via a quantum communications channel
that preserves entanglement. Upon receipt of the photon, Bob applies the
Hadamard to her photon and then a CNOT across the photon pair. He then
performs a measurement. The result will be two classical bits of information.
Let us recall that the output of a measurement is classical information.

We can represent superdense coding in shorthand as follows:

Œq�C Œqq� � Œcc�

7.3 Code for Quantum Teleportation and
Superdense Communication

A program for quantum teleportation is provided in Cirq below. This program
encodes a random quantum state in Alice’s qubit and prints out its Bloch
sphere .x; y; z/ components. It then executes the quantum teleportation
circuit and prints out the Bloch sphere .x; y; z/ components of Bob’s qubit.

"""Quantum teleportation in Cirq. Modified from
quantum_teleportation.py example at:

https://github.com/quantumlib/Cirq/tree/master/examples
"""

Imports
import random

SECTION 7.3 Code for Quantum Teleportation and Superdense Communication

86 CHAPTER 7 Teleportation, Superdense Coding and Bell’s Inequality

import cirq

def make_quantum_teleportation_circuit(ranX, ranY):
"""Returns a quantum teleportation circuit."""
circuit = cirq.Circuit()
msg, alice, bob = cirq.LineQubit.range(3)

Creates Bell state to be shared between Alice and Bob
circuit.append([cirq.H(alice), cirq.CNOT(alice, bob)])

Creates a random state for the Message
circuit.append([cirq.X(msg)**ranX, cirq.Y(msg)**ranY])

Bell measurement of the Message and Alice’s entangled qubit
circuit.append([cirq.CNOT(msg, alice), cirq.H(msg)])
circuit.append(cirq.measure(msg, alice))

Uses the two classical bits from the Bell measurement to
recover the

original quantum Message on Bob’s entangled qubit
circuit.append([cirq.CNOT(alice, bob), cirq.CZ(msg, bob)])

return msg, circuit

def main():
Encode a random state to teleport
ranX = random.random()
ranY = random.random()
msg, circuit = make_quantum_teleportation_circuit(ranX, ranY)

Simulate the circuit
sim = cirq.Simulator()
message = sim.simulate(cirq.Circuit.from_ops(

[cirq.X(msg)**ranX, cirq.Y(msg)**ranY]))

Print the Bloch Sphere of Alice’s qubit
print("Bloch Sphere of Alice’s qubit:")
b0X, b0Y, b0Z = cirq.bloch_vector_from_state_vector(

message.final_state, 0)
print("x: ", round(b0X, 4),

"y: ", round(b0Y, 4),
"z: ", round(b0Z, 4))

Display the teleportation circuit
print("\nCircuit:")
print(circuit)

Record the final state of the simulation
final_results = sim.simulate(circuit)

Print the Bloch sphere of Bob’s qubit
print("\nBloch Sphere of Bob’s qubit:")
b2X, b2Y, b2Z = cirq.bloch_vector_from_state_vector(

final_results.final_state, 2)

87

print("x: ", round(b2X, 4),
"y: ", round(b2Y, 4),
"z: ", round(b2Z, 4))

if __name__ == ’__main__’:
main()

An example output of this program is shown below.

Bloch sphere of Alice’s qubit:
x: 0.654 y: -0.6177 z: -0.4367

Bloch sphere of Bob’s qubit:
x: 0.654 y: -0.6177 z: -0.4367

As can be seen, the Bloch sphere components of Alice and Bob’s qubit are
identical – in other words, the qubit has been “teleported” from Alice to Bob.

A program for superdense coding written in Cirq is provided below.

"""Superdense coding in Cirq."""

Imports
import cirq

Helper function for visualizing output
def bitstring(bits):

return ’’.join(’1’ if e else ’0’ for e in bits)

Create two quantum and classical registers
qreg = [cirq.LineQubit(x) for x in range(2)]
circ = cirq.Circuit()

Dictionary of operations for each message
message = {"00": [],

"01": [cirq.X(qreg[0])],
"10": [cirq.Z(qreg[0])],
"11": [cirq.X(qreg[0]), cirq.Z(qreg[0])]}

Alice creates a Bell pair
circ.append(cirq.H(qreg[0]))
circ.append(cirq.CNOT(qreg[0], qreg[1]))

Alice picks a message to send
m = "01"
print("Alice’s sent message =", m)

Alice encodes her message with the appropriate quantum operations
circ.append(message[m])

Bob measures in the Bell basis
circ.append(cirq.CNOT(qreg[0], qreg[1]))
circ.append(cirq.H(qreg[0]))
circ.append([cirq.measure(qreg[0]), cirq.measure(qreg[1])])

SECTION 7.3 Code for Quantum Teleportation and Superdense Communication

88 CHAPTER 7 Teleportation, Superdense Coding and Bell’s Inequality

Print out the circuit
print("\nCircuit:")
print(circ)

Run the quantum circuit on a simulator backend
sim = cirq.Simulator()
res = sim.run(circ, repetitions=1)

Print out Bob’s received message: the outcome of the circuit
print("\nBob’s received message =",

bitstring(res.measurements.values()))

An example output of this program for the message 01 is shown below.

Alice’s sent message = 01

Circuit:
0: ---H---@---X---@---H---M---

| |
1: -------X-------X-------M---

Bob’s received message = 01

As can be seen, Bob’s received message is exactly Alice’s sent message
via superdense coding.

7.4 Bell Inequality Test

Now let’s turn to another code walk-through: the Bell inequality test. After
briefly describing the experiment, we will go through a complete program in
Cirq to simulate it.

The Bell inequality test is best understood through a cooperative game
involving two players, Alice and Bob, that make decisions based on input from
a referee. Alice and Bob are separated (sitting in different rooms, say) and
cannot communicate during the game. At each round of the game, the referee
sends one bit to Alice, call it x, and one bit to Bob, call it y. Depending on
the value of the bit, Alice sends a bit of her own, a.x/, back to the referee.
Similarly, Bob sends a bit of his own, b.y/, back to the referee. The referee
looks at both bits and decides if Alice and Bob win or lose that round. The
condition for winning the round is

a.x/˚ b.y/ D xy

where˚ denotes addition modulo-2 (or, equivalently, XOR).

SECTION 7.4 Bell Inequality Test 89

Alice and Bob’s goal is to win as many rounds as possible. Although they
cannot communicate during the game, they are allowed to meet before the
game and set up a strategy. An example strategy might be “Alice always sends
back a.x/ D x, and Bob always sends back a.y/ D 0.” Since each of a.x/
and b.y/ can have two possible values, there are four possible deterministic
strategies that Alice and Bob can implement. Additionally, since there are
only four bits involved in the entire game, it’s not difficult to enumerate all
possible outcomes and see which strategy allows Alice and Bob to win the
most rounds (or, equivalently, win each round with the highest probability).

x y a.x/ b.y/ a.x/˚ b.y/ xy Win? Strategy #
0 0 0 0 0 0 Yes #1
0 0 0 1 1 0 No #2
0 0 1 0 1 0 No #3
0 0 1 1 0 0 Yes #4
0 1 0 0 0 0 Yes #1
0 1 0 1 1 0 No #2
0 1 1 0 1 0 No #3
0 1 1 1 0 0 Yes #4
1 0 0 0 0 0 Yes #1
1 0 0 1 1 0 No #2
1 0 1 0 1 0 No #3
1 0 1 1 0 0 Yes #4
1 1 0 0 0 1 No #1
1 1 0 1 1 1 Yes #2
1 1 1 0 1 1 Yes #3
1 1 1 1 0 1 No #4

Table 7.1: All possible outcomes of the Bell inequality test game: the first two columns show
bits the referee sends to Alice (x) and Bob (y). The next two columns show Alice’s response
(a.x/) and Bob’s response (b.y/. The next column computes a.x/˚b.y/, and the next column
shows the product xy. If these are equal, Alice and Bob win. The final column shows which
strategy Alice and Bob are using in each row, numbered #1 - #4.

Table 7.1 enumerates all possible outcomes of the game. By analyzing
each strategy, one can see that Alice and Bob win with at most 75% of
the time. The strategies that achieve this win percentage are #1, in which
a.x/ D b.y/ D 0, and #4 in which a.x/ D b.y/ D 1. Thus, the best possible
classical strategy wins at most 75% of the time.

An interesting phenomena happens when we allow a quantum strategy
between Alice and Bob. By a quantum strategy, we mean Alice and Bob are
allowed to use entanglement as a resource in their strategy. As we have seen

90 CHAPTER 7 Teleportation, Superdense Coding and Bell’s Inequality

in this book, entanglement allows for stronger than classical correlations in
physical systems. If Alice and Bob are allowed to share entangled qubits, they
can remarkably win the Bell inequality test game with a higher probability!
The best quantum strategy achieves a winning probability of cos2.�=8/, or
about 85%.

The quantum strategy for this game is shown in the circuit diagram below.
Here, the top (first) qubit belongs to Alice, and the third qubit from the top
belongs to Bob. The first part of the circuit creates entanglement between
Alice and Bob’s qubits. Then, the referee “sends” in a random bit to Alice
and Bob. In the circuit, this is done by performing a Hadamard operation on a
“fresh qubit” (one in the j0i state) to produce equal superposition. Alice and
Bob then perform a controlled-

p
X operation on their qubits and measure to

record the results.

H � X 0:25 X0:5

H �

X0:5

H �

Below, we show the complete program in Cirq for setting up this circuit
and simulating the quantum strategy for the Bell inequality test.

"""Creates and simulates a circuit equivalent to a Bell inequality
test."""

Imports
import numpy as np

import cirq

def main():
Create circuit
circuit = make_bell_test_circuit()
print(’Circuit:’)
print(circuit)

Run simulations
print()
repetitions = 1000
print(’Simulating {} repetitions...’.format(repetitions))
result = cirq.Simulator().run(program=circuit,

repetitions=repetitions)

SECTION 7.4 Bell Inequality Test 91

Collect results
a = np.array(result.measurements[’a’][:, 0])
b = np.array(result.measurements[’b’][:, 0])
x = np.array(result.measurements[’x’][:, 0])
y = np.array(result.measurements[’y’][:, 0])

Compute the winning percentage
outcomes = a ^ b == x & y
win_percent = len([e for e in outcomes if e]) * 100 / repetitions

Print data
print()
print(’Results’)
print(’a:’, bitstring(a))
print(’b:’, bitstring(b))
print(’x:’, bitstring(x))
print(’y:’, bitstring(y))
print(’(a XOR b) == (x AND y):\n ’, bitstring(outcomes))
print(’Win rate: {}%’.format(win_percent))

def make_bell_test_circuit():
Qubits for Alice, Bob, and referees
alice = cirq.GridQubit(0, 0)
bob = cirq.GridQubit(1, 0)
alice_referee = cirq.GridQubit(0, 1)
bob_referee = cirq.GridQubit(1, 1)

circuit = cirq.Circuit()

Prepare shared entangled state between Alice and Bob
circuit.append([

cirq.H(alice),
cirq.CNOT(alice, bob),
cirq.X(alice)**-0.25,

])

Referees flip coins
circuit.append([

cirq.H(alice_referee),
cirq.H(bob_referee),

])

Players do a sqrt(X) based on their referee’s coin
circuit.append([

cirq.CNOT(alice_referee, alice)**0.5,
cirq.CNOT(bob_referee, bob)**0.5,

])

Then results are recorded
circuit.append([

cirq.measure(alice, key=’a’),
cirq.measure(bob, key=’b’),
cirq.measure(alice_referee, key=’x’),
cirq.measure(bob_referee, key=’y’),

])

92 CHAPTER 7 Teleportation, Superdense Coding and Bell’s Inequality

return circuit

def bitstring(bits):
return ’’.join(’1’ if e else ’_’ for e in bits)

if __name__ == ’__main__’:
main()

An example output of this program is shown below, where we simulate
75 repetitions only to visualize the output more easily. The output of this
program is interpreted as follows. The bitstrings for Alice and Bob are shown
in the first line. These are the bits each player sends back to the referee (the
underscore indicates the 0 bit). The next lines show the bitstrings sent to Alice
(x) and Bob (y). Finally, the winning condition a.x/˚ b.y/ D xy is shown
as a bitstring for each round. The win rate is computed from the number of 1s
in this bitstring, which indicate a win.

Simulating 75 repetitions...

Results
a: 1_1111_1_1111_11_1111_1_1______1_1__
11_1__111_1_1_111_1111__11_1111_1_1____

b: 1_1__11_1_1_1_11__11__1_1_1_____1___
_11__11_1_1___11__1__1111_1_1___1__11_1

x: 11_11_1_1111_____1_11____11_1__111_1
1__1_11_1___11_111111111__11__1_111__11

y: _1_11111111__11_11__1__1111___1111__
1__111_1__111___1__11__1_111_11___1___1

(a XOR b) == (x AND y):
1_11111_11__1111111111111_11111111111
1_1111_11111111111111_11_111_11111__11

Win rate: 84.0%

As can be seen, we achieve a win rate of 84% in this example, which is
greater than possible with purely classical strategies. Note that using a larger
number of repetitions (i.e., simulating more rounds) is recommended to see
asymptotic convergence to the optimal win rate of cos2.�=8/ � 85%.

Summary

Quantum teleportation, superdense coding and Bell’s inequality test are some
of the most intriguing circuits for quantum processors. Now let us turn to

SECTION 7.4 Bell Inequality Test 93

the canon of quantum algorithms that demonstrated the potential of quantum
advantage over classical computing.

CHAPTER

8
The Canon: Code Walkthroughs

In this chapter, we will walk through a number of fundamental quantum
algorithms. We call these algorithms the canon as they were all developed in
the early years of quantum computing and were the first to establish provable
computational speedups with quantum computers. We discussed most of
these algorithms at a high level in chapter 2; we will now walk through
them in a more detailed manner. A number of these algorithms require a
quantum computer that is still in the future, but by analyzing them now we
can deepen our understanding of what will be possible. Additionally, variants
of these algorithms can be used to prove advantages with near-term quantum
computers in the noiseless [47] and even noisy [48] regimes.

Several of the algorithms considered in this chapter are known as “black
box” or “query model” quantum algorithms. In these cases, there is an
underlying function which is unknown to us. However, we are able to construct
another function, called an oracle, which we can query to determine the
relationship of specific inputs with specific outputs. More specifically, we
can query the oracle function with specific inputs in the quantum register and
reversibly write the output of the oracle function into that register. That is, we
have access to an oracle Of such that

Of jxi D jx ˚ f .x/i (8.1)

where ˚ denotes addition modulo-2. It’s easy to see that Of is unitary
(reversible) because it is self-inverse. This can seem like “cheating” at first —
how could we construct a circuit to perform Of ? And how could we know
it’s an efficient circuit? One reason to think about quantum algorithms in the
query model is because it provides a lower bound on the number of steps
(gates). Each query is at least one step in the algorithm, so if it cannot be
done efficiently with queries, it can certainly not be done efficiently with gates.
Thus, the query model can be useful for ruling out fast quantum algorithms.

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019

J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0_8

95

https://doi.org/10.1007/978-3-030-23922-0_8
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23922-0_8&domain=pdf

96 CHAPTER 8 The Canon: Code Walkthroughs

Figure 8.1: Overview of studied quantum algorithms; paradigms include: Grover Opera-
tor (GO), Quantum Fourier Transform (QFT), Harrow/Hassidim/Lloyd (HHL), Variational
Quantum Eigensolver (VQE), and direct Hamiltonian simulation (SIM). The simulation match
column indicates how well the hardware quantum results matched the simulator results. Ta-
ble and Caption Source: [61]

However, the query model can also be used to prove fast quantum algo-
rithms relative to the oracle. We can give both a quantum computer and a
classical computer access to the same oracle and see which performs better.
It’s possible to prove lower bounds or exact expressions for the number of
queries in the classical and quantum cases, thereby making it possible to
prove computational advantages relative to oracles. Examples of quantum
algorithms with provable relativized speedups include Deutsch’s algorithm
and the Berstein-Vazirani algorithm.

Finally, if one can find a way to instantiate the oracle in a number of
gates that scales polynomially in the size of the input register, one can find
“true” (i.e., not relativized) quantum speedups. This is the case with Shor’s
algorithm for quantum factoring.1 Shor’s algorithm built off previous work
in query model algorithms for artificial problems. Shor was able to modify
this work and instantiate the oracle to construct an explicit (i.e., not involving
oracle access) algorithm for factoring. Factoring is markedly not an artificial
problem — it is exceedingly important as we base most of our public-key
cryptography on the belief that factoring is hard to do! Section 8.5 discusses
this further.

Before this, we discuss the historical quantum algorithms leading up to
Shor’s algorithm. We note that these black box/oracle algorithms are one

1The classical complexity of factoring has not been proven to be intractable, but it is widely
believed to be so since no one has yet discovered an efficient algorithm.

SECTION 8.1 The Deutsch-Jozsa Algorithm 97

particular class of quantum algorithms. Other algorithm classes such as
quantum simulation are shown in Figure 8.1. In upcoming chapters, we will
cover additional applications and code for algorithms that are focused on the
NISQ-regime processors. For now, though, we cover the canon.

8.1 The Deutsch-Jozsa Algorithm

Deutsch’s algorithm was the first to demonstrate a clear advantage of quantum
over classical computing. In Deutsch’s problem we are given a black box
which computes a one-bit boolean function. That is, a function which takes in
one bit and outputs one bit. We can represent the function f as

f W f0; 1g ! f0; 1g (8.2)

We can imagine, for example, as David Deutsch has pointed out, that the
black box function is computing some complicated function such as a routing
algorithm and the output (0 or 1) indicates which route is chosen [66].

There are exactly four one-input, one-output Boolean functions:2

x f0 f1 fx f Nx
0 0 1 0 1
1 0 1 1 0

The first two of these are constant functions, f0 and f1. That is, they
always output a constant value. We call the other two, fx and f Nx , balanced.
Over their inputs 0 and 1, they have an equal number of 0s and 1s in their
truth table.

We can now state Deutsch’s problem:

Given access to a one bit input and one bit output
Boolean function, determine, by querying the function as
few times as possible, whether the function is balanced
or constant.

If you were to approach this with classical tools, you would have to query
the function at least twice: first to see the output when the input is 0 and
then the output when the input is 1. The remarkable discovery by David
Deutsch is that you only need one query on a quantum computer! The original
Deutsch algorithm handles this case of a one-bit Boolean oracle [65], and the

2Code and exposition of the DJ algorithm adapted from [60].

98 CHAPTER 8 The Canon: Code Walkthroughs

Deutsch-Jozsa (DJ) algorithm generalizes the approach to handle Boolean
functions of n inputs [67]. It’s not difficult to see that, with classical tools,
one must query an n bit Boolean function at least n times. The DJ algorithm
solves this problem in only one query.

8.3 Quantum Advantage Demonstrated by Deutsch-Jozsa

Classically, one must query the one-bit Boolean function twice to dis-
tinguish the constant function from the balanced function. For an n-bit
Boolean function, one must query n times. On a quantum computer using
DJ one only has to query once.

We now turn to the quantum approach to this problem. Above, we have
described a classical function on bits that is not reversible, e.g., the constant
functions f0 and f1. That is, knowing the value of the output does not allow
us to determine uniquely the value of the input. In order to run this on a
quantum computer, however we need to make this computation reversible. A
trick for taking a classical non-reversible function and making it reversible
is to compute the value in an extra register (or, equivalently, store inputs to
the function in an extra register). Suppose we have an n bit input x and we
are computing a (potentially non-reversible) Boolean function f .x/. Then we
can implement this via a unitary Uf that acts on nC 1 qubits

Uf .jxijyi/ WD jxijy ˚ f .x/i

Here the symbol ˚ denotes addition modulo-2 (a.k.a. XOR); in the ex-
pression above, we have identified how Uf acts on all computational basis
states jxi and on the single output qubit jyi. Since we have defined Uf on
the computational basis, we extend its definition to all vectors in the state
space by linearity. To see that this is reversible, one can note that applying the
transformation twice returns the state to its original form. Even further, Uf
is unitary since it maps the orthonormal computational basis to itself and so
preserves the length of the vectors that it acts on.

One core idea in this algorithm is that we will measure in a different basis
than the computational basis. If we measure in the computational basis (e.g.,
the z-basis) then we will gain no quantum advantage as we have two basis
states, j0i and j1i, and those correspond to the classical bits, 0 and 1. One
of the tricks that makes this algorithm work is that we will measure in the
Hadamard basis state which is a superposition of j0i and j1i [137]. Figure 8.2
shows a circuit diagram of DJ.

Let’s see how to implement these functions in Cirq. f0 enacts the transform

SECTION 8.1 The Deutsch-Jozsa Algorithm 99

Figure 8.2: The DJ circuit Source: Wikimedia

j00i ! j00i

j01i ! j01i

j10i ! j10i

j11i ! j11i

This is just the identity transform, i.e., an empty circuit. f1 enacts the trans-
form

j00i ! j01i

j01i ! j00i

j10i ! j11i

j11i ! j10i

This is a bit flip gate on the second qubit.
To gain an understanding of how this newly defined reversible operator

works, we will compute Ufx .j0ij0i/ as an example to demonstrate. Recall
that j00i is shorthand for j0ij0i. Then, by definition,

Ufx .j00i/ D Ufx .j0ij0i/ WD j0ij0˚ fx.0/i D j0ij0˚ 1i D j0ij1i

It is worthwhile to compute Ufx for each of j0ij1i, j1ij0i and j1ij1i; then let
us check that fx enacts the transform

j00i ! j00i

j01i ! j01i

j10i ! j11i

j11i ! j10i

100 CHAPTER 8 The Canon: Code Walkthroughs

This is nothing more than a CNOT from the first qubit to the second qubit.
Finally f Nx enacts the transform

j00i ! j01i

j01i ! j00i

j10i ! j10i

j11i ! j11i

which is a CNOT from the first qubit to the second qubit followed by a bit
flip on the second qubit. We can encapsulate these functions into a dictionary
which maps oracle names to the operations in the circuit needed to enact this
function:

Import the Cirq Library
import cirq

Get two qubits, a data qubit and target qubit, respectively
q0, q1 = cirq.LineQubit.range(2)

Dictionary of oracles
oracles = {’0’: [], ’1’: [cirq.X(q1)], ’x’: [cirq.CNOT(q0, q1)],

’notx’: [cirq.CNOT(q0, q1), cirq.X(q1)]}

Let us turn now to Deutsch’s algorithm. Suppose we are given access to the
reversible oracle functions we have defined before. By a similar argument for
our irreversible classical functions, you can show that you cannot distinguish
the balanced from the constant functions by using this oracle only once. But
now we can ask the question: what if we are allowed to query this function in
superposition, i.e., what if we can use the power of quantum computing?

Deutsch was able to show that you could solve this problem with quantum
computers using only a single query of the function. To see how this works,
we need two simple insights. Suppose we prepare the second qubit in the
superposition state

j�i D
1
p
2
.j0i � j1i/

and apply the oracle. Using the linearity of the operator Uf to acquire the
second equation and an observation for the third, we can check that

Uf jxij�i D Uf jxi
1
p
2
.j0i � j1i/

D jxi
1
p
2
.jf .x/i � jf .x/˚ 1i/ D .�1/f .x/jxij�i

SECTION 8.1 The Deutsch-Jozsa Algorithm 101

This is the phase kickback trick. By applying Uf onto a target which is in
superposition, the value of the function ends up in the global phase, thus
kicking back the information we need on whether the function is constant or
balanced; the information is encoded in the phase.

How can we leverage this to distinguish between constant and balanced
functions? Note that for constant functions the phase that is applied is the
same for all inputs jxi, whereas for balanced functions the phase is different
for each value of x. To use the phase kickback trick for each of the oracles,
we apply the following transform on the first qubit

f0 ! I

f1 ! �I

fx ! Z

f Nx ! �Z

Uf0 D

Uf1 D

X

Ufx

�
D

Uf Nx

�
D

X

Now we only need to distinguish between the identity gate and the Z gate
on the first qubit; we can do this by recalling that:

HZH D X

H D
1
p
2

�
1 1

1 �1

�
This means that we can turn a phase flip into a bit flip by applying Hadamards
before and after the phase flip. If we look at the constant and balanced
functions we see that the constant functions will be proportional to I and the
balanced will be proportional to X . If we feed in j0i to this register, then in
the first case we will only see j0i and in the second case we will see j1i. In
other words we will be able to distinguish constant from balanced using a
single query of the oracle.

102 CHAPTER 8 The Canon: Code Walkthroughs

H
Uf

H

X H

Import the Cirq Library
import cirq

Get two qubits, a data qubit and target qubit, respectively
q0, q1 = cirq.LineQubit.range(2)

Dictionary of oracles
oracles = {’0’: [], ’1’: [cirq.X(q1)], ’x’: [cirq.CNOT(q0, q1)],

’notx’: [cirq.CNOT(q0, q1), cirq.X(q1)]}

def deutsch_algorithm(oracle):
"""Yields a circuit for Deustch’s algorithm given operations

implementing
the oracle."""
yield cirq.X(q1)
yield cirq.H(q0), cirq.H(q1)
yield oracle
yield cirq.H(q0)
yield cirq.measure(q0)

Display each circuit for all oracles
for key, oracle in oracles.items():

print(’Circuit for {}...’.format(key))
print(cirq.Circuit.from_ops(deutsch_algorithm(oracle)),

end="\n\n")

Get a simulator
simulator = cirq.Simulator()

Execute the circuit for each oracle to distingiush constant from
balanced

for key, oracle in oracles.items():
result = simulator.run(

cirq.Circuit.from_ops(deutsch_algorithm(oracle)),
repetitions=10

)
print(’oracle: {:<4} results: {}’.format(key, result))

Now let’s extend the Deutsch problem to Boolean functions of n Boolean
inputs, not just single-input functions as above. We saw that with the Deutsch
algorithm we can double our speed, going from two queries classically to one
query quantum mechanically.

=n H˝n

Uf
H˝n

X H

SECTION 8.1 The Deutsch-Jozsa Algorithm 103

If we are able to query an n-bit oracle just once and determine whether
the function is constant or balanced we have a time complexity of O.1/, a
significant speedup over O.n/ queries. All Boolean functions for one-bit
input are either constant or balanced. For Boolean functions with two input
bits there are two constant functions, f .x0; x1/ D 0 and f .x0; x1/ D 1,
while there are

�
4
2

�
D 6 balanced functions. The following code gives you the

operations for querying these functions.

"""Deustch-Jozsa algorithm on three qubits in Cirq."""

Import the Cirq library
import cirq

Get three qubits -- two data and one target qubit
q0, q1, q2 = cirq.LineQubit.range(3)

Oracles for constant functions
constant = ([], [cirq.X(q2)])

Oracles for balanced functions
balanced = ([cirq.CNOT(q0, q2)],

[cirq.CNOT(q1, q2)],
[cirq.CNOT(q0, q2), cirq.CNOT(q1, q2)],
[cirq.CNOT(q0, q2), cirq.X(q2)],
[cirq.CNOT(q1, q2), cirq.X(q2)],
[cirq.CNOT(q0, q2), cirq.CNOT(q1, q2), cirq.X(q2)])

def your_circuit(oracle):
"""Yields a circiut for the Deustch-Jozsa algorithm on three

qubits."""
phase kickback trick
yield cirq.X(q2), cirq.H(q2)

equal superposition over input bits
yield cirq.H(q0), cirq.H(q1)

query the function
yield oracle

interference to get result, put last qubit into |1>
yield cirq.H(q0), cirq.H(q1), cirq.H(q2)

a final OR gate to put result in final qubit
yield cirq.X(q0), cirq.X(q1), cirq.CCX(q0, q1, q2)
yield cirq.measure(q2)

Get a simulator
simulator = cirq.Simulator()

Execute circuit for oracles of constant value functions
print(’Your result on constant functions’)
for oracle in constant:

104 CHAPTER 8 The Canon: Code Walkthroughs

result =
simulator.run(cirq.Circuit.from_ops(your_circuit(oracle)),
repetitions=10)

print(result)

Execute circuit for oracles of balanced functions
print(’Your result on balanced functions’)
for oracle in balanced:

result =
simulator.run(cirq.Circuit.from_ops(your_circuit(oracle)),
repetitions=10)

print(result)

We can now see how to query an oracle of n-bit boolean inputs to check
whether it is constant or balanced.

8.2 The Bernstein-Vazirani Algorithm

Now let’s turn to the Bernstein-Vazirani (BV) algorithm that we considered
earlier in this book [29]. As with DJ, the goal of BV is also to ascertain the na-
ture of a black-box Boolean function. While it is true that DJ demonstrates an
advantage of quantum over classical computing, if we allow for a small error
rate, then the advantage disappears: both classical and quantum approaches
are in the order of O.1/ time complexity [137].

BV was the first algorithm developed that shows a clear separation between
quantum and classical computing even allowing for error, i.e., a true non-
deterministic speedup. Here is the BV problem statement:

Given an unknown function of n inputs:

f .xn 1; xn 2; :::; x1; x0/;

let a be an unknown non-negative integer less than 2n.
Let f .x/ take any other such integer x and modulo-2
sum x multiplied by a. So the output of the function is:

a � x D a0x0 ˚ a1x1 ˚ a2x2::::

Find a in one query of the oracle [151].

Just as in DJ, we prepare the states of two sets of qubits: the data register
qubits and the target qubit. The data register qubits are set to j0i and the target
set to j1i. We then applyH to both sets of qubits to put them in superposition.
H applied to the data register qubits prepares us to measure in the X basis.

SECTION 8.2 The Bernstein-Vazirani Algorithm 105

We then apply the unitary Uf , an H to the data register qubits and then
measure those qubits. Since we only applied Uf once, the time complexity of
BV is O.1/.

=n H˝n

Uf
H˝n

X H

The Bernstein-Vazirani Algorithm

"""Bernstein-Vazirani algorithm in Cirq."""

Imports
import random

import cirq

def main():
"""Executes the BV algorithm."""
Number of qubits
qubit_count = 8

Number of times to sample from the circuit
circuit_sample_count = 3

Choose qubits to use
input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)]
output_qubit = cirq.GridQubit(qubit_count, 0)

Pick coefficients for the oracle and create a circuit to query
it

secret_bias_bit = random.randint(0, 1)
secret_factor_bits = [random.randint(0, 1) for _ in

range(qubit_count)]
oracle = make_oracle(input_qubits,

output_qubit,
secret_factor_bits,
secret_bias_bit)

print(’Secret function:\nf(x) = x*<{}> + {} (mod 2)’.format(
’, ’.join(str(e) for e in secret_factor_bits),
secret_bias_bit))

Embed the oracle into a special quantum circuit querying it
exactly once

circuit = make_bernstein_vazirani_circuit(
input_qubits, output_qubit, oracle)

print(’\nCircuit:’)
print(circuit)

Sample from the circuit a couple times
simulator = cirq.Simulator()

106 CHAPTER 8 The Canon: Code Walkthroughs

result = simulator.run(circuit, repetitions=circuit_sample_count)
frequencies = result.histogram(key=’result’, fold_func=bitstring)
print(’\nSampled results:\n{}’.format(frequencies))

Check if we actually found the secret value.
most_common_bitstring = frequencies.most_common(1)[0][0]
print(’\nMost common matches secret factors:\n{}’.format(

most_common_bitstring == bitstring(secret_factor_bits)))

def make_oracle(input_qubits,
output_qubit,
secret_factor_bits,
secret_bias_bit):

"""Gates implementing the function f(a) = a*factors + bias (mod
2)."""

if secret_bias_bit:
yield cirq.X(output_qubit)

for qubit, bit in zip(input_qubits, secret_factor_bits):
if bit:

yield cirq.CNOT(qubit, output_qubit)

def make_bernstein_vazirani_circuit(input_qubits, output_qubit,
oracle):

"""Solves for factors in f(a) = a*factors + bias (mod 2) with one
query."""

c = cirq.Circuit()

Initialize qubits
c.append([

cirq.X(output_qubit),
cirq.H(output_qubit),
cirq.H.on_each(*input_qubits),

])

Query oracle
c.append(oracle)

Measure in X basis
c.append([

cirq.H.on_each(*input_qubits),
cirq.measure(*input_qubits, key=’result’)

])

return c

def bitstring(bits):
"""Creates a bit string out of an iterable of bits."""
return ’’.join(str(int(b)) for b in bits)

if __name__ == ’__main__’:

SECTION 8.3 Simon’s Problem 107

main()

Here we initialize the target (or output) register to j1i with an X operator
and the data register qubits from state j0i to the jCi / j�i basis by applyingH .
We then query the oracle, applyH to each of the input qubits and measure the
input qubits. This gives us the answer that we were seeking, a, in one query.
Thus, no matter how many inputs we have, we can perform this algorithm in
O.1/ time.

"""
=== EXAMPLE OUTPUT for BV ===
Secret function:
f(x) = x*<0, 1, 1, 1, 0, 0, 1, 0> + 1 (mod 2)

Sampled results:
Counter({’01110010’: 3})
Most common matches secret factors:
True
"""

8.3 Simon’s Problem

Soon after BV’s result, Daniel Simon demonstrated the ability to determine
the periodicity of a function exponentially faster on a quantum computer
compared with a classical one.

Let us recall that a function can map two different inputs to the same
output but must not map the same input to two different outputs. In other
words, 2W1 is acceptable, but 1W2 is not. For example, the function f .x/ D x2

which squares each input is in fact a function; two different inputs, namely 1
and �1 both map to 1, i.e., f .x/ is 2:1. See Part III for a review of functions
and injectivity, surjectivity and bijectivity.

If we determine that the function is of the 2W1 type, then our next challenge
is to investigate the period of the function (see section 8.5 for an explanation
of periodicity); this is the core objective of Simon’s problem. Here is an
outline of the problem in more formal language:

The problem considers an oracle that implements a
function mapping an n-bit string to an m-bit string
f Wf0; 1gn ! f0; 1gm, with m � n, where it is promised
that f is a 1W1 type function (each input gives a different
output) or 2W1 type function (two inputs give the same

108 CHAPTER 8 The Canon: Code Walkthroughs

output) with non-zero period s 2 f0; 1gn such that for all
x; x0 we have f .x/ D f .x0/ if and only if x0 D x ˚ s,
where ˚ corresponds to addition modulo-2.3 The
problem is to determine the type of the function f and, if
it is 2W1, to determine the period s. [215]

Simon’s problem is in the same vein as Deutsch’s problem — you are
presented with an oracle — a black box function where you can observe the
output for specific inputs, but not the underlying function. The challenge is
to determine if this black-box process ever sends two different inputs to the
same output, and if so, determine how often that occurs. Note that in these
algorithms we do not find out what the underlying function in the black box
is, only the relationship between the input and the output as seen from outside
the box. The actual function may be quite complicated and may require even
more steps to analyze than the input/output relationship. We explore the
concept of oracles further in this chapter.

Simon was successful in proving that we can solve this problem to deter-
mine the periodicity of a function exponentially faster on a quantum computer
compared with a classical one. Shor built on this key result in developing his
algorithm for factoring large numbers when he realized that the two problems
— finding the periodicity of a function and factoring a large composite number
— are in fact isomorphic.

Twenty years after Simon presented his problem, researchers did in fact
successfully use a quantum system to determine the periodicity of a func-
tion [215]. Check the book’s website for sample code for Simon’s problem.

8.4 Quantum Fourier Transform

In chapter 3, we discussed the Quantum Fourier Transform (QFT) as a method
to set up the amplitudes for measurement that will favor the qubit which
has the information we require. We can implement a QFT circuit on NISQ
hardware in a straightforward manner. Here is the standard circuit diagram
for QFT:

3When we do addition modulo-2, we equate 2 with 0. So, for example, 1˚ 1 D 0 and we
would say, “The sum of 1 and 1 modulo-2 is 0.”

SECTION 8.4 Quantum Fourier Transform 109

jx1i H R�=2 R�=4 R�=8

jx2i � H R�=2 R�=4

jx3i � � H R�=2

jx4i � � � H

Now let’s walk through the code for QFT as we will use this technique in the
upcoming section on Shor’s algorithm. We’ll go through the program step by
step, explaining first high-level details and then discussing implementation
details.

First, we import the necessary packages for this program including the
Cirq library.

"""Creates and simulates a circuit for Quantum Fourier Transform
(QFT)

on a 4 qubit system.
"""

Imports
import numpy as np

import cirq

Next, we define the main function, which simply calls the circuit generation
function and then runs it — in this case on the simulator. The program then
prints the final state of the wavefunction after the QFT has been applied.

def main():
"""Demonstrates the Quantum Fourier transform."""

Create circuit and display it
qft_circuit = generate_2x2_grid_qft_circuit()
print(’Circuit:’)
print(qft_circuit)

Simulate and collect the final state
simulator = cirq.Simulator()
result = simulator.simulate(qft_circuit)

Display the final state
print(’\nFinalState’)
print(np.around(result.final_state, 3))

110 CHAPTER 8 The Canon: Code Walkthroughs

Figure 8.3: Modified QFT circuit including SWAP operations fit for running on a 2x2 grid of
qubits with nearest-neighbor interactions.

Next, we define a helper function for building the QFT circuit. This
function yields a controlled-Rz rotation as well as a SWAP gate on the input
qubits.

def cz_and_swap(q0, q1, rot):
"""Yields a controlled-RZ gate and SWAP gate on the input

qubits."""
yield cirq.CZ(q0, q1)**rot
yield cirq.SWAP(q0,q1)

Finally, we use this helper function to write the entire circuit, which is
done in the function below. First, we define a 2 x 2 grid of qubits and label
them a through d . In many quantum computing systems there are constraints
one which qubits can interact with each other. For example perhaps only
nearest-neighbor qubits can interact. Then we cannot apply the standard QFT
circuit described above. Instead, a modified QFT circuit including SWAP
operations needs to be applied, as illustrated in Figure 8.3. This is the circuit
we will implement in our example.

We apply a series of Hadamard and control rotation operators as specified
by the diagram. In this example we perform the quantum Fourier transform on
the .1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0/ vector, which means acting with
the QFT circuit on the ground state j0000i.

def generate_2x2_grid_qft_circuit():
"""Returns a QFT circuit on a 2 x 2 planar qubit architecture.

Circuit adopted from https://arxiv.org/pdf/quant-ph/0402196.pdf.
"""
Define a 2*2 square grid of qubits
a, b, c, d = [cirq.GridQubit(0, 0), cirq.GridQubit(0, 1),

cirq.GridQubit(1, 1), cirq.GridQubit(1, 0)]

Create the Circuit
circuit = cirq.Circuit.from_ops(

cirq.H(a),
cz_and_swap(a, b, 0.5),
cz_and_swap(b, c, 0.25),

SECTION 8.5 Shor’s Algorithm 111

cz_and_swap(c, d, 0.125),
cirq.H(a),
cz_and_swap(a, b, 0.5),
cz_and_swap(b, c, 0.25),
cirq.H(a),
cz_and_swap(a, b, 0.5),
cirq.H(a),
strategy=cirq.InsertStrategy.EARLIEST

)

return circuit

Finally, we can run this circuit by calling the main function:

if __name__ == ’__main__’:
main()

The output of this program is shown below:

FinalState
[0.25+0.j 0.25+0.j 0.25+0.j 0.25+0.j 0.25+0.j 0.25+0.j 0.25+0.j

0.25+0.j
0.25+0.j 0.25+0.j 0.25+0.j 0.25+0.j 0.25+0.j 0.25+0.j 0.25+0.j

0.25+0.j]

Figure 8.4 delineates the process of applying QFT.

8.5 Shor’s Algorithm

RSA Cryptography

Suppose Alice would like to send a private message to Bob via the internet.
Alice’s message could very well be intercepted by a malicious eavesdropper,
Eve, along its journey. This is embarrassing, yet harmless, if Alice is sending
Bob a note, but it is an issue if Alice is sending Bob her credit card number.
How can we send messages securely via the internet?

Cryptography is the study of the making and breaking of secret codes.
Cryptography refers to the writing of secret codes, while cryptanalysis refers
to the breaking of those codes. RSA cryptography is a popular style of cryptog-
raphy that allows for the secure transfer of information via the internet. RSA
honors Rivest, Shah and Adelman, three pioneers in its development [188].

The core conjecture of RSA cryptography is that multiplying two large
prime numbers is a trapdoor function; multiplying two large prime numbers
is easy, yet finding the two factors after the multiplication has occurred is hard.
Later in this chapter, we’ll see that a fault-tolerant quantum computer will

112 CHAPTER 8 The Canon: Code Walkthroughs

Figure 8.4: Measurement process Source: [159]

have the capacity to surmount the difficulty posed by the factorization process
which will put the entire RSA scheme at risk [200]! This leads us to post-
quantum cryptography, a fascinating field at the intersection of mathematics,
physics and computer science.

In 1994, Peter Shor published his landmark paper establishing a quantum
algorithm for the prime factorization of numbers [200]. The problem of
factoring a number into primes reduces to finding a factor, since if you can
find one factor, you can use it to divide the original number and consider the
smaller factors. Eventually, using this divide (literally) and conquer strategy,
we can completely factor the number into primes.

His technique to find a factor of any number n is to find the period, r , of a
certain function f and then use the knowledge of the period of said function
to find a factor of the number.

SECTION 8.5 Shor’s Algorithm 113

The Period of a Function

The problem of factoring the product of two large prime numbers is, in some
sense, equivalent to the problem of finding the period of a function. To get
an idea of what the period of a function might be, consider raising some
number, like 2, to higher and higher powers, and then taking the result modulo
a product of two prime numbers such as 91 D 13 � 7. For example, we have:

20 (mod 91/ 1

21 (mod 91/ 2

22 (mod 91/ 4

23 (mod 91/ 8

24 (mod 91/ 16

25 (mod 91/ 32

26 (mod 91/ 64

27 (mod 91/ 37

28 (mod 91/ 74
:::

:::

We see that the numbers cannot grow forever due to the modulo operation.
For example, 26 (mod 91/ D 64 and the next highest power 27 (mod 91/ D
37.

8.4 Exercise Figure out if the powers of 2 ever cycle back to the number
1 in the table above. More precisely: find the smallest number n beyond 0
such that

2n (mod 91/ D 1

Persistence pays off here. If you tried the above exercise, you found that,
yes, 212 (mod 91/ D 1, and that 12 is the smallest number beyond 0 that
makes this happen. Was it even obvious that it would return to 1? We refer to
the number 12 as the period of the function defined by

f .n/ WD 2n (mod 91/

In general, for a function defined by

f .n/ WD an (mod N/

for some a 2 f1; 2; :::; N �1g relatively prime toN , the period of the function
f is the smallest number n beyond 0 such that f .n/ D 1 once again. In other

114 CHAPTER 8 The Canon: Code Walkthroughs

words, since at n D 0
a0 (modN/ D 1

we must find the next n that again satisfies

an (modN/ D 1

A number a is relatively prime to N iff4 the greatest common divisor of
a and N is equal to 1, written gcd.a;N / D 1. We refer to these functions
as modular functions. This number n is also referred to as the order of the
element a in the group .Z=NZ/�, which denotes the multiplicative group
whose underlying set is the subset of numbers in f1; 2; :::; N � 1g relatively
prime toN , and whose binary operation is multiplication moduloN , as above.

8.5 Exercise Check that .Z=NZ/�, whose underlying set of elements is
the subset of numbers in f1; 2; :::; N � 1g relatively prime to N and whose
binary operation is multiplication modulo N , is actually a group! For any
number N , how many elements does the group .Z=NZ/� have? Can you find
a pattern relating the number of elements in .Z=NZ/� to the number N ?

The fascinating point we make now is that the difficulty you experienced
finding the period of the function f .x/ D 2n (mod 97/ is not unique. Even
a (classical) computer would have a difficult time finding the period of this
function! Peter Shor realized that we can exploit quantum computing to
quickly find the period of such a function [200]. We will now explain how the
period of a function can be used as an input to the factorization algorithm that
would crack RSA cryptography.

Period of a Function as an Input to a Factorization Algorithm

Suppose we are asked to factor some number N , and that we know how to
find the period of any modular function, as described above. Remember that
the problem of factoring N reduces to the simpler problem of finding any
factor of N . So, let’s see how we could leverage our ability to find the period
of a modular function to find a factor of N :

1. Choose a random number a < N .
2. Compute gcd.a;N / using the extended Euclidean algorithm.
3. If gcd.a;N / ¤ 1, i.e., a and N are not relatively prime, a is already a

nontrivial factor of N , and so we are done.
4Note: we abbreviate if and only if as iff throughout the book.

SECTION 8.5 Shor’s Algorithm 115

4. Otherwise, find the period r of the modular function

f .n/ WD an (modN/

5. If r is an odd number, or if a
r
2 D �1 (modN/, choose a new random

number and start over.
6. Otherwise, classical number theory guarantees that gcd.a

r
2 C 1;N /

and gcd.a
r
2 � 1;N / are both nontrivial factors of N .

8.6 Exercise Run the above algorithm to factor the number N D 21.

A successful approach to the exercise above is the following:
1. began with a D 2, since
2. gcd.a;N / D gcd.2; 21/ D 1,
3. (Step 3 is omitted, since gcd.a;N / D gcd.2; 21/ D 1),
4. the period of the modular function f .n/ WD 2n (mod 21/ is found to be
r D 6 and

5. r D 6 is neither an odd number, nor does it satisfy the equation

a
r
2 D �1 (mod)N;

6.

gcd.a
r
2C1;N / D gcd.2

6
2C1; 21/ D gcd.8C1; 21/ D gcd.9; 21/ D 3

and

gcd.a
r
2�1;N / D gcd.2

6
2�1; 21/ D gcd.23�1; 21/ D gcd.7; 21/ D 7

are the two nontrivial factors of N D 21.
We can see that being able to find the period of any modular function is

the key to factoring. It is the quantum Fourier transform (QFT), described
earlier in this book, that allows us to find the period! Shor was inspired by
Simon’s algorithm and BV in his development of this algorithm. He built
on the use of the QFT by BV and the period finding of Simon’s approach to
then arrive at his number-factoring algorithm.5 Here is the circuit diagram for
Shor’s algorithm:

5Please see this book’s GitHub site for an example of code for Simon’s algorithm.

116 CHAPTER 8 The Canon: Code Walkthroughs

j0i H � � � �

QFT 1
2n

:::
:::

:::

j0i H � � � �

j0i H � � � �

j1i =n Ua2
0

Ua2
1 � � � Ua2

2n�1

Let us now do a walkthrough of a sample encoding of Shor’s algorithm. The
following code comes from [234]:

"""
toddwildey/shors-python

@toddwildey toddwildey Implemented Shor’s algorithm in Python 3.X
using state vectors

470 lines (353 sloc) 12.1 KB
#!/usr/bin/env python

shors.py: Shor’s algorithm for quantum integer factorization"""

import math
import random
import argparse

__author__ = "Todd Wildey"
__copyright__ = "Copyright 2013"
__credits__ = ["Todd Wildey"]

__license__ = "MIT"
__version__ = "1.0.0"
__maintainer__ = "Todd Wildey"
__email__ = "toddwildey@gmail.com"
__status__ = "Prototype"

def printNone(str):
pass

def printVerbose(str):
print(str)

printInfo = printNone

Quantum Components

class Mapping:
def __init__(self, state, amplitude):

self.state = state
self.amplitude = amplitude

SECTION 8.5 Shor’s Algorithm 117

class QuantumState:
def __init__(self, amplitude, register):

self.amplitude = amplitude
self.register = register
self.entangled = {}

def entangle(self, fromState, amplitude):
register = fromState.register
entanglement = Mapping(fromState, amplitude)
try:

self.entangled[register].append(entanglement)
except KeyError:

self.entangled[register] = [entanglement]

def entangles(self, register = None):
entangles = 0
if register is None:

for states in self.entangled.values():
entangles += len(states)

else:
entangles = len(self.entangled[register])

return entangles

class QubitRegister:
def __init__(self, numBits):

self.numBits = numBits
self.numStates = 1 << numBits
self.entangled = []
self.states = [QuantumState(complex(0.0), self) for x in

range(self.numStates)]
self.states[0].amplitude = complex(1.0)

def propagate(self, fromRegister = None):
if fromRegister is not None:

for state in self.states:
amplitude = complex(0.0)

try:
entangles = state.entangled[fromRegister]
for entangle in entangles:

amplitude += entangle.state.amplitude *
entangle.amplitude

state.amplitude = amplitude
except KeyError:

state.amplitude = amplitude

for register in self.entangled:
if register is fromRegister:

continue

register.propagate(self)

118 CHAPTER 8 The Canon: Code Walkthroughs

Map will convert any mapping to a unitary tensor given each
element v

returned by the mapping has the property v * v.conjugate() = 1
#
def map(self, toRegister, mapping, propagate = True):

self.entangled.append(toRegister)
toRegister.entangled.append(self)

Create the covariant/contravariant representations
mapTensorX = {}
mapTensorY = {}
for x in range(self.numStates):

mapTensorX[x] = {}
codomain = mapping(x)
for element in codomain:

y = element.state
mapTensorX[x][y] = element

try:
mapTensorY[y][x] = element

except KeyError:
mapTensorY[y] = { x: element }

Normalize the mapping:
def normalize(tensor, p = False):

lSqrt = math.sqrt
for vectors in tensor.values():

sumProb = 0.0
for element in vectors.values():

amplitude = element.amplitude
sumProb += (amplitude * amplitude.conjugate()).real

normalized = lSqrt(sumProb)
for element in vectors.values():

element.amplitude = element.amplitude / normalized

normalize(mapTensorX)
normalize(mapTensorY, True)

Entangle the registers
for x, yStates in mapTensorX.items():

for y, element in yStates.items():
amplitude = element.amplitude
toState = toRegister.states[y]
fromState = self.states[x]
toState.entangle(fromState, amplitude)
fromState.entangle(toState, amplitude.conjugate())

if propagate:
toRegister.propagate(self)

def measure(self):
measure = random.random()
sumProb = 0.0

Pick a state
finalX = None

SECTION 8.5 Shor’s Algorithm 119

finalState = None
for x, state in enumerate(self.states):

amplitude = state.amplitude
sumProb += (amplitude * amplitude.conjugate()).real

if sumProb > measure:
finalState = state
finalX = x
break

If state was found, update the system
if finalState is not None:

for state in self.states:
state.amplitude = complex(0.0)

finalState.amplitude = complex(1.0)
self.propagate()

return finalX

def entangles(self, register = None):
entangles = 0
for state in self.states:

entangles += state.entangles(None)

return entangles

def amplitudes(self):
amplitudes = []
for state in self.states:

amplitudes.append(state.amplitude)

return amplitudes

def printEntangles(register):
printInfo("Entagles: " + str(register.entangles()))

def printAmplitudes(register):
amplitudes = register.amplitudes()
for x, amplitude in enumerate(amplitudes):

printInfo(’State #’ + str(x) + ’\’s amplitude: ’ +
str(amplitude))

def hadamard(x, Q):
codomain = []
for y in range(Q):

amplitude = complex(pow(-1.0, bitCount(x & y) & 1))
codomain.append(Mapping(y, amplitude))

return codomain

Quantum Modular Exponentiation
def qModExp(a, exp, mod):

state = modExp(a, exp, mod)
amplitude = complex(1.0)
return [Mapping(state, amplitude)]

120 CHAPTER 8 The Canon: Code Walkthroughs

Quantum Fourier Transform
def qft(x, Q):

fQ = float(Q)
k = -2.0 * math.pi
codomain = []

for y in range(Q):
theta = (k * float((x * y) % Q)) / fQ
amplitude = complex(math.cos(theta), math.sin(theta))
codomain.append(Mapping(y, amplitude))

return codomain

Now that we have defined functions for entanglement and QFT, we can
define the core period-finding function. Recall that this is the key subroutine
that must run on quantum hardware.

def findPeriod(a, N):
nNumBits = N.bit_length()
inputNumBits = (2 * nNumBits) - 1
inputNumBits += 1 if ((1 << inputNumBits) < (N * N)) else 0
Q = 1 << inputNumBits

printInfo("Finding the period...")
printInfo("Q = " + str(Q) + "\ta = " + str(a))

inputRegister = QubitRegister(inputNumBits)
hmdInputRegister = QubitRegister(inputNumBits)
qftInputRegister = QubitRegister(inputNumBits)
outputRegister = QubitRegister(inputNumBits)

printInfo("Registers generated")
printInfo("Performing Hadamard on input register")

inputRegister.map(hmdInputRegister, lambda x: hadamard(x, Q),
False)

inputRegister.hadamard(False)

printInfo("Hadamard complete")
printInfo("Mapping input register to output register, where f(x)

is a^x mod N")

hmdInputRegister.map(outputRegister, lambda x: qModExp(a, x, N),
False)

printInfo("Modular exponentiation complete")
printInfo("Performing quantum Fourier transform on output

register")

hmdInputRegister.map(qftInputRegister, lambda x: qft(x, Q), False)
inputRegister.propagate()

printInfo("Quantum Fourier transform complete")
printInfo("Performing a measurement on the output register")

SECTION 8.5 Shor’s Algorithm 121

y = outputRegister.measure()

printInfo("Output register measured\ty = " + str(y))

Interesting to watch - simply uncomment
printAmplitudes(inputRegister)
printAmplitudes(qftInputRegister)
printAmplitudes(outputRegister)
printEntangles(inputRegister)

printInfo("Performing a measurement on the periodicity register")

x = qftInputRegister.measure()

printInfo("QFT register measured\tx = " + str(x))

if x is None:
return None

printInfo("Finding the period via continued fractions")

r = cf(x, Q, N)

printInfo("Candidate period\tr = " + str(r))

return r

Now we can define the functions that will run on classical hardware.

BIT_LIMIT = 12

def bitCount(x):
sumBits = 0
while x > 0:

sumBits += x & 1
x >>= 1

return sumBits

Greatest Common Divisor
def gcd(a, b):

while b != 0:
tA = a % b
a = b
b = tA

return a

Extended Euclidean
def extendedGCD(a, b):

fractions = []
while b != 0:

fractions.append(a // b)
tA = a % b

122 CHAPTER 8 The Canon: Code Walkthroughs

a = b
b = tA

return fractions

Continued Fractions
def cf(y, Q, N):

fractions = extendedGCD(y, Q)
depth = 2

def partial(fractions, depth):
c = 0
r = 1

for i in reversed(range(depth)):
tR = fractions[i] * r + c
c = r
r = tR

return c

r = 0
for d in range(depth, len(fractions) + 1):

tR = partial(fractions, d)
if tR == r or tR >= N:

return r

r = tR

return r

Modular Exponentiation
def modExp(a, exp, mod):

fx = 1
while exp > 0:

if (exp & 1) == 1:
fx = fx * a % mod

a = (a * a) % mod
exp = exp >> 1

return fx

def pick(N):
a = math.floor((random.random() * (N - 1)) + 0.5)
return a

def checkCandidates(a, r, N, neighborhood):
if r is None:

return None

Check multiples
for k in range(1, neighborhood + 2):

tR = k * r
if modExp(a, a, N) == modExp(a, a + tR, N):

return tR

Check lower neighborhood

SECTION 8.5 Shor’s Algorithm 123

for tR in range(r - neighborhood, r):
if modExp(a, a, N) == modExp(a, a + tR, N):

return tR

Check upper neighborhood
for tR in range(r + 1, r + neighborhood + 1):

if modExp(a, a, N) == modExp(a, a + tR, N):
return tR

return None

Now we are ready to define the function that will call all the other functions
we have created. This function will iteratively test to see if the period has
been found.

def shors(N, attempts = 1, neighborhood = 0.0, numPeriods = 1):
if(N.bit_length() > BIT_LIMIT or N < 3):

return False

periods = []
neighborhood = math.floor(N * neighborhood) + 1

printInfo("N = " + str(N))
printInfo("Neighborhood = " + str(neighborhood))
printInfo("Number of periods = " + str(numPeriods))

for attempt in range(attempts):
printInfo("\nAttempt #" + str(attempt))

a = pick(N)
while a < 2:

a = pick(N)

d = gcd(a, N)
if d > 1:

printInfo("Found factors classically, re-attempt")
continue

r = findPeriod(a, N)

printInfo("Checking candidate period, nearby values, and
multiples")

r = checkCandidates(a, r, N, neighborhood)

if r is None:
printInfo("Period was not found, re-attempt")
continue

if (r % 2) > 0:
printInfo("Period was odd, re-attempt")
continue

d = modExp(a, (r // 2), N)

124 CHAPTER 8 The Canon: Code Walkthroughs

if r == 0 or d == (N - 1):
printInfo("Period was trivial, re-attempt")
continue

printInfo("Period found\tr = " + str(r))

periods.append(r)
if(len(periods) < numPeriods):

continue

printInfo("\nFinding least common multiple of all periods")

r = 1
for period in periods:

d = gcd(period, r)
r = (r * period) // d

b = modExp(a, (r // 2), N)
f1 = gcd(N, b + 1)
f2 = gcd(N, b - 1)

return [f1, f2]

return None

Finally, we define various flags for command line functionality.

def parseArgs():
parser = argparse.ArgumentParser(description=’Simulate Shor\’s

algorithm for N.’)
parser.add_argument(’-a’, ’--attempts’, type=int, default=20,

help=’Number of quantum attempts to perform’)
parser.add_argument(’-n’, ’--neighborhood’, type=float,

default=0.01, help=’Neighborhood size for checking candidates
(as percentage of N)’)

parser.add_argument(’-p’, ’--periods’, type=int, default=2,
help=’Number of periods to get before determining least common
multiple’)

parser.add_argument(’-v’, ’--verbose’, type=bool, default=True,
help=’Verbose’)

parser.add_argument(’N’, type=int, help=’The integer to factor’)
return parser.parse_args()

def main():
args = parseArgs()

global printInfo
if args.verbose:

printInfo = printVerbose
else:

printInfo = printNone

factors = shors(args.N, args.attempts, args.neighborhood,
args.periods)

if factors is not None:

SECTION 8.5 Shor’s Algorithm 125

print("Factors:\t" + str(factors[0]) + ", " + str(factors[1]))

if __name__ == "__main__":
main()

So there it is — the famous Shor’s algorithm. While we do not yet have
the fault-tolerant hardware to run Shor’s for any meaningfully large key, it is
illustrative of the potential of quantum computing. Although Shor’s algorithm
is proven to run in polynomial time (i.e., polynomial in the number of bits
in the integer to be factored), much work can be done to reduce the constant
factors in this polynomial and overall resource requirements. See Gidney
and Ekera’s work [95] for a discussion of resource requirements in Shor’s
algorithm.

An example of using this program to factor 15 is shown below. This code
(saved in a Python module called “shor.py” on this book’s website) is set up
to be run from a command line with the number to be factored as an argument.
By executing

python shor.py 15

we see the following output:

N = 15
Neighborhood = 1
Number of periods = 2

Attempt #0
Finding the period...
Q = 256 a = 8
Registers generated
Performing Hadamard on input register
Hadamard complete
Mapping input register to output register, where f(x) is a^x mod N
Modular exponentiation complete
Performing quantum Fourier transform on output register
Quantum Fourier transform complete
Performing a measurement on the output register
Output register measured y = 1
Performing a measurement on the periodicity register
QFT register measured x = 192
Finding the period via continued fractions
Candidate period r = 4
Checking candidate period, nearby values, and multiples
Period found r = 4

Attempt #1
Found factors classically, re-attempt

Attempt #2
Found factors classically, re-attempt

126 CHAPTER 8 The Canon: Code Walkthroughs

Attempt #3
Finding the period...
Q = 256 a = 2
Registers generated
Performing Hadamard on input register
Hadamard complete
Mapping input register to output register, where f(x) is a^x mod N
Modular exponentiation complete
Performing quantum Fourier transform on output register
Quantum Fourier transform complete
Performing a measurement on the output register
Output register measured y = 2
Performing a measurement on the periodicity register
QFT register measured x = 128
Finding the period via continued fractions
Candidate period r = 2
Checking candidate period, nearby values, and multiples
Period found r = 4

Finding least common multiple of all periods
Factors: 5, 3

Here, we see that the quantum part of Shor’s algorithm is executed four
times (labeled “‘Attempt #1” through “Attempt #4”). In two of the attempts,
the circuit succeeds in finding the period, while in the other two, the factors
are found classically by virtue of good luck, so the program re-attempts the
quantum part. After finding the period twice, the classical part of Shor’s
algorithm ensues, in which the least common multiple of all periods found is
computed. From this, the prime factors are determined correctly as 3 and 5.

8.6 Grover’s Search Algorithm

In 1996, Lov Grover demonstrated that we can obtain a quadratic speedup in
algorithmic search on a quantum computer compared with a classical one [98].
While this is not exponential speedup, it is still significant.

The search problem can be set up as follows. Given a function f .x/ such
that f .a�/ D �1 and all other outputs of the function are 1, find a�. In other
words, we are looking for an exhaustive search algorithm; in particular, we are
seeking an algorithmic search protocol. An algorithmic search protocol is one
in which we can verify that we have found the item in question by evaluating a
function on the search result. So we have exhausted the possibility of finding
an analytic approach and now must do a brute force search.

On a classical computer, this would entail an exhaustive search using n
operations for some range of x D f0; ng; or at best n

2
steps if we posit that on

SECTION 8.6 Grover’s Search Algorithm 127

Figure 8.5: Plotting Grover’s algorithm as it closes in on the target Source: Wikimedia

average we can find the target after searching half the range. On a quantum
computer, however, we can do much better. Instead of n or n

2
, we can find a�

in O.
p
n/ steps. Bennett et al. then showed that any such algorithm which

solves an algorithmic search problem running on a quantum computer would
query the oracle at best �.

p
n/; Grover’s algorithm is therefore optimal [24].

Grover’s algorithm is a bit more involved than DJ and BV. Here we have
to apply three unitary operators, the latter two of which we implement in a
loop until we find our target. In the manner of David Deutsch, let’s call these
three operators H , M and XX [66].

As with other algorithms we have examined, we prepare our data input
qubits in state j0i and our output qubit in state j1i. We then apply H to all
data input qubits and to the output qubit.

We now query the oracle:

j0i H

oracle

H X � X H

j0i H H X H H X H

j1i H

"""Grover’s algorithm in Cirq."""

Imports
import random

import cirq

128 CHAPTER 8 The Canon: Code Walkthroughs

def set_io_qubits(qubit_count):
"""Add the specified number of input and output qubits."""
input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)]
output_qubit = cirq.GridQubit(qubit_count, 0)
return (input_qubits, output_qubit)

def make_oracle(input_qubits, output_qubit, x_bits):
"""Implement function {f(x) = 1 if x==x’, f(x) = 0 if x!= x’}."""
Make oracle.
for (1, 1) it’s just a Toffoli gate
otherwise negate the zero-bits.
yield(cirq.X(q) for (q, bit) in zip(input_qubits, x_bits) if not

bit)
yield(cirq.TOFFOLI(input_qubits[0], input_qubits[1],

output_qubit))
yield(cirq.X(q) for (q, bit) in zip(input_qubits, x_bits) if not

bit)

def make_grover_circuit(input_qubits, output_qubit, oracle):
"""Find the value recognized by the oracle in sqrt(N) attempts."""
For 2 input qubits, that means using Grover operator only once.
c = cirq.Circuit()

Initialize qubits.
c.append([

cirq.X(output_qubit),
cirq.H(output_qubit),
cirq.H.on_each(*input_qubits),

])

Query oracle.
c.append(oracle)

Construct Grover operator.
c.append(cirq.H.on_each(*input_qubits))
c.append(cirq.X.on_each(*input_qubits))
c.append(cirq.H.on(input_qubits[1]))
c.append(cirq.CNOT(input_qubits[0], input_qubits[1]))
c.append(cirq.H.on(input_qubits[1]))
c.append(cirq.X.on_each(*input_qubits))
c.append(cirq.H.on_each(*input_qubits))

Measure the result.
c.append(cirq.measure(*input_qubits, key=’result’))

return c

def bitstring(bits):
return ’’.join(str(int(b)) for b in bits)

def main():
qubit_count = 2

SECTION 8.6 Grover’s Search Algorithm 129

circuit_sample_count = 10

#Set up input and output qubits.
(input_qubits, output_qubit) = set_io_qubits(qubit_count)

#Choose the x’ and make an oracle which can recognize it.
x_bits = [random.randint(0, 1) for _ in range(qubit_count)]
print(’Secret bit sequence: {}’.format(x_bits))

Make oracle (black box)
oracle = make_oracle(input_qubits, output_qubit, x_bits)

Embed the oracle into a quantum circuit implementing Grover’s
algorithm.

circuit = make_grover_circuit(input_qubits, output_qubit, oracle)
print(’Circuit:’)
print(circuit)

Sample from the circuit a couple times.
simulator = cirq.Simulator()
result = simulator.run(circuit, repetitions=circuit_sample_count)

frequencies = result.histogram(key=’result’, fold_func=bitstring)
print(’Sampled results:\n{}’.format(frequencies))

Check if we actually found the secret value.
most_common_bitstring = frequencies.most_common(1)[0][0]
print(’Most common bitstring: {}’.format(most_common_bitstring))
print(’Found a match: {}’.format(

most_common_bitstring == bitstring(x_bits)))

if __name__ == ’__main__’:
main()

We now run the code and obtain this as an example output:

"""
=== EXAMPLE OUTPUT ===
Secret bit sequence: [1, 0]

Sampled results:
Counter({’10’: 10})
Most common bitstring: 10
Found a match: True
"""

Summary

In this chapter, we have explored the set of canonical quantum algorithms.
These breakthroughs from the 1980s and 1990s established the potential for
quantum advantage. While we still do not have the hardware to run Shor’s

130 CHAPTER 8 The Canon: Code Walkthroughs

and Grover’s algorithms with meaningful scale, they are powerful reminders
of what is to come. In the next chapter we will cover a range of quantum
computing methods for the NISQ regime.

CHAPTER

9
Quantum Computing Methods

In this section we will walk through a range of quantum computing programs
that can be run on NISQ processors. We will cover methods in optimization,
chemistry, machine learning and other areas.

9.1 Variational Quantum Eigensolver

Let us first examine a variational quantum eigensolver (VQE) [170]. We
can use a VQE to find the eigenvalues of a large matrix that represents the
Hamiltonian of a system. In many cases, we are looking for the lowest
eigenvalue, which represents the ground state energy of the system. We can
also use VQE and VQE-type algorithms to calculate additional eigenvalues,
which represent excited state energies [150, 111]. VQE is a good example
of a hybrid classical/quantum approach to solving a problem (for more on
VQEs see [170, 231, 165, 227, 202]). While the VQE was initially developed
to find ground states of Hamiltonians, we can use it to find the minimum of
any given objective function that we can express in a quantum circuit. This
broadens the application space significantly for this variational method.

In variational methods, we start with a best guess, or ansatz, for the ground
state. More specifically we parameterize a quantum state j .�/i where � is a
set of parameters. The problem that VQE solves is as follows:

Given a Hamiltonian H , conventionally coming from
a physical system such as molecular hydrogen or
water, approximate the ground state energy (minimum
eigenvalue of H) by solving the following optimization
problem

min
�
h .�/jH j .�/i (9.1)

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019

J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0_9

131

https://doi.org/10.1007/978-3-030-23922-0_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23922-0_9&domain=pdf

132 CHAPTER 9 Quantum Computing Methods

By the variational principle of quantum mechanics, the quantity

h .�/jH j .�/i

can never be smaller than the ground state energy. So, by minimizing this
quantity, we get an approximation of the ground state energy.

In the VQE algorithm, j .�/i is prepared on a quantum computer, so the
ansatz is typically developed from parametrized quantum gates; for example,
the rotation gates R� .'/ where � is a Pauli operator, as well as other “static”
quantum gates like CNOT or control-Z.

For the purposes of VQE, we will assume our Hamiltonian is written as the
sum of tensor products of Pauli operators weighted by constant coefficients as
per [150].

H D

mX
iD1

ciHi (9.2)

Note that the tensor products of Pauli operators form a basis for Hermitian ma-
trices, so in principle any Hamiltonian can be expressed in this way. However,
this may lead to a number of terms exponential in the system size. For this
general case, different representations are crucial for limiting the number of
terms in the Hamiltonian and thus limiting the number of resources required
for the quantum algorithm. For the present discussion, we will restrict our
attention to Hamiltonians of the form (9.2) where m grows at most polyno-
mially in the system size — that is, m D O.nk/ — which is a reasonable
assumption for many physical systems of interest.

The VQE algorithm computes expectation values of each term Hi using a
quantum circuit, then adds the total energy classically. The classical optimizer
changes the values of the ansatz wavefunction to minimize the total energy.
Once an approximate minimum is found, the VQE returns the ground state
energy as well as its eigenstate.

Another application of VQEs is error-mitigation. McClean et al. explore
this aspect of VQEs:

Here, we provide evidence for the conjecture that
variational approaches can automatically suppress even
non-systematic decoherence errors by introducing an
exactly solvable channel model of variational state
preparation. Moreover, we show how variational
quantum-classical approaches fit in a more general
hierarchy of measurement and classical computation that

SECTION 9.1 Variational Quantum Eigensolver 133

allows one to obtain increasingly accurate solutions with
additional classical resources [148].

We recommend the reader explore the use of subspace expansion to achieve
error-mitigation in the growing body of literature on this subject [147].

Below, we show a program implementing VQE for a simple Hamiltonian
using pyQuil and the Grove library [97].1 Let us walk through this program
in steps and explain each part. First, we import the necessary packages and
connect to the quantum virtual machine (QVM).

Imports
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize

from pyquil.quil import Program
import pyquil.api as api
from pyquil.paulis import sZ
from pyquil.gates import RX, X, MEASURE

from grove.pyvqe.vqe import VQE

We then set up an ansatz, which in this case is the rotation matrix around
the x-axis with a single parameter.

Function to create the ansatz
def small_ansatz(params):

"""Returns an ansatz Program with one parameter."""
return Program(RX(params[0], 0))

Show the ansatz with an example value for the parameter
print("Ansatz with example value for parameter:")
print(small_ansatz([1.0]))

The output of this portion of the program showing the ansatz as a pyQuil
circuit is shown below.

Ansatz with example value for parameter:
RX(1.0) 0

Next, we set up a Hamiltonian; as we stated above, any Hamiltonian can
be expressed as a linear combination of tensor products of Pauli operators, as
these form a basis for Hermitian matrices. In practice, Hamiltonians must first
be converted to qubit operators so that expectation values can be measured

1Note that in this book we show code examples in a range of QC frameworks; check the
book’s online site for code examples in other libraries as one can implement these methods
and algorithms in each of the frameworks.

134 CHAPTER 9 Quantum Computing Methods

using the quantum computer. If there are m non-trivial, distinct terms in the
Hamiltonian (9.2), then there are m distinct expectation values to compute.
Each quantum circuit in VQE computes one expectation value, so there are m
distinct quantum circuits to run.

For simplicity of instruction, we consider the simple case of one Pauli
operator H D Z (note that in this section H refers to a Hamiltonian and not
the Hadamard operator). We create an instance of the VQE algorithm using
the VQE class imported from Grove and compute the expectation value for an
example angle in the ansatz.

Show the ansatz with an example value for the parameter
print("Ansatz with example value for parameter:")
print(small_ansatz([1.0]))

Create a Hamiltonion H = Z_0
hamiltonian = sZ(0)

Make an instance of VQE with a Nelder-Mead minimizer
vqe_inst = VQE(minimizer=minimize,

minimizer_kwargs={’method’: ’nelder-mead’})

Check the VQE manually at a particular angle - say 2.0 radians
angle = 2.0
print("Expectation of Hamiltonian at angle = {}".format(angle))
print(vqe_inst.expectation(small_ansatz([angle]), hamiltonian,

10000, qvm))

To get a picture of the landscape of the optimization problem, we can
sweep over a set of values in the range Œ0; 2�/. Here, since we have only one
parameter in our ansatz, this is computationally inexpensive to do. For larger
ansatzes with more parameters, implementing a grid search over all possible
values is not feasible, and so classical optimization algorithms must be used
to find an approximate minimum.

Loop over a range of angles and plot expectation without sampling
angle_range = np.linspace(0.0, 2.0 * np.pi, 20)
exact = [vqe_inst.expectation(small_ansatz([angle]), hamiltonian,

None, qvm)
for angle in angle_range]

Plot the exact expectation
plt.plot(angle_range, exact, linewidth=2)

Loop over a range of angles and plot expectation with sampling
sampled = [vqe_inst.expectation(small_ansatz([angle]), hamiltonian,

1000, qvm)
for angle in angle_range]

Plot the sampled expectation
plt.plot(angle_range, sampled, "-o")

SECTION 9.1 Variational Quantum Eigensolver 135

Figure 9.1: Expectation value of the simple Hamiltonian H D Z at all angles � 2 Œ0; 2�/ in
the wavefunction ansatz j .�/i D Rx.�/ j0i

Plotting options
plt.xlabel(’Angle [radians]’)
plt.ylabel(’Expectation value’)
plt.grid()
plt.show()

The plot that this section of the program produces is shown in Figure 9.1.
Here, we can visually see that the minimum energy (in arbitrary units) of the
Hamiltonian appears around the angle � D � in the wavefunction ansatz. As
mentioned, for larger Hamiltonians that require more parameters in the ansatz,
enumerating the expectation values for all angles is not feasible. Instead, an
optimization algorithm must be used to traverse the optimization landscape
and find, ideally, the global minima.

An example of the Nelder-Mead optimization algorithm, implemented in
the SciPy Optimize package, is shown below.

Do the minimization and return the best angle
initial_angle = [0.0]
result = vqe_inst.vqe_run(small_ansatz, hamiltonian, initial_angle,

None, qvm=qvm)
print("\nMinimum energy =", round(result["fun"], 4))
print("Best angle =", round(result["x"][0], 4))

The output for this final part of the program is

Minimum energy = -1.0
Best angle = 3.1416

136 CHAPTER 9 Quantum Computing Methods

As can be seen, the optimizer is able to find the correct angle � D � for the
global minimum energy E D h jH j i D �1:0 (in arbitrary units).

VQE with Noise

The VQE algorithm is designed to make effective use of near-term quantum
computers. It is therefore important to analyze its performance in a noisy
environment such as a NISQ processor. Above, we used the noiseless QVM
to simulate circuits in VQE. Now, we can consider a QVM with a particular
noise model and run the VQE algorithm again.

A code block setting up a noisy QVM in pyQuil — and demonstrating it
is in fact noisy — is shown below. Note that this program is an extension of
the previous program and assumes all packages are still imported.

Create a noise model which has a 10% chance of each gate at each
timestep

pauli_channel = [0.1, 0.1, 0.1]
noisy_qvm = api.QVMConnection(gate_noise=pauli_channel)

Check that the simulator is indeed noisy
p = Program(X(0), MEASURE(0, 0))
res = noisy_qvm.run(p, [0], 10)
print(res)

The example output of this program (measuring the j1i state) demonstrates
that the simulator is indeed noisy — otherwise, we would never see the bit 0
measured!

"Outcome of NOT and MEASURE circuit on noisy simulator:"
[[0], [1], [1], [1], [0], [1], [1], [1], [1], [0]]

Now that we have a noisy simulator, we can run the VQE algorithm under
noise. Here, we modify the classical optimizer to start with a larger simplex
so we don’t get stuck at an initial minimum. Then, we visualize the same
landscape plot (energy vs. angle) as before, but now in the presence of noise.

Update the minimizer in VQE to start with a larger initial simplex
vqe_inst.minimizer_kwargs = {"method": "Nelder-mead",

"options":
{"initial_simplex": np.array([[0.0],

[0.05]]),
"xatol": 1.0e-2}
}

Loop over a range of angles and plot expectation with sampling
sampled = [vqe_inst.expectation(small_ansatz([angle]), hamiltonian,

1000, noisy_qvm)
for angle in angle_range]

SECTION 9.1 Variational Quantum Eigensolver 137

Figure 9.2: Results of running VQE on a simulator with Pauli channel noise.

Plot the sampled expectation
plt.plot(angle_range, sampled, "-o")

Plotting options
plt.title("VQE on a Noisy Simulator")
plt.xlabel("Angle [radians]")
plt.ylabel("Expectation value")
plt.grid()
plt.show()

An example plot produced by this part of the program is shown in Figure 9.2.
Here, we note that the landscape generally has the same shape but is slightly
distorted. The minimum value of the curve still occurs close to the optimal
value of � D � , but the value of the energy here is vertically shifted — the
minimum energy here is approximately �0:6 (in arbitrary units) whereas in
the noiseless case the minimum energy was �1:0.

However, since the minimum value still occurs around � D � , VQE
displays some robustness to noise. The optimal parameters can still be found,
and the vertical offset in the minimum energy can be accounted for in classical
postprocessing.

Pauli channel noise is not the only noise model we can consider. In the
book’s online site, this VQE program also demonstrates a noisy simulator
with measurement noise. We find that the VQE is robust to measurement
noise in the same sense as above — the landscape curve has the same general
shape and the minimum value occurs again near � D � .

138 CHAPTER 9 Quantum Computing Methods

More Sophisticated Ansatzes

As mentioned, larger Hamiltonians may require an ansatz with more parame-
ters to more closely approximate the ground state wavefunction. In pyQuil,
we can increase the number of parameters in our program by adding more
gates as follows:

Function for an anstaz with two parameters
def smallish_ansatz(params):

"""Returns an ansatz with two parameters."""
return Program(RX(params[0], 0), RZ(params[1], 0))

print("Ansatz with two gates and two parameters (with example
values):")

print(smallish_ansatz([1.0, 2.0]))

Get a VQE instance
vqe_inst = VQE(minimizer=minimize, minimizer_kwargs={’method’:

’nelder-mead’})

Do the minimization and return the best angle
initial_angles = [1.0, 1.0]
result = vqe_inst.vqe_run(smallish_ansatz, hamiltonian,

initial_angles, None, qvm=qvm)
print("\nMinimum energy =", round(result["fun"], 4))
print("Best angle =", round(result["x"][0], 4))

In the program above, we create an ansatz with two gates and two parameters,
print it out, then run the VQE algorithm with this ansatz. An example outcome
of the program is

"Ansatz with two gates and two parameters (with example values):"
RX(1.0) 0
RZ(2.0) 0

Minimum energy = -1.0
Best angle = 3.1416

Here, we see that the minimizer is able to find the exact ground state energy
with the new ansatz. This is expected — since we know we can minimize the
expectation of the Hamiltonian with only one Rx gate, the second Rz gate is
superfluous. For larger, non-trivial Hamiltonians, however, this may not be
the case, and more parameters may be needed.

In this section, we use simple trial ansatzes for clarity of presentation. In
general, choosing both an appropriate ansatz and good initial starting point for
the parameters of the ansatz are critical for successful VQE implementations.
Randomly generated ansatzes are likely to have gradients that vanish for large
circuit sizes [146], thus making the optimization over parameters exceedingly

SECTION 9.2 Quantum Chemistry 139

difficult, if not practically impossible. For these reasons, structured ansatzes
such as unitary coupled cluster or QAOA (see Section 9.3) — as opposed to
parameterized random quantum circuits — are used in practice.

9.2 Quantum Chemistry

We will now explore an application of quantum chemistry, or more gen-
erally quantum simulation.2 In quantum simulation we seek to model the
dynamic evolution of the wavefunction under some Hamiltonian H as per
Schrödinger’s equation

i
@ j i

@t
D H j i (9.3)

where we have set ~ D 1. It is easy to write the time evolution operator

U.t/ D exp .�iHt/ (9.4)

which evolves the initial state j .0/i to a final state at time t via

j .t/i D U.t/j .0/i (9.5)

However, it is generally very difficult to classically compute the unitary time
evolution operator U.t/ by exponentiating the Hamiltonian of the system,
even if the Hamiltonian is sparse. Quantum simulation on a QC give us
the opportunity to more easily compute unitary time evolution. Quantum
simulation is useful in the same respect that classical simulation of time-
dependent processes is useful. Namely, it allows us to analyze the behavior
of a complex physical system, compute observable properties, and use both
of these these to make new predictions or compare them with experimental
results. As an example, O’Malley et al. demonstrated the use of VQE and
quantum simulation with QPE to calculate the potential energy surface of
molecular hydrogen [165].

Quantum simulation of molecular Hamiltonians is useful for quantum
chemistry applications. In the following program, we use Cirq in conjuction
with OpenFermion — an open-source package for quantum chemistry that has
integration with Cirq [149]3 — to show how we can simulate the evolution
of an initial state under a Hamiltonian. In the sample code used here for

2Note: this use of the term "quantum simulation" is distinct from the use of a program to
simulate the actions of a quantum computer as discussed in chapter 6.

3Note that the package OpenFermion-Cirq is used as a bridge between OpenFermion and
Cirq.

140 CHAPTER 9 Quantum Computing Methods

pedagogic purposes we randomly generate the Hamiltonian and its initial
state; we recommend against this in real world conditions for reasons outlined
in McClean et al [146].

We now walk through the program in steps. First, we import the necessary
packages and define a few constants for our simulation. Namely, we define
the number of qubits n, the final simulation time t , and a seed for the random
number generator which allows for reproducible results.

Imports
import numpy
import scipy

import cirq
import openfermion
import openfermioncirq

Set the number of qubits, simulation time, and seed for
reproducibility

n_qubits = 3
simulation_time = 1.0
random_seed = 8317

In the code block below, we generate a random Hamiltonian in matrix
form. In order to run any quantum circuits with this Hamiltonian, it first must
be written in terms of quantum operators. The next few lines of code use the
functionality in OpenFermion to do this.

Generate the random one-body operator
T = openfermion.random_hermitian_matrix(n_qubits, seed=random_seed)
print("Hamiltonian:", T, sep="\n")

Compute the OpenFermion "FermionOperator" form of the Hamiltonian
H = openfermion.FermionOperator()
for p in range(n_qubits):

for q in range(n_qubits):
term = ((p, 1), (q, 0))
H += openfermion.FermionOperator(term, T[p, q])

print("\nFermion operator:")
print(H)

The output of this portion of the program is

Hamiltonian:
[[0.53672126+0.j -0.26033703+3.32591737j 1.34336037+1.54498725j]
[-0.26033703-3.32591737j -2.91433037+0.j -1.52843836+1.35274868j]
[1.34336037-1.54498725j -1.52843836-1.35274868j 2.26163363+0.j]]

Fermion operator:
(0.5367212624097257+0j) [0^ 0] +
(-0.26033703159240107+3.3259173741375454j) [0^ 1] +
(1.3433603748462144+1.544987250567917j) [0^ 2] +

(-0.26033703159240107-3.3259173741375454j) [1^ 0] +
(-2.9143303700812435+0j) [1^ 1] +
(-1.52843836446248+1.3527486791390022j) [1^ 2] +
(1.3433603748462144-1.544987250567917j) [2^ 0] +
(-1.52843836446248-1.3527486791390022j) [2^ 1] +
(2.261633626116526+0j) [2^ 2]

The first section displays the Hamiltonian in matrix form, then the next section
displays the matrix in OpenFermion operator form. Here, the OpenFermion
notation [p^ q] is used to indicate the product of fermionic creation and
annihilation operators a�paq on sites p and q, respectively, which satisfy the
canonical commutation relations

fa�p; aqg D ıpq (9.6)

fap; aqg D 0 (9.7)

Now that we have our Hamiltonian in a usable form, we can begin con-
structing our circuit. As is common in quantum simulation algorithms [161],
we first rotate to the eigenbasis of the Hamiltonian. This is done by (classi-
cally) diagonalizing the Hamiltonian, then using OpenFermion to construct a
circuit that performs this basis transformation.

Diagonalize T and obtain basis transformation matrix (aka "u")
eigenvalues, eigenvectors = numpy.linalg.eigh(T)
basis_transformation_matrix = eigenvectors.transpose()

Initialize the qubit register
qubits = cirq.LineQubit.range(n_qubits)

Rotate to the eigenbasis
inverse_basis_rotation = cirq.inverse(

openfermioncirq.bogoliubov_transform(qubits,
basis_transformation_matrix)

)
circuit = cirq.Circuit.from_ops(inverse_basis_rotation)

Now we can add the gates corresponding to evolution of the Hamiltonian.
Since we are in the eigenbasis of the Hamiltonian, this corresponds to a
diagonal operator of Pauli-Z rotations, where the rotation angle is proportional
to the eigenvalue and final simulation time. Finally, we change bases back to
the computational basis.

Add diagonal phase rotations to circuit
for k, eigenvalue in enumerate(eigenvalues):

phase = -eigenvalue * simulation_time
circuit.append(cirq.Rz(rads=phase).on(qubits[k]))

141SECTION 9.2 Quantum Chemistry

142 CHAPTER 9 Quantum Computing Methods

Finally, change back to the computational basis
basis_rotation = openfermioncirq.bogoliubov_transform(

qubits, basis_transformation_matrix
)
circuit.append(basis_rotation)

The time evolution operator is now constructed in our quantum circuit.
Below, we first obtain a random initial state. Note that this is program is for
demonstration purposes. In real world scenarios we will want to use a number
of non-random techniques to determine the initial state:

Initialize a random initial state
initial_state = openfermion.haar_random_vector(

2 ** n_qubits, random_seed).astype(numpy.complex64)

Now we compute the time evolution numerically using matrix exponentia-
tion and then simulate it with a QC simulator. After obtaining the final state
using both methods, we compute the fidelity (overlap squared) of the two and
print out the value.

Numerically compute the correct circuit output
hamiltonian_sparse = openfermion.get_sparse_operator(H)
exact_state = scipy.sparse.linalg.expm_multiply(

-1j * simulation_time * hamiltonian_sparse, initial_state
)

Use Cirq simulator to apply circuit
simulator = cirq.google.XmonSimulator()
result = simulator.simulate(circuit, qubit_order=qubits,

initial_state=initial_state)
simulated_state = result.final_state

Print final fidelity
fidelity = abs(numpy.dot(simulated_state,

numpy.conjugate(exact_state)))**2
print("\nfidelity =", round(fidelity, 4))

The output of this section of the code

fidelity = 1.0

indicates that our quantum circuit evolved the initial state exactly the same as
the analytic evolution!

Of course, for larger systems the analytic evolution cannot be computed,
and we have to rely solely on a quantum computer. This small proof of
principle calculation indicates the validity of this method.

SECTION 9.2 Quantum Chemistry 143

Lastly, we mention that Cirq has the functionality to compile this quantum
circuit for Google’s Xmon architecture quantum computers, as well as IBM’s
quantum computers. The code snippet below shows how this is done:

Compile the circuit to Google’s Xmon architecture
xmon_circuit = cirq.google.optimized_for_xmon(circuit)
print("\nCircuit optimized for Xmon:")
print(xmon_circuit)

Print out the OpenQASM code for IBM’s hardware
print("\nOpenQASM code:")
print(xmon_circuit.to_qasm())

Below, we include the OpenQASM code generated by Cirq for this circuit.
The complete circuit diagram and remaining output of this code can be seen
by executing this program, which can be found on the book’s GitHub site.

// Generated from Cirq v0.4.0

OPENQASM 2.0;
include "qelib1.inc";

// Qubits: [0, 1, 2]
qreg q[3];

u2(pi*-1.0118505646, pi*1.0118505646) q[2];
u2(pi*-1.25, pi*1.25) q[1];
u2(pi*-1.25, pi*1.25) q[0];
cz q[1],q[2];
u3(pi*-0.1242949803, pi*-0.0118505646, pi*0.0118505646) q[2];
u3(pi*0.1242949803, pi*-0.25, pi*0.25) q[1];
cz q[1],q[2];
u3(pi*-0.3358296941, pi*0.4881494354, pi*-0.4881494354) q[2];
u3(pi*-0.5219350773, pi*1.25, pi*-1.25) q[1];
cz q[0],q[1];
u3(pi*-0.328242091, pi*0.75, pi*-0.75) q[1];
u3(pi*-0.328242091, pi*-0.25, pi*0.25) q[0];
cz q[0],q[1];
u3(pi*-0.2976584908, pi*0.25, pi*-0.25) q[1];
u3(pi*-0.7937864503, pi*0.25, pi*-0.25) q[0];
cz q[1],q[2];
u3(pi*-0.2326621647, pi*-0.0118505646, pi*0.0118505646) q[2];
u3(pi*0.2326621647, pi*-0.25, pi*0.25) q[1];
cz q[1],q[2];
u3(pi*0.8822298425, pi*0.4881494354, pi*-0.4881494354) q[2];
u3(pi*-0.2826706001, pi*0.25, pi*-0.25) q[1];
cz q[0],q[1];
u3(pi*-0.328242091, pi*0.75, pi*-0.75) q[1];
u3(pi*-0.328242091, pi*-0.25, pi*0.25) q[0];
cz q[0],q[1];
u3(pi*-0.3570821075, pi*0.25, pi*-0.25) q[1];
u2(pi*-0.25, pi*0.25) q[0];

144 CHAPTER 9 Quantum Computing Methods

rz(pi*0.676494835) q[0];
cz q[1],q[2];
u3(pi*0.1242949803, pi*0.9881494354, pi*-0.9881494354) q[2];
u3(pi*-0.1242949803, pi*0.75, pi*-0.75) q[1];
cz q[1],q[2];
u2(pi*-0.0118505646, pi*0.0118505646) q[2];
u2(pi*-0.25, pi*0.25) q[1];
rz(pi*-0.4883581348) q[1];
rz(pi*0.5116418652) q[2];

9.3 Quantum Approximate Optimization
Algorithm (QAOA)

While the previous two quantum computing methods were geared towards
physics and chemistry applications, the quantum approximate optimization
algorithm (QAOA) is geared towards general optimization problems. Farhi et
al. introduced QAOA to handle these kinds of problems [78, 79]. Here, the
goal is to maximize or minimize a cost function

C.b/ D
mX
˛D1

C˛.b/ (9.8)

written as a sum of m clauses C˛.b/ on bitstrings b 2 f0; 1gn, or equivalently
spins zi 2 f�1;C1gn as there is a bijective map between the bitstrings and
spins.4

MaxCut is an example of a problem for which we can use QAOA on a
regular graph [78]; the cost function can be written in terms of spins as

C.z/ D
1

2

X
hi;j i

.1 � zizj / (9.9)

Here, the sum is over edges hi; j i in a graph, and each clause .1 � zizj /
contributes a non-zero term to the cost iff the spins zi and zj are anti-aligned
(i.e., have different values). A more general case of this problem considers
arbitrary weights wij between each edge [243]. This amounts to saying that
clauses with larger weights wij contribute a higher cost. We’ll consider this
case in the text that follows.

4Bits b and spins z are related by the bijective mapping z D 1 � 2b () b D .1 � z/=2

Thus, any problem on bits can be framed as a problem on spins and vice versa.

SECTION 9.3 Quantum Approximate Optimization Algorithm (QAOA) 145

By promoting each spin to a Pauli-Z operator (which has eigenvalues˙1),
the cost can be written as a cost Hamiltonian

C � HC D
1

2

X
hi;j i

wij .I � � .i/z � .j /z / (9.10)

where I is the identity operator and � .i/z denotes a Pauli-Z operator on the
i th spin. This cost Hamiltonian can easily be seen to be diagonal in the
computational basis. This is the general input to the quantum approximate
optimization algorithm, as we discuss below.

The prescription for QAOA is as follows. Given a cost Hamiltonian
HC � H of the form (9.8), define the unitary operator

U.HC ; / WD e
iHC D

mY
˛D1

e iC˛ (9.11)

which depends on the parameter . Note that the second line follows because
each clause C˛ is diagonal in the computational basis, hence ŒC˛; Cˇ � D 0

for all ˛; ˇ 2 f1; :::; mg. Further note that this can be interpreted, in light of
the previous section, as simulating (i.e., evolving with) the cost Hamiltonian
HC for a time . We can restrict the “time” to be between 0 and 2� , however,
since C has integer values. Thus, we can equally think of the parameter as
an angle of rotation.

Next, define the operator B � HB , known as a mixer Hamiltonian, which
is conventionally taken to be

B � HB D

nX
jD1

� .j /x (9.12)

where � .j /x is a Pauli-X operator on spin j . From this, we form the unitary
operator

U.HB ; ˇ/ WD e
iˇB
D

nY
jD1

e iˇ�
.j/
x (9.13)

Note that the second equality follows because all terms in the Hamiltonian
commute with one another. We can view the term e iˇ�

.j/
x as a rotation about

the x axis on spin j by angle 2ˇ. Thus, we can restrict 0 � ˇ < � .
With these definitions, we can state the steps of the quantum part of the

QAOA:

146 CHAPTER 9 Quantum Computing Methods

1. Start with an initial state that is an equal superposition over all bitstrings
(spins)

jsi D 1p
2n

X
b2f0;1gn

jbi (9.14)

by applying a Hadamard to each qubit H ˝nj0i˝n.
2. Evolve with the cost Hamiltonian by implementing U.HC ; � / for an

angle � .
3. Evolve with the mixer Hamiltonian by implementing U.HB ; ˇ/ for an

angle ˇ.
4. Repeat steps (2) and (3) p times with different parameters �i ; ˇi at each

step i D 1; :::; p to form the state

j�; ˇi WD
pY

iD1

U.HB ; ˇi /U.HC ; �i /jsi (9.15)

5. Measure in the computational basis to compute the expectation of HC

in this state:
Fp.�; ˇ/ WD h�; ˇjHC j�; ˇi (9.16)

6. Use a (classical) optimization algorithm to (approximately) compute
the maximum or minimum value of Fp.�; ˇ/. Alternatively, if you have
other methods to determine the optimal angles, you may use these.

7. Sample from the output distribution of the circuit (9.15) to get a set
of bitstrings b. The most probable bitstrings encode the approximate
optima for the cost function.

The full circuit diagram for the quantum circuit in the QAOA is shown below.

j0i H

ei�1HC

eiˇ1X � � �

ei�pHC

eiˇpX

j0i H eiˇ1X � � � eiˇpX

j0i H eiˇ1X � � � eiˇpX

j0i H eiˇ1X � � � eiˇpX

The adiabatic theorem states that a system remains in its eigenstate even
when subject to a perturbation, as long as that perturbation is slow and gradual
enough and there is a gap between the eigenvalue of that state and the rest
of the eigenvalues of the system (its spectrum) [39, 40, 115]. In other words
if we have a system in a measured state and that state has enough of gap

SECTION 9.3 Quantum Approximate Optimization Algorithm (QAOA) 147

from other possible states of the system, then if we perturb the system slowly
enough, it will not jump to another eigenstate. It can be shown using the
adiabatic theorem that

lim
p!1 max

�;ˇ
Fp.�; ˇ/ D max

b
C.b/: (9.17)

That is, given enough parameters �; ˇ, we can be sure that the exact solution of
the problem is attainable. The parameter p can thus be considered a hyperpa-
rameter. One form of approximation in the quantum approximate optimization
algorithm is the finite cutoff for p. Another form of approximation is the
ability of the classical optimizer to find the optimum.

However, in particular cases there are provable performance guarantees for
p D 1 layers. For example, for p D 1 on 3-regular graphs, the QAOA always
finds a cut that is at least 0.6924 times the size of the optimal cut [78]. Proving
more worst-case or average-case performance guarantees is an interesting line
of research on the analytic side of QAOA, and developing better classical
optimization algorithms is an interesting area on the heuristic side of QAOA.

Example Implementation of QAOA

To get a better idea of how QAOA works, we now turn to an implementa-
tion. In this example, we consider the transverse field Ising model as a cost
Hamiltonian:

HC D �
X
hi;j i

Jij � .i/
z � .j /

z �
X

i

hi�
.i/
x (9.18)

For simplicity of presentation, we set the transverse field coefficients to
zero (hi D 0) and set each interaction coefficient to one (Jij D 1). The
Hamiltonian can be modified in a straightforward way to generalize it, but
these details are not important in a first encounter with QAOA. Another
reason for this is that this system is trivial to solve analytically — thus, we
can compare the solution found by QAOA to the exact solution. By making
these simplifications, our cost Hamiltonian has the form

HC D �
X
hi;j i

� .i/
z � .j /

z (9.19)

The graph (i.e., the arrangement of spins) we will consider is in a nearest
neighbors configuration on a 2D grid. We thus need a way to implement the
unitary operator

U.HC ; � / WD e�iHC � D
Y
hi;j i

ei�Zi Zj (9.20)

148 CHAPTER 9 Quantum Computing Methods

For simplicity, from here on we will substitute Zi for � .i/z . In order to
implement this entire unitary, we need a sequence of gates for implementing
each eiZiZj term, where i and j are neighbors in the graph. It will be
convenient to rescale and consider implementing the unitary ei�ZiZj . To
understand how to do this, note that the operator Z ˝ Z is diagonal in the
computational basis, hence ei�Z˝Z is just the exponential of each diagonal
element (multiplied by i�)

exp.i�Z ˝Z/ D

2664
ei� 0 0 0

0 e i� 0 0

0 0 e i� 0

0 0 0 ei�

3775 (9.21)

To get some intuition about how to implement this operator in terms of
standard gates, note that the controlled-Z gate is diagonal with C.Z/ D
diag.1; 1; 1;�1/. Writing �1 D ei� , we see that C.Z/ D diag.1; 1; 1; ei�/,
hence

C.Z / D

2664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ei�

3775 (9.22)

This gives us one diagonal term in the final unitary (9.21) that we want
to implement. To get the other terms, we can apply X operators on the
appropriate qubits. For example,

.I ˝X/

2664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ei�

3775 .I ˝X/ D
2664
1 0 0 0

0 1 0 0

0 0 ei� 0

0 0 0 1

3775 (9.23)

We can continue in this fashion to get all four diagonal elements, then get the
full unitary (9.21) by simply multiplying them together (using the fact that
the product of diagonal matrices is diagonal).

In the Cirq code below, we write a function which gives us a circuit for
implementing the unitary e i�ZiZj . We then test our function by printing
out the circuit for an example set of qubits i and j with an arbitrary value of
 and ensuring that the unitary matrix of this circuit is what we expect.

Imports
import numpy as np
import matplotlib.pyplot as plt

import cirq

SECTION 9.3 Quantum Approximate Optimization Algorithm (QAOA) 149

Function to implement a ZZ gate on qubits a, b with angle gamma
def ZZ(a, b, gamma):

"""Returns a circuit implementing exp(-i \pi \gamma Z_i Z_j)."""
Get a circuit
circuit = cirq.Circuit()

Gives the fourth diagonal component
circuit.append(cirq.CZ(a, b)**gamma)

Gives the third diagonal component
circuit.append([cirq.X(b), cirq.CZ(a,b)**(-1 * gamma), cirq.X(b)])

Gives the second diagonal component
circuit.append([cirq.X(a), cirq.CZ(a,b)**-gamma, cirq.X(a)])

Gives the first diagonal component
circuit.append([cirq.X(a), cirq.X(b), cirq.CZ(a,b)**gamma,

cirq.X(a), cirq.X(b)])

return circuit

#26.s.one
Make sure the circuit gives the correct matrix
qreg = cirq.LineQubit.range(2)
zzcirc = ZZ(qreg[0], qreg[1], 0.5)
print("Circuit for ZZ gate:", zzcirc, sep="\n")
print("\nUnitary of circuit:", zzcirc.to_unitary_matrix().round(2),

sep="\n")

The output of this code is as follows:

Circuit for ZZ gate:
0: ---@-----------@------------X---@--------X---X---@-------X---

| | | |
1: ---@^0.5---X---@^-0.5---X-------@^-0.5-------X---@^0.5---X---

Unitary of circuit:
[[0.+1.j 0.+0.j 0.+0.j 0.+0.j]
[0.+0.j 0.-1.j 0.+0.j 0.+0.j]
[0.+0.j 0.+0.j 0.-1.j 0.+0.j]
[0.+0.j 0.+0.j 0.+0.j 0.+1.j]]

As we can see by comparing with (9.21), this circuit indeed implements the
desired unitary operator. Note that the circuit is not optimal — a trivial simpli-
fication is removing sequentialX operators on qubit 0, and other optimizations
are possible. Such optimizations will not concern us here, however.

In the next block of code, we define a 2x2 grid of qubits.

ncols = 2
nrows = 2
qreg = [[cirq.GridQubit(i,j) for j in range(ncols)] for i in

range(nrows)]

150 CHAPTER 9 Quantum Computing Methods

Then we write functions for implementing the operators U.HC ; / and
U.HB ; ˇ/.

#
Function to implement the cost Hamiltonian
def cost_circuit(gamma):

"""Returns a circuit for the cost Hamiltonian."""
circ = cirq.Circuit()
for i in range(nrows):

for j in range(ncols):
if i < nrows - 1:

circ += ZZ(qreg[i][j], qreg[i + 1][j], gamma)
if j < ncols - 1:

circ += ZZ(qreg[i][j], qreg[i][j + 1], gamma)

return circ

Function to implement the mixer Hamiltonian
def mixer(beta):
"""Generator for U(H_B, beta) layer (mixing layer)"""
for row in qreg:
for qubit in row:
yield cirq.X(qubit)**beta

These functions allow us to construct the entire QAOA circuit. The func-
tion below builds this circuit for an arbitrary number p of parameters.

Function to build the QAOA circuit
def qaoa(gammas, betas):

"""Returns a QAOA circuit."""
circ = cirq.Circuit()
circ.append(cirq.H.on_each(*[q for row in qreg for q in row]))

for i in range(len(gammas)):
circ += cost_circuit(gammas[i])
circ.append(mixer(betas[i]))

return circ

Now that we can build our QAOA circuit for a given set of parameters, we
can compute the expectation of the cost Hamiltonian in the final state (9.16).
For simplicity we use Cirq’s ability to access the wavefunction to compute
this expectation rather than sampling from the circuit itself. The following
function shows how we can access the wavefunction after applying a circuit:

SECTION 9.3 Quantum Approximate Optimization Algorithm (QAOA) 151

def simulate(circ):
"""Returns the wavefunction after applying the circuit."""
sim = cirq.Simulator()
return sim.simulate(circ).final_state

The next function evaluates the expectation using the wavefunction:

def energy_from_wavefunction(wf):
"""Computes the energy-per-site of the Ising Model from the

wavefunction."""
Z is a (n_sites x 2**n_sites) array. Each row consists of the
2**n_sites non-zero entries in the operator that is the Pauli-Z

matrix on
one of the qubits times the identites on the other qubits. The

(i*n_cols + j)th
row corresponds to qubit (i,j).
Z = np.array([(-1)**(np.arange(2**nsites) >> i)

for i in range(nsites-1,-1,-1)])

Create the operator corresponding to the interaction energy
summed over all

nearest-neighbor pairs of qubits
ZZ_filter = np.zeros_like(wf, dtype=float)
for i in range(nrows):

for j in range(ncols):
if i < nrows-1:

ZZ_filter += Z[i*ncols + j]*Z[(i+1)*ncols + j]
if j < ncols-1:

ZZ_filter += Z[i*ncols + j]*Z[i*ncols + (j+1)]

Expectation value of the energy divided by the number of sites
return -np.sum(np.abs(wf)**2 * ZZ_filter) / nsites

Finally, for convenience, we define a function that computes the energy/-
cost directly from a set of parameters. This function uses the parameters to
build a circuit, then gets the wavefunction of the final state and lastly computes
the energy/cost using the previous function.

def cost(gammas, betas):
"""Returns the cost function of the problem."""
wavefunction = simulate(qaoa(gammas, betas))
return energy_from_wavefunction(wavefunction)

These functions provide the set up for QAOA, and we could now optimize the
parameters to minimize the cost. For instructional purposes, we implement
QAOA with p D 1 layers and perform a grid search, plotting the 2D cost
landscape for each parameter and ˇ. The function for the grid search over a
range of parameters is given below:

def grid_search(gammavals, betavals):
"""Does a grid search over all parameter values."""

152 CHAPTER 9 Quantum Computing Methods

costmat = np.zeros((len(gammavals), len(betavals)))

for (i, gamma) in enumerate(gammavals):
for (j, beta) in enumerate(betavals):

costmat[i, j] = cost([gamma], [beta])

return costmat

Finally, here is the code for using this function within the main script and
plotting the cost landscape:

Get a range of parameters
gammavals = np.linspace(0, 1.0, 50)
betavals = np.linspace(0, np.pi, 75)

Compute the cost at all parameter values using a grid search
costmat = grid_search(gammavals, betavals)

Plot the cost landscape
plt.imshow(costmat, extent=(0, 1, 0, np.pi), origin="lower",

aspect="auto")
plt.colorbar()
plt.show()

The output of this section of the program is shown in Figure 9.3. As
we can see, there is a significant amount of symmetry in the cost landscape.
This phenomena is typical in variational quantum algorithms. Apart from the
symmetry which arises naturally from the Ising Hamiltonian, the symmetric
and periodic form of the cost landscape arises from symmetries in the ansatz
circuit. Exploiting these symmetries can help lead classical optimization
algorithms to a good solution more quickly.

We can now obtain a set of optimal parameters by taking the coordinates
of a minimum in our cost landscape. The following short block of code does
this and prints out the numerical value of the cost at these parameters.

Coordinates from the grid of cost values
gamma_coord, beta_coord = np.where(costmat == np.min(costmat))

Values from the coordinates
gamma_opt = gammavals[gamma_coord[0]]
beta_opt = betavals[beta_coord[0]]

Now that we have the optimal parameters, we can run the QAOA circuit with
these parameters and measure in the computational basis to get bitstrings that
solve our original optimization problem. The function below runs the circuit
and returns the measurement results.

SECTION 9.3 Quantum Approximate Optimization Algorithm (QAOA) 153

Figure 9.3: Cost landscape of the Ising Hamiltonian computed from one layer of QAOA

def get_bit_strings(gammas, betas, nreps=10000):
"""Measures the QAOA circuit in the computational basis to get

bitstrings."""
circ = qaoa(gammas, betas)
circ.append(cirq.measure(*[qubit for row in qreg for qubit in

row], key=’m’))

Simulate the circuit
sim = cirq.Simulator()
res = sim.run(circ, repetitions=nreps)

return res

Finally, we use this function to sample from the circuit at the optimal pa-
rameters found above. Then, we parse the output and print out the two most
common bitstrings sampled from the circuit.

Sample to get bits and convert to a histogram
bits = get_bit_strings([gamma_opt], [beta_opt])
hist = bits.histogram(key="m")

Get the most common bits
top = hist.most_common(2)

Print out the two most common bitstrings measured
print("\nMost common bitstring:")
print(format(top[0][0], "#010b"))

print("\nSecond most common bitstring:")
print(bin(top[1][0]))

154 CHAPTER 9 Quantum Computing Methods

A sample output of this portion of the code follows:

Most common bitstring:
0b000000000

Second most common bitstring:
0b111111111

These bitstrings are exactly the ones we would expect to minimize our cost
function! Recall the Ising Hamiltonian we considered, which when written
classically has the form

C.z/ D �
X
hi;j i

zizj (9.24)

where zi D ˙1 are spins. For our bitstring output, b D 0 corresponds to spin
up (z D 1) and b D 1 corresponds to spin down (z D �1). Since opposite
spins zi ¤ zj will produce a term with a positive contribution (don’t forget
the overall minus sign in front!) in the sum, the minimum value of the cost
function occurs when all spins are aligned. That is, zi D zj for all i; j . The
bitstrings that we measured correspond to all spins aligned down or all spins
aligned up, respectively. Thus, these bitstrings indeed produced the minimum
value for our cost function, and QAOA was able to successfully optimize the
cost.

For larger optimization problems with more complex cost functions, more
layers in the QAOA ansatz (i.e., p > 1) may become necessary. More layers
means more parameters in the variational quantum circuit, which leads to a
harder optimization problem. Such an optimization problem could not be
solved by a mere grid search over values, as this quickly becomes intractable.
Rather, gradient-based or gradient-free optimization algorithms must be used
to compute an approximately optimal set of parameters.

The complete program for this implementation of QAOA is available on
the book’s online site.

9.4 Machine Learning on Quantum
Processors

Several groups are exploring the use of QC for machine learning; it is natural
to ask whether QC affords us any advantage in this area. Speedup is not
the only advantage we should consider in quantum machine learning (QML).
There may be opportunity to use a QC to process data directly from a quantum

SECTION 9.4 Machine Learning on Quantum Processors 155

Figure 9.4: Data types and processor types

sensor that retains the full range of quantum information from that sensor.
Figure 9.4 points to the potential of matching quantum data with quantum
processing. Having a classifier on the QC directly analyzing the datastream
for patterns may be better than piping the data to a classical computer.

A number of groups have published in this area, including:
1. Alan Aspuru-Guzik and colleagues have explored quantum machine

learning as well as hybrid classical-quantum models [51, 189].
2. The Rigetti team has worked on unsupervised machine learning on a

classical-quantum hybrid approach [166].
3. Farhi and Neven laid out an approach to classification with neural

networks on a quantum processor (QNNs) [82].
4. Wittek and Gogolin explored Markov logic networks on quantum plat-

forms [236].
5. See [31] for additional work in QML and [235] for an online course in

QML.
The following QNN code comes from [132]. We begin by defining the

QNN:

import cirq
import numpy as np

class ZXGate(cirq.ops.eigen_gate.EigenGate,
cirq.ops.gate_features.TwoQubitGate):

"""ZXGate with variable weight."""

156 CHAPTER 9 Quantum Computing Methods

def __init__(self, weight=1):
"""Initializes the ZX Gate up to phase.

Args:
weight: rotation angle, period 2

"""
self.weight = weight
super().__init__(exponent=weight) # Automatically handles weights

other than 1

def _eigen_components(self):
return [

(1, np.array([[0.5, 0.5, 0, 0],
[0.5, 0.5, 0, 0],
[0, 0, 0.5, -0.5],
[0, 0, -0.5, 0.5]])),

(-1, np.array([[0.5, -0.5, 0, 0],
[-0.5, 0.5, 0, 0],
[0, 0, 0.5, 0.5],
[0, 0, 0.5, 0.5]]))

]

This lets the weight be a Symbol. Useful for parameterization.
def _resolve_parameters_(self, param_resolver):
return ZXGate(weight=param_resolver.value_of(self.weight))

How should the gate look in ASCII diagrams-
def _circuit_diagram_info_(self, args):
return cirq.protocols.CircuitDiagramInfo(

wire_symbols=(’Z’, ’X’),
exponent=self.weight)

Total number of data qubits
INPUT_SIZE = 9

data_qubits = cirq.LineQubit.range(INPUT_SIZE)
readout = cirq.NamedQubit(’r’)

Initialize parameters of the circuit
params = {’w’: 0}

def ZX_layer():
"""Adds a ZX gate between each data qubit and the readout.
All gates are given the same cirq.Symbol for a weight."""
for qubit in data_qubits:
yield ZXGate(cirq.Symbol(’w’)).on(qubit, readout)

qnn = cirq.Circuit()
qnn.append(ZX_layer())
qnn.append([cirq.S(readout)**-1, cirq.H(readout)]) # Basis

transformation

The QNN circuit we have constructed can be visualized as follows:

SECTION 9.4 Machine Learning on Quantum Processors 157

0 W Zw

1 W Zw

2 W Zw

3 W Zw

4 W Zw

5 W Zw

6 W Zw

7 W Zw

8 W Zw

9 W Zw

r W Xw Xw Xw Xw Xw Xw Xw Xw Xw Xw S 1 H

The Zw �Xw notation represents a ZX gate with weight w. The final qubit
labeled r is the readout qubit. Notice that the final operations of S 1 and H
perform a basis change so that our measurement at the end will effectively be
in the Y -basis.

Next we define functions that let us access the expectation values of Z and
the loss function for the QNN:

def readout_expectation(state):
"""Takes in a specification of a state as an array of 0s and 1s
and returns the expectation value of Z on ther readout qubit.
Uses the Simulator to calculate the wavefunction exactly."""

A convenient representation of the state as an integer
state_num = int(np.sum(state*2**np.arange(len(state))))

resolver = cirq.ParamResolver(params)
simulator = cirq.Simulator()

Specify an explicit qubit order so that we know which qubit is
the readout

result = simulator.simulate(qnn, resolver,
qubit_order=[readout]+data_qubits,

initial_state=state_num)
wf = result.final_state

Since we specified qubit order, the Z value of the readout is the
most

significant bit.
Z_readout = np.append(np.ones(2**INPUT_SIZE),

-np.ones(2**INPUT_SIZE))

158 CHAPTER 9 Quantum Computing Methods

Use np.real to eliminate +0j term
return np.real(np.sum(wf*wf.conjugate()*Z_readout))

def loss(states, labels):
loss=0
for state, label in zip(states,labels):
loss += 1 - label*readout_expectation(state)

return loss/(2*len(states))

def classification_error(states, labels):
error=0
for state,label in zip(states,labels):
error += 1 - label*np.sign(readout_expectation(state))

return error/(2*len(states))

Now we generate some data for a toy problem:

def make_batch():
"""Generates a set of labels, then uses those labels to generate

inputs.
label = -1 corresponds to majority 0 in the sate, label = +1

corresponds to
majority 1.
"""
np.random.seed(0) # For consistency in demo
labels = (-1)**np.random.choice(2, size=100) # Smaller batch sizes

will speed up computation
states = []
for label in labels:
states.append(np.random.choice(2, size=INPUT_SIZE,

p=[0.5-label*0.2,0.5+label*0.2]))
return states, labels

states, labels = make_batch()

Finally, we can do a brute-force search over parameter space to find the
optimal QNN:

linspace = np.linspace(start=-1, stop=1, num=80)
train_losses = []
error_rates = []
for p in linspace:
params = {’w’: p}
train_losses.append(loss(states, labels))
error_rates.append(classification_error(states, labels))

plt.plot(linspace, train_losses)
plt.xlabel(’Weight’)
plt.ylabel(’Loss’)
plt.title(’Loss as a Function of Weight’)
plt.show()

We can plot the loss as a function of the weights to see how the network
performs. This is illustrated in Figure 9.5. The minimal loss is about 0:2,

SECTION 9.4 Machine Learning on Quantum Processors 159

Figure 9.5: Loss function of the QNN plotted against the weight; the weight should be chosen
to minimize the loss

which matches what you can obtain by a linear model. A more complicated
QNN, as discussed in [82], can do more.

For this type of classification problem, it remains to be seen whether a
QNN has an advantage over a classical model. More generally, advantages in
quantum machine learning seem to be elusive in the early stages of this field.
Until recently, a quantum algorithm for recommendation systems achieved an
exponential speedup over the best known classical algorithm [118]. Briefly,
the general idea of a recommendation system is as follows: Given an incom-
plete preference matrix P ofm users and their feedback on n products, output
a good recommendation for a particular user. Here, “incomplete” means
that entries of the matrix are missing — that is, not every user has provided
feedback for every product.

Prior to the work [118], the best classical algorithm had a runtime that
scaled linearly in the matrix dimension mn. The quantum recommendation
algorithm scales polylogarithmically in mn, specifically as

O.poly.�/polylog.mn//

where � is the condition number of P . While this was a staple of the QML
field, a new breakthrough classical algorithm, inspired by the quantum one,
also achieved polylogarithmic scaling in the matrix dimension [216].

160 CHAPTER 9 Quantum Computing Methods

Depending on one’s perspective, this is either a pro or con for quantum
machine learning. The pro is that the classical algorithm was directly inspired
by the quantum one — without QML, we may have never had this insight.
The con is that a staple result of the QML field has been “dequantized.” Much
research continues to be done in quantum machine learning, for example [106,
197, 222], to explore the possibilities and prospects for this relatively young
field.

9.5 Quantum Phase Estimation

Quantum phase estimation (QPE), also known as the phase estimation algo-
rithm (PEA), is an algorithm for determining the eigenvalues of a unitary
operator. Eigenvalue problems, which have the form

Ax D �x (9.25)

where A 2 C2m�2m , x 2 C2m and � 2 C, are ubiquitous throughout math-
ematics and physics. In mathematics, applications range from graph theory
to partial differential equations. In physics, applications include computing
the ground state energy — the smallest eigenvalue of the Hamiltonian of
the system — for nuclei, molecules, materials and other physical systems.
Moreover, principal component analysis (PCA), an algorithm for reducing
the dimensionality of feature vectors in machine learning, has an eigenvalue
problem at its core. The applications of (9.25) range across a wide spectrum
of disciplines.

In the quantum case, we are concerned with finding the eigenvalues of
a unitary operator U . It follows immediately by the definition of unitarity
(U �U D I) that eigenvalues of a unitary operator have modulus one: j�j D 1.
Thus, any eigenvalue � of a unitary operator can be written in the form

� D e2�i' (9.26)

where 0 � ' � 1 is called the phase. This is the same phase that appears in
the name of the algorithm — quantum phase estimation. By estimating ', we
get an estimate of the eigenvalue � via the equation above.

SECTION 9.5 Quantum Phase Estimation 161

Suppose ' can be written exactly using n bits5

' D 0:'1'2 � � �'n (9.27)

This is a binary decimal representation of the phase '. Here, each 'k for
k D 1; :::; n is a binary digit 'k 2 f0; 1g. We can write this equivalently as

' D

nX
kD1

'k2
k (9.28)

The key to understanding QPE is to consider the action of controlling the
unitary operator on an eigenstate j i. Explicitly, let U be a unitary operator
which we take as input to the QPE algorithm such that

U j i D �j i (9.29)

Suppose for now we have the eigenstate j i. This is not a requirement
for QPE — in fact, it makes the algorithm trivial, for if we knew j i we
could just implement U j i on the quantum computer — it just simplifies the
explanation. Now, suppose we prepare the equal superposition state (ignoring
normalization factors) in the first register and the eigenstate of U in the second
register

.j0i C j1i/˝ j i D j0ij i C j1ij i (9.30)

Now, as mentioned, we implement a controlled-U operation on this state,
which produces the following state:

j0ij i C j1iU j i D j0ij i C e2�i0:'1���'n j1ij i

D .j0i C e2�i0:'1���'n j1i/˝ j i

Note that the second register goes unchanged. Since j i is an eigenstate of
U , it is unaffected by the controlled operation. Why did we do this then? We
encoded the information about the phase into the first region. Specifically, the
state in the first register picked up the relative phase e2�i0:'1���'n .

Phase estimation now tells us to implement controlled-U 2
k

operations
for integers k D 0; :::; n � 1. We already performed the k D 0 case above.
Consider now the effect of U 2; in particular,

U 2j i D �2j i D e2�i.2'/j i D e2�i0:'2���'n j i (9.31)

5This is the case where ' is rational. The general case of ' being irrational (requiring
infinitely many bits) is similar, but for simplicity we won’t cover it here. See [161] for an
explanation.

162 CHAPTER 9 Quantum Computing Methods

In the last step, we used the fact that e2�i'1 D 1 for any '1 2 f0; 1g. Thus,
by preparing the equal superposition state in the first register, the eigenstate
j i in the second register (9.30), then performing a controlled-U 2 operation,
we get the state

j0ij i C j1iU 2j i D j0ij i C e2�i0:'2���'n j1ij i

In general, using this same idea, we can see that

U 2
k

j i D �2
k

j i D e2�i.2
k'/
j i D e2�i0:'kC1���'n (9.32)

for k D 0; :::; n � 1. Hence, we can transform (9.30) under a controlled-U 2
k

as

j0ij iCj1ij i 7�! j0ij iCj1iU 2
k

j i D .j0iCe2�i0:'kC1���'n j1i/˝j i

(9.33)
Equation (9.33) is at the heart of the QPE algorithm. In particular, the

algorithm says to implement this operation iteratively for k D 0; :::; n � 1,
using n qubits in the top register with the eigenstate j i in the bottom register.
The full circuit for QPE is shown below:

j0i H �

QFT�
j0i H �

:::
:::

j0i H �

j i U 2
0

U 2
1 � � � U 2

n�1

After implementing the series of controlled-U 2
k

operations, the top regis-
ter is in the state

.j0iC e2�i0:'1���'n j1i/˝ .j0iC e2�i0:'2���'n j1i/˝ � � � ˝ .j0iC e2�i0:'n j1i/

(9.34)
To extract the phase information from this state, we use the inverse Fourier
transform, which transforms this state to a product state

j'1i ˝ j'2i ˝ � � � ˝ j'ni (9.35)

By measuring in the computational basis, we thus learn the bits '1; '2; :::; 'n,
which allow us to construct ' D 0:'1 � � �'n and the eigenvalue

� D e2�i' (9.36)

SECTION 9.5 Quantum Phase Estimation 163

Implemention of QPE

We now turn to an example implementation of QPE using Cirq. Here, we
consider computing the eigenvalues of the unitary

U D X ˝Z (9.37)

We can see that the eigenvalues of U are, of course,˙1. We will see that QPE
returns these eigenvalues as well.

First, we import the necessary packages

Imports
import numpy as np

import cirq

and then define a helper function for converting from bitstrings in binary
decimal notation to numeric values:

def binary_decimal(string):
"""Returns the numeric value of 0babc... where a, b, c, ... are

bits.

Examples:
0b10 --> 0.5
0b01 --> 0.25

"""
val = 0.0
for (ind, bit) in enumerate(string[2:]):

if int(bit) == 1:
val += 2**(-1 -ind)

return val

Now we define the number of qubits in the bottom register of the QPE
circuit, create the unitary matrix and classically diagonalize it. We will use
these eigenvalues to compare to the ones found by QPE.

Number of qubits and dimension of the eigenstate
m = 2

Get a unitary matrix on two qubits
xmat = np.array([[0, 1], [1, 0]])
zmat = np.array([[1, 0], [0, -1]])
unitary = np.kron(xmat, zmat)

Print it to the console
print("Unitary:")
print(unitary)

Diagonalize it classically
evals, _ = np.linalg.eig(unitary)

164 CHAPTER 9 Quantum Computing Methods

The output of this portion of the code follows:

Unitary:
[[0 0 1 0]
[0 0 0 -1]
[1 0 0 0]
[0 -1 0 0]]

Now that we have our input to QPE, we can begin building the circuit.
As described above, we define the number of qubits in our top register to
determine the accuracy of the eigenvalues found. Here, we set this number
and define two registers of qubits. Next, we create a circuit and apply the
Hadamard gate to each qubit in the top (readout) register.

Number of qubits in the readout/answer register (# bits of
precision)

n = 2

Readout register
regA = cirq.LineQubit.range(n)

Register for the eigenstate
regB = cirq.LineQubit.range(n, n + m)

Get a circuit
circ = cirq.Circuit()

Hadamard all qubits in the readout register
circ.append(cirq.H.on_each(*regA))

The next step in the QPE algorithm is to implement the series of controlled
U 2

k

operations. We show how this can be done in Cirq for arbitrary two-qubit
unitaries written as matrices. First, we create a TwoQubitMatrixGate from
the unitary matrix, then make a controlled version.

Get a Cirq gate for the unitary matrix
ugate = cirq.ops.matrix_gates.TwoQubitMatrixGate(unitary)

Controlled version of the gate
cugate = cirq.ops.ControlledGate(ugate)

Now that we have the controlled-U gate, we can implement the sequence of
transforms with the following code block:

Do the controlled U^{2^k} operations
for k in range(n):

circ.append(cugate(regA[k], *regB)**(2**k))

SECTION 9.5 Quantum Phase Estimation 165

The last step in QPE is to implement the inverse quantum Fourier transform
and measure all qubits in the computational basis. This is done in the following
code block.

Do the inverse QFT
for k in range(n - 1):

circ.append(cirq.H.on(regA[k]))
targ = k + 1
for j in range(targ):

exp = -2**(j - targ)
rot = cirq.Rz(exp)
crot = cirq.ControlledGate(rot)
circ.append(crot(regA[j], regA[targ]))

circ.append(cirq.H.on(regA[n - 1]))

Measure all qubits in the readout register
circ.append(cirq.measure(*regA, key="z"))

Now that we have built our QPE circuit, we can run it and process the
results. The code below simulates the circuit and grabs the top two most
frequent measurement outcomes. We can obtain '1 and '2 from each of these
to compute our eigenvalues.

Get a simulator
sim = cirq.Simulator()

Simulate the circuit and get the most frequent measurement outcomes
res = sim.run(circ, repetitions=1000)
hist = res.histogram(key="z")
top = hist.most_common(2)

Even though we do not start the second register in an eigenstate of the
unitary U , we can think of starting the second register in a linear combination
of its eigenstates since the eigenstates of U form an orthonormal basis; in
other words, any vector can be expressed as a linear combination of the
eigenstates for some coefficients. In particular, we started the second register
in the ground state j0i, which we can write as

j0i D
X
j

cj jj i (9.38)

where jj i are the eigenstates of U . The most probable measurement outcomes
are thus those with large jcj j D jh0jj ij.

Now that we have the most frequently measured bitstrings, we can convert
these to numerical values of the phase ' and then to eigenvalues. The code
below performs these operations and prints out the eigenvalues computed by
QPE and the eigenvalues computed by the classical matrix diagonalization
algorithm.

166 CHAPTER 9 Quantum Computing Methods

Eigenvalues from QPE
estimated = [np.exp(2j * np.pi * binary_decimal(bin(x[0]))) for x in

top]

Print out the estimated eigenvalues
print("\nEigenvalues from QPE:")
print(set(sorted(estimated, key=lambda x: abs(x)**2)))

Print out the actual eigenvalues
print("\nActual eigenvalues:")
print(set(sorted(evals, key=lambda x: abs(x)**2)))

The output of this code, shown below, reveals that QPE finds the correct
eigenvalues within numerical roundoff precision.

Eigenvalues from QPE:
{(1+0j), (-1+1.2246467991473532e-16j)}

Actual eigenvalues:
{1.0, -1.0}

The complete program for this implementation can be found on the book’s
online website. One can change the unitary matrix to compute eigenvalues
and compare them to the ones found classically. Additionally, one can change
the number of qubits in the top register n to get more bits of precision for
more complex unitary operators.

9.6 Solving Linear Systems

The problem of solving a linear system of M equations with N variables is
ubiquitous in mathematics, science and engineering. The formal statement of
the problem is as follows:

Given an M �N matrix A and a solution vector b, find a
vector x such that

Ax D b (9.39)

Linear algebra tells us how to solve this problem classically in the case
that A is invertible:6

x D A 1b (9.40)

However, although we can write down the solution immediately, numerically
computing x is intractable for large matrices.

6Please consult Part III: Toolkit for a review of these mathematical concepts.

SECTION 9.6 Solving Linear Systems 167

Explicitly computing the inverse of A is generally the most costly method.
In practice, most general-purpose numerical solvers use Gaussian elimination
and back-substitution, which runs in O.N 3/ time. In this discussion we
restrict ourselves to square matrices, i.e., M D N . Faster classical algorithms
are possible: if the matrix A has sparsity s and condition number �, solving
the system to accuracy � can be done by the conjugate gradient algorithm
in O.Ns� log.1=�// time, which is a considerable speedup compared with
O.N 3/.

The quantum version of solving systems of linear equations — called the
quantum linear systems problem (QLSP) [64] — is similar to the classical
approach. Let A be an N �N Hermitian matrix with unit determinant. Let
b and x be N -dimensional vectors such that x D A 1b. Define the quantum
states jbi and jxi on n D log2N qubits

jbi D

P
i bi jii

jj
P
i bi jiijj2

(9.41)

and

jxi D

P
i xi jii

jj
P
i xi jiijj2

(9.42)

Here, bi is the i th component of b, and similarly for xi .
The goal of the QLSP is as follows: given access to the matrix A (whose

elements are accessed by an oracle) and the state jbi, output a state j Nxi such
that

jjj Nxi � jxijj2 � � (9.43)

with probability greater than 1=2.
A quantum algorithm for solving the QLSP in timeO.log.N /s2�2=�/ was

discovered by Harrow, Hassidim and Lloyd [103]. The algorithm is commonly
known as the HHL algorithm after its developers. Note that the order of HHL
is logarithmic, however, this is not always the case in practice. As Aaronson
has pointed out:

...the HHL algorithm solves Ax = b in logarithmic time,
but it does so with four caveats...each of which can be
crucial in practice. To make a long story short, HHL is
not exactly an algorithm for solving a system of linear
equations in logarithmic time. Rather, it’s an algorithm
for approximately preparing a quantum superposition
of the form jxi, where x is the solution to a linear
system Ax = b, assuming the ability to rapidly prepare

168 CHAPTER 9 Quantum Computing Methods

the state jxi, and to apply the unitary transformation
e iAt , and using an amount of time that grows roughly
like �s.log.n//=�, where n is the system size, � is the
system’s condition number, s is its sparsity and � is the
desired error [4].

In the remainder of this section, we explain the mathematics of HHL
and then turn to an example implementation. HHL uses several quantum
algorithms we have discussed — such as Hamiltonian and quantum phase
estimation — as subroutines.

Description of the HHL Algorithm

The HHL algorithm uses three registers of qubits, which we denote as A for
ancilla, W for work, and IO for input/output. The input to the algorithm is
the quantum state jbi, defined above, which is input to the IO register. The
other registers start off in the j0i state, so the entire initial state input to HHL
can be written

j 0i WD j0iA ˝ j0iW ˝ jbiIO (9.44)

We are also given the matrix A as input. There should be no confusion
between the matrix and the register, for we will refer to the former as “matrix
A” and the latter as “register A.” There are three main steps to the algorithm:

1. Quantum phase estimation with the unitary UA WD eiAt , controlled by
the W register and UA applied to the IO register.

2. Pauli-Y rotation for a particular angle � (discussed below) on the A
register controlled by the W register.

3. Implement the first step in reverse (known as uncomputation) on the W
register.

If the A register is measured and one post-selects on the j1iA outcome,
then the state of the IO register will be close to jxi. We now walk through the
steps to show this.

Let the matrix A be written in its eigenbasis

A D
X
j

�j juj ihuj j (9.45)

For simplicity, we assume for the moment that jbi is one of the eigenvectors
of A. That is, jbi D juj i for some index j . This assumption will be relaxed
momentarily.

We can assume A is Hermitian without loss of generality, since if A is not
Hermitian, we can form a Hermitian matrix

SECTION 9.6 Solving Linear Systems 169

QA WD

�
0 A�

A 0

�
and perform HHL with QA. Since A is Hermitian, the operator

UA WD e
iAt (9.46)

is unitary and has eigenvalues ei�j t and eigenstates juj i. After the first step
of HHL, QPE brings us to the state

j 1i WD j0iA ˝ jQ�j iW ˝ juj iIO (9.47)

Here, Q�j is a binary representation of �j up to a set precision. Note that we
used our assumption jbi D juj i when writing the result of QPE.

We now implement the second step of QPE, a controlled-Y rotation e i�Y

for the angle

� D arccos
C

Q�
(9.48)

Here, C is a hyperparameter set by the user of the algorithm. In the example
implementation below, we discuss setting the value of C . After this rotation
controlled on the O register, we have the state

j 2i WD

vuut1 �
C 2

Q�2j

j0iA ˝ jQ�j iW ˝ juj iIO C
C

Q�j
j1iA ˝ jQ�j iW ˝ juj iIO

(9.49)
We now relax the assumption that jbi is an eigenstate of A. That is, we

relax the assumption that jbi D juj i for some j . Note that we can write
without any assumptions, however, that

jbi D
X
j

ˇj juj i (9.50)

where ˇj D huj jbi are complex coefficients. We can write this because A is
Hermitian and so its eigenstates form an orthonormal basis.

We now perform the above analysis (9.45) — (9.49) with jbi expressed in
the eigenbasis (9.50). Doing so, we end up with the state

j 3i WD

NX
jD1

ˇj

24vuut1 �
C 2

Q�2j

j0iA C
C

Q�j
j1iA

35˝ jQ�j iW ˝ juj iIO (9.51)

170 CHAPTER 9 Quantum Computing Methods

The next step of HHL is to uncompute the W register. Doing so sends
j Q�j iO ! j0iO . Since this state is the all zeros state, we can omit it and write
the state after uncomputing as

j 4i WD

NX
jD1

ˇj

24vuut1 �
C 2

Q�2j

j0iA C
C

Q�j
j1iA

35˝ juj iIO (9.52)

This state is in a very useful form, though it may take a careful look to see
why. The reason is that

A 1
jbi D

NX
jD1

ˇj

�j
juj i (9.53)

Thus, if we measure the A register and post-select on the j1iA outcome, then
(9.52) becomes (ignoring the A register)

j 5i WD

NX
jD1

ˇj
Q�j
juj iIO � jxi: (9.54)

Thus, the IO register contains an approximation to jxi D A 1jbi.
Note that this solves the quantum linear systems problem exponentially

faster than the best known classical algorithm. Like Shor’s algorithm and
QPE, HHL is a demonstration of potential quantum advantage.

However, note that only a quantum description of the solution vector is
output from HHL. For applications that need a full classical description of
x, this may not be satisfactory. Quantum state tomography — which is the
measurement and characterization of the wavefunction of a quantum system
— can be used to read out each amplitude of jxi, but this takes time that scales
exponentially in the number of qubits. Fortunately, there exists a number of
applications where only certain features of the solution x need to be computed,
for example the total weight of some subset of the indices.

Now that we have walked through the HHL algorithm, let us turn to an
example implementation written in Cirq:

Example Implementation of the HHL Algorithm

In this implementation7, we consider for simplicity a 2 � 2 system of linear
equations. In particular, the matrix A we consider is

7Adapted from https://github.com/quantumlib/Cirq/blob/master/examples/hhl.py

https://github.com/quantumlib/Cirq/blob/master/examples/hhl.py

SECTION 9.6 Solving Linear Systems 171

A D

�
4:302134 � 6:015934 � 10 8i 0:235318C 9:343861 � 10 1i

0:235318 � 9:343883 � 10 1i 0:583865C 6:015934 � 10 8i

�
(9.55)

and we take the vector jbi as

jbi D Œ0:64510 � 0:47848i 0:35490 � 0:47848i�T (9.56)

Our goal is to use HHL to compute Pauli expectation values hxj� jxi where
� 2 fX; Y;Zg. We can easily compute these analytically (after classically
solving the system) to be

hxjX jxi D 0:144130

hxjY jxi D 0:413217

hxjZjxi D �0:899154

We will compare the expectation values obtained by HHL to these expectation
values.

In our program, we first import the packages we will use:

import math
import numpy as np
import cirq

and then build up the HHL circuit. Here, we define classes which are new
gates in Cirq by inheriting from cirq.Gate or related objects. First, we
create a gate representing UA D eiAt which we will use in the QPE steps:

class HamiltonianSimulation(cirq.EigenGate, cirq.SingleQubitGate):
"""A gate that implements e^iAt.

If a large matrix is used, the circuit should implement actual
Hamiltonian

simulation, for example by using the linear operators framework
in Cirq.

"""

def __init__(self, A, t, exponent=1.0):
"""Initializes a HamiltonianSimulation.

Args:
A : numpy.ndarray

Hermitian matrix that defines the linear system Ax = b.

t : float
Simulation time. Hyperparameter of HHL.

"""
cirq.SingleQubitGate.__init__(self)
cirq.EigenGate.__init__(self, exponent=exponent)

172 CHAPTER 9 Quantum Computing Methods

self.A = A
self.t = t
ws, vs = np.linalg.eigh(A)
self.eigen_components = []
for w, v in zip(ws, vs.T):

theta = w*t / math.pi
P = np.outer(v, np.conj(v))
self.eigen_components.append((theta, P))

def _with_exponent(self, exponent):
return HamiltonianSimulation(self.A, self.t, exponent)

def _eigen_components(self):
return self.eigen_components

Next, we implement the series of controlled unitary operations in QPE,
known as the phase kickback portion of the circuit (please refer to chapter 8
for a discussion of phase kickback):

class PhaseKickback(cirq.Gate):
"""A gate for the phase kickback stage of Quantum Phase

Estimation.

Consists of a series of controlled e^iAt gates with the memory
qubit as

the target and each register qubit as the control, raised
to the power of 2 based on the qubit index.
"""

def __init__(self, num_qubits, unitary):
"""Initializes a PhaseKickback gate.

Args:
num_qubits : int

The number of qubits in the readout register + 1.

Note: The last qubit stores the eigenvector; all other
qubits
store the estimated phase, in big-endian.

unitary : numpy.ndarray
The unitary gate whose phases will be estimated.

"""
super(PhaseKickback, self)
self._num_qubits = num_qubits
self.U = unitary

def num_qubits(self):
"""Returns the number of qubits."""
return self._num_qubits

def _decompose_(self, qubits):
"""Generator for the phase kickback circuit."""
qubits = list(qubits)

SECTION 9.6 Solving Linear Systems 173

memory = qubits.pop()
for i, qubit in enumerate(qubits):

yield cirq.ControlledGate(self.U**(2**i))(qubit, memory)

Next, we create a quantum Fourier transform gate, the third and final
component of QPE:

class QFT(cirq.Gate):
"""Quantum gate for the Quantum Fourier Transformation.

Note: Swaps are omitted here. These are implicitly done in the
PhaseKickback gate by reversing the control qubit order.
"""

def __init__(self, num_qubits):
"""Initializes a QFT circuit.

Args:
num_qubits : int

Number of qubits.
"""
super(QFT, self)
self._num_qubits = num_qubits

def num_qubits(self):
return self._num_qubits

def _decompose_(self, qubits):
processed_qubits = []
for q_head in qubits:

for i, qubit in enumerate(processed_qubits):
yield cirq.CZ(qubit, q_head)**(1/2.0**(i+1))

yield cirq.H(q_head)
processed_qubits.insert(0, q_head)

Now that we have the three major components of QPE, we can implement
the entire algorithm. As above, we make the QPE instance a gate in Cirq:

class QPE(cirq.Gate):
"""A gate for Quantum Phase Estimation."""

def __init__(self, num_qubits, unitary):
"""Initializes an HHL circuit.

Args:
num_qubits : int

The number of qubits in the readout register.

Note: The last qubit stores the eigenvector; all other
qubits
store the estimated phase, in big-endian.

unitary : numpy.ndarray
The unitary gate whose phases will be estimated.

174 CHAPTER 9 Quantum Computing Methods

"""
super(QPE, self)
self._num_qubits = num_qubits
self.U = unitary

def num_qubits(self):
return self._num_qubits

def _decompose_(self, qubits):
qubits = list(qubits)
yield cirq.H.on_each(*qubits[:-1])
yield PhaseKickback(self.num_qubits(), self.U)(*qubits)
yield QFT(self._num_qubits-1)(*qubits[:-1])**-1

With the unitary set as UA D eiAt , this instance of QPE will make up the
first part of the HHL algorithm. The next step is to implement the controlled
Pauli-Y rotation, which the following class does:

class EigenRotation(cirq.Gate):
"""EigenRotation performs the set of rotation on the ancilla qubit
equivalent to division on the memory register by each eigenvalue
of the matrix.

The last qubit is the ancilla qubit; all remaining qubits are in
the register,

assumed to be big-endian.

It consists of a controlled ancilla qubit rotation for each
possible value

that can be represented by the register. Each rotation is an Ry
gate where

the angle is calculated from the eigenvalue corresponding to the
register

value, up to a normalization factor C.
"""

def __init__(self, num_qubits, C, t):
"""Initializes an EigenRotation.

Args:
num_qubits : int

Number of qubits.

C : float
Hyperparameter of HHL algorithm.

t : float
Parameter.

"""
super(EigenRotation, self)
self._num_qubits = num_qubits
self.C = C
self.t = t
self.N = 2**(num_qubits-1)

SECTION 9.6 Solving Linear Systems 175

def num_qubits(self):
return self._num_qubits

def _decompose_(self, qubits):
for k in range(self.N):

kGate = self._ancilla_rotation(k)

xor’s 1 bits correspond to X gate positions.
xor = k ^ (k-1)

for q in qubits[-2::-1]:
Place X gates
if xor % 2 == 1:

yield cirq.X(q)
xor >>= 1

Build controlled ancilla rotation
kGate = cirq.ControlledGate(kGate)

yield kGate(*qubits)

def _ancilla_rotation(self, k):
if k == 0:

k = self.N
theta = 2*math.asin(self.C * self.N * self.t / (2*math.pi * k))
return cirq.Ry(theta)

Now that we have built up each component of the HHL algorithm, we can
write a function to build the entire circuit, shown below:

def hhl_circuit(A, C, t, register_size, *input_prep_gates):
"""Constructs the HHL circuit and returns it.

Args:
A : numpy.ndarray

Hermitian matrix that defines the system of equations Ax =
b.

C : float
Hyperparameter for HHL.

t : float
Hyperparameter for HHL

C and t are tunable parameters for the algorithm.
register_size is the size of the eigenvalue register.
input_prep_gates is a list of gates to be applied to |0> to

generate the
desired input state |b>.

"""

Ancilla register
ancilla = cirq.GridQubit(0, 0)

Work register

176 CHAPTER 9 Quantum Computing Methods

register = [cirq.GridQubit(i + 1, 0) for i in
range(register_size)]

Input/output register
memory = cirq.GridQubit(register_size + 1, 0)

Create a circuit
circ = cirq.Circuit()

Unitary e^{iAt} for QPE
unitary = HamiltonianSimulation(A, t)

QPE with the unitary e^{iAt}
qpe = QPE(register_size + 1, unitary)

Add state preparation circuit for |b>
circ.append([gate(memory) for gate in input_prep_gates])

Add the HHL algorithm to the circuit
circ.append([

qpe(*(register + [memory])),
EigenRotation(register_size+1, C, t)(*(register+[ancilla])),
qpe(*(register + [memory]))**-1,
cirq.measure(ancilla)

])

Pauli observable display
circ.append([

cirq.pauli_string_expectation(
cirq.PauliString({ancilla: cirq.Z}),
key="a"

),
cirq.pauli_string_expectation(

cirq.PauliString({memory: cirq.X}),
key="x"

),
cirq.pauli_string_expectation(

cirq.PauliString({memory: cirq.Y}),
key="y"

),
cirq.pauli_string_expectation(

cirq.PauliString({memory: cirq.Z}),
key="z"

),
])

return circ

In this function, we define the three qubit registers for HHL and create an
empty circuit. Then we form the unitary UA D eiAt from the input matrix A
for a given time t and form a QPE circuit using that unitary. The next line
implements the state preparation circuit to prepare jbi from the ground state.
Note that while jbi is assumed as input to HHL, in practice we always need a
state preparation circuit.

SECTION 9.6 Solving Linear Systems 177

After this, the HHL circuit is constructed step-by-step; first, we add the
QPE circuit, then the controlled-Y rotation, then the inverse QPE circuit. Note
that we are using the **-1 notation in Cirq which makes it very easy to get
the inverse of a quantum circuit. Finally, we append Pauli operators to make
it easy to compute expectation values.

Now that we have built the circuit for HHL, we can simulate it to run
the algorithm. The following function inputs an HHL circuit, simulates it,
and prints out the expectation values from the input/output (IO) register after
post-selecting the j1i outcome in the ancilla register.

Finally, we write our main function which defines the linear system A,
input state jbi and any hyperparameters needed for the HHL algorithm:

def main():
"""Runs the main script of the file."""
Constants
t = 0.358166 * math.pi
register_size = 4

Define the linear system
A = np.array([[4.30213466-6.01593490e-08j,

0.23531802+9.34386156e-01j],
[0.23531882-9.34388383e-01j,
0.58386534+6.01593489e-08j]])

The |b> vector is defined by these gates on the zero state
|b> = (0.64510-0.47848j, 0.35490-0.47848j)
input_prep_gates = [cirq.Rx(1.276359), cirq.Rz(1.276359)]

Expected expectation values
expected = (0.144130 + 0j, 0.413217 + 0j, -0.899154 + 0j)

Set C to be the smallest eigenvalue that can be represented by
the

circuit.
C = 2*math.pi / (2**register_size * t)

Print the actual expectation values
print("Expected observable outputs:")
print("X =", expected[0])
print("Y =", expected[1])
print("Z =", expected[2])

Do the HHL algorithm and print the computed expectation values
print("\nComputed: ")
hhlcirc = hhl_circuit(A, C, t, register_size, *input_prep_gates)
expectations(hhlcirc)

if __name__ == "__main__":
main()

The output of this program is shown below:

178 CHAPTER 9 Quantum Computing Methods

Expected observable outputs:
X = (0.14413+0j)
Y = (0.413217+0j)
Z = (-0.899154+0j)

Computed:
X = (0.14413303+0j)
Y = (0.41321677+0j)
Z = (-0.89915407+0j)

As can be seen, HHL returns the correct (approximate) expectation values
for each Pauli operator, indicating that the final state j Nxi is indeed close to the
solution vector jxi.

9.7 Quantum Random Number Generator

Generating random numbers is crucial for many applications and algorithms,
including Monte Carlo methods and cryptography. While classical computers
generate pseudorandom numbers, the random numbers generated by quan-
tum computers are guaranteed to be truly random by the laws of quantum
mechanics.

In this section, we consider a simple algorithm for generating truly random
numbers on current quantum processors. The algorithm applies a Hadamard
gate to a qubit in the ground state, then measures the state of the qubit in
the computational basis. As we have seen, the Hadamard gate acting on j0i
generates a superposition of computational basis states with equal amplitudes:

H j0i D
1
p
2
.j0i C j1i/ (9.57)

When this state is measured, there is therefore an equal probability of
obtaining the ground and excited states. This can be exploited computationally
as a random bit generator.

Let us now walk through an example program for generating random bits
in Cirq. This program creates a circuit with one qubit, applies the Hadamard
gate and then performs a measurement; the program then iterates the circuit
ten times in the simulator.

"""Program for generating random bits in Cirq."""

Imports
import cirq

SECTION 9.7 Quantum Random Number Generator 179

Helper function for visualizing output
def bitstring(bits):

return ’’.join(’1’ if e else ’0’ for e in bits)

Get a qubit and quantum circuit
qbit = cirq.LineQubit(0)
circ = cirq.Circuit()

Add the Hadamard and measure operations to the circuit
circ.append([cirq.H(qbit), cirq.measure(qbit, key="z")])

Simulate the circuit
sim = cirq.Simulator()
res = sim.run(circ, repetitions=10)

Print the outcome
print("Bitstring =", bitstring(res.measurements["z"]))

An example output of this program is shown below:

Bitstring = 0011001011

Note that this output can be interpreted in several ways, depending on
the context. One interpretation is a sequence of random bits, while another
is a random bitstring representing, for example, an integer. In base ten, the
integer produced in this example output is 203. In this sense, the program can
be interpreted as a uniform random number generator in the integer interval
Œ0; N / where N is the number of repetitions of the circuit.

It is also possible to generate a random number in the range Œ0; N / by
using n D log2N qubits. Here, instead of simulating a circuit with one qubit
many times, we apply a Hadamard gate on each of the n qubits, then measure.
Since there are 2n D N possible bitstrings for n qubits, this will also generate
a random bitstring that can be interpreted as an integer in the range Œ0; N /. A
program that implements this in Cirq is shown below:

"""Program for generating random numbers in Cirq."""

Imports
import cirq

Number of qubits
n = 10

Helper function for visualizing output
def bitstring(bits):

return ’’.join(’1’ if e else ’0’ for e in bits)

Get a qubit and quantum circuit
qreg = [cirq.LineQubit(x) for x in range(n)]
circ = cirq.Circuit()

180 CHAPTER 9 Quantum Computing Methods

Add the Hadamard and measure operations to the circuit
for x in range(n):

circ.append([cirq.H(qreg[x]), cirq.measure(qreg[x])])

Simulate the circuit
sim = cirq.Simulator()
res = sim.run(circ, repetitions=1)

Print the measured bitstring
bits = bitstring(res.measurements.values())
print("Bitstring =", bits)

Print the integer corresponding to the bitstring
print("Integer =", int(bits, 2))

Here, we use n D 10 qubits to generate a random number in the range
Œ0; 1024/. An example output of this program is shown below:

Bitstring = 1010011100
Integer = 668

Here, the integer is the bitstring in base 10. This program produces uniform
random numbers in the range Œ0; 1024/ and will produce different integers if
run successive times.

9.8 Quantum Walks

Quantum walks have been shown to have computational advantages over
classical random walks [11, 81, 9, 116, 56, 57].

In the classical setting, a particle starts out in some initial position (vertex)
on a graph G D .V;E/ and “walks” to neighboring vertices in a probabilistic
manner; these are classical random walks. The final probability distribution of
finding the particle at a given vertex V — as well as questions like “how long
does it take the particle to reach a particular vertex?” — are interesting and
useful quantities to calculate. When certain problems are phrased in terms of
random walks, for example the 2-SAT problem, computing these quantities
can lead to novel solutions that may not have been known previously.

The simplest example of a classical random walk is a one-dimensional
walk on a line. Consider a particle starting at position x.t D 0/ D 0 at
time t D 0. At time t D 1, the particle moves to the right (x.1/ D 1)
or left (x.t D 1/ D �1) with equal probability. At time t D 1, we have
x.2/ D x.1/˙ 1 with equal probability, and in general x.t/ D x.t � 1/˙ 1
with equal probability. Because steps are made at only discrete increments of

SECTION 9.8 Quantum Walks 181

time t D 1; 2; 3; :::, this is known as a discrete-time random walk. Continuous-
time random walks are another model which we discuss below.

Classical random walks are implemented by generating pseudo-random
number(s) at each time step. The particle’s position is updated at each iteration
according to the outcome of the random number generator. Alternatively, an
array of values representing probabilities for each position can be stored and
updated via a stochastic matrix which determines the time evolution of the
system.

In the case of a discrete-time quantum walk on a line, the idea is similar but
the implementation is different. The quantum walk consists of two registers
of qubits: a position register P and a coin register C . As the name suggests,
the position register tracks the probability distribution for the particle to be at
a particular position j0i, j1i, ..., jN � 1i, where we impose periodic boundary
conditions jN i D j0i. The coin register is used to update the particle’s
position at each time step.

The update to the particle’s position is given by the shift operator

S WD j0ih0jC ˝
X
i

ji � 1ihi jP C j1ih1jC ˝
X
i

ji C 1ihi jP (9.58)

That is, if the coin register is in the j1i state, the particle shifts to the left, and
if the coin register is in the j0i state, the particle shifts to the right. That is,

S j0iC ˝ jiiP D j0iC ˝ ji � 1iP (9.59)

and
S j1iC ˝ jiiP D j1iC ˝ ji C 1iP (9.60)

The coin is “flipped” by applying a single qubit gate — for example the
Hadamard gate H to produce an equal superposition state, though “biased”
coins can also be used — and then the shift operator is applied. One step of
the quantum walk can thus be written

U D S.HC ˝ IP / (9.61)

where HC is the Hadamard acting on the coin and IP refers to the identity
acting on the particle. T steps of the walk are given by U T .

In this simplest example of a random walk, numerous differences between
the classical and quantum cases can already be seen. For example, starting in
the initial state j0iC ˝ j0iP will cause the probability distribution to drift “to
the left” — that is, the particle is more likely to move to the left — whereas
in the classical case the distribution is symmetric. Starting the quantum walk

182 CHAPTER 9 Quantum Computing Methods

in the state j1iC ˝ j0iP will cause the distribution to drift to the right. The
reasons for this are constructive and destructive interference of amplitudes, a
distinctly quantum phenomena that is not possible in the classical case. Note
that the distribution for quantum walk can be made symmetric — by starting
in the state jCiC ˝ j0iP , for example, where jCi D .j0i C j1i/=

p
2.

This simple example is instructive for understanding both how quantum
walks work and how quantum walks are different that classical walks. Upon
further study, more differences can be seen. For example, the variance of the
classical distribution for a discrete-time random walk on a line is �2c D T

after T time steps, but in the quantum case it is �2q D T 2 [117]. Thus, the
quantum walker propagates quadratically faster than the classical one.

For a review of quantum walks, see [117] and [185] and the references
therein. For an example of quantum walks applied to graphs, see [9]. Farhi et
al. demonstrated speedup for NAND trees with quantum walks [77].

Let us now turn to an example implementation of a quantum walk to get
more experience.

Implementation of a Quantum Walk

In this section we provide an example implementation of a continuous time
quantum walk (CTQW). We first discuss the transition from discrete to contin-
uous classical walk, as this will reveal how we perform a continuous quantum
walk. In a discrete-time classical walk, probability distributions are stored in
a vector p which is updated via a stochastic matrix

p.t C 1/ DMp.t/ (9.62)

This operates only at discrete times. To make it continuous, we rewrite this
equation as a differential equation

dp.t/
dt
D �Hp.t/ (9.63)

where H is a time-independent matrix with elements given by

(9.64)

Here, is the constant transition rate from vertex i to vertex j and di is the
degree (i.e., number of edges) of vertex i .

hi jH jj i D

8̂
<
:̂

�� i ¤ j and .i; j / 2 E

0 i D j and .i; j / 62 E

di� i D j

SECTION 9.8 Quantum Walks 183

The solution for this differential equation is known to be p.t/ D e Htp.0/.
The step to making this a continuous time quantum walk is to treat the matrix
H as a Hamiltonian which generates the unitary evolution

U.t/ D e iHt (9.65)

which is defined for a continuous, not discrete, spectrum of times t .
Let us now turn to the example implementation using pyQuil8. Here we

perform a continuous time quantum walk on a complete graph with four
vertices (nodes), commonly denoted K4. A complete graph is one in which
each vertex is connected to all vertices. We first import the packages we
will use for this implementation. We highlight here the use of networkx, a
common Python package for working with graphs.

import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
from scipy.linalg import expm

import pyquil.quil as pq
import pyquil.api as api
from pyquil.gates import H, X, CPHASE00

We now create a complete graph on four nodes and visualize it:

Create a graph
G = nx.complete_graph(4)
nx.draw_networkx(G)

The output of this portion of the program is shown in Figure 9.6. Note that
each vertex has an edge connecting it to all other vertices.

The spectrum of a complete graph (i.e., the eigenvalues of the adjacency
matrix of a complete graph) is quite simple. It is known from graph theory
that one eigenvalue is equal to N � 1 (where N is the number of nodes) and
the remaining eigenvalues are equal to �1. In the following code block, we
get the adjacency matrix of the K4 graph and diagonalize it to verify the
spectrum is what we expect.

Diagonalize the adjacency matrix
A = nx.adjacency_matrix(G).toarray()
eigvals, _ = np.linalg.eigh(A)
print("Eigenvalues =", eigvals)

8This implementation is adapted from open-source code which can be found at
https://github.com/rigetti/pyquil/blob/master/examples/quantum_walk.ipynb.

https://github.com/rigetti/pyquil/blob/master/examples/quantum_walk.ipynb

184 CHAPTER 9 Quantum Computing Methods

Figure 9.6: A complete graph on four vertices which we implement a continuous time quantum
walk on. This graph is denoted K4.

The output of this code block, shown below, verifies our prediction of the
spectrum:

Eigenvalues = [-1. -1. -1. 3.]

For the CTQW, the usual Hamiltonian is the adjacency matrix A. We
modify it slightly by adding the identity, i.e., we take H D AC I . This will
reduce the number of gates we need to apply, since the eigenvectors with 0
eigenvalue will not acquire a phase. The code below defines our Hamiltonian:

Get the Hamiltonian
ham = A + np.eye(4)

It turns out that complete graphs are Hadamard diagonalizable. This means
that we can write

H D QƒQ� (9.66)

where Q D H ˝H and ƒ is the diagonal matrix of eigenvalues. Let’s check
that this works.

Hadamard gate
hgate = np.sqrt(1/2) * np.array([[1, 1], [1, -1]])

Form the matrix Q = H \otimes H to diagonalize the Hamiltonian
Q = np.kron(hgate, hgate)

Print out the Q^\dagger H Q to verify it’s diagonal
diag = Q.conj().T.dot(ham).dot(Q)
print(diag)

SECTION 9.8 Quantum Walks 185

The output of this portion of the program, shown below, verifies that Q�HQ
is indeed diagonal (note that numbers in the first row are numerically zero):

[[4.00000000e+00 -4.93038066e-32 -4.93038066e-32 4.93038066e-32]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]]

The time evolution operator U.t/ D e iHt is also diagonalized by the
same transformation. In particular, we have

Q�e iHtQ D

0BB@
e i4t 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCA (9.67)

which is exactly a CPHASE00 gate in pyQuil with an angle of �4t . To
elaborate on this further, the CPHASE00, which we’ll denote as CZ00.'/
below, has the following action on the computational basis:

CZ00.'/j00i D e
i'
j00i

CZ00.'/j01i D j01i

CZ00.'/j10i D j10i

CZ00.'/j11i D j11i

The circuit to simulate the unitary evolution U.t/ D e iHt thus consists
of a Hadamard gate on each qubit, CZ00.�4t/, and then another Hadamard
gate on each qubit. The code snippet below defines a function for creating
this quantum circuit:

Function for a the continuous time quantum walk circuit on a
complete graph

def k_4_ctqw(t):
"""Returns a program implementing a continuous time quantum

walk."""
prog = pq.Program()

Change to diagonal basis
prog.inst(H(0))
prog.inst(H(1))

Time evolve
prog.inst(CPHASE00(-4*t, 0, 1))

Change back to computational basis
prog.inst(H(0))
prog.inst(H(1))

186 CHAPTER 9 Quantum Computing Methods

return prog

Let’s compare the quantum walk with a classical random walk. The
classical time evolution operator is e .M I/t where M is the stochastic
transition matrix of the graph. We obtain M from the adjacency matrix of the
graph below:

Stochastic transition matrix for classical walk
M = A / np.sum(A, axis=0)

We choose as our initial condition j .0/i D j0i, so that the walker starts
on the first node. Therefore, due to symmetry, the probability of occupying
each of the nodes besides j0i is the same. In the code below, we define the
final times to simulate the random walks for and create arrays to store the
probability distributions at each final time:

Set up time to simulate for
tmax = 4
steps = 40
time = np.linspace(0, tmax, steps)

Arrays to hold quantum probabilities and classical probabilities
at each time

quantum_probs = np.zeros((steps, tmax))
classical_probs = np.zeros((steps, tmax))

We can now simulate the continuous-time quantum and classical walks
for each final time we have chosen. The code block below performs this
simulation and stores the final probability distributions:

Do the classical and quantum continuous-time walks
for i, t in enumerate(time):

Get a quantum program
prog = k_4_ctqw(t)

Simulate the circuit and store the probabilities
wvf = qvm.wavefunction(prog)
vec = wvf.amplitudes
quantum_probs[i] = np.abs(vec)**2

Do the classical continuous time walk
classical_ev = expm((M-np.eye(4))*t)
classical_probs[i] = classical_ev[:, 0]

Finally, the code below plots the probabilities for each node at all times:

_, (ax1, ax2) = plt.subplots(2, sharex=True, sharey=True)

ax1.set_title("Quantum evolution")
ax1.set_ylabel("Probability")

SECTION 9.9 Summary 187

Figure 9.7: Time evolution of the continuous-time quantum and classical walks on a complete
graph with four vertices.

ax1.plot(time, quantum_probs[:, 0], label=’Initial node’)
ax1.plot(time, quantum_probs[:, 1], label=’Remaining nodes’)
ax1.legend(loc=’center left’, bbox_to_anchor=(1, 0.5))

ax2.set_title("Classical evolution")
ax2.set_xlabel(’t’)
ax2.set_ylabel("Probability")
ax2.plot(time, classical_probs[:, 0], label=’Initial node’)
ax2.plot(time, classical_probs[:, 1], label=’Remaining nodes’)

The output of this code block is shown in Figure 9.7. Here, we see another
clear difference between the quantum and classical walks. Namely, in the clas-
sical cases, the probability for being in the initial node decays exponentially,
whereas in the quantum case it oscillates! This is what we should expect
based on our construction of the Hamiltonians for each case — namely, the
quantum cases has an i in the exponent e iHt which produces oscillatory
behavior, while in the classical case the exponent is real which produces
purely exponential decay.

9.9 Summary

In this chapter, we have covered a range of quantum computing methods.
We have seen that a QC can be used for optimization, chemical simulation,
true random number generation and other techniques. For more algorithms
please see and contribute to the Quantum Algorithm Zoo [114]. In the coming

188 CHAPTER 9 Quantum Computing Methods

chapter we will turn to quantum supremacy, quantum error correction and the
road ahead for quantum computing.

CHAPTER

10
As the quantum community eagerly seizes the
impending opportunity to experiment with
NISQ devices, we must not lose sight of the
essential longer-term goal: hastening the
onset of the fault-tolerant era.

—John Preskill

Applications and Quantum
Supremacy

In this work, we have taken a journey through the quantum computing land-
scape; we have explored its theoretical foundation, discussed the key research
and milestones that advanced the field and covered a range of hardware
approaches and quantum computing methods.

On the engineering front, there are still daunting challenges ahead of us
to scale to more than 106 qubits. Once we achieve fault-tolerant quantum
computing, more possibilities open up for applications. In the current NISQ
regime, there is plenty of work to be done to explore test cases and prepare
for the error-corrected machines.

10.1 Applications

As the quantum computing landscape evolves, a number of QC applications
are becoming clear. Check the online site and see [155] and [176] for updates
on QC applications.

Quantum Simulation and Chemistry

High-performance classical computers are used today to model new molecular
combinations. This work helps researchers develop new materials, novel
pharmaceuticals as well as compounds for other applications. Quantum
computers will likely give us new capabilities in this domain. Already, the
VQE and quantum chemistry simulation methods discussed in chapter 9
have shown promising results. See the following for additional examples:
[184, 231, 164].

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019

J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0_10

189

https://doi.org/10.1007/978-3-030-23922-0_10
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23922-0_10&domain=pdf

190 CHAPTER 10 Applications and Quantum Supremacy

Sampling from Probability Distributions

We use distribution sampling in many applications such as pattern recognition
and probabilistic inference. With a quantum computer, we can sample from
a much larger distribution. This is one reason that distribution sampling is
being used to demonstrate quantum supremacy as we describe later in this
chapter.

Linear Algebra Speedup with Quantum Computers

There are many application of linear algebra in industry. Matrix inversion,
is a common technique that can be used, for example, in computing electro-
magnetic patterns to design an antenna [176]. The HHL technique which
we covered in chapter 9 is one method that may prove valuable for these
applications.

Optimization

There are numerous optimization applications in industry, including: delivery
truck routing, online ad bidding strategies and mixtures of different chemicals
for electric vehicle battery composition. It is becoming clear that quantum
computers can be used to optimize these kinds of systems.

Tensor Networks

One promising area of inquiry is the application of quantum computation
to tensor networks (TNs). This book’s online site contains references to a
number of good introductions to TNs.

Various tensor network architectures such as MERA, MPS, TTNs and
PEPS are proving to be useful tools to explore questions in physics as well as in
other fields such as deep learning networks. Several groups have demonstrated
a range of applications of tensor networks [223, 233, 194, 224, 108, 152].

10.2 Quantum Supremacy

The term quantum supremacy, first coined by Preskill in 2012, refers to
a computational task that can be efficiently performed on a quantum com-
puter beyond the capabilities of state-of-the-art classical supercomputer can
efficiently implement [175]. We note immediately — as the strong term

SECTION 10.2 Quantum Supremacy 191

supremacy can generate confusion — that this refers to any computational
task which meets the criteria, not necessarily a task that is useful.

The algorithm used to demonstrate supremacy does not need to have wide
application, just a clear-cut ability to run efficiently on a quantum processor
compared with a classical computer where the algorithm is intractable. [36].

In this section, we discuss problems which researchers are considering
to demonstrate quantum supremacy. Regardless of the particular problem
used for the demonstration, quantum supremacy is a landmark achievement in
the history of physics and computer science. While many proof-of-principle
quantum computations have been performed on quantum processors, this will
be the first to be executed at a large enough scale to reveal an experimentally
verifiable computational separation.

This has implications for verifying quantum mechanics through large-
scale computation. Indeed, we can think of supremacy experiments as the
computational analogue of Bell experiments [104]. Just as Bell experiments
refute local hidden variable models, supremacy experiments on an error-
corrected QC would refute the Extended Church-Turing Thesis (ECTT) which,
as discussed in chapter 4, asserts that any algorithmic process can be simulated
efficiently using a probabilistic Turing machine PTM. The ability to carefully
control quantum systems of this magnitude is also a crowning achievement of
engineering and experimental physics.

In the remainder of the section, we discuss the major problems which are
being considered for demonstrating quantum supremacy.

Random Circuit Sampling

Sampling from the output distribution of a quantum circuit is one of the most
natural problems to demonstrate quantum supremacy. To simulate this on a
classical computer, one must perform the linear algebra and matrix computa-
tion to determine the final state of the wavefunction after the execution of the
quantum circuit (written as tensor products of unitary operators). However, a
quantum computer naturally performs this calculation by simply evolving in
time under the physical realizations of the unitary operators.

Classical methods for simulating quantum circuits generally scale expo-
nentially in the number of qubits. Specifically, for the most general, fully
entangled, state of n qubits, there are 2n complex amplitudes to keep track
of in the wavefunction. Even for moderate values of n, this quickly reaches
current memory limitations on even the most capable supercomputers.

192 CHAPTER 10 Applications and Quantum Supremacy

Name Number of bytes Number of qubits
Kilobyte (KB) 210 ⇡ 103 n D 6

Megabyte (MB) 220 ⇡ 106 n D 16

Gigabyte (GB) 230 ⇡ 109 n D 26

Terabyte (TB) 240 ⇡ 1012 n D 36

Petabyte (PB) 250 ⇡ 1015 n D 46

Exabyte (EB) 260 ⇡ 1018 n D 56

Zettabyte (ZB) 270 ⇡ 1021 n D 66

Table 10.1: Table of prefixes and the number of bytes they correspond to; the last column
shows the maximum number of qubits that can be stored for the given memory, assuming the
most general state of a qubit with amplitudes stored in double precision. One byte is 8 bits.

Each amplitude in the wavefunction is generally a complex number, which
entails storing two real floating-point numbers per amplitude. Suppose that
these floating-point numbers are stored in double precision format, i.e., 8
bytes per floating-point number. Under these assumptions, the total memory
required to store the wavefunction is

2n amplitudes ⇥ 2 real numbers/amplitude ⇥ 23 bytes/real number

i.e., 2nC4 bytes. Recall that one kilobyte is defined as 210 bytes, one megabyte
is 220 bytes, and so on; see Table 10.1.

The leading supercomputers have RAM sizes of petabytes to exabytes.1

Based on our previous argument for memory requirements of storing wave-
functions, we can estimate the upper range of quantum circuit simulation for
any particular classical system.

This is the fundamental idea of using quantum circuit sampling as a candi-
date problem for demonstrating quantum supremacy [43, 156]. There are now
multiple methods for simulating quantum circuits — ranging from explicit
construction of the unitary for the circuit to tensor network contractions —
but all of them suffer from exponential complexity in the number of qubits.

Let us now consider in more detail random circuit sampling as a demon-
stration problem of quantum supremacy, following the work of Boixo et
al. [160, 36, 142]. Here researchers are considering the problem of sampling
from the output distribution of random quantum circuits.

The particular random circuits considered for supremacy experiments are
constructed via the following rules [36]:2

1See https://www.top500.org/ for an up-to-date list of supercomputers and their specs.
2Note that we have incorporated Boixo’s updated instructions from his GitHub site:

https://github.com/sboixo/GRCS

https://github.com/sboixo/GRCS

SECTION 10.2 Quantum Supremacy 193

1. Start with a Hadamard gate on each qubit.
2. Apply controlled-Z (CZ) operators between neighboring qubits in a two-

dimensional grid alternating between horizontal and vertical patterns.
Note that in any particular cycle, not all neighboring qubits will be
connected via a CZ, and the number of CZ gates can be different in
different cycles.3

3. Apply single-qubit operators from the set
fX1=2; Y 1=2; T g to the qubits which are not affected by CZ gates ac-
cording to the following criteria:

✏ If the previous cycle had a CZ gate on a given qubit, apply a
randomly-chosen non-diagonal unary gate to that qubit if possi-
ble.4

✏ If the previous cycle had a non-diagonal unary gate on a given
qubit, apply a T gate to that qubit if possible.

✏ Apply a T gate to a qubit if there are no unary gates in the previous
cycles on that qubit (except for the initial Hadamard gate). Note
that this rule is an if and not iff. That is, a T gate may follow
another unary gate; the rule simply states that if there is no unary
gate on that qubit in the previous cycles, then we must place
a T gate in the current cycle. The previous two criteria take
precedence over this one.

✏ If none of the above criteria are satisfied for a given qubit, then a
unary gate is not applied to that qubit for the current cycle.

4. Repeat steps (2) and (3) for a given number of cycles (which determines
the depth).

5. Measure in the computational or Hadamard (X) basis.
We can now incorporate these rules into a program for building supremacy

circuits. An example program in Cirq demonstrating this functionality is
provided below.

import cirq

Number of rows in grid of qubits
nrows = 4

Number of columns in grid of qubits
ncols = 4

3Note that the term cycle in this context refers to moments in the framework of Cirq. We
can think of cycles or moments as the set of operators that are applied simultaneously.

4“If possible" means if the circuit has not ended or if there is not a CZ gate on that qubit in
the current cycle.

194 CHAPTER 10 Applications and Quantum Supremacy

Figure 10.1: Quantum supremacy circuit on a grid of qubits generated by Cirq. The final cycle
of Hadamard gates is for measuring in the X basis, but Z basis measurements may be used as
well.

Depth of CZ gates in supremacy circuit
depth = 5

Generate the supremacy circuit
supremacy_circuit =

cirq.experiments.generate_supremacy_circuit_google_v2_grid(
nrows, ncols, depth, seed=123)

print(supremacy_circuit)

Here, the number of rows and number of columns are specified for the two-
dimensional grid of qubits; the depth, or number of cycles of CZ gates, is
specified to determine the overall depth of the supremacy circuit. The output
of this program is shown in Figure 10.1. Note that in any particular version
or implementation of a random circuit sampler, the code module may be
following rules that are slightly modified from those stated above.

SECTION 10.2 Quantum Supremacy 195

This circuit of n D 16 qubits is easily handled by classical computers, but,
as we have argued, the difficulty of classical simulation scales exponentially
in n. For a sufficiently large number of qubits n, we outline the steps toward
demonstrating quantum supremacy [36]:

1. Generate a supremacy circuit U on n qubits and a given depth d as per
above.

2. Sample from the circuit m times with m ⇡ 103 � 106 to get an output
distribution fx1; :::; xmg.

3. Compute log 1=pU .xj / for each j D 1; :::; m with a sufficiently pow-
erful classical computer. Here,

pU .xj / WD jhxj j ij2 (10.1)

where j i D U j0i is the final state of the supremacy circuit.
4. Compute the quantity

˛ D H0 �
1

m

mX
1

log
1

pU .xj /
(10.2)

where H0 D log.2n/C � is the cross-entropy of an algorithm which
samples from bit strings uniformly. (Note that the logarithm is the
natural logarithm here.) Here, � ⇡ 0:577 is Euler’s constant.

Once the quantity ˛ is computed, it is then compared to a similar quantity
evaluated on the output distribution pA of the best classical algorithm A for
simulating quantum circuits. Note that the cross-entropy difference, which
gives a measure of how well the algorithm A can predict the outcome of a
typical random circuit U , is given by

ÅH.pA/ D H0 �H.pA; pU / (10.3)

Now consider the expectation value of ÅH.pA/ over an ensemble of
random circuits R and let C hold this value:

C WD ERŒÅH.pA/ç (10.4)

In the Boixo et al. supremacy paper [36], it is shown that quantum advan-
tage is achieved in practice when

C ˛ 1 (10.5)

Note that C ! 0 for large enough circuits, and further that pU .xj / can
no longer be obtained numerically. This implies by definition that the quantity
˛ can no longer be measured directly. However, it is possible to extrapolate ˛
for larger circuits in order to demonstrate quantum supremacy with random
circuit sampling.

196 CHAPTER 10 Applications and Quantum Supremacy

Other Problems for Demonstrating Quantum Supremacy

While random circuit sampling is a very natural problem to consider for
demonstrating quantum supremacy, it is not the only one. A recent survey
paper by Harrow and Montanaro [104] provides a helpful discussion of addi-
tional major problems being considered to show quantum-classical separation.

The problem of boson sampling is another candidate for demonstrating
quantum supremacy. Originally proposed in [5], boson sampling involves
sending n coincident photons into a randomly generated linear-optical network
of m � n modes (beam splitters); this generates a random unitary rotation.
Detectors are then used to sample from the distribution of photons, a process
which is believed to be classically hard. Boson sampling experiments have
been performed with up to five photons and nine modes [209]. Experimental
systems are challenged by non-trivial photon loss in the optical network.
Additionally, developing more efficient classical sampling techniques is a
challenge for quantum supremacy via boson sampling.5

Quantum Advantage

Researchers have coined several terms related to the distinction between
classical and quantum computing, including quantum advantage and quantum-
classical separation. Quantum advantage can refer to a constant or linear
speedup compared with classical computing. See W. Zeng’s article on terms
and measures of quantum-classical computing distinctions [242].

10.3 Future Directions

Quantum Error Correction

While today’s quantum computers do not yet have sufficient qubits to support
full quantum error correction (QEC), there is a growing body of research
on QEC with implications for both QC and beyond. Classical computation
admits straightforward error correction through the replication of a state across
many classical bits. The no-cloning theorem in quantum mechanics, however,
prevents us from taking this direct approach in a quantum computer.

5This is true for any problem, P , used for quantum supremacy. Namely, if better classical
algorithms are developed for P , the threshold for quantum supremacy with P gets pushed
back further.

SECTION 10.3 Future Directions 197

Figure 10.2: Quantum computing roadmap Source: Google

A typical approach to QEC involves a surface code which encodes one
logical qubit into a topological state of several physical qubits [49, 63, 87].
When we measure these physical qubits we can see a pattern called a syndrome
which is the result of a particular sequence of errors; a decoder can then map
the syndrome to a particular error sequence. Such decoding may be amenable
to the use of machine learning (see, for example, [20]).

As discussed in the section on VQE, McClean et al. have explored the use
of subspace expansion for error mitigation [147]. See the work of Ofek et al.
for a discussion of the break-event point of QEC [163]).

Error correction schemes have also emerged from other branches of
physics; several researchers have been investigating QEC approaches that
derive from the duality framework of Anti-de Sitter/Conformal Field Theory
(AdS/CFT) [13]. QEC remains an active area of reseach and is critical in the
scaling quantum computing hardware devices.

Doing Physics with Quantum Computers

As we mentioned in the preface of this book, one of the most interesting po-
tential uses of quantum computers is to probe open questions in physics. The
duality framework of AdS/CFT gives us an initial mapping between general
relativity and quantum mechanics. Susskind and others have speculated on the
use of quantum computers to explore this duality [213]. While we are years
away from building quantum computers of sufficient scale and fault-tolerance
to run such experiments, it is still useful to consider what we might learn from
such explorations.

198 CHAPTER 10 Applications and Quantum Supremacy

The key principle here is that in quantum computing we are not merely
modeling a superposition or entangled state and pointing to it from a classical
computer; we are in fact implementing these states, and as such can ask
questions about their dynamics.

Conclusion

We anticipate a fast pace of development in this field — both in hardware
and software — and predict that many more universities and companies will
explore how these platforms can impact their work. We invite the reader to
access the book’s online companion site
http://www.github.com/jackhidary/quantumcomputingbook

for more resources and updates as the field progresses. As we drive to a fully
error-corrected quantum computer, it will certainly be an interesting journey.

http://www.github.com/jackhidary/quantumcomputingbook

Part III

Toolkit

CHAPTER

11
“To those who do not know mathematics it is
difficult to get across a real feeling as to the
beauty, the deepest beauty, of nature ... If
you want to learn about nature, to
appreciate nature, it is necessary to
understand the language that she speaks in.”

—Richard Feynman

Mathematical Tools for Quantum
Computing I

11.1 Introduction and Self-Test

One of the most important discoveries of quantum mechanics in the twentieth
century was the observation by John von Neumann in his Mathematical
Foundations of Quantum Mechanics that all of quantum mechanics can be
described by linear algebra [225].

Confident readers may feel that they need not read this chapter and might
instead flip through it for formulas, equations and the like. We provide readers
with the following provocative questions whose answers we will provide
directly afterward.

11.1 Exercise Self-Test
1. Is the function

T W R! R

T .x/ WD x C 1

a linear transformation?
2. Does a binary operation have anything to do with binary code?
3. Which space has a bigger dimension: R4 or C2?
4. Of these expressions:

a. h0j1i
b. j0ih1j
c. h0j1i j0i

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019

J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0_11

201

https://doi.org/10.1007/978-3-030-23922-0_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23922-0_11&domain=pdf

202 CHAPTER 11 Mathematical Tools for Quantum Computing I

d. hi jAjj i where A is a matrix and i and j are numbers
Which is a number? A vector? A matrix?

5. Give an example of a Hermitian operator whose eigenvalues are not
real numbers.

The answers:
1. No, it’s hopelessly not linear.
2. No, a binary operation is a special type of function.
3. R4 and C2 have the same dimension over R.
4. Here is the classification of the four expressions in Dirac notation:

a. The expression h0j1i is a number. In fact, h0j1i D 0.
b. The expression j0ih1j is a matrix, specifically, the matrix�

1 0

0 0

�
c. The expression h0j1i j0i is a vector. You can see that h0j1i is

the number 0 and we mentioned earlier in the book that j0i is the vector

j0i WD

�
1

0

�
so we can write

h0j1i j0i D .h0j1i/ j0i D .0/ j0i D .0/

�
1

0

�
D

�
0 � 1

0 � 0

�
D

�
0

0

�
d. This is a number. In particular, it’s a clever way to write the

entry in the i th row and j th column of the matrix A.
5. There is no such thing! Hermitian operators always have real eigenval-

ues; try to prove this statement – we will in this section.
Linear algebra can become very complicated. We don’t want to discourage

you, rather the opposite! We would like to be your ambassadors on a journey
into linear algebra and the supporting abstract mathematics that underlies
quantum computing. We will develop all of the prerequisite mathematics and
offer several examples from the book to relate the tools of linear algebra to
quantum computing. That being said, feel free to begin wherever it is that you
feel comfortable.

SECTION 11.2 Linear Algebra 203

�
1

2

�

1

2

(a) Vector in the plane

1

2

(b) Length of a vector

�
1

2

�

1

2

(c) Angle subtended by a vec-
tor

Figure 11.1

11.2 Linear Algebra

Vectors and Notation

The vector is one of the central objects of linear algebra. There are several
ways to conceptualize a vector. First, we may think of a vector as an ordered
collection of numbers (a 1-dimensional array). For example, the following
vector is the ordered collection of the numbers 1 and 2:�

1

2

�
(11.2)

A vector can be thought of as a geometric object as well. For example, we

may plot the vector
�
1

2

�
in the 2-dimensional plane, as in Figure 11.1a.

Thinking geometrically, a vector can have a magnitude (length) and a di-
rection. For example, by the Pythagorean Theorem, the vector in Figure 11.1a
has length p

12 C 22 (11.3)

as indicated by the depiction in Figure 11.1b. We can describe the direction
by giving the angle subtended by the arc from the x-axis to the head of the
arrow, as in Figure 11.1c.

We often denote a vector with a lowercase bold letter, like v, or, when
writing by hand, with an arrow, like Ev. We’ll use the simple notation v to
denote a vector when context makes it clear that v is a vector.

204 CHAPTER 11 Mathematical Tools for Quantum Computing I

Sometimes, we write a vector more explicitly, like so:

v D

0BBB@
v1
v2
:::

vn

1CCCA (11.4)

to indicate the number of entries in the vector. So, this vector has n entries.
Some people like to denote vectors with square brackets, as below

v D

26664
v1
v2
:::

vn

37775 (11.5)

but it doesn’t matter which you use. We prefer round brackets in this discus-
sion.

You may have already encountered the qubit, the quantum analog of the
classical bit, earlier in the book. We use the example earlier in the book
of a qubit that represents the polarization of light, which can be vertical
or horizontal, or in some superposition of these states. As discussed in
chapter 1, we can denote the state “vertical polarization” with j0i and the state
“horizontal polarization” with j1i, or equivalently, j"i and j!i.

Vectors offer a convenient mathematical notation for these states. For
instance, we denote the state “vertical polarization” j0i D j"i by the vector�
1

0

�
and the state “horizontal polarization” j1i D j!i by the vector

�
0

1

�
.

We refer to a vector of the form h'j as a “bra” and to a vector of the form
j'i as a “ket.” So, “bras” are row vectors and “kets” are column vectors.
This bra-ket notation was developed by Paul Dirac and is known as Dirac
notation [68].

Basic Vector Operations

Now that we covered vector notation let’s discuss what we can do with vectors.
There are two quite natural operations to consider. The first of these is addition.
We can add two vectors in the way you would expect – just add the entries!
For example, we add the vectors�

1

0

�
and

�
0

1

�

SECTION 11.2 Linear Algebra 205

as follows: �
1

0

�
C

�
0

1

�
WD

�
1C 0

0C 1

�
D

�
1

1

�
(11.6)

The notation “WD” is used to denote equality that is true by definition
and not by happenstance. For example, we would write 1C 1 D 2 and not
1C1 WD 2, since the fact that the sum of 1 and 1 is 2 is not by definition and is
a consequence of other facts. However, we would write N WD f0; 1; 2; 3; :::g to
indicate the set of natural numbers, denoted N, is equal to the set f0; 1; 2; 3; :::g
by definition and not as a consequence of other facts.

11.7 Exercise Find the sum of the vectors
�
1

2

�
and

�
4

2

�
.

Note that we cannot add vectors with different numbers of entries. For
example, the expression 0@ 1

0

0

1AC � 1

0

�
(11.8)

does not make sense. A moment’s thought convinces us this should be the
case: How would you reasonably add these?1

Let us now consider the next operation: a special kind of multiplication
called scalar multiplication. This operation allows for the multiplication of a
vector by a number, also called a scalar because it scales the vector. Scalar
multiplication also works in the way you might expect – just multiply each
entry of the vector by the number. For example, we would multiply the vector�
1

2

�
by the scalar 3 as in Equation 11.9.

3 �

�
1

2

�
WD

�
3 � 1

3 � 2

�
D

�
3

6

�
(11.9)

11.10 Exercise Perform the scalar multiplication 4 �
�
5

6

�

1Occasionally, computer scientists “pad” the vector which has fewer entries with extra
zeros to make the addition sensible, but we won’t get into this idea here.

206 CHAPTER 11 Mathematical Tools for Quantum Computing I

�
1

2

� �
4

2

�

�
5

4

�
D

�
1

2

�
C

�
4

2

�

1 4 5

2

4

Figure 11.2: Addition of vectors

�
5

6

�

�
20

24

�
D 4 �

�
5

6

�

5 20

6

24

Figure 11.3: Scalar multiplication of a vector

SECTION 11.2 Linear Algebra 207

The operations of vector addition and scalar multiplication have natural
geometric interpretations as well. Perhaps you recall the “head to tail” method
of vector addition from a previous course. It turns out that the vector addition
described above algebraically encodes precisely this approach; see Figure 11.2.
Scalar multiplication by a number corresponds to “scaling” or “stretching”
the vector by that number; see Figure 11.3.

After becoming comfortable with each of these operations, we may mix

and match. For example, we can consider multiplying the vector
�
1

0

�
by

the scalar 3
5

, yielding the vector

3

5
�

�
1

0

�
D

�
3
5
� 1

3
5
� 0

�
D

�
3
5

0

�
(11.11)

and then multiplying the vector
�
0

1

�
by the scalar 4

5
, yielding the vector

4

5
�

�
0

1

�
D

�
4
5
� 0

4
5
� 1

�
D

�
0
4
5

�
(11.12)

and then adding the resulting vectors, yielding�
3
5

0

�
C

�
0
4
5

�
D

�
3
5
4
5

�
(11.13)

In sum, we refer to the expression

3

5
�

�
1

0

�
C
4

5
�

�
0

1

�
D

�
3
5
4
5

�
(11.14)

as a linear combination of the vectors
�
1

0

�
and

�
0

1

�
. We’ll revisit linear

combinations in greater detail later. Using Dirac notation, we can express this
as

3

5
j0i C

4

5
j1i (11.15)

Having read some of chapter 3, you might recognize this expression as
a superposition of the states j0i and j1i. The numbers 3

5
and 4

5
in the linear

combination above are often called coefficients, or in the language of quantum
mechanics, amplitudes, in the superposition of the states j0i and j1i. The
square of their absolute values,

ˇ̌
3
5

ˇ̌2
and

ˇ̌
4
5

ˇ̌2
, are the probabilities of observ-

ing each of the states, j0i and j1i, upon measurement. So, in this example, j1i
is more likely to be observed than j0i. Note that in quantum mechanics, we
often use complex numbers as the amplitudes, not real numbers.

208 CHAPTER 11 Mathematical Tools for Quantum Computing I

11.16 Exercise You’re invited to verify expression 11.15 is a bona fide
superposition of states in the sense that, as per Born’s rule, the sum of the
squares of the absolute values of the coefficients (or amplitudes, in the lan-
guage of quantum mechanics) 3

5
and 4

5
is in fact 1:ˇ̌̌̌

3

5

ˇ̌̌̌2
C

ˇ̌̌̌
4

5

ˇ̌̌̌2
D 1

11.17 Exercise Can you find a superposition of the states j0i and j1i so
that each of the states j0i and j1i has equal probability of measurement? Be
careful, you have to make sure the squares of the coefficients, or amplitudes,
adds up to exactly 1! If you read carefully, you’ll find the answer in previous
chapters.

11.18 A superposition is a linear combination

This leads to an important observation linking quantum mechanics and
linear algebra: a superposition of states can be represented as a linear
combination of the vectors representing their states.

The Norm of a Vector

It is quite natural to ask what the length of a vector is given the geometric
interpretation described above. For vectors in two-dimensional space, our
answer is given by the Pythagorean Theorem. To see this, consider the vector�
3

4

�
. We may plot this vector in the plane, as in Figure 11.4.

So, by the Pythagorean Theorem, we see that the length of this vector is
the square root of the sum of the squares of the entries, i.e.,

p
32 C 42 D 5.

11.19 Exercise Plot the vector
�
5

12

�
in the plane. What is the length

of this vector?

SECTION 11.2 Linear Algebra 209

3

4

Figure 11.4: Another vector in the plane

What about vectors with three entries? Let’s imagine the three-dimensional
analog of our previous discussion about lengths of two-dimensional vectors.

Consider the vector

0@ 1

2

2

1A. We may plot this vector in three-dimensional

space, as in Figure 11.5.
The computation of the length of this vector reduces to two applications of

the Pythagorean Theorem, and ultimately, in the expression

x

y

z

F

P D

0@ 1

2

2

1A
O

Figure 11.5: Vector in space

210 CHAPTER 11 Mathematical Tools for Quantum Computing Ip
12 C 22 C 22 D

p
1C 4C 4 D

p
9 D 3 (11.20)

for the length of the vector

0@ 1

2

2

1A.

11.21 Exercise Convince yourself that the computation of the length of
a three-dimensional vector reduces to two applications of the Pythagorean the-
orem using the following technique: Think of a point P in three-dimensional
space. Now, draw the line segment OP whose endpoints are the origin O and
P . From P drop a perpendicular to the floor. Refer to the point beneath P on
the floor by the name F . Draw the line segment PF whose endpoints are P
and F . Then, draw the line segment OF whose endpoints are O and F . Now,
you have formed a triangle with vertices OP;PF , and OF .

To compute the length of the vector pointing from the origin to the point
P , we must compute the length of the hypotenuse of the triangle we’ve just
created. We can’t do that just yet. We focus attention on the line segment
OF . It is a line segment on the floor, a two-dimensional space. Thus, we
can compute the length of the line segment OF using the usual Pythagorean
Theorem. The length of the line segment PF is simply the height off of the
floor of the point P . So, we know the length of two of the sides of our triangle.
We can find the third using a second application of the usual Pythagorean
Theorem. Draw the picture, and compare to the one in Figure 11.5!

So, we should expect that the length of any vector

0BBB@
v1
v2
:::

vn

1CCCA is given by a

generalization of the Pythagorean Theorem to n dimensions asq
v21 C v22 C :::C v2n (11.22)

Remarkably, this is the case! You’re invited to think about why. The reason is
similar to the above exercise. Recalling that the square root is equivalent to
the 1

2
power, and rewriting this expression asq

v21 C v22 C :::C v2n D
�
v21 C v22 C :::C v2n

� 1
2 (11.23)

reveals an interesting pattern. What is so special about the number 2? Why
not do this for other numbers? For example, exchange 2 for 3, yielding

SECTION 11.2 Linear Algebra 211

3

q
v3

1 C v3
2 C :::C v3

n D
�
v3

1 C v3
2 C :::C v3

n

� 1
3 (11.24)

These variations on the theme of the length of a vector are known as norms.

More generally, given a vector v D

0
BBB@

v1

v2
:::

vn

1
CCCA, the Lp-norm2 of v is given by

11.25 Definition Lp-norm of a vector

jjvjjp WD
�
vp

1 C vp
2 C :::C vp

n

� 1
p

We call the usual length of a vector the L2-length to emphasize its calcula-
tion via the L2 norm. Likewise, we refer to the length of a vector calculated
using the Lp norm as the Lp-length. In what follows, we exclusively consider
the L2 norm, and we will make clear when we are using another norm.

The Dot Product
During our discussion of the addition and scalar multiplication operations we
can perform with vectors, the curious reader might have wondered whether
there is a natural way to multiply two vectors. Interestingly enough, the
natural approach where we multiply the corresponding entries is not desirable.
One reason we would like to avoid this type of multiplication for vectors is
that this “product” of two non-zero vectors can often be zero.3 For example,

if we take the two non-zero vectors
✓
1

0

◆
and

✓
0

1

◆
we would have:

✓
1

0

◆
⇥

✓
0

1

◆
D

✓
1 � 0
0 � 1

◆
D

✓
0

0

◆
(11.26)

Who cares? One argument for why this is not desirable is that it lacks
geometric interpretation.4 There is a way, however, of multiplying two vectors
with a useful geometric interpretation that we will now explore.

2We sympathize with the observant reader who notices that the p value of the norm in the
definition is noted with a subscript. However, when writing Lp , we use a superscript.

3Note that this component-wise product is known as the Hadamard product. While this
product is named after Jacques Hadamard, it has no relation to the Hadamard operator beyond
the eponymous connection.

4Another argument is that in most number systems of interest, the product of two numbers
is zero iff at least one of the numbers is zero. Number systems enjoying this property are called
integral domains and are an important class of objects in the study of abstract algebra. We
exploit this property of numbers when solving equations. For example, we solve the equation

212 CHAPTER 11 Mathematical Tools for Quantum Computing I

Curiously, the product we will focus our attention on takes two vectors of
the same number of components as input and yields, not a vector, but rather a
number. As stated earlier, we can refer to a number as a scalar quantity or
scalar to remind us that numbers “scale” vectors. To motivate the definition
we are about to give, let us return to the notion of the length of a vector. Given

a vector v D

0
BBB@

v1

v2
:::

vn

1
CCCA, we determined that its L2-norm is

jjvjj2 WD
�
v2

1 C v2
2 C :::C v2

n

� 1
2 (11.27)

and so the square of its length is the square of its L2 norm

jjvjj22 D

✓�
v2

1 C v2
2 C :::C v2

n

� 1
2

◆2

D v2
1 C v2

2 C :::C v2
n (11.28)

Inspecting this expression further, we can express

jjvjj22 D v2
1 C v2

2 C :::C v2
n (11.29)

equivalently as
v1 � v1 C v2 � v2 C :::C vn � vn (11.30)

So
jjvjj2 D .v1 � v1 C v2 � v2 C :::C vn � vn/

1
2 (11.31)

Squaring both sides, we have

jjvjj22 D v1 � v1 C v2 � v2 C :::C vn � vn (11.32)

At the very least, this instructs how we could multiply a vector by itself:
multiply the corresponding entries by themselves and then sum these products.

More precisely, for a vector v D

0
BBB@

v1

v2
:::

vn

1
CCCA, we’re inspired to define the product

of v with itself v � v by

v � v WD v1 � v1 C v2 � v2 C :::C vn � vn (11.33)

x2 � 1 D 0 by factoring the left-hand side as x2 � 1 D .x C 1/.x � 1/, and then realize that
the only way the product .x C 1/.x � 1/ could be zero is if either x C 1 D 0 or x � 1 D 0.
We then conclude x D �1 or x D 1.

SECTION 11.2 Linear Algebra 213

This is simply the square of the L2 norm of v! Interesting. So, if we define
our multiplication like this, we recover the square of the length, or L2 norm
of a vector, in the special case that we multiply the vector by itself. Guided by
this example, we define the dot product of two vectors with an equal number
of entries

u D

0
BBB@

u1

u2
:::

un

1
CCCA ; v D

0
BBB@

v1

v2
:::

vn

1
CCCA

in the manner below.

11.34 Definition The dot product of two vectors

u � v WD u1 � v1 C u2 � v2 C :::C un � vn

We sometimes refer to the dot product of two vectors as the scalar product
to emphasize that the dot product produces a scalar.

11.35 Exercise The reader is invited to verify that in the case that u D v,
we recover the square of the usual length or L2, the norm of the vector u.

11.36 Definition The L2 norm of a vector as a dot product

v � v D v1 � v1 C v2 � v2 C :::C vn � vn D jjvjj22

So, the multiplication of two vectors that we’ve defined is convenient
geometrically in that multiplying a vector by itself in this fashion yields a
number that can be interpreted as the square of the length of the vector! We’ll
also see later that vectors whose dot product is zero can be thought of as being
orthogonal to one another.5

5The reader may wonder what the difference is between the terms orthogonal and perpen-
dicular. The term orthogonal is more general than the term perpendicular in that it covers the
case where one of the vectors is the zero vector. In this case, we must use the term orthogonal
and not perpendicular. Let us recall that the dot product of any vector with the zero vector
is zero. However, it doesn’t really make sense to say that a vector and the zero vector are

214 CHAPTER 11 Mathematical Tools for Quantum Computing I

11.3 The Complex Numbers and the Inner
Product

Complex Numbers

The more experienced reader might be familiar with complex numbers. Com-
plex numbers arise naturally when solving equations. For example, we have
no trouble solving the equation x2 � 1 D 0. However, solving the equation
x2 C 1 D 0 is more confusing. If we subtract 1 from both sides, we have
the equation x2 D �1, and we are now faced with the question of finding a
number whose square is negative. There is no real number whose square is
negative, so we introduce a new number, named i , whose square is �1:

i2 D �1 (11.37)

In essence, i is the solution to the equation x2 C 1 D 0, along with �i , of
course (as you should check).

We refer to i as the imaginary number.6 We can then form complex
numbers by combining a real part and an imaginary part, like so:

0C i; 1C i; 2C 3i; and
1

p
2

C
1

p
2
i (11.38)

Note that the complex in complex numbers is due to the fact that these
numbers consist of two constituent parts, and thus form a complex, not because
they’re complicated (although they might be to some). In fact, every complex
number can be uniquely expressed in the form aC bi for some real numbers
a and b, and so we might as well define them as such. We usually denote
complex numbers with symbols like z and w, and for a complex number of
the form z D aC bi , we refer to the real part as Re.z/ D R.z/ D a and the
imaginary part as Im.z/ D I .z/ D b. The set of real numbers, R, may be
recovered from the set of complex numbers, C, as the numbers aC bi such
that b D 0, i.e., numbers of the form aC 0i D a.

In an earlier chapter, we discussed Born’s Rule which states that the square
of the modulus of the amplitude of a state is the probability of that state
resulting after measurement. Let us now review the concept of modulus and
the need for it in this context. With real numbers, there is no need to invoke the

perpendicular to each other, since there is really no angle formed between a vector and the
zero vector.

6We, along with Gauss, lament this unfortunate nomenclature.

SECTION 11.3 The Complex Numbers and the Inner Product 215

aC bi

a

b

Figure 11.6: Complex number in the plane

modulus, since squaring the number automatically makes it positive. However,
when squaring a complex number, the result can be a negative number. Since
it is not possible to have a negative probability, we require that we apply the
modulus first before squaring. The modulus of a complex number aC bi is
defined to be p

a2 C b2 (11.39)

Thus, the modulus squared is simply a2 C b2, which is always a real, positive
number, which is what we require for a probability in the measurement of
quantum systems.

Now that we are armed with complex numbers, let us examine the proper-
ties of vectors whose components are complex, as in Expression 11.40.

✓
1C i

1 � i

◆
(11.40)

It is a bit more difficult to develop a geometric interpretation for such
vectors. How would we plot this vector in space? It has four dimensions!7

However, each single complex number has a natural geometric interpre-
tation as a vector in the plane. To see this, realize that any complex number

aC bi may be identified with the vector
✓
a

b

◆
, as in Figure 11.6.

11.41 Exercise Where do the real numbers “live” in the complex plane?
Can you draw the real line as it is embedded in the complex plane?

7We admit that we have not yet given a definition of dimension. For now, it is fine to
think of dimension in the intuitive sense: a point is 0-dimensional, a line is 1-dimensional, a
plane is 2-dimensional, space is 3-dimensional, etc. We will give a mathematical definition of
dimension later!

216 CHAPTER 11 Mathematical Tools for Quantum Computing I

The Inner Product as a Refinement of the Dot Product

We have discussed how to determine the square of the norm, or the square of

the length, of such a vector
�
a

b

�
: we compute�p
a2 C b2

�2
(11.42)

Naturally, this is how we define the norm of the complex number aCbi so
that it corresponds to the square of the length of its corresponding vector when
plotted in the plane. That is, we define the square of the norm of a complex

number aC bi , which may be thought of as a vector
�
a

b

�
, as a2 C b2.

This definition of the norm of a complex number might confuse you, and
rightfully so! If you are not confused, consider this. Every number may be
thought of as a vector with only one entry. This is a subtle, but important
philosophical point – every number is a vector, in fact.8 Thinking of a complex
number aCbi then as a vector v D

�
v1
�
D
�
aC bi

�
with only one entry

and following the definition of the squared norm of a vector given earlier, we
compute the square of the norm of aC bi via

jjvjj22 WD
�q

v21

�2
D v21 D .aC bi/

2
D .aC bi/.aC bi/ (11.43)

D a2 C a � bi C bi � aC .bi/2 D .a2 � b2/C .2ab/i (11.44)

remembering that we multiply complex numbers .aC bi/; .cC di/ using the
usual distributive law of multiplication, and that i2 D �1. So, for example,
by the distributive property of multiplication, the product of complex numbers
1C 2i and 3C 4i is

.1C2i/�.3C4i/ D .1�3C1�4iC2i �3C2i �4i/ D 1�3C.1�4/iC.2�3/iC.2�4/i2

(11.45)

D 1 �3C.1 �4C2 �3/iC.2 �4/.�1/ D .1 �3�2 �4/C.1 �4C2 �3/i D �5C10i

(11.46)

8... and every vector is a matrix! See the discussion of matrices in Section 12.4.

SECTION 11.3 The Complex Numbers and the Inner Product 217

The reader can regard i as x, replacing any x2 encountered in the com-
putation instead with �1. In fact, this is exactly how algebraists think of
this.

11.47 Exercise Practice multiplying complex numbers by multiplying

.3C 4i/.4C 5i/

Then, multiply
.3C 4i/.3 � 4i/:

Does the second multiplication remind you of something we discussed
previously in the Norms section?

In any case, what we have now for the square of the norm

jjvjj22 D .a2 � b2/C .2ab/i (11.48)

does not look at all like what we called the square of the norm a2 C b2 of the
complex number a C bi . Even more disturbing is that .a2 � b2/C .2ab/i

is potentially an imaginary number, since 2ab is likely nonzero (if both a
and b are nonzero). This is disturbing because such an expression cannot be
as easily interpreted as a length and we would like the norm of a complex
number to be interpretable as its length.9

What is going on here?
Let us inspect the expression a2 C b2 a bit more carefully. Clever readers

(who have done the previous exercise) might recognize expression 11.49
(check it using the distributive property).

a2 C b2 D .aC bi/.a � bi/ (11.49)

The number a � bi is known as the complex conjugate of the number
aC bi . We can also simply call it the conjugate when we’re well-aware that
we’re working with complex numbers. We often denote a complex number
by z, and the conjugate of z by z. For example, if we denote a C bi by z,
then z D a � bi . The act of changing a complex number into its conjugate
is known as conjugating. You might wonder how to conjugate a complex

9Refer to the later section on Hermitian Operators where we discuss why we can’t measure
with complex numbers.

218 CHAPTER 11 Mathematical Tools for Quantum Computing I

R

i

Figure 11.7: The complex plane

number like 1� i . The answer is 1C i . That is, plus becomes minus and vice
versa.

11.50 Exercise Conjugate the following: 3C 4i; 3 � 4i;�1 � i .

What if we have a real number a and think of it as a vector
�
a
�

with
only one entry? Then, the square of the norm of this vector, following the
previous definition, is simply a2. We may recover the norm of a by taking
(the positive) square root, which makes sense since the length of a should be
simply a, and we do not encounter any difficulties as we did with complex
numbers.

One explanation for this peculiarity is that perhaps we should have been
considering real numbers as complex numbers all along. In fact, a previous
exercise asking you to realize the real line as “living” in the complex plane
makes this explicit. You can check your solution to that exercise by referencing
Figure 11.7. What we mean by this is that a real number a can be thought of
as a complex number by expressing it as

a D aC 0i (11.51)

Writing a as aC 0i reveals that the complex conjugate of a is simply a, since
aC 0i is a � 0i D a. Then, the product of a and its complex conjugate is

.a � 0i/.aC 0i/ D a � a D a2 (11.52)

In other words, our definition of the square of the norm for real numbers
remains the same even if we involve the conjugate!

This observation makes us realize that we should define the square of the
norm of any number, complex or not, as the product of that number with its
conjugate. More precisely, using the previously introduced notation,

jjzjj22 WD zz (11.53)

SECTION 11.3 The Complex Numbers and the Inner Product 219

We often omit this extensive notation when the context makes clear that
we are using the L2 norm, replacing it with jzj2 D zz.

This discussion of how to define the square of the norm of any number
instructs our definition of the square of the norm of any vector, complex

entries or not. For any vector v D

0BBB@
v1
v2
:::

vn

1CCCA, we define the square of the norm

of v to be:

11.54 Definition Squared norm of a vector

jvj2 WD v1 � v1 C v2 � v2 C :::C vn � vn

11.55 Exercise You’re encouraged to verify that this definition recovers
the previous definition for vectors whose entries are exclusively real numbers,
and also that it effectively computes the square of the norm of any real or
complex number.

Generalizing this, we define the inner product of two vectors (again, with
equal number of entries):

u D

0BBB@
u1
u2
:::

un

1CCCA ; v D
0BBB@

v1
v2
:::

vn

1CCCA
to be

11.56 Definition Inner product of two vectors

hu; vi WD u1v1 C u2v2 C :::C unvn

11.57 Exercise Similarly, you’re invited to verify that this definition
recovers the square of the norm of any real or complex number in the case
u D v is a real or complex number, i.e., for any real or complex number z,

220 CHAPTER 11 Mathematical Tools for Quantum Computing I

hz; zi D jzj2. You should also verify that the definition of the square of the
norm is recovered for a vector whose entries are all real numbers.

It should be noted that the dot product and the inner product agree only
if the entries of the vectors we are considering are exclusively real numbers.
The inner product generalizes this operation to vectors with complex entries.

Recalling Dirac notation, you will likely notice the uncanny resemblance
of the notations hu; vi and hujvi – the only difference is the line in the middle!
Paul Dirac was probably inspired by the inner product notation when he
decided on his notation. That being said, if we have two vectors, written in
Dirac notation as huj and jvi, we write their inner product as

hujvi WD hu; vi (11.58)

So, the notation hujvi literally means “the inner product of the vectors u
and v.”

So, in what follows, we will assume that our vectors may include complex
entries. We will revisit the inner product from a more formal and abstract
point of view later on in our description of a Hilbert space.

The Polar Coordinate Representation of a Complex Number

We now explore a remarkable connection between complex numbers and
geometry. Every complex number can be thought of as living in the two-
dimensional plane depicted in Figure 11.7.

We have discussed how a complex number of the form z WD aCbi may be

thought of as a vector
�
a

b

�
. Thinking of z as a vector in two-dimensional

space should convince us that it’s reasonable to assign a complex number an
L2-norm, i.e., a length. Specifically, the complex number z D aCbi , thought

of as a vector
�
a

b

�
, has L2 norm given by the Pythagorean Theorem:

p
a2 C b2 (11.59)

Visualizing complex numbers in this fashion should also make it reasonable
to assign a complex number an angle. Specifically, we assign the complex
number a C bi the angle, � , subtended by the arc from the positive real

SECTION 11.3 The Complex Numbers and the Inner Product 221

0

�=2

�

3�=2

p
a2 C b2

�

aC bi

Figure 11.8: Angle subtended by radius

axis to the head of the vector
�
a

b

�
in the counterclockwise direction, as in

Figure 11.8.
We can use some simple trigonometry to describe this angle. Let’s refer to

the angle by � . Then, � lives in the right triangle depicted in Figure 11.9
and so satisfies the equation

tan.�/ D
b

a
(11.60)

If you’re shaky on trigonometry, remember that the tangent of an angle �
in a right triangle is the opposite over the adjacent. Let’s recall the inverse
tangent function, known by the name tan 1, or sometimes arctan. We’ll use
the name arctan.10 The role of the inverse tangent function is to take a number
as input and give an angle as output. For example, arctan.y/ means “the angle
that makes tangent equal to y.” Since

tan.�/ D
b

a
(11.61)

10tan 1 could be confused with the reciprocal function of tangent, known as cotangent,
which is expressed .tan/ 1 D

1
tan D cot.

222 CHAPTER 11 Mathematical Tools for Quantum Computing I

0

�=2

�

3�=2

p
a2 C b2

�

aC bi

a

b

Figure 11.9: Right triangle where the angle lives

applying arctan to both sides yields the equation

arctan .tan.�// D arctan
�
b

a

�
(11.62)

So, we can express the angle, � , in terms of a and b as

� D arctan
�
b

a

�
(11.63)

All this being said, we can refer to the L2-norm of the complex number as
its radius, and refer to the angle as its... well, angle. In summary, a complex
number aC bi has a radius

r WD
p
a2 C b2 (11.64)

and an angle

� WD arctan
�
b

a

�
(11.65)

We can also describe a complex number by simply giving a radius and
angle. For example, let’s try to figure out which complex number is described

SECTION 11.3 The Complex Numbers and the Inner Product 223

by the radius 1 and the angle � WD �
4

radians (45 degrees). If we write the
complex number temporarily as aC bi , our problem reduces to determining
the numbers a and b given the radius r and the angle � .

We know from the previous paragraph that the radius r of a complex
number of the form aC bi is given by

r D
p
a2 C b2 (11.66)

and we know that the angle � is given by

� D arctan
�
b

a

�
(11.67)

If we now apply tan to both sides of 11.67, we obtain

tan.�/ D
b

a
(11.68)

Since � D �
4

,

tan.�/ D tan
��
4

�
D 1 (11.69)

So,

1 D tan
��
4

�
D tan.�/ D

b

a
(11.70)

and we see that

1 D
b

a
(11.71)

Multiplying by a on both sides reveals a D b. Great, so now we know that
a D b!

Knowing that a D b, we look toward the equation

r D
p
a2 C b2 (11.72)

We are told that the radius r is equal to 1, so we know that

1 D r D
p
a2 C b2 (11.73)

and since a D b, we may replace b with a yielding instead

1 D r D
p
a2 C b2 D

p
a2 C a2 D

p

2a2 (11.74)

Squaring both sides yields 1 D 2a2, and dividing both sides by 2 reveals that
1
2
D a2. Then, taking the square root of both sides reveals that:

224 CHAPTER 11 Mathematical Tools for Quantum Computing I

a D

r
1

2
(11.75)

It turns out that r
1

2
D

p
1
p
2
D

1
p
2

(11.76)

so we now know that
a D b D

1
p
2

(11.77)

Fantastic — we now know our complex number a C bi described by the
radius 1 and the angle �

4
is actually

aC bi D
1
p
2
C

1
p
2
i (11.78)

So, we have converted the polar expression of a complex number given by
radius 1 and angle � D �

4
to what we refer to as its rectangular expression

1p
2
C

1p
2
i:

11.79 Definition Rectangular (or Cartesian) and polar form of a
complex number

In general, we say that a complex number of the form aC bi is given in
rectangular or Cartesian form, and that a complex number described by a
radius r and an angle � as .r; �/ is given in polar form.

11.80 Exercise Check that z D 1p
2
C

1p
2
i enjoys the above properties,

i.e., z has radius 1 and angle �
4

.

11.81 Exercise Try to convert the Cartesian expression
p
3
2
C
1
2
i to polar

form by determining its radius and angle.

11.82 Exercise To see that Cartesian expressions can sometimes have
“ugly” polar expressions, convert 1C 2i to polar coordinates and check that
the radius is

p
5 and the angle is arctan

�
2
1

�
, which, unfortunately, cannot be

expressed in any more familiar way.11

11In fact, the arctan of any natural number is irrational.

SECTION 11.3 The Complex Numbers and the Inner Product 225

0

�=2

�

3�=2

r D 1

� D �
4

z

Figure 11.10: Unit complex number with angle �4

Recalling a bit of trigonometry, we could have determined this already!
Given the radius r D 1 and the angle � D �

4
radians, we have the picture in

Figure 11.10.
Recalling the definition of sine and cosine, we see that the value for a

should be
a D r � cos.�/ (11.83)

and the value for b should be

b D r � sin.�/ (11.84)

We can reformulate a as

a D 1 � cos
��
4

�
D

p
2

2
(11.85)

and b as

b D 1 � sin
��
4

�
D

p
2

2
(11.86)

11.87 Exercise Check that
p
2
2
D

1p
2

by cross-multiplying.

226 CHAPTER 11 Mathematical Tools for Quantum Computing I

0

�=2

�

3�=2

r D 1

� D �
4

z

sin
�
�
4

�
D

p
2
2

cos
�
�
4

�
D

p
2
2

Figure 11.11: The trigonometry of a complex number

The above exercise makes us realize we could have determined a and b all
along just having recalled some basic trigonometry!

So, we’ve discussed how a complex number gives rise to a radius and
an angle, and conversely, how a radius and an angle give rise to a complex
number. We realize now that the descriptions are equivalent!

11.88 Exercise Convince yourself that giving a complex number in the
form a C bi is equivalent to giving a radius and an angle .r; �/. Recall
that we say that the form aC bi is rectangular or Cartesian (for Cartesian
coordinates) and that the form .r; �/ is polar.

We can take this one step further with Euler’s formula (pronounced “oiler”).
Euler’s formula states that a complex number z with radius 1 and angle � , i.e.,
a complex number living on the “unit circle” can be expressed as

z D ei� D cos.�/C isin.�/ (11.89)

SECTION 11.3 The Complex Numbers and the Inner Product 227

0

�=2

�

3�=2

1

�

ei� D cos.�/C isin.�/

Figure 11.12: Euler’s formula

That z D cos.�/ C isin.�/ should not be surprising, as it follows our
previous discussion, but rather that the number e comes into play here. If
you’re not familiar with the number e, check out our explanation in chapter
13. This formula is one of the most remarkably beautiful formulas in all of
mathematics for many reasons, including the deep connection it illuminates
between complex numbers — a priori, an algebraic phenomenon — and
geometry. We discuss this equation further and prove its validity in our
chapter about additional mathematical topics. For now, we’d like for you to
take away the following idea:

11.90 Euler’s formula

A complex number z with radius 1 and angle � can be expressed as

z D ei�

That being said, if our complex number z has radius r instead of 1, and
angle � , we may write as z D rei� , following Euler.

11.91 Exercise Convince yourself that a complex number z whose radius

228 CHAPTER 11 Mathematical Tools for Quantum Computing I

is r and whose angle is � can be expressed z D rei� using Euler’s formula as
above.

We’ll exploit this idea later to define a special class of transformations that
rotate space by any specified angle!

11.4 A First Look at Matrices

Basic Matrix Operations

Having read chapter 3, you encountered matrices, which a priori resemble
rectangular grids of numbers, e.g., the Pauli X operator �x (also known as
the NOT operator):

�x D X WD

�
0 1

1 0

�
(11.92)

and the Pauli Z operator �z:

�z D Z WD

�
1 0

0 �1

�
(11.93)

from chapter 3.
Matrices might even involve complex numbers, like the Pauli Y operator

�y :

�y D Y WD

�
0 �i

i 0

�
(11.94)

We can multiply matrices by numbers, like you’ve seen with the Hadamard
operator from chapter 3. Just multiply all of the entries by that number, like
so:

H WD
1
p
2

�
1 1

1 �1

�
WD

1p
2
� 1 1p

2
� 1

1p
2
� 1 1p

2
� .�1/

!
(11.95)

D

1p
2

1p
2

1p
2
�

1p
2

!
(11.96)

We can also add two matrices by adding their corresponding entries, like
so:�

1 2

3 4

�
C

�
5 6

7 8

�
WD

�
1C 5 2C 6

3C 7 4C 8

�
D

�
6 8

10 12

�
(11.97)

SECTION 11.4 A First Look at Matrices 229

A matrix is a representation of a more fundamental object called a linear
transformation. In fact, so is a vector, since we may think of a vector as an
n � 1 matrix. The term transformation begs the question transformation of
what?

11.98 Matrices transform space

A matrix does not merely transform a particular vector or set of vectors; it
transforms an entire vector space.

To gain an understanding of how a matrix might be thought of as a trans-
formation of space, we will consider a few geometric examples. However,
before we can explain these geometric examples, we will need to learn how to
multiply a vector by a matrix. This will seem a bit weird at first, but we will
explain why it’s defined this way later on in this text.

Let �
e

f

�
(11.99)

be a vector and �
a b

c d

�
(11.100)

be a matrix.

We multiply the vector
�
e

f

�
by the matrix

�
a b

c d

�
like so:�

a b

c d

��
e

f

�
WD

�
a � e C b � f

c � e C d � f

�
(11.101)

If you’re observant, you might recognize a � e C b � f resembles the dot
product described earlier. In fact, each of the expressions a � e C b � f and

c � eC d � f (respectively) are literally the dot products of the vectors
�
a

b

�
and

�
e

f

�
, and of

�
c

d

�
and

�
e

f

�
(respectively).12

In other words, for vectors with exclusively real entries, the multiplication
we’ve just defined can be thought of as a sequence of dot products!

Recall the Pauli Z matrix:

Z WD

�
1 0

0 �1

�
(11.102)

12Actually, if all of a; b; c; d; e; f are strictly real numbers, then these dot products are
literally the inner products of the vectors.

230 CHAPTER 11 Mathematical Tools for Quantum Computing I

and consider the vector: �
0

1

�
(11.103)

Recall from the previous description that we write the product of the matrix�
1 0

0 �1

�
(11.104)

and the vector �
0

1

�
(11.105)

as �
1 0

0 �1

��
0

1

�
; (11.106)

and we multiply them as follows�
1 0

0 �1

��
0

1

�
WD

�
1 � 0C 0 � 1

0 � 0C .�1/ � 1

�
D

�
0

�1

�
(11.107)

We could say then that the matrix has transformed the vector
�
0

1

�
into

the vector
�

0

�1

�
!

11.108 Exercise Figure out where the vector
�
1

0

�
is sent via this

transformation. More precisely, multiply the vector
�
1

0

�
by the matrix�

1 0

0 �1

�
and see where the vector

�
1

0

�
ends up! Do you see a relation-

ship between the transformed vectors and the columns of the matrix? Try to
formulate a conjecture!

In fact, we may use Dirac notation to express the relationship between the
matrix Z and the states j0i and j1i like so:

Z jj i D .�1/j jj i (11.109)

for all j 2 f0; 1g, as you should check!

SECTION 11.4 A First Look at Matrices 231

a11 a12

a21 a22

a31 a32

a41 a42

26666666666664

37777777777775

26666666666664

37777777777775

b11 b12 b13

b21 b22 b23

26664
37775

A

B

a11b12 C a12b22

a31b13 C a32b23

Figure 11.13: Matrix multiplication

11.110 Exercise Learn why the NOT operator X D
�
0 1

1 0

�
is also

known as the “bit flip” operator by showing that multiplying the vector
�
1

0

�
,

which represents the state j0i, by the matrix X “flips the state” to j1i, i.e., the

vector
�
0

1

�
.

We can likewise multiply two matrices as follows:�
a b

c d

��
e f

g h

�
WD

�
ae C bg af C bh

ce C dg cf C dh

�
(11.111)

A helpful graphic depicting matrix multiplication is given in Figure 11.13.

232 CHAPTER 11 Mathematical Tools for Quantum Computing I

11.112 Exercise Realize that the multiplication of a vector by a matrix
described earlier can in fact be thought of as the multiplication of two matrices,
where we think of the vector as an n � 1 matrix.

Extending the idea of realizing matrix-vector multiplication as simply
matrix-matrix multiplication as described in the exercise above, we can also
multiply matrices of different dimensions. For example, consider the matrices0@ a b

c d

e f

1A (11.113)

and �
g h i

j k l

�
(11.114)

where the matrix entry i is simply the letter, not the imaginary number i .
Then, we may multiply these matrices like so:

0@ a b

c d

e f

1A� g h i

j k l

�
WD

0@ ag C bj ahC bk ai C bl

cg C dj chC dk ci C dl

eg C fj ehC f k ei C f l

1A
(11.115)

It should be noted that the product of a 3�2matrix and 2�3matrix yields
a 3 � 3 matrix!

Now that we have seen how to multiply a vector by a matrix, we can see
the method for multiplying two matrices, as follows:

�
g h i

j k l

�0@ a b

c d

e f

1A WD � gaC hc C ie gb C hd C if

jaC kc C le jb C kd C lf

�
(11.116)

This should be a surprise – we got a 2 � 2 matrix by multiplying the two
matrices in the opposite order!

SECTION 11.4 A First Look at Matrices 233

m

n

A

n

p

B
D m

p

AB

Figure 11.14: Size of the matrix product

11.117 Size of the matrix product

In general, if A is an m ⇥ n matrix and B is an n ⇥ p matrix, then AB is
an m ⇥ p matrix.

The picture in Figure 11.14 depicts this phenomenon, exemplified by
equations 11.115 and 11.116.

So, when multiplying two matrices, the “inner” dimensions must agree,
and the resulting matrix will have dimensions equal to the “outer dimensions”
of the two matrices.

When faced with the following expression
✓
1 0

0 �1

◆✓
0 1

1 0

◆✓
1 0

0 �1

◆
(11.118)

we might wonder how to compute it given that we’ve not discussed how to
multiply three matrices at a time. Well, think of an analogous scenario. When
asked to compute the product 2 � 3 � 4 what do we do? Well, you have probably
never met anyone capable of multiplying three numbers at a time (at least, we
have never met anyone like that). However, we know that it’s fair to do either
of the following things in an effort to compute the product:

Either we compute:
.2 � 3/ � 4 (11.119)

or we compute:
2 � .3 � 4/ (11.120)

That is, we either multiply 2 and 3 first, and then multiply the result (6) by
the remaining 4, or we multiply 3 and 4 first, and then multiply the result (12)
by the remaining 2. What is remarkable is that we get the same answer (24)
either way!

We can hope that the same is true for matrices. Explore this idea in the
following exercise:

234 CHAPTER 11 Mathematical Tools for Quantum Computing I

11.121 Exercise Recognize�
1 0

0 �1

��
0 1

1 0

��
1 0

0 �1

�
as the product ZXZ of the matrices Z D

�
1 0

0 �1

�
and X D

�
0 1

1 0

�
.

Then, compute the productZXZ by first computingZX and then multiplying
the result by the remaining Z on the right. More precisely, compute

.ZX/Z

Then, compute
Z.XZ/

and check that you get the same answer either way! So, you’ve shown that, at
least for these three matrices, matrix multiplication is an associative operation.

We’ll revisit associative operations later on when we discuss the formal
definition of a vector space. We won’t prove that matrix multiplication is
associative in general here. When we say that matrix multiplication is asso-
ciative, we mean that for all matrices A;B;C , .AB/C D A.BC/ whenever
the product makes sense, i.e., the dimensions agree. In fact, we won’t bring
the issue up again until after we’ve shown that multiplication of matrices is
equivalent to composition of functions, at which point the fact that matrix
multiplication is associative will become an obvious fact!

So, when faced with a product like

ZX j0i D

�
1 0

0 �1

��
0 1

1 0

�
j0i (11.122)

we first think of the vector on the right as a 2 � 1 matrix. We then realize that
we may first compute the product of the two matrices on the left, i.e.,

ZX D

�
1 0

0 �1

��
0 1

1 0

�
D

�
0 1

�1 0

�
(11.123)

then apply the resulting matrix to the vector (2 � 1 matrix) j0i, like so:�
0 1

�1 0

�
j0i D

�
0 1

�1 0

��
1

0

�
D

�
0

�1

�
(11.124)

SECTION 11.4 A First Look at Matrices 235

Or we could iteratively apply the matrices to the vector j0i, first applying
the matrix X

X j0i D

�
0 1

1 0

��
1

0

�
D

�
0

1

�
D j1i (11.125)

then applying the matrix Z to the resulting vector, like so

Z.X j0i/ D Z.j1i/ D Z

��
0

1

��
D

�
1 0

0 �1

��
0

1

�
D

�
0

�1

�
(11.126)

Either way, we get the same result!
Please note that when applying a sequence of matrices to a vector, we go

from right to left, sometimes said “inside-out,” so in this case, we apply X
first, then Z. However, when multiplying the matrices, we go from left to
right. What we are realizing is that:

11.127 Multiplying several matrices

The result of applying the composition of two transformations to a space
is equivalent to applying them iteratively.

Again, we won’t prove this here, but we promise, it will become obvious
once we’ve established the correspondence between matrix multiplication
(and thus, multiplication of vectors by matrices) and composition of functions.

The Identity Matrix

Thinking of matrices as transformations of space leads us to believe that there
should be a matrix that does not transform the space at all. In other words, it
is natural to ask if there is a matrix that has no effect on any of the vectors it
multiplies. In two dimensions, the answer is the matrix

I2 WD

�
1 0

0 1

�
(11.128)

The subscript 2 is there to inform us that this is the identity matrix for 2-
dimensional space. We refer to this matrix as the identity matrix because it
preserves the identity of the vectors it acts on.

Let’s see that the matrix I2 deserves its name. Let’s multiply the vector�
1

0

�
by the matrix I2 to see what we get:

236 CHAPTER 11 Mathematical Tools for Quantum Computing I

I2 �

�
1

0

�
WD

�
1 0

0 1

�
�

�
1

0

�
D

�
1 � 1C 0 � 0

0 � 1C 1 � 0

�
D

�
1

0

�
(11.129)

It’s the same vector! We leave it to you to check that the vector
�
0

1

�
is also

preserved under multiplication by I2.

11.130 Exercise Verify that the vector
�
0

1

�
is unchanged under multi-

plication by I2.

However, the matrix just described is the identity matrix for 2-dimensional
space. What if we want an identity matrix for three-dimensional space? No
problem – just make the matrix a little bigger:

I3 WD

0@ 1 0 0

0 1 0

0 0 1

1A (11.131)

We also call this the identity matrix, although it is specific to three-dimensional
space.

11.132 Exercise Multiply each of the vectors

0@ 1

0

0

1A ;0@ 0

1

0

1A ;0@ 0

0

1

1A
by this new identity matrix for three-dimensional space and check that it
deserves its name.

In fact, each dimension has its own identity matrix, as you might now
expect! To build the identity matrix for n-dimensional space, simply create an
n � n matrix with 1’s along the diagonal and 0’s elsewhere, like so

In WD

0BBB@
1 0 : : : 0

0 1 : : : 0
:::

:::
: : : 0

0 0 0 1

1CCCA (11.133)

This matrix has the property that it preserves any vector of n-dimensions that
it acts on, as you should verify.

SECTION 11.4 A First Look at Matrices 237

Transpose, Conjugate and Trace

We have now seen that not all matrices have to be square. For example,
consider

A WD

0@ a b

c d

e f

1A ; B WD � g h

i j

�
(11.134)

The matrix A has 3 rows and 2 columns and B has 2 rows and 2 columns,
so B is square, while A is not. A very natural operation to consider when
thinking of matrices as rectangular grids of numbers is the transpose. Here
are the transposes, denoted AT and BT , of the above matrices:

AT WD

�
a c e

b d f

�
; BT WD

�
g i

h j

�
(11.135)

What happened? We could describe this operation as turning rows into
columns and vice versa. Visual learners might recognize that transposing a
matrix is reflecting its entries over an imaginary line extending from the upper
left-hand corner of the matrix to the lower right-hand corner. We can just
as well transpose the transposed matrices, i.e., compute .AT /T and .BT /T .
You’re invited to check that .AT /T is just A again in an exercise below.

11.136 Exercise Find the transpose of the following matrix:0BB@
1 2 3

4 5 6

7 8 9

10 11 12

1CCA

11.137 Exercise Check that transposing the already transposed matrix
AT yields A. More precisely, check that .AT /T D A. So, the operation of
transposing inverts itself!

11.138 Exercise For which matrices A is A equal to AT ? We call such
matrices symmetric (for good reason). If a matrix is symmetric and all of its
entries are real numbers, we call it real symmetric. Real symmetric matrices
are very special matrices that deserve quite a bit of attention, as we’ll see later.

238 CHAPTER 11 Mathematical Tools for Quantum Computing I

We can transpose vectors just as well as matrices. To see this, we recognize
that we can think of any vector as a matrix. For example, think of the vector

✓
1

0

◆

as a 2 ⇥ 1 matrix, so its transpose is the 1 ⇥ 2 matrix

✓
1

0

◆T

D
�
1 0

�
(11.139)

11.140 Exercise Find the transpose of the vector
✓
0

1

◆
, i.e., find

✓
0

1

◆T

We’d like to mention now why it is that we consider the vector
✓
1

0

◆

and its transpose
✓
1

0

◆T

D
�
1 0

�
different objects. Of course, they are

visually different, but the difference is more than just in their presentation.

For starters, we cannot multiply the vector
✓
1

0

◆
by itself, i.e., the ex-

pression ✓
1

0

◆✓
1

0

◆
(11.141)

does not make sense, as you should recall from our previous discussion about
appropriate dimensions for the product of two matrices. Explicitly, the vector✓
1

0

◆
has dimensions 2 ⇥ 1, and we see that the product of a 2 ⇥ 1 matrix

with a 2 ⇥ 1 matrix does not make sense since the “inner” dimensions, 1 and
2, do not agree.

However, the expression

✓
1

0

◆T ✓
1

0

◆
D

�
1 0

� ✓
1

0

◆
(11.142)

SECTION 11.4 A First Look at Matrices 239

makes perfect sense, since the inner dimensions are both 2, as you should

verify. Thinking of each of
�
1

0

�T
and

�
1

0

�
as matrices and following

the description of matrix multiplication described above, we have�
1

0

�T �
1

0

�
D

�
1 0

� �
1

0

�
D 1 � 1C 0 � 0 D 1 (11.143)

This result makes sense since we multiplied a 1 � 2 matrix by a 2 � 1 matrix
and got a number, i.e., a 1 � 1 matrix!

Another fun operation we can perform on matrices is conjugation. Yes, the
same conjugation from earlier! Let’s see how this works. Consider the matrix

C WD

�
1C i 0

0 1 � i

�
(11.144)

We denote by C the conjugate of the matrix C .

C WD

�
1C i 0

0 1 � i

�
D

�
1 � i 0

0 1C i

�
(11.145)

To conjugate a matrix, just conjugate each of its entries.

11.146 Exercise Figure out when a matrix is equal to its conjugate. Hint:
When is a 1 � 1 matrix, i.e., a number, equal to its conjugate?

Of course, viewing a vector as a matrix allows us to conjugate any vector.

For example, the conjugate of the vector
�
1C i

1 � i

�
is the vector

�
1C i

1 � i

�
WD

�
1C i

1 � i

�
D

�
1 � i

1C i

�
(11.147)

Let’s tie a few concepts together now by expressing the inner product of
two vectors using the notation we’ve developed.

Given two vectors u D

0BBB@
u1
u2
:::

un

1CCCA and v D

0BBB@
v1
v2
:::

vn

1CCCA, we would express

their inner product via

240 CHAPTER 11 Mathematical Tools for Quantum Computing I

hu; vi WD u1 � v1 C u2 � v2 C :::C un � vn (11.148)

using our earlier notation. Notice that

u1 �v1Cu2 �v2C :::Cun �vn D
�
u1; u2; : : : ; un

�
0BBB@

v1
v2
:::

vn

1CCCA (11.149)

which we may express using our recently developed notation for transpose as
follows:

�
u1; u2; : : : ; un

�
0BBB@

v1
v2
:::

vn

1CCCA D
0BBB@
u1
u2
:::

un

1CCCA
T 0BBB@

v1
v2
:::

vn

1CCCA (11.150)

and we may further adorn this expression with our new notation for the
conjugate of a matrix (and thus a vector) as follows:0BBB@

u1
u2
:::

un

1CCCA
T 0BBB@

v1
v2
:::

vn

1CCCA D uT v (11.151)

All in all, we may compactly express the inner product of vectors u and v as
simply uT v – fantastic! So, in summary, we have the following equivalent
expressions for the inner product of two vectors u and v:

hu; vi D hujvi D uT v (11.152)

By convention, we can refer to uT v as u�, so we have

hu; vi D hujvi D uT v D u�v (11.153)

We can go even further to relate this to Dirac notation! What the above
string of equalities reveals is that we may think of the “bra” huj of a vector u

as the conjugate-transpose of the vector u, i.e., for a vector

0BBB@
u1
u2
:::

un

1CCCA,

SECTION 11.4 A First Look at Matrices 241

huj jvi D uT v D

0BBB@
u1
u2
:::

un

1CCCA
T 0BBB@

v1
v2
:::

vn

1CCCA (11.154)

D
�
u1; u2; : : : ; un

�
0BBB@

v1
v2
:::

vn

1CCCA (11.155)

Given that we now have the operations of transposition and conjugation
at our disposal, we may apply both to a matrix to yield what is known as its
conjugate transpose.

11.156 Exercise First, conjugate the Pauli Y operator �Y , i.e., the matrix

Y D

�
0 �i

i 0

�
. Then, transpose the result. We call this the conjugate trans-

pose of the matrix Y . Do you notice something special about the relationship
between Y and its conjugate transpose?

We’ll show now that you could equivalently transpose the matrix Y and
then conjugate.

First, we transpose Y , yielding

Y T D

�
0 �i

i 0

�T
D

�
0 i

�i 0

�
(11.157)

Then, we conjugate Y T :

.Y T / D

�
0 i

�i 0

�
D

�
0 i

�i 0

�
D

�
0 �i

i 0

�
(11.158)

Check to see that you got the same thing in the exercise above!
So, in general, we may compute the conjugate transpose of a matrix, and

we may compute it in either order: conjugate first, then transpose, or transpose
first, then conjugate.

We will see later that the idea of the conjugate transpose is important for
defining a class of operators called unitary operators. A unitary operator is an
operator whose inverse is its conjugate transpose, as we will consider further

242 CHAPTER 11 Mathematical Tools for Quantum Computing I

in this section. This is important because quantum states are represented as
vectors with norm 1 living in something called a Hilbert space (which we will
define rigorously later in this exposition). It turns out that unitary operators
have the special property that they preserve the norm of the vectors on which
they operate. So, the application of a unitary operator to a vector whose norm
is 1 is a vector whose norm is also 1.

There is another important operation that we can perform on a matrix,
known as taking the trace. Let us recall that the primary diagonal of interest
to us in analyzing matrices is the one that runs from the upper left-hand corner
to the lower right-hand corner; we refer to this as the main diagonal. Given a
matrix A, we can find the sum of entries of the main diagonal of A like so:

A D

✓
1 3

8 4

◆
7! 1C 4 D 5 (11.159)

We notate this as Tr.A/ D 5, which can be read, “The trace of A is 5.”

11.160 Exercise Compute the trace of the matrix B D

✓
5 6

7 8

◆
. Then,

check that the trace of B is the trace of BT . That the trace of a matrix and its
transpose are always the same is a theorem of advanced linear algebra, so we
content ourselves with this example for now.

The trace has a number of interesting properties including the following:

11.161 Invariance of the Trace

The trace remains invariant among matrices that are similar.

Similar matrices can be thought of as matrices that represent the same
linear transformation viewed from different perspectives.13 Now we are
equipped to verify the list of equalities of products of matrices stated in
chapter 3.

Recall from earlier chapters that H is the Hadamard operator defined as
13Unfortunately, we won’t be able to discuss the idea of similar matrices in this exposition,

but the name should give some indication of the idea. Two matrices are similar if they are in
some sense the same. We can make this idea more precise when we understand the notion
of a basis, and what it means to change a basis. The idea is that two matrices are similar iff
they differ only by a change of basis. This invariance is useful for distinguishing classes of
quantum operators.

SECTION 11.4 A First Look at Matrices 243

H WD
1
p
2

�
1 1

1 �1

�
X is the Pauli X operator �x , also known as the NOT (or “(qu)bit flip”)

operator defined as

X WD

�
0 1

1 0

�
Z is the Pauli Z operator �z defined as

Z WD

�
1 0

0 �1

�
Y is the Pauli Y operator �y defined as

Y WD

�
0 �i

i 0

�
and I is the identity operator, which we’ll take to be two-dimensional, so

I WD

�
1 0

0 1

�
Recall also that for any matrix A, A� denotes the conjugate transpose of

A.

11.162 Exercise
Verify the following list of equalities of matrices:
� HXH D Z

� HZH D X

� HYH D �Y

� H � D H

So, we can say that the Hadamard operatorH is unitary,14 since its inverse
is its conjugate transpose,

H 1
D H �

14We will discuss unitary operators later on in this text.

244 CHAPTER 11 Mathematical Tools for Quantum Computing I

Matrix Exponentiation

Let us now discuss the exponentiation of matrices. To do this, first we discuss
powers of matrices. We can apply the same matrix successively to a vector, as
in

X.X j i/ D X2j i

The notation on the right hand side of this equation suggests we are applying
the square of the X operator (matrix) to the vector. Indeed, powers of linear
operators (matrices) are defined in this way. In general, the notation Ak for
any operator A and any positive integer k means k successive applications of
A.

This leads naturally to the notion of the exponential of a matrix, denoted
expA or eA. The way this is defined is through the Taylor series of ex , namely

ex D

1X
nD0

1

nŠ
xn:

In the same way, we use this to define the exponential of a matrix

expA � eA WD
1X
nD0

1

nŠ
An (11.163)

We define A0 D I , the identity matrix, for any matrix A. Although we will
not prove it here, it can be shown that the infinite sum in (11.163) converges
for any matrix A and thus is well-defined.

11.164 Exercise Please verify the following.
� X2 D I

� Y 2 D I

� Z2 D I

� H 2 D I

11.165 Exercise
Verify that for any operator A such that A2 D I , the following identity

holds:

ei�A D cos.�/I C i sin.�/A (11.166)

SECTION 11.5 The Outer Product and the Tensor Product 245

For this exercise, it will be useful to recall the Taylor series for cosine and
sine. Use this expression for the Pauli matrices X , Y and Z.

11.5 The Outer Product and the Tensor
Product

The Outer Product as a Way of Building Matrices

Now we’ll demonstrate an operation that builds a matrix from two vectors.

Consider the vectors
✓
1

0

◆T

D
�
1 0

�
and

✓
1

0

◆
:

As discussed earlier, it is perfectly sensible to compute the product
✓
1

0

◆ �
1 0

�
(11.167)

since it is the product of a 2⇥ 1 matrix with a 1⇥ 2 matrix, i.e., a 2⇥ 2 matrix.

11.168 Exercise Practice your matrix computation skills and compute
the above matrix product.

If you completed the above exercise, you now know that
✓
1

0

◆ �
1 0

�
D

✓
1 � 1 1 � 0
0 � 1 0 � 0

◆
D

✓
1 0

0 0

◆
(11.169)

We call the resulting matrix the outer product of the vector
✓
1

0

◆
with

itself. We’d like to emphasize that this is just fancy terminology! The outer
product is simply the matrix product of two vectors. We can think of the first
vector as a 1⇥ 2 matrix and the second vector as a 2⇥ 1 matrix, remembering
that the the product of anm⇥nmatrix and an n⇥p matrix is anm⇥p matrix.
So, in this case, the product of a 1⇥ 2 matrix and a 2⇥ 1 matrix yields a 2⇥ 2
matrix.

In Dirac notation, we can express the outer product above as j0ih0j. Like-
wise, we may construct the outer products j0ih1j, j1ih0j, and j1ih1j. We leave
it to you to compute these in the following exercise:

246 CHAPTER 11 Mathematical Tools for Quantum Computing I

11.170 Exercise Find the outer products j0ih1j, j1ih0j, and j1ih1j.

To help you out, the first of these is:

j0ih1j WD

�
1

0

� �
0 1

�
D

�
1 � 0 1 � 1

0 � 0 0 � 1

�
D

�
0 1

0 0

�
(11.171)

Hopefully, you’ve completed the rest!
With the computation we completed for you above and recalling how it is

that we add two matrices, you can now confirm a result written in chapter 3:

X WD j0ih1j C j1ih0j D

�
0 1

1 0

�
(11.172)

The outer product of two vectors is a specific case of the more general
concept of a tensor product, as we will see now. Before we move on to the
tensor product, we would like to discuss how the outer product relates to Dirac
notation. Recall that the inner product hujvi of two vectors u and v is in fact
expressible as u�v, where u� denotes the conjugate transpose of u. It should
not be too much of a surprise then that the outer product juihvj is expressible
as uv�!

11.173 Exercise Check that all of the above computations of outer prod-
ucts juihvj for vectors u and v could have been thought of as computations of
uv�.

In summary:

11.174 Inner and Outer Product and Their Relationships with the
Conjugate Transpose

For any two vectors u and v,

hujvi D u�v

and
juihvj D uv�

SECTION 11.5 The Outer Product and the Tensor Product 247

The Tensor Product

Before introducing the operation of a tensor product, let’s discuss some
terminology for talking about tensor products. As we have seen earlier, a
scalar is simply a number.

We can refer to scalars as 0-tensors, meaning a tensor of order 0. Please
note that we discourage the use of the word “rank” when referring to the order
of tensors, as rank is a term reserved for another term in linear algebra. We
can refer to a vector as a 1-tensor. Similarly, we can refer to a matrix as a
2-tensor. A 3-tensor would in fact be a rectangular prism of numbers! Beyond
the 3-tensor, we no longer have the ability to give a geometric interpretation.
However, many applications in the real world call for tensors of higher order
— sometimes in the thousands or millions, as in the case of neural networks.
We summarize this terminology in Figure 11.15.

11.175 Exercise Why is it appropriate to say that the table in Figure
11.15 is a 2-tensor?

Let us now return to our discussion of the tensor product as a generalization
of the outer product. The outer product is the product of two 1-tensors, which
produces a matrix (a 2-tensor). However, what happens if we wish to take the
tensor product of two tensors of any arbitrary order? We can generalize the
outer product of two 1-tensors to the tensor product of any two tensors, A and
B , of arbitrary order, like so:

A˝ B

To see what we mean by this, consider the two vectors u WD

✓
a

b

◆
and

v WD
�
c d e

�
. Their tensor product is the matrix

u˝ v D

✓
a

b

◆
˝
�
c d e

�
WD

✓
a � c a � d a � e
b � c b � d b � e

◆
(11.176)

This might remind you of the previously defined outer product of two
vectors, and it should, because the tensor product of the two vectors here is
the outer product.

Let’s see the tensor product of two column vectors:

248 CHAPTER 11 Mathematical Tools for Quantum Computing I

Tensors Terminology Example

0-tensor scalar 3

1-tensor vector
�
1

0

�
2-tensor matrix 1p

2

�
1 1

1 �1

�
Figure 11.15: Tensor terminology

0@ r

s

t

1A˝ � x

y

�
WD

0BBBBBB@
r � x

r � y

s � x

s � y

t � x

t � y

1CCCCCCA (11.177)

You may have read earlier in the book that we sometimes write j00i to

denote the vector

0BB@
1

0

0

0

1CCA, or j11i to denote the vector

0BB@
0

0

0

1

1CCA. We’d like to

point out now that the notation j00i is shorthand for j0i ˝ j0i, which is

j00i WD j0i ˝ j0i D

�
1

0

�
˝

�
1

0

�
D

0BB@
1 � 1

1 � 0

0 � 1

0 � 0

1CCA D
0BB@
1

0

0

0

1CCA (11.178)

It should be noted that the tensor product cares about whether the vectors
are column vectors or row vectors, as we can see from contrasting the previous
two examples of tensor products. A quick perusal of the previous examples
should convince you that the tensor product of a column vector with a row
vector yields a matrix, whereas the tensor product of two column vectors
yields another column vector.

11.179 Exercise What do you think the tensor product of two row vectors
yields?

SECTION 11.5 The Outer Product and the Tensor Product 249

If you thought about the exercise above, you’re hopefully convinced that
the tensor product of two row vectors is another row vector.

11.180 Size of tensor product of matrices

The tensor product of an .a � b/ matrix with a .c � d/ matrix is an
.a � c/ � .b � d/ matrix.

11.181 Exercise Check that the aforementioned formula for the dimen-
sion of the tensor product of an a � b matrix with a c � d matrix specializes,
as examples, to the following cases:
� the tensor product of two row vectors
� the tensor product of two column vectors

Note that a row vector can be thought of as matrix whose dimensions are
1 �m and a column vector can be thought of as a matrix whose dimensions
are n � 1.

Now, we invite you to check that j11i is in fact j1i ˝ j1i, as claimed!

11.182 Exercise Check that j11i WD j1i˝j1i is in fact the vector

0BB@
0

0

0

1

1CCA.

Then, check that the intermediate vectors are what they’re supposed to be, i.e.,

j01i D

0BB@
0

1

0

0

1CCA and j10i D

0BB@
0

0

1

0

1CCA.

We won’t dwell on the idea of the tensor product now. We’d just like to
introduce it and get you thinking about it. We’ll revisit this idea once we’ve
established the formal definition of vector spaces and linear transformations
between them. At that point, we’ll realize the tensor product of two vectors is
actually the tensor product of the two linear transformations they represent. It
will also become clear at that point why it is that the dimension of the tensor
product works the way it does.

250 CHAPTER 11 Mathematical Tools for Quantum Computing I

11.6 Set Theory

The Basics of Set Theory

Now we’ll spend a bit of time developing some of the prerequisite set theory
necessary to continue with this chapter. In particular, we’ll need to have an
idea of what a function is (this requires a bit of work!) and then we can
ascertain what it means for a function to be invertible. Invertible functions are
of utmost importance in quantum computing, since the quantum gates we use
to construct quantum circuits have to be reversible.

The curious thing is that these gates are represented by matrices, and we’ll
learn that these matrices are actually just representations of transformations
of space, and so are functions themselves. Once we believe that matrices are
actually just functions, we have a reasonable notion of what it means for a
matrix to be invertible, and thus for a quantum gate to be reversible!

So, don’t let the following passages discourage you. A firm mathematical
understanding of basic set theory and function theory will guide you well on
your way to grasping the underlying ideas of quantum computing.

First, we want to have a notation expressing the notion of the containment
of an element in a set. We say that x is an element of a set S , and denote this
by x 2 S . The symbol “2” resembles an “e” for “element,” which might help
us remember – some people like mnemonics.

We will often abbreviate the phrase “if and only if” with “iff.” So, any
time you see “iff,” think “if and only if.” We also often discuss the notion of
set containment, or set inclusion when doing mathematics, so let’s make sure
we have an idea of what this is.

Given two sets A and B , we say that A is a subset of B , denoted A ⇢ B ,
iff for all elements a 2 A, a 2 B . In other words, everything in A is also in
B .

Sometimes people indicate the inclusion of a set A into a set B by A ,! B ,
and we say that “A includes into B.” Other ways to say this include “A embeds
into B” and “A injects into B .”

The terminology “A injects into B” is hinting at a property of functions
called injectivity that we’ll investigate soon.

11.183 Exercise Check that f0g ⇢ f0; 1g.

SECTION 11.6 Set Theory 251

We will find ourselves talking about a few important sets in this chapter,
so let us define them. The set of natural numbers,15 denoted N, is

N WD f0; 1; 2; 3; :::g (11.184)

The set of integers,16 denoted Z, is

Z WD f:::;�3;�2;�1; 0; 1; 2; 3; :::g (11.185)

The set of rational numbers,17 denoted Q, is

Q WD

⇢
p

q
W p; q 2 Z; q ¤ 0

�
(11.186)

The set of real numbers, denoted R, is a bit more complicated to define
formally, but it is acceptable to think of a real number as any number that can
be approximated to any level of precision by a sequence of rational numbers.
Examples of real numbers include

0; 1;�1;
3

4
;
p
2; e;⇡ (11.187)

Non-examples of real numbers include

i; 1C i; 1 � i;
1

p
2

C
1

p
2
i (11.188)

By including the imaginary number i , we get the complex numbers, de-
noted C. The set C is defined as

C WD faC bi W a; b 2 Rg (11.189)

15Some people prefer to define the natural numbers excluding 0, like so: N D f1; 2; 3; :::g.
It makes no difference, really, although computer scientists are inclined to include 0. Some
have suggested that the symbol N be reserved for the set f1; 2; 3; :::g and that the symbol N0

be reserved for the set f0; 1; 2; 3; :::g. It is a good idea, but it has not yet caught on as far as we
know.

16You are probably wondering why the set of integers, beginning with the letter “i” is
denoted with a “z.” It turns out that the word “number” is “zahlen” in German, and the
Germans are responsible for much of the notation found in number theory and algebra.

17Can you figure out why the rational numbers are denoted with a “q”? The root of the
word “rational” is “ratio,” and another word for ratio is “quotient”!

252 CHAPTER 11 Mathematical Tools for Quantum Computing I

11.190 Exercise Check the following set inclusions are actually true

N ⇢ Z ⇢ Q ⇢ R ⇢ C

You might want to think of each integer x as the rational number x
1 to establish

the second inclusion in the chain. Then, you might want to think of each real
number a as the complex number aC 0i to establish the fourth inclusion.

We can also say things like “B contains A,” emphasizing B’s containment
of A rather than A’s containment in B .

We will also begin to use set-builder notation18 to express and describe
sets. For example, we can describe the set of all integers whose square is 1
with the notation

S WD fx 2 Z W x2 D 1g (11.191)

We read this as “The set of elements x in the integers (recall, Z denotes the
set of integers) such that the square of x is 1.” So, the colon (:) indicates that
we should say “such that.”

11.192 Exercise How many elements are in the set S above? Can you
write in set-builder notation the set of all integers whose cube is 1? How many
elements are in that set?

11.193 Exercise Can you express the set of all complex numbers whose
square is �1 in set-builder notation? What about the set of all complex
numbers whose fourth power is 1? The set of all complex numbers whose
third power is 1? How many are there of each? The answer to the third
question is not 1! Remember, you’re dealing with complex numbers. This

18Note that this notation is also called a set comprehension, which is the origin of the term
of list comprehension in Python and other high-level languages.

SECTION 11.6 Set Theory 253

is hinting at a classical theorem about the complex numbers known as De
Moivre’s theorem.19

The Cartesian Product

In the development of the definition of vector space, we’ll have a desire to
understand the notion of a Cartesian product of two sets.

The idea is that if we have two sets, say S and T , we’d like to create one
unified set from which each of S and T may be identified unambiguously. We
call this set the Cartesian product of the sets S and T and denote it by S � T .
The notation � was likely chosen to remind us that the number of elements in
the Cartesian product of S and T is the number of elements of S times the
number of elements of T .

Formally, the Cartesian product of the sets S and T is defined

S � T WD f.s; t/ W s 2 S; t 2 T g (11.194)

For example, if we take our two sets to be S D f1; 2; 3g and T D f4; 5g,
then, the Cartesian product of S and T is the new set

S � T D f.s; t/ W s 2 S; t 2 T g D f.1; 4/; .2; 4/; .3; 4/; .1; 5/; .2; 5/; .3; 5/g

(11.195)
Notice that S � T has the promised 2 � 3 D 6 elements.

11.196 Exercise Think about what the Cartesian product of the set R
with itself is. We call this R2, i.e., R2 WD R � R. Similarly, we say that
C2 WD C � C, and more generally, that

Rn WD R � ::: � R„ ƒ‚ …
n times

and
Cn WD C � ::: � C„ ƒ‚ …

n times

19De Moivre’s theorem states that the complex numbers z satisfying the equation zn D 1 for
a natural number n form the vertices of a regular n-gon in the complex plane. The n complex
numbers satisfying the equation zn D 1 are known as the nth roots of unity, since 1 is also
known as unity, and they are the nth roots of 1. For example, the complex numbers satisfying
the equation z3 D 1 are the 3rd roots of unity, and form an equilateral triangle in the complex

plane. Specifically, they are 1 D e0�
2�
3 ;�12 C

p
3
2 i D e1�

2�
3 ; and �12 �

p
3
2 i D e2�

2�
3 , as

you can verify with Euler’s formula!

254 CHAPTER 11 Mathematical Tools for Quantum Computing I

Relations and Functions

Before we venture into the concept of a function, we’ll want to discuss
relations. The following discussion of relations could accidentally convince
you that relations are only interesting in that they are a stepping stone on the
path to the definition of a function. This is far from the truth!20

Maybe you remember writing and seeing things like

f .x/ D x2 (11.197)

while in school. People would say f .x/ is a function. What really is a function
though? Intuitively, a function is an unambiguous assignment of each element
of one set to an element of another set. Of course, we’ll want to make this
mathematically precise, since it is the backbone of nearly all of the concepts
that follow. Actually, we’ll learn soon that matrices themselves are functions!

Let’s look at some examples and non-examples of functions to get an idea
of what they are.

Consider the sets X WD f1; 2g and Y WD f3; 4g. We can assign each
element of X to an element of Y like so

1 7! 3

2 7! 4

Introducing notation, we denote the assignment described above by the
letter f (for “function”) and write

f W X ! Y

to indicate that f assigns elements of X to elements of Y . We sometimes say
“f maps X to Y ”

as well. We refer to the set X as the domain of the function f and to the set
Y as the codomain (sometimes called the “range”) of f .

20Curious readers should investigate category theory, where the category of sets and relations,
denoted Rel, is an interesting mathematical object in its own right and enjoys an intimate
connection with the category of finite-dimensional Hilbert spaces, denoted Hilb. For example,
every relation R ⇢ X ⇥ Y of finite sets is naturally associated to a matrix Rij , where Rij D 1
iff .xi ; yj / 2 R and is 0 otherwise. Viewing these matrices as having coefficients in the
complex numbers C leads to an interpretation of a relation as a linear transformation between
finite-dimensional Hilbert spaces. Category theory offers an enticing framework for computing
and other sciences. To learn more about category theory as a unifying language for all of
mathematics and science (and even understanding language!), check out Tai-Danae Bradley’s
blog Math3ma [45]. More advanced readers might enjoy the n-Category CafKe.

SECTION 11.6 Set Theory 255

We can concisely describe the assignment above with the notation

f .1/ D 3 and f .2/ D 4 (11.198)

and say that
“f assigns (maps) the element 1 to the element 3”

and that
“f assigns (maps) the element 2 to the element 4.”

Now, for a non-example of a function. Let X and Y be the sets as before, but
consider instead the assignment, denoted by the letter f , described by

1 7! 3

1 7! 4

2 7! 3

What is strange is that 1 is now being assigned not only to 3, but also to 4. So,
the rule of assignment given by f is ambiguous. It is exactly this ambiguity
that we seek to preclude in our formal definition of a function.

We won’t give the formal definition of a function just yet though. We
would like to emphasize that a function is a special case of a more general
phenomenon known as a relation. This defers our discussion to that of
relations.

More precisely, we would like to define the notion of a relation between
two sets. The definition of a relation is quite brief and might surprise you:

11.199 Definition Definition of a relation

A relation on two sets X and Y is a subset of their Cartesian product.

That’s all? Yes, that’s what a relation is. Let’s see a few examples of
relations to get an idea of what they are.

Consider the subset

R WD f.x; x2/ W x 2 Rg � R � R D R2 (11.200)

By definition, R is a relation, since it is a subset of the Cartesian product
R � R of the set of real numbers R with itself. But what is it?

The following are examples of points which are elements of R, as you
should check

.1; 1/; .2; 4/; .3; 9/; .4; 16/; .5; 25/; .
p
2; 2/; .�; �2/; ::: (11.201)

256 CHAPTER 11 Mathematical Tools for Quantum Computing I

See what’s going on?
These are not elements of R

.0; 1/; .1; 2/; .e; �/; .7; 89/; .
p
2;
p
3/;

�
1

2
;
1

3

�
::: (11.202)

Notice that we say that a point is in the relation because we’re indicating
membership in the set defined by the relation.

11.203 Exercise Plot the points of R2 in the relation R.

If you tried the above exercise, you see now that the set of points in the
relation R is a parabola! What is interesting about R is that it is even better
than a relation – it’s a function! In fact, you might recognize it as being
described compactly by the equation f .x/ D x2. However, the equation
f .x/ D x2 hides so much of the character of the function f that it’s virtually
useless to say.

To see what we mean by this, first realize that to say f .x/ D x2 gives
no indication of the domain or codomain of f . For all we know, f could be
mapping from the set C to f0; 1g or whichever pair of sets you like. In fact,
if the domain of f .x/ D x2 is taken to be C and the codomain is taken to
be f0; 1g, f isn’t a function at all – we’ll see why when we give the formal
definition of a function!

11.204 Exercise Check that the set f.0; 0/; .1; 1/; .2; 2/; .3; 3/g � Z�Z
is a relation. Can you describe this relation using set-builder notation?

The point we’re trying to make is that we need to give the domain and
codomain when specifying a function, not just the rule of assignment.

A function f from a set X to a set Y is a relation on X and Y satisfying a
special criterion...

Before we give the special criterion, a comment: Recall that to say that
f is a relation on X and Y is to say that f is a subset of the Cartesian
product X � Y , so we can reasonably talk about elements of the function
(thus, relation) f . This type of terminology may sound odd. You’ve likely
not heard of someone saying “.x; y/ is an element of the function f ” and
are probably more accustomed to the phrase f .x/ D y. However, to say

SECTION 11.6 Set Theory 257

f .x/ D y is literally to say that .x; y/ is in the function (and thus, relation)
f .

After much deliberation, the special criterion that the points .x; y/ in the
relation f must satisfy is

11.205 Definition Definition of a function

A relation f on a Cartesian product X � Y of sets X and Y is a function
iff f satisfies

for all .x1; y1/; .x2; y2/ 2 f;

x1 D x2 H) y1 D y2

The symbol H) denotes “implies.” In other words, if the first coordinates
are equal, then the second coordinates have to be equal! We could also phrase
this as

for all x1; x2 2 X;

x1 D x2 H) f .x1/ D f .x2/

Let’s revisit the non-example we gave earlier and confirm that it is not a
function. Recall that we had defined a “function” f W f1; 2g ! f3; 4g earlier
by the rule of assignment

1 7! 3

1 7! 4

2 7! 3

Let’s express this as a relation. f is the relation

f D f.1; 3/; .1; 4/; .2; 3/g � f1; 2g � f3; 4g (11.206)

11.207 Exercise Use the definition of a function to check that f , as
given, is not a function. You should also check that f W C! f0; 1g defined
by f .x/ D x2 is not a function, as claimed earlier. Hint: Think of f as a
relation first – is it even a relation?

Hopefully, you realized that f above is not a function because .1; 3/ and
.1; 4/ are in f and yet despite the fact that their first coordinates are equal
(both equal 1), their second coordinates differ (they’re each 3 and 4). This is
exactly why f violates the definition of a function.

258 CHAPTER 11 Mathematical Tools for Quantum Computing I

This example, when analyzed alongside the formal definition of function
we’ve given, hopefully illuminates exactly what type of examples the def-
inition is precluding. To request that if the first coordinates of two points
in a relation are equal that then their second coordinates must be equal is
essentially to ask that no element in the domain is mapped by f to more than
one element in the codomain. In other words, the assignment that describes f
should be unambiguous.

The curious reader might wonder why we restrict our focus to functions
and seldom mention relations. A quick answer is that relations are such a
broad class of objects that it’s difficult to classify and study them at all. This is
not to say that they aren’t interesting, just to say that the theory for functions
is better understood.

11.208 Exercise Consider the function f W R! R described by the rule
of assignment

f .x/ WD x2

We are inclined to say that the inverse function of f is the function

f 1.x/ WD
p
x

Ah, but if f 1 is to be a function, it has to have a specified domain and
codomain! What are its domain and codomain? Describe the relation that
the rule of assignment describing f 1 defines after finding the domain and
codomain. Is it even a function?

This exercise likely confused you, and rightly so! What is confusing is
that trying to formulate an inverse for the function f W R ! R defined by
f .x/ D x2 demands a bit more care. To see what goes wrong, observe that
f maps two different elements of the domain R to the same element of the
codomain R:

f .1/ D 12 D 1 (11.209)

f .�1/ D .�1/2 D 1 (11.210)

So, in the process of “inverting” f (which we may think of as “undoing”
the squaring operation), we’ll have to determine what to do with the number
1 in the codomain. In other words, the question of “Who in the domain did f
map to the number 1 in the codomain?” is ambiguous, since both 1 and �1
get mapped to 1 by f . You could answer with either 1 or �1 and you’d be
correct! Do you recall now why taking square roots demands that we include
“plus or minus”? It’s not just dogma!

SECTION 11.6 Set Theory 259

This phenomenon manifests itself geometrically as the failure of the
parabola (the graph of f) to pass the “horizontal line test” as you’re invited to
explore in the next exercise...

11.211 Exercise Draw the graph of the function f and check that it is in
fact a parabola. Having done so, see that any horizontal line drawn above the
x-axis hits the curve twice. In particular, find the geometric manifestation of
the fact that f .1/ D 1 and f .�1/ D 1 by drawing a horizontal line at height
1 on your plot.

11.212 Exercise You might be wondering now “But wait – then, f isn’t
even a function because it sends two different things to the same place!”
Careful, f is a function. The definition of a function disallows the possibility
that one thing map to two different things, which is different from what is
going on here. Check this using the formal definition of a function!

We’ll see that if we impose a condition on the functions that we consider,
we’ll never encounter this problem while trying to invert them. You can
probably already guess that we will require that our functions do not map two
different things to the same thing in what follows.

From now on, we’ll revert to our usual notation for functions and will
likely not need to mention relations. We simply wanted to emphasize the idea
that a function is just a specific kind of relation, which instructs its precise
mathematical definition.

Important Properties of Functions

We now describe three desirable attributes of functions:21

injectivity, surjectivity, bijectivity
We grappled with the idea of a non-injective function earlier while discussing
the parabola. Intuitively, an injective function is a function that never maps

21The terminology injective, surjective and bijective can be traced back to Nicolas Bourbaki,
the pseudonym of a secret society of mainly French mathematicians, including Andre Weil,
Jean-Pierre Serre and Alexander Grothendieck, who sought out to reformulate mathematics on
an abstract, yet self-contained basis around 1935.

260 CHAPTER 11 Mathematical Tools for Quantum Computing I

two different things to the same thing. You might know this by the name
one-to-one.

11.213 Definition Injective function

A function f W X ! Y is injective iff

for all x1; x2 2 X; f .x1/ D f .x2/ H) x1 D x2:

In other words, we ask that f maps two elements to the same element only
if those elements are equal. You should check that the function f W R! R
defined by f .x/ D x2 earlier is not injective, despite being a function.

11.214 Exercise Prove that if a function f is injective, then for all
x1; x2 2 X , f .x1/ D f .x2/ iff x1 D x2. Recall the definition of a function!

Sure, f W R! R defined by f .x/ D x2 is not injective. However, if we
restrict the domain of f to the smaller set Œ0;1/ WD fx 2 R W x � 0g and
consider instead the function

f jŒ0;1/ W Œ0;1/! R (11.215)

(read this “the restriction of f to the set Œ0;1/”), we realize that f jŒ0;1/ is
suddenly injective! Geometrically, this corresponds to chopping off the left
side of the parabola and considering only the right side. Graph this to see
what we mean. We can express this by saying that we’re only considering a
single “branch.”

Now, let’s try to invert this new restricted version of f . Having attempted
a previous exercise, you might have struggled to determine the domain and
codomain for the inverse function, which we at least know should be some-
thing like

p
x. Since the restriction f jŒ0;1/ W Œ0;1/! R is a function from

the domain Œ0;1/ to the codomain R, it seems reasonable to request that the
inverse function have opposite domain and codomain, i.e., that the domain
of the inverse function

�
f jŒ0;1/

� 1 should be R and the codomain should be
Œ0;1/.

No worries about the codomain: the inverse
�
f jŒ0;1/

� 1
D
p
x certainly

has codomain Œ0;1/ since the square root of any real number is either 0 or
positive, i.e., is an element of the set Œ0;1/, as you should check. However,

SECTION 11.6 Set Theory 261

we have an interesting dilemma arising from the issue of what the domain
should be.

As you may have already noticed, we cannot take the domain of
�
f jŒ0;1/

��1
D

p
x (11.216)

to be all of R. If we did, we would have to declare how it is that
�
f jŒ0;1/

��1

operates on numbers like �1... In other words, we would have to take the
square root of �1 (and all of the other negative numbers!), which would take
us into the imaginary domain.

Since there is no real number whose square is �1, we’ll have to restrict
the domain of the inverse function

�
f jŒ0;1/

��1
D

p
x just as well, or else

the inverse won’t be a function as per our previous definition! Specifically, we
remedy our problem of inverting

�
f jŒ0;1/

�
by restricting

�
f jŒ0;1/

��1
D

p
x

only to the non-negative numbers, i.e., Œ0;1/.
In other words, we needed for the function to map onto every element of

the codomain. In this particular example, we see that the function f .x/ D x2

and even its restriction f jŒ0;1/ to Œ0;1/ does not “hit” everything on the
other side. For instance, it misses the number �1, since there is no real number
whose square is �1. You can see this geometrically by recognizing that the
parabola, and even its right-hand branch, do not ever encroach into negative
territory.

We now state a definition clarifying all of this discussion and giving a
precise mathematical meaning to the word onto.

11.217 Definition Surjective function

A function f W X ! Y is surjective iff for each element y 2 Y there
exists an element x 2 X such that f .x/ D y.

Colloquially, we could say that every element in Y is “hit” by some element
of X .

Now, the punchline. We set out to make the idea of a function precise and
then to give attributes of a function, but we never stated explicitly why we
care about these attributes. This next definition is truly a theorem, but we state
it as a definition:

11.218 Definition Bijective function

A function f W X ! Y is bijective, equivalently, invertible by a function
f �1 W Y ! X , iff f is injective and surjective.

262 CHAPTER 11 Mathematical Tools for Quantum Computing I

So, now we know that a function is invertible by another function precisely
when f is bijective. Invertible functions play an important role in defining
what it means for two mathematical objects to be the same. For example, for
most purposes, it is often sufficient to consider two sets to be the same iff
they have the same number of elements. One way of expressing that two sets
have the same number of elements is by stating that there exists an invertible
function between them (think about why!). If the sets that we’re interested in
happen to have a bit more structure and we’d like to assign a meaning to the
statement that they’re the same, it seems only natural to request that there be
an invertible function between them that preserves their structure, i.e., it is
not sufficient only to have a bijective map between the sets. We’ll see later
that this idea of a structure-preserving map manifests itself in linear algebra
as an invertible linear transformation.

A few comments: If f is not injective, it is fair to restrict the domain of
the function to impose injectivity on it, as we did above with the function
f W R ! R defined by f .x/ D x2. But then the function might not be
surjective, so we have to invert the function f only on its image, where by the
image of f we mean

f .X/ WD ff .x/ W x 2 Xg; (11.219)

i.e., the elements f .x/ 2 Y for some x 2 X . If we don’t invert the function
only on its image, the inverse we desire might not end up being a function, as
was the case for the squaring function and its presumed inverse, the square
root!

11.220 Exercise You should check that the image of the squaring func-
tion f W R ! R defined by f .x/ D x2 is in fact Œ0;1/.

For a moment, let’s recall how it is that we compose two functions.
If you have two functions, say

f W R ! R defined via f .x/ D x2 (11.221)

and
g W R ! R defined via g.x/ D x C 1; (11.222)

it’s natural to ask what their composition is, i.e., the result of applying them
iteratively.

SECTION 11.6 Set Theory 263

11.223 Definition The composition of two functions

In general, we define the composition of two functions

f W X ! Y and g W Y ! Z

to be the function .g ı f / W X ! Z defined via g.f .x//.

So, you apply g first, then f . In the case we have above, the composition
of f .x/ D x2 and g.x/ D x C 1 is the function

.f ı g/.x/ WD f .g.x// D f .x C 1/ D .x C 1/2 (11.224)

11.225 Exercise Check to see that g ı f is not the same function and is
in fact

.g ı f /.x/ D x2 C 1

In general, it’s quite rare that f ı g D g ı f for two functions f and g.
For any set X , there is a special function called the identity function,

denoted IX such that for all x 2 X , IX .x/ D x. Given a function f W X !
Y , it’s natural to ask if there is another function f 1 W Y ! X such that the
following two properties hold: (1) f 1 ı f W X ! Y ! X is equal to the
identity function IX on X and (2) f ı f 1 W Y ! X ! Y is the identity
function IY on Y . If we can find such a function f 1, we say that we have
found an inverse function for the function f .

Now, we have a more refined notion of an invertible function:

11.226 Characterization of invertible functions

A function f W X ! Y is invertible iff there exists a function f 1 W Y !

X such that
f 1
ı f D IX (11.227)

and
f ı f 1

D IY (11.228)

That is, f is invertible iff we can find a function f 1 whose composition
with f in either order yields the identity function! This idea will manifest
itself later in our discussion of matrices, when we discuss what it means for a
matrix to be invertible.

264 CHAPTER 11 Mathematical Tools for Quantum Computing I

11.7 The Definition of a Linear
Transformation

You might have wondered since the beginning of this chapter why it is that
we call linear algebra “linear algebra.”

So far, it’s likely not clear at all, since we have not discussed lines or
anything obviously linear in any sense. Interestingly, the matrices that have
occupied our previous discussion are in fact what we refer to as linear trans-
formations. This demands some explanation.

So, what is a linear transformation then? The next (non)example might
startle you...

Consider the function (transformation) T from R! R described by

x 7! x C 1 (11.229)

In words, T is the transformation of 1-dimensional space that maps a vector
(a number, in this case) to that vector plus one. For example, T .0/ D 0C1 D 1
and T .1/ D 1C 1 D 2. Those familiar with function notation might describe
the transformation T as

T W R! R (11.230)

T .x/ D x C 1 (11.231)

and draw its graph as in Figure 11.16
Well, you might say, “Then T is obviously linear – it’s a line!”
Ah, but it’s not actually! In fact, the relation above is affine, not linear.22

The reason why this example goes against our intuition is because we have
been trained to analyze the graph of a function. Typically, the information
encoded by the graph of a function guides our intuition. However, in this case,
the graph of T is the set of points

f.x; T .x// W x 2 Rg (11.232)

which does indeed resemble a line when plotted. However, we are not
asking that the graph of the function be a line – we’re asking that the function

22An affine transformation is a transformation of the form Ax WD T x C b, where T is a
linear transformation and b is a vector. In other words, an affine transformation is the result of
a linear transformation (i.e., a composition of rotations and dilations) and then a translation. In
fact, the reason the transformation T .x/ WD x C 1 is not linear is because it translates by 1!
It’s a good exercise to determine exactly what A and b are in the definition of T f and to realize
that an affine transformation is linear exactly when the translation vector b is zero.

SECTION 11.7 The Definition of a Linear Transformation 265

x

y

T .x/ D x C 1

Figure 11.16: The graph of T .x/ D x C 1

itself be linear! You might want to revisit this example after learning the
definition of a vector space to see if you can find more reason for why this
should not be included in our set of linear functions. Try to wrap your head
around this for a moment (or three).

Here is the definition of linear that we will take, at least for the case of a
transformation that maps from R to R:

11.233 Definition The definition of a linear transformation

A transformation T W R! R (interchangeably, function) is linear iff
1. for all x; y 2 R, T .x C y/ D T .x/C T .y/

2. for all a 2 R and for all x 2 R, T .a � x/ D a � T .x/

So, we’re requiring that applying T to a sum is the same as applying T
to each of the summands and then summing, and that applying T to a scalar
multiple is the same as applying T to the multiplicand and then multiplying
the result by the scalar. In other words, we require that T preserve addition and
scalar multiplication. Often people will say things like structure-preserving
map. By structure, they mean algebraic structure, i.e., the way things are
added and multiplied.

266 CHAPTER 11 Mathematical Tools for Quantum Computing I

Let’s see why the previously defined map T .x/ D x C 1 is not linear. If
T were linear, it would be the case that for all x and y in R, T .x C y/ D
T .x/C T .y/. We see, however, that this is not true:

T .x C y/ WD .x C y/C 1 (11.234)

and

T .x/CT .y/ WD .xC1/C .yC1/ D .xCy/C2 ¤ .xCy/C1 (11.235)

So, T .x C y/ ¤ T .x/C T .y/ in general, and so T does not satisfy our
definition of linear!

11.236 Exercise Check that T also violates the second property specified
in the definition of linear with a specific choice of a and x in R. So, T is
hopelessly not linear!

We still claim that the matrices shown earlier are in fact linear transforma-
tions. However, to explain this correctly, we’ll need to understand in what
sense a matrix is a transformation from a more careful and mathematical
perspective. In particular, we’ll need to turn our attention toward exactly
which spaces the matrices are transforming. These spaces are known as vector
spaces.

11.8 How to Build a Vector Space From
Scratch

The name vector space likely brings to mind a space of vectors. That is pretty
much what a vector space is – a space where a bunch of vectors live. We want
this space to facilitate all of the usual operations we perform on vectors, such
as addition of vectors and scalar multiplication of vectors.

We’ll state the precise definition of a vector space and then unpack the
terminology.

11.237 Definition Vector space

A vector space V over a field F is an abelian group V equipped with an
action of the field F on V .

SECTION 11.8 How to Build a Vector Space From Scratch 267

There are a lot of unfamiliar terms in this definition which we will explain
step by step.

First of all, what is a field? It turns out that it will be best to define an
abelian group first, since we’ll see that any field is an augmentation of an
abelian group. Later on in this section we will define the word action.

Groups

Recall that the notation

x 2 G (11.238)

denotes “x is an element of G.” We also write things like

x; y; z 2 G (11.239)

meaning “x; y and z are elements of G.”
We’ll state the definition of a group precisely now. After its statement,

we’ll delve into what all of this really means.
A group .G; ?/ is a set G satisfying the following properties:
� Closure: There exists a function

? W G �G ! G

which we call the binary operation of G.
Instead of writing the application of the operation ? to a pair of elements
g1; g2 each in G as ?.g1; g2/, as we usually do when describing the
application of a function to a pair of elements, we write g1 ? g2 to be
succinct.
For now, it’s advisable to think of ? as being a familiar operation like
addition or multiplication. For example, it would be weird, but correct,
to say that addition is a binary operation that accepts two numbers as
the input and outputs a new number. We could write such a thing like
this, where we replace the name ? for the binary operation with the
symbolC

C.x; y/ WD x C y:

This idea shouldn’t be too unfamiliar to computer scientists and pro-
grammers – it’s like defining a function or method!

268 CHAPTER 11 Mathematical Tools for Quantum Computing I

� Associativity: For any triplet x; y; z of elements of G,

.x ? y/ ? z D x ? .y ? z/

This is a reasonable assumption that we often make in mathematics.
You should be aware of the fact that not every binary operation is
associative!

11.240 Exercise Can you think of an example of a binary operation
that isn’t associative? Think of the usual subtraction of two numbers, e.g.,
3 � 2 D 1. Interestingly, this simple operation is not associative! To see
this, consider the ambiguous difference 1 � 2 � 3. Is it .1 � 2/ � 3 or is it
1 � .2 � 3/? Check to see that it does matter!

� Identity: There exists an element e 2 G, called the identity element
such that for any element x 2 G,

x ? e D e ? x D x

Again, it’s advisable to think of a familiar scenario: you’re likely already
familiar with the number 0 in the integers equipped with the operation
of addition.

11.241 Exercise You should check that 0 has the identity property for
any set of numbers equipped with addition, i.e., adding any number x and
zero in either order yields the number x.

� Inverse: For each element x 2 G, there exists an inverse element
x 1 2 G, with the property that

x ? x 1
D x 1 ? x D e

Inverses in any set of numbers equipped with the operation of addition are
the “negatives.” To see what we mean, try to find a number such that when
you add it to 1 on either side, you get 0. A moment’s thought makes us realize
that the number we’re looking for is �1! So, we would say that �1 is the
inverse of the number 1 with respect to addition.

SECTION 11.8 How to Build a Vector Space From Scratch 269

11.242 Definition The definition of a group

A group .G; ?/ is a set G satisfying the following properties:
� Closure: There exists a function

? W G �G ! G;

which we call the binary operation of G.
� Associativity: For any triplet x; y; z of elements of G,

.x ? y/ ? z D x ? .y ? z/

� Identity: There exists an element e 2 G, called the identity element
of G, such that for any element x 2 G,

x ? e D e ? x D x

� Inverse: For each element x 2 G, there exists an inverse element
x 1 2 G, with the property that

x ? x 1
D x 1 ? x D e

Now, let’s regroup (sorry, intended...) and think about what this definition
really says.

The idea of a group is simple. We begin with a set of things. Then, we
define a single binary operation on that set of things, i.e., an operation that
accepts two inputs from your set of things and produces another thing in your
set. This property is also known as closure of the set under the operation.

Next, we require that the operation be associative. So, if we have three
things to operate on, we may operate on any two first, and then the third (you
can’t operate on all three at once because you started with a binary operation!).

Afterward, we require that there be a special element in our set called the
identity element. If we apply the binary operation to this special element and
any other element, we get that element back.

Finally, we ask that each element in our set have an inverse element, also
in the set, so that when we apply the binary operation to that element and its
inverse element (in either way), we get the identity element.

To make the group abelian,23 we ask that the operation be commutative,
in the sense that the operation yields the same result regardless of the order.

23The name “abelian” honors the mathematician Niels Henrik Abel.

270 CHAPTER 11 Mathematical Tools for Quantum Computing I

11.243 Definition Abelian group

A group .G; ?/ is called abelian iff ? is a commutative operation, i.e.,

for all x; y 2 G; x ? y D y ? x

This definition is fairly abstract, so let’s pin it down with an example: the
integers, denoted Z. This example will hopefully solidify a few of the remarks
made during the course of the definition. The integers Z are the numbers

Z WD f:::;�3;�2;�1; 0; 2; 3; :::g (11.244)

There is a natural choice of binary operation ? W Z�Z! Z. It’s addition!
We define ?.x; y/ WD xCy (we saw this earlier when explaining the meaning
of a binary operation). In other words, ? is just the binary operation of usual
integer addition. Then the claim is that this operation does in fact satisfy all
of the other properties listed.

Well, associativity is certainly satisfied, since addition of integers is asso-
ciative (although some might take issue with this, since in some sense associa-
tivity is satisfied by fiat). For example, if asked to find the sum 1C 2C 3, we
know that we may either compute 1C 2 first, then add 3, or compute 2C 3
first, then add 1. In symbols, .1C 2/C 3 D 1C .2C 3/, and in fact, this is
true for all triplets of integers.

The next question is as to what the identity element is here. The answer is
0 because adding 0 and any other integer yields that integer.

Finally, we ask that every integer have an inverse, and this is true, since
any integer a has inverse �a. Check that for any integer a 2 Z,

aC .�a/ D .�a/C a D 0 (11.245)

11.246 Exercise Try to figure out why the set of natural numbers

N WD f0; 1; 2; 3; :::g (11.247)

is not a group with the operation of usual addition of natural numbers, e.g.,
1C 2 D 3.

In any case, it turns out that the rational numbers (Q), the real numbers (R)
and the complex numbers (C) each form abelian groups under usual addition
of numbers.

SECTION 11.8 How to Build a Vector Space From Scratch 271

Now, we have the following observation:

11.248 Key idea

Vectors of numbers form an abelian group!

To see what we mean, let’s revisit our definition of the addition of two
vectors. Let’s focus on what happens in two dimensions. In fact, let’s check
to see that the set of all vectors with two complex components, denoted

V D C2 WD
��

x

y

�
W x; y 2 C

�
(11.249)

does in fact form an abelian group under usual vector addition.
First, we need to verify that this set is closed with respect to the operation

of vector addition, i.e., if we take two elements of this set and we add them,
that we do in fact get another element of this set (closure). So, let

�
x y

�T
and

�
z w

�T be any two elements in the set V . We need to check that their
sum �

x

y

�
C

�
z

w

�
D

�
x C z

y C w

�
(11.250)

is in fact another element of the set V .
Since each of x; y; z;w are complex numbers, the sums x C z and y C w

are in fact complex numbers too. So, the resulting vector is an element of V
after all. Then, V is closed with respect to vector addition.

The next question is as to whether this addition is associative. You’re
invited to check this and we’ll set it up for you. Let�

a

b

�
;

�
c

d

�
;

�
e

f

�
(11.251)

be elements of V .

11.252 Exercise Check the associativity of vector addition, i.e., that

��
a

b

�
C

�
c

d

��
C

�
e

f

�
D

�
a

b

�
C

��
c

d

�
C

�
e

f

��

So now we need an identity element. We can take the vector that has only
zero entries

e D

�
0

0

�
(11.253)

11.254 Exercise Check that the vector e is in fact an identity element for
the set V , i.e., adding e to any vector on either side yields the same vector.

We then ask whether any given vector in V has an inverse element in
V with respect to addition. This isn’t too bad. If we’re given a vector
v WD

�
x y

�T in V , the inverse element is �v WD
�
�x �y

�T , as you
might have expected.

11.255 Exercise Check to see that it is in fact the case that

vC .�v/ D .�v/C v D e

(Remember that “e” is the all-zero vector defined above!)

Now, what about the abelian part? Let us recall that abelian refers to
commutativity, so let’s see if the group of vectors has commutativity for the
operation of addition.

11.256 Exercise You should check that adding vectors in V in either
order yields the same result, i.e., that they commute.�

a

b

�
;

�
c

d

�
;

�
e

f

�
(11.257)

This is true due to the fact that adding complex numbers in either order
yields the same result, as you’ll see while completing this exercise.

We have now verified that C2, the set of all two-dimensional vectors with
complex entries is an abelian group!

272 CHAPTER 11 Mathematical Tools for Quantum Computing I

SECTION 11.8 How to Build a Vector Space From Scratch 273

11.258 Exercise Prove that R2 is an abelian group by similar means.
Then, prove that the n-dimensional analogue Rn is also a group. Last, prove
the n-dimensional analogue Cn of C2 is also an abelian group with respect to
usual vector addition.

A comment about notation: After assuming the group is abelian, it’s fair
to revert to calling the abstract operation ? by the name C. This is because
the binary operation for every abelian group can be realized as some sort of
addition of integers! We won’t have time to discuss this idea here, however.
The inverse of an element x in the abelian group setting is thus fairly referred
to by �x.

11.259 Exercise To see an example of a non-abelian group, consider the
Pauli matrices X; Y;Z from earlier, and the identity matrix I WD I2. Check
that the set of sixteen matrices

P WD f˙I;˙iI;˙X;˙iX;˙Y;˙iY;˙Z;˙iZg

equipped with the operation of matrix multiplication is a group by verifying
the axioms listed above. We call this group the Pauli group. It is non-abelian
because the matrix product is not commutative in general. For example,
XY ¤ YX .

You should now be wondering what we mean by an action of a field F on
V , and in particular, what a field is. We’ll save the idea of an action for last.

Fields

Having defined an abelian group, the definition of a field is not terribly far
off. A field is an abelian group with an additional operation, which is often
called “multiplication,” that satisfies some mild hypotheses. Fields are not too
abstract actually. You’ve been working with fields all of your life! Examples
include the rational numbers Q, the real numbers R, the complex numbers C
and more exotic finite fields, like Z=2Z D f0; 1g equipped with addition and
multiplication modulo-2 (also known as F2), as we will see.

We state the definition of a field now.

274 CHAPTER 11 Mathematical Tools for Quantum Computing I

A field F is an abelian group (so, it’s a set satisfying all of the properties
of a group defined earlier – review these!), where we denote the commutative
binary operation byC, satisfying the following properties:
� Closure: There exists a binary operation

� W F � F! F

additional toC, which we usually call multiplication.
Similar to the scenario with groups, we often write the application of
� to a pair of elements .x; y/ of F as x � y as opposed to �.x; y/. As
before, you’re advised to think of usual multiplication of numbers as you
read through these axioms. For example, the rational numbers Q (all
ratios of integers, i.e., fractions) are closed under usual multiplication.

11.260 Exercise Verify that the rational numbers

Q WD
na
b
W a; b 2 Z; b ¤ 0

o
are in fact closed under usual multiplication. So, let

a

b
;
c

d
2 Q

(so, a; b; c; d 2 Z) and check that their product
a

b
�
c

d
WD

a � c

b � d

is actually another rational number. This amounts to confirming the numerator
and denominator of the result are each integers and that the product of two
integers is an integer (which might even be considered defining properties of
the integers!).

� Associativity: For all x; y; z in F,

.x � y/ � z D x � .y � z/

This is similar to the axiom for groups, but we’d like it to be true for
multiplication.

11.261 Exercise Verify that multiplication of rational numbers is asso-
ciative. So, take three arbitrary rational numbers, say

a

b
;
c

d
;
e

f
2 Q

SECTION 11.8 How to Build a Vector Space From Scratch 275

and show that �a
b
�
c

d

�
�
e

f
D
a

b
�

�
c

d
�
e

f

�
This will amount to the fact that integer multiplication is associative!

� Commutativity: For all x; y 2 F,

x � y D y � x

So, multiplication in either order should yield the same product.
� Distributivity: For all x; y; z 2 F

x � .y C z/ D x � y C x � z

Also,
.y C z/ � x D y � x C z � x

This is a bit subtle. We want the distributivity to “work” on both sides.
We won’t dwell on it though.24

� Identity: There exists an element, denoted by 1, in F such that for any
element x in F,

1 � x D x � 1 D x

Again, similar to the group property. The identity element of a field is
often literally the number 1.
� Inverse: For each nonzero element x 2 F, there exists an element x 1

in F such that
x � x 1

D x 1
� x D 1

Then, the inverse of an element x in the field setting, where we have
bona fide multiplication, is referred to x 1, which should make us think
of 1

x
.

That each element has a multiplicative inverse is actually the defining
property of a field.25

24Technically, we could request the axiom of distributivity before the axiom of commutativ-
ity, or even request the axiom of distributivity and not the axiom of commutativity. Do you see
that if we request the axiom of distributivity and not the axiom of commutativity that we really
need both equalities in the axiom of distributivity?

25There are other algebraic objects called commutative rings with unity, which enjoy all
of the properties of fields, except the inverse property! If we also remove the commutativity
axiom, we have what is called a division ring.

276 CHAPTER 11 Mathematical Tools for Quantum Computing I

11.262 Exercise Figure out why the set of all invertible matrices cannot
possibly be a field, but has the potential to be a division ring. In other words,
which axiom does the set of all invertible matrices violate in the definition of
a field? If you don’t know what an invertible matrix is, read on to find out!

11.263 Exercise You’re encouraged to unpack these definitions and ver-
ify that the rational numbers Q, the real numbers R, and the complex numbers
C are all fields! To figure out why C is a field, you’ll need to answer the latter
portion of the previous exercise regarding multiplicative inverses of complex
numbers.

SECTION 11.8 How to Build a Vector Space From Scratch 277

11.264 Definition The definition of a field

A field F is
� An abelian group, where we denote the abelian binary operation by
C, satisfying the following properties:
� Closure: There exists a binary operation, additional toC, which we

usually call multiplication.

� W F � F! F;

� Associativity: For all x; y; z in F,

.x � y/ � z D x � .y � z/

� Commutativity: For all x; y 2 F,

x � y D y � x

� Distributivity: For all x; y; z 2 F

x � .y C z/ D x � y C x � z

Also,
.y C z/ � x D y � x C z � x

� Identity: There exists an element, denoted by 1, in F such that for
any element x in F,

1 � x D x � 1 D x

� Inverse: For each nonzero element x 2 F, there exists an element
x 1 in F such that

x � x 1
D x 1

� x D 1

Here’s an interesting example of a field not quite like those explored in the
previous exercise.26

Consider the set F2 WD f0; 1g. We equip F2 with addition and multiplica-
tion modulo-2, as indicated by the addition and multiplication tables

26This is called the Galois field, abbreviated GF2. Galois was a startlingly brilliant mathe-
matician who lived for only twenty one years, from 1811 to 1832. During his short life, he
essentially founded all of Galois theory and group theory in an effort to determine precisely
when the solutions of a polynomial equation could be written down explicitly. To understand
the issue he was interested in, try to find the exact solutions to the equation x5 � x C 1 D 0.

278 CHAPTER 11 Mathematical Tools for Quantum Computing I

+ 0 1
0 0 1
1 1 0

* 0 1
0 0 0
1 0 1

So, a quick look reveals interesting things like 1C 1 D 0 happen in F2.
The addition and multiplication tables clearly indicate that closure of each is
satisfied. Let’s take for granted that associativity is satisfied – it’s not difficult
to check, just tedious. We can see from the addition and multiplication tables
that the (additive) identity element is 0 and that the (multiplicative) identity
element is 1.

11.265 Exercise Check the inverse property of each of addition and
multiplication for F2 given the addition and multiplication tables.

The final piece in the “definition of a vector space” puzzle is the definition of
an action of a field on an abelian group, which we’ll discuss now.

An action of a field on an abelian group is an abstraction of the “scalar
multiplication” of vectors by numbers defined earlier in the chapter. Here it is
formally:

An action of a field F on an abelian group V is a function � W F � V ! V

satisfying some properties.
Before listing the properties, we’d like to mention that we’ll not write

�.a; v/ when expressing the application of the function (action) � to a pair
.a; v/, with a in F and v in V . Instead, we’ll write a � v to be succinct. it’s
advisable to think of an action as scalar multiplication of a vector v by a
number a.

Here are the defining properties of an action:
� Distributivity I: For all a 2 F and all u; v in V ,

a � .uC v/ D a � uC a � v

� Distributivity II: For all a; b 2 F and all v in V ,

.aC b/ � v D a � vC b � v

These distributivity axioms are subtle. The addition on the left is
happening in the field F, while the addition on the right is happening in
the group V !
To see what we mean, try this exercise:

SECTION 11.8 How to Build a Vector Space From Scratch 279

11.266 Exercise Let a D 2 and u D
�
1

0

�
; v D

�
0

1

�
. Check that

a � .uC v/ D a � uC a � v, i.e.,

2 �

��
1

0

�
C

�
0

1

��
D 2 �

�
1

0

�
C 2 �

�
0

1

�

� Compatibility of the action with multiplication in the field F: For all
a; b 2 F and v in V

.ab/ � v D a � .b � v/

This is also subtle. We’re asking that multiplying two elements of the
field and then applying the resulting element of the field to a vector be
the same as iteratively applying those elements of the field. Try this
exercise to get a feel for this idea:

11.267 Exercise Let a D 2; b D 3 and v D
�
1

0

�
. Check that .ab/�v D

a � .b � v/, i.e.,

.2 � 3/ �

�
1

0

�
D 2 �

�
3 �

�
1

0

��

� Identity: For all v in V ,
1 � v D v

This is to say that the (multiplicative) identity element of the field
should act on the group V in such a way as to not disturb V .

11.268 Exercise Check that the (multiplicative) identity 1 of the field C

acts on the vector
�
1

0

�
in the way that is requested in the identity clause,

i.e., check that

1 �

�
1

0

�
D

�
1

0

�

280 CHAPTER 11 Mathematical Tools for Quantum Computing I

11.269 Definition Action of a field on an abelian group

An action of a field F on an abelian group V is a function � W F � V ! V

satisfying:
� Distributivity I: For all a 2 F and all u; v in V ,

a � .uC v/ D a � uC a � v

� Distributivity II: For all a; b 2 F and all v in V ,

.aC b/ � v D a � vC b � v

� Compatibility of the action with multiplication in the field F For all
a; b 2 F and v in V :

.ab/ � v D a � .b � v/

� Identity: For all v in V ,
1 � v D v

The Definition of a Vector Space

Congratulations! If you’ve made it to this point (and you’ve completed and
understood the exercises), you understand the mathematician’s definition of
a vector space V over a field F. You’ll likely have to review the definitions
above and play around with a few examples to get a solid understanding of
them, so here are some examples to play with:

11.270 Exercise To solidify your understanding of the definition of a
vector space, verify that each of the following are examples of vector spaces:
� Q over itself (yes, it’s a vector space!)
� R over R
� C over C
� Q2 over Q
� R2 over R
� C2 over C
� Qn over Q
� Rn over R
� Cn over C

You’re now invited to contrast the succinct sentence “A vector space V over

SECTION 11.8 How to Build a Vector Space From Scratch 281

a field F is an abelian group V equipped with an action of F on V ” with the
definition found in most standard texts on linear algebra:

A vector space V over a field F is a set satisfying the following properties:
� Associativity of addition: For all u; v;w 2 V ,

.uC v/C w D uC .vC w/

� Commutativity of addition: For all u; v 2 V ,

uC v D vC u

� Identity element of addition: There exists an element 0 2 V such that
for all v 2 V ,

vC 0 D v

� Inverse element of addition: For every v 2 V , there exists an element
�v 2 V such that

vC .�v/ D 0

� Compatibility of scalar multiplication and field multiplication: For any
a; b 2 F and any v 2 V ,

.ab/v D a.bv/

� Identity element of scalar multiplication: For any v 2 V ,

1v D v

where 1 is the multiplicative identity of the field F
� Distributivity of scalar multiplication with respect to vector addition:

For all a 2 F and any u; v 2 V , a.uC v/ D auC av
� Distributivity of scalar multiplication with respect to field addition: For

all a; b in F and any v 2 V , .aC b/v D avC bv
Even after requiring the properties above, we would still have to define a

field axiomatically as a set F together with two operations, called addition
(denotedC) and multiplication (denoted �), where by an operation we mean an
association of any pair of elements of F to some other element of F. Thus, the
definition of a vector space in this approach still requires additional properties:
� Associativity of addition and multiplication: For all a; b; c 2 F,

aC .b C c/ D .aC b/C c and a � .b � c/ D .a � b/ � c

282 CHAPTER 11 Mathematical Tools for Quantum Computing I

� Commutativity of addition and multiplication: For all a; b 2 F,

aC b D b C a and a � b D b � a

� Additive and multiplicative identity: There exist two elements 0 and 1
in F such that for all a 2 F,

aC 0 D a and a � 1 D a

� Additive inverses: For every a 2 F, there exists an element �a in F
such that

aC .�a/ D 0

� Multiplicative inverses: For every nonzero element a in F, there exists
an element a 1 in F such that

a � a 1
D 1

� Distributivity of multiplication over addition: For all a; b; c 2 F,

a � .b C c/ D a � b C a � c

The choice is up to you! Since many linear algebra textbooks do not wish
to cover set theory, they are forced to delineate an exhaustive list of properties
to define a vector space. With set theory in hand, we state the definition of a
vector space once more to remind you:

11.271 Definition Vector Space

A vector space V over a field F is an abelian group V equipped with an
action of the field F on V .

Subspaces

Now that we know what a vector space is (make sure you do!), we can define
the notion of a subspace of a vector space. It’s pretty much what it sounds
like. You have a space of vectors and then you consider a subcollection of
vectors that also satisfies the properties of a vector space.

11.272 Definition Subspace of a Vector Space

A subset S � V of a vector space V over a field F is a subspace of V iff
S is a vector space over F.

SECTION 11.8 How to Build a Vector Space From Scratch 283

The remarkable thing is that instead of having to verify all of the properties
of a vector space for S after having done so for V , the verification of the
subspace property of a subcollection of a vector space can be checked in three
easy steps:

11.273 The subspace lemma

S � V is a subspace of a vector space V over a field F iff
� Identity: 0 2 S , where this 0 is the additive identity that comes as

part of the data of the vector space V
� Additive closure: For all u; v 2 S , uC v 2 S
� Closure under scalar multiplication: For all a 2 F, v 2 S , a � v 2 S

Let’s see an example. Consider the vector space R2 and the x-axis, which
we may think of as the set of points

X WD

��
x

0

�
W x 2 R

�
� R2 (11.274)

We claim that X � R2 is a subspace. We’ll apply the subspace lemma to
prove this.

First of all, the zero vector is in fact part of the x-axis, so the identity
property is satisfied.

Second, it’s easy to see geometrically that the sum of two vectors on the
x-axis is another vector on the x-axis. However, here is a rigorous proof. Let�

x1
0

�
;

�
x2
0

�
(11.275)

each be elements of the x-axis (these are like our u and v in the additive
closure clause of the subspace lemma). Then�

x1
0

�
C

�
x2
0

�
D

�
x1 C x2
0C 0

�
D

�
x1 C x2

0

�
(11.276)

This is another element of the x-axis.
Lastly, we see that if we take a scalar multiple of a vector on the x-axis

that it will again be a vector on the x-axis. We give a rigorous proof.

Let a be in R and v WD
�
x

0

�
in X . Then, we need to check that a � v is

again in X (here, a and v are like the a in the v in the closure under the scalar
multiplication clause in the subspace lemma). To see that this is the case, look
at

284 CHAPTER 11 Mathematical Tools for Quantum Computing I

a � v D a �
�
x

0

�
D

�
a � x

0

�
(11.277)

This is another element of the x-axis.
So, it is true that the x-axis is a subspace of R2.

11.278 Exercise You’re invited to verify that the y-axis, and in fact, any
line through the origin in the vector space R2 over R is in fact a subspace of
R2. By a line through the origin in R2, we mean the set of points

L D

��
x

a � x

�
W x 2 R

�
for a fixed a 2 R. Use the subspace lemma like we did above to make your
life easier, or else you’ll have to verify all of the properties of a vector space
again. Why do we emphasize that the line be “through the origin”? What
happens if it doesn’t pass through the origin?

We close this section with the definition of a linear transformation between
arbitrary vector spaces:

11.279 Definition Definition of a linear transformation between
vector spacesa

A linear transformation T between vector spaces V and W , each over a
field F, is a function T W V ! W satisfying the following properties:
� For all x; y 2 V , T .x C y/ D T .x/C T .y/.
� For all x 2 V and all a 2 F, T .a � x/ D a � T .x/.

aIt should be noted that the addition of x and y in the definition above is occurring
in the vector space V , whereas the addition of T .x/ and T .y/ is occurring in W , and V
and W may have different definitions of the operationC. A similar remark holds for the
scalar multiplication occurring in the second criterion.

SECTION 11.9 Span, Linear Independence, Bases and Dimension 285

11.9 Span, Linear Independence, Bases and
Dimension

Span

A quick comment about some of the notation that follows: We will often write

a column vector like
✓
1

0

◆
as a transposed row vector like so

�
1 0

�T for

simplicity of presentation.
The definition of a vector space provided above is helpful, but it would be

nice to have a more concrete description. Let’s think about the vector space
R

2 over R for a moment so that we can motivate a new definition.
Let’s say we want to make a vector in R

2. In other words, we would like
to construct any vector in two-dimensional space. A moment’s thought brings
forth the realization that we can build any vector in two-dimensional space
with just two vectors. Let’s make this idea more precise. Visualize the vector

✓
1

1

◆

in R
2.

Suppose we’d like to get from the origin to the point in space to which this
vector points. We can travel along the x-axis 1 step, and then travel upward 1
step. We could also travel upward along the y-axis first, and then rightward 1
step. Here is the algebraic manifestation of this concept:

✓
1

1

◆
D 1 �

✓
1

0

◆
C 1 �

✓
0

1

◆

In other words, the vector . 1 1 /T is 1 of the vector . 1 0 /T plus 1
of the vector . 0 1 /T . So, we can build the vector . 1 1 /T using the
“building blocks” . 1 0 /T and . 0 1 /T . Can we make every vector in
R

2 in this way?

11.280 Exercise Try to build the vector . 2 3 /T using some combi-
nation of the building blocks . 1 0 /T and . 0 1 /T . Can you make the
vector . 1

2
1
3 /T ? Nobody said we can’t use fractional parts of our building

blocks! What about the vector .
p

2
2

p
2

2
/T ?

286 CHAPTER 11 Mathematical Tools for Quantum Computing I

What we’re getting at here is the notion of a spanning set of vectors. We
say that the vectors . 1 0 /T and . 0 1 /T span the vector space R2 over
R.

We do have to be a bit more precise here though. What if we were
asked to build the vector . 1

2
1
3
/T and we weren’t allowed to use fractional

amounts of our building blocks . 1 0 /T and . 0 1 /T ? So, imagine we
can only use integer multiples of the building blocks. Well, then we can’t
make the vector . 1

2
1
3
/T , at least not with integer multiples of . 1 0 /T

and . 0 1 /T . So, we really should say a bit more about in what sense
the building blocks span the space. Here is the formal definition and some
terminology that will be useful for the discussion which follows:

11.281 Definition Spanning set of vectors

We say that a set of vectors v1; :::; vm spans a vector space V over a field
F iff for each vector v in V , there exist elements a1; :::; am of the field F
such that

a1 � v1 C a2 � v2 C :::C am � vm D v

Then, we define the span of a set of vectors:

11.282 Definition Span of a set of vectors

The span of a set of vectors v1; :::; vm over a field F is defined to be:

span.fv1; :::; vmg/ WD fa1v1 C :::C amvm W a1; :::; am 2 Fg :

We often abbreviate the phrase “span of a set of vectors v1; :::; vm over
a field F” to simply “span of v1; :::; vm” when the field F is understood.
We say that a vector v is in the span of some vectors v1; :::; vm iff v 2
span.fv1; :::; vmg/. We call a1; :::; am the coefficients of the F-linear com-
bination of the vectors v1; :::; vm. Furthermore, we say that the set of vectors
spanned by the vectors v1; :::; vm (equivalently, the set of all F-linear combi-
nations of the vectors v1; :::; vm) is the span of the vectors v1; :::; vm. So, we
can rephrase our definition above to say that a set of vectors fv1; :::; vmg spans
a vector space V over a field F iff

span.fv1; :::; vmg/ WD fa1v1 C :::C amvm W a1; :::; am 2 Fg D V

In other words, every vector in V can be constructed from a sum of F-
multiples of the “building blocks” (spanning set) of vectors v1; :::; vm.

SECTION 11.9 Span, Linear Independence, Bases and Dimension 287

11.283 Exercise Can you find another spanning set of vectors for R2?
How many such sets do you think there are? Can you find a spanning set for
R3?

Linear Independence

Having thought about the previous exercise a bit, you’re likely convinced that
there are several – in fact, infinitely many – spanning sets for R2, R3, any Rn
as vector spaces over R, and likewise, any vector space Cn over C. This is
wonderful in that we know that there are several sets of vectors that suffice
to build the vector spaces we care about. What is interesting to consider is
whether there is a minimum set of vectors we can use to build the space we
are considering.

For example, we can build all of the vectors in R2 using the set of three (!)
vectors ��

1

2

�
;

�
3

4

�
;

�
5

6

��
(11.284)

We’ll try to convince you here by showing that we can at least build the
vector

�
10 10

�T using these three vectors. Before you see what we do
you should think of how many of each of these vectors you need to construct�
10 10

�T . It’s not that easy, actually...�
10

10

�
D 1 �

�
1

2

�
C .�7/ �

�
3

4

�
C 6 �

�
5

6

�
(11.285)

11.286 Exercise Check that the equality above is true!

This probably seems a bit magical if you tried to figure it out yourself
before you looked. It turns out that it’s nothing more than solving a bunch of
equations though!

Of course, you’re probably thinking “...we had a perfectly good set of two
vectors that we could use to build everything already. Why bother with this
set of three more complicated vectors?” Fair question. First, we’ll show you
that we don’t need three vectors at all – only two. In other words, these three

288 CHAPTER 11 Mathematical Tools for Quantum Computing I

vectors span R2 over R, but we can do with just two. Later on, we’ll try to
argue that it is occasionally advantageous to use different sets of building
blocks at different times – sort of like a change in perspective.

To see that we only need two of these vectors, we’ll show that one of them
can be built from the others and then we’ll revisit the previous example and
drive the point home.

Observe that �
5

6

�
D .�1/ �

�
1

2

�
C 2 �

�
3

4

�
(11.287)

You might have seen this without any calculation. The point is that we can
replace any instance of the vector

�
5 6

�T with this combination

.�1/ �

�
1

2

�
C 2 �

�
3

4

�
(11.288)

So, we revisit the previous example and apply this substitution:�
10

10

�
D 1 �

�
1

2

�
C .�7/ �

�
3

4

�
C 6 �

�
5

6

�
D 1 �

�
1

2

�
C .�7/ �

�
3

4

�
C 6 �

�
.�1/ �

�
1

2

�
C 2 �

�
3

4

��
(11.289)

and then reorganize:

D 1 �

�
1

2

�
C .�7/ �

�
3

4

�
C .�6/ �

�
1

2

�
C 12 �

�
3

4

�
D 1 �

�
1

2

�
C .�6/ �

�
1

2

�
C .�7/ �

�
3

4

�
C 12 �

�
3

4

�
D .�5/ �

�
1

2

�
C 5 �

�
3

4

�
(11.290)

So, we can express our original vector
�
10 10

�T using only the building

blocks
�
1 2

�T and
�
3 4

�T .

In sum, we say that
�
5 6

�T is R-linearly dependent (even Z-linearly

dependent, since the coefficients are all integers!) on the vectors
�
1 2

�T
and

�
3 4

�T and that
�
10 10

�T is in the span of the vectors
�
1 2

�T

SECTION 11.9 Span, Linear Independence, Bases and Dimension 289

and
�
3 4

�T . Using our previous definition of span, we can state precisely
what it means for a vector to be linearly dependent on a set of vectors.

11.291 Definition Linear dependence

A vector v in a vector space V over a field F is F-linearly dependent on
the vectors v1; :::; vm iff v is in spanfv1; :::; vmg. We often just use the
term linear dependence rather than F-linearly dependence where the field
is understood.

Naturally then, we have a notion of linear independence of vectors!

11.292 Definition Linear independence of a set of vectors

We say that a set of vectors fv1; :::; vmg is linearly independent if none of
the vectors in the set are linearly dependent on the others. More precisely,
we say that fv1; :::; vmg is a linearly independent set of vectors iff for each
i 2 f1; :::; mg, vi is not in spanfv1; :::; vi 1; viC1; :::vmg.

11.293 Exercise Do we need two vectors to span all of R2? Can we get
away with just having one?

Bases and Dimension

Finally, we can define a basis of a vector space. This definition will unlock a
matrix-centric view of linear algebra, as we’re about to see.

You might be wondering why we bothered defining all of the previous
terms. It turns out that the precise definition of a matrix that we desire depends
(linearly? We couldn’t resist...) on the precise definition of a basis of a vector
space. In fact, you might have been frustrated by the idea of a matrix this
whole time, wondering, “Where are the numbers in the grid coming from?” If
you answered a previous exercise asking you to conjecture what the columns
of a matrix tell us, what follows will be quite satisfying!

First, the definition of a basis:

290 CHAPTER 11 Mathematical Tools for Quantum Computing I

11.294 Definition The definition of a basis

A basis of a vector space V over a field F is a linearly independent
spanning set of vectors.

That’s it? Well, quite a bit is packed into the definitions of linearly
independent and spanning, so you might want to review those!

11.295 Exercise Check that the set
��

1

0

�
;

�
0

1

��
is in fact a basis

for R2.

We keep saying a basis, which implies there are more than one. Hopefully,
you convinced yourself earlier that there are infinitely many spanning sets
of vectors for R2. It thus follows that there’s an infinite number of linearly
independent spanning sets for R2 as a result. Here are a bunch more:��

2

0

�
;

�
0

1

��
;

��
1

2

�
;

�
3

4

��
;

��
�1

0

�
;

�
0

1

��
(11.296)

All of these bases have the same number of vectors! With enough playing
around (don’t just believe us!), we might eventually be convinced that all
bases have the same number of vectors, and in fact they do.

This is what many call the fundamental theorem of linear algebra:

11.297 Invariance of basis number

The number of basis vectors for a vector space is the same no matter which
basis we choose.

This calls for a definition!

11.298 Definition Dimension

The dimension of a vector space V is the number of vectors for any basis
for V .

Observe that we need the theorem to have a well-defined notion of di-
mension. If we didn’t know that all bases have the same length, we could
potentially have two different answers for what the dimension of a vector space

SECTION 11.9 Span, Linear Independence, Bases and Dimension 291

is! Believing the theorem, we have a natural notion of finite-dimensionality: a
vector space is finite-dimensional iff it has a finite basis.

We won’t prove the theorem here, and instead will offer some slight
indication for why it should be true. It is likely believable that any set of
linearly independent vectors in a finite-dimensional vector space should have
size less than or equal to the size of any spanning set of vectors. This fact
is known as the Exchange Lemma. It is of fundamental importance in linear
algebra. You can quickly ascertain the power of the Exchange Lemma, since
knowing it and that any two bases are spanning sets already implies they must
be of the same length.

11.299 Exercise Convince yourself that any two bases for a
finite-dimensional vector space have the same size.

This idea has major implications. Suppose we already know the dimension
d of a vector space V and that we’d like to find a basis for this vector space.
Imagine we already have a set of d vectors that spans the vector space V .
Well, then the previous discussion guarantees that this list of d spanning
vectors is linearly independent and thus already a basis for V ! Likewise, if
we have a list of d linearly independent vectors in V , they must span V and
are a basis as well.

So if we want to find a basis for a vector space V of dimension d , it
suffices to discover a list of d vectors that are either all linearly independent
or that spans the space V . One or the other is enough, so long as we have
d vectors. Unless otherwise mentioned, we will restrict our attention to the
finite-dimensional case.

We write the dimension of a vector space V over a field F as dimF.V /, but
often shorten this to dim.V / when the field is understood. So, relating this
idea to a question asked in the self-test at the outset of the chapter, we would
write dimC.C

2/ to indicate the dimension of the vector space C
2 considered

as a vector space over the field C and dimR.C
2/ to indicate the dimension

of the vector space C
2 considered as a vector space over the field R. The

first of these, dimC.C
2/, is equal to 2, while the second, dimR.C

2/, is equal
to 4. They are therefore not the same thing, and we now appreciate that the
subscript is occasionally quite important.27

27This point relates to the question in the self test at the opening of the chapter which asks
the reader to compare R

4 and C
2.

292 CHAPTER 11 Mathematical Tools for Quantum Computing I

11.300 Exercise Try to find a basis of length 2 for the vector space C2
over C and then a basis of length 4 for the vector space C2 over R. This
should convince you that the subscript is occasionally necessary. Then, think
about the question from the self-test again, and figure out why it’s a trick
question.

Orthonormal Bases

Once we have a basis, we can ask that it satisfy certain conditions. Let’s take
our cue from a basis we know and love at this point��

1

0

�
;

�
0

1

��
D fj0i ; j1ig (11.301)

What’s so nice about this particular basis is that each of the vectors are of unit
length (i.e., have L2 norm 1) and they are what is referred to as orthogonal to
each other. “Orthogonal” is essentially a fancy word for perpendicular.28

11.302 Definition Orthogonality of vectors

More precisely, we say that two vectors u; v in a vector space V equipped
with an inner product h�; �i are orthogonal (to each other) iff their inner
product is zero, i.e., hu; vi D 0.

In Dirac notation, we say that two vectors u and v are orthogonal iff
hujvi D 0. A basis such that each of the elements have unit length and such
that they are pairwise orthogonal, is known as an orthonormal basis. In the
context of quantum computing, we choose a set of orthonormal basis vectors
to be our preferred computational basis vectors. We can say this a bit more
mathematically:

28Perpendicular and orthogonal are interchangeable except in the case that either vector is
the zero vector, since it does not make sense to say that a vector is perpendicular to the zero
vector as there is no angle between them. When comparing two vectors when at least one of
the vectors is the zero vector, we use the word orthogonal.

SECTION 11.9 Span, Linear Independence, Bases and Dimension 293

11.303 Definition Orthonormal basis

A set of vectors B D fv1; :::; vng in a vector space V is called an ortho-
normal basis iff B is a basis, and for all i; j 2 f1; :::; ng,(

hvi ; vj i D 1 if i D j
hvi ; vj i D 0 if i ¤ j

We’ll learn later that what is written above is an instance of what is known
as the Kronecker Delta function ı. An important theorem of linear algebra
is that every spanning set of vectors in a finite-dimensional vector space can
be pruned to form an orthonormal basis. The process yielding the desired
orthonormal basis is known as the Gram-Schmidt process in honor of Jørgen
Pedersen Gram and Erhard Schmidt.

11.304 Gram-Schmidt Orthonormalization

Every spanning set of vectors for a finite-dimensional vector space can be
modified to form an orthonormal basis.

Let’s relate these ideas to some of the quantum computing you’ve read
earlier. You’ve read by now that any state is a superposition of the states j0i
and j1i. The first thing you should check is that the states j0i and j1i are
orthogonal to one another:

11.305 Exercise Verify that the vectors j0i and j1i are in fact orthogonal
to one another, i.e., h0j1i D 0.

Then, you should check that they’re even orthonormal!

11.306 Exercise Verify that the vectors j0i and j1i are even orthonormal,
i.e., h0j0i D 1 and h1j1i D 1.

We already know that fj0i ; j1ig is a basis for R2. It’s not too difficult to
believe that fj0i ; j1ig is also a basis for C2.

CHAPTER

12
Mathematical Tools for Quantum
Computing II

12.1 Linear Transformations as Matrices

We claimed earlier that every linear transformation has an associated matrix,
and vice versa. We aim to demonstrate for you that, in fact, a linear trans-
formation and a matrix are the same thing. This justifies the study of linear
algebra as the study of matrices and operations on them.

Equipped with the definition of a basis, we are prepared to define the
matrix associated to a linear transformation between two vector spaces.

Let V and W be vector spaces over some field F. Yes, they have to be
vector spaces over the same field – you’ll see why! Then, V and W each
have a basis, say BV D fv1; :::; vng and BW D fw1; :::;wmg. So, V has
dimension n and W has dimension m.

Let T be a linear transformation between the vector spaces V and W . So,
T W V ! W is a linear transformation, and thus a function. Since T is a
linear transformation from V to W , each basis element vj for i 2 f1; :::; ng
is mapped into W , i.e., T vj 2 W . Since W is spanned by the vectors
w1; :::;wm and T vj 2 W , there exist coefficients a1;j ; :::; am;j such that
T vj D a1;jw1 C ::: C am;jwm, i.e., we can express each T vj as a linear
combination of the basis elements w1; :::;wm.

So, to each basis element vj of V , we have an associated list of elements
a1;j ; :::; am;j of the field F. Maybe you see where we’re going with this...

We define the matrix M .T W V ! W /BV ;BW associated to the linear
transformation T W V ! W with respect to the bases BV and BW entrywise:

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019

J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0_12

295

https://doi.org/10.1007/978-3-030-23922-0_12
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23922-0_12&domain=pdf

296 CHAPTER 12 Mathematical Tools for Quantum Computing II

12.1 Definition Matrix associated to a linear transformation

�
M .T W V ! W /BV ;BW

�
i;j
WD ai;j

where ai;j is the coefficient of the i th basis element of BW in the linear
combination T vj D a1;jw1 C :::C am;jwm expressing the image T vj
of the j th basis element of BV .

12.2 Exercise You should wonder why we can’t play the same game
with any transformation between vector spaces. More specifically, why do we
only define a matrix for a linear transformation between vector spaces? Can
you figure this out?

Let’s see this construction of a matrix in action. Consider the linear
transformation T from R2 ! R2 described by

T

�
x

y

�
WD

�
x C y

x � y

�
where we take the basis for R2 to be the standard basis��

1

0

�
;

�
0

1

��
in each case. So far, we have T as defined, each of V andW are R2, and each

of BV and BW are
��

1

0

�
;

�
0

1

��
.

12.3 Exercise Check that the transformation T given above is actually a
linear transformation.

Now that you’ve verified that the transformation T is linear, we can proceed
to figure out the coefficients ai;j as in the construction above. This amounts
to figuring out where T sends the two basis elements. Following the definition
of T , we have

T

�
1

0

�
WD

�
1C 0

1 � 0

�
D

�
1

1

�
(12.4)

Then, we decompose this into a linear combination of the basis vectors like so

SECTION 12.1 Linear Transformations as Matrices 297�
1

1

�
D 1 �

�
1

0

�
C 1 �

�
0

1

�
(12.5)

At this point, we see that�
M .T W V ! W /BV ;BW

�
1;1
WD a1;1 D 1 (12.6)

and that �
M .T W V ! W /BV ;BW

�
2;1
WD a2;1 D 1; (12.7)

We’ll abbreviate the fancy notation�
M .T W V ! W /BV ;BW

�
(12.8)

with M .T / when the vector spaces V and W and their bases BV and BW

are understood.

12.9 Exercise Verify that a1;2 D 1 and a2;2 D �1 by determining

where the second basis vector
�
0

1

�
is mapped to and decomposing the

resulting vector into a linear combination of the basis vectors
�
1

0

�
and�

0

1

�
.

After all of this computation, we realize that the matrix associated to the
linear transformation T W V D R2 ! W D R2 with respect to the bases

BV D BW D

��
1

0

�
;

�
0

1

��
(12.10)

is

M .T / D

�
1 1

1 �1

�
(12.11)

12.12 Exercise To practice building matrices from the description of a
linear transformation, construct the matrix associated to the linear transforma-
tion

T W V D R3 ! W D R3

defined by

298 CHAPTER 12 Mathematical Tools for Quantum Computing II

T

0@ x

y

z

1A WD 0@ 1x C 2y C 3z

4x C 5y C 6z

7x C 8y C 9z

1A
with respect to the standard basis

BV D BW D

8<:
0@ 1

0

0

1A ;0@ 0

1

0

1A ;0@ 0

0

1

1A9=;
for each. You should first check that this is a linear transformation. Then,
figure out where each of the basis vectors is mapped. Once you know this,
decompose those into a linear combination of the basis vectors and use the
coefficients of those linear combinations to build the matrix.

Unless we mention otherwise, we will assume that the vector spaces Rn
and Cn have the standard bases. You may be frustrated by the definition of
matrix multiplication that we gave earlier on. We’d like to demonstrate why
it is defined the way it is. It has to do with the intimate relationship between
the composition of two transformations (as functions) and the product of the
matrices as we have defined it.

Consider the following two transformations R W R2 ! R2 and S W R2 !
R2 defined by

R

�
x

y

�
WD

�
y

�x

�
(12.13)

and

S

�
x

y

�
WD

�
y

x

�
: (12.14)

12.15 Exercise First, try to understand these transformations geometri-
cally. Then, figure out matrices M .R/ and M .S/ representing each of these
transformations (using the standard bases). Afterward, recall how it is that we
multiply two matrices, and compute each of the matrix products

M .R/ �M .S/ and M .S/ �M .R/ (12.16)

They should not be equal, which might be clear from your geometric interpre-
tation!

If you did the above exercise, you now know that R and S have matrices

SECTION 12.1 Linear Transformations as Matrices 299

M .R/ D

�
0 1

�1 0

�
and M .S/ D

�
0 1

1 0

�
(12.17)

and that the products are

M .R/ �M .S/ D

�
1 0

0 �1

�
and M .S/ �M .R/ D

�
�1 0

0 1

�
(12.18)

Ok, now we’re prepared to find the composition of the transformations
(functions) R and S . Remember that we work “inside-out.” So, S is applied
first and R is then applied after S . Thus, we can compute R ı S as

.R ı S/

�
x

y

�
D R

�
S

�
x

y

��
D R

�
y

x

�
D

�
x

�y

�
(12.19)

Next, let us compute S ıR:

.S ıR/

�
x

y

�
D S

�
R

�
x

y

��
D S

�
y

�x

�
D

�
�x

y

�
(12.20)

They’re not the same! We’re getting closer to the analogy. Now, we find
the matrix associated to the transformation R ı S . Note where the two basis
vectors end up and then express each result as a linear combination of the basis
vectors on the other side. Then, the coefficients in these linear combinations
help us build the matrix.

.R ı S/

�
1

0

�
D

�
1

�0

�
D 1 �

�
1

0

�
C 0 �

�
0

1

�
(12.21)

and

.R ı S/

�
0

1

�
D

�
0

�1

�
D 0 �

�
1

0

�
C .�1/ �

�
0

1

�
(12.22)

and

.S ıR/

�
1

0

�
D

�
�1

0

�
D .�1/ �

�
1

0

�
C 0 �

�
0

1

�
(12.23)

and

.S ıR/

�
0

1

�
D

�
�0

1

�
D 0 �

�
1

0

�
C 1 �

�
0

1

�
(12.24)

Now, we have everything we need to build the matrices M .R ı S/ and
M .S ıR/!

300 CHAPTER 12 Mathematical Tools for Quantum Computing II

12.25 Exercise Using the above computations, determine the matrices
M .R ı S/ and M .S ıR/.

Having done the above exercise, you now see that the matrices associated
to the transformations R ı S and S ıR are

M .R ı S/ D

�
1 0

0 �1

�
and M .S ıR/ D

�
�1 0

0 1

�
(12.26)

and these are the matrices M .R/ �M .S/ and M .S/ �M .R/ we computed
earlier! This isn’t just a happy coincidence, by the way. This is the motivation
for defining the matrix product the way we did.

12.27 The Matrix of a Composition of Linear Transformations

The matrix of a composition of linear transformations is the product of
their matrices, for all linear transformations S and T ,

M .S ı T / DM .S/ �M .T /

12.2 Matrices as Operators

We refer to a linear transformation that maps from a vector space to itself
as a linear operator on that space. In fact, all of the linear transformations
we’ve considered (expect for one non-square matrix that we used to explain
the transpose operation on matrices) are linear operators! We pay special
attention to operators in quantum mechanics.

More particularly, we care about invertible linear operators because we
can use them to create quantum gates and thus quantum circuits. Next, we
introduce the determinant, a numerical invariant of a matrix encoding the
invertibility of the transformation of space that it represents!

An Introduction to the Determinant

Each square matrix has an associated determinant, which speaks for the
geometry of the linear transformation of space represented by that matrix. It

SECTION 12.2 Matrices as Operators 301

subsequently describes the invertibility of the linear transformation, whether
the transformation can be undone.

What do we mean by this idea that a transformation can be undone? Let’s
see an example of a transformation that can be undone, and then an example
that can’t.

First, an example of a transformation that can be undone:
Consider the linear transformation R� from R2 to R2 described by the

matrix

R� WD

�
1 0

0 ei�

�
(12.28)

which can be found in chapter 3.

12.29 Exercise Review Euler’s formula from earlier in this chapter and
check that

ei� D cos .�/C isin .�/ D �1C 0 � i D �1

The above exercise alerts us to the fact that the matrix R� above can
actually be expressed as

R� WD

�
1 0

0 ei�

�
D

�
1 0

0 �1

�
(12.30)

12.31 Exercise You’re invited to investigate and figure out which trans-
formation of two-dimensional space is described by this matrix. Figure out
where the basis vectors are mapped and you should get an idea!

If you tried the above exercise, you probably figured out that the matrix
R� describes a reflection of two-dimensional space over the x-axis. Believing
this, it is fairly clear geometrically that this transformation can be undone –
just reflect back! Or you could just reflect again, since two reflections over an
axis does nothing. You might wonder then why � appears in the name of this
matrix. We’ll give you a little idea of why. The � is there to signify that this
matrix has the effect of rotating the larger space C2 about the z-axis1 by �
radians, although we’d prefer not to get into this discussion right now. We’d

1Refer to the Bloch sphere in chapter 3.

302 CHAPTER 12 Mathematical Tools for Quantum Computing II

like for you to take away the fact that this is a linear transformation of space
that can be undone – that’s good for now!

You might have also noticed that the matrix R� is a special case of the
matrix

R' WD

�
1 0

0 ei'

�
(12.32)

mentioned in chapter 3, where the angle ' is � .
Now, let us consider a transformation that cannot be undone. Consider the

transformation Projx from R2 to R2 described by the matrix

Projx WD
�
1 0

0 0

�
(12.33)

12.34 Exercise As before, you should try and figure out which transfor-
mation of space is described by the matrix

Projx WD
�
1 0

0 0

�
above. The name might give it away...

So, if you tried the above exercise, you’re hopefully convinced that this
matrix describes the projection of a vector onto the x-axis. For example,
applying Projx to the vector

�
1 1

�T yields
�
1 0

�T . Since many vectors

also get mapped to
�
1 0

�T by Projx we lose information as to what the

input was if we just look at the output. For example, this vector
�
1 2

�T
also gets mapped to

�
1 0

�T (and actually, any vector whose first component
is 1 will as well!). Since we cannot recover the input from the output and this
transformation cannot be undone, it is not invertible.

In essence, this transformation collapses the whole space to the x-axis.
This mental image should give the impression that we cannot undo this
transformation. In some sense, a higher dimensional space is collapsed into a
smaller dimensional one, and so information must be lost.

We don’t like such transformations in quantum computing! We’d like for
the matrices that represent the quantum logic gates we use to preserve all of
the information given to them, and we’d like for these transformations to be
reversible. We’ll see that we even ask for more of these matrices in what
follows.

SECTION 12.2 Matrices as Operators 303

So, at this point, hopefully you’re convinced that not all linear transfor-
mations can be undone. It would be nice to have a numerical invariant that
encodes the invertibility of a linear transformation. Enter the determinant.

Let’s see how to compute the determinant of a 2�2matrix with an example.
Consider the matrix

A WD

�
1 2

3 4

�
(12.35)

We compute its determinant like so

det.A/ WD
1 2
3 4

D 1 � 4 � 2 � 3 D 4 � 6 D �2 (12.36)

12.37 Exercise You’re invited to investigate and describe the transforma-
tion of two-dimensional space described by this transformation. Figure out
where the basis vectors end up and that should give you an idea!

The previous exercise hopefully convinced you that the transformation of
two-dimensional space represented by the matrix A is invertible.

Let’s follow this example and compute the determinants of the matrices
described above

det.R�
2
/ WD

1 0
0 -1

D 1 � .�1/ � 0 � 0 D �1 (12.38)

det.Projx/ WD
1 0
0 0

D 1 � 0 � 0 � 0 D 0 (12.39)

If you’re observant, you may notice that the matrices corresponding to
the invertible transformations have nonzero determinant, while the matrix
corresponding to the non-invertible transformation has zero determinant.

304 CHAPTER 12 Mathematical Tools for Quantum Computing II

12.40 Determinant of a 2 � 2 matrix

The determinant of a 2 � 2 matrix�
a b

c d

�
is

ad � bc

You might wonder how to compute the determinant of a 3 � 3 matrix.
Again, we’ll demonstrate by example

det

0@ 1 2 3

4 5 6

7 8 9

1A WD 1 2 3
4 5 6
7 8 9

(12.41)

D 1 �
5 6
8 9

� 2 �
4 6
7 9

C 3 �
4 5
7 8

(12.42)

D 1 � .5 � 9 � 8 � 6/ � 2 � .4 � 9 � 7 � 6/C 3 � .4 � 8 � 7 � 5/ (12.43)

D 1 � .45 � 48/ � 2 � .36 � 42/C 3 � .32 � 35/ (12.44)

D 1 � .�3/ � 2 � .�6/C 3 � .�3/ (12.45)

D �3C 12 � 9 D 9 � 9 D 0 (12.46)

12.47 Equivalent formulations of invertibility

The following are equivalent for a linear transformation T :
� det.T / D 0
� T is not invertible
� The rows of the matrix representing T are linearly dependent
� The columns of the matrix representing T are linearly dependen.

Unfortunately, we will not prove this here. This set of equivalences relating
the determinant of a matrix, and thus a linear transformation, to geometric
attributes such as invertibility of the transformation should be surprising given
the seemingly combinatorial description of the determinant. It might not seem
geometric at all from the definition we’ve given.

SECTION 12.2 Matrices as Operators 305

�
0

1

�

�
1

0

�
Figure 12.1: Unit square in the plane

The Geometry of the Determinant

There is a more geometric definition of the determinant and we would like to
give you a small taste of it. Consider the matrix�

1 4

2 2

�
again and observe that it sends the first basis vector

�
1

0

�
to the vector�

1

2

�
and it sends the second basis vector

�
0

1

�
to the vector

�
4

2

�
. This

should convince us that the unit square formed by the basis vectors in the first
quadrant, as in Figure 12.1, is mapped to the parallelogram whose coordinates
are at the points �

0

0

�
;

�
1

2

�
;

�
4

2

�
and

�
5

4

�
as depicted in Figure 12.2.

12.48 Exercise You should draw the parallelogram!

You’ll realize that in some sense that the orientation of the unit square

“flips” upon being transformed to the parallelogram, since the vectors
�
1

0

�
and

�
0

1

�
, which constitute the unit square in the first quadrant, exchange

places to form the parallelogram.

306 CHAPTER 12 Mathematical Tools for Quantum Computing II

�
1

2

�
�
4

2

�

Figure 12.2: Parallelogram

The unit square has area 1, while the parallelogram has area 2. What
does this have to do with the determinant of this matrix, which is -2? Well,
that the orientation of the unit square “flips” is encoded in the fact that
the determinant is negative. Transformations that preserve orientation have
positive determinant, while transformations that flip orientation have negative
determinant. Then, the magnitude of the determinant (absolute value) encodes
the factor by which the unit parallelogram is magnified by the transformation.

In general, the determinant of the matrix associated to a linear transfor-
mation encodes whether that transformation is orientation preserving and
then by which factor it “stretches” the unit parallelepiped (higher-dimensional
analog of a parallelogram) – quite geometric, actually! Figure 12.2 depicts
the parallelogram.

Matrix Inversion

We previously discussed how the determinant of a matrix encodes its invert-
ibility. But how do we actually find the inverse transformation?

First off, when we say an inverse transformation, what do we mean? Well,
transformation is just another word for function, so presumably what we seek
is an inverse function of the transformation we’re given. It might not be so
simple to figure out what an inverse function is though. To see what we
mean, try to find the inverse transformation for the transformation T of space
described by

T W R3 ! R3 (12.49)

SECTION 12.2 Matrices as Operators 307

T

0@ x

y

z

1A WD 0@ 1 � x C 2 � y C 3 � z

4 � x C 5 � y C 6 � z

7 � x C 8 � y C 10 � z

1A (12.50)

Is it even clear that we can invert this transformation? We saw that not all
transformations are invertible.

12.51 Exercise Find the matrix M .T / associated to the transformation
T and then compute its determinant. Make a claim about the invertibility of
the transformation T based on your computation of the determinant. Can we
invert T ?

12.52 Exercise Can we give a reasonable geometric description of this
transformation of three-dimensional space from this definition of T ?

Recall from our earlier discussion about functions and attributes of func-
tions that we say that a function f W X ! Y is invertible iff there exists an
inverse function f 1 W Y ! X such that the compositions f 1ıf W X ! X

and f ı f 1 W Y ! Y are the respective identity functions IX and IY . So,
we seek a transformation (function) T 1 whose composition with the trans-
formation T is the identity on either side.

If we have such a T 1, we’ll know that

T ı T 1
D IR3 (12.53)

and
T 1
ı T D IR3 (12.54)

Now that we know that every linear transformation of space is a matrix
and that the composition of two transformations is analogous to the multipli-
cation of their corresponding matrices, we might hope to express the given
transformation T as a matrix M .T /. We can then use this matrix description
to come up with an inverse matrix to multiply M .T / to get the identity matrix
(which corresponds to the identity function).

In other words, we apply the “matrix operation” to the compositions above
yielding

308 CHAPTER 12 Mathematical Tools for Quantum Computing II

M .T ı T 1/ DM .IR3/ (12.55)

and
M .T 1

ı T / DM .IR3/ (12.56)

The question then is what these matrices are. However, like we said earlier,
the matrix of a composition of transformations is the product of their matrices,
so we have

M .T /M .T 1/ DM .IR3/ (12.57)

and
M .T 1/M .T / DM .IR3/ (12.58)

We need to find a matrix whose product with the matrix M .T / on either side
is the identity matrix. This is an enormous observation!

We now focus our attention on what it means to find such a matrix. Con-
sider the matrix

A D

�
1 2

3 4

�
(12.59)

Let

B D

�
x y

z w

�
(12.60)

be any other matrix, and now suppose that B has the desired inverse property,
that AB D I2 D BA.

Well, then to start, we would have

AB D

�
1 2

3 4

��
x y

z w

�
D I2 (12.61)

Let’s extract the meaning of�
1 2

3 4

��
x y

z w

�
(12.62)

Recall the definition of matrix multiplication. Before we compute the product,
you should give it a try!�

1 2

3 4

��
x y

z w

�
D

�
1 � x C 2 � z 1 � y C 2 � w
3 � x C 4 � z 3 � y C 4 � w

�
(12.63)

Now, we want this to be equal to the identity matrix, so we need for the
following equations and inequations to be satisfied

1x C 2z ¤ 0

SECTION 12.2 Matrices as Operators 309

1y C 2w D 0

3x C 4z D 0

3y C 4w ¤ 0

1x C 2z D 3y C 4w

The second and third equations are self-evident, but the first, fourth and fifth
desire some explanation. We want for the first, fourth and fifth entries to
be nonzero and equal so that we can divide by them and force the diagonal
entries to be equal to 1 each.

12.64 Exercise Try to solve the system of equations and inequations
above.

With enough effort, you’ll find that the appropriate choice of x; y; z;w is

x D 4; y D �2; z D �3;w D 1 (12.65)

So, the matrix we seek is

B D

�
4 �2

�3 1

�
(12.66)

Let’s compute the product

AB D

�
1 2

3 4

��
4 �2

�3 1

�
D

�
�2 0

0 �2

�
(12.67)

That’s not the identity matrix! It’s not so bad, actually. Remember that we
demanded that the diagonal entries would be nonzero and equal? Now, you’ll
see why.

Sure, the matrix B doesn’t work, but the matrix
�
1
2

�
� B does (remember

how we multiply a matrix by a number)

310 CHAPTER 12 Mathematical Tools for Quantum Computing II

A

��
1

�2

�
B

�
D

�
1 2

3 4

���
1

�2

�
�

�
4 �2

�3 1

��
D

�
1 2

3 4

���
1

�2

�
�

�
4 �2

�3 1

��
D

�
1

�2

��
1 2

3 4

��
4 �2

�3 1

�
D

�
1

�2

��
�2 0

0 �2

�
D

� �
1
2

�
� .�2/

�
1
2

�
� 0�

1
2

�
� 0

�
1
2

�
� .�2/

�
D

�
1 0

0 1

�
(12.68)

So, we have good reason to call the matrix
�
1
2

�
B by the name A 1!

12.69 Exercise We should check that multiplying on either side yields
the identity matrix – do this! That is, verify that

��
�
1
2

�
B
�
A D I .

Then, we have found the matrix inverting the matrix A, so it’s just a matter
of determining what linear transformation this inverse matrix represents.
Recalling that the entries in a matrix are exactly expressing the coefficients of
the images of the basis elements, we can recover the transformation without
too much trouble:

12.70 Exercise Try to describe the linear transformation corresponding
to the matrix

�
1
2

�
� B using function notation. Fill in the details in the

unfinished equation �
1

�2

�
� B

�
x

y

�
WD

Hopefully, you figured out that what should be on the right side of the
equation is the vector �

1

�2

�
�

�
4 � x C�3 � y

�2 � x C 1 � y

�
(12.71)

We’ve got it! The inverse transformation of the linear transformation

SECTION 12.2 Matrices as Operators 311

A

�
x

y

�
WD

�
1 � x C 3 � y

2 � x C 4 � y

�
(12.72)

which you might recall has the geometric effect of transforming the unit
square in the first quadrant into the parallelogram described in the section
about determinants, is the transformation�

1

�2

�
� B

�
x

y

�
WD

�
1

�2

�
�

�
4 � x C�3 � y

�2 � x C 1 � y

�
(12.73)

That’s wonderful and all, but is there a pattern here? Can we extrapolate a
general technique from this example? Perhaps you noticed this matrix from
our earlier discussion about determinants. Maybe you even got the impression
that the �2 appearing in the fraction 1

2
in front of B has something to do

with the previous discussion, since �2 is the determinant of the matrix B!
You’d be correct!

In general, given a 2 � 2 matrix

A D

�
a b

c d

�
(12.74)

its inverse matrix is the matrix

A 1
WD

1

det.A/

�
d �b

�c a

�
(12.75)

12.76 Definition Adjugate matrix

The matrix �
d �b

�c a

�
(12.77)

is known as the adjugate of A.

In general, given a matrix A, we denote the adjugate of A by adj.A/. What
we discovered above can then be phrased as

A �
�
det.A/ 1

�adj.A/
�
D det.A/ 1

�.A�adj.A// D det.A/ 1
�.det.A/�I /

D
�
det.A/ 1

�det.A/
�
�I D 1�I D I (12.78)

So, the inverse of a matrix A is the matrix described by det.A/ 1 � adj.A/.
This makes us realize that we need to find a way to determine the adjugate
matrix. Remarkably, the adjugate matrix is equal to the transpose of what is
known as the cofactor matrix of A.

312 CHAPTER 12 Mathematical Tools for Quantum Computing II

So, what is the cofactor matrix of a matrix? We’ll define it and then
invite you to verify that the adjugate we built above does in fact satisfy this
definition.

The cofactor matrix of a matrix A is the matrix C whose entries Ci;j are
the determinants of the .n�1/�.n�1/ submatrices ofA formed by removing
the i th row and j th column of A. We call Ci;j the i; j th cofactor of A. We’ll
demonstrate with an example. Consider the matrix

A D

0@ 1 2 3

4 5 6

7 8 9

1A (12.79)

Let’s compute the 1; 1 cofactor C1;1. Removing the 1st row and 1st column
of A yields the smaller 2 � 2 matrix�

5 6

8 9

�
(12.80)

and its determinant is the cofactor C1;1 that we’re after

C1;1 WD
5 6
8 9

D 5 � 9 � 8 � 6 D 45 � 48 D �3 (12.81)

12.82 Exercise Compute the cofactors C1;2 and C1;3.

If you tried the above the exercise, you found that

C1;2 WD
4 6
7 9

D 4 � 9 � 7 � 6 D 36 � 42 D �6 (12.83)

and

C1;3 WD
4 5
7 8

D 4 � 8 � 5 � 7 D 32 � 35 D �3 (12.84)

12.85 Exercise The ambitious reader should go forth and compute the
remaining 6 cofactors C2;1; C2;2; C2;3; C3;1; C3;2; C3;3 and then construct
the cofactor matrix C . Further, transpose this matrix. You’ll run into a
problem if you try to create the inverse though!

SECTION 12.2 Matrices as Operators 313

If you try to construct the inverse of this matrix, you’ll run into an issue, as
stated in the above exercise. Everything works swimmingly until you compute
the determinant – it’s 0!

There are several ways to discern the determinant of A is 0 and seeing
them will tie some ideas together.

First of all, the first column 0@ 1

4

7

1A (12.86)

of the matrix A is linearly dependent on the other two.

12.87 Exercise Can you find the dependence?

With a bit of computation, you’ll find that 2 of the second column minus 1
of the third column is the first column0@ 1

4

7

1A D 2 �0@ 2

5

8

1AC .�1/ �0@ 3

6

9

1A (12.88)

If we apply the theorem stated earlier about all of the equivalent ways of
expressing that the determinant of a linear transformation is 0, we see that the
linear dependence of the first column on the other two is equivalent to the fact
that the determinant of A is 0.

Now, we’ll perform a computation that will lead to a pretty cool observation
connecting the inverse of a matrix, its determinant, and the cofactor matrix
we described above. It will start off rather unusual, but if you follow each
equality, you’ll see the connection!

det.A/ D 0 D �3 � 2 � .�6/ � 3 � 3 D 1 � C1;1 � 2 � C1;2 C 3 � C1;3
D .�1/1C1 � 1 � C1;1 C .�1/

1C2
� 2 � C1;2 C .�1/

1C3
� 3 � C1;3

D .�1/1C1 � A1;1 � C1;1 C .�1/
1C2
� A1;2 � C1;2

C .�1/1C3 � A1;3 � C1;3 (12.89)

As you can see, we can compute the determinant by taking an alternating sum
of cofactors with the coefficients of the entries of the matrix along that row.

Hopefully, this example convinces you this might be true. To be a bit more
convinced, you should try to compute the determinant of A along the second

row instead. In fact, you should try to compute the determinant along any row
or column you like and see that they all yield the same answer!

12.3 Eigenvectors and Eigenvalues

To motivate this next topic, let’s play around with the matrix

A WD

�
2 0

0 3

�
(12.90)

12.91 Exercise First of all, can you describe the transformation of space
it represents?

You’ll realize that the first basis vector is stretched by a factor of 2, while
the second basis vector is stretched by a factor of 3. So, these vectors don’t
move under this transformation; they are simply scaled. You should contrast
this example with the previous example�

1 2

3 4

�
(12.92)

Can you find a similar set of vectors that are only stretched by the transforma-
tion corresponding to B for the transformation corresponding to this matrix?
Good luck – we bet you can’t find them!

The vectors in the first example, the standard basis vectors, are referred
to as eigenvectors of the matrix A. In general, a nonzero vector v is an
eigenvector of a linear transformation T iff there exists � 2 F such that

T v D �v (12.93)

In other words, the operation of T on v simply scales the vector v by the scalar
�.

Where did the name eigenvector come from? Well, the Germans are
responsible for quite a bit of the terminology and notation of algebra, and
“eigen” means “own,” as in “one’s own” or “characteristic” in German. So, an
eigenvector is a vector characteristic to the matrix A. This implies that we
could very well be able to identify the matrix A given all of its characteristic
vectors, eigenvectors.

314 CHAPTER 12 Mathematical Tools for Quantum Computing II

SECTION 12.3 Eigenvectors and Eigenvalues 315

This is true for the most part. We know from earlier that a linear transfor-
mation is described entirely by how it acts on a basis for the space. For the
example A above, we’re fortunate to know immediately from the description
ofA how it acts on the standard basis, and so we pretty much know everything
about A already.

What if the basis was different though? We saw earlier that there are
several bases for a vector space, so could it be that we understand the behavior
of a matrix on a different basis than the standard basis? Well, sure. Here’s an
example of such a scenario:

Consider the matrix

B D

�
2 1

0 3

�
(12.94)

Let’s apply this transformation to the vectors v1 WD
�
1

0

�
and v2 WD

�
1

1

�
:

Bv1 D
�
2 1

0 3

��
1

0

�
D

�
2

0

�
D 2 �

�
1

0

�
D 2 � v1 (12.95)

and

Bv2 D
�
2 1

0 3

��
1

1

�
D

�
3

3

�
D 3 �

�
1

1

�
D 3 � v2 (12.96)

Interesting: so, Bv1 D 2 � v1 and Bv2 D 3 � v2.

Now, let’s try this out on the vector v WD
�
0

1

�
. Then, we have

Bv WD B
�
0

1

�
D

�
2 1

0 3

��
0

1

�
D

�
1

3

�
(12.97)

and notice that if there were a number � such that�
1

3

�
D �

�
0

1

�
D

�
� � 0

� � 1

�
D

�
0

�

�
(12.98)

then 1 D 0. So, there is no such number �. This is equivalent to saying the
vector v is not like the vectors v1 and v2, since the transformation does not
simply stretch v by some factor.

The vectors v1 and v2 are the eigenvectors of the matrix B , while v is not.
We refer to the scale factors 2 and 3 as the eigenvalues of the eigenvectors v1
and v2, respectively. In general, the eigenvalue associated to an eigenvector v
is the scalar � appearing in the definition of an eigenvector from earlier

316 CHAPTER 12 Mathematical Tools for Quantum Computing II

T v D �v (12.99)

Collectively, we refer to the eigenvectors and eigenvalues of a transformation
as its eigenstuff.2 There can only be two of these eigenvectors for an operator
on two-dimensional space, and in general, there could be as many as n for an
operator on n-dimensional space.

12.100 Exercise Find the eigenstuff for the matrices

Projx WD
�
1 0

0 0

�
(12.101)

and

M WD

�
2 0

�
1
2

3

�
(12.102)

Finding the eigenstuff for Projx shouldn’t be too hard, while M might pose a
bit more of a challenge.

Change of Basis

Let’s keep running with the matrix B from our discussion of eigenstuff.
Although the standard basis is great, we’d like to demonstrate that changing
our basis to the eigenvectors of B might be advantageous for several reasons.
Well, we should probably check that the eigenvectors of B do indeed form a
basis for the vector space R2.

12.103 Exercise Verify that the eigenvectors

v1 D
�
1

0

�
; v2 D

�
1

1

�
(12.104)

actually form a basis for R2. Remember that this means we have to check
that v1 and v2 are linearly independent and that v1 and v2 span R2. You
should do this by brute force first. Then, think about how you could apply the
theorem about the length of any basis for a vector space of a certain dimension
afterward.

2The eigenstuff is sometimes called the eigensystem of the transformation. We acknowledge
(and embrace) the informal choice of terminology.

SECTION 12.3 Eigenvectors and Eigenvalues 317

We know the standard basis consisting of two vectors is indeed a basis for
R2, so that theorem ensures the length of any list of basis elements for R2 is
also two. Knowing this and that the eigenvectors are either linearly indepen-
dent or spanning therefore guarantees they form a basis by the theorem.

We know from earlier that the matrix describing a linear transformation
depends on the bases we choose for the space. Let’s change the basis we’re
using from the standard basis to the basis of eigenvectors and see how the
matrix B changes as a result!

To perform this operation, we need to know how the transformation T
corresponding to the matrix B acts on the eigenvectors v1 and v2 in terms of
v1 and v2 only, but we’ve already figured this out! Recall that Bv1 D 2 � v1 D
2 � v1 C 0 � v2 and that Bv2 D 3v2 D 0 � v1 C 3 � v2.

So, we can make the matrix for the transformation T with respect to the
basis

BR2 WD fv1; v2g (12.105)

of eigenvectors v1 and v2 following the procedure described in an earlier
section �

M .T W R2 ! R2/BR2 ;BR2

�
D

�
2 0

0 3

�
(12.106)

Let’s abbreviate all of that with M .T / like we have before. We can see that
this matrix is diagonal; diagonal matrices are quite useful. To see why, try the
following exercise.

12.107 Exercise Find the square of the matrix M .T / D

�
2 0

0 3

�
formed with respect to the basis of eigenvectors v1 and v2 (sometimes called
an eigenbasis), compute

M .T /2 WDM .T / �M .T /

Then, compute
M .T /3 WDM .T / �M .T / �M .T /

Then, compute

M .T /4 WDM .T / �M .T / �M .T / �M .T /

What’s going on? Can you compute M .T /100?

318 CHAPTER 12 Mathematical Tools for Quantum Computing II

12.108 Exercise Now, try this for the original matrix B WD
�
2 1

0 3

�
formed with respect to the standard basis vectors. That is, compute the square
of B . Then, compute B3. Then, compute B4. Can you compute B100?

We’re willing to bet you figured out how to do the exercise regarding
M .T / and gave up while trying the exercise regarding B — anybody would.
The difference between M .T / and B is that M .T / is diagonal, while B is
not. The failure of B to be diagonal causes considerable difficulties when
multiplying, as you learned in the exercise.

The question then becomes: Can we always change our basis to one where
the matrix we start with ends up a diagonal matrix?

Actually, no, not always.

12.109 Exercise Think about why we can’t find a basis of eigenvectors
for the transformation described by the matrix

T WD

�
0 1

0 0

�

Matrices that have this special property are aptly named diagonalizable.
It is not so simple to give an explicit characterization of matrices that are
diagonalizable, so we won’t delve into this right now.

Here we make a connection between quantum mechanics and eigenstuff.
Linear operators with eigenvalues that are real numbers form a special class
of operators. In our review of quantum mechanics in a previous chapter, we
reviewed the measurement postulate of quantum mechanics; this postulate
states that any operator associated with a physically measurable property will
be Hermitian. We have not seen Hermitian operators just yet, but we will find
that they are a class of operators whose eigenvalues are always real numbers,
and so will be measurable. We’ll see what Hermitian operators are and why
they have such a remarkable property in a little bit!

SECTION 12.4 Further Investigation of Inner Products 319

12.4 Further Investigation of Inner Products

Further investigation of the previously defined inner product reveals some
salient properties. The first of which is that of conjugate symmetry, which
states for all vectors u; v, hu; vi D hv; ui. So, exchanging the vectors does not
yield the same result, but the conjugate instead. This might seem odd at first
glance, but an example should help convince us this should be the case.

Let u WD
�
i

1

�
and v WD

�
2

i

�
. Then

hu; vi D
��

i

1

�
;

�
2

i

��
D i � 2C 1 � i D .�i/ � 2C 1 � i D �2i C i D �i

(12.110)
and

hv; ui D
��

2

i

�
;

�
i

1

��
D 2 � i C i � 1 D 2 � i C .�i/ � 1 D 2i � i D i

(12.111)
So, unless we conjugate, we don’t get the same number. We should conjugate
if we exchange the vectors in the inner product.

12.112 Exercise Let u WD
�
i

2

�
and v WD

�
1

i

�
. Find the inner

product hu; vi. Now, find the inner product hv; ui. Do you see why we have
to conjugate?

Conjugate symmetry also guarantees that the inner product of any vector
with itself is a real number. To see this, observe that for any vector v, conjugate
symmetry ensures that hv; vi D hv; vi (we exchanged v with itself!), so the
inner product of v with itself needs to be equal to its conjugate. A complex
number aC bi is equal to conjugate a� bi iff aC bi D a� bi , which occurs
iff b D �b. But b D �b only in the case when b D 0, i.e., our complex
number aC bi was a real number all along.

The inner product is also linear in the first argument. So, first of all, for
any two vectors u; v and w, the inner product satisfies the following equation:

huC v;wi D hu;wi C hv;wi (12.113)

Let’s see an example of this phenomenon. Let

320 CHAPTER 12 Mathematical Tools for Quantum Computing II

u D

�
1

0

�
; v D

�
0

1

�
;w D

�
1

2

�
(12.114)

Let’s compute huC v;wi:

huC v;wi D
��

1

0

�
C

�
0

1

�
;

�
1

2

��
D

��
1

1

�
;

�
1

2

��
WD 1 � 1C 1 � 2 D 1 � 1C 1 � 2 D 3 (12.115)

12.116 Exercise Now, you compute

hu;wi C hv;wi D
��

1

0

�
;

�
1

2

��
C

��
0

1

�
;

�
1

2

��
and check that it equals 1C 2 D 3.

We said that the inner product is linear in the first argument, so you should
be wondering how scalar multiplication manifests itself here. The second part
of this linearity in the first argument is that for any scalar a and any vectors u
and v, we have

ha � u; vi D a � hu; vi (12.117)

To see this property in action, let

a D 2; u D

�
1

2

�
; v D

�
3

4

�
(12.118)

Let’s compute the left-hand side

ha � u; vi D
�
2 �

�
1

2

�
;

�
3

4

��
D

��
2

4

�
;

�
3

4

��
D 2 � 3C 4 � 4 D 6C 16 D 22 (12.119)

12.120 Exercise Compute the right-hand side, i.e., a � hu; vi and check
that it’s equal to 22.

You might wonder if hu; a � vi D a � hu; vi for all scalars a and vectors u
and v. Check that this is not true in the following exercise.

SECTION 12.4 Further Investigation of Inner Products 321

12.121 Exercise Check that it is not true that hu; a � vi D a � hu; vi for all
scalars a and vectors u and v by finding a scalar a and two vectors u and v such
that hu; a � vi ¤ a � hu; vi. In fact, you can prove using the axioms listed later
on that for all scalars a and vectors u and v, it is true that hu; a � vi D ahu; vi.
This property of the inner product is sometimes called conjugate homogeneity
in the second argument.

The final property of the inner product is known as positive-definiteness:
for all vectors v, hv; vi � 0 and hv; vi D 0 iff v D 0.

Let’s see why this is true from a more abstract perspective. Let v D�
v1 v2 : : : vn

�T be a vector.
Then

hv; vi WD v1 � v1 C v2 � v2 C :::C vn � vn (12.122)

Recall that the product of a complex number with its conjugate is always
a non-negative real number (i.e., greater than or equal to 0), so vi � vi is a
real number for each i 2 f1; :::; ng. Well, then the sum of a (finite) bunch of
non-negative real numbers is a real number, so the sum

v1 � v1 C v2 � v2 C :::C vn � vn (12.123)

is still a non-negative real number, i.e., is greater than or equal to 0.

12.124 Exercise Convince yourself that the expression above is 0 iff the
vector v is the zero vector, i.e., has all zero entries.

So, we’ve shown that for any vector v, hv; vi � 0 and that hv; vi D 0 iff
v D 0.

12.125 Exercise Notice that we never said that the inner product satisfies
linearity in the second argument! It is true, however, and your task is to prove
it using the axioms that we’ve already listed and verified. Linearity in the first
argument will be crucial for your proof.

322 CHAPTER 12 Mathematical Tools for Quantum Computing II

The Kronecker Delta Function as an Inner Product

While discussing the idea of an orthonormal basis for a vector space earlier, we
mentioned the idea that the mathematical description of an orthonormal basis
could be described in terms of the Kronecker delta function ı. The Kronecker
delta function ı has such a simple description that you can’t imagine why it
could possibly be named after anyone – although Kronecker isn’t complaining.

12.126 Definition The Kronecker delta function

For a set f1; 2; :::; ng (
ı.i; j / D 1 if i D j
ı.i; j / D 0 if i ¤ j

This should look familiar! Recall our definition of orthonormal basis
vectors from earlier. So, we can refer to an orthonormal set S of vectors
as a set of vectors such that the restriction of the inner product to S is the
Kronecker delta function!

12.127 Exercise Check that the entries of the identity matrix can be
described by the Kronecker delta function. More precisely, check that we can
define the identity matrix I entry-wise as Iij WD ı.i; j /.

12.5 Hermitian Operators

A linear operator (interchangeably, matrix) is referred to as Hermitian iff it
is equal to its conjugate transpose (defined above). Hermitian operators are
crucial in quantum mechanics. We often want to measure a quantity associated
with some state. Often the quantity we’re after is the eigenvalue of an operator,
and so we’d like for that eigenvalue to be a real number in order to effectively
measure it.

Why We Can’t Measure with Complex Numbers

A subtle point worth mentioning is that we can’t perform a measurement with
complex numbers. Suppose you wanted to figure out which of the numbers 0
or i is bigger? Then, you would either have to decide that i D 0, 0 < i or that

SECTION 12.5 Hermitian Operators 323

i < 0. Of course, we won’t choose i D 0 because, if we do, then we could
multiply each side of the equation i D 0 by �i and find that 1 D 0! Let’s try
the choice 0 < i .

If we choose that 0 < i , then multiplication by i on each side yields the
inequality

i � 0 < i � i (12.128)

But then
0 < i � i D i2 D �1 (12.129)

In summary, we have deduced that 0 < �1 from our assumption that 0 < i .
Since 0 < �1 does not make sense, we are left to conclude that our original
assumption that 0 < i does not make sense.

So, what if we choose that i < 0? Subtract i from both sides, revealing

i � i < 0 � i (12.130)

So,
0 < �i (12.131)

Multiplying both sides by �i reveals

0 � .�i/ < �i � .�i/ (12.132)

But
� i � .�i/ D .�1/ � i � .�1/ � i (12.133)

.�1/.�1/ � i � i D 1 � i2 D �1 (12.134)

So, the inequality 0 � .�i/ < �i � .�i/ really means 0 < �1. This does not
make sense either, and so we must conclude that the original hypothesis that
i < 0 does not make sense. So, what we’re discovering is that neither choice
of order, i.e., neither 0 < i nor i < 0 makes sense. Assuming either such
order reveals that 0 < �1, which is simply not true. We are left to conclude
that there is no acceptable way of ordering the complex numbers.

To make this more precise, suppose you want to come up with an order for
the complex numbers that satisfies the following reasonable conditions that
we are familiar with from our experience with usual real numbers:
� Trichotomy: For all complex numbers x; y, we have a trichotomy:

either x < y, x > y or x D y.
� Additivity property: For all complex numbers x; y; z, if x < y, then
x C z < y C z.

324 CHAPTER 12 Mathematical Tools for Quantum Computing II

� Multiplicative property: For all complex numbers x; y; z, if 0 < z, then
x < y implies xz < yz.

Now, let’s very carefully prove that the choice 0 < i contradicts at least
one of the above axioms. Since 0 < i , using the third (multiplicative) property
stated above, we see that

0 < i H) 0 � i < i � i D i2 D �1 (12.135)

Although the fact that we have deduced that 0 < �1 from our assumption
that 0 < i is disturbing, it technically does not violate any of the axioms
above. Using the second (additivity) property above, the inequality 0 < �1
allows us to deduce

0 < �1 H) 0C 1 < �1C 1 D 0 (12.136)

So, 1 < 0. This is also disturbing, but is not a direct violation of any of
the axioms above. Now, we invoke the third (multiplicative) property a final
time yielding

1 < 0 H) 1 � i < 0 � i D 0 (12.137)

Then, we have i < 0, but our original assumption was that 0 < i . This
violates the first (trichotomy) property above!

12.138 Exercise Try to figure out what goes wrong with defining i < 0
in a similar fashion.

So, we really want these measurements to be real numbers, or else we have
no way of making sense of them. The question then becomes: Why is it that
Hermitian matrices have real eigenvalues?

Hermitian Operators Have Real Eigenvalues

Despite the ease with which we may verify that a matrix is equal to its
conjugate transpose, a different but equivalent definition of Hermitian makes
the proof that Hermitian matrices have real eigenvalues quite simple. We
could also define a linear operator T W V ! V to be Hermitian iff it is
self-adjoint, where we say:

SECTION 12.5 Hermitian Operators 325

12.139 Definition Adjoint of a matrix

The adjoint of a matrix T is a matrix T � such that for all vectors u; v 2 V
hT u; vi D hu; T �vi.

Then, that T is self-adjoint means that T D T � and so for all vectors
u; v 2 V , hT u; vi D hu; T vi. Notice that the adjoint of an operator is precisely
its conjugate transpose! So, to say that an operator is self-adjoint is to say that
it equals its conjugate transpose.

12.140 Adjoint is conjugate transpose

The adjoint of a linear operator is its conjugate transpose.

Now, if v is an eigenvector with eigenvalue � of a Hermitian matrix T ,
then we may further conclude that

hT v; vi D hv; T vi (12.141)

That v is an eigenvalue of T with eigenvalue � means that T v D �v, so we
may substitute �v for T v in the equation hT v; vi D hv; T vi, yielding

h�v; vi D hv; �vi (12.142)

Our intuition now is to factor out �, which causes something interesting
to happen. By homogeneity of the inner product in the first argument and
conjugate homogeneity in the second argument, “factoring out �” yields the
new equation

�hv; vi D �hv; vi (12.143)

Now, we’d like to “divide by hv; vi” on both sides and call it a day, but how do
we know that it isn’t zero? Well, we started by assuming v was an eigenvector
of T , and the definition of an eigenvector requests that v not be zero. Then,
we apply the definiteness property of the inner product to ensure that, since
v is not zero, the inner product of v with itself, i.e., hv; vi, is not zero either.
Thus,

� D � (12.144)

Remember what it means for a complex number to equal its complex conju-
gate? Exactly — then it’s a real number after all!

12.145 Exercise It’s worth noting that any real symmetric matrix (sym-
metric matrix with real entries only) is Hermitian. Can you see why?

326 CHAPTER 12 Mathematical Tools for Quantum Computing II

Hopefully, this foray into the proof of this theorem makes you realize that
all of the axioms we request in these definitions are truly necessary! Do you
see where we used each and every one of the axioms?

12.6 Unitary operators

You’ve surely encountered the zoo of matrices describing quantum logic gates
within chapter 3 and listed in chapter 14. Those matrices are special because
they are unitary. Unitary matrices preserve the length of vectors. They are
so named because unit vectors remain unit vectors after an application of a
unitary matrix.

More precisely,

12.146 Definition Unitary Operator

A linear operator U W V ! V is unitary iff for all vectors u; v 2 V ,

hx; yi D hUx;Uyi

i.e., U preserves inner products.

It is interesting to note that we could equivalently define a unitary operator
(matrix) U W V ! V to be a matrix whose conjugate transpose is its inverse,
i.e.,

U � D U 1 (12.147)

So,
U �U D UU � D I (12.148)

Nothing we’ve said so far directly implies that a unitary operator preserves
the length of any vector it operates on, so let’s verify this in an exercise.

12.149 Exercise Verify that a unitary operator U preserves the length
of any vector v that it operates on by using the definition given above. Use
the fact that the length of the vector v is equal to

p
hv; vi, and compare the

original length of v, i.e.,
p
hv; vi, to the length of v after U has operated, i.e.,p

hU v; U vi.

SECTION 12.7 The Direct Sum and the Tensor Product 327

12.7 The Direct Sum and the Tensor Product

We might want to build bigger vector spaces from collections of vector spaces
we already have. There are two popular ways of doing this. One way is
the direct sum, the other the tensor product. We’ve already seen the tensor
product in the context of taking the tensor product of two vectors, or even two
matrices. There is a relationship between that previously defined operation
and the operation we’re about to describe.

The Direct Sum

The first point we’d like to emphasize is that the direct sum operates on vector
spaces, not numbers, vectors or matrices (although the astute reader already
considers all of these to be simply linear transformations!). The same is true
for the tensor product. Specifically, the direct sum is a binary operation that
accepts two vector spaces as input and yields another, usually “bigger,” vector
space as output. Let’s see an example.

Consider the one-dimensional vector space R and a copy of itself – so, two
copies of R.

The direct sum of R with itself is written

R˚ R (12.150)

and is defined to be

R˚ R WD
��

x

y

�
W x 2 R; y 2 R

�
(12.151)

Hold on – that’s just the Cartesian product R � R of R and R!

12.152 Exercise Recall the definition of the Cartesian product R � R
and compare it to the direct sum R˚ R.

Why do we have two names for the same thing? Well, they’re not actually
the same thing because the direct sum R˚R has more structure. In particular,
the direct sum R˚ R is a vector space (over R), where the Cartesian product
R � R is simply a set.

To further elaborate on this idea, consider the sets A WD fa; b; cg and
B WD fd; eg. We may create their Cartesian product

328 CHAPTER 12 Mathematical Tools for Quantum Computing II

A � B WD f.x; y/ W x 2 A; y 2 Bg

D f.a; d/; .a; e/; .b; d/; .b; e/; .c; d/; .c; e/g (12.153)

Now, we ask the question: What is the direct sum A˚ B? Well, at first,
we have

A˚ B WD

��
x

y

�
W x 2 A; y 2 B

�
(12.154)

simply following the definition from above. A cursory glance might convince
us that the issue is that the Cartesian product has row vectors and the direct
sum has column vectors, but when discussing sets, it doesn’t matter if we’re
using row or column vectors. The question is illuminated by a further question:
How is A˚ B a vector space? And over which field?

You see, in order to define A˚ B as a vector space, you have to give it
additional algebraic structure so that it is an abelian group and has a field
action by some specified field. Currently, it has neither of these. You’re
invited to ponder this for a moment. How would you define the addition of
two elements of A˚ B?

Whatever way you decide has to allow for the addition of the specific
elements

�
a d

�T and
�
b e

�T . Sure, we could say�
a

d

�
C

�
b

e

�
D

�
aC b

d C e

�
(12.155)

but what do aC b and d C e even mean? Remember, a; b; d and e are just
letters. They have no numerical meaning whatsoever.

So, the big idea is that it’s perfectly reasonable to form Cartesian products
of any two sets you like. For example, the Cartesian product of the set

COLORS WD fchartreuse;magenta; periwinkleg (12.156)

and the set
ANIMALS WD fcat; dog; aardvarkg (12.157)

is the new set

COLORS � ANIMALS WD f.x; y/ W x 2 COLORS; y 2 ANIMALSg
(12.158)

which ends up being8<: (chartreuse, cat), (chartreuse, dog), (chartreuse, elephant),
(magenta, cat), (magenta, dog), (magenta, elephant),

(periwinkle, cat), (periwinkle, dog), (periwinkle, elephant)

9=;
(12.159)

SECTION 12.7 The Direct Sum and the Tensor Product 329

which is just a set, and not a vector space. Whereas the direct sum R˚ R is,
a priori, the set

R˚ R WD
��

x

y

�
W x 2 R; y 2 R

�
(12.160)

which has a natural interpretation as being a vector space over the field R,
since we can define the addition (to get the abelian group structure) to be
usual vector addition and the field action to be usual scalar multiplication.

We would also like to mention that since the direct sum of two vector
spaces is itself a vector space, it has a dimension. It turns out that the dimen-
sion of the direct sum of two vector spaces is the sum of their dimensions,
hence the name direct “sum.” More specifically, for any two vector spaces V
and W both over the same field F,

dim.V ˚W / D dim.V /C dim.W / (12.161)

12.162 Definition The direct sum of two vector spaces

The direct sum of vector spaces V and W is the vector space

V ˚W WD

��
v
w

��

12.163 Dimension of direct sum

dim.V ˚W / D dim.V /C dim.W / (12.164)

The Tensor Product

Now, we’ll discuss the tensor product. What is remarkable about the tensor
product of two vector spaces is that it is entirely described by the “tensor
product” of the basis elements for each. What we mean by this is that if we
have two vectors spaces V and W both over the same field F and with bases
BV D fv1; :::; vmg and BW D fw1; :::;wng, respectively, then the tensor
product of V and W , denoted V ˝W is a vector space with basis given by

330 CHAPTER 12 Mathematical Tools for Quantum Computing II

BV˝W WD

fv1 ˝ w1; v1 ˝ w2; :::; v1 ˝ wn; : : : ; vm ˝ w1; vm ˝ w2; : : : ;˝vm ˝ wng
(12.165)

You might recognize that all of the possible pairs of tensor products of the
basis vectors of V with the basis vectors of W appear in the “tensor product”
of the bases of V and of W . In fact, this is always the case! That is, if we
have two vector spaces V and W both over the same field F and we’d like
to find their tensor product V ˝ W , we can at least determine the basis of
V ˝ W by tensoring all of the possible pairs of basis vectors of V and W .
Although this is a convenient fact, it does require a little bit of work to prove;
it is often referred to as The Tensor Product Basis Theorem, emphasizing that
it is a result to be proved.

What we would have to show is that, in fact, the proposed basis for V ˝W
consisting of all possible tensor products of pairs of basis vectors from V and
W is actually a basis, i.e., all of those tensor products are linearly independent
and span V ˝W . This is believable, given that the basis vectors from each
of V and W are linearly independent amongst themselves and they span
their respective spaces. However, we would like you to think about why this
requires a proof!

Anyway, we’ll avoid defining the tensor product of two vectors from an
axiomatic perspective here, and instead give a basis-centric view of the idea.
If you’ve never seen the tensor product of two vector spaces before, it’s fair to
think like this for the moment:

Given two vector spaces V and W with bases BV and BW , respectively,
we define their tensor product V ˝W to be the vector space with basis equal
to the “tensor product” of their bases, i.e., the basis BV˝W consisting of
the tensor products of all possible pairs of basis elements of V and W , as
described above.

Mathematicians reading this might be frustrated, but we’re simply trying
to give a working definition. Readers interested in why there might be any
fuss about this definition of a tensor product are invited to investigate more
mathematical treatments of the tensor product from the perspective of bilinear
maps, and even further, category theory!3

3Category theory defines the tensor product of two vector spaces via its universal property.
This definition offers an elegant and sophisticated view of the tensor product which eases
proofs and offers insight into the behavior of the tensor product as it interacts with other vector
spaces. This construction also instructs the definition of the tensor product of more general
objects than vector spaces, like modules!

SECTION 12.7 The Direct Sum and the Tensor Product 331

Now, a word about notation. You might come across some fancy ways of
writing the direct sum or tensor product of several copies of the same vector
space. For example,

H
L
n (12.166)

is just a fancy way of writing

H ˚ :::˚H„ ƒ‚ …
n times

(12.167)

Another way to state this is: the direct sum of n copies of the vector space H .
This can also be written as M

n

H (12.168)

A similar notation is in place for tensor products

H
N
n
WDH ˝ :::˝H„ ƒ‚ …

n times

(12.169)

and O
n

H (12.170)

Both of these notations refer to the n-fold tensor product of H , i.e., the
tensor product of n copies of the vector space H . These notations for the
tensor product of several H s arise when notating a quantum register, i.e., a
collection of qubits, as we’ll see at the culmination of this chapter with the
definition of a Hilbert space.

We can also take the tensor product of two operators. Thinking of each
operator as a linear transformation, and thus a matrix, allows us to take their
tensor product as we did earlier in this chapter! For example, given the
operators on two-dimensional complex space C2,

I WD

�
1 0

0 1

�
(12.171)

and

X WD

�
0 1

1 0

�
(12.172)

we may form their tensor product

332 CHAPTER 12 Mathematical Tools for Quantum Computing II

I ˝X WD

�
1 0

0 1

�
˝X D

�
1 �X 0 �X

0 �X 1 �X

�

D

0BB@ 1 �

�
0 1

1 0

�
0 �

�
0 1

1 0

�
0 �

�
0 1

1 0

�
1 �

�
0 1

1 0

�
1CCA

D

0BB@
�
1 � 0 1 � 1

1 � 1 1 � 0

� �
0 � 0 0 � 1

0 � 1 0 � 0

�
�
0 � 0 0 � 1

0 � 1 0 � 0

� �
1 � 0 1 � 1

1 � 1 1 � 0

�
1CCA

D

0BB@
�
0 1

1 0

� �
0 0

0 0

�
�
0 0

0 0

� �
0 1

1 0

�
1CCA D

0BB@
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1CCA (12.173)

Summarizing the result of our computation, we’ve created an operator
that now operates on four-dimensional complex space C4 with the following
effect

.I ˝X/.j00i/ D .I ˝X/.j0i ˝ j0i/

D

0BB@
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1CCA
0BB@
1

0

0

0

1CCA D
0BB@
0

1

0

0

1CCA
D j0i ˝ j1i D j01i (12.174)

12.175 Exercise Find the tensor product X˝I . Is it the same as I ˝X?

Note that we constructed a 4 � 4 matrix as the tensor product of two 2 � 2
matrices, which makes sense given our earlier discussion of how the tensor
product of an .a � b/ matrix and a .c � d/ matrix is a .a � c/ � .b � d/ matrix.

Curious readers might try to build the quantum operators discussed in
chapter 3 by taking tensor products of two-dimensional operators. Beware:
it’s not easy! In fact, you cannot build CNOT by taking the tensor product of
two two-dimensional operators.

SECTION 12.8 Hilbert Space 333

12.8 Hilbert Space

The modern definition of a quantum computer laid out in the text postulates
that a qubit is modeled by a two-dimensional complex Hilbert space, so we
include the formal definition here. However, before we can do so, we need to
have a brief discussion of the notions of a metric on a vector space, Cauchy
sequences, and finally, the idea of completeness of a vector space.

Metrics, Cauchy Sequences and Completeness

By a metric on a vector space, we mean that we can measure (hence, “metric”)
the distance between two vectors u and v by computing the norm of their
difference, i.e.,

hu � v; u � vi (12.176)

12.177 Exercise Check that the distance between two vectors u and v as
defined above is zero iff u D v, equivalently, u � v D 0.

At first glance, a Cauchy4 sequence can be thought of as “a sequence of
numbers whose terms get as close as we like, given that we look far enough.”
Before we investigate Cauchy sequences, we should understand the notion
of convergence of a sequence of numbers. Here is an example of a Cauchy
sequence of real numbers f W N! R:

f .1/ 1
2

f .2/ 1
4

f .3/ 1
8

f .4/ 1
16

:::
:::

f .n/ 1
2n

We can see that these numbers are getting closer and closer to the number
0, and in fact, we can make them as close to 0 as we like by choosing terms
sufficiently far along in the sequence.

4This sequence is named after Augustin-Louis Cauchy.

334 CHAPTER 12 Mathematical Tools for Quantum Computing II

12.178 Exercise Verify for yourself that we can make the numbers in the
sequence above as close to the number 0 as we like by finding the number n
such that f .n/ D 1

2n
is close to 0 within an error of 0:000001. In other words,

figure out how far we need to go in the sequence before the terms differ from
0 by only 0:000001 or less. It might help to think of 0:000001 as 1

106
.

We say that this sequence of numbers converges to the number 0. We can
express that the above sequence f W N ! R of real numbers defined by
f .n/ D 1

2n
converges to 0 more mathematically by saying,

for all � > 0, there exists N 2 N such that for all n 2 N, if n > N , then
jf .n/ � 0j < �.

You actually found the “N ” in the previous mathematical description of
the convergence of a sequence to 0 in the above exercise!

Of course, there is nothing special about this particular sequence, nor the
number 0. We can play this game with any sequence and number. In general,
we say that a sequence f W N ! R converges to a number L (L stands for
“limit”) iff

for all � > 0 there exists N 2 N such that for all n 2 N, if n > N , then
jf .n/ � Lj < �.

Again, intuitively, we should think of this as saying “A sequence of num-
bers converges to a number L iff we can make those numbers get as close to
L as we like simply by taking terms further along in the sequence.”

Now, a Cauchy sequence is a special type of sequence whose terms, as we
said earlier, “get as close as we like, given that we look far enough.” Let’s
revisit the previous sequence

f .1/ 1
2

f .2/ 1
4

f .3/ 1
8

f .4/ 1
16

:::
:::

f .n/ 1
2n

Observe the following phenomenon: How far apart are the terms f .1/ and
f .2/? Well,

SECTION 12.8 Hilbert Space 335

jf .1/ � f .2/j D

ˇ̌̌̌
1

2
�
1

4

ˇ̌̌̌
D

ˇ̌̌̌
1

4

ˇ̌̌̌
D
1

4

so they’re 1
4

apart. How far apart are the terms f .2/ and f .3/? You should
check that they’re 1

8
apart. f .3/ and f .4/? Now, they’re 1

16
apart! Hmm...

So, it seems that as we go further along in the sequence, pairs of terms get
closer and closer together. Let’s make this mathematically precise.

We say that a sequence f W N! R is Cauchy iff
for all � > 0, there exists N 2 N such that for all m; n 2 N, if m; n > N ,

then jf .m/ � f .n/j < �.

12.179 Exercise Convince yourself that this precise mathematical formu-
lation of a Cauchy sequence agrees with our intuitive statement about terms
getting closer further along in the sequence. Then, check that the sequence
f .n/ D 1

2n
is in fact a Cauchy sequence.

So, we’re convinced that the above sequence is Cauchy. Now, we can
ask the question as to whether a sequence of numbers converges to a number
already in our set. You might be wondering how a sequence of numbers could
ever possibly converge to something not already in our set... Well, let’s look
at the sequence f .n/ D 1

2n
once more.

Suppose we’re only considering numbers greater than 0 for the moment.
In other words, we’re working with the numbers

.0;1/ WD fx 2 R W x > 0g

So, the numbers in the set we’re considering cannot be equal to 0. Well,
then the previous sequence has the curious property that it is Cauchy and
it converges, but not to any number in the space we’re working in, because
it converges to 0, which is not a number in our set! This is a failure of the
set .0;1/ to be what we refer to as complete. Formally, we say that a set
is complete iff any Cauchy sequence of elements in the set converges to
an element in the set. We often relax this statement to “Cauchy sequences
converge” when the context is understood.

Now, we can generalize all of these ideas by allowing ourselves to measure
the distance between two objects using a more general notion of an abso-
lute value. The absolute value is actually a special case of a more general
phenomenon known as a metric:

336 CHAPTER 12 Mathematical Tools for Quantum Computing II

12.180 Definition Definition of a metric

A metric is a binary function d W S � S ! R from the Cartesian product
of two copies of a set S to the real numbers satisfying the following
properties:
� For all x; y 2 S , d.x; y/ � 0
� Definiteness: For all x; y 2 S , d.x; y/ D 0 iff x D y
� Triangle inequality: For all x; y; z 2 S , d.x; z/ �

d.x; y/C d.y; z/

The absolute value j � j W R ! R is in fact a metric, as we invite you to
check:

12.181 Exercise Check that the absolute value j � j W R! R is actually a
metric by verifying that it satisfies the above three properties. Also, convince
yourself that the third property really should be called the triangle inequality!

But we said that a metric is a more general notion! What’s a more general
metric? Well, consider the following way of measuring the “distance” between
two vectors: Given two vectors u and v in R2, we could measure the distance
between them by taking the (L2) norm of their difference (as vectors, that is),
i.e., d.u; v/ WD jju � vjj2: But a moment’s thought makes us realize that this
is simply taking the square root of the inner product of the vector difference
with itself, i.e.,

jju � vjj2 D
p
hu � v; u � vi

There we have it! A very general notion of a metric. We can now define a
metric on any vector space with an inner product in the following way. For
any vector space V with inner product h�; �i, define the metric

d W V � V ! R (12.182)

via
d.u; v/ WD

p
hu � v; u � vi (12.183)

We invite you to check that this definition does in fact satisfy the criteria for a
metric from earlier.

SECTION 12.8 Hilbert Space 337

12.184 Exercise Check that the metric we defined above

d W V � V ! R

via
d.u; v/ WD

p
u � v; u � v

is actually a metric by checking that it satisfies the criteria laid out earlier.

We say then that the inner product induces a metric on the vector space V ,
or that the metric is the metric induced by the inner product.

An Axiomatic Definition of the Inner Product

Let is touch briefly upon the idea of an axiomatic definition of an inner product.
The definition given previously in this text serves us well, but it turns out
that there are more exotic ways of taking the inner product of two vectors.
In fact, we could possibly be working in a vector space where the vectors
are... matrices or something some other mathematical object. There are vector
spaces, for example, whose “vectors” consist of all continuous functions
f W R! R, where the inner product of two “vectors” (really, functions!) f
and g is defined to be

hf; gi WD

Z 1

0

f .x/g.x/dx (12.185)

Yes, inner products, and vectors spaces for that matter, can be quite other-
worldly. So, we want an axiomatic framework for them that captures the
essence.

338 CHAPTER 12 Mathematical Tools for Quantum Computing II

12.186 Definition Axiomatic definition of an inner product

An inner product h�; �i on a vector space V over a field F (where F is either
R or C) is a binary function

h�; �i W V � V ! F

satisfying the following properties:
� Conjugate symmetry: For all u; v 2 V ,

hu; vi D hv; ui

� Linearity in the first argument: For all a 2 F; u; v;w 2 V ,

ha � u; vi D a � hu; vi

and
huC v;wi D hu;wi C hv;wi

� Positive-definiteness: For all v 2 V ,

hv; vi � 0

and
hv; vi D 0 iff v D 0

12.187 Exercise With the axioms laid out above, you’re invited to verify
that the inner product which we have been using does in fact satisfy these
axioms.

Finally, we’re able to state the precise definition of a Hilbert space!

The Definition of Hilbert Space

12.188 Definition Definition of Hilbert space

A Hilbert space is a vector spaceH over either the field of real or complex
numbers equipped with an inner product h�; �i that is a complete metric
space with respect to the metric induced by the inner product.

SECTION 12.9 The Qubit as a Hilbert Space 339

The definition of a Hilbert space is the culmination of this chapter, and
we’d like to mention briefly how Hilbert spaces arise in quantum computing.5

We care about Hilbert spaces over the field C of complex numbers, and the
following discussion refers only to such spaces.

12.9 The Qubit as a Hilbert Space
One of the central concepts of quantum computing is that a qubit can be
represented as a two-dimensional complex Hilbert space.6 We notate a qubit
with the letter H, or sometimes more fancily with H , for “Hilbert.”

12.189 A qubit is a vector space

A qubit is represented by a vector space — more specifically, a Hilbert
space!

We sometimes call the Hilbert space representing the qubit the state space.
A state in the state space is a vector in the state space with L2 norm 1. So,
a state is on the Bloch sphere – refer to chapter 3. For example, the familiar
vectors j0i and j1i are states in the 2-dimensional Hilbert space (state space)
H , which represents one qubit. In fact, j0i and j1i are an orthonormal basis
for H , as you verified earlier in our discussion of orthonormal bases, and so
every vector in the state space is a linear combination of these two vectors
with L2 norm 1. In the terminology of quantum mechanics, every state is a
superposition of these two states!

We refer to a collection of n qubits as a quantum register and often notate
it as

H ˝ H ˝ : : :˝ H„ ƒ‚ …
n times

(12.190)

It turns out that the tensor product of Hilbert spaces is another Hilbert space,
although it will have a greater dimension in general!

12.191 Exercise Think about why the dimension of the tensor product of
two two-dimensional Hilbert spaces is 4. Then, think about why the dimension
of the tensor product of three two-dimensional Hilbert spaces is 8 – not 6!
Then, figure out why the dimension of the tensor product of n two-dimensional

5The name Hilbert space honors the mathematician David Hilbert.
6We take our motivation from page 15 of Yuri Manin’s seminal paper [141].

340 CHAPTER 12 Mathematical Tools for Quantum Computing II

Hilbert spaces is in fact 2n. It might help to think of what the basis for the
tensor product space is.

For example, if we have two qubits H and H , each with orthonormal
basis

BH D fj0i ; j1ig (12.192)

then the quantum register
H ˝H (12.193)

is a Hilbert space of dimension 4 (as you checked in the exercise above) with
basis

BH ˝H D fj0i ˝ j0i ; j0i ˝ j1i ; j1i ˝ j0i ; j1i ˝ j1ig

D fj00i ; j01i ; j10i ; j11ig; (12.194)

where we recall from earlier that j00i is just a convenient renaming of the
tensor product j0i ˝ j0i, i.e.,

j00i WD j0i ˝ j0i D

�
1

0

�
˝

�
1

0

�
D

0BB@
1

0

0

0

1CCA (12.195)

and the vectors j01i ; j10i ; j11i are defined similarly.

12.196 Exercise Figure out the basis BH ˝3 for H ˝3 where H has
basis BH D fj0i ; j1ig: It should consist of 23 D 8 vectors by the previous
exercise. Can you figure out the basis for H ˝n?

12.197 A quantum register is a tensor product

A quantum register consisting of n qubits is a 2n-dimensional tensor
product of vector spaces!

SECTION 12.9 The Qubit as a Hilbert Space 341

Quantum Computing Linear Algebra Example

qubit two-dimensional complex Hilbert space H D spanCfj0i ; j1ig

n-qubit quantum register n-fold tensor product of two-dimensional complex Hilbert spaces H
˝n

state space vectors with L2 norm 1 (Bloch sphere) fv 2 H W hvjvi D 1g

definite state orthonormal basis vector j0i ; j1i

superposition of states linear combination of orthonormal basis vectors with L2 norm 1 (on the Bloch sphere) 1p
2

j0i C 1p
2

j1i

quantum logic gates unitary operators X D

✓
0 1

1 0

◆

measurement operators projection operators
✓
1 0

0 0

◆

Figure 12.3: Relationship of quantum computing to linear algebra

12.198 Summary of the relationship between quantum computing

and linear algebra

✏ A qubit can be represented by a two-dimensional complex Hilbert
space. The state of the qubit is represented by a vector in the Hilbert
space.

✏ More specifically, the vectors representing the states of a qubit have
an L2 norm of 1.

✏ The quantum register consisting of n qubits is a 2n-dimensional
complex Hilbert space composed of the n-fold tensor product of the
two-dimensional Hilbert spaces representing the qubits.

✏ A computational basis vector of the space represents a definite
computational state of the qubit.

✏ A superposition of states is a linear combination of the computa-
tional basis vectors.

✏ Quantum logic gates are unitary operators, which act on the state
space. Since unitary operators preserve the norm of the vectors they
act on, states are transformed to new states and not to just any vector
in the space. Thus, we can build quantum circuits using unitary
operators.

And so our review of linear algebra culminates with the table in Figure 12.3.
Readers wanting a deeper understanding of linear algebra are encouraged to

342 CHAPTER 12 Mathematical Tools for Quantum Computing II

read:
✏ Sheldon Axler’s Linear Algebra Done Right [18], where emphasis is

placed on the theory and proof technique common to linear algebra, a
sophisticated vantage point of matrices, the spectral theorem (which
determines when the eigenvectors of a linear operator form a basis), and
the determinant are presented.

✏ Michael Artin’s Algebra [17], caters to a more mathematical audience. It
begins with a wonderful discussion of elementary matrices and their role
in Gaussian elimination and offers great perspective for group theory.

✏ Gilbert Strang’s textbook Linear Algebra and its Applications [210]
is great for applications of linear algebra to the sciences and is supple-
mented by free MIT OpenCourseWare material.

✏ See Appendix A and B of Rieffel and Polak’s textbook, Quantum Com-
puting, A Gentle Introduction, for connections between quantum me-
chanics and probability theory as well as a treatment of the Abelian
hidden subgroup problem [186].

✏ For readers interested in learning more about abstract algebra, here are
additional texts:

- John Fraleigh’s A First Course in Abstract Algebra [88]
- Dummit and Foote’s Abstract Algebra [73]
- Joseph Rotman’s Advanced Modern Algebra [191]

✏ A whimsical introduction to category theory can be found in the text
Conceptual Mathematics: A First Introduction to Categories [130] by F.
William Lawvere and Stephen H. Schanuel.

✏ Readers interested in acquiring a refined definition of the tensor product
should look up Tai-Danae Bradley’s blog Math3ma [45].

✏ More adventurous readers are invited to read Bradley’s book What is
Applied Category Theory? [46] to see that category theory is not simply
a rephrasing of mathematics and is in fact quite useful for things like
chemistry and natural language processing!

✏ Emily Riehl’s Category Theory in Context [187] is a helpful introduction
to category theory for advanced undergraduates and graduate students.

CHAPTER

13
Mathematical Tools for Quantum
Computing III

13.1 Boolean Functions

13.1 Definition Boolean function

A Boolean function f is a function from a Cartesian product

f0; 1gn ! f0; 1gm

where f0; 1gn denotes the n-fold Cartesian product of the set f0; 1g with
itself, i.e.,

f0; 1gn WD f0; 1g � ::: � f0; 1g„ ƒ‚ …
n times

Cartesian products and functions are discussed in chapter 11, if you want
to brush up on these terms. Boolean functions arise naturally in computing.
For example, the Deutsch-Jozsa Algorithm discussed in chapter 7 involves
the four Boolean functions

f0; f1; fx; fx (13.2)

each with domain and codomain f0; 1g. So, in the case of these four functions,
n D 1 and m D 1 when we compare them to the definition of a Boolean
function given above.

Other examples of Boolean functions includeNOT , AND,OR andXOR.

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019

J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0_13

343

https://doi.org/10.1007/978-3-030-23922-0_13
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23922-0_13&domain=pdf

344 CHAPTER 13 Mathematical Tools for Quantum Computing III

Interest Rate Number of Times Compounded Annually Amount in One Year

100
1 percent 1 time per year 2 dollars

100
2 D 50 percent 2 times per year 2:25 dollars

100
3 percent 3 times per year ⇠ 2:37 dollars

100
4 percent 4 times per year ⇠ 2:44 dollars

100
5 percent 5 times per year ⇠ 2:49 dollars

100
100 percent 100 times per year ⇠ 2:70481 dollars

100
1 percent 1 times per year e dollars

Figure 13.1: The Banker’s experiment

13.2 Logarithms and Exponentials
We recall some of the basic facts about logarithms here. We first consider the
natural logarithm with a base of the number e. The number e is approximately
2:71 and appears in a menagerie of mathematical and scientific contexts. One
interesting way to acquire e is via the following banker’s thought experiment:
Invest 1 dollar in a bank account at an interest rate of 100

1 percent annually
(once per year) and in one year, you’ll earn 1 dollar, and thus have a total of
2 dollars after one year. Now, allow yourself to accrue interest twice a year,
but at the compromised rate of 100

2 D 50 percent. After the first six months,
you’ll earn 50 cents, since 50 cents is 50 percent of the invested 1 dollar. After
another six months, you’ll earn 50 percent of the 1:50 dollars you have, and
end up with 2:25 dollars. This is more than if you compounded only once per
year. If you compound three times per year, you have the compromised rate
of 100

3 percent. You earn a little bit more at this rate, as you can check. If you
allow yourself to compound “infinitely many times” at the compromised rate
of “100

1 ” percent, you’ll end up with e dollars!
This is summarized in the table in Figure 13.1.

ln WD loge W .0;1/ ! .�1;1/ (13.3)

where “ln” is the natural logarithm.
The following equivalence guides all of the facts to come:

SECTION 13.2 Logarithms and Exponentials 345

�5 5 10

�5

5

10
y D ex

y D ln.x/

Figure 13.2: Graphs of the logarithm and exponential

13.4 Equivalence of logarithm and exponential

ln.y/ D x () ex D y

Some first properties of the natural logarithm include

ln.ex/ D x and eln.x/
D x (13.5)

So, the functions ln.x/ and ex are inverse to one another.
Further, for any two positive real numbers a and b,

ln.a � b/ D ln.a/C ln.b/ (13.6)

effectively because
eaeb D eaCb (13.7)

So, logarithms turn products into sums!
Using the above property, we can deduce the following for all positive real

numbers a and b and any real number c:

� ln
�
b
a

�
D ln.b/ � ln.a/

because eb

ea
D eb a

� ln.ac/ D c � ln.a/
because .ea/c D eac

We also have a logarithm log2 with a base of 2. Similar to the natural loga-
rithm,

346 CHAPTER 13 Mathematical Tools for Quantum Computing III

log2.y/ D x () 2x D y (13.8)

In fact, the natural logarithm could be written ln.x/ D loge.x/, i.e., with
an explicitly mentioned base of e. There are logarithms for every positive real
number base, so it’s nice to be able to base change. To change the base of a
logarithm from one base b to another base c, we can use the formula

logb.a/ D
logc.a/
logc.b/

(13.9)

One trick to remember this is that the a is above the b on the left-hand
side, and that after changing the base to c, the a remains above the b on the
right-hand side.

13.3 Euler’s Formula

We will give an inkling of a proof via power series (avoiding issues of conver-
gence for brevity) of the mysterious and wonderful formula of Euler, relating
the polar coordinates of a complex number of unit norm to the number e, as
mentioned in the previous chapter and depicted in Figure 13.3.

13.10 Euler’s formula

ei� D cos.�/C isin.�/

The power series of the (complex-valued) cosine and sine functions are

cos.z/ D 1 �
z2

2Š
C
z4

4Š
�
z6

6Š
C ::: (13.11)

and

sin.z/ D z �
z3

3Š
C
z5

5Š
�
z7

7Š
C ::: (13.12)

The power series of the (complex-valued) exponential function ez WD exp .z/
is

ez D 1C z C
z2

2Š
C
z3

3Š
C
z4

4Š
C ::: (13.13)

Then, evaluating the power series for the exponential function at the complex
number iz yields

SECTION 13.3 Euler’s Formula 347

0

�=2

�

3�=2

1

�

ei� D cos.�/C isin.�/

Figure 13.3: Euler’s formula

eiz D 1C .iz/C
.iz/2

2Š
C
.iz/3

3Š
C
.iz/4

4Š
C : : :

D 1C iz C
i2z2

2Š
C
i3z3

3Š
C
i4z4

4Š
C : : : (13.14)

and remembering that i2 D �1; i3 D �i and i4 D 1 further yields

1C iz C
i2z2

2Š
C
i3z3

3Š
C
i4z4

4Š
C : : :

D 1C iz C
�1 � z2

2Š
C
�iz3

3Š
C
z4

4Š
C : : :

D 1C iz �
z2

2Š
�
iz3

3Š
C
z4

4Š
C : : : (13.15)

and after a little reorganization, we have

D

�
1 �

z2

2Š
C
z4

4Š
� :::

�
C

�
iz �

iz3

3Š
C
iz5

5Š
� :::

�
(13.16)

Now, multiplying the power series for sin.z/ by i yields

348 CHAPTER 13 Mathematical Tools for Quantum Computing III

isin.z/ D i
�
z �

z3

3Š
C
z5

5Š
�
z7

7Š
C : : :

�
D iz � i

z3

3Š
C i

z5

5Š
� i

z7

7Š
C : : :

D iz �
iz3

3Š
C
iz5

5Š
�
iz7

7Š
C : : : (13.17)

Adding the power series of cos.z/ and the newly acquired expression for
isin.z/ yields

cos.z/C isin.z/ D
�
1 �

z2

2Š
C
z4

4Š
� :::

�
C

�
iz �

iz3

3Š
C
iz5

5Š
� :::

�
(13.18)

which is exactly the expression we found for eiz earlier! Therefore,

eiz D cos.z/C isin.z/ (13.19)

Using Euler’s formula, we have Euler’s identity:

13.20 Euler’s Identity

ei� C 1 D 0

For further resources and additional mathematical tools, please refer to the
book’s GitHub site.

CHAPTER

14
Table of Quantum Operators and
Core Circuits

�
0 1

1 0

�
X

�
0 �i

i 0

�
Y Y

�
1 0

0 �1

�
Z Z

1p
2

�
1 1

1 �1

�
H H

cos �

2
�i sin �

2

�i sin �
2

cos �
2

!
Rx.�/ Rx.�/

cos �

2
� sin �

2

sin �
2

cos �
2

!
Ry.�/ Ry.�/

�
1 0

0 ei'

�
R' R'

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019

J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0_14

349

https://doi.org/10.1007/978-3-030-23922-0_14
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23922-0_14&domain=pdf

350 CHAPTER 14 Table of Quantum Operators and Core Circuits

�
1 0

0 i

�
S S

�
1 0

0 ei�=4

�
T T

N/A Meas.

0BB@
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1CCA CNOT �

0BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

1CCA CZ �

Z

0BB@
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1CCA SWAP �

�

0BBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

1CCCCCCCA Toffoli �

�

CHAPTER 14 Table of Quantum Operators and Core Circuits 351

0BBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

1CCCCCCCA Fredkin �

�

�

1p
2

0B@1 0 1 0
0 1 0 1
0 1 0 �1
1 0 �1 0

1CA Bell H �

HXH D Z

HZH D X

HYH D �Y

H � D H D H 1

X2 D Y 2 D Z2 D I

H D .X CZ/=
p
2

H 2 D I

SWAP12 D C12C21C12
C12X1C12 D X1X2
C12Y1C12 D Y1X2
C12Z1C12 D Z1
C12X2C12 D X2
C12Y2C12 D Z1Y2
C12Z2C12 D Z1Z2

Rz;1.�/C12 D C12Rz;1.�/

Rx;2.�/C12 D C12Rx;2.�/

Gate Identities
(C D CNOT)

Works Cited

[1] S. Aaronson. Certified randomness from quantum
supremacy. Multiple unpublished talks.

[2] S. Aaronson. The Limits of Quantum Computers.
Scientific American, March 2008.

[3] S. Aaronson. Quantum Complexity Theory. Fall
2010. Massachusetts Institute of Technology: MIT
OpenCouseWare. https://ocw.mit.edu. License: Cre-
ative Commons BY-NC-SA, 2010.

[4] S. Aaronson. Read the fine print. Nature Physics,
11(4):291, 2015.

[5] S. Aaronson and A. Arkhipov. The computational
complexity of linear optics. In Proceedings of the
forty-third annual ACM symposium on Theory of
computing, pages 333–342. ACM, 2011.

[6] S. Aaronson, G. Kuperberg, C. Granade,
and V. Russo. The Complexity Zoo.
http://complexityzoo.uwaterloo.ca/Complexity_Zoo,
2005.

[7] C. Adami and N. J. Cerf. Quantum computation with
linear optics. In Quantum Computing and Quantum
Communications, pages 391–401. Springer, 1999.

[8] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is
in P. Annals of Mathematics, 160:781–793, 2004.

[9] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazi-
rani. Quantum walks on graphs. In Proceedings of

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019

J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0

353

https://ocw.mit.edu
http://complexityzoo.uwaterloo.ca/Complexity_Zoo
https://doi.org/10.1007/978-3-030-23922-0

354 Works Cited

the thirty-third annual ACM symposium on Theory
of computing, pages 50–59. ACM, 2001.

[10] D. Aharonov and U. Vazirani. Is quantum mechan-
ics falsifiable? A computational perspective on the
foundations of quantum mechanics. Computabil-
ity: Turing, Gödel, Church, and Beyond. MIT Press,
2013.

[11] Y. Aharonov, L. Davidovich, and N. Zagury. Quan-
tum random walks. Physical Review A, 48(2):1687–
1690, Aug 1993.

[12] S. Allen, J. Kim, D. L. Moehring, and C. R. Monroe.
Reconfigurable and programmable ion trap quantum
computer. In 2017 IEEE International Conference
on Rebooting Computing (ICRC), pages 1–3, Nov
2017.

[13] A. Almheiri, X. Dong, and D. Harlow. Bulk locality
and quantum error correction in ads/cft. Journal of
High Energy Physics, 2015(4):163, 2015.

[14] D. Anderson. The Anderson Group Website, JILA,
CO. https://jila.colorado.edu/dzanderson/research-
area-description/neutral-atom-quantum-computing,
2019.

[15] R. Anderson. Algorithm Analysis &
Time Complexity Simplified. July 19,
2017 (https://bit.ly/2xH8mEr), 2017. Original URL:
https://medium.com/@randerson112358/algorithm-
analysis-time-complexity-simplified-
cd39a81fec71.

[16] C. Arnold, J. Demory, V. Loo, A. Lemaître, I. Sagnes,
M. Glazov, O. Krebs, P. Voisin, P. Senellart, and
L. Lanco. Macroscopic rotation of photon polariza-
tion induced by a single spin. Nature Communica-
tions, 6:6236, 2015.

[17] M. Artin. Algebra. Pearson, 2010.

https://jila.colorado.edu/dzanderson/research-area-description/neutral-atom-quantum-computing
https://jila.colorado.edu/dzanderson/research-area-description/neutral-atom-quantum-computing
https://bit.ly/2xH8mEr
https://medium.com/@randerson112358/algorithm-analysis-time-complexity-simplified-cd39a81fec71
https://medium.com/@randerson112358/algorithm-analysis-time-complexity-simplified-cd39a81fec71
https://medium.com/@randerson112358/algorithm-analysis-time-complexity-simplified-cd39a81fec71

Works Cited 355

[18] S. Axler. Linear Algebra Done Right. Springer,
2014.

[19] D. M. Bacon. Decoherence, Control, and Symmetry
in Quantum Computers. PhD thesis, University of
California at Berkeley, 2001.

[20] P. Baireuther, T. E. O’Brien, B. Tarasinski, and C. W.
Beenakker. Machine-learning-assisted correction of
correlated qubit errors in a topological code. Quan-
tum, 2:48, 2018.

[21] P. Ball. Ion-based commercial quantum com-
puter is a first. Physics World, December
17, 2018 (https://bit.ly/2RrpZDf), 2018. Orig-
inal URL: https://physicsworld.com/a/ion-based-
commercial-quantum-computer-is-a-first/.

[22] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVin-
cenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin,
and H. Weinfurter. Elementary gates for quantum
computation. Physical review A, 52(5):3457, 1995.
arXiv: quant-ph/9503016.

[23] P. Benioff. The computer as a physical system: A mi-
croscopic quantum mechanical hamiltonian model of
computers as represented by turing machines. Jour-
nal of Statistical Physics, 22(5):563–591, May 1980.

[24] C. H. Bennett, E. Bernstein, G. Brassard, and
U. Vazirani. Strengths and weaknesses of quan-
tum computing. SIAM journal on Computing,
26(5):1510–1523, 1997.

[25] C. H. Bennett and G. Brassard. Quantum cryptog-
raphy: Public key distribution and coin tossing. In
Proc. IEEE Int. Conf. Computers, Systems, and Sig-
nal Processing, volume 175, 1984.

[26] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa,
A. Peres, and W. K. Wootters. Teleporting an un-
known quantum state via dual classical and Einstein-
Podolsky-Rosen channels. Phys. Rev. Lett., 70:1895–
1899, Mar 1993.

https://bit.ly/2RrpZDf
https://physicsworld.com/a/ion-based-commercial-quantum-computer-is-a-first/
https://physicsworld.com/a/ion-based-commercial-quantum-computer-is-a-first/

356 Works Cited

[27] C. H. Bennett and S. J. Wiesner. Communica-
tion via one- and two-particle operators on Einstein-
Podolsky-Rosen states. Phys. Rev. Lett., 69:2881–
2884, Nov 1992.

[28] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra,
M. Blok, L. Robledo, T. Taminiau, M. Markham,
D. Twitchen, L. Childress, et al. Heralded entangle-
ment between solid-state qubits separated by three
metres. Nature, 497(7447):86, 2013.

[29] E. Bernstein and U. Vazirani. Proceedings of the
25th annual ACM symposium on the theory of com-
puting. ACM, New York, 11, 1993.

[30] M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E.
Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers,
P. Siyushev, M. H. Metsch, H. Park, et al. Quantum
nonlinear optics with a germanium-vacancy color
center in a nanoscale diamond waveguide. Physical
Review Letters, 118(22):223603, 2017.

[31] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost,
N. Wiebe, and S. Lloyd. Quantum machine learning.
Nature, 549(7671):195, 2017.

[32] A. Blanco-Redondo, I. Andonegui, M. J. Collins,
G. Harari, Y. Lumer, M. C. Rechtsman, B. J. Eggle-
ton, and M. Segev. Topological optical waveguid-
ing in silicon and the transition between topological
and trivial defect states. Physical Review Letters,
116(16):163901, 2016.

[33] A. Blanco-Redondo, B. Bell, M. Segev, and
B. Eggleton. Photonic quantum walks with sym-
metry protected topological phases. In AIP Confer-
ence Proceedings, volume 1874, page 020001. AIP
Publishing, 2017.

[34] M. Blok, V. Ramasesh, J. Colless, K. O’Brien,
T. Schuster, N. Yao, and I. Siddiqi. Implementa-
tion and applications of two qutrit gates in supercon-

Works Cited 357

ducting transmon qubits. Presented at APS March
Meeting, 2018.

[35] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L.
Wall, A. M. Rey, M. Foss-Feig, and J. J. Bollinger.
Quantum spin dynamics and entanglement gen-
eration with hundreds of trapped ions. Science,
352(6291):1297–1301, 2016.

[36] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Bab-
bush, N. Ding, Z. Jiang, M. J. Bremner, J. M.
Martinis, and H. Neven. Characterizing quantum
supremacy in near-term devices. Nature Physics,
14(6):595–600, Jun 2018. arXiv: 1608.00263.

[37] A. D. Bookatz. QMA-complete problems. Quan-
tum Information & Computation, 14(5&6):361–383,
2014.

[38] M. Born. Zur Quantenmechanik der Stoßvorgänge.
Z. Phys., 37(12):863–867, 1926.

[39] M. Born. Das adiabatenprinzip in der quanten-
mechanik. Zeitschrift für Physik A Hadrons and
Nuclei, 40(3):167–192, 1927.

[40] M. Born and V. Fock. Beweis des adiabaten-
satzes (1928, English Translation). In L. Faddeev,
L. Khalfin, and I. Komarov, editors, V.A. Fock – Se-
lected Works: Quantum Mechanics and Quantum
Field Theory. Chapman & Hall/CRC, 2004.

[41] D. Boschi, S. Branca, F. De Martini, L. Hardy, and
S. Popescu. Experimental realization of teleporting
an unknown pure quantum state via dual classical
and Einstein-Podolsky-Rosen channels. Phys. Rev.
Lett., 80:1121–1125, Feb 1998.

[42] V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. De-
voret. Quantum coherence with a single cooper pair.
Physica Scripta, 1998(T76):165, 1998.

[43] A. Bouland, B. Fefferman, C. Nirkhe, and U. Vazi-
rani. Quantum supremacy and the complex-

358 Works Cited

ity of random circuit sampling. arXiv preprint
arXiv:1803.04402, 2018.

[44] P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury,
and F. Vatan. On universal and fault-tolerant quan-
tum computing. arXiv preprint quant-ph/9906054,
1999.

[45] T.-D. Bradley. Math3ma.
https://www.math3ma.com, 2015.

[46] T.-D. Bradley. What is Applied Category Theory?
arXiv preprint arXiv:1809.05923, 2018.

[47] S. Bravyi, D. Gosset, and R. Koenig. Quan-
tum advantage with shallow circuits. Science,
362(6412):308–311, 2018.

[48] S. Bravyi, D. Gosset, R. Koenig, and M. Tomamichel.
Quantum advantage with noisy shallow circuits in
3d. arXiv preprint arXiv:1904.01502, 2019.

[49] S. B. Bravyi and A. Y. Kitaev. Quantum codes
on a lattice with boundary. arXiv preprint quant-
ph/9811052, 1998.

[50] C. D. Bruzewicz, J. Chiaverini, R. McConnell,
and J. M. Sage. Trapped-ion quantum comput-
ing: Progress and challenges. arXiv preprint
arXiv:1904.04178, 2019.

[51] Y. Cao, G. G. Guerreschi, and A. Aspuru-Guzik.
Quantum neuron: an elementary building block for
machine learning on quantum computers. arXiv
preprint arXiv:1711.11240, 2017.

[52] J. Carolan, C. Harrold, C. Sparrow, E. Martín-López,
N. J. Russell, J. W. Silverstone, P. J. Shadbolt,
N. Matsuda, M. Oguma, M. Itoh, et al. Universal
linear optics. Science, 349(6249):711–716, 2015.

[53] S. Castelletto, B. Johnson, V. Ivády, N. Stavrias,
T. Umeda, A. Gali, and T. Ohshima. A silicon car-
bide room-temperature single-photon source. Nature
Materials, 13(2):151, 2014.

https://www.math3ma.com

Works Cited 359

[54] W.-J. Chen, M. Xiao, and C. T. Chan. Photonic
crystals possessing multiple Weyl points and the
experimental observation of robust surface states.
Nature Communications, 7:13038, 2016.

[55] L. Childress and R. Hanson. Diamond nv centers for
quantum computing and quantum networks. MRS
Bulletin, 38(2):134–138, 2013.

[56] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gut-
mann, and D. A. Spielman. Exponential algorithmic
speedup by a quantum walk. In Proceedings of the
thirty-fifth annual ACM symposium on Theory of
computing, pages 59–68. ACM, 2003.

[57] A. M. Childs, E. Farhi, and S. Gutmann. An ex-
ample of the difference between quantum and clas-
sical random walks. arXiv preprint arXiv: quant-
ph/0103020v1, Mar 2001.

[58] K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Rein-
hold, C. J. Axline, Y. Y. Gao, L. Frunzio, M. Devoret,
L. Jiang, and R. Schoelkopf. Deterministic telepor-
tation of a quantum gate between two logical qubits.
Nature, 561(7723):368, 2018.

[59] J. I. Cirac and P. Zoller. Quantum computations with
cold trapped ions. Phys. Rev. Lett., 74:4091–4094,
May 1995.

[60] Cirq Developers. Cirq documentation, 2018.
https://cirq.readthedocs.io/en/latest/tutorial.html.

[61] P. J. Coles, S. Eidenbenz, S. Pakin, A. Adedoyin,
J. Ambrosiano, P. Anisimov, W. Casper, G. Chen-
nupati, C. Coffrin, H. Djidjev, et al. Quantum algo-
rithm implementations for beginners. arXiv preprint
arXiv:1804.03719, 2018.

[62] C. M. Dawson and M. A. Nielsen. The Solovay-
Kitaev algorithm. arXiv preprint quant-ph/0505030,
2005.

https://cirq.readthedocs.io/en/latest/tutorial.html

360 Works Cited

[63] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill.
Topological quantum memory. Journal of Mathe-
matical Physics, 43(9):4452–4505, 2002.

[64] D. Dervovic, M. Herbster, P. Mountney, S. Sev-
erini, N. Usher, and L. Wossnig. Quantum lin-
ear systems algorithms: a primer. arXiv preprint
arXiv:1802.08227, 2018.

[65] D. Deutsch. Quantum theory, the Church–Turing
principle and the universal quantum computer.
Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences,
400(1818):97–117, 1985.

[66] D. Deutsch. Lectures on Quantum Computation.
http://www.quiprocone.org/Protected/
DD_lectures.htm, 2003.

[67] D. Deutsch and R. Jozsa. Rapid solution of problems
by quantum computation. Proceedings of the Royal
Society of London A: Mathematical, Physical and
Engineering Sciences, 439(1907):553–558, 1992.

[68] P. A. M. Dirac. A new notation for quantum mechan-
ics. Mathematical Proceedings of the Cambridge
Philosophical Society, 35(3):416–418, 1939.

[69] D. P. DiVincenzo. Topics in quantum computers.
arXiv preprint cond-mat/9612126, 1996.

[70] D. P. DiVincenzo. The physical implementation
of quantum computation. Fortschritte der Physik:
Progress of Physics, 48(9-11):771–783, 2000. arXiv:
quant-ph/0002077.

[71] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko,
J. Wrachtrup, and L. C. Hollenberg. The nitrogen-
vacancy colour centre in diamond. Physics Reports,
528(1):1–45, 2013.

[72] L.-M. Duan and H. Kimble. Scalable photonic
quantum computation through cavity-assisted inter-

http://www.quiprocone.org/Protected/DD_lectures.htm
http://www.quiprocone.org/Protected/DD_lectures.htm

Works Cited 361

actions. Physical Review Letters, 92(12):127902,
2004.

[73] D. S. Dummit and R. M. Foote. Abstract Algebra,
volume 3. Wiley Hoboken, 2004.

[74] A. Einstein. Letter from Einstein to D. M. Lipkin.
https://bit.ly/2CogEUC, July 1952. Accessed: 2018-
05-19, Original URL: http://sethlipkin.com/
collectibles/letters/letter1/letter%201%20-
%20page%201.jpg.

[75] A. Einstein, B. Podolsky, and N. Rosen. Can
quantum-mechanical description of physical real-
ity be considered complete? Phys. Rev., 47:777–780,
May 1935.

[76] R. E. Evans, M. K. Bhaskar, D. D. Sukachev, C. T.
Nguyen, A. Sipahigil, M. J. Burek, B. Machielse,
G. H. Zhang, A. S. Zibrov, E. Bielejec, et al. Photon-
mediated interactions between quantum emitters in
a diamond nanocavity. Science, 362(6415):662–665,
2018.

[77] E. Farhi, J. Goldstone, and S. Gutmann. A quantum
algorithm for the hamiltonian NAND tree. arXiv
preprint quant-ph/0702144, 2007.

[78] E. Farhi, J. Goldstone, and S. Gutmann. A quantum
approximate optimization algorithm. arXiv preprint
arXiv:1411.4028, 2014.

[79] E. Farhi, J. Goldstone, and S. Gutmann. A quan-
tum approximate optimization algorithm applied to
a bounded occurrence constraint problem. arXiv
preprint arXiv:1412.6062, 2014.

[80] E. Farhi and S. Gutmann. Analog analogue of a
digital quantum computation. Physical Review A,
57(4):2403, 1998.

[81] E. Farhi and S. Gutmann. Quantum computation and
decision trees. Physical Review A, 58(2):915–928,
Aug 1998. arXiv: quant-ph/9706062.

https://bit.ly/2CogEUC
http://sethlipkin.com/collectibles/letters/letter1/letter%201%20-%20page%201.jpg
http://sethlipkin.com/collectibles/letters/letter1/letter%201%20-%20page%201.jpg
http://sethlipkin.com/collectibles/letters/letter1/letter%201%20-%20page%201.jpg

362 Works Cited

[82] E. Farhi and H. Neven. Classification with quantum
neural networks on near term processors. arXiv
preprint arXiv:1802.06002, 2018.

[83] R. P. Feynman. Simulating physics with comput-
ers. International Journal of Theoretical Physics,
21(6):467–488, Jun 1982.

[84] R. P. Feynman. Feynman Lectures on Computation.
CRC Press, 2000.

[85] M. Fingerhuth, T. Babej, and P. Wittek. Open
source software in quantum computing. PLOS One,
13(12):e0208561, 2018.

[86] C. Flühmann, T. L. Nguyen, M. Marinelli, V. Neg-
nevitsky, K. Mehta, and J. Home. Encoding a
qubit in a trapped-ion mechanical oscillator. Nature,
566(7745):513, 2019.

[87] A. G. Fowler, M. Mariantoni, J. M. Martinis, and
A. N. Cleland. Surface codes: Towards practical
large-scale quantum computation. Phys. Rev. A,
86:032324, Sep 2012.

[88] J. B. Fraleigh. A First Course in Abstract Algebra.
Pearson, 2002.

[89] E. Fredkin and T. Toffoli. Conservative logic. Inter-
national Journal of Theoretical Physics, 21(3):219–
253, Apr 1982.

[90] M. Freedman, A. Kitaev, M. Larsen, and Z. Wang.
Topological quantum computation. Bulletin of the
American Mathematical Society, 40(1):31–38, 2003.
arXiv: quant-ph/0101025.

[91] E. S. Fried, N. P. Sawaya, Y. Cao, I. D. Kivlichan,
J. Romero, and A. Aspuru-Guzik. qTorch: The
quantum tensor contraction handler. PloS one,
13(12):e0208510, 2018.

[92] N. Friis, O. Marty, C. Maier, C. Hempel,
M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber,
C. Roos, R. Blatt, et al. Observation of entangled

Works Cited 363

states of a fully controlled 20-qubit system. Physical
Review X, 8(2):021012, 2018.

[93] A. Frisk Kockum. Quantum optics with artificial
atoms. Chalmers University of Technology, 2014.

[94] J. M. Gambetta, J. M. Chow, and M. Steffen. Build-
ing logical qubits in a superconducting quantum
computing system. NPJ Quantum Information,
3(1):2, 2017.

[95] C. Gidney and M. Ekera. How to factor 2048 bit
rsa integers in 8 hours using 20 million noisy qubits.
arXiv preprint https://scirate.com/arxiv/1905.09749,
May 2019.

[96] D. Gottesman. The Heisenberg representation
of quantum computers. arXiv preprint quant-
ph/9807006, 1998.

[97] Grove Developers. Grove doc-
umentation, 2018. https://grove-
docs.readthedocs.io/en/latest/vqe.html.

[98] L. K. Grover. Quantum mechanics helps in searching
for a needle in a haystack. Phys. Rev. Lett., 79:325–
328, Jul 1997. arXiv: quant-ph/9706033.

[99] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M.
Taylor. Robust optical delay lines with topological
protection. Nature Physics, 7(11):907, 2011.

[100] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. Taylor.
Imaging topological edge states in silicon photonics.
Nature Photonics, 7(12):1001, 2013.

[101] D. Hanneke, J. P. Home, J. D. Jost, J. M. Amini,
D. Leibfried, and D. J. Wineland. Realization of a
programmable two-qubit quantum processor. Nature
Physics, 6(1):13, 2010.

[102] G. H. Hardy and J. E. Littlewood. Some prob-
lems of diophantine approximation: Part II. The
trigonometrical series associated with the elliptic

https://scirate.com/arxiv/1905.09749
https://grove-docs.readthedocs.io/en/latest/vqe.html
https://grove-docs.readthedocs.io/en/latest/vqe.html

364 Works Cited

theta-functions. Acta Mathematica, 37:193–239,
1914.

[103] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum
algorithm for linear systems of equations. Physi-
cal Review Letters, 103(15):150502, 2009. arXiv:
0811.3171.

[104] A. W. Harrow and A. Montanaro. Quantum compu-
tational supremacy. Nature, 549(7671):203, 2017.

[105] M. Z. Hasan and C. L. Kane. Colloquium: topo-
logical insulators. Reviews of Modern Physics,
82(4):3045, 2010.

[106] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Har-
row, A. Kandala, J. M. Chow, and J. M. Gambetta.
Supervised learning with quantum-enhanced feature
spaces. Nature, 567(7747):209, 2019.

[107] M. Hayashi and H. Zhu. Secure uniform random-
number extraction via incoherent strategies. Physical
Review A, 97(1):012302, 2018. arXiv: 1706.04009.

[108] P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Wal-
ter, and Z. Yang. Holographic duality from random
tensor networks. Journal of High Energy Physics,
2016(11):9, 2016.

[109] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer,
N. Kalb, M. S. Blok, J. Ruitenberg, R. F. Vermeulen,
R. N. Schouten, C. Abellán, et al. Loophole-free Bell
inequality violation using electron spins separated
by 1.3 kilometres. Nature, 526(7575):682, 2015.

[110] C. Hepp, T. Müller, V. Waselowski, J. N. Becker,
B. Pingault, H. Sternschulte, D. Steinmüller-Nethl,
A. Gali, J. R. Maze, M. Atatüre, et al. Electronic
structure of the silicon vacancy color center in di-
amond. Physical Review Letters, 112(3):036405,
2014.

Works Cited 365

[111] O. Higgott, D. Wang, and S. Brierley. Varia-
tional quantum computation of excited states. arXiv
preprint arXiv:1805.08138, 2018.

[112] C.-K. Hong, Z.-Y. Ou, and L. Mandel. Measure-
ment of subpicosecond time intervals between two
photons by interference. Physical Review Letters,
59(18):2044, 1987.

[113] IBM Q team. IBM Q 16 Rueschlikon backend
specification V1.1.0. https://github.com/Qiskit/ibmq-
device-information/, 2019.

[114] S. Jordan. Quantum Algorithm Zoo.
http://quantumalgorithmzoo.org/, 2011.

[115] M. Katanaev. Adiabatic theorem for finite di-
mensional quantum mechanical systems. Russian
Physics Journal, 54(3):342–353, 2011.

[116] J. Kempe. Quantum random walks hit exponentially
faster. arXiv preprint quant-ph/0205083, 2002.

[117] J. Kempe. Quantum random walks: an introductory
overview. Contemporary Physics, 44(4):307–327,
2003. arXiv: quant-ph/0303081.

[118] I. Kerenidis and A. Prakash. Quantum recommen-
dation systems. arXiv preprint arXiv:1603.08675,
2016.

[119] A. Y. Kitaev. Fault-tolerant quantum computation
by anyons. Annals of Physics, 303(1):2–30, 2003.
arXiv: quant-ph/9707021.

[120] E. Knill, R. Laflamme, and G. J. Milburn. A scheme
for efficient quantum computation with linear optics.
Nature, 409(6816):46, 2001.

[121] D. E. Knuth. Big omicron and big omega and big
theta. ACM Sigact News, 8(2):18–24, 1976.

[122] W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calu-
sine, and D. D. Awschalom. Room temperature co-

https://github.com/Qiskit/ibmq-device-information/
https://github.com/Qiskit/ibmq-device-information/
http://quantumalgorithmzoo.org/

366 Works Cited

herent control of defect spin qubits in silicon carbide.
Nature, 479(7371):84, 2011.

[123] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P.
Dowling, and G. J. Milburn. Linear optical quantum
computing with photonic qubits. Reviews of Modern
Physics, 79(1):135, 2007.

[124] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando,
S. Gustavsson, and W. D. Oliver. A quantum en-
gineer’s guide to superconducting qubits. arXiv
preprint arXiv:1904.06560, 2019.

[125] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and
O. Zilberberg. Topological states and adiabatic
pumping in quasicrystals. Physical Review Letters,
109(10):106402, 2012.

[126] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura,
C. Monroe, and J. L. O’Brien. Quantum computers.
Nature, 464(7285):45, 2010.

[127] V. Lahtinen and J. K. Pachos. A short introduction to
topological quantum computation. SciPost Physics,
3(3):021, Sep 2017. arXiv: 1705.04103.

[128] R. Landauer. Irreversibility and heat generation in
the computing process. IBM Journal of Research
and Development, 5(3):183–191, July 1961.

[129] R. LaRose. Overview and comparison of gate level
quantum software platforms. Quantum, 3:130, 2019.

[130] F. W. Lawvere and S. H. Schanuel. Conceptual
Mathematics: A First Introduction to Categories.
Cambridge University Press, 2009.

[131] D. R. Leibrandt, J. Labaziewicz, V. Vuletić, and I. L.
Chuang. Cavity sideband cooling of a single trapped
ion. Physical Review Letters, 103(10):103001, 2009.

[132] S. Leichenauer. Cirq Bootcamp: QNN Colab, 2018.

[133] H. Levine, A. Keesling, A. Omran, H. Bernien,
S. Schwartz, A. S. Zibrov, M. Endres, M. Greiner,

Works Cited 367

V. Vuletić, and M. D. Lukin. High-fidelity control
and entanglement of rydberg-atom qubits. Physical
Review Letters, 121(12):123603, 2018.

[134] F. Li, X. Huang, J. Lu, J. Ma, and Z. Liu. Weyl
points and Fermi arcs in a chiral phononic crystal.
Nature Physics, 14(1):30, 2018.

[135] C. Liu, M. G. Dutt, and D. Pekker. Single-photon
heralded two-qubit unitary gates for pairs of nitrogen-
vacancy centers in diamond. Physical Review A,
98(5):052342, 2018.

[136] S. Lloyd. A potentially realizable quantum computer.
Science, 261(5128):1569–1571, 1993.

[137] M. Loceff. A Course in Quantum Computing. 2015.

[138] L. Lu, J. D. Joannopoulos, and M. Soljačić. Topo-
logical photonics. Nat. Photonics, 8:821–829, 2014.

[139] D. Lucas, C. Donald, J. P. Home, M. McDonnell,
A. Ramos, D. Stacey, J.-P. Stacey, A. Steane, and
S. Webster. Oxford ion-trap quantum computing
project. Philosophical Transactions of the Royal
Society of London. Series A: Mathematical, Physical
and Engineering Sciences, 361(1808):1401–1408,
2003.

[140] Y. Manin. Computable and Non-Computable (in
Russian). Sovetskoye Radio, Moscow, 1980.

[141] Y. I. Manin. Classical computing, quantum com-
puting, and Shor’s factoring algorithm. In Sémi-
naire Bourbaki : volume 1998/99, exposés 850-864,
number 266 in Astérisque, pages 375–404. Société
mathématique de France, 2000.

[142] I. L. Markov, A. Fatima, S. V. Isakov, and S. Boixo.
Quantum supremacy is both closer and farther than
it appears. arXiv:1807.10749 [quant-ph], Jul 2018.
arXiv: 1807.10749.

[143] E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez,
X.-Q. Zhou, and J. L. O’brien. Experimental real-

368 Works Cited

ization of Shor’s quantum factoring algorithm using
qubit recycling. Nature Photonics, 6(11):773, 2012.

[144] K. Mattle, H. Weinfurter, P. G. Kwiat, and
A. Zeilinger. Dense coding in experimental quantum
communication. Phys. Rev. Lett., 76:4656–4659, Jun
1996.

[145] R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna,
H. Bohuslavskyi, R. Laviéville, L. Hutin, S. Barraud,
M. Vinet, M. Sanquer, et al. A cmos silicon spin
qubit. Nature Communications, 7:13575, 2016.

[146] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Bab-
bush, and H. Neven. Barren plateaus in quantum
neural network training landscapes. Nature Commu-
nications, 9(1):4812, 2018.

[147] J. R. McClean, Z. Jiang, N. C. Rubin, R. Babbush,
and H. Neven. Decoding quantum errors with sub-
space expansions. arXiv preprint arXiv:1903.05786,
2019.

[148] J. R. McClean, M. E. Kimchi-Schwartz, J. Carter,
and W. A. de Jong. Hybrid quantum-classical hierar-
chy for mitigation of decoherence and determination
of excited states. Physical Review A, 95(4):042308,
2017.

[149] J. R. McClean, I. D. Kivlichan, K. J. Sung, D. S.
Steiger, Y. Cao, C. Dai, E. S. Fried, C. Gidney,
B. Gimby, P. Gokhale, et al. Openfermion: the
electronic structure package for quantum computers.
arXiv preprint arXiv:1710.07629, 2017.

[150] J. R. McClean, J. Romero, R. Babbush, and
A. Aspuru-Guzik. The theory of variational hy-
brid quantum-classical algorithms. New Journal
of Physics, 18(2):023023, 2016.

[151] N. D. Mermin. Quantum Computer Science: An
Introduction. Cambridge University Press, 2007.

Works Cited 369

[152] A. Milsted and G. Vidal. Tensor networks
as conformal transformations. arXiv preprint
arXiv:1805.12524, 2018.

[153] S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and
M. Hafezi. Measurement of topological invariants in
a 2d photonic system. Nature Photonics, 10(3):180,
2016.

[154] S. Mittal and M. Hafezi. Topologically robust gen-
eration of correlated photon pairs. arXiv preprint
arXiv:1709.09984, 2017.

[155] M. Mohseni, P. Read, H. Neven, S. Boixo,
V. Denchev, R. Babbush, A. Fowler, V. Smelyan-
skiy, and J. Martinis. Commercialize quantum tech-
nologies in five years. Nature News, 543(7644):171,
2017.

[156] R. Movassagh. Efficient unitary paths and quantum
computational supremacy: A proof of average-case
hardness of random circuit sampling. arXiv preprint
arXiv: 1810.04681, Oct 2018.

[157] Y. Nakamura, Y. A. Pashkin, and J. Tsai. Coherent
control of macroscopic quantum states in a single-
Cooper-pair box. Nature, 398(6730):786, 1999.
arXiv: cond-mat/9904003.

[158] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai. Rabi
oscillations in a Josephson-junction charge two-level
system. Phys. Rev. Lett., 87:246601, Nov 2001.

[159] NAS. Quantum Computing: Progress and Prospects.
The National Academies Press, Washington, DC,
2018.

[160] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V.
Isakov, V. Smelyanskiy, A. Megrant, B. Chiaro,
A. Dunsworth, K. Arya, R. Barends, B. Burkett,
Y. Chen, Z. Chen, A. Fowler, B. Foxen, M. Giustina,
R. Graff, E. Jeffrey, T. Huang, J. Kelly, P. Klimov,
E. Lucero, J. Mutus, M. Neeley, C. Quintana,
D. Sank, A. Vainsencher, J. Wenner, T. C. White,

370 Works Cited

H. Neven, and J. M. Martinis. A blueprint for demon-
strating quantum supremacy with superconducting
qubits. Science, 360(6385):195–199, 2018.

[161] M. A. Nielsen and I. L. Chuang. Quantum Compu-
tation and Quantum Information: 10th Anniversary
Edition. Cambridge University Press, New York, NY,
USA, 10th edition, 2011.

[162] J. Noh, S. Huang, D. Leykam, Y. D. Chong, K. P.
Chen, and M. C. Rechtsman. Experimental obser-
vation of optical Weyl points and Fermi arc-like
surface states. Nature Physics, 13(6):611, 2017.

[163] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold,
Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio,
S. Girvin, L. Jiang, et al. Extending the lifetime
of a quantum bit with error correction in supercon-
ducting circuits. Nature, 536(7617):441, 2016.

[164] J. Olson, Y. Cao, J. Romero, P. Johnson, P.-L.
Dallaire-Demers, N. Sawaya, P. Narang, I. Kivlichan,
M. Wasielewski, and A. Aspuru-Guzik. Quantum
information and computation for chemistry. arXiv
preprint arXiv:1706.05413, 2017.

[165] P. J. O’Malley, R. Babbush, I. D. Kivlichan,
J. Romero, J. R. McClean, R. Barends, J. Kelly,
P. Roushan, A. Tranter, N. Ding, et al. Scalable
quantum simulation of molecular energies. Physical
Review X, 6(3):031007, 2016.

[166] J. Otterbach, R. Manenti, N. Alidoust, A. Bestwick,
M. Block, B. Bloom, S. Caldwell, N. Didier, E. S.
Fried, S. Hong, et al. Unsupervised machine learn-
ing on a hybrid quantum computer. arXiv preprint
arXiv:1712.05771, 2017.

[167] T. Ozawa, H. M. Price, A. Amo, N. Goldman,
M. Hafezi, L. Lu, M. Rechtsman, D. Schuster, J. Si-
mon, O. Zilberberg, et al. Topological photonics.
arXiv preprint arXiv:1802.04173, 2018.

Works Cited 371

[168] M. Ozols. Clifford group. Essays at University of
Waterloo, Spring, 2008. https://bit.ly/2JZe2jO.

[169] D. P. Pappas, J. S. Kline, F. da Silva, and D. Wisbey.
Coherence in superconducting materials for quantum
computing. https://slideplayer.com/slide/7770332/.

[170] A. Peruzzo et al. A variational eigenvalue solver
on a quantum processor. eprint. arXiv preprint
arXiv:1304.3061, 2013.

[171] W. Pfaff, B. Hensen, H. Bernien, S. B. van Dam,
M. S. Blok, T. H. Taminiau, M. J. Tiggelman, R. N.
Schouten, M. Markham, D. J. Twitchen, et al. Un-
conditional quantum teleportation between distant
solid-state quantum bits. Science, 345(6196):532–
535, 2014.

[172] H. Pichler, S.-T. Wang, L. Zhou, S. Choi, and M. D.
Lukin. Quantum optimization for maximum indepen-
dent set using rydberg atom arrays. arXiv preprint
arXiv:1808.10816, 2018.

[173] S. Prawer and A. D. Greentree. Diamond for quan-
tum computing. Science, 320(5883):1601–1602,
2008.

[174] J. Preskill. Lecture notes for Physics 219/Com-
puter Science 219 at Caltech: Quantum Computation.
http://www.theory.caltech.edu/people/preskill/
ph229, 1997.

[175] J. Preskill. Quantum computing and the entangle-
ment frontier. arXiv preprint arXiv:1203.5813, 2012.

[176] J. Preskill. Quantum computing in the NISQ era and
beyond. Quantum, 2:79, 2018. arXiv: 1801.00862.

[177] X.-L. Qi and S.-C. Zhang. Topological insulators
and superconductors. Reviews of Modern Physics,
83(4):1057, 2011.

[178] X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke,
S. O’Gara, L. Kling, G. D. Marshall, R. Santagati,

https://bit.ly/2JZe2jO
https://slideplayer.com/slide/7770332/
http://www.theory.caltech.edu/people/preskill/ph229
http://www.theory.caltech.edu/people/preskill/ph229

372 Works Cited

T. C. Ralph, et al. Large-scale silicon quantum pho-
tonics implementing arbitrary two-qubit processing.
Nature Photonics, 12(9):534, 2018.

[179] R. Raussendorf and H. J. Briegel. A one-way quan-
tum computer. Physical Review Letters, 86(22):5188,
2001.

[180] R. Raussendorf and H. J. Briegel. Computational
model underlying the one-way quantum computer.
Quantum Information & Computation, 2(6):443–
486, 2002.

[181] R. Raussendorf, D. Browne, and H. Briegel. The
one-way quantum computer–a non-network model
of quantum computation. Journal of Modern Optics,
49(8):1299–1306, 2002.

[182] R. Raussendorf, D. E. Browne, and H. J. Briegel.
Measurement-based quantum computation on cluster
states. Physical review A, 68(2):022312, 2003.

[183] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer,
D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and
A. Szameit. Photonic floquet topological insulators.
Nature, 496(7444):196, 2013.

[184] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and
M. Troyer. Elucidating reaction mechanisms on
quantum computers. Proceedings of the National
Academy of Sciences, 114(29):7555–7560, 2017.

[185] D. Reitzner, D. Nagaj, and V. Buzek. Quantum
walks. Acta Physica Slovaca. Reviews and Tutorials,
61(6), Dec 2011. arXiv: 1207.7283.

[186] E. G. Rieffel and W. H. Polak. Quantum Computing:
A Gentle Introduction. The MIT Press, 1 edition
edition, Mar 2011.

[187] E. Riehl. Category Theory in Context. Courier Dover
Publications, 2017.

[188] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key cryp-

Works Cited 373

tosystems. Communications of the ACM, 21(2):120–
126, 1978.

[189] J. Romero and A. Aspuru-Guzik. Variational quan-
tum generators: Generative adversarial quantum ma-
chine learning for continuous distributions. arXiv
preprint arXiv:1901.00848, 2019.

[190] S. Rosenblum, Y. Y. Gao, P. Reinhold, C. Wang,
C. J. Axline, L. Frunzio, S. M. Girvin, L. Jiang,
M. Mirrahimi, M. H. Devoret, et al. A cnot gate
between multiphoton qubits encoded in two cavities.
Nature Communications, 9(1):652, 2018.

[191] J. J. Rotman. Advanced Modern Algebra, volume
114. American Mathematical Soc., 2010.

[192] A. Roy and D. P. DiVincenzo. Topological quantum
computing. arXiv preprint arXiv:1701.05052, 2017.

[193] M. Saffman, T. G. Walker, and K. Mølmer. Quantum
information with rydberg atoms. Reviews of Modern
Physics, 82(3):2313, 2010.

[194] U. Schollwöck. The density-matrix renormalization
group. Reviews of Modern Physics, 77(1):259, 2005.

[195] C. Schreyvogel, V. Polyakov, R. Wunderlich, J. Mei-
jer, and C. Nebel. Active charge state control of sin-
gle NV centres in diamond by in-plane Al-Schottky
junctions. Scientific Reports, 5:12160, 2015.

[196] E. Schrödinger. Discussion of probability relations
between separated systems. In Mathematical Pro-
ceedings of the Cambridge Philosophical Society,
volume 31, pages 555–563. Cambridge University
Press, 1935.

[197] M. Schuld and N. Killoran. Quantum machine learn-
ing in feature Hilbert spaces. Physical Review Let-
ters, 122(4):040504, 2019.

[198] H. M. Sheffer. A set of five independent postulates
for Boolean algebras, with application to logical

374 Works Cited

constants. Trans. Amer. Math. Soc., 14:481–488,
1913.

[199] Y. Shi. Both Toffoli and controlled-NOT need little
help to do universal quantum computing. Quantum
Information & Computation, 3(1):84–92, 2003.

[200] P. Shor. Algorithms for quantum computation: dis-
crete logarithms and factoring. In Proceedings of
the 35th Annual Symposium on Foundations of Com-
puter Science, pages 124–134. IEEE Computer So-
ciety, 1994.

[201] J. W. Silverstone, D. Bonneau, J. L. O’Brien, and
M. G. Thompson. Silicon quantum photonics. IEEE
Journal of Selected Topics in Quantum Electronics,
22(6):390–402, 2016.

[202] S. Sim, Y. Cao, J. Romero, P. D. Johnson, and
A. Aspuru-Guzik. A framework for algorithm de-
ployment on cloud-based quantum computers. arXiv
preprint arXiv:1810.10576, 2018.

[203] D. R. Simon. On the power of quantum computation.
In Proceedings of the 35th Annual Symposium on
Foundations of Computer Science, SFCS ’94, pages
116–123, Washington, DC, USA, 1994. IEEE Com-
puter Society.

[204] S. Simon. Quantum computing...with
a twist. Physics World, Sep 2010.
https://physicsworld.com/a/quantum-computing-
with-a-twist/.

[205] A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Bu-
rek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L.
Pacheco, H. A. Atikian, C. Meuwly, et al. An inte-
grated diamond nanophotonics platform for quantum
optical networks. Science, page aah6875, 2016.

[206] M. Smelyanskiy, N. P. Sawaya, and A. Aspuru-
Guzik. qHiPSTER: The quantum high perfor-
mance software testing environment. arXiv preprint
arXiv:1601.07195, 2016.

https://physicsworld.com/a/quantum-computing-with-a-twist/
https://physicsworld.com/a/quantum-computing-with-a-twist/

Works Cited 375

[207] R. S. Smith, M. J. Curtis, and W. J. Zeng. A practical
quantum instruction set architecture. arXiv preprint
arXiv:1608.03355, 2016.

[208] R. Solovay and V. Strassen. A fast monte-carlo test
for primality. SIAM Journal on Computing, 6(1):84–
85, Mar 1977.

[209] N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod,
A. Crespi, F. Flamini, S. Giacomini, G. Milani,
R. Ramponi, P. Mataloni, and et al. Efficient ex-
perimental validation of photonic boson sampling
against the uniform distribution. Nature Photonics,
8(8):615–620, Aug 2014. arXiv: 1311.1622.

[210] G. Strang. Linear Algebra and Its Applications. Cen-
gage Learning, 2018.

[211] S. Sun, H. Kim, Z. Luo, G. S. Solomon, and E. Waks.
A single-photon switch and transistor enabled by
a solid-state quantum memory. arXiv preprint
arXiv:1805.01964, 2018.

[212] S. Sun, H. Kim, G. S. Solomon, and E. Waks.
A quantum phase switch between a single solid-
state spin and a photon. Nature Nanotechnology,
11(6):539–544, 2016.

[213] L. Susskind. Dear qubitzers, GR = QM. arXiv
preprint arXiv:1708.03040, 2017.

[214] J.-L. Tambasco, G. Corrielli, R. J. Chapman,
A. Crespi, O. Zilberberg, R. Osellame, and A. Pe-
ruzzo. Quantum interference of topological states of
light. Science Advances, 4(9):eaat3187, 2018.

[215] M. S. Tame, B. A. Bell, C. Di Franco, W. J.
Wadsworth, and J. G. Rarity. Experimental real-
ization of a one-way quantum computer algorithm
solving Simon’s problem. Physical Review Letters,
113(20):200501, 2014. arXiv: 1410.3859.

376 Works Cited

[216] E. Tang. A quantum-inspired classical algorithm for
recommendation systems. Electronic Colloquium on
Computational Complexity (ECCC), 25:128, 2018.

[217] T. Toffoli. Reversible computing. In Proceedings
of the 7th Colloquium on Automata, Languages and
Programming, pages 632–644, Berlin, Heidelberg,
1980. Springer-Verlag.

[218] S. B. van Dam, M. Walsh, M. J. Degen, E. Bersin,
S. L. Mouradian, A. Galiullin, M. Ruf, M. IJspeert,
T. H. Taminiau, R. Hanson, et al. Optical coher-
ence of diamond nitrogen-vacancy centers formed
by ion implantation and annealing. arXiv preprint
arXiv:1812.11523, 2018.

[219] L. M. Vandersypen, M. Steffen, G. Breyta, C. S.
Yannoni, M. H. Sherwood, and I. L. Chuang. Ex-
perimental realization of Shor’s quantum factoring
algorithm using nuclear magnetic resonance. Nature,
414(6866):883, 2001. arXiv: quant-ph/0112176.

[220] M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and
Y. Silberberg. Observation of topological phase tran-
sitions in photonic quasicrystals. Physical Review
Letters, 110(7):076403, 2013.

[221] M. Verbin, O. Zilberberg, Y. Lahini, Y. E. Kraus,
and Y. Silberberg. Topological pumping over a pho-
tonic Fibonacci quasicrystal. Physical Review B,
91(6):064201, 2015.

[222] G. Verdon, J. Pye, and M. Broughton. A universal
training algorithm for quantum deep learning. arXiv
preprint arXiv:1806.09729, 2018.

[223] F. Verstraete and J. I. Cirac. Renormalization
algorithms for quantum-many body systems in
two and higher dimensions. arXiv preprint cond-
mat/0407066, 2004.

[224] G. Vidal. Entanglement renormalization. Physical
Review Letters, 99(22):220405, 2007.

Works Cited 377

[225] J. von Neumann. Mathematical Foundations of
Quantum Mechanics. Springer, Berlin, 1932.

[226] C. Wang, F.-G. Deng, Y.-S. Li, X.-S. Liu, and G. L.
Long. Quantum secure direct communication with
high-dimension quantum superdense coding. Phys.
Rev. A, 71:044305, Apr 2005.

[227] D. Wang, O. Higgott, and S. Brierley. A generalised
variational quantum eigensolver. arXiv preprint
arXiv:1802.00171, 2018.

[228] Y. Wang, X. Zhang, T. A. Corcovilos, A. Kumar,
and D. S. Weiss. Coherent addressing of individual
neutral atoms in a 3d optical lattice. Physical Review
Letters, 115(4):043003, 2015.

[229] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Sol-
jačić. Observation of unidirectional backscattering-
immune topological electromagnetic states. Nature,
461(7265):772, 2009.

[230] T. Watson, S. Philips, E. Kawakami, D. Ward,
P. Scarlino, M. Veldhorst, D. Savage, M. Lagally,
M. Friesen, S. Coppersmith, et al. A programmable
two-qubit quantum processor in silicon. Nature,
555(7698):633, 2018.

[231] D. Wecker, M. B. Hastings, and M. Troyer. Progress
towards practical quantum variational algorithms.
Physical Review A, 92(4):042303, 2015.

[232] D. S. Weiss and M. Saffman. Quantum computing
with neutral atoms. Phys. Today, 70(7):44, 2017.

[233] S. R. White. Density matrix formulation for quantum
renormalization groups. Physical Review Letters,
69(19):2863, 1992.

[234] T. Wildey. Shor’s Algorithm in Python3.
https://github.com/toddwildey/shors-python, 2014.

[235] P. Wittek. Quantum machine learning edX
MOOC. https://www.edx.org/course/quantum-
machine-learning-2, 2019.

https://github.com/toddwildey/shors-python
https://www.edx.org/course/quantum-machine-learning-2
https://www.edx.org/course/quantum-machine-learning-2

378 Works Cited

[236] P. Wittek and C. Gogolin. Quantum enhanced infer-
ence in Markov logic networks. Scientific Reports,
7:45672, 2017.

[237] K. Wright, K. Beck, S. Debnath, J. Amini, Y. Nam,
N. Grzesiak, J.-S. Chen, N. Pisenti, M. Chmielewski,
C. Collins, et al. Benchmarking an 11-qubit quantum
computer. arXiv preprint arXiv:1903.08181, 2019.

[238] T.-Y. Wu, A. Kumar, F. Giraldo, and D. S. Weiss.
Stern–Gerlach detection of neutral-atom qubits in
a state-dependent optical lattice. Nature Physics,
page 1, 2019.

[239] L. Xiao, X. Zhan, Z. Bian, K. Wang, X. Zhang,
X. Wang, J. Li, K. Mochizuki, D. Kim,
N. Kawakami, et al. Observation of topological edge
states in parity–time-symmetric quantum walks. Na-
ture Physics, 13(11):1117, 2017.

[240] J.-S. Xu, K. Sun, Y.-J. Han, C.-F. Li, J. K. Pachos,
and G.-C. Guo. Simulating the exchange of majo-
rana zero modes with a photonic system. Nature
Communications, 7:13194, 2016.

[241] W. Zeng, B. Johnson, R. Smith, N. Rubin, M. Reagor,
C. Ryan, and C. Rigetti. First quantum computers
need smart software. Nature News, 549(7671):149,
Sep 2017.

[242] W. J. Zeng. Clarifying quantum supremacy:
better terms for milestones in quantum
computation. Medium, Jan 31, 2019.
https://medium.com/@wjzeng/clarifying-quantum-
supremacy-better-terms-for-milestones-in-
quantum-computation-d15ccb53954f.

[243] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and
M. D. Lukin. Quantum approximate optimization
algorithm: Performance, mechanism, and imple-
mentation on near-term devices. arXiv preprint
arXiv:1812.01041, 2018.

https://medium.com/@wjzeng/clarifying-quantum-supremacy-better-terms-for-milestones-in-quantum-computation-d15ccb53954f
https://medium.com/@wjzeng/clarifying-quantum-supremacy-better-terms-for-milestones-in-quantum-computation-d15ccb53954f
https://medium.com/@wjzeng/clarifying-quantum-supremacy-better-terms-for-milestones-in-quantum-computation-d15ccb53954f

Works Cited 379

[244] O. Zilberberg, S. Huang, J. Guglielmon, M. Wang,
K. P. Chen, Y. E. Kraus, and M. C. Rechtsman. Pho-
tonic topological boundary pumping as a probe of
4D quantum Hall physics. Nature, 553(7686):59,
2018.

	Contents
	Preface
	Acknowledgements
	Navigating this Book
	Part I Foundations
	CHAPTER 1
	Superposition, Entanglement and Reversibility

	CHAPTER 2
	A Brief History of Quantum Computing

	CHAPTER 3
	Qubits, Operators and Measurement
	3.1 Quantum Operators
	Unary Operators
	Binary Operators
	Ternary Operators

	3.2 Comparison with Classical Gates
	3.3 Universality of Quantum Operators
	3.4 Gottesman-Knill and Solovay-Kitaev
	3.5 The Bloch Sphere
	3.6 The Measurement Postulate
	3.7 Computation in Place
	3.4 Representing Superposition of States
	Quantum Circuit Diagrams

	CHAPTER 4
	Complexity Theory
	4.1 Problems vs. Algorithms
	4.2 Time Complexity
	4.3 Complexity Classes
	4.4 Quantum Computing and the Church-Turing Thesis

	Part II Hardware and Applications
	CHAPTER 5
	Building a Quantum Computer
	5.1 Assessing a Quantum Computer
	5.2 Neutral Atom
	5.3 NMR
	5.4 NV Center-in-Diamond
	5.5 Photonics
	Semiconductor quantum transistor
	Topological photonic chip

	5.6 Spin Qubits
	5.7 Superconducting Qubits
	5.8 Topological Quantum Computation
	5.9 Trapped Ion
	5.10 Summary

	CHAPTER 6
	Development Libraries for Quantum Computer Programming
	6.1 Quantum Computers and QC Simulators
	6.2 Cirq
	6.3 Qiskit
	6.4 Forest
	6.5 Quantum Development Kit
	6.6 Dev Libraries Summary
	Using the Libraries
	Other Development Libraries

	6.7 Additional Quantum Programs
	Bell States
	Gates with Parameters

	CHAPTER 7
	Teleportation, Superdense Coding and Bell’s Inequality
	7.1 Quantum Teleportation
	7.2 Superdense Coding
	7.3 Code for Quantum Teleportation and Superdense Communication
	7.4 Bell Inequality Test
	Summary

	CHAPTER 8
	The Canon: Code Walkthroughs
	8.1 The Deutsch-Jozsa Algorithm
	8.2 The Bernstein-Vazirani Algorithm
	8.3 Simon’s Problem
	8.4 Quantum Fourier Transform
	8.5 Shor’s Algorithm
	RSA Cryptography
	The Period of a Function
	Period of a Function as an Input to a Factorization Algorithm

	8.6 Grover’s Search Algorithm
	Summary

	CHAPTER 9
	Quantum Computing Methods
	9.1 Variational Quantum Eigensolver
	VQE with Noise
	More Sophisticated Ansatzes

	9.2 Quantum Chemistry
	9.3 Quantum Approximate Optimization Algorithm (QAOA)
	Example Implementation of QAOA

	9.4 Machine Learning on Quantum Processors
	9.5 Quantum Phase Estimation
	Implemention of QPE

	9.6 Solving Linear Systems
	Description of the HHL Algorithm
	Example Implementation of the HHL Algorithm

	9.7 Quantum Random Number Generator
	9.8 Quantum Walks
	Implementation of a Quantum Walk

	9.9 Summary

	CHAPTER 10
	Applications and Quantum Supremacy
	10.1 Applications
	Quantum Simulation and Chemistry
	Sampling from Probability Distributions
	Linear Algebra Speedup with Quantum Computers
	Optimization
	Tensor Networks

	10.2 Quantum Supremacy
	Random Circuit Sampling
	Other Problems for Demonstrating Quantum Supremacy
	Quantum Advantage

	10.3 Future Directions
	Quantum Error Correction
	Doing Physics with Quantum Computers
	Conclusion

	Part III Toolkit
	CHAPTER 11
	Mathematical Tools for Quantum Computing I
	11.1 Introduction and Self-Test
	11.2 Linear Algebra
	Vectors and Notation
	Basic Vector Operations
	The Norm of a Vector
	The Dot Product

	11.3 The Complex Numbers and the Inner Product
	Complex Numbers
	The Inner Product as a Refinement of the Dot Product
	The Polar Coordinate Representation of a Complex Number

	11.4 A First Look at Matrices
	Basic Matrix Operations
	The Identity Matrix
	Transpose, Conjugate and Trace
	Matrix Exponentiation

	11.5 The Outer Product and the Tensor Product
	The Outer Product as a Way of Building Matrices
	The Tensor Product

	11.6 Set Theory
	The Basics of Set Theory
	The Cartesian Product
	Relations and Functions
	Important Properties of Functions

	11.7 The Definition of a Linear Transformation
	11.8 How to Build a Vector Space From Scratch
	Groups
	Fields
	The Definition of a Vector Space
	Subspaces

	11.9 Span, Linear Independence, Bases and Dimension
	Span
	Linear Independence
	Bases and Dimension
	Orthonormal Bases

	CHAPTER 12
	Mathematical Tools for Quantum Computing II
	12.1 Linear Transformations as Matrices
	12.2 Matrices as Operators
	An Introduction to the Determinant
	The Geometry of the Determinant
	Matrix Inversion

	12.3 Eigenvectors and Eigenvalues
	Change of Basis

	12.4 Further Investigation of Inner Products
	The Kronecker Delta Function as an Inner Product

	12.5 Hermitian Operators
	Why We Can’t Measure with Complex Numbers
	Hermitian Operators Have Real Eigenvalues

	12.6 Unitary operators
	12.7 The Direct Sum and the Tensor Product
	The Direct Sum
	The Tensor Product

	12.8 Hilbert Space
	Metrics, Cauchy Sequences and Completeness
	An Axiomatic Definition of the Inner Product
	The Definition of Hilbert Space

	12.9 The Qubit as a Hilbert Space

	CHAPTER 13
	Mathematical Tools for Quantum Computing III
	13.1 Boolean Functions
	13.2 Logarithms and Exponentials
	13.3 Euler’s Formula

	CHAPTER 14
	Table of Quantum Operators and Core Circuits

	Works Cited

